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Abstract

In this thesis we present techniques for the calculation of two-loop integrals con-
tributing to the virtual corrections to physical processes with three on-shell and one
off-shell external particles. First, we describe a set of basic tools that simplify the
manipulation of complicated two-loop integrals. A technique for deriving helicity
amplitudes with use of a set of projectors is demonstrated. Then we present an algo-
rithm, introduced by Laporta, that helps reduce all possible two-loop integrals to a
basic set of ‘master integrals’. Subsequently, these master integrals are analytically
evaluated by deriving and solving differential equations on the external scales of the
process. Two-loop matrix elements and helicity amplitudes are calculated for the
physical processes v* — ¢qgg and H — ggg respectively. Conventional Dimensional
Regularization is used in the evaluation of Feynman diagrams. For both processes,

the infrared singular behavior is shown to agree with the one predicted by Catani.
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Preface

The aim of this thesis is to provide an insight into fundamental mechanisms of
perturbative Quantum Chromodynamics (QCD), as well as aspects of Higgs physics.
More precisely, we perform higher order calculations of matrix elements and helicity
amplitudes for processes involving the decay of a massive particle to partons. This
thesis is structured in a way that covers all the main building blocks that lead to
such calculations.

In the first chapter we present an overview of basic QCD concepts starting with
the Lagrangian of the theory and rules for diagrammatically presenting analytic
expressions (Feynman rules). Similarly we present the Lagrangian and Feynman
rules for the “effective” Higgs-gluon-gluon vertex, an approximation that signifi-
cantly simplifies calculations. In the same chapter we also describe Dimensional
Regularization and Renormalization. The former is a scheme that allows isolation
and quantification of divergences (infrared and ultraviolet) that appear in higher or-
der calculations in perturbation theory. Renormalization is a fundamental property
of QCD that leads to the cancellation of ultraviolet divergences at each order in the
perturbation series. Infrared divergences are treated in the second chapter, where
we demonstrate how they can be predicted and how they cancel out for physical
observables.

In chapter 3 we illustrate the basic steps leading to a matrix element or helicity
amplitude calculation, while in chapter 4 we describe a set of basic tools that can
be used toward that direction. Our focus in both chapters is on the calculation of
two-loop integrals. An algorithm that allows one to reduce all possible two-loop

integrals to a basic set of “master integrals” is introduced in chapter 5. A powerful

viii



method of analytically evaluating those “master integrals” is presented in chapter 6.

All the above tools and techniques are used in chapters 7 and 8 for the calcu-
lation of the two-loop corrections to the matrix elements and helicity amplitudes
of the decays v* — qgqg and H — ggg respectively. Finally, in the last chapter we

summarize the results of this thesis and give an outlook on future calculations.

1X



Chapter 1

Basic QCD

1.1 QCD Lagrangian

QCD is a non-Abelian gauge theory based on the SU(N) group, with N=3 color
degrees of freedom. It describes the interactions between spin-1/2 particles (quarks)
and spin-1 vector bosons (gluons). The full QCD Lagrangian can be written as the

sum of three component parts:
‘CQCD = EClassical + £Gauge—Fia:ing + CGhost .

The expression for the classical Lagrangian density is:

1

‘CClassical = Z&f,i (ip_mfaij)wf,j - ZFquEu : (11)
f

Here, i, j run through the number of colors (N=3) of SU(3) and a takes values
from 1 to N2 — 1 = 8. The index f carried by the quark-fields runs over the quark
flavors and ) is the symbolic notation of 7, D* with +, being the Dirac matrices

that satisfy the Clifford Algebra anti-commutation relation:
{7y = 2¢4v.
The gauge covariant derivative D* is given by:

D = 08, — igALTS (1.2)



1. Basic QCD 1.1. QCD Lagrangian

where g is the coupling of the quarks with the gluons and T7; are the eight 3 x 3
hermitian and traceless Gell-Mann matrices that generate the fundamental repre-

sentation of SU(3). Their commutator defines the SU(3) structure constants fabc:
[Ta,Tb] — ifabc Te

The operator D, was constructed so that the covariant derivative of a field trans-

forms just like the field under any local SU(3) transformation U(z):

D* — U(z)D*,

with U(z) defined as:
U(JI) — 6iT“9a(z) .

In equation (1.2), A% are the gluon fields. The field strength tensor F}, that
appears in the ‘kinetic’ term of the ‘classical’ Lagrangian in eq. (1.1) can be written
in terms of the gluon fields A% as:

Non—Abelian

—
F,, = 0,A; — 0, A —gfobe AZA,‘i , (1.3)
with F, defined in a way that satisfies the relation:
[Dy, Do)y = igT* F;, 4y

The Non-Abelian term in eq. (1.3) results in the appearance of interaction terms
in Lejassicar that contain only gluons (three and four gluon vertices). This is the
fundamental difference between QCD and QED. In QED, where the non-Abelian
term is absent, the force-carriers (photons) are charge-neutral and therefore there
are no multi-photon vertices. However in QCD the force-carriers (gluons) are color-
charged allowing for multi-gluon couplings.

Notice that the building of the Leoigssicar part of the QCD Lagrangian has been

done by following the fundamental principle of gauge invariance, with quark and
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gluon fields transforming as:

vy — U(z) iy,

T A% — U(x) <T“ Al — gU(m)‘lauU(a:)) U(z)™.

It is trivial to see that while the quark mass term % 5 Mgy is invariant under local

gauge transformations, this is not the case for a possible gluon mass term:

% m* A, A"
because this term obviously violates local gauge invariance.

However the gauge invariance of the Lagrangian of eq. (1.1) prevents us from
performing perturbation theory. The problem arises when we try to perform canon-
ical quantization. This is evident in the functional integral of the exponential of
the action, which becomes badly divergent, due to the freedom of the gluon fields
to transform by a total derivative leaving the Lagrangian invariant. The divergence
emerges as we integrate over a continuous infinity of physically equivalent field con-
figurations. It is therefore impossible to define the gluon propagator. To fix the
problem we need to find a way to count each physical configuration in the func-
tional integral only once. One way we can achieve this, is by putting a constraint

on the freedom of the gluon field A#, such as the Lorentz condition:
o*A, = 0.
This leads to the insertion of a gauge-fixing term in the Lagrangian:
Laeuge-Fizing = = 3¢ (0" A9, (1.4)

where the parameter £ is called the gauge parameter. Because of the gauge fix-
ing term the QCD Lagrangian is no longer gauge invariant. However the physical
predictions originating from the Lagrangian ought to be gauge invariant and gauge
independent. This means that the value of £ is not relevant to the physical result.
Unless differently stated, for the rest of this thesis it is taken to be £ = 1 in what is

called the Feynman gauge.
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The gauge fixing term of (1.4) needs to be accompanied by the ghost Lagrangian:
Lchost = (8“712) (8“ Oab + gfabcAg) ny (15)

with n (Fadeev-Popov ghost) being a complex scalar field obeying the Fermi statis-
tics. This term must be added to cancel out the two unphysical polarizations of the
gluon field i.e. the time-like and longitudinal degrees of freedom. Therefore, the full

Lagrangian for quantum mechanical applications is the sum of equations (1.1), (1.4)

and (1.5).

1.2 Feynman Rules for QCD

Within QCD we are interested in providing theoretical predictions for physical ob-
servables, such as decay widths (I') and cross-sections (o), involving interactions
of the fundamental QCD particles and fields. The measure of these interactions
is described by dimensionless quantities called amplitudes (M). Each amplitude
consists of a number of terms containing functions of integrals of the Lagrangian
which describes the system. Feynman [1,2] invented a consistent way of mapping
all those terms into easy-to-visualize diagrams. This procedure follows a set of op-
erations called Feynman rules. These are rules associating analytic expressions with
pieces of diagrams. The product of those pieces gives the value of the diagram which
corresponds to a term contributing to the amplitude. In this section we present in
brief the Feynman rules for Quantum Chromodynamics. In all Feynman diagrams
of this thesis quarks are illustrated with solid straight lines, gluons with spiral coils
and ghosts with dashed lines, following the notation of [3]. In consistency with
section 1.1, the color indices for gluons and ghosts are denoted with the letters
a,b,c,d,e running from 1...(N? — 1) = 8 while for quarks we use 7, j who run from
1...N = 3. The Lorentz indices are designated by the letters u, v, p, o, etc.

For the external lines with quarks and gluons we have:
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Incoming Lines Outgoing Lines

e*(p)

NN
NN

In following chapters we will see that for the calculation of Matrix-Elements one

needs the following sums over the fermion spins and gluon polarizations:

S ap)up) = #+m,

S o) = F-m,
S (e4(p) e(p) = —gw+<1‘§#.

pols
In the Feynman gauge £ = 1 and in the Landau gauge £ = 0. As far as the gluon,

quark and ghost propagators are concerned the Feynman rules are:

sz [0 - (1 - BF| o

pa, b, b) v
PETTTOVITLEOTTIT
—_—
it m) s
P)m,i P, m,j pz—mz—He v
_—
—1 ab
pa p, b p2+ie
------ —_————————
—_—

Notice that in the denominator of each propagator we have followed the ‘Feynman

prescription’ and assigned a positive imaginary part +ic to guarantee that the

5



1. Basic QCD 1.3. Regularization and Renormalization

propagation of particles is from earlier to later points in time. We have also given
the gluon propagator in a covariant gauge, fixed by the £-parameter in line with the
analysis of the previous section.

The quark-gluon, ghost-gluon and gluon self-interaction vertices respectively are:

i

—ia~tTe

o n 19T
i
/” b

-7 abc
p,a, i /,/ gplif
FHBBOLBITETEIR
\\\

.

—gf* [ (;m—p2)P g +
(p2 — p3)* g +
(p3s —p1)” g™ |

-3 92 fabefcde (guagup _ gp,agup)

—i 92 facefbde (gpaguu . g;wgup)

— 92 fadefcbe (guo'gpp _ gpag;w)

In addition to the previous set of rules one must

e integrate over the loop momentum k; of each loop with measure

D .. . . .
[ 4k where D is the dimension
(2 7‘-) ] ]

e multiply with (—1) for every quark or ghost loop,

e multiply by a symmetry factor to take into account permutations of the fields

in each diagram.

1.3 Regularization and Renormalization

The Feynman Rules presented in the previous section make the calculation of tree-

level diagrams a trivial task. Nevertheless, when one goes to higher orders in pertur-

6



1. Basic QCD 1.3. Regularization and Renormalization

bation theory loop-integrals appear in the calculation. These integrals can carry di-
vergences originating in the behaviour of the integrand at high and low virtual/loop
momenta. Let us now examine how those divergences emerge by studying the be-

haviour of the integral that corresponds to the following one-loop vertex diagram:

dik f(k?)
in? k2 (k+p1)? (k+p1+p2)?

— I =

There are two types of divergences that can appear in this integral:

o Ultraviolet Divergences (UV) are associated with the singularities that appear
in the integrals at large loop-momenta. In our example:

k— o0 = I — oo logarithmically.

o Infrared Divergences (IR) are generated when one of the propagators in the
loop tends to zero. For our example we have:
k—{0,—pi,—pr—p} = [I—o00, withp}=p;=0
Such divergences arize when the propagators are massless as is the case in
our example. This occurs in QCD due to the presense of massless gluon and

light-quark propagators.

There have been developed several techniques that allow one to surmount the dif-
ficulties raised by the existence of such divergences. UV divergences are banished
order by order in perturbation theory by a procedure called renormalization, as we
will see later in this section. As far as IR divergences are concerned, we will demon-
strate in chapter 2 how they cancel at each order for a certain type of physical
observables. In the same chapter we will also illustrate a method that enables one
to predict the IR structure at one and two loops. In order to demonstrate the appear-
ance and cancellation of both UV and IR divergences one must first separate them
from the finite part of the integral. This procedure is called Regularization. The
most popular regularization scheme of the last years and the one used throughout

this thesis is dimensional regularization due to 't Hooft and Veltman [8-10].
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1.3.1 Dimensional Regularization (DR)

In Dimensional Regularization (DR) the Feynman integral is calculated as an an-
alytic function of the space-time dimensionality D = 4 — 2¢, with € being a small
parameter. Providing that D is treated as a continuous variable, both UV and IR
divergences can be quantified in the form of poles in ¢, i.e. 1/e* withn =1,2,....
In the limit D — 4, or equivalently ¢ — 0, any observable quantity (cross-section or
decay-rate) should be well-defined. The DR method is well explained in references
(3], and [6]. To apply DR in an integral one has to go from 4 to D dimensions. After
performing the so called Wick rotation to go from the Minkowski to the Euclidian

space, one must apply the following modifications:

e In the Feynman rules the measure we use to integrate over each loop-momentum

k; changes: [ (‘fﬂk)ii - [ (‘gjr;“b .

e In D dimensions ¢*” obeys ¢*“g,, = D. The Clifford algebra will also be
affected with Dirac matrices being manipulated as a set of D 4 x 4 matrices

whose contraction identities are modified to:
YV ===, Y =497 — ey

e The measure of the phase-space integration of a transition rate over the exter-
nal momenta will also have to be converted:

dD—l

3
2E(]E21r)3 e @2m)to(p —py) = [ 2E(2mD-1 (2m)Pé(p: — py) -

e Finally, since the action § = [ dPz £ must remain dimensionless, the terms in
the QCD Lagrangian must alter to ensure dimensional coherence. As a conse-
quence, a dimension is imposed on the coupling constant g. The dimensionless

coupling constant must be replaced by:

gs — pGs (1.6)

As a result the theory has acquired one more scale, . Notice that in the limit

D — 4, g has no dimensions.
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After the continuation of loop momenta into D dimensions one is still left with some
freedom concerning the dimensionality of the momenta of the external particles as
well as the number of polarisations for internal and external particles. There are
several DR scemes that can be used to deal with this. The calculations of this thesis
were carried out using a scheme called Conventional Dimensional Regularization
(CDR)'. Within this scheme, no distinction is made between real and virtual parti-
cles and massless quarks are considered to have 2 helicity states while gluons have
D — 2. For the helicity amplitudes, we use the t’Hooft-Veltman scheme, where the

external particle states are 4-dimensional.

1.3.2 Renormalization

So far in this section we have presented a scheme that allows IR and UV divergences
to be isolated and quantified. UV divergences cancel order by order in perturbation

theory due to a fundamental property of QCD:
QCD is a Renormalizable theory.

“The idea of renormalizable theory is that UV divergences of a field theory are to be
cancelled by renormalizations of the parameters of the theory” [6]. In practice one
can take the fields and coupling of Loeop and redefine them with a multiplicative

factor. We set:

w},u N Zl/Q’l,D}’R , (1.7)
AV ZPpek (1.8)
nU — ZY?pak (1.9)
9 = Zggl | (1.10)
m! - meR , (1.11)
¢V 5z (1.12)

A variety of regularisation prescriptions within DR can be found in [11,12], whereas in [13]

there is a detailed introduction to the DR technique.
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where we have used the U and R superscripts to denote the unrenormalized and
renormalized quantities respectively. The above redefinition is a simple renaming
and will not alter the path integral over the action S = [ dPz £. This means that
the Green’s functions and S-matrix elements will remain the same as well as the
Feynman rules presented in section 1.2. In a renormalizable theory one can write
a UV-divergent Green’s function of the unrenormalized fields as the product of a
UV-finite renormalized Green’s function times a renormalization constant which has
absorbed all UV divergence. With proper readjustment, the multiplicative renor-
malization constants absorb UV divergences at all orders in perturbative QCD,
giving physical meaning to the renormalized Green’s functions. This enables QCD
to make theoretical predictions of finite physical observables such as cross-sections
and decay-rates.

Apart from factoring out UV divergences one has the choice of subtracting an
arbitrary amount of the finite part. This defines the renormalization scheme used
in the calculation. In this thesis we have used the Modified Minimal Subtraction

scheme (MS), in which we remove the UV poles in € defined as:

oy | =

1
= (4m)¢e” 7~ with v being Euler’s constant .
€

This choice simplifies our calculation because in practice the poles always appear in
the combination:

[(1+¢€)

- (4m)s = % + In(47) — v + O(e) .

When we performed dimensional regularization we introduced an unphysical
mass scale p to maintain a dimensionless action. This unphysical and arbitrary
mass scale is still present in the renormalized fields and couplings. Physical observ-
ables do not depend on the renormalization scale. However, there is dependence
on p when the calculation is in fixed-order perturbation theory. Depending on the
choice of renormalization scheme and scale u, one can get different results when
predicting the same physical quantity. For the theory to be consistent the expres-

sions of our results must be formally equivalent with each other. This is achievable

10



1. Basic QCD 1.3. Regularization and Renormalization

due to a set of restrictions imposed on the renormalized fields and couplings. These
restrictions have the form of a set of differential equations (renormalization group
equations) that must be satisfied by the renormalized quantities when varying the
renormalization scale. The renormalization group equations are derived by requiring

that physical observables are eventually independent of the mass-scale u.

1.3.3 Running Coupling and Renormalization Group Equa-
tions
Using the CDR transformation eq. (1.6) and the renormalization group definitions

eq. (1.7) we get a relation between the bare-unrenormalized coupling strength and

the renormalized one:

Ho 9y = Zgutagl. (1.13)
Taking in mind that:
0o = &
4m

one can re-write the unrenormalized coupling «; as:

(1) ol = 72 (12)° ot (114

R

R)3 in perturbation theory. In

The value of Z, has been calculated up to order («

the M S scheme we have:

s, = G [1- 2 (5) o (B2 (Y so ]

(1.15)
where:
Se = e 7 (4dw)* , -~ = Euler constant ,
11C4 — 4Tg Ny
ﬁO = 6 )
17C%4 —~10C, Ty Ny —6C;Tg N
B = 4 A%f [ZRTT (1.16)
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Here Ny is the number of active light-quark flavours and Cr, C4 and Tj are the
Casimir operators for SU(N) which can be written in terms of the number of colors

N as:

N2 -1 1
2N 3 CA :N, TR - 5 (117)

Cr =

The parameters 3 and ; appearing in eq. (1.16) are the first two coefficients of the

perturbative expansion of the 8 function which is defined by the renormalization

group equation:
;ﬂg—z% = Blasys) = —Po Qgtay — BrQafey = -0, (1.18)

where we have dropped index R from the renormalized of. The solution of this

differential equation yields:

/QW) 4o g (“-2) , (1.19)

PO 1o

where the scale po expresses a boundary condition. Equation 1.19 defines a new

function, the running coupling a;,2), providing that we know its value Qs (42) for a

certain energy scale ug. If we keep only the first term of the series of the g function,

the solution of eq. 1.19 is:

s ()
as(#z) = 2 . (120)
1+ as(#g) ﬁo log (53)
Notice that as the scale p increases, the running coupling a,(,2y decreases to zero.
This is a fundamental property of QCD called asymptotic freedom?. The signifi-
cance of this property is evident in the study of physical observables such as decay
rates. As we have mentioned earlier, a physical observable should not depend on
the unphysical renormalization scale p. This statement can be expressed through

the following renormalization group equation for a decay rate I':

dr

a0 (1.21)

20f course, this statement, is valid for B9 > 0, which true if in eq. (1.16), the number of light-

quark flavours is Ny < % = 33 (in the final step we used the number of colors N = 3).

12



1. Basic QCD 1.4. Effective Higgs Lagrangian

As the decay rate is a dimensionless observable, its i dependence at each order will
be a function of the coupling a,,2y and the dimensionless ratio s/ p?, with s being
a squared energy scale on which I depends. Eq. (1.21) can therefore be written as:
{ 0 0

—a + B(as)a} r (as(”z),et) =0 y (122)

with ¢ = log (s/p?). 1t is easy to prove that T' (ay(,), 1), i.e. p? = s is a solution of
eq. (1.22)%. We can conclude by this that the dimensionless decay rate I' measured
at a large energy s can be expressed as a perturbative series in terms of the strong

coupling constant a):
r=r (as(s), 1) = T10(s) + r;),as?s) + r3as?s) +... . (1.23)

This perturbative expansion raises a few challenges due to the fact that oy is
a free parameter of QCD and that we need to truncate this series at a point in
order to extract a theoretical value for the observable (e.g. decay rate) which will
be compared to the one emerging from experimental data. These issues will be

addressed in the end of chapter 2.

1.4 Effective Higgs Lagrangian

In section 1.1 we presented the full QCD Lagrangian describing the fundamental
interactions between the QCD particles and fields (quarks and gluons). One of the
most important unresolved problems of Particle Physics concerns the origin of the
particle masses. Within the Standard Model theory, the most accurate and pre-
cisely tested theoretical description in the field of Particle Physics, all the particles’
masses are generated through a mechanism called electroweak symmetry breaking?.
In its minimal version, the phenomenological manifestation of this mechanism is an

electrically neutral, scalar, zero-spin particle, the Higgs boson, whose mass is an a

3ndeed, ar(a(;t(,),l) _ Bas(y) AT (s (a)21) O (cxa(s,1) .

ot Bosy B(as) Bas
4We will not illustrate this mechanism here. We refer the reader to some of the many books

that have been written on the subject like [3,7].
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1. Basic QCD 1.4. Effective Higgs Lagrangian

priori free parameter of the theory. The Higgs boson remains the only still unde-
tected particle of the Standard Model. As a result the search for the Higgs particle
is one of the major objectives of present and future colliders like LHC. The most
probable range for its mass, as it is predicted by comparing existing experimental
data and theoretical estimates, is approximately between 100 and 200 GeV [15].
For this mass range, at LHC, the dominant production mechanism of the Higgs
boson will be through gluon fusion [14], at a rate at least five times higher than any
other production channel. This accentuates the importance of the theoretical study
of the Higgs-gluons interactions. However, the Higgs boson interacts directly with
quarks and not with gluons. This interaction can be described by the bare Yukawa

Lagrangian,
HU
Ly=—— <ngq{fq{1 + MtUt_UtU> , (1.24)
@

where v is the Higgs vacuum expectation value related to the Fermi constant by
v = (\/§Gp)_1/2 = 246 GeV, t is the top quark, ¢ are the light quarks and the
superscript U symbolizes bare quantities. We have separated the top quark term in
Ly because, as the Yukawa couplings of the Higgs boson to quarks are proportional
to the respective quark masses, the Higgs coupling to gluons (Hgg) is essentially
generated by the top quark alone, through a top-quark loop. The involvement
of two mass scales (M;, My) complicates significantly any effort to theoretically
describe such interactions. Nevertheless, it has been shown that in the heavy top
quark limit, M; — oo, the Hgg coupling becomes independent of the M;. We can
therefore integrate out the top quark field and formulate an effective Lagrangian,

Less ( [16-18]) approximating the Hgg coupling:
H U a U n2 H a n?
Loy =—7CF GV = -G (Gs)", (1.25)

with szl being the field strength tensor of the gluon. The primes indicate the
quantities defined in a light-quark (n; = 5) effective QCD . The dependence on the
top quark is restricted to the C; coeflicient function. We should note here that the
second equality in eq. (1.25) is valid because the product C; (qu’ )2 is renormaliza-

tion group invariant at each order, even though C; and (iju’ )2 separately are not.

14
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SOLIELDLLL L Y g

005 0ussIsInueY g ' g
Figure 1.1: The Hgg coupling in full QCD and the effective Lagrangian theory.

C, has been calculated up to order O(a?) in [19]°. However, for our purposes we

need it only up to order O(a?) [20,21],

() (ny) (1)
1as { 11 as as™ o, [2777 19 67 1 }
S B § =L 2oL
R L e TT: Mt+"’< 96 '3 M‘)P !
(1.26)

where Ly, = In(u?/M?), n; = 5 is the number of the massless active quark flavors
and o™ = o/®(4?) is the renormalized QCD coupling constant in the MS scheme
which can be expressed through o(®(4?) via the decoupling relation [22],

(W) _ e (1, O\ /11 SIS T
agﬁ)(u)_ o 6 Mt + T 75 94 Mt+% v |+ (as) .

(1.27)

This approximation works very well under the condition that both the transverse
momentum P, and the Higgs mass My, are smaller than the top quark mass M,°.
The advantage of this method is that it reduces the loops that need to be calculated
by one (fig.1.1), simplifying any calculation enormously. Therefore, amplitudes that
correspond to two-loop diagrams in the original theory are one-loop diagrams in the

effective theory.

1.4.1 Feynman Rules for the Effective Lagrangian

Similarly to the ‘normal’ QCD Lagrangian, the effective Lagrangian generates ver-

tices involving the Higgs boson coupling with two, three or four gluons whose asso-

5The calculation involved a large number (657) of three-loop three-point diagrams.
SMore precisely My < 2M,, with M, =~ 175 GeV.

15



1. Basic QCD 1.4. Effective Higgs Lagrangian

ciated Feynman rules are respectively:

hopa
LA i Cy Vo (p1,p2)
vb
b pa b2
____7:[ _____ v b -G yﬁz:/cp(pl,Pz,Ps) )

2 purpo
_Cl ngabcd ’

with

Vi (p1,p2) = Oay (D1~ D2 — PIDS)
P (p1,02,p3) = fabe((P1 — D2)” ¢* + (P2 — p3)" 67 + (ps — p1)” 9™*) ,
beléﬁa = faveSede (979”7 — "7 9"°) + face foae (99”7 — "7 g"*)

+fadefbce (g’wgpa - gupgw) . (128)

The rest of the propagators, external particles and vertices, that do not entail the
effective Higgs coupling, are treated using the standard set of QCD Feynman rules

presented in section 1.2.

In section 1.3 we presented techniques that allow one to deal with the appearance
of ultraviolet and infrared divergences. A method for canceling UV divergences was
also illustrated. In the following chapter we describe a methodology that leads to

the cancellation of IR divergences and an independent way of predicting them.
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Chapter 2

IR Divergences and Matrix

Elements

2.1 Introduction

In section 1.3 we presented a procedure called conventional dimensional regular-
ization (CDR), which allows infrared divergences to be separated from the finite
part of an integral and be manifest as poles in ¢, i.e. 1/€*, n =1, 2,.... Apart
from the IR divergences generated in loop integrals (virtual divergences) there are
also divergences arising from real emissions. These can be of two types; soft di-
vergences appearing when an on-shell particle radiates a massless low momentum
(‘soft’) particle and remains on-shell and collinear divergences arising when the ra-
diating and radiated particles have ‘indistinguishable’ momentum configurations'.
As we mentioned in section 1.3 all these divergences are eliminated at each order in
perturbation series.

In the following subsections we will derive the components needed for the ‘total’
NLO decay rate of H — gg in the limit M; — oo. In order to calculate the radiative
corrections to the H — gg decay we need both the real contributions from the
processes H — ggg and H — gqg, as well as the virtual 1-loop corrections from

‘H — gg. Both real and virtual corrections have divergences which are manifest

1This practically means that the two particles move toward the same direction.
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2. IR Divergences and Matrix Elements The H — gg decay

as poles in € (1/e and 1/€*). In 2.2.5 we demonstrate how all these divergences
miraculously cancel out. Then we illustrate a formalism developed by Catani [11,12]
which can predict the IR pole structure of NLO and NNLO matrix elements. Finally
we discuss the need for matrix element and helicity amplitude calculations beyond

NLO.

2.2 Infrared Cancellation:

The H — gg decay

2.2.1 Notation

For the general case of the decay of the Higgs boson to particles X, we will use the

following notation:

|M§2)_, x)  Tree — level amplitude ,
M) ) One — loop amplitude ,
|M§f)_, x)  Two — loop amplitude ,
r gg)_> x  Tree — level decay rate ,
F}(}lx One — loop decay rate ,
F,(fl x  Two — loop decay rate ,

'ty  Leading order decay rate ,

F,IY f,‘}( Next — to — leading order decay rate ,
ryE0  Next — to — next — to — leading order decay rate ,

d®n,  The Nx — body phase space.

(2.1)

2.2.2 Tree-Level and LO: No Emissions

The LO contribution involves only one type of diagram (fig 2.1). The matrix element

squared for this process in the M; — oo limit can be trivially calculated and is well
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Figure 2.1: Feynman diagram contributing to the % — gg decay at LO. The crossed-
dot represents the effective coupling between gluons and the Higgs boson in the

infinite top quark mass limit.

known (23] for many years:

© |’_
Z IMH—’QQ -

spin,col

CIM4(N?-1)
202

1-¢ , (2.2)

The tree-level differential decay for H — gg is given by:

dd
/ H—+gg /Qth Z ‘M?Hgg

spin,col

: (2.3)

where [ d®, is the phase space for two partons in D dimensions. There is also

1

an overall factor ThFn

accounting for the incoming flux. In order to perform the
integration, we use the two-body phase space formula which we have derived in
Appendix C, and get:

CEIM3(N?2—-1)T(1—-¢) [ 4m\°
iy, = H 1—¢) . 2.4
H=a9 64mv? I'(2 — 2€) (Ms%t 1-9 (2.4)

In order to get the leading order (LO) term of the decay rate, we keep only the first,
order O(a(s)), term of the expression for C; (eq. (1.26)):

. (0, M3(N?—1) T(1 —€) [ 47 \°
T30 = 57(;;%2 T'(2 — 2e) (M%) (1=e) (25)

Since we are interested in a NLO calculation, we can keep only the terms up to
order O ((af)?) of the decay rate FH_}gg (eq. (2.4)). Therefore we renormalize in
the MS scheme using eq. (1.15) and keep only the first two terms of eq. (1.26) for

C). Then eq. (2.4) can be expressed in terms of IS as:

., =Tk, (1 + o ( 2@ + N)) + 0O (P . (2.6)
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In 4 dimensions (¢ — 0) and for N = 3, eq. (2.5) reads:

3.2
LO _ M’HasGF

DhiZge = 3672r° (2.7)

2.2.3 Virtual Infrared Divergences

The contribution to the decay rate coming from virtual graphs involves only two

types of diagrams (fig. 2.2)

Figure 2.2: Feynman diagrams contributing to the H — gg decay at NLO in the

infinite top quark mass limit

The diagrams of fig. 2.2 that appear in the one-loop amplitude M%)_, 4o demand the

calculation of one-loop integrals of the form:

/ dPk u ’ (2.8)

imD/2 k2(k + p1)2(k +p1 + p2)2

where k is the loop momentum, p; and p, are the external momenta and u is a
function of scalar products of k, p; and p, such as k2, k- p; or p;, - p,. This type of
integral is slightly harder to evaluate. In the following chapters we will demonstrate
a methodology that allows one to compute not only one-loop but also two-loop
integrals and use them to calculate amplitudes. Here we will just present the result
of the interference of the tree level with the one-loop amplitude:

S (M, ML) =

spin,col

—(=1)

_Ciladr

V2

Ar )f“z T(e)T(1 — ¢)? (1

N(N?-1) (M% 229 z—3+26+62) (2.9)
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For reasons that will soon become apparent in subsection 2.2.5 we proceed by inte-

grating 2Re Y, i col <MH_}gg|MH_,gg> over the two-body phase space®:

m _ [ 4% MW
) = / air 2R Z< oML g) (2.10)

spin,col

The result of the integration up to order O(e) is:

1 ase™ " (4 2 7r?
ry,., =T, - <M72{°> N(——-‘r?-i-(’)(e) , (2.11)

where we have factored out I';9 %gq- F'inally we renormalize in the MS scheme by

multiplying the above equation with S-! = €/(47)~¢ and get:
2\° 2 Tn?
r® ko s (“—> N (—— +— +O(e )) , (2.12)
Hogg — T2 9n \ MF, 6

2.2.4 Real Infrared Divergences

We will consider two subprocesses which contribute real emissions to the H — gg
decay. The first one involves the emission of a third real gluon in the final state
(H — ggg), giving diagrams like the ones in fig. 2.3. The second one entails the
splitting of one of the two final-state gluons into a quark-antiquark pair (H — ¢gg)

as shown in fig. 2.4.

Figure 2.3: Feynman diagrams contributing to the tree-level H — ggg decay in the

infinite top quark mass limit. One real gluon is emitted.

Both of these processes ‘look’ like the H — gg decay in their collinear and soft limits.

For example all three diagrams of fig. 2.5 are phenomenologically indistinguishable.

The squared matrix elements for both contributions are easy to calculate, since they

2The imaginary part was induced by the expansion of (—1)7¢.
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Figure 2.4: Feynman diagram contributing to the tree-level H — ¢gg decay in the

infinite top quark mass limit. One gluon splits to a quark-antiquark pair.

g q g
q
H g H H
g g g9

Figure 2.5: Feynman diagrams of decays with soft or collinear emissions that would

look like H — gg in the colliders.

do not contain any loop integrals:

2 Cladr
(0) _ 1% 2
Z ‘Mﬂ—mgg T2 N(N®—-1) x
spin,col
2
y M3, + iy + 855 + 513 (1—26) + E(M%+3%2+5%3+5%3)
512823513 2 812823513 ’
(2.13)
0 2 Clar 52, + 523 — € (503 + s13)°
> M| = N - T (214

spin,col

where s;; = (p; + p;)?. The decay rate of each of the two contributions is given

schematically by:

© _ [ d%s © |
/dFH%ggg—/QMH Z ’Mﬂﬂgyg ’ (2.15)
spin,col
and
o _ [ d%s © |2
/drﬂﬁqég—/m Z }MH—N)&Q (2.16)

spin,col
where the integration is over the three-body phase-space d®3 which we have calcu-

lated in Appendix C. However this integration is not trivial. We will demonstrate
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how it works for egs. (2.15) and (2.16). We make the change of variables:
s12 = YoMy, s13 = yiaM7 and S5 = yaa M7, (2.17)

with 0 < y;; < 1. From the momentum conservation formula: si2 + $13 + s13 = M3,

one can get:

Yizt+yiz+ys=1 . (2.18)

As the momenta of the outgoing partons are p!', we have p? = E;. Using the
definition of the invariant scales s;; = (p; + p;)* we get:

vii = (i +p5)° _ 2EiE;

TR T

(1 —cosb,j) . (2.19)
With the change of variables (2.17) equation (2.15) becomes:

/dF’tS{Ongg ~ /dy12dy13dy235(1 — Y12 — Y3 — y23)

y [1 + Yl + Y13 + Yas (1-2¢) + € (1 +y12 +y13 + y23)®
Y1z Y13 Yoz 2 s v ’
(2.20)
while equation (2.16) reads:
/‘d‘[‘?(-[ol}qqg ~ /dylzdy13dyza<5(1 — Y12 — Y13 — Y23)
v [yfg + 33 — €(y13 + ya3)?
Y1a Yfayss
(2.21)

If we had worked in 4 dimensions the integrands of (2.20) and (2.21) would be

respectively:
1+ yts + Yl + Uiy (2.22)
Yi2Wh3Y23
Y12 ’

and there would be singularities for certain values of the integration parameters. The

first integrand (2.22) will provide the decay rate I\

Hosggg With collinear singularities
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for:
eq.(2.19) .
Y12 > 0 = 615 — 0 (partons 1 and 2 are collinear) or
eq.(2.19)

y13 = 0 =" 013 — 0 (partons 1 and 3 are collinear) or
Yoz — 0 229 923 — 0 (partons 2 and 3 are collinear)

(2.24)

On top of that, from the energy constraint of eq. (2.18) we get another type of
singularities, soft, which arise as:

Y12 — 1 qug) 113 and y93 — 0 = parton 3 is soft ,

yiz —~> 1 (=2:1>8) y12 and ys3 — 0 = parton 2 is soft ,

yaz3 — 1 eqL—';s) y12 and y3 — 0 = parton 1 is soft .

(2.25)

Similarly, for the re

o _)qq , transition rate we can see that the integrand (2.23) will

produce only collinear singularities, as:

eq. (2 19)

Y12 =0 912 — 0 (partons 1 and 2 are collinear) (2.26)

where partons 1 and 2 correspond to the quark-antiquark pair. All the above singu-
larities are schematically depicted in figure 2.6. Both soft and collinear singularities
become evident as poles in € in D dimensions, after CDR is applied. Performing the

integrations in the way demonstrated in Appendix C one gets:

©) o e [dmpl 2 11 73 7n?
g = Tioe5 (MH> V(G et g 00).e2
©  _ pro @e” (4mpg\° 2 7
F’H—vqtjg = F’H—-)gg o ( M,f{ Nf —§-€- - § -+ 0(6) . (228)
Eventually, in the M S scheme the real emission contributions to the H — gg decay
become:
2\ € 2
(0) B o Os [ 1 2 11 73 7Tm
LRV FH—>992ﬂ. (M_%{> N (6—2 + 3¢ + 5 5 +0(e) | , (2.29)
2 €
(0) _ pLo % [ H 2 7
FH—»Q@Q - FH—»gg% <M_72{) Ny (_ﬁ T3 + 0(6)) : (2.30)
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Vo3
1 and 2

P collinear
1 and 3

< — == -

collinear

¥ i
3 soft 2 and 3 Y
collinear 13

Figure 2.6: This plot represents the physical configuration of the partons for limiting

behaviour within the allowed triangle.

2.2.5 Cancellation of Infrared Divergences

In the previous subsections we calculated all the pieces we need for a total NLO
decay rate. Let us now see how all those pieces fit together. In perturbation theory

the renormalized amplitude |My_,4,) can be expanded as:

|Miorgg) = IMEL )+ MG, )+ 0(ad) . (2.31)

H—gg
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Thus the squared matrix element and the decay rate at NLO read:

1
Masggl? = |M,Hgg +2R, <M§3L99|M§{ng>, (2.32)
4%,
Prse = [ 30 ([ME,] +2re 3o (M, M)
H spin,col spin,col
= i)+, (2.33)

Notice, however, that eq. (2.33) contains the term I (1

H-rggr Which is divergent as

it is evident in eq. (2.12). In order to cancel out the divergences we need to add
contributions from the emission of a real soft or collinear gluon (I'344,) and from
the splitting of a gluon to a collinear quark-antiquark pair (Iy_q)- Eq. (2.33)

becomes:

F’H“)gg(asR) = F'?('?ng( ) + F’ngg( ) + F'}‘(-{l)ggg( ) F’H()—)—mqg( R) ' (234)

At this point we have included the upper index R on the coupling to show that
all the decay rates are renormalized. Notice that for the rest of this section we
fix the renormalization scale to M7. Subsequently the total NLO decay rate, all
contributions included becomes:

" 5
finite O(a?) finite O(aa)

['NLO _ F F(l 1’1 (0) 4 F 0) aR 2@ _|__ N [‘LO
H—gg — Hogg H—>gg H—gg9 H—>qqg 27r 3 H—gg | -

(2.35)

The coefficient of O (a?) is finite because the IR divergences of the decay width for

the production of two gluons?,

R
(1) sing BO . Lo @ 2 11N — 2Nf 1
FHﬂgg + ( > o7 H—>gg - F’H—».qg or IV—NG_Q - —3—; )

(2.36)

are canceled out by soft and collinear divergences for the three-particle contribution:

F(O) sing F(O sing  _ FLO a [Ng_ 11N——2Nfl:|
3 e’

H—g99 H—qqg Hg9 9

(2.37)

3The superscript sing (singular) on the decay widths in equations (2.36) and (2.37) means that
we have considered only the singular part of these widths.
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Substituting equations (2.12), (2.29) and (2.30) in eq. (2.35) we finally derive the
desirable finite total NLO decay rate for the Higgs decay to two gluons, which

normalised to the LO rate, can be written as*:

aft /95 7
ritg, = 149, [+ 22 (B - 3w | (2.39

with the scale of the coupling constant fixed at M7,. We are now able to calculate
the effect of the NLO term on the decay rate. If we use Ny = 5 and N = 3, the

NLO corrections to the decay rate read:

I
= = 62.73% , (2.39)

where we have used a value of a,; of about 0.11. This result is in complete agreement
with the rate presented in [24]. It is evident from the above result that the NLO
corrections to the decay rate of the Higgs to two gluons is extremely large, being of
order more than 60% of the Born term. Such large corrections made the calculation
of even higher order terms in the perturbative series essential. The NNLO calcu-
lation of the H — gg decay rate in the infinite top-mass limit has been published
by Chetyrkin, Kniehl and Steinhauser in [19]. Their result added an extra 21%

correction on the LO decay width.

2.2.6 Infrared Safe Observables

In the previous subsection we demonstrated (eq. 2.38) that at least up to next-to-
leading order in perturbation theory, the inclusive total decay rate of the Higgs boson
to two gluons is an infrared safe quantity, whereas the exclusive gluon-gluon final
state with no emissions is not. The question here is how those divergences emerge
and why they cancel out so nicely when we come to calculate physical observables.

In subsection 2.2.3 we explained that the calculation of one-loop integrals (cre-
ated when a wvirtual gluon is emitted by one external particle and absorbed by
another) induces infrared divergences, at the limit where the loop momentum goes

to zero. Within dimensional regularization these divergences are manifest as poles

4The substitution By = % was made.
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in €. To cancel these virtual divergences we need to add degenerate states that are
due to the emission of one extra indistinguishable particle. Real emission creates
two types of degenerate states: soft and collinear. The former may appear if the
theory under consideration includes a massless spin-1 field like a gluon in QCD,
when the emitted particle’s 4-momentum® — 0. There is an indefinite number of
emitted soft gluons that can accompany physical observables with partons in the
final state. Infrared collinear divergences emerge when a (massless) gluon is emitted
collinear to a massless quark, so that the two become indistinguishable. However
collinear divergences can appear even when the quark masses are not vanishing,
because of the gluon’s ability to couple with itself (triple-gluon vertex) and split
into two collinear indistinguishable gluons. In the example of the Higgs decay to
two gluons, soft divergences emerge when one soft gluon is emitted in the process
H — ggg and collinear divergences emerge when a final-state gluon emits another
gluon toward the ‘same’ direction (H — ggg) or when a final-state gluon splits into a
quark-antiquark pair moving ‘almost’ collinearly (H — ¢dg). Assuming that quarks
and gluons fragment collinearly to hadrons, we can deduce that when the emitted
gluon is collinear or soft, the two-jet structure of the lowest order is maintained at
higher powers of ;. Therefore phenomenologically the singular behaviour arises
only when the configuration of the three final-state partons is such that we can
experimentally identify only a ‘two-jet event’ and not a ‘three-jet’ oneS.

Several schemes have been devised to regularize infrared divergences’. The one
we have used for our example is the dimensional regularization scheme. Within this
scheme IR divergences show up as poles in € = 2— D /2. Notice that we have already
used dimensional regularization to regularize the ultraviolet (UV) divergence, going
from 4 to D = 4 — 2¢ dimensions.

Having explained how IR divergences appear, we need to investigate the mech-

anism that leads to their cancellation. Essentially, this mechanism is explained by

50r D-momentum in D dimensions.
SThis is where the introduction of a jet measure is essential. In [5] one can find an insightful

approach in this area.
For a detailed account we refer the reader to basic QCD text books such as [3], [4] or [5].
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2. IR Divergences and Matrix Elements 2.3. One-Loop Singular Behaviour

the Bloch-Nordsieck theorem: “Use of degenerate states, which can be constructed
by associating soft and collinear massless particles with the external final-state lines,
leads to infrared-safe physical cross-sections and transition rates” ( [25], [26]). The
Bloch-Nordsieck theorem applies in the Higgs decay of our example, but breaks
down in other QCD processes, where initial-state soft and collinear IR divergences
must be taken into account as is suggested by the Kinoshita-Lee-Nauenberg the-
orem: “In a theory with massless fields, transition rates are free of the infrared
(soft and collinear) divergence if the summation over the initial and final degenerate

states is carried out”( [27], [28]).

2.3 One-Loop Singular Behaviour

We consider the QCD amplitude |M,, >, that has m external partons (quarks or
gluons) with momenta p; ... p,, and an arbitrary number of color-free particles, such
as the Z or the Higgs boson. The perturbative expansion of the amplitude | M,, >&

in the M S scheme can be written as:

M >=(22) [lM(O) >+ (52) IMD > + (:‘;‘—w)2 MDD > 10 (8)| , (2.40)

where p is a half integer (p = 0,1/2,1,3/2,... ), that depends on the process. We
should note that all amplitudes in eq. (2.40) are renormalized. The sub-amplitude
M) > has singularities which within CDR are expressed as single and double
poles in € (1/€ and 1/€*). In [11,12], Catani and Seymour proposed that these

singularities can be separated form the finite part |M®/" > with the formula:
IMD) >=10(e) IMO > | MDSin 5 (2.41)

In eq. (2.41) all one-loop singularities are absorbed in the universal factor I!)(e)
which acts on the lowest-level amplitude |[M(® >. Both I) and I that we will
introduce in the following section, have a finite part which is not uniquely defined.

This creates an ambiguity in the definition of amplitude MM/ > The general

8From now on we will drop index m from the amplitude.
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2. IR Divergences and Matrix Elements 2.3. One-Loop Singular Behaviour

structure of IV)(¢) with respect to the color charges of the m partons is chosen to

be:

10 L e? Vring( T, (L 2.42
(6) - 51—‘(1—6) Tzz ; (2pZ p;) ) ( )
with 4, j running from 1 to m while A;; = +1 if 7 and j are both incoming or
outgoing and X;; = 0 otherwise. Notice that all singularities are encapsulated in

V#™9(¢) as single and double € poles:

Sin 1 1
V™) = T} 2 + % P (2.43)

We can see that V7*"9(e) depends only on the parton flavor. For quarks, antiquarks
and gluons the coefficients T? and +; are:

T:=T;=Cr , T:=Cy

3 11 2
Yo =Yg = 501: y o Ve = FCA - gTRNf = B (2.44)

Let us now apply the Catani formalism to the example of the Higgs decay to
two gluons that we studied in the previous section. From eq. (2.42) one can trivially
derive the color charge operator IV)(¢), for H — gg:

Bilgsle) = _r(fi & <_N> [Ne_lﬁﬁ"%] ’ (245)

S12

where s13 = (p1+p2)? = 2p;-ps is the Mandelstam variable. Here, p; are the momenta

of the external particles, i.e. the two gluons. From momentum conservation one gets:
(1)

Hosgq(€) in equation (2.41) we can derive the singular part of

s12 = M3. If we use I

the interference of the tree-level with the one-loop amplitude:

sing\ __ (0)
< 'H—)gg | M’H—*ggg> - <M’H—>gg

Subsequently one can easily derive the one-loop part of the decay H — ¢g that

T, (6| ML, ) (2.46)

contains all the infrared singularities at this order of aj:

2\ €
(1) sin LO as U 2 1IN — 2Nf 1
oo e, (£) 2 g,

The above equation fully predicts® the singularities of the decay rate of the Higgs

boson to two gluons (with no radiation) at order o3 , calculated in equation (2.36).

9After fixing the renormalization scale to M2,.
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2.4 Two-Loop Singular Behaviour

At two-loops the singular structure of the amplitudes becomes more complicated as
the poles in € become even deeper of order O(¢™*). A formula analogous to eq. (2.41)

was proposed by Catani for the two-loop case:
IM® >=T1D ()| MO > +1O)()| MO > 4| mDin 5 (2.48)

where M) is finite as € — 0. In contrast to the one-loop case, here the singulari-
ties lie in two distinct terms. The first is in the ‘product’ of the color charge operator
1M (¢), which carries O(e~?) poles, with the one-loop amplitude, which also carries
O(e?) poles, giving poles with a maximum degree of ¢~*. The second contribution
emerges as the result of acting on the lowest-order amplitude with a new charge

operator I®(¢), which contains poles of order up to O(e~*) and is given by:
1 2
1(2)(6) = -3 I(l)(e) (I(l)(e) + ﬂ)
€

4 e~ M (@ + K) I(l)(Q €)

I'(l1—c¢) €
+H® | (2.49)
with
67 w? 10
- (2ZX_T - = , 2.
(18 6>C’A gTRNf (2.50)

The first two lines of eq. (2.49) contain all dependence on poles of order 1/¢?, 1/€3
and 1/€? as well as part of the 1/e poles. The term in the third line contains only

single poles:
H® =0 () . (2.51)

H®), that contains the remaining single pole dependence, is not a universal factor. It
is process and renormalization scheme dependent and comprises of constants like C 4,
Cr, (3 and 7. The origins of the above formulae, that were first proposed in [12],
were presented in [29]. It was shown that the exponentiation of single and double

poles at each order in perturbation theory, can be derived from the factorization
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2. TR Divergences and Matrix Elements 2.5. Beyond NLO

properties of hard-scattering amplitudes. This allows one to assemble these poles
in terms of universal functions which are associated with incoming and outgoing
partons, leading to the prediction of the complete pole structure for multi-loop
amplitudes.

To conclude, eq. (2.48), predicts the singular structure of the two-loop amplitude
by providing all the 4", 3™ and 2°¢ order e-poles. In order to get the full structure
of the 1/e poles together with the finite part, we need to calculate explicitly the
Feynman diagrams that contribute to the two-loop amplitude. In chapters 7 and 8
we provide the factor H(® and the finite piece for the processes v* — g¢gg and

‘H — ggg respectively.

2.5 Beyond NLO

In the end of section 2.2.5 we showed that for the H — gg decay, the NLO and
NNLO terms added significant corrections to the LO decay width. In this section
we will study the reasons calling for higher order calculations if we want to increase
our accuracy in the determination of observables and theory constants such as the
strong coupling «,. It was shown in section 1.3 that an observable can be written

as a perturbative expansion depending on the renormalization scale u%:
T =T (asqa), s/1°) = ri(s/p®)asge) + rg(s/uz)as%“;)) + rg(s/uZ)as?”g) +.o,
or more generally:
o0
I' ~ ZTiaszuz) . (252)
i=1

However, whenever we want to make a theoretical prediction, we have to truncate

the series, keeping only the terms which are lower than a certain order N,

dropped
————
N o0
I~ Zriaszu"’) + Z TiQs () 5 (2.53)
=1 i=N+41
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2. IR Divergences and Matrix Elements 2.5. Beyond NLO

which, substituted in eq. (1.22) leaves a residual dependence on p of order O (asa ?;)1> :

N

d i N+1
T (2?) ZT,;QS(#Q) =0 (as(uz) ) . (2.54)

i=1

The number of terms we can include is restricted by the increasing difficulty at higher
orders. Omission of those terms induces a systematic error in our calculation, which
results in uncertainty in the determination of QCD parameters such as a,. Thus,
the higher the order, the smaller the omitted part and the error.

In addition the truncation of the series makes the theoretical predictions more
sensitive to the dependence on the renormalization scale y. It turns out that this
sensitivity reduces as we go to higher orders in perturbation series. In order to see
how this works we will consider the rate for the single jet production in pp collisions.

The NNLO perturbative expansion for a system with energy S is:

do

'CE = as?s)A + as?S)B + as?s)c y (255)

which, using the renormalization group equation at NNLO:

Qgg) = Oau2y + o Lsatyay + (B Ls + Bo” (Ls)?) g2y (2.56)
becomes:
do 2
as Qg (u2) A

+ o4l (B +26LsA)
+ a2 (C +3BLsB + (3G L3 + 261 Ls)A) (2.57)

with Lg = In(u?/S). Notice that if one differentiates eq. (2.57) with respect to In(u?)
and substitutes the renormalization group equation (1.18), the result is of order
@ (as?ug)), in accordance with eq. (2.54). The coefficients A and B are the known
LO and NLO components while the NNLO coefficient C' has not been calculated
yet. In figure 2.7 the renormalization scale dependence (within a factor of two
of the jet emergy .S) of the LO, NLO and NNLO terms is given [30,31], for jets

with transverse energy S = 100 GeV. Despite the fact that the contribution from
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Chapter 3

Amplitudes For QCD Processes

3.1 Introduction

In previous chapters we identified an imperative requirement for estimating the size
of NNLO corrections affecting physical observables such as cross-sections or decay
widths. A primary task toward the achievement of this goal is the calculation of
two-loop helicity amplitudes and matrix elements. The main objective of this PhD
has been the calculation of NNLO matrix elements (ME) and helicity amplitudes
(HA ’s) for physical processes which involve four external particles, one of which
is off-shell. The cornerstone of this calculation has been the cumbersome task of
evaluating two-loop integrals. In section 3.2 we outline step-by-step the scheme we
applied in order to accomplish this project, from using QGRAF [32] to generate all
possible diagrams, to calculating the squared ME or HA ’s of a process. Due to the
significance of the two-loop integrals, a separate section ( 3.3) is used to present the
stages involved in their analytic evaluation. A diagrammatic illustration of all the

basic steps can be found in figures 3.1 and 3.2.
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3. Amplitudes For QCD Processes

3.1. Introduction

GENERAL ALGORITHM FOR:

MATRIX ELEMENTS & HELICITY AMPLITUDES

INPUT: Characteristics of the Process

* Types of Allowed Vertices

* Particles Involved

* Define Incommg/ Outgoing Particles

==F s R T s

| j———— | x Diagrams: Vertices and Propagators

| @ Generate Feynman Diagrams !
EP L FORM T / rration

I
e Apply Feynmann Rules
|

* Color Indices

» Integrals (Dirac Matrices)

R — -
STEP S FORM

o Color Algebra (sec. 4.2)

* Integrals

% Color Factors

|
: e Sum over Spins |// * Polarization

|l ® _I]YT_’E_’QEé[_/ f‘égIQBX_ _ — _1——J % Color Factors

1
| STEP 4: FORM - MAPLE | [7QTAL, AMPLITUDE (Expanded in € — 2— D/2)
|

* Polarization

* Scalar momenta products

* 2-Dimensional Harmonic Polylogarithms

|STEP 5. FORM ! MATRIX ELEMENT
| }
'e AMPLITUDE ® AMPLITUDE? ' (chapter 7)

HELICITY AMPLITUDES
(chapter 8)

Figure 3.1: The dashed boxes on the left represent the program used to apply the
bullet-point procedures and the shadowed boxes on the right represent the output

of the previous ‘dashed box process and the mput to the following one.

36



3. Amplitudes For QCD Processes 3.1. Introduction

INTEGRAL FACTORY

INPUT= Integrals of the type:

_/ dPk / dP1 (k)” (k)*(1)7
) indl2 | ind/2 k2(k + py + po + p3)22(1 + p1 + p2 + p3)?(k — 1)?

'STEP 1: FORM !

* Integrals written in the form:

I
1e Translate to Auxiliary Integral +———+
! ! J(Da{lala17_411a091a1;1}a3127523a3123)

:Representation (sec. 4.3)

___________________ * Integrals in terms of MI's:
| STEP 2: MAPLE - FORM |
| | J (D, {1,1,...,1}, 812, 823, 8123) =
e Use Laporta Algorithm (sec. 5.2) —————
| | a - Pboxy (812, $23, 8123) + ...

:—+ Master Integrals (sec. 4.5)
—————————————————————— +f - Darta (812, s123) + g - Suns (s123)

:STEP 3: MAPLE - FORM

[
| for the Master Integrals (chapter. 6) in terms of 2-D HPL:

)
|
:o Derive-Solve Differential Equations : * Integrals, expanded in ¢,
[
I
I
[ !
| — expansion of MI’s in ¢, in terms of ——{J(D,{1,1,...,1}, s12, S23, S123) =
|

1 2-D Harmonic Polylogarithms (sec.4.6): L

a4+ . +HbHIL0X)+.. .+
€ ¢ H(1,1,1,0; X) +

Dart, (812, 8123) = -614— a +...+

Figure 3.2: Integral Factory.
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3. Amplitudes For QCD Processes and Matrix Element Calculations

3.2 Basic Steps for Helicity Amplitudes
and Matrix Element Calculations

Step 1 ¢ QGRAF: Generate the Feynman Diagrams

The first step in a ME or HA calculation is the generation of the Feynman diagrams
contributing to the process. In processes involving a large number of Feynman di-
agrams this can be a painstaking task. For this purpose we used QGRAF [32].
QGRAF is a computer program for automatic generation of symbolic descriptions
of Feynman diagrams in quantum field theories. It does not perform any kind of
field theoretic calculation. The user mainly provides information about the exter-
nal particles, the propagators, the number of loops and the types of vertices, and
sets features such as the desired output style. This determines the output which
consists of a list of diagrams, labeled in a combinatorial style, accompanied by their
symmetry factor.

Step 2-3 ¢ FORM: Feynman Rules - Color Algebra

After completion of Step 1 we are left with a set of diagrams written in terms of
propagators and vertices. First, we apply the Feynman rules for the Lagrangian
of the process under consideration (see for example sections 1.2 and 1.4.1). Sub-
sequently, color algebra (sec. 4.2) is performed to sum over the color factors. This
part is totally implemented in FORM [34], a program for symbolic manipulation,
specialized to handle very large algebraic expressions in an efficient way.

Step 4 ©« MAPLE [33] - FORM: Integral Factory

The integrals that descended from Step 3 are calculated in terms two dimensional
harmonic polylogarithms (2DHPL). The process of calculating two-loop integrals is
outlined in the following section. Finally we derive an expression for the amplitude
expanded in € = 2 — D/2 and written in terms of 2DHPL’s, color factors, scalar
momenta products (Mandelstam variables and squared masses) and polarization
factors.

Step 5 ¢« FORM: Matrix Elements or Helicity Amplitudes

At this stage one has two options, depending on whether we are interested in cal-

38



3. Amplitudes For QCD Processes 3.3. The Integral Factory

culating a matrix element or helicity amplitudes. In the first case the two-loop
(one-loop) amplitude is contracted with the tree-level (one-loop) amplitude and
then summation over the colors and spins is performed. The gluon polarizations
are summed over using an axial gauge to ensure that the polarization states are

physical:

S ) () = g + HEEIE &y
spins

Our final result is expressed as a series in € = 2 — D/2 poles, whose coefficients
contain the number of colors and quark flavors as well as functions (2DHPL’s) of
the system’s scales.

If helicity amplitudes are required, then one can use a helicity projectors ’
method, described in detail in section 4.7. Acting on the general tensorial form
of the amplitude with a set of projectors it is possible to derive the coefficients of
the tensor structures that comprise HA’s. The result is an € expansion in terms of

color factors and functions (2DHPL) of the scales appearing in the process.

3.3 The Integral Factory

After application of the Feynman rules in the QGRAF output, two-loop integrals of

the form

/ dPk / dPl (k)* (k)" (1)°

imd/2 | iwd/2 k2(k + p1+ pa + p3)22(L+ p1 + p2 + p3)2(k — 1)?
make their appearance. These integrals are translated to the auxiliary integral

representation (presented in section 4.3), which allows them to be written in a more

compact notation, for example:

j(Da{1)1:17_43110a1a1)1}a312732313123) or

j(Da {1’ 1a 1) _1a 110a 1) 172}) S12, 823, 3123)

This notation is prefered because it is more compatible with programs of symbolic

manipulation like FORM and MAPLE [33]. A system of relations between all the
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3. Amplitudes For QCD Processes 3.3. The Integral Factory

integrals of the process is derived and solved (see chapter 5), allowing them to be

written in terms of a basis set of few ‘master’ integrals (MI) with nice names like:

j(Dy{O’ana]-alaO,O,Oal},812a82373123) - SUDS(3123) )
j(D,{l,O,1,0,0,0,0,1,1},812,823,8123) = Dart2(512’3123) )
j(D){l)]‘)]‘,—-4)1)0)1,1)1},812,823)3123) = anOXl (312)82333123)+---

+f Dart2 (812, 8123) + g SUDS (5123) .

The final but not trivial task is the calculation of the master integrals. Of
the several methods that have been employed toward this direction the one that
achieved the most, calculating the most difficult integrals, was the differential equa-
tions method (by Gehrmann and Remiddi [42,43]) presented in chapter 6. Differen-
tial equations on the external scales for the master integrals were derived and solved,
enabling us to write the MI and consequently all possible integrals, as expansions

in € with coefficients functions (2DHPL) of the system’s scalars. For example:

1 1
Darts ($12, S123) = a0 —}-...-{-6—2 bH(1,0;X)+...+€ cH(1,1,1,0; X) + ...,

where the factors a, b, ¢,... and X depend on sy and sy23.
In the rest of this thesis we will describe in detail the basic steps we have outlined
in this short chapter. In figures 3.1 and 3.2, apart from the basic steps involved in

ME and HA calculations, we have also illustrated the specific section where each

stage of the calculation is treated.
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Chapter 4

Basic Tools For Two-Loop

Integrals

4.1 Introduction

In the previous chapter we illustrated the basic steps involved in a helicity amplitude
or matrix element two-loop calculation. In each step we face challenges that need
to overcome. However, we have some really powerful tools in our disposal, that
have been developed during the last few years. First of all there is the color algebra
which is used to deal with the color factors appearing in Feynman rules. Next there
are the auxiliary integrals, a formalism that allows one to write complicated tensor
integrals in a compact computer-friendly notation. The third tool, the integration
by parts method, is probably the most effective technique for the simplification
of tensor integrals to a basic set of irreducible Master Integrals (tool four). The
calculation of those Master Iﬁtegrals is not a trivial task though. A usual way of
expressing them is through expansions in € = 2 — D/2 in terms of functions of the
system’s scales. The family of functions used in the calculations throughout this
PhD are the Harmonic Polylogarithms (tool five). The sixth and final tool is a
method for extracting helicity amplitudes from the total amplitude by acting with

a set of projectors.

41



4. Basic Tools For Two-Loop Integrals 4.2. Tool One: Color Algebra

4.2 Tool One: Color Algebra

4.2.1 Color in Feynman Diagrams

In chapter 2 we calculated squared tree-level amplitudes involving diagrams like the
ones in fig.( 2.2.2), (2.2.4) or (2.2.4). We also calculated the interference of tree-level
with one-loop amplitudes which contained diagrams like the one in fig.( 2.2.3). As
one can see in the QCD Feynman rules (section 1.2) as well as in the equivalent rules
for the effective Lagrangian (section 1.4.1), all the above diagrams include SU(N)

color factors. Isolating these factors for each diagram we get:

(a) For the gluon, quark and ghost propagators:

perms
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4. Basic Tools For Two-Loop Integrals 4.2. Tool One: Color Algebra

(c) For the Higgs-gluon vertices:

As we have seen in section 1.1, T}; are the generators of the fundamental represen-
tation of the SU(N) group and f® are the generators of the adjoint representation.
In all cases the color indices a,b,¢,d and e run from 1... N2 — 1, which is the total
number of different gluon colors and indices 4, j run from 1... N which is the total

number of different quark colors.

4.2.2 Identities and Rules in Color Algebra

There are a few rules and identities that can help us reduce the amount of color
algebra involved in the calculation of a squared matrix element.

(a) One very useful concept is that of the Casimir color charges' of SU(N). They
are defined as the products of generators (T - T or f - f), where only one index of
each generator is free and the rest are fixed. Diagramatically the Casimir operators

for the fundamental representation can be given as:

= CF fE—

= Tr \QQQQ0Q0000000Q

1They are called charges in analogy with the electromagnetic charge.
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while for the adjoint representation we have:

with
N?2 -1
C =
F IN 3
Cy = N |
1
TR = 5

(b) A most valuable tool in color algebra is Fierz identity [35}, which gives the most

general product for the fundamental representation:

a a 1
Za:Tikaz = Tg (5iz5]’k - Ndij5k1> ,
i 1 i 1

a

= Tg — (4.1)
j K j K

(c) In any Lie Algebra one can apply the Jacobi identity in the adjoint representation,

foade fbed 4 fbde pead | fede fabd — () and the commutation relation in the fundamental

representation, fo°T2 = TLT¢, — TS TP, , which respectively take the graphic forms:

.
TH

44



4. Basic Tools For Two-Loop Integrals 4.3. Tool Two: The Auxiliary Integrals

(d) Finally there are relationships when we sum over the number of colors:

0;505i = du=N,
gabgba — oo — N2 _ 1
o = {17 =0,
F = .
(4.3)

The identities presented in this subsection are sufficient in order to simplify all

Color Algebra.

4.3 Tool Two: The Auxiliary Integrals

All possible planar and non-planar, scalar and tensor, two-loop integrals that appear
in the physical processes, where one external particle is off-shell and three are on-
shell, can be written in terms of only three auxiliary integrals?. The auxiliary planar

(2D) and non-planar (3D) integrals in D dimensions® are (figure 4.1):

Jap (D v, 23456789},812,823,8123 =

Pk [ dPl 1
w2 | w2 A7 AR A A AL AL AT A A
(4.4)

T3D s (D V{l234561189},512,323,8123 =

/ dPk / dP1 1
/2 | jqd/2 AVl AWA":’A"“A"SA”GA”“ AgsAgg
(4.5)

2In the case of all four external particles being on-shell, there are only two auxiliary integrals,

since the two non-planar (3D) integrals are related by momentum relabeling.
3Note: Do not confuse the dimension of the integrals, which is D for all three auxiliary integrals,

with the indices 2D and 3D that appear in their names. The latter are used in order to visualize

the difference between planar and non-planar diagrams.
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Tspi, (D) V{1,2,3,105,6,78,9)> S12, 523, S123) =

/ dPk / dP1 1
sd/? grd/2 A'f’ Angg:SA’i’(l)O 15/5 AgGA'ngsA;g

(4.6)
Where:
Al = k)2 A5 = l2
Ay = (k—1)?
Ao = (k+p)? Ag = (14+p1)? 2
9 9 A = (k—l—p1—p2—P3)
Az = (k+p1+p2) A7 = (I+p1+p2) ,
) ) Ay = (k—1l+py)
Ay = (k+pi+p2+ps3) Ag = (I+p1+p2+ps)

(4.7)

For the on-shell case considered here p? = p2 = p2 = 0, (p; + p;)* = s;; and
(p1 + p2 + p3)? = s123. Note that both non-planar auxiliary diagrams (J3p,,, and
Jsp.,) have eight propagators in common with the planar auxiliary integral (Jp).
The only difference is the interchange A; — A;; in order to go from Jop to Jsp,,,
and Ay — Ay in order to go from Jop to Jsp,,.

It is very important to stress here that the three auxiliary integrals do not cor-
respond to real diagrams. Real two-loop diagrams with three external independent
momenta can have only up to seven propagators. As we can see in equations (4.4),
(4.5), (4.6) and (4.7), each auxiliary integral has nine linearly independent propa-
gators. This number of propagators is the minimum we need in order to be able to
express the nine scalar products* that can appear in the numerators of the integrals,
in terms of a predetermined set of propagators. This method turns out to be a lot

more convenient for the representation of tensor integrals. For example, the planar

4For diagrams with two loop momenta (k and I} and three independent external momenta (p;,
p2 and p3), there are nine combinations of scalar products: k-k, k-py, k-pg, k-p3, L1, 1-p1, 1 ps,

l-psand k-1
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tensor integral:

/de/ dPl L-ps
imd/2 [ amd/2[( k+p1)2] [(l+p1+p2)2]1[(l+p1+p2+p3)2]3 [(k—l)z]z (4.8)
4.8

can be written as:

/de/ o ((4pi+p2)® = (14+p1)* —2p1 - po
md/2 ] w2 (k)2 [(k+p0)2)" (141 +p2))" (141 +p2+ps)2) (k1))
(4.9)
Substituting eq.( 4.7) and expanding we get:
/ de/ le 7 AG . 812
w42 [ imd/2 | A2AZALAZAY A2AZALA3AY A2AZALASAZ
(4.10)

Using the definition of eq.( 4.4) we can finally write the tensor integral (eq. 4.8) as

J2D (D) {21 2a O, O’ Oa O’ O; 3) 2}) S12, S23, 5123) -
Jap (D, {2,2,0,0,0, -1,1, 3, 2},512,523,8123) -

812 X Jz’l) (D, {2, 2, 0, 0, 0, 0, 1, 3, 2}, S12, 823, 8123) . (411)

This notation is a lot more convenient for our purposes, since it makes our results

more compact and it is easier to manipulate in computer programmes.

4.4 Tool Three: IBP Identities

4.4.1 The Integration By Parts (IBP) Method

The IBP method (8, 36,37] is based on the following identity for an m-loop n-

propagator integral :

dPk, dk,, 0 ut
/m—d/? / /2 Ok AT Ave 0, (4.12)

where 4 = 1...m and v* is any linear combination of the loop and the external

momenta. This identity is valid because we can impose that the integral of the total
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2D Auxiliary

P1 > > P1
Py — —— P
P3 > V*Pg

3Dyt Auxcliary

P - — P
Py~ /—"PQ
Py~ \ — Py

3D;,, Auxiliary

Py~ < — Py
P — N—P,
PQ +- _’_PQ
Py— — Py

Figure 4.1: The planar (2D) and two non-planar (3D) auxiliary diagrams. All
nine possible dot-products involving the loop momenta and the external particle

momenta are mapped onto the nine propagators.
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derivative vanishes (there is no contribution coming from the surface). This can be
considered as a consequence of translational invariance of dimensionally regularized
integrals in momentum space.

To take a simple example consider the following two-loop scalar diagram:

-O-

which corresponds to the integral:

D D
Yy o
/2 imd/? Al A4 A5 Ag Ag

where the A;’s are those defined in eq. (4.7) and the corresponding v;’s are taken to

be equal to one.

Applying the identity :

/ de/ dP (k—0)* =0, (4.14)
nd/2 | jrd/2 6k# k2(k+p1+pa+p3)22(l4pr+pe+ps)2 (k=02

and the identity:
20a+b)(a+c)=(a+b?+(a+c)?—(b—c)?, (4.15)

we get the equation:

D / de/ dPl 1 ~
ind/2 | ind/2 k2 (k-+p1+pa+ps)*P(l+p1+pa-t+ps)?(k—1)?

N / dPk / dPl 1
imd/2 | imd/2 (k2)2(k+py+pa+ps)22({+p1 +p2+ps)?

/de / dPl 1
w42 | /2 (k2)2(k+py+pa+ps)2(l+p1+p2+p3)2(k—1)2

/ dPk / dPl 1
in¥/2 | imd/2 k2((k+py+pa+p3)2) 202 (14 pr+pa+p3)?

_/de/le 1 (4.16)
w72 | imd? K2((k+ p1+patps)?) 22 (k—1)2 |

The integrals on the right hand side have come from cancellations of squared combi-

nations of momenta in the numerator and the denominator. Every such cancellation

is equivalent to the shrinking (pinching) of the corresponding line to a point. This
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can easily be seen in the pictorial form of the above equation :

o0 <Dr- D= - <D
D - D

A cross on the line represents a pinching, while a dot an additional power of the

4.17)

relevant propagator in the denominator, i.e. v; — v; + 1. Therefore eq. (4.17)

becomes:

00 - O

In the general case the IBP gives integrals with raised and lowered powers of the
propagators. This will be represented with the shorthand notation i*, for raising

and i, for lowering propagator i:

vitJ(D,...,v,...) = nJI(D,...,v;;+1,..), (4.19)
i“J(D,...,vi,...) = J(D,...,v1;—1,...). (4.20)

Each raising operator is always accompanied by a factor of v; so that it is impossible
to raise the power of the propagator if it is not already present, i.e v; # 0. In this

notation, our example equation for the propagators defined in eq. (4.12) becomes:

(D-4)T =+1"9"J - 175" F +419"J — 47877 . (4.21)
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4.4.2 IBP Identities For The Auxiliary Integrals

Applying the IBP method to the planar auxiliary integral Jop (eq. 4.4) we get the

following ten identities:

s1ov11t Jop

(s23122% + s1231117) Tap

(5121387 + s1231447) Jop

s23v44™ Top

8120551 Jop

(5230667 + 81231557 ) Jap

(s12077" + 5123188 ) Top

+
5231887 Jop

(D —vs — v —v7 — vg — 219) Jop

(D —v1 — vy —v3 —vs — 219)Jap

= —(D-vi—vy—2v3—vs—1v9)Top
+((11F + 92t 4 1447)37 + 1917 (837 — 77)) Top (4.22)
= —(D-wvi —vy—v3—2u4 —19)J2p
+((11T + 1921 +1531)4 + 1591 (47 — 87))Top (4.23)
= —(D—-2v —va—v3—vg—19)Jap
+((192F + 1381 + 144717 + 1597 (17 - 57))Top (4.24)
= —(D—-vi—2va—v3—v4—19)TJop
+((11T 4+ 331 +1447)27 + 1991 (27 — 67)) Top (4.25)
= —(D—-vs—v5—2v7 —vg —19)Jap
+((vs5T + 661 + 158T)7T™ + 1997 (77 — 87))Jap (4.26)
= —(D-vs—vg—v7—2vg—19)Jop
+((s5T + 1661 + 17 T8 + 1997 (87 —47)) Jap (4.27)
= —(D—-2ws—vg—vr—vg—19)J2p
+((ve61 + 77t + 138T)57 + 1591 (57 —17))Jop (4.28)
= —(D—-vs—2v6—vr—vg—19)Jop
+((vsBt + 7Tt 4+ 1887)67 + 191 (67 — 27))Top (4.29)

= (U557 (97 —17)+1s617(97 —27)

47797 —37) +158T(97 —47))Jop (4.30)
= (n1H(9™ —57) +1.27(97 —67)
4133797 —77) + 1441 (97 - 87 ) Top (4.31)

where s15 = (p1 + p2)?, o3 = (p2 + p3)? and s123 = (p1 + P2 + p3)°.

These are the ten basic independent identities that we need in order to reduce all

the possible two-loop planar scalar functions to the master integrals which are listed

in the next subsection. There are ten such identities because for three independent

external momenta p; and two loop momenta, k& and [, we differentiate once over k*
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and once over [* i.e. ten times in total. We must emphasise the fact that the only

independent momentum scales present in the problem are: s)3, $23 and s;a3.
Similarly for the non-planar auxiliary integral Jip,, of eq. (4.5) we get the

following set of IBP identities:

—~8% g s1o3 + (8Tvs + 7)) s12 — 873 wg + (=5 w9 + 1715) 97 + 811705 +
(-6 — Tt —8F1g) 5" + D —2us— v — s +8T4 U~y —y =0 (4.32)
(8+V3 + 4+1/4) 8193 + (3+u3 — 8+1/8) s12 + (—1'1/9 + 5_119) 9% 4+

(—2+1/2 —3%Ty3 — 8Tug — 4+1/4) 1™ + (+3_V8 —47vg —9 g+ 5'1/3) 8+

+D -2 —vg—v3—vy—vg=0 (4.33)
(8+V8 + 4+1/4) So3 + (—2_1/9 + 6_1/9) 9% + (—3+1/3 — 17y — 8T — 4+1/4) 2°
+(837 s —9 s +6 T3 —471g) 8 + D -1y — 209 —vg—13—vg=0 (4.34)
—81wg 593 + (—3_1/8 +27 g+ 4_1/8) 8t + (—7+1/7 —8%ug — 5+1/5) 6~
+(—6"vg+27 1) 9T +D —vs —1g — 215 — vy —v7 =0 (4.35)
—5% U5 5123+ 5 w5510 — 6Tvgso3 + (83 w5+ 1 w5 — 8 w5 +47ws) 5T

+ (9% — 6T —THy) 87 + (4 — 3 s +2715) 61T + TTAT L,
+D—v5—vg—vg—v7—2v83 =0 (4.36)
17 s12 + (8+1/8 + 9+I/g) 77+ (—1+u1 — 2%y — 9Ty — 4+1/4) 3
+(—4_Vg—9_1/8) 8t +D—11 — 205 —vg—vy—vy =0 (4.37)
5t us 510 + (—5+1/5 —8Yug — 675 — 9+I/9) 7"+ 87471y

+973 vg+ D —v5 -2 —vg—vg—1vg =0 (4.38)
11wy s103 + 210 93 + (8+V8 + 9+l/9) 7T+ (—1+z/1 — 2%y, — 8ty — 3+1/3) 4~

+ (-8 -3 )9 " +D -1 —2u -3 -1y — 13 =0 (4.39)
(8%us+ 4T 1) 77+ (—87va — 8 1y) 4T + 67 2Ty + (=971 +571) 17

+ (—2+1/2 — 3%ty — 8+l/8) 9 +D—-v—13—vy—1g—219=0 (4.40)
(—9_1/5 + 1_1/5) 5t 4+ 7v3 7wy + (—8+I/g — Tty — 6+l/6) 9~

+6+2—V6+D—V6—1/5—1/7—2V9—I/8IO (4.41)

Note that all the operators of the above equations act upon the auxiliary integral
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J3p,,, which we omitted for simplicity.
Finally for the non-planar auxiliary integral Jsp,, of eq. (4.6) the ten IBP iden-

tities read:

(8%vg + 4+1/4) s123 + TTvrs1a + (=57 w9 + 17wg) 9" + (-8 wa+ 171 — 9 1yg) 47
+ (—6+1/6 -7y, — 8+1/8) 5 +D—2us—vg—1g— 7 —vg =0 (4.42)
3ty s19 + (—1"1/9 + 5~1/9) 9t + (—2+1/2 — 3+1/3) 1™ +

(—1_V4+8”1/4) AT+ D—-2v —vy—vy—v3—1v4 =0 (4.43)
(v4 8123 — V4 503) 4T + (—2“1/9 + 6'1/9) 9% + (—3"'1/3 — 4%y, — 1+1/1) 27 +

(6_1/4 — 57w+ 8_1/4) A"+ D—v —vg =21y —v3—19 =0 (4.44)

(8+l/8 -+ 4+I/4) 823 + (—6_1/9 + 2_119) 9% + (—5+l/5 — 7+1/7 — 4+1/4 — 8+l/3) 6" +

(—9_1/4 +2 v+ 5 vy — 8_1/4) AV 4+ D25 —vs—vg—vr—1g =0 (4.45)
(-4 g +5%ws) s1a+ (—4Tws — 61wg — 81w — 91 0g) 77 + (4Twg + 9T1y) 37 —
75 us + (—9‘1/4 + 571y — 8_1/4) 4V 4+ D—vyg—vg— 207 —vg—v5 =0 (4.46)
(4+1/4 + 1+1/1) S12 + (4"'1/4 + 9+I/9) T+ (—1+1/1 — 2ty — 9+Vg — 4+1/4) 3+

4% vy s193 + (—5_1/4 + 8_1/4) AT+ D—v—vs—19—213—1g =0 (4.47)

(5+1/5 + 9+1/9) S123 + 61 vg s93 + (l_Vg —4 vy — 5_1/9) ot + (—8_1/4 + 1_1/4) 4t +
(—6+1/6 — Tty — 5+1/5) 8 +D—vs—wvy—vg—vr—218=10 (4.48)
(3+u3 + 2% + 9+1/9) s123 + 3 w3810 — 2wy 503 — 94T g +

(6_1/2 —57v —47 vy + 8_1/2) 2t 4 (—4_1/3 -5 134+8 13+ 7_1/3) 3t 4+

(—4_1/1 + 8_1/1) 1"+ D—v—3—vg—1p — 204 =0 (4.49)
4%y 8193 + (——9_112 -+ 6_1/2) 2t + (7‘1/3 - 9"1/3) 3t 4+ (—9_1/1 + 5_111) 1t

94 '+ D—1vy—vi—v3—vs—219 =0 (4.50)
(8tvg+ 4% vy) s1a3+ (-9 w5+ 17ws) 5T + 7137wy + (—6Twg — 4ty — 7TTr) 97 +

612 g+ (-5 s +1 s —47 1) 8" + D—vs—vs—vr— Vs — 215 =0 (4.51)

Note that like in the case of the previous non-planar identities, all the operators
of the above equations act upon the auxiliary integral J3p,, which we omitted for

simplicity.

53



4. Basic Tools For Two-Loop Integrals 4.5. Tool Four: Master Integrals (MI)

Comparing the above identities of the non-planar auxiliary integrals with the
identities of the planar auxiliary integral, we notice that the symmetries that are so
evident in the planar case, disappear in the non-planar cases. One can easily under-
stand why this happens by observing the diagrams that represent those integrals in

figure (4.3).

4.5 Tool Four: Master Integrals (MI)

As we have already mentioned, our aim is to find a general way® to express, all
possible complicated integrals that appear in the physical processes, in terms of a
basic set of simpler integrals (Master Integrals). The Master Integrals (MI) can then
be analytically calculated as we will demonstrate in Chapter 6. In the following
subsections we justify our choice of MI and list the set of planar and non-planar
Master Integrals relevant for 1 — 3 or 2 — 2 scattering processes with massless

propagators and one off-shell leg.

4.5.1 The Choice of Master Integrals

The choice of Master Integrals in each topology (if there are any) is not unique. It
turns out that the most convenient option is the scalar integral of each topology with
units in all propagator powers. However, in some cases it is not possible to write all
the integrals of the topology in terms of only one MI. The choice of a second MI is
required. As we show in the following two subsections, the second MI of the same
topology is usually chosen to be a first rank tensor integral, with unit powers of
the propagators, or a scalar integral with the power of one propagator equal to two
(2) and the rest of the powers equal to one (1). In some of the reduction methods
of complicated integrals to Master Integrals, which we will present in the following
chapters, we chose the MI’s for each topology, while in other methods, the MI's are

chosen by the computer algorithm according to a set of predefined priorities.

5See Chapter 5
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The reduction of all possible planar and non-planar two-loop integrals that ap-
pear in physical processes with three external particles on-shell and one external
particle off-shell, leads to a set of only 24 Master Integrals that belong to 19 differ-
ent topologies. There are 16 planar MI’s (14 topologies) and 8 non-planar MI's (5
topologies).

4.5.2 Planar Master Integrals

The planar Master Integrals can be two three or four point functions with three to
seven propagators and they can depend on one, two or three momentum scales.

There is only one MI with three propagators:
P12
Sunrise(s;z) = -s—@— :
At four propagators there are five MI's. One of them is a two-point function:

p
auste) = A Y

The remaining four-propagator MI’s are three-point functions. There is one topology

with one external leg off-shell:

P12 h
Dart1(812) = "—(
D2

and three topologies with two external legs off-shell:

D12 Zplz
Dart2(812,8123) = ‘{ , (452)
D3
D12 P
Darty(s123, S23) = “"‘!@: s
D23

TglaSS(S12, 8123) =
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There are six MI’s with five propagators. One of them is a three-point integral with

two external legs off-shell.

D123
Plane(syg, $193) =

The other five-propagator MI's are four-point functions:

P123 =
AbOX1(323, 813, 8123) = Ei )
P1—
D123 P2
AbOXz(st, $13, 8123) = ZZ )
——D3

p123 — D2
Cb0X1(823,313,8123) = )
P1—= D3
D123+ — D2
CbOX2(823,313,3123) = )
P1— — D3
D123+ D2
CbOX2A(323,813,S123) =
P1— D3

At this point we see for the first time a topology (Cboxz) with two Master Integrals.
The dot in the diagram that corresponds to Cbox;4 means that there is power of
two (2) on the ‘dotted’ propagator, while the rest of the propagators have power
one (1).

There are only two Master Integrals with six propagators:

D123 D2
TbOX(823,813,8123) = )
D1 —D3
P23 — D2
Bbox(ss3, S13, S123) =
P1— D3

Finally there is only one topology with two seven-propagator MI’s:

P123—+ Do
PbOX1(323;313,8123) = ,
D1— D3
D123 — @) »— D2
Pboxy (823, $13, S123) = . : (4.53)
P1— —D3
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Here the second MI of the topology is a first rank tensor. The number two (2) in left
loop of the diagram that corresponds to Pbox, defines the numerator of the tensor

MI. This is evident in the auxiliary integral representation of eq. (4.53):

PbOX1(823,813,8123) = jg'D(D,{l,1,1,0,1,0,1,1,1},512,823,8123),

Pb0X2(823,513,5123) = sz(D,{l,1,1,0a1,*1a1,1:1},312,823,8123) -(4-54)

4.5.3 Non-planar Master Integrals (MI)

All integrals that can be produced from the non-planar Feynman diagrams can be
reduced to the Master Integrals of the previous section, plus some extra six and
seven propagator non-planar Master Integrals®.

Apart from the planar MI, the two different types of non-planar integrals that can
be produced from the two types of non-planar auxiliary integrals have the following

six-propagator Master Integrals in common:

D123 D2
Ebox; (12, $13, 8123) = S 8 ,

D3 hn

D123 y o)
EbOX2(312,813,8123) = S 8

Y 2] y4i

Note that both MI’s belong to the same topology. The only difference is that the
second MI, Ebox;, is a tensor integral, as can be seen in the auxiliary integral

representation:

Eboxi(s12, $13,8123) = Jsp.u. (D,1,0,0,1,1,1,1,0,1, 819, 823, S123)

Eb0X2(312,813,8123) = .73Dm (Da1)0>0>1a1a1717—1a1a5121323>5123)-

There are some master integrals that appear only in the reduction of the J3p,,,

6There are no non-planar MI's with less than six propagators because, in the case of integrals
with five propagators or less, there is always an appropriate momentum-shift that can ‘translate’

them to planar MTI's.
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non-planar auxiliary diagram. One of them is a six-propagator, one-scale, three-

/4!
D12
Xtril(slg) = v—<Z:
P2

The other two MI's have seven propagators:

D123 = D2
Xbmol(slz, 513, 8123) = :g )
D3 —- Y41

D123 - ) D2
Xbm02(312, S13, 3123) = ’
P3—a- Y4

point function:

where

an101(512,513,5123) = Jngout (D,].,O,l,].,1,1,1,0,1,812,823,8123),

Xbmoy (812, $13, S123) = Ja3pews (D,1,0,1,1,1,1,1, —1,1, 519, So3, S123) -

Here we have once more the case of a topology with two MI’s.
The reduction of the diagrams that are represented by the other non-planar
auxiliary diagram, Jsp,,, leads to three extra MI's. One is a six-propagator, two-

scale, three-point function:

P12
_ D123
Xtrig(sio3, S12) = v'<Z:: ,
Y&

and two are seven-propagator integrals, a scalar and a tensor integral, that belong

to the same topology:

D123 —— D2
Xbmi; (812, 813, S123) = 8 ,
D3 —— 1

D123 B) —— D2

Xbmiy (812, 813, S123) =
D3 —— D1
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4.6 Tool Five: Harmonic Polylogarithms

In [42] the solutions of the differential equations for two-loop four-point functions
with one off-shell leg were expressed in terms of Hypergeometric functions. How-
ever, this formalism is not so convenient for practical applications, where expansions
around € = 0 are required. This obstacle was overcome with the introduction of
1-dimensional and 2-dimensional Harmonic polylogarithms. One-dimensional Har-
monic polylogarithms (HPL) were introduced in [39] as generalisation of Nielsen’s
polylogarithms [40,41]. They were later generalised to two-dimensional Harmonic
polylogarithms in [43]. Since the HPL’s are just a subclass of the 2DHPL’s, we will

not consider them separately here.

4.6.1 Definition of 2DHPL’s

The 2DHPL’s were introduced as the most appropriate functions for solving differ-
ential equations on the Master Integrals. In the in-homogeneous terms of the X7
DE’s , for the two scale MI’s like Dartqy( X, s123), one can find denominators of one

scale:

fLX) =

f(0; X)

|
S

| =

This is evident in the very simple X differential equation for the MI Dart,:

6Dart2 (X, 8123)

¢ Dal‘tg (X, 8123)

X T 1-Xx
(—2+3¢)
— Suns (X - s ,
S123 (1 — X) X ( 123)

(4.55)

"For simplicity, as we will see in chapter 6, we prefer to differentiate over a new variable

X = s12/8123-
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where one can easily identify f(1; X) and f(0; X). Equivalently, in the more compli-

cated X DE’ s, for three scale MI’ s, one can also find denominators of two scales®:

. 1
1

Based on that, the 2DHPL H(7,,; X), is described as a function of a w-dimensional
vector m,, and its argument X. w is called the weight of H.

For w = 1 the 2DHPL’s are defined as:

X
HasX) = [ dX'f(esX),
0
or equivalently:

0
‘871‘1((11; X) = f(al,X) with ay = 1,0,Y,1 -Y. (456)

For weight w > 1 the 2DHPL’s are defined as:

—

X
H(ay,Bu1; X) = / X' f(an; XVH(By1; X') |
0

or equivalently:

0

a—XH(al,gw_l;X):f(al;X)H(gw_l;X) with a, =1,0,Y,1-Y . (4.57)

4.6.2 Useful Properties of 2DHPL’s

Property 1
2DHPL’s fulfil an algebra that allows one to write the product of two 2DHPL’s, of
the same argument X and weights w; and w, respectively, as the sum of 2DHPL’s,

each with argument X and weight w = w; + wy:

H(duwy; X)H(buys X) = > H(w; X), (4.58)

=G, Whu,

8 As previously, for simplicity we have defined the variables X = 515/5123 and Y = s23/5123.
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where d,, W b,,, represents all permutations of the elements of @, and b,,, in which
their relative orders are preserved.

For example, at wy = 2,a,, = (k,l) and wy = 3,5w2 = (1, s,t), one has:

H(k,l; X H(r,s,; X) = H(k,lr, st X kol st X

I Bt B |

H(k,r, s, 1, t; X k,r,s,t,1; X

H(r, s, k,[,t; X rk,s,t,1; X

+ o+ o+ o+

( ) + H( )
( ) + H( )
H(r k,1,5,t; X) + H(r, k, 5,1, t; X)
( ) + H( )
( ) + H( )

H(r, sk, t,1; X 8tk 1 X)

Property 2
2DHPL’s, of any weight w = ¢ > 1, satisfy the Integration By Parts identities:

H(m;---mgy; X) = /de’ flmy; X"H(mg, -+ ,mg; X')
= Ho(ml;X)H(mg,--- , Mg; X)
- [“3 dX' H(my; X') f(me; XY H(mg, -+ ,mg; X')
= HO(ml;X)H(mz,--- , Mg; X) — H(mg, my; X)H(mg, -+, mg; X)
+ H(ms, mg, my; X)H(my, -+ ,mg; X) — - — ((1)PH(mg, -+ ,m1; X) .

(4.59)

4.6.3 ‘Minimal’ Basis-Set of 2DHPL’s

The set of all possible ‘product’ identities (4.58) and Integration By Parts rela-
tions (4.59), can be used in order to express as many as possible of the 2DHPL’s of

weight w and certain ‘not-preferred’ indices, in terms of:

e (i) a ‘Minimal’ set of 2DHPL’s of the same weight and certain ‘preferred’

indices, and

e (ii) products of 2DHPL’s of lower weight (these are also part of the ‘Minimal’

set for their weight).

The ‘Minimal’ set of 2DHPL’s up to weight 3, expressed in terms of Nielsen’s poly-

logarithnis [4%], can be found in Appendix A. Here we present this base:

61



4. Basic Tools For Two-Loop Integrals 4.6. Tool Five: Harmonic Polylogarithms

w=1
H(0; X)
H(1; X) ,
H(1-Y;X),
H(Y; X) . (4.60)
w=2
H(0,1; X) ,
H(0,1-Y; X)
H(0,Y; X)
H(1,1-Y;X)
H(L,Y;X),
H(1-Y,Y; X)
(4.61)
and w =3:
H(0,0,1; X) , H(0,Y,1-Y;X),
H(0,1,1; X) , H(0,Y,Y; X),
H(0,0,1-Y; X), H(1,1-Y,1-Y;X),
H(0,0,Y; X) H(1,1-Y,Y;X),
H(0,1,1-Y; X), H(L,Y,1-Y;X), (4.62)
H(0,1,Y; X) | H(L,Y,Y; X),
H(0,1-Y,1;X), H(1-Y,1,1;X),
H(0,1-Y,1-Y;X), H1-Y,Y\Y; X),
H(0,1-Y,Y;X), H(Y,1,1; X) ,
H(0,Y,1; X) , HY,1-Y,1-Y;X).

Let us now demonstrate how the reduction to a ‘Minimal’ basis takes place. As

an example, H(1 — Y, 1,0; X) can be written in terms of our ‘Minimal’ base, just
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with use of the IBP identity (4.59) for H(0,1,1 — Y; X), giving:
H(1-Y,1,0; X)=H(1-Y; X)H(1,0; X)—H(1,1-Y; X)H(0; X)+H(0,1,1-Y; X).

The only 2DHPL which is not part of the ‘Minimal’ set is H(1,0; X), whose calcu-
lation is straight forward by application of the ‘product’ identity for H(1; X) and
H(0; X):

H(1,0; X) = —H(0,1; X) + H(1; X)H(0; X) ,
which could be expressed in terms of logarithms and dilogarithms as:

H(1,0; X) = = Lip(X) ~ In(1 = X) In(X) = Lis(1 = X) = .

In summary one can construct table 4.1, where full basis is the set of all possible
2DHPL’s with a certain weight, irreducible set is the set that remains after trivial
relations arising from the definition of each 2DHPL, and finally the Minimal set is

the basis of 2DHPL’s that remains after use of ‘product’ identities and IBP relations.

Weight | Full basis Irreducible set Minimal set

1 4 4 4
2 16 9 6
3 64 36 20

Table 4.1: Sizes of the various bases

As we have already mentioned the 2DHPL’s were used in {43] to express all
planar and non-planar master integrals. All 2DHPL’s that appear in the divergent
parts of the planar master integrals have weight < 3 and can be related to the
more commonly known Nielsen generalized polylogarithms [40,41] of suitable argu-
ments (see appendix A). The functions of weight 4 appearing in the finite parts
of the master integrals can all be represented, by the very definition (eq. 4.57), as
one-dimensional integrals over 2DHPL’s of weight 3, hence of Nielsen’s generalized
polylogarithms of suitable arguments according to the above remark. Numerical

routines providing an evaluation of 2DHPL’s [87,88] are available.
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4.7 Tool Six: Projectors For
Helicity Amplitudes

In this section we present a D-dimensional projection method which can be em-
ployed at all orders in perturbation theory to extract helicity amplitudes. Using
this approach helicity amplitudes were calculated in [46,47] (two-loops). The tech-
nique involves analysis of the tensorial structure of the amplitude and subsequent
derivation of projectors, which acting on the amplitude can isolate the coeflicients of
certain tensor structures. The decay of the Higgs boson to a gluon pair is used here
as a pedagogical example to demonstrate the major stages of a helicity amplitude
calculation. In chapter 8 the same method is used to produce the NNLO helicity
amplitudes for the Higgs decay to three gluons.

4.7.1 The General Tensor

We will consider the production of a pair of gluons in a Higgs decay,

H(ps) — g(p1) + g(p2) - (4.63)

where the invariant scales satisfy
s12 = (p1 + pa)® = M3 (4.64)
We can also define the dimensionless invariant
T = s19/M}, . (4.65)
The hadron current may be perturbatively decomposed as,

Huu(91;92) =0 (H;(L?)(Ql;gz) + (;_;) H;(L}/)(gl;gz) + (%)2 H,S?,)(Ql;g2) + (’)(ai)) )

(4.66)
where a; denotes the QCD coupling constant at the renormalization scale yu, and the
H ,(f,) are the i-loop contributions to the renormalized amplitude. Renormalization

of ultraviolet divergences is performed in the MS scheme.

64



4.7. Tool Six: Projectors For
4. Basic Tools For Two-Loop Integrals Helicity Amplitudes

The most general tensor structure for the hadron current H,,(g:; g2), contracted

with the polarizations of the external gluons is

2
Hpu (g1 go)et'e; = ZAijPi'élpj'€2+Bél'€2
i,j=1

= Aupiepr-ea+ Appr€epaer
+Aapi-€rpaes+ AgiDa€rPro€y + Beroey

= Anprepirea+ Beey, (4.67)

where the constraints p; - ¢, = 0 and p, - € = 0, due to the transversality condition
have been applied. The tensor must satisfy the QCD Ward identity when the gluon

polarization vectors €; and e, are replaced with the respective gluon momentum,

(& = p1) —  Hulgg)les = 0,

(6'2 — p2) — H;w(gl; 92)6§Lp'2/ = 0. (468)

These two constraints are actually linearly dependent and yield one relation amongst

the two distinct tensor structures of eq. (4.67):
B = —p; - py Ay . (4-69)
Applying this identity in eq. (4.67) gives the gauge invariant form of the tensor,
H, (915 g2)€les = Aoy, or Hu(g1;92) = Aot (Prubep — pr - P2gu) ,  (4.70)
where Aj; is a gauge independent function and the tensor structure T3, is given by,
Ty =py-€1p1e€g — p1-P2€y-€3 (4.71)

It should be noted that in the case of a more complicated process (i.e. more
external particles) one would have to solve a system of equations like eq. (4.69) in
order to derive the minimum basis set of independent coefficients (i.e. B, Ay etc.).
It turns out [47] that the number of the components of the basis set equals the

number of the independent helicity amplitudes.
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4.7.2 Projectors for the Tensor Coeflicients

The coefficient A;; may be easily extracted from a Feynman diagram calculation

using projectors such that:

Z P(Axy) Hu(g15 g2)éle; = Axy. (4.72)

spins

We can write the tensor structure 73; and its complex conjugate T:L as:
T = €iesTor, Th =€ ,6,T5 ", (4.73)
with

Torpw = DrwP2p — P P2Guw
T = pips—pi-p2g™ . (4.74)

We proceed by acting on both sides of eq. (4.70) with T}, and solving for Ays:

Z T21 Y (91; g2)€les = Z T21 Th1 Agy (4.75)

sping spins

Comparing equations (4.72) and (4.75) we can identify projector P(Ay;) as

Ty
P(Ay) = —————, (4.76)
! Zspins T211T21
which, using spinor algebra® yields:
P(Az) S (4.77)
= S A i - .
" stz (D —2)

At this point, it should be stressed that things would be more complicated if the
general tensor depended on more than one tensor structures. In such a case, one
would have to solve a system with respect to the coefficients (A’s, B’s etc.) and then
identify the coefficients of the general amplitude in each equation as the projector

for the respective coefficient.

9 Appendix D
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4.7.3 Helicity Amplitudes

Let us now summarize what we have accomplished so far. Starting from the most
general tensor structure for the hadron current H,,(g1;92) and applying certain
constraints, we have managed to write it in terms of a known tensor structure (75;)
and an unknown gauge independent function (Ay;) The unrenormalised coefficient

As; has perturbative expansion of the form:

O o\ 2
AV = ¢ {AQUI(O) 4 (%) AT 4 (ﬁ) A%(Z)+O(a§)] , (4.78)

where the dependence on s,5 is implicit. At order 7 each of the Agl(i) can be calcu-
lated by acting with the general all-order projector P(As;) on the ¢** order hadron

current H,(fB(gl;gg) of eq. (4.66):

S P(As) H(g1; go)ebesy = AL, (4.79)

spins

At tree level it is trivial to calculate the H, ,(,?,)(gl; g2) amplitude from the Feyn-

mann diagrams:
HOg1;92) = —iphpl 6°F +ip1 - pa g™ 6°° . (4.80)

Substituting eqs. (4.80, 4.76) in eq. (4.79) and applying the algebra of Appendix D

one can derive Ag(;):
AD = 58 (4.81)

The general form of the renormalized helicity amplitude |M?»142) for the process

H(ps) — g(p1, A1) + g(pa, A2) can be written as:
IMAMA2) = el(A) €5 (A2) Huw(91;92) (4.82)

where the A; = 4 denote the helicity. At tree level one can use the general form for

H,(L?,)(gl; g2) as it is given in eq. (4.70), modified for the lowest order:

H(g1592) = AS) (01002 — D1~ P2 9 - (4.83)
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At this point 4-dimensional helicity techniques can be employed - corresponding
to treating the external particle states as physical - the t'Hooft-Veltman scheme.
The two non-zero helicity amplitudes are ++ and ——. The former can be obtained

by substituting eqs. (4.83, 4.81) in eq. (4.82)%:

i
|IMOFH) = 5 Ci [p1p2)* 622, (4.84)
while the parity conjugate amplitude —— can be attained with reversal of the square
for triangle brackets:
_ i «
MO = '2‘01 (p1p2)? 6% . (4.85)

The two remaining helicity configurations +— and 4— are zero.

Similarly one can derive helicity amplitudes for all orders in perturbation theory
as the tensorial structures Txy are independent of the order of calculation. As
a result the relation between the helicity amplitude and the tensorial coefficients

remains unchangeable at any order.

10Gee Appendix D.
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Chapter 5

Making Two-Loop Integrals

Simpler

5.1 Reductions: New Techniques Available

Within the last few years new techniques were developed for the reduction of all
possible tensor integrals appearing in a two-loop calculation to a basic set of Master
Integrals (MI's). Two of those techniques are based on the integration by parts
(IBP) method. In the first one [48], each tensor integral is translated (through
its Schwinger parametric form) into a sum of scalar integrals in higher dimensions
(D — D + 2n) and powers of propagators. Using recursive relations that were
derived applying the IBP for each topology separately, one can turn those integrals
into MI’s (still at higher dimensions). Then the high dimensions (D + 2n) MI's are
given in terms of MI'’s in D using a method called dimensional shift. Gehrmann and
Remiddi [42] have introduced another way of reducing arbitrary tensor integrals to
MI’s by solving a system of equations. This system is produced by deriving the
IBP equations for all the members of a set of seed-integrals. The seed-integrals
are mainly defined by the topology and rank of the highest tensor integrals. These
techniques were primarily applied successfully to the calculation of two-loop integrals
with four on-shell external legs [49-52]. The next more challenging task at two-loops

was the calculation of two-loop integrals with three external on-shell and one off-
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shell legs. Deriving individual recursive relations for each topology, apart from
being a non-trivial task due to the increased number of hard topologies, proved to
require computer speed and capacity beyond our current limits. A more general and
systematic way was demanded. The solution came in [38], where Laporta introduced
an algorithm that enables one to meet all the difficulties arising in two-loop integral

reductions.

5.2 Laporta

In an influential paper [38], Laporta introduced an algorithm suitable for the reduc-
tion of complicated scalar and tensor integrals, to a simple set of Master Integrals
(MI’s). What the algorithm does is to solve a system of equations in a systematic
way. The MI’s are chosen by the algorithm itself as the result of a set of priorities

that we impose.

5.2.1 The Algorithm

The general form of the Laporta algorithm can be presented schematically in fig-
ure 5.1. The numbers correspond to the steps we will see in the main part of the
algorithm. The input to the Laporta algorithm is:

INPUT : [DenSet],[MaxDen|, [ MazNum], [SolutionSet].

Let us study one-by-one the input terms. First of all, DenSet is the set of denomi-
nators, which is defined as the set of propagators raised to a positive power in the
denominator of the integral. The possible set of numerators is the set of propagators
of the Auxiliary Integral that have zero or negative powers of propagators in the
denominator of the integral. In the Auxiliary Integral notation J (v,vs,...,vs),
the denominators are the propagators which correspond to positive v;’s and the nu-
merators are the propagators which correspond to zero or negative v;’s. With this

in mind, we define Md for an integral as:

Md = Y (u-1) , (5.1)

i
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with 4 running through all the positive v;’s. and Mp as:

Mp = ) (5.2)
with ¢ running through all the zero or negative v;’s. MaxDen and MaxNum are
then defined as the more positive value for Md and the more negative value for
Mp respectively, that we allow for our ‘Seed’ integrals. We note that a ‘Seed’ is
the integral on which we act to generate the Integration By Parts identities. In
most cases we set MazDen and MazNum to be equal respectively to the Md and
Mp values of the integral we want to calculate. However, sometimes the system
we want to solve does not close to the simplest possible form and we have to use
higher values for MazDen and MaxzNum in order to produce more equations and
hopefully solve the system in the optimum way. SolutionSet is the set of solutions
(equations between integrals), that we have already stored from previous uses of the

algorithm. This set is empty, {}, when we first apply the algorithm.
THE MAIN ALGORITHM

Before we present the main algorithm that is implemented in MAPLE, let us define
Nk as the number of loops (1 for one-loop and 2 for two-loop integrals) and Nd
as the number of denominators (or the number of propagators in DenSet) of the
integral we are interested in calculating. All integrals appearing in the calculation,
as the result of the IBP identities, which have number of denominators n = Nk, are

set to zero automatically.

1. Using the denominators of the given integral, generate all combinations of
the n = Nk + 1 to n = Nd denominators and put them in a set called
SetO f AllIntegrals. Express the denominators in the auxiliary integral form
with unit powers in the position of every denominator and zero powers in the

rest of the positions.
2. Let n= Nk + 1.

3. Take all combinations with n denominators that are members of SetO f AllIntegrals

and put them in a set named SetWithnDen.
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INPUT l

[DenSet]: (set of denominators)
[MaxDen]: (maximum sum of powers
of denominators bigger than one)
[MaxNum]: (maximum sum of powers

{SolutionSet]: (Set of solutions that
have already been calculated. At the
beggining the set is empty {})

of numerators)

MAIN ALGORITHM H
: 1 Generate all
Loop on n (number of 2.3 topologies
denominators): n from - P
Nk+1 to Nd 4 |—Loop on topologies
— - 5 with same n i
- T
A — 6-7 _f Loop on Mp -
Loop on the set 8.9
of integrals of -
the same 10-11 Loop on the IBP
topology ° identities for one
12-13 integral (Seed)
14-15
16
17
18
19
20

Solution: Set of
Equations
between
Integrals

Figure 5.1: The input, main part and output of the Laporta algorithm. The numbers

correspond to the steps as they appear in the main text of this subsection (5.2.1).
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10.

11.

12.

13.

14.

15.

16.

17.

Select the first topology = Topo.

. Let Md=0.
Let Mp = 0.
For Topo (fixed position of propagators) take all possible combinations in

which the sum of the powers of the n denominators is Md + n and the sum of
the of the powers of the numerators is Mp. Put all the combinations in a set

named SetO fOneT opo.

. Take the 1% member of SetO fOneTopo and name it SeedIntegral.

Generate the 10 IBP equations for the SeedIntegral and put them in a set
named Seed] BPSet.

Take the 1%t equation of Seed] BPSet and name it Equat.
Substitute all the members of SolutionSet in Equat.

If Equat is linearly independent of the other members of SolutionSet then
Equat = [solve Equat in terms of the integral with the highest priority], else

Go To step (15).
Substitute Fquat in the SolutionSet.

SolutionSet = SolutionSet union Fquat.

END LOOP on SeedI BPSet. [Take the next member of Seed] BPSet, name
it Equat and Go To step (11)][else continue]

END LOOP on SetO fOneTopo. [Take next member of SetO fOneTopo, name
it SeedIntegral and Go To step (9)|[else continue]

END LOOP on Mp. [if Mp < MazNwm then Let Mp = Mp+ 1 and Go To

step (7)][else continue]
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18. END LOOP on Md. [if Md < MazDen then Let Md = Md+ 1 and Go To

step (6)][else continue]

19. END LOOP on topologies. [Select next member of SetWithnProps, name it
Topo and Go To step (5)][else continue]

20. END LOOP on n. [If n <= Nd then Let n = n + 1 and Go To step (3)][else
Go To OUTPUT]

OUTPUT: [SolutionSet]

This completes the algorithm. The only aspect that we have not covered so far, is
the priorities we use to select the ‘highest priority integral’ of the equations. As
we have seen, each integral has a certain n (number of denominators), Md and Mp
(see definitions eq (5.1) and eq (5.2)). Of all the integrals appearing in a relation,
we first choose the ones with the highest n and put them in a set. Then from this
set we pick out the integrals with the highest Md and from these ones the integrals
with the most negative Mp. If in our final set there are more than one integrals with
the same n, Md and Mp, then we can proceed in two ways. We can either set even
more restrictive priorities concerning the position of the highest negative or highest
positive power of the propagators, as Laporta proposes in his paper [38], or choose
the integral with the simplest and better-factorised coefficient. This choice seems
to work better since, when solving for the integral of the highest priority, we divide

the entire expression with its coefficient.

5.2.2 Laporta Example

In order to demonstrate how the method works in practice, we present a very sim-

ple example. The integral we are interested in simplifying is the one-loop vertex

P1
P12
+<]: (5.3)
%)
In terms of the notation initiated in subsection 5.2.1 this vertex integral can be

diagram:

written as Jop (1,1,1,0,812). We must note that, since we are dealing with a
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one-loop diagram, our Auxiliary Integral has only four propagators, the first four
([A1, A2, A3, Ag]) of the two-loop planar Auxiliary Integral of eq (4.7). In our ex-
ample A;, A; and Aj are the denominators and Ay is the numerator. Therefore the

input to the algorithm will be:
INPUT : [DenSet = [A1, Aa, Aj)
MazDen =0
MazNum =0
SolutionSet = {}] . (5.4)

The values of MaxDen and MaxNum were calculated, using the definitions of Md

and Mp for the integral we want to calculate (J2p (1,1,1,0, 812)):

MazDen = vm-1)=1-1)+(1-1)4+(1-1)=0,

M-

=1

&l

MazNum = (v;) =0. (5.5)

If at the end of the algorithm, Jp (1,1, 1,0, s12) is not solved for in the SolutionSet,

I
e

we will have to re-run the algorithm using a more negative MazNum or a more
positive MazDen. The denominator set DenSet was chosen to be [A;, As, A3]
because the three positive propagators of Jop (1,1,1,0, s12) are Ay, A and Az. In
the rest of this section we will skip the invariant scale s1o from the notation of the

integral, 1e jgp (Vl, Vo, Vg, Vg, 812) = J (1/1, Vs, Vs, 1/4).
THE MAIN ALGORITHM

First we generate all possible combinations (within our DenSet) of integrals with n
number of denominators, where n runs from Nk +1=1+1= 2 to Nd = 3. For
n = 3 we have the original (input) integral [A;, A2, A3] and for n = 2 there are three
combinations of propagators: [A;, As], [A1, As] and [A, A3]. We notice straight
away that integrals with denominators [A;, A5] and [Az, A;3] vanish in CDR, since

the square of the incoming momenta in both cases is zero. Their relevant diagrams

ﬁl—(>— and ﬁ@ . (5.6)
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Integrals with only one propagator vanish as well. They correspond to this type of

Q | (5.7)

Therefore in the rest of the algorithm we set them equal to zero in advance. This

diagram:

way we save time and space in the computer program. The two topologies that
survive in our example are the triangle integral with denominators [A1, Ay, A3] and

the bubble integral with denominators [A;, A3], which correspond to the following

P12 p P12
and . (5.8)
D2

We put those integrals in a set:

diagrams respectively:

SetO f AllIntegrals = {[A1, Aa, As],[A1, A3]} . (5.9)
Next we start the loop on n!.

1. n=2 From the SetOfAllIntegrals eq (5.9) we take all the integrals with

n = 2 and put them in a new set. Thus we get:
SetWithnDen = {[Ai1, As]} . (5.10)

After performing steps 4...18 of the Main Algorithm we derive the following

SolutionSet:
SolutionSet =
d—
{J(1,0,2,0) - —QJ(I,O,LO),
S12
J(1,-1,2,0)=-J(2,-1,1,0) + (d — 2)J (1,0,1,0),
d—3
J(2,0,1,0)=—( )J(l,O,l,O),
S12
J(1,0,2,-1) = - (ot 2312; suad = 351) 14 0,1,0)
12
-J(2,0,1,-1)}

(5.11)

1A more detailed version of this example is illustrated in Appendix B.
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2. n =3 From the SetOfAlllntegrals eq. (5.9) we take all the integrals with

n = 3 and put them in a new set getting:
SetWithnDen = {[A;, As, As]} . (6.12)

Once more, we recursively apply steps 4...18 and get our final SolutionSet:

SolutionSet =
{J(1,1,2,0)=2(d§3)J(1,0,1,O),
812
(d —3)

J(1,1,1,0) = —2———_7(1,0,1,0),
(1,1,1,0) = ~25 T (1,0,1,0
d—3
J(2,1,1,0):2( . )J(l,O,l,O),

12

d—
J(1,0,2,0)=—( - 3)J(1,0,1,O),

12

J(1,-1,2,0) = —J (2,-1,1,0) + (d — 2)J (1,0,1,0),
d—3
J(2,0,1,0):—( )J(1,0,1,0),

812
(—812d + 2812 + 8123d — 38123)

S12

J(1,0,2,—1) = —

J(1,0,1,0)

-J(2,0,1,-1),
(d — 3)(—812d + Slggd - 48123 + 3512)

J(1,1,2,-1) = +2 J(1,0,1,0)
( (d—4) (
—J(1,2, 1, —1) — J(2, 1, 1,—1)
+8037 (1,2,1,0)} . (5.13)

At this point all the recursive loops terminate and our output is what is left in the

SolutionSet. Therefore:
OUTPUT = SolutionSet . (5.14)

The second equation of the SolutionSet eq (5.13) is the one that gives the inte-

gral (J(1,1,1,0)) we wanted in terms of other simpler integrals, in this case a two
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propagator bubble diagram (J (1,0, 1,0)):

(d—3)
Slz(d — 4)

D12 h _ (d —3) pu: :
Do Slg(d—4) '

Note that apart from the integral we were interested in, we found relations that

J(1,1,1,0) = -2 J(1,0,1,0),

(5.15)

simplify a number of other integrals. In two-loop physical processes, the calcula-
tion of the seven-propagator integrals with the Laporta algorithm, results in the
calculation of all needed integrals with less number of propagators. This is a highly

welcome bonus, since it reduces significantly the number of times we have to apply

the algorithm.

78



Chapter 6

Differential Equations

6.1 Introduction

In chapter 5 we presented an algorithm that, by solving a big set of Integration By
Parts (IBP) identities, allows all possible integrals, which can appear in an actual
calculation, to be written in terms of a small number of Master Integrals (MI). Use
of these identities, however, can not reduce the Master Integrals any further (after
all, this is the definition of a Master Integral). Thus MI’s have to be computed using
a different method. Several methods have been successfully used toward the calcu-
lation of two-loop MI’s, such as for example, the Negative Dimensions approach [53]
and the Mellin Barnes method {54,55]. In both methods, analytic computation of
MTI’s, involves some form of explicit integration over the loop momenta. The differ-
ential equations method, which will be presented in detail throughout this chapter,
is a method for the analytic calculation of MI’s without application of any loop mo-
menta integrations. The method was first presented by Kotikov [56], as a method
of relating loop integrals with internal massive propagators, to loop integrals with
massless internal propagators. Kotikov used differential equations on the internal
masses. The method was embroidered in [57, 58], where differential equations on
the external momenta were derived and solved. First applications appeared in [59].
Finally, in a series of papers Gehrmann and Remiddi [42,43], derived and solved

differential equations on the external scales of all, two and three scale, two-loop
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Master Integrals, with massless propagators, for the off-shell case. As we have al-
ready pointed out in this thesis, this is the set of Master Integrals that we need for
two-loop calculations of the physical processes H — ggg, H — gqq and v* = gqq.
In section 6.2 we demonstrate how differential equations on the external scales are
derived and in section 6.3 we explain the basic techniques for solving them. The

method is displayed in detail using the MI Dart, (eq. 4.52) as an example.

6.2 Generating Differential Equations (DE’s)

6.2.1 Method for Generation of Differential Equations

Our aim is to derive differential equations in the external scales for the Master
Integrals. In the case of four-point functions with three external legs on-shell, one
external leg off-shell and massless propagators, there are only three independent
scales (812, S13, S23), resulting in three differential equations.

As it is not possible to differentiate straight away with respect to external scales,

we can use relation:

3]
8]) 22 pw +p]p. 8 o (61)

1

to express derivatives in the invariant scales s;; = (p; + p]) in terms of derivatives

in the external momenta p,, ps, ps:

0 1 0 , 0 , 0

8126512 = 3 (+P§L—u +P§a—p§z 8 ) , (6.2)
0 1 0 u 0

8236823 e 5 ( pl ap;l. +p2 apy. + a ) ) (63)
o 1 . 0 0 0

5136—81; = 3 <+p16—p’1‘ P“apy + ph ,;) . (6.4)

Acting with the right hand side of these equations on a MI and interchanging deriva-
tion and integration, one would produce a relationship which contains a set of inte-

grals similar to the ones derived from the IBP identities.
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6. Differential Equations 6.2. Generating Differential Equations (DE’s)

Suppose now that we have an integral J; , s (12, S23, S13, D) where:
r=Md, s=Mp, t=Nd, (6.5)

with Mp, Md defined in equations (5.1), (5.2) and Nd is the number of propagators
in the denominator of integral 7; , .
Equations (6.2), (6.3) and (6.4), when applied on J;, s (Si2, S23, S13, D), are not

linearly independent, but are related through the scaling identity:
Tors (812,893,813, D) = A™DPm) J, (N2s19, A%s03, A%s13, D) | (6.6)

which is the result of the properties of integral 7;,, under rescaling of all external

momenta:

o A s12 — Msig,
pg — )\pg % So3 — )\2823 , (67)
p‘g — )\pg S13 — /\2813 .

a(D,r,s) is the mass dimension of the integral and, for an m-loop integral in D

space-time dimensions, is given by:
a(D,r,s) =mD +2s — 2r , (6.8)
where 7 and s were defined in eq (6.5). Thus the scaling equation reads:

«a 0 0 0
—— + — 4 _— 4+ _— rs , 803,813, D) = 0. 6.9
( 5 8126512 823 D52 S13 8313) Jt, , (312 523,513 ) ( )

In practice, we are principally interested in obtaining the differential equation with
respect to scale M? = s193 = (p1 + p2 + p3)%. Therefore, we change to a new set of
variables, namely: M? = 5193 = 819 + Sg3 + 513, S = s12 and T = s93. Consequently,

the set of differential equations becomes:

o 9 B 0
oS N (9312 0813 '
9 _ 9 9
oT N 8823 8513 ’
g 0



6. Differential Equations 6.3. Solving DE’s: The Gehrmann-Remiddi Method

6.2.2 Differential Equations for the General Auxiliary Pla-

nar Integral

Applying eq. (6.10) on the General Auxiliary Planar Integral (eq. 4.4) we get the

following set of differential equations:

0 1
= (8+ 7 v+l + 2 V1—|—5+ 6~ l/5+4+ 3 I/4+I/2—H/3—D+I/g+l/6+l/7)
05123 8123512523
0 1
o = — (—1+2_l/1—5+6_l/5 —Vy — 3 + D — Vg—l/4—l/6—l/7—l/g)
0593 823
1
- —————— (8T w1 27 45T 6 vs AT 3T vt ts— Dt tug iy )
81237512523
0 1 +e— +q-
— = — (—8"7 4T3 v r—vo—vst D—vgvs—vs—y)
0512 S12

1
- (8+ 7 l/8+1 + 2- I/1+5 + 6~ 1/5—+-4+ 3 V4+V2+V3—D+VQ+V6+V7)
8123—512—523

(6.11)

where we have used the ten IBP identities (eq. 4.22) to simplify the format of the
equations. One can trivially see, without having to perform reductions to MI, that
eq. (6.11) satisfy the scaling equation (6.9). We get similar forms of differential
equations if we apply eq. (6.10) on the General Non-Planar Auxiliary Integrals
egs. (4.5 and 4.6).

The righthand side of egs. (6.11) consists of the Master Integral we are interested
in calculating, and of integrals of the form: 576~,8%t77,4*3~ and 1*2~. With use
of the algorithm of section 5.2.1, we can turn these integrals into MI’s of the same
topology, or topologies with less propagators, whose analytic expansions in € have

already been calculated.

6.3 Solving DE’s: The Gehrmann-Remiddi Method

In the previous section we demonstrated one method of producing differential equa-
tions in the external momenta. In this section we will present the techniques used by
Gehrmann and Remiddi in [43] when they solved differential equations for all MI’s,

with two or three scales, that could appear in the reduction of planar and non-planar
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four-point functions with one external leg off-shell. All Master Integrals were writ-
ten as Laurent series around ¢ = 0, in terms of one and two dimensional Harmonic

Polylogarithms (HPL and 2DHPL), and the external invariant scales: s12, 23 and
8123.

Notice, however, that not every Master Integral (MI) depends on all three in-
variant scales, but on certain one or two scale combinations. There are some MI’s

which depend on only one scale:

p
Sunrise(syy) = AE@— ,
p
GlaSS(Slg) = ﬁ@' )

ygi
P12
Darty(s12) = 4—( ) ,
D2
y4!
P12
Xtril(slg) = 4&~<Z:i
D2

The only non-trivial differential equations these integrals satisfy are homogeneous

equations in sy, thus they can not be calculated using the differential equations
method. Nevertheless, computing these MI’s is a relatively simple task, that can be
performed using Feynman parameters [60,61]. Integrals that depend on two or three
external invariant scales, fulfill one or two in-homogeneous differential equations
respectively, on top of the homogeneous re-scaling one. Therefore all these MI's can
be solved using the Gehrmann-Remiddi method. In the rest of this section we will
demonstrate, in brief, the basic steps involved in solving differential equations as
they were initiated in [43].

First we obtain the set of differential equations in the external scales and express
it in terms of the variables: Sja3 = S12 + S23 + 813, X = 812/8123 and Y = s93/5193.
We end up having a homogeneous equation in sj23, which is the re-scaling equation,
and two in-homogeneous equations in X and Y. In the latter, the coefficient of the
homogeneous term and the entire in-homogeneous term (the known sub-topologies
and their coefficients) are expanded as a series in e. The Master Integral under

consideration can be written as the sum of terms, each equal to a pre-factor times a
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combination of HPL’s and 2DHPL’s multiplied by simple coefficients. Thus we use

the following ansatz:
> Ri(Y, X, 5103, €) Hi (Y, X, €) (6.12)

where R; (Y, X s123, €) is the pre-factor (a rational function of X and ¥ multiplied

by a normalization factor) and H; (Y, X, €) is a Laurent series in e:

4 n n
MY X =53¢ [0+ S T mH(m:X) ] (613
€ =0 =1 mevy(y)

When a topology has only one MI then there is only one pre-factor R (Y, X, s123, €)
and there is no need for the sum in (6.12). When a topology has two MI’s then there
are only two terms in the sum (6.12) for each MI'. Let us now study in detail the
components of this formula (6.13). H (771] 0 X ) are 2DHPL’s of weight determined
by the order of the Laurent series. Coefficients T"(Y)’Tn,?ﬁj(y)’ which can contain
ordinary HPL’s and depend only on Y, are left to be calculated. The deepest
allowed pole of the series is taken to be 1/¢?, as it was predicted by Catani in [12].
However, some of the MI's may have superficial degree of divergence smaller than
4. This cannot be known before hand, therefore p is used to include this possibility.
V; (Y) is a set with members all possible permutations of j elements from the set
(0,1,Y,1 —Y), depending only on scale Y. This set comprises all possible indices
for 2DHPL’s of weight j. When the MI under consideration depends only on one
scale, then the V;’s do not depend on Y and are j-dimensional permutations of (0, 1).

To summarize, what remains to be calculated are the coefficients T,,(Y), Tnﬁj (Y)
and the pre-factors R; (Y, X, s103,€). Determination of factors R, (Y, X, s123,€) can
be carried out from the homogeneous part of the differential equations in X and
Y, by inserting in them only the leading singularity term (n = 0) of H; (Y, X, €).
Having determined pre-factors R; (Y, X, s123, €), we substitute the ansatz (6.12), in
the DE in X, getting an X differential equation for the Laurent series H; (Y, X, €).

Consequently, we substitute 6.13 in the DE to end up with a relation that has X

1For this to happen the two MI's must be appropriately chosen as will be explained later in this

section.
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derivatives of 2DHPL. However, by definition the weight 1 and weight 7 2DHPL’s

satisfy the following relations respectively:

LH(m; X) = f(m.X)
;%H (m”'%j—l;X) = f(m,X)H(T?Lj—ISX> ) (6.14)

where f(m, X) are the X-dependent factors:

1/X,1/1-X),1/(Y+X)and 1/(1 - Y — X) ,

present in the DE. Thus, all derivatives disappear and we are left with a purely
algebraic equation. If in this equation we group the coefficients of 1/X,1/(1 —
X),1/(Y + X) and 1/(1 — Y — X) and use the linear independence of the base of
H (771] 0 X ) , we can derive a linear system of equations from which one can determine
all the wanted T' n,?ﬁj(Y)' The factors T,,(Y) can not be calculated from this system
because they do not multiply any X-dependent factors in eq. 6.13. These terms are
evaluated by calculating the MI’s at a boundary condition.

In the case of planar MI's?, one can use their property of being regular in the
entire kinematic plane, apart from the two branch points X =0and Y = 0. As a
result, any of the denominators (1—X), (Y +X) and (1-Y — X) of the homogeneous
part of the DE can be used to calculate a boundary condition at X =1,X = -Y
and X = 1 — Y respectively. This can be achieved by multiplying the DE with
one of these factors, that appears in the homogeneous part, and taking the X limit
where that factor vanishes. This will ‘kill’ all terms, including all derivatives, apart
from the ones that had the multiplying factor in the denominator and we will end
up calculating the MI, at this kinematic point, in terms of its sub-topologies.

When the topology has two MI’s, one has to derive DE’s in X and Y for both
integrals, which now have two terms each in the ansatz (6.12). Therefore one needs
to calculate two pre-factors R, (Y, X, s123, €) for each MI. This can be achieved by
choosing the Master Integrals in a way that the equations de-couple when one ex-

pands the coefficients of the homogeneous part of the DE, and takes the lowest

2The case of boundary conditions for the non planar MI’s is more complicated and will not be

presented -here.
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order terms in €. As far as the boundary conditions are concerned, the procedure is
the same as that outlined above with the extra complication of having to find two

boundary conditions?.

6.4 Generating/Solving DE’s for the DART,; MI

In order to illustrate the method that we presented in sections 6.2 and 6.3, we will

now solve the differential equations for the Master Integral Dart,:

P12
P12 j
Da,I'tg(Slg, 8123) = ‘b{ . (615)
ps3

Generating the differential equation.

In the Auxiliary Integral notation, the topology of Dart, has the propagator set:
[A1, A4, A7, Ag] and the Master Integral can be written as: J(1,0,0,1,0,0,1,0,1).
Therefore, in order to derive the differential equations for Darty, we just have to
substitute: 1 =1, 1, =0,13 =0,y =1, v5=0,5 =0,y =1, 3 =0 and vg = 1,

in the differential equations of the Auxiliary Integral (eq. 6.11):

0 1
= 2+1727 +4%37-D) , 6.16

05123 $123—812—523 ( ) ( )

0 1 1
— = —(1727-34D) - ———— (2+1727+473"-D) , (6.17)
0823 823 8123812523

0 1 1
— = —(3-4"3 +D)—— (2+1t27+473 —D) . (6.18
0512 812 ( ) S123—S812—S523 ( ) ( )

3This is not always a trivial task, as it is shown in [43].
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If we apply equations (6.16), (6.17) and (6.18) on integral J(1,0,0,1,0,0,1,0,1),

we get:

8J(1,0,0,1,0,0,1,0,1) J(2,-1,0,1,0,0,1,0,1)

a5123 S123 — S12 — 523
J(l,O,—1,2,0,0,1,0,1) n (2 — D) J(1,0,0,1,0,0,1,0, 1)
S123 — 812 — So3 8123 — S12 — 523 ’
8J(1,0,0,1,0,0,1,0,1) B _J(2,—1,0,1,0,0,1,0,1) B
0593 S123 — S12 — 823
J(l,O,—1,2,0,0,1,0,1) B (2 — ’D)J(l,0,0,l,0,0,l,O,l) _
$123 — S12 — S23 8123 — S12 — 823
J(2,—1,0,1,0,0,1,0,1) (3—D)J(l,0,0,l,0,0,l,O,l)
$23 823 ’
8J(1,0,0,1,0,0,1,0,1) _ _J(2,—1,0,1,0,0,1,0,1) _
0512 S123 — S12 — S23
J (1,0, -1,2,0,0,1,0, 1) (2 - D) J(1,0,0, 1,0,0,1,0, 1)
8123 — S12 — Sa23 8123 — S12 — S23
J(l,O,—1,2,0,0,1,0,1) (3—D)J(l,0,0,l,0,0,l,O,l)
812 S12 .

(6.19)

All the integrals on the right-hand side can be written in terms of Master Integrals
with use of the Laporta reduction algorithm presented in subsection 5.2.1. Subse-

quently, the three differential equations take the form:

0J(1,0,0,1,0,0,1,0,1 1(—-4+D —
1,0,0,1,0,0,1,0.1) _ 1 {74+ D)@2sina = 512) ;5 . ¢1,0,0,1,0,1)
05123 2 s193 (5123 — S12)
1 (-8+3D)

—— J(1,0,0,0,0,0,1,0,1) , (6.20
23123(8123—812) ( ) ( )

8J(1,0,0,1,0,0,1,0,1)

=0 6.21
8823 ! ( )
0J (1,0,0,1 1,0,1 1(-4+D
( L R ,O)O, ’O’ ) = __—( + )J(1)050)1)0)O)13011)+
0519 2 8193 — S12

(-8+3D)

1
2 (S123 — S12) S12

J(1,0,0,0,0,0,1,0,1) .  (6.22)

We should note here, that equations (6.20), (6.21) and (6.22), have no dependence
on scale sp3. This could be expected, as in eq. (6.15) we see that Darty depends only
on scales s1p and s193. In this example, we will solve the differential equation on scale

s12 (eq. 6.22). It is more convenient for our purposes to perform the substitution:

87



6. Differential Equations 6.4. Generating/Solving DE’s for the DART; MI

s12 — X S123. This way, our result will depend on s;53 and on ratio X (: f;lfs—)

Written in terms of X equation (6.22) takes the form:

ODarty (X, s ¢
gg( 123) = - XDart2 (X, 8123)
(=24 3¢)
X
11 %) XSuns( 5123)
ODarty (X, s123) ¢(-2+X)
= ———— " Darty (X,
05193 s123 (=1 + X) ria (X o)
(—2+ 3¢)

_mSuns (X 8123) ) (623)
123

where we have also trivially substituted:

D = 4-2¢,
J(1,0,0,0,0,0,1,0,1) = Suns(sy3) ,
J (1, O, 0, 1,0,0, 1, O, ].) = Dart2 (812, 8123) . (624)
It is straight forward to see that the above equations (6.23) satisfy the scaling

equation (6.9).

What we need to know before hand.

According to the methodology presented in subsection (6.3), in order to solve a
differential equation, we need the ¢ expansion of the ‘pinching’ Master Integrals
(here the Suns (X si103)):

1 ., 13 115

Suns (X s13) = FAC (€) (—X s123)' "¢ R A
(5 -scw)e- (G -Feo-5)erowE).
(6.25)
The factor FAC that appears in eq. (6.25) is given by:
FAC(e) = (51 25?)2 . with
e 2
SE() = Um F(Flge_)éz)(l ) (6.26)

In addition an initial condition is required, which, in our case, is the € expansion

of the Master Integral we are interested in, at the limit X = 0. It is easy to see,
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comparing the diagrams which correspond to Master Integrals in subsection 4.5.2,

that in the limit X = 0:
X—0
Dart2 (812, 8123) :+ Dartl (8123) N
with:

Darty (s123) = FAC (€) (—5123)

(@Jr?ﬁ_zg(:%))e— (E+§W2—104(3)> e+ 0 (¢°)]

2 6 2 "6
(6.27)

Solving the differential equation.

First we calculate the pre-factor R; (X, s123, €), as demonstrated in section 6.3, from

the homogeneous part of the differential equation (6.23),

O0Darty (X, S123) _ €
0X 1-X

Dart2 (X, 8123)
(6.28)

and get (using the initial condition from the expansion of Dart;: R; (0, s193,€) =

FAC () (—s123)7>¢ (eq. 6.27)):
R (X, s123,€) = FAC (€) (—s103) ¢ . (6.29)

Note that there is only one pre-factor R (X, sy23, €), since the topology has only one
master integral. Next we define H (X, ¢€) as a Laurent series in €, with coefficients
of € written as the sum of 2DHPL’s. In our example, p of eq. (6.13) is 2, from the
requirement that the order of the Laurent series of the in-homogeneous term of the
differential equation (6.23), matches the Laurent series of the master integral. For

the deepest pole in the series we get:

—eDarty (X, s123) = Suns (X - s193) =

€P 1
6—6'4— = 6—1:>
p = 2 (6.30)
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V; is the set of all possible indices for 2DHPL’s of weight j (j-dimensional vectors
made from all possible combinations of the set: (0, 1). Here, we must stress that, in
this example, V; has no dependence on a massive scale, as the differential equations

depend on only two and not three massive scales. Therefore, for example:

i = {(0),(1)},
VZ = {(0)0)’(0>1)a(1a0)5(1a1)}a

The expression for H (X, €) (eq. 6.13), becomes:

H(X,e) = é{EOTg
+e' Ty + T1,H(0; X) 4+ T ) H(1; X))
+€* (T3 + To,)H(0; X) + To,yH(1; X) + To00)H(0,0; X)
+T5,000H(0,1; X) + T,0,00H(1,0; X) + Ty 0,1y H(1,1; X)]
+€ T3 + Ts,)H(0; X) + Ta,(yH(1; X) + T3,0,0)H(0,0; X)
+T3,0,0H(0,1; X) + T30,0)H(1,0; X) + Ty o yH(L, 1; X)
+T3,00,00H(0,0,0; X) + Ts1,00H(1,0,0; X)
oo+ TyaanH(, 1,15 X))
+€* [Ty + Tao)H(0; X) + ... + Ty aH(1,1,1,1; X))} .

(6.31)

The final step of the calculation is concentrated on the evaluation of the coefficients

T - . The terms Ty, T1, T2, T3 and Ty, which are by definition not multiplied by any

3
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X-dependent functions, correspond to the boundary conditions of equation (6.27):

1
Ty = -3,

5
T]_ - —5)

19 2
L=y %

(6.32)

Inserting the right-hand side of equation (6.31) in the differential equation (6.23) and
using the identities (eq. 6.14) that lie in the definition of the 2DHPL we get a purely
algebraic equation, which, after substituting 7g,T1,7Ts, T3 and T from (eq. 6.32),

becomes (up to the finite term, O(e%)):

0 = %[_Z—lj—X)XTI’(O’ + (‘_‘%X)TL(O) - (_1%)‘71(1)] +
H(0; X){—(jl—j'mTz,(o,o) + (Tl%Y)TZ(O’O) - '(ﬁTZ(I,O)
_(—1:—X) * (—11X)T1’(°)} *
H(1; X){_(—TE;(—)}T?’(O’I) + (_——1_1-{-—X)T2’(0’1) +
ElTX-—)TL(l) - ﬁTZ,(l,l)} +
+O(€") .

(6.33)

All we have to do now is create a system of equations by, first grouping the different

powers of €, 2DHPL and then the inverse powers of X and (-14+X). Thus from the
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coefficient of 1/¢ we get two equations:

(6.34)
and from the coefficients of H(0; X) and H(1; X):
0 = T2,(0,0) 3
0 = Ty00 — 12,00 — 1+ 710,
0 = Ty
0 = Ty +Tuo) —T2ay
(6.35)

respectively. The relations derived from the rest of equation (6.33) up to O(e°) are

linearly dependent with equations (6.34) and (6.35). Solving this system we get:

T = 0, T = -1,
ha =0, Tooy = 0, (6.36)
o0 = 0, Toay = 0.
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If in equation (6.33), we take all orders in €, up to O(e?) and solve the system for

the coefficients T' ~ , we get:
n,m;

T30y = —%2 , Ty = —%2 ,
T300 = —5, Ty00 = +10,
T3000 = *+2, Ty10 = —9,
T30 = -1, Tap000 = —4, (6.37)
Tyy = _5?7# —-¢(3), Tyange = —+2,
Ty = —19, Tya1a0 = —1.

The rest of the T' -, ’s are zero. This result is in complete accordance with reference

[43]. J
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Chapter 7

The v* — ¢Ggg Two-Loop Matrix

Element

7.1 Introduction

Among jet observables, the three-jet production rate in electron—positron annihi-
lation plays an outstanding role. The initial experimental observation of three-jet
events at PETRA [62], in agreement with the theoretical prediction [63], provided
first evidence for the gluon, and thus strong support for the theory of Quantum
Chromodynamics (QCD). Subsequently the three-jet rate and related event shape
observables were used for the precise determination of the QCD coupling constant
o, (see [64] for a review). Especially at LEP, three-jet observables were measured to
a very high precision and the error on the extraction of a; from these data is dom-
inated by the uncertainty inherent in the theoretical next-to-leading order (NLO)
calculation [44,65-68] of the jet observables. The planned TESLA [69] linear ete™
collider will allow precision QCD studies at even higher energies than at LEP. Given
the projected luminosity of TESLA, one again expects the experimental errors to
be well below the uncertainty of the NLO calculation.

Related to ete™ — 3 jets by crossing symmetry are (2 + 1)-jet production in
deep inelastic ep scattering and vector-boson-plus-jet production at hadron colliders.

The experimental data from HERA on ep — (2 + 1) jets and related event shape
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observables have already reached a level of precision demanding predictions beyond
the present NLO accuracy; a further improvement on these data is expected soon
from the HERA high luminosity programme. Similarly, vector-boson production at
large transverse momentum is a classic test of QCD in hadron-hadron collisions and
demands the theoretical prediction to be as precise as possible. In this case, it is
also an important background in searches for new physics at the Tevatron and the
LHC.

Besides its phenomenological importance, the three-jet rate has also served as a
theoretical testing ground for the development of new techniques for higher order cal-
culations in QCD: both the subtraction [65] and the phase-space slicing [66] methods
for the extraction of infrared singularities from NLO real radiation processes were
developed in the context of the first three-jet calculations. The systematic formula-
tion of phase-space slicing [44] as well as the dipole subtraction [68] method were also
first demonstrated for three-jet observables, before being applied to other processes.
It is very likely that similar techniques at higher orders will first be developed in the
context of jet production in e*e” annihilation, which in contrast to hadron—-hadron
collisions or electron—proton scattering does not pose the additional difficulty of the
regularization of initial state singularities.

The calculation of next-to-next-to-leading order (NNLQ), i.e. O(a?), corrections
to the three-jet rate in ete™ annihilation has been considered as a highly important
project for a long time [70]. In terms of matrix elements, it requires the computation
of three contributions: the tree level v* — 5 partons amplitudes [71-73], the one-
loop corrections to the 4* — 4 partons amplitudes [74-77], and the two-loop (as well
as the one-loop times one-loop) corrections to the v* — 3 partons matrix elements.
While the former two contributions have been known for some time already, the
two-loop amplitudes have presented an obstacle that prevented further progress on
this calculation up to now.

This calculation has now become tractable owing to various technical develop-
ments over the last three years. In particular, the systematic application of the

methods presented in chapters 4 and 5 allowed the large number of Feynman in-
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tegrals appearing in two-loop four-point matrix elements to be reduced to a small
number of so-called master integrals (MI). The master integrals relevant in the con-
text of the present work are massless four-point functions with three legs on-shell
and one leg off-shell. Using the technique illustrated in chapter 6, the complete set
of these integrals was computed in [43]. Earlier partial results had been presented
in (85, 86].

In this chapter, we present the O(a?2) corrections to the v* — ¢gg matrix ele-
ment [45]. At this order, two combinations of amplitudes contribute: the interference
of two-loop and tree amplitudes and the self-interference of the one-loop ampli-
tude. We work in conventional dimensional regularization [8-10], with D = 4 — 2¢
space-time dimensions, where all external particles are D-dimensional. Ultraviolet
renormalization is performed in the MS scheme. The infrared pole structure of the
two-loop corrections to the v* — ¢gg matrix element was predicted by Catani [12],
using an infrared factorization formula. We confirm Catani’s prediction with our
explicit calculation, and we use the formalism introduced in [12] to present the in-
frared poles and the finite parts of the v* — ¢dg matrix elements in a compact
form.

The chapter is structured as follows. In Section 7.2, we define the notation and
kinematics as they were used in [45]. Section 7.3 briefly summarizes the method
we used to express the NNLO squared matrix element for v* — ¢gg as a series in
€ = 2— D/2. The result for the two-loop QCD contribution to the v* — ¢gg matrix
element, decomposed into infrared-divergent and infrared-finite parts according to

the prescription derived in [12], is given in Section 7.4.

7.2 Notation

We consider the decay of a virtual photon into a quark-antiquark—gluon system:

v*(q) — q(p1) + q(p2) + 9(ps) - (7.1)
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The kinematics of this process is fully described by the invariants:

si2 = (p1 +p2)?, si3=(p1 +p3)°, sa3 = (p2 + p3)*, (7.2)

which fulfill:

¢* = s12+ S13 + S23 = 5123 - (7.3)

It is convenient to define the dimensionless invariants:

= 312/3123 ) y= 813/8123 ) z = 323/8123 , (7-4)

withz +y+2=1

Our calculation is performed in conventional dimensional regularization [8-10]
with D = 4 — 2¢, and all external particle states are taken to be D-dimensional.
Renormalization of ultraviolet divergences is performed in the MS scheme. The

renormalized amplitude can be written as:

M) = Vimaeq/Aa; | |MO) + (22) M%) + (2) 1M®) + 0@)]  (79)

where o denotes the electromagnetic coupling constant, e, the quark charge, o, the
QCD coupling constant at the renormalization scale u, and the |M(i)) are the i-loop
contributions to the renormalized amplitude. They are vectors in colour space. The

renormalized amplitudes are obtained as

|M(O)) — IM(O)’““) ,

(1) — -1 (1),uny __ _fB_g_ (0),un
| M) S M ) 25|M )
- un 3,B - un 363 un
I T R (- I CE N

where S, [y and B; where defined in equation 1.16.
The squared amplitude, summed over spins, colours and quark flavours, is de-

noted by:
(MIM) = IM(y" = q9)* = T(x,y,2) . (7.7)

The perturbative expansion of T(z,y,z) at renormalization scale u?> = ¢*> = 193
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reads:
T(e,,2) = 16 Y elas(q?) [T‘”(x,y,z) +(%50) e
+ (%2 T<ﬁ)<x,y,z)+0(a3<q2>>}, (7.9
where:

TO(z,y,2) = (M(O)IM(O)>:4V(1-6)[(1—6)(%+-Z—)+2(1_y_yz)—26yz](7.9)
T (z,y,2) = (MOIMD) + (MOIMO) (7.10)
7-(6)($,y,z) — <M(1)|M(1)> + (M(0)|M(2)> + <M(2)|M(0)> 7 (7.11)
where V = N? — 1, with N the number of colours. 7™ (z,y,z) was first derived
in [65,66]; we quote an explicit expression for it in Section 7.4.1. In the following,
we present the contribution to 7)(z,y,z) from the interference of two-loop and

tree diagrams:
TOXD (1 4 2) = (MO|MP)Y) 1 (M| MOy | (7.12)
as well as the one-loop self-interference:
TERA (g 4 2) = (MOMD) . (7.13)

At the same order in a4, one finds also a contribution to three-jet final states from
the self-interference of the v* — ggg amplitude. The matrix element for this process
does not contain infrared or ultraviolet divergences; it was computed long ago and
can be found in [89,90].

For the remainder of this chapter we will set the renormalization scale u? = ¢°.

The full scale dependence of the perturbative expansion is given by:

Te,,2) = 167 5 ()| T(a,0.2)
q

; (a—(“ﬁ) [7'(4)(:c,y,z) T BT (z,y, 2)In (Z_z)]

27
as(,uz) ? 6) 4 ) #2
+ (—_—271' ) [T( (z,y,2) + <2ﬁ07‘( )(x,y’z) + 517'( )(a:,y,z)> In (gi)
+6§T(2)(£L,y, Z) hlz (g;) :l -+ O(CY:;)} (714)
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7.3 Method

The Feynman diagrams contributing to the i-loop amplitude | M®) (i = 0,1, 2) were
all generated using QGRAF [32] according to the first step of the methodology pre-
sented in chapter 3. There are two diagrams at tree-level, 13 diagrams at one loop
and 229 diagrams at two loops. We then project |[M®@) by (M©)| and |IMD) by
(MW, and perform the summation over colours and spins using the computer alge-
bra programs MAPLE (33] and FORM3 [34]. When summing over the polarizations
of the external gluon and off-shell photon, we use the Feynman gauge:

Z el = —gt”. (7.15)

spins
This is valid because the gluon always couples to a conserved fermionic current,
which selects only the physical degrees of polarization. The use of an axial gauge
polarization sum to project out the transverse polarizations (eq. 3.1) is therefore not
needed.

6,1x1)) j5 computed by reducing all

The one-loop self-interference contribution 77
tensorial loop integrals according to the standard Passarino—Veltman procedure [91]
to scalar one-loop two-point, three-point and four-point integrals. It has been known
for a long time that those three-point integrals can be further reduced to linear
combinations of two-point integrals using integration-by-parts identities. After this

6.01x1]) i5 expressed as a bilinear combination of only two integrals: the

reduction, 7
one-loop box and the one-loop bubble, which are listed in appendix of [45].

The computation of 7®RxM is by far less straightforward. The methodology
applied and the tools used to express 7(&2*%) in terms of master integrals (MI)
was discussed in chapters 3, 4 and 5. The two-loop MI ’s relevant to the v* — ¢gg
matrix element are two-loop four-point functions with one leg off-shell. These func-
tions were all computed in [43] in the framework of dimensional regularization with
D = 4 — 2¢ space-time dimensions. The differential equations method, presented in
chapter 6, was used for this purpose. The results of [43] take the form of a Laurent

series in ¢, starting at €4, with coefficients containing two-dimensional harmonic

polylogarithms [39]. All master integrals in [43] were given for one particular config-
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uration of the external momenta. They were expressed in a form where the argument
of the 2DHPL’s was always y, while z appeared in the index vector of the 2DHPL’s.
In [43] there was a separation in the notation referring to HPL’s and 2DHPL’s.
The symbol ‘H’ remained only for the HPL’s while the symbol ‘G’ was used for the
2DHPL’s. For simplicity, in the rest of this thesis we will express both HPL’s and
2DHPL’s with the symbol ‘H’.

Each master integral can occur in six kinematic configurations (corresponding to
the permutations of (p1, pe, p3)). To avoid hidden zeros (arising from cancellations
occurring in the combinations of 2DHPL’s with different arguments and different
variables in the index vector), we express the master integrals for all kinematic
configurations in a unique form, which is the same as in [43]: the argument of the
2DHPL’s is always y, the variable in their index vector is z, which appears also as
argument of the HPL’s.

The master integrals in [43] were derived in the kinematical situation of a (space-
like) 1 — 3 decay, which corresponds to the v* — ¢gg, such that the only analytic
continuation of them required here is the expansion of the overall factor in the

time-like region:
Re(—1)7% =1 — 272> 4 2/3n%* 4+ O(€°) . (7.16)

The analytic continuation of the master integrals to other kinematical regions is

discussed in the appendix of [43].

7.4 The Matrix Element

We further decompose the renormalized one- and two-loop contributions to 7 as

a sum of two terms:
TEEXD (2 4, 2) = Poles™ ) (z,y, z) + Finite™(z,y, 2). (7.17)

Poles contains infrared singularities that will be analytically cancelled by those oc-
curring in radiative processes of the same order (ultraviolet divergences are removed

by renormalization). Finite is the renormalized remainder, which is finite as € — 0.
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In this section we first give explicit expressions for the infrared pole structure using
the procedure advocated by Catani [12] and then give the analytic results for the
finite remainders. For simplicity we set the renormalization scale u? = s193 and

restore the renormalization scale dependence using Eq. (7.14).

7.4.1 Infrared factorization

Catani [12] has shown how to organize the infrared pole structure of the two-loop
contributions renormalized in the MS scheme in terms of the tree and renormalized

one-loop amplitudes, |[M(©®) and | M) respectively, as:

Doles?<0) — IR [_%( MO () 1O () MO — % (MO ()| MO
+ (M(0)|I(1)(e)|M(1))
+e—€71;(—(11__—i‘;) (% + K) (MOITD(2¢)| M)
+ (M‘°)|H(2)(e)|M(°))] (7.18)
and
PolesV = R [2(M(1)|I(1)(e)|M(°)) — (MOIION I (MDY | | (7.19)

where the constant K is defined in eq. (2.50). It should be noted that, in this
prescription, part of the finite terms in 7% are accounted for by the O(e°)
expansion of Poles(*9),

For this particular process, there is only one colour structure present at tree level
which, in terms of the gluon colour a and the quark and antiquark colours ¢ and 7,
is simply T7;. Adding higher loops does not introduce additional colour structures,
and the amplitudes are therefore vectors in a one-dimensional space. Similarly, the

infrared singularity operator I (1)(6) is a 1 x 1 matrix in the colour space and is given

by:

= 1 3 B 1/1 3
I =——9 IN[(=+2 422 (s ——(=+2)s
(€) 2T(1—€) 2t tone ) Butse) - gl g )Sel

(7.20)
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where (since we have set u? = s193):

s, = <_38123> _ (7.21)
13

Note that on expanding S;;, imaginary parts are generated, the sign of which is fixed

by the small imaginary part +40 of s;;. Other combinations such as (M©@|TM1(e)
are obtained by using the hermitian conjugate operator I (1”(6), where the only
practical change is that the sign of the imaginary part of S is reversed. The origin of
the various terms in Eq. (7.20) is straightforward. Each parton pair 4 in the event
forms a radiating antenna of scale s;;. Terms proportional to S;; are cancelled by real
radiation emitted from leg ¢ and absorbed by leg j. The soft singularities O(1/€?) are
independent of the identity of the participating partons and are universal. However,
the collinear singularities depend on the identities of the participating partons. For
each quark we find a contribution of 3/(4¢) and for each gluon we find a contribution
of By/(2¢) coming from the integral over the collinear splitting function.

Finally, the last term of Eq. (7.18) that involves H®(e) produces only a single

pole in € and is given by:

e
(MO|H® ()| MO) = WH@)(M(O”M(O)} : (7.22)

where the constant H(? is renormalization-scheme-dependent. As with the single
pole parts of I (1)(6), the process-dependent H(? can be constructed by counting the

number of radiating partons present in the event. In our case, there is a quark—

antiquark pair and a gluon present in the final state, so that:

2) 2 2
H® =20 + H® (7.23)
where in the MS scheme:
1 5 1172 5 72 &9 Np
H® = [= — N? 4 — N? —— —— | NNp - —= 7.24
g (CB“L +144> 21 F ( 72 108) PN (7:24)

409 11xn? 41 72 3 3 72
H® = N4 | == — el — ) —
a ( %+ 361 o6 ) <3 08 06) T\ 2% Tt ae

i 7T2 25 (NZ—I)NF
48 216 N ’
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so that:

589  11mw? w2\ 1

2 _ N2 e — — — S —

H (4<3 432 72 > ( s ) ( 36 16 + 4) N?
19 =2 1 w2\ Ny 5

- NN —— ) £+ N2 7.26

+< 18+36> F+<54 24)N+27F (7.26)

The factors H ) and H are directly related to those found in gluon—gluon scat-

tering [81], quark—quark scattering [79] and quark-gluon scattering [80] (which each
involve four partons) as well as in the quark form factor [60,92-94]. We also note
that (on purely dimensional grounds) one might expect terms of the type S?j to be
present in H®. Of course such terms are 1+ O(¢) and therefore leave the pole part
unchanged and only modify the finite remainder. At present it is not known how to
systematically include these effects.

The renormalized interference of tree and one-loop amplitudes also appears in

eq. (7.18). This can be written to all orders in € using the relation:

(M(O |M > S- 1( un|M 1),un> _ %(M(O)mnlM(O),un> , (7.27)
where:
1
(MO pgLhumy — (Nfl(y» z) + Nfz(yaz) +(y & Z)> : (7.28)

The functions fi(y,z) and fo(y, 2), presented in appendix E, can be written in
terms of the one-loop bubble integral and the one-loop box integral in D = 6 — 2¢

dimensions, Box®.

As mentioned before, explicit formulae for the bubble and box
integrals are given in the appendix of [45]. The square of the Born amplitude is

given in eq. (7.9).

7.4.2 The finite part

The finite remainders of the one- and two-loop contributions to 7% can be decom-
posed according to their colour structure and to their dependence on the number
of quark flavours Ng. In the two-loop contribution, one finds moreover a term pro-

portional to the charge-weighted sum of the quark flavours Ng,; this equals, in the
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case of purely electromagnetic interactions:

(Ze)
2.

This term originates from diagrams containing a closed quark loop coupling to the

Ny = (7.29)

virtual photon and which first appear at the two-loop level.
The tree-level combination of invariants:

2 2 2
r=YyZ,=_2_°Z (7.30)
2y yz oy z

frequently occurs in the finite part. We therefore extracted this combination by
expressing 1/(yz) by T according to the above equation.

Two-loop contribution to 7

The finite remainder of the interference of the two-loop amplitude with the tree-level

amplitude is decomposed as:
Finite®*0(z,y, z) =V |iN2 (A2(y, 2) + A20(2,y)) + (Bao(y, 2) + Bao(,9))

4273 (Canfy,2) + Can(z,)) + NNe (D9, ) + Dan(z,3)

+2E (Bao(y,2) + Banlz,y) + N3 (Faolw, ) + Fio(z,)
#¥ry (= V) (Gl ) + G | (7.31)

where the coefficients Agg(y, 2), Bao(y, 2), - .., Gao(y, 2) appear in appendix E.

One-loop contribution to 7

The finite remainder of the self-interference of the one-loop amplitude is decomposed

as:
Finite"N(z,y,2) = V|N?(Auly, z) + Au(z,9) + (Bu(y, 2) + Bul(z,y))

+-=5 (Cui(y, 2) + Cui(z,9)) + NNp (D11 (y, 2) + Dui(z,9))
Np

tN (Bui(y, z) + En(z,9)) + Ni (Fuly, z) + Fu(z,y)) | -

(7.32)
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The coefficients Ay1(y, 2), Bi1(y, 2), . . ., Fi1(y, z) are presented in the appendix of [45].
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Chapter 8

Two-Loop Helicity Amplitudes for
the H — ggg Decay

8.1 Introduction

Within the SM, the Higgs Boson is the only particle remaining to be discovered. Its
importance is great because of the fundamental part the Higgs plays in the Elec-
troweak Symmetry Breaking, the spontaneous mechanism that explains the genera-
tion of the masses of the fermions and the weak gauge bosons. Although the vacum
expectation value of the Higgs field is very well defined (of order 246 GeV), its mass
remains a free parameter that can be constrained but not predicted by the theory.

The detection of the Higgs boson in the major electron and hadron accelerators
has been a very challenging, but unsuccessful, task during the last few years. After
the termination of the LEP program, the efforts for the discovery of the Higgs are
concentrated on the hadron colliders at CERN Large Hadron Collider (LHC) and
Tevatron Run II. The data from the e*e™ collider LEP have set a lower limit of
~ 113 GeV [111] for the Higgs mass. A global fit with electroweak precision data
predicts a maximum limit of around 200 GeV [112] with 95% certainty.

If the Higgs mass is below ~ 700 GeV, the dominant mechanism for Higgs pro-
duction in the hadron colliders will be the gluon fusion providing ~65% of the total

cross section at Tevatron [113]. The gluon fusion will be most important at LHC
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due to the high machine luminosity which will enable the measurement of the rare,
of ©(107%), H — ~~ decay, despite the large QCD background from processes
like gg — v, g7 — 77, as well as misidentified photons from 7% decay and jet
fragmentation.

At leading order (LO) the Higgs coupling to the two gluons is mediated through
a quark loop. Since the Higgs coupling to the quarks is proportional to the quark
masses, the dominant contribution is generated from the top quark. The next to
leading order (NLO) corrections have also been calculated and are significantly big
(>60%). As we mentioned in section 1.4, in the heavy top quark limit, M; — oo, we
can integrate out the top mass (M) and formulate an effective Langrangian L.;s for
the Hgg coupling. In this limit the evaluation of the LO and NLO contributions was
completed along time ago [114]. Recently the NNLO, two-loop virtual corrections
were calculated [115].

At the same time, other, less inclusive mechanisms of gluon fusion, have been
studied and in [116] the transverse momentum spectrum of the Higgs boson was
considered. Despite the fact that the channel pp — H + jet — v + jet has a cross
section much smaller than the inclusive channel pp — H+ X — vy + X, the former
presents some significant advantages as far as the background is concerned. First
of all, the photons that are produced by the Higgs decay are more energetic in the
case of a Higgs with large transverse momentum and second, the jet itself produces
a signal that can significantly suppress the QCD background. In fact, at LO the
Signal/Background ratio is approximately ~1/15 for the inclusive pp — <7 process
and ~1/2 or 1/3 for the pp — v + jet reaction in [117] .

The three QCD processes contributing to the reaction pp — vy + jet are:

g9—+H+9, 99—=>H+q, qg—=H+g. (8.1)

Numerically, it was calculated [117] that the contribution of the gq channel is about
12% of the main gg production signal, while the contribution of the ¢g production
channel is negligible. The helicity amplitudes for the processes (8.1) can be given

by analytic continuation of the H — ggg and H — g helicity amplitudes.
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The relevant LO helicity amplitudes and matrix elements of the processes H—ggg
and H —gqq were calculated analytically both in the M; — oo limit and with full
M, dependence [116]. The one-loop virtual contributions at M; — oo were provided
somewhat later [118], but a two-loop calculation has not been done yet.

In the limit M; — oo a full NNLO calculation requires the computation of
the helicity amplitudes of three contributions: (i) the ‘tree.sf’ H — 5 partons
amplitudes, (ii) the ‘one-loop.s;’ corrections to the % — 4 partons amplitudes and
(iii) the ‘two-loopess’ (as well as the ‘one-loop.ss’ times ‘one-loopess’) corrections
to the H — ggg and H — g¢qq helicity amplitudes. Although the one-loop five-
point integrals with one external leg off-shell that appear in (ii) are known, the
computation of the amplitudes has not been done yet. The two-loop four-point
integrals with one external leg off-shell that appear in (iii) were until recently a
major obstacle in any NNLO calculation in which they are involved. This calculation
has now become tractable owing to various technical developments over the last two
years, some of which were presented in previous chapters.

In this chapter, we present the O(a?) corrections to the H — ggg helicity am-
plitudes in the M; — oo limit. At this order, two combinations of amplitudes
contribute: the interference of ‘two-loopess’ and ‘tree.s;’ amplitudes and the self-
interference of the ‘one-loop,.ss’ amplitude. Ultraviolet renormalization is performed
in the MS scheme. The infrared pole structure of the two-loop corrections to the
H — ggg helicity amplitudes have been predicted by Catani [12], using an infrared
factorization formula. We confirm Catani’s prediction with our explicit calculation,
and we use the formalism introduced in [12] to present the infrared poles and the

finite parts of the H — ggg helicity amplitudes in a compact form.

8.1.1 Notation

We consider the decay of the Higgs boson to three gluons:

H(ps) — g1(p1) + g2(p2) + gs(p3) - (8.1)
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As we have seen in previous chapters it is convenient to define by the invariants:

si2=(p +p2)?, s13=(p1 +p3)°, 23 = (p2 +p3)?, (8.2)
which fulfill:
P; = S12 + S13 + S23 = S123 (8.3)

as well as the dimensionless invariants:

r = 512/8123 ) Y= 513/3123 ; z = 823/8123 ; (8-4)

which satisfy x +y + 2z = 1.

The renormalized amplitude | M) can be written as:

M) = Suvp(g1; 92; g3 )€l €5€5 (8.5)

while the hadron current may be perturbatively decomposed as:
o
Suwp(91;9293) = Civdma,f* [Sﬁ(’u)p(gl; g2; 93) + (ﬁ) S0 (915 923 g3)

g\ 2
+(52) S0 021 90) + O, (86)

where «; is the QCD coupling constant at the renormalization scale p, and the
S,(B,, are the i-loop contributions to the renormalized amplitude. C; was defined in

eq. 1.26. Renormalization of ultraviolet divergences is performed in the MS scheme.
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8.1.2 The general tensor

The most general tensor structure for the hadron current S,,,(g1; go; g3) is:
3 3
S;wp(gl; 92;93)6‘11512/65 = Z Aijlcpi‘fl Dj €2Dk €3 + Z Bipi-€1€x-€3

ij,k=1 i=1

3 3
+ Z Cipi-er€r-€3 + Z D;p;-e3€r-€

i=1 i=1

Ass1ps-€1p3-€2pr-€3 + A332P3'61 D3 €22 €3
Byey-e3pr-€1 + Byea-esps-€n

Cirer-eapi-ea +Cser-e3ps-en

+ + o+ 4+ o+

Dier-eaprres+ Dyer-eapres,

where the constraints p; - €, = 0, pp - €3 = 0 and p; - €3 = 0 have been applied. The
tensor must satisfy the QCD Ward identity when the gluon polarization vectors €y,

€2 and €3 are replaced with the respective gluon momentum:

(€1 = p1) = Suup(r; g2; 93)pieses = 0,
(€2 = p2) = Swpla1; 92; g3)€i e = 0,

(e3 — p3) — Syup(gl;gz;ga)é‘ffépﬁ = 0. (8.8)

These constraints yield relations amongst the 14 distinct tensor structures and ap-

plying these identities give the gauge invariant form of the tensor:

S/_Lup(gl; g2; 93)6#565 = ApiTon + AsinTann + AosaToss + As12T312,  (8.9)
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where A,;j, are gauge independent functions and the tensor structures T;; are given

_ 1 P3-€1P3-€2P2-€3812 1 €2-€3P3-€1 Sag S12

Tazy = po-€1P3-€3Pr-€3— < €2:€3 Py €] So3— += )
2 513 2 S13

1 D2 €1 P1 €2 P2 €3813 1 €1-€3P2-€3 813 812

To11 = pa€1prr€aPr-€3— = €1°€2 D1 €3 S1a— +- ;
2 893 2 8923

_ 1 P3 €1 P3-€3P1-€3S1a 1 €1-€3p3-€3 813 812

T311 = p3-€1pr-€xPr-€3— = €1-€3P1 €2 S13— + - )
2 So3 2 So93
T30 = P3'€1P1'€2P2'€3—P2'61P3'62P1'€3+‘2'61'63133‘62312+§61'€2p1'€3523

1 1 1 1
—561'63171'625234'5 €2:€3 P2 €1 313—561'62192'63 813~§€2'€3P3'61 S12 - (8-10)

The coefficients are functions of the invariants s, $o3 and s13 and are further related

by symmetry under the interchange of the three gluons:

A211(812, 813, 823) = —As11(813, 512, S23)

Agza(S12, 513, 823) = —Az11(12, 823, S13) - (8.11)

8.1.3 Projectors for the tensor coefficients

The coeflicients A, may be easily extracted from a Feynman diagram calculation

using projectors such that:

Y P(Aisk) Suwolg1 92 98)efrese = Aige (8.12)

spins
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The explicit forms for the four projectors are,

_ (D - 4) o Sa3 (D — 4)
12803 513 (D — 3) %% 81328192 (D — 3)
93 D 1 (D —2)
+ 3 311 — 2
512 813° (D — 3) s13%s12 (D — 3)
(D —-14)

593 8122 (D - 3)
(D-2)
8232812 (D — 3)

(D-2)
S13 8122 (D — 3)
D
- Ty +
132813 (D — 3) 2" 7 519893813 (D — 3)
(D —4) T So3 D
2 . 232 3 _
S23 S19 (D 3) 513 S12 (D 3)
Sz (D—4) (D —2)
51328122 (D — 3) 13 8122 (D — 3)

T2T11

P(Azn) =

Tg12a

P(Azz2) = Tl + Ti,

T:;[u + T?le’

- S$12 823 S13 (D - 3)
(D —2) t
A = T.

(D —2)

T2T11

Tg127

p(AQH) = T2T11

T?:[n +

(8.13)

8.1.4 The perturbative expansion of the tensor coeflicients

Each of the unrenormalized coeflicients A;;; have perturbative expansions of the

form:
AU U U gabe A(O)’U asU A(l)’U O{g 2A(2)’U O U\3
gk CyvAdmag f gkt o ikt on ik T ((O‘s) ) -
(8.14)
At tree-level:
2
A0 _ 2
211 S13 ’
2
A0 _ 2 ,
311 512
2
A(O) = =
232 519
2 2 2
A§‘{)2 = - - _ = (8.15)

where a, b, ¢ are the adjoint color indices for the gluon.
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The unrenormalized one and two-loop coeflicients AS,)C and AUQ,)C’ were obtained

analytically using the methodology and tools described in previous chapters. The
e-expanded coeflicients in terms of HPL’s and 2DHPL’s, can be obtained in FORM

format from the author of this thesis.

8.1.5 Ultraviolet renormalization

The renormalization of the matrix element is carried out by replacing the bare
coupling oV with the renormalized coupling a, = a,(u?), evaluated at the renor-

malization scale p*:

2

where S,, By and (; were defined in section 1.3.3. The renormalization relation for

the effective coupling C; is given in [119] as:

:30 Qs ﬁz ﬁl Qg 2
cY=ci|1-2(2)+ (2 -2) () +o@y) . 8.17
! ! [ € \27 t €2 € 2 +0(e) ( )
We denote the i-loop contribution to the unrenormalized coefficients by AE;),CU , using

the same normalization as for the decomposition of the renormalized amplitude (8.6).

The renormalized coefficients are then obtained as:

0 0),U
AQ - A,
1 no 3B
A’E_’[I)C = S 1A1(.]22 A7(._7k ’
2 5ﬂo 1)U 560 1502 0),U
145]’)c = S 2A1]/€ Az]lzz - de - 8620 AS]I)c . (818)

8.1.6 Infrared behaviour of the tensor coeflicients

The amplitudes contain infrared singularities that will be analytically canceled by
those occurring in radiative processes of the same order (ultraviolet divergences are
removed by renormalization). Catani [11] has shown how to organize the infrared

pole structure of the one- and two-loop contributions renormalized in the MS scheme
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in terms of the tree and renormalized one-loop amplitudes. The same procedure
applies to the tensor coeflicients. In particular, the infrared behaviour of the one-

loop coefficients is given by:

A(l fzmte (819)

1Jk ijk

AW

ijk

= IW(e)AY)

while the two-loop singularity structure is:

€

1
A5 = (—§I<”(e>1“><e>—@Im(e)

T €
I ( )A(l)

ijk

-2
+e—evr((1—1i)) (99 + K) I(2€) + H<2>(e)) AN

—€
+ A,],cf intte (8.20)
where the constant K is:

67 w2 10
= = - = — —TrN 8.21
(18 G)CA g “ R ( )

The finite remainders Az ’ kf ¢ remain to be calculated.

For this particular process, there is only one color structure present at tree level
which, in terms of the gluon colors a, b and ¢, is simply f*°. Adding higher loops does
not introduce additional color structures, and the amplitudes are therefore vectors
in a one-dimensional space. Similarly, the infrared singularity operator IV)(e) is
given by:

ey N g
I(l)(e) = —m (62 + €O> (513 + S23 + SlZ) ) (822)

where (since we have set p? = sy93):

S;; = <— 8”3)5. (8.23)

Si]’

Note that on expanding S;;, imaginary parts are generated, the sign of which is fixed
by the small imaginary part +¢0 of s;;.
Finally, the last term of Eq. (8.20) that involves H®(e) produces only a single

pole in € and is given by:

H® (8.24)
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where the constant H(® is renormalization-scheme-dependent. As with the single
pole parts of TV (¢), the process-dependent H?) can be constructed by counting the
number of radiating partons present in the event. In our case, there are three gluons

present in the final state, so that:
H® =37 (8.25)

where in the MS scheme:

1 1172 2 N,
H§2)=<§C3+ o W)N2+£N§~+< z 89)NN F(8.26)

TR 27 72108 F 4N

The factor H_,§2) is directly related to the one found in gluon-gluon scattering [81]

and quark—gluon scattering [80] (which each involve four partons).

8.2 Helicity amplitudes

The general form of the renormalized helicity amplitude |[M?*1*233) for the decay:

H(ps) = 91(p1, M) + g2(p2, A2) + g3(p3, A3) can be written as:
IMARAY = G (915925 ga)el (M) es(A)eb(As) (8.27)

where the \; = & denote helicity. A convenient method to evaluate helicity ampli-
tudes is in terms of Weyl spinors, which is described briefly in Appendix D and in
detail in [123]. Using the spinor calculus of Appendix D and substituting eq. (8.10)
in eq. (8.9) we can express the helicity amplitudes, in terms of spinor products. It
turns out that the only two independent helicity amplitudes are + + + and + + —.
Explicitly, we find,

M) = ol

++=\ _1_ [p1p2]3
M ) = ﬂ\/—Q_[P:zP?,][PlP:s] (8.28)

The other helicity amplitudes are obtained from |M**%) and |M*+~) by the usual

parity and charge conjugation relations, while the coefficients o and 8 are written

115




8. Two-Loop Helicity Amplitudes for the ‘H — ggg Deca§.2. Helicity amplitudes

in terms of the tensor coefficients,

1 /512 823 $13
o = — Ao + —Agzy — — Az — 24315 ),
2 S23 513 S23

513
= A
B 5 211

As with the tensor coeflicients, the helicity amplitude coefficients a and § are

vectors in color space and have perturbative expansions,

O = CyVana, fobe [Q(O) + (a—) Qm 4 ( 23) Qo 4 O(ai)] ,

27 m

for Q@ = a,8. The ultraviolet and infrared properties of the helicity coeflicients

match with those of the tensor coefficients,

o) = g-1MU 3’6052(0
¢ 2€

56 1
0 = 5720 w" 't (%— ;’6520)9‘0 Y, (829)

Q1) = I(l)(E)Q(0)+Q(1),finite

0@ _ (—%I(l)(G)I(l)( ) — @I Y(e) + 6—67%1__—26_6)) (% + K) IM(2¢) + H(z)(e)> QO

+ID () QM) 4 Q) finite (8.30)

where IM(e) and H®(¢) are defined in egs 8.22 and 8.25 respectively.
At leading order, one can use the values of AD iji» Blven in eq. (8.15), to get:

2
a(o) _ (812 + So3 + 513) — MH and IB(O) =1. (831)

512523513 512823513

The renormalized next-to-leading order helicity amplitude coeflicients can be straight-
forwardly obtained to all orders in € from the tensor coeflicients Afjl,)c For prac-
tical purposes they are needed through to O(e?) in evaluating the one-loop self-
interference and the infrared divergent one-loop contribution to the two-loop ampli-
tude, while only the finite piece is needed for the one-loop self-interference. They

can be decomposed according to their color structure as follows:

Q) finite  _ fabc (N A8)+NFB§;1)), (8.32)
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The finite two-loop remainder is obtained by subtracting the predicted infrared
structure (expanded through to @(e°)) from the renormalized helicity coefficient. We

further decompose the finite remainder according to the color casimirs as follows,

- N
QE@LJinite _ pabe (NzAg) n WF_Bg) + NNpCP® + NﬁDQ), (8.33)

All one-loop coeflicients Ag ), Bg) and two-loop coefficients Ag) B‘(f), C((Xz) and

D are given in appendix F, while coeflicients A(ﬂz) Bff), C{(}z) and Dg') can be

obtained in FORM format from the author.
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Chapter 9

Conclusions

The main purpose of this thesis has been the calculation of two-loop matrix elements
and helicity amplitudes, for physical processes that involve three on-shell and one
off-shell particles. Two-loop calculations, which are the most challenging component
in the evaluation of NNLO contributions to physical processes, have only recently
become tractable due to the appearance of new calculation tools. Accuracy at NNLO
can enhance the theoretical knowledge and understanding, as well as our predictive
abilities in conjunction with the high precision experimental data that are expected
from LHC.

In the first chapter, we gave a short description of the QCD Lagrangian and
the Feynman rules that can be derived from it. The fundamental mechanisms of
regularization and renormalization are also explained. Finally, we presented the
effective Higgs Lagrangian, a limit of the full theory that significantly simplifies
calculations involving the Higgs—gluon interaction.

Infrared divergences are discussed in the second chapter. Using the example of
the H — ¢g decay, we explain how IR divergences appear and cancel out when
it comes to the calculation of physical observables. In addition, a method for the
prediction of IR divergences, initiated by Catani [11,12], is presented and used to
verify the results of our example calculation. In the third chapter we draw an outline
of the basic steps involved in the calculation of two-loop QCD amplitudes. Emphasis

is given to the computation of two-loop integrals.
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The fourth chapter contains a detailed presentation of all the basic tools needed
for our purposes. Four of those tools, the auxiliary integral representation, the
integration by parts identities (IBP), the master integrals (MI) and the two dimen-
sional harmonic polylogarithms (‘2DHPL), can be used in order to find expansions
in € = 2 — D/2 for all possible two-loop integrals that can appear in the calculations
presented in this thesis.

In chapter 5, we introduce a very powerful algorithm, influenced by a paper
from Laporta [38], that enables one to produce and solve a system of equations
containing relationships between integrals. The solution of the system gives all
required integrals in terms of a small basic set of master integrals (MI). A method
for the calculation of those master integrals, due to Gehrmann and Remiddi [42,43],
is presented in chapter 6. For each master integral it is possible to derive and solve a
differential equation on the external scales of the problem. As a result each master
integral can be written as an € expansion in terms of two-dimensional harmonic
polylogarithms.

In chapter 7, we have derived analytic formulae for the two-loop virtual correc-
tions to the process v* — ¢gg, which arise from the interference of the two-loop
with the tree amplitude and from the self-interference of the one-loop amplitude.
Together with the contribution from the self-interference of the one-loop amplitudes
for v* — ggg [89,90], these form the full O(a?) corrections to the three-parton
subprocess contribution to ete™ — 3 jets at NNLO.

It must also be kept in mind that these virtual corrections form only part of a full
NNLO calculation, which also has to include the one-loop corrections to v* — 4 par-
tons [74-77] where one of the partons becomes collinear or soft, as well as the tree-
level v* — 5 partons processes [71-73] with two soft or collinear partons. Only
after summing all these contributions (and including terms from the renormaliza-
tion of parton distributions for processes with partons in the initial state), do the
infrared divergent terms cancel among one another. The factorization properties of
both the one-loop, one-unresolved-parton contribution [95-100] and the tree-level,

two-unresolved-parton contributions [101-104] have been studied, but a systematic
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procedure for isolating the infrared singularities has not been established. Although
this is still an open and highly non-trivial issue, significant progress is anticipated
in the near future.

The remaining finite terms must then be combined into a numerical program
implementing the experimental definition of jet observables and event-shape vari-
ables. A first calculation involving the above features was presented for the case of
photon-plus-one-jet final states in electron—positron annihilation in [105,106], thus
demonstrating the feasibility of this type of calculations. A prerequisite for such a
numerical program is a stable and efficient next-to-leading order four-jet program,
where the infrared singularities for the one-loop v* — 4 partons are combined with
the tree-level v* — 5 parton with one parton unresolved. Four such programs cur-
rently exist [107-110], each of which could be used as a starting point for a full
O(a3) NNLO three-jet program.

In chapter 8, we have derived analytic formulae for the helicity amplitudes of
the NNLO virtual corrections to the Higgs decay ‘H — ggg, which are required for
the interference of the two-loop with the tree amplitude and for the self-interference
of the one-loop amplitude. The amplitudes were calculated in the infinite top-
mass limit, M; — oo, with use of the effective Hgg coupling. Together with the
contribution from the same set of amplitudes for the decay ‘H — ¢gg, these form
the full virtual NNLO corrections to the three-parton subprocess contribution to
H — 3 jets at NNLO. Note that for a full NNLO calculation one must also compute
the ‘one-loop.ys’ corrections to the # — 4 partons and the tree-level corrections to
the H — 5 partons.

Similar results can in principle be obtained for the non-inclusive Higgs production
in hadron-hadron collisions, pp — H + jet, where the dominant contributions come
from the processes gg — g + H and qg — q + H. However, the complexity of the
cut structure of the non-planar graphs together with the rather different domains of
convergence of the one- and two-dimensional harmonic polylogarithms makes this a
non-trivial task, and we defer this to a future project [120].

To summarize, in this thesis we present, with more or less detail, a basic set of

120



9. Conclusions

powerful techniques that can be used in the calculation of two-loop matrix elements
and helicity amplitudes. We also describe how we applied those techniques in the
calculation of the matrix elements of the process v* — ¢gg and for the calculation of
the helicity amplitudes for the Higgs decay H — ggg. Matrix elements and helicity
amplitudes for the former were published in [45] and [46] respectively, while processes

involving the Higgs with three partons at NNLO, will be examined in future work.
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Appendix A

Harmonic Polylogarithms up to

weight 3

w=1
H(0; X) = InX,
H(1;X) = -In(1-X),
H1-Y;X) = —1n(1—%>,
HY; X)) = ln<X+Y). (A1)
w =2
H(0,1; X) = Liy(X),
. X
H(O,].—Y,X) = le(l—Y) )
) X
H(0,Y;X) = —Lip <—?>,

H(1,1-Y;X) = %1112(1 — X)—1In(1 - X)In(1-Y) + Li (1 _}_/X) — Lig(Y) ,

1-X X+Y ) Y . (X+Y
H(1,Y;X) = —ln(1+y)ln( % >+L12<1+Y)—L12<1+Y),
X+Y : .
H1-Y,Y;X) = —-In(l1-X-Y)ln v + Lig(Y) — Lig(X +Y) .

(A.2)
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and w=3:
H(0,0,1;X) = Lis(X),

H(0,1,1;X) = S12(X),

H(0,0,1—Y; X)

I
e
w
TN
[y
N
l-<
N———’

(aovan) = —Li3 Y )

| x _ —XY
H(0,1,1-Y;X) = L13( — Y)+ 1(1_X_y>_L‘3(1—X—Y)

a0 i (725) (1_5_1,)%0/)
1

—In 1—— Lis X)—gln(l—X Y)+ n}(1-Y),
X1+Y X X+Y Y
H(0,1,Y;X) = Li i Li
()1) ) ) 13( X + Y) Y) 13<1+Y>+ 13(1+Y>

Fa
~ Lig(X) +1n< - ) (+ ) (X;;Y> Lia(X)
1

)+ n(1+Y)In%(X +Y)

—InYIn(l1+Y) ln(
1
—Eln(l +Y)n?Y

H(0,1-Y,1;X) = S;2(X)— Lis <(1 _gz _Y)) + Lis (1 i(y) + Lis (1__Y5(‘)

) +1n(1 — X) Liy(X)

—Li3(X) — Lig(Y) — In(1 — X) Liz <1 -Y

+1In(1 — X)Lig(Y) + %ln(l -Y)In?(1 - X),

X
H(0,1-Y,1-Y; =
0,1-Y,1-Y;X) 31,2<1_Y>,

H(0,1-Y,YV; X) = Li3(( y))((X+Y) ( > (7){7)

“Lig(X +Y) + Lig(Y) + In (X Y) Lin(Y)

X+Y)\ . X 1 2
+In Lig Ty —Eln(l—Y)ln(

H(0,Y,1;X) = —Si,o(X)+ Lis (———X(HY)) — Lis (—%) — Lis (I_X)Y

X+Y)

Y(1-X) 1+Y

i (5) + 100 a1 ()

) —In(1 — X) Lig(X) + %m (T) In?(1 - X)

+1In(1 — X)Li (1+Y

1
—61n3(1-—X),
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(1 i(Y> ~ S (X)j:Y>

H(0,Y,1-Y;X) = S“(u_ )(X+Y)—s

)
+S512(X +Y) — S12(Y) — Lis <(1_Y))((X+Y))

< B et )
e m(22) 1 (25).

H(0,Y,Y; X) = 312( Y>>

i - (5 (15557
I (1—‘1)_{—;{) Lis (u#)
_Lig(l—%)JrLig(l_l_‘Y_X) ,
AR = el (Fi?) i ((1 - X))(/X +Y))

. Y . 1 X+Y 1
-L Lis{—=)+In{ ——— ) Liy { ——
o(r2x) (7)o () v (v

C(Y(1-X) C/ 1-X ,
+ Lis (X—+T> — Lig (—X-i-Y) - ng(X+Y)

a0 i () 1y ()
—In(1 — X)Liy(Y) + 21In(1 — X) Lig(X) + In X In%(1 — X)

1 1-
-3 IY In? (H—§> ~InYIn(1+Y)n (X; Y)

b.<
—
h<
>
Il

1 1 X+Y
—Z1n(1 — 2 - 2
> In( X)ln(X+Y)+2ln(1_X>ln(1+Y)

1 1
+6ln3(X+Y) - gln3Y ,
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1-X 1-X

1—-X 1
2 ] — Li
+2812(Y) + Lis <1+Y> 13(1+Y)

+ln(1+ Y) Li2 (

H(1,Y,1-Y;X) = &chiﬂg)-&gﬂl;)—&ﬂX+ﬂ—SmW%

1-X

—In(1+Y)Lip (Y) +1n (1 — );) Liz (:—;()

)+m(if§)mﬂx+y)

—m1_Y2Lu<
(

—1<1+Y>m2m+mymu—xnmLJQ

1 X+Y
Eln X)In X ) X)ln(l—l—Y)ln(l_Y)
Y
_%ma—xn (+m~—mu+yn X; ),

1 X+Y X+Y
H ; = —= i
(1,Y,Y; X) 2111( ) ( > < % )L12(1+Y)
Y X+Y
L .
13(1+Y)+L13<1+Y)’
1-X

1
H1l-Y,1,1;X) = yﬁyma—m—%m%mm—X—YHmnmmo——7—)

. 1 1-X 1
—InY Liy <1—?> - 81,2 (1——Y—) + Sl,2 <1—?> ,

X+Y>

Hﬂ—KK%X):-%Mﬂ—X—YﬁP(

b's
_m< ;Y>mﬂx+m

—Li3(Y)+ Lis(X +Y),

Y
H(Y,1,1;X) = %m%yamm(fiy>
C(1-X

-I—ln(l—X)ng <1+Y)

1 1 X
L o
+ 13<1+Y> L”<1+Y>’

- X -
HY,1-Y,1-Y;X) = %ln(X—i—Y)ln2 (—1——Y>

1-Y
1-X-Y\ ..
+m(—Tj7—>mxyax—n
+Lis(1-Y) - Lig(1- X -Y) . (A.3)
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Appendix B

Application of the Laporta
Algorithm

We want to calculate the integral J (1,1,1,0). The input to the algorithm is:

INPUT : [DenSet = [A;, Ag, As]
MaxDen =0
MazxNum =0
SolutionSet = {}] (B.1)

We also find:
Nk =2 and Nd = 3 The non-trivial topologies are:

SetO f AllIntegrals = {[A1, Aa, As),[A1, A3]} (B.2)
Next we start the loop on n

1. n =2 From the SetO fAlllntegrals eq (B.2) we take all the integrals with

n = 2 and put them in a new set. Thus we get:
SetWithnDen = {[A1, As]} (B.3)

The following steps should be performed for all the indets of SetWithnDen.

In this example there is only one topology:
Topo = {[A1, As]} (B.4)
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Now we start the loops on Md (from 0 to MazDen) and Mp (from 0 to
MazNum). In our case, both Mazed and MazNum are set to be zero in
the INPUT (B.1). Therefore we only have to take Md = 0 and Mp = 0.
For our topology (Topo) we need to take all possible combinations, written
in the auxiliary integral form, in which the sum of the powers of the n = 2
denominators is Md + n = 2 and the sum of the powers of numerators is

Mp = 0. All combinations are put in a set:
SetO fOneTopo = {J(1,0,1,0)} (B.5)

The following steps would be applied to all the indets of SetO fOneTopo. Once

more in our simple example we have only one indet:
Seed = {J(1,0,1,0)} (B.6)
First we generate the four IBP relations for our Seed:

Seed] BPSet = {0 = (D—-3)J(1,0,1,0) + 512J(1,0,2,0)
0 = (D-2)J(1,0,1,0) = J(1,-1,2,0)
~J(2,-1,1,0)
0 = (D—3)J(1,0,1,0) + 5127 (2,0,1,0)
0 = (D-2)J(1,0,1,0) — J(1,0,2,—1)
—J(2,0,1,—1) + 1237 (2,0,1,0)}
(B.7)

Next we start a loop on the above IBP equations.

(a) 1% IBP identity We take the first of the four equations of the SeedI BPSet
eq. (B.7) and substitute all the equations of the SolutionSet in it. We
then solve for the integral of the maximum priority getting:

(d-3)

512

Equat: J(1,0,2,0) = —

J(1,0,1,0)
(B.8)
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()

If eq. (B.8) is linearly independent from all the equations in the SolutionSet,
we “back-substitute” Fquat in the SolutionSet and then put it in the
SolutionSet:

(D -3)

S12

SolutionSet = {J (1,0,2,0) = —

J(1,0,1,0)}
(B.9)

2" IBP identity We take second of the four equations of the SeedI BPSet
eq. (B.7) and substitute all the equations of the SolutionSet in it. We

then solve for the integral of the maximum priority getting:

Equat: J(1,-1,2,0)=J(1,0,1,0) D —2J(1,0,1,0)
—J(Q,—l,l,O)
(B.10)

Since eq. (B.10) is linearly independent from all the equations in the
SolutionSet, we “back-substitute” Equat in the SolutionSet and then

put it in the SolutionSet:

SolutionSet =
(D -3)

S12
J(l, —1,2,0) = —J(2, -1, 1,0) + (D — 2)J (1,0, 1,0)}

{J(170)2a0):_ J(l,O,l,O),

(B.11)

3rd .. 4*» IBP identities Working similarly for the third and forth IBP
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equations of eq. (B.7) we get the following SolutionSet:

SolutionSet =
{J(1,0,2,0) = —(DS_ 3)J(1,0,1,0),
J(1,-1,2,0) = —J(21,2—1, 1,0) + (D —2)J(1,0,1,0),
J(2,0,1,0) = —%J(I,O, 1,0),
J(1,0,2,—1) = — oD+ 2812: s = 381m) 7y 4 )
~J(2,0,1,-1)} ;

(B.12)

2. n =3 From the SetOfAllIntegrals eq. (B.2) we take all the integrals with

n = 3 and put them in a new set. Thus we get:
SetWithnDen = {[A1, As, A3]} (B.13)
There is only one topology in the SetWithnDen:

TOpO = {[Al, Ag, A3]} (B14)

Now we start the loops on Md (from 0 to MaxzDen) and Mp (from 0 to
MazNum). As we have already shown, we only have to take Md = 0 and
Mp = 0. For the Topo = {[A1, Az, A3]}, all possible combinations, written
in the auxiliary integral form, in which the sum of the powers of the n = 3
denominators is Md + n = 3 and the sum of the powers of numerators is

Mp =0 are:
SetO fOneTopo = {J(1,1,1,0)} (B.15)

The following steps would be applied to all the indets of SetO fOneTopo. Once

more in our simple example the SetO fOneT opo has only one indet:

Seed = {J (1,1,1,0)} (B.16)
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Initially we generate the four IBP relations for our Seed:

Seed BPSet = {0 = (D —4)J(1,1,1,0) + s12J (1,1,2,0)

0 = (D—4)J(1,1,1,0) = J(1,0,2,0)
~J(2,0,1,0)

0 = (D—4)J(1,1,1,0) + s1pJ (2, 1,1,0)

0 = (D-3)J(1,1,1,0)— J(1,1,2,—1)
+51237 (2,1,1,0) + 8237 (1,2,1,0)
—J(1,2,1,-1) = J(2,1,1,-1)}

(B.17)

Next we start a loop on the above IBP equations eq. (B.17)

(a) 1°* IBP identity We take the first of the four equations of the Seed] BP Set
eq. (B.17) and substitute all the equations of the SolutionSet in it. We
then solve for the integral of the maximum priority getting:

(D—4)

S12

Equat: J(1,1,2,0) = —

J(1,1,1,0)
(B.18)

If eq. (B.18) is linearly independent from all the equations in the SolutionSet,
we “back-substitute” Equat in the SolutionSet and then put it in the

SolutionSet:
SolutionSet =
D —
70,020 =-L=3 51010,
S12
J(1,-1,2,0) = —J (2,—1,1,0) + (D — 2)J (1,0, 1,0),
D —
72010 =-L=3 74010,
S12
J(1,0,2,-1) = oD ¥ 2312: nmb = 3sm) ; ;4 1 0)
12
~J(2,0,1,—1),
J(1,1,2,0):—(D—4)J(1,1,1,0)}
812
(B.19)
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B. Application of the Laporta Algorithm

(b) 2" IBP identity We take the second of the four equations of the
SeedI BPSet eq. (B.17) and substitute all the equations of the SolutionSet
in it. We then solve for the integral of the maximum priority getting:

D—
FEquat: J(1,1,1,0) = =2 ( 3)

—~= % _7(1,0,1,0
Slg(D—4) ( )

(B.20)
Since eq. (B.20) is linearly independent from all the equations in the

SolutionSet, we “back-substitute” FEquat in the SolutionSet and then
put it in the SolutionSet:

SolutionSet =
D —
71,1,2,0 =223 71,0,1,0),
8
12
(D-3)
J(1,1,1,0) = -2————J(1,0,1,0),
(1,1,1,0) = 20272057 (1,0,1,0)
D -3
J(1,0,2,0):—( )J(I,O,I,O),
S12
J(1,-1,2,0)=-J(2,-1,1,0) + (D —2)J (1,0, 1,0),
D—
‘](230)1’0) = _(3—3)‘](1)0)1)0))
12
J(1,0,2,-1) = _(—312D + 2812 + 81230 — 33123)] (1,0,1,0)
S12
-J(2,0,1,-1)} (B.21)

(c) 3"¢...4%" IBP identities Working similarly for the third and forth IBP
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equations of eq. (B.17) we get the following SolutionSet:

SolutionSet =
1,20 =22 350,010,
12
(D -3)
J(1,1,1,0) = —2———=_1(1,0,1,0),
( ) (D 1) ( )
(D -3)
J(2,1,1,0) = 2 7 J(1,0,1,0),
D-3
7(1,0,2,0) = )J(l,O,l,O),
812
J(1,-1,2,0) = —J (2,-1,1,0) + (D — 2)J (1,0,1,0),
D-3
J(2,0,1,0):—( - )7(1,0,1,0),
12
J(1,0,2,-1) = —=512D +2s“‘: s1msD) = 35123) 71 1)
12
~J(2,0,1,-1),

(D — 3)(—s12D + s123D — 43123 + 3512)

J(1,1,2,—1) = +2 J(1,0,1,0)
) 5D — 1)

~J(1,2,1,-1) — J(2,1,1,-1)

+523J(1,2,1,0)} (B22)

At this point all the recursive loops terminate and our output is what is left in the

SolutionSet. Therefore:

OUTPUT = SolutionSet (B.23)

The second equation of the SolutionSet eq (5.13) is the one that gives as the integral
(J(1,1,1,0)) we wanted to express in terms of other simpler integrals, in this case
a two propagator bubble diagram (J(1,0,1,0)):

(D —3)
812(D — 4)

P12 n B 5 (D—3) Pm( :
Do 812(D — 4)

J(1,1,1,0) = -2 J(1,0,1,0),

(B.24)

132



Appendix C

Two and Three Body Phase-Space

The phase-space in D-dimensions for r particles can be written as:
PSP = (2m)P- r(D-1) RD (C.1)

where:

/Hd _ p’50< 5 s,,) . (C.2)

1<igj<r
Two-Body Phase-Space
Applying the above formulas for the case of two final state particles we get the

two-body phase-space:

1 T(1—¢) [(4m\°
PSP = 8rT(2 = 2¢) (W) /dylzd(ylz—l), (C.3)

with y;; defined as:
yij = s M? (C.4)

Three-Body Phase-Space

Similarly when the three-body phase-space reads:

1 1 ar \ *
PSP = — ] M?
8 12873 T'(2 — 2¢) <M2)

. / dy12dya3dya[yiz Yo v13] " 0(y12 + Yoz + 113 — 1) . (C.5)
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Appendix D
Spinor Helicity

Tree-level and loop QCD amplitudes can be decomposed to partial helicity ampli-
tudes using the spinor helicity formalism [121,122]. Each amplitude can be expressed
in terms of spinors in a Weyl basis. This is achieved by introducing a set of kine-
matic objects, spinor products, which reflect the amplitude’s collinear behavior. For

a massless particle of momentum £ and helicity A = +1 one can write:

| £5) = 5 (£ 5)u(k) = 5 (1F 3)(k) (D.1)
(k* |= 5(k) (1 % 25) = (k)5 (1 & 7). (D.2)

The second equality of equations (D.1) and (D.2) is valid because positive and neg-
ative energy solutions of the massless Dirac equation can be chosen to be equal to
each other. The above spinors can be used to represent polarization vectors for mass-
less vector bosons. Therefore, the polarization vector of a gluon with momentum &

reads:

+ +
¢ | v | K7)

et (kyq) = 110 o (D.3)
V2(q¥ | k*)

where q is a reference momentum that satisfies ¢> = 0 and ¢ - k # 0, which drops

out in final gauge invariant amplitudes. Each helicity amplitude can be expressed

in terms of the following spinor inner products:

(k™ [17) = (K1),
k* 1) = [k] (D.4)

134




D. Spinor Helicity

where [kl] was defined through the identity:
(k) [lk]) = 2k - | = sy . (D.5)

Significant simplifications in the final results can be achieved with use of spinor

identities:

e antisymmetry:

(kl) = — (k)
[kl] = — [IK]
(kk) = [kk] =0, (D.6)
e the Gordon identity:
1
(65| K =2k, R =S40 K, (D)
e the Fierz rearrangement:
(K ]y [0 m™ |y | n*) = 2 (k1] (mn) (D.8)

the charge conjugation of current:

(BX [y [y =7 [ 1 67), (D.9)

and the Schouten identity:

(ki) (mn) = (km)(in) + (kn)(im) (D.10)

In this thesis we are interested in the helicity amplitudes of the H — ggg decay,
in which all particles except the Higgs boson are on-shell. The above set of identities
are sufficient for this purpose. In [123] one can find a more detailed presentation of

the spinor-product formalism.
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Appendix E

The v* — ¢gg NNLO Matrix

Element coefficients

In this appendix we give the coefficients fi(y, z) and f3(y, z) of equation 7.28 and
coefficients Aso(y, 2), B2o(y, 2), - - -, Gao(y, 2) of equation 7.31:

1 4
— ((—3 + € + 2¢%)Bub(s123) + ( - +12 — 86) Bub(y3123)>
2
+% (( — < + 8 — 10 + 3¢ + 63> Bub(zs123) + (—3 + 4e + €2 — 2¢3)Bub(s123)
2
+< - + 8 — 10¢e + 462) Bub(’y8123))

+

N |~

4
((— — 12 4 9¢ — €2> Bub(zs123) + (6 — 2¢ — 462)Bub(3123)

€

4
I (_ — 124 85) Bub(y3123)>

€

+—y—(1 —€) (Bub(z5123) - Bub(8123))

(1-2)°
+ a g 2) ((3 — be + 263)Bub(23123) + (=3 +4e+ e — 2(:3)Bub(3123))
+(11—Z)(4 — 3¢ — 362 _ 263) (Bub(slgg) — Bub(28123))

+(4 — 9¢ + 6% — €3)Bub(zs123)
1 2
+8123Box® (ys123, 25123, $123) (1 — 2€) (;8(—1 +e€)+ %(—2 + 4e — 2€2)

1
—l—%(ﬁ — 8¢ + 26%) + 2(—2 + 2 — 8¢?) + (4 — 3¢ + 3¢%) + ;2(1 - 6)) , (E.1)
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E. The v* — gqgg NNLO Matrix Element coefficients

Y
z
2 2
+ E — 8 + 10e — 4¢ Bub((l —y—z)3123)
1
2 (6(1 — €)Bub(2s123) + (=6 4 2€ + 4¢*)Bub(s123)

+( - g +12— 85)Bub((1 —y— z)3123))

+(_y—i—z)22 <BUb((1 -y — z)s123) — Bub(3123))
+ s 2e( Bubloim) ~ 2Bubl(1 — = 2Jou) )

+(—1—y—z)2(1 —€) <Bub(5123) — Bub(zs123)>

+(1g_z) ((3 — 4e — € + 2¢°)Bub(s123) + (—3 + 5e — 263)BUb(zsl23)>
1 1 2) (2 + € — 5% — 2¢%) (Bub(zs123) - BUb(3123))

+(2 — Te + 2€® + 3¢3)Bub(zs123) + (—4 + 10e — 4€?)Bub((1 — y — z)s123)

+

1 _
+8123BOX6((1 —y— 2)5123, 28123, 8123)(1 — 26) ((8 — 46) - %4(1 - E)

2
+(y + 2)(—4+ 4e — 6% — 2¢%) + %‘(—2+4€—262)>. (E.2)

The above expressions are written in terms of the one-loop MI's Bub and Box®.

Expansions in € for both MI’s can be found in the appendix of [45].
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E. The v* — qgg NNLO Matrix Element coefficients

Ago(y, 2) =
Z
12y

1
+39H(1, 0; 2)+39H(1, 0; ) +72H(1,1,0;y)| + ——— |17H(1, 0; )+ 17H(1, O;
(1,0:2)-+39H(1, 0:9)+ T2H(1, 1, 0:)] 4+ g [17H(L 052)+ 17H(L, 05)]

1
% [ 1272 — 2472 H(0; 2) + 487> H(1; y) +288(3 +457 — 84H(0; z) — 36H(0; 2) H(0; v)

+144H(0; 2)H(1, 0; )+ 144H(0, 1,0; z) — 306 H(1, 0; z) — 192H(0; ) — 234H(1, 0; )

[27% + 677 H(0; 2) — 1272 H(1; y) — 72¢3 +8H(0; z) — 36H(0; 2)H(1, 0; ) — 36H(0, 1, 0; 2)

—288H(1,1,0;y)] + — 2 +67%H(0; 2) +6m2H(1; 2) —6m2H(2; ) + 1872H(0; v)

___i___[
36(1-y)?
—1272H(1; y) + 363 — 36H(0; 2)H(2, 0; ) +60H(0; 2)H(0; y)

+72H(0; z)H(0, 0; y)+36H(0, 1, 0; 2) —36H(1, 0; 2)H(2; y) +36H(1, 0; 2)H(0; y)

+36H(1, 1,0; 2)+36H(2, 1, 0; y) — 355H(0; ) +270H(0, 0; ) — 108H(0, 1, 0; ) -+6H(1, 0; )
—72H(1,0,0; ) +72H(1,1,0; )] +m [ 3372+ 18w 2H(0; )+ 1872H(1; 2)
—187%H(2; y) +5472H(0; y) — 367 H(1; y) + 108¢3 — 277 -+60H(0; 2) — 108H(0; 2)H(2, 0; y)
+216H(0; z)H(0; )+ 216H(0; 2)H(0, 0; ) -+ 108H(0, 1, 0; 2) +36H(1, 0; 2)

+108H(1, 0; z)H(0; )+ 108H(1, 1,0; 2)+108H(2, 1, 0; y) —615H(0; y) + 594H(0, 0; v)

—324H(0, 1,0; ) +198H(1, 0; y) — 216H(1, 0, 0; ) +-216H(1, 1, 0; y) — 108H(1, 0; 2) H(2; y)]

z 1172 1172
W [_Z_H(l; z)— -—2—H(2; y) —33H(0; 2)H(2, 0; y) —33H(0, 1, 0; 2) —33H(1, 0; 2)

—33H(1, 0; 2)H(2; y)+33H(1, 0; 2)H(0; v)+33H(1, 1, 0; 2) + 33H(2, 1, 0; v)

2272

+33H(0, 1,0; y) —33H(1, 0; )] + —11772——3—H(1; 2)

——[
2(y+2)?
22m?
+T”H(2; y)+33H(0; 2) +44H(0; 2)H(2, 0; y) — 66H(0; 2)H(0; y) +44H(0, 1, 0; 2)

—22H(1,0; 2)+44H(1, 0; 2)H(2; y) —44H(1, 0; 2)H(0; y) —44H(1, 1,0; ) —44H(2, 1, 0; y)

1172
—33H(0; y) —44H(0, 1,0; )+ 110H(1, 0; )] + 2(yiz) [T”—HH(O; 2)+11H(0; 2)H(0; )
1172 1172
+11H(1,(];z)+11H(0;y)—11H(1,O;y)]+(yiz)4[— 2” H(1; 2)+ —H(2;y)

+33H(0; 2)H(2, 0; y)+33H(0, 1, 0; 2)+33H(1, 0; 2)H(2; y) —33H(1, 0; 2)H(0; y)

-33H(1,1,0; z) —33H(2, 1,0;y) —33H(0, 1, 0; )]
22 1172 1172 1172

} H(1;z)———H(2;
(y+z)3[ 5t 3 Hh2) -~ H(Zy)

—22H(0; z)H(2, 0; y)+33H(0; 2)H(0; y) —22H(0, 1, 0; ) +33H(1, 0; z) —22H(1, 0; 2)H(2; y)

+22H(1, 0; 2)H(0; y) +22H(1, 1, 0; z) +22H(2, 1, 0; y) +22H(0, 1, 0; y) — 33H(1, 0; )]
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2 [ 1i7? 11H(0; 2)H(0; y) — 11H(1, 0; 2) +- 11H(1, 0; )]
+ - - 3 2 YY) — y U5 y 3
2y+2)2 6 y y

1
+1_8ﬁ [+2372 —12n2H(0; z) — 127°H(1; 2) + 1270°H(2; y)

~y

—36m2H(0; y) + 247 H(1; y) — 72¢3+72H(1, 0; 2)H(2; ) +216H(0, 1, 0; )

—120H(0; 2)H(0; y) — 144H(0; 2)H(0, 0; y) — 72H(0, 1, 0; z) — 18H(1, 0; 2)
—72H(1,0; 2)H(0; y)— 72H(1, 1, 0; 2) — 72H(2, 1, 0; ) + 515H(0; ) — 432H(0, 0; )

—138H(1,0; y)+ 144H(1, 0, O'y) 144H(1,1,0; y)+72H(0; 2)H(2, 0; v)]

1 T2 T2
— —H(1: —-H2 1,0:;
W[ 3 (1;2)+ 3 (2;9)—14H(1,1,0; 2)

+14H(0; 2)H(2, 0; y) + 14H(0, 1, 0; ) +14H(1, 0; 2)H(2; y) — 14H(1, 0; 2)H(0; y)

1 28712 1472 1472
H(l; 2)— —H —22
4(y+z)[ 3 3 H(2)-—~H(Z)

~14H(2,1,0;y)— 14H(0, 1, 0; )] +

+11H(0; 2) —28H(0; 2)H(2, 0; y) + 56 H(0; 2)H(0; y) — 28H(0, 1, 0; 2) + 56 H(1, 0; 2)

2

Tr
+28H(0, 1, 0; ) — 56H(1, 0; y)]+m[ 1045+ 147H(0; 2) +36H(0; 2)H(2; y)

(2,
(
—28H(1,0; z)H(2; y)+28H(1, 0; 2)H(0; y) +28H(1, 1,0; z)+28H(2, 1, 0; ) + 1 1H(0; )
(
—36H(0; 2)H(1; y)+72H(0, 1; z) +54H(1; 2) + 72H(1; 2)H(2; y) — 72H(1; 2) H(3; )

(

—36H(1; 2)H(1; y)+72H(1,0; 2)+36H(1, 1; 2) — 186 H(2; y) + 36 H(2, 0; y) — 72H(2, 1; y)

+72H(3, 2; y) — 72H(0, 2; y)+ 147H(0; y) — 72H(0, 1; y)+36H(1, 2; )+ 132H(1; y)

—108H(1, 0; y) +72H(1, 1; y) + 108H(0; ) H(0; y)]
T . 99931 1327
‘216[_ 2 "5

—864¢3H(2; y) —216¢3H(0; y) —216¢3H(1; y) +304H(0; z) —1116H(0; 2)H(2, 0; y)

+4776¢3 —216¢3H(0; 2)+1080¢3H(1; 2)

—216H(0; 2)H(2, 1, 0;y) +432H(0; 2)H(3, 2, 0; y) —432H(0; 2)H(0, 2, 0; y)

—144H(0; 2)H(0; y)+1512H(0; 2)H(0, 0; y) — 216 H(0; 2)H(0, 1, 0; 3)

—36H(0; z)H(1, 0; y) —432H(0; 2)H(1, 0, 0; ) +1920H(0, 0; ) +1512H(0, 0; ) H(0; )
+432H(0, 0; 2)H(0, 0; ) +864H(0, 0, 1, 0; 2) + 1008H(0, 1, 0; z) — 216 H(0, 1, 0; 2)H(2; 9)
+432H(0, 1, 0; 2)H(3; y)+216H(0, 1, 0; 2)H(0; y) —216H(0, 1, 0; 2) H(1; y)

—1095H(1, 0; 2) —1116H(1, 0; 2)H(2; y)+216H(1, 0; 2)H(2, 0; ) +432H(1, 0; 2)H(3, 2; y)
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+216H(0; 2)H(1, 2, 0; y)+432H(0, 1, 1, 0; 2) +432H(1, 0, 0; 2)H(0; v)

—432H(1, 0; 2)H(3, 0; y) —432H(1, 0; 2)H(0, 2; y) +1152H(1, 0; 2)H(0; )

4216H(1, 0; 2)H(1, 2; y) — 216H(1, 0; 2)H(1, 0; y) + 1512H(1, 0, 0; 2)

4864H(1,0,1,0; z)-+324H(1, 1, 0; 2) +432H(1, 1, 0; 2)H(2; y) —432H(1, 1, 0; 2)H(3; )
—216H(1,1,0; z)H(1;y)+432H(1, 1,0,0; 2)+216H(1, 1, 1, 0; 2) + 216 H(2,0, 1, 0; )
+1116H(2, 1,0;y)+432H(2, 1, 1,0; y) —432H(3, 2, 1,0; y) —432H(3,0, 1, 0; )
+432H(0, 2, 1, 0; y)+304H(0; )+ 1920H(0, 0; y) — 432H(0, 0, 1, 0; y) — 1008H(0, 1, 0; /)
+432H(0, 1,1, 0; y) —216H(1, 2, 1, 0; )+ 1095H(1, 0; y) — 1512H(1, 0, 0; )

—792H(1, 1, 0; y) +432H(1, 1,0, 0; y) —432H(1, 1, 1, 0; y) +648H(1,0, 1, 0; y)]
1 Tm?

4—5[—T+1 14H(0; 2)H(0; v)
—14H(1,0; 2)+14H(1,0; y)] , (E.3)
BZO(yv Z) =

z z2

7 [—3H(0; 2)H(2; y) —3H(1; 2)H(3; y) +3H(3, 2; )| + 7 [H(0; 2)H(2;y)

+H(1; 2)H(3; y) - H(3, 2; y)] +£§ [2H(0; z)H(2; y)+2H(1; 2)H(3; y) — 2H(3, 2; )]
Z7T2

18y
+H(2;y) +12H(2, 1, y) +6H(0, 2; ) +36H(1; )] +é [—27¢3—90¢3H(2; y)

+——[3H(0; z) —24H(0; 2) H(2; y) + 21H(1; z) — 12H(1; 2)H(2; y) + 12H(2, 2; 1))
_36H(0; ) — 84H(0; 2)H(2, 2; y) + 18H(0; 2)H(2, 2, 0; y)

+18H(0; 2)H(2, 3, 2; y) +152H(0; 2)H(2; y) — 5TH(0; 2)H(2, 0; )

+36H(0; 2)H(3, 2, 2; y)+78H(0; 2)H(3, 2; y) — 18H(0; 2)H(3, 0, 2; y)
~18H(0; 2)H(0, 2, 2; y) —3H(0; 2)H(0, 2; y)+36H(0; 2)H(0, 2, 0; v/)
+18H(0; 2)H(0, 3, 2; y) +54H(0; 2)H(1, 0; y) — 18H(0, 0; 2)H(2, 2; y)
—36H(0, 0; 2)H(2; y)—18H(0, 0; 2)H(2, 0; y) — 18H(0, 0; 2)H(0, 2; y)
—9H(0, 0, 1; 2) +54H(0, 0, 1; 2)H(2; y) — 72H(0, 0, 1; 2)H(3; y) —9H(0, 1; 2)
+64H(0, 1; 2)H(2, 3; y)+9H(0, 1; 2)H(2; y) — 18H(0, 1; ) H(2, 0; )
_108H(0, 1; 2)H(3, 3; y) + 6H(0, 1; 2)H(3; ) + 18H(0, 1; 2)H(3, 0; 1)
_36H(0, 1; 2)H(0, 3; ) +9H(0, 1, 0; z) — 36H(0, 1, 0; 2)H(2; y)

HSH(0, 1,0; 2)H(3: )+ 18H(0, 1; 2)H(0, 2 1)
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. The v* — gqgg NNLO Matrix Element coeflicients

+72H(1; z)H(2, 3,3; y) — 75H(1; 2)H(2, 3; y) — 18H(1; 2)H(2, 3, 0; y)

—18H(1; 2)H(2,0, 3; y)+36H(1; 2)H(3, 2, 3; y) —84H(1; 2)H(3, 2; y)

+36H(1; 2)H(3, 3, 2; y) — 108H(1; 2)H(3, 3, 3; y) +84H(1; 2)H(3, 3; y)

+36H(1; 2)H(3, 3,0;y)+143H(1; 2)H(3; y) +24H(1; 2)H(3, 0; y) — 18H(1; 2)H(0, 3, 2; )
—18H(1; 2)H(0, 3, 3; ) — 3H(1; 2)H(0, 3; ) +36H(1; 2)H(0, 3, 0; ) + 9H(1; 2)H(0; y)
H27H(1; 2)H(1, 0; )+ 36H(L, 0; 2)H(2, 2; ) — 18H(L, 0; 2)H(2, 3; y)

+5TH(1,0; 2)H(2; y) — 18H(1, 0; 2)H(2, 0; ) — 18H(L, 0; 2) H(3, 2; )

—78H(1, 0; 2)H(3; y)+36H(1, 0; 2)H(0, 2; y) — 18H(1, 0; 2)H(0, 3; y) — 18H(1, 0, 0; 2)H(2; )
—36H(1,0, 1; 2) —18H(1,0, 1; 2)H(2; y) —36H(1, 1; 2)H(3, 3; y) +84H(1, 1; 2)H(3; y)
HI8H(1, 1; 2)H(0, 3; )~ 18H(1, 1,0; z) — 54H(1, 1, 0; 2)H(2; ) + 18H(1, 1, 0; 2)H(3; v)
—-18H(2,2,1,0;y)+75H(2, 3, 2; y)+18H(2, 3, 2,0; y)

—72H(2,3,3,2:y) +18H(2, 3,0, 2; )+ 18H(2, 0, 3, 2; y) —9H(2, 0; 9)
HB8H(2,0,1,0;4)+54H(2, 1, 0; ) — 36H(2, 1, 1, 0; ) + 84H(3, 2, 2; y)

—36H(3,2,3,2;y

)
)
) —143H(3, 2; y) — 24H(3, 2,0; ) +18H(3, 2, 1,0; )
)-

—36H(3, 3,2, 2;4)—84H(3, 3, 2; y) — 36H(3, 3, 2, 0; )

H108H(3,3, 3, 2; ) — 36H(3, 3,0, 2; y) —24H(3, 0, 2; ) + 18H(3,0, 1, 0; 1))

—-9H(0, 2; ) +18H(0, 3,2, 2; y) +3H(0, 3, 2; y) —36H(0, 3, 2, 0; y)

HI8H(0, 3, 3, 2; ) — 36H(0, 3,0, 2; ) +27H(0, 1, 0; ) — 27H(1, 2, 0; )

—27H(1,0,2; y)+9H(1,0; y)—108H(1, 1, 0; y)]—i—z—;[ZH(O; z)H(2;y)+2H(1; 2)H(3; )

1

y(y+ )
—2H(0, 1; 2) - 6H(0, 1; 2)H(3; y) +6H(1; 2)H(3, 0; y) —6H(1; 2) H(0, 3; y) +2H(1; 2) H(0; )

—2H(3,2;y)] + [2H(0; 2)H(2; y)+6H(0; 2)H(3, 2; y) —6H(0; 2)H(0, 2; )

(
(
+6H(1, 0; 2)H(2; ) —6H(1, 0; 2)H(3; y) —6H(1, 1,0; 2) - 2H(2, 0; ) +6H(2, 1, 0; )
~6H(3,2,0;y) —6H(3,0, 2; y) — 2H(0, 2; ) +6H(0, 3, 2; )+ 6H(0, 1, 0; )

(1,

+2H(1,0; )] + 9;[ 3+3H(0; 2) +24H(0; 2)H(2; y) — 15H(1; 2) + 12H(1; 2)H(2; y)
12H(2, 2;5) — TH(2; ) — 12H(2, 1;y) — 6H(0, 2; y) — 24H(L; y)] + 91%/[4251{(1,2)
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E. The v* — gdg NNLO Matrix Element coefficients

—4—251{(2; y) — 54¢s+180¢3H(2; ) + 139+ 57H(0; 2)+132H(0; 2)H(2, 2; 1))
—36H(0; 2)H(2, 2,0; y) —36H(0; 2)H(2, 3, 2; y) — 2650H(0; 2)H(2; )

+96H(0; 2)H(2, 0; ) — 72H(0; 2)H(3, 2, 2; y) — 210H(0; 2)H(3, 2; y)

+36H(0; 2)H(3, 0, 2; y) +36H(0; 2)H(0, 2, 2; y) + 96H(0; 2)H(0, 2;y)

—72H(0; 2)H(0, 2,0; y) — 36 H(0; 2)H(0, 3, 2; y) — 72H(0; 2)H(1, 0; y)

+36H(0, 0; 2)H(2, 2; y)+144H(0, 0; 2)H(2; y) +36H(0, 0; z)H(2, 0; y)
+36H(0, 0; 2)H(0, 2; y) — 108H(0, 0, 1; 2)H(2; y) +144H(0, 0, 1; ) H(3; )
—9H(0; 2)H(0; y)+72H(0, 1,0; 2)H(2; y)

—18H(0, 0, 1; z)+36H(0, 1; z)+72H(0, 1; 2)H(0, 3; y)

—108H(0, 1; 2)H(2, 3; y)+36H(0, 1; 2)H(2, 0; y) +216H(0, 1; 2)H(3, 3; y)
+42H(0, 1; 2)H(3;y) —36H(0, 1; 2)H(3, 0; y) —36H(0, 1; 2)H(0, 2; )

H8H(0, 1,0; 2) —36H(0, 1, 0; 2)H(3; y) — 144H(1; 2)H(2, 3, 3; )

+132H(1; 2)H(2, 3; y)+36H(1; 2)H(2, 3, 0; y) +36H(1; 2)H(2, 0, 3; )
—72H(1;2)H(3, 2, 3;y)+132H(1; 2)H(3, 2; y) — 72H(1; 2)H(3, 3, 2; )
+216H(1; 2)H(3, 3, 3; y) — 168H(1; 2)H(3, 3; y) — 72H(1; 2)H(3, 3, 0; y)
—214H(1; z)H(3; y) —30H(1; 2)H(3, 0; y) + 36 H(1; 2)H(0, 3, 2; )

+96H(1; 2)H(0, 3; y) — 72H(1; 2)H(0, 3, 0; y) —27H(1; 2)H(0; y) —18H(1, 0; 2)
—18H(1; 2)H(1,0; y)+36H(1; 2)H(0, 3, 3; v)

—72H(1, 0; 2)H(2, 2; y) +36H(1, 0; 2)H(2, 3; y) — 168H(1, 0; 2)H(2; y)
+36H(1, 0; 2)H(2,0; y)+36H(1,0; 2)H(3, 2; y)+210H(1, 0; 2)H(3; y)
~72H(1, 0; 2)H(0, 2; ) +36H(1, 0; 2)H(0, 3; ) +36H(1, 0, 0; 2)H(2; )
~36H(1, 1; 2)H(0, 3; ) +36H(1, 0, 1; 2)+72H(1, 1, 0; 2)

+36H(1,0, 1; 2)H(2; y)+72H(1, 1; 2)H(3, 3; y) — 132H(1, 1; 2)H(3; y)
+108H(1, 1,0; 2)H(2; y) —36H(1, 1, 0; 2)H(3; y) +36H(2, 2,1, 0; )
_132H(2,3,2;y)—36H(2, 3, 2,0; y)+ 144H(2, 3, 3, 2; y)

~36H(2, 3,0, 2;y) —36H(2, 0,3, 2: y)+27H(2, 0; y) —36H(2, 0, 1, 0; 1))
—108H(2,1,0;y)+72H(2,1,1,0; y)—132H(3, 2, 2; )+ 72H(3, 2, 3,2; y)
+214H(3,2;y)+30H(3,2,0;y)—36H(3,2,1,0;y)+72H(3,3,2,2;y)

+168H(3, 3, 2; y)+72H(3, 3, 2,0; y) — 216H(3, 3, 3, 2; )
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E. The v* — ¢ggg NNLO Matrix Element coefficients

+72H(3, 3,0, 2; y)+30H(3, 0, 2; ) —36H(3, 0, 1, 0; ) +27H(0, 2; /)

(
—36H(0,3,2,2;y)—96H(0, 3, 2; )+ 72H(0, 3, 2, 0; v) — 36H(0, 3,3, 2; 9))
+72H(0, 3,0, 2; y) —48H(0; y) —54H(0, 1, 0; ) + 18H(1, 2, 0; y) +18H(1,0, 2; 1)
(

< 2
— | -11
syl 1T

27m? 277 2772
T H(0;2) - T H(1;2)+7TWH(2;y)

_18H(1, 0; y)+ 144H(1, 1, 0; )] +

~6m°H(0; y)+6m°H(1;y)+225C3+ 8—21H(1; z)H(0;y)— %H(Z 0;y) - %H(O, 2;y)
+9H(0; 2)H(2, 0; y) — 72H(0; 2)H(0, 2; y) + 12H(0; ) H(0; y) — 9H(0; 2)H(0, 0; y)
—81H(1;2)H(2, 3; y)+81H(0,0,1; z) —36H(1,0; 2)

+36H(0, 1; ) —81H(0, 1; 2)H(2; y) —9H(0, 1; z)H(0; y) —81H(0, 1, 0; 2)

+36H(1; 2)H(3; y) —81H(1; 2)H(0, 3; y) +27H(1; 2)H(0, 0; y) +81H(1, 0; 2) H(2; y)
_9H(1,0; 2)H(0; y)+81H(1,0, 1: 2)—81H(1, 1, 0; 2) + 81H(2, 3, 2; ) — 27H(2, 0, 0; /)
_36H(3, 2;y) — 27H(0, 2, 0; y) +81H(0, 3, 2; )+ 37H(0; ) —27H(0, 0, 2; )
_45H(0, 0; ) +45H(0, 1, 0; ) +30H(1, 0; y) +36H(1, 0,0 y) — 36H(1, 1, 0; )]
m [—97r2H(O; 2)—972H(1; z) + 97 2H(2; y) — 3672 H(0; y) + 3672 H(1; 1)
1543 +62— 54H(0; 2)H(0, 0; )+ 54H(0, 0, 1; z)

+60H(0; 2) — 144H(0; 2)H(2; y) +54H(0; 2)H(2, 0; y) — 108H(0; 2 )H(0; )

—18H(0, 1; 2) —54H(0, 1; 2)H(2; y) —54H(0, 1; 2)H(0; y) — 54H(0, 1, 0; 2)
+H17H(1; 2) —54H(1; 2)H(2, 3; y) — 162H(1; 2)H(3; y) — 54H(1; 2)H(0, 3; 3)
+99H(1; 2)H(0; y)+162H(1; 2)H(0, 0; y) — 18H(1, 0; 2)

+54H(1, 0; 2)H(2; y) —54H(1, 0; 2)H(0; y) + 54H(1, 0, 1; z)

B4H(1,1,0; 2) +54H(2, 3, 2; ) — 117H(2; y) — 99H(2, 0; ) — 162H(2, 0, 0; )
H162H(3, 2; ) — 99H(0, 2; ) — 162H(0, 2, 0; ) +54H(0, 3, 2: ) + 132H(0; 3))
—~162H(0, 0, 2; y) —198H(0, 0; y)+270H(0, 1, 0; y) + 18H(1, 0; )

+216H(1,0, 0; y) —216H(1, 1,0; y)]
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E. The v* — ggg NNLO Matrix Element coefficients

ﬁ [—2n%H(1; 2) + 27 °H(2; y) + 12H(0; 2)H(2, 0; y) + 12H(0, 1, 0; 2)
Yyrz
+12H(1, 0; 2)H(2; y) — 12H(1, 0; 2)H(0; y) — 12H(1, 1, 0; 2) —12H(2,1,0; y)

+12H(1 0; y)+12H(1 0; z)—12H(0, 1,0; )]

472

+

—8H(0; ) (2,0;y)+12H(O;z)H(O;y)—SH(O,1,0;z)
+4H(1, 0; 2) —8H(1, 0; 2)H(2; y)+8H(1, 0; 2)H(0; y)
+8H(1

,1,0; 2)+8H(2, 1,0; y)+6H(0; y) +8H(0, 1, 0; y) — 20H(1, 0; )
2

+__in [_ 3 +2H(0; 2) ~ 2H(0; 2)H(0; y) — 2H(1, 0; z) — 2H(0; y) + 2H(1, 0; y)]

22 22 272
WHTH(O )+TH(1 z)———H(2 y)—12¢3—4H(1,0,1; 2)
+4H(0; 2)H(0, 2; y) —4H(0, 0, 1; 2) +4H(0, 1; 2)H(2; y)
+HH(0,1,0; 2)+4H(1; 2)H(2, 3; y) +4H(1; 2)H(0, 3; y) —4H(1, 0; 2)H(2; y)
2
(1-y)?
2

(L 2 H(3; )~ 4H(E, 2 )] + 7 [+2H(0; 2)H (i) +2H(1 2)H(3; )

+4H(1,1,0; 2) —4H(2, 3, 2; y) —4H(0, 3, 2; y) | + [+4H(0; 2)H(2;y)

2

_c
(y+2)*
—12H(0, 1, 0; z) —12H(1, 0; 2)H(2; y)+ 12H(1, 0; 2)H(0; y)

—2H(3,2; y)] + [2m*H(1; ) — 2m?H(2; y) - 12H(0; 2)H(2, 0; v)

+12H(1, 1,0; 2)+12H(2, 1,0; y)+ 12H(0, 1, 0; )]
22 y 4m? 4n?
W[—%’ —TH(1;2)+TH(2;y)+8H(O;z)H(2,0;y)—12H(0;z)H(O;y)
+8H(0,1,0; ) —12H(1, 0; 2) +8H(1, 0; 2)H(2; y) —8H(1, 0; 2)H(0; y) —8H(1,1, 0; 2)
22 on?
— | = +2H(0; z)H(0;
s G 20 )
2

1—y—z [%“+H(0; 2)H(0; y)+H(1,0; 2)—H(1,0;y)]

-8H(2,1,0;y)—8H(0,1,0; y)+12H(1,0; y)| +

+2H(1,0; 2)—2H(1, 0; )] +

% (1072 +127%H(0; 2) +97%H(1; z) - 97°H(2; y)

H2r2H(0; y) — 217 H(1; y) — 234¢3 4+ 54H(0; 2)H(0, 2; )

+21H(0; 2)H(0; y) + 18H(0; 2)H(0, 0; y) — 18H(0; 2)H(1, 0; y) —90H(0, 0, 1; 2)
—63H(0, 1; 2)+63H(1,0; 2)+18H(2, 0; y) +54H(0, 1, 0; 2)

+90H(0, 1; 2)H(2; y)+36H(0, 1; 2)H(0; y)+90H(1; 2)H(2, 3; y)

-63H(1; 2)H(3; y)+90H(1; 2)H(0, 3; y) — 18H(1; 2)H(0; y) — 72H(1; 2)H(0, 0; )
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E. The v* — qgg NNLO Matrix Element coefficients

—54H(1,0; 2)H(2;y)—90H(1,0,1; 2)+54H(1,1,0; 2) —90H(2, 3, 2; )

+72H(2,0,0;y)—36H(2, 1,0; y) +63H(3, 2; y) + 18H(0, 2; y) + 72H(0, 2, 0; y)

—90H(0, 3, 2; ) +55H(0; y) +72H(0, 0, 2; ) + 108H(0, 0; y) — 108H(0, 1, 0; y) +3H(1, 0; y)

—90H(1,0,0;y)+126H(1,1,0; y)] + m[+18H(0; z)H(2,2; y)+27H(0; 2)H(2; y)

~18H(0; 2)H(3, 2; y)— 72H(0, 0, 1; 2)+39H(0, 1; 2) +36H(0, 1; z) H(2; 9)

—90H(0, 1; 2)H(3; y)+18H(0, 1; 2)H(0; y) + 18H(0, 1, 0; 2) —18H(0, 1, 1; z) +230H(1; 2)
(1;

+54H(1; 2)H(2, 3; y) —102H(1; 2)H(2; y) — 18H(1; 2)H(2, 0; y) + 36 H(1; 2)H(3, 2; y)
—108H(1; 2)H(3, 3; y) +66H(1; 2)H(3; y)+18H(1; 2)H(3, 0; y) — 18H(1; 2)H(0, 2; v)
+18H(1; 2)H(0, 3;y) —27H(1; 2)H(0; y) —27H(1, 0; ) — 18H(1, 0; 2)H(2; y)

—36H(1,0,1; z)+102H(1,1; 2) —36H(1, 1; 2)H(3; y) + 18H(1, 1; 2)H(0; y) + 18H(1, 1, 0; 2)
+102H(2, 2; y)+18H(2, 2, 0; y) —54H(2, 3, 2; y) — 230H(2; y) + 18H(1, 0; 2)H(3; v)
FI8H(2,0,2; )+ 27H(2, 0; ) — 36H(3, 2, 2; ) — 66 H(3, 2; )

(
~18H(3,2,0;y)+108H(3, 3, 2; y) — 18H(3, 0, 2; )+ 18H(0, 2, 2; 3))
(

1 32 32
+27H(0, 2; y) —18H(0, 3, 2; )| + T )[—TH(l;z)+—H(2;y)—170
—18H(0; z2)H(2; y) +9H(0; 2)H(2, 0; y) — 72H(0, 1; 2) +9H(0, 1, 0; 2) — 123H(1; 2)

—90H(1; 2)H(3; y) +18H(1; 2)H(0; y) +18H(1, 0; 2) +9H(1, 0; 2)H(2; y)
-9H(1,1,0; z)+123H(2; y) — 18H(2, 0; y) —9H(2, 1, 0; y) +90H(3, 2; )

_18H(0a 2; y) —9H(0, 1,05 y) _gH(la 0; Z)H(Ov y)]
2

T
+7—7; [~ 115—24H(0; 2)H(2; y) — 12H(0; 2)H(1; ) — 12H(0, 1; 2) +12H(1, 1; 2)

+7H(1; 2) —48H(1; z)H(2; y) +36H(1; 2)H(0; y) — 12H(1; 2)H(1; y) — 12H(1, 0; 2)

+H8H(2, 2; y) +19H(2; y) —24H(2,0; y) —36H(0, 2; y) +48H(0, 1; y)

T . 37% 15251 357
St g G

54 8 12 2

+108¢3H(1; 2) —270¢sH(2; y)+162¢sH(1; y) —360H(0; z) — 198H(0; 2)H(2, 2; y)

+12H(1, 2; y) — 26H(1; y) +36H(1, 0; y) —48H(1, L; y) |+ —

+108H(0; 2)H(2, 2,0; y) +108H(0; 2)H(2, 3, 2; y) + 78H(0; ) H(2; y)
+64H(0; 2)H(2, 0, 2; y) — 180H(0; 2)H(2, 0; y) — 108H(0; 2)H(2, 0, 0; y)
+54H(0; 2)H(2, 1, 0; y)+108H(0; 2)H(3, 2, 2; y) +297H(0; 2)H(3, 2; y)

—108H(0; 2)H(3, 3, 2; y) — 108H(0; 2)H(0, 2, 2; y) — 180H(0; 2)H(0, 2; y)
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E. The v* — qgg NNLO Matrix Element coefficients

+216H(0; 2)H(0, 3, 2; y) — 216 H(0; 2)H(0; y) +54H(0; z)H(0,1,0; %)
—54H(0; z)H(1, 2, 0; y) —378H(0, 0; 2)H(2; y)+216H(0, 0, 1; 2) H(2; »)
—108H(0; 2)H(1, 0, 2; y)+9H(0; 2)H(1, 0; y) + 108H(0; 2)H(1, 0, 0; v)
—108H(0, 0; z)H(2, 0; y) — 108H(0, 0; 2)H(0, 2; y) + 18H(0, 0, 1; 2)
—432H(0,0, 1; 2)H(3; y) — 108H(0, 0, 1; 2)H(0; y) +54H(0, 0, 1; 2)H(1; y)
+216H(0, 0,1, 0; 2)—162H(0, 1; 2)H(2, 0; y) —117H(0, 1; ) H(0; y)
+348H(0, 1; 2)+324H(0, 1; 2)H(2, 3; y) —279H(0, 1; 2)H(2; y)

+108H(0, 1; 2)H(3, 2; y) —540H(0, 1; 2)H(3, 3; y) —63H(0, 1; 2)H(3; y)
+108H(0, 1; 2)H(3, 0; ) +54H(0, 1; 2)H(0, 2; y) — 108H(0, 1; 2)H(0, 3; »)
+108H(0, 1; 2)H(0, 0; y) — 54H(0, 1; 2)H(1, 2; y) +54H(0, 1; z)H(1, 0; y)
—54H(0, 1,0; 2)H(1; y) —252H(0, 1, 0; ) — 78H(1; 2)H(0; y)

—216H(0, 1,0; 2)H(2; v)+108H(0, 1, 0; 2)H(3; y) —54H(0, 1, 0; 2) H(0; )
+198H(0, 1, 1; 2) —108H(0, 1, 1; 2)H(3; )+ 108H(0, 1,1, 0; 2) + 17H(1; 2)
+432H(1; 2)H(2, 3, 3; y) —477TH(1; 2)H(2, 3; y) —108H(1; 2)H(2, 3,0; )
(
(

+162H(1; 2)H(2, 1,0; y)+216H(1; 2)H(3, 2, 3; y) —396H(1; 2)H(3, 2; ¥)

(
+297H(1; 2)H(2; y) —108H(1; 2)H(2, 0, 3; y)+198H(1; 2)H(2, 0; y)

(1;2)H
—108H(1; 2)H(3, 2, 0; y)+216H(1; 2)H(3, 3, 2; y) —648H(1; 2)H(3, 3, 3; )
+234H(1; 2)H(3, 3; y)+108H(1; 2)H(3, 3, 0; y) +426H(1; 2)H(3; y)
—108H(1;2)H(3, 0, 2; y)+108H(1; 2)H(3, 0, 3; y) —297H(1; 2)H(3,0; y)
-54H(1; 2)H(0, 2, 3; y) +198H(1; 2)H(0, 2; y) — 108H(1; 2)H(0, 3, 2; )
+108H(1; 2)H(0, 3, 3; y) —297H(1; 2)H(0, 3; y) +216H(1; 2)H(0, 3, 0; y)
+108H(1; 2)H(0, 0, 3; y) +378H(1; 2)H(0, 0; y) — 54H(1; 2)H(0, 1, 0; )
—54H(1; 2)H(1,0, 3;y) —81H(1; 2)H(1, 0; y) —108H(1; 2)H(1, 0, 0; )
1216H(1, 0; 2)H(2, 2; y) — 108H(L, 0; 2)H(2, 3; )+ 117H(1, 0; 2)H(2; )
—162H(1,0; 2)H(2, 0; y) — 108H(1, 0; 2)H(3, 2; y) + 108H(1, 0; 2)H(3, 3; y)
—297H(1,0; 2)H(3; y) —216H(1, 0; 2)H(0, 3; y)+171H(1, 0; 2)H(0; y)

—54H(1; 2)H(1, 2, 3;y)—81H(1,0; 2)
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+108H(1, 0; 2)H(0, 0; y) +54H(1, 0; 2)H(1, 2; y)+54H(1, 0; 2)H(1, 0; y)
—108H(1, 0, 0; 2)H(2; y) —54H(1, 0,0, 1; 2)+108H(1, 1; 2)H(0, 3; )
+360H(1, 0, 1; 2) —162H(1, 0, 1; 2)H(2; y) — 108H(1, 0, 1; 2)H(3; y)
+64H(1,0, 1; 2)H(0; y)+54H(1, 0, 1; 2)H(1; y)+108H(1, 0, 1,0; ) —297H(1, 1; z)
216H(1, 1; 2)H(3, 3; y) +396H(1, 1; 2)H(3; y) + 108H(1, 1; 2)H(3, 0; )
—198H(1, 1; 2)H(0; y) +81H(1, 1, 0; z) - 378H(1, 1, 0; 2)H(2; y)+ 108H(1, 1, 0; 2) H(3; )
108H(1, 1, 0; 2)H(0; ) —54H(1, 1, 0; 2)H(1; )+ 108H(1, 1,0, 1; 2)+162H(1, 1, 1, 0; 2)
_207H(2, 2; ) — 198H(2, 2, 0; y) — 216H(2, 2, 1, 0; ) +477TH(2, 3, 2; )
1108H(2, 3, 2, 0; ) —432H(2, 3, 3, 2; 4) + 108H(2, 3,0, 2; )
_17H(2;y)— 198H(2, 0, 2; )+ 108H(2, 0, 3, 2; y) + 78H(2, 0; 1))
_378H(2,0,0; )+ 108H(2,0, 1, 0;y) — 162H(2, 1, 2, 0; ) — 162H(2, 1,0, 2; )
+81H(2,1,0; ) +108H(2, 1,0, 0; )+ 396 H(3, 2, 2; )+ 108H(3, 2, 2, 0; )
—216H(3, 2, 3,2; y)—426H(3, 2; y)+108H(3, 2,0, 2; y) +297H(3, 2,0; y)
_216H(3,3, 2, 2; y)— 234H(3, 3, 2;y) — 108H(3, 3, 2, 0; )
1648H(3,3,3,2; ) — 108H(3, 3,0, 2; y) + 108H(3, 0, 2, 2; )
4297H(3,0, 2; y) — 108H(3, 0, 3, 2; y) — 198H(0, 2, 2: ) +54H(0, 2, 3, 2; y)
+78H(0, 2; y) —378H(0, 2, 0; ) + 162H(0, 2, 1, 0; )+ 108H(0, 3, 2, 2; 1))
+297H(0, 3, 2; ) — 216H(0, 3,2, 0; y) — 108H(0, 3, 3, 2; y) — 216H(0, 3, 0, 2; 1))
_360H(0; y) — 378H(0, 0, 2; ) — 108H(0, 0, 3, 2; )+ 108H(0, 0, 1, 0; )
154H(0, 1,0, 2; ) +333H(0, 1, 0; ) —216H(0, 1, 1, 0; y) + 54H(1, 2, 3, 2; 1)
+81H(1,2,0;y)+108H(1, 2,0, 0;y)+81H(1,0,2; y)+108H(1,0,2,0; y)
+54H(1, 0,3, 2; y)+3H(1, 0; )+ 108H(1, 0, 0, 2; )+ 378H(1, 0, 0; y) — 216H(1, 0,1, 0; 1))
+117H(1,1,0'y) 216H(1,1,0,0;y)+216H(1, 1,1,0; y) +54H(0, 1,2, 0; y)]

18 [11 +9H(0; z) — 24H(0; 2)H(2; y) — 6H(0, 1; z)+8H(1; 2)
—36H(1; 2)H(2; y)+24H(1; z)H(0; y) +6H(1; 2)H(1; y) +24H(1, 1; 2)
+24H(2, 2; y) +2H(2; y) —24H(2, 0; y) + 12H(2, 1; y) —6H(0, 2; y) +9H(0; y)

+12H(0, 15 y) —6H(1, 2; y) — 10H(1; ) +24H(1, 0; ) —6H(1, 1; )]
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-+Tl§ [288C3+180C3H(1; z)+78H(0; z)H(0; )

—360¢3H(2; y)+180¢3H(1; ) — 188H(0; 2) — 150H(0; 2)H(2, 2; 1)

+72H(0; 2)H(2, 2, 0; )+ 72H(0; 2)H(2, 3, 2; y) +295H(0; 2)H(2; v)

—300H(0; 2)H(2, 0; y) —36H(0; 2)H(2, 0, 0; y) +72H(0; 2)H(3, 2, 2; y)

+216H(0; 2)H(3, 2; y) — 72H(0; 2)H(3, 3, 2; y) — 36H(0; 2)H(0, 2, 2; 1))

—156H(0; 2)H(0, 2; y)+36H(0; 2)H(0, 2, 0; y) + 144H(0; 2)H(0, 3, 2; y)

—~72H(0; 2)H(0, 0, 2; y) + 18H(0; z)H(0, 0; y) +36H(0; 2)H(0, 1, 0; /)

—72H(0; 2)H(1, 2,0; y) —36H(0; 2)H(1, 0, 2; y) + 108H(0, 0, 1, 0; 2)

+132H(0; 2)H(1, 0; y)+36H(0; 2)H(1, 0,0; y)+36H(0; 2)H(1, 1, 0; y)

+36H(0, 0; 2) —36H(0, 0; 2)H(2, 2; y) — 108H(0, 0; 2)H(2; y) —36H(0, 0; 2)H(2, 0; )
—36H(0, 0; 2)H(0, 2; y)+18H(0, 0; 2)H(0; y) — 108H(0, 0,0, 1; 2) +84H(0, 0, 1; 2)
+180H(0, 0, 1; 2)H(2; y) —288H(0, 0, 1; z)H(3; y) +36H(0, 0, 1; 2)H(1; )
—36H(0,0,1,1; 2)-+289H(0, 1; 2)-+216H(0, 1; 2)H(2, 3; y) — 222H(0, 1; 2)H(2; )
—72H(0, 1; 2)H(2, 0; y) +72H(0, 1; 2)H(3, 2; y) —360H(0, 1; 2)H(3, 3; )

+192H(0, 1; 2)H(3; y)+ 72H(0, 1; 2)H(3, 0; y) — 72H(0, 1; 2)H(0, 3; y)

—60H(0, 1; 2)H(0; y) +36H(0, 1; 2)H(0, 0; y) —36H(0, 1; 2)H(1, 2; 3)

—114H(0,1,0; z) —144H(0, 1, 0; 2)H(2; y)+72H(0, 1, 0; 2)H(3; y)

—72H(0, 1, 0; 2)H(0; ) +36H(0, 1, 0; 2)H(1; y) —72H(0, 1,0, 1; )+ 150H(0, 1, 1; 2)
—72H(0, 1, 1; 2)H(3; y) +36H(0, 1, 1; 2)H(0; y) +36H(0, 1, 1, 0; 2)

~376H(1; z)+288H(1; 2)H(2, 3, 3; ) — 372H(1; 2)H(2, 3; y) — T2H(1; 2)H(2, 3,0; )
+204H(1; 2)H(2; y) — 72H(1; 2)H(2, 0, 3; y) + 150H(1; 2)H(2, 0; v)

+36H(1; 2)H(2,0,0;y)+36H(1; 2)H(2, 1, 0; y)+ 144H(1; 2)H(3, 2, 3; )

—300H(1; 2)H(3, 2; y) — 72H(1; 2)H(3, 2, 0; y) + 144H(1; 2)H(3, 3, 2; y)

432H(1; 2)H(3, 3, 3; y) +408H(1; 2)H(3, 3; ) + 72H(L; 2)H(3, 3, 0; )

+584H(1; 2)H(3; y) — 72H(1; 2)H(3, 0, 2; y)+72H(1; 2)H(3, 0, 3; )
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—216H(1; 2)H(3, 0;y) —36H(1; 2)H(0, 2, 3; y)+150H(1; 2)H(0, 2; y)
+36H(1; 2)H(0, 2, 0; y) — 72H(1; 2)H(0, 3, 2; y) + 72H(1; 2)H(0, 3, 3; ¥)
—216H(1; 2)H(0, 3; y) + 144H(1; 2)H(0, 3, 0; y) —295H(1; 2)H(0; y)
+36H(1; 2)H(0, 0, 2; y) —36H(1; 2)H(0, 0, 3; y)+ 108H(1; 2)H(0, 0; y)
“36H(1; 2)H(1,2, 3;y) —36H(L; 2)H(1,0, 3; ) —72H(1; 2)H(1, 0, 0; )

+15H(1,0; 2)+108H(1,0; 2)H(2, 2; y) — 72H(1, 0; 2)H(2, 3; y) +6H(1, 0; ) H(2; y)
—72H(1,0; 2)H(2, 0; y) — 72H(1, 0; 2)H(3, 2; y) +72H(1, 0; 2)H(3, 3; v)

_216H(1, 0; 2)H(3; y) + 108H(1, 0; 2)H(0, 2; y) — 144H(1, 0; 2)H(0, 3; )

+168H(1, 0; 2)H(0; ) +36H(1, 0; 2)H(0, 0; y) —36H(1, 0; 2)H(1, 2; y)

+72H(1,0; z)H(1, 0; y)+18H(1, 0, 0; 2) —36H(1,0,0; 2)H(2; y)

_72H(1,0,0, 1; 2)+222H(1,0, 1; 2) — 36H(1, 0, 1; 2)H(2; y) — 72H(1, 0, 1; 2)H(3; )
+36H(1,0, 1; 2)H(0; y)+36H(1,0, 1; 2)H(1; y)+72H(1,0,1,0; 2) —204H(1, 1; z)
—144H(1, 1; 2)H(3, 3; y) +300H(1, 1; z)H(3; y) + 72H(1, 1; 2)H(3,0; y)

+72H(1, 1; 2)H(0, 3; y) — 150H(1, 1; 2)H(0; y) —36H(1, 1; 2)H(0, 0; y)

—216H(1,1,0; 2)H(2; y)+72H(1,1,0; 2)H(3; y)+36H(1, 1, 0; ) H(0; v)

F108H(1, 1, 1, 0; 2) — 204H(2, 2; y) — 150H(2, 2, 0; ) — 36H(2, 2, 0, 0; )
_108H(2,2,1,0; y)+372H(2, 3, 2; )+ 72H(2, 3, 2, 0; ) +36H(1, 1, 0; 2)H(1; )
_288H(2,3,3,2; y)+72H(2, 3,0, 2; y) + 376H(2; y) — 150H(2, 0, 2; y) +54H(1, 1, 0; 2)
~36H(2,0,2,0;y)+72H(2,0,3, 2; ) +295H(2, 0; ) — 36H(2, 0, 0, 2; )

—108H(2, 0, 0; y)+108H(2,0, 1,0; y) —36H(2, 1, 2,0; y) —36H(2, 1,0, 2; y)

144H(2, 1,0; )+ 72H(2, 1,0, 0;y) — 72H(2, 1, 1, 0; )+ 300H(3, 2, 2; 1))

172H(3,2, 2, 0;y) — 144H(3, 2, 3, 2; ) — 584H(3, 2; )
+72H(3,2,0,2;y)+216H(3,2,0; y)— 144H(3, 3, 2, 2; y)

_408H(3, 3, 2; y)— T2H(3, 3, 2, 0; )+ 432H(3, 3, 3, 2; )
_79H(3,3,0,2;y)+72H(3,0,2, 2, y) + 216H(3, 0, 2; )

—72H(3, 0,3, 2; y) — 150H(0, 2, 2; y) —36H(0, 2, 2,0; y)
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436H(0, 2, 3, 2; ) +295H(0, 2; ) — 36H(0, 2, 0, 2; y) — 108H(0, 2, 0; )

H72H(0, 2,1, 0; )+ 72H(0, 3, 2, 2; y) + 216H(0, 3, 2; y) — 144H(0, 3, 2, 0; )

_72H(0, 3,3, 2; y)— 144H(0, 3,0, 2; ) — 188H(0; ) — 36H(0, 0, 2, 2; )

—108H(0, 0, 2; ) +36H(0, 0, 3, 2; )+ 36H(0, 0; ) + 108H(0, 0, 1, 0; ) + 6H(0, 1,0; )
—72H(0,1,1,0; y)+36H(1, 2, 3,2; y)+72H(1,2,0,0; y)+72H(1,2,1,0; )

472H(1, 0,2, 0; 4)+36H(1, 0, 3, 2; y) — 310H(1, 0; )+ 72H(1, 0,0, 2; y)

90H(1,0,0; y)— 144H(1,0, 1, 0; ) +60H(1, 1,0; ) — 108H(1, 1,0, 0; )

+36H(1,1,1,0; )]
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C?O(ya Z) =
2

+§ [6H(0; 2)H(2; ) +6H(1; 2)H(3; y) —6H(3, % )] +% [~ 2H(0; 2)H(2; y)

_2H(1; 2)H(3;y)+2H(3, 219)] + 5 [~ 4H(0; 2)H(2; y) —4H(1; 2)H(3; )

2
GLZ[ 1+4H(0; z) + 10H(0; 2)H(2; y)+H(1; 2) +6H(1; 2)H(2; y)
+10H(1; 2)H(3; y) — 16H(2, 2; y) + H(2; y) +2H(2, 0; y) +4H(2, 1;9)

+4H(3,2;y)] +

—10H(3,2;y)] + ——[ 36¢3 —16¢3H(2; y) —4H(0; 2)+6H(0; 2)H(2, 2; v)
(0; 2)H(2,2, 0, ) +9H(0; 2)H(2; y) — 8H(0; 2)H(2,0, 2; y)
—24H(0; 2)H(2, 0; y) — 16H(0; 2)H(3, 2, 2; v) +46H(0; 2)H(3,2; y)
( ( (0; 2)H(1,0; )

+16H(0, 0; 2)H(2, 2; y) +40H(0, 0; 2)H(2, 0; y) —4H(0, 0, 1; 2) + 17H(0, 1; 2)

0; 2)H(3,2,0; y) —10H(0; 2)H(0, 2; y)+12H
424H(0, 1; 2)H(2, 2; ) — 14H(0, 1; 2)H(2; y) —8H(0, 1; 2)H(2, 0; y)

—8H(0, 1; 2)H(3, 2; y) — 24H(0, 1; 2)H(3, 3; y)+ 14H(0, 1; 2)H(3; y) —8H(0, 1, 0; 2)
132H(0, 1, 0; 2)H(2; y) —40H(0, 1, 0; 2)H(3; y) —6H(0, 1, 1; 2)+8H(0, 1, 1; 2)H(3; )
+24H(1; 2)H(2, 2, 3; y) —8H(1; 2)H(2, 3; y) — 16H(1; 2)H(2, 0, 3; y)
—6H(1;2)H(2,0;y)—24H(1; 2)H(3, 2, 3; y) + 12H(1; 2)H(3, 2; y)

+8H(1; 2)H(3,2,0; y)—24H(1; 2)H(3, 3, 2; y) —24H(1; 2)H(3, 3, 3; v)

+60H(1; 2)H(3, 3;y) +24H(1; 2)H(3, 3, 0; y) +26H(1; 2)H(3; y) +8H(1; 2)H(3,0,2; y)
+18H(1; 2)H(3, 0; y) —6H(1; 2)H(0, 2; y) — 10H(1; 2)H(0, 3; y) — 17H(1; 2)H(0; )

(1, 2)H(1,0; y)— 13H(1,0; 2) —40H(1, 0; 2)H(2, 2; ) +4H(1, 0; 2)H(2; )
—24H(1, 0; 2)H(3, 2; y) —46H(1, 0; 2)H(3; y) +40H(1, 0; 2)H(3, 0; y) +40H(1, 0, 0; 2)H(2; y)
—10H(1, 0, 1; 2) —16H(1,0, 1; 2)H(2; y) +8H(1, 0, 1; 2)H(3; y) + 24H(1, 1; ) H(3, 3; v)
—12H(1, 1; 2)H(3; y) —8H(1, 1; z)H(3, 0; y) +6H(1, 1; 2) H(0; y) —20H(1, 1, 0; 2)
+8H(1,1,0; 2)H(2; y)+24H(1, 1, 0; 2)H(3; y) —24H(2, 2,3, 2; y)
16H(2,2,0;y)+48H(2, 2, 1,0; y) +8H(2, 3, 2; ) +6H(2,0,2; )

F16H(2,0,3,2;y)+ 17H(2, 0; y) —48H(2, 0,1, 0; ) +18H(2, 1,0; 1))
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+24H(3, 2, 3, 2; y) —26H(3, 2; y) —8H(3, 2,0, 2; y) — 18H(3, 2, 0; y)

164H(3, 2,1, 0; )+ 24H(3, 3, 2, 2; ) — 60H(3, 3, 2: 1))

—24H(3, 3,2,0; y)+24H(3, 3, 3, 2; y) —24H(3, 3,0, 2; y)
~8H(3,0,2,2;y)—18H(3,0, 2;3) +64H(3, 0, 1,0; y) + 6H(0, 2, 2; )

HITH(0, 2;)+10H(0, 3, 2; )+ 18H(0, 1, 0; y) — 24H(1, 2, 0; y) — 24H(1, 0, 2; 3)

—30H(1,0;y)] + % [—2H(0; 2)H(2; y) —2H(L; 2) H(3; y) +2H(3, 2; 3]

+(y—+z) [—6H(0; 2)H(2, 2; y) — 17TH(0; 2)H(2; y) + 18H(0; 2)H(3, 2; y)

—18H(0; z)H(0, 2; y)+17H(0, 1; 2) + 6H(0, 1; ) H(2; y) — 18H(0, 1; 2)H(3; )
—6H(1; 2)H(2, 0; y)+18H(1; 2)H(3, 0; y) —6H(1; 2)H(0, 2; y) — 18H(1; 2)H(0, 3; v)
—17H(1; 2)H(0; y) —17H(1, 0; 2)+24H(1, 0; 2)H(2; y) — 18H(1, 0; 2)H(3; y)
+6H(1, 1; 2)H(0; y) —24H(1, 1, 0; 2) +6H(2, 2, 0; y) + 6H(2, 0, 2; y) + 17H(2, 0; y)
+I8H(2, 1,0;y)— 18H(3, 2, 0; y) — 18H(3, 0, 2; ) +6H(0, 2, 2; ) —6H(0, 1, 1 2)
HTH(0, 2; y)+18H(0, 3, 2 y) -+ 18H(0, 1, 0; ) — 34H(1, 0; ) —6H(1, 0, 1; 2)]

[ AH(0; 2) (25 )+ H(1; 2)~6E(1; 2)H(2 ) — 4H(L; 2 (35 )

3
+1(?]JH(2, 2;y)—6H(2;y)—2H(2,0;y)—4H(2, 1; y) +4H(3, 2; y) + H(1; y)]
-+4—1y[—8C3+80C3H(2;y)+19—16H(0;z)H(l,O;y)
+8H(0; 2) —12H(0; 2)H(2, 2; y)+32H(0; 2)H(2, 2, 0; y) + 26 H(0; 2)H(2; y)
+16H(0; 2)H(2, 0, 2; y) +40H(0; 2)H(2, 0; y) +32H(0; 2)H(3, 2, 2; 1)
—108H(0; 2)H(3, 2; y)+32H(0; 2)H(3, 2, 0; y) +68H(0; 2)H(0, 2; 3)
—32H(0, 0; 2)H(2, 2;y) —32H(0, 0; z)H(2, 0; y) —8H(0, 0, 1; ) —26H(0, 1; 2)
—48H(0, 1; 2)H(2, 2; y)+36H(0, 1; 2)H(2; y)+ 16H(0, 1; 2)H(2, 0; )
+16H(0, 1; 2)H(3, 2; y) +48H(0, 1; 2)H(3, 3; y) — 28H(0, 1; 2)H(3; y) + 16H(0, 1, 0; 2)
_16H(0, 1, 0; 2)H(2; )+ 32H(0, 1, 0; 2)H(3; y) — 16H(0, 1, 1; 2)H(3; 1)
—2H(1; 2) —48H(1; 2)H(2, 2, 3; y) +24H(1; 2)H(2, 3; y) + 32H(1; 2)H(2, 0, 3; y)
+12H(1; 2)H(2, 0; y) +48H(1; 2)H(3, 2, 3; y) — 24H(1; 2)H(3, 2; y) +12H(0, 1, 1; 2)

—16H(1; 2)H(3, 2, 0;y)+48H(1; 2)H(3, 3, 2; y) +48H(1; 2)H(3, 3, 3;v)

152



E. The v* — qgdg NNLO Matrix Element coefficients

—136H(1; 2)H(3, 3; y) —48H(1; 2)H(3, 3, 0; y) — 16H(1; 2)H(3, 0, 2; )
+12H(1; 2)H(0, 2; y)+68H(1; 2) H(0, 3; y) + 30H(1; 2) H(0; y) + 26 H(1, 0; 2)
+32H(1, 0; 2)H(2, 2; y) —56H(1, 0; ) H(2; y)+ 108H(1, 0; z)H(3; )

-32H(1,0,0; 2)H(2; y)+4H(1,0,1; z)+32H(1, 0, 1; 2)H(2; y) —16H(1, 0, 1; 2)H(3; y)
—48H(1, 1; 2)H(3, 3; )+ 24H(1, 1; 2)H(3; y) + 16H(1, 1; 2)H(3, 0; ) — 12H(1, 1; 2)H(0; )
¥56H(1,1,0; 2)— 16H(1, 1, 0; 2)H(2; ) +48H(2, 2, 3, 2; ) — 12H(2, 2, 0; 1))
_48H(2,2,1,0;y) — 24H(2, 3, 2; )+ 2H(2; y) — 12H(2, 0, 2; ) — 20H(1; 2)H(3, 0; /)

—32H(2,0, 3, 2; ) —30H(2, 0; y) +48H(2, 0, 1, 0; y) — 36H(2, 1, 0; 9))

o

(

(
+32H(2,1,1,0;y)+24H(3,2,2; y)+16H(3, 2, 2,0; y) —24H(1; 2)H(1, 0; y)

(

—48H(3, 3,2, 2; y)+136H(3, 3, 2 y) +48H(3, 3, 2, 0; y) — 32H(1, 0; 2)H(3, 0; 1))
—48H(3,3,3,2; y)-+48H(3, 3,0, 2; )+ 16H(3, 0, 2, 2; ) + 20H(3, 0, 2; )
—80H(3,0, 1,0;y) — 12H(0, 2, 2; ) — 30H(0, 2; y) — 68H(0, 3, 2; ) —36H(0, 1, 0; )

( )-
( )-
( )
—48H(3,2,3,2;y)+16H(3,2,0,2; y)+20H(3, 2,0; y) —80H(3,2, 1,0; )
( )
( )
( )=
(

+24H(1,2,0;y)+24H(1, 0,2; y) +60H(1, 0; y) —8H(1, 1, 0; )]
ﬁ[+5ﬂ2+4H(0;z)H(O,O;y)+16H(1,O;z)

14 1472 1472 2 472
012+ 0101 2) - (2 )+ 20001 ) - (15 926,

+28H(0; 2)H(0, 2; y)+12H(0; 2)H(0; y) —32H(0, 0, 1; 2) — 16H(0, 1; 2)

+32H(0, 1; 2)H(2; y) +4H(0, 1; )H(0; )+ 28H(0, 1, 0; z) +32H(1; 2)H(2, 3; v)
—16H(1; 2)H(3; y)+32H(1; 2)H(0, 3; y)+6H(1; 2)H(0; y) —4H(1; 2)H(0, 0; y)
—28H(1, 0; 2)H(2; y) — 32H(1, 0, 1; 2) +28H(1, 1, 0; 2) — 32H(2, 3, 2: y) —6H(2, 0; )
14H(2,0,0;y) —4H(2, 1,0; )+ 16H(3, 2; ) — 6H(0, 2; ) +4H(0, 2, 0; y)

~32H(0, 3, 2; y) + 23H(0; ) +4H(0, 0, 2; y) — lOH(O 0; ) —8H(0, 1, 0; ) — 14H(L, 0; 3)
—8H(1,0,0; ) +8H(1, 1,0;y)] + —— [—+67r2H(0;z)+67r2H(1;z)—67r2H(2;y)

4(1-y)" 3
4212 H(0; y) —4n H(1; y) — 132¢3+17+28H(0; 2)H(2; y) +36H(0; 2)H(0, 2; )

+12H(0; 2)H(0, 0; y) —48H(0, 0, 1; 2) +4H(0, 1; 2) +48H(0, 1; 2) H(2; y)
+36H(0, 1,0; z)+48H(1; 2)H(2, 3; y) +32H(1; 2)H(3; y) +48H(1; 2)H(0, 3; y)
—22H(1; 2)H(0; y) —12H(1; 2)H(0, 0; y) —36H(1, 0; 2)H(2; y) +4H(0; 2)

+12H(0, 1; 2)H(0; y) —48H(1,0, 1; 2) +36H(1, 1, 0; z) —2H(1; 2)
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E. The v* — qgg NNLO Matrix Element coefficients

—48H(2, 3, 2;y) —24H(0, 1, 0; y) +22H(2, 0; v) +12H(2,0, 0; y) — 12H(2, 1, 0; )
+12H(0, 0, 2; ) +24H(1, 1, 0; y) + 12H(0, 2, 0; y) —48H(0, 3, 2; y) — 24H(1, 0, 0; 3)
—22H(0, 0; y) +2H(2; y) — 26H(1, 0; y) +39H(0; y) +22H(0, 2; y) — 32H(3, 2; y)]
+(—y:—5§ [—6#2H(1; 2)+6m H(2; y)+36H(0, 1, 0; 2)+36H(1,0; 2)

+36H(1, 0; z)H(2; y)—36H(1,1,0; 2) —36H(2, 1, 0; y) —36H(0, 1, 0; %)

+36H(1, 0; y)+36H(0; z)H(2, 0; ) — 36 H(1, 0; 2) H(0; )]

W [+24H(1, 0; 2)H(0; y) + 4% H(1; 2) — 4w H(2; y) — 18H(0; 2) — 24H(0, 1, 0; 2)
+6m% 4-36H(0; 2)H(0; y) — 24H(0; 2)H(2, 0; y) +12H(1, 0; 2) — 24H(1, 0; 2)H(2; )
+24H(1,1,0; 2) +24H(2, 1, 0; ) + 18H(0; ) +24H(0, 1, 0; ) — 60H(1, 0; 3)]

2 [~ w2+ 6H(0; z) —6H(0; 2)H(0; y) — 6H(1, 0; 2) - 6H(0; ) +6H(1, 0; )]

y+z
2 9 2 2 2 2 2
—f(l*iy)?[——;-H(O;z)—-g—H(l;z)—}-%H(Zy)+12C3—4H(0;z)H(0,2;y)

—4H(0,1,0; 2) —4H(1; 2)H(2, 3, y) —4H(1; 2)H(0, 3; y) +4H(1, 0; 2)H(2; y) +4H(1,0, 1; 2)

—4H(1,1, 0; 2)+4H(2, 3, 2; y) +4H(0, 3, 2; y) +4H(0, 0, 1; z) —4H(0, 1; 2)H(2; y)]
2
+({—y);[—4H<o; 2)H(2;y) ~4H(L; 2)H(3; y) +4H(3, 2; )]
2
[~ 2H(0; 2)H(2 )~ 2H(; 2)H(3; ) +2H(3, 219)]
2
-i(—yf_z—y [+67rQH(1; z)+36H(2,1,0; y)—36H(0; 2)H(2,0; y) —36H(0, 1, 0; 2)
—36H(1,0; 2)H(2; y)+36H(1, 0; 2)H(0; y) — 67 2H(2; y) +36H(1, 1, 0; z) +36H(0, 1, 0; v)]
2
m [—67% —4n?H(1; )+ 472 H(2; y)+24H(0; 2)H(2, 0; y) — 36 H(0; 2)H(0; y)

+24H(0, 1,0; z) —36H(1, 0; 2) +24H(1, 0; ) H(2; y) — 24H(1, 0; 2)H(0; y) —24H(1, 1, 0; 2)
—24H(2, 1,0;y) —24H(0, 1, 0; y)+36H(1, 0; )]

2
+———— [r2+6H(0; 2)H(0; )+ 6H(1, 0; 2)— 6H(1, 0; )]

(y+2)?
2
1_y_z[_%_2}1(0?3)1{(0;y)—QH(l,O;z)—%-QH(l,O;y)]
1
201—9) [—2n®~8H(0; 2)H(2, 0; ) +20H(0, 0, 1; 2) +12H(0, 1; 2)
82 47? 472 2 872
3 H(0; 2) = = H(1i 2) + - H(2 )+ - H(0; ) + - H(154)+64Gs

—16H(0; 2)H(0, 2; y)+6H(0; 2)H(0; y) +4H(0; 2)H(0, 0; y) +8H(0; 2)H(1, 0; y)

—20H(0, 1; 2)H(2; y) —4H(0, 1; 2)H(0; y) —8H(0, 1, 0; 2) — 20H(1; 2)H(2, 3; v)
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E. The 4* — gq@qg NNLO Matrix Element coeflicients

+H12H(1; 2)H(3; y) — 20H(1; 2)H(0, 3; y) — 2H(1; 2)H(0; y) +4H(1; 2)H(0, 0; )
+8H(1, 0; 2)H(2; y)+8H(1, 0; 2)H(0; y) +20H(1, 0, 1; z) —8H(1, 1, 0; 2)+20H(2, 3, 2; y)
+2H(2, 0; y) —4H(2,0,0;y)+12H(2, 1,0; y) — 12H(3, 2; y) + 2H(0, 2; y) — 10H(1, 0; 2)

—4H(0, 2, 0; y)+20H(0, 3, 2; y) — 5H(0; y) —4H(0, 0, 2; y) —4H(0, 0; ) — 16H(1, 1, 0; )]
1 2272 22?2
f H(1;2)—
2(y+2)? [ 3 (1;2)

—44H(0; z)H(2, 0; y) — 2H(0; 2)H(3, 2; y) +2H(0; 2)H(0, 2; y) +3H(0, 1; 2)

H(2;y)—2H(0; 2)H(2, 2;9) +3H(0; 2)H(2; )

—2H(0, 1; 2)H(2; y) —2H(0, 1; 2)H(3; y) —44H(0, 1, 0; 2)+ 2H(0, 1, 1; 2) +27H(1; 2)
—4H(1; 2)H(2, 3; y)+6H(1; 2)H(2; v)+2H(1; 2)H(2, 0; y) —4H(1; 2)H(3, 2; y)
—4H(1; 2)H(3, 3; y) +6H(1; 2)H(3; y) +2H(1; 2)H(3, 0; y) + 2H(1; 2)H(0, 2; v)

(1; 2)H(0, 3; y) —3H(1; 2)H(0; y) — 3H(1, 0; 2) —27H(2; y) + 2H(1, 0; 2)H(3; y)
+44H(1, 0; 2)H(0; y)+2H(1,0,1; 2)—6H(1, 1; 2)+4H(1, 1; 2)H(3; y) — 2H(1, 1; 2)H(0; )
+44H(1,1,0; 2)-6H(2, 2; y) —2H(2, 2, 0; y) +4H(2, 3, 2; y) —44H(1, 0; 2)H(2; y)
—2H(2,0,2; y)+3H(2,0; y)+46H(2, 1, 0; y) +4H(3, 2, 2; y) —6H(3, 2; y)

—2H(3,2,0; y)+4H(3, 3, 2; y) —2H(3, 0, 2; ) —2H(0, 2, 2; y)
1 2272

2y+2) - 3

+2m?H(2; y) — 17— 5H(0; 2) —4H(0; 2)H(2; y) 4+ 12H(0; 2)H(2, 0; y) —44H(0; 2)H(0; )

+3H(0,2; y) —2H(0, 3, 2; ) +46H(0, 1, 0; y) |+ —27m%H(1; 2)
—4H(0, 1; 2)+12H(0, 1, 0; 2)+4H(1; z) —4H(1; 2)H(2; y) —8H(1; 2)H(3; y)
—42H(1,0; 2)+12H(1, 0; 2)H(2; y) — 12H(1, 0; 2)H(0; y) +4H(1, 1; 2) — 12H(1, 1, 0; 2)
+4H(2, 2; y) —4H(2;y) —4H(2, 0; y) —12H(2, 1, 0; y) +8H(3, 2; y) +4H(1; 2)H(0; )
T 2
—4H(0, 2; y) —5H(0; y) — 12H(0, 1,0;y)+46H(1,0;y)]+2—1 [+29+6H(1; 2)
T . 227% 255

—8H 0,1;y)—18H(1;y)+8H(1,1;y)]+—§[—4—5+T—60C3—16(3H(1 z)

+32¢sH(1; y)+18H(0; 2)H(2, 2; )+ 15H(0; 2) H(2; y) —8H(0; 2)H(2,0, 2; y)

(
(

+8H(1; z)H(2; y)—16H(2, 2; y)+12H(2; y) +8H(2, 1; y)+8H(0, 2; y)
(

—16H(0; 2)H(3, 2, 2; y)+42H(0; 2)H(3, 2; y) — 16H(0; 2)H(3, 3, 2; y) — 16¢3H(2; y)
+H16H(0; z)H(3, 0, 2; y) —42H(0; 2)H(0, 2; y) + 16 H(0; 2)H(0, 3, 2; y)

—16H(0; 2)H(0, 0, 2; y)+16H(0, 0; 2)H(2, 2; y) —16H(0, 0, 1; 2)H(2; y)

+8H(0,0, 1; 2)H(1; y)+16H(0,0,1,1; 2)+15H(0, 1; ) +32H(0, 1; 2)H(2, 2; y)

16H(0, 1; 2)H(2; y)+8H(0, 1; 2)H(2, 0; y) — 16H(0, 1; 2)H(3, 2; )
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E. The v* — ggg NNLO Matrix Element coefficients

-16H(0, 1; 2)H(3, 3; y) +42H(0, 1; 2)H(3; v) +8H(0, 1; 2)H(0, 2; y) —8H(0, 1; 2) H(1, 2; )
—8H(0, 1; 2)H(1, 0; y) —8H(0, 1, 0; 2)H(2; y)+16H(0, 1, 0, 1; 2) —18H(0, 1, 1; 2)

FI6H(0, 1, 1; 2)H(3; ) — 16H(0, 1, 1; 2)H(0; )+ 16H(0, 1, 1, 0; z) — 52H(1; 2)

+32H(1; 2)H(2, 2, 3; y) +24H(1; 2)H(2, 3; y) — 18H(1; 2)H(2; y)
—18H(1; z)H(2,0; y) — 16H(1; 2)H(2, 0, 0; y) —8H(1; 2)H(2, 1,0; y)
~32H(1; 2)H(3, 2

+36H(1; 2)H(3, 2; y)+ 16H(1; 2)H(3, 2,0; 9)

—32H(1; 2)H(3, 3, 2; y) — 32H(1; 2)H(3, 3, 3; ) +84H(1; 2)H(3, 3; )

(
(
( ;Y) (1; 2)H(
( )—32H(1; 2)
+16H(1; 2)H(3, 3, 0; y)+30H(1; 2)H(3; y)+ 16H(1; 2)H(3, 0, 2; y)
+16H(1; 2)H(3, 0, 3; y) —42H(1; 2)H(3, 0; )+ 8H(1; 2)H(0, 2, 3; y)
—18H(1; 2)H(0, 2; y) — 16H(1; 2)H(0, 2, 0; y)+ 16H(1; 2)H(0, 3, 2; y)
+16H(1; 2)H(0, 3, 3; y) —42H(1; 2)H(0, 3; y) — 15H(1; 2)H(0; y)
—8H(1; 2)H(1, 0, 3; y) —16H(1; 2)H(0, 0, 2; y) + 16H(1, 1; 2)H(0, 0; )
—16H(1; 2)H(0, 0, 3; ) +8H(1; 2)H(0, 1,0; y) —8H(1; 2)H(1, 2, 3; y)
+16H(1; 2)H(1,0,0; y)+13H(1, 0; 2)+24H(1, 0; 2)H(2; y) + 16H(1,0; 2)H(3, 3; %)
—42H(1, 0; 2)H(3; y) +16H(1, 0; 2)H(0, 2; y) — 16H(1, 0; 2)H(0, 3; y) +8H(1,0,0, 1; 2)
—6H(1,0,1; 2)—24H(1, 0, 1; 2)H(2; y)+16H(1,0, 1; 2)H(3; y) —8H(1,0, 1, 2) H(0; y)
+8H(1,0,1; 2)H(1; y)+18H(1, 1; 2)+32H(1, 1; 2)H(3, 3; y) —36H(1, 1; 2)H(3; y)
—16H(1, 1; 2)H(3,0;y) —16H(1, 1; 2)H(0, 3; y)+ 18H(1, 1; ) H(0; y)
12H(1, 1,0; 2)— 8H(1, 1,0; 2)H(2; )+ 16H(1, 1,0, 1; 2)+ 16H(1, 1,1, 0; 2)
32H(2, 2,3, 2 y)+18H(2, 2; y) + 18H(2, 2, 0; y)
H6H(2,2,0,0;y)— 24H(2, 3, 2; )+ 52H(2; y) + 18H(2, 0, 2; )
H16H(2, 0,2, 0; )+ 15H(2, 0; )+ 16H(2, 0,0, 2; y) —8H(2, 0,1, 0; )
+8H(2,1,2,0;y)+8H(2,1,0,2;y)—-42H(2, 1,0; y)— 16H(2,1,0,0; y)
_16H(2, 1, 1,0; ) —36H(3, 2, 2; y) — 16H(3, 2, 2, 0; 1))
132H(3, 2,3, 2, y) — 30H(3, 2; ) — 16H(3, 2, 0, 2; 4) +42H(3, 2, 0; )
F16H(3,2,1,0;y)+32H(3, 3,2, 2, y) — 84H(3, 3, 2; )
—16H(3, 3, 2, 0; y)+32H(3, 3, 3, 2; y) — 16H(3, 3,0, 2; y)

( ) (3,

—16H(3, 0,2, 2; y)+42H(3,0, 2;y) — 16H(3,0, 3, 2; y)+ 16H(3,0, 1, 0; )
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E. The v* — gqgg NNLO Matrix Element coefficients

F18H(0, 2, 2; y) + 16H(0, 2, 2,0; y) —8H(0, 2, 3, 2; )+ 15H(0, 2; ) — 16H(1, 1,1, 0; )
H16H(0, 2,0, 2: y) —8H(0, 2,1, 0; ) — 16H(0, 3, 2, 2; ) +42H(0, 3, 2; )

_16H(0, 3,3, 2; ) +16H(0,0, 2, 2; 4)+ 16H(0, 0, 3, 2; ) —8H(0, 1,2, 0; 1))

—8H(0, 1,0, 2; ) —42H(0, 1, 0: )+ 16H(0, 1, 1, 0; ) +8H(1, 2, 3, 2; y)
-16H(1,2,0,0;y)+8H(1,2,1,0; y)—16H(1, 0, 2,0; y)+8H(1,0, 3, 2; y) —28H(1, 0; y)
—16H(1,0,0,2; y)+8H(1,0,1,0; 4)+36H(1, 1, 0; y)+16H(1, 1,0, 0; y)]

4—7;—2 [9—7H(0; z)+6H(0; 2)H(2; y) — 2H(0; 2)H(1; y)+4H(0, 1; 2) —24H(1; 2)
+12H(1; 2)H(2; y)+8H(1; 2)H(3; y) —4H(1; 2)H(0; y) —6H(1; 2)H(1; y) —2H(1, 0; 2)
—20H(2, 2; y)+34H(2; y) +6H(2, 0; y)+8H(2, 1;y) —8H(3, 2; y) —6H(1, 1; 2)

+8H(0, 2; ) — 7TH(0; y) —4H(0, 1; y) +6H(1, 2; y) — 10H(1; y) — 4H(1, 0; y)]

—i—l [4OC3 +40¢3H(1; 2) —80¢3H(2; y) +40¢3H(1; y) —2—29H(0; z) +20H(0; 2)H(2, 2; y)
—32H(0; 2)H(2, 2, 0; y) —4H(0; 2)H(2; y)+32H(0; 2)H(2, 0; )

0; 2)H(2,0,0; y)+16H(0; 2)H(2, 1,0; y) —24H(0; 2)H(3, 2,2; y)

o
N

)

JH(

; 2)H(3,2;y)—32H(0; 2)H(3, 2, 0; y) — 24H(0; 2)H(3, 3, 2; v)

424H(0; 2)H(3, 0, 2; )+ 8H(0; 2)H(0, 2, 2; ) — 44H(0; 2)H(0, 2; )

0; 2)H(0, 2, 0; ) +24H(0; 2)H(0, 3, 2; ) -+ 40H(0; 2)H(0; ) — 24H(0; 2)H(0, 0, 2; 1))

—20H(0; z)H(0, 0; y)+16H(0; z)H(1, 2,0;y) —8H(0; 2)H(1, 0, 2; y) +4H(0; 2)H(1, 0; v)

—16H(0; 2)H(1, 0, 0; y) — 16H(0; 2)H(1, 1, 0; y) +20H(0, 0; z) + 16 H(0, 0; 2)H(2, 2; y)

—4H(0, 0; 2)H(2; y)+16H(0, 0; 2)H(2, 0; y) — 20H(0, 0; 2)H(0; y) +36H(0, 0, 1; 2)

~16H(0,0, 1; 2)H(2; )+ 16H(0, 0, 1; 2)H(1; ) — 16H(0, 0, 1, 0; 2) +- 16H(0, 0,1, 1; 2)

+48H(0, 1; 2)H(2, 2; y) — 52H(0, 1; 2)H(2; y) — 24H(0, 1; 2) H(3, 2; y)

—24H(0, 1; 2)H(3, 3; y)+84H(0, 1; 2)H(3; y) +8H(0, 1; 2)H(0, 2; y) —8H(0, 1; 2)H(0; y)

_32H(0, 1, 0; 2)H(3; ) + 16H(0, 1, 0; 2)H(0; ) — 24H(0, 1, 0; 2)H(1; ) + 16H(0, 1, 0, 1; 2)

_20H(0,1,1; 2)+24H(0, 1, 1; 2)H(3; ) — 16H(0, 1, 1; 2)H(0; ) +32H(0, 1, 1, 0; 2)
)—

+8H(1;2)H(2,2,3;y

(

(

(

~16H(0, 1; 2)H(1, 2; ) —8H(0, 1; 2) H(1, 0; y) — 28H(0, 1, 0; 2) + 32H(0, 1, 0; 2) H(2; )

(

(

( 32H(1; 2)H(2, 3; y) — 4H(L; 2) H(2; y) — 58H(1; 2)

(

—20H(1; 2)H(2, 0; y) — 16H(1; 2)H(2, 0, 0; y) — 8H(1; 2)H(2, 1, 0; )
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E. The v* — qgg NNLO Matrix Element coeflicients

—48H(1; 2)H(3, 2, 3; y)+40H(1; 2)H(3, 2; y) +24H(1; 2)H(3, 2, 0; y)

-48H(1; 2)H(3, 3, 2;y) —48H(1; 2)H(3, 3, 3; y) + 136 H(1; 2)H(3, 3; y)

124H(1; 2)H(3, 3, 0; ) — 4H(1L; 2)H(3; y) + 24H(L; 2)H(3, 0, 2; y) + 24H(1; 2)H(3, 0, 3; )
-52H(1; 2)H(3, 0; y)+16H(1; z)H(0, 2, 3; y) —20H(1; 2)H(0, 2; y)

—16H(1; 2)H(0, 2, 0; y)+24H(1; 2)H(0, 3, 2; y) +24H(1; 2)H(0, 3, 3; y)

(1; 2)H(0, 3; y)+4H(1; 2)H(0; y) — 16H(1; 2)H(0, 0, 2; y) — 24H(1; 2)H(0, 0, 3; v)
+4H(1; 2)H(0, 0; y)+8H(1; 2)H(0, 1, 0; y) —16H(1; 2)H(1, 2, 3; )

124H(1; 2)H(1, 0; )+ 16H(1; 2)H(1, 0, 0; ) +60H(1, 0; z) —40H(1, 0; 2)H(2, 2; )

+24H(1,0; 2)H(3, 3; y) —52H(1, 0; z)H(3;

) (1,
+80H(1,0; 2)H(2; y)+16H(1, 0; z)H(2, 0; y) —32H(1, 0; 2)H(3, 2; y)
y)+32H(1,0; 2)H(3,0; y)
(

)
0,3;y)—36H(1, 0; 2)H(0; y) — 16H(1, 0; 2)H(0, 0; 1))
1 (

(
(
—24H(1, 0; z)H(
—16H(1, 0; 2)H(

H(l,
,0;)—20H(1, 0, 0; z) + 16H(1, 0, 0; 2)H(2: ) + 16H(1, 0,0, 1; 2)
—40H(1,0,1; 2)H(2; y)+24H(1,0, 1; 2)H(3; y) —8H(1, 0, 1; 2)H(0; y)

—24H(1,0,1,0; 2)+4H(1, 1; 2)+48H(1, 1; 2)H(3, 3; y) —40H(1, 1; 2)H(3; y)

—24H(1, 1; 2)H(3, 0; y) —24H(1, 1; 2)H(0, 3; y) +20H(1, 1; 2)H(0; y)

-64H(1,1,0; 2)+16H(1, 1, 0; z)H(2; y)+32H(1, 1,0; 2)H(3; y) — 16H(1, 1, 0; 2) H(0; )
—24H(1,1,0; 2)H(1; y)+24H(1,1,0,1; ) —-8H(1,1,1,0; 2) —48H(2, 2,3, 2; y)

+4H(2, 2; y)+20H(2, 2, 0; y)+16H(2, 2,0, 0; y) +40H(2, 2,1, 0; y) + 28H(1,0, 1; 2)
+32H(2, 3, 2; y)+58H(2; y)+20H(2,0,2; y)+16H(2,0,2,0; y)+16H(1, 1; 2)H(0, 0; y)
_4H(2,0;y)+16H(2, 0,0, 2; y) —4H(2, 0, 0; ) —48H(2, 0, 1,0; 1))
18H(2,1,2,0;y)+8H(2, 1,0, 2; ) — 100H(2, 1, 0; ) — 32H(2, 1,0, 0; )
-32H(2,1,1,0;y)—40H(3, 2,2; y) —24H(3, 2, 2, 0; y) + 32H(1, 0; 2)H(0, 2; y)

F48H(3, 2,3, 2; y) +4H(3, 2: y) — 24H(3, 2, 0, 2; ) — 16H(1; 2)H(1, 0, 3; )
52H(3,2,0;4) +56H(3, 2, 1,0; ) -+48H(3, 3,2, 2; ) +24H(1, 0; 2)H(L, 2; )
_136H(3, 3, 2; y) — 24H(3, 3, 2, 0; ) +48H(3, 3, 3, 2; )+ 16H(1, 0, 1; 2)H(L; y)
—24H(3,3,0,2;y)—24H(3,0,2,2; y)+52H(3,0, 2; y) —24H(3,0, 3, 2; y)

+56H(3,0, 1,0; y)+20H(0, 2, 2; y) + 16H(0, 2, 2, 0; ) — 16H(0, 2, 3, 2; )
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E. The v* — ggg NNLO Matrix Element coefficients

—4H(0, 2; ) +16H(0, 2,0, 2; y) —4H(0, 2, 0; y) — 24H(0, 2, 1, 0; y)
_24H(0,3,2, 2; y)+52H(0, 3, 2; ) — 24H(0, 3, 3, 2; ) — 29H(0; /)
+16H(0, 0, 2, 2; y) —4H(0, 0, 2; y) +24H(0, 0, 3, 2; y) +20H(0, 0; y) — 16H(0, 0, 1, 0; »)

-8H(0, 1, 2, 0; y) —8H(0, 1, 0, 2; y) — 20H(0, 1, 0; y) + 16H(0, 1, 1, 0; y/)

) — 20H(
H16H(1,2,3,2; y)— 24H(1, 2,0, y) — 16H(1, 2,0, 0; ) —8H(1, 2, 1,0; 9))

—24H(1,0,2; y)—16H(1,0,2,0; y)+16H(1, 0,3, 2; ) —56H(1, 0; y) — 16H(1,0, 0, 2; 3)
+24H(1,0,0;y)+24H(1,0,1,0; y)+40H(1, 1, 0; ) +32H(1,1,0,0; )],

(E.5)
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E. The v* — gqgg NNLO Matrix Element coeflicients

Dao(y, z) =
3y[ 2H(0; 2) — 3H(1,0;z)—3H(1,0;y)]+y(y+z) [—2H(1,0; 2)—2H(1, 0; )]
4%@/[—74+15H(0; z)+36H(1,0; 2)+15H(0; y)+36H(1, 0; )]
W [27% - 3H(0; 2)H(0; ) +50H(0; y) — 18H(0, 0; y) — 12H(1, 0; /)]
—lT)[GW +38—3H(0; ) —9H(0; 2)H(0; y) +87H(0; y) — 54H(0, 0; y)
—36H(1,0;y)] + = [—2nH(L; 2)+ 2 H(2; ) + 12H(0; 2) H(2, 0; )

(y+

H12H(0,1,0; 2)+12H

[-
)
(1,0; 2)+12H(1, 0; 2)H(2;y) — 12H(1, 0; 2)H(0; v)

—12H(2,1,0; ) — 12H(0 )+12H(1 0;y)—12H(1,1,0; 2)]

—}——27r+ Hl,z ———H ;y)—8H(1,0; z)H(2;

sl (152) - 2T (2:) - 8H(1, 05 2)H(250)

—6H(0; z) —8H(0; z)H(2 0; y)+12H(0 z)H(0;y)—8H(0, 1, 0; z) +4H(1, 0; 2)

+8H(1,0; 2)H(0; y)+8H(1,1,0; 2)+8H(2, 1, 0; y)+6H(0; y) +8H(0, 1, 0; )
2

—20H(1, 0; )] + % [- %+2H(0; 2)—2H(0; z)H(0; y) — 2H(1, 0; 2) - 2H(0; )

+2H(1,0; )] +

o) - [2m*H(1; 2) — 2n®H(2; y) — 12H(0; 2)H(2, 0; y) — 12H(0, 1, 0; 2)
—12H(1,0; 2)H(2; y)+12H(1, 0; 2)H(0; y)+ 12H(1, 1, 0; 2) +12H(2, 1, 0; 3)
2
)]+

42 Am?
+12H(0,1,0;y [—2%2——;—H(1;z)+—§—H(2; y)+8H(0; 2)H(2,0;y)

+2)3
+8H(0,1,0; z) — 12H(1, 0; z)+8H(1,0; 2)H(2;y) —8H(1,0; 2)H(0; y) —8H(1, 1, 0; 2)
—8H(2,1,0;y) —8H(0, 1, 0; ) +12H(1, 0; y) — 12H(0; 2) H(0; )]

2
4—; Y [7*-+6H(0; z)H(0; ) +6H(1,0; z) —6H(1, 0; )]

3(y+2)

1
m [—47r2+6H(0; z)H(0; y) — 70H(0; y) + 36H(0, 0; y) +24H(1, 0; y)]

1 2n? 272

—H(1; z) ——H(2; y) —4H(0; 2)H(2, 0; y) —4H(0, 1, 0;

W[3(2)3(U) (0; 2)H(2, 0;y) ( z)
—4H(1, o-z)H(z-y)+4H(1 0; z)H(0; y)+4H(1,1,0; z)+4H(2, 1,0; y) +4H(0, 1, 0; )]

1 ar? g2

- ———H(1; 4H(1,0; 2)—H(0;

_}?}—_Z[ 3 3 ( Z) ( ) ,Z) (O)y)

2
5 H(2;y)+2—H(0; 2)+ 2H(0; 2 H(2, 0;y) —4H(0; 2)H(0; y)+2H(0, 1, 0; 2)

+2H(1, 0; 2)H(2; y) — 2H(1, 0; 2)H(0; y) —2H(1, 1, 0; 2) —2H(2, 1, 0; y) — 2H(0, 1, 0; y)

2
+4H(1,0;y) ]+ % [+431-12H(0; z)+24H(2; y) — 12H(0; y) —24H(1; )]
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E. The v* — ggg NNLO Matrix Element coefficients

4—%[%~38C3+3H(0 2)H(1,0;y)—18H(1,0,0; 2)

+31H(0; z)+12H(0; 2)H(2, 0; )+ 10H(0; 2)H(0; y) — 18H(0; 2)H(0, 0; y)
—41H(0, 0; z) — 18H(0, 0; 2)H(0; y) —3H(0, 1, 0; 2) +29H(1, 0; )+ 12H(1, 0; z) H(2; y)
—15H(1, 0; z)H(0; y) - 12H(2, 1, 0; )+ 31H(0; y) —41H(0, 0; y) + 3H(0, 1, 0; y)
—29H(1,0; y)+18H(1,0,0; y)+12H(1,1,0; )]

—}L;+2H(0; 2)H(0; y)+2H(1,0; 2) —2H(1,0; y) ,

(E.6)
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E. The v* — qgg NNLO Matrix Element coefficients

Ea(y,z) =
9—2 [—2r2H(2; y)+ 12H(0; 2)H(2, 2; y) — 4TH(0; 2)H(2; ) +3H(0; 2)H(2, 0; )

—15H(0; 2)H(3, 2; y)+3H(0; 2)H(0, 2; y)+ 18H(0, 0; 2)H(2; y) +9H(0, 1; z)

+3H(0, 1; 2)H(3; y) +12H(1; 2)H(2, 3; y) + 12H(1; 2)H(3, 2; y) — 12H(1; 2)H(3, 3; y)

—38H(1; z)H(3; y)+3H(1; 2)H(3, 0; y) +3H(1; 2)H(0, 3; ) —9H(1; 2)H(0; y)

—12H(1, 0; 2)H(2; y)+15H(1, 0; 2)H(3; y) — 12H(1, 1; 2)H(3; y) —12H(2, 3, 2; )

OH(2, 0;y) — 12H(3, 2, 2; )+ 38H(3, 2; y) — 3H(3, 2, 0; ) +9H(1, 0; 2)

1

m [—2H(0; 2)H(2; y)+2H(0, 1; 2) — 2H(1; 2) H(0; y) + 2H(1, 0; 2) +2H(2, 0; y)
+2H(0, 2; 9)] +— [87°H(2; y) —38+3H(0; z) —48H(0; 2)H(2, 2; y)

18y
+188H(0; 2)H(2; y) — 12H(0; 2)H(2, 0; ) +60H(0; 2)H(3, 2; y) — 12H(0; 2)H(0, 2; )

—72H(0, 0; 2)H(2; y) —36H(0, 1; z) — 12H(0, 1; 2)H(3; y) — 48H(1; 2)H(2, 3; v

y) —36H(
—48H(1; 2)H(3, 2; y) +48H(1; 2)H(3, 3; y)+ 152H(1; 2)H(3; y) — 12H(1; ) H(3, 0; y)
—12H(1; 2)H(0, 3; y)+36H(1; 2)H(0; y) —36H(1, 0; 2) +48H(1, 0; z) H(2; y)

Y) (1,

—60H(1,0; 2)H(3; y)+48H(1, 1; 2)H(3; y) +48H(2, 3, 2; ) —36H(2, 0; y)

(
+48H(3,2, 2;y) — 152H(3, 2; y) +12H(3, 2, 0; y) —48H(3, 3, 2; 3
(

+12H(3, 0, 2;y) —36H(0,2; y)+12H(0, 3, 2; y) + 15H(0; y) | + [-2n®

VA
18(1—y)?
+3H(0; 2)H(0; y) —50H(0; y) + 18H(0, 0; y) + 12H(1, 0; )]

+18({-y—) [— 62— 38+ 3H(0; 2)+9H(0; 2)H(0; y) — 87H(0; y) + 54H(0, 0; )

+36H(1, 0; )] +

9(11—y) [2% — 3H(0; 2)H(0; y) +38H(0; y) — 18H(0, 0; ) — 12H(1, 0; )

1
W [—9H(0; z)H(2; y) —3H(0, 1; z) — 26H(1; z) +12H(1; 2)H(2; y)
—12H(1; 2)H(3; y)+9H(1; 2)H(0; y) +9H(1, 0; z) —12H(1, 1; 2)
—12H(2, 2; y)+26H(2; y) - 9H(2, 0; y) + 12H(3, 2; y) —9H(0, 2; )]
2

1 T
+—— —9H(0; z) —12H(1; 2H(2; y)—9H(0; — | —74+H(1;
9(y+z) [+38 9 (O’Z) ( ,Z)+1 ( ay) 9 (an)]‘l" 36 [ 7+ ( ,Z)
T 4085

—5H(2;y)+4H(1; y)]+m[—T+6§3+72H(0 2)+72H(0; 2)H(2, 2; )

—147H(0; z)H(2; y) +36H(0; z)H(2, 0; y) — 108H(0; 2)H(3, 2; y) + 36H(0; 2)H(0, 2; y)
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E. The v* — qgg NNLO Matrix Element coefficients

—18H(0; z)H(1, 0; y)+108H(0, 0; z)H(2; y) —36H(0, 0, 1; z) —201H(0, 1; 2)

+72H(0, 1; 2)H(2; y) — 36H(0, 1; 2)H(3; y) + 72H(0, 1; 2)H(0; y) + 18H(0, 1, 0; z)

+68H(1; z)+144H(1; 2)H(2, 3; y) — 108H(1; z) H(2; y) — 72H(1; 2)H(2, 0; y)

FL44H(1; 2)H(3, 2 y) — 144H(1; 2)H(3, 3; y) — 348H(1; 2)H(3; ) + 108H(1; 2)H(3, 0; )
—72H(1; 2)H(0, 2; y) + 108H(1; 2)H(0, 3; )+ 147TH(1; z)H(0; y) —108H(1; 2)H(0, 0; y)
~81H(1,0; z) —72H(1, 0; 2)H(2; )+ 108H(1, 0; 2)H(3; )~ 18H(1, 0; 2)H(0; y)
+108H(1,1; ) —144H(1, 1; 2)H(3; y) +72H(1, 1; 2)H(0; y) + 108H(2, 2; y) — 72H(1, 0, 1; 2)
172H(2,2,0; ) — 144H(2, 3, 2; y) — 68H(2; )+ T2H(2, 0, 2; ) — 72H(0, 1, 1; 2)
—147H(2,0; y)+108H(2, 0, 0; y) — 144H(3, 2, 2; y) +348H(3, 2; y)

_108H(3, 2, 0; y) +144H(3, 3, 2; ) — 108H(3, 0, 2; ) + 72H(0, 2, 2; 1))

—147H(0, 2; y) 4+ 108H(0, 2, 0; ) — 108H(0, 3, 2;y)+72H(0-y)+108H(0 0,2:)
—18H(0, 1, 0;)+228H(1, 0; ) — 108H(1, 0, 0; ) — 72H(1, 1,05 )] + [27r 4 on?H(1; 2)
—4nH(2; y)+2r°H(1; y)+19H(0; 2) +12H(0; 2)H(2, 2; y) — 29H(0; 2)H(2; y)

+6H(0; 2)H(2, 0; y) — 18H(0; 2)H(3, 2; y) +6H(0; 2)H(0, 2; y) —3H(0; 2)H(0; )

—3H(0; 2)H(1, 0; ) —9H(0, 0; 2)+18H(0, 0; 2)H(2; y) —6H(0, 0, 1; ) —35H(0, 1; 2)
+12H(0, 1; 2)H(2;y) —6H(0, 1; 2)H(3; )+ 12H(0, 1; 2)H(0; y) +3H(0, 1, 0; z)

+38H(1; 2)+24H(1; 2)H(2, 3; y) — 12H(1; 2) H(2; y) — 12H(1; 2)H(2, 0; y) — 12H(0, 1, 1; 2)
+24H(1; 2)H(3,2;y

—24H(1; 2)H(3, 3; y) —64H(1; z)H(3; y)+ 18H(1; 2)H(3, 0; y)

) )

—12H(1; 2)H(0, 2; y)+ 18H(1; 2)H(0, 3; y) +29H(1,; z)H(0; y) — 18H(1; z)H(0, 0; y)
—12H(1,0; 2)H(2;y) )—3
—24H(1, 1; 2)H(3; )+ 12H(1, 1; 2)H(0; )+ 12H(2, 2; ) + 12H(2, 2, 0; y) — 3H(1, 0; 2)

(
+18H(1,0; 2)H(3; y)—3H(1,0; 2)H(0; y) —12H(1,0,1; 2)
(1,

—24H(2, 3,2; y)—38H(2; y)+12H(2,0, 2; y) —29H(2, 0; y) + 12H(1, 1; 2)

) (
+18H(2,0, 0; y) —24H(3, 2, 2; y)+64H(3, 2; y) — 18H(3, 2, 0; y)
+24H(3, 3,2; y)—18H(3, 0, 2; y) +12H(0, 2, 2; y) —29H(0, 2; y)
) (

+18H(0, 2,0; y) — 18H(0, 3, 2; )+ 19H(0; y) + 18H(0, 0, 2; y) —9H(0, 0; y)

—3H(Oa 1a 0; y)+32H(11 0; y)—lSH(l, 0) 0; y)_12H(1a 1, 0; y)] )
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E. The v* = qgg NNLO Matrix Element coefficients

Fyo(y,2) =
T
108 [~ 1772 — 20H(0; 2) + 3H(0; 2) H(0; y) + L5H(0, 0; 2) — 20H(0; ) + 15H(0, 0; v,
(E.8)
Galy, z) =

z 22
" [—9H(0; 2)H(2; y) —9H(1; 2)H(3; y)+9H(3, 2; y)] + [3H(0; 2)H(2; )

+3H(1; 2)H(3; y) — 3H(3, 2; y)] + % [6H(0; z)H(2; y) +6H(1; 2)H(3; y) —6H(3, 2; )]

271'2

W[12H(1; z)H(2;y)—12H(2, 2; y) — 2H(2; y) + 12H(2, 0; y) —2H(1; y)]

%[—72@(2; y) —9H(0; z)+ 12H(0; 2)H(2, 2; y) — 18H(0; 2)H(2; y)

—4H(0; z)H(2, 0; y) —8H(0; 2)H(3, 2; y) —4H(0; 2)H(1, 0; y) +24H(0, 0, 1; 2)H(2; y)

+24H(0,1; 2)H(2, 2; ) — 8H(0, 1; 2)H(2; y) — 24H(0, 1; 2)H(2, 0; /)

—24H(0, 1; 2)H(3, 2; y) —24H(0, 1; 2)H(3, 3; y) +4H(0, 1, 1; 2) + 24H(0, 1, 1; 2)H(3; y)

+24H(1; 2)H(2, 2, 3; y) +4H(1; 2)H(2, 3; y) —24H(1; 2)H(2, 0, 3;y)

HH(1; 2)H(2, 0;y) — 24H(1; 2)H(3, 2, 3; )+ 8H(1; 2)H(3, 2; y)

+24H(1; 2)H(3, 2, 0; y) — 24H(1; 2)H(3, 3, 2; y) —24H(1; 2)H(3, 3, 3; »)

—8H(1; 2)H(3, 3; y)+24H(1; 2)H(3, 3, 0; y) — 18H(1; 2)H(3; y) +24H(1; 2)H(3, 0, 2; )

—8H(1; 2)H(3,0; y)+4H(1; 2)H(0, 2; y) —4H(1; 2)H(1, 0; y) — 12H(1, 0; ) H(2; y)

+8H(1,0; 2)H(3; y)+4H(1,0,1; 2) —24H(1, 0, 1; 2)H(2; y) +24H(1,0, 1; 2)H(3; y)

+24H(1, 1; 2)H(3, 3; y) —8H(1, 1; 2)H(3; y) —24H(1, 1; 2)H(3, 0; y)

HH(1,1,0; 2) —24H(2, 2, 3, 2; ) —4H(2, 2, 0; ) + 24H(2, 2, 1, 0; )

—4H(2,3,2;y)—4H(2,0, 2; y) +24H(2,0, 3, 2; ) — 24H(2,0, 1, 0; )

—8H(3,2,2; y)—24H(3, 2,2, 0; ) +24H(3, 2, 3, 2; y) — 4H(1, 1; 2)H(0; )

HI8H(3, 2; ) — 24H(3, 2,0, 2; y) +8H(3, 2, 0; ) + 24H(3, 2, 1, 0; 1))

124H(3,3,2,2;y)+8H(3, 3, 2, y) — 24H(3, 3, 2, 0; )

24H(3,3,3,2; y) — 24H(3, 3,0, 2; y) — 24H(3, 0,2, 2; ) +8H(3, 0, 2; y)

+24H(3,0, 1, 0; y) —4H(0, 2, 2; y) +4H(1, 2, 0; y) +4H(1, 0, 2; y) +4H(1, 1, 0; )]
2 1 272

% [3H(0; 2) H(2; y)+3H(1; 2)H(3; y) — 3H(3, 2; )] + o [TH(l; y)
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E. The v* — gqgg NNLO Matrix Element coefficients

+4H(0; 2)H(3, 2; ) +4H(0; 2)H(1, 0; y) +4H(1; 2)H(3, 3; y) +4H(1; 2)H(3, 0; )

IS

H(1; 2)H(1, 0; y) —4H(1, 0; 2)H(3; y) - 4H(3, 2, 0; y) —4H(3, 3, 2; )

1 22
W=7 [TH(l; Y)

(
(
H4H(0; 2)H(3,2; y) +4H(0; 2)H(1, 0; y) +4H(1; 2) H(3, 3; y) +4H(1; 2)H(3, 0; )
(
(

A

H(3,0,2;y)—4H(1,2,0;y) —4H(1,0, 2; y) —4H(1, 1,0; )] +

£

H(1; 2)H(1,0;y) —4H(1,0; 2)H(3; y) —4H(3, 2, 0; y) —4H(3, 3, 2; v)

I

H(3,0,2;y)—4H(1,2,0;y)—4H(1,0,2;y) —4H(1,1,0; y)]

X

( 3 [8H(0; 2)H(2, 2; y) —8H(0, 1; 2)H(2; y) +8H(0, 1, 1; 2) +8H(1; 2)H(2, 0; y)

+8H(1; 2)H(0, 2; y) —8H(1, 0; 2)H(2; y) +8H(1, 0, 1; ) —8H(1, 1; 2)H(0; )

2

L
-8H(2,2,0;y)—8H(2,0,2;y)—8H(0,2,2;y)+8H(1,1,0; 2)]
-

ng

6H(1; z)H(2; y)+6H(2, 2; y)+H(2; y) —6H(2,0; y)+ H(1; y) ]

1
+£ [36¢3H(2; y)+18H(0; 2) —12H(0, 1; 2)H(2, 2; y)+9H(1; 2)

—12H(0; 2)H(2, 2; y)+11H(0; z) H(2; y) —4H(0; 2)H(2, 0; y) —2H(0; 2)H(3, 2; y)
+6H(0; 2)H(0, 2; y)+2H(0; 2)H(1, 0; y) —12H(0, 0, 1; 2)H(2; )

+4H(0, 1; 2)H(2; y)+12H(0, 1; 2)H(2, 0; y) + 12H(0, 1; 2)H(3, 2; y)

-+12H(0, 1; 2)H(3, 3; y) +6H(0, 1; 2)H(3; y) —8H(0, 1, 1; 2) — 12H(0, 1, 1; 2)H(3; v)
—12H(1; 2)H(2, 2, 3; y) —8H(1; 2)H(2, 3; y)+12H(1; 2)H(2,0, 3; y)

—8H(1; z)H(2,0; y)+12H(1; 2)H(3, 2, 3; y) —4H(1; 2)H(3, 2; v)

—12H(1; 2)H(3, 2,0; y)+12H(1; 2)H(3, 3, 2; y) + 12H(1; 2)H(3, 3, 3; y)

+HH(1; 2)H(3, 3;y) —12H(1; 2)H(3, 3, 0; y)+ 11H(1; 2)H(3; y) — 12H(1; 2)H(3, 0, 2; y)
—2H(1; 2)H(3,0; y) —8H(1; 2)H(0, 2; y) + 6H(1; 2)H(0, 3; y) +2H(1; 2)H(1, 0; y)
+6H(1,0; 2)H(2;y)+2H(1,0; 2)H(3;y) —8H(1, 0, 1; 2) +12H(1, 0, 1; 2) H(2; y)
—12H(1,0, 1; 2)H(3; y) —12H(1, 1; 2)H(3, 3; y) +4H(1, 1; 2) H(3; y)

+8H(1, 1; 2)H(0; y) —8H(1, 1,0; 2)+12H(2, 2, 3,2; y) +8H(2, 2, 0; y)
-12H(2,2,1,0;y)+8H(2, 3, 2; y) —9H(2; y) +8H(2, 0, 2; y)+12H(1, 1; 2)H(3, 0; )
_12H(2,0, 3, 2: )+ 12H(2,0, 1, 0; ) +4H(3, 2, 2, )

(

(
+12H(3,2,2,0;y)—12H(3,2,3,2;y) —11H(3,2;y) —12H(3, 3, 3,2; y)
+12H(3,2,0,2;y)+2H(3,2,0; y)—12H(3, 2,1,0; y)+12H(3, 3,0, 2; y)
(

~12H(3, 3,2, 2;y) —4H(3, 3, 2; y) + 12H(3, 3,2, 0; ) + 12H(3,0,2, 2; )
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E. The v* — ggqg NNLO Matrix Element coefficients

12H(3,0,2; y)— 12H(3,0, 1, 0; ) + 8H(0, 2, 2; y) — 6H(0, 3, 2; )
_____[_27’_2
z) 3

272
]+ H(1; 2) - ——H(1;p)
—8H(0; 2)H(3, 2; y) +4H(0; 2)H(0, 2; y) — 4H(0; z)H(l 0;y)+8H(0, 0, 1; 2)
(
4H(

—9H(1, 2, 0;4) — 2H(1, 0, 2; y) —2H(1, 1, 0; ) 3

+8H(0, 1; 2)H(3;y) —4H(0, 1; 2)H(0; y) +4H(0, 1, 0; ) —8H(1; 2)H(3, 0; ) +8H(3, 2, 0; y)

+8H(1, 0; 2)H(3; y) —4H(1, 0; 2)H(0; y) —4H(1,0, 1; 2) —8H(1, 1, 0; z) —4H(1; 2)H(1, 0; )
+8H(3, 0, 2; y) —4H(0, 1,0; y)+4H(1, 2, 0; ) +4H(1,0, 2; y) +4H(1, 1, 0; )

Z7T2

w [—3—H(0; z)—H(1; 2)+H(2; y)} +(1—_§)—2

+2H(0, 0, 1; 2)+6H(0, 1; 2) —2H(0, 1; 2)H(2; y) —2H(0, 1, 0; 2) —2H(1; 2)H(2, 3; )

[6¢3 —2H(0; 2)H(0, 2; y)

+6H(1; 2)H(3; y)—2H(1; 2)H(0, 3; y) —6H(1, 0; z) +2H(1, 0; 2)H(2; y) +2H(1,0, 1; 2)
—-2H(1,1,0; 2)+2H(2, 3, 2; y) — 6H(3, 2; y) + 2H(0, 3, 2; y)]

—}—li—y[3H(O; 2)—2H(0; 2)H(2; y) + 3H(1; 2) — 2H(1; 2)H(3; y) — 3H(2; y) + 2H(3, 2; )]
W [~ 8H(0; 2)H(2, 2; y) — 24H(0; 2)H(2; )+ 24H(0, 1; 2) +8H(0, 1; 2)H(2; )
—8H(0, 1,1; z) —8H(1; 2)H(2, 0; y) — 8H(1; 2)H(0, 2; y) — 24H(1; 2)H(0; y) +24H(1, 0; 2)
+8H(1,0; 2)H(2; y) —8H(1,0, 1; 2)+8H(1, 1; 2)H(0; y) —8H(1, 1, 0; 2) +8H(2, 2, 0; )
+8H(2, 0, 2; y)+24H(2, 0; y) +8H(0, 2, 2; y) +24H(0, 2; y)]

W [—24H(0; 2)+4H(0; 2)H(2, 2; y)+ 16H(0; 2)H(2; y) — 16H(0, 1; 2)

—4H(0, 1; 2)H(2; y) +4H(0, 1, 1; 2) +4H(1; 2) H(2, 0; y) +4H(1; 2) H(0, 2; y)

+16H(1; 2)H(0; y) —16H(1, 0; z) —4H(1, 0; 2)H(2; y) +4H(1, 0, 1; 2) —4H(1, 1; 2)H(0; 3)

+4H(1,1,0;2) —4H(2, 2, 0; y) —4H(2, 0, 2; y) — 16H(2, 0; y) — 4H(0, 2, 2; 9)

—16H(0, 2; y) +24H(0; y)] + [8H(0; z) —8H(0; 2)H(2, 2; y) +8H(0, 1; 2)H(2; y)

yA
3(y+=z)
—8H(0, 1, 1; z) — 8H(1; 2)H(2, 0; y) — 8H(1; 2) H(0, 2; y) +8H(1, 0; 2)H(2; y) —8H(1,0, 1; 2)

+8H(1, 1; 2)H(0; y) —8H(1, 1, 0; 2) +8H(2, 2, 0; y) +8H(2, 0, 2; y) +8H(0, 2, 2; )

0;y)] + a iz)g [T H(0; 2) +7°H(1; z) — m2H(2; ) — 18¢3+6H(0; 2)H(0, 2; )

—6H(1,0; 2)H(2;y)—6H(1,0, 1; 2) +6H(1,1,0; 2) —6H(2, 3, 2; y) — 6H(0, 3, 2; )]
2 2
gy (610 M2 )+ BH(L; ) H(3; )~ GH(3,2; )]+ [3H(0; 2)H(2 )

(

—6H(0,0,1; 2)+6H(0, 1; 2)H(2; y) +6H(0, 1, 0; ) +6H(1; 2)H(2, 3; y) + 6H(1; 2) H(0, 3; )
(
z
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E. The v* — ggg NNLO Matrix Element coefficients

1 [_gvr_z
3(1-y-2)(1-y)- 3
+4H(0; 2)H(0, 2; y) +8H(0,0,1; 2)+8H (0, 1; 2)H(3;y) —4H(0, 1; 2)H(0; v)

+3H(1; 2)H(3; ) —3H(3, 2; )] +

H(1;2)—4H(0; 2)H(3, 2;y)

+4H(0, 1, 0; 2)+4H(1; 2)H(3, 3; y) —4H(1; 2)H(3, 0; y) +4H(1, 0; 2)H(3; v)
—4H(1,0; 2)H(0; y)—4H(1,0, 1; 2) —8H(1, 1, 0; 2)

+4H(3,2,0;y)—4H(3,3 2-y)+4H(3 0,2;y)—4H(0,1,0;y)]

w2
m[%+ H(1; Z)—7H(1 y)—3H(0; 2)H(0, 2; y) +4H(0; 2)H(0; y)

—3H(0; z)H(1, 0;y) —6H(0, 0, 1; 2) —6H(0, 1; 2)H(3; y) +3H(0, 1; 2)H(0; y)

&

(

H(1; 2)H(3, 3; y) —3H(1; 2)H(1, 0; y) +4H(1, 0; 2)+3H(L, 0; 2) H(0; y)

+6H(1, 1,0; 2)+6H(3, 3, 2; )+ 3H(0, 1,0; y)+3H(1, 2, 0; ) +3H(1, 0, 2; )
(

—4H 1,0,y)+3H(1,1,0 y)— 3H(0,1,0 z)+3H(1,0,1; 2)]
w2 o 272

-— —H 0 ——H 1 ——H 2

7+ (052)+ 2-H(1; ) (2:9)

-HH(0; 2)H(0, 2; y) — H(0; 2)H(0; y) —4H(0, 0, 1; 2)+H(0, 1; ) +4H(0, 1; 2)H(2; y)

TH

+4H(0, 1,0; 2) +4H(1; 2)H(2, 3; y) + H(1; 2)H(3; y) +4H(1; 2)H(0, 3; y) —H(1; 2) H(0; 9)
—-H(1,0; z)—4H(1,0; 2)H(2; y)—4H(1,0, 1; 2)+4H(1,1,0; z) —4H(2, 3, 2; y) — 12(3
+H(2,05y) —H(3, 2; ) + H(0, 2, y) —4H(0, 3, 2; y) + 3H(0; y) + 2H(1, 0; )]

1

o [
3(y+2)?
+6H(0; 2)H(2, 0; y) — 6H(0; 2)H(3, 2; y) +6H(0; 2) H(0, 2; y) —6H(0, 1; 2)

n?H(1; 2)+72H(2; y) — 6H(0; 2)H(2, 2; y) —6H(0; 2)H(2; )

—6H(0, 1; 2)H(2; y) —6H(0, 1; 2)H(3; y) +6H(0, 1, 0; 2) + 6H(0, 1, 1; 2) + 24H(1; 2)
—12H(1; 2)H(2, 3; y) —8H(1; 2)H(2; y) + 6H(1; 2)H(2, 0; y) —12H(1; 2)H(3, 2; )
—12H(1; z)H(3, 3; y) - 12H(1; 2)H(3; y) + 6H(1; 2)H(3, 05 y) + 6H(1; 2) H(0, 2; )

+6H(1; z)H(0, 3; y) +6H(1; 2)H(0; ) +6H(1, 0; 2) +6H(1, 0; 2) H(2; y)

&

H(1,0; 2)H(0; y)+6H(1,0, 1; 2)+8H(1, 1; 2)+12H(1, 1; 2)H(3; y)

&

H(1,1,0; z)+8H(2, 2; y)—6H(2,2,0; )+ 12H(2, 3, 2; y) —24H(2; y)

&

&

(

(
H(2,0,2;y)—6H(2,0;y)+12H(3, 2, 2; ) +12H(3, 2; v) —6H(1, 1; 2)H(0; v)
H(3,2,0;y)+12H(3, 3, 2; y)—6H(3, 0, 2; y) —6H(0, 2, 2; y)+6H(1, 0; 2)H(3; y)
(

2 2
~6H(0, 2; y) —6H(0, 3, 2; y)] + [7r2+%H(1;z)—%H(Q;y)—lQH(O;z)

1
3(y+2)
—12H(0; 2)H(2; y) — 3H(0; 2)H(2, 0; y) + 6 H(0; z)H(0; y) —18H(0, 1; ) —3H(0, 1, 0; 2)

-32H(1; 2) —8H(1; 2)H(2; y) — 30H(1; 2) H(3; y) +12H(1; 2)H(0; y) + 12H(L, 0; 2)
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E. The v* — qqg NNLO Matrix Element coeflicients

—3H(1,0; 2)H(2; y)+3H(1, 0; 2)H(0; y) +8H(1, 1; 2)+3H(1, 1,0; z) +8H(2, 2; y)

+32H(2;y)— 12H(2, 0; y) +3H(2, 1, 0; y)+30H(3, 2;y)—12H(0, 2; y)
T. 2 272
—12H(o;y>+3H<o,1,o;y>]+g[—%H< y)+=5-H(1;y) +4H(0; 2)H(2, 2;9)

—4H(0; z)H(2, 0; y)+4H(0; 2)H(1, 0;y) —4H(0, 1, 1; 2) —9H(1; 2) +4H(1; 2)H(2, 3; y)

—4H(1; 2)H(2,0; y)+8H(1; 2)H(3, 2; y) —4H(1; 2)H(0, 2; y) +4H(1; z)H(1, 0; y)

A

H(1,0; 2)H(2;y)—4H(1,0,1; 2)—8H(1, 1; 2)H(3; y) +4H(1, 1; 2)H(0; y)

IS

H(2,2,0;y)—4H(2, 3,2; y)+9H(2; y)+4H(2, 0, 2; y) —4H(1, 1, 0; 2)

&

H(3,2,2;y)+4H(0, 2, 2; y) —4H(1, 2,0; y) —4H(1,0, 2; y) —4H(1, 1, 0; y)]
2

71r = [25—12H(0; 2)+6H(0; 2)H(2; y) — 6H(0; 2)H(1; y) — 23H(1; 2)+ 12H(1; 2)H(2; )
—6H(1; z)H(1; y) —6H(1, 0; 2) —6H(1, 1; z) — 12H(2, 2; y) + 22H(2; y) + 6H(2, 0; y)
S1ZH(0; )+ 6H(1, 2 )+ H(L; )] + 3 (726 + 18G5 H(1; 2) ~36¢5H(25 ) + 18 H(1; )
—5H(0; z)+11H(0; 2)H(2, 2; y)+5H(0; 2)H(2; y)+6H(0; 2)H(2, 0, 2; y)

-HH(0; 2)H(2,0; y)—6H(0; 2)H(3, 2, 2; y) +9H(0; 2)H(3, 2; y)

—6H(0; 2)H(3, 3, 2;y)+6H(0; 2)H(3, 0, 2; y) +6H(0; 2)H(0, 2, 2; y)

—22H(0; 2)H(0, 2; y)+6H(0; 2)H(0, 3, 2; y) +H(0; 2)H(0; y) —6H(0; 2)H(0, 0, 2; y)
—6H(0; z)H(1, 0, 2; y)—2H(0; 2)H(1, 0; y) —2H(0, 0, 1; ) +6H(0, 0, 1; 2)H(1; y)
+12H(0, 1; 2)H(2, 2; y) —9H(0, 1; 2)H(2; y) —6H(0, 1; 2)H(2, 0; y) — 11H(0, 1; 2)
—6H(0, 1; 2)H(3, 2; y) —6H(0, 1; 2)H(3, 3; y) +TH(0, 1; 2)H(3; y) + 13H(0, 1; 2)H(0; y)
—6H(0, 1; 2)H(1, 2;y) —10H(0, 1, 0; 2)+6H(0, 1, 0; 2)H(2; y) —6H(0, 1, 0; 2)H(1; y)
-11H(0,1,1; 2)+6H(0, 1, 1; 2)H(3; y) — 10H(1; 2) + 12H(1; 2)H(2, 2, 3; y)

+2H(1; 2)H(2, 3; y)+16H(1; 2)H(2; y) — 11H(1; 2)H(2,0; 3)

—12H(1; 2)H(3, 2, 3; y) +22H(1; 2)H(3, 2; y) +6H(1; 2)H(3, 2, 0; )

—12H(1; 2)H(3, 3, 2; y) — 12H(1; 2)H(3, 3, 3; y) + 16 H(1; 2)H(3, 3; v)

+6H(1; 2)H(3, 3,0; y) —6H(1; 2)H(3; y)+6H(1; 2)H(3,0,2; y)+6H(1; 2)H(3, 0, 3;y)
—9H(1; 2)H(3, 0; y)+6H(1; 2)H(0, 2, 3; y) — 11H(1; 2)H(0, 2; y) +6H(1; 2)H(0, 3, 2; )

+6H(1; 2)H(0, 3, 3; y) —9H(1; 2)H(0, 3; y) — 5H(1; 2)H(0; y) — 6H(1; 2)H(0,0, 3; y)
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E. The v* — gqgg NNLO Matrix Element coeflicients

—6H(1; 2)H(1,2,3;y)—6H(1; 2)H(1,0, 3; y) —2H(1; 2)H(1, 0; y) +H(L,0; 2)
—6H(1,0; 2)H(2, 2; y)+13H(1, 0; 2)H(2; y) +6H(1, 0; 2)H(3, 3; y) —9H(1, 0; 2)H(3; )
—6H(1,0; 2)H(0, 3; y) —2H(1, 0; 2)H(0; y) + 6H(1, 0; 2)H(1, 2; y) +6H(1,0,0, 1; 2)
—~12H(1,0, 1; 2)H(2;y)+6H(1,0, 1; 2)H(3; y) +6H(1, 0, 1; 2)H(1;y) —6H(1,0,1,0; 2)
—16H(1, 1; z)+12H(1, 1; 2)H(3, 3; y) —22H(1, 1; 2)H(3; y) —6H(1, 1; 2)H(3, 0; )
—6H(1,1; 2)H(0, 3; y)+11H(1, 1; 2)H(0; y) — 12H(1, 1, 0; 2) +6H(1, 1, 0; 2) H(2; y)
_6H(1,1,0; 2)H(L; y)+6H(1,1,0,1; 2)—6H(1,1,1,0; 2) — 12H(2, 2, 3, 2; )

_16H(2, 2; )+ 11H(2, 2, 0; y) +6H(2, 2, 1, 0; ) — 2H(2, 3, 2; )+ 11H(1, 0, 1; 2)
+10H(2; y)+11H(2,0, 2; y)+5H(2,0; y) —6H(2,0, 1, 0; y) —24H(2, 1, 0; )
_22H(3,2,2;y) —6H(3,2,2,0;y)+12H(3, 2,3, 2;y)

+6H(3, 2;y)—6H(3,2,0,2;y)+9H(3,2,0;y)+6H(3,2,1,0; y)

H12H(3, 3,2, 2; ) — 16H(3, 3, 2, y) —6H(3, 3,2, 0; )

F12H(3,3,3,2; ) — 6H(3,3,0,2;y) — 6H(3,0, 2, 2; )

YOH(3,0, 2; ) —6H(3, 0,3, 2; )+ 6H(3,0, 1,0; ) + 11H(0, 2, 2; )

—6H(0, 2, 3,2;y)+5H(0, 2; y) —6H(0, 3, 2,2; y) +9H(0, 3, 2; y)
—6H(0,3,3,2;y) — SH(0; ) +6H(0, 0, 3, 2; y) + H(0, 1, 0; ) +6H(1, 2, 3, 2; )

+2H(1, 2,0; ) +2H(1,0,2; y) +6H(1,0,3,2; y) —6H(1, 0; y) ~H(1, 1,0; )] . (E.9)
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Appendix F

The H — ggg NNLO Helicity
Amplitude

coefficients

In this appendix we give all one-loop coefficients AS ), Bg)

A® B&Q), Cc® and Dg), defined in equations 8.32 and 8.33.

and two-loop coefficients

1
AD — {
6yzsizs(l —y — z)

2y —222—2yz—6X; +6 Y, +33ir —2¢% 4+ 11 W, —11Q1+2z—621},

1
B {
@ 6yzs123(1 — y — 2)

—2y+222 —6im+2yz—2W; +2Q, +2y2—2z},

1) _
Aﬁ =
11 11 11 1 z —lzz+lz
-Xi+Y, -Zi+— W, — — + —ir = = 4 3 3 ,
1 1 1 6 1 6 Q1 9 3 —y—7] [1—y—z]2
1 _
Bﬁ =
1 z —%z%—%z?

1 1
—3 Wit 3 Qr—ir (F.1)

+§[1—y"z]+[1—y—z]2’
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F. The H — ggg NNLO Helicity Amplitude
coefficients

@ _ 1 { FA
“ y28123 (1-y—2)

1 55 247 11
+( W1+6 Y1—§X1—6Z1+3—6’L7T+5—4—1—Q1 —H(O z)) z+

5 5 5
9 o o ) 2, (29 _2 -1
<<3X1+3 W1+3H(O,z))z +(6X1 3[’[’1)2)y

5 3,5 2
—2X;2°4+2X; 2 1 1 1 247 55
3 3 5 Yim g Xi—g Zit ot
N y2 +{2 1 I 54+361

41 19 13 5
e W= Qy—— H(0; w-2y
6 Qz 9 (0;2)+ (3 1~ 1) }y+

<§Y1+ Q1—3H(0;Z)+§ W, 5 YI)yQ—Z W,
z 3 22

7o 5 Yy 10, . 5 5 9
—2H(0,2)+§ 2 +{( H(0;2)— - Q1— Zj)z

5 5. 25 B
+<§ Q1—§H(0)2)+ 5 Z1> z}y(l—y—z)

5

3

) (— Z] 23+% Z] 22)

5 41 11
{ yH (0; z)z——yzQ1+ yzW1

(1-y—2)* 36
247 1 1 1 55
4——54—yz+6yzYl—6sz1——yzZ1+—61yz7r TH(0;2)y
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coeflicients
BQ) — 1 {
¢ yzs13
1 Y1y3+ —%Wz—%Q1+%H(0;Z)—%Y1 1Y /2
6 22 z 6 22
1 1 1 1 1 LY +1w,
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+(3 1T @ RO - Wi-g+ p y
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” +{{< g 1(02) =3 21+ @ 3)2
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c
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yzsioz | (1 —y —2)
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coefficients
where:
Y, = H(2,0,y) —H(3,2;y) —H(L;2)H(3;9)
~H(0,1;2) + H(0,2;9) — H(1,0;y) + H(0;y) H(1;2) ,
1
Zr = H(1,0y)+H(1,0;2) + H(0;y) H(0;2) + o 77,
X, = H(@B,2y)+H(L2)H(3;y) —H(0;2)H(2y) ,
W; = H(Zy)+H(12),
Q: = H(0y)+H(02), (F.5)
and:
Fy =
1 1
—%iﬂﬂ(l,O;y)—%iﬂH(O,1;2)—17T2H(0;y)H(1;Z)—gﬂzH(l;Z)H(&y)
49 389 605 55 605
2.0:y)— s H(0,1: 2)— — in H(0; y) — — i 1,0:2)— — sm H(0;
_*%H( !an) 72 (0’ ’Z) 72 wr (O’y) 12 ZWH( ’Oiz) 72 i (07‘2)

—% i7rH(3,2;y)—§7r2H(1;z)H(2;y)—2H(0,3,0; Y H(1;2)
+2H(O,1;z)H(3,2;y)+%WZH(O;y)H(O;z)—%ﬂ2H(O;z)H(2; )
-}1—31H(O,O;y)H(O;z)—2H(0,3,2;y)H(l;z)—2H(1,0;z)H(2,2;y)
—2H(1,1,0;z)H(3;y)—2H(1;z)H(3,0,2,y)+—13—1H(l;z)H(3,3;y)
SH(0,0,9)H(152) - (L) H,30)+ 5 H(0,0,2) H0p)

2 H(05) H(1,0;2) 5 G5~ H(0,0;2) H (%) + = H(1;2) H(2,0;)
—2—;H(1,1;z)H(3;y)+4C4 +4H(1;z)H(3,3,2;y)+%H(O;y)H(l,1;z)
R H(0;2) H(2,0:9)+ 5 H(05) H(12)-2H (1) H(2,1,0,0)

22 11 11
—3 H(;2) H(3,29)+ 5 H(0, 1, 2) H(0; )+ - H(0; 2) H(2, 2 )
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3 67
%mH(O y)H(O z)—gH(l 0; z)+—H(2 29)~ 3 H(1,0:)
21 55 |
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coeflicients
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1 7 2 9,
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coeflicients
Fp =
giﬂ'—-—H(O z)—i—éH(l,l,z)——i—gvrz—IgH(O 2)H(2;y)
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