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Abstract 

Landsliding is the dominant mass wasting process in upland areas where the rate 

of river incision is higher than that of rock weathering of hillslopes. Although 

progressive erosional processes can provide sufficient conditions for slope failure, 

the majority of landslides are induced by earthquakes, rainstorms or a combination 

of these two. Landslides are also one of the most destructive geological 

processes, being the primary cause of damage and fatalities associated with 

severe storms and earthquakes in mountainous regions. On 12th May 2008 the 

magnitude 7.9 Wenchuan earthquake occurred in the Longmen Shan mountain 

range, on the northwest margin of the Sichuan Basin. Landsliding contributed 

greatly to the high death toll of over 70,000 and widespread infrastructural damage 

produced by the earthquake. The event offers an opportunity to both broaden the 

global database of seismically induced landslides and study the processes 

involved in earthquake-triggered landsliding, for a large continental thrust event 

with complex faulting mechanisms and diverse geophysical conditions. To achieve 

this, the following investigation builds upon recent advances in landslide remote 

sensing, to develop automated detection algorithms through which landslides can 

be accurately mapped using a range of satellite data. Using these techniques, a 

first order, regional landslide inventory map of slope failures triggered by the 

Wenchuan earthquake is produced, over an area of 12,000km2 along the main 

rupture zone. The production of this dataset demonstrates the application of 

automated classification techniques for the rapid generation of landslide data, for 

both geomorphological research and hazard management applications. The data 

is used to examine the interaction of fault rupture dynamics, topography and 

geology on landslide failure location, and identify key characteristics of the 

landslide distribution. Findings of the study demonstrate high levels of landslide 

occurrence along the entire mapped length of the rupture zone, and an 

exponential decay in landslide density with distance from the co-seismic surface 

ruptures. This is superimposed over a marked hanging wall effect, along with clear 

geological and topographic controls on landslide occurrence. Through generalised 

linear modelling, peak ground acceleration attenuation patterns, hillslope gradient, 

relief, local elevation and geology are identified as core controls on the location of 

landslides. The results of this research shed light on some increasingly recognised 
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though poorly understood characteristics of seismically induced landslide 

distributions. The dataset produced contributes to the limited global database of 

earthquake-triggered landslide inventories, as well producing a widely applicable 

resource for further study of the Wenchuan earthquake and post-seismic 

landscape evolution. 
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1.1 Context and justification of this thesis 

Landsliding is the dominant mass wasting process in upland areas where the rate 

of river incision is higher than that of rock weathering of hillslopes (Burbank et al. 

1996; Hovius et al. 1997, 2000; Meunier et al. 2008). Landslides are also one of 

the most destructive geological processes, being the primary cause of damage 

and fatalities associated with severe storms and earthquakes in mountainous 

regions (Swiss Re, 2000; Brabb 1993). There is now considerable evidence that 

the impact of landslides is increasing with time, and that in general these effects 

are focussed upon mountainous areas in developing countries (Alexander 2005). 

Data from the International Landslide Centre at Durham University shows by far 

the greatest death tolls affect poor, marginalised parts of society in Asia, with the 

majority of landslide-related deaths are caused by sudden, catastrophic first time 

failures (Petley et al. 2005). 

Although progressive erosional processes can provide sufficient conditions for 

slope failure (Kesley 1988), the majority of landslides are induced by earthquakes 

(e.g., Oldham, 1899; Keefer, 1984, 1994; Harp and Jibson, 1996), rainstorms 

(Iverson, 2000), or a combination of these two (Dadson et al., 2004). With the 

advent and development of GIS technologies, the last 30 years have seen 

increasing interest in the study of event associated landslide distributions, which 

affect large areas and involve high numbers of slope failures (e.g. Keefer 1984; 

Harp & Jibson 1996;Galli 2008; Owen 2008; Sato 2007; Khazai & Sitar 2004). 

Interrogation of landslide inventory databases has led to significant advancements 

in understanding the processes and mechanisms governing the spatial distribution 

of landslides. Despite this, the global database available for analysing the 

distributions and characteristics of earthquake induced landslides remains small, 

with complete or near-complete inventories for less than 0.1% of events that have 

occurred worldwide in the past few decades (Keefer 2009). As such, the greatest 

research need for this field is complete mapping of landslides triggered by many 

more earthquake events (Keefer 2009). In addition, many elements of earthquake-

landslide systems remain poorly understood and constrained. As such, landsliding 

features as a major element of uncertainty for seismic hazard modelling in 

mountainous regions (e.g. Paterson et al. 2008). 
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On 12th May 2008, the magnitude 7.9 Wenchuan earthquake occurred along the 

northeast striking fault system of the Longmen Shan mountain range, on the 

northwest margin of the Sichuan Basin, southwest China. The earthquake resulted 

in over 70,000 fatalities, with direct losses to buildings and infrastructure of over 

US$150 billion (Paterson et al., 2008) making it China‟s most damaging seismic 

event in over 30 years (Yuan et al. 2008). The Wenchuan earthquake also 

represents the largest continent thrust earthquake recorded to date (Hubbard & 

Shaw 2009), and the majority of the earthquake impact zone is located in the high, 

steep topography of the Longmen Shan, where large numbers of landslides were 

triggered. Around 35% of earthquake-related deaths and much of the economic 

losses sustained in the event have been attributed the direct and indirect impact of 

these slope failures (Wang et al., 2009; Paterson et al. 2008). As such, this event 

offers a considerable opportunity to both broaden the global database of 

earthquake induced landslides and build knowledge of a range of components of 

seismically triggered landslide systems.  

1.2 Research aims and objectives 

The principal aim of this research is to improve the understanding of controls on 

the distribution of earthquake-triggered landslides, through an examination of the 

landslide distribution triggered by the 2008 Wenchuan earthquake. The detailed 

objectives of the research are: 

1. To develop semi-automated image classification algorithms in order to map 

landslides efficiently using satellite imagery over large areas of terrain 

2. To produce an inventory map of landslides triggered by the Wenchuan 

earthquake 

3. To examine spatial relationships between landslide occurrence and 

geophysical parameters 

1.3 Organisation of the thesis 

The structure of this thesis reflects a twelve month process of investigation of a 

contemporary natural disaster, in the immediate wake the event itself. This 

incorporates building an understanding of the study region, event, and the various 
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geophysical systems involved in earthquake-triggered landsliding, along with the 

generation and statistical interrogation of large geospatial databases. 

Chapter 2 introduces the physical processes involved in landsliding, along with key 

concepts and definitions for this study. 

Chapter 3 provides a context for this investigation through a review of key 

literature relating to the study of large scale landslide events. 

Chapter 4 describes the study area and Wenchuan earthquake event. The 

tectonic, geological, topographic, hydrological and climatic conditions of the 

Longmen Shan are reviewed. Based on literature published up to the time of 

writing, the structural processes and mechanics of the Wenchuan earthquake are 

discussed, along with the findings of preliminary investigations into the landslide 

distribution. 

Chapter 5 details the production of the landslide inventory, describing the process 

from initial acquisition of satellite imagery, through the development of semi-

automated classification algorithms for landslide mapping, to compilation and 

evaluation of the final dataset. 

Chapter 6 presents the results generated from the full extent of landslide mapping, 

relative to seismological, topographic and geological characteristics of the event 

and study area. 

Chapter 7 explores the relative influence of different geophysical parameters on 

landslide occurrence through generalised linear modelling, which is then applied to 

estimate landslide occurrence across the full rupture zone of the earthquake. 

Chapter 8 provides a further analysis and discussion of the key landslide 

distribution characteristics, relative to findings from other earthquake-landslide 

investigations. Broader implications and applications of these findings are then 

discussed in relation to the fields of hazard management and the 

geomorphological study of seismic landslide events. 

 Chapter 9 provides a synthesis of research findings and conclusions. 
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2.1 Landslide Definition 

The term „landslide‟ includes a broad range of  ground movement types, such as 

rock falls, shallow translational sides and even debris flows. Due to the great 

diversity in type and characteristics, many different definitions seeking to 

unambiguously encapsulate the concept exist. As a general definition, that of 

Varnes (1958) is often cited: 

“The term landslide denotes downward and outward movement of slopeforming 

materials composed of natural rock, soils, artificial fills, or combination of these 

materials”. 

Additionally, the terms slope movement (Varnes 1978) and mass movement 

(Brunsden 1984) are also often used interchangeably to refer generally to 

landslide processes. Due to the broad nature of landslide definitions, the 

classification systems of Varnes (1978) and Hutchison (1968) are used to 

categorise different landslide types; though landslide types are not analysed as 

part of this investigation due to methodological constraints. 

2.2 Landslide Mechanics 

The stability of hillslopes can be understood in terms of the balance of forces 

resisting and driving downslope movement. This is often expressed in terms of a 

factor of safety (F) where: 

F =  sum of resisting forces  sum of driving forces 

 

Thus, where F<1, the driving forces exceed resisting forces, and the slope will fail. 

Where F > 1 the slope is more likely to be stable. However, as F approaches 1 the 

probability of slope failure increases, so that most failures in natural hillslopes 

occur between F = 1 and F = 1.3 (Selby 2005). The types of forces involved in 

landsliding can be conceptualised simply using the infinite slope model (Skempton 

and De Lory 1957). The model assumes that a mobile slice of material sits on a 

slope of constant angle and infinite extent, thereby dispensing with the need to 

consider side and end effects (Selby 2005). Gravitational force acts vertically on 

the block, pushing it down onto the slope surface. This produces two key stress 

vectors. Shear stress acts in the downslope direction, while normal stress acts 
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perpendicular to the direction of slope, generating shear strength at the slip plane 

which resists downslope movement. Slope failures occur where conditions act to 

change the balance of these stress and strength properties in the slope, 

generating high shear stress and/or low shear strength. Most notably, these 

situations occur during seismic shaking and rainfall events. 

 

2.2.1 Hydrological Triggering of landslides 

Rainfall induced landslides rank among the most devastating natural disasters, 

causing billions of dollars worth of property damage and thousands of deaths 

every year (Hong et al. 2007). Hydrological triggering of landslides occurs through 

various mechanisms as the increasing water content in hillslope materials acts to 

produce conditions detrimental to slope stability. Firstly, increases in pore-water 

pressures at potential slip surfaces create a buoyancy effect which counteracts the 

normal stress and shear strength holding the material on the hillside (Selby 2005). 

In addition, decreases in the level of suction (negative pore pressure) due to 

capillary stresses, reducing the strength of many soils. Increasing the water 

content also decreases the aggregation of soils, reducing their frictional strength 

(Yee & Harr 1977). The drag of water particles moving through hillslope materials 

(seepage pressure) can also act to increase forces in the downslope direction 

(Teraghi & Peck 1948). In addition to internal processes within the hillslope, 

undercutting at the base of slopes by river channel erosion acts to destabilise 

slopes by removing mass at the toe. This mass would otherwise act to resist the 

downslope movement of the hillslope above (Selby 2005). Hydrological triggering 

conditions are mainly brought about by heavy rainfall events, though rapid snow or 

ice melt can have similar effects on hillslopes downstream (e.g. Cardinali et al. 

2000).  

2.2.2 Seismic triggering of landslides 

Seismic triggering of landslides has been observed during earthquakes greater 

than M = 4.0 (Keefer 1984). Meunier et al. (2008) identify two ways in which 

earthquakes affect the stability of hillslopes. Firstly, seismic accelerations may 

cause a loss of cohesion and/or reduction in the frictional strength of substrate, 

through rockmass shattering or liquefaction (Meunier et al. 2008; Brune 2001). 
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Secondly, seismic accelerations cause short-lived stresses which may exceed the 

cohesive strength of hillslope materials (Newmark 1965). Either of these effects or 

a combination of the two may result in slope failure. In mountainous regions the 

impact of seismic acceleration is intensified as vertically indicent seismic waves 

are diffracted by surface topography causing ground accelerations to be amplified 

towards ridge crests (e.g., Davis and West, 1973; Geli et al., 1988; Bouchon and 

Baker, 1996; Meunier et al. 2008). 

2.3 Regional scale landslide events 

An important characteristic shared by both hydrological and seismic triggers is 

their potential for large spatial impact, producing large numbers of landslides 

distributed over regional scales. As such these events require an analysis 

approach which can both capture their regionally distributed impact, as well as 

providing a means for analysing controls upon both the occurrence and 

characteristics of large numbers of slope failures. The most commonly applied 

technique to this end is the use of landslide inventory maps, as discussed in the 

following section. 
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The following section provides a preliminary review of key work with landslide 

inventories relevant to this investigation. The role of landslide inventories in 

regional landslide investigations is first discussed, before exploring techniques for 

landslide inventory data generation, analysis, and key findings from previous 

investigations into seismically triggered landslide events. 
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3.1  Introduction to landslide Inventories 

A landslide inventory is a database containing information about landslides 

triggered in a particular event by seismic and/or aseismic triggering mechanisms. 

Inventories most often express the spatial distribution of the landslides through 

mapping, as well as attribute information fields on individual landslide features. 

The wealth of information they contain makes landslide inventories a valuable 

resource in both the geomorphological investigation of landslide events and 

hazard assessment in landslide prone regions. As such, compilation and analysis 

of a landslide inventory forms the basis of this investigation. This section provides 

an introduction to landslide inventories, their use and analysis. 

Early landslide inventories took the form of large datasheets and detailed 

geomorphological maps compiled through a combination of field surveys, 

interpretation of aerial images and examination of historical archives (e.g. Carrara 

and Merenda 1976). However, significant technological advancements have 

enabled the integration of remotely sensed satellite imagery and digital elevation 

models, allowing for greater spatial coverage and resolution (e.g. Fruneau et al. 

1996; Hervas et al. 2003; McKean and Roering 2004; Metternicht et al. 2005; 

Farina et al. 2006). The development of versatile GIS packages - such as ESRI‟s 

ArcGIS/Info - capable of encapsulating large attribute databases, has allowed for 

information collected and derived in digital databases to be directly integrated with 

landslide mapping (Hervas and Bobrowsky 2009).  

The broad range and sample size of information produced by such databases 

affords landslide inventories a variety of potential applications, summarised by 

Galli et al. (2009): 

1. Showing the location and type of landslides in a region (e.g. Antonini et al., 

1993; Cardinali et al., 2001 & Antonini et al. 2002) 

2. Examining the effects of single landslide triggering events such as 

earthquakes (e.g. Harp and Jibson, 1995; Owen et al., 2008), intense 

rainfall events (e.g. Bucknam et al., 2001), or rapid snow melts (e.g. 

Cardinali et al., 2000). 
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3. Determining the frequency and area (or volume) statistics of slope failures 

(e.g. Malamud et al., 2004; Hovius et al., 2000) 

4. Providing information for assessing landslide hazards and susceptibility 

(e.g. Guzzetti et al., 2006; Chung and Fabbri, 2005) 

This investigation seeks to utilise landslide inventory analysis for the study of an 

earthquake-triggered landslide event. However, understanding the natural hazard 

posed by landslides is inseparably linked to the other applications noted above. 

For example, frequency/area statistics of a landslide inventory can be used to give 

an idea of how complete the sample of landslides is, and knowledge of the 

location and type of landslides is used to gauge proximity to vulnerable 

populations and the damage potential of failures. Today landslide inventories play 

a key role in hazard assessments based on the principle of precedence: 

“landslides will occur where the geo-environmental conditions that led to 

landsliding in the past will again occur in the future” (Hervas and Bobrowsky 

2009:324). Hence, identifying the spatial (and temporal) distribution of conditioning 

and triggering factors associated with landslide occurrence, is a central tool in 

attempts to determine the distribution and likelihood of future failures (e.g. Godt et 

al. 2009). In order to exploit the findings of past events to produce useful 

predictions of future landsliding, well constrained, quantitative relationships 

between landslide occurrence and relevant geo-environmental variables must be 

attained. Variables used in landslide inventory analysis vary depending on the 

nature of the event, and data availability. For the study of seismically and/or 

hydrologically triggered events, an ideal list of available data fields includes the 

following: 

1. Lithology / Geology 

2. Slope gradient 

3. Slope curvature 

4. Slope aspect 

5. Elevation 

6. Local slope elevation or relief 



Chapter 3: Landslide inventories: data acquisition and analysis  

12 
 

7. Distance from the epicentre 

8. Distance from roads 

9. Distance from river channels 

10. Upslope contributing area 

11. Pre-event normalised differential vegetation index (NDVI, Paruelo et al. 

2004) 

12. Peak ground acceleration 

13. Distance from the co-seismic fault 

14. Spatial and temporally distributed precipitation fields 

Often all this information is not realistically available due to methodological 

constraints, and so most landslide inventories only include a subset of the required 

data (Hervas & Bobrowsky 2009). The application of landslide inventories may be 

limited by the spatial coverage and resolution of the data, as well as the variety of 

cartographic errors associated with the data acquisition (Malamud et al., 2004). 

Unless a multi-temporal inventory is produced (e.g. Galli et al. 2008, using a time 

series of aerial images), a landslide inventory will also lack any temporal 

component. As such, single event based inventories provide a temporal snap-shot 

of the hillslope system, within the constraints and limitations of which analysis 

must be undertaken. This lack of temporal data is a particularly evident limitation 

when studying post-seismic landslides which may continue to occur for up to 

decades following a major earthquake (Dadson et al., 2004), and other hillslope 

systems where temporal components of failure are involved (e.g. Petley et al., 

2008). Despite these limitations, numerous studies analysing available attributes in 

event based landslide inventories have produced valuable contributions towards 

the understanding of regional controls on landslide occurrence.  

3.2  Use of remote sensing in landslide inventory mapping 

Before data can be made available for analysis, the need for regional scale, 

digitised landslide maps affords a major challenge for any landslide inventory 
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based investigation. The following section examines the data and techniques 

available to acquire this type of data on the scale of this investigation. 

Traditional mapping for landslide inventories has involved the use of air 

photographs to identify and delineate landslides (e.g. Cardinali 1990). The high 

level of detail available from these images allows for a cognitive mapping process 

through the recognition of characteristic landslide features such as tone, contrast, 

size, shape, shadow, position and direction (Liu et al. 2002). Detailed parameters 

for air photo interpretation of landslides are given in Table 3.1. However, the use 

of aerial photos has several disadvantages (adapted from Borghuis et al. 2007): 

1. Aerial coverage is often limited, with several images necessary to cover 

large catchments. 

2. Manual delineation of landslides is both time and labour intensive. For 

example, one study cited by Liu & Woing (1999) required 100 days to 

identify, delineate and digitise 4000 landslides into a GIS database. 

3. Particularly in sub-tropical mountain areas (such as of interest in this study) 

clouds unavoidably obscure the ground surface. 

4. Imagery is expensive to obtain with irregular recurrence intervals. 
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Table 3.1: Parameters for air photo interpretation of landslides (After Nichol & 
Wong, 2005; Liu et al, 2002) 

  

  
  

Parameter 

  
Likely characteristics 

  
Operator 

  

1 

  
Colour 
  

Brown, dark brown, greenish brown, light 
brown 
  

Dependent on 
lithology/geology and may 
vary spatially within an image 

2 

  
Shape Lenticular, spoon-like, tree-like pattern, 

rectangular or triangular 
Inherent 

3 

  
Shadow Indicates positions of valleys and ridges Inherent 

4 

  
Position Near ridge, cut-off slope of riverbank, 

road cut 
Dependent of landslide 
triggering mechanism 

5 

  
Direction Long axis along direction of gravity Dependent on landslide 

type/character 
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Given that the Wenchuan earthquake has a potential impact zone of over 75,000 

km2 (based on the analysis of Keefer 1984) in an area of sub-tropical monsoon 

activity and high levels of cloud cover, these limitations significantly reduce the 

potential of such methods to produce a representative data sample. 

Satellite images offer several advantages over aerial photographs in their broader 

spatial coverage, regular recurrence interval increasing the potential of capturing 

cloud free images, and the potential availability of additional spectral information. 

Indeed it is suggested that techniques using pan-sharpened IKONOS imagery are 

able to obtain a data quality comparable to 1:10,000 scale aerial photographs 

(Nichols & Wong, 2005). The availability of satellite images in digital format holds 

the potential to significantly reduce the work load involved in mapping large 

numbers of landslides, through automated classification techniques. While few 

investigations have tested satellite based methods for landslide detection, recent 

studies are showing increasingly promising results. 

A key limitation of past studies appears to be the spatial resolution of satellite 

imagery. Using 15m pan-sharpened Landsat ETM+, Petley et al. (2002) found that 

image classification failed to detect around 75% of landslides identified in ground 

mapping. Marcelino et al. (2003) also experienced difficulty identifying landslides 

only a few tens of meters wide using 20m SPOT and 15m Landsat ETM+ imagery. 

Here the low spatial resolution, low spectral resolution, shadowed slopes and 

rugged terrain are reportedly key limitations in feature classification (Petley et al., 

2002). However, Dadson et al. (2004) was able to identify ~20,000 landslides 

using 20m SPOT imagery following the Chi-Chi earthquake. In agreement with the 

finding of Petley et al. (2002), Dadson et al. (2004) state that landslides over 3 x 3 

pixels (3600m2) can be mapped accurately. The omission of landslides smaller 

than this however, may have caused a significant under-estimation of the area 

disturbed by landsliding. Despite these promising results it is assumed, from the 

sparse methodology presented, that the mapping method for this study still 

primarily involved manual delineation. 

More recently, Nichol and Wong (2005) have tested and validated a method in 

which 70% of landslides are mapped through automated change detection of 20m 

resolution SPOT 5 imagery, with the ability to resolve landslides to a width of 7m.  
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However, this method relies heavily on the fact that the areas studied undergo little 

seasonal anthropogenic disturbance (i.e. cultivation) so that temporal change in 

the image is mostly limited to landslides and subtle natural variations. The 

availability of the required multi-temporal „before‟ and „after‟ imagery is also often 

limited in such studies either by acquisition (cloud or a lack of available imagery 

per se) or financial constraints (considering a single SPOT image is priced at 

£2700). 

Borghuis et al. (2007) appears to provide the most feasible solution to date. Here a 

combination of automated – supervised and unsupervised – and manual 

classification techniques, using single, 2.5m (super mode) SPOT 5 images are 

tested and validated. Findings suggest that, of the automated methods, 

unsupervised classification is capable of producing the highest aerial concordance 

when compared to manual mapping. This was achieved through the application of 

a 32 class, maximum likelihood unsupervised classification. Then, in order to filter 

out erroneously classified farmland, roads and houses (spectrally similar in SPOT 

5 image bands) all slopes of less that 28o were removed from the classification. 

This fits with both local knowledge of slope thresholds for landsliding, and local 

planning restrictions prohibiting development on slopes steeper than 28o. 

However, errors of commission - attributed to roads, riverbeds and bare farmland - 

are still present in the classification due to the relatively low resolution of the slope 

model. For instance, roads smaller than 10m or areas close to steep slopes may 

be resolved at steeper-than-reality gradients by the 40m DEM. In addition, areas 

of steep slopes may be more broadly under-predicted, as is the general 

characteristic of DEMs. The unsupervised classification is also shown to produce 

significantly smaller landslide areas than the manual technique (Borghuis et al., 

2007). Here differential pixel values within single landslide features are shown to 

cause some individual landslides to be classified as multiple features. However, 

the unsupervised method is also shown to be more suitable in resolving small 

landslides (<400m2) which could not be identified by eye. 

Despite initial inadequacies in the data produced by satellite imagery when 

compared to aerial photographs, recent investigations demonstrate that the 

potential application of satellite imagery in landslide inventory mapping has greatly 

increased. Studies by Nichol and Wong (2005), Dadson et al. (2004) and Borghuis 



Chapter 3: Landslide inventories: data acquisition and analysis  

17 
 

(2007) demonstrate that a combination of manual and automated classification 

techniques can now produce useful data through which landslide distributions can 

be explored. Limitations of resolution and errors of commission and omission must 

be considered in any analysis of the output. 

3.3  Techniques for landslide inventory data analysis 

In order to explore relationships between earthquake-triggered landsliding and 

geo-environmental variables, both qualitative and quantitative analysis techniques 

may be utilised. Qualitative, expert knowledge based, heuristic methods are useful 

in providing rapid hazard assessment. However, information attained is highly 

subjective, it is difficult to draw comparisons between studies by different experts 

(Barredo et al., 2000) and empirically constrained relationships cannot be attained 

(Hervas & Bobrowsky 2009). In order to quantitatively explore relationships, 

statistical analysis of landslide inventories is commonly employed in the form of 

bivariate and multivariate analysis techniques. A range of statistical tools are used 

including bivariate regression (e.g. Keefer 2000), multiple regression (e.g. Yin & 

Yan 1988; Carrara 1983; Garcia-Rodriguez et al. 2008), principal component 

analysis (PCA; e.g. Baeza & Corominas 2001), discriminant analysis (e.g. Carrara 

1983) and susceptibility indexing (e.g. Parise and Jibson 2000). Each of these 

approaches has benefits, depending on the particular objectives of investigation. 

For example, bivariate regression analysis (e.g. Keefer 2000) allows for the 

independent consideration of geo-environmental variables, without the need for a 

priori assumptions of models or relationships (e.g. Keefer 2000; Khazai & Sitar 

2003; Parise and Jibson 2000). Multiple regression and PCA approaches allow for 

the relative influence of numerous variables to be gauged, whilst also accounting 

for cross-correlation between variables (Hervas & Bobrowsky 2009). Susceptibility 

indexing has been used to determine the relative influence of different geological 

units, where geological data are unsuitable for regression analysis (e.g. Parise and 

Jibson 2000; Wang et al. 2007). As, prior to the Wenchuan earthquake, no 

published investigations had examined controls on earthquake-triggered 

landsliding in the Sichuan region, little a priori knowledge of relationships or 

models exists. Therefore the initial, primary focus of this study and the following 

review is upon bivariate analysis techniques through which the influence of 

different geo-environmental factors can be independently examined. 
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3.4  Previous seismic landslide inventory investigations 

Results from statistical analysis of inventories from earthquake events have shown 

general correlation of landslide occurrence with 3 main factors: slope gradient, 

distance from the earthquake source and surface geology (e.g. Keefer, 1984, 

1994, 2000; Wilson & Keefer, 1985; Parise & Jibson 2000). The total number, area 

and volume of landslides triggered by an earthquake is a function of earthquake 

magnitude (Keefer 1994; Malamud et al. 2004), with minimum magnitude 

thresholds for landslide occurrence constrained to around M=4.0 (Keefer, 1984; 

Rodriguez et al., 1999). 

Within a given event, the spatially distributed concentration of landslides can be 

expressed as either a function of distance from the epicentre or fault rupture (e.g. 

Keefer 2000, Meunier et al. 2007), or more precisely a function of ground shaking 

intensity (quantified as peak ground acceleration during the earthquake, or Arias 

(1970) intensity). Analysis of this factor is carried out through creating distance or 

intensity bins over the full range of the earthquake impact zone, within which 

landslide density is statistically examined. Meunier et al. (2007) have shown that 

landslide density (percentage area affected by landslides) from the 1999 Chi-Chi 

earthquake (Taiwan) can be described by an expression similar to the classical 

law of seismic wave attenuation. However, the 1994 Northridge and 1993 

Finisterre earthquakes have a non-geometric component of landslide density, 

which is related to peak ground acceleration via an exponential function (Meunier 

et al., 2007). As such, landslide density for all earthquakes studied demonstrates 

decay with distance from the seismic source. In addition, for earthquakes on 

reverse thrust faults, landslide densities are greater on the fault hanging walls than 

footwalls, as shown in Figure 3.1. This is in concordance with higher peak ground 

accelerations produced in these areas, due to the geometry of the fault plane 

(Abrahamson and Somerville 1996). While the precise nature of the relationship 

between landsliding and shaking intensity is not firmly constrained, these findings 

and others (e.g. Keefer 2000; Wang et al. 2007; Meunier et al. 2007) show that 

landslide density is positively correlated with, and can provide a marker for, the 

regional pattern of peak ground acceleration. 
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Despite evidence for broad scale correlations between landslide density and 

ground shaking, Parise & Jibson (2000) have shown that in areas of highest peak 

ground motion following the 1994 Northridge earthquake, landslide density shows 

little meaningful correlation to shaking intensity (Figure 3.2). They suggested that 

in areas of highest intensity, all motion intensity thresholds for landslide triggering 

have been surpassed. Therefore ground motion is no longer the dominant control 

on landslide occurrence. By comparing the percentage landslide coverage of 

different geological units, over a 160km2 area of highest shaking intensities, a 

landslide susceptibility index for 13 geological units was created (Figure 3.3). This 

demonstrates the relative influence of rock type upon the landslide distribution, 

particularly evident in areas where differential ground motion can be virtually 

discounted. In addition, Jibson et al. (1994) has shown how landslide type is 

strongly controlled by geology through analysis of the 1991 Racha Earthquake, 

Republic of Georgia. For example, rockfalls in this event are mainly borne of 

Mesozoic limestone and Jurassic volcanic rocks, and earth slides are borne of 

plastically deforming claystone. Such findings have a useful application to both 

understanding geologic controls on landsliding and also zonation of landslide 

susceptibility for hazard assessment.  

While these studies into geological influence present useful tools for both 

understanding hillslope evolution and undertaking risk assessment, the findings 

are specific to the particular site geological contexts within which they are set. This 

is highlighted in an example from Khazai and Sitar (2004) showing that the Chi-Chi 

earthquake produced 23% of landslides in Quaternary alluvium, while the 

comparable geological unit in the Northridge (Parise & Jibson 2000) and Loma 

Prieta (Keefer 2000) events only produced 3% and 4% of landslides respectively. 

This difference is thought to be an expression of Taiwan‟s young terrain with 

rapidly aggrading alluvial deposits (Khazai & Sitar 2004). Percentage areal 

exposures of Quaternary alluvium for Chi-Chi, Loma Prieta and Northridge are 

~40%, 7.5% and 44% respectively for the areas compared by Khazai and Sitar 

(2004). However, Khazai & Sitar‟s (2004) analysis is not normalised to account for 

differential areal exposure or topographic features of different geologies. Despite 

this, considering the similar geological unit sizes but very different landslide 
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frequencies for Northridge and Chi-Chi, it is clear that the influence of comparable 

geologies in different regions should be treated as case specific. 

The third major control upon landslide occurrence is slope geometry, in particular 

slope angle. This factor was also examined in the Northridge, Loma Prieta and 

Chi-Chi case studies mentioned above. Histograms of landslide frequency plotted 

by slope angle for the Loma Prieta event suggest that most failures occurred on 

slopes of around 25o (Keefer, 2000). However, the modal slope value for 

Northridge is 35-40o (Parise & Jibson 2000), while Chi-Chi has a modal slope of 

45o (Khazai & Sitar 2004). The differential role of slope geometry can be 

understood in terms of the geometry of the landscape as whole; those regions with 

steeper distributions of landslide-affected slopes are landscapes with steeper 

slopes geometries in general. In addition, other indices of slope geometry such as 

slope curvature and roughness have been shown to influence landslide 

occurrence (e.g. Lee et al. 2008). 

Despite the significance of geophysical factors - associated with ground motion, 

geology and topography – human factors and climatic conditions have also been 

identified as influencing landslide occurrence. Keefer (1984), Owen et al. (1996), 

and Barnard et al. (2001) have suggested that human modification of the 

landscape through road construction is one of the most fundamental factors in the 

initiation of landsliding in tectonically active regions. This is supported by evidence 

from Owen et al. (2008) showing that landsliding triggered by the 8th October 2005 

Kashmir earthquake was most common along roads traversing slope gradients in 

excess of 50o. Probably due to constraints in quantitatively coding information on 

anthropogenic landscape modification, little attempt has yet been made to 

examine the relative influence of this compared to other causal factors.  

Another factor often difficult to resolve within seismic landslide inventory 

investigations is rainfall and its temporally dependent control on post-seismic 

landslide triggering. While the Chi-Chi earthquake-triggered widespread co-

seismic failures, Lin et al. (2008) have shown that in the 5 years following the 

earthquake the catchment wide landslide rate remained 13 times higher than the 

pre-earthquake rate, and with an average landslide size even larger than for co-

seismic failures. Propensity of hillslopes to fail during meteorological triggering 
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events (e.g. Typhoon Mindulle) was greatly increased in the post-earthquake 

period. Lin‟s analysis is clear concerning the implications of this: “the true impact 

of the earthquake is reflected in post-seismic landslide statistics” (2008: 1361). 

This poses a dilemma for this investigation and others which seek to assess the 

impact of earthquake-triggered landslides within a 1 year timescale following the 

event. Landslide inventories complied during the early stages after an earthquake 

must be considered within their temporally limited context. However, Lin et al. 

(2008) also noted that post-seismic landsliding in Taiwan closely tracked the 

distribution of co-seismic landslides. Thus, inventory compilation at this stage 

offers a potentially useful tool in producing first order estimates of future 

landsliding during the post-earthquake period. 

While it is useful to study the influence of factors in isolation, several investigations 

have demonstrated the importance of interconnectivity and cross-correlation 

between variables. Wang et al. (2007) have shown how the steepness of slopes 

within which landslides occur is controlled by surface geology. The role of 

landscape geometry in the attenuation and amplification of seismic waves has also 

been demonstrated (e.g. Sepulveda et al., 2005; Meunier et al., 2008). By 

undertaking multivariate analysis techniques, both cross-correlation between 

geophysical variables, and their relative influence on landslide occurrence can be 

examined (e.g. Carrara 1983; Santacana et al. 2003). Through this analysis, 

improved conceptual, statistical and deterministic models describing the 

multivariate nature of landslide occurrence may be achieved.  
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Figure 3.1: Landslide density (percentage of total area affected by landsliding) plotted with dis-
tance from the  projected surface break of the seismogenic fault for the Chi-Chi, Finisterre, and 
Northridge earthquakes. Topographic profiles across the epicentre, perpendicular to the fault are 
shown in grey. (Meunier & Hovius 2007). Note the decay in landslide density with distance from 
the fault, and marked hanging wall and footwall effects for the Finisterre and Northridge earth-
quakes. 
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Figure 3.2:  Relationship between landslide concentration (%) and ground shaking intensity (Arias 
intensity) for the Northridge earthquake, showing little correlation due to the overriding influence of 
variable geological susceptibility to landsliding (Parise & Jibson, 2000). 

Figure 3.3:  Landslide Susceptibility index of geological units for the Northridge earthquake 
(Parise & Jibson, 2000). 
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3.5 Chapter summary 

This chapter has identified the core tools required to carry out this investigation, in 

terms of data acquisition through semi-automated landslide mapping, and dataset 

interrogation through bivariate and multivariate analysis of landslide occurrence 

and geo-physical variables. Key relationships with factors controlling the spatial 

distribution of seismically induced landslides have been identified. This 

demonstrates that, where possible, landsliding should be analysed relative to: 

seismological, topographic, geological and hydrological parameters, as well as 

features of human development within the landscape. However, it is also apparent 

that many datasets required for this analysis are commonly unavailable. As such, 

the following section provides a detailed geophysical background to the Wenchuan 

earthquake, which affords a basis for analysis of the landslide distribution. 
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________________________ 

Chapter 4 

Geophysical background to the 

Wenchuan earthquake 

________________________ 

 

The following chapter describes the study area and Wenchuan earthquake event. 

The tectonic, geological, topographic, hydrological and climatic conditions of the 

Longmen Shan are reviewed, based on the published literature. The structural 

processes, mechanics and characteristics of the Wenchuan earthquake are then 

described, followed by the findings of preliminary investigations into the landslide 

distribution. Due to the contemporary nature of this event, large amounts of 

literature were published throughout 2009, and following the completion of this 

work. Therefore the majority of this review is limited pragmatically to information 

available up to the time of writing (June 2009); though some more recent works of 

vital importance, published towards the end of the investigation period, are also 

referenced. 
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4.1 Tectonics and geology of the Longmen Shan 

The Longmen Shan region forms a boundary area between the high Tibetan 

Plateau and the low topography of the Sichuan Basin. However, many of the 

region‟s topographic, geological and seismic characteristics result from its situation 

within the continental scale tectonics of the region. The following section describes 

the tectonic and geological setting of the Longmen Shan, beginning at a broad 

continental scale, before examining the Longmen Shan Thrust Belt system, its 

tectonic structures and geological units.  

4.1.1 The India-Asia collision 

In order to understand the formation, active tectonics and seismicity of the 

Longmen Shan region, a broader view of the regional tectonic setting is required. 

This begins with the collision of the Indian subcontinent and mainland Asia. 

Around the beginning of the Cenozoic era (~66Ma) the Indian subcontinent began 

to collide with and thrust beneath the Eurasian Plate (Argand, 1928). Since this 

time India has continued to move northwards relative to the more stable Eurasia 

by ~22o latitude (2420km) while rotating clockwise by ~21o (Dewey et al. 1988), as 

shown in Figure 4.1. A combination of crustal thickening, climatic feedbacks and 

isostatic rebound produced by this process has created the high topography of the 

Himalaya and Tibetan Plateau (Dewey et al., 1988). 

The main components of the collision process can be summarised in terms 

of 3 temporal phases (Dewey et al., 1988). The first, 45-30Ma, is characterised by 

1000km of convergence along the continental boundary at an average rate of 

66mm a-1. During this regime of almost pure thrusting, the Tibetan crust 

experienced north to south shortening and doubled to a thickness of around 65km. 

From 30-5Ma crustal shortening continued but was accompanied by little uplift and 

thickening. Dewey et al. (1988) suggested that the most recent phase of major 

surface uplift (~2km) has occurred from 5Ma to present day. However, more 

recent investigations suggests that the surface of the Tibetan Plateau may have 

been in excess of 4km since 35 ± 5Ma (Rowley & Currie 2006). During the second 

and third phases, lateral displacement of Tibet increasingly took place; a process 

which continues and is  
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manifested in both active tectonics and faulting today (e.g. Dewey et al., 1988). 

While the dominant mechanism of Tibet‟s eastward displacement is disputed, the 

process has been shown to occur via a combination of left lateral extrusion and 

crustal block rotation (Armijo et al., 1986, Armijo et al., 1989, Avouac and 

Tapponnier, 1993, England and Molnar, 1990). The net result of this process is 

eastward movement of the upper crust of the Tibetan Plateau relative to Eurasia at 

rates of ~15-20mma-1 (Zhang et al 2004), while the Indian subcontinent moves 

northward at ~50mma-1 relative to Eurasia (Burchfiel et al., 2008) as shown in 

Figure 4.2. 
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Figure 4.1: Stages of the Indo-Asia Collision. (http://www.fas.org/irp/imint/docs/rst/Sect2/

India.jpg [last accessed 06/05/09] 

Figure 4.2: GPS tectonic surface velocities in and around the Tibetan Plateau. (Zhang et al 

2004). Note large components of eastward displacement. 
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4.1.2 Development of the Longmen Shan 

At its eastern margin the crust of the Tibetan Plateau meets the strong, stable 

geology of the Yangtze Craton that underlies the Sichuan Basin (Lebedev and 

Nolet, 2003). Here the high topography of the Longmen Shan thrust belt occurs, 

adjacent to the Sichuan Basin. It is characterised by elevations of up to 7500m 

and topographic relief of 5000m within distances of 50km (Densmore et al., 2007; 

as shown in Figures 4.3 and 4.4). The process by which the topography is 

produced and maintained forms the topic of a contentious debate between two 

endmember models (Hubbard and Shaw 2009): (1) crustal faulting and shortening, 

with large amounts of displacement rooted in the lithosphere, causing uplift 

(Tapponnier et al. 2001); lower crustal flow, impeded by the Yangtze Craton, 

which inflates the crust to the north and east of the Himalayas (Clark and Royden, 

2000, Clark et al., 2006; Burchfiel et al. 2003; Bird 1991). The modern high 

topography of the Longmen Shan is likely to have formed between 5 and 12 Ma 

BP, during the late Cenozoic (Kirby et al., 2002). In addition, this is the steepest 

margin of the Tibetan Plateau, with deeply incised river valleys, bedrock river 

channels and local fluvial relief of up to 3000m (Densmore et al. 2007). The rapid 

river incision apparent in the region appears to have initiated between 8 and 15 

Ma BP (Clark et al., 2005, Ouimet, 2007). 

While the India-Asia collision now plays a dominant role in driving the active uplift 

of the Longmen Shan, the present mountain range shares the location of a 

Mesozoic collision zone which formed during the Late Triassic Indosinian Orogeny 

(230-200Ma) and Late Cretaceous (150-70Ma). The margin originally developed 

during the closure of the Paleo-Tethys Ocean and collision of the Qiangtang, North 

China-Kunlun-Qaidam and South China blocks. This major thrust zone was then 

reactivated during the India-Asia collision (e.g. (Avouac and Tapponnier, 1993, Xu 

and Kamp, 2000; Li et al 2003; Chen & Wilson 1994). 

The Cenozoic elevation driven intensification of the East Asian Monsoon system 

(Zhisheng et al., 2001) has undoubtedly influenced the topographic character of 

the Longmen Shan, in a similar fashion to its influence upon the Himalayan belt 

(e.g. Molnar and England 1990). Enhanced rates of denudation produced by 

increasing levels of precipitation at the Plateau edge have brought about deeper 



Chapter 4: Geophysical background to the Wenchuan earthquake  

30 
 

valleys and steeper topographic gradients. The resulting isostatic compensation 

from this process in turn allows higher maximum elevation to develop, contributing 

to the extremely high relief of the region. 
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Figure 4.3: Tectonic map of Longmen Shan and Western Sichuan Basin. Topography is taken 

from 90m resolution SRTM data. Solid black lines are faults mapped by Densmore et al (2007) 

and Burchfiel et al (1995). Dashed black line indicates cross-section in Figure 4.4 
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Figure 4.4: Cross-sectional profile of topography from the Sichuan Basin to the Longmen Shan 

Mountains.  Profile trace is shown in Figure 4.3 
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Figure 4.5: Active faults (red) and block boundaries (blue). Blocks: D = Danba; SP = Songpan; 

XS = Xue Shan. Fault zones: XSH = Xianshuihe fault; KL = Kun Lun fault; LMS = Longmen 

Shan. Black arrows are observed GPS velocities relative to the South China block. (Burchfiel et 

al 2008) 
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4.1.3 Tectonic deformation 

Decadal-scale GPS measurements show that the present-day tectonics of the 

Longmen Shan region is dominated by clockwise rotation of upper crust around 

the eastern Himalayan syntaxis (Figure. 4.2). In the Longmen Shan, this 

movement is expressed as slow oblique dextral-thrust displacement (Figure 4.5). 

Total deformation rates across the faults in the Longmen Shan are ~2-4 mma-1 

oblique slip, which is compatible with slip rates on individual faults over Late 

Quaternary time scales (Densmore et al. 2007). 

In order to understand how this motion is manifest in displacement of the different 

tectonic blocks along the Longmen Shan, GPS-derived surface displacements 

provide a spatially distributed velocity field (e.g. Banerjee and Burgmann, 2002, 

Chen et al., 2004, Gan et al., 2007, King et al., 1997, Paul et al., 2001, Wang et 

al., 2001, Zhang et al., 2004, Zhijun et al., 2005). Combining the velocity field of 

Zhang et al. (2004) with the Meade (2007) block model, Burchfiel et al. (2008) 

yielded ~3mma-1 dextral slip and ~2mma-1 convergence along the Longmen Shan 

boundary, relative to southern China. Furthermore, velocity data in Gan et al. 

(2007), Shen et al. (2000), King et al. (1997) and Chen et al. (2000) have been 

combined with block geometries, in order to identify 4 blocks making up the 

Longmen Shan boundary: the Sichuan Basin, Songpan, Xue Shan and Danba 

blocks (shown in Figure 4.5). The Songpan, Xue Shan and Danba blocks all 

exhibit northwest translation combined with clockwise rotation (Burchfiel et al 

2008). The initial Wenchuan earthquake rupture occurred at the southwest end of 

the Songpan-Sichuan Basin boundary. Along this boundary, Burchfiel et al. (2008) 

estimate local slip to be roughly uniform; 1±1mma-1 dextral slip, combined with a 

dip-slip of 1±1mma-1 in the southwest increasing to 3±1mma-1 in the northeast 

(assuming a 45o west-dipping fault). Along the Xue Shan-Sichuan Basin to the 

northeast, the velocity field suggests subequal dextral slip and dip-slip 

components of 1±1mma-1, with a slight increase from southeast to northwest. The 

Songpan and Xue-Shan blocks are separated by the MinJiang fault system. This 

yields predominantly dip-slip motion of between 2±1mma-1 in the south and 

3±1mma-1 in the north, with the Song-pan block thrusting over the Xue Shan block 

on an assumed 45o west dipping fault. Strike-slip is only observed where this fault 

intersects the dextral slip Qingchuan fault (Burchfiel et al. 2008). The northeast 
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limit of the Songpan block borders East Tibet. Here the boundary exhibits 

relatively uniform displacement along its length, of 3±1mma-1 dextral slip and 

2±1mma-1 convergence. Limited and unreliable data for the Danba block means 

that no such velocity estimates can be yielded (Burchfiel et al. 2008). However, the 

Wenchuan earthquake occurred primarily on the Songpan-Xue and Shan-Sichuan 

Basin boundary fault systems, so the motion of Danba block is of less interest to 

this study.  

4.1.4 Faults and folding 

Within the Longmen Shan and Sichuan Basin thrust zone, mapping of many 

important active faults has been undertaken, though various characteristics of the 

system are still speculative. The following section provides an overview of known 

tectonic structures and kinematics of the region. 

As discussed above, the boundary between the Longmen Shan and Sichuan 

Basin is formed by a series of northeast striking faults. These demonstrate 

components of both thrust and dextral slip (Densmore et al. 2007, Chen and 

Wilson 1996, Chen et al. 1994) which are reflected in the slip distribution of the 

Wenchuan earthquake (see Section 4.2). Along the eastern front of the Longmen 

Shan several thrust faults ramp down into the basement, indicating large 

displacements on the decollement which underlies this area and reaches around 

~80km into the Sichuan Basin (Burchfiel et al 2008). However, offsets in surface 

sediment strata along these faults suggest small displacements (Burchfiel et al. 

2008). Burchfiel et al. (2008) suggest that is due to the near vertical displacement 

of lower crustal material in the Longmen Shan, resulting in the surface rate of 

tectonic movement differing according to depth. However, it should be noted that 

others argue against a purely vertical, lower crustal flow explanation for the 

tectonics of the Longmen Shan (e.g. Hubbard & Shaw 2009; Densmore et al 

2007). 

Much of the Cenozoic crustal shortening and folding appears to be concentrated 

within the Pengguan and Baoshan massifs, on the basin side of the Longmen 

Shan (shown in Figure 4.3; Burchfiel et al. 2008). South of the Pengguan massif, 

folding of the basement is more widely distributed, resulting in shallower 

topographic gradients. Steep to vertical faults run southwest to northeast, parallel 
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to the Longmen Shan for over 100km, and interact with the Cenozoic fold and 

thrust structures (Burchfiel et al. 2008). Within this steep, active fault system, north 

of the Pengguan Massif these faults offset thrusts within the Mesozoic complex by 

around 1km, indicating little displacement (Burchfiel et al. 2008). West-dipping 

normal faults, exhibiting dextral slip components, truncate the west sides of the 

two massifs. These merge with the main boundary faults to the south of the 

Pengguan massif, where the Wenchuan-Maowen fault is exposed very close to 

the epicentre of the Wenchuan earthquake. Faults and folds in this area consist of 

Precambrian basement, Palaeozoic sedimentary strata and Jurassic-Cretaceous 

foredeep deposits. These are fairly shallow features descend down to the 

decollement at a maximum depth of around 10km. The Beichuan and Pengguan 

faults are the more westerly of these, and form the frontal structures of the range 

(Burchfiel et al. 2008). Continuing to the north the Beichuan fault appears to 

coalesce with the north-eastern reaches of the Wenchuan-Maowen fault, northeast 

of Beichuan (Densmore et al. 2007). Much of the active deformation and seismic 

activity of the Longmen Shan occurs on the Wenchuan-Maowen, Beichuan, 

Pengguan and Dayi faults (Li et al. 2006; Zhou et al. 2007; Densmore et al. 2007). 

Of these the historical activity of the Beichuan fault has been the most apparent, 

with the Beichuan and Pengguan faults having experienced surface rupture during 

the late Pleistocene and Holocene periods (Densmore et al. 2007).  

Around 100km north of Beichuan, the Min Shan and Huya region is also heavily 

affected by faulting and folding (Figure 4.5). This area rises higher than 4000m 

and is bounded by the Min Jiang fault zone (in the upper reaches of the Min River) 

to the west, and by the Huya fault zone to the south-east. These zones consist of 

steep, active, west-dipping faults (Kirby et al. 2002), which have experienced two 

magnitude >7 earthquakes since 1879 (SSB 1989; Jones et al. 1984). These faults 

were not activated by the 2008 earthquake. However, deformation is relayed to the 

Beichuan fault via the active, east-west trending Xue Shan and Qingchuan faults, 

where Li et al. (2009) report co-seismic deformation from the 2008 earthquake. 

4.1.5 Geological units and rock types 

Due to the prolonged tectonic activity in the area, the Longmen Shan region 

comprises a diverse range of geological units. The following section describes the 
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geographical and lithological characteristics of the major geological units of the 

Longmen Shan and adjacent mountains affected by the Wenchuan earthquake. As 

most previous investigations into the geology of the region have focused on 

orogensis and regional scale tectonics, information on lithology and hillslope 

materials – of interest to this investigation – is fairly limited. However, collated 

information from several of these studies does yield a general overview of 

recorded rock types within the mapped units. The geological units used in this 

section and during analysis are chronological units taken from Ma et al. (2002) and 

digitised as GIS shapefiles by Dr Alex Densmore (University of Durham) prior to 

this investigation (Figure 4.6). 

1. Mesoproterozoic granitic basement 

This is the oldest geological unit occurring within the Wenchuan earthquake 

rupture zone, where the Mesoproterozoic granitic basement material has been 

exposed following upward rotation in the thrust belt. Within the rupture zone, the 

main area of this unit forms a large part of the Pengguan massif, bounded by the 

Beichuan fault to the southeast and the Wenchuan-Maowen fault to the northwest. 

The basement is composed of granite, granodiorite, acidic to intermediate 

volcanics and various schists (Chen and Wilson 1996). Granite and granodiorite 

within the unit have been dated from 1017-1043 Ma (U-Pb technique) to 647-776 

Ma (K-Ar whole rock) (Luo & Long 1992). 

2. Neoproterozoic volcanics and dolomite 

The Mesoproterozoic Granitic basement is overlain uncomformably by 

Neoproterozoic volcanics and dolomite (Chen and Wilson 1996). These are 

exposed along the northern perimeter of the Pengguan massif, within the hanging 

wall of the Beichuan fault. 

3. Palaeozoic greywacke, sandstone and shale 

Regions of mapped Palaeozoic geology comprise of Cambrian-Silurian greywacke 

and shale disconformably overlain by Devonian to Permian sandstone and shale, 

and intercalated with minor limestone and basalt (Chen and Wilson 1996). 

4. Mesozoic Granite 
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To the north-west of the rupture zone, regions of younger granite can be found, 

here formed by Mesozoic plutons, rather than exhumed basement. 

5. Triassic mudstone, sandstone and conglomerate 

Along the footwall side of the Beichuan fault runs the Upper Triassic Xujiahe 

formation. This unit is composed of alternating mudstone, sandstone and thick 

conglomerate, sitting disconformably on Middle Upper Triassics (Chen and Wilson 

1996) 

6. Triassic (SG Fold belt) turbidites, acidic volcanic 

To the north-west of the rupture zone, units of Lower, Middle and Upper Triassic 

turbidites sit in the Songpan-Garze Fold Belt. These are Sinian to Triassic 

sediments which were folded and metamorphosed during the Indosinian orogeny 

(c. 227-206Ma BP). In places the sediments are unconformably overlain by the 

uppermost Triassic Babao Shan Formation, composed of acidic volcanics and 

clastics (Huang & Chen 1987; Lui et al. 1992) 

7. Jurassic conglomerate, sandstone, mudstone 

This unit mainly lies in the footwall of the Pengguan fault and towards lower lying 

topography at the edge of the Longmen Shan Foreland Basin. Here Jurassic to 

Lower Cretaceous deposits are composed of thickly layered to massive 

conglomerate, and alternating sandstone and mudstone beds (Chen & Wilson 

1996). 

8. Cretaceous conglomerate 

Also located within and along the edge of the lower lying Longmen Shan Foreland 

Basin are large regions of Cretaceous conglomerate. 

9. Tertiary conglomerate, sandstone and mudstone 

To the south of the rupture zone, and mainly in low-lying basin areas, occur 

regions of conglomerate, sandstone and mudstone, interbedded with gypsum and 

anhydrite. These are of Cretaceous to Neogene age. 

10. Quaternary unconsolidated sediments 
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A large region of thin but laterally extensive quaternary sediments lies south of the 

Pengguan massif, in the Longmen Shan Foreland Basin.  

While all of these units fall within or adjacent to the main rupture zone of the 

earthquake, it should be noted that those in the footwall of the Beichuan fault 

underlie relatively low lying topographic features. This is in clear contrast to the 

large relative relief produced by units in the hanging wall to the north-west. 
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Figure 4.6: Regional geological map of the Sichuan Basin and the Longmen Shan (After Ma et 

al 2002). 
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4.1.6 Climate 

The Sichuan region has a sub-tropical monsoon climate, with a total annual rainfall 

of 923mm in Chengdu (Sichuan Basin), and high levels in mountain areas; around 

90% of this rainfall occurs between April and September, during the monsoon 

period (WMO 2009). Mean monthly daytime temperatures in the Sichuan Basin 

range from 9 to 30oC (WMO 2009), though lower temperatures occur in the higher 

altitude regions of the Longmen Shan. 

4.1.7 Hydrology 

The Longmen Shan mountain belt is dissected by several major rivers, with 

catchments spanning a range of sizes and bedrock lithologies. Tectonic faults 

exhibit a strong structural control on the hydrological network, with most major 

channels affected by tectonic offsets or flowing along surface ruptures (Li et al. 

2003; Densmore et al. 2007). 
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4.2 The Wenchuan earthquake 

At 14:28:01.42 (local time) on the 12th May 2008 the Wenchuan earthquake 

occurred (USGS, 2008). The quake magnitude was reported as Ms 8.0 (Li 2009) 

and Mw 7.9 (USGS 2008), for which a millennial recurrence interval has been 

identified (Li et al. 2009).The earthquake epicentre occurred at around 31.0oN, 

103.4oE, near Yingxiu Town in Wenchuan County, with a shallow focal depth of 

15km similar to previous seismic events in the region (Burchfiel et al. 2008; USGS 

2008) (Figure 4.7).  

4.2.1 Co-seismic fault ruptures 

Co-seismic surface ruptures were located on the Beichuan, Pengguan and 

Xiaoyudong faults, along a 280km long rupture zone. Characteristics of the 

surface rupture suggest a combination of thrust and dextral strike-slip occurred (Li 

et al. 2009, Densmore et al. in review; Liu-Zeng et al. 2009). The following section 

documents the activities of co-seismic faults activated by the earthquake, based 

on the field observations of Li et al. (2009), Densmore et al. (in review) and Liu-

Zeng et al.(2009) (faults are shown in Figure 4.7):  

Yingxiu-Beichuan (Beichuan) Fault 

This was the main fault activated by the earthquake. The surface rupture is 220km 

long, stretching from Yingxiu (31.0oN, 103.4oE) to Shikanzi, Pingwu (32.2oN, 

104.9oE), and passing through the Beichuan town (32.8oN 104.4oE). It has a steep 

north-west dip and strikes northeast (~N45o) parallel to the high topography of the 

Longmen Shan. The fault cuts a wide range of lithological units including bedrock, 

river terraces and alluvial fans. On this fault the earthquake produced vertical 

offsets of ~1.6-6.2m, and horizontal offsets of ~0.2-6.5m (Li et al. 2009), with two 

local maxima of ~5-6m and ~11m found at 35km and 140km northeast of the 

epicentre respectively (shown in Figure 4.8, Lui-Zeng et al. 2009). The sense of 

slip on the Beichuan fault was oblique with a combination of thrust and dextral 

strike-slip components. To the southwest and middle sections of the fault the 

thrust component dominates, while in the northeast (from around 135km from the 

epicentre) the strike-slip component is more prominent (Shen et al, 2009).  
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Pengguan-Guanxian (Pengguan) Fault (also known as the Guanxian-Anxian fault) 

Running parallel to the Beichuan fault at a distance of around 8km, the Pengguan 

fault surface rupture stretches for 40-50km from (31.9oN, 103.5oE) to (31.3oN, 

104.1oE). Again the fault has a steep north-westerly dip and strikes northeast, with 

the hanging wall to the northwest. Vertical offset produced by the earthquake is 

~0.4-2.7m, with a horizontal offset of ~0.2-0.7m (Li et al. 2009), and local maxima 

of ~3-3.5m (shown in Figure 4.8, Liu-Zeng et al. 2009). Here the thrust component 

dominates over that of dextral slip. 

Xiaoyudong Fault 

Running between the Beichuan and Pengguan faults, this fault was newly 

discovered following the earthquake, extending over a length of ~15km. While Li et 

al. (2009) identified it as a tear fault, the sense of slip is kinematically compatible 

with the Beichuan and Pengguan faults, demonstrating thrusting of the southwest 

side of the fault with a large sinistral strike-slip component (Lui-Zeng et al. 2009). 

Average offsets are reported as 1m vertical and 2.3m horizontal (Li et al. 2009).  

Co-seismic slip partitioning 

While 3 separate co-seismic faults have been identified, these crustal scale thrusts 

are thought to merge into a single plane around 10km below the Longmen Shan 

range (Hubbard and Shaw 2009), as shown in Figure 4.9. The diagram also shows 

the hanging wall of the fault system to the northwest while the footwall is situated 

to the southeast of the fault. 
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Figure 4.7: Map of Wenchuan earthquake epicentre (USGS) and coseismic fault ruptures mapped 
by Densmore et al (in review) (red). Other faults not activated by the earthquake are shown in 
black. 

Figure 4.8 (Liu-Zeng et al 2009): Map of the surface rupture and along-fault variation of scarp 
height on the Beichuan and Pengguan faults. Along fault distances are relative to the location of 
the epicentre. Also shown are the locations of the corresponding offset measurement points. 
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Figure 4.9 (after Hubbard and Shaw 2009): Geological cross section across the epicentral region 
of the Wenchuan Earthquake. 
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4.2.2 Distributed displacement and deformation 

While field observations of fault displacements reveal important features and 

characteristics of the earthquake, inaccessibility of many regions and the inability 

to identify surface ruptures in regions of steep topography and landsliding, results 

in an incomplete picture of co-seismic displacements and deformation. While 

inversion of near-field seismographs is often used to improve the displacement 

model, very limited data is currently unavailable for technical and political reasons 

(Hao et al. 2009). Thus, in order to build more holistic and spatially distributed 

estimates of ground deformations, fault models built through inversion of global 

seismic waveform data and InSAR measured ground deformations have been 

produced.  

Initial seismic wave form estimates of ground deformations were based upon a 

simplified, single fault model, published by Zhang et al. (2009), Ji and Hayes 

(2008), Nishimura & Yagi (2008) and Caltech (2008), shown in Figure 4.10. Of 

these, the data of Ji and Hayes, Nishimura &Yagi (2008) and Caltech (2008) were 

made publically available shortly after the earthquake in fault profile and map 

projected formats (see Figure 4.11). While these estimates all differ due to the 

model parameters used, all demonstrate a two peak distribution, with 

displacement maxima to the southeast and northwest. In addition, data from 

Nishimura &Yagi (2008) and Zhang et al. (2009) appear to correspond well with 

recorded levels of damage to urban areas. Despite this, significant inconsistencies 

exist in location and depth of peak displacements across all models. In addition, all 

these models apply a single-fault assumption which does not incorporate the slip 

partitioning, observed in the event as outlined in Section 5.2. As such, while these 

models provide a first order estimate of the displacement field, they are 

oversimplified for this earthquake (Liu-Zeng et al. 2009). Later during in the course 

of this investigation, more sophisticated reconstructions of fault displacement and 

crustal deformations were later published by Hao et al. (2009) and Shen et al. 

(2009), shown in Figure 4.12. These models utilise a combination of field slip 

measurements and InSAR (Interferometric Synthetic Aperture Radar; e.g. 

Massonnet et al. 1994; Peltzer & Rosen 1995; Wang et al. 2007) derived ground 

displacements using data from the ALOS PALSAR sensor system, to construct 
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multi-fault slip models. While a more complicated pattern of displacement is 

produced, the fundamental characteristics observed in other datasets are 

preserved. The vertical component of displacement is greater in the southwest, 

while horizontal displacement is more dominant in northeaster fault segments. 

Two areas of maximum displacement occur, although the northeast zone appears 

to combine two smaller areas of peak displacements. Wang et al. (2009) attributed 

this phenomenon to structural heterogeneities in the upper crust, suggesting that 

smaller displacements are apparent in regions of ductile crust.  In addition, 

displacements mainly occur in the fault hanging wall areas to the northwest, due to 

the northwest dip direction of the fault. 
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Figure 4.10: Along fault profiles of the static slip distribution, derived from the inversion of seismic 
waves: A - Ji and Hayes (2008); B—Nishimura & Yagi (2008) ; C - Zhang et al (2009); Caltech 
(2008) 
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Figure 4.11: Map projected static slip distributions for the Wenchuan earthquake. Coseismic faults 
are shown in black: A - Nishimura & Yagi (2008); B - Ji & Hayes (2008); C - Caltech (2008). 
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Figure 4.12: Multi-fault coseismic slip inversion results: above (Hao et al 2009); below (Shen et al 
2009) 
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4.2.3 Seismic ground motion 

Spatial variations in ground motion during earthquakes have been shown to be 

key factor in controlling the distribution of landslides triggered (e.g. Khazai & Sitar 

2003; Meunier & Hovius 2007). Records of the Wenchuan earthquake‟s main 

shock were obtained by the National Strong Motion Observation Network System 

(NSMONS) for around 460 permanent free-field ground motion stations, three 

arrays for topographical effect and structural response observations. Additional 

records for aftershocks were attained from 59 mobile instruments deployed after 

the main shock to hardest hit areas (Li et al. 2008) (shown in Figure 4.13). A brief 

preliminary analysis of these data is presented in Li et al. (2008), however no 

values of intensity or peak ground acceleration are included. Unfortunately very 

little strong ground motion data has yet been made publically available. However, 

estimates derived from the data have been published by United States Geological 

Survey (USGS) and the China Earthquake Administration (CEA). 

USGS Shakemap 

In the immediate aftermath of major earthquakes, approximate maps of ground 

motion are produced by the USGS through the automated application „Shakemap‟. 

Maps of Peak Horizontal Ground Acceleration (PGA), Peak Horizontal Ground 

Velocity (PGV), spectral bands separated PGA and Modified Mercalli Intensity 

(MMI), are produced and GIS contour layers made available for download. The 

Shakemap output is based on all available ground motion data points, interpolating 

based on attenuation relationships, as outlined in Wald et al. (2006). 

While the original Wenchuan earthquake Shakemap output was generated 

minutes after the main earthquake event, the USGS shakemap site is continuously 

updated as more data and information becomes available (Wald 2009, pers 

comm). When this investigation began in October 2009, the available Shakemap 

(version 9) had been last regenerated on 18/05/2008, just six days after the 

earthquake (Figure 4.14A). Since then additional information contributed to an 

updated version 10 generated on 08/12/2008, almost 7 months after the 

earthquake (Figure 4.14B). In the updated model, fault dimension parameters 

were refined and data from local strong motion stations were added (Wald 2009, 
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pers comm). The modifications produced a much higher ground motion resolution, 

particularly in the fault rupture region. In order to generate version 10, data from 

102 locations were used. Of these 32 readings were attained from strong ground 

motion stations, 29 readings were taken from Modified Mercalli Intensity site 

observations, and 41 were collected from the USGS “Did you feel it” application. 

The resulting Shakemap shows a continuous region of high MMI values (>8) for a 

distance of around 250km from the epicentre in the direction of the co-seismic 

rupture process. In concurrence with seismic wave attenuation properties of thrust 

belts, higher PGAs are present in the fault hanging wall, with lower PGAs in the 

footwall. It should be noted that this is still a low resolution first order estimate, 

though USGS intend to update the map using the full strong motion dataset, when 

this data becomes publically available (Wald 2009, pers comm). 

China Earthquake Administration Shakemap 

The CEA published a second intensity (MMI) shakemap for the Wenchuan 

earthquake (Li et al. 2008) on 29/08/08, shown in Figure 4.14C. Although neither 

raw seismic data nor GIS layers were available for this distribution, the contours 

from the map have been digitised for analysis. While the relative location of peaks 

and troughs coincide in the USGS and CEA shakemaps, in general the CEA 

shakemap predicts higher intensities with a less uniform attenuation pattern than 

either of the USGS shakemaps published. In addition, two intensity peaks can be 

identified in the Wenchuan and Beichuan County regions (Xiao 2008). These 

coincide with along fault regions of peak ground displacement identified in Section 

4.2.2. Unfortunately no methodology data is available for how this map has been 

compiled. The online location of the map is a website in Chinese, was accessed 

via the Google translation function. Methodology documentation appears to be 

available in Chinese, but is inaccessible to western authors. 
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Figure 4.13: Location of strong motion observation stations in the Longmen Shan and surrounding 
areas (Li et al 2008) 
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Figure 4.14: Wenchuan Earthquake Modified Mercalli Intensity shakemaps: A - USGS version 9; 
B - USGS version 10 (after USGS 2008); C - CEA shakemap digitised and interpolated from pub-
lished map (after Li et al. 2008). 
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4.2.4 Aftershocks 

In addition to the main magnitude 7.9 earthquake, 15 aftershocks of M>5.5 were 

also recorded by USGS, and corresponding shakemaps for these events have 

been produced. These all occur along the rupture zone of the main event. Data on 

the location, magnitude, time and depth of an additional 1015 aftershocks 

epicentres occurring between 12/05/2008 and 05/09/2008, were also made 

available through the China Earthquake Geospatial Research Portal (CEGRP 

2008). The epicentres occur a distance of around 400km along the length of the 

rupture zone. The areal density of epicentres M≥4.0 demonstrates two marked 

peaks, as show in Figure 4.15. These also coincide with regions of peak ground 

displacement (outlined in Section 5.3) and ground motion intensity (outlined in 

Section 5.4). Earthquakes of M≥4 are capable of triggering landslides (Keefer 

1984), however these additional events are not considered in analysis of the 

landslide distribution at this stage, given the overriding magnitude and impact of 

the main shock. 

4.2.5 Summary 

During the 12/05/2008 Wenchuan earthquake, surface ruptures occurred over a 

length of ~280km, along the Beichuan, Pengguan and Xiaoyudong faults, of which 

the length and displacements of the Beichuan fault are the most prominent. Along 

the rupture zone, field and modelled data suggest that two areas of peak ground 

displacements and ground motions occurred in the southwest and northeast. 

However, the precise locations of these maxima vary between datasets. 
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Figure 4.15: Mapped density of aftershock epicentres, M≥ 4.0. (Kernel density based on a 50km 
search radius). Raw data from CEGRP (CEGRP 2008). 
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4.3 Landslides triggered by the Wenchuan earthquake 

During 2008 and early 2009, several preliminary studies were also published 

describing characteristics of landslides triggered by the Wenchuan earthquake. 

The following section provides a review of this literature and synopsis of the key 

findings and observations, in order to provide a basis for this study and further 

investigations into the landslide distribution. Key literature sources are first 

identified before the regional distribution of landslides and geophysical controls 

upon that distribution are addressed. The review was conducted during June 

2009, so studies published after this period may not be included in this section. 

4.3.1  Investigations on the regional distribution of landslides 

In the time immediately following the earthquake, the Chinese Ministry of Land and 

Resources mobilised around 800 geologists from across China to compile an 

inventory of landslides triggered (Yin et al., 2009). This undertaking involved a 

combination of ground based mapping as well as identification of landslides in 

aerial and satellite imagery.  Because the ultimate aim was rapid information 

production for post-disaster management, interpretation was focused on slope 

failures which posed a direct threat to the human population. Thus this landslide 

inventory data is limited to features in this category, while numerous slope-failures 

in uninhabited regions or posing indirect threat to human habitat are not identified 

(Huang & Li 2009). Unfortunately, to date the results of this investigation have only 

been published in Chinese (Yin et al., 2008; 2009), making it inaccessible for 

further review. 

A second landslide inventory which claims to better describe the macro-scale 

landslide distribution has been compiled by Huang and Li (2009). This study 

utilises a combination of satellite (ALOS, SPOT, and Landsat-ETM) and aerial 

imagery (collected by the Air Command and China Aero Geophysical Survey, and 

Remote Sensing Centre for Land and Resources). Through manual interpretation, 

„geohazards‟ – a term which appears to refer to slope failures and instabilities - are 

identified along the entire length of the fault rupture, as well as large areas to the 

north and northwest (shown in Figure 4.16). Although the authors are not explicit, 

this work also appears to combine data from the Ministry of Landslide and 
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Resources mapping exercise. While this investigation presents the most holistic 

landslide inventory coverage published to date, slope failures have been manually 

mapped as point features in this data, giving no consideration to their 2 or 3 

dimensional geometry or magnitude. As such, any interpretation and analysis of 

this data can only consider the spatially distributed frequency of landslide 

occurrence. This is presented in the form of landslide concentration (number of 

landslides / km2). In addition the authors give no information regarding the criteria 

used to identify landslides through both remotely sensed imagery and fieldwork. 

This is of particular concern in regions of very high landslide density, where 

multiple landslides have failed side by side along river valleys, allowing them to be 

mapped as single or multiple features depending on the methodology. Despite 

these insufficiencies Huang and Li‟s (2009a) database was the most holistic 

description of the landslide distribution published at the time of this review.  

A further investigation by Sato & Harp (2009) also manually identified the locations 

of landslides in a region 130km northeast of the epicentre, using Formosat 

imagery. Although only preliminary results of this investigation have been 

published, the study does show relationships between landslide occurrence and 

slope gradient, within its sample area. 

The following section identifies key characteristics of the landslide distribution 

based predominantly around the findings of this investigation, while detailing 

additional landslide characteristics identified through a number of field studies. 

4.3.2 Total magnitude of the landslide impact 

Seismically triggered landslides extend over an area of 130 000km2 (Huang & Li, 

2009), involving an estimated total of 50 000 individual failures (Huang et al., in 

press). This corresponds roughly with the predicted impact area and number 

constrained from previous earthquake-landslide events (Keefer 1984; Keefer 

2002) (as shown in Figure 4.17). 
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Figure 4.16: Locations of landslides triggered by Wenchuan earthquake, identified by  Huang & Li 
(2009) 
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Figure 4.17: Relationships between earthquake magnitude, area affected by landslides (A, Keefer 
1984) and total number of landslides triggered (B, Keefer 2002), based on results from previous 
earthquakes. Red stars indicate values for the Wenchuan earthquake. 
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4.3.3 Key characteristics of the landslide distribution 

Seismic ground accelerations are expected to be a first order control on the 

landslide distribution (e.g. Meunier et al. 2007). Unfortunately, due to a lack of 

seismic monitoring data collected at the time of the earthquake, modelled ground 

acceleration estimates are of a coarse resolution. Thus at present the finer details 

of ground motions can only be approximated based on location relative to the co-

seismic fault rupture (e.g. Meunier et al. 2007), relative to which the landslide 

distribution has been examined. These include the earthquake epicentre, surface 

expression of the fault rupture, magnitude of permanent ground displacements 

and positioning of the hanging wall and footwall. 

The landslide distribution extends around 70km from the co-seismic fault, at its 

maximum distance, while landslide concentration exhibits an inverse relationship 

to distance from the fault (Huang & Li, 2009a). Higher landslide concentrations 

occur in the hanging wall of the fault, with peak concentrations observed within 

20km of the rupture, decreasing rapidly beyond this distance (as shown in Figures 

4.18 & 4.19). In addition Yin et al. (2009) observed larger failure volumes and 

sliding distances along the fault rupture than in other areas, with the majority of 

large failures occurring within 5km of the fault. From this pattern Huang and Li 

(2009a) identified distance from the fault as having a clear control on landslide 

occurrence. It is interesting to note that the high concentration of landslides does 

not focus around the epicentre as has been noted from the 1999 Chi-Chi 

earthquake, but follows the pattern of the 1994 Northridge and 2005 Kashmir 

earthquakes, in focussing along the length of the fault rupture (e.g. Khazai & Sitar 

2004).  The landslide distribution presented also appears to vary along the fault in 

conjunction with the co-seismic displacement pattern. For example areas of high 

landslide density such as Beichuan town which correspond with areas of larger co-

seismic displacement (Huang & Li 2009a). This evidence suggests that ground 

motion has a strong control upon landslide occurrence, of which there are 3 main 

features. 

1. A distance decay pattern as seismic waves attenuate away from the source 

fault 
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2. A hanging wall-footwall pattern of peak ground acceleration (PGA) 

3. Zones of higher PGA and landslide occurrence corresponding to larger 

permanent ground displacements along the fault, and vice-versa. 

A second conspicuous feature of the landslides is their linear distribution along 

major river valleys. This can be observed in Figure 4.16, where the landslide 

distribution extends along long river valleys into Heishui and Songpan counties. 

Huang & Li (2009a:814) stated that “the vast majority of seismogenic geohazards 

[slope failures] occurred along the two sides of the Minjiang River and along the 

deep-incised river valleys perpendicular to the Longmen Shan Mountain [range], 

including the Shiting River, the Mianyuan River and the Qianjiang River as well as 

their tributaries”.  

As such, the co-seismic structures appear to control the general outline of the 

landslide distribution, while rivers exhibit a secondary influence upon the specific 

location of landslides within that general outline. However, while these dominant 

co-seismic and hydrological features appear to strongly control the regional spatial 

distribution of landslides, the occurrence of slope failures has also been explored 

in relation to other geophysical variables on the local scale. 
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Figure 4.18: Relationship between landslide concentration and distance from coseismic surface 
rupture (Huang & Li, 2009). 

Figure 4.19 : Comparison of landslide concentrations in the hanging wall and footwall ( Huang & 
Li, 2009). 
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4.3.4 Influence of hillslope gradient 

Huang & Li (2009a) identified that the majority of landslides occurred on slopes 

with gradients between 20o and 50o, while the highest landslide concentration is 

found on the steepest slopes in that range from 40o to 50o
, as shown in Figure 

4.20. The authors make reference to a lower gradient threshold for landslide 

occurrence at around 20o. Sato & Harp (2009) report oversampling of lower 

gradient for the Beichuan region, with the peak landslide concentration between 

30o and 35o. 

4.3.5  Influence of Elevation 

75% of landslides are distributed between 650-2000m in elevation, while this 

height range only encompasses 27% of the study area. Between 1000-1500m the 

highest landslide densities occur, reaching a peak of 0.63 landslides/km2 (as 

shown in Figure 4.21). Above 2500m landslide density decreases rapidly (Huang 

& Li, 2009a). From field investigations Huang & Li (2009a) suggest that this is due 

to the high proportion of river valleys occurring within the peak elevation range, as 

illustrated in Figure 4.22. As noted above, large numbers of landslides are 

distributed along these features and thus occur at ~1500m. In addition, from field 

observations Huang & Li (2009a) also identified the frequent initiation of landslides 

along ridge crests, as expected due to the topographic amplification of seismic 

waves (e.g. Murphy 2002; Meunier et al. 2008). This adds to the apparent 

elevation control on landslides, initiating at similar heights along ridges and peaks. 

4.3.6  Influence of lithology 

Data from Huang & Li (2009a) suggest that the highest rates of landsliding occur 

in harder rock types, including magmatic (igneous) rock, carbonate and sandy 

conglomerate (Figure 4.23). Second to this are sand-slate, phyllite and argillites 

with medium level landslide densities, while soil layers exhibit relatively little 

landslide activity (unfortunately it is unclear what constitutes „soil layers‟, in this 

study). In addition it is suggested that lithology exhibits a clear control on landslide 

type. The general observation here is that slides occur in soft rocks whereas rock 

falls and avalanches are more likely to occur in hard rocks (presumably based in 

the classification of Varnes 1978). Wang et al. (2009) undertook a field 
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investigation of 12 earthquake induced landslides distributed throughout the 

impact zone (locations shown in Figure 4.24). From this they concluded that 

particularly long run-out landslides occurred in slate, mudstone and shale, such as 

the Donghekou slide, Shibangou slide, Hongsong Hydropower Station slide, and 

Wangjiayan slide in Beichuan County. Large rockfalls were found to have occurred 

in dolomite, such as the Jingjiashan slide, also in Beichuan County. They also 

suggested that interactions between rock types and hydrology contributed to rapid 

movements and long run out distances. For example in the Hongsong Hydropower 

Station slide, deeply weathered granite moved as a debris-flow-like slide. Wang et 

al. (2009) suggested this is due to the saturated and undrained behaviour in the 

sliding zone. 
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Figure 4.20: Relationship between landslide concentration and hillslope gradient (Huang & Li, 
2009). 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

 la
n

d
sl

id
e

 d
e

n
si

ty
 (n

u
m

b
e

r 
o

f l
an

d
sl

id
e

s/
km

2
)

Elevation (m)

Figure 4.21: Relationship between landslide concentration and elevation (Huang & Li, 2009). 



  66  

 

Figure 4.22: Diagram illustrating the occurrence of river valley landslides within the common 
height range of ~1500m (Huang & Li, 2009). 

Figure 4.23: Relationship between landslide concentration and rock type (Huang & Li, 2009). 
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Figure 4.24: Locations of 12 landslides investigated in the field study of Wang et al (2009a).  

Figure 4.25: Regions of very high landslide impact: Doujiangyan-Wenchuan highway, the 
Beichuan-Anxian County region, Magong-Hongguang region. (marked by black polygons). 
(Huang & Li, in press) 
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4.3.7  Areas of very high landslide concentration 

Huang & Li (in press) identified three areas in which the concentration of co-

seismic landsliding was exceptionally high. These, shown in Figure 4.25, are the 

Dujiangyan-Wenchuan highway, the Beichuan-Anxian County region, and the 

Magong-Hongguang region. 

Dujiangyan-Wenchuan highway region 

The Dujiangyan-Wenchuan highway is a 90km long stretch of road which follows 

the valley of the Min River between Dujiangyan and Wenchuan. This area is close 

to the epicentre (ranging from ~5-40km) and to the south crosses the Yingxiu-

Beichuan fault, which was active during the earthquake. Along this valley a very 

high density of landsliding was experienced, with several areas of continuously 

linked landslide scars (as shown in Figure 4.26). The highway here provides an 

important communication link connecting Wenchuan and its surrounding counties 

with Dujiangyan, Yingxiu and towns in the Sichuan Basin. A total of 22km of this 

road (24% of the road‟s total length) is reported to have been destroyed by 

landslides triggered by the earthquake (Haung & Li, in press). 

Beichuan-Anxian County region 

This was reportedly the most severely damaged area during the earthquake, 

through which the co-seismic Yingxiu-Beichuan fault passes. Despite this region 

being between 80 and 150km from the epicentre, large fault displacements were 

recorded (e.g. Liu-Zeng et al. 2009; Densmore et al. in review; Shen et al 2009) 

which appear to correlate with the high density of landsliding. Huang & Li (in 

press) estimate that 5% of the area is covered by landslides, with high densities of 

up to 0.8 landslides/km2. Also in this area are the Daguangbao and Wenjiahou 

landslides, which are the first and second largest slope failures that occurred in 

this event, respectively. Beichuan Town in the northwest of this region was also 

the most damaged urban area, where several large landslides descended into the 

town. Upstream from Beichuan the Jian River valley, the large Tangjiashan 

landslide dammed lake also formed, which severely threatened the town‟s 

survivors for a time after the earthquake until it was drained through intensive 

excavation of a drainage channel (Liu et al., 2009) 
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Figure 4.26: Aerial image of high density of landslides in Doujiangyan-Wenchuan highway region 
(Huang & Li, in press) 

Figure 4.27: Locations of landslide dams created by the Wenchuan Earthquake. (Yin et al, 2009) 
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Magong-Hongguang region 

Around 200km northeast of the epicentre, a third region severely affected by 

landsliding is the area between Magong Town and Hongguang Town. Again the 

Yingxiu-Beichuan fault passes through this region, where landslides of 

“comparatively high concentration and large scale” are recorded (Huang & Li, in 

press: 4). According to Huang & Li‟s analysis of aerial images for this region, 

nearly 10% of the area is covered by landsliding, with 35 landslides of area larger 

than 50 000m2. Here the main rock types are phyllites and carbonates. 

4.3.8 Landslide dammed lakes 

Numerous landslide dams also formed along major river valleys. These features 

blocked several rivers allowing large lakes to form on the upstream side of the 

dam. Listed from northeast to southwest, the following rivers were blocked: the 

Qing River, the upper stream of the Fu River, the Tongkou River, the Jian River, 

the Xiushui River, the Baishui River, the Mianyuan River, the Shiting River, the Min 

River, and the Xi River (Yin et al. 2009), shown in Figure 4.27. Of the lakes 

formed, eight had water volumes greater than 5 million m3, and 11 were of 

between 1 and 5 million m3 (Cheng et al. 2008). Landslide dammed lakes are of 

particular concern as the valley blocking deposits are likely to collapse resulting in 

catastrophic outburst floods downstream of the dam (e.g. Hancox et al. 2005). The 

hazard posed by these features depends on a combination of dam height, dam 

deposit structure, total lake capacity, probability of flash flooding and duration 

before the dam is filled to capacity. As such those dams of greatest height, 

blocking rivers with the largest catchment areas pose the largest potential hazard. 

In order to manage the hazard posed by valley blocking landslides, two main 

strategies were utilised. If the landslide mass was sufficiently stable the lake was 

preserved, while allowing water to flow out through a spillway. Spillways were dug 

and stabilised using large boulders, with a system of stepped pools constructed in 

the channel in order to reduce the force of discharge (Wang in press). For 

example, this strategy was applied in the management of dams along the Jian 

(Tongkou) and Min Rivers. A second method was to drain the lake before it has 

chance to fill to capacity. This was carried out by digging spillways which the 
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outflow of water then eroded, until the lake has emptied. This technique was 

applied in order to manage the Tangjiashan landslide dam.  

Following preparation of this review, a more holistic, up-to-date review of landslide 

dammed lakes created in the Wenchuan earthquake is now available (Ciu & 

Sombatpanit 2009). 

4.3.9 Summary 

As of April 2009, several key studies had been published regarding landslides 

triggered by the Wenchuan Earthquake. Whilst no holistic 2 or 3 dimensional 

regional mapping of landslide features has yet been undertaken, these studies still 

reveal several important characteristics of the distribution. The magnitude of 

seismic ground motion, inferred through the earthquake‟s co-seismic structures, is 

a first order distance control on the spatial distribution of landslides. Of secondary 

importance is the location of major river valleys which determine more precisely 

where in the landscape many of the landslides occur. At the local scale landslides 

occur on slopes with gradients between 20o and 50o, with higher frequencies on 

steeper slopes within that range. A logical link can be inferred between the spatial 

distribution of steep slopes and the steep sides of major river valleys. As such the 

combination of river undercutting and over-steepening of slopes by fluvial erosion 

conceptually explains the hydrological control on the density of landslide 

occurrence.  Lithology is identified as influencing both the distribution and type of 

slope failures. Higher landslide densities appear to occur in harder rocks, whereas 

fewer failures occur in soft rocks and soil. Slide-type failures were also found to 

occur in softer, more plastically deforming rocks such as slate, mudstone and 

shale, whereas rock falls and avalanches occurred in harder rocks such as 

dolomite. In addition, saturation of certain rock types is presented as contributing 

to high failure velocities and long run out distances. 

In terms of the spatially distributed magnitude of the landslide impact, the following 

3 main areas of landslide concentration have been identified: Dujiangyan-

Wenchuan highway, the Beichuan-Anxian County region and the Magong-

Hongguang region. These areas demonstrate a culmination of factors contributing 

to high landslide density, exhibiting close proximity to the surface expression of the 
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co-seismic Beichuan fault as well as being situated on major rivers.  In addition to 

the hazard posed by landslides themselves, the additional secondary hazard of 

landslide dammed lakes and resultant outburst flooding was also present, with 

several large landslide dams formed by the earthquake.  

While studies conducted to date appear to reveal a first order estimate of the 

distribution of earthquake-triggered slope failures, this analysis is predominantly 

based upon point locations of landslides, while little consideration is given to the 

size or geometry of failures. In addition, analysis of controls on the spatial 

distribution of landslides has been carried out using slope, elevation, lithology 

type, and location relative to co-seismic and hydrological features. However, this is 

a very limited range of geophysical variables known to influence the distribution of 

landslides (see Section 3.1). The analysis techniques applied are also relatively 

simplistic, with no multivariate analysis, or consideration of interactions between 

geophysical parameters. As such, holistic regional scale mapping of landslides 

combined with consideration of a wider range of seismic, topographic, hydrological 

and geological factors, and more sophisticated analysis techniques, are required 

to further understand the landslide distribution and controls upon it. 

4.4 Chapter Summary 

A detailed background to the Wenchuan earthquake along with review of current 

knowledge and understanding of the landslide distribution has been provided. Key 

areas for further investigation have also been identified, and as such this study is 

now well placed to further explore the landslide distribution. A key requirement of 

this is the production better landslide inventory data for the event, as conducted in 

the following section. 
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________________________ 

Chapter 5 

Production of a landslide 

inventory map 

________________________ 

The following chapter details the production of a landslide inventory map for the 

Wenchuan earthquake. The identification and acquisition of suitable imagery for 

mapping is first described. Then the process of semi-automated landslide 

detection algorithm development and evaluation is discussed. 
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5.1 Acquisition of imagery for landslide mapping 

As outlined in Section 3.2, high resolution optical satellite imagery affords spatial 

and spectral data appropriate for landslide mapping, at lower cost than aerial 

surveys. In this section the characteristics of imagery captured by seven optical 

satellite remote sensing systems in the aftermath of the Wenchuan earthquake are 

examined. The suitability of the imagery for landslide mapping is reviewed in order 

to identify imagery appropriate for use in this investigation.  

5.2 Available satellite imagery 

A broad range of satellite imagery types are now available, captured by numerous 

different sensor systems. This investigation required imagery captured from within 

a specific spatial and temporal window, covering the rupture zone during aftermath 

of the Wenchuan earthquake. In addition, imagery of spatial and spectral 

resolution appropriate for landslide identification and delineation was also 

required. In general it has been shown that both higher spatial and spectral 

resolution is favourable for the identification and delineation of landslide scars 

(Petley et al. 2002). A key consideration for acquisition of imagery in the Sichuan 

region is climate. The region is affected by both the Southeast Pacific Ocean 

monsoon, and the Southwest Indian Ocean monsoon. The Longmen Shan‟s 

location at the edge of the high Tibetan Plateau results in high levels of orographic 

rainfall. For these reasons cloud and haze free imagery of the region is very 

difficult to obtain. As such it was necessary to review data from a range of different 

image types, in order to compile the most complete coverage of the study area 

possible. Exemptions from this review were data from aerial and active (radar) 

systems. While it was reported that aerial imagery of the rupture zone was 

captured following the earthquake, no aerial imagery has yet been made available 

for public acquisition or preview. Though radar data can be acquired independent 

of cloud cover, their use in landslide remote sensing is still in its infancy and little 

work into automated landslide classification has yet to be undertaken. In addition, 

geometric layover effects in Side Looking Radar (SLR) imagery make it difficult to 

use in areas of steep terrain. As such, only imagery from optical satellite systems 

was reviewed, from the following sensors: 
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1. Quickbird 

2. IKONOS 

3. ALOS (Advanced Land Observing Satellite), PRISM sensor 

4. SPOT 5 

5. EO-1 (Earth Observing 1) 

6. Landsat 7 EMT+ 

7. UK-DMC (Disaster Monitoring Constellation) 

Sensor and imagery specifications are given in Table 5.1 

Here characteristics of available imagery from the above systems are discussed in 

order to assess their suitability for use in this type of investigation. 
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Sensor 
system 

Imagery source Spatial resolution Band Colour Wavelength (μm) 

Quickbird http://
www.digitalglobe.com/ 

0.61m Panchromatic 0.45 - 0.9 μm 

   2.44m Blue 0.45 - 0.52 μm 

   2.44m Green 0.52 - 0.6 μm 

   2.44m Red 0.63 - 0.69 μm 

   2.44m Near Infrared 0.76 - 0.9 μm 

IKONOS http://
geofuse.geoeye.com 

0.8m Panchromatic 0.45-0.90 µm 

   4m / 1m pan-sharpened Blue 0.445-0.516 µm 

   4m / 1m pan-sharpened Green 0.506-0.595 µm 

   4m / 1m pan-sharpened Red 0.632-0.698 µm 

   4m / 1m pan-sharpened Near Infrared 0.757-0.853 µm 

ALOS - 
Prism 

http://www.eorc.jaxa.jp/
ALOS/obs/
palsar_strat.html 

2.5m Panchromatic 0.52 - 0.77 μm 

SPOT 5 http://
www.spotimage.fr/ 

5m Panchromatic 0.50 - 0.89 µm 

   10m / 5m pan-sharpened Green 0.50 - 0.59 µm 

   10m / 5m pan-sharpened Red 0.61 - 0.68 µm 

   10m / 5m pan-sharpened Near Infrared 0.78 - 0.89 µm 

   10m Mid Infrared 1.58 - 1.75 µm 

EO-1 http://glovis.usgs.gov/ 10m Panchromatic 0.48 - 0.69 µm 

   30m / 10m pan-sharpened  0.433 - 0.453 µm 

   30m / 10m pan-sharpened Blue 0.45 - 0.515 µm 

   30m / 10m pan-sharpened Green 0.525 - 0.605 µm 

   30m / 10m pan-sharpened Red 0.63 - 0.69 µm 

   30m / 10m pan-sharpened Near Infrared 0.775 - 0.805 µm 

   30m / 10m pan-sharpened Near Infrared 0.845 - 0.89 µm 

   30m / 10m pan-sharpened  1.2 - 1.3 µm 

   30m / 10m pan-sharpened Mid Infrared 1.55 - 1.75 µm 

   30m / 10m pan-sharpened Short Wave In-
frared 

2.08 - 2.35 µm 

Landsat 7 
ETM+ 

http://glovis.usgs.gov/ 15m Panchromatic 0.52 - 0.90 µm 

   30m / 15m pan-sharpened Blue 0.45 - 0.515 µm 

   30m / 15m pan-sharpened Green 0.525 - 0.605 µm 

   30m / 15m pan-sharpened Red 0.63 - 0.690 µm 

   30m / 15m pan-sharpened Near Infrared 0.75 - 0.90 µm 

   30m / 15m pan-sharpened Mid Infrared 1.55 - 1.75 µm 

   30m / 15m pan-sharpened Thermal Infrared 10.40 - 12.5 µm 

   30m / 15m pan-sharpened Short Wave In-
frared 

2.09 - 2.35 µm 

UK-DMC http://www.dmcii.com/ 32m Near Infrared 0.77 – 0.90 μm 

   32m Near Infrared 0.77 – 0.90 μm 

   32m Red 0.63 – 0.69 μm 

   32m Red 0.63 – 0.69 μm 

   32m Green 0.52 – 0.60 μm 

    32m Green 0.52 – 0.60 μm 

Table 5.1: Sensor systems and attributes of imagery available for remote sensing of Wenchuan 
earthquake triggered landslides. 

http://www.digitalglobe.com/
http://www.digitalglobe.com/
http://geofuse.geoeye.com/
http://geofuse.geoeye.com/
http://www.eorc.jaxa.jp/ALOS/obs/palsar_strat.html
http://www.eorc.jaxa.jp/ALOS/obs/palsar_strat.html
http://www.eorc.jaxa.jp/ALOS/obs/palsar_strat.html
http://www.spotimage.fr/
http://www.spotimage.fr/
http://glovis.usgs.gov/
http://glovis.usgs.gov/
http://www.dmcii.com/
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5.2.1 Quickbird and IKONOS 

Quickbird and IKONOS systems provide the highest spatial resolution imagery 

examined, between 0.61m and 1m pan-sharpened multispectral products. Even 

within 10m resampled preview images, landslides areas are clearly visible using 

these data types. As in all imagery obtained, areas of bare soil produce strong 

contrast to surrounding vegetated areas. Thus landslide scars are distinct. 

However, the coverage offered by Quickbird and IKONOS imagery is limited for a 

number of reasons. IKONOS imagery is available in relatively small 11x11km 

individual scenes, of which very limited cloud free coverage was available for the 

study area. Similarly, Quickbird is limited to small 16x16km squares, or 16x165km 

strips. The flight path of these strips runs north to south, crossing the rupture zone 

at around a 45o angle. While many scenes would therefore be needed to cover the 

area of interest, very little cloud free imagery was available for time following the 

earthquake. In addition, both imagery types are very expensive to purchase at 

between $16 – 20/km2.  

5.2.2 ALOS-PRISM 

ALOS imagery was provided for use in this study by the USGS, purchased at 

$0.3/km2. The spatial resolution of the imagery is still high at 2.5m, however only a 

single panchromatic band is available via the PRISM instrument. Although 

landslides can be visually identified in cloud free areas of the imagery, the images 

again suffer from very high levels of cloud cover and additional haze in cloud free 

regions. The contrast between landslides and surrounding regions is not as sharp 

as in other panchromatic images reviewed. Haze acts to further reduce the 

contrast. The result is that, while landslides may be visually identified, few 

histogram features exist with which information may be extracted from the image. 

Cloud cover and limited image availability also result in fairly poor coverage of the 

study area.  

5.2.3 SPOT 5 

SPOT 5 imagery was available for the study area in 5 – 10m panchromatic and 

multispectral formats. While smaller features are masked by the relatively lower 

resolution of SPOT, landslides are still clearly visible in the imagery. Landslides 
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are visible in the panchromatic imagery, but can be more clearly distinguished in 

multispectral scenes. Here landslides appear very brightly in red (2) and NIR (3) 

bands, in contrast with darker green surrounding vegetated areas. Through a 

combination of scenes captured during September and November 2008, and 

January 2009, around 24 000km2 of cloud free imagery was available covering a 

length of 300km along the rupture zone. In addition to fortunate data capture 

conditions, the south-west to north-east flight path of the SPOT 5 satellite helped 

achieve such a good coverage, with scenes closely aligned to the SW-NE rupture 

trend. While imagery costs for SPOT 5 data are still relatively high at $1.05–

2.1/km2, these are nonetheless far more accessible than Quickbird and IKONOS 

for regional scale investigations. 

5.2.4 EO-1 ALI 

The EO-1 ALI satellite does not continuously acquire imagery, but responds to 

data acquisition requests. On 7th July 2008 a single 4000km2
 scene was captured 

in the south-west of the rupture zone, at the time costing around $0.085 / km2. 

These data have since been made freely available via USGS Glovis 

(http://glovis.usgs.gov/). The along fault flight path again helps create a suitable 

image coverage. Landslides are visible in sharp contrast in this 10m panchromatic 

imagery. Landslides appear much brighter and lighter than surrounding dark areas 

of vegetation. However, landslides are more visible on east facing valley sides, as 

the image is lit from the east by a sun azimuth of 105o and elevation of 66o. 

Landslides on west facing slopes are much darker and more difficult to identify 

with the limited spectral information. While 30m pixel, nine-band multispectral 

imagery is also available from the ALI system, this was not available until after 

landslide mapping for this investigation was completed. 

5.2.5 Landsat 7 ETM+ 

Data from the Landsat 7 archive and new acquisitions are now available to be 

freely downloaded via USGS Glovis (http://glovis.usgs.gov/). The large scene area 

of around 31000km2 allowed data the for study area to be easily obtained. The 

spectral information available in Landsat 7 bands can be used to produce a range 

of false colour composite and principal component analysis combinations, through 

which different landslide features can be identified (Petley et al. 2002). However, 

http://glovis.usgs.gov/
http://glovis.usgs.gov/
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the low (30 - 15m) spatial resolution of Landsat means that many smaller features 

are not resolved, and only larger landslide features triggered by the earthquake 

were visible. In addition, the scan line corrector (SLC) which compensates for the 

forward motion of the satellite stopped working in 2003. The result is a zigzag 

geometric distortion effect across the image. As such, only a small central portion 

of the data acquired over the rupture zone was suitable for landslide identification, 

and extensive processing of the imagery would be required before mapping could 

be undertaken. 

5.2.6 UK-DMC 

Under an activation of the International Charter for Space and Major Disasters, 

imagery was acquired from the Disaster Monitoring Constellation UK-DMC 

satellite. These data were made freely available to those undertaking research in 

the area. Similar to the Landsat 7 data, the suitability of the imagery is limited by 

its low spatial resolution of 32m. Despite this, the six spectral bands allow areas of 

bare soil to be clearly identified. The imagery was also available over the entire 

rupture zone, though significant areas were obscured by cloud. However, the 

major limitation of the DMC imagery was that excessive cloud cover meant that 

automated georectification and orthorectification processes had not been carried 

out (Stephens 2009, pers comm), resulting in offsets of up to 30km.  

5.2.7 Summary 

While landslides may be best resolved by high spatial resolution multispectral 

sensors such as Quickbird and IKONOS, the limited scene coverage and cost of 

imagery reduce their suitability for regional scale investigation. Data freely 

available from coarser resolution Landsat 7 and UK-DMC satellites certainly 

reduce the cost and coverage related problems associated with Quickbird and 

IKONOS. Even with their coarser spatial resolution, these images can still provide 

a regional first order estimate of landslide coverage. However, geometric image 

errors significantly reduce their suitability to cartographic functions. A balance 

between coverage, cost and resolution is achieved through the medium-high 

resolution imagery of SPOT 5, EO-1 and ALOS. However, the key consideration 

and challenge for acquisition of appropriate data was finding cloud- and haze-free 

imagery.  Ultimately this is controlled by favourable weather conditions as the 
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satellite passes over the region. Cloud free imagery was available from SPOT 5 

and EO-1 systems. Subsequently, four SPOT 5 scenes and one EO-1 scene were 

acquired to achieve a total image coverage of around 21000km2 (Figure 5.1). 

Details of final imagery acquired are given in Table 5.2, along with imagery codes 

used to refer to particular scenes throughout this chapter. Note that SPOT 5 data 

was obtained in a combination of 5m resolution in G, R and NIR bands (provided 

under an agreement with USGS), and additional 5m scenes and lower cost 10m 

scenes in G, R, NIR and MIR bands purchased separately. 
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Figure 5.1: Final SPOT5 and E0-1 image coverage used for landslide mapping. Image labels cor-
respond to those in Figure 5.2. 

S1 

S2 
S3 

S4 

E1 

Table 5.2: Attributes of imagery selected for landslide mapping 
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5.3 Landslide mapping methodology 

In order to examine the regional distribution of landslides visible in the acquired 

satellite imagery, a landslide inventory map delineating seismically triggered 

landslide areas is required as a basis for analysis. However, the large number of 

landslide features triggered by the earthquake presents a significant challenge to 

producing a holistic landslide map. In order to avoid long working periods 

associated with manual delineation of landslides, semi-automated techniques for 

the identification and delineation of landslides have been produced. The following 

section describes the series of stages through which a satisfactory method was 

developed, and presents an evaluation of the algorithm based on comparison to 

manually delineated landslide samples. 

5.3.1 Image processing software and coordinate system 

Image processing and GIS analysis in this section of the investigation was carried 

out using the following computer packages and add-on tool-packs: 

 ERDAS Imagine 9.3 

 ENVI 4.6.1 

 ArcMap 

o Spatial analysis tools and Spatial analyst toolbar 

o 3D analysis tools 

o ETGeowizards (http://www.ian-o.com/ET_GeoWizards/gw_  

main.htm) 

All analysis was carried out in the WGS 1984 UTM (zone 48) coordinate system. 

5.3.2 Temporal control: pre- and post- Wenchuan earthquake landslides 

In order to capture the landslide impact of the earthquake from satellite imagery 

taken after the event, temporal control on the occurrence of mapped landslides is 

required. This allows for an awareness of whether landslides were triggered by the 

earthquake, or were present in the region prior to the event. In order to achieve 

this, addition imagery captured prior to the earthquake was also acquired. Landsat 

http://www.ian-o.com/ET_GeoWizards/gw_%20%20main.htm
http://www.ian-o.com/ET_GeoWizards/gw_%20%20main.htm
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5 imagery of the region captured until the end of 2007 is freely available through 

USGS Glovis (http://glovis.usgs.gov). Two images were downloaded from June 

and September 2007, providing almost complete cloud free coverage of the study 

area. Landsat 5 bands 2, 3 and 4 are comparable to Spot 5 bands 1, 2 and 3 

(respectively). In addition, multispectral bands for the post-earthquake EO-1 image 

were obtained towards the end the investigation, which also provide similar 

radiometric bands for direct visual comparison.  

Visual comparison of pre- and post-earthquake imagery demonstrates that the 

study area was barely affected by landsliding prior to the event. From this period 

imagery show virtually no landslides, compared with large numbers of landslides 

visible in post-earthquake imagery (for example see Figure 5.2). In addition, this 

finding is back up by very few reports of landslides in literature on the region, and 

observations from field investigations (Densmore 2009, pers comm). Therefore, 

mapping of landslides visible in post-seismic imagery will record predominantly 

seismically induced landslides (co- or immediately post-seismic failures), with 

minimal contribution from pre-earthquake events. Based on this finding, mapping 

of the landslide distribution is undertaken using a single image approach, without 

the need for multi-temporal change detection.  

5.3.3 Pre-processing enhancements 

Prior to image classification and extraction of landslide features, a number of 

textural and spectral image enhancement techniques were applied to the imagery 

in an attempt to improve their suitability for landslide mapping. While some of 

these processes would have improved the condition of imagery for manual 

landslide classification, no processes were found to improve the suitability of 

imagery to the automated mapping techniques. In fact, both the Spot 5 and EO-1 

images were already well suited to the application of automated classification 

algorithms, due to the high levels of intensity and colour contrast with which 

landslide features are depicted. 

5.3.4 Automated classification of landslides 

Classification is the process whereby pixels in an image are sorted into categories, 

based on certain sets of criteria. These criteria are analysed by means of spectral 

http://glovis.usgs.gov/
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and/or spatial pattern recognition techniques. In the case of this investigation it 

was required that pixels were classified into two discrete groups: landslide and 

non-landslide. As such, a binary approach to image classification was adopted, 

with the aim of generating a binary classification dataset of landslide (=1) and non-

landslide (=0) areas.  

The data available for landslide classification are the pixel values of available 

radiometric bands for each region of imagery, as well as elevation from the SRTM 

DEM dataset. As the spatial characteristics of landslides vary in size over several 

orders of magnitude, as well as in shape and orientation, spatial pattern 

recognition is difficult to achieve. However, the spectral properties of landslide 

scars are much more homogenous and easily recognised using computer 

programmable techniques. This is due to the fact that landslide scars produce 

areas of bare soil, which exhibit a highly contrasting spectral and intensity 

signature in comparison to surrounding vegetated areas. As shown in Figures 5.3 

and 5.4, bare soils exhibit higher reflectance than vegetation in SPOT G, R and 

MIR bands, and lower reflectance than vegetation in the NIR; in the EO-1 

panchromatic band, bare soils predominantly exhibit higher reflectance than 

vegetation. Thus systems of spectral classification are applied to extract landslide 

features. In order to categorise pixels, the computer system must first be trained to 

recognise spectral patterns in the data (e.g. Lillesand et al. 2004; Drury 1987). 

Two main techniques exist for training and classifying imagery: supervised 

classification and unsupervised classification. The following section describes 

each of these techniques, and their applicability and performance in the 

classification of landslides. 

 

  



  85  

 

Landsat 5 
18/09/2007 

Spot 5 
13/10/2008 

Figure 5.2: Comparison of Landsat 5 (September 2007) and Spot 5 imagery (October 2008), us-
ing G, R and NIR bands. Landslides appear as bright turquoise areas (bare rock and soil). In  im-
agery from 2007 virtually no landslide features are visible (note that white areas are clouds), while 
a high density of landsliding is visible in imagery from 2008. 

Figure 5.3: Typical spectral signatures of soils (gray-brown), vegetation (green) and water (clear). 
Spot 5 multispectral bands are shown in colours. Green = Green, Red = Red, Purple = NIR, Yel-
low = MIR. (After http://geog.hkbu.edu.hk/virtuallabs/rs/env_backgr_refl.htm). 
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Figure 5.4: Typical spectral signatures of soils (gray-brown), vegetation (green) and water (clear). 
E0-1 panchromatic band is shown in gray. (After http://geog.hkbu.edu.hk/virtuallabs/rs/
env_backgr_refl.htm). 
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5.3.5 Supervised classification 

Through this technique the analyst selects sample areas in an image, which are 

identifiable as certain features. A maximum likelihood classification model is then 

used to identify pixels with similar spectral characteristics, and finally assign all 

regions in the image to a given class (Leica-Geosystems 2002). To apply the 

technique to this investigation, characteristic landslide and non-landslide training 

areas were selected in SPOT 5 imagery, and image pixels output into two 

corresponding classes. This was carried out using the supervised classification 

tool in ERDAS Imagine 9.2. Despite attempting a number of different training 

sample sizes and combinations, the technique was found to produce highly 

fragmented landslide features. The major issue here is that landslides produce 

messy features with highly variable pixel values. This is expected, given the 

unconsolidated mixture of debris contained within scars and deposits. In addition, 

many urban areas, arable fields, roads and river channels were wrongly 

commissioned as landslides, due to their similar spectral properties (as shown in 

Figure 5.5). 

In an attempt to improve upon this result supervised classification was also carried 

out using a stack of spectrally enhanced images (principal component and ratio 

images), which all exhibit high contrast between landslide and non-landslide 

areas. Unfortunately this produced similar results.  

5.3.6 Unsupervised classification 

Unsupervised classification consists of a more computer-automated approach to 

identifying spectral signatures. A user-defined number of classes are determined 

based on spectral distinctions in the n-dimensional feature space. The technique is 

used to output a given number of classes, which can then be interpreted to assign 

meaning by the user. Despite the final binary output required for this investigation, 

it is possible to first produce a number large number of output classes, which can 

then be reclassified into those characterising landslide and non-landslide regions. 

Unsupervised classification images were produced for all multispectral SPOT 5 

scenes using the ERDAS Imagine 9.2 unsupervised classification tool. Default 

maximum likelihood settings for the process were used. 
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Borghuis et al. (2007) found that 32 classes were appropriate to satisfactorily 

separate landslide and non-landslide areas in SPOT 5 images of southern Taiwan 

(Section 3.2). However, 32 classes proved inadequate across many areas of the 

Sichuan imagery. In order to provide a conservative increase in class resolution 

and produce a diverse platform for reclassification, 100 unsupervised classes were 

used. The resultant image was then reclassified into a binary mask based on 

visual identification of landslide and non-landslide areas. This was most 

straightforwardly achieved by importing both the original and classification images 

into ArcMap for visual overlay analysis. The problem of feature fragmentation is 

avoided as signature classes were selected to encapsulate full landslide areas. 

Final binary reclassification was performed using the reclassify function, within the 

ArcMap Spatial Analysis toolpack.  

A very clean delineation of landslide features with no identifiable errors of omission 

was achieved. However, like the supervised classification result, large errors of 

commission were produced, where urban areas, arable fields, roads and rivers 

were wrongly classified as landslides (as shown in Figure 5.6). 
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Figure 5.6: Comparison between manual delineation of landslide (left) and unsupervised classifi-
cation result (right). 

Figure 5.7: Comparison between manual delineation of landslide (left) and unsupervised classifi-
cation result combined with slope filter (right). 

Figure 5.5: Comparison between manual delineation of landslide (left) and supervised classifica-
tion result (right) 
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5.3.7 Classification filtering 

In order to filter out errors of commission whilst not obscuring true landslide areas, 

a combination of filters based on the slope, aspect and geometry of features were 

applied to the classification result. 

I. Slope Mask 

Borghuis et al. (2007) developed a method of filtering errors of commission based 

on slope derived from 40x40m elevation data. It was identified that most wrongly 

commissioned urban areas, roads, farmland and riverbeds occur on shallow 

slopes, whilst landslides have much steeper slope angles (e.g. Chang and 

Slaymaker 2002). Through experimentation with different slope masks Borghuis et 

al. (2007) concluded that a threshold of 28o was appropriate to effectively remove 

the majority of false positives whilst not excluding true landslide areas.  

In order to apply the technique to this investigation, a DEM with the maximum 

available resolution of 90m (USGS SRTM) was used. A raster of slope gradient 

(assessed on a 270x270m window) was derived from this data using the ArcMap 

Spatial Analyst toolbar. A series of binary rasters were generated using the spatial 

analyst reclassify function, classifying pixels above a given slope threshold as 1, 

and those below the threshold as 0. These were generated at intervals of 1o for all 

slopes between 10o and 40o. In order to erase regions with lower than threshold 

slope values from the landslide classification, binary slope-mask and classification 

rasters were multiplied together at the highest input resolution using the ArcMap 

3D analysis>raster math tool. The resultant image is a binary raster of landslide 

and non-landslide areas, with regions shallower than the defined slope threshold 

removed from the classification (Figure 5.7). Optimum slope thresholds were 

identified through experimentation, based on those which produced the best visual 

coherence with visually identifiable landslide areas in the original imagery. Slope 

thresholds applied to each image are given in Table 5.3. Appropriate thresholds 

for different images vary, perhaps due to different lithological material properties, 

which allow landslides to occur at variable slope gradients. As such a 20o slope 

threshold was used for images S2, S3, S4, & E1, while 17o was used from S1. 

Despite the low DEM resolution, this method successfully reduces errors of 

commission, while additional errors incurred by the pixelization of landslide edges 
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are of little significance over the large spatial scale at which the study is 

conducted. 

Image Slope Noise 

filter 

Circularity 

ratio 

Circularity ratio Length-width 

ratio 

Orientation-

aspect 

difference 

S1 Slope < 
17o 

Area < 
300m2 

Circularity > 

0.7 

Circularity > 0.6 AND 

Area < 2000m
2 

Length-width 
ratio > 7 

Area < 15000 

AND Length-

width ratio < 

1.5 AND 

Difference > 40 

S2 Slope < 
20o 

Area < 
300m3 

None None None None 

S3 Slope < 
20o 

Area < 
300m4 

None None None None 

S4 Slope < 
20o 

Area < 
300m5 

None None None None 

E1 Slope < 
20o 

Area < 
300m6 

None None None None 

Table 5.3: Summary of slope and geometric filters (conditions for object removal) applied 
to unsupervised landslide classifications  

II.  Feature oriented filters 

Following use of the slope filter, some additional commission errors remained 

within the S1 image, despite more successful classifications of other images. 

Numerous fields and roads occur on slopes greater then 20o, and slivers of urban 

areas and river channels were generated by the coarse slope mask resolution. 

Arable fields were particularly prominent in S1, primarily due to their higher 

incidence in the region, but also because of the season of image capture when the 

ground would still be relatively bare following the harvest period. To further remove 

this error, landslide classification masks were converted to polygon features (using 

ArcMap spatial analyst toolbar) and a series of feature oriented filters were applied 

(summarised in Table 5.3).  

a. Noise filter 

A „noise filter‟ was applied to all images to remove small, isolated pixel clusters or 

individual pixels too small to be classified as landslides. Borghius et al. (2007) 

applied a threshold of three adjacent pixels to achieve this, thus enforcing a 

minimum landslide mapping unit. In order that this unit be constant across all 
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mapped areas of varying image resolutions, a threshold of three pixels was used 

for 10m imagery (S2, S3, S4 & E1) while a threshold of six pixels was applied to 

5m imagery (S1). Therefore the minimum landslide mapping unit is 300m2 for all 

regions.  

b. Geometric filters 

While images S2, S3, S4, & E1 produced an accurate classification at this stage in 

the algorithm, arable fields remained a significant problem in the image S1. 

However, landslide and non-landslide features can be separated through a 

number of their geometric characteristics. Key parameters are the 2 dimensional 

shape at nadir view, and the 3 dimensional direction of the long axis, when 

combined with a DEM. Thus a series of 2 and 3 dimensional filters were applied to 

the dataset as described below. Optimum filter parameters were all defined 

through experimentation based on their best visual result. 

i. Circularity Ratio 

Circularity ratio was calculated for all S1 polygons using the ArcMap 

ETGeowizards > Polygon characteristics tool. This generates a value between 0 

and 1, as a measure of the polygon‟s circularity. For example, a perfect circle 

would be 1, while thinner, more elongated polygons would produce lower values. 

This field is useful in separating small landslides from small arable fields. Small 

landslides generally produce small but elongated features, perhaps as few as 

seven pixels in size, whereas small arable fields produce more square or circular 

features. Hence polygons with the following characteristics were removed: 

Circularity > 0.7: All features with circularity greater than this appeared to be non-

landslide, field features. 

Circularity > 0.6 AND Area < 2000m2: This filter removed small objects which have 

very limited elongation characteristics. While not all features with circularity > 0.6 

are non-landslides, most small features with area < 2000m2 do fit this category. 

ii. Length-width ratio 

Length and width fields were also generated using the ETGeowizards > Polygon 

characteristics tool, from which their ratio was then calculated. While landslide 
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features can be identified by their higher length-width ratio, objects with very high 

ratios were generally found to be roads, stream channels or valley bottom slivers 

created by the slope masking process. Therefore, these were removed using the 

following filter: 

Length-width ratio > 7 

iii. Primary axis alignment 

When combined with a DEM, landslides may also be identified by the alignment of 

their long axis in the down-slope direction (Liu et al. 2002). Filtering based on this 

principle was achieved by comparing object orientation with slope aspect. Object 

orientation was calculated using ArcMap>Spatial analyst toolbox>zonal geometry. 

This generates a value range of 0-180o, which correspond to grid bearing values 

of 90-270o. Note that all orientations are normalised to a single hemisphere. These 

were converted to grid bearing orientation values by: 

Orientation + 90 = Grid Orientation 

Aspect was derived from the DEM (ArcMap>Spatial Analyst>Surface 

Analysis>Aspect) and mean aspect sampled for each polygon (ArcMap>Spatial 

Analyst>Zonal Statistics). Mean aspects were then normalised to one hemisphere 

(90-270o) through the following logic equation: 

If Aspect > 270o then -180 

If Aspect < 90o then +180 

Orientation and mean aspect fields could then be directly compared to assess the 

alignment of objects relative to the direction of slope. An orientation-aspect 

difference (OAD) field was generated using Equation 5.1:  

OAD = √ (Orientation – Aspect) 2 

Equation 5.1 

As a general principal, objects are unlikely to be landslides where OAD is large, 

and likely to be landslides where OAD is small. However, single polygons 

delineating large multiple landslide clusters are problematic in this analysis, as 
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they may cover a broad range of different aspects including opposing valley sides 

and may be elongated in the along-valley direction. As such, a size threshold of 

15000m2 was set for orientation based filtering. It was also observed that the low 

DEM resolution did not resolve gully features, making landslides appear to 

elongate perpendicular to the direction of slope, where they failed into gullies. In 

order to minimise removal of landslide features, a length-width ratio condition 

threshold of 1.5 was also applied. Combining these conditions the following filter 

was applied to remove objects with over 40o difference between long axis 

alignment and aspect. 

Area < 15000 AND Length-width ratio < 1.5 AND Difference > 40 

5.3.8 Panchromatic band thresholding 

In order to classify panchromatic image E1 a technique of gray-level histogram 

thresholding was used. As noted above, within EO-1 imagery landslides appear 

much brighter than surrounding vegetated regions. The optimum pixel intensity 

(PI) threshold level to delineate full landslide areas was identified through visual 

experimentation with different levels. The final threshold applied was: 

PI ≥ 105  (for a 255 radiometric level, unsigned-8-bit image, see Figure 

5.8) 

Following thresholding, a 20o slope mask was applied to remove wrongly 

commissioned areas, as described in Section 5.3.7. While minimal object filtering 

was required, the 300m2 object area noise filter was also applied. 

5.3.9 Exemptions 

During classification a number of regions were identified in which accurate 

classification of landslide features could not be achieved. These regions occur 

under 2 conditions: 

1. Regions obscured by cloud or significantly strong haze, such that features 

on the ground could not be identified 

2. Regions above 3500m elevation. While landslides could be clearly identified 

where a strong contrast was produced between landslide scars and 
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surrounding vegetated areas, in regions above 3500m the terrain appears 

to be predominantly rock and scree covered. Here it is very difficult to 

delineate landslide scars, as no vegetation cover exists with which to delimit 

newly generated features. 

Due to these limitations, areas of cloud were removed from the classification by 

manual delineation in ArcMap, and areas above 3500m were removed using a 

mask based in the SRTM DEM. The resulting total mapping coverage is shown in 

Figure 5.9. 
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Figure 5.8: Image E1 (E0-1) panchromatic band histogram (black) and intensity threshold (105, 
red). 

Figure 5.9: Final mapping coverage with areas of excessive cloud or haze, and elevation over 
3500m removed. 
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5.3.10  Full map compilation 

To compile classification outputs coverage areas from all images were mosaiced 

with overlap dominance appropriate to give the maximum cloud free mapping 

area. The order of overlap dominance was: 

1. E1 

2. S3 

3. S2 

4. S1 

5. S4 

For example, in areas were E1 and S3 coverage areas overlap only the 

classification result from E1 is retained.  

5.3.11  Manual editing 

Despite improvements made by application of filters, errors of commission were 

visible in the final compiled dataset. For this reason an overview of the entire 

mapped output was undertaken, in order to manually remove obvious visible 

errors. Editing was particularly focused on image S1, where large, visually 

identifiable areas of arable fields remained to be removed from the classification. 

In addition a manual reclassification of valley bottom areas in image S2 was 

undertaken, where light-haze-covered ground appeared to suffer from relatively 

frequent errors. Here the visual identification and classification of landslide scars 

was based upon the parameters outlined in Table 3.1. 

5.3.12 Final classification algorithm summary 

The final image classification process applied to classify imagery in this 

investigation can be summarised in seven stages, as shown in Figure 5.10: 

1. Production of a single image band as a basis for classification 

2. User definition of landslide classes or band threshold 

3. Application of slope filter 
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4. Application of noise filter 

5. Application of object orient filters (where required) 

6. Full map compilation 

7. Manual editing and correction of final mapping result 
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Figure 5.10: Landslide classification algorithm summary. 
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5.4 Validation and evaluation of automated landslide mapping 

Before the mapping result is used in analysis of the landslide distribution, it is 

important that the result be validated and potential sources of error identified. This 

was carried out through comparison of manual and automated landslide mapping 

results (e.g. Borghuis et al. 2007). Automated classification results from the three 

different image types (SPOT 5 -3 band, SPOT 5 – 4 band, EO-1 – Panchromatic) 

are also compared in areas of image overlap, along with testing the impact of 

original image resolution upon derived landslide mapping. Finally, sources of 

mapping error are summarised and evaluated. While this dataset evaluation would 

have been most accurately achieved through comparison of the automated result 

with ground surveyed landslide mapping, the opportunity for fieldwork was not 

available for this investigation. 

5.4.1 Comparison of classified and manually mapped landslides 

In order to examine the relative accuracy of the automated classification 

techniques, 36km2 sample areas (Figure 5.11) of classified landslides were 

compared with the same landslides manually delineated, in images S1, S3 and E1 

(all three image types). Landslides were visually identified and manually 

delineated as polygon features based on their geometric, textural and spectral 

characteristics (see Section 3.2, Table 3.1) in the raw imagery. Where landslides 

could be identified as individual features they were mapped as such. Otherwise 

multiple landslides were mapped as single features, bounded by their combined 

perimeter area. Both manual and automated datasets were analysed in polygon 

feature format. Using ETGeowizards to clip and erase overlap areas, errors of 

commission and omission were extracted for analysis. Landslide density 

(percentage area affected by landsliding) is adopted as a primary unit for analysis 

and evaluation of the dataset. This reflects the primary analysis method applied in 

exploring regional patterns in the landslide distribution (e.g. Meunier et al. 2007), 

thus testing the accuracy of mapping for this application. 
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Figure 5.11: Mapping coverage and validation sample areas 
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Results 

Table 5.4 lists results of comparison tests carried out on manual and automated 

mapping results for all three images. Automated mapping techniques produce a 

net underestimation of landslide areas, relative to manually mapped results, of 

between 6.2 and 22.7%. This underestimation is produced through the 

combination of errors of commission (areas falsely classified as landslides) and 

errors of omission (areas of landslides not classified as such). Areas 

commissioned by automated but not manual techniques equate to between 3.2% 

and 5.6% of the total sample area. Areas omitted by automated mapping equate to 

between 7.4 and 12.5 % of the total manually mapped area. These errors result in 

a net areal automated-manual overlap of between 58.7 and 66.2%, similar to 

those achieved through application of the same method by Borghius et al. (2007), 

of between 53 and 66%. As a percentage of the total sample area mapped, these 

results indicate an overall landslide density underestimation of between 1.8 and 

9.3%.  

Manual and automated techniques also generate data with very different 

magnitude and frequency statistics. The total number of objects generated is 

higher for the automated result in all cases. This is particularly evident in data from 

image S3, where many small pixel scale features are omitted from the manual 

mapping, but included in the automated result. Plotting the frequency-area 

distribution of the datasets using the kernel density method shows that all 

automated datasets are positively skewed relative to manually derived data 

(Figure 5.12).  

Discussion 

The general underestimation generated by automated mapping appears to be due 

to a combination of omission of landslides on slopes below threshold values, and 

also inaccuracies in manual delineation. When manual mapping was undertaken 

the technique was to draw around the edge of landslide features, so that all 

landslide pixels are enclosed within the polygon. However, automated delineation 

generates exact lines along pixels edges, creating apparent omission errors 

around polygon perimeters. In addition automated mapping often fragments 

landslide areas, particularly where vegetation covered ground is present within a 
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landslide feature. Here the analyst can manually delineate the whole landslide as 

a single polygon, while the automated technique delineates areas of bare ground 

separately. This error is in part masked by errors of commission, which mainly 

occur due to inaccuracies in the DEM derived slope mask, and incorrect 

commission of features in valley bottoms.    

Much interest in landslide inventory analysis concerns the frequency-magnitude 

(area) statistics of these datasets (e.g. Malamud et al. 2005, Hovius et al. 2000). 

Given the significant differences in the object frequency-areas distributions for 

manual and automated results, the dataset does not appear to be suitable for this 

form of analysis. The dataset provides a first order measure of area affected by 

landsliding, rather than the number and characteristics of individual failures. 

Investigations in which frequency-area analysis has been applied have been 

produced using much higher resolution aerial imagery or ground based mapping, 

techniques much better suited to object oriented study of landslides.  

While correlations between manual and automated mapping datasets have been 

explored, it is clear that the accuracy of manually mapped results relies heavily on 

the role of the analyst. As such, this experiment does not compare automated 

mapping with a necessarily „correct‟ result, but rather compares two methods of 

first order data extraction, both prone to a series of (presumably independent) 

errors. In order to provide a test of the true accuracy of both these techniques, 

comparison with landslides mapped in higher resolution aerial imagery or through 

ground based studies is necessary. As yet no such data is available, though this 

further level of validation should be undertaken when it is. Nevertheless, both 

manual and automated mapping have been shown to extract similar landslide 

areas and relative landslide densities, with accuracy levels comparable to similar 

studies of this type.  
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Image S1 S3 E1 

Image Type SPOT5 SPOT5 EO-1 

Pixel size 5m 10m 10m 

Number of spectral 

bands 
3 4 1 

Total sample area (km
2
) 36 36 36 

Classification 

technique 

Automated Manual Automated Manual Automated Manual 

Mapped landslide area 

(km
2
) 

9.88 10.54 8.57 11.08 12.26 15.61 

Landslide density (%) 27.45 29.27 23.80 30.77 34.06 43.35 

Number of separate 

mapped objects 
725 465 1027 433 579 200 

Landslide area  

difference (%) 

6.23 22.65 21.44 

Landslide density  

difference (%) 

1.82 6.97 9.29 

Landslide density error 

of commission (%) 
5.57 3.61 3.23 

Landslide density  

error of omission (%) 

7.40 10.58 12.52 

Areal Overlap (%) 62.76 58.72 66.18 

Table 5.4: Results of comparison between manual and automated mapping 
results. Note that landslide density refers to the percentage area affected by 

landslides. 
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Figure 5.13: Relationship between mapped landslide density and original image resolution 

Figure 5.12: Frequency-area distributions for automated and manual mapping results. Note that 
landslides mapped through the automated technique are positively skewed relative to manually 
mapped landslides. 
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Figure 5.14: Relationship between original image resolution and number of mapped landslide fea-
tures  

 

Figure 5.15: Relationship between original image resolution and average (mean and median) 
mapped object size  
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5.4.2 Comparison of landslide maps derived from different resolution 

images 

As a number of different image types were used to create the overall landslide 

map, due consideration must be given to the impact of varying spectral and spatial 

resolution upon the data extracted. The following section compares mapped 

landslide areas from SPOT 5 imagery of varying spatial resolutions, and 

overlapping areas of EO-1 and SPOT 5 imagery of varying spectral resolution and 

conditions of image capture. 

I. Impact of spatial resolution on mapped landslide areas 

In order to examine the effect of varying spatial resolution upon landslide mapping 

outputs, the S1 sample image was used. Due to the low level of agricultural 

activity in the sample area, a relatively clean binary classification was produced 

through stages 1-4 of the classification algorithm alone (see Figure 5.10). Hence, 

this provided a suitable area to test the impact of resolution on landslide 

classification, without introducing object size constraints. The sample image was 

resampled to pixel resolutions of 5m, 10m, 15m, 20m, 25m and 30m. The images 

were then classified through classification stages 1-4, each time selecting the 

same unsupervised signature classes (5.10, stage 2), in order to produce binary 

landslide classification masks at 5m, 10m, 15m, 20m, 25m and 30m resolution. 

Results 

No systematic relationship appears to exist between image resolution and 

landslide density over the whole sample, for this range of values, as shown in 

Figure 5.13. In addition, the maximum variability in total mapped landslide area is 

low, at 3.2% from the mean. Of particular interest to this investigation, 

classification based on a 10m raster generates a total landslide area 1.8% lower 

than that derived from a 5m raster. Despite small variations in the overall landslide 

area, the areal pattern of mapped landslide areas is maintained for all resolutions. 

In terms of object characteristics, a clear negative relationship is shown between 

the number of separate features generated and raster resolution. As shown in 

Figure 5.14 this relationship appears to be best approximated as an exponential 

function (r=0.98). Since no polygon based filtering was undertaken here, the 
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minimum mapping unit is defined by the raster pixel resolution, which produced 

the modal object size in each case. As raster resolution increases, the mean and 

median feature areas increase as linear functions (Figure 5.15). 

Discussion 

The findings from this section suggest there is no systematic relationship between 

mapped landslide area and pixel size, with very little effect on mapped landslide 

areas using different image resolutions. The spatially distributed pattern of 

landslides is also maintained using all image resolutions. This suggests that the 

combined use of 5m and 10m imagery to generate the regional landslide map is a 

valid approach for this investigation. While the 10m resolution sample produced a 

landslide area 1.8% lower than the 5m sample, this finding is specific to the 

sample area used with no evidence of a systematic relationship between pixel size 

and mapped landslide area. Thus it is not applicable, based on this evidence, to 

apply a constant error band across all areas mapped from 10m imagery. 

The frequency-area statistics of the dataset are highly sensitive to raster 

resolution, primarily due to changes in the minimum mapping unit. This finding 

suggests that, while 5m+ satellite imagery is suitable for the regional study of 

landslide distributions, the applicability of the data to object oriented analysis is 

limited by increasing pixel size. Frequency-area density distributions for landslides 

derived from different image resolutions demonstrate how the minimum mapping 

unit and peak frequency are controlled by the image resolution. 

II. Impact of image type and spectral resolution 

In order to validate the combined use of SPOT 5 and EO-1 image types, 

corresponding classifications in cloud free areas of image overlap were also 

compared (Figure 5.16). Sample areas were used for areas of S2-E1 overlap and 

S3-E1 overlap, in order to examine the impact of image acquisition conditions, as 

well as spectral attributes. Classification masks for overlapping images were 

clipped to the exact overlap extent and converted to polygon features for analysis. 

Results 
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In areas of S3-E1 overlap, S3 based classification yields an average landslide 

density that is 2.5% less than that derived from E1. This is mainly brought about 

by the low sun angle (47o), causing a significant topographic shading effect and 

obscuring landslide features. In addition, E1 imagery presents a sharper contrast 

at landslide edges, which allows the algorithm to map right up to the vegetation 

line. In contrast, landslide edges appear more gradual in the SPOT 5 imagery, 

allowing for a thin unclassified halo to surround the features and creating generally 

smaller landslide objects. Despite these limitations, the general spatial pattern of 

landslides is preserved. 

Where S2 and E1 images overlap, the contrast in classification results is much 

more striking. The S2 classification generates a much smaller average landslide 

ratio, 10.1% less than that mapped using E1. This is again due to a combination of 

topographic shading, much more severe in this image with a very low morning sun 

angle of 31o, and the edge pixel effect described above. Topographic shading is of 

particular significance as very few landslides on north to west facing slopes can be 

identified (shown in Figure 5.17). In addition, the image overlap region suffers from 

significant haze in river valleys, which further obscures features in this region of 

high landslide density. Once again, despite the relative differences in landslide 

area, the overall pattern of landslides is preserved in both classifications.  

It is also important to note that the images compared in this section were also 

captured after different periods following the earthquake. E1 was captured in July 

2008, S2 in December 2008 and S3 in October 2008. As such, the extent to which 

mapping is influenced by post-seismic landsliding and vegetation re-growth may 

vary between image scenes.  

Discussion 

Areas of overlapping classifications based on EO-1 and SPOT 5 imagery generate 

the same overall distribution of mapped landslide areas. However, while the 

relative pattern is similar, the total landslide areas extracted vary, as shown with 

particular significance in the comparison of images S2 and E1. This effect appears 

to be primarily due to the conditions of image acquisition (topographic shading and 

valley haze) as opposed to the image type and spectral resolution, although 

misclassification of edge pixels may add in part to this effect. While these findings 
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suggest that classification of SPOT 5 imagery yields an underestimation of 

landslide area relative to EO-1, the effect may not be quite as acute as the S2-E1 

comparison suggests. Valley haze conditions which affect a significant proportion 

of landslide areas in the S2 sample image are not as severe across all imagery. 

As in Part I of this section, it is not appropriate to apply a constant error rating, 

both due to uncertainties in the distributed error value, and the fact that significant 

raster resampling is undertaken in further analysis.  

Despite variation is acquisition dates, errors generated by post-seismic landsliding 

and vegetation regrowth are not expected to be significant at this level of regional 

scale, first order landslide mapping. 
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Figure 5.16: S2-E1 and S3-E1 overlap sample areas 
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Figure 5.17: Area of image S2. Low sun angle and significant topographic shading makes map-
ping landslides on northwest facing slopes problematic. 
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5.4.3 Image condition limitations 

Based on findings from the above section, limitations of the mapping process 

produced by conditions of the imagery used are now summarised. 

I. Hillshading  

While manual and automated mapping techniques can both be applied to extract 

landslide areas, the extent to which newly triggered landslides can be identified is 

limited by spatial and temporal characteristics of the imagery. For landslides to be 

identified by either method they must be visually distinct. As discussed above, this 

is true for most areas where failures occur on vegetated slopes. However, all 

images are affected to varying degrees by topographic shading. In image S1 the 

effect is very mild due to the relatively high sun angle (74o) and landslides are 

classifiable on all slopes. In image E1 the sun angle is lower. This, combined with 

the lack of spectral information, makes landslides on shaded, northwest facing 

slopes very difficult to differentiate from surrounding areas. Images S2, S3 and S4 

suffer from very low sun angles between 31o and 47o. Despite the availability of 

spectral information in these images, shading is so severe that almost no features 

could be be identified or mapped on northwest facing slopes. 

II. Variable vegetation coverage 

Areas to the west of the study area required relatively intensive manual 

reclassification due to their thin vegetation cover. In these regions landslides 

become increasingly difficult to identify as conditions become more arid, and 

contrast between landslides and surrounding areas decreases. For this reason it is 

likely that mapping in this region generates an underestimate of the area affected 

by landsliding. 

III. Valley haze 

While areas of severe cloud and haze were removed from the final mapping result, 

some valley bottom areas suffered from light haze. While this did not completely 

obscure landslides, changes in their spectral signature meant that the automated 

classification was prone to error. In these regions (mainly in image S2) significant 

manual correction was required. 
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5.4.4 Summary 

Comparison of automated and manual landslide mapping techniques demonstrate 

that the automated landslide classification system can be used to delineate 

landslide areas where they are visibly identifiable in high contrast SPOT 5 and EO-

1 imagery. The resulting total landslide areas produced are similar, with a 

maximum difference between landslide areas mapped using manual and 

automated techniques of 23%, due to a combination of errors of commission and 

omission.  

Several sources of error have been identified. Topographic shading results in an 

underestimation of landslide density, particularly in images S2, S3 and S4. 

Underestimation of landslide areas appears to be most acute on hillslopes facing 

northwest in image S2, where a low sun angle combined with sparse vegetation 

cover makes even the visual identification of landslide scars particularly 

problematic. The effect of mild, variable haze acts to alter spectral signatures 

differentially across the imagery. While this is problematic for automated 

classification, accurate manual delineation is still possible, so little error should be 

produced by this effect. Image resolution does not appear to have a significant 

effect on total mapped landslide areas, but the frequency-area characteristics of 

the dataset are very sensitive to this, with a clear inverse relationship between 

pixel size and landslide frequency. 
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5.5 Data format and resampling 

As landslide inventory datasets may take variety of different data formats and must 

be analysed relative to various other data types, a variety of resampling 

techniques may be employed to both describe and analyse the dataset. Prior to 

presenting the dataset itself, this section describes the main data formatting 

technique used in analysis, as well as the impact of variations in format on data 

characteristics. 

The landslide inventory map can be presented in its raw-data format as landslide 

area polygons (as shown in Figure 5.18). These polygons represent areas 

mapped as “landslide”, using the automated mapping technique described in 

Section 5.3. It is important to note that, while these provide a useful measure of 

areas affected by landsliding, individual polygon features do not necessarily 

represent individual landslides, and likely delineate and encompass multiple 

coalesced landslide scars, particularly in areas with high levels of landslide 

occurrence. This data artefact is due in part to the methodological limitation where 

the mapping technique is unable to automatically separate conjoined landslide 

features. However, linked with this is the practical problem of separating conjoined 

landslides, particularly in areas where large reaches of valley wall have collapsed 

in a seemingly continuous landslide feature; linked with this is a conceptual 

problem of how individual landslides should be defined in these scenarios. 

While the raw data format can reveal many key aspects of the landslide 

distribution, in order to both describe and analyse the dataset it is useful to 

spatially resample the landslide-affected area over a variety of scales, which are 

reflective of different geophysical controls upon the landslide distribution. This is 

achieved by calculating the landslide density, Pls, as a percentage of the total 

area, within desired sample zones (after Meunier et al. 2007; Equation 5.2): 

Pls = Als/At 

 Equation 5.2. 

where Als is the area affected by landsliding, and At is the total area within a given 

sample zone. This is calculated by converting the landslide shapefiles into a 5m 

pixel resolution binary raster of landslide (pixel value = 1) and non-landslide (pixel 
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value = 0) areas. The ratio of landslide to non-landslide pixels is then extracted 

using ArcGIS zonal statistics, and converted to a percentage value. Throughout 

Chapter 6, the landslide data are resampled in this way using a variety of sample 

grids, the resolution of which are intended to be reflective of different geophysical 

parameters controlling landslide occurrence over a range of spatial scales. To 

ensure clarity and continuity, the sample grid used to resample landslide 

occurrence will be presented in a figure each time this operation has been carried 

out. 

5.5.1 Matrix grid sampling 

The most straightforward mode of spatial resampling, and a useful tool in 

visualising the macro-scale pattern of landslide occurrence, is to produce a 

landslide density grid for the full areal mapping coverage. This is generated 

through sampling Pls using a matrix grid of constant cell size covering the full 

mapping region. The data layers produced provide both a useful visual tool for 

exploring general patterns of landslide occurrence, and can be used to reduce the 

size of the dataset for more time efficient computer processing.  

However, the sample grid resolution used has an effect on both the level of spatial 

detail of the data produced, and the extent to which the non-uniformly shaped 

mapping area can be covered using non-truncated cells. In order to examine the 

impact of the sample resolution upon the data distribution, landslide density was 

resampled using regular square matrix grids of 0.5km, 1km, 2km, 5km and 10km 

cell size (shown in Figure 5.19.). The lower limit is set by the software package, 

which was unable to sample landslide density for finer matrix grids. In order to 

maintain a uniform cell size, only whole cells which fitted within the borders of the 

coverage area were used. The resultant grid areas and the coverage produced as 

a function of grid size are shown in Table 5.5.  It is clear that, due to the shape of 

the mapped area, only grid sizes ≤2km are suitable to give a majority sample of 

the data, whereas grid sizes ≥5km omit large proportions (over 40%) of the 

mapped area. 
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Matrix grid size (km) Number of cells Total cell 

covered area 

(m2) 

Percentage total 

mapping coverage 

0.5 44598 11150000000 93.62329071 

1 10466 10468000000 87.89673606 

2 2336 9352000000 78.52601029 

5 263 6625000000 55.62818842 

10 38 3700000000 31.06781844 

Table 5.5: Matrix sample grid coverage attributes as a function of grid size 

 

5.5.2 Non-cumulative and cumulative distributions 

In order to examine the distribution of data values produced for each grid cell size, 

the kernel density estimation method was applied. This method estimates the non-

cumulative density function of a variable using a symmetric kernel convolution, 

thus avoiding any discontinuities imposed by setting arbitrary bin sizes for a 

histogram (Cox 2004). In order to examine the cumulative distributions, quantile 

plots were also produced. 

The kernel density functions for all sample grids are shown in Figure 5.20. Each 

density function observes the same overall, positively skewed distribution. 

However, as the cell size increases, maximum landslide densities decrease. In 

addition, the proportion of lower Pls pixels also decreases, with grids of 2km, 5km 

and 10km exhibiting a slight roll-over as Pls approaches 0. Plotting the cumulative 

density functions of these distributions (Figure 5.21) again yields similar overall 

patterns produced by all grid sizes. However, while 0.5km, 1km and 2km grid 

distributions are very similar, those for 5km and 10km stray significantly from the 

distribution for finer resolutions. 
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5.5.3 Discussion 

The first issue brought about by sampling Pls using a variety of grid sizes is that 

larger grids produce very limited coverage of the total mapped area. As such, only 

grid sizes ≤ 2km are suitable for achieving coverage over the whole area.  

The non-cumulative and cumulative distributions produced for 0.5km, 1km and 

2km grids show that, within this range, the sampling resolution as little impact on 

the overall data distribution. However, the effect of varying sample resolution is 

mainly seen at the high Pls end of the distribution. As resolution decreases the 

maximum Pls becomes lower as this is averaged over a larger area. This means 

that larger grid sizes are less able to resolve areas of more localised landslide 

impact, and subsequently provide a coarser overall representation of the dataset.  

In further analysis of the data in this way, it is appropriate to use a range of 

sampling scales. However, it is important to recognise the effect of sample area, 

particularly with regard to the high Pls tail of the distribution. The main impact of 

this is that each sampling of Pls provides a relative index of landslide impact within 

the sample zones used, which is not directly comparable to Pls sampled at different 

scales and using different grid sizes. 

 

 

  



  119  

 

Figure 5.18: Wenchuan earthquake landslide map 
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Figure 5.19: Matrix sample grids of different resolutions 
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2km 

1km 

5km 

10km 
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Figure 5.20: Kernel-density functions for all sample grid sizes. Labelled arrows indicate maximum 
landslide densities by grid size. 

Figure 5.21: Cumulative density functions for all sample grids. Labelled arrows indicate maximum 
landslide densities by grid size. 
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________________________ 

Chapter 6 

Results:  

The landslide distribution 

________________________ 

This chapter presents data generated from the application of the methodology 

developed and validated in Chapter 5. This landslide inventory dataset provides a 

widely applicable resource which may be utilised in many different areas of study. 

For the purposes of this investigation, use of the data is limited to examining 

controls on the spatial distribution of landslides. 
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6.1 Overall landslide inventory map 

The completed landslide inventory map is presented in Figure 5.18. Mapping has 

been carried out over a total coverage area (AT) of 11,909km2. Around 5% of this 

zone (557km2) has been mapped as landslide areas. As discussed in Section 

5.3.9, mapping coverage is not continuous, due to the inability to map areas of 

significant cloud and haze, or dry regions >3500m in altitude. The coverage area 

equates to ~12% of the maximum area (100 000km2) predicted to be affected by 

landsliding in an earthquake of this magnitude (Keefer 2002).The map covers 

150km of the 200km surface rupture (Densmore et al., in review), or 280km total 

co-seismic fault length suggested by the most recent, comprehensive fault model 

(Shen et al., 2009). Fault models suggests that the majority of co-seismic slip 

occurred within the mapped area (Shen et al., 2009; Nishimura & Yagi 2008; Ji 

and Hayes et al. 2008), as do most regions of high ground acceleration, with 65% 

of areas >0.5g covered by the map (USGS 2008). As such, despite the limited 

total coverage, the mapped area represents a significant sample of the main 

impact zone of the earthquake.  

The majority of the mapped area covers the steep topography of the Longmen 

Shan mountains, where most landsliding has occurred; however within this an 

area of around 3,000km2 covers regions of relatively flat topography in the 

Sichuan Basin. The area is dissected by several large rivers including the Min 

River and Jin River, and exposures of all of the main geological units of the region 

are also covered in the sample zone. 

6.2 Data characteristics of the landslide distribution  

In order to examine macro-scale patterns in the landslide distribution while 

removing local noise, the 2x2km landslide density grid matrix (introduced in 

Section 5.5) is used (Figure 6.1). Truncated edge pixels have not been removed 

from the map, in order to improve the visual result; however the scale range is 

limited to samples from full 4km2 pixels only. The cumulative distribution function 

for this data is shown in Figure 6.2. The maximum Pls sampled within a 4km2 grid 

cell is 64.3%. The majority of the region experiences lower landslide impacts, with 

35% of total mapped area (AT) showing Pls = 0%, and 62% showing Pls < 1%. 

However, this distribution is strongly skewed by the influence of large areas of the 
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Sichuan Basin included in the data, which are relatively flat, low lying, and hence 

have not and could not generate landslides. By removing these areas and 

considering data from within the mountain range alone, a better representation of 

controls on the landslide distribution can be achieved. These areas were removed 

by manually delineating the break in slope along the mountain front, to leave the 

mountain range only coverage area AMT. The cumulative distribution function for 

this data is shown in Figure 6.2. In the resulting dataset, 13% of AMT shows Pls = 

0%, and 45% shows Pls < 1%. Areas of significant Pls > 20% are limited to around 

10% of AMT.  

6.3  Landslides relative to geophysical variables 

Characteristics of landslide distributions can be described and examined using 

available thematic datasets, from which independent variables are produced, 

corresponding to various geophysical processes which harbour a conceptual link 

to the occurrence of landslides (e.g. Lee et al. 2008, Keefer 2000; Khazia 2004), 

summarised in Table 6.1. These factors can be split into two categories based on 

the mechanism by which they influence landsliding: 

1. Ground acceleration triggering of hillslope failures 

2. Geophysical causes of hillslope instability 
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Figure 6.1: Landslide density (Pls) resampled using 2x2km matrix grid 

Figure 6.2 Cumulative density function for 2x2km grid with non-mountainous areas removed. Ref-
erence lines and markers refer to values quoted in Section 6.2. 



Chapter 6: Results: The landslide distribution 

126 
 

Independent variable Geophysical process 

Distance from co-seismic fault 
rupture 

Attenuation pattern of peak ground accelerations (Meunier et al. 
2007) 

Co-seismic slip distribution Seismic moment release relating to magnitude of ground 
accelerations (Campbell 1981) 

Hanging wall or footwall Position relative to the northwest dipping fault plane 

Geological unit Material properties of soils and rocks 

Slope gradient Balance of normal and shear forces within  hillslopes, soil water 
content and flow velocities (Wilson & Gallant 2000) 

Elevation Subaerial processes, potential energy and topographic 
amplification of seismic waves 

Local elevation Potential energy (Wilson & Gallant 2000), topographic 
amplification of seismic waves (Meunier et al. 2008), vertical 
distance from river channels 

Relative relief Potential energy (Wilson & Gallant 2000), balance of normal and 
shear forces across larger spatial scales (Schmidt & Montgomery 
1995) 

Plan curvature Converging / diverging flow, soil water content, soil 
characteristics (Wilson & Gallant 2000) 

Profile curvature Flow acceleration, erosion / deposition rate, balance of normal 
and shear forces (Wilson & Gallant 2000) 

Total curvature Topographic amplification at convex knick-points in the 
landscape (Meunier et al. 2008) 

Aspect Subaerial processes - energy available for erosion. Mode of 
erosion. Incidence angle dependent topographic site effect on 
peak ground acceleration (Meunier et al. 2000) 

Distance from major river 
channels 

Ground water content, slope steepening due to fluvial erosion. 

Upslope contributing area Runoff volume, soil water content (Wilson & Gallant 2000) 

Table 6.1: Independent variables and the geophysical processes they represent 

6.4 Ground acceleration triggering of hillslope failures 

The first order macro-scale pattern of seismic landslide occurrence in past 

earthquakes has been related to the regional distribution of ground motions which 

trigger co-seismic landsliding (Meunier et al. 2007; Lee et al. 2001; Lin et al. 

2000). However, ground motion data for the Wenchuan earthquake is very limited, 

with shakemaps largely based on reports of experienced ground motion, post-



Chapter 6: Results: The landslide distribution 

127 
 

seismic building damage observations and very few strong ground motion records. 

However, the distribution of co-seismic ground deformation may be used to infer 

spatial variations in seismic energy released by the earthquake (Wald et al. 1999), 

with the amplitude of seismic waves being expressed as a function of distance 

from the earthquake source (e.g. Taylor et al. 1986; Trifunac 1994; Ambraseys & 

Douglas 2003). Thus, in the following section, landslide occurrence is described 

relative to the distance to mapped co-seismic fault ruptures and to the distribution 

of slip on the co-seismic fault. To achieve this, the pattern of landslide occurrence 

is generalised in the across-strike and along-strike directions, through a directional 

sampling of Pls. 

6.4.1 Across-strike pattern of landslide occurrence 

In order to examine the general across-strike pattern of landsliding for the Chi-Chi, 

Finisterre and Northridge earthquakes, Meunier et al. (2007) sampled Pls within 

5km spaced distance buffers along 50km across-strike corridors. Here, in an 

extension of this method, Pls has been by distance from the main trace of the 

Beichuan fault, using 1km spaced distance buffers (Figure 6.3). Sample areas in 

the hanging wall and footwall were assigned positive and negative distance values 

respectively, in order to produce a constant across fault profile from southeast to 

northwest, shown in Figure 6.4. The mean topographic profile is also shown, 

extracted using the same sample grid. 

The data show a clear hanging wall effect, with much higher landslide density on 

the hanging wall and much lower landslide density on the footwall, even in the 

immediate vicinity of the fault. Superimposed on this there is a general pattern of 

decay in landslide density with increasing distance from the surface rupture trace. 

The decay patterns for both the hanging wall and footwall are best described by 

exponential functions (Figure 6.5). In the hanging wall this decay pattern begins 

~10km from the co-seismic fault rupture and continues to the maximum sample 

fault-distance of 79km. The decay also features two minor peaks that vary from 

the overall trend, both of which coincide with major river tributaries parallel to the 

fault. The decay length in the footwall is much shorter, exhibiting Pls ≈ 0 from the 

break in slope at the mountain front. This rapid decay coincides with a rapid drop 

in both mean elevation and slope gradient east of the Pengguan fault. Here the 
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topographic relief is much lower, with shallow slopes unlikely to sustain 

landsliding. Hence, in the decay functions plotted in Figure 6.5, the footwall data 

are truncated at the mountain front, 18km from the Beichuan fault. The footwall 

decay is also relatively smooth, with only slight fluctuations in decay rate between 

the Beichuan and Pengguan fault ruptures.  

6.4.2 Along-strike pattern of landslide occurrence 

The pattern of landsliding may also be generalised and examined in the along-

strike direction. However, this method of analysis is not seen in the literature as 

most continental earthquakes have much shorter rupture lengths. In order to 

extract the general pattern of along-strike landsliding, the sample area was 

reduced to a 20km buffer either side of the Beichuan fault main trace. This was 

intended to produce an along-strike sample of roughly constant width, whilst 

sampling over a large enough across-strike length as not to be skewed by 

localised noise in the near-field area. The buffer was segmented into 10km slices 

along a N45o, roughly fault-perpendicular bearing (Figure 6.6). Pls was sampled in 

each of these segments and reprojected into an along-fault coordinate system (x-

axis aligned to N45o). As shown in Figure 6.7, the intensity of landslide occurrence 

varies significantly in the along-strike direction. Higher landslide densities are seen 

to the southwest, in the near epicentre region, with generally lower densities 

moving northeast. This overall pattern is punctuated by between three and four 

peaks which occur at along-strike distances of around 20, 40-60, and 120km from 

the epicentre.  

This along-strike pattern of landslide occurrence appears to coincide with features 

of the co-seismic slip distribution. As also indicated in Figure 6.7, the three main 

peak areas of landslide occurrence coincide with peak regions of permanent co-

seismic ground displacements along the Beichuan fault (20-40km and 130-150km) 

and Pengguan fault (40 to 90km). While the sample mapping area breaks down 

towards the north-eastern limit of the rupture zone, field observations and 

preliminary mapping carried out by Li & He (2009) do suggest continued high 

levels of landslide occurrence in these areas and further along the fault. However, 

despite this apparently clear pattern, it should be noted that P ls sample areas do 

vary due to the non-continuous mapping coverage. 
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Figure 6.3:  Across-strike sample grid—1km distance buffers from the Beichuan fault surface rup-
ture. 

Figure 6.4:  Across strike landslide density (black line) and mean topographic profile (grey area; 
sampled using sample grid in Figure 6.3. Surface fault rupture locations: Beichuan fault main 
trace (red), Beichuan fault southwest limb (blue), Penguan fault (orange). 
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Figure 6.5. Exponential decay functions of across-strike landslide density for the hanging wall and 
footwall 
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Figure 6.6:  Along-strike sample grid. 10km segments along a 20km buffer from the Beichuan fault 
main trace. 

Figure 6.7: Along-strike landslide density and coseimsic slip measured on the Beichuan, Penguan 
and Xiayudong faults. Slip data from Densmore et al (in review).  Distance scale refers to along-
strike distance to the northeast, from the southern limit of the Beichuan fault. 
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6.4.3 Two dimensional spatial variations in landslide occurrence 

The above approaches present the landslide distribution relative to a single 

dimension, relating to ground motion patterns in the across or along-strike 

directions. This is a useful approach for generalising the pattern of landslide 

occurrence (e.g. Meunier et al. 2007). However, it presents a very limited 

perspective when investigating large earthquakes with long rupture lengths, where 

the evolution of ground motions is dependent on the fault-relative perspective. A 

more holistic spatial overview of the pattern of landslide occurrence is achieved by 

sampling Pls over multiple across-strike cross-sections, spaced evenly in the 

along-strike direction. As opposed to the matrix sample grid shown in Figure 6.1, 

this approach is better suited for articulating the relative change in landslide 

density between contiguous and proximal areas, as expressed in the dominant 

directions of influence of fault normal impact decay and along fault rupture 

variability. The sample grid used for this is shown in Figure 6.8. Note that the 

spacing across-strike is 1km, while the spacing along-strike is 10km. This is 

intended to reflect the different scales over which influences on seismic ground 

motions vary in these two dimensions.  

Using a 3D surface plot (Figure 6.9) the pattern of landslide occurrence is 

visualised in across- and along-strike directions simultaneously. Again the hanging 

wall effect is evident, particularly in areas to the southwest (lower values on the 

long axis), where landslides occur almost exclusively in the hanging wall of the 

Beichuan and Pengguan faults. However, further along-strike from the Pengguan 

fault, several profiles reveal increasing landslide occurrence in the footwall. To the 

southwest landslides are also distributed at greater distances from the fault 

rupture, however Pls values decay much more rapidly with distance from the fault 

in the northeast. 
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Figure 6.8: Multiple across strike profile, sample grid. 
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Figure 6.9: Multiple along-strike landslide density profiles, plotted in along-fault projection. Long 
axis trends at 45

o
 (northeast). Thick black lines show surface ruptures. Black arrows indicate 

north direction. 
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6.5 Landslide occurrence relative to geophysical causes of hillslope 

instability 

While proximity to the earthquake source and the evolution of ground motion 

magnitude defines the area affected by seismic landsliding, a number of 

geophysical causal factors act to make areas of the landscape inherently unstable, 

with the potential for failure when seismic shaking occurs. Here landslide 

occurrence is described relative to two datasets reflective of these causes: the 

regional map of geological units, and the digital elevation model through which 

various characteristics of the topography are derived. 

6.5.1 Landslide occurrence relative to geological units 

This section is based around Figures 6.10 to 6.13, which illustrate the pattern of 

landslide occurrence relative to geological units. In Figure 6.10, geological controls 

may be linked to the macro-scale distribution of landslides, through visual 

comparison of geological and landslide density maps. Figure 6.11 presents the 

normalised area distribution for the full mapped area (AMT) and the landslide 

covered area (AML), within different mapped geological units, while Figure 6.12 

shows the landslide density (Pls). Finally Figure 6.13 is used to highlight the 

pattern of landslide occurrence relative to age of geological units. 

Mesoproterozoic granitic basement yields the highest landslide density of 18% 

(Figure 6.12), however the unit has an aerial coverage (ATc) of only AT = 0.12 

(Figure 6.11). Field reports suggest that landslides in this unit were predominately 

shallow surface failures, which stripped off thin top soils to expose bedrock (Petley 

2009 pers comm, Densmore 2009 pers comm). Also exhibiting high landslide 

occurrence are Proterozoic volcanics and dolomite, with Pls = 11%, and ATc = 0.02. 

Both these units compose the high, steep terrain of the Pengguan massif area, in 

the hanging wall of the co-seismic fault rupture. 

Next are Palaeozoic greywacke and shale, and Triassic mudstone, sandstone and 

conglomerate. Both these units exhibit Pls = 4%. The Palaeozoic unit is extensively 

distributed throughout the hanging wall of the Beichuan fault, with only small areas 

mapped to the southeast of the co-seismic ruptures. However, Triassic mudstone 

occurs entirely in the proximal footwall of the Beichuan fault, and between the 
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Beichuan and Pengguan faults. In addition, the Palaeozoic unit is the most 

common geology type covering AT = 0.43, while the Triassic unit covers only AT = 

0.09. 

The Triassic (SGF fold belt) turbidites and acidic volcanics unit has the next 

highest Pls of 2%. A relatively small area of this unit is mapped (AT = 0.05), 

beginning at a distance of around 50km from the fault rupture in the hanging wall. 

All other units exhibit Pls<1%, including Jurassic conglomerate, sandstone and 

mudstone; Cretaceous conglomerate; Mesozoic granite; Quaternary 

unconsolidated sediments; and Tertiary conglomerate, sandstone and mudstone. 

Notably the Quaternary unit is the second most common (AT = 0.18), yet exhibits 

the lowest overall landslide density, Pls = 0.003%, with the majority of the unit‟s 

area falling within the low slope filter used in mapping.  

With the exception of Mesozoic granite, all units with Pls<1% occur in footwall 

areas and exhibit low gradients and relief. However, the Mesozoic granite plutons 

occur between 30 and 50km into the hanging wall. The dominant spatial pattern of 

landslide occurrence by geological units reflects the overall macro-scale pattern 

presented in Figure 6.1, of higher Pls in the hanging wall units, lower Pls in footwall 

units, and overall decay with distance from the fault rupture.  

Figure 6.13 shows landslide density plotted against the approximate age (with 

uncertainty margins) of geological units. This shows a pattern of increasing 

landslide occurrence with rock age, which is best expressed by the Tan function: 

Pls = aTan(bGa) 

Equation 6.1  

R² = 0.91 

where Ga is the geological unit age in years B.P., and a and b are constants: a = 

21.6 and b = 3.95x10-4. 

While the dataset produced in this investigation is not appropriate for detailed 

landslide size analysis, the two largest landslides lie in Proterozoic volcanics and 

dolomite, and Palaeozoic greywacke and shale; the largest landslide bridges both 

units, while the second largest occurs solely in the Palaeozoic unit. 
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Figure 6.11: Normalised distribution of all areas and landslide areas, sampled by geological units. 

Figure 6.12: Landslide density distribution sampled by geological units. 
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Figure 6.13: Landslide density by geological unit age. 

Figure 6.14: Mountain terrain only sample area (AMT). Fault ruptures shown by thick black lines. 
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6.5.2 Landslide occurrence relative to topographic attributes 

The SRTM DEM dataset provides topographic elevation data across the full 

coverage of the study area (AT) at 90m pixel resolution. Using the DEM, the 

topography of the area can be described through a range of attributes (Wilson and 

Gallant 2000). The spatial distributions of topographic attributes are commonly 

used as an indirect measure of the spatial variability of Earth surface processes 

(Moore et al. 1991), and thus provide a useful series of base layer data with which 

to describe and analyse landslide inventories (e.g. Lee et al. 2008). In this section 

the following primary topographic attributes (Moore et al. 1991) are used to 

explore topographic characteristics of the landslide inventory: 

 Elevation 

 Slope gradient 

 Local-elevation 

 Relative relief 

 Profile curvature 

 Plan curvature 

 Total curvature 

 Aspect 

 Upslope contributing area 

 Distance from major river channels 

Derivatives of the raw elevation data were produced using the appropriate surface 

functions in ArcGIS spatial analyst. Compound topographic attributes, such as 

topographic wetness indices, have also been applied to landslide distributions 

(e.g. Lee et al. 2008). However, these are not used at this stage in order to avoid 

the complicating affects and cross-correlations which results from combining 

multiple primary attributes. 
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As in the above sections, Pls was sampled within zones reflective of variations in 

geophysical factors. Unlike the regular spatial sample grids and geological unit 

areas, topographic data is spatially continuous and must therefore be divided into 

evenly spaced bins in order to create zones of near-constant value within which Pls 

is sampled. For each topographic attribute, bin ranges were user defined, based 

on spatial variability of the thematic layer and the range of values, in order to 

reflect the overall relationship between Pls and the independent variable. In order 

to suppress the influence of non-uniformly distributed, inherently stable terrain, the 

sampled area used in this section of the analysis is limited to the mountain range 

coverage area AMT, as described in Section 6.2. For each topographic attribute the 

normalised area distribution functions are presented for the full mapped area (AMT) 

and the landslide covered area (AML), and on a separate plot landslide density 

distribution is given. Due to the relatively small 90m zone fragment size (produced 

by the DEM raster resolution) it is not possible to generate figures showing 

individual zone areas in full detail. However, the sample area (AMT) is shown in 

Figure 6.14. 

6.5.2.1 Elevation 

Using the original SRTM elevation data, Pls was sampled in binned zones at 100m 

elevation intervals. The normalised area distribution in Figure 6.15 shows that the 

distribution of landslide-affected hillslopes tracks closely with the distribution of all 

elevations in the area. However, landslides are oversampled on lower slopes 

between 1000 and 2500m, and undersampled in areas between 2500 and 3500m. 

This is reflected in the landslide density curve (Figure 6.16), showing generally 

higher Pls at lower elevations and lower Pls at higher elevations. Very low areas 

also experience relatively low landslide density.  

6.5.2.2 Hillslope gradient 

Figures 6.17 and 6.18 were produced by sampling Pls within 1o gradient bins. In 

Figure 6.17 both datasets produce a roughly symmetrical normal distribution; 

however the distribution of landslide-affected hillslopes is negatively skewed by 

~6o relative to all hillslopes in the sample area. This shows that landslides 

oversample steeper hillslopes, whilst undersampling hillslopes of shallower 

gradient. The resulting landslide density curve (Figure 6.18) shows an increase in 
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landslide density with gradient, which can be expressed as the exponential 

function: 

Pls = 1.6652e0.0536β 

Equation 6.2 

R2 = 0.97 

where β is gradient in degrees. However, despite the strength of the fit, significant 

noise and a slight rollover occurs between 62 and 67o. At these high values the 

sample area is very small, increasing the likelihood of outlying data points – note 

that the outlier at 67o was excluded when fitting the trendline. Greater deviation 

from the trend is also seen at lower values of gradient less than 20o. Whilst the 

sample size is also smaller for these values, this is likely to be an artefact of using 

slope gradient masks of 17o and 20o in the mapping process. Figure 6.18 also 

shows a linear relationship between gradient and the standard deviation of 

landslide density (σPls): 

σPls = 0.6564β + 9.6331 

Equation 6.3 

R² = 0.98 

This appears to fit well for low and mid-range gradient values. Again, poorer 

correlation and a change in trend is evident for values of gradient >61o, and 

greater deviation from the trend at gradients <20o, due to the small sample size at 

the extremes of the range. This shows that, while Pls increases with gradient, 

variability in Pls also increases. Thus, even at steeper gradients, many hillslopes 

did not fail.  
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Figure 6.15: Normalised distribution of all areas and landslide areas, sampled by 100m elevation 
bins. 

Figure 6.16: Landslide density distribution sampled by 100m elevation bins. 
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Figure 6.17: Normalised distribution of all areas and landslide areas, sampled by 1
o
 gradient bins. 

Figure 6.18: Landslide density distribution sampled by 1
o
 gradient bins. 
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6.5.2.3 Relative relief 

Relative relief (R) is calculated from the change in elevation over a given search 

radius, providing an index not only for overall hillslope gradients, but also the 

length of steep slopes and potential energy available for slope failure. In order to 

reflect river to peak horizontal distances of most landslide inducing valleys, a 

search radius of 2km was used, and the data divided into 10m bins. The 

normalized area distribution (Figure 6.19) shows a similar pattern to that of 

gradient. Landslides undersample on lower relief hillslopes and oversample on 

hillslopes with higher relief. This is reflected in the landslide density distribution 

(Figure 6.20), which shows an increase in landslide density with relative relief, 

which is best described by the following curve: 

Pls = aCosh(bR) 

Equation 6.4 

R2 = 0.90 

where a and b are constants: a = 0.5160 and b = 2.119x10-3 

6.5.2.4 Local elevation 

While the raw elevation values in the DEM give absolute height, landslide 

processes occur at the hillslope scale, not the scale of the mountain range as a 

whole. To reflect this Pls was sampled using a raster of elevation within a 4km 

search radius. Again, this convolution size was used to reflect stream to peak 

horizontal distances of most landslide inducing valleys, while allowing for a large 

enough elevation range that longer slopes did not become saturated with peak 

values. In Figure 6.21, the normalised values for AMT and AML both track closely to 

one another in a positively skewed distribution. This creates fairly constant P ls at 

local elevation values between 100m and 2400m (Figure 6.22). At high local 

elevations there is greater variation in Pls and a peak at the highest elevation 

value. Here the sample size is very small, with the peak Pls value based on a 

sample of only 4 raster pixels, compared to >95000 pixels in the 500m bin.  
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Figure 6.19: Normalised distribution of all areas and landslide areas, sampled by 10m relative 
relief bins. 

Figure 6.20: Landslide density distribution sampled by 10m relative relief bins. 
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Figure 6.21: Normalised distribution of all areas and landslide areas, sampled by 100m local ele-
vation bins. 

Figure 6.22: Landslide density distribution sampled by 100m local elevation bins. 
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6.5.2.5 Slope curvature 

Curvature is a measure of the spatial change in gradient on a pixel to pixel basis, 

indicating whether a surface is concave or convex. Three forms of curvature 

measurement are commonly used in geomorphological investigation: 

 Profile curvature, relating to flow acceleration, and the rate of erosion or 

deposition 

 Plan curvature, signifying convergence or divergence of flow, along with soil 

water content 

 Total curvature, calculated from the sum of the profile and plan curvatures, 

indicating whether the overall shape of a surface is curves inward or 

outward. 

Curvature units were divided into 0.1m-1 bins for analysis. In all normalised area 

distributions, mid-values of curvature ~0m-1 make up the majority of the sample. 

This is demonstrated in the full range of values plotted for total curvature in 

Figures 6.23 and 6.24. Thus, while the distributions are spread over a range of 

over ±10m-1, the majority of pixels range between ±1.5m-1 (plan and profile 

curvature) to ±3m-1 (total curvature), with significant noise in the landslide density 

distribution beyond these limits. In order remove outlying data-points and better 

visualise the majority of the data, plots for curvature are truncated where the 

sample size becomes close to 0; this occurs roughly at a distance of 5 standard 

deviations from the mean. 

The frequency distribution for profile curvature (Figure 6.25) shows a slight 

undersampling of concave-up slopes (curvature<0m-1), and a slight oversampling 

of convex-up slopes (curvature>0m-1). Planar hillslopes (curvature≈0m-1) are also 

undersampled. This is reflected in the landslide density distribution (Figure 6.26), 

which shows higher landslide densities on convex than concave surfaces. 

Considering the whole dataset, this produces an average Pls of 25% for profile 

concave surfaces and 28% for profile convex surfaces. 

Contrary to the pattern observed for profile curvature, the frequency distribution for 

plan curvature (Figure 6.27)  shows a slight oversampling of concave hillslopes 
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(hollows, curvature<0m-1), and a slight undersampling of convex hillslopes 

(noses). This results in higher landslide densities on concave than convex 

surfaces (Figure 6.28). Considering the whole dataset, this produces an average 

Pls of 32% for plan concave surfaces and 18% for plan convex surfaces. 

For total curvature, the frequency distribution (Figure 6.29) shows an oversampling 

of concave hillslopes and an undersampling of convex hillslopes. Like the 

landslide density distribution for plan curvature, this produces higher landslide 

densities on concave than convex surfaces (Figure 6.30). Considering the whole 

dataset, this produces an average Pls of 29% for overall concave surfaces and 

18% for overall convex surfaces. 

In summary, examining the landslide distribution using curvature measures shows 

that the majority of landslide affected areas occur on hillslopes with low curvature 

values close to 0. In other words, on hillslopes which are neither excessively 

concave nor convex. However, at these mid-values, landslides occur preferentially 

on hillslopes with concave plan and total curvatures, and convex profile 

curvatures. 
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Figure 6.24: Landslide density distribution sampled by 0.1m
-1

 total curvature bins. 

Figure 6.23: Normalised distribution of all areas and landslide areas, sampled by 0.1m
-1

 total cur-
vature bins. 

Slope curvature (m-1) 

Slope curvature (m-1) 
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Figure 6.26 Landslide density distribution sampled by 0.1m
-1

 profile curvature bins. Graph is lim-
ited to curvature values from 1.5 to –1.5. 

Figure 6.25: Normalised distribution of all areas and landslide areas, sampled by 0.1m
-1

 profile 
curvature bins. Graph is limited to curvature values from 1.5 to –1.5. 

Slope curvature (m-1) 

Slope curvature (m-1) 
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Figure 6.28: Landslide density distribution sampled by 0.1m
-1

 plan curvature bins. Graph is limited 
to curvature values from 1.5 to –1.5. 

Figure 6.27: Normalised distribution of all areas and landslide areas, sampled by 0.1m
-1

 plan cur-
vature bins. Graph is limited to curvature values from 1.5 to –1.5. 

Slope curvature (m-1) 

Slope curvature (m-1) 
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Figure 6.30: Total curvature Landslide density distribution sampled by 0.1m
-1

 total curvature bins. 
Graph is limited to curvature values from 1.5 to –1.5. 

Figure 6.29: Normalised distribution of all areas and landslide areas, sampled by 0.1m
-1

 total cur-
vature bins. Graph is limited to curvature values from 1.5 to –1.5. 

Slope curvature (m-1) 

Slope curvature (m-1) 
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6.5.2.6 Aspect 

In order to examine the aspect distribution of Pls, topographic aspects was divided 

into 10o bins, from 0 to 350oN. In order to reflect the directional nature of the 

datatype, both frequency and probability distributions are plotted using polar 

coordinates. The normalised area distribution (Figure 6.31) shows an 

oversampling of landslide areas between 60o and 200o (clockwise), and an 

undersampling of landslide areas between 210o and 40o (clockwise). This results 

in a pattern of higher landslide densities on slopes facing southeast, falling to 

lower landslide densities on slopes facing northwest (Figure 6.32).  

As shown in Figure 6.4, landsliding took place in the hanging wall of the Beichuan 

and Pengguan faults, almost exclusively. Therefore, this suggests oversampling 

and higher landslide densities on slopes facing towards the co-seismic fault 

rupture. 

6.5.2.7 Upslope contributing area 

The upslope contributing area (UCA in m2) of a given point in the landscape 

provides an index for the runoff volume passing through that location. As upslope 

contributing area values are distributed over several orders of magnitude, bins 

were selected at regular intervals of 0.1 log10UCA. 

The normalised area distribution (Figure 6.33) shows an inverse relationship 

between UCA and the sample size. Landslides undersample on slopes with 

log10UCA<4.4, but oversample for those with values between 4.5 and 5.9. Beyond 

this point the sample size becomes very small (beyond the 99th percentile). In 

terms of the landslide density distribution (Figure 6.34), Pls increases between 

values of 3.9 and 4.8, but the decreases beyond this point, with increasing 

variability. Peak landslide densities are seen at very high levels of UCA, however 

the sample size is very small for these areas. 

This data shows that the majority of landsliding occurs on slopes with low UCA, 

however the probability of landsliding increases within the first order of magnitude 

increase in UCA. Thereafter the probability of landsliding and the overall 

occurrence of landslides decrease. However, minority areas with very high UCA 

appear to experience much high rates of landslide occurrence. 
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Figure 6.32: Landslide density distribution sampled by 10
o
 aspect bins. 

Figure 6.31: Normalised distribution of all areas and landslide areas, sampled by 10
o
 aspect bins. 
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Figure 6.34: Landslide density distribution sampled by 0.1 Log10m
2
 bins. 

Figure 6.33: Normalised distribution of all areas and landslide areas, sampled by 0.1 Log10m
2
 

bins. 
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6.5.2.8 Distance from major river channels 

Figure 6.35, shows the macro-scale pattern of landslide occurrence in relation to 

major river channels extracted from the DEM. For this, a UCA threshold of 44km2 

was used to define the channels as this was found to reflect the major rivers in the 

mountain range, along which high density areas of landsliding appear to occur 

(Figure 6.35). While the UCA is used to describe landslide occurrence in relation 

to local runoff patterns throughout the landscape, the macro-scale pattern of 

landsliding may be described in relation to larger scale features of the hydrological 

system. To achieve this, Pls was sampled within 0.1km bins of Euclidean distance 

from these major river channels. 

The normalised area distribution (Figure 6.36), shows an oversampling of 

landslide areas within 1km of the river channels. Thereafter landslide areas 

undersample, until a slight oversampling between 7km and 8km. In the landslide 

density distribution (Figure 6.37), this results in the highest landslide densities 

close to the river channels at 0.1km, followed by a decay with distance to ~2km. 

While Pls peaks at 0.1km, at 0km Pls drops by almost 2%; this is likely due to the 

removal of landslide masses in river channels from the mapping, through the use 

of a slope gradient filter. Between 2km and 5km Pls increases slightly, before 

decreasing again at ~6km. Between 6km and 8km a second peak in Pls occurs. 

This appears to be related to the very large landslides in the distribution, which 

occur in higher catchments away from these major channels.  
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Figure 6.35: 2km landslide density matrix grid, overlain with major river channels (UCA > 44km
2
) 
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Figure 6.37: Landslide density distribution sampled by 100m bins of Euclidean distance from ma-
jor river channels (UCA>44km

2
) 

Figure 6.36: Normalised distribution of all areas and landslide areas, sampled by 100m bins of 
Euclidean distance from major river channels (UCA>44km

2
) 
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6.6 Chapter summary 

Associations of landslide density and seismic, topographic and geological 

attributes have been considered individually using bivariate techniques. An 

exponential decay in landslide density is observed with across-strike distance from 

co-seismic surface ruptures. However, the pattern of this decay varies with along-

strike distance, with landslides confined to areas closer to the fault in the 

northeast, and distributed further from the fault in the southwest. This is 

superimposed over a marked hanging-wall effect, which is most pronounced in the 

southwest where landslides occur almost exclusively in the hanging wall and 

landslide density remains high for greater distances from the co-seismic fault 

rupture. Regions of peak landslide occurrence in the along-strike direction also 

appear to coincide with peak areas of co-seismic slip on the Beichuan and 

Pengguan faults.  

Older geological units in hanging wall areas exhibit a strong oversampling of 

landslides, most notably Mesoproterozoic granitic and Palaeozoic greywacke and 

shale, where the majority of the landslide impact is focussed. In addition, Triassic 

mudstone, sandstone and conglomerate, as well as Triassic (SGF fold belt) 

turbidites and acidic volcanics, both exhibit significant landslide densities. 

Landslide density demonstrates strong positive correlation with topographic 

attributes of hillslope gradient and relative relief. Landslide densities are near 

constant across the range of local elevations. Higher landslide densities are found 

in areas close to major river channels and on hillslopes with southeast aspects. 

Hillslopes with concave plan and total curvatures, and convex profile curvatures 

also exhibit higher landslide densities. Finally, there appears to be overall positive 

correlation between landslide density and upslope contributing area, however the 

precise nature of the relationship is unclear.  

The data demonstrate the complex nature of seismological, geological, 

topographic and hydrological variables controlling the spatial distribution of 

earthquake-triggered landslides. Following on from this the importance of different 

spatial scales over which the influence of different variables acts is apparent. To 

better understand the processes which govern seismic landslide occurrence, the 
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following chapter explores the relative influence and interrelationship of the 

geophysical variables examined in this section. 
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________________________ 

Chapter 7 

Statistical modelling of  

landslide occurrence 

________________________ 

Chapter 6 presented bivariate relationships between landslide occurrence and the 

available thematic datasets reflecting different components of seismicity, 

topography, geology and hydrology. In order to further understand the relative 

influence of these predictor variables, the following section applies a generalised 

linear modelling approach to build logistic regression models for landslide 

probability, based on the available parameters. This is achieved by first modelling 

landslide probability using all predictor variables, before sequentially removing the 

least significant predictors, in order to identify fundamental controls on landslide 

occurrence. As a final exercise the logistic model for landslide probability is 

applied across the entire rupture zone of the Wenchuan earthquake, in order to 

produce a probabilistic landslide distribution incorporating areas not covered by 

the sample data from the available imagery.  
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7.1 Data format 

In order to carry out this analysis, GIS data layers for both dependent and 

predictor variables were converted to raster format and resampled to the SRTM 

DEM resolution (90m) using a nearest neighbour method. Data values from all 

rasters were then sampled to a point at each pixel centroid location, to produce a 

data table of 1,042,754 observations covering the fields shown in Table 7.1. Within 

the database, the landslide variable was preserved as a binary field, while 

categorical predictor variables „geology’ and „hanging wall or footwall of Beichuan 

fault’ were given integer values in order of ascending landslide density. Slope 

aspect (As) has been related to characteristics of seismic wave evolution 

dependent on slope direction relative to the fault rupture (Meunier et al. 2008). In 

order to reflect this, new aspect values were generated as a function of the actual 

aspect rotated clockwise 135o (Ar), centring the mid value of aspect (180o) at the 

N45o trending direction of the fault rupture. Where:  

As = 45o
, 

 Ar = 180o 

As = 135o
, 

 Ar = 0o 

The normalised sine and cosine of Ar were then calculated to reflect fault parallel 

and fault perpendicular aspect influences, so that: 

Sin(Ar) = 1 = fault perpendicular to the northwest 

Sin(Ar) = -1 = fault perpendicular to the southeast 

Cos(Ar) = 1 = fault parallel to the northeast 

Cos(Ar) = -1 = fault parallel to the southwest 

7.2 Bivariate relationships 

Chapter 6 explored the nature of bivariate relationships between the occurrence of 

landslides and the independent variables. These relationships are summarised, in 

terms of r-value, in the covariance matrix for the dataset (Table 7.2) and plotted for 

relationships with landslide occurrence in Figure 7.1. 
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Dependent variable ID Code Units or values 

Landslide binary LS 0 = non-landslide 

1 = landslide 

Predictor variables   

Distance from co-seismic fault 

ruptures   

FD Metres 

Co-seismic slip distribution DS 10-3 Metres 

Hanging wall or footwall of 

Beichuan fault 

HF 0 = footwall 

1 = hanging wall 

Geology G Ranked integer values from 1 

to 9, in order of ascending 

landslide density 

Slope gradient SL Degrees 

Elevation DEM Metres 

Local elevation LCEL Metres 

Relative relief R Metres 

Total curvature CT m-1 

Plan curvature CPL m-1 

Profile curvature CPR m-1 

Aspect As Degrees from North 

 Ar Degrees rotated 135o from 

North 

 Sin(Ar) 1 = fault perpendicular to the 

northwest 

-1 = fault perpendicular to the 

southeast 

 Cos(Ar) 1 = fault parallel to the 

northeast 

-1 = fault parallel to the 

southwest 

Distance from major river 

channels 

RD Metres 

Upslope contributing area UCA Log10(m2) 

Table 7.1: Data fields used in modelling 
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Variables LS FD DS HF G SL DEM LCEL 

LS 1               
FD -0.2173 1             
DS -0.0487 0.062 1           
HF 0.0311 0.4492 0.2111 1         
G 0.2724 -0.5294 0.0146 0.0841 1       
SL 0.1809 0.1997 0.0184 0.3296 0.0806 1     

DEM -0.0264 0.4789 -0.056 0.5358 -0.0069 0.3566 1   
LCEL -0.0185 0.1908 -0.0264 0.3716 0.1371 0.3148 0.8152 1 

R 0.1732 0.3016 -0.0036 0.491 0.1437 0.5835 0.6143 0.5444 
CT -0.044 -0.0109 0.0032 -0.0059 0.0044 0.037 0.0642 0.1506 

CPL -0.0254 -0.0095 0.0027 -0.0098 0.0022 0.0362 0.02 0.0661 

CPR 0.0506 0.0094 -0.0029 0.0007 -0.0054 -0.0283 -0.0901 -
0.1931 

RD -0.0717 -0.0704 -0.0679 0.0035 0.0456 -0.0307 0.313 0.4161 

UCA 0.0427 0.0307 -0.0046 0.0303 0.0015 -0.2211 -0.0839 -
0.2212 

sin(Ar)  -0.084 0.0313 0.0116 0.0531 -0.0066 -0.0162 0.0449 0.0335 
cos(Ar)  0.0036 0.0118 0.0138 -0.0025 0.0025 0.006 -0.0009 0.0007 

 R CT CPL CPR RD UCA sin(Ar)  
cos(Ar

)  

R 1               
CT 0.0037 1             

CPL -0.0149 0.8631 1           
CPR -0.0206 -0.8751 -0.5109 1         
RD -0.0128 0.0062 -0.0298 -0.0391 1       

UCA -0.0054 -0.512 -0.5122 0.3807 -0.0835 1     
sin(Ar)  -0.0108 0.0035 0.0001 -0.0059 -0.0372 -0.0058 1   
cos(Ar)  0.0008 0.0004 0.0007 0 -0.0136 0.0017 0.0142 1 

Table 7.2: Covariance matrix showing r-values for all variables 

These results generally concur with the conceptual relationships demonstrated in 

Chapter 6. However, the covariance value for LS (landslide occurrence) and DS 

(co-seismic slip distribution) suggests a negative relationship. While a positive 

relationship was suggested in Section 6.4.2, this is not demonstrated by direct 

spatial correlation; likely due to the high level of local scale variation in ground 

motions between contiguous fault segment zones. A negative relationship does 

not fit conceptually with the association of seismic moment, PGA and landslide 

occurrence. As such DS was not used in logistic regression and modelling.  
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Figure 7.1: Ordered covariance values for landslide binary and predictor variables 
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7.3 Introduction to generalised linear modelling of landslide probability: 

logistic regression 

Linear regression is the most commonly used model in both social and physical 

sciences to explore relationships between continuous dependent and controlling 

variables. However, in order to handle a binary, categorical dependent variable 

(such as “landslide” and “non-landslide”) a special type of regression model is 

required. For this logistic regression is used, which carries assumptions reflecting 

the non-linear (S-curve) nature of relationships between binary dependent and 

independent variables (Long 1997; Agresti 2007). As with linear regression, 

logistic regression can be used with a single or several predictor variables. The 

primary objective of logistic regression is to model the probability that a given 

situation is true, i.e. that the dependent variable is 1, based on the following 

equation: 

Log(Pr ÷ 1-Pr) = b0 + b1x1 + b2x2 + b3x3…bnxn 

Or 

Pr = 1  (1 + e(-(b0 + b1x1 + b2x2 + b3x3…bnxn))) 

Equation 7.1 

Where Pr is the probability of the binary qualifier being 1, xn are the predictor 

variables, bn are the coefficients of the predictor variables, and e is the exponential 

function. 

As such, logistic regression is a commonly applied method used to model 

relationships between landslide occurrence and geophysical variables (e.g. 

Ayalew & Yamagishi 2005; Dai & Lee 2003; Gorsevski et al. 2006; Garcia-

Rodriguez et al. 2008; Kincal et al. 2009). The majority of these studies have 

focused on the use of the output probability values for mapping of landslide 

susceptibility in future events, based on the assumption that the past occurrence 

of landslides in a specific site is indicative of the potential for future landslides to 

occur in sites with similar characteristics. However, the application in this 

investigation focuses on hind-casting landslide occurrence, to understand the 

extent to which the spatial distribution of landslides is explained by the available 

predictor variables.   
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In order to gauge the strength of correlation and degree of explained variability 

produced by regression models, R2 values generated in ordinary least squares 

(OLS) regression are conventionally used. In order to incorporate the non-linear 

nature of logistic relationships, several pseudo or alternative R2 measurements 

have been proposed as an equivalent statistic to evaluate the goodness-of-fit of 

logistic models (see Long 1997). However these vary in both methodology and 

derived values, and cannot be interpreted as one would interpret OLS R2 values. 

Despite the binary nature of the observed landslide data, the use of conventional 

R2 values does provide a meaningful measure of goodness-of-fit (Cox 2009 pers 

comm); a perfect model will generate an R2 of 1, whilst a poor model will produce 

results closer to 0. Thus, conventional OLS R2 is provided for reference throughout 

the modelling process, while pseudo R2 values are also quoted to allow 

comparison to previous investigations. These are calculated automatically by the 

data analysis suite Stata using McFadden‟s R2 

(http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_ RSquareds.htm, 

Appendix 1), and follow the general principle that pseudo R2 values > 0.2 are 

evidence of a relatively good fit (Clark & Hosking 1986). 

7.4 Landslide probability modelling 

Initially, logistic modelling was carried out using all predictor variables bar DS. The 

model coefficients and correlation statistics are shown in Table 7.3. Model output 

fields given are: Number of observations; „LR chi2 (x)‟ (Likelihood ratio chi-square 

with x degrees of freedom); „Prob>chi2 (p)‟ (p-value associated with the chi-square, 

with a p-value less than 0.001 indicating the model as a whole is statistically 

significant); Pseudo R2 (McFadden‟s R2; Appendix 1); R2 (OLS R2); Predictor 

(predictor variables); Coefficient (values for logistic regression); Standard error; z 

(z-statistic, calculated by dividing the coefficient by the standard error); p (two 

tailed p-value for the z-test); 95% confidence interval. 

  

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_%20RSquareds.htm
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Number of observations 1042754 
    

LR chi
2
(14) 178875.33 

    
Prob > chi

2
 (p) 0.0000 

    
Pseudo R

2 0.2640 
    

R
2 0.215 

    
Predictor Coefficient Standard error z p 95% confidence interval 

FD -0.0000749 0.00 -170.79 0 -0.0000757 -0.000074 
HF 0.2785568 0.01 24.34 0 0.2561306 0.300983 
G 0.2663283 0.00 83.55 0 0.2600804 0.272576

2 SL 0.0549285 0.00 119.37 0 0.0540266 0.055830

4 DEM 0.0004006 0.00 34.06 0 0.0003776 0.000423

6 LCEL -0.0020913 0.00 -100.97 0 -0.0021319 -

0.002050

7 

R 0.0026965 0.00 113.77 0 0.0026501 0.002743 
CT -5.808673 4.66 -1.25 0.213 -14.94515 3.327808 
CPL 5.894954 4.66 1.26 0.206 -3.241575 15.03148 
CPR -5.632926 4.66 -1.21 0.227 -14.76939 3.503534 
RD -0.0000314 0.00 -11.91 0 -0.0000366 -

0.000026

3 

UCA 0.2238308 0.01 39.02 0 0.2125883 0.235073

2 Sin(Ar)  -0.3227096 0.01 -60.65 0 -0.3331382 -

0.312280

9 

Cos(Ar)  0.0030124 0.01 0.56 0.577 -0.0075709 0.013595

8 _cons -7.240535 0.04 -196.34 0 -7.312814 -7.168255 
Table 7.3: Logistic regression output for all variables model (1). Key for variable 

codes is given in Table 7.1. 

A p value less than 0.001 indicates that the model is statistically significant. Based 

on the correlation coefficients, the following model for probability of landsliding (Pr) 

is produced: 

Pr = 1 / (1 + e(-([-7.240535] + [-0.0000749*FD] + [0.2785568*HF] + [0.2663283*G] 

+ [0.0549285*SL] + [0.0004006*DEM] + [-0.0020913*LCEL] + [0.0026965*R] + [-

5.808673*CT] + [5.894954*CPL] + [-5.632926*CPR] + [-0.0000314*RD] + 

[0.2238308*UCA] + [-0.3227096* Sin(Ar]) + [0.0030124 * Cos(Ar)]))) 

Equation 7.2 

R2 and pseudo R2 values indicate that between 22 and 26% of variation in the 

spatial occurrence of landslides is explained by the predictor variables, and 

conversely, between 78 and 74% of the variation is not explained by the datasets 

available. Despite the low pseudo R2 value, this represents a relatively good fit, 

based on the analysis of Clark & Hosking (1986). 
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7.5 Comparison of landslide occurrence and modelled probabilities 

In order to understand how actual landslide occurrence corresponds with modelled 

probabilities, Pr and LS may be compared both graphically and spatially. While a 

scatter plot of LS against Pr is difficult to interpret due to the binary nature of LS, 

the overall relationship can be visualised by applying a smoothing line (symmetric 

nearest neighbour smoothing), shown in Figure 7.2. Here the smoothing line can 

be understood as the ratio of landslide to non-landslide samples (landslide 

density) plotted against modelled landslide probability. In addition, the relationship 

between landslide and non-landslide samples across the probability scale may be 

further understood through both their non-cumulative (kernel density) and 

cumulative distributions (Figures 7.3 and 7.4).  

Figure 7.2 shows a gradual increase in the proportion of landslide (LS = 1) 

samples with Pr. The relationship exhibits a slight S-curve, with a greater rate of 

increase in landslide occurrence between probability values of 0.1 and 0.4, and a 

tailing off either side of this range. However, this effect is slight and as such there 

is no defined probability threshold above which landsliding becomes abundant. 

The reason for this is clear from Figure 7.3. Here the non-cumulative kernel 

density distributions of landslide and non-landslide areas demonstrate significant 

overlap, with the modes of both landslide and non-landslide observations 

occurring at low landslide probability values of 0.104 and 0.002 respectively. While 

the proportion of samples affected by landsliding increases with probability, the 

available thematic data cannot discriminate LS at mid to low probability values, 

which are high in frequency. Although the probability of landsliding becomes 

greater than that of non-landsliding at Pr = 0.5, over 70% of landslide samples 

actually occur at Pr < 0.4, as shown in Figure 7.4. In other words, within the 

landscape there are large areas with medium to low probabilities of landsliding, 

and it is upon hillslopes within these probability bounds that the majority of 

landsliding occurs. 

This issue is particularly apparent when comparing the spatial distribution of actual 

landslides and landslide probabilities. By projecting modelled probabilities (Pr) for 

each observation into the mapping coordinate system, the spatial distribution of 

probabilities can be visualised relative to mapped landslide areas (Figure 7.5). 
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Areas of higher probability generally concur with the distribution of mapped 

landslides. However, there are also significant regions with high landslide 

probabilities which did not actually result in failure and landsliding, and conversely 

regions with low landslide probabilities which did fail. Particularly notable are the 

locations of very large landslides at the north-eastern limit of the Pengguan massif, 

which exhibit relatively low probability values. Nevertheless, the modelled 

probabilities appear to provide a reasonable macro-scale estimate of the 

distribution of actual landslides, as the geophysical parameters used in modelling 

are representative of key processes and mechanisms causing landsliding in the 

majority of cases.  
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Figure 7.2: Black: Scatter plot of logistic regression predicted landslide probabilities (Pr) and ac-
tual landslide occurrence (LS). Grey: symmetric nearest neighbour smoothing line, indicating ratio 
of actual landsliding by predicted landslide probability. 
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Figure 7.4: Cumulative distribution of landslide and non-landslide observations 

Figure 7.3: Non-cumulative (kernel density) distribution of landslide and non-landslide observa-
tions 
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7.6 Relative significance of predictor variables and logistic model 

simplification 

While a model using all independent variables will necessarily produce the highest 

level of correlation and explained variability, not all variables contribute equally to 

the modelled probability. A model with such numerous variables is also 

unnecessarily cumbersome, restricted in computational efficiency and has limited 

application to transfer to other situations. In order to identify the key independent 

variables controlling the occurrence of landslides the model may be simplified 

incrementally by removing less significant predictor variables. This serves the 

purpose of both building an understanding of the relative weighting of different 

predictors, and identifying the key predictors while removing more redundant ones. 

Logistic regression output „p‟ values and „z‟ values were used as the primary guide 

to relative significance of the predictor variables. First, the following variables 

exhibiting p-values greater than 0.05 (indicating non-statistically significant 

relationships) were removed: 

 CT 

 CPL 

 CPR 

 Cos(Ar) 

This produced the logistic regression output for all variables exhibiting statistically 

significant coefficients, show in Table 7.4. 
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Number of observations 1042754.0000 
    

LR chi
2
(14) 178592.5800 

    
Prob > chi

2 0.0000 
    

Pseudo R
2 0.2636 

    
R

2 0.2125 
    

Predictor Coefficient Standard error z p 95% confidence interval 

FD -0.0000749 4.38E-07 -170.92 0 -0.0000758 -0.0000741 
HF 0.2815552 0.0114335 24.63 0 0.259146 0.3039644 
G 0.2672046 0.0031861 83.87 0 0.2609599 0.2734493 
SL 0.0552555 0.0004585 120.53 0 0.0543569 0.056154 
DEM 0.0004099 0.0000117 34.94 0 0.0003869 0.0004329 
LCEL -0.0021427 0.0000205 -104.52 0 -0.0021829 -0.0021025 
R 0.0027028 0.0000237 114.05 0 0.0026563 0.0027492 
RD -0.0000293 2.63E-06 -11.16 0 -0.0000344 -0.0000242 
UCA 0.2323459 0.0050685 45.84 0 0.2224117 0.24228 
Sin(Ar)  -0.3221622 0.0053155 -60.61 0 -0.3325804 -0.3117441 
_cons -7.281414 0.0344752 -211.21 0 -7.348984 -7.213844 

Table 7.4: Logistic regression output for model using statistically significant 

coefficients 

From the result the following logistic regression equation is produced: 

Pr = 1 ÷ (1 + e(-([-7.281414] + [-0.0000749*FD] + [0.2815552*HF] + [0.2672046*G] 

+ [0.0552555*SL] + [0.0004099*DEM] + [-0.0021427*LCEL] + [0.0027028*R] + [-

0.0000293*RD] + [0.2323459*UCA] + [-0.3221622* Sin(Ar)])) 

Equation 7.3 

Predictors were then removed sequentially based on their z-value, which is 

produced by dividing the correlation coefficient by the standard error. The predictor 

with the lowest z-value (the combination of a low coefficient and high standard 

error) was removed with each repeated model run, such that predictors with higher 

coefficients and lower standard errors remained in the model, reducing input 

predictors to those with the most significant parameters. The sequence of input 

predictors and the resulting model pseudo R2 values are shown in Figure 7.6, to 

illustrate the impact of input predictor alteration on model performance. Numbering 

of different model combinations from 1 to 11 is also shown here. 

Pseudo R2 values are not greatly affected by the removal of CT, CPL, CPR, 

Cos(Ar) RD and HF. With the removal of DEM the reduction in pseudo R2 starts to 

become more pronounced, and drops off rapidly following model 7. By projecting 

modelled probabilities back into the map co-ordinate system, it is also clear that 
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significant changes in the spatial distribution of landslide probabilities also occur 

beyond this predictor combination (see Appendix 2). As such, predictors used in 

model 7 are core to controlling the spatial distribution of landslides: 

 FD 

 R 

 LCEL 

 SL 

 G 

Use of these predictors alone results in the five parameter logistic model: 

Pr = 1 ÷ (1 + e(-([-6.340695] + [-0.0000645*FD] + [0.33166*G] + [0.0496199*SL] + 

[-0.0018463*LCEL] + [0.0032465*R]))) 

Equation 7.4 

The modelled probabilities produce by models 1 (all parameters) and 7 (core 

parameters) demonstrate a high degree of correlation (R2 = 0.93), as shown in 

Figure 7.7. The spatial distribution of landslide probabilities also demonstrates a 

high level of correspondence with mapped landslide areas, as shown in Figure 

7.8.  

In addition to identifying the core predictors, all independent variables exhibiting a 

significant relationship with landslide occurrence may be ranked based on their 

removal order in the modelling process, shown in Table 7.5. 
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Rank Predictor variable 

1 Distance from co-seismic fault ruptures 
2 Relative relief 
3 Local elevation 
4 Slope gradient 
5 Geology 
6 Fault perpendicular component of aspect 
7 Upslope contributing area 
8 Elevation 
9 Hanging wall or footwall 
10 Distance from major river channels 

Table 7.5: Relative ranking of predictor variables 

To focus on the core predictors, this suggests that attenuation of peak ground 

accelerations exhibits the dominant control on landslide occurrence, with regions 

closer to the co-seismic fault rupture more prone to landsliding. The high 

significance of relative relief and slope gradient suggests that within regions 

experiencing ground motions, steeper and longer topographic slopes are more 

susceptible to landsliding. The significance of local elevation suggests that 

landslides preferentially occur on lower on slopes, which may signal preferential 

proximity to river channels. Following this, geology is also of high significance. 

This must be considered in terms of both the material properties and hence 

susceptibility to failure of different rock types, and topographic slope features 

formed within different geological units. This is illustrated by examining the 

correlation coefficients of the core variables to one another. As shown in Table 

7.6, hillslope gradient, local elevation and relative relief all demonstrate positive 

correlation with ranked geology, showing that geological units more susceptible to 

landsliding sustain steeper hillslopes with greater relative relief. In addition, 

geology is also inversely correlated to distance from fault ruptures, showing that 

geological units with the highest levels of landslide occurrence occur where PGAs 

are higher. Despite these correlations, the significant decrease in pseudo R2 with 

the removal of G from the model suggests that the geological variable is 

representative of factors not accounted for through topographic and co-seismic 

variables alone. In addition, there is significant cross-correlation between gradient, 

local elevation and relative relief. The fact that these all form core predictors of 

landslide occurrence despite this correlation highlights the importance of the 

different scales of process which these different features represent. 
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Variables FD G SL LCEL R 

FD 1     
G -0.5294 1    
SL 0.1997 0.0806 1   
LCEL 0.1908 0.1371 0.3148 1  
R 0.3016 0.1437 0.5835 0.5444 1 

Table 7.6: Subset of Table7.2, covariance matrix for FD, G, SL, LCEL and R. 
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Figure 7.6:  Sequence of model input predictors and resulting pseudo R
2
 goodness-of-fit values.  

Figure 7.7: Scatter plot comparison of model probabilities produced using all predictors (1) and 
core predictors (4) logistic regression. R

2
 = 0.93. 
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7.7 Probabilistic landslide occurrence for the full rupture zone 

While logistic modelling is useful in understanding controls on the distribution of 

landslides, the predictor coefficients can also be used to predict landslide 

occurrence in areas where no observational data on landslides exists or was 

available. Using coefficients from model 2 (all statistically significant relationships), 

the logistic regression model was applied to an area of 200,000km2 (26,558,400 

observations) including the full length of the rupture zone and adjacent areas. The 

output of this exercise is a complete map of probabilistic landslide occurrence for 

the Wenchuan earthquake, shown in Figure 7.9. 

The map suggests that the majority of the main landslide impact zone of the 

earthquake was covered by sample area (AT), and it is highly unlikely that regions 

of significant landsliding extend much further beyond this zone. It is also notable 

that the area of mapped landslides encompasses variability exhibited by the 

predictor variables across the remainder of the rupture zone, and hence it is likely 

that the model performs comparably well in these areas also. In general the 

predicted landslide impact is focused around the Pengguan massif - an area of 

steep slopes and granite geology between the Wenchuan and Beichuan faults. 

However, landslide probabilities > 0.1 continue along the full length of the fault 

rupture to the northeast, where landslide impact appears to be more evenly 

distributed on either side of the fault rupture. As the model is based on a uniform 

decay pattern with distance from the fault rupture in all directions, this effect can 

be associated with hillslope susceptibility to landsliding rather than variations in 

peak ground accelerations. In other words, larger areas susceptible to landsliding 

occur in footwall areas in the northeast of the rupture zone, than is the case to the 

southwest. In agreement with the actual distribution of landslides, areas of 

greatest landslide probability occur alongside major rivers, an effect which appears 

to be mainly linked to topographic characteristics of these areas, rather than a 

direct hydrological effect.  
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Figure 7.9: Map of probabilistic landslide occurrence for the full rupture zone of the Wenchuan 
earthquake. Colour scheme is truncated at Pr =  0.1, beyond which no actual landslides appear to 
occur.  Elevation (greyscale DEM) and coseismic fault ruptures (black lines) are shown for per-
spective.  
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7.8 Full rupture zone model evaluation and considerations 

While the probabilistic landslide map appears to provide a good first order 

estimate of the distribution of landslide affected areas, there are several key 

limitations which must be taken into account when interpreting the result. While the 

model proposes to predict occurrence of landslides, the training sample included a 

combination of both landslide scars and deposits. Therefore, some regions with 

high predicted landslide probabilities may result from essentially stable areas upon 

which landslide material has been deposited. This may well be the primary cause 

of overestimation of landslide probabilities in the near-fault region. A more 

accurate map of landslide occurrence may be attainable by separating landslide 

source areas and modelling using these alone. However this option was not 

available, without significant manual reworking of the raw landslide data. 

As described in Section 5.3.9, the mapping extent did not include areas >3500m. 

In addition, no variable reflective of topographic amplification of PGA (e.g. 

normalised distance from ridge crests) was used in the modelling process. The 

combined absence of training samples at high altitudes and predictor variables 

incorporating topographic effects is likely to have produced an underestimation of 

slope failures occurring along ridge crests, as would be expected for earthquake-

triggered landslide distributions.  

Within the AT sample region, the dominant co-seismic effect is attenuation with 

distance from the fault rupture. Given the unilateral rupture propagation which took 

place during the earthquake (Nishimura and Yagi 2008; Shen et al. 2009), larger 

peak ground accelerations are expected to have occurred to the northeast in areas 

towards which the rupture propagates, but which fall outside the sample area. No 

predictor variable reflective of this effect has been included in the model, and it is 

likely that the modelled probabilities reveal an underestimate of the probable 

landslide impact in areas to the northeast. 

7.9 Chapter summary 

Generalised linear modelling of landslide occurrence through logistic regression 

has revealed the relative influence of different geophysical processes on the 

occurrence of landslides. To begin with, topographic curvature attributes were 

identified as being relatively redundant, exhibiting statistically insignificant 
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relationships to landslide occurrence. Using all predictor variables a maximum of 

21 to 26% of variability in landslide occurrence is explained. When comparing 

landslide probabilities to actual landslide occurrence no distinctive threshold for 

landsliding is apparent, with a large number of landslide samples occurring in 

areas with Pr<0.4. Of those variables showing significant relationships, a ranking 

of relative significance has been achieved, identifying distance from co-seismic 

fault ruptures, slope gradient, relative relief, local elevation and geology as the key 

geophysical variables controlling the spatial distribution of landslides. In addition, 

the fault-perpendicular component of aspect has also been identified as 

significant.  

By applying the model across the entire rupture zone of the earthquake and its 

adjacent regions, a map of probabilistic landslide occurrence has been generated. 

This reveals a first order estimate of the complete landslide distribution produced 

by the Wenchuan earthquake. The result should be interpreted with due 

consideration to both the limitations of the input data quality, sample, and 

generalised linear modelling capabilities. 

The following chapter provides a further analysis and discussion of these findings, 

in relation to the wider literature on earthquake-triggered landsliding, before 

exploring the broader application of the results and techniques used. 
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________________________ 

Chapter 8 

Analysis and Discussion 

________________________ 

Despite recent advances, many questions persist in understanding controls on the 

spatial distribution of earthquake-triggered landslides. The 2008 Wenchuan 

earthquake presents the opportunity to study these processes for a large 

continental thrust event with complex faulting mechanisms and diverse 

geophysical conditions. Through mapping a significant proportion of the landslides 

triggered by the event this study has generated a landslide inventory dataset for 

the main rupture and impact zone of the earthquake. This has been examined with 

respect to seismological, topographic and geological datasets, reflective of various 

parameters governing the occurrence of landslides. The following section reflects 

on the characteristics of the landslide distribution in the context of contemporary 

literature on earthquake-triggered landsliding. Following this, the wider implications 

and applications of both the dataset produced and techniques developed in this 

project are explored. As such the findings and implications of this study can be 

considered at three levels: 

1. The processes and mechanisms governing the occurrence of earthquake-

triggered landslides 

2. Practical implications for landslide inventory investigations 

3. Broader applications and contributions of research findings within the fields 

of hazard management, seismology and geomorphology 
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8.1 Processes and mechanisms governing the occurrence of earthquake-

triggered landslides 

The Wenchuan earthquake presents a multifaceted problem in understanding 

controls on the occurrence of earthquake-triggered landslides, due to the 

complexity of earthquake mechanisms and broad variation in topographic, 

geological and hydrological conditions across the rupture zone. As such, to 

understand the distribution of slope failures a combination of seismological, 

topographic and geological datasets must be considered, along with the different 

scales of process they represent and complex interactions between geophysical 

parameters. The last three decades have seen significant advancement in this 

understanding, identifying common characteristics of seismic landslide 

distributions. The research findings of the investigation are discussed in light of 

this work, framed within the two categories of landslide generating processes 

considered in this study: 

 Seismological triggering parameters 

 Topographic and geological landscape characteristics controlling slope 

stability 

8.2 Seismological triggering parameters 

During earthquakes landslides are triggered by seismic accelerations, which 

generate transient, short-lived stresses that overcome the cohesive and frictional 

strength of hillslope materials (Newmark 1965). As such, the spatial distribution of 

peak ground accelerations is the most commonly used index to relate ground 

motion to landslide occurrence (e.g. Khazai & Sitar 2004). The macro-scale 

distribution of peak ground accelerations can be understood in terms of the 

following components (e.g. Bolt 2003; Somerville et al. 1996, 2003; Abrahamson & 

Somerville 1996; Meunier et al. 2008; Douglas 2002; Campbell 1981; Bommer 

2003): 

 Seismic moment release 

 Rupture directivity 

 Attenuation of PGA with distance from the seismic source 

 Faulting type and geometry 

 Topographic site effects 
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Each of these components can be both conceptually linked to, and may be 

reflected in the distribution of seismically triggered landslides. 

8.2.1 Seismic moment release: seismic wave generation 

In Section 6.4.2 an apparent correlation between the co-seismic slip distributions 

and variations in landslide density in the along-strike direction was highlighted. In 

order to understand the potential mechanism for this link, the relationship between 

co-seismic slip and ground motion must first be considered. Ground motions are 

caused by seismic waves, generated by release of energy along the fault plane. 

Seismic energy released in an earthquake (Es) can be understood in terms of 

seismic moment (Mo): 

Es ∝ Mo = µAS  

Equation 8.1 

where µ is the shear modulus (crustal rigidity) of the rocks in which the earthquake 

occurs (typically 32 GPa in crust or 75GPa in mantle), A is the area of the 

seismogenic rupture plane (found by multiplying the length and width of the 

rupture plane), and S is the average co-seismic displacement across the rupture 

plane (Aki and Richards 1980; Figure 8.1). Thus, where variable slip distributions 

occur (and assuming little along-strike variation in µ and fault width), along-strike 

variations in co-seismic slip are roughly proportional to variations in the release of 

seismic energy. However, despite the rough correspondence in spatial patterns of 

co-seismic surface slip and landslide density, direct positive correlation is not 

observed.  

If there is an empirical link between landslide density and Mo, then this uncertainty 

may be due to a number of additional geophysical factors. Spatial variations in the 

distribution of vulnerable slopes - for example the offset of major river valleys 

relative to 10km fault segments - are likely to spatially offset the impact of higher 

Mo levels from their source regions. In addition, while Mo may be related to PGA 

through region specific relationships (e.g. Margaris & Papzachos 1999) site effects 

may also result in high levels of local variability in PGA. As such, it would be 

premature to conclude a direct empirical link between landslide density and co-

seismic slip based on the results of this study. However, the general patterns of 
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slip and landslide density suggest this may be discernable through further 

investigation. 
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Figure 8.1: Illustration of seismic moment parameters (http://earthquake.usgs.gov/learn/glossary/?
term=seismic%20moment) 

Figure 8.2: Illustration of  hanging wall and footwall during thrust fault earthquakes, and their prox-
imity to the coseismic fault rupture (Abrahamson & Somerville 1996) 
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8.2.2 Directivity 

In addition to considering the likely pattern of seismic waves generated by the 

static slips distribution, the direction of rupture is also an important consideration 

for understanding shaking intensity. Directivity recognizes the nature of the 

seismic source as a moving object, rather than a fixed point, line or plane 

(Shabestrari & Yamazaki 2003). This is particularly important when considering 

faults which rupture unilaterally, from one end to the other. The result of unilateral 

rupturing is a marked directional difference in seismic ground motion, with larger 

amplitudes recorded at sites towards which the rupturing occurs (Bolt 2003; 

Shabestari & Yamazaki 2003). Spatio-temporal rupture models produced by both 

Nishimura & Yagi (2008) and Zhang (2009) demonstrate the occurrence of 

unilateral rupturing in the Wenchuan earthquake, moving from the epicentre in the 

south-west to the north-east along the fault. As such, continued high levels of 

landsliding along-strike are likely to also be driven by this factor. While the current 

dataset shows decay in the occurrence of landslides from an along-strike distance 

of 140km, this is likely to be an effect of the sample area coverage; other studies 

suggest high levels of landsliding further to the northeast in accordance with 

larger, directivity driven PGAs, as is shown in Figure 4.16 (e.g. Huang & Li 2009a). 

8.2.3 Attenuation of seismic waves 

While the along-strike pattern of landslide density may be understood in terms of 

the co-seismic slip distribution and directivity, across-strike landslide density may 

be understood in terms of the fault geometry and fault perpendicular attenuation of 

seismic waves.  

8.2.4 Hanging wall effect 

The most striking component of the across-strike pattern of landslide occurrence is 

the marked hanging wall effect. This effect, common to thrust events, is 

recognized to result from systematic differences in ground motion in the hanging 

wall and footwall of thrust faults. (e.g. Abrahamson & Somerville 1996; Sato et al. 

2007; Owen 2008; Shabestari & Yamazaki 2003; Jibson et al. 2004). Significantly 

larger PGAs are observed in hanging wall areas, resulting in higher levels of both 

landslide occurrence and general damage. The hanging wall effect can be 

understood in terms of the fault geometry, where sites located above the fault 



Chapter 8: Analysis and Discussion 

192 
 

rupture (in the hanging wall) are closer to the source fault plane than areas in the 

footwall, as illustrated in Figure 8.2 (Abrahamson & Somerville 1996).  

While the hanging wall effect may be explained in seismological terms alone, it is 

apparent that both topography and geology play a significant role in how this effect 

is manifested in the Wenchuan earthquake landslide distribution. Whilst landslide 

occurrence is almost exclusively confined to areas in the hanging wall of the 

Beichuan and Pengguan faults (Figure 6.4), so too is the high, steep topography of 

the Longmen Shan. As such, the majority of the footwall is comprised of hillslopes 

of insufficient gradient and relief to generate landslides. Similarly, the fault rupture 

forms a major boundary for geological units, such that units with higher rates of 

landslide occurrence are all located on the hanging wall block. This in turn may be 

related to higher rates of uplift and resulting climatically and seismically driven 

denudation in hanging wall areas, through which high levels of relative relief are 

developed in and sustained by particular geology types. This explanation is 

particularly compelling, as PGAs in immediate footwall areas of thrust faults may 

be as large as those in the hanging wall, due to the effect of directivity in the up-

dip direction (Abrahamson & Somerville 1996). Thus high landslide densities may 

also be expected here, if steep topography was present. Therefore, while the 

hanging wall effect is recognized as primarily seismological in nature, its influence 

on the Wenchuan earthquake landslide distribution appears to be strongly linked 

to the fault relative distribution of topography. This in turn may be linked to the long 

term role of the fault geometry in landscape evolution on longer temporal scales. 

It is also important to note that while the above discussion generalizes the rupture 

zones in terms of a hanging wall and footwall, the fault geometry of the Wenchuan 

earthquake involves two parallel along-strike surface ruptures. A third category of 

rupture zone may be defined: the mid wall, occurring as the footwall of the 

Beichuan fault and hanging wall of the Pengguan fault. Landslide occurrence 

begins to increase moving from the footwall into the mid wall, as both topography 

and the hanging wall effect have an influence. However, the full severity of the 

effect is only apparent on the hanging wall side on the Beichuan fault, where 

topography is steepest and highest. 
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8.2.5 Attenuation effects with distance from seismic sources 

Despite the overall contrast between landslide occurrence in the hanging wall and 

footwall, both sides of the fault rupture exhibit an exponential decay in landslide 

density with distance. Through generalized linear modelling in Chapter 7, distance 

from co-seismic fault ruptures was identified as the highest ranked predictor 

variable controlling the occurrence of landslides. Within the hanging wall this 

decay initiates after ~10km with a relatively flat landslide attenuation signal 

between 5 and 10km, while it begins immediately in the footwall. This fits with the 

PGA patterns observed for various thrust fault earthquakes where a fairly flat PGA 

attenuation signal occurs from 6 to 12km on the hanging wall (Abrahamson & 

Somerville 1996). This effect is expected as a recurring feature of ground motion 

in reverse thrust events (Abrahamson & Somerville 1996), though it is not fully 

explained in the literature.  

Exponential decay functions with distance from the seismogenic source have long 

been established for PGA (e.g. Campbell 1981; Taylor et al. 1986; Trifunac 1994). 

Correspondingly, several authors have attempted to demonstrate an exponential 

decay function for landslide occurrence, both empirically and conceptually. Prior to 

considering these studies it is important to bear in mind that the source of seismic 

waves is, in reality, spread out through a volume of rock with spatially variable 

energy release (Bolt 2003). However, for convenience most landslide 

investigations generalize this as a point (epicentre) or linear source (surface 

expression of the fault plain or surface rupture). In addition, the method for 

measuring landslide occurrence is also inconsistent, with most investigations 

making reference to either landslide concentration (number of landslides/km2) or 

landslide density (percentage area affected by landslides). As such, comparisons 

between studies must be considered with an element of caution and awareness of 

potential uncertainties. 

Keefer (2000) fitted an exponential decay function to the concentration of 

landslides (landslides/km2) triggered by the 1989 Loma Prieta earthquake, 

expressed as distance from both the epicentre and the surface projection of the 

fault plane. Here, distance from the epicentre produced a better goodness-of-fit. 

For the 1999 Chi-Chi earthquake, data from Khazai & Sitar (2004) suggest an 
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exponential decay in landslide concentration with distance from the epicentre, 

while distance from the surface projection of the fault plane appears to produce a 

roughly linear function, although the authors did not fit curves. Conversely data 

from Dadson et al. 2004 suggest an exponential decay in landslide density with 

distance from the surface projection of the fault plane of the Chi-Chi earthquake, 

after a distance of ~20km. Here the use of landslide density is more comparable 

with this investigation, as opposed to the landslide concentration data of Khazai & 

Sitar (2004). Meunier et al. (2007) demonstrated linear correlation between PGA 

and landslide density from the Northridge and Chi-Chi earthquakes. Based on this 

the authors proposed a landslide density attenuation law with an exponential 

decay function based a common expression for evolution of seismic waves with 

distance from the hypocenter (Taylor et al. 1986; Trifunac 1994). Thus the 

exponential decay function observed in this study agrees generally with empirical 

landslide data for past earthquakes and observed relationships between ground 

motions and landslide occurrence.  

8.2.6 Constraining the seismic energy source 

A key issue arising out of the above sections is what feature to consider as the 

source of seismic energy. Of particular concern is the potential for large 

oversimplifications in the use of the focus (epicentre or hypocenter) defined as: 

“the point within the earth where an earthquake rupture starts” (USGS) or the 

“point from which the [seismic] waves first emanate”. This is particularly 

problematic in the case of the Wenchuan earthquake for a number of reasons. 

Firstly, there are uncertainties of up to 100km regarding the actual location of the 

focus (Figure 8.3; Shen et al. 2009). Secondly, the most widely accepted USGS 

epicentre location is placed at the southwest limit of the rupture zone, showing that 

the earthquake ruptured unilaterally from this point, while most of the damage 

caused by the earthquake occurred to the northeast. Considering landslide density 

with distance from this epicentre (Figure 8.4) produces a very noisy attenuation 

signal, and is dominated by observations in the along-strike direction. It is also 

important to note that the point of rupture initiation does not necessarily represent 

a region of maximum slip or energy release. Use of a linear energy source, split 

into hanging wall and footwall, solves the problem of confining the energy source 
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to one end of the fault, while also recognizing the systematic differences between 

fault perpendicular components of ground motion.  

However, categories of hanging wall and footwall remain generalizations of both 

distance from and location relative to the dip plane of the fault. In addition, fault 

geometry alone does not account for variations in PGA. The earthquake was 

generated by a highly variable co-seismic slip distribution, style of faulting and fault 

geometry (Shen et al. 2009), which have all been shown to affect PGA amplitude 

and attenuation patterns (Campbell & Bozorgina 1994; Bommer et al. 2003). 

Correspondingly, the multiple across-strike landslide density profiles (Figure 6.9) 

suggest variations in the rate of landslide density attenuation depending on along-

strike location. 

Given the over generalizations produced through the use of point and linear 

energy sources, it would appear logical that uncertainties arise from failure to 

consider 3-dimensional fault geometry in landslide attenuation relations. While the 

use of a volumetric energy sources may be both practically and conceptually 

challenging, planar fault geometries and displacement fields (made available in the 

immediate aftermath of seismic events) appear to offer a suitable stepping stone.  
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Figure 8.3: Map of Wenchuan earthquake rupture zone, showing disagreement in the location of 
the epicentre (Shen et al 2009). 

Figure 8.4: Pattern of landslide density with distance from the epicentre within 1km concentric 
buffers. 



Chapter 8: Analysis and Discussion 

197 
 

8.3 Topographic site effects 

While variabilities in seismic wave generation and attenuation act over large 

horizontal scales of tens of kilometres, at finer scales topographic relief 

demonstrates a profound influence on the propagation of seismic waves. This 

results in distinct zones of amplification and damping of ground accelerations in 

particular topographic locations (Benites and Haines 1994; Bouchon et al. 1996; 

Meunier et al 2008). The impacts of topographic site effects on the location of 

earthquake-triggered landslides can be examined in terms of two related 

components: 

1. Amplification of ground accelerations at topographic convexities 

2. Amplification or damping of ground accelerations due to the incidence angle of 

seismic waves 

8.3.1 Amplification of ground accelerations at topographic convexities 

Ground accelerations in several earthquakes have been observed to be 

significantly larger at ridge crests than those in surrounding flat areas or valley 

bottoms. For example, Spudich et al. (1996) noted that seismic wave amplitudes 

during the 1987 Whittier Narrows earthquake (California, USA) were an order of 

magnitude greater at the top of a 60m hill than in the surrounding plains. This 

topographic amplification occurs as seismic waves entering the base of a 

topographic ridge are partially reflected back into the rockmass and diffracted 

along the free surface. Progressive focusing of waves in the upward direction, and 

constructive interference of their reflections and diffractions increases ground 

accelerations towards the ridge crest (e.g., Davis and West, 1973; Bouchon, 1996; 

Geli; et al., 1988; Benites and Haines, 1994). For this reason topographic 

amplification has been suggested as a significant component affecting the 

occurrence of seismically induced landslides (e.g. Sepulveda et al. 2005a, b; 

Murphy 2002; Havenith et al. 2002; Harp & Jibson 2002; Densmore & Hovius 

2000; Meunier et al. 2008). In a review of four earthquake-triggered landslide 

distributions and two rainfall-triggered landslide distributions, Meunier et al. (2008) 

identified a predominant clustering of earthquake-triggered landslides around ridge 

crests, while rainfall triggered landslides occurred more uniformly across slopes or 

were clustered near streams. Seismic wave field models and PGA observations in 
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ridge and valley topographies demonstrated strong amplification of S-waves 

(though little effect on P-waves) near ridge crests and other convex knick points in 

the topography such as the edge of inner gorges. Considering the linear 

relationship between PGA and landslide density demonstrated in Meunier et al. 

(2007), and observed clustering of landslides near ridge crests, both an empirical 

and conceptual link between landsliding and topographic convexities is inferred. 

Despite this, the results of this investigation do not suggest a strong direct link 

between topographic curvature attributes and landslide density, which proved to 

be non-statistically significant when correlated directly in logistic regression. 

Correlation of curvature and landslide density also suggested higher landslide 

occurrence on slopes with overall (total) and plan concave forms, but higher levels 

of landslide occurrence on slopes with convex profiles. This uncertainty and 

contradiction with the literature may well be an artefact of both the mapping and 

analysis process. In many places, landslide runouts were mapped as well as 

scars. While failures may have initiated at convex features on hillslopes, their 

majority area would have been mapped in the concave topography into which 

landslide material was deposited. In addition, direct correlation of convexity and 

landslide density may not be applicable to the process, as landslides may not 

occur directly on convex points, but rather may initiate near to or down slope from 

them. Due to practical difficulties in mapping ridge crests, distance or normalized 

distance from these features was not used as a variable in analysis. Thus, while 

landslides can be visually observed as initiating from ridge crests in the satellite 

imagery (e.g. Figure 8.5) this is difficult to demonstrate graphically at this stage, 

and requires further work with the dataset. Negative relationships for landslide 

occurrence with distance from major river channels and local elevation may be 

linked to topographic amplification and initiation of landslides at convexities along 

the edge of inner gorges. However, steeply incised hillslopes with steeper 

gradients also appear to occur along adjacent to river channels. Therefore, a 

seismic component may not be necessary to explain the preferential occurrence of 

landslides in these areas, where steep, unstable slopes cluster. 
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Figure 8.5: Spot imagery draped over DEM, showing landslide initiation from ridge crests. 

Figure 8.6: Pattern of landslide density by aspect, for the Finisterre (Papa new Guinea), Chi Chi 
(Taiwan) and Northridge (California) earthquakes. Star shows location of the earthquake focus. 
Arrows indicate the direction of fault dip. 



Chapter 8: Analysis and Discussion 

200 
 

8.3.2 Amplification or damping of ground accelerations due to the 

incidence angle of seismic waves 

In addition to ground acceleration amplification at major convexities, the seismic 

wave field models of Meunier et al. (2008) also suggested that with increasing 

seismic wave incidence angle, the amplification maxima shift progressively from 

the ridge crests into the ridge flanks facing away from the wave source. This is due 

to constructive interference of the direct wave and the diffracted wave generated 

at the ridge. In addition, a damping effect is observed on slopes facing towards the 

wave source. For shallow earthquakes with large incidence angles over much of 

their impact zone, this suggests a net amplification on slopes facing away from the 

fault plain and a net damping on slopes facing towards the fault plain. Meunier et 

al. (2008) relate this factor to the normalized aspect distributions of landslides 

densities produced by the Chi-Chi, Finisterre and Northridge earthquakes (Figure 

8.6). For Chi-Chi and Finisterre, landslide density is strongly skewed to slopes 

facing away from the seismic wave source. However, landslide densities in 

Northridge are strongly skewed to slopes facing towards the source, though this is 

ascribed to the dominant dip direction of geological strata (Parise and Jibson 

2000) and the dependence of the soil production rate on subaerial processes, 

resulting in large amounts of unstable material on slopes facing south, towards the 

fault rupture (McFadden et al. 2005). Based on both the empirical evidence and 

conceptual link to PGA, the authors conclude: “These strongly oriented landslide 

distributions indicate that topographic site effects dominate the location of 

earthquake induced landslides in central west Taiwan and the southern Finisterre 

Mountains, and that the rate of failure of the steepest slopes in mountain ranges is 

set by the local peak ground acceleration” (Meunier et al. 2008: 230). 

In this investigation, relative weighting of the fault perpendicular aspect variable in 

logistic regression placed it 6th (out of 10) after the core factors (distance from co-

seismic fault ruptures, relative relief, local elevation, slope gradient and geology) 

indicating the relatively significant role played by this variable. However, as shown 

in (Figures 6.31 & 6.32), landslide densities for the Wenchuan earthquake are 

strongly skewed to the southwest. Given that the majority of landsliding occurred 

in hanging wall areas, this shows landslides occurred preferentially on slopes 

facing the seismic wave source. While this effect may be in part due to 
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topographic shading which obscured northwest facing hillslopes in some of the 

imagery used for mapping, the finding is also supported by field reports (Petley 

2009 pers comm; Densmore 2009 pers comm). As noted for the Northridge 

earthquake, this may be due to larger amounts of unstable, weathered material 

produced on slopes with higher levels of solar insolation (Meunier et al 2008). 

When combined with the findings for the Chi-Chi, Finisterre and Northridge 

earthquakes, the fact that only two out of four case studies demonstrate the 

expected pattern of landslide occurrence, suggests that Meunier et al.‟s (2008) 

analysis may be overly simplistic. 

The Northridge, Chi-Chi and Wenchuan earthquakes all occurred in northern 

hemisphere mountain ranges at latitudes of over 20oN. In all these events, 

landslides occurred preferentially on south facing slopes. As such, a subaerial 

control on the occurrence of landslides may be inferred for any of these events. 

The Finisterre earthquake occurred in the southern hemisphere. The preferential 

occurrence of landslides with southeast aspects, on slopes receiving lower levels 

of solar energy, appears to contradict a subaerial effect. However, the rupture 

zone, located between 10o and 2o of the equator, experiences high sun zenith 

angles. The balance of solar energy is therefore more evenly distributed across 

hillslopes with southerly and northerly aspects, than is the case at higher latitudes. 

As such, the impact of topographic site effects may be manifest more readily in the 

landslide distribution in areas where skewing due to subaerial influences is less 

dominant. However, at higher latitudes, it may well be the case that form of the 

hillslope surface materials due subaerial processes dominates over seismological 

effects. In these cases the incidence angle of solar radiation may exhibit a greater 

influence on landslide occurrence that the incidence angle of seismic waves. 

8.4 Other triggering mechanisms 

While seismic parameters of the Wenchuan earthquake are the main 

consideration for triggering of landslides in this investigation, it is important to 

emphasize that the imagery used for landslide mapping was acquired over a 

period of seven months after the main earthquake. Thus, while little change is 

suggested between overlapping areas of earlier and later imagery, it is probable 

that some mapped landslides were triggered or enlarged after the main 
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earthquake event, by subsequent rainfalls or aftershocks. Unfortunately, 

insufficient multi-temporal imagery, as well as seismic or distributed precipitation 

data, was available to conduct this additional level of analysis into post-seismic 

triggering. Other investigations, however, have stressed the importance of both 

subsequent rainfalls and aftershocks in controlling the spatial distribution of 

landslides (e.g. Tatard & Grasso 2009; Dadson et al. 2003; Lin et al. 2006). As 

such, further investigation with the dataset should continue, in order to examine 

these influences. 

8.5 Topographic and geological landscape characteristics controlling 

slope stability 

While failure of hillslopes is triggered by ground accelerations in seismic events, 

the stability of hillslopes and potential for landslide failure is controlled by their 

topographic and material properties (Carson & Kirby 1972). As explored above, 

there are significant interactions between topography, geology and ground 

accelerations. However, particular topographic parameters alone act to control 

slope stability, which also form part of the complex range of parameters 

associated with different geological units. 

 

8.5.1 Hillslope gradient and relative relief 

Hillslope gradient is a major factor governing stability, as it controls the balance of 

normal and shear forces in hillslopes. As such, a strong correlation is shown 

between landslide density and gradient (Figure 6.18), whereby the probability of 

landslide failure increases with gradient via an exponential function. This pattern of 

increasing landslide occurrence with gradient is in agreement with findings from 

other earthquake-triggered landslide distributions (e.g. Keefer 2000; Parise & 

Jibson 2000; Khazai & Sitar 2004). However, this does not mean that the majority 

of landsliding occurs on the steepest hillslopes. As shown in this and other 

investigations, modal gradient values for landsliding occur between ~10o and 20o 

above the mode for the landscape (Keefer 2000; Parise & Jibson 2000). This 

oversampling of steeper hillslopes should be expected as they are, by definition, 

more unstable. However, the modal gradient for landsliding occurs where there 

are still relatively large hillslope areas, dropping off after this point because of the 

paucity of very steep hillslopes. As such the modal gradients for landslide 
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occurrence vary between different earthquake events, depending on overall 

steepness of the topography: 25o for Loma Prieta (Keefer 2000), 30-40o for 

Northridge (Parise & Jibson 2000), 45o for Chi-Chi (Khazai & Sitar 2004), and 35o 

for Wenchuan.  

However, gradient alone does not fully explain the occurrence of landslides, and 

relative relief has been shown to generate a similar relationship. However, this 

must not be understood purely in terms of the relation of relative relief to gradient, 

both being attributes of change in elevation over a given horizontal distance. 

Bieniawski & Vanheerden (1975) demonstrated that rock mass strength decreases 

with increasing spatial scale, due to the influence of spatially distributed 

discontinuities. Regions which sustain gradients over larger distances therefore 

have a greater potential to fail. Following on from this, Schmidt & Montgomery 

(1995) demonstrated that mountain scale material strength is a key limiting factor 

on topographic relief. In addition, higher relief regions also have the potential to 

sustain larger landslides, with both longer scar lengths and runout distances due 

their higher potential energy. Relative relief and gradient demonstrate significant 

correlation (R = 0.58; Table 7.6), and both are reflective of the balance of normal 

and shear forces in hill slopes. However, relative relief combines the balance of 

forces with the larger scale material strength of hillslopes, reflecting a different 

scale of the hillslope stability process. These two attributes also share a common 

feature in that the majority of landsliding occurs at mid-values of slope and relief, 

where the ratio of landslide to non-landslide areas is <20%. As these are both core 

factors in landslide probability modelling, this uncertainty regarding the fate of 

large areas appears to be a key factor in the uncertainties of landslide probability 

and susceptibility mapping. 

8.5.2 Elevation and upslope contributing area 

While elevation and upslope contributing area were also included in analysis and 

probability modelling, these exhibit much less coherent relationships with landslide 

density. Clustering of landslides at particular elevations appears to be linked with 

the positioning of major river valleys in the landscape, where the majority of 

landslide susceptible slopes occur, rather than a particular elevation-dependent 

control on hillslope stability. The lack of landslides at minimum elevations at the 
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edge of the Sichuan Basin and higher landslide densities in the mountain range 

are the likely cause of apparent positive correlation in logistic regression. As such, 

any relationship between elevation and landsliding is likely to be an artefact of the 

data analysis and sample methods rather than the result of geophysical 

conditions. Upslope contributing area (UCA) was primarily included in the analysis 

due to its relationship to landslide occurrence through soil wetness. While logistic 

regression suggests an overall positive relationship between UCA and landslide 

occurrence, the nature of the relationship between these variables is complex. 

Greater UCA acts to increase groundwater levels, thus higher pore water 

pressures and enhanced slope instability may be expected. However, there is an 

inverse relationship between UCA and slope gradient (Montgomery 2001); as UCA 

increases, slope gradient decreases, countering the destabilizing effect of wetter 

ground conditions. As such, while both elevation and UCA were included in logistic 

modelling, their low significance rankings and limited affect on model performance 

demonstrates that they do not function as direct predictors of landslide occurrence. 

8.5.3 Geology 

In contrast to other variables used in this investigation, geology is necessarily a 

categorical variable due to the broad range of lithological attributes and 

parameters contained within its definition. The geological dataset used in this 

investigation comprises regional scale geological units, and is thus representative 

of variations in lithology over reasonably large spatial scales. As described in 

Section 4.1.5, this involves classifying multiple lithologies into single units, where 

the detailed material properties of individual lithologies are not known. Direct 

comparison with other studies is difficult, due to the different geological datasets 

used in analysis. However, the overall pattern of landslide occurrence concurs with 

the findings of Huang & Li (2009a), with greater levels of landslide occurrence in 

harder igneous rocks, carbonates and sandy conglomerates, although units 

containing mudstones, greywacke and shale also feature significantly. An 

explanation of why particular units are more susceptible to landslides involves a 

holistic understanding of how a range of different tectonic and topographic 

attributes vary and interact within geological units, as well as considering 

lithological material properties. 
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The general positive correlation of landslide density-ranked geologies with slope 

gradient and relative relief (shown in Table 7.2), shows that, in general, steeper 

hillslopes of greater relief occur in more susceptible geological units. As such the 

greater susceptibility of different geologies is explained in part by the topography 

they sustain. This can be linked to their material strength, in that stronger 

lithologies may sustain steeper slope gradients and greater relief (Schmidt & 

Montgomery 1995), explaining the observation of Huang and Li (2009a) that it is in 

general the harder lithologies which sustain higher rates of landsliding. There is 

also a significant negative correlation between ranked geology and distance from 

the surface fault rupture, showing the predictable result that geologies with higher 

landside densities are those experiencing high ground accelerations. However, the 

position of more susceptible geologies in the fault belt may also be related to 

longer term landscape evolution processes. Due to the rotational nature of the 

tectonic thrusts (Hubbard & Shaw 2009), higher rates of rock uplift are to be 

expected in the fault zone, where these high landslide density geological units are 

located. Combined with this, denudation rates are likely to be higher in these areas 

due to the high rate of seismicity and location close to the mountain front where 

higher rates of precipitation are also likely to occur. A combination of both high 

uplift and denudation rates would explain the steep, incised landscape, and hence 

slopes susceptible to landsliding. Along with high rates of rainfall, wetter soil 

moisture conditions and greater pore pressures in this region may also act to 

decrease slope stability (Selby 2005). In Section 6.5.1 a correlation between 

landslide density and age of geological units was observed. This may also be 

explicable through interactions with topography, in that the exhumation of older 

units from depth mainly occurs in the near-fault areas of both Beichuan and 

Pengguan fault hanging walls, close to the fault belt, as shown in Figure 4.9. 

These spatial associations between lithology, ground accelerations and 

topographic attributes suggest that geological controls on landslide occurrence 

may be largely explained through coincidence with other geophysical factors. 

However, the significant reduction in logistic model performance with the removal 

of geology demonstrates that the role of this variable is not fully explained through 

topography and seismic shaking intensity. This may be accounted for through 

variations in the material properties of different geological units, which affects their 
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susceptibility to landsliding. This is likely to involve variations in rock and soil 

strength, dip angle, location of slip planes and other discontinuities in the rock 

mass (Selby 2005). For example, failures in Mesoproterozoic granite have been 

observed to predominantly take the form of shallow surface failures, which strip off 

thin regolith cover along the contact between regolith and bedrock (Petley 2009 

pers comm.; Densmore 2009 pers comm.). 

While geology exhibits a notable influence on landslide occurrence, the nature of 

this effect must be understood through intricate relationships between geology, 

tectonics, topography and climate, as well as the ground acceleration experiences 

by particular geological units. A more focused understanding of the influence of 

geology may be attainable through the use of more finely categorised geological 

maps, and additional geological attributes such as dip angle, material strength and 

joint spacing (e.g.: Selby 2005; Hales & Roering 2007). 
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8.6 Practical implications for landslide inventory investigations  

Carrying out this investigation involved the development of various techniques to 

overcome major obstacles in data acquisition and analysis. As such, a major 

output of the investigation is its practical implications for future investigations of 

this type. These include methodological implications for landslide mapping, as well 

as the identification of core attributes for use in the statistical interrogation of 

landslide inventory datasets, and techniques for extrapolating results from mapped 

samples. 

8.6.1 Landslide inventory data generation and format 

The implications of this investigation for landslide inventory data generation, can 

be summarised three-fold, in terms of the image data used for mapping, the 

mapping methodology and the geometric dimensions  through which landsliding is 

recorded and analysed. 

Although the sub-tropical monsoon climate of the Sichuan region posed a 

significant challenge in terms of data acquisition, a search of catalogues for major 

satellite sensors revealed significant cloud free imagery, available within a short 

period after the earthquake. In addition, the high level of contrast between thickly 

vegetated areas and bare soil and rock scars produced high levels of spectral 

separability between landslides and surrounding areas, in agreement with 

Borghuis et al. (2007). Traditional approaches to landslide inventory compilation 

stress the need for labour-intensive manual delineation of landslides (e.g. Liu et al. 

2002). However, this investigation emphasises the significant potential of semi-

automated classification approaches for the rapid delineation of landslides at 

regional scales. Here landslide classification has been achieved through a well-

established, pixel-based technique, which has been used in image processing for 

over 20 years (e.g. Strahler et al. 1986). As such, there is potential for more 

modern, sophisticated image segmentation techniques to address both more 

problematic landslide classification problems, and high contrast classification 

conditions with greater levels of accuracy (e.g. Barlow et al. 2003; 2006).  

Many landslide inventory investigations also emphasise the necessity of high 

resolution aerial or satellite imagery for landslide mapping (e.g. Cardinali 1990; Liu 
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et al. 2002). Experimentation with classification of imagery data, resampled to 

lower resolutions, revealed that total mapped landslide areas showed little 

variation between 5m and 30m pixel resolutions. However, the area-frequency 

characteristics of mapped landslides were greatly influenced by the mapping 

resolution. This demonstrates that, for regional scale landslide mapping exercises, 

imagery as low as 30m in resolution (containing appropriate radiometric bands to 

separate landslides spectrally from surrounding areas) may be utilised to produce 

a first order estimate of the landslide impact. This is particularly significant as it 

applies to Landsat and DMC imagery types which are often freely available, 

highlighting the potential for low-cost first-order data acquisition. Despite this, 

higher resolution imagery is required for more in-depth studies, particularly when 

considering the magnitude-frequency characteristics of landslide events. 

Following on from this is a further issue highlighted by this investigation 

concerning the way in which landsliding is measured. This varies greatly between 

landslide inventory investigations, from identifying individual landslides as point 

features located at their source or centroid locations, to delineating landslides 

areas as 2-dimensional polygons and estimating volumes from scaling 

relationships (Guzzetti et al. 2009). In general, more recent investigations tend 

towards measuring landslide areas, though there is no strict rule. This results in 

significant challenges to the comparability of investigations and their results. For 

example, the linear relationship between landslide concentration and distance 

from the co-seismic fault ruptures shown by Khazai and Sitar (2004) for the Chi-

Chi earthquake is contradicted by the exponential relationship for landslide density 

shown by Dadson et al. (2004), for the same event. This is likely due to 

underestimates of the landslide impact by only considering the location of failures, 

while their areas vary over several orders of magnitude. This highlights the need 

for consistency in practical approaches to landslide inventory mapping. An ideal 

data format would consist of polygons separately delineating the source and 

deposit areal bounds of individual landslides, an extension of which are 3-

dimensional polygons incorporating landslide depth and thus volumetric 

characteristics, along with an additional attribute field of landslide type. However, 

as noted by Hervas & Bobrowsky (2009), all ideally required data fields are rarely 

available and often difficult to obtain. 
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This landslide inventory for the period shortly after the Wenchuan earthquake does 

not incorporate a temporal component. However, several studies have highlighted 

the potential of multi-temporal landslide inventory data for understanding the post-

seismic evolution of landslide failures and valley sedimentation (e.g. Dadson et al. 

2003; Dadson et al. 2004; Lin et al. 2008). This is addressed in more detail in the 

following section. However it is worth noting that, should suitable repeat-pass 

imagery be available, continued monitoring of landslide distributions should form a 

key component to landslide inventory studies. 

8.6.2 Approaches to landslide inventory analysis 

The study also highlights implications for the approaches applied to analyse 

landslide inventories for seismic events. The identification of core predictors 

controlling the occurrence of landslides, implies that distance from co-seismic fault 

ruptures, relative relief, local elevation, hillslope gradient and geology are key 

variables which should be considered when analysing seismically-triggered 

landslide distributions. In addition, aspect also appears to play a significant role, 

and future investigation should examine this in order to help identify the exact 

nature of the geophysical processes associated with it.   

Despite identifying the core predictors, Chapter 7 also showed that a relatively 

small proportion of variation in landslide occurrence is explained by the predictor 

variables. In order to increase the goodness-of-fit of statistical landslide probability 

models, a wider range of higher resolution attribute fields should be applied to 

landslide inventory data, based on geophysical processes known to control 

landsliding. Critical data fields for model improvement are likely to include higher 

resolution geological maps and data concerning geological structure (dip and 

fracturing of rocks), as well as higher resolution topographic data and fields 

reflecting seismic directivity effects.  

The combination of bivariate analysis and generalised linear modelling using 

multiple data fields, allowed for the application of hind-casting, as a powerful tool 

to estimate the probability of landsliding across the entire rupture zone of the 

earthquake. This highlights the potential for rapid estimation of post-earthquake 

landslide impact based on a relatively limited training sample. In addition to 

generating landslide probability maps, there is also the potential to impose 
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synthetic landslide distributions based on expected area-frequency relations for 

events of given magnitude, as identified by Malamud (2004). The application of 

these techniques may offer significant contributions to both post-disaster 

management as well as the geomorphological and seismological study of 

earthquake-landslide events, as discussed further in the following section. 
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8.7 Application of findings 

While investigating controls on the spatial distribution of earthquake-triggered 

landslides has been the primary focus of this study, both the dataset and 

techniques developed hold the potential for a range of wider applications within the 

fields of hazard management, seismology and geomorphology. The following 

section highlights key areas in which the major outputs of this investigation may 

afford significant contributions. 

8.7.1 Hazard mapping and rapid damage assessment 

As acknowledged in Section 8.6.2, logistic modelling may be applied to build 

landslide probability maps from which, it is hypothesized, synthetic landslide 

inventories may also be inferred. The post-predicting capability of logistic landslide 

models may offer the potential to overcome a major limitation of optical satellite 

imagery in rapid damage assessment and post-disaster response for earthquake-

landslide events. Satellite data acquisition times in the wake of natural disasters 

are becoming more rapid, with imagery now often available within hours of events 

occurring. However, a major limitation, particularly in areas like Sichuan with high 

levels of cloud cover, is the often limited extent of cloud-free imagery available. 

This investigation has shown how a sample of landslides may be generated 

rapidly using semi-automated classification techniques. Logistic models based on 

core predictors of landslide probability may then be trained using a limited 

coverage sample, where seismic attributes are available through automatically 

generated seismic wave inversion results (e.g. USGS earthquake hazards 

program - http://earthquake.usgs.gov/earthquakes). Thus, with the appropriate 

data processing expertise and resources, maps of probabilistic landslide 

occurrence may be generated within periods of hours to days, without the need for 

extensive image coverage. Application of the technique to future events would 

certainly benefit from more investigation into the impact of sample size and sample 

location relative to the seismic source. 

While deterministic landslide hazard models may be applied globally, locally 

trained models have been shown to produce more accurate impact estimates. 

Logistic regression models have been widely applied in landslide susceptibility 

mapping for future events (e.g. Garcia-Rodriguez et al. 2008; Chang et al. 2007; 

http://earthquake.usgs.gov/earthquakes
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Ayalew & Yamagishi 2005; Dai & Lee 2003), and as such the logistic model may 

be applied to predictions of the future seismic hazard in Sichuan and surrounding 

regions.  This type of probabilistic hazard data may also feed directly into 

catastrophe models widely used in the insurance and risk management industries. 

These combine probabilistic hazard data with a range of vulnerable assets in order 

to provide estimates of probabilistic risk. Areas in rapidly developing nations such 

as China are of particular interest due to the growing proportion of insured assets 

in these regions. While information on spatially distributed death tolls is fairly 

limited, the main areas affected by higher landslide probabilities appear to coincide 

with counties exhibiting high earthquake-related fatalities, as shown in Figure 8.7. 

This and the fact that 35% of fatalities cause by the Wenchuan earthquake have 

been attributed to landslides (Paterson et al. 2008), stresses the importance of 

considering slope failures in seismic damage tolls. 

8.7.2 Earthquake dynamics 

A key limiting factor for seismological studies of the Wenchuan earthquake is the 

poor quality of ground motion data available for the region. Given the linear 

relationship inferred between PGA and landslide density, Meunier et al. (2007) 

highlighted the potential for geomorphologically-derived shakemaps, effectively 

using landslides as seismometers. Following this investigation, landslide density 

data are now available for a large portion of the Wenchuan earthquake rupture 

zone, allowing for the possibility of PGA back-projection in areas where landslides 

occurred. This in turn may allow for improvements to inversion models of fault 

rupture dynamics, through the addition of local ground acceleration estimates. 

However, this exercise would first require intensive normalization to incorporate 

spatial variations in non-seismic factors affecting slope landslide susceptibility. 

This may well be achieved through further work with generalized linear modelling. 

In addition, for areas where seismic data is unavailable, PGA-related features of 

the landslide distribution discussed in Section 8.2 may provide valuable estimates 

of fault rupture dynamics and geometry. 
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Figure 8.8: Temporal pattern of suspended sediment levels following the Chi Chi earthquake (Lin 
et al 2008) 

Figure 8.7: Recorded Wenchuan earthquake damage by county (Yuan 2008) 
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8.7.3 Post-seismic evolution of failures, sedimentation and carbon release 

While the analysis of this study predominantly focuses on the immediate after-

effects of the earthquake, landslide inventory data may also be utilized to explore 

and understand post-seismic conditions and the longer term effects of the 

earthquake on the Sichuan region. Key areas for consideration include post-

seismic landsliding, remobilization of sediment and carbon release. 

While large areas of co-seismic landsliding have been recorded, studies of the 

Chi-Chi earthquake have shown that the rate of landsliding remains elevated for 

several years after the event (e.g. Dadson et al., 2004; Lin et al., 2006; Khazai & 

Sitar 2004; Lin et al. 2008). This is attributed to a large number of earthquake-

weakened slopes which did not fail co-seismically, but did fail during subsequent 

monsoon storms (Dadson et al., 2004; Lin et al., 2006). Post-seismic landslides 

were also found to mimic the distribution of co-seismic failures, an effect ascribed 

to pervasive fracturing of bedrock throughout the main impact zone of the 

earthquake. Given the subtropical monsoon climate of the Sichuan region, a 

similar situation is to be expected. The large number of non-failed hillslopes 

exhibiting significant landslide probabilities (Figure 7.9), are likely to provide a 

reasonable indication of slopes likely to be affected by post-seismic landsliding. 

Further monitoring of the post-seismic evolution of slope failures is necessary in 

order to validate this assumption. 

Also related to subsequent, post-seismic rainfall events is the additional hazard 

concerning the reactivation of landslide deposits. Field evidence suggests that 

extensive sediment aggradation is at present inundating valley bottom settlements 

in Sichuan, such as Beichuan town. This is due to the remobilization of sediment 

by high monsoon rainfalls since the earthquake and transport of large amounts of 

landslide material through the hydrological network. High suspended sediment 

levels were also observed for several years following the Chi-Chi earthquake, as 

shown in Figure 8.8. From these data it is estimated that post-seismic landsliding 

triggered by subsequent typhoon rainfalls resulted in a two- to four-fold increase in 

suspended-sediment flux (Dadson et al., 2004; Lin et al., 2006; Lin et al. 2008). In 

order to study the activity of this sediment, both actual and synthetic landslide 

inventory maps may play a major role in producing estimates of sediment volumes 

mobilized by the earthquake. Simple application of the scaling laws summarized 
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by Guzzetti et al. (2009) to the total mapped landslide area yields a range of total 

volume estimates from ~20 to 300 km3, with the distribution of landslide areas 

indicating how this volume is distributed throughout the major catchments. While 

the high levels of uncertainty in these estimates highlight the need for further work 

on volume scaling relationships, the landslide inventory map provide a valuable 

starting point for this investigation.  

Finally, there is growing interest the role of landslides in sourcing particulate 

organic carbon from hillslopes (e.g. Hilton et al. 2008a; Hilton et al. 2008b). 

Widespread landsliding may store large amounts of particulate organic carbon, 

through both the deforestation of affected hillslopes and widespread burial in 

aggrading river beds. This highlights the need for further investigation into the 

potentially importance but poorly understood role of landslides in the carbon cycle, 

for which an essential component is an inventory of mapped landslides. With the 

datasets now available, the Wenchuan earthquake offers a key opportunity for this 

field of research. 
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9.1 Conclusions 

The results of this study can be summarised by revisiting the research objectives 

in Chapter 1: 

1. To develop semi-automated image classification algorithms in order to map 

landslides efficiently over large areas of satellite imagery 

Semi-automated, pixel-oriented classification techniques have been developed, 

which accurately and efficiently delineate landslide scars in SPOT 5 and EO-1 

imagery. These techniques utilize both spectral and topographic data, combined 

with object oriented filtering, to produce a first-order estimate of areas affected by 

landsliding. The algorithms are most effective in imagery exhibiting high spectral or 

intensity contrast between landslide scars and surrounding vegetated areas 

unaffected by landsliding. The accuracy of these techniques has been validated 

relative to manually-delineated landslides. The combination of accuracy and rapid 

data generation afforded by these techniques offers significant potential for both 

the geomorphological study of landslide distributions, and rapid damage 

assessments in the wake of earthquakes in mountain regions. 

Of additional relevance to this objective is the finding that total mapped landslide 

areas vary little with decreasing pixel resolution. As such, considerably less 

expensive imagery of lower spatial resolution may be applicable for similar studies, 

where the primary data interest is „area affected by landsliding‟. However, the 

area-frequency characteristics of landslide distributions are greatly affected by 

imagery resolution. As such, high resolution imagery should be used to conduct 

investigations with this focus, and image resolution should be a key consideration 

when evaluating studies of this type.  

2. To produce an inventory map of landslides triggered by the Wenchuan 

earthquake 

A GIS based map of landslide affected areas has been produced for a region of 

11,909km2, covering the main impact zone of the Wenchuan earthquake. This 

corresponds to a significant proportion of the total landslide affected area, of which 

5% is covered by mapped landslides. The dataset represents the most holistic 



Chapter 9: Conclusions 

218 
 

mapping of landslides triggered by the earthquake which has been published to 

date (Parker et al. 2009a, b). 

Based on the training sample produced by the mapped area, a statistically 

modelled landslide probability map has been derived for the entire region affected 

by the earthquake. This predicts landslide occurrence over the entire length of the 

rupture zone, and also shows that the majority of the landslide impact is captured 

within the mapped coverage area.  

As well as providing the primary data sources for this investigation, both the actual 

and probabilistic landslide distributions afford significant potential for a broad 

range of studies into the Wenchuan earthquake and post-seismic evolution of the 

landscape. 

3. To examine spatial relationships between landslide occurrence and 

geophysical parameters 

This study has considered the occurrence of seismically induced landslides 

relative to 14 seismological, topographic and geological parameters, through 

which characteristics of the landslide distribution and relationships between 

landsliding and geophysical parameters have been discerned. The macro-scale 

landslide distribution demonstrates strong association with expected patterns of 

peak ground acceleration produced by the earthquake, of which there are three 

main components. (1) Markedly higher rates of landsliding occur in the hanging 

wall of the Beichuan fault. However, this appears to be driven by a combination of 

not only ground accelerations, but also topography, with significant relief limited to 

hanging wall areas. (2) This effect is superimposed on an exponential attenuation 

of landslide density with distance from the co-seismic surface rupture, in 

concurrence with the attenuation function for peak ground accelerations and linear 

relationships between peak ground acceleration and landslide density, as 

observed by Meunier et al. (2007). (3) In the along-strike direction, landslide 

densities and distance attenuation signals also suggest probable association with 

spatial variations in seismic energy release. However, further work is required to 

distinguish from topographic and geological effects. The preferential occurrence of 

landslides on hillslopes facing the seismic source was also identified, in clear 

contradiction with seismic wave field theory for this type of event (Meunier et al. 
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2008). From this finding, the potential dominance of subaerial controls on landslide 

aspect is suggested for higher latitude regions. As such, further work is required to 

determine the nature of this effect. 

Despite the overarching role of ground accelerations is triggering landslides, the 

occurrence of slope failures also exhibits strong topographic and geological 

controls. Topographic attributes relating to the balance of normal and shear forces 

in hillslopes are central to controlling slope stability. Slope gradient and relative 

relief demonstrate significant, positive correlation with landslide density, forming 

core predictors of landslide occurrence; along with local elevation which appears 

to represent distance from major river channels. Relationships with other 

topographic attributes are both more complex in nature, and as such do not form 

major predictors of landslide occurrence. 

Oversampling by landslides within particular geological units has also been 

demonstrated, though the mechanism of this effect is complex. The geological 

control is strongly tied to the topographic features formed within different 

geologies, as well as the positioning of geological units in areas of high ground 

accelerations. However, generalised linear modelling demonstrated that variations 

in geological susceptibility to landsliding are not fully explained using the available 

topographic and seismic parameters. This suggests that additional parameters 

enclosed within geological categories, such as hillslope material strength under 

seismic acceleration forces, must be considered in order to explain geological 

controls more fully. Understanding the nature of the geological control is 

particularly significant, as the modelling in this study has identified geology as a 

core predictor of landslide occurrence. The significant influence of geology over 

large spatial scales also suggests that direct correlation of landslide density with 

peak ground accelerations should be treated with caution. In particular, intensive 

normalisation of geological influences is likely to be required, in order to achieve 

the geomorphologically derived shakemaps hypothesised by Meunier et al. (2007). 

While the relative influence of different parameters on landslide occurrence has 

been examined, it would be illogical to conclude the dominant role of one particular 

factor in controlling landsliding, given the range of spatial scales over which 

different geophysical processes function. However, core variables required to 
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accurately hind-cast landslide occurrence were: distance from co-seismic fault 

ruptures, relative relief, local elevation, slope gradient and geology, with aspect 

also showing a notable but less significant influence. Relationships to geophysical 

processes of distance from co-seismic fault ruptures, relative relief and slope 

gradient are well constrained. However, local elevation, geology and aspect may 

be related to a broader range of processes, and thus the nature of their functions 

in landslide occurrence is poorly understood. This highlights a perturbing black-

box element to the macro-scale understanding of seismically induced landslide 

distributions which should be addressed in future research, when considering both 

new and existing datasets. 
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McFadden’s R2 

 

Mfull = Model with predictors 

Mintercept = Model without predictors 

L = Estimated likelihood 

(http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm) 

http://www.ats.ucla.edu/stat/mult_pkg/faq/general/Psuedo_RSquareds.htm
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1: FD HF G SL DEM 
LCEL R CT CPL CPR RD 

UCA sin(Ar) cos(Ar) 

2: FD HF G SL DEM 
LCEL R RD UCA sin(Ar)  

3: FD HF G SL DEM 
LCEL R UCA sin(Ar)  

4: FD G SL DEM LCEL R 
UCA sin(Ar)  

5: FD G SL LCEL R UCA 
sin(Ar)  

6: FD G SL LCEL R sin
(Ar)  

Appendix 2: Map projected landslide probabilities for all parameter combinations. Model number 
and parameter combinations for each output are given above. (Continues overleaf). 

Landslide probability (LS = 1) 
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7: FD G SL LCEL R 8: FD SL LCEL R 9: FD LCEL R 

10: FD R 11: FD  

Appendix 1 continued. 

Landslide probability (LS = 1) 
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