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Abstract 

In this thesis we present techniques for the calculation of two-loop integrals con

tributing to the virtual corrections to physical processes with three on-shell and one 

off-shell external particles. First, we describe a set of basic tools that simplify the 

manipulation of complicated two-loop integrals. A technique for deriving helicity 

amplitudes with use of a set of projectors is demonstrated. Then we present an algo

rithm, introduced by Laporta, that helps reduce all possible two-loop integrals to a 

basic set of 'master integrals'. Subsequently, these master integrals are analytically 

evaluated by deriving and solving differential equations on the external scales of the 

process. Two-loop matrix elements and helicity amplitudes are calculated for the 

physical processes "(* ---+ qqg and 1l ---+ ggg respectively. Conventional Dimensional 

Regularization is used in the evaluation of Feynman diagrams. For both processes, 

the infrared singular behavior is shown to agree with the one predicted by Catani. 
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Preface 

The mm of this thesis is to provide an insight into fundamental mechanisms of 

perturbative Quantum Chromodynamics ( QCD), as well as aspects of Higgs physics. 

More precisely, we perform higher order calculations of matrix elements and helicity 

amplitudes for processes involving the decay of a massive particle to partons. This 

thesis is structured in a way that covers all the main building blocks that lead to 

such calculations. 

In the first chapter we present an overview of basic QCD concepts starting with 

the Lagrangian of the theory and rules for diagrammatically presenting analytic 

expressions (Feynman rules). Similarly we present the Lagrangian and Feynman 

rules for the "effective" Higgs-gluon-gluon vertex, an approximation that signifi

cantly simplifies calculations. In the same chapter we also describe Dimensional 

Regularization and Renormalization. The former is a scheme that allows isolation 

and quantification of divergences (infrared and ultraviolet) that appear in higher or

der calculations in perturbation theory. Renormalization is a fundamental property 

of QCD that leads to the cancellation of ultraviolet divergences at each order in the 

perturbation series. Infrared divergences are treated in the second chapter, where 

we demonstrate how they can be predicted and how they cancel out for physical 

observables. 

In chapter 3 we illustrate the basic steps leading to a matrix element or helicity 

amplitude calculation, while in chapter 4 we describe a set of basic tools that can 

be used toward that direction. Our focus in both chapters is on the calculation of 

two-loop integrals. An algorithm that allows one to reduce all possible two-loop 

integrals to a basic set of "master integrals" is introduced in chapter 5. A powerful 

Vlll 



method of analytically evaluating those "master integrals" is presented in chapter 6. 

All the above tools and techniques are used in chapters 7 and 8 for the calcu

lation of the two-loop corrections to the matrix elements and helicity amplitudes 

of the decays 1* ---t qijg and 1{ ---t ggg respectively. Finally, in the last chapter we 

summarize the results of this thesis and give an outlook on future calculations. 

IX 



Chapter 1 

Basic QCD 

1.1 QCD Lagrangian 

QCD is a non-Abelian gauge theory based on the SU(N) group, with N=3 calor 

degrees of freedom. It describes the interactions between spin-1/2 particles (quarks) 

and spin-1 vector bosons (gluons). The full QCD Lagrangian can be written as the 

sum of three component parts: 

[,QCD = £classical + .Caauge-Fixing + .Cahost · 

The expression for the classical Lagrangian density is: 

[,Classical = L 1/;J,i (i fJ- mJOij) 'l/Jj,j - FJ:"' F:v 
f 

(1.1) 

Here, i, j run through the number of colors (N=3) of SU(3) and a takes values 

from 1 to N 2 
- 1 = 8. The index f carried by the quark-fields runs over the quark 

flavors and JD is the symbolic notation of lJ.LDJ.L with lJ.L being the Dirac matrices 

that satisfy the Clifford Algebra anti-commutation relation: 

The gauge covariant derivative is given by: 

(1.2) 

1 



1. Basic QCD 1.1. QCD Lagrangian 

where g is the coupling of the quarks with the gluons and Tt; are the eight 3 x 3 

hermitian and traceless Gell-Mann matrices that generate the fundamental repre

sentation of SU(3). Their commutator defines the SU(3) structure constants rbc: 

The operator D11 was constructed so that the covariant derivative of a field trans

forms just like the field under any local SU(3) transformation U(x): 

'l/J1 ---7 U(x) 'lj;1 , 

D 11 ---7 u (X) D 11 ' 

with U ( x) defined as: 

In equation (1.2), are the gluon fields. The field strength tensor F;v that 

appears in the 'kinetic' term of the 'classical' Lagrangian in eq. (1.1) can be written 

in terms of the gluon fields as: 

Non-Abelian 

F a !=l Aa !=l Aa -gjabc AbJl JlV = UJl v - Uv J1 v 

with F;v defined in a way that satisfies the relation: 

(1.3) 

The Non-Abelian term in eq. (1.3) results in the appearance of interaction terms 

in £classical that contain only gluons (three and four gluon vertices). This is the 

fundamental difference between QCD and QED. In QED, where the non-Abelian 

term is absent, the force-carriers (photons) are charge-neutral and therefore there 

are no multi-photon vertices. However in QCD the force-carriers (gluons) are calor

charged allowing for multi-gluon couplings. 

Notice that the building of the £classical part of the QCD Lagrangian has been 

done by following the fundamental principle of gauge invariance, with quark and 

2 



1. Basic QCD 1.1. QCD Lagrangian 

gluon fields transforming as: 

'1/JJ ---+ U(x) 'ljJ1 , 

---+ U(x) ( Ta - U(xt 1 81-LU(x)) U(x)- 1 

It is trivial to see that while the quark mass term -l[J1 m 1 'ljJ1 is invariant under local 

gauge transformations, this is not the case for a possible gluon mass term: 

because this term obviously violates local gauge invariance. 

However the gauge invariance of the Lagrangian of eq. (1.1) prevents us from 

performing perturbation theory. The problem arises when we try to perform canon

ical quantization. This is evident in the functional integral of the exponential of 

the action, which becomes badly divergent, due to the freedom of the gluon fields 

to transform by a total derivative leaving the Lagrangian invariant. The divergence 

emerges as we integrate over a continuous infinity of physically equivalent field con

figurations. It is therefore impossible to define the gluon propagator. To fix the 

problem we need to find a way to count each physical configuration in the func

tional integral only once. One way we can achieve this, is by putting a constraint 

on the freedom of the gluon field AJ.L, such as the Lorentz condition: 

This leads to the insertion of a gauge-fixing term in the Lagrangian: 

.Ccauge-Fixing = -
2

1e ( 81-L 
2 (1.4) 

where the parameter e is called the gauge parameter. Because of the gauge fix

ing term the QCD Lagrangian is no longer gauge invariant. However the physical 

predictions originating from the Lagrangian ought to be gauge invariant and gauge 

independent. This means that the value of e is not relevant to the physical result. 

Unless differently stated, for the rest of this thesis it is taken to be e = 1 in what is 

called the Feynman gauge. 

3 



1. Basic QCD 1.2. Feynman Rules for QCD 

The gauge fixing term of (1.4) needs to be accompanied by the ghost Lagrangian: 

(1.5) 

with n (Fadeev-Popov ghost) being a complex scalar field obeying the Fermi statis

tics. This term must be added to cancel out the two unphysical polarizations of the 

gluon field i.e. the time-like and longitudinal degrees of freedom. Therefore, the full 

Lagrangian for quantum mechanical applications is the sum of equations (1.1), (1.4) 

and (1.5). 

1.2 Feynman Rules for QCD 

Within QCD we are interested in providing theoretical predictions for physical ob

servables, such as decay widths (f) and cross-sections (a), involving interactions 

of the fundamental QCD particles and fields. The measure of these interactions 

is described by dimensionless quantities called amplitudes (M). Each amplitude 

consists of a number of terms containing functions of integrals of the Lagrangian 

which describes the system. Feynman [1, 2] invented a consistent way of mapping 

all those terms into easy-to-visualize diagrams. This procedure follows a set of op

erations called Feynman rules. These are rules associating analytic expressions with 

pieces of diagrams. The product of those pieces gives the value of the diagram which 

corresponds to a term contributing to the amplitude. In this section we present in 

brief the Feynman rules for Quantum Chromodynamics. In all Feynman diagrams 

of this thesis quarks are illustrated with solid straight lines, gluons with spiral coils 

and ghosts with dashed lines, following the notation of [3]. In consistency with 

section 1.1, the color indices for gluons and ghosts are denoted with the letters 

a, b, c, d, e running from 1 ... ( N 2 
- 1) = 8 while for quarks we use i, j who run from 

1 ... N = 3. The Lorentz indices are designated by the letters f.l, v, p, a, etc. 

For the external lines with quarks and gluons we have: 

4 



1. Basic QCD 1.2. Feynman Rules for QCD 

Incoming Lines Outgoing Lines 

u(p) ij u(p) 

v(p) ij v(p) 

<"(p) <"'(p) 

In following chapters we will see that for the calculation of Matrix-Elements one 

needs the following sums over the fermion spins and gluon polarizations: 

L u(p) u(p) ;f+ m, 
spins 

L v(p) v(p) p-m, 
spins 

L ( (p) ) * Ev (p) 
pals 

In the Feynman gauge = 1 and in the Landau gauge = 0. As far as the gluon, 

quark and ghost propagators are concerned the Feynman rules are: 

p, a, J' p, b, v i-+iie: [g"v- (1- oab 

p,m,i p,m,j 

---
p,a p,b 

---
Notice that in the denominator of each propagator we have followed the 'Feynman 

prescription' and assigned a positive imaginary part + i c to guarantee that the 

5 



1. Basic QCD 1.3. Regularization and Renormalization 

propagation of particles is from earlier to later points in time. We have also given 

the gluon propagator in a covariant gauge, fixed by the in line with the 

analysis of the previous section. 

The quark-gluon, ghost-gluon and gluon self-interaction vertices respectively are: 

b 

p,a, ,,' 

',.........._, 
',,, c 

P3,C, p 

P2, b, V 

P3, c, p 

P2,b, V 

-9 rbc [ (Pl - P2)P 911v + 

(P2- P3)J-L g'-'P + 

(p3 - P1t 9P11 ] 

_ i 92 rbe rde (9va gllP _ 9Jla 9vp) 

_ i 92 rce fbde (9pa 9J1V _ 9Jla 9vp) 

_ i 92 rde rbe (9va 9J1P _ 9pa 9J-Lv) 

In addition to the previous set of rules one must 

• integrate over the loop momentum ki of each loop with measure 

f dDk h D. h d" . (f;ft5, w ere 1s t e 1menswn, 

• multiply with ( -1) for every quark or ghost loop, 

• multiply by a symmetry factor to take into account permutations of the fields 

in each diagram. 

1.3 Regularization and Renormalization 

The Feynman Rules presented in the previous section make the calculation of tree

level diagrams a trivial task. Nevertheless, when one goes to higher orders in pertur-

6 



1. Basic QCD 1.3. Regularization and Renormalization 

bation theory loop-integrals appear in the calculation. These integrals can carry di

vergences originating in the behaviour of the integrand at high and low virtual/loop 

momenta. Let us now examine how those divergences emerge by studying the be

haviour of the integral that corresponds to the following one-loop vertex diagram: 

Pl 

k+p1 --+I 

P2 

There are two types of divergences that can appear in this integral: 

• Ultraviolet Divergences (UV) are associated with the singularities that appear 

in the integrals at large loop-momenta. In our example: 

k --+ oo ==} I --+ oo logarithmically. 

e Infrared Divergences (IR) are generated when one of the propagators in the 

loop tends to zero. For our example we have: 

k--+ {0, -pi, -pl- pz} ==} I--+ oo, with Pi= = 0 

Such divergences arize when the propagators are massless as is the case in 

our example. This occurs in QCD due to the presense of massless gluon and 

light-quark propagators. 

There have been developed several techniques that allow one to surmount the dif

ficulties raised by the existence of such divergences. UV divergences are banished 

order by order in perturbation theory by a procedure called renormalization, as we 

will see later in this section. As far as IR divergences are concerned, we will demon

strate in chapter 2 how they cancel at each order for a certain type of physical 

observables. In the same chapter we will also illustrate a method that enables one 

to predict the IR structure at one and two loops. In order to demonstrate the appear

ance and cancellation of both UV and IR divergences one must first separate them 

from the finite part of the integral. This procedure is called Regularization. The 

most popular regularization scheme of the last years and the one used throughout 

this thesis is dimensional regularization due to 't Hooft and Veltman [8-10]. 

7 



1. Basic QCD 1.3. Regularization and Renormalization 

1.3.1 Dimensional Regularization (DR) 

In Dimensional Regularization (DR) the Feynman integral is calculated as an an

alytic function of the space-time dimensionality D = 4 - 2E, with E being a small 

parameter. Providing that D is treated as a continuous variable, both UV and IR 

divergences can be quantified in the form of poles in E, i.e. 1/En, with n = 1, 2, .... 

In the limit D ---+ 4, or equivalently E ---+ 0, any observable quantity (cross-section or 

decay-rate) should be well-defined. The DR method is well explained in references 

[3], and [6]. To apply DR in an integral one has to go from 4 to D dimensions. After 

performing the so called Wick rotation to go from the Minkowski to the Euclidian 

space, one must apply the following modifications: 

• In the Feynman rules the measure we use to integrate over each loop-momentum 

ki changes: 

o In D dimensions obeys gJ.tv = D. The Clifford algebra will also be 

affected with Dirac matrices being manipulated as a set of D 4 x 4 matrices 

whose contraction identities are modified to: 

• The measure of the phase-space integration of a transition rate over the exter

nal momenta will also have to be converted: 

J · · · (27r)4b(pi- PJ) ---+ J 1 •• • (27r)Db(pi- PJ) 

• Finally, since the action S = J dD x .C must remain dimensionless, the terms in 

the QCD Lagrangian must alter to ensure dimensional coherence. As a conse

quence, a dimension is imposed on the coupling constant g. The dimensionless 

coupling constant must be replaced by: 

9s ---+ j.l 9s · (1.6) 

As a result the theory has acquired one more scale, J.l· Notice that in the limit 

D ---+ 4, g has no dimensions. 

8 



1. Basic QCD 1.3. Regularization and Renormalization 

After the continuation of loop momenta into D dimensions one is still left with some 

freedom concerning the dimensionality of the momenta of the external particles as 

well as the number of polarisations for internal and external particles. There are 

several DR scemes that can be used to deal with this. The calculations of this thesis 

were carried out using a scheme called Conventional Dimensional Regularization 

(CDR) 1
. Within this scheme, no distinction is made between real and virtual parti

cles and massless quarks are considered to have 2 helicity states while gluons have 

D- 2. For the helicity amplitudes, we use the t'Hooft-Veltman scheme, where the 

external particle states are 4-dimensional. 

1.3.2 Renormalization 

So far in this section we have presented a scheme that allows IR and UV divergences 

to be isolated and quantified. UV divergences cancel order by order in perturbation 

theory due to a fundamental property of QCD: 

QCD is a Renormalizable theory. 

"The idea of renormalizable theory is that UV divergences of a field theory are to be 

cancelled by renormalizations of the parameters of the theory" [ 6]. In practice one 

can take the fields and coupling of LQcD and redefine them with a multiplicative 

factor. We set: 

V;ju ---+ 

Aa,U 
J.L ---+ 

na,U ---+ 

---+ 

mu ---+ 

---+ 

zl/2 V;jR 

zl/2 Aa,R 
A J.L 

zl/2 na,R 
n 

Z mR m 

(1. 7) 

(1.8) 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

1 A variety of regularisation prescriptions within DR can be found in [11, 12], whereas in [13] 

there is a detailed introduction to the DR technique. 

9 



1. Basic QCD 1.3. Regularization and Renormalization 

where we have used the U and R superscripts to denote the unrenormalized and 

renormalized quantities respectively. The above redefinition is a simple renaming 

and will not alter the path integral over the action S = J dD x .C. This means that 

the Green's functions and S-matrix elements will remain the same as well as the 

Feynman rules presented in section 1.2. In a renormalizable theory one can write 

a UV-divergent Green's function of the unrenormalized fields as the product of a 

UV-finite renormalized Green's function times a renormalization constant which has 

absorbed all UV divergence. With proper readjustment, the multiplicative renor

malization constants absorb UV divergences at all orders in perturbative QCD, 

giving physical meaning to the renormalized Green's functions. This enables QCD 

to make theoretical predictions of finite physical observables such as cross-sections 

and decay-rates. 

Apart from factoring out UV divergences one has the choice of subtracting an 

arbitrary amount of the finite part. This defines the renormalization scheme used 

in the calculation. In this thesis we have used the Modified Minimal Subtraction 

scheme (MS), in which we remove the UV poles in E defined as: 

1 1 
-= = ( 4n )'" e- ET- with 1 being Euler's constant . 
E E 

This choice simplifies our calculation because in practice the poles always appear in 

the combination: 

_r('---1
-+--'-t:) (4nr = + ln(4n) - 1 + O(t:). 
E E 

When we performed dimensional regularization we introduced an unphysical 

mass scale J.L to maintain a dimensionless action. This unphysical and arbitrary 

mass scale is still present in the renormalized fields and couplings. Physical observ

ables do not depend on the renormalization scale. However, there is dependence 

on J.L when the calculation is in fixed-order perturbation theory. Depending on the 

choice of renormalization scheme and scale J.L, one can get different results when 

predicting the same physical quantity. For the theory to be consistent the expres

sions of our results must be formally equivalent with each other. This is achievable 

10 



1. Basic QCD 1.3. Regularization and Renormalization 

due to a set of restrictions imposed on the renormalized fields and couplings. These 

restrictions have the form of a set of differential equations ( renormalization group 

equations) that must be satisfied by the renormalized quantities when varying the 

renormalization scale. The renormalization group equations are derived by requiring 

that physical observables are eventually independent of the mass-scale 1-l· 

1.3.3 Running Coupling and Renormalization Group Equa-

tions 

Using the CDR transformation eq. (1.6) and the renormalization group definitions 

eq. (1.7) we get a relation between the bare-unrenormalized coupling strength and 

the renormalized one: 

Z € R 
g /1 9s · (1.13) 

Taking in mind that: 

one can re-write the unrenormalized coupling a 8 as: 

(1.14) 

The value of Z9 has been calculated up to order in perturbation theory. In 

the MS scheme we have: 

where: 

[1 _ !3o (!36 _ /J1) + 0 ((aR)3)] , 
E 21!' 21T' s 

!3o 
e -q ( 4 7r r 1 = Euler constant , 

11CA-4TnNJ 
6 

--10CATRNJ- 6CJTRNf 
6 

11 

(1.15) 

(1.16) 



1. Basic QCD 1.3. Regularization and Renormalization 

Here N1 is the number of active light-quark flavours and Cp, CA and Tn are the 

Casimir operators for SU(N) which can be written in terms of the number of colors 

N as: 

(1.17) 

The parameters /30 and /31 appearing in eq. ( 1.16) are the first two coefficients of the 

perturbative expansion of the f3 function which is defined by the renormalization 

group equation: 

(1.18) 

where we have dropped index R from the renormalized The solution of this 

differential equation yields: 

(1.19) 

where the scale J.Lo expresses a boundary condition. Equation 1.19 defines a new 

function, the running coupling as(J.t2), providing that we know its value as(J.t5) for a 

certain energy scale 1-lo· If we keep only the first term of the series of the f3 function, 

the solution of eq. 1.19 is: 

(1.20) 

Notice that as the scale 1-l increases, the running coupling as(J.t2) decreases to zero. 

This is a fundamental property of QCD called asymptotic freedom2
. The signifi

cance of this property is evident in the study of physical observables such as decay 

rates. As we have mentioned earlier, a physical observable should not depend on 

the unphysical renormalization scale J.L. This statement can be expressed through 

the following renormalization group equation for a decay rate r: 

df 
df.-l2 = 0 . (1.21) 

20f course, this statement is valid for f30 > 0, which true if in eq. (1.16), the number of light

quark flavoms is Nt :::; = 3
2
3 (in the final step we used the number of colors N = 3). 
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1. Basic QCD 1.4. Effective Higgs Lagrangian 

As the decay rate is a dimensionless observable, its p dependence at each order will 

be a function of the coupling and the dimensionless ratio sI 112
, with s being 

a squared energy scale on which r depends. Eq. (1.21) can therefore be written as: 

(1.22) 

with t = zo9 ( s 1 11
2

). rt is easy to prove that r ( o:s(s), 1), i.e. 11
2 = s is a solution of 

eq. (1.22) 3 . We can conclude by this that the dimensionless decay rate r measured 

at a large energy s can be expressed as a perturbative series in terms of the strong 

coupling constant 0: 5 (s): 

(1.23) 

This perturbative expansion raises a few challenges due to the fact that 0:5 is 

a free parameter of QCD and that we need to truncate this series at a point in 

order to extract a theoretical value for the observable (e.g. decay rate) which will 

be compared to the one emerging from experimental data. These issues will be 

addressed in the end of chapter 2. 

1.4 Effective Higgs Lagrangian 

In section 1.1 we presented the full QCD Lagrangian describing the fundamental 

interactions between the QCD particles and fields (quarks and gluons). One of the 

most important unresolved problems of Particle Physics concerns the origin of the 

particle masses. Within the Standard Model theory, the most accurate and pre

cisely tested theoretical description in the field of Particle Physics, all the particles' 

masses are generated through a mechanism called electroweak symmetry breaking4
. 

In its minimal version, the phenomenological manifestation of this mechanism is an 

electrically neutral, scalar, zero-spin particle, the Higgs boson, whose mass is an a 

3Indeed ar("'•<•l•l) = a"'•<•l ar("'•<•J•l) = (3 ar("'•<•l•l) 
' at at Da•<•l (a.) Da. 

4 We will not illustrate this mechanism here. We refer the reader to some of the many books 

that have been written on the subject like [3, 7]. 
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1. Basic QCD 1.4. Effective Higgs Lagrangian 

priori free parameter of the theory. The Higgs boson remains the only still unde

tected particle of the Standard Model. As a result the search for the Higgs particle 

is one of the major objectives of present and future colliders like LHC. The most 

probable range for its mass, as it is predicted by comparing existing experimental 

data and theoretical estimates, is approximately between 100 and 200 GeV [15]. 

For this mass range, at LHC, the dominant production mechanism of the Higgs 

boson will be through gluon fusion [14], at a rate at least five times higher than any 

other production channel. This accentuates the importance of the theoretical study 

of the Higgs-gluons interactions. However, the Higgs boson interacts directly with 

quarks and not with gluons. This interaction can be described by the bare Yukawa 

Lagrangian, 

(1.24) 

where v is the Higgs vacuum expectation value related to the Fermi constant by 

V = ( J2e F r 112 = 246 eev, t is the top quark, Ql are the light quarks and the 

superscript U symbolizes bare quantities. We have separated the top quark term in 

£y because, as the Yukawa couplings of the Higgs boson to quarks are proportional 

to the respective quark masses, the Higgs coupling to gluons (1lgg) is essentially 

generated by the top quark alone, through a top-quark loop. The involvement 

of two mass scales (Mt, M?-t) complicates significantly any effort to theoretically 

describe such interactions. Nevertheless, it has been shown that in the heavy top 

quark limit, Mt --+ oo, the 1lgg coupling becomes independent of the Mt. We can 

therefore integrate out the top quark field and formulate an effective Lagrangian, 

Cef f ( [16-18]) approximating the H gg coupling: 

£ = _!..!_cu (eau ')2 = _!..!_C (ea ')2 
ef f 4 V 1 JU-' 4 V 1 JlV ' 

(1.25) 

with being the field strength tensor of the gluon. The primes indicate the 

quantities defined in a light-quark (n1 = 5) effective QCD . The dependence on the 

top quark is restricted to the C1 coefficient function. We should note here that the 

second equality in eq. (1.25) is valid because the product C1 is renormaliza

tion group invariant at each order, even though C1 and separately are not. 

14 



1. Basic QCD 1.4. Effective Higgs Lagrangian 
g g 

___ Jj _____ _ ___ Jj ____ _ 

g g 

Figure 1.1: The H gg coupling in full QCD and the effective Lagrangian theory. 

C1 has been calculated up to order O(a!) in [19] 5 . However, for our purposes we 

need it only up to order [20,21], 

1 alnl) { 11 ainz) ainl) 2 [2777 19 ( 67 1 ) ] } 
C1=--- 1+---+(-) --+-LM +nt --+-LM + ... 

3 7f 4 7f 7f 288 16 t 96 3 t ' 

(1.26) 

where LMt = ln(J-12 
/ Ml), n1 = 5 is the number of the massless active quark flavors 

and a(nz) a(5) (J-12 ) is the renormalized QCD coupling constant in the MS scheme 

which can be expressed through a(6) (J-12
) via the decoupling relation [22], 

This approximation works very well under the condition that both the transverse 

momentum P7 and the Higgs mass MH, are smaller than the top quark mass Mt 6
. 

The advantage of this method is that it reduces the loops that need to be calculated 

by one ( fig.l.1), simplifying any calculation enormously. Therefore, amplitudes that 

correspond to two-loop diagrams in the original theory are one-loop diagrams in the 

effective theory. 

1.4.1 Feynman Rules for the Effective Lagrangian 

Similarly to the 'normal' QCD Lagrangian, the effective Lagrangian generates ver

tices involving the Higgs boson coupling with two, three or four gluons whose asso-

5The calculation involved a large number (657) of three-loop three-point diagrams. 
6 More precisely MH < 2Mt, with M1 ;::::; 175 GeV. 
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1. Basic QCD 

ciated Feynman rules are respectively: 

with 

P4 rJ d 

;t'JLI!pa 
abed 

PI 1£ a 

P3 Pc 

P1 tL a 

P2 v b 

P2 v b 

P3 Pc 

1.4. Effective Higgs Lagrangian 

C 2 XJLI!pa 
- 1 9s abed ' 

(1.28) 

The rest of the propagators, external particles and vertices, that do not entail the 

effective Higgs coupling, are treated using the standard set of QCD Feynman rules 

presented in section 1.2. 

In section 1.3 we presented techniques that allow one to deal with the appearance 

of ultraviolet and infrared divergences. A method for canceling UV divergences was 

also illustrated. In the following chapter we describe a methodology that leads to 

the cancellation of IR divergences and an independent way of predicting them. 
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Chapter 2 

IR Divergences and Matrix 

Elements 

2.1 Introduction 

In section 1.3 we presented a procedure called conventional dimensional regular

ization (CDR), which allows infrared divergences to be separated from the finite 

part of an integral and be manifest as poles in E, i.e. 1/En, n = 1, 2, .... Apart 

from the IR divergences generated in loop integrals (virtual divergences) there are 

also divergences arising from real emissions. These can be of two types; soft di

vergences appearing when an on-shell particle radiates a massless low momentum 

('soft') particle and remains on-shell and collinear divergences arising when the ra

diating and radiated particles have 'indistinguishable' momentum configurations1
. 

As we mentioned in section 1.3 all these divergences are eliminated at each order in 

perturbation series. 

In the following subsections we will derive the components needed for the 'total' 

NLO decay rate of 1i -+ gg in the limit Mt -+ oo. In order to calculate the radiative 

corrections to the 1{ -+ gg decay we need both the real contributions from the 

processes 1{ --+ ggg and 1{ -+ gqij, as well as the virtual 1-loop corrections from 

1i -+ gg. Both real and virtual corrections have divergences which are manifest 

1Thls practically means that the two particles move toward the same direction. 
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2.2. Infrared Cancellation: 
2. IR Divergences and Matrix Elements The Jl-t gg decay 

as poles in E (1/E and 1/c2
). In 2.2.5 we demonstrate how all these divergences 

miraculously cancel out. Then we illustrate a formalism developed by Catani [11, 12] 

which can predict theIR pole structure of NLO and NNLO matrix elements. Finally 

we discuss the need for matrix element and helicity amplitude calculations beyond 

NLO. 

2.2 Infrared Cancellation: 

The 1-l --+ g g decay 

2.2.1 Notation 

For the general case of the decay of the Higgs boson to particles X, we will use the 

following notation: 

r
LO 

1-1.-tX 

rNNLO 
1-1.-tX 

'free - level amplitude , 

One - loop amplitude , 

Two -loop amplitude , 

'free - level decay rate , 

One - loop decay rate , 

Two - loop decay rate , 

Leading order decay rate , 

Next - to - leading order decay rate , 

Next - to - next - to - leading order decay rate , 

The Nx- body phase space. 

2.2.2 Tree-Level and LO: No Emissions 

(2.1) 

The 10 contribution involves only one type of diagram (fig 2.1). The matrix element 

squared for this process in the Mt -t oo limit can be trivially calculated and is well 

18 



2.2. Infrared Cancellation: 
2. IR Divergences and Matrix Elements The 1-l gg decay 

g 

1{ ----------

g 

Figure 2.1: Feynman diagram contributing to the 1{--+ gg decay at LO. The crossed

dot represents the effective coupling between gluons and the Higgs boson in the 

infinite top quark mass limit. 

known [23] for many years: 

"' IM(O) 12 = 1) (1- ) 
6 11.--+gg 2v2 E 

spin,col 

(2.2) 

The tree-level differential decay for 1l --+ gg is given by: 

Jdr(o) IM(o) 12 
11.--+gg 2M 6 11.--+gg 

1{ spin,col 

(2.3) 

where J d<I>2 is the phase space for two partons in D dimensions. There is also 

an overall factor , accounting for the incoming flux. In order to perform the 

integration, we use the two-body phase space formula which we have derived in 

Appendix C, and get: 

r(o) = CiMf.t(N
2

- 1) r(1- E) ( 471" )€ (1 - E) 
1{--tgg 641Tv2 r(2- 2E) 

(2.4) 

In order to get the leading order (LO) term of the decay rate, we keep only the first, 

order O(a(s)), term of the expression for C1 (eq. (1.26)): 

(2.5) 

Since we are interested in a NLO calculation, we can keep only the terms up to 

order 0 ( ( of the decay rate ( eq. (2.4)). Therefore we renormalize in 

the MS scheme using eq. (1.15) and keep only the first two terms of eq. (1.26) for 

C1 . Then eq. (2.4) can be expressed in terms of r{{! .. 
99 

as: 

(2.6) 
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2. IR Divergences and Matrix Elements The 1{--+ gg decay 

In 4 dimensions (t: ----t 0) and for N = 3, eq. (2.5) reads: 

(2.7) 

2.2.3 Virtual Infrared Divergences 

The contribution to the decay rate coming from virtual graphs involves only two 

types of diagrams (fig. 2.2) 

g g 

1l 1l ---------- ----------

g g 

Figure 2.2: Feynman diagrams contributing to the 1i ----t gg decay at NLO in the 

infinite top quark mass limit 

The diagrams of fig. 2.2 that appear in the one-loop amplitude demand the 

calculation of one-loop integrals of the form: 

(2.8) 

where k is the loop momentum, p1 and p2 are the external momenta and u is a 

function of scalar products of k, p1 and p2 such as k2, k · p1 or p1 · p2. This type of 

integral is slightly harder to evaluate. In the following chapters we will demonstrate 

a methodology that allows one to compute not only one-loop but also two-loop 

integrals and use them to calculate amplitudes. Here we will just present the result 

of the interference of the tree level with the one-loop amplitude: 

I (o) I (1) ) \ M1i_.99 M1i_.99 = 
spin,col 

( 1) -fC?ns47l'N(N2 ) ( 47!' )f-
2 

r(t:)r(1- t:)
2 

(1 2) ( - - - 1 - - - 3 + 2E + E 2. 9) 
v2 r(2- 2E) E 
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2.2. Infrared Cancellation: 
2. IR Divergences and Matrix Elements The 1l -t gg decay 

For reasons that will soon become apparent in subsection 2.2.5 we proceed by inte

grating 2Re Lspin,col \ over the two-body phase space2
: 

(2.10) 

The result of the integration up to order O(E) is: 

(2.11) 

where we have factored out Finally we renormalize in the MS scheme by 

multiplying the above equation with S;1 = e€"f(4n)-€ and get: 

(1) LO as J1 7r 

( 
2)€ ( 2 7 2 ) 

r1-l---+gg = r1-l---+gg2n N - E2 + 6 + O(E) (2.12) 

2.2.4 Real Infrared Divergences 

We will consider two subprocesses which contribute real emissions to the 1-l --+ gg 

decay. The first one involves the emission of a third real gluon in the final state 

(1-l --+ ggg), giving diagrams like the ones in fig. 2.3. The second one entails the 

splitting of one of the two final-state gluons into a quark-antiquark pair (1-l --+ qqg) 

as shown in fig. 2.4. 

g 

1-l ---------- g 

g 

Figure 2.3: Feynman diagrams contributing to the tree-level 1-l--+ ggg decay in the 

infinite top quark mass limit. One real gluon is emitted. 

Both of these processes 'look' like the 1-l --+ gg decay in their collinear and soft limits. 

For example all three diagrams of fig. 2.5 are phenomenologically indistinguishable. 

The squared matrix elements for both contributions are easy to calculate, since they 

2The imaginary part was induced by the expansion of ( -1) -•. 
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1l ----------

Figure 2.4: Feynman diagram contributing to the tree-level 1-l --+ qijg decay in the 

infinite top quark mass limit. One gluon splits to a quark-antiquark pair. 

g g 

1l 1l 1l ---------- ---------- ----------

g g 

Figure 2.5: Feynman diagrams of decays with soft or collinear emissions that would 

look like 1-l --+ gg in the colliders. 

do not contain any loop integrals: 

""" IM(o) 12 = Cro:s411' N(N2 - 1) 
L 11.---+ggg v2 x 

spin,col 

(2.13) 

2 c2 4 2 2 ( )2 """ IM(O) -I = 1 O:s 11' N (N2 _ 1) 823 + 813- E 823 + 813 
L v2 f 8 

spin,col 12 

,(2.14) 

where 8ij = (Pi + p1 )
2

. The decay rate of each of the two contributions is given 

schematically by: 

I (0) I d<l>3 """ I (0) 1

2 

dF 1i---+ggg = 2M1i L M1i---+ggg 
sptn,col 

(2.15) 

and 

I (0) - I d<l>3 """ I (0) 1

2 

dF 1i---+qifg - 2M1i L M1i---+qifg 
sptn,col 

(2.16) 

where the integration is over the three-body phase-space d<l>3 which we have calcu

lated in Appendix C. However this integration is not trivial. We will demonstrate 
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how it works for eqs. (2.15) and (2.16). We make the change of variables: 

(2.17) 

with 0 ::;: Yij ::;: 1. From the momentum conservation formula: 812 + 8 13 + 8 13 = 

one can get: 

Y12 + Y13 + Y23 = 1 

As the momenta of the outgoing partons are pr, we have P? 
definition of the invariant scales 8ij = (Pi + p1 )

2 we get: 

With the change of variables (2.17) equation (2.15) becomes: 

I (0) 
dr 1-l---tggg rv 

while equation (2.16) reads: 

I (0) 
dr 1-l---tqqg rv 

(2.18) 

Ei. Using the 

(2.19) 

(2.21) 

If we had worked in 4 dimensions the integrands of (2.20) and (2.21) would be 

respectively: 

1 + y{2 + Y{3 + Yi3 

Y12Yl3Y23 

Y?3 + 
Y12 

(2.22) 

(2.23) 

and there would be singularities for certain values of the integration parameters. The 

first integrand (2.22) will provide the decay rate with collinear singularities 
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for: 

eq.(2.19) () ( d ll ) Y12 ---+ 0 ='::=:} 12 ---+ 0 partons 1 an 2 are co inear or 

eq.(2.19) () ( d l ) Y13 ---+ 0 ='::=:} 13 ---+ 0 partons 1 an 3 are co linear or 

eq.(2.19) () ( d 3 11' ) Y23 ---+ 0 ='::=:} 23 ---+ 0 partons 2 an are co mear 

(2.24) 

On top of that, from the energy constraint of eq. (2.18) we get another type of 

singularities, soft, which arise as: 

eq.(2.18) f 
Y12 ---+ 1 ='::=:} Y13 and Y23 ---+ 0 ='::=:} parton 3 is so t , 

eq.(2.18) d . f 
Y13 ---+ 1 ='::=:} Y12 an Y23 ---+ 0 ='::=:} parton 2 1s so t , 

eq.(2.18) . f 
Y23 ---+ 1 ='::=:} Y12 and Y13 ---+ 0 ='::=:} parton 1 1s so t . 

(2.25) 

Similarly, for the transition rate we can see that the integrand (2.23) will 

produce only collinear singularities, as: 

eq.(2.19) () ( d ll' ) Y12 ---+ 0 ='::=:} 12 ---+ 0 partons 1 an 2 are co mear (2.26) 

where partons 1 and 2 correspond to the quark-antiquark pair. All the above singu

larities are schematically depicted in figure 2.6. Both soft and collinear singularities 

become evident as poles in finD dimensions, after CDR is applied. Performing the 

integrations in the way demonstrated in Appendix C one gets: 

(0) 
r H.---->ggg 

LO O:se-q (47l'f-L6)€ ( 2 11 73 711'
2 

) 
rH---->gg 2n N t:2 + + 6-6 + O(t:) ,(2.27) 

rLO O:se-q (
47l'f-L6)€ N (-2_- O(c)) . (2.28) 

H---->gg 2n M 2 f 3 t: 3 + 
H. 

Eventually, in the MS scheme the real emission contributions to the 1i ---+ gg decay 

become: 

(0) 
r H.----tggg 

rLO O:s ( f-L2 ) € N (2 73 - 71!'2 0( )) 
H---->gg2n t:2 + 3 t: + 6 6 + t: (2.29) 

( 
2 )€ ( 7 ) LO O:s f-L 2 r - -- N1 -- - - + O(t:) 

H---->gg 2n M 2 3 t: 3 . 
H. 

(2.30) 
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1 and 3 

collinear 

1 ---
I 

' I ',1 
t.. 

--- -

' 

___ 1 soft 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

1 and 2 

' ' ' ' ' 

o: 
t 

3 soft 

1 ' 
I ' 

I 
I 

2 and 3 

collinear 

' 

The 1{ -t gg decay 

2 soft 
I 
I 
I 

I 
I 
I 

1 

Figure 2.6: This plot represents the physical configuration of the partons for limiting 

behaviour within the allowed triangle. 

2.2.5 Cancellation of Infrared Divergences 

In the previous subsections we calculated all the pieces we need for a total NLO 

decay rate. Let us now see how all those pieces fit together. In perturbation theory 

the renormalized amplitude IM1l---+gg) can be expanded as: 

(2.31) 
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Thus the squared matrix element and the decay rate at NLO read: 

I 
(o) 12 I (o) I (1) ) 

MH-tgg + 2Re \ MH-tgg M'H-tgg , (2.32) 

J (1 (o) 12 1 (o) (1) )) 
2M1-l si:.'col MH-tgg + 2Re si:.'col \ MH-tggiMH-tgg 

r (o) r(1) ( ) 
1-l---tgg + 1-l---tgg . 2.33 

Notice, however, that eq. (2.33) contains the term which is divergent as 

it is evident in eq. (2.12). In order to cancel out the divergences we need to add 

contributions from the emission of a real soft or collinear gluon (FH-tggg) and from 

the splitting of a gluon to a collinear quark-antiquark pair (rH-tqqg)· Eq. (2.33) 

becomes: 

(2.34) 

At this point we have included the upper index R on the coupling to show that 

all the decay rates are renormalized. Notice that for the rest of this section we 

fix the renormalization scale to Subsequently the total NLO decay rate, all 

contributions included becomes: 

finite CJ (a;) 
finite 

rNLO 
1-l---tgg -

(r(l) r(O) r(O) ( f3o 11 N) LO ) 
1-l---tgg + 1-l---tgg + 1-l---tggg + 1-l---tqijg + 27!' + 3 r 1-l---tgg 

(2.35) 

The coefficient of 0 is finite because theIR divergences of the decay width for 

the production of two gluons3 , 

F(l) sing+ (-2f3o) rLO 
1-l---tgg E 27T' 1-l---tgg 

rLO [-N3._ _ llN- 2Nf 
1-l---tgg 27!' c2 3 E ' 

(2.36) 

are canceled out by soft and collinear divergences for the three-particle contribution: 

r(o) sing r(o) = rLO [N 3._ llN - 2Nf 
1-l---tggg + 1-l---tqqg 1-l---tgg 27T' E2 + 3 E ' 

(2.37) 

3The superscript sing (singular) on the decay widths in equations (2.36) and (2.37) means that 

we have considered only the singular part of these widths. 
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Substituting equations (2.12), (2.29) and (2.30) in eq. (2.35) we finally derive the 

desirable finite total N10 decay rate for the Higgs decay to two gluons, which 

normalised to the 10 rate, can be written as4
: 

N LO LO [ ( 95 7 ) l 
FH--tgg = FH--tgg 1 + 27r 6N- 3Nf (2.38) 

with the scale of the coupling constant fixed at We are now able to calculate 

the effect of the N10 term on the decay rate. If we use N1 = 5 and N = 3, the 

N10 corrections to the decay rate read: 

br r = 62.73%, (2.39) 

where we have used a value of CX 8 of about 0.11. This result is in complete agreement 

with the rate presented in [24]. It is evident from the above result that the N10 

corrections to the decay rate of the Higgs to two gluons is extremely large, being of 

order more than 60% of the Born term. Such large corrections made the calculation 

of even higher order terms in the perturbative series essential. The NN10 calcu

lation of the 1l ---+ gg decay rate in the infinite top-mass limit has been published 

by Chetyrkin, Kniehl and Steinhauser in [19]. Their result added an extra 21% 

correction on the 10 decay width. 

2.2.6 Infrared Safe Observables 

In the previous subsection we demonstrated (eq. 2.38) that at least up to next-to

leading order in perturbation theory, the inclusive total decay rate of the Higgs boson 

to two gluons is an infrared safe quantity, whereas the exclusive gluon-gluon final 

state with no emissions is not. The question here is how those divergences emerge 

and why they cancel out so nicely when we come to calculate physical observables. 

In subsection 2.2.3 we explained that the calculation of one-loop integrals ( cre

ated when a virtual gluon is emitted by one external particle and absorbed by 

another) induces infrared divergences, at the limit where the loop momentum goes 

to zero. Within dimensional regularization these divergences are manifest as poles 

4Th b . . f3 11N-2NJ d e su stitutiOn 0 = 6 was ma e. 
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in E. To cancel these virtual divergences we need to add degenerate states that are 

due to the emission of one extra indistinguishable particle. Real emission creates 

two types of degenerate states: soft and collinear. The former may appear if the 

theory under consideration includes a massless spin-1 field like a gluon in QCD, 

when the emitted particle's 4-momentum5 ---+ 0. There is an indefinite number of 

emitted soft gluons that can accompany physical observables with partons in the 

final state. Infrared collinear divergences emerge when a (massless) gluon is emitted 

collinear to a massless quark, so that the two become indistinguishable. However 

collinear divergences can appear even when the quark masses are not vanishing, 

because of the gluon's ability to couple with itself (triple-gluon vertex) and split 

into two collinear indistinguishable gluons. In the example of the Higgs decay to 

two gluons, soft divergences emerge when one soft gluon is emitted in the process 

1l ---+ ggg and collinear divergences emerge when a final-state gluon emits another 

gluon toward the 'same' direction (1£ -t ggg) or when a final-state gluon splits into a 

quark-antiquark pair moving 'almost' collinearly (tl---+ qqg). Assuming that quarks 

and gluons fragment collinearly to hadrons, we can deduce that when the emitted 

gluon is collinear or soft, the two-jet structure of the lowest order is maintained at 

higher powers of 0: 8 • Therefore phenomenologically the singular behaviour arises 

only when the configuration of the three final-state partons is such that we can 

experimentally identify only a 'two-jet event' and not a 'three-jet' one6 . 

Several schemes have been devised to regularize infrared divergences 7. The one 

we have used for our example is the dimensional regularization scheme. Within this 

scheme IR divergences show up as poles in E = 2- D /2. Notice that we have already 

used dimensional regularization to regularize the ultraviolet (UV) divergence, going 

from 4 to D = 4- 2E dimensions. 

Having explained how IR divergences appear, we need to investigate the mech

anism that leads to their cancellation. Essentially, this mechanism is explained by 

50r D-momentum in D dimensions. 
6This is where the introduction of a jet measure is essential. In [5] one can find an insightful 

approach in this area. 
7For a detailed account we refer the basic QCD text books such as [3], [4] or [5]. 
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the Bloch-Nordsieck theorem: "Use of degenerate states, which can be constructed 

by associating soft and collinear massless particles with the external final-state lines, 

leads to infrared-safe physical cross-sections and transition rates" ( [25], [26]). The 

Bloch-Nordsieck theorem applies in the Higgs decay of our example, but breaks 

down in other QCD processes, where initial-state soft and collinear IR divergences 

must be taken into account as is suggested by the Kinoshita-Lee-Nauenberg the

orem: "In a theory with massless fields, transition rates are free of the infrared 

(soft and calli near) divergence if the summation over the initial and final degenerate 

states is carried out" ( [27], [28]). 

2.3 Singular Behaviour 

We consider the QCD amplitude IMm >, that has m external partons (quarks or 

gluons) with momenta p1 ... Pm and an arbitrary number of calor-free particles, such 

as the Z or the Higgs boson. The perturbative expansion of the amplitude IMm >8 

in the MS scheme can be written as: 

IM >= (;; )p [IM(oJ > + (;;) IM(lJ > + (;; r IM(2l > +0 , (2.40) 

where pis a half integer (p = 0, 1/2, 1, 3/2, ... ), that depends on the process. We 

should note that all amplitudes in eq. (2.40) are renormalized. The sub-amplitude 

IM(I) > has singularities which within CDR are expressed as single and double 

poles in E (1/t: and 1/t:2
). In [11, 12], Catani and Seymour proposed that these 

singularities can be separated form the finite part IM(I)fin > with the formula: 

(2.41) 

In eq. (2.41) all one-loop singularities are absorbed in the universal factor I(ll(t:) 

which acts on the lowest-level amplitude IM(o) >. Both J(l) and J(2), that we will 

introduce in the following section, have a finite part which is not uniquely defined. 

This creates an ambiguity in the definition of amplitude IM(I)fin >. The general 

8 Fi-om now on we will drop index m from the 
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structure of 1(1 l (c) with respect to the col or charges of the m partons is chosen to 

be: 

1 e-er 

2 r(1- c) ' (2.42) 

with i, j running from 1 to m while Aij = +1 if i and j are both incoming or 

outgoing and Aij = 0 otherwise. Notice that all singularities are encapsulated in 

vtng(c) as single and double E poles: 

= T2 1 1 
• c i 2 + {i - . 

c c 
(2.43) 

We can see that vrng(c) depends only on the parton flavor. For quarks, antiquarks 

and gluons the coefficients Tf and {i are: 

T 2 = = Cp q q 

3 
/q = lii = -Cp 

2 
(2.44) 

Let us now apply the Catani formalism to the example of the Higgs decay to 

two gluons that we studied in the previous section. From eq. (2.42) one can trivially 

derive the calor charge operator 1(1) (E), for 1l ---+ gg: 

(I) eer (-J.L
2

) € [ 1 1] 
= -f(1- c) N c2 + f3o-;_ ' (2.45) 

where s12 = (p1 +p2 )
2 = 2p1·p2 is the Mandelstam variable. Here, Pi are the momenta 

of the external particles, i.e. the two gluons. From momentum conservation one gets: 

s12 = Mi-£. If we use in equation (2.41) we can derive the singular part of 

the interference of the tree-level with the one-loop amplitude: 

I M(O) I M(l) sing) - I M(O) 11(1) ( ) I M(O) ) 
\ - \ c (2.46) 

Subsequently one can easily derive the one-loop part of the decay 1l ---+ gg that 

contains all the infrared singularities at this order of as: 

r(ll sing = rLo as ( J.L
2 

) € [N llN - 2Nf 
211' M 2 c2 + 3 E 

'H 
(2.47) 

The above equation fully predicts9 the singularities of the decay rate of the Higgs 

boson to two gluons (with no radiation) at order calculated in equation (2.36). 

9 After fixing the renormaHzation scale to 
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2.4 Two-Loop Singular Behaviour 

At two-loops the singular structure of the amplitudes becomes more complicated as 

the poles in E become even deeper of order O(c4
). A formula analogous to eq. (2.41) 

was proposed by Catani for the two-loop case: 

(2.48) 

where M(2)fin is finite as E --+ 0. In contrast to the one-loop case, here the singulari

ties lie in two distinct terms. The first is in the 'product' of the calor charge operator 

J(1)(E), which carries O(c2) poles, with the one-loop amplitude, which also carries 

O(c 2
) poles, giving poles with a maximum degree of c 4

. The second contribution 

emerges as the result of acting on the lowest-order amplitude with a new charge 

operator J(2)(E), which contains poles of order up to O(c4
) and is given by: 

l(l)(E) (1(1)(E) + 

+ e-er f(1- 2E) (f3o + K) 1(1)(2 E) 
f(l- E) E 

+ H(2) (2.49) 

with 

(2.50) 

The first two lines of eq. ( 2.49) contain all dependence on poles of order 1 I E4 , 1 I E3 

and 1 I E2 as well as part of the 1 I E poles. The term in the third line contains only 

single poles: 

(2.51) 

H(2
), that contains the remaining single pole dependence, is not a universal factor. It 

is process and renormalization scheme dependent and comprises of constants like CA, 

Cp, ( 3 and n 2
. The origins of the above formulae, that were first proposed in [12], 

were presented in [29]. It was shown that the exponentiation of single and double 

poles at each order in perturbation theory, can be derived from the factorization 
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properties of hard-scattering amplitudes. This allows one to assemble these poles 

in terms of universal functions which are associated with incoming and outgoing 

partons, leading to the prediction of the complete pole structure for multi-loop 

amplitudes. 

To conclude, eq. (2.48), predicts the singular structure of the two-loop amplitude 

by providing all the 4th, 3rd and 2nd order E-poles. In order to get the full structure 

of the 1/ E poles together with the finite part, we need to calculate explicitly the 

Feynman diagrams that contribute to the two-loop amplitude. In chapters 7 and 8 

we provide the factor H(2) and the finite piece for the processes 1* -+ qijg and 

1l -+ ggg respectively. 

2.5 Beyond NLO 

In the end of section 2.2.5 we showed that for the 1l -+ gg decay, the NLO and 

NNLO terms added significant corrections to the 10 decay width. In this section 

we will study the reasons calling for higher order calculations if we want to increase 

our accuracy in the determination of observables and theory constants such as the 

strong coupling 0: 8 • It was shown in section 1.3 that an observable can be written 

as a perturbative expansion depending on the renormalization scale J..L2
: 

or more generally: 

00 

r "' 2::: rias(J.L2) 
i=l 

(2.52) 

However, whenever we want to make a theoretical prediction, we have to truncate 

the series, keeping only the terms which are lower than a certain order N, 

dropped 

N oo 

r "' 2::: riasL2) + I: rias(J.L2) , (2.53) 
i=l i=N+l 
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which, substituted in eq. (1.22) leaves a residual dependence on J-l of order 0 ( 

(2.54) 

The number of terms we can include is restricted by the increasing difficulty at higher 

orders. Omission of those terms induces a systematic error in our calculation, which 

results in uncertainty in the determination of QCD parameters such as 0:8 • Thus, 

the higher the order, the smaller the omitted part and the error. 

In addition the truncation of the series makes the theoretical predictions more 

sensitive to the dependence on the renormalization scale J-l· It turns out that this 

sensitivity reduces as we go to higher orders in perturbation series. In order to see 

how this works we will consider the rate for the single jet production in pp collisions. 

The NN10 perturbative expansion for a system with energy S is: 

which, using the renormalization group equation at NN10: 

becomes: 

dCJ 
dS 

as(J.L2)A 

3 + O:s(J.L2) (B + 2f3oLsA) 

+ as(J.L2) (C + 3f3oLsB + + 2f3ILs)A) , 

(2.55) 

(2.56) 

(2.57) 

with Ls = ln(J..l2 
/ S). Notice that if one differentiates eq. (2.57) with respect to ln(J.L2

) 

and substitutes the renormalization group equation (1.18), the result is of order 

0 ( o:s(J.L2)), in accordance with eq. (2.54). The coefficients A and Bare the known 

10 and N10 components while the NN10 coefficient C has not been calculated 

yet. In figure 2. 7 the renormalization scale dependence (within a factor of two 

of the jet energy S) of the 10, N10 and NN10 terms is given [30, 31], for jets 

with transverse energy S = 100 Ge V. Despite the fact that the contribution from 
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LO -

NNlO """'' 

0 .8 

0.6 

0.4 

.. ·············" 
i 

02 I 
0 i 

0.5 1.5 

Figure 2.7: Single jet inclusive distribution at S = 100 GeV and 0.1 < 1771 < 0.7 

at vs = 1800 Ge V at LO , NLO and NNLO . The same pdf's and a 8 are used 

throughout. 

the unknown coefficient C has not been taken into account, it is evident that the 

renormalization scale dependence is significantly reduced as we include higher terms 

in the perturbative expansion. 10 

The above example shows that the NLO accuracy at which most theoretical 

predictions are performed today, despite the generally good agreement with data, 

entails a significant dependence on the renormalization scale p,. Future colliders 

(LHC) with high precision data will lead to experimental errors smaller than the 

theoretical ones, calling for improvement in theoretical predictions. This could be 

achieved if NNLO corrections were included in calculations. A set of motivation 

factors for N LO calculations, in addition to the ones mentioned in this section, 

can be found in [30,31]. 

10The uncertainty reduces from 20% at LO to 9% at NLO and about 1% at NNLO. 
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Chapter 3 

Amplitudes For QCD Processes 

3.1 Introduction 

In previous chapters we identified an imperative requirement for estimating the size 

of NNLO corrections affecting physical observables such as cross-sections or decay 

widths. A primary task toward the achievement of this goal is the calculation of 

two-loop helicity amplitudes and matrix elements. The main objective of this PhD 

has been the calculation of NNLO matrix elements (ME) and helicity amplitudes 

(HA 's) for physical processes which involve four external particles, one of which 

is off-shell. The cornerstone of this calculation has been the cumbersome task of 

evaluating two-loop integrals. In section 3.2 we outline step-by-step the scheme we 

applied in order to accomplish this project, from using QGRAF [32] to generate all 

possible diagrams, to calculating the squared ME or HA 's of a process. Due to the 

significance of the two-loop integrals, a separate section ( 3.3) is used to present the 

stages involved in their analytic evaluation. A diagrammatic illustration of all the 

basic steps can be found in figures 3.1 and 3.2. 
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3. Amplitudes For QCD Processes 3.1. Introduction 

GENERAL ALGORITHM FOR: 

MATRIX ELEMENTS & HELICITY AMPLITUDES 

INPUT: Characteristics of the Process 

* Types of Allowed Vertices 

* Particles Involved 

* Define Incoming/Outgoing Particles 

__________ L ___ I 
I STEP 1: QGRAF I 
I 1--------"1 
1 • Generate Feynman Diagrams I ...... """'"'"""'" ........... l ____________________ l 

---------------------
:STEP 2: FORM 
I 
1 • Apply Feynmann Rules 
I 

: (sec. 1.2) 

1 

* Integrals (Dirac Matrices) 

:STEP 3: FORM 
I 
1 e Calor Algebra (sec. 4.2) 
I 

*Integrals 

1----------1 * Color Factors 

: • Sum over Spins * Polarization 

1 
1 STEP 4: FORM - MAPLE 1 
I I TOTAL AMPLITUDE (Expanded in E = 2- D/2) 
1 

• INTEGRAL FACTORY 1 

1-------------------- * Calor Factors 

r-------------------i * Polarization 

* Scalar momenta products 

* 2-Dimensional Harmonic Polylogarithms 

,----------------------, 
1 STEP 5: FORM 1 MATRIX ELEMENT 
I 1----------J 

: }-!1_P_LI'£fjflf! (chapter 7) 

--------------------1 
1 STEP 5: FORM 1 HELICITY AMPLITUDES 
I r----"1 
le Helicity Projectors\? AMPLITUDE (sec. 4.7) I (chapter 8) 
I ______ -------------- _________ I ....................................... """"' ............................ .......!! 

Figure 3.1: The dashed boxes on the left represent the program used to apply the 

bullet-point procedures and the shadowed boxes on the right represent the output 

of the previous dashed box process and the input to the following one. 

36 



3. Amplitudes For QCD Processes 3.1. Introduction 

I INTEGRAL FACTORY 

INPUT= Integrals of the type: 

:STEP 1: FORM : 
1 1 * Integrals written in the form: 
1 • 'Ifanslate to Auxiliary Integral 1-----+1 
I I :r (D, {1, 1, 1, -4, 1, 0, 1, 1, 1}, 812,823, 8123) 
:Representation (sec. 4.3) : 
----------------------

* Integrals in terms of MI's: 
: STEP 2: MAPLE - FORM : 
I I J(D,{1,1, ... ,1},812,823,8123)= 
1 • Use Laporta Algorithm (sec. 5.2) 1-----1 
I I a· Pbox1 (812, 823, 8123) + ... 
:-+ Master Integrals (sec. 4.5) : 
---------------------- +f · Dart2 (812,8123) + g · Suns(8123) 

I STEP 3: MAPLE - FORM I 
I I 

: • Derive-Solve Differential Equations : * Integrals, expanded in E, 
I I 
:for the Master Integrals (chapter. 6) : in terms of 2-D HPL: 

:-+expansion of MI's in E, in terms of :T (D, {1, 1, ... , 1}, 812,823, 8123) = 
I I 

: 2-D Harmonic Polylogarithms (sec.4.6): : a + ... + b H(1, 0; X)+ ... + 

I 1 I 2 ) 1Dart2(812,8123)=::;ra + ... + 1 E cH(1,1,1,0;X + ... 
I E I 

: b H(1, 0; X)+ ... +E2 c H(1, 1, 1, 0; X)+ ... : 

Figure 3.2: Integral Factory. 
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3. Amplitudes For QCD Processes 
3.2. Basic Steps for Helicity Amplitudes 

and Matrix Element Calculations 

3.2 Basic Steps for HeHcity Amplitudes 

and Matrix Element Calculations 

Step 1 o QGRAF: Generate the Feynman Diagrams 

The first step in a ME or HA calculation is the generation of the Feynman diagrams 

contributing to the process. In processes involving a large number of Feynman di

agrams this can be a painstaking task. For this purpose we used QGRAF [32]. 

QGRAF is a computer program for automatic generation of symbolic descriptions 

of Feynman diagrams in quantum field theories. It does not perform any kind of 

field theoretic calculation. The user mainly provides information about the exter

nal particles, the propagators, the number of loops and the types of vertices, and 

sets features such as the desired output style. This determines the output which 

consists of a list of diagrams, labeled in a combinatorial style, accompanied by their 

symmetry factor. 

Step 2-3 o FORM: Feynman Rules- Color Algebra 

After completion of Step 1 we are left with a set of diagrams written in terms of 

propagators and vertices. First, we apply the Feynman rules for the Lagrangian 

of the process under consideration (see for example sections 1.2 and 1.4.1). Sub

sequently, color algebra (sec. 4.2) is performed to sum over the color factors. This 

part is totally implemented in FORM [34], a program for symbolic manipulation, 

specialized to handle very large algebraic expressions in an efficient way. 

Step 4 o MAPLE [33] -FORM: Integral Factory 

The integrals that descended from Step 3 are calculated in terms two dimensional 

harmonic poly logarithms (2DHPL). The process of calculating two-loop integrals is 

outlined in the following section. Finally we derive an expression for the amplitude 

expanded in E = 2 - D /2 and written in terms of 2DHPL's, color factors, scalar 

momenta products (Mandelstam variables and squared masses) and polarization 

factors. 

Step 5 o FORM: Matrix Elements or Helicity Amplitudes 

At this stage one has two options, depending on whether we are interested in cal-
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3. Amplitudes For QCD Processes 3.3. The Integral Factory 

culating a matrix element or helicity amplitudes. In the first case the two-loop 

(one-loop) amplitude is contracted with the tree-level (one-loop) amplitude and 

then summation over the colors and spins is performed. The gluon polarizations 

are summed over using an axial gauge to ensure that the polarization states are 

physical: 
J.L V + V ,..jL 

L J.L( ·) ( v( ·))* __ J.LV + nipi niJJi 
Ei nl Ei Pt - g 

n·. p· 
spins t t 

(3.1) 

Our final result is expressed as a series in E = 2 - D /2 poles, whose coefficients 

contain the number of colors and quark flavors as well as functions (2DHPL's) of 

the system's scales. 

If helicity amplitudes are required, then one can use a helicity projectors ' 

method, described in detail in section 4.7. Acting on the general tensorial form 

of the amplitude with a set of projectors it is possible to derive the coefficients of 

the tensor structures that comprise HA's. The result is an E expansion in terms of 

calor factors and functions (2DHPL) of the scales appearing in the process. 

3.3 The Integral Factory 

After application of the Feynman rules in the QGRAF output, two-loop integrals of 

the form 

make their appearance. These integrals are translated to the auxiliary integral 

representation (presented in section 4.3), which allows them to be written in a more 

compact notation, for example: 

J (D, {1, 1, 1, -4, 1, 0, 1, 1, 1 }, 8 12 ,823, 8123) or 

J (D, {1, 1, 1, -1, 1, 0, 1, 1, 2}, 812,823, 8123) 

This notation is prefered because it is more compatible with programs of symbolic 

manipulation like FORM and MAPLE [33]. A system of relations between all the 
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3. Amplitudes For QCD Processes 3.3. The Integral Factory 

integrals of the process is derived and solved (see chapter 5), allowing them to be 

written in terms of a basis set of few 'master' integrals (MI) with nice names like: 

:J (D, {0, 0, 0, 1, 1, 0, 0, 0, 1 }, 812,823, 8123) 

:! (D, {1, 0, 1, 0, 0, 0, 0, 1, 1}, 812,823, 8123) 

:J (D, {1, 1, 1, -4, 1, 0, 1, 1,1 }, 812,823, 8123) 

Suns(8123) , 

The final but not trivial task is the calculation of the master integrals. Of 

the several methods that have been employed toward this direction the one that 

achieved the most, calculating the most difficult integrals, was the differential equa

tions method (by Gehrmann and Remiddi [42, 43]) presented in chapter 6. Differen

tial equations on the external scales for the master integrals were derived and solved, 

enabling us to write the MI and consequently all possible integrals, as expansions 

in E with coefficients functions (2DHPL) of the system's scalars. For example: 

1 1 
Dart2 (812, 8123) = 4 a + ... + 2 b H(1, 0; X)+ ... + c2 c H(1, 1, 1, 0; X)+ ... , 

€ € 

where the factors a, b, c, ... and X depend on 812 and 8123 . 

In the rest of this thesis we will describe in detail the basic steps we have outlined 

in this short chapter. In figures 3.1 and 3.2, apart from the basic steps involved in 

ME and HA calculations, we have also illustrated the specific section where each 

stage of the calculation is treated. 
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Chapter 4 

Basic Tools For Two-Loop 

Integrals 

4e 1 Introduction 

In the previous chapter we illustrated the basic steps involved in a helicity amplitude 

or matrix element two-loop calculation. In each step we face challenges that need 

to overcome. However, we have some really powerful tools in our disposal, that 

have been developed during the last few years. First of all there is the color algebra 

which is used to deal with the color factors appearing in Feynman rules. Next there 

are the auxiliary integrals, a formalism that allows one to write complicated tensor 

integrals in a compact computer-friendly notation. The third tool, the integration 

by parts method, is probably the most effective technique for the simplification 

of tensor integrals to a basic set of irreducible Master Integrals (tool four). The 

calculation of those Master Integrals is not a trivial task though. A usual way of 

expressing them is through expansions in E = 2 - D /2 in terms of functions of the 

system's scales. The family of functions used in the calculations throughout this 

PhD are the Harmonic Polylogarithms (tool five). The sixth and final tool is a 

method for extracting helicity amplitudes from the total amplitude by acting with 

a set of projectors. 
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4.2 Tool One: Color Algebra 

4.2.1 Color in Feynman Diagrams 

In chapter 2 we calculated squared tree-level amplitudes involving diagrams like the 

ones in fig.( 2.2.2), (2.2.4) or (2.2.4). We also calculated the interference of tree-level 

with one-loop amplitudes which contained diagrams like the one in fig.( 2.2.3). As 

one can see in the QCD Feynman rules (section 1.2) as well as in the equivalent rules 

for the effective Lagrangian (section 1.4.1), all the above diagrams include SU (N) 

color factors. Isolating these factors for each diagram we get: 

(a) For the gluon, quark and ghost propagators: 

a b 

g '000000&6000000'- oab 
a b ----------- == oab . 

(b) For the gluon-gluon, gluon-quark and gluon-ghost vertices: 

g,a g,a 

IX'X'X'>nnnnnnnnnc,.,a'>l'tn<,..,..,..,onnnnnn g, b= Jabe Jcde + 
perms 

g,b g,c 
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(c) For the Higgs-gluon vertices: 

g,a 

1l ---------- = oab 

g,b 

g,a g,b 

= fabe rde + perms 

g,d g,c 

As we have seen in section 1.1, Ttj are the generators of the fundamental represen

tation of the SU (N) group and rbc are the generators of the ad joint representation. 

In all cases the calor indices a, b, c, d and e run from 1. .. N 2 
- 1, which is the total 

number of different gluon colors and indices i, j run from 1. .. N which is the total 

number of different quark colors. 

4.2.2 Identities and Rules in Color Algebra 

There are a few rules and identities that can help us reduce the amount of calor 

algebra involved in the calculation of a squared matrix element. 

(a) One very useful concept is that of the Casimir calor charges1 of SU(N). They 

are defined as the products of generators (T · T or f · f), where only one index of 

each generator is free and the rest are fixed. Diagramatically the Casimir operators 

for the fundamental representation can be given as: 

Cp 

TR \..OQQQQQQQQQQQ(U 

1They are called charges in analogy with the electromagnetic charge. 
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while for the adjoint representation we have: 

c A \.OOOOOOOOOOQOCU 

with 

N 2 -1 

2N 

N 

1 

2 

(b) A most valuable tool in col or algebra is Fierz identity [35], which gives the most 

general product for the fundamental representation: 

a 

k 

1 

N 
(4.1) 

(c) In any Lie Algebra one can apply the J acobi identity in the adjoint representation, 

rde !bed+ fbde rad + rde rbd = 0 ' and the commutation relation in the fundamental 

representation, fabcTtj = , which respectively take the graphic forms: 

(4.2) 

44 
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(d) Finally there are relationships when we sum over the number of colors: 

bijbji 

0ab0ba 

( 4.3) 

The identities presented in this subsection are sufficient in order to simplify all 

Calor Algebra. 

4.3 Tool Two: The Auxiliary Integrals 

All possible planar and non-planar, scalar and tensor, two-loop integrals that appear 

in the physical processes, where one external particle is off-shell and three are on

shell, can be written in terms of only three auxiliary integrals2
. The auxiliary planar 

(2D) and non-planar (3D) integrals in D dimensions3 are (figure 4.1): 

2In the case of all four external particles being on-shell, there are only two auxiliary integrals, 

since the two non-planar (3'D) integrals are related by momentum relabeling. 
3 Note: Do not confuse the dimension of the integrals, which is D for all three auxiliary integrals, 

with the indices 2'D and 3'D that appear in their names. The latter are used in order to visualize 

the difference between planar and non-planar diagrams. 
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Where: 

A2 = (k+pi) 2 

A3 = (k+pl +p2)2 

A4 = (k+p1 +P2+P3)2 

A6 = (l+p1) 2 

A1 = (l+p1 +p2) 2 

As = (l+pl +P2+p3) 2 

A9 = (k-l) 2 

Aw = (k-l-pl -p2-P3)2 

Au = (k-l+p2) 2 

(4.7) 

For the on-shell case considered here Pi = = = 0, (Pi + P} )2 = Sij and 

(Pl + P2 + P3)2 = s123· Note that both non-planar auxiliary diagrams (J3Dout and 

:l3v;J have eight propagators in common with the planar auxiliary integral (:!2v). 

The only difference is the interchange A7 --+ A11 in order to go from :l2v to J3Dout 

and A4 --+ A 10 in order to go from J2D to J3D;n. 

It is very important to stress here that the three auxiliary integrals do not cor

respond to real diagrams. Real two-loop diagrams with three external independent 

momenta can have only up to seven propagators. As we can see in equations (4.4), 

(4.5), (4.6) and (4.7), each auxiliary integral has nine linearly independent propa

gators. This number of propagators is the minimum we need in order to be able to 

express the nine scalar products4 that can appear in the numerators of the integrals, 

in terms of a predetermined set of propagators. This method turns out to be a lot 

more convenient for the representation of tensor integrals. For example, the planar 

4 For diagrams with two loop momenta (k and l) and three independent external momenta (p1 , 

P2 and P3), there are nine combinations of scalar products: k · k, k · P1> k · p2, k · p3, l·l, l· PI, l· P2, 

l · P3 and k ·l 
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tensor integral: 

(4.8) 

can be written as: 

( 4.9) 

Substituting eq.( 4.7) and expanding we get: 

(4.10) 

Using the definition of eq.( 4.4) we can finally write the tensor integral (eq. 4.8) as: 

J2D (D, {2, 2, 0, 0, 0, 0, 0, 3, 2}, 812,823, 8123)

J2v (D, {2, 2, 0, 0, 0, -1, 1, 3, 2}, 812,823, 8123)-

812 X J2D (D, {2, 2, 0, 0, 0, 0, 1, 3, 2}, 812,823, 8123) (4.11) 

This notation is a lot more convenient for our purposes, since it makes our results 

more compact and it is easier to manipulate in computer programmes. 

4.4 Tool Three: IBP Identities 

4.4.1 The Integration By Parts (IBP) Method 

The IBP method [8, 36, 37] is based on the following identity for an m-loop n

propagator integral : 

( 4.12) 

where i = 1 ... m and ui-L is any linear combination of the loop and the external 

momenta. This identity is valid because we can impose that the integral of the total 

47 



4. Basic Tools For Two-Loop Integrals 4.4. Tool Three: IBP Identities 

2'D Auxiliary 

3D out Auxiliary 

3Vin Auxiliary 

Hz3 P123 

H H 
Pz P2 
p3 p3 

Figure 4.1: The planar (2V) and two non-planar (3'D) auxiliary diagrams. All 

nine possible dot-products involving the loop momenta and the external particle 

momenta are mapped onto the nine propagators. 
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derivative vanishes (there is no contribution coming from the surface). This can be 

considered as a consequence of translational invariance of dimensionally regularized 

integrals in momentum space. 

To take a simple example consider the following two-loop scalar diagram: 

--(])-
which corresponds to the integral: 

( 4.13) 

where the A/s are those defined in eq. (4.7) and the corresponding vi's are taken to 

be equal to one. 

Applying the identity : 

and the identity: 

2(a + b)(a +c) =(a+ b) 2 +(a+ c) 2
- (b- c) 2 

, (4.15) 

we get the equation: 

The integrals on the right hand side have come from cancellations of squared combi

nations of momenta in the numerator and the denominator. Every such cancellation 

is equivalent to the shrinking (pinching) of the corresponding line to a point. This 
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can easily be seen in the pictorial form of the above equation : 

( D - 4) --([)-- = + -{f)- -{])-

+ -w- -w-
(4.17) 

A cross on the line represents a pinching, while a dot an additional power of the 

relevant propagator in the denominator, i.e. vi -t vi + 1. Therefore eq. (4.17) 

becomes: 

(D - 4) -{])--- = + ---()::r -o---
+-eo- --0--

(4.18) 

In the general case the IBP gives integrals with raised and lowered powers of the 

propagators. This will be represented with the shorthand notation j+, for raising 

and i-, for lowering propagator i: 

vii+ .:J(D, ... , vi, ... ) 

i- .:J ( D, ... , vi, ... ) 

vi.:J(D, ... , vi+ 1, ... ) , 

.:J ( D, ... , vi - 1, ... ) . 

( 4.19) 

( 4.20) 

Each raising operator is always accompanied by a factor of vi so that it is impossible 

to raise the power of the propagator if it is not already present, i.e vi # 0. In this 

notation, our example equation for the propagators defined in eq. ( 4.12) becomes: 

(D- 4).:J = +1 +g- .:J- 1 +s- .:J + 4+9- .:J- 4+s- .:J . (4.21) 
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4.4.2 IBP Identities For The Auxiliary Integrals 

Applying the IBP method to the planar auxiliary integral J2D (eq. 4.4) we get the 

following ten identities: 

+((vs5+ + v71+ + vs8+)6- + vg9+(6-- 2-)),hv (4.29) 

(vs5+(g-- 1-) + v66+(g-- 2-) 

+v77+(g-- a-)+ vss+(g-- 4-))J2'D (4.30) 

(vil +(g- - s-) + v22+(g- - 6-) 

+v33+(g-- 7-) + V44+(9-- 8-))J2D (4.31) 

where 8I2 = (PI+ P2) 2, 823 = (P2 + P3)2 and 8123 = (PI+ P2 + P3) 2. 

These are the ten basic independent identities that we need in order to reduce all 

the possible two-loop planar scalar functions to the master integrals which are listed 

in the next subsection. There are ten such identities because for three independent 
-

external moment a Pi and two loop momenta, k and l, we differentiate once over kJJ 
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and once over [J.L i.e. ten times in total. We must emphasise the fact that the only 

independent momentum scales present in the problem are: 812 ,823 and s123. 

Similarly for the non-planar auxiliary integral .:13vout of eq. ( 4.5) we get the 

following set of IBP identities: 

-8+vs 8123 + (8+vs + 7+v7) 812- 8+3-vs + ( -5-vg + 1-vg) g+ + 8+1-vs + 

( -6+v6- 1+v7- 8+vs) 5- + D- 2vs- v6- vs+ 8+ 4-vs- v7- vg = 0 (4.32) 

(8+vs + 4+1/4) 8123 + (3+v3- 8+vs) 812 + ( -1-vg + 5-vg) 9+ + 

( -2+v2- 3+ll3- 8+vs- 4+v4) 1- + ( +3-vs- 4-vs- 9-vs + 5-vs) 8+ 

( 4.33) 

(8+vs + 4+v4) 823 + ( -2-vg + 6-vg) 9+ + ( -3+1/3- 1 +l/1- 8+vs- 4+v4) 2-

+ (3-vs- 9-vs + 6-vs- 4-vs) 8+ + D- v1 - 2v2- vg- v3- v4 = 0 (4.34) 

-8+vs 823 + ( -3-vs + 2-vs + 4-vs) 8+ + ( -7+v7- 8+vs- 5+vs) 6-

+ (-6- vg + 2- vg) 9+ + D - vs - vs - 2 v6 - vg - v7 = 0 

-5+ll5 8123 + 5+ll5 8]2- 6+v6 823 + ( -3-vs + 1-l/5- 8-l/5 + 4-vs) s+ 

+ (-9+vg- 6+v6- 7+v7) 8- + (4-l/6- 3-l/6 + 2-v6) 6+ + 7+4-l/7 

+ D - v5 - v6 - v9 - v7 - 2 vs = 0 

1 + lll 812 + ( 8+ liS + 9+ llg) 7- + ( -1 + ll1 - 2+ ll2 - 9+ llg - 4 + l/4) 3-

+ (-4- vs - 9- vs) 8 + + D - v1 - 2 v3 - vg - v 4 - v2 = 0 

s+vs 812 + ( -5+ll5- 8+vs- 6+ll6- 9+vg) 7- + 8+ 4-vs 

-1- 9 + 3- v9 + D - v5 - 2 v7 - vs - v6 - vg = 0 

+ ( -8-vg- 3-vg) 9+ + D- v1- 2v4- l/3- v2- vs= 0 

(3+v3 + 4+v4) 7- + ( -8-l/4- 3-v4) 4+ + 6-2+v2 + ( -9-vl + 5-vl) 1 + 

+ ( -2+v2- 3+v3- 8+vs) 9- + D- ll] - l/3- l/2- Vs- 2vg = 0 

( -9-vs + 1-vs) 5+ + 7+3-l/7 + ( -8+vs- 7+v7- 6+v6) 9-

+6+2-l/6 + D- v6 -vs -v7- 2vg -vs= 0 

( 4.35) 

( 4.36) 

( 4.37) 

( 4.38) 

(4.39) 

( 4.40) 

(4.41) 

Note that all the operators of the above equations act upon the auxiliary integral 
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J3Dout which we omitted for simplicity. 

Finally for the non-planar auxiliary integral :13vin of eq. ( 4.6) the ten IBP iden

tities read: 

+ ( -6+v6- 7+v7- s+vs) 5- + D- 2 Vs- V6- vs- V7- Vg = 0 

a+v3 8I2 + ( -1-Vg + 5-vg) 9+ + ( -2+v2- a+v3) 1- + 

( -1-V 4 + 8-V 4) 4 + + D - 2 VI - Vg - V2 - V3 - V 4 = 0 

(v4 8I23- v4 823) 4+ + ( -2-vg + 6-vg) 9+ + ( -a+v3- 4+v4- 1 +vi) 2- + 

(6-v4- 5-v4 + 8-v4) 4+ + D- VI- V4- 2v2- V3- Vg = 0 

( 4.42) 

( 4.43) 

(4.44) 

(8+vs + 4+v4) 823 + (-6-vg + 2-vg) 9+ + ( -5+vs- r+v7- 4+v4- 8+vs) 6- + 

(-9-V 4 + 2-V 4 + 5-V 4 - 8-V 4) 4 + + D - 2 v6 - Vs - Vg - V7 - Vs = 0 ( 4.45) 

( -4+v4 + 5+vs) 812 + ( -4+v4- 6+v6- 8+vs- 9+vg) r- + (4+v4 + 9+vg) a--

1-5+vs + ( -9-V4 + 5-V4- 8-v4) 4+ + D- Vg- V6- 2 V7- Vs- Vs= 0 (4.46) 

(4+v4 + 1+vi) 8I2 + (4+v4 + 9+vg) r- + (-1+vi- 2+v2- 9+vg- 4+v4) a-+ 

(-6 + V6 - r+ V7 - 5 +Vs) 8- + D - Vs - V 4 - V6 - V7 - 2 Vs = 0 

(a+v3 + 2+v2 + 9+vg) 8I23 + a+v3 8I2 - 2+v2 823 - 9+ 4 -Vg + 

(6-v2- 5-v2- 4-v2 + 8-v2) 2+ + ( -4-v3- 5-v3 + 8-v3 + r-v3) a++ 

( -4-VI + s-vi) 1 + + D- VI- V3- Vg- V2- 2 V4 = 0 

4+v4 8I23 + ( -9-v2 + 6-v2) 2+ + (7-v3- 9-v3) a++ ( -9-vl + 5-vi) 1 + 

-9-4 + V4 + D - V2 - VI - V3 - V4 - 2 Vg = 0 

( 4.47) 

( 4.48) 

( 4.49) 

(4.50) 

(8+vs + 4+v4) 8I23 + ( -9-vs + 1-vs) 5+ + r+a-v7 + ( -6+v6- 4+v4- r+v7) 9- + 

6+2-v6 + (-5-vs + 1-vs- 4-vs) s+ + D- vs- v4- v7- v6- 2vg = 0 (4.51) 

Note that like in the case of the previous non-planar identities, all the operators 

of the above equations act upon the auxiliary integral :13vin which we omitted for 

simplicity. 
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Comparing the above identities of the non-planar auxiliary integrals with the 

identities of the planar auxiliary integral, we notice that the symmetries that are so 

evident in the planar case, disappear in the non-planar cases. One can easily under

stand why this happens by observing the diagrams that represent those integrals in 

figure ( 4.3). 

4.5 Tool Four: Master Integrals (MI) 

As we have already mentioned, our aim is to find a general way5 to express, all 

possible complicated integrals that appear in the physical processes, in terms of a 

basic set of simpler integrals (Master Integrals). The Master Integrals (MI) can then 

be analytically calculated as we will demonstrate in Chapter 6. In the following 

subsections we justify our choice of MI and list the set of planar and non-planar 

Master Integrals relevant for 1 --+ 3 or 2 --+ 2 scattering processes with massless 

propagators and one off-shell leg. 

4.5.1 The Choice of Master Integrals 

The choice of Master Integrals in each topology (if there are any) is not unique. It 

turns out that the most convenient option is the scalar integral of each topology with 

units in all propagator powers. However, in some cases it is not possible to write all 

the integrals of the topology in terms of only one MI. The choice of a second MI is 

required. As we show in the following two subsections, the second MI of the same 

topology is usually chosen to be a first rank tensor integral, with unit powers of 

the propagators, or a scalar integral with the power of one propagator equal to two 

(2) and the rest of the powers equal to one (1). In some of the reduction methods 

of complicated integrals to Master Integrals, which we will present in the following 

chapters, we chose the MI's for each topology, while in other methods, the MI's are 

chosen by the computer algorithm according to a set of predefined priorities. 

5See Chapter 5 
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The reduction of all possible planar and non-planar two-loop integrals that ap

pear in physical processes with three external particles on-shell and one external 

particle off-shell, leads to a set of only 24 Master Integrals that belong to 19 differ

ent topologies. There are 16 planar MI's (14 topologies) and 8 non-planar Ml's (5 

topologies). 

4.5.2 Planar Master Integrals 

The planar Master Integrals can be two three or four point functions with three to 

seven propagators and they can depend on one, two or three momentum scales. 

There is only one MI with three propagators: 

Sunrise(s12) = 

At four propagators there are five MI's. One of them is a two-point function: 

Glass(s12 ) = 

The remaining four-propagator MI's are three-point functions. There is one topology 

with one external leg off-shell: 

and three topologies with two external legs off-shell: 

P3 
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There are six MI's with five propagators. One of them is a three-point integral with 

two external legs off-shell. 

The other five-propagator MI's are four-point functions: 

P123 .I 
PI 41 

PI23]2[P2 

PI P3 

PI __IL.._.LP3 

At this point we see for the first time a topology (Cbox2 ) with two Master Integrals. 

The dot in the diagram that corresponds to Cbox2A means that there is power of 

two (2) on the 'dotted' propagator, while the rest of the propagators have power 

one (1). 

There are only two Master Integrals with six propagators: 

Finally there is only one topology with two seven-propagator MI's: 

(4.53) 
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Here the second MI of the topology is a first rank tensor. The number two (2) in left 

loop of the diagram that corresponds to Pbox2 defines the numerator of the tensor 

MI. This is evident in the auxiliary integral representation of eq. (4.53): 

J2D (D, {1, 1, 1, 0, 1, 0, 1, 1, 1 }, 812,823, 8123) 

J2D (D, {1, 1, 1, 0, 1, -1, 1, 1, 1}, 812,823, 8123) . (4.54) 

4.5.3 Non-planar Master Integrals (MI) 

All integrals that can be produced from the non-planar Feynman diagrams can be 

reduced to the Master Integrals of the previous section, plus some extra six and 

seven propagator non-planar Master Integrals6
. 

Apart from the planar MI, the two different types of non-planar integrals that can 

be produced from the two types of non-planar auxiliary integrals have the following 

six-propagator Master Integrals in common: 

Note that both MI's belong to the same topology. The only difference is that the 

second MI, Ebox2 , is a tensor integral, as can be seen in the auxiliary integral 

representation: 

J3Dout (D, 1, 0, 0, 1, 1, 1, 1, 0, 1, 812,823, 8123) , 

J3Dout (D, 1, 0, 0, 1, 1, 1, 1, -1, 1, 812,823, 8123) 

There are some master integrals that appear only in the reduction of the J3'Dout 

6There are no non-planar MI's with less than six propagators because, in the case of integrals 

with five propagators or less, there is always an appropriate momentum-shift that can 'translate' 

them to plariar MI's. 

57 



4. Basic Tools For Two-Loop Integrals 4.5. Tool Four: Master Integrals (MI) 

non-planar auxiliary diagram. One of them is a six-propagator, one-scale, three

point function: 

The other two MI's have seven propagators: 

where 

P3 _L.6.__P1 

P3 _L.6.__ P1 

.:J.3'Dout (D, 1, 0, 1, 1, 1, 1, 1, 0, 1, 812,823, 8123) , 

J3'Dout (D, 1, 0, 1, 1, 1, 1, 1, -1, 1, 812,823, 8123) 

Here we have once more the case of a topology with two MI's. 

The reduction of the diagrams that are represented by the other non-planar 

auxiliary diagram, .:J3vin, leads to three extra MI's. One is a six-propagator, two

scale, three-point function: 

and two are seven-propagator integrals, a scalar and a tensor integral, that belong 

to the same topology: 
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4.6 Tool Five: Harmonic Polylogarithms 

In [42] the solutions of the differential equations for two-loop four-point functions 

with one off-shell leg were expressed in terms of Hypergeometric functions. How

ever, this formalism is not so convenient for practical applications, where expansions 

around E = 0 are required. This obstacle was overcome with the introduction of 

!-dimensional and 2-dimensional Harmonic polylogarithms. One-dimensional Har

monic polylogarithms (HPL) were introduced in [39] as generalisation of Nielsen's 

polylogarithms [40, 41]. They were later generalised to two-dimensional Harmonic 

polylogarithms in [43]. Since the HPL's are just a subclass of the 2DHPL's, we will 

not consider them separately here. 

4.6.1 Definition of 2DHPL's 

The 2DHPL's were introduced as the most appropriate functions for solving differ

ential equations on the Master Integrals. In the in-homogeneous terms of the X 7 

DE's , for the two scale MI's like Dart2(X, 8123 ), one can find denominators of one 

scale: 

j(1; X) 

f(O; X) 

1 

1-X' 
1 
x· 

This is evident in the very simple X differential equation for the MI Dart2: 

8Dart2 (X, 8123) 
ax 

E 

X
Dart2 (X, 8123) 

1-
(-2+3E) 

( X) X Suns (X· 8123) 
8123 1 -

(4.55) 

7For simplicity, as we will see in chapter 6, we prefer to differentiate over a new variable 

X= 812/8123. 
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where one can easily identify f(1; X) and f(O; X). Equivalently, in the more compli

cated X DE's, for three scale MI' s, one can also find denominators of two scales8
: 

f(1- Y;X) 

f(Y; X) 

1 

1-X-Y' 
1 

Based on that, the 2DHPL H(mw; X), is described as a function of a w-dimensional 

vector mw and its argument X. w is called the weight of H. 

For w = 1 the 2DHPL's are defined as: 

or equivalently: 

with a1 = 1, 0, Y, 1 - Y . ( 4.56) 

For weight w > 1 the 2DHPL's are defined as: 

or equivalently: 

with a1 = 1, 0, Y, 1- Y. (4.57) 

4.6.2 Useful Properties of 2DHPL's 

Property 1 

2DHPL's fulfil an algebra that allows one to write the product of two 2DHPL's, of 

the same argument X and weights w1 and w2 respectively, as the sum of 2DHPL's, 

each with argument X and weight w = w1 + w2 : 

L H(i?w;X), ( 4.58) 

8 As previously, for simplicity we have defined the variables X = s12/ s 123 and Y = s 23 / s 123· 
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where iiw1 l±l bw2 , represents all permutations of the elements of iiw1 and bw2 , in which 

their relative orders are preserved. 

For example, at w1 = 2, iiw1 = (k, l) and w2 = 3, bw2 = (r, s, t), one has: 

H(k, l; X)H(r, s, t; X) H(k, l, r, s, t; X)+ H(k, r, l, s, t; X) 

+ H(k, r, s, l, t; X)+ H(k, r, s, t, l; X) 

+ H(r, k, l, s, t; X)+ H(r, k, s, l, t; X) 

+ H(r, s, k, l, t; X)+ H(r, k, s, t, l; X) 

+ H(r, s, k, t, l; X) + H(r, s, t, k, l; X) , 

Property 2 

2DHPL's, of any weight w = q > 1, satisfy the Integration By Parts identities: 

1x dX' j(m1; X')H(m2, · · · , mq; X') 

H(m1; X)H(m2, · · · , mq; X) 

1x dX' H(m1; X')j(m2; X')H(m3, · · · , mq; X') 

H(m1; X)H(m2, · · · , mq; X)- H(m2, m1; X)H(m3, · · · , mq; X) 

4.6.3 'Minimal' Basis-Set of 2DHPL's 

The set of all possible 'product' identities ( 4.58) and Integration By Parts rela

tions (4.59), can be used in order to express as many as possible of the 2DHPL's of 

weight w and certain 'not-preferred' indices, in terms of: 

• (i) a 'Minimal' set of 2DHPL's of the same weight and certain 'preferred' 

indices, and 

e (ii) products of 2DHPL's of lower weight (these are also part of the 'Minimal' 

set for their weight). 

The 'Minimal' set of 2DHPL's up to weight 3, expressed in terms of Nielsen's poly

logarithms [43], can be found in Appendix A. Here we present this base: 
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w = 1: 

w = 2: 

and w = 3: 

H(O, 0, 1; X) , 

H(O, 1, 1; X) , 

H(0,0,1-Y;X), 

H(O, 0, Y; X) , 

H(O, 1, 1- Y; X) , 

H(O, 1, Y; X) , 

H(O, 1- Y, 1;X), 

H(O; X), 

H(1; X) , 

H(1- Y;X), 

H(Y; X). 

H(O, 1; X) , 

H(O, 1- Y;X), 

H(O, Y;X), 

H(1, 1- Y;X), 

H(1, Y;X), 

H(1- Y, Y;X). 

H(O, 1- Y, 1- Y; X) , 

H(O, 1- Y, Y; X) , 

H(O, Y, 1; X) , 

(4.60) 

(4.61) 

H(O, Y, 1 - Y; X) , 

H(O, Y, Y; X) , 

H(1, 1- Y, 1- Y; X) , 

H(1,1-Y,Y;X), 

H(1, Y, 1- Y; X) , (4.62) 

H(1, Y, Y; X), 

H(1 - Y, 1, 1; X) , 

H(1- Y, Y, Y;X), 

H(Y, 1, 1; X) , 

H(Y, 1 - Y, 1 - Y; X) . 

Let us now demonstrate how the reduction to a 'Minimal' basis takes place. As 

an example, H(1 - Y, 1, 0; X) can be written in terms of our 'Minimal' base, just 
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with use of the IBP identity (4.59) for H(O, 1,1- Y; X), giving: 

H(1- Y, 1, 0; X) =H(1- Y; X)H(1, 0; X)-H(1, 1-Y; X)H(O; X)+H(O, 1,1-Y; X). 

The only 2DHPL which is not part of the 'Minimal' set is H(1, 0; X), whose calcu

lation is straight forward by application of the 'product' identity for H(1; X) and 

H(O; X): 

H(1, 0; X) = -H(O, 1; X)+ H(1; X)H(O; X) , 

which could be expressed in terms of logarithms and dilogarithms as: 

11"2 
H(1, 0; X) = - Li2(X) -ln(1 -X) ln(X) = Li2(1 -X) - 6 . 

In summary one can construct table 4.1, where full basis is the set of all possible 

2DHPL's with a certain weight, irreducible set is the set that remains after trivial 

relations arising from the definition of each 2DHPL, and finally the Minimal set is 

the basis of 2DHPL's that remains after use of 'product' identities and IBP relations. 

Weight Full basis Irreducible set Minimal set 

1 4 4 4 

2 16 9 6 

3 64 36 20 

Table 4.1: Sizes of the various bases 

As we have already mentioned the 2DHPL's were used in [43] to express all 

planar and non-planar master integrals. All 2DHPL's that appear in the divergent 

parts of the planar master integrals have weight :S 3 and can be related to the 

more commonly known Nielsen generalized polylogarithms [40,41] of suitable argu

ments (see appendix A). The functions of weight 4 appearing in the finite parts 

of the master integrals can all be represented, by the very definition (eq. 4.57), as 

one-dimensional integrals over 2DHPL's of weight 3, hence of Nielsen's generalized 

polylogarithms of suitable arguments according to the above remark. Numerical 

routines providing an evaluation of 2DHPL's [87, 88] are available. 
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4. 7. Tool Six: Projectors For 
Helicity Amplitudes 

In this section we present a D-dimensional projection method which can be em

ployed at all orders in perturbation theory to extract helicity amplitudes. Using 

this approach helicity amplitudes were calculated in [46,47] (two-loops). The tech

nique involves analysis of the tensorial structure of the amplitude and subsequent 

derivation of projectors, which acting on the amplitude can isolate the coefficients of 

certain tensor structures. The decay of the Higgs boson to a gluon pair is used here 

as a pedagogical example to demonstrate the major stages of a helicity amplitude 

calculation. In chapter 8 the same method is used to produce the NNLO helicity 

amplitudes for the Higgs decay to three gluons. 

4. 7.1 The General Tensor 

We will consider the production of a pair of gluons in a Higgs decay, 

(4.63) 

where the invariant scales satisfy 

(4.64) 

We can also define the dimensionless invariant 

(4.65) 

The hadron current may be perturbatively decomposed as, 

Hllv(91;92) = C1 ( + (;;) + (;;r + 
( 4.66) 

where a 8 denotes the QCD coupling constant at the renormalization scale J-L, and the 

are the i-loop contributions to the renormalized amplitude. Renorma.lization 

of ultraviolet divergences is performed in the MS scheme. 
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Helicity Amplitudes 

The most general tensor structure for the hadron current HJ.Lv(g1 ; g2 ), contracted 

with the polarizations of the external gluons is 

2 

L AjPi"ElPJ"E2 + BE1-E2 

i,j=l 

( 4.67) 

where the constraints p1 · E1 = 0 and p2 · E2 = 0, due to the transversality condition 

have been applied. The tensor must satisfy the QCD Ward identity when the gluon 

polarization vectors E1 and E2 are replaced with the respective gluon momentum, 

0. (4.68) 

These two constraints are actually linearly dependent and yield one relation amongst 

the two distinct tensor structures of eq. (4.67): 

( 4.69) 

Applying this identity in eq. ( 4.67) gives the gauge invariant form of the tensor, 

where A21 is a gauge independent function and the tensor structure T21 is given by, 

( 4. 71) 

It should be noted that in the case of a more complicated process (i.e. more 

external particles) one would have to solve a system of equations like eq. (4.69) in 

order to derive the minimum basis set of independent coefficients (i.e. B, A21 etc.). 

It turns out [47] that the number of the components of the basis set equals the 

number of the independent helicity amplitudes. 
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4. 7.2 Projectors for the Tensor Coefficients 

The coefficient Aij may be easily extracted from a Feynman diagram calculation 

using projectors such that: 

L P(Axy) = Axy. (4.72) 
spins 

We can write the tensor structure T21 and its complex conjugate TJ1 as: 

(4.73) 

with 

(4.74) 

We proceed by acting on both sides of eq. ( 4.70) with TJ1 and solving for A12 : 

(4.75) 
spins spins 

Comparing equations (4.72) and (4.75) we can identify projector P(A2I) as: 

T21 t 
(4.76) "\;""' t ' 

L..Jspins T21 T21 

which, using spinor algebra9 yields: 

P(A21) = ( 4.77) 

At this point, it should be stressed that things would be more complicated if the 

general tensor depended on more than one tensor structures. In such a case, one 

would have to solve a system with respect to the coefficients (A's, B's etc.) and then 

identify the coefficients of the general amplitude in each equation as the projector 

for the respective coefficient. 

9 Appendix D 
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Helicit.y Amplitudes 

4.7.3 Helicity Amplitudes 

Let us now summarize what we have accomplished so far. Starting from the most 

general tensor structure for the hadron current HJ.Lv(91 ; 92 ) and applying certain 

constraints, we have managed to write it in terms of a known tensor structure (T21 ) 

and an unknown gauge independent function ( A21 ) The unrenormalised coefficient 

A21 has perturbative expansion of the form: 

AU = C [AU(O)+(O:s)AU(l)+(O:s)
2

AU(2)+0( 3)] 
21 1 21 27r 21 27r 21 as ) (4.78) 

where the dependence on s12 is implicit. At order i each of the (i) can be calcu

lated by acting with the general all-order projector P(A21 ) on the ith order hadron 

current of eq. (4.66): 

P(A ) H(i)( ) J.L V AU(i) L 21 J.LV 91; 92 El E2 = 21 . (4.79) 
spins 

At tree level it is trivial to calculate the (91 ; 92) amplitude from the Feyn-

mann diagrams: 

( 4.80) 

Substituting eqs. ( 4.80, 4. 76) in eq. ( 4. 79) and applying the algebra of Appendix D 

one can derive 

A(O) - - . s:a./3 
21 - tu · (4.81) 

The general form of the renormalized helicity amplitude IM"1 
"

2
) for the process 

1i(p3) ----7 9(PI, AI)+ 9(p2, A2) can be written as: 

( 4.82) 

where the Ai = ± denote the helicity. At tree level one can use the general form for 

92 ) as it is given in eq. (4.70), modified for the lowest order: 

H (O) ( . ) - A (0) ( ) 
1111 91,92 - 21 PlvP2Jl>- Pl · P2 9J.Lv · (4.83) 
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Helicity Amplitudes 

At this point 4-dimensional helicity techniques can be employed - corresponding 

to treating the external particle states as physical - the t 'Hooft-Veltman scheme. 

The two non-zero helicity amplitudes are++ and --. The former can be obtained 

by substituting eqs. ( 4.83, 4.81) in eq. ( 4.82) 10
: 

(4.84) 

while the parity conjugate amplitude-- can be attained with reversal of the square 

for triangle brackets: 

( 4.85) 

The two remaining helicity configurations +- and +- are zero. 

Similarly one can derive helicity amplitudes for all orders in perturbation theory 

as the tensorial structures Txy are independent of the order of calculation. As 

a result the relation between the helicity amplitude and the tensorial coefficients 

remains unchangeable at any order. 

10See Appendix D. 
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Chapter 5 

Making Two&;OLoop Integrals 

Simpler 

5.1 Reductions: New Techniques Available 

Within the last few years new techniques were developed for the reduction of all 

possible tensor integrals appearing in a two-loop calculation to a basic set of Master 

Integrals (MI's). Two of those techniques are based on the integration by parts 

(IBP) method. In the first one [48], each tensor integral is translated (through 

its Schwinger parametric form) into a sum of scalar integrals in higher dimensions 

( D ---+ D + 2n) and powers of propagators. Using recursive relations that were 

derived applying the IBP for each topology separately, one can turn those integrals 

into MI's (still at higher dimensions). Then the high dimensions (D + 2n) MI's are 

given in terms of MI's in D using a method called dimensional shift. Gehrmann and 

Remiddi [42] have introduced another way of reducing arbitrary tensor integrals to 

MI's by solving a system of equations. This system is produced by deriving the 

IBP equations for all the members of a set of seed-integrals. The seed-integrals 

are mainly defined by the topology and rank of the highest tensor integrals. These 

techniques were primarily applied successfully to the calculation of two-loop integrals 

with four on-shell external legs [49-52]. The next more challenging task at two-loops 

was the calculation of integrals with three external on-shell and one off-
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shell legs. Deriving individual recursive relations for each topology, apart from 

being a non-trivial task due to the increased number of hard topologies, proved to 

require computer speed and capacity beyond our current limits. A more general and 

systematic way was demanded. The solution came in [38], where La porta introduced 

an algorithm that enables one to meet all the difficulties arising in two-loop integral 

reductions. 

5.2 Laporta 

In an influential paper [38], La porta introduced an algorithm suitable for the reduc

tion of complicated scalar and tensor integrals, to a simple set of Master Integrals 

(MI's). What the algorithm does is to solve a system of equations in a systematic 

way. The MI's are chosen by the algorithm itself as the result of a set of priorities 

that we impose. 

5.2.1 The Algorithm 

The general form of the Laporta algorithm can be presented schematically in fig

ure 5.1. The numbers correspond to the steps we will see in the main part of the 

algorithm. The input to the Laporta algorithm is: 

INPUT: [DenSet], [MaxDen], [MaxNum], [SolutionSet]. 

Let us study one-by-one the input terms. First of all, DenSet is the set of denomi

nators, which is defined as the set of propagators raised to a positive power in the 

denominator of the integral. The possible set of numerators is the set of propagators 

of the Auxiliary Integral that have zero or negative powers of propagators in the 

denominator of the integral. In the Auxiliary Integral notation .:T ( v1 , v2 , ... , v9 ), 

the denominators are the propagators which correspond to positive vi's and the nu

merators are the propagators which correspond to zero or negative vi's. With this 

in mind, we define M d for an integral as: 

(5.1) 
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with i running through all the positive vi's. and M p as: 

Mp = L(vi) (5.2) 

with i running through all the zero or negative vi's. M axDen and M axN um are 

then defined as the more positive value for M d and the more negative value for 

Mp respectively, that we allow for our 'Seed' integrals. We note that a 'Seed' is 

the integral on ·which we act to generate the Integration By Parts identities. In 

most cases we set MaxDen and MaxNum to be equal respectively to the Md and 

M p values of the integral we want to calculate. However, sometimes the system 

we want to solve does not close to the simplest possible form and we have to use 

higher values for A1 axDen and M axN um in order to produce more equations and 

hopefully solve the system in the optimum way. SolutionSet is the set of solutions 

(equations between integrals), that we have already stored from previous uses of the 

algorithm. This set is empty, {}, when we first apply the algorithm. 

THE MAIN ALGORITHM 

Before we present the main algorithm that is implemented in MAPLE, let us define 

Nk as the number of loops (1 for one-loop and 2 for two-loop integrals) and Nd 

as the number of denominators (or the number of propagators in DenSet) of the 

integral we are interested in calculating. All integrals appearing in the calculation, 

as the result of the IBP identities, which have number of denominators n = Nk, are 

set to zero automatically. 

1. Using the denominators of the given integral, generate all combinations of 

the n = Nk + 1 to n = Nd denominators and put them in a set called 

SetO fAll! ntegrals. Express the denominators in the auxiliary integral form 

with unit powers in the position of every denominator and zero powers in the 

rest of the positions. 

2. Let n = Nk + 1. 

3. Take all combinations with n denominators that are members of SetO fAll! ntegrals 

and put them in a set named SetWithnDen. 
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r--

[DenSet]: (set of denominators) 
[MaxDen]: (maximum sum of powers 

of denominators bigger than one) 
[MaxNum]: (maximum sum of powers 

of numerators) 
[SolutionSet]: (Set of solutions that 
have already been calculated. At the 

beggining the set is empty {}) 

MAIN ALGORITHM 

,----.:: -· 1 Generate all 
I tonolol!ies Loop on n (number of 

denominators): n from 
Nk+l to Nd 

- ..• 

Loop on Md iJ --
Loop on the set 
of integrals of 

the same 
topology 

1--- 2-3 

4 l Loop on topologies 

5 
with same n 

6-7 -1 Loop on Mp J1 
1--- 8-9 

10-11 
12-13 -
14-15 

16 

17 

18 
19 

20 

!OUTPUT 

Solution: Set of 
Equations 
between 
Integrals 

Loop on the !BP 
identities for one 

integral (Seed) 

Figure 5.1: The input, main part and output of the Laporta algorithm. The numbers 

correspond to the steps as they appear in the main text of this subsection (5.2.1). 
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4. Select the first topology = Topo. 

5. Let Md = 0. 

6. Let lvfp = 0. 

7. For Topo (fixed position of propagators) take all possible combinations in 

which the sum of the powers of the n denominators is M d + n and the sum of 

the of the powers of the numerators is M p. Put all the combinations in a set 

named SetO JOneTopo. 

8. Take the pt member of SetOJOneTopo and name it Seedlntegral. 

9. Generate the 10 IBP equations for the Seedlntegral and put them in a set 

named SeediBPSet. 

10. Take the 1st equation of SeediBPSet and name it Equat. 

11. Substitute all the members of SolutionSet in Equat. 

12. If Equat is linearly independent of the other members of SolutionSet then 

Equat = [solve Equat in terms of the integral with the highest priority], else 

Go To step (15). 

13. Substitute Equat in the SolutionSet. 

14. SolutionSet = SolutionSet union Equat. 

15. END LOOP on SeediBPSet. [Take the next member of SeediBPSet, name 

it Equat and Go To step (ll)][else continue] 

16. END LOOP on SetO JOneTopo. [Take next member of SetO JOneTopo, name 

it Seedlntegral and Go To step (9)][else continue] 

17. END LOOP on Mp. [if Mp < MaxNum then Let Mp =IMp+ 1 and Go To 

step (7)][else continue] 
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18. END LOOP on M d. [if Md < MaxDen then Let Md = Md + 1 and Go To 

step (6)J[else continue] 

19. END LOOP on topologies. [Select next member of SetWithnProps, name it 

Topo and Go To step (5)J[else continue] 

20. END LOOP on n. [If n <= Nd then Let n = n + 1 and Go To step (3)][else 

Go To OUTPUT] 

OUT PUT: [SolutionS et] 

This completes the algorithm. The only aspect that we have not covered so far, is 

the priorities we use to select the 'highest priority integral' of the equations. As 

we have seen, each integral has a certain n (number of denominators), M d and M p 

(see definitions eq (5.1) and eq (5.2)). Of all the integrals appearing in a relation, 

we first choose the ones with the highest n and put them in a set. Then from this 

set we pick out the integrals with the highest M d and from these ones the integrals 

with the most negative Mp. If in our final set there are more than one integrals with 

the same n, M d and M p, then we can proceed in two ways. We can either set even 

more restrictive priorities concerning the position of the highest negative or highest 

positive power of the propagators, as Laporta proposes in his paper [38], or choose 

the integral with the simplest and better-factorised coefficient. This choice seems 

to work better since, when solving for the integral of the highest priority, we divide 

the entire expression with its coefficient. 

5.2.2 Laporta Example 

In order to demonstrate how the method works in practice, we present a very sim

ple example. The integral we are interested in simplifying is the one-loop vertex 

diagram: 

(5.3) 

In terms of the notation initiated in subsection 5.2.1 this vertex integral can be 

written as J 2v (1, 1, 1, 0, s12 ). We must note that, since we are dealing with a 
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one-loop diagram, our Auxiliary Integral has only four propagators, the first four 

([A1 , A2 , A3 , A4 ]) of the two-loop planar Auxiliary Integral of eq (4.7). In our ex

ample A1 , A2 and A3 are the denominators and A4 is the numerator. Therefore the 

input to the algorithm will be: 

INPUT: 

MaxDen = 0 

MaxNum = 0 

SolutionSet = {}] . (5.4) 

The values of M axDen and M axNum were calculated, using the definitions of M d 

and Mp for the integral we want to calculate (J2v (1, 1, 1, 0, s12)): 

3 

MaxDen = L (vi -1) = (1- 1) + (1- 1) + (1- 1) = 0, 
i=l 

4 

MaxNum = L (vi)= 0. 
i=4 

(5.5) 

If at the end of the algorithm, J 2v (1, 1, 1, 0, s 12 ) is not solved for in the SolutionS et, 

we will have to re-run the algorithm using a more negative M axN um or a more 

positive MaxDen. The denominator set DenSet was chosen to be [A1 , A2 , A3] 

because the three positive propagators of J 2v (1, 1, 1, 0, s 12 ) are A1 , A2 and A3 . In 

the rest of this section we will skip the invariant scale s12 from the notation of the 

THE MAIN ALGORITHM 

First we generate all possible combinations (within our DenSet) of integrals with n 

number of denominators, where n runs from Nk + 1 = 1 + 1 = 2 to Nd = 3. For 

n = 3 we have the original (input) integral [A1 , A2 , A3] and for n = 2 there are three 

combinations of propagators: [AI, A2], [A1 , A3] and [A2 , A3]. We notice straight 

away that integrals with denominators [AI, A2] and [A2 , A3] vanish in CDR, since 

the square of the incoming momenta in both cases is zero. Their relevant diagrams 

would be: 

!21 \__ !!.:__(\___ ------v- and ------v-
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Integrals with only one propagator vanish as well. They correspond to this type of 

diagram: 

0 (5.7) 

Therefore in the rest of the algorithm we set them equal to zero in advance. This 

way we save time and space in the computer program. The two topologies that 

survive in our example are the triangle integral with denominators [AI, A2 , A3 ] and 

the bubble integral with denominators [AI, A3], which correspond to the following 

diagrams respectively: 

PI Pv--2 
and . 

P2 
(5.8) 

We put those integrals in a set: 

(5.9) 

Next we start the loop on n I . 

1. n = 2 From the SetO fAll! ntegral8 eq (5.9) we take all the integrals with 

n = 2 and put them in a new set. Thus we get: 

(5.10) 

After performing steps 4 ... 18 of the Main Algorithm we derive the following 

SolutionS et: 

SolutionSet = 
(d- 3) 

{1(1,0,2,0)=- 1(1,0,1,0), 
8I2 

1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (d- 2)1 (1, 0, 1, 0), 

(d- 3) 
1(2,0,1,0)=- 1(1,0,1,0), 

8I2 

1 (1 0 2 _ 1) = _ ( -8I2d + 28I2 + 8123d- 38123) 1 (1 0 1 O) 
' ' ' ' ' ' 812 

-1 (2, 0, 1, -1)} 

1 A more detailed version of this example is illustrated in Appendix B. 
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2. n = 3 From the SetOjAlllntegral8 eq. (5.9) we take all the integrals with 

n = 3 and put them in a new set getting: 

(5.12) 

Once more, we recursively apply steps 4 ... 18 and get our final Sol1dionSet: 

SolutionSet = 

(d- 3) 
{1(1,1,2,0)=2 2 1(1,0,1,0), 

812 
(d- 3) 

1 (1, 1, 1, 0) = -2 (d ) 1 (1, 0, 1, 0)) 
812 - 4 

(d- 3) 
1 (2, 1, 1, 0) = 2 2 1 (1, 0, 1, 0)' 

8 12 
(d- 3) 

1(1,0,2,0)=- 1(1,0,1,0), 
812 

1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (d- 2)1 (1, 0, 1, 0)) 

(d- 3) 
1(2,0,1,0)=- 1(1,0,1,0), 

812 

1 (1 0 2 _ 1) = _ ( -812d + 2812 + 8123d- 38123) 1 (1 0 1 O) 
' ' ' ' ' ' 812 

-1 (2, 0, 1, -1)) 

1 (1 1 2 _ 1) = +2 (d- 3)( -812d + 8123d- 48123 + 3812) 1 (1 0 1 O) 
' ' ' 8I2(d- 4) ' ) ) 

-1 (1, 2, 1, -1)- 1 (2, 1, 1, -1) 

+8231 (1, 2, 1, 0)} . (5.13) 

At this point all the recursive loops terminate and our output is what is left in the 

SolutionSet. Therefore: 

OUT PUT = SolutionS et . (5.14) 

The second equation of the SolutionSet eq (5.13) is the one that gives the inte

gral ( 1 ( 1, 1, 1, 0)) we wanted in terms of other simpler integrals, in this case a two 
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propagator bubble diagram (J (1, 0, 1, 0)): 

(d- 3) 
J (1, 1, 1, 0) = -2 

812
(d _ 

4
) J (1, 0, 1, 0), 

-2 ____:_ _ __.:......,... (d-3) Pv--2 
siz(d-4) 

5.2. Laporta 

(5.15) 

Note that apart from the integral we were interested in, we found relations that 

simplify a number of other integrals. In two-loop physical processes, the calcula

tion of the seven-propagator integrals with the Laporta algorithm, results in the 

calculation of all needed integrals with less number of propagators. This is a highly 

welcome bonus, since it reduces significantly the number of times we have to apply 

the algorithm. 

78 



Chapter 6 

Differential Equations 

6.1 Introduction 

In chapter 5 we presented an algorithm that, by solving a big set of Integration By 

Parts (IBP) identities, allows all possible integrals, which can appear in an actual 

calculation, to be written in terms of a small number of Master Integrals (MI). Use 

of these identities, however, can not reduce the Master Integrals any further (after 

all, this is the definition of a Master Integral). Thus MI's have to be computed using 

a different method. Several methods have been successfully used toward the calcu

lation of two-loop MI's, such as for example, the Negative Dimensions approach [53] 

and the Mellin Barnes method [54, 55]. In both methods, analytic computation of 

MI's, involves some form of explicit integration over the loop momenta. The differ

ential equations method, which will be presented in detail throughout this chapter, 

is a method for the analytic calculation of MI's without application of any loop mo

menta integrations. The method was first presented by Kotikov [56], as a method 

of relating loop integrals with internal massive propagators, to loop integrals with 

massless internal propagators. Kotikov used differential equations on the internal 

masses. The method was embroidered in [57, 58], where differential equations on 

the external momenta were derived and solved. First applications appeared in [59]. 

Finally, in a series of papers Gehrmann and Remiddi [42, 43], derived and solved 

differential equations on the external scales of all, two and three scale, two-loop 
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Master Integrals, with massless propagators, for the off-shell case. As we have al

ready pointed out in this thesis, this is the set of Master Integrals that we need for 

two-loop calculations of the physical processes H -t ggg, H -t gqij and '"'/ -t gqij. 

In section 6.2 we demonstrate how differential equations on the external scales are 

derived and in section 6.3 we explain the basic techniques for solving them. The 

method is displayed in detail using the MI Dart2 ( eq. 4.52) as an example. 

6.2 Generating Differential Equations 

6.2.1 Method for Generation of Differential Equations 

Our aim is to derive differential equations in the external scales for the Master 

Integrals. In the case of four-point functions with three external legs on-shell, one 

external leg off-shell and massless propagators, there are only three independent 

scales ( s12 , s 13 , s 23 ), resulting in three differential equations. 

As it is not possible to differentiate straight away with respect to external scales, 

we can use relation: 

8 
8pf 

(6.1) 

to express derivatives in the invariant scales sij = (Pi + Pj )
2

, in terms of derivatives 

in the external moment a Pt, P2, P3: 

8 
St2--

8s12 

8 
s23--

8s23 

8 
s13--

8s13 

(6.2) 

(6.3) 

(6.4) 

Acting with the right hand side of these equations on aMI and interchanging deriva

tion and integration, one would produce a relationship which contains a set of inte

grals similar to the ones derived from the IBP identities. 
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Suppose now that we have a.n integral .:lt,r,s (812, 823,813, D) where: 

r = M d, 8 = M p, t = N d , (6.5) 

with M p, M d defined in equations ( 5.1), ( 5. 2) and N d is the number of propagators 

in the denominator of integral .:lt,r,s· 

Equations (6.2), (6.3) and (6.4), when applied on .:lt,r,s (812, 8 23 ,813 , D), are not 

linearly independent, but are related through the scaling identity: 

which is the result of the properties of integral .:lt,r,s under rescaling of all external 

moment a: 

p'{ --t >..pi 

--t 

--t 
-+ 812 

823 

813 

--t >..2 812 ' 

--t >..2 823 ' 
(6.7) 

--t >..
2 813 . 

a(D, r, 8) is the mass dimension of the integral and, for an m-loop integral in D 

space-time dimensions, is given by: 

a(D, r, 8) = mD + 28- 2r , (6.8) 

where rand 8 were defined in eq (6.5). Thus the scaling equation reads: 

( 
a a a a ) --
2

+812-
8 

+823-
8 

+813-
8 

Jt,r,s(812,823,813,D) = 0. 
812 823 813 

(6.9) 

In practice, we are principally interested in obtaining the differential equation with 

respect to scale M 2 = 8 123 = (p1 + p2 + p3 ) 2 . Therefore, we change to a. new set of 

variables, namely: Af2 = 8123 = 812 + 8 23 + 813 , S = 812 and T = 8 23 . Consequently, 

the set of differential equations becomes: 

a a a 
- -----as 8812 8813 ' 
a a a 

-----ar 8823 8813 ' 
a a 

8M2 -
8813 

(6.10) 
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6.2.2 Differential Equations for the General Auxiliary Pla

nar Integral 

Applying eq. (6.10) on the General Auxiliary Planar Integral (eq. 4.4) we get the 

following set of differential equations: 

1 
----- ( 8+7-vs+1 +2-vt+5+6-v5+4+3-v4+v2+v3-D+vg+v6+v1) 
s123-s12-s23 
1 

- ( -1 + 2- Vt-5 + 6- v5 - v2 - v3 + D - vg-v 4-v6-vrvs) 
s23 

1 
----- ( 8 + 7-vs+ 1 + 2 -Z/1 +5 + 6 -v5+4 + 3- v 4+v2+v3-D+vg+v6+v7) 
s123-s12-s23 
1 

- ( -8+7-vs-4+3-z;4-z;l-z;2-v3+D-vg-ZJ5-z;6-z;7) 
S12 

1 
----- ( 8 + 7-vs+ 1 + 2- v1 +5 + 6 -v5+4 + 3- v 4+v2+v3- D+vg+v6+v7) 
s123-s12-s23 

(6.11) 

where we have used the ten IBP identities ( eq. 4.22) to simplify the format of the 

equations. One can trivially see, without having to perform reductions to MI, that 

eq. (6.11) satisfy the scaling equation (6.9). We get similar forms of differential 

equations if we apply eq. (6.10) on the General Non-Planar Auxiliary Integrals 

eqs. (4.5 and 4.6). 

The right hand side of eqs. ( 6.11) consists of the Master Integral we are interested 

in calculating, and of integrals of the form: 5+5-, 8+7-, 4+3- and 1 +2-. With use 

of the algorithm of section 5.2.1, we can turn these integrals into MI's of the same 

topology, or topologies with less propagators, whose analytic expansions in E have 

already been calculated. 

6.3 Solving DE's: The Gehrmann=Remiddi Method 

In the previous section we demonstrated one method of producing differential equa

tions in the external momenta. In this section we will present the techniques used by 

Gehrmann and Remiddi in [43] when they solved differential equations for all MI's, 

with two or three scales, that could appear in the reduction of planar and non-planar 
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four-point functions with one external leg off-shell. All Master Integrals were writ

ten as Laurent series around E = 0, in terms of one and two dimensional Harmonic 

Polylogarithms (HPL and 2DHPL), and the external invariant scales: 812 ,823 and 

Notice, however, that not every Master Integral (MI) depends on all three in-

variant scales, but on certain one or two scale combinations. There are some MI's 

which depend on only one scale: 

Sunrise(812) 

The only non-trivial differential equations these integrals satisfy are homogeneous 

equations in 812 , thus they can not be calculated using the differential equations 

method. Nevertheless, computing these MI's is a relatively simple task, that can be 

performed using Feynman parameters [60,61]. Integrals that depend on two or three 

external invariant scales, fulfill one or two in-homogeneous differential equations 

respectively, on top of the homogeneous re-scaling one. Therefore all these MI's can 

be solved using the Gehrmann-Remiddi method. In the rest of this section we will 

demonstrate, in brief, the basic steps involved in solving differential equations as 

they were initiated in [43]. 

First we obtain the set of differential equations in the external scales and express 

it in terms of the variables: 8123 = 812 + 823 + 813, X = 812/8123 and Y = 823/ 8123· 

We end up having a homogeneous equation in 8123 , which is the re-scaling equation, 

and two in-homogeneous equations in X and Y. In the latter, the coefficient of the 

homogeneous term and the entire in-homogeneous term (the known sub-topologies 

and their coefficients) are expanded as a series in E. The Master Integral under 

consideration can be written as the sum of terms, each equal to a pre-factor times a 
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combination of HPL's and 2DHPL's multiplied by simple coefficients. Thus we use 

the following ansatz: 

L Ri (Y, X, 8123, E) Hi (Y, X, E) (6.12) 

where Ri (Y, X, 8 123 , E) is the pre-factor (a rational function of X and Y multiplied 

by a normalization factor) and Hi (Y, X, E) is a Laurent series in E: 

(6.13) 

When a topology has only one MI then there is only one pre-factor R (Y, X, 8 123 , E) 

and there is no need for the sum in (6.12). When a topology has two MI's then there 

are only two terms in the sum (6.12) for each MI1
. Let us now study in detail the 

components of this formula (6.13). H (n;,j; x) are 2DHPL's of weight determined 

by the order of the Laurent series. Coefficients Tn (Y), T _,. (Y), which can contain 
n,m3 

ordinary HPL's and depend only on Y, are left to be calculated. The deepest 

allowed pole of the series is taken to be 1/E4
, as it was predicted by Catani in [12]. 

However, some of the MI's may have superficial degree of divergence smaller than 

4. This cannot be known before hand, therefore pis used to include this possibility. 

Vj (Y) is a set with members all possible permutations of j elements from the set 

(0, 1, Y, 1- Y), depending only on scale Y. This set comprises all possible indices 

for 2DHPL's of weight j. When the MI under consideration depends only on one 

scale, then the Vj's do not depend on Y and are j-dimensional permutations of (0, 1). 

To summarize, what remains to be calculated are the coefficients Tn (Y), T _,. (Y) n,m1 

and the pre-factors Ri (Y, X, 8 123 , E). Determination of factors Ri (Y, X, 8 123, E) can 

be carried out from the homogeneous part of the differential equations in X and 

Y, by inserting in them only the leading singularity term (n = 0) of Hi (Y, X, E). 

Having determined pre-factors Ri (Y, X, 8 123 , E), we substitute the ansatz (6.12), in 

the DE in X, getting an X differential equation for the Laurent series Hi (Y, X, E). 

Consequently, we substitute 6.13 in the DE to end up with a relation that has X 

1 For this to happen the two MI's must be appropriately chosen m; wi]l he explained later in this 

section. 
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derivatives of 2DHPL. However, by definition the weight 1 and weight j 2DHPL's 

satisfy the following relations respectively: 

d 
dXH(m; X) 

(m, x) 
f (m, X) 

where f (m, X) are the X-dependent factors: 

1/X, 1/(1- X), 1/(Y +X) and 1/(1- Y- X) , 

(6.14) 

present in the DE. Thus, all derivatives disappear and we are left with a purely 

algebraic equation. If in this equation we group the coefficients of 1/X, 1/(1-

X), 1/(Y +X) and 1/(1- Y- X) and use the linear independence of the base of 

H ( ; X) , we can derive a linear system of equations from which one can determine 

all the wanted T __,. (Y). The factors Tn (Y) can not be calculated from this system n,m1 

because they do not multiply any X-dependent factors in eq. 6.13. These terms are 

evaluated by calculating the MI's at a boundary condition. 

In the case of planar MI's2 , one can use their property of being regular in the 

entire kinematic plane, apart from the two branch points X = 0 and Y = 0. As a 

result, any of the denominators (1- X), (Y +X) and (1-Y- X) of the homogeneous 

part of the DE can be used to calculate a boundary condition at X = 1, X = - Y 

and X = 1 - Y respectively. This can be achieved by multiplying the DE with 

one of these factors, that appears in the homogeneous part, and taking the X limit 

where that factor vanishes. This will 'kill' all terms, including all derivatives, apart 

from the ones that had the multiplying factor in the denominator and we will end 

up calculating the MI, at this kinematic point, in terms of its sub-topologies. 

When the topology has two MI's, one has to derive DE's in X and Y for both 

integrals, which now have two terms each in the ansatz (6.12). Therefore one needs 

to calculate two pre-factors Ri (Y, X, s123 , E) for each MI. This can be achieved by 

choosing the Master Integrals in a way that the equations de-couple when one ex

pands the coefficients of the homogeneous part of the DE, and takes the lowest 

2The case of boundary conditions for the non planar MI's is more complicated and will not be 

presented ,here. 
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order terms in E. As far as the boundary conditions are concerned, the procedure is 

the same as that outlined above with the extra complication of having to find two 

boundary conditions3 . 

6.4 Generating/Solving DE's for the DART2 MI 

In order to illustrate the method that we presented in sections 6.2 and 6.3, we will 

now solve the differential equations for the Master Integral Dart2 : 

(6.15) 

Generating the differential equation. 

In the Auxiliary Integral notation, the topology of Dart2 has the propagator set: 

[AI, A4 , A7 , A9] and the Master Integral can be written as: J (1, 0, 0, 1, 0, 0, 1, 0, 1). 

Therefore, in order to derive the differential equations for Dart2 , we just have to 

substitute: vi = 1, v2 = 0, v3 = 0, v4 = 1, v5 = 0, v6 = 0, v7 = 1, v8 = 0 and v9 = 1, 

in the differential equations of the Auxiliary Integral ( eq. 6.11): 

a 
a8I23 

a 
a823 

a 
a8I2 

1 
---- (2 + 1 +2- + 4+3--D) , (6.16) 
8I23-8I2-823 

1 1 
- (-1+2--3+D)- (2+1+2-+4+3--D) (6.17) 
823 8I23-8I2-823 

1 1 
- (-3-4+3- +D)- (2+1+2- +4+3- -D) (6.18) 
8I2 8I23-8I2-823 

3Thls is not always a trivial task, as it is shown in [43]. 
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If we apply equations (6.16), (6.17) and (6.18) on integral J (1, 0, 0, 1, 0, 0, 1, 0, 1), 

we get: 

[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) J (2, -1, 0, 1, 0, 0, 1, 0, 1) 
= + 

08123 8123 - 812 - 823 
J (1, 0, -1, 2, 0, 0, 1, 0, 1) (2- V) J (1, 0, 0, 1, 0, 0, 1, 0, 1) 

' 
8123 - 812 - 823 8123 - 812 - 823 

[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) J (2, -1, 0, 1, 0, 0, 1, 0, 1) 

0823 8123 - 812 - 823 
J (1,0, -1,2,0,0, 1,0, 1) (2- V) 1(1,0,0, 1,0,0, 1,0, 1) 

8123 - 812 - 823 8123 - 812 - 823 
J (2, -1, 0, 1, 0, 0, 1, 0, 1) (3- V) 1(1,0,0, 1,0,0, 1,0, 1) 

823 
[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) J (2, -1, 0, 1, 0, 0, 1, 0, 1) 

0812 8123 - 812 - 823 
J(1,0,-1,2,0,0,1,0,1) (2-V)J(1,0,0,1,0,0,1,0,1) 

8123 - 812 - 823 8123 - 812 - 823 
J (1, 0, -1, 2, 0, 0, 1, 0, 1) (3- V) J (1, 0, 0, 1, 0, 0, 1, 0, 1) 

812 

(6.19) 

All the integrals on the right-hand side can be written in terms of Master Integrals 

with use of the Laporta reduction algorithm presented in subsection 5.2.1. Subse

quently, the three differential equations take the form: 

[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) 

88123 

[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) 

0823 

[)J (1, 0, 0, 1, 0, 0, 1, 0, 1) 

0812 

! (-4+D)(23123-312)J(1 0 010 010 1) 
2 8123 (3123- 812) 

1 1 1 1 1 1 1 1 

1 ( -8 +3D) 
-- ( ) J (1, 0, 0, 0, 0, 0, 1, 0, 1) (6.20) 

2 8123 8123 - 812 

0, (6.21) 

1 ( -4 +D) 
-- J(1,0,0,1,0,0,1,0,1)+ 

2 8123- 812 
1 ( -8 +3D) 
- ( ) J (1, 0, 0, 0, 0, 0, 1, 0, 1) 
2 8123 - 812 812 

(6.22) 

We should note here, that equations (6.20), (6.21) and (6.22), have no dependence 

on scale 323 . This could be expected, as in eq. (6.15) we see that Dart2 depends only 

on scales 312 and 3123 . In this example, we will solve the differential equation on scale 

312 ( eq. 6.22). It is-more cmivenient for our purposes to perform the substitution: 
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312 -t X 3123 . This way, our result will depend on 3123 and on ratio X ( = :
1

1

2

2

3
). 

Written in terms of X equation (6.22) takes the form: 

8Dart2 (X, 8123) 
ax 

E 
- XDart2 (X, 3123 ) 

-1+ 
(-2 + 3E) 

+ ( X) X Suns (X 8123) , 
3123 -1 + 

- E ( (
2 + x;) Dart2 (X, 3123) 

3123 -1 + 
(-2 + 3E) 

- 2 ( X) Suns (X 8123) , 
3123 -1 + 

where we have also trivially substituted: 

D 

1(1,0,0,0,0,0,1,0,1) 

1(1,0,0, 1,0,0,1,0,1) 

4- 2E, 

(6.23) 

(6.24) 

It is straight forward to see that the above equations (6.23) satisfy the scaling 

equation (6.9). 

What we need to know before hand. 

According to the methodology presented in subsection (6.3), in order to solve a 

differential equation, we need the E expansion of the 'pinching' Master Integrals 

(here the Suns(X 8123)): 

1-2E 1 1 13 115 
FAC(E) (-X 3123) [--E- --- -E-

4 8 16 
Suns (X 8123) = 

(
865 3 ) 2 (5971 39 1f

4
) 3 ( 4) - - - ( (3) E - - - - ( (3) - - E + 0 E ] . 

32 2 64 4 40 
(6.25) 

The factor F AC that appears in eq. (6.25) is given by: 

(
_SE---'::-'-( E)) 2 . h 
16n2 ' W1t 

(4nt r (1 +E) (r (1- E))2 

f(1-2E) 
(6.26) 

In addition an initial condition is required, which, in our case, is the E expansion 

of the Master Integral we are interested in, at the limit X = 0. It is easy to see, 
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comparing the diagrams which correspond to Master Integrals in subsection 4.5.2, 

that in the limit X= 0: 

with: 

( ) 
-2€ 1 2 5 1 19 n 2 

FAG E (-8123) [--E- - -E- -----
2 2 2 6 

(
65 5 2 ) (211 19 2 ) 2 ( 3) 2 + 6 7r - 2 ( (3) E - 2 + 6 7r - 10 ( (3) E + 0 E ] 

(6.27) 

Solving the differential equation. 

First we calculate the pre-factor Ri (X, 8123 , E), as demonstrated in section 6.3, from 

the homogeneous part of the differential equation (6.23), 

8Dart2 (X, 8123) E 
oX = 1 _ XDart2 (X, 8123) 

(6.28) 

and get (using the initial condition from the expansion of Dart1: Ri (0, 8123 , E) = 

F AC (c) ( -8123)-2
€ (eq. 6.27)): 

R (X, 8123, c) = F AC (c) ( -3123r2€ (6.29) 

Note that there is only one pre-factor R (X, 8123 , E), since the topology has only one 

master integral. Next we define 1l (X, E) as a Lament series in E, with coefficients 

of E written as the sum of 2DHPL's. In our example, p of eq. (6.13) is 2, from the 

requirement that the order of the Lament series of the in-homogeneous term of the 

differential equation (6.23), matches the Lament series of the master integral. For 

the deepest pole in the series we get: 

-EDart2 (X, 8123) 
EP 

E
E4 

p 
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V1 is the set of all possible indices for 2DHPL's of weight j (}-dimensional vectors 

made from all possible combinations of the set: (0, 1). Here, we must stress that, in 

this example, V1 has no dependence on a massive scale, as the differential equations 

depend on only two and not three massive scales. Therefore, for example: 

Vt {(0), (1)}, 

v2 { ( o, o) , ( o, 1) , ( 1, o) , ( 1, 1)}, 

The expression for 1l (X, c) (eq. 6.13), becomes: 

1l (X, c) = 1 0 
2{c T0 c 

+c1[T1 + Tl,(o)H(O; X)+ Tl,(l)H(1; X)] 

+c2[T2 + T2,(o)H(O; X)+ T2,(1)H(1; X)+ T2,(o,o)H(O, 0; X) 

+T2,(o,I)H(O, 1; X)+ T2,(t,o)H(1, 0; X)+ T2,(t,l)H(1, 1; X)] 

+c3[T3 + T3,(o)H(O; X)+ T3,(t)H(1; X)+ T3,(o,o)H(O, 0; X) 

+T3,(o,t)H(O, 1; X)+ T3,(t,o)H(1, 0; X)+ T3,(I,l)H(1, 1; X) 

+T3,(o,o,o)H(O, 0, 0; X)+ T3,(I,o,o)H(1, 0, 0; X) 

+ ... + T3,(t,t,l)H(1, 1, 1; X)] 

+c4[T4 + T4,(o)H(O; X)+ ... + T4,(t,t,t,t)H(1, 1, 1,1; X)]} . 

(6.31) 

The final step of the calculation is concentrated on the evaluation of the coefficients 

T __, . The terms T0 , Tt, T2, T3 and T4 , which are by definition not multiplied by any n,m1 
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X-dependent functions, correspond to the boundary conditions of equation (6.27): 

To 
1 
2 ' 

T1 
5 
2 ' 

T2 
19 1!"2 

----
2 6 ' 

T3 ( 65 5 2 ) - 2 + 61!" - 2 ( (3) 

T4 (211 19 2 ) - 2 + 6 1r - 10 ( (3) 

(6.32) 

Inserting the right-hand side of equation (6.31) in the differential equation (6.23) and 

using the identities (eq. 6.14) that lie in the definition of the 2DHPL we get a purely 

algebraic equation, which, after substituting T0 , T1, T2, T3 and T4 from (eq. 6.32), 

becomes (up to the finite term, 0(E0)): 

0 = 
1 1 1 1 

( -1 + X)XTl,(o) + ( -1 +X) Tl,(o)- ( -1 +X) Tl,(I)] + 

1 1 1 
H(O; X){- ( _ 1 +X) X T2,(o,o) + ( _ 1 +X) T2,(o,o) - ( _ 1 +X) T2,(1,o) 

1 1 
- ( -1 +X) + ( -1 +X) Tl,(o)} + 

1 1 
H(1; X){- ( _ 1 +X) X T2,(o,1) + ( _ 1 +X) T2,(o,1) + 

1 T 1 } 
( _ 1 + X) 1,(1) - ( _ 1 + X) T2,(1,1) + 

ln( -M) T 1 1 
2 ( _ 1 +X) 1,(1) + ( _ 1 +X) T2,(o) - ( _ 1 +X) T2,(l) + 

2 
ln( -M) T 1 ln( -M) 

( _ 1 + X)X l,(o)- ( _ 1 + X)XT2,(0)- 2 ( _ 1 +X) T1,(o) 

+0(E1
) . 

(6.33) 

All we have to do now is create a system of equations by, first grouping the different 

powers of E, 2DHPL and then the inverse powers of X and (-1+X). Thus from the 
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coefficient of 1/ E we get two equations: 

0 Tl,(o) , 

0 T1,(1) - Tl,(o) , 

(6.34) 

and from the coefficients of H(O; X) and H(1; X): 

0 T2,(o,o) , 

0 T2,(o,o) - T2,(1,o) - 1 + Tl,(o) , 

0 T2,(0,1) , 

0 T2,(0,1) + T1,(1) - T2,(l,l) , 

(6.35) 

respectively. The relations derived from the rest of equation (6.33) up to O(t:0 ) are 

linearly dependent with equations (6.34) and (6.35). Solving this system we get: 

Tl,(O) 

T1,(1) 

T2,(o,o) 

0 ' 

0, 

0, 

T2,(1,o) 

T2,(o,1) 

T2,(1,1) 
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0. 
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If in equation (6.33), we take all orders in E, up to and solve the system for 

the coefficients T --+ , we get: 
n,mj 

T3,{1) 
7f2 

T4,{1,1) 

7f2 

' 
--

' 6 6 

T3,{I,o) -5, T4,{1,o,o) +10' 

T 3,{1,0,0) +2, T4,{1,1,o) -5, 

T3,(1,1,o) -1, T4,(1,o,o,o) -4, 
(6.37) 

T4,(1) 
57f2 

-6- ((3)' T4,(1,1 ,o,o) +2, 

T 4,(1,0) -19' T4,(1,1,1,o) -1 . 

The rest of the T --+ 's are zero. This result is in complete accordance with reference 
n,mj 

[43]. 
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Chapter 7 

The 1* qqg Two-Loop Matrix 

Element 

7.1 Introduction 

Among jet observables, the three-jet production rate in electron-positron annihi

lation plays an outstanding role. The initial experimental observation of three-jet 

events at PETRA [62], in agreement with the theoretical prediction [63], provided 

first evidence for the gluon, and thus strong support for the theory of Quantum 

Chromodynamics (QCD). Subsequently the three-jet rate and related event shape 

observables were used for the precise determination of the QCD coupling constant 

as (see [64] for a review). Especially at LEP, three-jet observables were measured to 

a very high precision and the error on the extraction of as from these data is dom

inated by the uncertainty inherent in the theoretical next-to-leading order (NLO) 

calculation [44, 65-68] of the jet observables. The planned TESLA [69]linear e+e

collider will allow precision QCD studies at even higher energies than at LEP. Given 

the projected luminosity of TESLA, one again expects the experimental errors to 

be well below the uncertainty of the NLO calculation. 

Related to e+e- ---+ 3 jets by crossing symmetry are (2 + 1)-jet production in 

deep inelastic ep scattering and vector-boson-plus-jet production at hadron colliders. 

The experimental data from HERA on ep ---+ (2 + 1) jets and related event shape 
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observables have already reached a level of precision demanding predictions beyond 

the present NLO accuracy; a further improvement on these data is expected soon 

from the HERA high luminosity programme. Similarly, vector-boson production at 

large transverse momentum is a classic test of QCD in hadron-hadron collisions and 

demands the theoretical prediction to be as precise as possible. In this case, it is 

also an important background in searches for new physics at the Tevatron and the 

LHC. 

Besides its phenomenological importance, the three-jet rate has also served as a 

theoretical testing ground for the development of new techniques for higher order cal

culations in QCD: both the subtraction [65] and the phase-space slicing [66] methods 

for the extraction of infrared singularities from NLO real radiation processes were 

developed in the context of the first three-jet calculations. The systematic formula

tion of phase-space slicing [44] as well as the dipole subtraction [68] method were also 

first demonstrated for three-jet observables, before being applied to other processes. 

It is very likely that similar techniques at higher orders will first be developed in the 

context of jet production in e+ e- annihilation, which in contrast to hadron-hadron 

collisions or electron-proton scattering does not pose the additional difficulty of the 

regularization of initial state singularities. 

The calculation of next-to-next-to-leading order (NNLO), i.e. O(an, corrections 

to the three-jet rate in e+e- annihilation has been considered as a highly important 

project for a long time [70]. In terms of matrix elements, it requires the computation 

of three contributions: the tree level ""(* -+ 5 partons amplitudes [71-73], the one

loop corrections to the""(* -+ 4 partons amplitudes [74-77], and the two-loop (as well 

as the one-loop times one-loop) corrections to the 1* -+ 3 partons matrix elements. 

While the former two contributions have been known for some time already, the 

two-loop amplitudes have presented an obstacle that prevented further progress on 

this calculation up to now. 

This calculation has now become tractable owing to various technical develop

ments over the last three years. In particular, the systematic application of the 

methods presented in chapters 4 and 5 allowed the large number of Feynman in-
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tegrals appearing in two-loop four-point matrix elements to be reduced to a small 

number of so-called master integrals (MI). The master integrals relevant in the con

text of the present work are massless four-point functions with three legs on-shell 

and one leg off-shell. Using the technique illustrated in chapter 6, the complete set 

of these integrals was computed in [43]. Earlier partial results had been presented 

in [85,86]. 

In this chapter, we present the corrections to the ry* ---+ qqg matrix ele

ment [45]. At this order, two combinations of amplitudes contribute: the interference 

of two-loop and tree amplitudes and the self-interference of the one-loop ampli

tude. We work in conventional dimensional regularization [8-10], with D = 4 - 2E 

space-time dimensions, where all external particles are D-dimensional. Ultraviolet 

renormalization is performed in the MS scheme. The infrared pole structure of the 

two-loop corrections to the ry* ---+ qqg matrix element was predicted by Catani [12], 

using an infrared factorization formula. We confirm Cat ani's prediction with our 

explicit calculation, and we use the formalism introduced in [12] to present the in

frared poles and the finite parts of the ry* --+ qqg matrix elements in a compact 

form. 

The chapter is structured as follows. In Section 7.2, we define the notation and 

kinematics as they were used in [45]. Section 7.3 briefly summarizes the method 

we used to express the NNLO squared matrix element for ry* ---+ qqg as a series in 

E = 2- D /2. The result for the two-loop QCD contribution to the ry* ---+ qqg matrix 

element, decomposed into infrared-divergent and infrared-finite parts according to 

the prescription derived in [12], is given in Section 7.4. 

7. 2 Notation 

We consider the decay of a virtual photon into a quark-antiquark-gluon system: 

(7.1) 
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The kinematics of this process is fully described by the invariants: 

(7.2) 

which fulfill: 

(7.3) 

It is convenient to define the dimensionless invariants: 

y = 813/8123 , (7.4) 

with x + y + z = 1. 

Our calculation is performed in conventional dimensional regularization [8-10] 

with D = 4 - 2E, and all external particle states are taken to be D-dimensional. 

Renormalization of ultraviolet divergences is performed in the MS scheme. The 

renormalized amplitude can be written as: 

where a denotes the electromagnetic coupling constant, eq the quark charge, a 8 the 

QCD coupling constant at the renormalization scale J-l, and the IM(i)) are the i-loop 

contributions to the renormalized amplitude. They are vectors in colour space. The 

renormalized amplitudes are obtained as 

IM(O)) 

IM(1l) 

IM(O),un) , 

s;11M(l),un)- IM(O),un) , 

IM(2)) s-21M(2),un)- 3f3o s-11M(l),un)- (!31 - 3/36) IM(O),un), (7.6) 
€ 2E € 4E 8E2 

where 50 f3o and /31 where defined in equation 1.16. 

The squared amplitude, summed over spins, colours and quark flavours, is de-

noted by: 

(MIM) = L IM(!*-+ qqg)l 2 = T(x, y, z) . (7.7) 

The perturbative expansion of T(x, y, z) at renormalization scale 
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reads: 

7(x, y, z) 

where: 

7(2l(x, y, z) 

7(4) (x, y, z) 

7(6l(x, y, z) 

l61r2cr e;cr,(q2
) [ Ji'l (x, y, z) + ( ]i41 (x, y, z) 

+ ( )' Ji'l (x, y, z) + 0( , (7.8) 

)+ J7.9) 

(M(o) \M(1)) + (M(l) \M(o)) , (7.10) 

(7.11) 

where V = N 2 
- 1, with N the number of colours. 7(4 l(x, y, z) was first derived 

in [65, 66]; we quote an explicit expression for it in Section 7.4.1. In the following, 

we present the contribution to 7(6
) ( x, y, z) from the interference of two-loop and 

tree diagrams: 

(7.12) 

as well as the one-loop self-interference: 

(7.13) 

At the same order in o:5 , one finds also a contribution to three-jet final states from 

the self-interference of the 1* --+ ggg amplitude. The matrix element for this process 

does not contain infrared or ultraviolet divergences; it was computed long ago and 

can be found in [89, 90]. 

For the remainder of this chapter we will set the renormalization scale J.L2 = q2
. 

The full scale dependence of the perturbative expansion is given by: 

7(x, y, z) = 167f2o: { 7(2
) (x, y, z) 

q 

+ ( [ y(4l(x, y, z) + (30 7(2l(x, y, z) ln 

+ ( "t')) 2 

[ Ji'i(x, y, z) + ( 2{30 fl'i(x, y, z) + {31 Ji'l(x, y, z)) In ( 

+f367(2l(x,y,z)ln2 + }· (7.14) 
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7.3 Method 

The Feynman diagrams contributing to the i-loop amplitude IM(i)) (i = 0, 1, 2) were 

all generated using QGRAF [32] according to the first step of the methodology pre

sented in chapter 3. There are two diagrams at tree-level, 13 diagrams at one loop 

and 229 diagrams at two loops. We then project IM(2)) by (M(o) I and IM(1)) by 

(M(l) I, and perform the summation over colours and spins using the computer alge

bra programs MAPLE [33] and FORM3 [34]. When summing over the polarizations 

of the external gluon and off-shell photon, we use the Feynman gauge: 

.L::>r Er* = -giLl/. (7.15) 
spins 

This is valid because the gluon always couples to a conserved fermionic current, 

which selects only the physical degrees of polarization. The use of an axial gauge 

polarization sum to project out the transverse polarizations (eq. 3.1) is therefore not 

needed. 

The one-loop self-interference contribution T(6,[lxl]) is computed by reducing all 

tensorial loop integrals according to the standard Passarino-Veltman procedure [91] 

to scalar one-loop two-point, three-point and four-point integrals. It has been known 

for a long time that those three-point integrals can be further reduced to linear 

combinations of two-point integrals using integration-by-parts identities. After this 

reduction, T(6,[lxl]) is expressed as a bilinear combination of only two integrals: the 

one-loop box and the one-loop bubble, which are listed in appendix of [45]. 

The computation of T(6,[2 xo]) is by far less straightforward. The methodology 

applied and the tools used to express T(6,[2 xo]) in terms of master integrals (MI) 

was discussed in chapters 3, 4 and 5. The two-loop MI 's relevant to the 1* --+ qqg 

matrix element are two-loop four-point functions with one leg off-shell. These func

tions were all computed in [43] in the framework of dimensional regularization with 

D = 4- 2E space-time dimensions. The differential equations method, presented in 

chapter 6, was used for this purpose. The results of [43] take the form of a Laurent 

series in E, starting at c 4
, with coefficients containing two-dimensional harmonic 

polylogarithms [39]. All master integrals in [43] were given for one particular config-
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uration of the external momenta. They were expressed in a form where the argument 

of the 2DHPL's was always y, while z appeared in the index vector of the 2DHPL's. 

In [43] there was a separation in the notation referring to HPL's and 2DHPL's. 

The symbol 'H' remained only for the HPL's while the symbol 'G' was used for the 

2DHPL's. For simplicity, in the rest of this thesis we will express both HPL's and 

2DHPL's with the symbol 'H'. 

Each master integral can occur in six kinematic configurations (corresponding to 

the permutations of (p1 , p2 , p3 )). To avoid hidden zeros (arising from cancellations 

occurring in the combinations of 2DHPL's with different arguments and different 

variables in the index vector), we express the master integrals for all kinematic 

configurations in a unique form, which is the same as in [43]: the argument of the 

2DHPL's is always y, the variable in their index vector is z, which appears also as 

argument of the HPL's. 

The master integrals in [43] were derived in the kinematical situation of a (space

like) 1 --+ 3 decay, which corresponds to the 1* --+ qi'jg, such that the only analytic 

continuation of them required here is the expansion of the overall factor in the 

time-like region: 

(7.16) 

The analytic continuation of the master integrals to other kinematical regions is 

discussed in the appendix of [43]. 

7.4 The Matrix Element 

We further decompose the renormalized one- and two-loop contributions to T(6) as 

a sum of two terms: 

T(6,[ixj])(x, y, z) = Poles(ixj)(x, y, z) + :Finite(ixj)(x, y, z). (7.17) 

Poles contains infrared singularities that will be analytically cancelled by those oc

curring in radiative processes of the same order (ultraviolet divergences are removed 

by renormalization). :Finite is the renormalized remainder, which is finite as t---+ 0. 
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In this section we first give explicit expressions for the infrared pole structure using 

the procedure advocated by Catani [12] and then give the analytic results for the 

finite remainders. For simplicity we set the renormalization scale JJ2 = s123 and 

restore the renormalization scale dependence using Eq. (7.14). 

7 .4.1 Infrared factorization 

Catani [12] has shown how to organize the infrared pole structure of the two-loop 

contributions renormalized in the MS scheme in terms of the tree and renormalized 

one-loop amplitudes, IM(0)) and IM(l)) respectively, as: 

Poles(2xo) = f3o (M(o)IJ(ll(E)IM(o)) 
2 E 

+ (M(o)IJ(ll(E)IM(ll) 

+e-qf(1- 2E) (f3o + K) (M(o)IJ(ll(2E)IM(o)) 
f(l- E) E 

+ (MI0liH(2l(<)IM10l)l (7.18) 

and 

(7.19) 

where the constant K is defined in eq. (2.50). It should be noted that, in this 

prescription, part of the finite terms in T(6,[ixj]) are accounted for by the 0(E0 ) 

expansion of Poles(ixj). 

For this particular process, there is only one colour structure present at tree level 

which, in terms of the gluon colour a and the quark and antiquark colours i and j, 

is simply Tfj. Adding higher loops does not introduce additional colour structures, 

and the amplitudes are therefore vectors in a one-dimensional space. Similarly, the 

infrared singularity operator J(ll(E) is a 1 x 1 matrix in the colour space and is given 

by: 

I (E) =- N - +- +- (S13 + S23)-- - +- S12 , (l) e€1' [ ( 1 3 f3o ) 1 ( 1 3 ) ] 
2f(1- E) E2 4E ?-Nf. N f. 2 2f. 

(7.20) 
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where (since we have set f-L 2 = 8 123 ): 

Sij = (- 8123) € 

8·· t] 

7.4. The Matrix Element 

(7.21) 

Note that on expanding Sij, imaginary parts are generated, the sign of which is fixed 

by the small imaginary part +iO of 8ij· Other combinations such as (M(o)IJ(llt(E) 

are obtained by using the hermitian conjugate operator J(1)t(E), where the only 

practical change is that the sign of the imaginary part of S is reversed. The origin of 

the various terms in Eq. (7.20) is straightforward. Each parton pair ij in the event 

forms a radiating antenna of scale 8ij. Terms proportional to Sij are cancelled by real 

radiation emitted from leg i and absorbed by leg j. The soft singularities 0(1/c2 ) are 

independent of the identity of the participating partons and are universal. However, 

the collinear singularities depend on the identities of the participating partous. For 

each quark we find a contribution of 3/(4E) and for each gluon we find a contribution 

of f30 /(2E) coming from the integral over the collinear splitting function. 

Finally, the last term of Eq. (7.18) that involves H(2\c) produces only a single 

pole in E and is given by: 

(7.22) 

where the constant H(2
) is reuormalization-scheme-depeudent. As with the single 

pole parts of I(l) (E), the process-dependent H(2) eau be constructed by counting the 

number of radiating partons present in the event. In our case, there is a quark

antiquark pair and a gluon present in the final state, so that: 

(7.23) 

where in the MS scheme: 

(7.24) 
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so that: 

H(2) = (4(3 + 589- 1l7r2) N2 + 41 - 1f2) + (-3(3- + 1f2) _1_ 
432 72 2 54 48 16 4 N 2 

+ (-19 + 1f2) NNp + (-.!__- 1f2) Np + (7.26) 
18 36 54 24 N 27 F 

The factors and Hb2
) are directly related to those found in gluon-gluon scat

tering [81], quark-quark scattering [79] and quark-gluon scattering [80] (which each 

involve four partons) as well as in the quark form factor [60, 92-94]. We also note 

that (on purely dimensional grounds) one might expect terms of the type s7j to be 

present in H(2). Of course such terms are 1 + 0( t:) and therefore leave the pole part 

unchanged and only modify the finite remainder. At present it is not known how to 

systematically include these effects. 

The renormalized interference of tree and one-loop amplitudes also appears in 

eq. (7.18). This can be written to all orders in t: using the relation: 

(7.27) 

where: 

(7.28) 

The functions h (y, z) and h (y, z), presented in appendix E, can be written in 

terms of the one-loop bubble integral and the one-loop box integral in D = 6 - 2t: 

dimensions, Box6 . As mentioned before, explicit formulae for the bubble and box 

integrals are given in the appendix of [45]. The square of the Born amplitude is 

given in eq. (7.9). 

7.4.2 The finite part 

The finite remainders of the one- and two-loop contributions to T(6
) can be decom

posed according to their colour structure and to their dependence on the number 

of quark flavours Np. In the two-loop contribution, one finds moreover a term pro

portional to the charge-weighterl sum of the quark flavours NF,-y; this equals, in the 
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case of purely electromagnetic interactions: 

(7.29) 

This term originates from diagrams containing a closed quark loop coupling to the 

virtual photon and which first appear at the two-loop level. 

The tree-level combination of invariants: 

z y yz y z 
(7.30) 

frequently occurs in the finite part. We therefore extracted this combination by 

expressing 1/(yz) by T according to the above equation. 

Two-loop contribution to T(6) 

The finite remainder of the interference of the two-loop amplitude with the tree-level 

amplitude is decomposed as: 

:Finite<2x0)(x, y, z) = V [N2 (A2o(y, z) + A2o(z, y)) + (B2o(Y, z) + B2o(z, y)) 

1 
+ N 2 (C2o(Y, z) + C2o(z, y)) + N Np (D2o(y, z) + D2o(z, y)) 

Np 2 + N (E2o(y, z) + E2o(z, y)) + Np (F2o(Y, z) + F2o(z, y)) 

+NF,-r N) (G2o(y, z) + G2o(z, y))] , (7.31) 

where the coefficients A20 (y, z), B20 (y, z), ... , G20 (y, z) appear in appendix E. 

One-loop contribution to T(6) 

The finite remainder of the self-interference of the one-loop amplitude is decomposed 

as: 

:Finite(lxl)(x, y, z) V [N2 (A 11 (y, z) + A11 (z, y)) + (Bn(Y, z) + Bu(z, y)) 

1 + N 2 (Cu(y,z) + Cu(z,y)) + NNp (D11 (y,z) + D11 (z,y)) 

Np 2 l +N (En(Y, z) + Eu(z, y)) + Np (Fn(y, z) + F11 (z, y)) . 

(7.32) 
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The coefficients Au (y, z), Bu (y, z), ... , Fu (y, z) are presented in the appendix of [45]. 
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Chapter 8 

Two-Loop Helicity Amplitudes for 

the H ---+ ggg Decay 

8.1 Introduction 

Within the SM, the Higgs Boson is the only particle remaining to be discovered. Its 

importance is great because of the fundamental part the Higgs plays in the Elec

troweak Symmetry Breaking, the spontaneous mechanism that explains the genera

tion of the masses of the fermions and the weak gauge bosons. Although the vacum 

expectation value of the Higgs field is very well defined (of order 246 GeV), its mass 

remains a free parameter that can be constrained but not predicted by the theory. 

The detection of the Higgs boson in the major electron and hadron accelerators 

has been a very challenging, but unsuccessful, task during the last few years. After 

the termination of the LEP program, the efforts for the discovery of the Higgs are 

concentrated on the hadron colliders at CERN Large Hadron Collider (LHC) and 

Tevatron Run II. The data from the e+ e- collider LEP have set a lower limit of 

'"" 113 GeV [111] for the Higgs mass. A global fit with electroweak precision data 

predicts a maximum limit of around 200 Ge V [112] with 95% certainty. 

If the Higgs mass is below '"" 700 Ge V, the dominant mechanism for Higgs pro

duction in the hadron colliders will be the gluon fusion providing rv65% of the total 

cross section at Tevatron [113]. The gluon fusion will be most important at LHC 
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due to the high machine luminosity which will enable the measurement of the rare, 

of 0 (10-3 ), 1-l -+ 11 decay, despite the large QCD background from processes 

like gg -+ 11, qij -+ 11, as well as misidentified photons from n° decay and jet 

fragmentation. 

At leading order (10) the Higgs coupling to the two gluons is mediated through 

a quark loop. Since the Higgs coupling to the quarks is proportional to the quark 

masses, the dominant contribution is generated from the top quark. The next to 

leading order (N10) corrections have also been calculated and are significantly big 

(>60%). As we mentioned in section 1.4, in the heavy top quark limit, Mt -+ oo, we 

can integrate out the top mass (Mt) and formulate an effective 1angrangian Leff for 

the 1-lgg coupling. In this limit the evaluation of the 10 and N10 contributions was 

completed along time ago [114]. Recently the NN10, two-loop virtual corrections 

were calculated [115]. 

At the same time, other, less inclusive mechanisms of gluon fusion, have been 

studied and in [116] the transverse momentum spectrum of the Higgs boson was 

considered. Despite the fact that the channel pp-+ 1-l +jet-+ 11 +jet has a cross 

section much smaller than the inclusive channel pp -+ 1-l +X -+ 11 +X, the former 

presents some significant advantages as far as the background is concerned. First 

of all, the photons that are produced by the Higgs decay are more energetic in the 

case of a Higgs with large transverse momentum and second, the jet itself produces 

a signal that can significantly suppress the QCD background. In fact, at 10 the 

Signal/Background ratio is approximately rv1/15 for the inclusive pp-+ 11 process 

and rv1/2 or 1/3 for the pp-+ 11 +jet reaction in [117] . 

The three QCD processes contributing to the reaction pp-+ 11 +jet are: 

gg -+ 1-l + g ' gq -+ 1-l + q ' qij -+ 1-l + g . (8.1) 

Numerically, it was calculated [117] that the contribution of the gq channel is about 

12% of the main gg production signal, while the contribution of the qij production 

channel is negligible. The helicity amplitudes for the processes (8.1) can be given 

by analytic continuation of the 1-l -+ ggg and 1-l -+ qijg helicity amplitudes. 
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The relevant 10 helicity amplitudes and matrix elements of the processes 1£---+ggg 

and 1l -tgqq were calculated analytically both in the Mt -t oo limit and with full 

Mt dependence [116]. The one-loop virtual contributions at Mt ---+ oo were provided 

somewhat later [118], but a two-loop calculation has not been done yet. 

In the limit Mt ---+ oo a full NNLO calculation requires the computation of 

the helicity amplitudes of three contributions: (i) the 'treeeff' 1l ---+ 5 partons 

amplitudes, (ii) the 'one-loopeJ/ corrections to the 1l ---+ 4 partons amplitudes and 

(iii) the 'two-loopef / (as well as the 'one-loopef t' times 'one-loopef /) corrections 

to the 1l ---+ ggg and 1l ---+ gqq helicity amplitudes. Although the one-loop five

point integrals with one external leg off-shell that appear in (ii) are known, the 

computation of the amplitudes has not been done yet. The two-loop four-point 

integrals with one external leg off-shell that appear in (iii) were until recently a 

major obstacle in any NNLO calculation in which they are involved. This calculation 

has now become tractable owing to various technical developments over the last two 

years, some of which were presented in previous chapters. 

In this chapter, we present the O(a;) corrections to the 1l ---+ ggg helicity am

plitudes in the Mt ---+ oo limit. At this order, two combinations of amplitudes 

contribute: the interference of 'two-loopeJ/ and 'treeeff' amplitudes and the self

interference of the 'one-loopeJ/ amplitude. Ultraviolet renormalization is performed 

in the MS scheme. The infrared pole structure of the two-loop corrections to the 

1l -t ggg helicity amplitudes have been predicted by Catani [12], using an infrared 

factorization formula. We confirm Catani 's prediction with our explicit calculation, 

and we use the formalism introduced in [12] to present the infrared poles and the 

finite parts of the 1l ---+ ggg helicity amplitudes in a compact form. 

8.1.1 Notation 

We consider the decay of the Higgs boson to three gluons: 

(8.1) 
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As we have seen in previous chapters it is convenient to define by the invariants: 

(8.2) 

which fulfill: 

= 812 + 813 + 823 8123 ' (8.3) 

as well as the dimensionless invariants: 

x = 8 12 /8123 , y = 813/8123 ' (8.4) 

which satisfy x + y + z = 1. 

The renormalized amplitude IM) can be written as: 

(8.5) 

while the hadron current may be perturbatively decomposed as: 

where 0: 8 is the QCD coupling constant at the renormalization scale J-l, and the 

are the i-loop contributions to the renormalized amplitude. cl was defined in 

eq. 1.26. Renormalization of ultraviolet divergences is performed in the MS scheme. 
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8.1.2 The general tensor 

The most general tensor structure for the hadron current S11vp(91; 9 2 ; 93) is: 

3 3 

= L AijkPi"t1Pj"E2Pk"t3+ L BiPi"tlt2"t3 

i,j,k=l i=l 

3 3 

+ I: ciPi·E2 E1·E3 +I: Dipi·E3 E1·E2 

i=l i=l 

A2n P2 ·E1 PI ·E2 P1 · E3 + A212 P2 ·E1 P1 ·E2 P2 · E3 + A231 P2 · E1 P3 ·E2 P1 ·E3 

where the constraints p1 · E1 = 0, p2 · E2 = 0 and p3 · E3 = 0 have been applied. The 

tensor must satisfy the QCD Ward identity when the gluon polarization vectors E1 , 

E2 and E3 are replaced with the respective gluon momentum: 

(El -+pi) -+ SJLvp(9l; 92; 0, 

(E2-+ P2) -+ SJLvp(91; 92; 0, 

0. (8.8) 

These constraints yield relations amongst the 14 distinct tensor structures and ap

plying these identities give the gauge invariant form of the tensor: 
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where Aijk are gauge independent functions and the tensor structures Tijk are given 

by: 

The coefficients are functions of the invariants s12 , s23 and s13 and are further related 

by symmetry under the interchange of the three gluons: 

(8.11) 

8.1.3 Projectors for the tensor coefficients 

The coefficients Aijk may be easily extracted from a Feynman diagram calculation 

using projectors such that: 

L P(Ajk) SJl.vp(gl; 92; = Ajk · (8.12) 
spins 
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The explicit forms for the four projectors are, 

(8.13) 

8.1.4 The perturbative expansion of the tensor coefficients 

Each of the unrenormalized coefficients Aijk have perturbative expansions of the 

form: 

CU [A(O),U A(1),U + A(2),U + O ((aU)3)]. 
1 V '±/I u::s tJk 21f tJk 21f tJk s 

(8.14) 

At tree-level: 

A(O) 2 
211 

813 

A(O) 2 
311 

812 

A(O) 2 
232 

812 

A(O) 2 2 2 
(8.15) ------312 

812 823 813 

where a, b, c are the adjoint calor indices for the gluon. 
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The unrenormalized one and two-loop coefficients Agk.u and were obtained 

analytically using the methodology and tools described in previous chapters. The 

E-expanded coefficients in terms of HPL's and 2DHPL's, can be obtained in FORM 

format from the author of this thesis. 

8.1.5 Ultraviolet renormalization 

The renormalization of the matrix element is carried out by replacing the bare 

coupling oP with the renormalized coupling a 8 _ a 8 (J.L2 ), evaluated at the renor

malization scale J.L2
: 

(8.16) 

where S€, (30 and /31 were defined in section 1.3.3. The renormalization relation for 

the effective coupling cl is given in [119] as: 

(8.17) 

We denote the i-loop contribution to the unrenormalized coefficients by , using 

the same normalization as for the decomposition of the renormalized amplitude (8.6). 

The renormalized coefficients are then obtained as: 

(8.18) 

8.1.6 Infrared behaviour of the tensor coefficients 

The amplitudes contain infrared singularities that will be analytically canceled by 

those occurring in radiative processes of the same order (ultraviolet divergences are 

removed by renormalization). Catani [11] has shown how to organize the infrared 

pole structure of the one- and two-loop contributions renormalized in the MS scheme 
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in terms of the tree and renormalized one-loop amplitudes. The same procedure 

applies to the tensor coefficients. In particular, the infrared behaviour of the one

loop coefficients is given by: 

A(lk) _ I(l)( )A(o) + A(l),Jinite 
tJ - c ijk ijk ' (8.19) 

while the two-loop singularity structure is: 

Ai;L ( _ Jlll(<) 

+e-qf(1- 2c) (f3o + K) 1 (1)(2c) + H(2)(c)) A(o) 
f(1- c) c tJk 

+1(1)( )A(1) + A(2),Jinite 
c ijk ijk ' (8.20) 

where the constant K is: 

(8.21) 

The finite remainders remain to be calculated. 

For this particular process, there is only one calor structure present at tree level 

which, in terms of the gluon colors a, b and c, is simply rbc. Adding higher loops does 

not introduce additional calor structures, and the amplitudes are therefore vectors 

in a one-dimensional space. Similarly, the infrared singularity operator 1(1) (c) 1s 

given by: 

1(1)(c) =- eey + (s13 + s23 + s12) ' 
2f(1- c) '- '-

where (since we have set 112 = 8 123 ): 

S·· = t) (
- 8123) f 

8ij 

(8.22) 

(8.23) 

Note that on expanding Si]! imaginary parts are generated, the sign of which is fixed 

by the small imaginary part +iO of 8ij. 

Finally, the last term of Eq. (8.20) that involves H(2)(c) produces only a single 

pole in c and is given by: 

cer Il(2l(c) = H(2) 
4cf(1-c) ' 

(8.24) 
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where the constant H(2
) is renormalization-scheme-dependent. As with the single 

pole parts of J(1)(t:), the process-dependent H(2) can be constructed by counting the 

number of radiating partons present in the event. In our case, there are three gluons 

present in the final state, so that: 

(8.25) 

where in the MS scheme: 

H(2) = 1l7!·2) N2 N2 (- 7!"2- 89) NN - Np (8.26) 
9 2 (3 + 12 + 144 + 27 F + 72 108 F 4N . 

The factor is directly related to the one found in gluon-gluon scattering [81] 

and quark-gluon scattering [80] (which each involve four partons). 

8.2 Helicity amplitudes 

The general form of the renormalized helicity amplitude IM"1
"

2
"

3
) for the decay: 

1l(p4)-+ 9I(PI, >.I)+ 92(P2, >.2) + 93(p3, >.3) can be written as: 

(8.27) 

where the Ai = ± denote helicity. A convenient method to evaluate helicity ampli

tudes is in terms of Weyl spinors, which is described briefly in Appendix D and in 

detail in [123]. Using the spinor calculus of Appendix D and substituting eq. (8.10) 

in eq. (8.9) we can express the helicity amplitudes, in terms of spinor products. It 

turns out that the only two independent helicity amplitudes are + + + and + + -. 

Explicitly, we find, 

(8.28) 

The other helicity amplitudes are obtained from IM+++) and IM++-) by the usual 

parity and charge conjugation relations, while the coefficients a and (3 are written 
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8. Two-Loop Helicity Amplitudes for the 1l 4- ggg DecaJY-2. Helicity amplitudes 

in terms of the tensor coefficients, 

a - -A2u + -A232- -A311 - 2A312 , 1 (812 823 813 ) 
2 823 813 823 
813 

f3 2A2u· 

As with the tensor coefficients, the helicity amplitude coefficients a and f3 are 

vectors in color space and have perturbative expansions, 

n = Cl'/47ra8 fabc [n(o) + (;;) n(ll + (;;r f1(2l + , 

for n = a, (3. The ultraviolet and infrared properties of the helicity coefficients 

match with those of the tensor coefficients, 

fl(O),U 
' 

s-1Q(1),U _ 3f3o fl(O),U 
f 2c ' 

s-2f2(2),U _ 5f3o s-1f2(1),U _ ( 5(31 _ 15/36) fl(O),U 
f 2c f 4c 8<:2 ' 

(8.29) 

and, 

J(1) ( E )fl(O) + [l(l),Jinite' 

f3o J(ll(c) + e-eyr(1 - 2c) (f3o + K) J(ll(2c) + H(2l(c)) O(o) 
2 E f(1 - c) E 

+J(l)(c)O(l) + f2(2),finite, (8.30) 

where J(1)(c) and H(2)(c) are defined in eqs 8.22 and 8.25 respectively. 

At leading order, one can use the values of given in eq. (8.15), to get: 

a(o) = (812 + 823 + 813)2 Mf.t and f3(o) = 1. (8.31) 
812823813 812823813 

The renormalized next-to-leading order helicity amplitude coefficients can be straight-

forwardly obtained to all orders in c from the tensor coefficients Agk. For prac

tical purposes they are needed through to 0( c2 ) in evaluating the one-loop self

interference and the infrared divergent one-loop contribution to the two-loop ampli

tude, while only the finite piece is needed for the one-loop self-interference. They 

can be decomposed according to their color structure as follows: 

n(l),/init< = J"'' ( N + N (8.32) 
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The finite two-loop remainder is obtained by subtracting the predicted infrared 

structure (expanded through to 0( E0)) from the renormalized helicity coefficient. We 

further decompose the finite remainder according to the color casimirs as follows, 

(8.33) 

All one-loop coefficients Ag), Bg) and two-loop coefficients and 

are given in appendix F, while coefficients B12
), C12

) and can be 

obtained in FORM format from the author. 
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Chapter 9 

Conclusions 

The main purpose of this thesis has been the calculation of two-loop matrix elements 

and helicity amplitudes, for physical processes that involve three on-shell and one 

off-shell particles. Two-loop calculations, which are the most challenging component 

in the evaluation of NNLO contributions to physical processes, have only recently 

become tractable due to the appearance of new calculation tools. Accuracy at NNLO 

can enhance the theoretical knowledge and understanding, as well as our predictive 

abilities in conjunction with the high precision experimental data that are expected 

from LHC. 

In the first chapter, we gave a short description of the QCD Lagrangian and 

the Feynman rules that can be derived from it. The fundamental mechanisms of 

regularization and renormalization are also explained. Finally, we presented the 

effective Higgs Lagrangian, a limit of the full theory that significantly simplifies 

calculations involving the Higgs-gluon interaction. 

Infrared divergences are discussed in the second chapter. Using the example of 

the 1{ gg decay, we explain how IR divergences appear and cancel out when 

it comes to the calculation of physical observables. In addition, a method for the 

prediction of IR divergences, initiated by Catani [11, 12], is presented and used to 

verify the results of our example calculation. In the third chapter we draw an outline 

of the basic steps involved in the calculation of two-loop QCD amplitudes. Emphasis 

is e;iv:en to the computation of two-loop integrals. 

118 



9. Conclusions 

The fourth chapter contains a detailed presentation of all the basic tools needed 

for our purposes. Four of those tools, the auxiliary integral representation, the 

integration by parts identities (IBP), the master integrals (MI) and the two dimen

sional harmonic poly logarithms ('2DHPL), can be used in order to find expansions 

in E = 2- D /2 for all possible two-loop integrals that can appear in the calculations 

presented in this thesis. 

In chapter 5, we introduce a very powerful algorithm, influenced by a paper 

from Laporta [38], that enables one to produce and solve a system of equations 

containing relationships between integrals. The solution of the system gives all 

required integrals in terms of a small basic set of master integrals (MI). A method 

for the calculation of those master integrals, due to Gehrmann and Remiddi [42,43], 

is presented in chapter 6. For each master integral it is possible to derive and solve a 

differential equation on the external scales of the problem. As a result each master 

integral can be written as an E expansion in terms of two-dimensional harmonic 

poly logarithms. 

In chapter 7, we have derived analytic formulae for the two-loop virtual correc

tions to the process "(* qijg, which arise from the interference of the two-loop 

with the tree amplitude and from the self-interference of the one-loop amplitude. 

Together with the contribution from the self-interference of the one-loop amplitudes 

for "(* ggg [89, 90], these form the full corrections to the three-parton 

subprocess contribution to e+e- 3 jets at NNLO. 

It must also be kept in mind that these virtual corrections form only part of a full 

NNLO calculation, which also has to include the one-loop corrections to 1* 4 par

tons [74-77] where one of the partons becomes collinear or soft, as well as the tree

level 1* 5 pmtons processes [71-73] with two soft or collinear partons. Only 

after summing all these contributions (and including terms from the renormaliza

tion of parton distributions for processes with partons in the initial state), do the 

infrared divergent terms cancel among one another. The factorization properties of 

both the one-loop, one-unresolved-parton contribution [95-100] and the tree-level, 

two-untesolved-parton contributions [101-104] have been studied, but a systematic 
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9. Conclusions 

procedure for isolating the infrared singularities has not been established. Although 

this is still an open and highly non-trivial issue, significant progress is anticipated 

in the near future. 

The remaining finite terms must then be combined into a numerical program 

implementing the experimental definition of jet observables and event-shape vari

ables. A first calculation involving the above features was presented for the case of 

photon-plus-one-jet final states in electron-positron annihilation in [105, 106], thus 

demonstrating the feasibility of this type of calculations. A prerequisite for such a 

numerical program is a stable and efficient next-to-leading order four-jet program, 

where the infrared singularities for the one-loop 1* --+ 4 partons are combined with 

the tree-level 1* --+ 5 parton with one parton unresolved. Four such programs cur

rently exist [107-110], each of which could be used as a starting point for a full 

O(cxn NNLO three-jet program. 

In chapter 8, we have derived analytic formulae for the helicity amplitudes of 

the NNLO virtual corrections to the Higgs decay 1-l --+ ggg, which are required for 

the interference of the two-loop with the tree amplitude and for the self-interference 

of the one-loop amplitude. The amplitudes were calculated in the infinite top

mass limit, Mt --+ oo, with use of the effective 1-lgg coupling. Together with the 

contribution from the same set of amplitudes for the decay 1-l --+ qijg, these form 

the full virtual NNLO corrections to the three-parton subprocess contribution to 

1-l--+ 3 jets at NNLO. Note that for a full NNLO calculation one must also compute 

the 'one-loopett' corrections to the 1-l --+ 4 partons and the tree-level corrections to 

the 1-l --+ 5 partons. 

Similar results can in principle be obtained for the non-inclusive Higgs production 

in hadron-hadron collisions, pp--+ 1-l +jet, where the dominant contributions come 

from the processes gg --+ g + 1-l and qg --+ q + 1-l. However, the complexity of the 

cut structure of the non-planar graphs together with the rather different domains of 

convergence of the one- and two-dimensional harmonic polylogarithms makes this a 

non-trivial task, and we defer this to a future project [120]. 

To summarize, in this- thesis we present, with more or less detail, a basic set of 
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9. Conclusions 

powerful techniques that can be used in the calculation of two-loop matrix elements 

and helicity amplitudes. We also describe how we applied those techniques in the 

calculation of the matrix elements of the process 1* --+ qqg and for the calculation of 

the helicity amplitudes for the Higgs decay 1l --+ ggg. Matrix elements and helicity 

amplitudes for the former were published in [45] and [46] respectively, while processes 

involving the Higgs with three partons at NNLO, will be examined in future work. 
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Appendix A 

Harmonic Polylogarithms up to 

weight 3 

w = 1: 

H(O; X) lnX, 

H(1; X) -ln(1- X) , 

H(1- Y; X) - ln ( 1 - ___£_) 1- y , 

H(Y;X) = ln (X; y). (A.1) 

w = 2: 

H(O, 1; X) = Li2(X) , 

H(O, 1- Y;X) Li2 ( 1 y) , 

H(O, Y;X) -Lh ( , 

H(1, 1- Y;X) ln2(1- X) -ln(1- X) ln(1- Y) + Li2 ( 
1 

- Li2(Y) , 

H(1, Y; X) (
1-X) (X+Y) ( Y ) (X+Y) - ln 1 + y ln y + Li2 1 + y - Li2 1 + y , 

H(1- Y, Y;X) (
X+ y) . . -ln(1- X- Y) ln y + L12(Y)- L12(X + Y) . 

(A.2) 
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A. Harmonic Polylogarithms up to weight 3 

and w = 3: 

H(O, 0, 1; X) = Li3(X) , 

H(O, 1, 1; X) S1,2(X) , 

H(O,O, 1- Y;X) = Li3 (
1 

y) 
H(O,O,Y;X) -Li3 

H(O, 1,1- Y; X) Li3 ( l _-;X_ y) + Lh ( l _ -:_ y) - Li3 ( l y) 
+ Li3(X)- Li3 ( 

1
-=_Yy) -In ( 1-

1 
y) Li2(Y) 

-In ( 1-
1 

y) Li2(X)- ln3(1- X- Y) + ln3(1- Y) , 

H(O,l,Y;X) = Li3 (Xll:;))- Li3 Li3 + Li3 (l:Y) 

- Li3(X) + ln (X; y) Li2 ( 
1

: y) + ln (X; y) Li2(X) 

-In Y ln(l + Y) ln (X; y) + ln(l + Y) ln2(X + Y) 

1 - 2ln(l+Y)ln2Y, 

H(O, 1- Y, 1; X) = S1,2(X)- Li3 YJ + Li3 ( 1 y) + Li3 ( 1 

- Li3(X)- Li3(Y) -ln(l- X) Lb (____!___) + ln(l- X) Li2(X) 
1- y 

. 1 
+ ln(l- X) L12(Y) + 21n(l- Y) ln2(1 -X) , 

H(O, 1- Y, 1- Y; X) = 81,2 ( l y) , 
H(O, 1- Y, Y; X) = Li3 ( (1- + Y)) - Li3 ( l y) - Li3 y) 

- Li3(X + Y) + Li3(Y) + ln (X; y) Li2(Y) 

+ ln (X ; y) Li2 ( 
1 

y) - ln( 1 - Y) ln 2 (X ; y) , 
H(o, Y, I; x) = - s1,2(X) + Li3 ( -Li3 (- - Li3 

+Li3 (
1 

y) + Li3(X) + ln(l- X)Li2 ( 

+ln(l- X)Li2 (
1 

y) -ln(l- X)Li2(X) (
1 y) ln2(1- X) 

1 3 - 6 ln (1- X) , 
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A. Harmonic Polylogarithms up to weight 3 

H(O, Y, 1- Y; X) = S1,2 ( (1- + Y)) - S1,2 ( 1 y) - S1,2 y) 
+ S1,2 (X+ Y)- S1,2(Y)- Li3 ( (1- + Y)) 

+Li3 (x y) +In cl- + Y)) (Li2(X + Y)- Li2(Y)) 

-In (X; y) Li2 ( 1 
y) + In(l- Y) In2 (X; y) 

In2(1- Y) In (X; y) + Li3 ( l y) , 
H(O, Y, Y; X) = S1,2 (- , 

H(l,l-Y,l-Y;X) = 
2 y 1- y 

(
1-X-Y) ( 1-X) - In 

1 
_ y Li2 1 - -----y-

- Li3 ( 1 - + Li3 ( 1 -
1 

, 

H(l, 1- Y, Y; X) 2S1,2(X)- 2Li3 (x: y) + Li3 ((l- + Y)) 

- Li3 ( 1 + Li3 (- + In ( y ) Li2 ( 1 y) 
+ Li3 ( y :) ) - Li3 ( - Li3 (X + Y) 

+ 2 Li3 (Y) + In (X ; y) Li2 ( 
1 

-In(l -X) Li2(Y) + 2In(l -X) Li2(X) +In X In2(1- X) 

Yin2 (
1

- X) -In Yin(l + Y) In (X+ y) 
2 l+Y Y 

In(l- X) In2(X + Y) (X+ y) In2(1 + Y) 
2 2 1- X 

+ Y)-6 6 , 
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H(1, Y, 1- Y; X) 

H(1, Y, Y;X) 

H(1-Y,1,1;X) 

( 
Y (X + Y)) ( Y ) 2 81,2 1 _X - 81,2 

1 
_X - 81,2 (X+ Y)- 81,2(Y ) 

+281,2(Y) + Li3 Li3 ( 1 y) 
+ ln(1 + Y) Li2 ( 1 

( 
1 - Y

2
) ( 1 - X) - ln( 1 + Y) Li2 (Y) + ln 

1 
_ X Li2 

1 
+ y 

2 . ( 1 ) ( 1 + y) . - ln ( 1 - Y ) L12 
1 

+ y + ln 
1 

_ X L12 (X + Y) 

( 
1 + y) . -In -- L12(Y) + ln Yln(1- X) ln(l- Y) 
1-X 

1 ( 1 + Y) (X+ Y) +-ln2(1- X) ln y + ln(1- X) ln(1 + Y) ln 
2 X+ 1-Y 

1 1 (X+ Y) - 2ln(1- X) ln2(1 + Y)- 21n2(1 + Y) ln y , 

-ln(X+Y) Li2(X+Y) 
2 1+Y Y Y 1+Y 

- Li3 ( 1 : y) + Li3 ( , 

= 
2 2 y 

-In Y Li2 ( 1 - - 81,2 ( 1 -
1 

;,. X) + 81,2 ( 1 - , 

H(1- Y, Y, Y; X) = ln(1- X- Y) ln2 (X; y) 
-In (X; y) Li2(X + Y) 

- Li3(Y) + Li3(X + Y) , 

H(Y, 1, 1; X) = ln2(1- X) ln (X+ y) 
2 1 + y 

+ln(1- X)Li2 

+Li3 (-
1 

) - Li3 1+Y 1+Y ' 

(y Y Y ) = ln(X + Y) ln2 ( 1 - X- y) H ,1- ,1- ;X 
2 1

_y 

+ ln ( 1 - X- y) Li2(1- X- Y) 
1- y 

+ Li3(1- Y)- Lis(1- X- Y) . (A.3) 
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Appendix B 

Application of the Laporta 

Algorithm 

We want to calculate the integral J ( 1, 1, 1, 0). The input to the algorithm is: 

INPUT: 

We also find: 

[DenSet = [A1 , A2 , A3] 

MaxDen = 0 

MaxNum= 0 

SolutionS et= {}] 

N k = 2 and N d = 3 The non-trivial topologies are: 

Next we start the loop on n 

(B.1) 

(B.2) 

1. n = 2 From the SetOf Alllntegrals eq (B.2) we take all the integrals with 

n = 2 and put them in a new set. Thus we get: 

SetWithnDen = {[A1 , A3]} (B.3) 

The following steps should be performed for all the indets of SetWithnDen. 

In this example there is only one topology: 

Topo = {[A1 , A3]} 
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B. Application of the Laporta Algorithm 

Now we start the loops on Md (from 0 to MaxDen) and Mp (from 0 to 

MaxNum). In our case, both Maxed and MaxNum are set to be zero in 

the INPUT (B.1). Therefore we only have to take Md = 0 and Mp = 0. 

For our topology (Topo) we need to take all possible combinations, written 

in the auxiliary integral form, in which the sum of the powers of the n = 2 

denominators is M d + n = 2 and the sum of the powers of numerators is 

M p = 0. All combinations are put in a set: 

SetO JOneTopo = { 1 (1, 0, 1, 0)} (B.5) 

The following steps would be applied to all the indets of SetO JOneTopo. Once 

more in our simple example we have only one indet: 

Seed= { 1 (1, 0, 1, 0)} 

First we generate the four IBP relations for our Seed: 

SeediBPSet = {0 

0 

(D- 3) 1 (1, 0, 1, 0) + 8121 (1, 0, 2, 0) 

(D- 2) 1(1,0, 1,0)- 1(1, -1,2,0) 

-1 (2, -1, 1, 0) 

0 (D-3)1(1,0,1,0)+8121(2,0,1,0) 

0 (D-2)1(1,0,1,0)-1(1,0,2,-1) 

-1 (2, 0, 1, -1) + 81231 (2, 0, 1, 0)} 

Next we start a loop on the above IBP equations. 

(B.6) 

(B.7) 

(a) 1st IBP identity We take the first of the four equations of the S eedl BP Set 

eq. (B.7) and substitute all the equations of the SolutionSet in it. We 

then solve for the integral of the maximum priority getting: 

Equat: 
(d- 3) 

1(1,0,2,0) =- 1(1,0, 1,0) 
812 

(B.8) 
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B. Application of the Laporta Algorithm 

If eq. (B.8) is linearly independent from all the equations in the SolutionS et, 

we "back-substitute" Equat in the SolutionSet and then put it in the 

SolutionS et: 

(D- 3) 
SolutionSet = {1(1,0,2,0) =- 1(1,0,1,0)} 

812 

(B.9) 

(b) 2nd IBP identity We take second of the four equations of the S eedl BP Set 

eq. (B.7) and substitute all the equations of the SolutionSet in it. We 

then solve for the integral of the maximum priority getting: 

Equat: J (1, -1, 2, 0) = J (1, 0, 1, 0) D- 2J (1, 0, 1, 0) 

-1(2,-1,1,0) 

(B.10) 

Since eq. (B.10) is linearly independent from all the equations in the 

SolutionSet, we "back-substitute" Equat in the SolutionSet and then 

put it in the SolutionSet: 

SolutionSet = 
(D- 3) 

{1(1,0,2,0)=- J(1,0,1,0), 
812 

J (1, -1, 2, 0) = -J (2, -1, 1, 0) + (D- 2)J (1, 0, 1, 0)} 

(B.ll) 

(c) 3rd ... 4th IBP identities Working similarly for the third and forth IBP 

128 



B. Application of the Laporta Algorithm 

equations of eq. (B. 7) we get the following SolutionS et: 

SolutionSet = 
(D- 3) 

{1(1,0,2,0)=- 1(1,0,1,0), 
312 

1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (D- 2)1 (1, 0, 1, 0), 
(D- 3) 

1(2,0,1,0)=- 1(1,0,1,0), 
S12 

1 (1 0 2 _ 1) = _ ( -s12D + 2s12 + s123D- 3slz3) 1 (1 0 1 O) 
' ' ' ' ' ' sl2 

-1(2,0,1,-1)} 

(B.12) 

2. n = 3 From the SetO fAll! ntegrals eq. (B.2) we take all the integrals with 

n = 3 and put them in a new set. Thus we get: 

(B.13) 

There is only one topology in the SetWithnDen: 

(B.14) 

Now we start the loops on Md (from 0 to MaxDen) and Mp (from 0 to 

MaxNum). As we have already shown, we only have to take Md = 0 and 

Mp = 0. For the Topo = {[A1 , A 2 , A3]}, all possible combinations, written 

in the auxiliary integral form, in which the sum of the powers of the n = 3 

denominators is NI d + n = 3 and the sum of the powers of numerators is 

Mp = 0 are: 

SetO fOneTopo = { 1 (1, 1, 1, 0)} (B.15) 

The following steps would be applied to all the indets of SetO fOneTopo. Once 

more in our simple example the SetO JOneTopo has only one indet: 

Seed = { 1 ( 1 , 1, 1 , 0)} (B.16) 
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B. Application of the Laporta Algorithm 

Initially we generate the four IBP relations for our Seed: 

SeediBPSet = {0 

0 

(D- 4)1 (1, 1, 1, 0) + 8 121 (1, 1, 2, 0) 

(D- 4)1 (1, 1, 1, 0) - 1 (1, 0, 2, 0) 

-1 (2, 0, 1, 0) 

0 (D- 4)1 (1, 1, 1, 0) + 8121 (2, 1, 1, 0) 

0 (D- 3)1 (1, 1, 1, 0)- 1 (1, 1, 2, -1) 

+81231 (2, 1, 1, 0) + 8231 (1, 2, 1, 0) 

-1 (1, 2, 1, -1)- 1 (2, 1, 1, -1)} 

Next we start a loop on the above IBP equations eq. (B.17) 

(B.17) 

(a) 1st IBP identity We take the first of the four equations of the S eedl BP Set 

eq. (B.17) and substitute all the equations of the SolutionSet in it. We 

then solve for the integral of the maximum priority getting: 

Equat: 
(D- 4) 

1 (1, 1, 2, 0) = - 1 (1, 1, 1, 0) 
812 

(B.18) 

If eq. (B.18) is linearly independent from all the equations in the SolutionS et, 

we "back-substitute" Equat in the SolutionSet and then put it in the 

SolutionS et: 

SolutionSet = 

(D- 3) 
{1(1,0,2,0) =- 1(1,0,1,0), 

812 
1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (D- 2)1 (1, 0, 1, 0), 

(D- 3) 
1 (2, 0, 1, 0) = - 1 (1, 0, 1, 0)' 

812 

1 (1 0 2 _ 1) = _ ( -812D + 2812 + 8123D - 38123) 1 (1 0 1 O) 
' ' ' ' ' ' 812 

-1 (2,0, 1, -1), 
(D- 4) 

1(1,1,2,0) =- 1(1,1,1,0)} 
812 

(B.19) 
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B. Application of the Laporta Algorithm 

(b) 2nd IBP identity We take the second of the four equations of the 

Seed! BP Set eq. (B.17) and substitute all the equations of the SolutionS et 

in it. We then solve for the integral of the maximum priority getting: 

Equat: 
(D- 3) 

1 (1, 1, 1, 0) = -2 
812

(D _ 
4

) 1 (1, 0, 1, 0) 

(B.20) 

Since eq. (B.20) is linearly independent from all the equations in the 

SolutionSet, we "back-substitute" Equat in the SolutionSet and then 

put it in the SolutionSet: 

SolutionSet = 
(D- 3) 

1 (1, 1, 2, 0) = 2 2 1 (1, 0, 1, 0), 
8 12 
(D- 3) 

1(1,1,1,0)=-2 ( )1(1,0,1,0), 
812 D- 4 

(D- 3) 
1(1,0,2,0)=- 1(1,0,1,0), 

812 
1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (D- 2)1 (1, 0, 1, 0), 

(D- 3) 
1(2,0,1,0)=- 1(1,0,1,0), 

812 

1 (1 0 2 _ 1) = _ (-812D + 2812 + 8123D- 38123) 1 (1 0 1 O) 
' ' ' ' ' ' 812 

-1 (2, 0, 1, -1)} (B.21) 

(c) 3rd ... 4th IBP identities Working similarly for the third and forth IBP 
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B. Application of the Laporta Algorithm 

equations of eq. (B.17) we get the following SolutionSet: 

SolutionSet = 
(D- 3) 

{1(1,1,2,0)=2 2 1(1,0,1,0), 
8 12 
(D- 3) 

1 (1, 1, 1, 0) = -2 (D ) 1 (1, 0, 1, 0), 
s12 -4 

(D- 3) 
1 (2, 1, 1, 0) = 2 2 1 (1, 0, 1, 0)' 

8 12 
(D- 3) 

1(1,0,2,0)=- 1(1,0,1,0), 
s12 

1 (1, -1, 2, 0) = -1 (2, -1, 1, 0) + (D- 2)1 (1, 0, 1, 0), 
(D- 3) 

1(2,0,1,0)=- 1(1,0,1,0), 
s12 

1 (1 0 2 _ 1) = _ ( -s12D + 2s12 + s123D - 3sl23) 1 (1 0 1 O) 
' ' ' ' ' ' s12 

-1 (2, 0, 1, -1)' 

1 (1 1 2 _ 1) = +2 (D- 3)( -s12D + s123D- 4s123 + 3si2) 1 (1 0 1 O) 
' ' ' si2(D- 4) ' ' ' 

-1 (1, 2, 1, -1)- 1 (2, 1, 1, -1) 

+s231 (1, 2, 1, 0)} (B.22) 

At this point all the recursive loops terminate and our output is what is left in the 

SolutionSet. Therefore: 

OUT PUT = SolutionS et (B.23) 

The second equation of the SolutionSet eq (5.13) is the one that gives as the integral 

(1 (1, 1, 1, 0)) we wanted to express in terms of other simpler integrals, in this case 

a two propagator bubble diagram (1 (1, 0, 1, 0)): 

1(1,1,1,0) 
(D- 3) 

-2 si2(D- 4) 1 (1, 0, 1, 0)' 

_
2 

(D-3) 
sl2(D-4) 

(B.24) 
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Appendix C 

Two and Three Body Phase-Space 

The phase-space in D-dimensions for r particles can be written as: 

PSD = (27r)D-r(D-1) RD 
r r ' 

(C.1) 

where: 

(C.2) 

Two-Body Phase-Space 

Applying the above formulas for the case of two final state particles we get the 

two-body phase-space: 

PS!j 1 r ( 1 - E) ( 471" ) € J 
S7r f(2 _ 2E) M 2 dy12o(y12- 1), (C.3) 

with Yij defined as: 

(C.4) 

Three-Body Phase-Space 

Similarly when the three-body phase-space reads: 

PSf = 

(C.5) 

133 



Appendix D 

Spinor Helicity 

Tree-level and loop QCD amplitudes can be decomposed to partial helicity ampli

tudes using the spinor helicity formalism [121,122]. Each amplitude can be expressed 

in terms of spinors in a Weyl basis. This is achieved by introducing a set of kine

matic objects, spinor products, which reflect the amplitude's collinear behavior. For 

a massless particle of momentum k and helicity).. = ±1 one can write: 

1 1 
I k±) = 2(1 ± 15 )u(k) = 

2
(1 =F 15 )v(k), 

1 1 
(k± I= u(k) 2(1 =F Is)= v(k) 2(1 ±Is). 

(D.1) 

(D.2) 

The second equality of equations (D.1) and (D.2) is valid because positive and neg

ative energy solutions of the massless Dirac equation can be chosen to be equal to 

each other. The above spinors can be used to represent polarization vectors for mass

less vector bosons. Therefore, the polarization vector of a gluon with momentum k 

reads: 

E±(k· ) - (q± I I k±) 
, q - I k±) , (D.3) 

where q is a reference momentum that satisfies q2 = 0 and q · k =I 0, which drops 

out in final gauge invariant amplitudes. Each helicity amplitude can be expressed 

in terms of the following spinor inner products: 

(k- ll+) = (kl)' 

(k+ ll-) [kl] ' 
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D. Spinor Helicity 

where [kl] was defined through the identity: 

(kl) [lk] = 2k · l = Skt . (D.5) 

Significant simplifications in the final results can be achieved with use of spinor 

identities: 

• antisymmetry: 

• the Gordon identity: 

• the Fierz rearrangement: 

(kl) = -(lk)' 

[kl] = - [lk] ' 

(kk) = [kk] = 0' 

• the charge conjugation of current: 

• and the Schouten identity: 

(kl) (mn) = (km) (ln) + (kn) (lm) 

(D.6) 

(D.7) 

(D.8) 

(D.9) 

(D.lO) 

In this thesis we are interested in the helicity amplitudes of the 1{ ---t ggg decay, 

in which all particles except the Higgs boson are on-shell. The above set of identities 

are sufficient for this purpose. In [123] one can find a more detailed presentation of 

the spinor-product formalism. 
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Appendix E 

The r* ---+ qqg NNLO Matrix 

Element coefficients 

In this appendix we give the coefficients fi (y, z) and h (y, z) of equation 7. 28 and 

coefficients A20 (y, z), B20 (y, z), ... , G 20 (y, z) of equation 7.31: 

JI(y,z) = 

y
1
z ( ( -3 + E + 2E2)Bub(sl23) + (- + 12- 8E) Bub(ys123)) 

+; ( (- + 8- 10E + 3E2 + E3) Bub(zs123) + ( -3 + 4E + E2 - 2E3)Bub(sl23) 

+ ( - + 8 - lOE + 4E2) Bub(ys123)) 

( ( 12 + 9E- E2) Bub(zs123) + (6- 2E- 4E2)Bub(sl23) 

+ ( 12 + 8E) Bub(ys123)) 

+ (
1
! z)2 (1- E) ( Bub(zs123)- Bub(s123)) 

+ (
1 

z) ( (3- 5E + 2E3)Bub(zsl23) + ( -3 + 4E + E2 - 2E3)Bub(s123)) 

+ (
1 

z) (4- 3E- 3E2 - 2E3) (Bub(s123)- Bub(zs123)) 

+(4- 9E + 6E2 - E3)Bub(zs123) 

6 ( 1 y2 2 +s123Box (ys123, ZS123, 8123)(1- 2E) -8( -1 +E)+-( -2 + 4E- 2E ) 
z z 

+1{(6- 8E + 2E2) + z( -2 + 2E- 8E2) + (4- 3E + 3E2) + E)) , (E.1) 
z yz 
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h(y, z) = 

y
1
z ((3- E- 2E2)Bub(s123) + 6 + 4E)Bub((1- y- z)s123)) 

+; (- E2(1- E)Bub(zs123) + (3- 4E- E2 + 2E3)Bub(sl23) 

8 + 10E- 4E2)Bub((1- y- z)s123)) 

( E(1- E)Bub(zs123) + ( -6 + 2E + 4E2)Bub(sl23) 

+(- + 12- 8E)Bub((1- y- z)s123)) 

+ (y: z)22( Bub((1- y- z)s123)- Bub(s123)) 

+ (y: z) 2E ( Bub(s123)- 2Bub((1- y- z)s123)) 

+ (
1
! z) 2 (1- E) ( Bub(s123)- Bub(zs123)) 

+ (
1 

z) ( (3- 4E- E2 + 2E3)Bub(sl23) + ( -3 + 5E- 2E3)Bub(zst23)) 

+ (
1 

z) (2 + E- 5E2 - 2E3) ( Bub(zs123) - Bub(s123)) 

+(2- 7E + 2E2 + 3E3)Bub(zsl23) + ( -4 + 10E- 4E2)Bub((1- y- z)s123) 

6 ( (1- y) +s123Box ((1- y- z)s123, ZS123 1 8123)(1- 2E) (8- 4E)- Z 4(1- E) 

+(y + z)(-4+ 4E- 6E2 - 2E3) + (-2 + 4E- 2E2)). (E.2) 

The above expressions are written in terms of the one-loop MI's Bub and Box6
. 

Expansions in E for both MI's can be found in the appendix of [45]. 
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A2o(y, z) = 

__::_ [21r2 +61r2H(O; z) -121r2H(1; y) -72(3+8H(O; z) -36H(O; z)H(1, 0; y) -36H(O, 1, 0; z) 
12y 

1 
+39H(1, 0; z) +39H(1, 0; y) +72H(1, 1, 0; y)J + ( ) [17H(1, 0; z)+ 17H(1, 0; y)J 

2y y+z 
1 

+::-::--- [ -121r2
- 247r2H(O; z) +487r2H(1; y) + 288(3 +457- 84H(O; z)- 36H(O; z )H(O; y) 

36y 

+144H(O; z)H(1, 0; y)+ 144H(O, 1, 0; z) -306H(1, 0; z) -192H(O; y)- 234H(1, 0; y) 

-288H(l, 1, 0; y)J + ( z )
2 

[ -1r2 +61r2H(O; z)+61r2H(1; z) -61r2H(2; y)+187r2H(O; y) 
36 1-y 

-127r2H(1; y) +36(3 -36H(O; z)H(2, 0; y) +60H(O; z)H(O; y) 

+72H(O; z)H(O, 0; y) +36H(O, 1, 0; z) -36H(1, 0; z)H(2; y) +36H(1, 0; z)H(O; y) 

+36H(1, 1, 0; z)+36H(2, 1, 0; y) -355H(O; y)+270H(O, 0; y) -108H(O, 1, 0; y)+6H(1, 0; y) 

-72H(1, 0, 0; y)+72H(1, 1, 0; y)J + ( z ) [ -337r2+187r2H(O; z)+187r2H(1; z) 
36 1-y 

-187r2H(2; y)+547r2H(O; y) -367r2H(1; y) + l08(3 -277 +60H(O; z) -108H(O; z)H(2, 0; y) 

+216H(O; z)H(O; y)+216H(O; z)H(O, 0; y)+108H(O, 1, 0; z)+36H(1, 0; z) 

+108H(1, 0; z)H(O; y)+ 108H(1, 1, 0; z)+ 108H(2, 1, 0; y) -615H(O; y)+594H(O, 0; y) 

-324H(O, 1, 0; y) + 198H(1, 0; y)- 216H(1, 0, 0; y) +216H(1, 1, 0; y) -108H(1, 0; z)H(2; y)J 

z 117r2 117r2 
( )3 [-H(1; z) --H(2; y) -33H(O; z)H(2, 0; y)-33H(O, 1, 0; z) -33H(1, 0; z) 
y+z 2 2 

-33H(1, 0; z)H(2; y) +33H(1, 0; z)H(O; y)+33H(1, 1, 0; z) +33H(2, 1, 0; y) 

z 2 221!"2 

+33H(0,1,0;y)-33H(1,0;y)J+ ( )2 [-117r --H(1;z) 
2 y+z 3 

2211"2 
y)+33H(O; z)+44H(O; z)H(2, 0; y)-66H(O; z)H(O; y)+44H(O, 1, 0; z) 

-22H(1, 0; z) +44H(1, 0; z)H(2; y) -44H(1, 0; z)H(O; y) -44H(1, 1, 0; z) -44H(2, 1, 0; y) 

z 117r2 
-33H(O; y) -44H(O, 1, 0; y)+110H(1, 0; y)J + ( ) [--llH(O; z)+llH(O; z)H(O; y) 

2 y+z 6 

z2 ll7r2 1111"2 
+11H(1, 0; z)+llH(O; y)-11H(1, 0; y)J + ( )4 [- -H(1; z)+-H(2; y) 

y+z 2 2 

+33H(O; z)H(2, 0; y)+33H(O, 1, 0; z)+33H(1, 0; z)H(2; y) -33H(1, 0; z)H(O; y) 

-33H(1, 1, 0; z) -33H(2, 1, 0; y) -33H(O, 1, 0; y)J 

z2 [ 117r2 ll7r2 H( . ) - 117r2 H( . ) 
(y+z)3 2 + 3 1,z 3 2,y 

-221f(O; z)H(2, 0; y)+33HJO; z)H(O; y)-22H(O, 1, 0; z)+33H(1, 0; z)-22H(1, 0; z)H(2; y) 

+22H(1, 0; z)H(O; y)+22H(1, 1, 0; z)+22H(2, 1, 0; y)+22H(O, 1, 0; y)-33H(1, 0; y)J 
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z2 1l7r2 

I ( )2 [---11H(O;z)H(O;y)-11H(1,0;z)+11H(1,0;y)J 
2 y+z 6 

1 
( ) [ + 237r2 -121r2H(O; z) -127r2H(1; z) + 127r2H(2; y) 

18 1-y 

-367r2H(O; y) +247r2H(1; y) -72(3+72H(1, 0; z)H(2; y) +216H(O, 1, 0; y) 

-120H(O; z)H(O; y) -144H(O; z)H(O, 0; y) -72H(O, 1, 0; z) -18H(1, 0; z) 

-72H(1, 0; z)H(O; y) -72H(1, 1, 0; z) -72H(2, 1, 0; y) +515H(O; y) -432H(O, 0; y) 

-138H(1, 0; y)+ 144H(1, 0, 0; y) -144H(1, 1, 0; y)+72H(O; z)H(2, 0; y)] 

1 77r2 77r2 
( )2 [- -H(1; z)+-H(2; y)-14H(1, 1, 0; z) 
y+z 3 3 

+14H(O; z)H(2, 0; y)+ 14H(O, 1, 0; z)+ 14H(1, 0; z)H(2; y) -14H(1, 0; z)H(O; y) 

1 287r2 147r2 147r2 
-14H(2, 1,0;y)-14H(O, 1,0; y)J + ( ) [-+-H(1; z)--H(2; y)-22 

4 y+z 3 3 3 

+llH(O; z) -28H(O; z)H(2, 0; y) +56H(O; z)H(O; y)- 28H(O, 1, 0; z) +56H(1, 0; z) 

-28H(1, 0; z)H(2; y)+28H(1, 0; z)H(O; y)+28H(1, 1, 0; z)+28H(2, 1, 0; y)+llH(O; y) 
T7r2 

+28H(O, 1, 0; y) -56H(1, 0; y)] + 
216 

[ -1045+ 147H(O; z)+36H(O; z)H(2; y) 

-36H(O; z)H(1; y)+72H(O, 1; z)+54H(1; z)+72H(1; z)H(2; y) -72H(1; z)H(3; y) 

-36H(1; z)H(1; y)+72H(1, 0; z)+36H(1, 1; z) -186H(2; y)+36H(2, 0; y) -72H(2, 1; y) 

+72H(3, 2; y) -72H(O, 2; y)+ 147H(O; y) -72H(O, 1; y)+36H(1, 2; y)+ 132H(1; y) 

-108H(1, 0; y)+72H(1, 1; y)+108H(O; z)H(O; y)] 
T 99931 1327r4 

1
216 

[ z)+1080(3H(1; z) 

-864(3H(2; y)- 216(3H(O; y)- 216(3H(1; y) +304H(O; z) -1116H(O; z)H(2, 0; y) 

-216H(O; z)H(2, 1, 0; y) +432H(O; z)H(3, 2, 0; y) -432H(O; z)H(O, 2, 0; y) 

-144H(O; z)H(O; y) + 1512H(O; z)H(O, 0; y) -216H(O; z)H(O, 1, 0; y) 

-36H(O; z)H(1, 0; y) -432H(O; z)H(1, 0, 0; y)+ 1920H(O, 0; z) + 1512H(O, 0; z)H(O; y) 

+432H(O, 0; z)H(O, 0; y) +864H(O, 0, 1, 0; z)+ 1008H(O, 1, 0; z) -216H(O, 1, 0; z)H(2; y) 

+432H(O, 1, 0; z)H(3; y) +216H(O, 1, 0; z)H(O; y)- 216H(O, 1, 0; z)H(1; y) 

-1095H(1, 0; z) -1116H(1, 0; z)H(2; y)+216H(1, 0; z)H(2, 0; y) +432H(1, 0; z)H(3, 2; y) 
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+216H(O; z)H(1, 2, 0; y)+432H(O, 1, 1, 0; z)+432H(1, 0, 0; z)H(O; y) 

-432H(1, 0; z)H(3, 0; y) -432H(1, 0; z)H(O, 2; y) + 1152H(1, 0; z)H(O; y) 

+216H(1, 0; z)H(1, 2; y)- 216H(1, 0; z)H(1, 0; y)+ 1512H(1, 0, 0; z) 

-t864H(l, 0, 1, 0; z) +324H(1, 1, 0; z) +432H(1, 1, 0; z)H(2; y) -432H(1, 1, 0; z)H(3; y) 

-216H(1, 1, 0; z)H(1; y)+432H(1, 1, 0, 0; z)+216H(1, 1, 1, 0; z)+216H(2, 0, 1, 0; y) 

+1116H(2, 1, 0; y)+432H(2, 1, 1, 0; y)-432H(3, 2, 1, 0; y)-432H(3, 0, 1, 0; y) 

+432H(O, 2, 1, 0; y) +304H(O; y)+ 1920H(O, 0; y) -432H(O, 0, 1, 0; y) -1008H(O, 1, 0; y) 

+432H(O, 1, 1, 0; y) -216H(1, 2, 1, 0; y)+ 1095H(1, 0; y) -1512H(1, 0, 0; y) 

-792H(1, 1, 0; y)+432H(1, 1, 0, 0; y) -432H(1, 1, 1, 0; y)+648H(1, 0, 1, 0; y)] 

1 77r2 

[ - 3 +1-14H(O; z)H(O; y) 

-14H(1, 0; z)+ 14H(1, 0; y)] , (E.3) 

B2o(y, z) = 
z z2 

2 [ -3H(O; z)H(2; y) -3H(1; z)H(3; y)+3H(3, 2; y)] + 2 [H(O; z)H(2; y) 
y y 

1 
+H(1; z)H(3; y)- H(3, 2; y)] + 2 [2H(O; z)H(2; y)+2H(1; z)H(3; y)- 2H(3, 2; y)J 

y 

Z7r2 
+:-::--- [3H(O; z) -24H(O; z)H(2; y)+21H(1; z) -12H(1; z)H(2; y)+ 12H(2, 2; y) 

18y 
z 

+H(2; y) + 12H(2, 1; y)+6H(O, 2; y)+36H(1; y)] +- [ -27(3-90(3H(2; y) 
9y 

-36H(O; z)-84H(O; z)H(2, 2; y)+18H(O; z)H(2, 2, 0; y) 

+18H(O; z)H(2, 3, 2; y) + 152H(O; z)H(2; y)- 57H(O; z)H(2, 0; y) 

-t-36H(O; z)H(3, 2, 2; y)+78H(O; z)H(3, 2; y) -18H(O; z)H(3, 0, 2; y) 

-18H(O; z)H(O, 2, 2; y) -3H(O; z)H(O, 2; y)+36H(O; z)H(O, 2, 0; y) 

+18H(O; z)H(O, 3, 2; y)+54H(O; z)H(1, 0; y) -18H(O, 0; z)H(2, 2; y) 

-36H(O, 0; z)H(2; y) -18H(O, 0; z)H(2, 0; y) -18H(O, 0; z)H(O, 2; y) 

-9H(O, 0, 1; z) +54H(O, 0, 1; z)H(2; y) -72H(O, 0, 1; z)H(3; y) -9H(O, 1; z) 

+54H(O, 1; z)H(2, 3; y)+9H(O, 1; z)H(2; y) -18H(O, 1; z)H(2, 0; y) 

-108H(O, 1; z)H(3, 3; y)+6H(O, 1; z)H(3; y)+18H(O, 1; z)H(3, 0; y) 

-36H(O, 1; z)H(O, 3; y) +9H(O, 1, 0; z) -36H(O, 1, 0; z)H(2; y) 

+18H(O, 1, 0; z)H(3; y) + 18H(O, 1; z)H(O, 2; y) 
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+72H(1; z)H(2, 3, 3; y) -75H(1; z)H(2, 3; y) -18H(1; z)H(2, 3, 0; y) 

-18H(1; z)H(2, 0, 3; y)+36H(1; z)H(3, 2, 3; y) -84H(1; z)H(3, 2; y) 

+36H(1; z)H(3, 3, 2; y) -108H(1; z)H(3, 3, 3; y)+84H(1; z)H(3, 3; y) 

+36H(1; z)H(3, 3, 0; y) + 143H(1; z)H(3; y) +24H(1; z)H(3, 0; y) -18H(1; z)H(O, 3, 2; y) 

-18H(1; z)H(O, 3, 3; y) -3H(1; z)H(O, 3; y)+36H(1; z)H(O, 3, 0; y)+9H(1; z)H(O; y) 

+27H(1; z)H(1, 0; y)+36H(1, 0; z)H(2, 2; y) -18H(1, 0; z)H(2, 3; y) 

-t-57H(1, 0; z)H(2; y) -18H(1, 0; z)H(2, 0; y) -18H(1, 0; z)H(3, 2; y) 

-78H(1, 0; z)H(3; y)+36H(1, 0; z)H(O, 2; y)-18H(1, 0; z)H(O, 3; y)-18H(1, 0, 0; z)H(2; y) 

-36H(1, 0, 1; z) -18H(1, 0, 1; z)H(2; y) -36H(1, 1; z)H(3, 3; y)+84H(1, 1; z)H(3; y) 

+18H(1, 1; z)H(O, 3; y) -18H(1, 1, 0; z) -54H(1, 1, 0; z)H(2; y)+ 18H(1, 1, 0; z)H(3; y) 

-18H(2, 2, 1, 0; y)+75H(2, 3, 2; y)+18H(2, 3, 2, 0; y) 

-72H(2, 3, 3, 2; y) + 18H(2, 3, 0, 2; y) + 18H(2, 0, 3, 2; y)- 9H(2, 0; y) 

+18H(2, 0, 1, 0; y)+54H(2, 1, 0; y)-36H(2, 1, 1, 0; y)+84H(3, 2, 2; y) 

-36H(3, 2, 3, 2; y) -143H(3, 2; y)- 24H(3, 2, 0; y)+ 18H(3, 2, 1, 0; y) 

-36H(3, 3, 2, 2; y) -84H(3, 3, 2; y) -36H(3, 3, 2, 0; y) 

+108H(3, 3, 3, 2; y) -36H(3, 3, 0, 2; y) -24H(3, 0, 2; y) + 18H(3, 0, 1, 0; y) 

-9H(O, 2; y) + 18H(O, 3, 2, 2; y)+3H(O, 3, 2; y) -36H(O, 3, 2, 0; y) 

+18H(O, 3, 3, 2; y) -36H(O, 3, 0, 2; y)+27H(O, 1, 0; y)- 27H(1, 2, 0; y) 
z2 

-27H(1, 0, 2; y) +9H(1, 0; y) -108H(1, 1, 0; y)J +- [2H(O; z)H(2; y) +2H(1; z)H(3; y) 
y 

1 
-2H(3, 2; y)J + ( ) [2H(O; z)H(2; y)+6H(O; z)H(3, 2; y) -6H(O; z)H(O, 2; y) 

y y+z 

-2H(O, 1; z)-6H(O, 1; z)H(3; y)+6H(1; z)H(3, 0; y) -6H(1; z)H(O, 3; y)+2H(1; z)H(O; y) 

+6H(1, 0; z)H(2; y) -6H(1, 0; z)H(3; y) -6H(1, 1, 0; z)- 2H(2, 0; y)+6H(2, 1, 0; y) 

-6H(3, 2, 0; y) -6H(3, 0, 2; y)- 2H(O, 2; y) +6H(O, 3, 2; y)+6H(O, 1, 0; y) 
1f2 

+2H(1, 0; y) J +- [ -3+3H(O; z) +24H(O; z)H(2; y) -15H(1; z)+ 12H(1; z)H(2; y) 
9y 

1 45 
-12H(2, 2; y) -7H(2; y) -12H(2, 1; y) -6H(O, 2; y) -24H(1; y)J +- [ -H(1; z) 

9y 2 
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45 
-2H(2; y) -54(3+180(3H(2; y)+ 139+57H(O; z)+132H(O; z)H(2, 2; y) 

-36H(O; z)H(2, 2, 0; y) -36H(O; z)H(2, 3, 2; y)- 250H(O; z)H(2; y) 

+96H(O; z)H(2, 0; y) -72H(O; z)H(3, 2, 2; y)- 210H(O; z)H(3, 2; y) 

+36H(O; z)H(3, 0, 2; y)+36H(O; z)H(O, 2, 2; y)+96H(O; z)H(O, 2; y) 

-72H(O; z)H(O, 2, 0; y) -36H(O; z)H(O, 3, 2; y) -72H(O; z)H(1, 0; y) 

+36H(O, 0; z)H(2, 2; y)+ 144H(O, 0; z)H(2; y)+36H(O, 0; z)H(2, 0; y) 

+36H(O, 0; z)H(O, 2; y) -108H(O, 0, 1; z)H(2; y) + 144H(O, 0, 1; z)H(3; y) 

-9H(O; z)H(O; y)+72H(O, 1, 0; z)H(2; y) 

-18H(O, 0, 1; z)+36H(O, 1; z)+72H(O, 1; z)H(O, 3; y) 

-108H(O, 1; z)H(2, 3; y)+36H(O, 1; z)H(2, 0; y)+216H(O, 1; z)H(3, 3; y) 

+42H(O, 1; z)H(3; y) -36H(O, 1; z)H(3, 0; y) -36H(O, 1; z)H(O, 2; y) 

+18H(O, 1, 0; z) -36H(O, 1, 0; z)H(3; y) -144H(1; z)H(2, 3, 3; y) 

+132H(1; z)H(2, 3; y)+36H(1; z)H(2, 3, 0; y)+36H(1; z)H(2, 0, 3; y) 

-72H(1; z)H(3, 2, 3; y)+ 132H(1; z)H(3, 2; y) -72H(1; z)H(3, 3, 2; y) 

+216H(1; z)H(3, 3, 3; y) -168H(1; z)H(3, 3; y) -72H(1; z)H(3, 3, 0; y) 

-214H(1; z)H(3; y) -30H(1; z)H(3, 0; y)+36H(1; z)H(O, 3, 2; y) 

+96H(1; z)H(O, 3; y) -72H(1; z)H(O, 3, 0; y) -27H(1; z)H(O; y) -18H(1, 0; z) 

-18H(1; z)H(1, 0; y)+36H(1; z)H(O, 3, 3; y) 

-72H(1, 0; z)H(2, 2; y)+36H(1, 0; z)H(2, 3; y)-168H(1, 0; z)H(2; y) 

+36H(1, 0; z)H(2, 0; y)+36H(1, 0; z)H(3, 2; y)+210H(1, 0; z)H(3; y) 

-72H(1, 0; z)H(O, 2; y)+36H(1, 0; z)H(O, 3; y)+36H(1, 0, 0; z)H(2; y) 

-36H(1, 1; z)H(O, 3; y)+36H(1, 0, 1; z)+72H(1, 1, 0; z) 

+36H(1, 0, 1; z)H(2; y) + 72H(1, 1; z)H(3, 3; y) -132H(1, 1; z)H(3; y) 

+108H(1, 1, 0; z)H(2; y) -36H(1, 1, 0; z)H(3; y) +36H(2, 2, 1, 0; y) 

-132H(2, 3, 2; y) -36H(2, 3, 2, 0; y)+ 144H(2, 3, 3, 2; y) 

-36H(2, 3, 0, 2; y) -36H(2, 0, 3, 2; y)+27H(2, 0; y) -36H(2, 0, 1, 0; y) 

-108H(2, 1, 0; y) + 72H(2, 1, 1, 0; y) -132H(3, 2, 2; y) +72H(3, 2, 3, 2; y) 

+214H(3, 2; y) +30H(3, 2, 0; y) -36H(3, 2, 1, 0; y) + 72H(3, 3, 2, 2; y) 

+168H(3, 3, 2; y) + 72H(3, 3, 2, 0; y)- 216H(3, 3, 3, 2; y) 
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+72H(3, 3, 0, 2; y) +30H(3, 0, 2; y) -36H(3, 0, 1, 0; y)+27H(O, 2; y) 

-36H(O, 3, 2, 2; y) -96H(O, 3, 2; y) +72H(O, 3, 2, 0; y) -36H(O, 3, 3, 2; y) 

+72H(O, 3, 0, 2; y) -48H(O; y) -54H(O, 1, 0; y) + 18H(1, 2, 0; y)+ 18H(1, 0, 2; y) 

-18H(1,0;y)+144H(1,1,0;y)]+ ( z )2 [-111r2 

9 1-y 

--
2
-H(O; z)- -

2
-H(1; z)+-

2
-H(2; y) 

81
H(1;z)H(O;y)-

81
H(2,0;y)-

81
H(0,2;y) 

2 2 2 

+9H(O; z)H(2, 0; y) -72H(O; z)H(O, 2; y)+ 12H(O; z)H(O; y) -9H(O; z)H(O, 0; y) 

-81H(1; z)H(2, 3; y)+81H(O, 0, 1; z) -36H(1, 0; z) 

+36H(O, 1; z) -81H(O, 1; z)H(2; y) -9H(O, 1; z)H(O; y) -81H(O, 1, 0; z) 

+36H(1; z)H(3; y) -81H(1; z)H(O, 3; y) +27H(1; z)H(O, 0; y)+81H(1, 0; z)H(2; y) 

-9H(1, 0; z)H(O; y)+81H(1, 0, 1; z) -81H(1, 1, 0; z) +81H(2, 3, 2; y)- 27H(2, 0, 0; y) 

-36H(3, 2; y) -27H(O, 2, 0; y)+81H(O, 3, 2; y)+37H(O; y) -27H(O, 0, 2; y) 

--45H(O, 0; y)+45H(O, 1, 0; y) +30H(1, 0; y) +36H(1, 0, 0; y) -36H(1, 1, 0; y)] 

( z ) [ z) z) y) y) 
18 1-y 

+54(3+62-54H(O; z)H(O, 0; y)+54H(O, 0, 1; z) 

+60H(O; z) -144H(O; z)H(2; y)+54H(O; z)H(2, 0; y) -108H(O; z)H(O; y) 

-18H(O, 1; z)- 54H(O, 1; z)H(2; y) -54H(O, 1; z)H(O; y) -54H(O, 1, 0; z) 

+117H(1; z) -54H(1; z)H(2, 3; y) -162H(1; z)H(3; y) -54H(1; z)H(O, 3; y) 

+99H(1; z)H(O; y)+162H(1; z)H(O, 0; y)-18H(1, 0; z) 

+54H(1, 0; z)H(2; y)-54H(1, 0; z)H(O; y)+54H(1, 0, 1; z) 

-54H(1, 1, 0; z) +54H(2, 3, 2; y) -117H(2; y) -99H(2, 0; y) -162H(2, 0, 0; y) 

+162H(3, 2; y) -99H(O, 2; y) -162H(O, 2, 0; y) +54H(O, 3, 2; y) + 132H(O; y) 

-162H(O, 0, 2; y) -198H(O, 0; y)+270H(O, 1, 0; y)+ 18H(1, 0; y) 

+216H(1, 0, 0; y) -216H(1, 1, 0; y)] 
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( z )3 [ -27r2H(1; z)+27r2H(2; y)+12H(O; z)H(2, 0; y)+12H(O, 1, 0; z) 
y+z 

+12H(1, 0; z)H(2; y) -12H(1, 0; z)H(O; y) -12H(1, 1, 0; z) -12H(2, 1, 0; y) 

+12H(1, 0; y)+12H(1, 0; z)-12H(O, 1, 0; y)] 
z 47!"2 471"2 

( )2 [27r2+-H(1;z)--H(2;y)-6H(O;z) 
y+z 3 3 

--8H(O; z)H(2, 0; y) + 12H(O; z)H(O; y) -8H(O, 1, 0; z) 

+4H(1, 0; z) -8H(1, 0; z)H(2; y)+8H(1, 0; z)H(O; y) 

+8H(1, 1, 0; z) +8H(2, 1, 0; y)+6H(O; y)+8H(O, 1, 0; y)- 20H(1, 0; y)] 
z 7!"2 -+- [-- +2H(O; z) -2H(O; z)H(O; y) -2H(1, 0; z) -2H(O; y)+2H(1, 0; y)] 

y+z 3 
z2 27!"2 271"2 271"2 

( )3 [ +-H(O; z)+-H(1; z)--H(2; y)-12(3-4H(1, 0, 1; z) 
1-y 3 3 3 

+4H(O; z)H(O, 2; y) -4H(O, 0, 1; z)+4H(O, 1; z)H(2; y) 

+4H(O, 1, 0; z)+4H(1; z)H(2, 3; y)+4H(1; z)H(O, 3; y)-4H(1, 0; z)H(2; y) 
z2 

+4H(1, 1, 0; z)-4H(2, 3, 2; y)-4H(O, 3, 2; y)) + ( )2 [ +4H(O; z)H(2; y) 
1-y 

z2 
+4H(1; z)H(3; y)-4H(3, 2; y)) + 

1
_y [ +2H(O; z)H(2; y)+2H(1; z)H(3; y) 

z2 
-2H(3, 2; y)) + ( )4 [27r2H(1; z) -27r2H(2; y) -12H(O; z)H(2, 0; y) 

y+z 
-12H(O, 1, 0; z) -12H(1, 0; z)H(2; y)+ 12H(1, 0; z)H(O; y) 

+12H(1, 1, 0; z) + 12H(2, 1, 0; y) + 12H(O, 1, 0; y)] 
z2 471"2 47!"2 

( )3 [ -271"2- -H(1; z)+-H(2; y)+8H(O; z)H(2, 0; y) -12H(O; z)H(O; y) 
y+z 3 3 

+8H(O, 1, 0; z) -12H(1, 0; z) +8H(1, 0; z)H(2; y) -8H(1, 0; z)H(O; y) -8H(1, 1, 0; z) 
z2 7!"2 

--8H(2, 1, 0; y) -8H(O, 1, 0; y)+ 12H(1, 0; y)] + ( )2 [- +2H(O; z)H(O; y) 
y+z 3 

1 7!"2 
+2H(1, 0; z) -2H(1, 0; y)] + [-+H(O; z)H(O; y)+H(1, 0; z) -H(1, 0; y)] 

1-y-z 6 
1 

( ) [107r2+127r2H(O; z)+97r2H(1; z) -97r2H(2; y) 
9 1-y 

+127r2H(O; y)- 2171"2H(1; y)- 234(3+54H(O; z)H(O, 2; y) 

+21H(O; z)H(O; y) + 18H(O; z)H(O, 0; y) -18H(O; z)H(1, 0; y) -90H(O, 0, 1; z) 

---63H(O, 1; z)+63H(1, 0; z)+18H(2, 0; y)+54H(O, 1, 0; z) 

+90H(O, 1; z)H(2; y)+36H(O, 1; z)H(O; y)+90H(1; z)H(2, 3; y) 

--63H(1; z)H(3; y)+90H(1; z)H(O, 3; y) -18H(1; z)H(O; y) -72H(1; z)H(O, 0; y) 
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-54H(1, 0; z)H(2; y)-90H(1, 0, 1; z)+54H(1, 1, 0; z)-90H(2, 3, 2; y) 

+72H(2, 0, 0; y)-36H(2, 1, 0; y)+63H(3, 2; y)+18H(O, 2; y)+72H(O, 2, 0; y) 

-90H(O, 3, 2; y) +55H(O; y) +72H(O, 0, 2; y) + 108H(O, 0; y) -108H(O, 1, 0; y)+3H(1, 0; y) 

1 
---90H(1, 0, 0; y) + 126H(1, 1, 0; y) J + ( )2 [ + 18H(O; z )H(2, 2; y) +27H(O; z )H(2; y) 

9 y+z 
-18H(O; z)H(3, 2; y)-72H(O, 0, 1; z)+39H(O, 1; z)+36H(O, 1; z)H(2; y) 

-90H(O, 1; z)H(3; y)+ 18H(O, 1; z)H(O; y)+ 18H(O, 1, 0; z) -18H(O, 1, 1; z)+230H(1; z) 

+54H(1; z)H(2, 3; y) -102H(1; z)H(2; y) -18H(1; z)H(2, 0; y)+36H(1; z)H(3, 2; y) 

-108H(1; z)H(3, 3; y)+66H(1; z)H(3; y)+ 18H(1; z)H(3, 0; y) -18H(1; z)H(O, 2; y) 

+18H(1; z)H(O, 3; y) -27H(1; z)H(O; y)- 27H(1, 0; z) -18H(1, 0; z)H(2; y) 

-36H(1, 0, 1; z)+102H(1, 1; z)-36H(1, 1; z)H(3; y)+18H(1, 1; z)H(O; y)+18H(1, 1, 0; z) 

+102H(2, 2; y)+ 18H(2, 2, 0; y) -54H(2, 3, 2; y) -230H(2; y) + 18H(1, 0; z)H(3; y) 

+18H(2, 0, 2; y) +27H(2, 0; y) -36H(3, 2, 2; y) -66H(3, 2; y) 

-18H(3, 2, 0; y)+ 108H(3, 3, 2; y) -18H(3, 0, 2; y)+ 18H(O, 2, 2; y) 

1 
+27H(O, 2; y) -18H(O, 3, 2; y)J + ( ) [- -H(1; z)+-H(2; y) -170 

9 y+z 2 2 

-18H(O; z)H(2; y) +9H(O; z)H(2, 0; y) -72H(O, 1; z) +9H(O, 1, 0; z) -123H(1; z) 

-90H(1; z)H(3; y) + 18H(1; z)H(O; y) + 18H(1, 0; z)+9H(1, 0; z)H(2; y) 

-9H(1, 1, 0; z)+ 123H(2; y) -18H(2, 0; y) -9H(2, 1, 0; y) +90H(3, 2; y) 

-18H(O, 2; y) -9H(O, 1, 0; y) -9H(1, 0; z)H(O; y)] 

+n [ -115-24H(O; z)H(2; y) -12H(O; z)H(1; y)-12H(O, 1; z)+ 12H(1, 1; z) 

+7H(1; z) -48H(1; z)H(2; y)+36H(1; z)H(O; y) -12H(1; z)H(1; y) -12H(1, 0; z) 

-t48H(2, 2; y) + 19H(2; y) -24H(2, 0; y) -36H(O, 2; y) +48H(O, 1; y) 

T 15251 357 
+12H(1, 2; y)-26H(1; y)+36H(1, 0; y)-48H(1, 1; y)J+ 

54 
[ -

2
-(3 

+108(3H(1; z)- 270(3H(2; y) + 162(3H(1; y) -360H(O; z) -198H(O; z)H(2, 2; y) 

+108H(O; z)H(2, 2, 0; y) + 108H(O; z)H(2, 3, 2; y)+ 78H(O; z)H(2; y) 

+54H(O; z)H(2, 0, 2; y) -180H(O; z)H(2, 0; y)-108H(O; z)H(2, 0, 0; y) 

+54H(O; z)H(2, 1, 0; y)+ 108H(O; z)H(3, 2, 2; y) +297H(O; z)H(3, 2; y) 

-108H(O; z)H(3, 3, 2; y) -108H(O; z)H(O, 2, 2; y) -180H(O; z)H(O, 2; y) 
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+216H(O; z)H(O, 3, 2; y)- 216H(O; z)H(O; y) +54H(O; z)H(O, 1, 0; y) 

-54H(O; z)H(1, 2, 0; y) -378H(O, 0; z)H(2; y)+216H(O, 0, 1; z)H(2; y) 

-108H(O; z)H(1, 0, 2; y)+9H(O; z)H(1, 0; y)+108H(O; z)H(1, 0, 0; y) 

-108H(O, 0; z)H(2, 0; y) -108H(O, 0; z)H(O, 2; y)+ 18H(O, 0, 1; z) 

--432H(O, 0, 1; z)H(3; y) -108H(O, 0, 1; z)H(O; y)+54H(O, 0, 1; z)H(1; y) 

+216H(O, 0, 1, 0; z) -162H(O, 1; z)H(2, 0; y) -117H(O, 1; z)H(O; y) 

+348H(O, 1; z)+324H(O, 1; z)H(2, 3; y) -279H(O, 1; z)H(2; y) 

+108H(O, 1; z)H(3, 2; y) -540H(O, 1; z)H(3, 3; y) -63H(O, 1; z)H(3; y) 

+108H(O, 1; z)H(3, 0; y)+54H(O, 1; z)H(O, 2; y) -108H(O, 1; z)H(O, 3; y) 

+108H(O, 1; z)H(O, 0; y)-54H(O, 1; z)H(1, 2; y)+54H(O, 1; z)H(1, 0; y) 

-54H(O, 1, 0; z)H(1; y)- 252H(O, 1, 0; z) -78H(1; z)H(O; y) 

-216H(O, 1, 0; z)H(2; y)+ 108H(O, 1, 0; z)H(3; y) -54H(O, 1, 0; z)H(O; y) 

+198H(O, 1, 1; z) -108H(O, 1, 1; z)H(3; y)+ 108H(O, 1, 1, 0; z)+ 17H(1; z) 

+432H(1; z)H(2, 3, 3; y) -477H(1; z)H(2, 3; y) -108H(1; z)H(2, 3, 0; y) 

+297H(1; z)H(2; y) -108H(1; z)H(2, 0, 3; y)+ 198H(1; z)H(2, 0; y) 

+162H(1; z)H(2, 1, 0; y)+216H(1; z)H(3, 2, 3; y) -396H(1; z)H(3, 2; y) 

-108H(1; z)H(3, 2, 0; y)+216H(1; z)H(3, 3, 2; y) -648H(1; z)H(3, 3, 3; y) 

+234H(1; z)H(3, 3; y)+108H(1; z)H(3, 3, 0; y)+426H(1; z)H(3; y) 

-108H(1; z)H(3, 0, 2; y) + 108H(1; z)H(3, 0, 3; y) -297H(1; z)H(3, 0; y) 

-54H(1; z)H(O, 2, 3; y) + 198H(1; z)H(O, 2; y) -108H(1; z)H(O, 3, 2; y) 

+108H(1; z)H(O, 3, 3; y)- 297H(1; z)H(O, 3; y)+216H(1; z)H(O, 3, 0; y) 

+108H(1; z)H(O, 0, 3; y)+378H(1; z)H(O, 0; y)-54H(1; z)H(O, 1, 0; y) 

-54H(1; z)H(1, 0, 3; y) -81H(1; z)H(1, 0; y) -108H(1; z)H(1, 0, 0; y) 

+216H(1, 0; z)H(2, 2; y) -108H(1, 0; z)H(2, 3; y)+ 117H(1, 0; z)H(2; y) 

-162H(1, 0; z)H(2, 0; y)-108H(1, 0; z)H(3, 2; y)+108H(1, 0; z)H(3, 3; y) 

-297H(1, 0; z)H(3; y)- 216H(1, 0; z)H(O, 3; y)+ 171H(1, 0; z)H(O; y) 

-54H(1; z)H(1, 2, 3; y) -81H(1, 0; z) 
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+108H(1, 0; z)H(O, 0; y)+54H(1, 0; z)H(1, 2; y)+54H(1, 0; z)H(1, 0; y) 

-108H(1, 0, 0; z)H(2; y) -54H(1, 0, 0, 1; z)+ 108H(1, 1; z)H(O, 3; y) 

+360H(1, 0, 1; z) -162H(1, 0, 1; z)H(2; y) -108H(1, 0, 1; z)H(3; y) 

+54H(1, 0, 1; z)H(O; y)+54H(1, 0, 1; z)H(1; y)+ 108H(1, 0, 1, 0; z) -297H(1, 1; z) 

-216H(1, 1; z)H(3, 3; y) +396H(1, 1; z)H(3; y) + 108H(1, 1; z)H(3, 0; y) 

-198H(1, 1; z)H(O; y) +81H(1, 1, 0; z)- 378H(1, 1, 0; z)H(2; y)+ 108H(1, 1, 0; z)H(3; y) 

+108H(1, 1, 0; z)H(O; y) -54H(1, 1, 0; z)H(1; y)+ 108H(1, 1, 0, 1; z)+162H(1, 1, 1, 0; z) 

-297H(2, 2; y) -198H(2, 2, 0; y) -216H(2, 2, 1, 0; y)+477H(2, 3, 2; y) 

+108H(2, 3, 2, 0; y)-432H(2, 3, 3, 2; y)+108H(2, 3, 0, 2; y) 

-17H(2; y) -198H(2, 0, 2; y)+ 108H(2, 0, 3, 2; y) + 78H(2, 0; y) 

-378H(2, 0, 0; y) + 108H(2, 0, 1, 0; y) -162H(2, 1, 2, 0; y) -162H(2, 1, 0, 2; y) 

+81H(2, 1, 0; y)+108H(2, 1, 0, 0; y)+396H(3, 2, 2; y)+108H(3, 2, 2, 0; y) 

-216H(3, 2, 3, 2; y)- 426H(3, 2; y) + 108H(3, 2, 0, 2; y) + 297H(3, 2, 0; y) 

-216H(3, 3, 2, 2; y)- 234H(3, 3, 2; y) -108H(3, 3, 2, 0; y) 

+648H(3, 3, 3, 2; y) -108H(3, 3, 0, 2; y) + 108H(3, 0, 2, 2; y) 

+297H(3, 0, 2; y) -108H(3, 0, 3, 2; y) -198H(O, 2, 2; y)+54H(O, 2, 3, 2; y) 

+78H(O, 2; y) -378H(O, 2, 0; y)+ 162H(O, 2, 1, 0; y) + 108H(O, 3, 2, 2; y) 

+297H(O, 3, 2; y)- 216H(O, 3, 2, 0; y) -108H(O, 3, 3, 2; y)- 216H(O, 3, 0, 2; y) 

-360H(O; y) -378H(O, 0, 2; y) -108H(O, 0, 3, 2; y)+ 108H(O, 0, 1, 0; y) 

+54H(O, 1, 0, 2; y)+333H(O, 1, 0; y) -216H(O, 1, 1, 0; y) +54H(1, 2, 3, 2; y) 

+81H(1, 2, 0; y)+108H(1, 2, 0, 0; y)+81H(1, 0, 2; y)+108H(1, 0, 2, 0; y) 

+54H(1, 0, 3, 2; y)+3H(1, 0; y)+108H(1, 0, 0, 2; y)+378H(1, 0, 0; y)-216H(1, 0, 1, 0; y) 

+117H(1, 1, 0; y) -216H(1, 1, 0, 0; y) +216H(1, 1, 1, 0; y)+54H(O, 1, 2, 0; y)] 
7r2 

[11+9H(O; z) -24H(O; z)H(2; y) -6H(O, 1; z)+8H(1; z) 

-36H(1; z)H(2; y)+24H(1; z)H(O; y)+6H(1; z)H(1; y)+24H(1, 1; z) 

+24H(2, 2; y) +2H(2; y)- 24H(2, 0; y)+ 12H(2, 1; y) -6H(O, 2; y) +9H(O; y) 

+12H(O, 1; y) -6H(1, 2; y) -10H(1; y)+24H(1, 0; y) -6H(1, 1; y)J 
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1 
[288(3+ 180(3H(1; z)+78H(O; z)H(O; y) 

-360(3H(2; y)+ 180(3H(1; y) -188H(O; z) -150H(O; z)H(2, 2; y) 

+72H(O; z)H(2, 2, 0; y)+72H(O; z)H(2, 3, 2; y)+295H(O; z)H(2; y) 

-300H(O; z)H(2, 0; y) -36H(O; z)H(2, 0, 0; y)+ 72H(O; z)H(3, 2, 2; y) 

+216H(O; z)H(3, 2; y)-72H(O; z)H(3, 3, 2; y) -36H(O; z)H(O, 2, 2; y) 

-156H(O; z)H(O, 2; y)+36H(O; z)H(O, 2, 0; y)+144H(O; z)H(O, 3, 2; y) 

-72H(O; z)H(O, 0, 2; y) + 18H(O; z)H(O, 0; y)+36H(O; z)H(O, 1, 0; y) 

-72H(O; z)H(1, 2, 0; y) -36H(O; z)H(1, 0, 2; y)+ 108H(O, 0, 1, 0; z) 

+132H(O; z)H(1, 0; y)+36H(O; z)H(1, 0, 0; y)+36H(O; z)H(1, 1, 0; y) 

+36H(O, 0; z) -36H(O, 0; z)H(2, 2; y) -108H(O, 0; z)H(2; y) -36H(O, 0; z)H(2, 0; y) 

-36H(O, 0; z)H(O, 2; y) + 18H(O, 0; z)H(O; y) -108H(O, 0, 0, 1; z)+84H(O, 0, 1; z) 

+180H(O, 0, 1; z)H(2; y) -288H(O, 0, 1; z)H(3; y) +36H(O, 0, 1; z)H(1; y) 

-36H(O, 0, 1, 1; z)+289H(O, 1; z)+216H(O, 1; z)H(2, 3; y) -222H(O, 1; z)H(2; y) 

-72H(O, 1; z)H(2, 0; y)+ 72H(O, 1; z)H(3, 2; y) -360H(O, 1; z)H(3, 3; y) 

+192H(O, 1; z)H(3; y)+72H(O, 1; z)H(3, 0; y) -72H(O, 1; z)H(O, 3; y) 

-60H(O, 1; z)H(O; y) +36H(O, 1; z)H(O, 0; y) -36H(O, 1; z)H(1, 2; y) 

-114H(O, 1, 0; z) -144H(O, 1, 0; z)H(2; y)+ 72H(O, 1, 0; z)H(3; y) 

-72H(O, 1, 0; z)H(O; y) +36H(O, 1, 0; z)H(1; y) -72H(O, 1, 0, 1; z)+ 150H(O, 1, 1; z) 

-72H(O, 1, 1; z)H(3; y)+36H(O, 1, 1; z)H(O; y)+36H(O, 1, 1, 0; z) 

-376H(1; z)+288H(1; z)H(2, 3, 3; y)-372H(1; z)H(2, 3; y)-72H(1; z)H(2, 3, 0; y) 

+204H(1; z)H(2; y) -72H(1; z)H(2, 0, 3; y) + 150H(1; z)H(2, 0; y) 

+36H(1; z)H(2, 0, 0; y)+36H(1; z)H(2, 1, 0; y)+144H(1; z)H(3, 2, 3; y) 

-300H(1; z)H(3, 2; y)-72H(1; z)H(3, 2, 0; y)+144H(1; z)H(3, 3, 2; y) 

--432H(1; z)H(3, 3, 3; y)+408H(1; z)H(3, 3; y)+72H(1; z)H(3, 3, 0; y) 

+584H(1; z)H(3; y) -72H(1; z)H(3, 0, 2; y)+72H(1; z)H(3, 0, 3; y) 
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-216H(1; z)H(3, 0; y) -36H(1; z)H(O, 2, 3; y)+ 150H(1; z)H(O, 2; y) 

+36H(1; z)H(O, 2, 0; y) -72H(1; z)H(O, 3, 2; y) +72H(1; z)H(O, 3, 3; y) 

-216H(1; z)H(O, 3; y)+144H(1; z)H(O, 3, 0; y) -295H(1; z)H(O; y) 

+36H(1; z)H(O, 0, 2; y) -36H(1; z)H(O, 0, 3; y)+ 108H(1; z)H(O, 0; y) 

-36H(1; z)H(1, 2, 3; y) -36H(1; z)H(1, 0, 3; y) -72H(1; z)H(1, 0, 0; y) 

+15H(1, 0; z)+ 108H(1, 0; z)H(2, 2; y) -72H(1, 0; z)H(2, 3; y) +6H(1, 0; z)H(2; y) 

-72H(1, 0; z)H(2, 0; y) -72H(1, 0; z)H(3, 2; y) +72H(1, 0; z)H(3, 3; y) 

-216H(1, 0; z)H(3; y)+108H(1, 0; z)H(O, 2; y) -144H(1, 0; z)H(O, 3; y) 

+168H(1, 0; z)H(O; y) +36H(1, 0; z)H(O, 0; y) -36H(1, 0; z)H(1, 2; y) 

+72H(1, 0; z)H(1, 0; y)+18H(1, 0, 0; z) -36H(1, 0, 0; z)H(2; y) 

-72H(1, 0, 0, 1; z)+222H(1, 0, 1; z)-36H(1, 0, 1; z)H(2; y) -72H(1, 0, 1; z)H(3; y) 

+36H(1, 0, 1; z)H(O; y)+36H(1, 0, 1; z)H(1; y)+72H(1, 0, 1, 0; z)-204H(1, 1; z) 

-144H(1, 1; z)H(3, 3; y)+300H(1, 1; z)H(3; y)+72H(1, 1; z)H(3, 0; y) 

+72H(1, 1; z)H(O, 3; y) -150H(1, 1; z)H(O; y) -36H(1, 1; z)H(O, 0; y) 

-216H(1, 1, 0; z)H(2; y)+72H(1, 1, 0; z)H(3; y)+36H(1, 1, 0; z)H(O; y) 

+108H(1, 1, 1, 0; z)- 204H(2, 2; y) -150H(2, 2, 0; y) -36H(2, 2, 0, 0; y) 

-108H(2, 2, 1, 0; y)+372H(2, 3, 2; y)+72H(2, 3, 2, 0; y)+36H(1, 1, 0; z)H(1; y) 

-288H(2, 3, 3, 2; y)+72H(2, 3, 0, 2; y) +376H(2; y) -150H(2, 0, 2; y)+54H(1, 1, 0; z) 

-36H(2, 0, 2, 0; y)+72H(2, 0, 3, 2; y)+295H(2, 0; y) -36H(2, 0, 0, 2; y) 

-108H(2, 0, 0; y)+ 108H(2, 0, 1, 0; y) -36H(2, 1, 2, 0; y) -36H(2, 1, 0, 2; y) 

+144H(2, 1, 0; y)+72H(2, 1, 0, 0; y)-72H(2, 1, 1, 0; y)+300H(3, 2, 2; y) 

+72H(3, 2, 2, 0; y) -144H(3, 2, 3, 2; y) -584H(3, 2; y) 

+72H(3, 2, 0, 2; y)+216H(3, 2, 0; y)-144H(3, 3, 2, 2; y) 

--408H(3, 3, 2; y)-72H(3, 3, 2, 0; y)+432H(3, 3, 3, 2; y) 

-72H(3, 3, 0, 2; y)+72H(3, 0, 2, 2; y) +216H(3, 0, 2; y) 

-72H(3, 0, 3, 2; y) -150H(O, 2, 2; y) -36H(O, 2, 2, 0; y) 
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+36H(O, 2, 3, 2; y)+295H(O, 2; y) -36H(O, 2, 0, 2; y) -108H(O, 2, 0; y) 

+72H(O, 2, 1, 0; y)+72H(O, 3, 2, 2; y)+216H(O, 3, 2; y) -144H(O, 3, 2, 0; y) 

-72H(O, 3, 3, 2; y) -144H(O, 3, 0, 2; y) -188H(O; y) -36H(O, 0, 2, 2; y) 

-108H(O, 0, 2; y)+36H(O, 0, 3, 2; y)+36H(O, 0; y)+108H(O, 0, 1, 0; y)+6H(O, 1, 0; y) 

-72H(O, 1, 1, 0; y)+36H(1, 2, 3, 2; y)+72H(1, 2, 0, 0; y)+72H(1, 2, 1, 0; y) 

+72H(1, 0, 2, 0; y)+36H(1, 0, 3, 2; y) -310H(1, 0; y) +72H(1, 0, 0, 2; y) 

+90H(1, 0, 0; y) -144H(1, 0, 1, 0; y) +60H(1, 1, 0; y) -108H(1, 1, 0, 0; y) 

+36H(1, 1, 1, 0; y)] 
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C2o(y, z) = 

z z2 

(6H(O; z)H(2; y)+6H(1; z)H(3; y) -6H(3, 2; y)] + 2 [ -2H(O; z)H(2; y) 
y y 

1 
-2H(1; z)H(3; y)+2H(3, 2; y)] + 2 [ -4H(O; z)H(2; y)-4H(1; z)H(3; y) 

y 
Z7r2 

+4H(3, 2; y)] +- [ -1+4H(O; z)+10H(O; z)H(2; y)+H(1; z)+6H(1; z)H(2; y) 
6y 

+10H(1; z)H(3; y) -16H(2, 2; y)+H(2; y) +2H(2, 0; y)+4H(2, 1; y) 

z 
-10H(3, 2; y)] +- [- 36(3 -16(3H(2; y)- 4H(O; z) +6H(O; z )H(2, 2; y) 

4y 

-40H(O; z)H(2, 2, 0; y)+9H(O; z)H(2; y) -8H(O; z)H(2, 0, 2; y) 

-24H(O; z)H(2, 0; y) -16H(O; z)H(3, 2, 2; y)+46H(O; z)H(3, 2; y) 

-40H(O; z)H(3, 2, 0; y) -10H(O; z)H(O, 2; y)+ 12H(O; z)H(1, 0; y) 

+16H(O, 0; z)H(2, 2; y) +40H(O, 0; z)H(2, 0; y) -4H(O, 0, 1; z)+ 17H(O, 1; z) 

+24H(O, 1; z)H(2, 2; y) -14H(O, 1; z)H(2; y) -8H(O, 1; z)H(2, 0; y) 

-8H(O, 1; z)H(3, 2; y)- 24H(O, 1; z)H(3, 3; y)+ 14H(O, 1; z)H(3; y) -8H(O, 1, 0; z) 

+32H(O, 1, 0; z)H(2; y) -40H(O, 1, 0; z)H(3; y)-6H(O, 1, 1; z)+8H(O, 1, 1; z)H(3; y) 

+24H(1; z)H(2, 2, 3; y) -8H(1; z)H(2, 3; y) -16H(1; z)H(2, 0, 3; y) 

--6H(1; z)H(2, 0; y)- 24H(1; z)H(3, 2, 3; y) + 12H(1; z)H(3, 2; y) 

-t-8H(1; z)H(3, 2, 0; y)- 24H(1; z)H(3, 3, 2; y)- 24H(1; z)H(3, 3, 3; y) 

-t-60H(1; z)H(3, 3; y)+24H(1; z)H(3, 3, 0; y)+26H(1; z)H(3; y)+8H(1; z)H(3, 0, 2; y) 

+18H(1; z)H(3, 0; y) -6H(1; z)H(O, 2; y) -10H(1; z)H(O, 3; y) -17H(1; z)H(O; y) 

+24H(1; z)H(1, 0; y) -13H(1, 0; z) -40H(1, 0; z)H(2, 2; y)+4H(1, 0; z)H(2; y) 

-24H(1, 0; z)H(3, 2; y) -46H(1, 0; z)H(3; y)+40H(1, 0; z)H(3, 0; y) +40H(1, 0, 0; z)H(2; y) 

-10H(1, 0, 1; z) -16H(1, 0, 1; z)H(2; y)+8H(1, 0, 1; z)H(3; y)+24H(1, 1; z)H(3, 3; y) 

-12H(1, 1; z)H(3; y) -8H(1, 1; z)H(3, 0; y)+6H(1, 1; z)H(O; y) -20H(1, 1, 0; z) 

-t-8H(1, 1, 0; z)H(2; y)+24H(1, 1, 0; z)H(3; y)- 24H(2, 2, 3, 2; y) 

-t-6H(2, 2, 0; y)+48H(2, 2, 1, 0; y)+8H(2, 3, 2; y)+6H(2, 0, 2; y) 

+16H(2, 0, 3, 2; y)+ 17H(2, 0; y) -48H(2, 0, 1, 0; y)+ 18H(2, 1, 0; y) 

-16H(2, 1, 1, 0; y) -12H(3, 2, 2; y) -8H(3, 2, 2, 0; y) 
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+24H(3, 2, 3, 2; y)- 26H(3, 2; y) -8H(3, 2, 0, 2; y) -18H(3, 2, 0; y) 

+64H(3, 2, 1, 0; y)+24H(3, 3, 2, 2; y) -60H(3, 3, 2; y) 

-24H(3, 3, 2, 0; y)+24H(3, 3, 3, 2; y)- 24H(3, 3, 0, 2; y) 

---8H(3, 0, 2, 2; y) -18H(3, 0, 2; y)+64H(3, 0, 1, 0; y)+6H(O, 2, 2; y) 

+17H(O, 2; y)+ 10H(O, 3, 2; y)+ 18H(O, 1, 0; y) -24H(1, 2, 0; y)- 24H(1, 0, 2; y) 
z2 

-30H(1, 0; y)J +- [ -2H(O; z)H(2; y) -2H(1; z)H(3; y) +2H(3, 2; y) J 
y 

1 
( ) [ -6H(O; z)H(2, 2; y) -17H(O; z)H(2; y)+ 18H(O; z)H(3, 2; y) 

2y y+z 

-18H(O; z)H(O, 2; y)+ 17H(O, 1; z) +6H(O, 1; z)H(2; y) -18H(O, 1; z)H(3; y) 

---6H(1; z)H(2, 0; y) + 18H(1; z)H(3, 0; y) -6H(1; z)H(O, 2; y) -18H(1; z)H(O, 3; y) 

-17H(1; z)H(O; y) -17H(1, 0; z)+24H(1, 0; z)H(2; y) -18H(1, 0; z)H(3; y) 

+6H(1, 1; z)H(O; y) -24H(1, 1, 0; z)+6H(2, 2, 0; y) +6H(2, 0, 2; y)+ 17H(2, 0; y) 

+18H(2, 1, 0; y) -18H(3, 2, 0; y) -18H(3, 0, 2; y)+6H(O, 2, 2; y) -6H(O, 1, 1; z) 

+17H(O, 2; y)+ 18H(O, 3, 2; y)+ 18H(O, 1, 0; y) -34H(1, 0; y) -6H(1, 0, 1; z)] 
7r2 

+::--- [ -4H(O; z)H(2; y)+H(1; z) -6H(1; z)H(2; y) -4H(1; z)H(3; y) 
3y 

+10H(2, 2; y) -6H(2; y)- 2H(2, 0; y) -4H(2, 1; y) +4H(3, 2; y)+H(1; y)J 

1 
+-:--- [ -8(3+80(3H(2; y)+19-16H(O; z)H(1, 0; y) 

4y 

+8H(O; z) -12H(O; z)H(2, 2; y) +32H(O; z)H(2, 2, 0; y) +26H(O; z)H(2; y) 

+16H(O; z)H(2, 0, 2; y)+40H(O; z)H(2, 0; y)+32H(O; z)H(3, 2, 2; y) 

-108H(O; z)H(3, 2; y)+32H(O; z)H(3, 2, 0; y)+68H(O; z)H(O, 2; y) 

-32H(O, 0; z)H(2, 2; y) -32H(O, 0; z)H(2, 0; y) -8H(O, 0, 1; z) -26H(O, 1; z) 

-48H(O, 1; z)H(2, 2; y)+36H(O, 1; z)H(2; y)+16H(O, 1; z)H(2, 0; y) 

+16H(O, 1; z)H(3, 2; y)+48H(O, 1; z)H(3, 3; y)- 28H(O, 1; z)H(3; y) + 16H(O, 1, 0; z) 

-16H(O, 1, 0; z)H(2; y)+32H(O, 1, 0; z)H(3; y)-16H(O, 1, 1; z)H(3; y) 

-2H(1; z) -48H(1; z)H(2, 2, 3; y)+24H(1; z)H(2, 3; y)+32H(1; z)H(2, 0, 3; y) 

+12H(1; z)H(2, 0; y)+48H(1; z)H(3, 2, 3; y)-24H(1; z)H(3, 2; y)+12H(O, 1, 1; z) 

-16H(1; z)H(3, 2, 0; y)+48H(1; z)H(3, 3, 2; y)+48H(1; z)H(3, 3, 3; y) 
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-136H(1; z)H(3, 3; y) -48H(1; z)H(3, 3, 0; y) -16H(1; z)H(3, 0, 2; y) 

+12H(1; z)H(O, 2; y)+68H(1; z)H(O, 3; y)+30H(1; z)H(O; y)+26H(1, 0; z) 

+32H(1, 0; z)H(2, 2; y) -56H(1, 0; z)H(2; y)+ 108H(1, 0; z)H(3; y) 

-32H(1, 0, 0; z)H(2; y)+4H(1, 0, 1; z)+32H(1, 0, 1; z)H(2; y) -16H(1, 0, 1; z)H(3; y) 

-48H(1, 1; z)H(3, 3; y)+24H(1, 1; z)H(3; y) + 16H(1, 1; z)H(3, 0; y) -12H(1, 1; z)H(O; y) 

+56H(1, 1, 0; z) -16H(1, 1, 0; z)H(2; y) +48H(2, 2, 3, 2; y) -12H(2, 2, 0; y) 

-48H(2, 2, 1, 0; y)- 24H(2, 3, 2; y)+2H(2; y) -12H(2, 0, 2; y) -20H(1; z)H(3, 0; y) 

-32H(2, 0, 3, 2; y) -30H(2, 0; y) +48H(2, 0, 1, 0; y) -36H(2, 1, 0; y) 

+32H(2, 1, 1, 0; y) +24H(3, 2, 2; y)+ 16H(3, 2, 2, 0; y)- 24H(1; z)H(1, 0; y) 

-48H(3, 2, 3, 2; y) + 16H(3, 2, 0, 2; y)+20H(3, 2, 0; y) -80H(3, 2, 1, 0; y) 

-48H(3, 3, 2, 2; y)+136H(3, 3, 2; y)+48H(3, 3, 2, 0; y)-32H(1, 0; z)H(3, 0; y) 

-48H(3, 3, 3, 2; y) +48H(3, 3, 0, 2; y)+ 16H(3, 0, 2, 2; y) +20H(3, 0, 2; y) 

---80H(3, 0, 1, 0; y) -12H(O, 2, 2; y) -30H(O, 2; y) -68H(O, 3, 2; y) -36H(O, 1, 0; y) 

+24H(1, 2, 0; y) +24H(1, 0, 2; y)+60H(1, 0; y) -8H(1, 1, 0; y)] 

4
(
1 

[ +57r2 +4H(O; z)H(O, 0; y)+ 16H(1, 0; z) 

147r2 147r2 147r2 27r2 47r2 

z)+-
3
-H(1; z)--

3
-H(2;y)+TH(O; y)- 3 H(1; y)-92(3 

+28H(O; z)H(O, 2; y)+ 12H(O; z)H(O; y) -32H(O, 0, 1; z) -16H(O, 1; z) 

+32H(O, 1; z)H(2; y)+4H(O, 1; z)H(O; y)+28H(O, 1, 0; z)+32H(1; z)H(2, 3; y) 

-16H(1; z)H(3; y)+32H(1; z)H(O, 3; y)+6H(1; z)H(O; y) -4H(1; z)H(O, 0; y) 

-28H(1, 0; z)H(2; y) -32H(1, 0, 1; z)+28H(1, 1, 0; z) -32H(2, 3, 2; y) -6H(2, 0; y) 

-+4H(2, 0, 0; y) -4H(2, 1, 0; y)+ 16H(3, 2; y) -6H(O, 2; y)+4H(O, 2, 0; y) 

-32H(O, 3, 2; y)+23H(O; y)+4H(O, 0, 2; y) -10H(O, 0; y) -8H(O, 1, 0; y) -14H(1, 0; y) 

---8H(1, 0, 0; y)+8H(1, 1, 0; y)] + 
4

( z ) [ 
1

17r
2 

+61r2H(O; z)+61r2H(1; z)-61r2H(2; y) 
1-y 3 

+21r2H(O; y) -47r2H(1; y) -132(3+ 17 +28H(O; z)H(2; y) +36H(O; z)H(O, 2; y) 

+12H(O; z)H(O, 0; y) -48H(O, 0, 1; z) +4H(O, 1; z) +48H(O, 1; z)H(2; y) 

+36H(O, 1, 0; z)+48H(1; z)H(2, 3; y)+32H(1; z)H(3; y)+48H(1; z)H(O, 3; y) 

-22H(1; z)H(O; y) -12H(1; z)H(O, 0; y) -36H(1, 0; z)H(2; y) +4H(O; z) 

+12H(O, 1; z)H(O; y) -48H(1, 0, 1; z) +36H(1, 1, 0; z)- 2H(1; z) 
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-48H(2, 3, 2; y)- 24H(O, 1, 0; y)+22H(2, 0; y) + 12H(2, 0, 0; y) -12H(2, 1, 0; y) 

+12H(O, 0, 2; y) +24H(1, 1, 0; y)+ 12H(O, 2, 0; y) -48H(O, 3, 2; y)- 24H(1, 0, 0; y) 

-22H(O, 0; y) +2H(2; y)- 26H(1, 0; y)+39H(O; y)+22H(O, 2; y) -32H(3, 2; y)J 

( 
z )3 [ -61r2H(1; z)+61r2H(2; y)+36H(O, 1, 0; z)+36H(1, 0; z) 

y+z 
+36H(1, 0; z)H(2; y) -36H(1, 1, 0; z) -36H(2, 1, 0; y) -36H(O, 1, 0; y) 

+36H(1, 0; y)+36H(O; z)H(2, 0; y)-36H(1, 0; z)H(O; y)] 

( 
z )2 [ +24H(1, 0; z)H(O; y)+47r2H(1; z)-47r2H(2; y) -18H(O; z) -24H(O, 1, 0; z) 

y+z 

+6?r2+36H(O; z)H(O; y) -24H(O; z)H(2, 0; y)+ 12H(1, 0; z) -24H(1, 0; z)H(2; y) 

+24H(1, 1, 0; z)+24H(2, 1, 0; y)+18H(O; y)+24H(O, 1, 0; y)-60H(1, 0; y)] 

[ -1r2+6H(O; z) -6H(O; z)H(O; y) -6H(1, 0; z) -6H(O; y)+6H(1, 0; y)] 
y+z 

z2 271"2 27r2 271"2 

( )3 [ --H(O; z)--H(1; z)+-H(2; y)+12(3-4H(O; z)H(O, 2; y) 
1-y 3 3 3 

-4H(O, 1, 0; z) -4H(1; z)H(2, 3; y) -4H(1; z)H(O, 3; y) +4H(1, 0; z)H(2; y)+4H(1, 0, 1; z) 

-4H(1, 1, 0; z)+4H(2, 3, 2; y)+4H(O, 3, 2; y)+4H(O, 0, 1; z) -4H(O, 1; z)H(2; y)J 
z2 

( )2 [ -4H(O; z)H(2; y) -4H(1; z)H(3; y)+4H(3, 2; y)J 
1-y 
z2 

1
_y [- 2H(O; z)H(2; y) -2H(1; z)H(3; y)+2H(3, 2; y)J 

z2 2 

( ) 4 [ +61r H(1; z)+36H(2, 1, 0; y) -36H(O; z)H(2, 0; y) -36H(O, 1, 0; z) 
y+z 

-36H(1, 0; z)H(2; y)+36H(1, 0; z)H(O; y) -61r2H(2; y)+36H(1, 1, 0; z)+36H(O, 1, 0; y)] 
z2 

( )3 [ -61r2 -47r2H(1; z)+47r2H(2; y)+24H(O; z)H(2, 0; y) -36H(O; z)H(O; y) 
y+z 

+24H(O, 1, 0; z) -36H(1, 0; z)+24H(1, 0; z)H(2; y)- 24H(1, 0; z)H(O; y) -24H(1, 1, 0; z) 

-24H(2, 1, 0; y) -24H(O, 1, 0; y)+36H(1, 0; y)] 
z2 

( )2 [1r2 +6H(O; z)H(O; y)+6H(1, 0; z)-6H(1, 0; y)] 
y+z 

1 71"2 
+-

1
-_-y---z [- 3-2H(O; z)H(O; y)-2H(1, 0; z)+2H(1, 0; y)] 

1 [ 2 +---c(--:-) -271" -8H(O; z)H(2, 0; y)+20H(O, 0, 1; z)+12H(O, 1; z) 
2 1-y 

871"2 471"2 471"2 271"2 871"2 
-

3
-H(O; z)- 3 H(1; z)+ 3 H(2; y)+ 3 H(O; y)+ 3 H(1;y)+64(3 

-16H(O; z)H(O, 2; y)+6H(O; z)H(O; y)+4H(O; z)H(O, 0; y)+8H(O; z)H(1, 0; y) 

-20H(O, 1; z)H(2; y)-1H(O, 1; z)H(O; y)-8H(O, 1, 0; z)-20H(1; z)H(2, 3; y) 
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+12H(1; z)H(3; y)- 20H(1; z)H(O, 3; y)- 2H(1; z)H(O; y)+4H(1; z)H(O, 0; y) 

+8H(1, 0; z)H(2; y) +8H(1, 0; z)H(O; y)+20H(1, 0, 1; z) -8H(1, 1, 0; z)+20H(2, 3, 2; y) 

+2H(2, 0; y) -4H(2, 0, 0; y)+ 12H(2, 1, 0; y) -12H(3, 2; y)+2H(O, 2; y) -10H(1, 0; z) 

-4H(O, 2, 0; y)+20H(O, 3, 2; y) -5H(O; y) -4H(O, 0, 2; y) -4H(O, 0; y) -16H(1, 1, 0; y)] 
1 221!"2 221!"2 

2
( )2 [-H(1; z)--H(2; y)-2H(O; z)H(2, 2; y)+3H(O; z)H(2; y) 
y+z 3 3 

-44H(O; z)H(2, 0; y)-2H(O; z)H(3, 2; y)+2H(O; z)H(O, 2; y)+3H(O, 1; z) 

-2H(O, 1; z)H(2; y) -2H(O, 1; z)H(3; y) -44H(O, 1, 0; z)+2H(O, 1, 1; z)+27H(1; z) 

-4H(1; z)H(2, 3; y)+6H(1; z)H(2; y)+2H(1; z)H(2, 0; y) -4H(1; z)H(3, 2; y) 

-4H(1; z)H(3, 3; y)+6H(1; z)H(3; y)+2H(1; z)H(3, 0; y)+2H(1; z)H(O, 2; y) 

+2H(1; z)H(O, 3; y) -3H(1; z)H(O; y) -3H(1, 0; z) -27H(2; y) +2H(1, 0; z)H(3; y) 

+44H(1, 0; z)H(O; y)+2H(1, 0, 1; z)-6H(1, 1; z)+4H(1, 1; z)H(3; y)-2H(1, 1; z)H(O; y) 

+44H(1, 1, 0; z) -6H(2, 2; y)- 2H(2, 2, 0; y)+4H(2, 3, 2; y) -44H(1, 0; z)H(2; y) 

-2H(2, 0, 2; y)+3H(2, 0; y) +46H(2, 1, 0; y) +4H(3, 2, 2; y) -6H(3, 2; y) 

-2H(3, 2, 0; y)+4H(3, 3, 2; y) -2H(3, 0, 2; y)- 2H(O, 2, 2; y) 

1 221!"2 
2 

+3H(0,2;y)-2H(0,3,2;y)+46H(0,1,0;y)]+ ( )[---21r H(1;z) 
2 y+z 3 

+27r2H(2; y) -17 -5H(O; z) -4H(O; z)H(2; y) + 12H(O; z)H(2, 0; y) -44H(O; z)H(O; y) 

-4H(O, 1; z)+12H(O, 1, 0; z)+4H(1; z)-4H(1; z)H(2; y)-8H(1; z)H(3; y) 

-42H(1, 0; z) + 12H(1, 0; z)H(2; y) -12H(1, 0; z)H(O; y)+4H(1, 1; z) -12H(1, 1, 0; z) 

+4H(2, 2; y) -4H(2; y) -4H(2, 0; y) -12H(2, 1, 0; y)+8H(3, 2; y) +4H(1; z)H(O; y) 
T7r2 

-4H(O, 2; y) -5H(O; y) -12H(O, 1, 0; y)+46H(1, 0; y)] +U [ +29+6H(1; z) 

+8H(1; z)H(2; y)-16H(2, 2; y)+12H(2; y)+8H(2, 1; y)+8H(O, 2; y) 
T 221r4 255 

---8H(O, 1; y) -18H(1; y)+8H(1, 1; y)] +B [ - 45 + 4 -60(3 -16(3H(1; z) 

+32(3H(1; y)+ 18H(O; z)H(2, 2; y)+ 15H(O; z)H(2; y) -8H(O; z)H(2, 0, 2; y) 

-16H(O; z)H(3, 2, 2; y)+42H(O; z)H(3, 2; y) -16H(O; z)H(3, 3, 2; y) -16(3H(2; y) 

+16H(O; z )H(3, 0, 2; y) -42H(O; z)H(O, 2; y)+ 16H(O; z)H(O, 3, 2; y) 

-16H(O; z)H(O, 0, 2; y)+ 16H(O, 0; z)H(2, 2; y) -16H(O, 0, 1; z)H(2; y) 

+8H(O, 0, 1; z)H(l; y)+16H(O, 0, 1, 1; z)+15H(O, 1; z)+32H(O, 1; z)H(2, 2; y) 

+6H(O, 1; z)H(2; y) +8H(O, 1; z)H(2, 0; y) -16H(O, 1; z)H(3, 2; y) 
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-16H(O, 1; z)H(3, 3; y)+42H(O, 1; z)H(3; y)+8H(O, 1; z)H(O, 2; y) -8H(O, 1; z)H(1, 2; y) 

-8H(O, 1; z)H(1, 0; y) -8H(O, 1, 0; z)H(2; y)+ 16H(O, 1, 0, 1; z) -18H(O, 1, 1; z) 

+16H(O, 1, 1; z)H(3; y) -16H(O, 1, 1; z)H(O; y)+ 16H(O, 1, 1, 0; z) -52H(1; z) 

+32H(1; z)H(2, 2, 3; y) +24H(1; z)H(2, 3; y) -18H(1; z)H(2; y) 

-18H(1; z)H(2, 0; y) -16H(1; z)H(2, 0, 0; y) -8H(1; z)H(2, 1, 0; y) 

-32H(1; z)H(3, 2, 3; y) +36H(1; z)H(3, 2; y)+ 16H(1; z)H(3, 2, 0; y) 

-32H(1; z)H(3, 3, 2; y) -32H(1; z)H(3, 3, 3; y)+84H(1; z)H(3, 3; y) 

+16H(1; z)H(3, 3, 0; y)+30H(1; z)H(3; y)+16H(1; z)H(3, 0, 2; y) 

+16H(1; z)H(3, 0, 3; y) -42H(1; z)H(3, 0; y)+8H(1; z)H(O, 2, 3; y) 

-18H(1; z)H(O, 2; y) -16H(1; z)H(O, 2, 0; y)+ 16H(1; z)H(O, 3, 2; y) 

+16H(1; z)H(O, 3, 3; y) -42H(1; z)H(O, 3; y) -15H(1; z)H(O; y) 

-8H(1; z)H(1, 0, 3; y) -16H(1; z)H(O, 0, 2; y)+ 16H(1, 1; z)H(O, 0; y) 

-16H(1; z)H(O, 0, 3; y)+8H(1; z)H(O, 1, 0; y)-8H(1; z)H(1, 2, 3; y) 

+16H(1; z)H(1, 0, 0; y) + 13H(1, 0; z)+24H(1, 0; z)H(2; y) + 16H(1, 0; z)H(3, 3; y) 

--42H(1, 0; z)H(3; y) + 16H(1, 0; z)H(O, 2; y) -16H(1, 0; z)H(O, 3; y) +8H(1, 0, 0, 1; z) 

-6H(1, 0, 1; z)-24H(1, 0, 1; z)H(2; y)+16H(1, 0, 1; z)H(3; y)-8H(1, 0, 1; z)H(O; y) 

+8H(1, 0, 1; z)H(1; y) + 18H(1, 1; z)+32H(1, 1; z)H(3, 3; y) -36H(1, 1; z)H(3; y) 

-16H(1, 1; z)H(3, 0; y) -16H(1, 1; z)H(O, 3; y)+18H(1, 1; z)H(O; y) 

+12H(1, 1, 0; z) -8H(1, 1, 0; z)H(2; y) + 16H(1, 1, 0, 1; z)+ 16H(1, 1, 1, 0; z) 

-32H(2, 2, 3, 2; y)+18H(2, 2; y)+18H(2, 2, 0; y) 

+16H(2, 2, 0, 0; y)-24H(2, 3, 2; y)+52H(2; y)+18H(2, 0, 2; y) 

+16H(2, 0, 2, 0; y)+15H(2, 0; y)+16H(2, 0, 0, 2; y)-8H(2, 0, 1, 0; y) 

+8H(2, 1, 2, 0; y)+8H(2, 1, 0, 2; y) -42H(2, 1, 0; y) -16H(2, 1, 0, 0; y) 

-16H(2, 1, 1, 0; y) -36H(3, 2, 2; y) -16H(3, 2, 2, 0; y) 

+32H(3, 2, 3, 2; y) -30H(3, 2; y)-16H(3, 2, 0, 2; y)+42H(3, 2, 0; y) 

+16H(3, 2, 1, 0; y)+32H(3, 3, 2, 2; y)-84H(3, 3, 2; y) 

-16H(3, 3, 2, 0; y)+32H(3, 3, 3, 2; y) -16H(3, 3, 0, 2; y) 

-16H(3, 0, 2, 2; y) +42H(3, 0, 2; y) -16H(3, 0, 3, 2; y)+ 16H(3, 0, 1, 0; y) 
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+18H(O, 2, 2; y)+ 16H(O, 2, 2, 0; y) -8H(O, 2, 3, 2; y)+ 15H(O, 2; y) -16H(1, 1, 1, 0; y) 

+16H(O, 2, 0, 2; y) -8H(O, 2, 1, 0; y) -16H(O, 3, 2, 2; y)+42H(O, 3, 2; y) 

-16H(O, 3, 3, 2; y)+ 16H(O, 0, 2, 2; y) + 16H(O, 0, 3, 2; y) -8H(O, 1, 2, 0; y) 

---8H(O, 1, 0, 2; y) -42H(O, 1, 0; y)+ 16H(O, 1, 1, 0; y)+8H(1, 2, 3, 2; y) 

-16H(1, 2, 0, 0; y) +8H(1, 2, 1, 0; y) -16H(1, 0, 2, 0; y)+8H(1, 0, 3, 2; y)- 28H(1, 0; y) 

-16H(1, 0, 0, 2; y)+8H(1, 0, 1, 0; y)+36H(1, 1, 0; y)+16H(1, 1, 0, 0; y)] 
1!"2 

[9-7H(O; z)+6H(O; z)H(2; y) -2H(O; z)H(1; y)+4H(O, 1; z)-24H(1; z) 

+12H(1; z)H(2; y)+8H(1; z)H(3; y) -4H(1; z)H(O; y) -6H(1; z)H(1; y) -2H(1, 0; z) 

-20H(2, 2; y) +34H(2; y) +6H(2, 0; y)+8H(2, 1; y) -8H(3, 2; y) -6H(1, 1; z) 

+8H(O, 2; y) -7H(O; y) -4H(O, 1; y) +6H(1, 2; y) -10H(1; y) -4H(1, 0; y)] 

1 
[40(3 +40(3H(1; z) -80(3H(2; y)+40(3H(1; y) -2-29H(O; z)+20H(O; z)H(2, 2; y) 

-32H(O; z)H(2, 2, 0; y) -4H(O; z)H(2; y)+32H(O; z)H(2, 0; y) 

+16H(O; z)H(2, 0, 0; y) + 16H(O; z)H(2, 1, 0; y) -24H(O; z)H(3, 2, 2; y) 

+52H(O; z)H(3, 2; y) -32H(O; z)H(3, 2, 0; y)- 24H(O; z)H(3, 3, 2; y) 

+24H(O; z)H(3, 0, 2; y)+8H(O; z)H(O, 2, 2; y) -44H(O; z)H(O, 2; y) 

+16H(O; z)H(O, 2, 0; y)+24H(O; z)H(O, 3, 2; y)+40H(O; z)H(O; y)-24H(O; z)H(O, 0, 2; y) 

-20H(O; z)H(O, 0; y)+ 16H(O; z)H(1, 2, 0; y) -8H(O; z)H(1, 0, 2; y) +4H(O; z)H(1, 0; y) 

-16H(O; z)H(1, 0, 0; y)-16H(O; z)H(1, 1, 0; y)+20H(O, 0; z)+16H(O, 0; z)H(2, 2; y) 

-4H(O, 0; z)H(2; y) + 16H(O, 0; z)H(2, 0; y)- 20H(O, 0; z)H(O; y)+36H(O, 0, 1; z) 

-16H(O, 0, 1; z)H(2; y)+ 16H(O, 0, 1; z)H(1; y) -16H(O, 0, 1, 0; z)+ 16H(O, 0, 1, 1; z) 

+48H(O, 1; z)H(2, 2; y) -52H(O, 1; z)H(2; y) -24H(O, 1; z)H(3, 2; y) 

-24H(O, 1; z)H(3, 3; y)+84H(O, 1; z)H(3; y)+8H(O, 1; z)H(O, 2; y) -8H(O, 1; z)H(O; y) 

-16H(O, 1; z)H(1, 2; y) -8H(O, 1; z)H(1, 0; y)- 28H(O, 1, 0; z)+32H(O, 1, 0; z)H(2; y) 

-32H(O, 1, 0; z)H(3; y) + 16H(O, 1, 0; z)H(O; y) -24H(O, 1, 0; z)H(1; y)+ 16H(O, 1, 0, 1; z) 

-20H(O, 1, 1; z)+24H(O, 1, 1; z)H(3; y) -16H(O, 1, 1; z)H(O; y)+32H(O, 1, 1, 0; z) 

+48H(1; z)H(2, 2, 3; y) -32H(1; z)H(2, 3; y) -4H(1; z)H(2; y) -58H(1; z) 

-20H(1; z)H(2, 0; y) -16H(1; z)H(2, 0, 0; y) -8H(1; z)H(2, 1, 0; y) 
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-48H(1; z)H(3, 2, 3; y)+40H(1; z)H(3, 2; y)+24H(1; z)H(3, 2, 0; y) 

-48H(1; z)H(3, 3, 2; y) -48H(1; z)H(3, 3, 3; y)+ 136H(1; z)H(3, 3; y) 

+24H(1; z)H(3, 3, 0; y) -4H(1; z)H(3; y)+24H(1; z)H(3, 0, 2; y) +24H(1; z)H(3, 0, 3; y) 

-52H(1; z)H(3, 0; y)+16H(1; z)H(O, 2, 3; y) -20H(1; z)H(O, 2; y) 

-16H(1; z)H(O, 2, 0; y)+24H(1; z)H(O, 3, 2; y)+24H(1; z)H(O, 3, 3; y) 

-52H(1; z)H(O, 3; y)+4H(1; z)H(O; y) -16H(1; z)H(O, 0, 2; y)- 24H(1; z)H(O, 0, 3; y) 

+4H(1; z)H(O, 0; y)+8H(1; z)H(O, 1, 0; y) -16H(1; z)H(1, 2, 3; y) 

+24H(1; z)H(1, 0; y)+16H(1; z)H(1, 0, 0; y)+60H(1, 0; z)-40H(1, 0; z)H(2, 2; y) 

+80H(1, 0; z)H(2; y)+16H(1, 0; z)H(2, 0; y) -32H(1, 0; z)H(3, 2; y) 

+24H(1, 0; z)H(3, 3; y) -52H(1, 0; z)H(3; y) +32H(1, 0; z)H(3, 0; y) 

-24H(1, 0; z)H(O, 3; y) -36H(1, 0; z)H(O; y) -16H(1, 0; z)H(O, 0; y) 

-16H(1, 0; z)H(1, 0; y)-20H(1, 0, 0; z)+16H(1, 0, 0; z)H(2; y)+16H(1, 0, 0, 1; z) 

-40H(1, 0, 1; z)H(2; y)+24H(1, 0, 1; z)H(3; y) -8H(1, 0, 1; z)H(O; y) 

-24H(1, 0, 1, 0; z)+4H(1, 1; z) +48H(1, 1; z)H(3, 3; y) -40H(1, 1; z)H(3; y) 

-24H(1, 1; z)H(3, 0; y)- 24H(1, 1; z)H(O, 3; y)+20H(1, 1; z)H(O; y) 

-D4H(1, 1, 0; z)+ 16H(1, 1, 0; z)H(2; y)+32H(1, 1, 0; z)H(3; y) -16H(1, 1, 0; z)H(O; y) 

-24H(1, 1, 0; z)H(1; y)+24H(1, 1, 0, 1; z) -8H(1, 1, 1, 0; z) -48H(2, 2, 3, 2; y) 

+4H(2, 2; y)+20H(2, 2, 0; y)+ 16H(2, 2, 0, 0; y)+40H(2, 2, 1, 0; y)+28H(1, 0, 1; z) 

+32H(2, 3, 2; y) +58H(2; y) +20H(2, 0, 2; y) + 16H(2, 0, 2, 0; y) + 16H(1, 1; z)H(O, 0; y) 

-4H(2, 0; y)+ 16H(2, 0, 0, 2; y) -4H(2, 0, 0; y) -48H(2, 0, 1, 0; y) 

+8H(2, 1, 2, 0; y)+8H(2, 1, 0, 2; y) -100H(2, 1, 0; y)-32H(2, 1, 0, 0; y) 

-32H(2, 1, 1, 0; y) -40H(3, 2, 2; y)- 24H(3, 2, 2, 0; y)+32H(1, 0; z)H(O, 2; y) 

+48H(3, 2, 3, 2; y)+4H(3, 2; y)- 24H(3, 2, 0, 2; y) -16H(1; z)H(1, 0, 3; y) 

+52H(3, 2, 0; y)+56H(3, 2, 1, 0; y)+48H(3, 3, 2, 2; y)+24H(1, 0; z)H(1, 2; y) 

-136H(3, 3, 2; y) -24H(3, 3, 2, 0; y)+48H(3, 3, 3, 2; y)+ 16H(1, 0, 1; z)H(1; y) 

-24H(3, 3, 0, 2; y) -24H(3, 0, 2, 2; y) +52H(3, 0, 2; y)- 24H(3, 0, 3, 2; y) 

+56H(3, 0, 1, 0; y) +20H(O, 2, 2; y) + 16H(O, 2, 2, 0; y) -16H(O, 2, 3, 2; y) 
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E. The "'/* qijg NNLO Matrix Element coefficients 

-4H(O, 2; y)+ 16H(O, 2, 0, 2; y) -4H(O, 2, 0; y)- 24H(O, 2, 1, 0; y) 

-24H(O, 3, 2, 2; y)+52H(O, 3, 2; y)-24H(O, 3, 3, 2; y)-29H(O; y) 

+16H(O, 0, 2, 2; y) -4H(O, 0, 2; y) +24H(O, 0, 3, 2; y)+20H(O, 0; y) -16H(O, 0, 1, 0; y) 

---8H(O, 1,2,0;y)-8H(O, 1,0,2;y)-20H(O, 1,0;y)+16H(O, 1, 1,0;y) 

+l6H(1, 2, 3, 2; y)- 24H(1, 2, 0; y) -l6H(1, 2, 0, 0; y) -8H(1, 2, 1, 0; y) 

-24H(l, 0, 2; y) -l6H(1, 0, 2, 0; y)+ 16H(1, 0, 3, 2; y) -56H(1, 0; y) -l6H(l, 0, 0, 2; y) 

+24H(l, 0, 0; y)+24H(1, 0, 1, 0; y)+40H(l, l, 0; y)+32H(1, 1, 0, 0; y)J , 

(E.5) 

159 



E. The "Y* -+ qijg NNLO Matrix Element coefficients 

D2o(y, z) = 

z 1 
-[-2H(O;z)-3H(1,0;z)-3H(1,0;y)J+ ( ) [-2H(1,0;z)-2H(1,0;y)J 
3y y y+z 

1 -r-::- [ -74+15H(O; z)+36H(1, 0; z)+15H(O; y)+36H(1, 0; y)] 
18y 

[27r2 -3H(O; z)H(O; y)+50H(O; y) -18H(O, 0; y) -12H(1, 0; y)] 

z [ 2 

18
(
1
-y) 61r +38-3H(O; z)-9H(O; z)H(O; y)+87H(O; y)-54H(O, 0; y) 

-36H(1, 0; y)] + ( z )3 [ -21r2H(1; z)+27r2H(2; y)+ 12H(O; z)H(2, 0; y) 
y+z 

+12H(O, 1, 0; z) + 12H(1, 0; z)+ 12H(1, 0; z)H(2; y) -12H(1, 0; z)H(O; y) 

-12H(2, 1, 0; y) -12H(O, 1, 0; y)+ 12H(1, 0; y) -12H(1, 1, 0; z)] 

z 41f2 47r2 
( )2 [21r2+ -H(1; z)- -H(2; y) -8H(1, 0; z)H(2; y) 
y+z 3 3 

---6H(O; z) -8H(O; z)H(2, 0; y)+ 12H(O; z)H(O; y) -8H(O, 1, 0; z)+4H(1, 0; z) 

+8H(1, 0; z)H(O; y)+8H(1, 1, 0; z)+8H(2, 1, 0; y)+6H(O; y)+8H(O, 1, 0; y) 
z 1f2 

-20H(1, 0; y)] +-[- -+2H(O; z)-2H(O; z)H(O; y) -2H(1, 0; z)-2H(O; y) 
y+z 3 

z2 
+2H(1, 0; y)] + ( )4 [21r2H(1; z) -21r2H(2; y) -12H(O; z)H(2, 0; y) -12H(O, 1, 0; z) 

y+z 

-12H(1, 0; z)H(2; y) + 12H(1, 0; z)H(O; y)+ 12H(1, 1, 0; z)+ 12H(2, 1, 0; y) 
z2 47r2 47r2 

+12H(O, 1, 0; y)] + ( )3 [ -21r2- -H(1; z)+-H(2; y)+8H(O; z)H(2, 0; y) 
y+z 3 3 

+8H(O, 1, 0; z) -12H(1, 0; z)+8H(1, 0; z)H(2; y) -8H(1, 0; z)H(O; y) -8H(1, 1, 0; z) 

--8H(2, 1, 0; y) -8H(O, 1, 0; y)+ 12H(1, 0; y) -12H(O; z)H(O; y)] 
z2 

3
(y+z) 2 [1r2+6H(O; z)H(O; y)+6H(1, 0; z) -6H(1, 0; y)] 

1 
9

(
1
-y) [ -47r2+6H(O; z)H(O; y) -70H(O; y) +36H(O, 0; y) +24H(1, 0; y)] 

1 27f2 27f2 
( )2 [-H(1; z) --H(2; y) -4H(O; z)H(2, 0; y) -4H(O, 1, 0; z) 
y+z 3 3 

-4H(1, 0; z)H(2; y)+4H(1, 0; z)H(O; y)+4H(1, 1, 0; z)+4H(2, 1, 0; y)+4H(O, 1, 0; y)] 
1 27f2 7f2 

y+z [- 3 - 3 H(1; z)-4H(1, 0; z)-H(O; y) 

7f2 
y)+2-H(O; z)+2H(O; z)H(2, 0; y)-4H(O; z)H(O; y)+2H(O, 1, 0; z) 

+2H(1, 0; z)H(2; y)- 2H(1, 0; z)H(O; y) -2H(1, 1, 0; z)- 2H(2, 1, 0; y)- 2H(O, 1, 0; y) 
T7r2 

+4H(1, 0; y)] + 
216 

[ +431-12H(O; z)+24H(2; y) -12H(O; y) -24H(1; y) J 
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E. The "Y'" --+ qijg NNLO Matrix Element coefficients 

T 4345 [ 36 -38(3+3H(O; z)H(1, 0; y) -18H(1, 0, 0; z) 

+31H(O; z) + 12H(O; z)H(2, 0; y)+ 10H(O; z)H(O; y) -18H(O; z)H(O, 0; y) 

--41H(O, 0; z) -18H(O, 0; z)H(O; y) -3H(O, 1, 0; z) +29H(1, 0; z) + 12H(1, 0; z)H(2; y) 

-15H(1, 0; z)H(O; y) -12H(2, 1, 0; y)+31H(O; y) -41H(O, 0; y)+3H(O, 1, 0; y) 

-29H(1, 0; y) + 18H(1, 0, 0; y)+ 12H(1, 1, 0; y)] 
7!"2 

z)H(O; y)+2H(1, 0; z)-2H(1, 0; y), 

(E.6) 
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E2o(y, z) = 

[ -21r2H(2; y) + 12H(O; z)H(2, 2; y) -47H(O; z)H(2; y) +3H(O; z)H(2, 0; y) 
9y 

-15H(O; z)H(3, 2; y)+3H(O; z)H(O, 2; y)+18H(O, 0; z)H(2; y)+9H(O, 1; z) 

+3H(O, 1; z)H(3; y)+12H(1; z)H(2, 3; y)+12H(1; z)H(3, 2; y) -12H(1; z)H(3, 3; y) 

-38H(1; z)H(3; y)+3H(1; z)H(3, 0; y)+3H(1; z)H(O, 3; y) -9H(1; z)H(O; y) 

-12H(1, 0; z)H(2; y)+ 15H(1, 0; z)H(3; y) -12H(1, 1; z)H(3; y) -12H(2, 3, 2; y) 

+9H(2, 0; y) -12H(3, 2, 2; y) +38H(3, 2; y) -3H(3, 2, 0; y)+9H(1, 0; z) 

+12H(3, 3, 2; y) -3H(3, 0, 2; y)+9H(O, 2; y) -3H(O, 3, 2; y)J 

1 
( ) [ -2H(O; z)H(2; y)+2H(O, 1; z)- 2H(1; z)H(O; y)+2H(1, 0; z)+2H(2, 0; y) 

y y+z 
1 

+2H(O, 2; y)J +- [81r2H(2; y) -38+3H(O; z) -48H(O; z)H(2, 2; y) 
18y 

+188H(O; z)H(2; y) -12H(O; z)H(2, 0; y)+60H(O; z)H(3, 2; y) -12H(O; z)H(O, 2; y) 

-72H(O, 0; z)H(2; y) -36H(O, 1; z) -12H(O, 1; z)H(3; y) -48H(1; z)H(2, 3; y) 

-48H(1; z)H(3, 2; y) +48H(1; z)H(3, 3; y)+ 152H(1; z)H(3; y) -12H(1; z)H(3, 0; y) 

-12H(1; z)H(O, 3; y)+36H(1; z)H(O; y) -36H(1, 0; z)+48H(1, 0; z)H(2; y) 

---60H(1, 0; z)H(3; y)+48H(1, 1; z)H(3; y) +48H(2, 3, 2; y) -36H(2, 0; y) 

+48H(3, 2, 2; y) -152H(3, 2; y)+ 12H(3, 2, 0; y) -48H(3, 3, 2; y) 

+12H(3, 0, 2; y) -36H(O, 2; y) + 12H(O, 3, 2; y)+ 15H(O; y)] + [- 21r2 

+3H(O; z)H(O; y) -50H(O; y) + 18H(O, 0; y)+ 12H(1, 0; y)] 

( z ) [ -67r2 -38+3H(O; z)+9H(O; z)H(O; y) -87H(O; y)+54H(O, 0; y) 
18 1-y 

1 
+36H(1, 0; y)J + ( ) [21r2 -3H(O; z)H(O; y) +38H(O; y) -18H(O, 0; y) -12H(1, 0; y)J 

9 1-y 
1 

( ) 2 [ -9H(O; z)H(2; y)-3H(O, 1; z)-26H(1; z)+12H(1; z)H(2; y) 
9 y+z 

-12H(1; z)H(3; y)+9H(1; z)H(O; y)+9H(1, 0; z) -12H(1, 1; z) 

-12H(2, 2; y) +26H(2; y) -9H(2, 0; y) + 12H(3, 2; y) -9H(O, 2; y)] 
1 T1r2 

( ) [ +38-9H(O; z)-12H(1; z)+12H(2; y) -9H(O; y)] +- [ -7+H(1; z) 
9 y+z 36 

T 4085 
---5H(2; y)+4H(1; y)] + 

108 
[- -

6
- +6(3 +72H(O; z)+72H(O; z)H(2, 2; y) 

-147H(O; z)H(2; y) +36H(O; z)H(2, 0; y) -108H(O; z)H(3, 2; y)+36H(O; z)H(O, 2; y) 
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E. The "Y* --+ qijg NNLO Matrix Element coefficients 

-18H(O; z)H(1, 0; y) + 108H(O, 0; z)H(2; y) -36H(O, 0, 1; z) -201H(O, 1; z) 

+72H(O, 1; z)H(2; y)- 36H(O, 1; z)H(3; y) + 72H(O, 1; z)H(O; y) + 18H(O, 1, 0; z) 

-t-68H(1; z) + 144H(1; z)H(2, 3; y) -108H(l; z)H(2; y) -72H(1; z)H(2, 0; y) 

+144H(1; z)H(3, 2; y) -144H(1; z)H(3, 3; y)-348H(1; z)H(3; y)+108H(1; z)H(3, 0; y) 

-72H(1; z)H(O, 2; y)+ 108H(1; z)H(O, 3; y)+147H(1; z)H(O; y) -108H(1; z)H(O, 0; y) 

-s1H(1, 0; z) -72H(1, 0; z)H(2; y) + 108H(1, 0; z)H(3; y)-18H(1, 0; z)H(O; y) 

+108H(1, 1; z) -144H(1, 1; z)H(3; y) +72H(1, 1; z)H(O; y) + 108H(2, 2; y) -72H(1, 0, 1; z) 

+72H(2, 2, 0; y) -144H(2, 3, 2; y) -68H(2; y) +72H(2, 0, 2; y) -72H(O, 1, 1; z) 

-147H(2, 0; y) + 108H(2, 0, 0; y) -144H(3, 2, 2; y) +348H(3, 2; y) 

-108H(3, 2, 0; y) + 144H(3, 3, 2; y) -108H(3, 0, 2; y)+72H(O, 2, 2; y) 

-147H(O, 2; y) + 108H(O, 2, 0; y) -108H(O, 3, 2; y) +72H(O; y) + 108H(O, 0, 2; y) 

-18H(O, 1, 0; y) +228H(1, 0; y) -108H(1, 0, 0; y) -72H(1, 1, 0; y)] + [21r2 +21r2H(1; z) 

--47r2H(2; y)+2n2H(1; y)+ 19H(O; z) + 12H(O; z)H(2, 2; y)- 29H(O; z)H(2; y) 

-t-6H(O; z)H(2, 0; y) -18H(O; z)H(3, 2; y)+6H(O; z)H(O, 2; y) -3H(O; z)H(O; y) 

-3H(O; z)H(1, 0; y)-9H(O, 0; z)+18H(O, 0; z)H(2; y)-6H(O, 0, 1; z)-35H(O, 1; z) 

+12H(O, 1; z)H(2; y) -6H(O, 1; z)H(3; y)+ 12H(O, 1; z)H(O; y)+3H(O, 1, 0; z) 

+38H(1; z)+24H(1; z)H(2, 3; y)-12H(1; z)H(2; y) -12H(1; z)H(2, 0; y) -12H(O, 1, 1; z) 

+24H(1; z)H(3, 2; y)- 24H(1; z)H(3, 3; y) -64H(1; z)H(3; y)+ 18H(1; z)H(3, 0; y) 

-12H(1; z)H(O, 2; y) + 18H(1; z)H(O, 3; y)+29H(1; z)H(O; y) -18H(1; z)H(O, 0; y) 

-12H(1, 0; z)H(2; y)+ 18H(1, 0; z)H(3; y) -3H(1, 0; z)H(O; y) -12H(1, 0, 1; z) 

-24H(1, 1; z)H(3; y) + 12H(1, 1; z)H(O; y)+ 12H(2, 2; y) + 12H(2, 2, 0; y) -3H(1, 0; z) 

-24H(2, 3, 2; y) -38H(2; y)+ 12H(2, 0, 2; y) -29H(2, 0; y) + 12H(1, 1; z) 

+18H(2, 0, 0; y)- 24H(3, 2, 2; y)+64H(3, 2; y) -18H(3, 2, 0; y) 

+24H(3, 3, 2; y) -18H(3, 0, 2; y) + 12H(O, 2, 2; y) -29H(O, 2; y) 

+18H(O, 2, 0; y) -18H(O, 3, 2; y)+ 19H(O; y)+ 18H(O, 0, 2; y) -9H(O, 0; y) 

-3H(O, 1, 0; y) +32H(1, 0; y) -18H(1, 0, 0; y) -12H(1, 1, 0; y)] , 
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--------------- ----

E. The 1"' --+ qijg NNLO Matrix Element coefficients 

F2o(y, z) = 

T 
- [ -1771"2

- 20H(O; z)+3H(O; z)H(O; y) + 15H(O, 0; z) -20H(O; y) + 15H(O, 0; y)] , 
108 

(E.8) 

G2o(y, z) = 

z z2 
2 [ -9H(O; z)H(2; y) -9H(1; z)H(3; y)+9H(3, 2; y)] + 2 (3H(O; z)H(2; y) 
y y 

1 
+3H(1; z)H(3; y) -3H(3, 2; y)] + 2 [6H(O; z)H(2; y)+6H(1; z)H(3; y) -6H(3, 2; y)] 

y 
Z7!"2 

+-:---- [ 12H(1; z)H(2; y) -12H(2, 2; y) -2H(2; y) + 12H(2, 0; y) -2H(1; y)] 
9y 
z 

+::- [ -72(3H(2; y) -9H(O; z)+ 12H(O; z)H(2, 2; y) -18H(O; z)H(2; y) 
3y 

-4H(O; z)H(2, 0; y) -8H(O; z)H(3, 2; y) -4H(O; z)H(1, 0; y)+24H(O, 0, 1; z)H(2; y) 

+24H(O, 1; z)H(2, 2; y) -8H(O, 1; z)H(2; y) -24H(O, 1; z)H(2, 0; y) 

-24H(O, 1; z)H(3, 2; y)- 24H(O, 1; z)H(3, 3; y) +4H(O, 1, 1; z)+24H(O, 1, 1; z)H(3; y) 

+24H(1; z)H(2, 2, 3; y) +4H(1; z)H(2, 3; y) -24H(1; z)H(2, 0, 3; y) 

+4H(1; z)H(2, 0; y)- 24H(1; z)H(3, 2, 3; y)+8H(1; z)H(3, 2; y) 

+24H(1; z)H(3, 2, 0; y)- 24H(1; z)H(3, 3, 2; y) -24H(1; z)H(3, 3, 3; y) 

--8H(1; z)H(3, 3; y) +24H(1; z)H(3, 3, 0; y) -18H(1; z)H(3; y) +24H(1; z)H(3, 0, 2; y) 

--8H(1; z)H(3, 0; y) +4H(1; z)H(O, 2; y) -4H(1; z)H(1, 0; y) -12H(1, 0; z)H(2; y) 

+8H(1, 0; z)H(3; y)+4H(1, 0, 1; z) -24H(1, 0, 1; z)H(2; y)+24H(1, 0, 1; z)H(3; y) 

+24H(1, 1; z)H(3, 3; y) -8H(1, 1; z)H(3; y) -24H(1, 1; z)H(3, 0; y) 

+4H(1, 1, 0; z) -24H(2, 2, 3, 2; y) -4H(2, 2, 0; y)+24H(2, 2, 1, 0; y) 

-4H(2, 3, 2; y)-4H(2, 0, 2; y)+24H(2, 0, 3, 2; y)-24H(2, 0, 1, 0; y) 

--8H(3, 2, 2; y)-24H(3, 2, 2, 0; y)+24H(3, 2, 3, 2; y)-4H(1, 1; z)H(O; y) 

+18H(3, 2; y) -24H(3, 2, 0, 2; y)+8H(3, 2, 0; y)+24H(3, 2, 1, 0; y) 

+24H(3, 3, 2, 2; y)+8H(3, 3, 2; y)-24H(3, 3, 2, 0; y) 

+24H(3, 3, 3, 2; y) -24H(3, 3, 0, 2; y)- 24H(3, 0, 2, 2; y)+8H(3, 0, 2; y) 

+24H(3, 0, 1, 0; y)-4H(O, 2, 2; y)+4H(1, 2, 0; y)+4H(1, 0, 2; y)+4H(1, 1, 0; y)] 
z2 1 271"2 

+- (3H(O; z)H(2; y)+3H(1; z)H(3; y) -3H(3, 2; y)] + ( ) [ -
3 

H(1; y) 
y 3y 1-y-z 
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E. The 1"' -+ qijg NNLO Matrix Element coefficients 

+4H(O; z)H(3, 2; y)+4H(O; z)H(1, 0; y)+4H(1; z)H(3, 3; y)+4H(1; z)H(3, 0; y) 

+4H(1; z)H(1, 0; y) -4H(1, 0; z)H(3; y) -4H(3, 2, 0; y) -4H(3, 3, 2; y) 
1 27r2 

-4H(3, 0, 2; y) -4H(1, 2, 0; y) -4H(1, 0, 2; y) -4H(1, 1, 0; y)] + ( ) [-H(1; y) 
3y 1-z 3 

+4H(O; z)H(3, 2; y)+4H(O; z)H(1, 0; y)+4H(1; z)H(3, 3; y)+4H(1; z)H(3, 0; y) 

+4H(1; z)H(1, 0; y) -4H(1, 0; z)H(3; y) -4H(3, 2, 0; y) -4H(3, 3, 2; y) 

-4H(3, 0, 2; y) -4H(1, 2, 0; y) -4H(1, 0, 2; y) -4H(1, 1, 0; y)] 
1 

( ) [8H(O; z)H(2, 2; y) -8H(O, 1; z)H(2; y)+8H(O, 1, 1; z)+8H(1; z)H(2, 0; y) 
3y y+z 

+8H(1; z)H(O, 2; y) -8H(1, 0; z)H(2; y)+8H(1, 0, 1; z) -8H(1, 1; z)H(O; y) 

-8H(2, 2, 0; y) -8H(2, 0, 2; y) -8H(O, 2, 2; y)+8H(1, 1, 0; z)] 
7r2 

I gy [ -6H(1; z)H(2; y)+6H(2, 2; y)+ H(2; y) -6H(2, 0; y)+H(1; y)] 

1 
+::--- [36(3H(2; y)+ 18H(O; z) -12H(O, 1; z)H(2, 2; y)+9H(1; z) 

3y 

-12H(O; z)H(2, 2; y)+ llH(O; z)H(2; y) -4H(O; z)H(2, 0; y) -2H(O; z)H(3, 2; y) 

--1-{)H(O; z)H(O, 2; y)+2H(O; z)H(1, 0; y) -12H(O, 0, 1; z)H(2; y) 

+4H(O, 1; z)H(2; y) + 12H(O, 1; z)H(2, 0; y)+ 12H(O, 1; z)H(3, 2; y) 

+12H(O, 1; z)H(3, 3; y)+6H(O, 1; z)H(3; y) -8H(O, 1, 1; z) -12H(O, 1, 1; z)H(3; y) 

-12H(1; z)H(2, 2, 3; y) -8H(1; z)H(2, 3; y)+ 12H(1; z)H(2, 0, 3; y) 

-8H(1; z)H(2, 0; y)+ 12H(1; z)H(3, 2, 3; y) -4H(1; z)H(3, 2; y) 

-12H(1; z)H(3, 2, 0; y)+12H(1; z)H(3, 3, 2; y)+12H(1; z)H(3, 3, 3; y) 

+4H(1; z)H(3, 3; y) -12H(1; z)H(3, 3, 0; y)+ 11H(1; z)H(3; y) -12H(1; z)H(3, 0, 2; y) 

-2H(1; z)H(3, 0; y) -8H(1; z)H(O, 2; y)+6H(1; z)H(O, 3; y)+2H(1; z)H(1, 0; y) 

-t{)H(1, 0; z)H(2; y)+2H(1, 0; z)H(3; y)-8H(1, 0, 1; z)+12H(1, 0, 1; z)H(2; y) 

-12H(1, 0, 1; z)H(3; y) -12H(1, 1; z)H(3, 3; y) +4H(1, 1; z)H(3; y) 

+8H(1, 1; z)H(O; y) -8H(1, 1, 0; z)+ 12H(2, 2, 3, 2; y)+8H(2, 2, 0; y) 

-12H(2, 2, 1, 0; y)+8H(2, 3, 2; y) -9H(2; y)+8H(2, 0, 2; y)+ 12H(1, 1; z)H(3, 0; y) 

-12H(2, 0, 3, 2; y) + 12H(2, 0, 1, 0; y)+4H(3, 2, 2; y) 

+12H(3, 2, 2, 0; y) -12H(3, 2, 3, 2; y) -11H(3, 2; y) -12H(3, 3, 3, 2; y) 

+12H(3, 2, 0, 2; y)+2H(3, 2, 0; y) -12H(3, 2, 1, 0; y) + 12H(3, 3, 0, 2; y) 

-12H(3, 3, 2, 2; y) -4H(3, 3, 2; y)+ 12H(3, 3, 2, 0; y)+ 12H(3, 0, 2, 2; y) 
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+2H(3, 0, 2; y) -12H(3, 0, 1, 0; y)+8H(O, 2, 2; y) -6H(O, 3, 2; y) 

z 
-2H(1,2,0;y)-2H(1,0,2;y)-2H(1,1,0;y)J+ ( )[--

3 
H(1;z)--

3 
H(1;y) 

3 1-y-z 

-8H(O; z)H(3, 2; y) +4H(O; z)H(O, 2; y) -4H(O; z)H(1, 0; y) +8H(O, 0, 1; z) 

+8H(O, 1; z)H(3; y) -4H(O, 1; z)H(O; y)+4H(O, 1, 0; z) -8H(1; z)H(3, 0; y)+8H(3, 2, 0; y) 

+8H(1, 0; z)H(3; y) -4H(1, 0; z)H(O; y) -4H(1, 0, 1; z) -8H(1, 1, 0; z) -4H(1; z)H(1, 0; y) 

+8H(3, 0, 2; y) -4H(O, 1, 0; y)+4H(1, 2, 0; y) +4H(1, 0, 2; y) +4H(1, 1, 0; y)J 

z 
I ( )2 [ -3- H(O; z) -H(1; z)+H(2; y)J + ( )2 [6(3- 2H(O; z)H(O, 2; y) 
31-y 1-y 

+2H(O, 0, 1; z)+6H(O, 1; z)-2H(O, 1; z)H(2; y)-2H(O, 1, 0; z)-2H(1; z)H(2, 3; y) 

+6H(1; z)H(3; y)- 2H(1; z)H(O, 3; y) -6H(1, 0; z)+2H(1, 0; z)H(2; y) +2H(1, 0, 1; z) 

-2H(1, 1, 0; z)+2H(2, 3, 2; y)-6H(3, 2; y)+2H(O, 3, 2; y)J 

[3H(O; z) -2H(O; z)H(2; y)+3H(1; z) -2H(1; z)H(3; y) -3H(2; y)+2H(3, 2; y)J 
1-y 

z 
( )3 [ -8H(O; z)H(2, 2; y)-24H(O; z)H(2; y)+24H(O, 1; z)+8H(O, 1; z)H(2; y) 

3 y+z 

-8H(O, 1, 1; z) -8H(1; z)H(2, 0; y) -8H(1; z)H(O, 2; y)- 24H(1; z)H(O; y)+24H(1, 0; z) 

+8H(1, 0; z)H(2; y) -8H(1, 0, 1; z)+8H(1, 1; z)H(O; y) -8H(1, 1, 0; z)+8H(2, 2, 0; y) 

+8H(2, 0, 2; y) + 24H(2, 0; y) +8H(O, 2, 2; y) + 24H(O, 2; y) J 

z 
( )2 [- 24H(O; z)+4H(O; z)H(2, 2; y)+ 16H(O; z)H(2; y) -16H(O, 1; z) 

3 y+z 

-4H(O, 1; z)H(2; y)+4H(O, 1, 1; z)+4H(1; z)H(2, 0; y)+4H(1; z)H(O, 2; y) 

+16H(1; z)H(O; y) -16H(1, 0; z) -4H(1, 0; z)H(2; y) +4H(1, 0, 1; z) -4H(1, 1; z)H(O; y) 

+4H(1, 1, 0; z) -4H(2, 2, 0; y) -4H(2, 0, 2; y) -16H(2, 0; y) -4H(O, 2, 2; y) 

-16H(0,2;y)+24H(O;y)J+ ( z ) [8H(O;z)-8H(O;z)H(2,2;y)+8H(0,1;z)H(2;y) 
3 y+z 

-8H(O, 1, 1; z) -8H(1; z)H(2, 0; y) -8H(1; z)H(O, 2; y)+8H(1, 0; z)H(2; y) -8H(1, 0, 1; z) 

+8H(1, 1; z)H(O; y) -8H(1, 1, 0; z) +8H(2, 2, 0; y) +8H(2, 0, 2; y) +8H(O, 2, 2; y) 
z2 

-8H(O; y)J + ( )3 y) -18(3+6H(O; z)H(O, 2; y) 
1-y 

-6H(O, 0, 1; z)+6H(O, 1; z)H(2; y)+6H(O, 1, 0; z)+6H(1; z)H(2, 3; y)+6H(1; z)H(O, 3; y) 

-6H(1, 0; z)H(2; y) -6H(1, 0, 1; z) +6H(1, 1, 0; z) -6H(2, 3, 2; y) -6H(O, 3, 2; y)J 
z2 z2 

I (
1
-y)2 [6H(O; z)H(2; y)+6H(1; z)H(3; y)-6H(3, 2; y)J + 

1
_y [3H(O; z)H(2; y) 
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1 21f2 
+3H(1; z)H(3; y) -3H(3, 2; y)] + ( )( ) [- -H(1; z) -4H(O; z)H(3, 2; y) 

3 1-y-z 1-y 3 

-t4H(O; z)H(O, 2; y)+8H(O, 0, 1; z)+SH(O, 1; z)H(3; y) -4H(O, 1; z)H(O; y) 

-t4H(O, 1, 0; z)+4H(1; z)H(3, 3; y)-4H(1; z)H(3, 0; y)+4H(1, 0; z)H(3; y) 

-4H(1, 0; z)H(O; y) -4H(1, 0, 1; z) -8H(1, 1, 0; z) 

-t4H(3, 2, 0; y) -4H(3, 3, 2; y) +4H(3, 0, 2; y) -4H(O, 1, 0; y)] 
1 21f2 1f2 1f2 

( ) [-+-H(1; z)- -H(1; y) -3H(O; z)H(O, 2; y) +4H(O; z)H(O; y) 
3 1-y-z 3 2 2 

-3H(O; z)H(1, 0; y) -6H(O, 0, 1; z) -6H(O, 1; z)H(3; y) +3H(O, 1; z)H(O; y) 

-6H(1; z)H(3, 3; y) -3H(1; z)H(1, 0; y)+4H(1, 0; z)+3H(1, 0; z)H(O; y) 

+6H(1, 1, 0; z)+6H(3, 3, 2; y)+3H(O, 1, 0; y)+3H(1, 2, 0; y)+3H(1, 0, 2; y) 

-4H(1, 0; y)+3H(1, 1, 0; y) -3H(O, 1, 0; z) +3H(1, 0, 1; z)] 
1 1f2 21f2 21f2 21f2 

1
_y [ -2+3H(O; z)+

3
H(1; z)-

3
H(2; y) 

-t4H(O; z)H(O, 2; y)- H(O; z)H(O; y) -4H(O, 0, 1; z)+H(O, 1; z)+4H(O, 1; z)H(2; y) 

-t4H(O, 1, 0; z)+4H(1; z)H(2, 3; y)+H(1; z)H(3; y)+4H(1; z)H(O, 3; y) -H(1; z)H(O; y) 

-H(1, 0; z) -4H(1, 0; z)H(2; y) -4H(1, 0, 1; z)+4H(1, 1, 0; z) -4H(2, 3, 2; y) -12(3 

+H(2, 0; y) -H(3, 2; y)+H(O, 2; y) -4H(O, 3, 2; y)+3H(O; y)+2H(1, 0; y)] 
1 

( )2 [ -1r2H(1; z)+1r2H(2; y) -6H(O; z)H(2, 2; y) -6H(O; z)H(2; y) 
3 y+z 

+6H(O; z)H(2, 0; y) -6H(O; z)H(3, 2; y) +6H(O; z)H(O, 2; y) -6H(O, 1; z) 

-6H(O, 1; z)H(2; y) -6H(O, 1; z)H(3; y)+6H(O, 1, 0; z)+6H(O, 1, 1; z)+24H(1; z) 

-12H(1; z)H(2, 3; y) -8H(1; z)H(2; y)+6H(1; z)H(2, 0; y) -12H(1; z)H(3, 2; y) 

-12H(1; z)H(3, 3; y)-12H(1; z)H(3; y)+6H(1; z)H(3, 0; y)+6H(1; z)H(O, 2; y) 

+6H(1; z)H(O, 3; y)+6H(1; z)H(O; y)+6H(1, 0; z)+6H(1, 0; z)H(2; y) 

-6H(1, 0; z)H(O; y)+6H(1, 0, 1; z)+8H(1, 1; z)+12H(1, 1; z)H(3; y) 

-6H(1, 1, 0; z)+8H(2, 2; y)-6H(2, 2, 0; y)+12H(2, 3, 2; y)-24H(2; y) 

-6H(2, 0, 2; y) -6H(2, 0; y)+ 12H(3, 2, 2; y)+ 12H(3, 2; y) -6H(1, 1; z)H(O; y) 

-6H(3, 2, 0; y)+ 12H(3, 3, 2; y) -6H(3, 0, 2; y) -6H(O, 2, 2; y) +6H(1, 0; z)H(3; y) 
1 1f2 1f2 

-6H(0,2;y)-6H(0,3,2;y)]+ ( ) [7r2+-H(1;z)--H(2;y)-12H(O;z) 
3 y+z 2 2 

-12H(O; z)H(2; y)- 3H(O; z)H(2, 0; y) +6H(O; z)H(O; y) -18H(O, 1; z) -3H(O, 1, 0; z) 

-32H(1; z)-8H(1; z)H(2; y)-30H(1; z)H(3; y)+12H(1; z)H(O; y)+12H(1, 0; z) 
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-3H(1, 0; z)H(2; y)+3H(1, 0; z)H(O; y)+8H(1, 1; z)+3H(1, 1, 0; z)+8H(2, 2; y) 

+32H(2; y) -12H(2, 0; y) +3H(2, 1, 0; y)+30H(3, 2; y) -12H(O, 2; y) 

T 21r2 21r2 

-12H(O; y)+3H(O, 1, 0; y)] +6" [- 3 H(2; y)+ 3 H(1; y)+4H(O; z)H(2, 2; y) 

-4H(O; z)H(2, 0; y)+4H(O; z)H(1, 0; y) -4H(O, 1, 1; z) -9H(1; z) +4H(1; z)H(2, 3; y) 

-4H(1; z)H(2, 0; y)+8H(1; z)H(3, 2; y) -4H(1; z)H(O, 2; y)+4H(1; z)H(1, 0; y) 

-4H(1, 0; z)H(2; y) -4H(1, 0, 1; z) -8H(1, 1; z)H(3; y)+4H(1, 1; z)H(O; y) 

+4H(2, 2, 0; y) -4H(2, 3, 2; y) +9H(2; y)+4H(2, 0, 2; y) -4H(1, 1, 0; z) 

---8H(3, 2, 2; y)+4H(O, 2, 2; y) -4H(1, 2, 0; y) -4H(1, 0, 2; y) -4H(1, 1, 0; y)] 
7r2 +w [25-12H(O; z)+6H(O; z)H(2; y) -6H(O; z)H(1; y)- 23H(1; z)+ 12H(1; z)H(2; y) 

---6H(1; z)H(1; y) -6H(1, 0; z) -6H(1, 1; z) -12H(2, 2; y)+22H(2; y)+6H(2, 0; y) 

1 
-12H(O; y) +6H(1, 2; y)+H(1; y)) + "3 [72(3 + 18(3H(1; z) -36(3H(2; y)+ 18(3H(1; y) 

---5H(O; z)+llH(O; z)H(2, 2; y)+5H(O; z)H(2; y)+6H(O; z)H(2, 0, 2; y) 

+4H(O; z)H(2, 0; y) -6H(O; z)H(3, 2, 2; y)+9H(O; z)H(3, 2; y) 

---6H(O; z)H(3, 3, 2; y)+6H(O; z)H(3, 0, 2; y)+6H(O; z)H(O, 2, 2; y) 

-22H(O; z)H(O, 2; y)+6H(O; z)H(O, 3, 2; y) +H(O; z)H(O; y) -6H(O; z)H(O, 0, 2; y) 

---6H(O; z)H(1, 0, 2; y)- 2H(O; z)H(1, 0; y)- 2H(O, 0, 1; z) +6H(O, 0, 1; z)H(1; y) 

+12H(O, 1; z)H(2, 2; y) -9H(O, 1; z)H(2; y) -6H(O, 1; z)H(2, 0; y) -llH(O, 1; z) 

---6H(O, 1; z)H(3, 2; y) -6H(O, 1; z)H(3, 3; y)+7H(O, 1; z)H(3; y)+13H(O, 1; z)H(O; y) 

---6H(O, 1; z)H(1, 2; y) -10H(O, 1, 0; z)+6H(O, 1, 0; z)H(2; y) -6H(O, 1, 0; z)H(1; y) 

-llH(O, 1, 1; z)+6H(O, 1, 1; z)H(3; y)-10H(1; z)+12H(1; z)H(2, 2, 3; y) 

+2H(1; z)H(2, 3; y) + 16H(1; z)H(2; y) -11H(1; z)H(2, 0; y) 

-12H(1; z)H(3, 2, 3; y)+22H(1; z)H(3, 2; y)+6H(1; z)H(3, 2, 0; y) 

-12H(1; z)H(3, 3, 2; y) -12H(1; z)H(3, 3, 3; y) + 16H(1; z)H(3, 3; y) 

+6H(1; z)H(3, 3, 0; y) -6H(1; z)H(3; y) +6H(1; z)H(3, 0, 2; y)+6H(1; z)H(3, 0, 3; y) 

-9H(1; z)H(3, 0; y)+6H(1; z)H(O, 2, 3; y) -11H(1; z)H(O, 2; y)+6H(1; z)H(O, 3, 2; y) 

+6H(1; z)H(O, 3, 3; y) -9H(1; z)H(O, 3; y) -5H(1; z)H(O; y) -6H(1; z)H(O, 0, 3; y) 
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---6H(1; z)H(1, 2, 3; y) -6H(1; z)H(1, 0, 3; y)- 2H(1; z)H(1, 0; y)+H(1, 0; z) 

---6H(l, 0; z)H(2, 2; y) + 13H(1, 0; z)H(2; y) +6H(1, 0; z)H(3, 3; y) -9H(1, 0; z)H(3; y) 

---6H(1, 0; z)H(O, 3; y) -2H(1, 0; z)H(O; y)+6H(1, 0; z)H(1, 2; y)+6H(1, 0, 0, 1; z) 

-12H(l, 0, 1; z)H(2; y)+6H(1, 0, 1; z)H(3; y)+6H(1, 0, 1; z)H(1; y) -6H(1, 0, 1, 0; z) 

-16H(1, 1; z)+ 12H(1, 1; z)H(3, 3; y) -22H(1, 1; z)H(3; y) -6H(1, 1; z)H(3, 0; y) 

---6H(1, 1; z )H(O, 3; y) + 11H(1, 1; z )H(O; y) -12H(1, 1, 0; z) +6H(1, 1, 0; z)H(2; y) 

---6H(1, 1, 0; z)H(1; y) +6H(1, 1, 0, 1; z) -6H(1, 1, 1, 0; z) -12H(2, 2, 3, 2; y) 

-16H(2, 2; y)+ 11H(2, 2, 0; y)+6H(2, 2, 1, 0; y)- 2H(2, 3, 2; y)+ 11H(1, 0, 1; z) 

+10H(2; y)+ 11H(2, 0, 2; y)+5H(2, 0; y) -6H(2, 0, 1, 0; y)- 24H(2, 1, 0; y) 

-22H(3, 2, 2; y)-6H(3, 2, 2, 0; y)+12H(3, 2, 3, 2; y) 

+6H(3, 2; y) -6H(3, 2, 0, 2; y) +9H(3, 2, 0; y) +6H(3, 2, 1, 0; y) 

+12H(3, 3, 2, 2; y) -16H(3, 3, 2; y) -6H(3, 3, 2, 0; y) 

+12H(3, 3, 3, 2; y) -6H(3, 3, 0, 2; y) -6H(3, 0, 2, 2; y) 

+9H(3, 0, 2; y) -6H(3, 0, 3, 2; y)+6H(3, 0, 1, 0; y) + 11H(O, 2, 2; y) 

---6H(O, 2, 3, 2; y)+5H(O, 2; y) -6H(O, 3, 2, 2; y) +9H(O, 3, 2; y) 

---6H(O, 3, 3, 2; y) -5H(O; y)+6H(O, 0, 3, 2; y) +H(O, 1, 0; y) +6H(1, 2, 3, 2; y) 

+2H(1, 2, 0; y) +2H(1, 0, 2; y)+6H(1, 0, 3, 2; y) -6H(1, 0; y)- H(1, 1, 0; y)] . (E.9) 
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Appendix F 

The 1=l ---+ ggg NNLO Helicity 

Amplitude 

coefficients 

In this appendix we give all one-loop coefficients Bg) and two-loop coefficients 
(2) (2) (2) (2) 0 0 

Aa Ba , Ca and Da , defined m equatiOns 8032 and 80330 

A(l) = 1 { 
a 6yzs123(1 - y- z) 

2 y- 2 z2 - 2 yz- 6 X1 + 6 Y1 + 33 i1r- 2 y2 + 11 W1 - 11 Q1 + 2 z- 6 Z1} , 

B(l) = 1 { 
a 6yzs123(1- y- z) 

-2 y + 2 z2 - 6 i7r + 2 yz- 2 w1 + 2 Q1 + 2 y2 - 2 z} ' 

A(l)
{3 -

11 11 11 1 z _l z2 + 1 z 
-X1 + Y1 - Z1 +- W1 -- Q1 +- i1r-- + 3 3 

6 6 · 2 3 [1 - y - z] [1 - y- z] 2 ' 

B (l)
{3 -

1W 1Q 0 1 z -!z+!z
2 

-- 1 + - 1 - '/,71" + - + 
3 3 3 [1 - y - z] [1 - y- z] 2 

' 
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where: 

Y1 H(2,0;y) -H(3,2;y) -H(1;z)H(3;y) 

-H (0, 1; z) + H (0, 2; y)- H (1, 0; y) + H (0; y) H (1; z) , 
1 

Z1 = H(1,0;y)+H(1,0;z)+H(O;y)H(O;z)+(37r2
, 

X 1 H (3, 2; y) + H (1; z) H (3; y)- H (0; z) H (2; y) , 

W1 = H(2;y)+H(1;z), 

Q1 = H(O;y)+H(O;z), 

and: 

FA= 

55 . 55 1 1 
-6t7r H (1, 0; y)-

12 
i1r H (0, 1; z)- 4 1r2 H (0; y) H (1; z)- (3 1r2 H (1; z) H (3; y) 

(F.5) 

49 389 605 55 605 
-+-uH(2,0;y)-

72 
H(0,1;z)-

72 
i1rH(O;y)-

12
i1rH(1,0;z)-

72 
i1rH(O;z) 

55 2 
-

6 
i1rH (3, 2; y)- 3 1r2H (1; z) H (2; y)-2 H (0, 3, 0; y) H (1; z) 

1 1 
+2H (0, 1; z) H (3, 2; y)+ 4 1r2 H (0; y) H (0; z)- 4 1r2 H (0; z) H (2; y) 

11 
H (0, 0; y) H (0; z)-2 H (0, 3, 2; y) H (1; z)-2 H (1, 0; z) H (2, 2; y) 

11 
-2 H (1, 1, 0; z) H (3; y)- 2 H (1; z) H (3, 0, 2, y) + 3 H (1; z) H (3, 3; y) 

11 55 11 -3 H (0, 0; y) H (1; z)- 6 H (1; z) H (2, 3; y)+ 3 H (0, 0; z) H (0; y) 

11 11 11 11 +t2 H (0; y) H(1,0; z)-B (s- 3 H (0,0; z) H (2; y)+ 3 H (1; z) H (2,0; y) 

22 11 3 H (1, 1; z) H (3; y)+4(4 +4 H (1; z) H (3, 3, 2; y)+ 3 H (0; y) H (1, 1; z) 

11 49 +t2 H (0; z) H (2, 0; y)+ 
24 

H (0; y) H (1; z)-2 H (1; z) H (2, 1, 0; y) 

22 11 11 - 3 H (1; z) H (3, 2; y)+ 
12 

H (0, 1; z) H (0; y)+ 3 H (0; z) H (2, 2; y) 
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49 
-2 H (0, 1; z) H (2, 0; y)+ 

24 
H (0; z) H (2; y)- H (0; y) H (1, 1, 0; z) 

-H (0; y) H (1, 0, 1; z)+H (0; y) H (1, 0, 0; z)-H (0, z) H (2, 0, 2; y) 

-H (0; z) H (2, 0, 0; y)+H (0; z) H (1, 2, 0; y)+H (0, z) H (1, 0, 2; y) 

+H (0, 0, 1; z) H (0; y)+H (0, 0; z) H (2, 2; y)-H (0, 0; z) H (2, 0; y) 

-H (0, 0; z) H (0, 2; y)+H (0, 0; y) H (1, 1; z) -H (0, 0; y) H (1, 0; z) 

-H (0, 0; y) H (0, 1; z)+H (0, 0; y) H (0, 0; z) -H (0, z) H (3, 2, 0; y) 

-H ( 0; z) H ( 3, 0, 2; y) - H ( 0; z) H ( 2, 3, 2; y) - H ( 0; z) H ( 2, 2, 0; y) 

-H (0; z) H (2, 1, 0; y) -2 H (1, 1; z) H (3, 0; y)+4H (1, 1; z) H (3, 3; y) 

13 13 67 49 13 -1--;f H (1; z)+ 4 H (2; y)-g H (3, 2; y)+ 
24 

H (0, 2; y)- 4 H (0; y) 

1 22 185 55 +:i H (0; z)+ 3 H (1, 0, 0; y)+l2 i1r- 6 i1r H (1; z) H (3; y) 

55 . 389 121 67 

72 
H(1,0;z)+ 

24 
H(2,2;y)-g-H(1,0;y) 

11 121 55 - 2 H(1,0,1;z)+ 
24 

H(1,1;z)+
12

i7rH(O;z)H(2;y) 

55 . 3 . 55 55 
H (0; y) H (1; z)+ 2 1r+ 

12 
i1r H (0, 2; y)+ 

12 
i1r H (2, 0; y) 

605 605 121 121 
-tni7rH(1;z)+ 

72 
i7rH(2;y)+ 

24 
H(O,O;y)+ 

24 
H(O,O;z) 

11 55 11 11 - 3 H (0, 0, 2; y)+ 6 H (0, 1, 0; y)+ 2 H (0, 1, 0; z)- 3 H (0, 1, 1; z) 

11 11 11 11 J H (0, 2, 0; y)+ 3 H (0, 2, 2; y)- 3 H (2, 0, 0; y)+ 3 H (2, 0, 2; y) 

11 11 11 55 
H (2, 2,0; y)+ 3 H (1, 0,0; z)- 3 H (1, 1,0; y)- 6 H (2, 3, 2;y) 

22 11 - 3 H (3, 2, 2; y)+ 3 H (3, 3, 2; y)+2 H (0, 0, 1, 0; y)+H (0, 0, 1, 1; z)+H (0, 0, 2, 2; y) 

+H (0, 1, 0, 1; z)- 2 H (0, 0, 3, 2; y)- 2 H (0, 3, 0, 2; y) -2 H (0, 3, 2, 0; y) 

-2 H (0, 3, 2, 2; y)-H (0, 1, 0, 2; y)+4 H (0, 1, 1, 0; y)+H (0, 1, 1, 0; z) 

-H (0, 1, 2, 0; y)+H (0, 2, 0, 2; y) -H (0, 2, 1, 0; y)+H (0, 2, 2, 0; y) 

-H (0, 2, 3, 2; y)+H (1, 0, 0, 1; z)-2 H (1, 0, 0, 2; y)+4H (3, 3, 3, 2; y) 

-+4 H (1, 0, 1, 0; y)+H (1, 0, 1, 0; z) -2 H (1, 0, 2, 0; y)+4 H (1, 1, 0, 0; y) 

+H (1, 1, 0, 0; z)+4 H (1, 1, 1, 0; y)-2 H (1, 2, 0, 0, y)+H (2, 0, 0, 2; y) 
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F. The 1l 4- ggg NNLO Helicity Amplitude 
coefficients 

-H (2, 0, 1, 0; y)+H (2, 0, 2, 0; y)-H (2, 0, 3, 2; y)-2 H (2, 1, 0, 0; y) 

-2 H (2, 1, 0, 2; y) -2 H (2, 1, 2, 0; y)+H (2, 2, 0, 0; y)-2H (2, 2, 1, 0; y) 

+2 H (2, 2, 3, 2; y) -H (2, 3, 0, 2; y)-H (2, 3, 2, 0; y)+4 H (2, 3, 3, 2; y) 

-2 H (3, 0, 2, 2; y)-2H (3, 2, 0, 2; y)-2 H (3, 2, 2, 0; y)+4 H (3, 2, 3, 2; y) 

-t4H (3, 3, 2, 2; y)+H (0, 0, 2; y) H (0; z)+H (0, 0, 2; y) H (1; z) 

+H (0, 1; z) H (1, 0, y) -H (0, 1; z) H (3, 0; y)+H (0, 1, 0; y) H (0; z) 

-H (0, 1, 0; y) H (1; z)+H (0, 1; z) H (0, 3; y)+H (0, 1, 0; z) H (0; y) 

-H (0, 1, 0; z) H (2; y) -H (0, 1, 1; z) H (0; y)+H (0, 2, 0; y) H (0; z) 

+H (0, 2, 0; y) H (1; z)+H (0, 2, 2; y) H (0; z) -H (0, 2, 3; y) H (1; z) 

+H (0, 3; y) H (1, 0; z)+H (0, 3, 2; y) H (0; z)+H (1; z) H (2, 0, 0; y) 

-H (1; z) H (2, 0, 3; y) -H (1; z) H (2, 3, 0; y)+H (1, 0; y) H (1, 0; z) 

-H ( 1, 0, z) H ( 2, 3; y) - H ( 1, 0, 0; z) H ( 2, y) - H ( 1, 0; z) H ( 3, 0; y) 

1 2 1 1 
(3 H (1; z)+ 31r2H (1, 1; y)+ 2 (3 H (2; y)- 61r2H (3, 2; y) 

1 11 55 1 1 -41r2H (0, 2; y)-
18 

1r2H (1; y)+ 
48 

1r2H (2, y)- 2 (3 H (0; y)- 2 (3 H (0; z) 

+2 H (0; z) H (1, 0, 0; y) -l1r2H (2, 0; y)+l1r2H (0, 1; z)+l1r2H (1, 0; z) 

2 2 2 2 1 2 
-2H(1,0,0;y)H(1;z)+ 37r H(0,1;y)- 37r H(2,2;y)+ 27T H(1,0;y) 

121 77 55 55 -+---u- H (1; z) H (2; y)+ 
144 

1r2H (1; z)+ 
144 

1r2H (0; z)+ 
144 

1r2H (0; y) 

49 67 
+2 H ( 1, 0, 1; z) H ( 3; y) -

24 
H ( 0; y) H ( 0; z) - g H ( 1; z) H ( 3; y) 

11 11 
H (1, 0; z) H (2; y)-2 H (0, 3; y) H (1, 1; z)- 2 H (0, 1; z) H (2; y) 

11 11 11 
H (0, 1; z) H (3; y)+ 

12 
H (0, 2; y) H (0; z)+J H (0, 2; y) H (1; z) 

-2 H (0; z) H (3, 2, 2; y)+3 H (0, 0, 1; z) H (2; y)+4 H (0, 0, 1; z) H (3; y) 

-2 H (0, 0, 3; y) H (1; z)+2 H (0, 1; z) H (2, 2, y)+3 H (0, 1; z) H (2, 3; y) 

-+4 H (0, 1; z) H (3, 3; y)+2 H (0, 1, 1; z) H (3; y)+2 H (1; z) H (2, 2, 3, y) 

-+4 H (1; z) H (2, 3, 3; y) -2 H (1; z) H (3, 2, 0; y)+4 H (1; z) H (3, 2, 3; y) 

-t4H (1; z) H (3, 3, 3; y)-2 H (1, 0; z) H (2, 0; y)-2H (1, 0; z) H (3, 2; y) 

-4 H (1 1 O· z) H (2· y)- 77 i7T3- _!_ 7T4- 5029 7T2 + 1321 
' ' ' , 144 96 432 108 ' 
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F. The 1l --t ggg NNLO Helicity Amplitude 

coefficients 

Fe= 
1 7 2 5 

18 
H (2, 0; y)+ 6 H (0, 1; z)- 3 H (0, 0; y) H (0; z)-

6 
i1r H (0; z) H (2; y) 

i1r H (0; y) H (1; i1r H (1; z) H (3; i1r H (0; y) H (0; z) 

2 2 5 -3 H (1; z) H (3, 3; y)+ 3 H (0, 0; y) H (1; z)+ 3 H (1; z) H (2, 3, y) 

2 1 7 2 -3 H (0, 0; z) H (0; y)-
6 

H (0; y) H (1, 0; z)- "4 (3 + 3 H (0, 0; z) H (2; y) 

2 4 2 -3 H (1; z) H(2,0;y)+ 3 H(1, 1; z)H(3;y)- 3 H(O;y)H(1, 1;z) 

1 1781 1 4 
-6 H (0; z) H (2, 0; y)-

216 
+ 

18 
H (0; y) H (1; z)+ 3 H (1; z) H (3, 2; y) 

7 . 71 . 1 2 +n t7r3 - g t7r-6 H (0, 1; z) H (0; y)- 3 H (0; z) H (2, 2; y) 

1 103 103 10 TB H (0; z) H (2; y)- 54 H (1; z)- 54 H (2;y)+-g H (3, 2;y) 

1 103 35 4 7 TB H (0, 2; y)+ 
54 

H (0, y)+ 
108 

H (0; z)- 3 H (1, 0, 0; y)+ 6 H (1, 0; z) 

11 10 11 11 

6 H (2, 2; y)+-g H (1, 0; y)+H (1, 0, 1; z)- 6 H (1, 1; z)- 6 H (0, 0; y) 

11 2 5 2 -6 H (0, 0; z)+ 3 H (0, 0, 2; y)- 3 H (0, 1, 0; y)-H (0, 1, 0; z)+ 3 H (0, 1, 1; z) 

2 2 2 2 
H (0, 2, 0; y)- 3 H (0, 2, 2; y) + 3 H (2, 0, 0; y)- 3 H (2, 0, 2; y) 

2 2 2 5 

3 H (2, 2, 0; y)- 3 H (1, 0, 0; z)+ 3 H (1, 1, 0; y)+ 3 H (2, 3, 2; y) 

4 2 1 2 5 2 
H ( 3, 2, 2; y) - 3 H ( 3, 3, 2; y) + g 1r H ( 1; y) -

24 
1r H ( 2; y) 

11 7 5 5 

6 H (1; z) H (2; y)-
72 

1r
2H (1; z)-

72 
1r

2H (0; z)-
72 

1r
2H (0; y) 

1 10 2 
IsH (0; y) H (0; z)+-g H (1, z) H (3; y)- 3 H (1, 0; z) H (2; y) 

2 1 
+H (0, 1; z) H (2; y)- 3 H (0, 1; z) H (3; y)-

6 
H (0, 2; y) H (0; z) 

2 1879 55 . 5 -3H(0,2;y)H(1,z)+ 
432 

1r
2 +

18 
t7rH(O;z)-

6
i7rH(2,0;y) 

i1r H (1, 0; i1r H (1, 0; y)- i1r H (0, 2; i1r H (3, 2; y) 

55 . 55 . 5 . 55 . TB 'L7r H (0; y)-
18 

t7r H (1; z)+ 
6 

'L7r H (0, 1; z)-
18 

m H (2; y) , (F.7) 
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F. The 1l -t ggg NNLO Helicity Amplitude 
coefficients 

FD= 

1·z)-
29

1r
2 -_!_H(O·z)H(2·y) 

9 27 ' 6 ' ' 72 18 ' ' 
5 5 1 1 5 

I 
27 

H (1; z)-
27 

H (0; y)-
18 

H (0, 2; y)+"6 H (2, 2; y)-
18 

i1r H (0; y) 

5 1 1 1 
H (2; y)+"6 H (1; z) H (2; y)-

18 
H (0; y) H (1; z)-

18 
H (0, 1; z) 

1 1 1 5 
H (0, 0; y)-

18 
H (2, 0; y)+ 

18 
H (0; y) H (0; z)+ 

18 
i1r H (2; y) 

5 . 1 1 5 
+-tsmH(1;z)-

18
H(1,0;z)+"6H(O,O;z)-

18
i7rH(O;z). (F.8) 
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