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Abstract 

Geometries of sills intruded into the lava pile of the Faroe Island Basalt Group 

(FIBG), which were targeted in this study, were mostly recorded by conventional 

mapping methods where measured distances and positions were plotted onto accurate 

topographic maps aided by the use of high-quality photos of relevant outcrops. These 

data were subsequently used to manually plot 2D profiles along selected tracks and 

to produce electronic 3D maps using ArcGIS software. 

The general geometries of the investigated sills, measured at lateral scales ranging 

from a few metres to a few kilometres and at vertical scales ranging from a few 

metres to a few hundred metres, differ somewhat from typical sill geometries 

reported previously for sills intruded into sedimentary successions. The ubiquitous 

saucer-shapes of the sills from this study, which generally curve upwards in a 

gradual manner from inner sub-horizontal sections to steeper outer margins, contrast 

with the common angular transitions from inner sub-horizontal to outer steeper 

sections of sills reported from sedimentary host-rocks. In this thesis we explore 

possible alternatives to already existing theories on sill emplacement in sedimentary 

successions. 

Major and trace element compositions for samples representing most of the sills 

exposed in the Faroe Islands have been determined by means of XRF and ICP-MS 

analyses. Geochemically most of these sills can be grouped into two main categories 

characterised either by high or by low TiO2 contents. Different sorts/types of 

metasomatism of source rocks to high-TiO2 versus low-TiO2 sills are indicated by 

different Nb and Ta anomalies. Modelling by means of REE and other trace elements 

suggest that much of the compositional differences between these two main 

categories can be explained by various degrees of partial melting of broadly similar 

mantle sources. Additional fractionation and accumulation of plagioclase modified 

some of the melts that gave rise to the actual sills. The initial partial melting event 

probably occurred at depths slightly shallower than the lower limit of the garnet 

stability field at ~85 km while plagioclase crystallisation/accumulation most likely 

occurred at depths shallower than ~18 km. Isotopic compositions may point to very 

slight contamination of some sills with crustal material. 
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Chapter One 

 

1. Introduction 

 

1.1. Prelude to chapter one 

Sills have been reported from a wide variety of geological settings with or without 

previous histories of surface basaltic magmatism. In theory, sills can form at any 

location experiencing igneous activity as long as certain physical criteria within the 

affected crust are fulfilled. This thesis endeavours to clarify which processes and 

physical actions governed intrusion styles and geometries of the saucer-shaped sills 

of the Faroe Islands, and to comprehensively interpret/detect which igneous 

processes prevailed from initial melt generation at depth to ultimate magma 

solidification in the fully inflated sills, i.e. an investigation of the entire plumbing 

system at all levels. In order to achieve these goals a twofold approach is employed; 

i) sill geometries and field occurrences/measurements are utilised to interpret/detect 

relevant emplacement processes, and ii) geochemical compositions, aided by isotope 

characteristics, are used to track the actions of igneous processes at depth. 

This chapter contains a brief outline of sill occurrences and some common 

emplacement theories (1.2), as well as an evaluation of the processes used to obtain 

the relevant data on sill geometries and field evidences in general (1.3). In sub-

section 1.4 the physical conditions necessary to produce basaltic melts are briefly 

discussed and appropriate methods of obtaining and interpret geochemical data are 

looked at in 1.5. 

 

1.2. Occurrences of sheet intrusions 

Dykes are generally thought of as sub-vertical tabular bodies cutting bedding planes 

at right angles, and they may occur over lengths ranging from a few metres to 

hundreds of kilometres (Hall, 1996; Gudmundsson and Marinoni, 1999). They may 

display thickness variations ranging from a few centimetres to more than 100 m, 

although thicknesses of a few tens of centimetres to a few metres are most common 

(Hall, 1996). Sills can range in size from <1 m thick small sheets to several hundred 

metres thick major intrusions underlying hundreds of square kilometres and they may 

occur as sub-horizontal concordant sheets or as partly discordant bodies (Hall, 1996). 
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Figure 1.1. a) The large saucer-shaped Golden Valley Sill, South Africa, which is intruded into 

sedimentary successions, is made up of a sub-horizontal inner section and discordant outer margins 
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(from: www.nickschofield.co.uk). b) Same as in a), but from a different angle (from: 

www.fys.uio.no). c) The large saucer-shaped Streymoy Sill, Faroe Islands, slices through tabular 

basaltic lava flows at the mountain of Skæling on the island of Streymoy. d) Same as in c), but from 

the opposite side of the mountain of Skæling. 

 

Very large sills can be matched in volume by multiple smaller sill intrusions in large 

intrusive complexes, which commonly occur in sedimentary basins as well as in 

volcanic successions (Walker, 1992; Hall, 1996; Hansen, 2006) (e.g. Fig. 1). Sills 

occurring in sedimentary basins are commonly divided into groups according to their 

geometries, some of which include radially or bilaterally symmetrical saucer-shaped 

sills in addition to sub-horizontal or inclined tabular sheets (e.g. Galland et al., 2003, 

Malthe-Sørensen et al., 2004; Thomson and Hutton, 2004; Galland et al., 2006; 

Thomson, 2007; Galland et al., 2009) (Fig. 1.2a; Fig. 1.2b; Fig. 1.2c). Saucer-shaped 

sills commonly consist of sub-horizontal inner sections that give way to inclined 

middle or outer sections that in some cases again give way to sub-horizontal outer 

margins (e.g. Chevallier and Woodford, 1999; Thomson and Hutton, 2004; 

Thomson, 2007; Polteau et al., 2008). In addition to the linear slopes often displayed 

by steeply inclined outer sill sections associated with uplift/folding of overburden 

and sill climbing (Thomson, 2007), inclined sill sections may also show step-and-

stair geometries (Francis, 1982; Goulty, 2005) or they may occur as interconnected 

lobes that gradually curve upwards away from the base of the sill in question 

(Thomson, 2004; Hansen and Cartwright, 2006). 

 

 

Figure 1.2. a) Tabular sub-horizontal sill sheets resulting from lateral intrusion at very low or very 

high pressures (e.g. Malthe-Sørensen et al., 2004). b) Saucer-shaped geometry from sill intrusion into 

static crust (Galland et al., 2006). c) Sub-horizontal basal sill sections give way to linearly inclined 

sheets during sill intrusion into a crust experiencing compression (Galland et al., 2006). 

 

1.3. Data acquisition in 3D 

In theory, the use of precise printed topographic maps supplemented by GPS satellite 

navigation equipment and aerial photos can be used to acquire accurate 2D data (in 

the sub-horizontal plane) that in turn can be plotted onto pre-defined electronic  

http://www.nickschofield.co.uk/
http://www.fys.uio.no/


 

4 
 

 

Figure 1.3. Sub-vertical NE margin of the Eysturoy Sill where a smooth lower contact (Dotted yellow 

line) is well preserved as opposed to the more eroded upper contact (Dashed black line). 

 

ArcGIS maps in order to obtain 3D models of the targeted topographic features.  

However, measurements by means of GPS devices may yield inaccurate or invalid 

data particularly if these need to be acquired from lower sill contacts where half of 

the sky is obscured by vertical cliffs, as would be the case if upper sill contacts are 

heavily eroded and surrounding host rocks have been removed in consequence to 

weathering/erosion (e.g. Fig. 1.3). Also, sub-vertical views from aerial photos may 

not be able to distinguish between sills and their host basalts, and so are not always 

good alternatives to careful/detailed fieldwork and precise printed topographic maps. 

The raw pre-defined electronic ArcGIS topographic maps available to this study are 

composed of lateral contours drawn at elevation intervals of 10 m, with each contour 

being interconnected to its nearest neighbours with lines drawn orthogonal to these. 

If a contour is cut of (e.g. Fig. 1.4a), the orthogonal lines from the nearest underlying 

contour are automatically connected to the nearest overlying contour. If several 

successive contours are missing, the geometry of the vacant space from the missing 

contours will therefore define a uniform slope between the nearest underlying and 

overlying contours, which will not necessarily be identical to the actual surface (Fig. 

1.4b; Fig. 1.4c). Consequently, reliable altitudes cannot be extracted from electronic 

pre-defined ArcGIS topographic maps for known positions in areas where the  
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Figure 1.4. a) The artificial topographic map section shows how some altitude contours, drawn at 10 

metres intervals, are cut off in the steepest parts of the imaginary landscape. The green circles labelled 

i, iii and ii, iv represent nearest intact upper and lower contours respectively that enclose the area 

where contours are cut off. Blue crosses (arrows in b and c) labelled I and II represent points plotted 

on lower sill margins. b) This vertical profile represent the track from A to AI in a) and demonstrates 

how the position labelled I intersects the artificial surface that connects i and ii, thus yielding an 

apparent altitude that that is - lower than the actual altitude. c) This vertical profile represent the 

track from B to BI in a) and demonstrates how the position  labelled II intersects the artificial surface 

that connects iii and iv, thus yielding an apparent altitude that is + higher than the actual altitude. 

 

contours are cut off. Instead, the electronic ArcGIS 3D maps can be used to display 

sill geometries where all the 3D data have been obtained by other means e.g. 

accurate printed topographic maps. However, the method of displaying sills as 3D 

features where exposed sill surfaces, as outlined by accurately measured 

longitudes/latitudes, are draped on predefined electronic ArcGIS 3D maps include 

some weak points as well. On the one hand sill surfaces represented by electronic  

 

 

Figure 1.5. a) Draping of sills that are represented by electronic shape-files onto pre-defined 

electronic 3D maps (ArcGIS) will result in incomplete covering of interior sill surfaces, whereas sill 

margins will be fairly precisely imaged. b) Draping of sills that are represented by electronic raster-

files onto pre-defined electronic 3D maps (ArcGIS) will result in imprecisely imaged sill margins, but 

will cover all outcrops in the interiors of the sills in question. 
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shape-files will display fairly accurate outlines, but their interiors tend to cut through 

protrusive topographic features in the landscape instead covering these (Fig. 1.5a). 

On the other hand the interiors of sill surfaces represented by electronic raster-files 

will cover the landscape within their outlines entirely, but their edges are generally 

irregular and jagged and will give an imprecise picture of sill margins (Fig. 1.5b). Of 

these two options the sill surfaces represented by draping of raster-files best image 

the bulk of the actual outcrops representing the sills in question. 

 

1.4. Basalt occurrences 

Basalts can be found at both constructive and destructive continental margins, i.e. in 

mid-ocean ridge and in island arc environments respectively, and they commonly 

occur as oceanic island basalts and continental basalts in intraplate settings as well 

(Hall, 1996).  

Melting experiments have shown that major elements in basalts and their 

geochemical compositions in general can vary considerably in consequence to 

changes in e.g. temperatures (T), pressures (P), degrees of partial melting as well as 

compositional differences of source rocks during melting (Table 1.1; Fig. 1.6). 

However, melting of different mantle lithologies at different T and/or P do not 

necessarily always result in large compositional differences between the produced 

glasses. In general, basaltic glasses produced from melting of a fertile mantle 

peridotite/lherzolite (sample PHN1611; Kushiro, 1996) would yield the following 

basaltic glasses: quartz tholeiites at low T (< 1200° C) and low P (< 0.9 GPa) during 

low to moderate degrees of melting (< 15%), boninites moderate T (1200 - 1300° C) 

and at low P (< 0.9 GPa) during moderate to high degrees of melting (10 – 20%), 

alkalic basalts at high T (> 1200° C) and at high P (> 1 GPa) but low degrees of 

melting (< 10%), picrites at high T (> 1300° C) and at high P (> 1 GPa) during 

moderate to high degrees of melting (10 – 20%) and tholeiitic basalts at moderate to 

high T (1200 – 1400° C) and at low to high P (0.8 – 2.5 GPa) with the degrees of 

melting ranging from 0 to 28% (Kushiro, 1996; 2001). The much larger stability 

fields of tholeiitic basalts with respect to both pressures and temperatures relative to 

other basalt types may explain why tholeiites are the most common basalt type 

occurring worldwide. Tholiitic basalts are themselves commonly grouped into three 

categories according to their silica content where silica undersaturated rocks occur as 

nepheline tholiites, silica saturated rocks occur as olivine tholiites while silica  
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Figure 1.6. The diagrams indicate variations in major element compositions (Thick grey shaded lines) 

as functions of differences in temperatures (Approximate values based on melting of a “primitive 

upper mantle” of  Baker and Stolper, 1994) and the degrees of partial melting (Approximate values 

based on melting of a “natural spinel lherzolite” of Hirose and Kawamoto, 1995). See also table 1. 

 

oversaturated rocks occur as quartz tholeiites (Yoder and Tilley, 1962). 

 

1.5. Obtaining data on basalt geochemistry 

The procedure of obtaining geochemical data generally starts with careful collection 

of representative rock samples in the field. The next step will most often involve 

mechanical processing where samples first are crushed to fine gravel and 

subsequently ground to fine rock powder. Major elements and selected trace  
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Table 1.1. Changes in solidus temperatures, melt percentages and major element compositions as 

functions of changes in physical conditions during formation of basaltic magmas. 

Superscript letters from a to h indicate studies of: aYaxley (2000); bKogiso et al. (1998); cBaker and 

Stolper (1994); dUlmer (2001); eFalloon et al. (2008); fHirose and Kushiro (1993); gHirose and 

Kawamoto (1995); hGreen and Falloon (2005). iValid at temperatures below ~1350° C; jValid at 

temperatures above ~1350° C; kValid at melting percentages lower than ~15%; lValid at melting 

percentages larger than ~15%. 

 

elements are commonly analysed by means of X-ray fluorescence spectrometry 

(XRF). Here the trace elements are determined on discs from pressed rock powder 

whereas major elements are determined on glass beads made from powdered rock 

samples fused with a flux of lithium metaborate or tetraborate (e.g. Rollinson, 1998 

and references therein). Inductively coupled plasma emission mass spectrometry 

(ICP-MS) is frequently employed for accurate determination of REE and trace 

elements in addition to being used for isotopic analysis. Finely ground rock powder 

from samples to be analysed by this method are processed through a number of 

dissolution sequences where the targeted material is exposed to various acid mixtures 

until it is dissolved to individual elements (ions) in a solution that is ready to be 

analysed. 

 

1.6. Main objectives and thesis framework 

The first major objective of this thesis is to gain information regarding sill 

emplacement mechanisms in general and, if possible, to provide constraints on the 

particular intrusive processes that ultimately led to the emplacements of the saucer-

shaped sills exposed in the Faroe Islands. In order to achieve this goal the approach 

has been to obtain a thorough knowledge of the general geometries of individual sills 

as well as their lateral extent and to investigate if individual sills can be grouped into 

 

 

a, bIncreasing 

fertility (Added 

basic material?) 

c; d; e; fIncreasing 

temperature 

(Fix. Press.) 

a; e; fIncreasing 

pressure (Fix. 

temperature) 

f; g; bIncreasing 

melting % (Fix. 

temp. and press.) 

g; hIncreasing 

H2O content 

(Metasom.?) 

Solidus Decreasing ------------ Increasing ------------ Decreasing 

Melt % Increasing Increasing decreasing ------------ Increasing 

SiO2 ------------ 
iDecreasing 
jIncreasing 

Decreasing 
kDecreasing 
lIncreasing  

------------ 

Al2O3 ------------ decreasing ------------ Decreasing decreasing 

FeOtot Increasing Increasing  Increasing Increasing Increasing 

MgO ------------ Increasing ------------ Increasing Increasing 

CaO ------------ 
iIncreasing 
jDecreasing 

------------ 
kIncreasing  
lDecreasing 

------------ 

Na2O ------------ Decreasing ------------ Decreasing ------------ 

TiO2 ------------ Decreasing ------------ Decreasing ------------ 
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distinct categories according to their geometries. Also, the geometries of sills from 

this study are contrasted against those of sills reported from other settings in an 

attempt to detect possible discrepancies between sills emplaced into volcanic versus 

sedimentary strata. Field investigations/measurements of sills and dykes at more 

detailed scales, i.e. from a few centimetres and up to a few tens of metres, are 

employed in order to identify feeders to the sills, to determine sill dimensions 

(thicknesses) and to establish contact relationships between host rocks and intrusive 

rocks as well as exact relationships between sills and dykes. Finally, all acquired 

data/evidences are correlated in order to achieve the best explanation of emplacement 

mechanisms. With the purpose of circumventing the data acquisition problems, as 

mentioned in section 1.2, most 3D data collections were done with the aid of high-

precision printed topographic maps in addition to detailed field measurements and 

conventional photos of relevant exposures. The acquired data were displayed as 3D 

maps, using ArcGis software, and as 2D profiles along selected tracks to better 

illuminate general sill geometries and/or particular geometric characteristics of the 

sills in question. 

The second major objective of this thesis is to gain a thorough knowledge of most 

aspects with respect to the petrogenetic history of the saucer-shaped sills of the Faroe 

Islands, i.e. to constrain the course of magmatic evolution from the embryonic stages 

of primary melt formation at depth through possible crystal fractionation and/or 

contamination in the crust to the final magma solidification in the investigated sills 

and dykes. The approach to achieve this goal has involved geochemical 

interpretations based on major elements, trace elements, including REE, and the 

characteristics of selected isotopes. The major element composition is used to 

classify these sills and to obtain information of their source rocks. Selected trace 

elements, including REE, are used to obtain a more detailed picture of potential 

processes that were active during various stages of magmatic evolution, in addition 

these are used in calculations/modelling aiming at quantification of partial melting 

and fractionation/accumulation percentages, which ultimately gave rise to the 

magmas that intruded the lava pile of the Faroe Islands. Trace elements, including 

REE, as well as Sr, Nd and Pb isotopes are used to detect and quantify potential 

contamination of the sills with crustal material. Finally, all geochemical and isotopic 

data/evidence are correlated to achieve reliable interpretations of how the plumbing 

system underneath the Early Cenozoic Faroe Islands worked at depth.  
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1.7. Thesis summary 

Chapter 1: A brief introduction to occurrences of sheet intrusions and basalts in 

general and an overview of some common methods of acquiring relevant 

physical/geochemical data. A brief outline of the general idea and motivation behind 

the project complete this chapter. 

Chapter 2: A brief review on the tectonomagmatic evolution of the North Atlantic 

Igneous Province (NAIP) and the Faroe Island Basalt Group (FIBG). 
Chapter 3: Field description of the actual sills and associated dyke networks with 

emphasis on intrusive relationships at macroscopic, mesoscopic, hand specimen and 

microscopic scales and their implications on intrusive styles. Similarities and/or 

dissimilarities with sills from sedimentary settings are evaluated.  

Chapter 4: Compositions of major and trace elements including REE and their 

implications on the petrogenetic evolution of the saucer-shaped sills of the Faroe 

Islands. What was the nature of the palaeo plumbing system at depth? Isotopic 

compositions of the investigated sills in addition to a few selected local basalts from 

the literature are used to detect/interpret the nature of source rocks and the extent and 

nature of potential crustal contamination. 

Chapter 5: A brief overview of the results obtained in the physical and geochemical 

investigations of sills/dykes. How do these results coincide with already existing 

theories and what is the status of the sills in a regional and/or provincial context? 

Proposed future research topics related to the current project include: (1) Whole-rock 

ICP-MS analyses of additional sill samples. (2) Microprobe (electron/ion) analyses 

of plagioclase phenocrysts/inclusions and of other mineral grains of unknown 

composition that potentially could be of crustal/exotic origin. (3) Argon–Argon 

and/or the Rhenium–Osmium dating of all the investigated sills. (4) Additional 

geochemical analyses. (5) Comprehensive mechanical modelling to test the effect of 

systematic depth-related variations of Young’s modulus on sill emplacement. 

Appendices: 

1. Brief overview of workflow during plotting of sills on electronic ArcGIS maps. 

2. Brief overview of XRF analytical techniques (major and trace elements). 

3. Brief overview of ICP-MS analytical techniques (trace elements including REE). 

4. Brief overview of techniques employed during isotope analyses (Sr, Nd and Pb). 

5. Tabulated results from partial melting and fractionation/accumulation modelling.
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Chapter Two 

 

2. Tectonomagmatic evolution of the North Atlantic Igneous 

Province (NAIP) including the Faroe Islands Basalt Group 

(FIBG) 

 

2.1. Prelude to chapter two 

The basaltic rocks of the Faroe Islands and the surrounding shelf formed in Early 

Cenozoic times (Waagstein et al., 2002; Abrahamsen, 2006; Storey et al., 2007) and 

represent an onshore/offshore manifestation of the igneous activity associated with 

the generation of the N Atlantic Igneous Province (NAIP), the magmatism of which 

affected vast onshore/offshore areas of the N Atlantic during this period (Saunders et 

al., 1997; Meyer et al,. 2007). The NAIP can be categorised as a large igneous 

province (LIP) and is itself a manifestation of the vast melt production associated 

with the formation of large magmatic provinces at a global scale (e.g. Fig. 2.1). The 

term LIP was previously assigned to igneous provinces of predominantly mafic 

compositions covering surface areas of more than 10
5
 km

2
 (Coffin and Eldholm, 

1992), but more recent studies have suggested that igneous provinces of mainly 

silicic compositions should be included in the LIP family based on the same 

criterions as those that are valid for their mafic counterparts (Bryan and Ernst, 2008). 

More specifically, a revision on LIP definition suggest that they are magmatic 

provinces that are blanketing surfaces of more than 10
5
 km

2
 each, they comprise 

igneous volumes of more than 10
5
 km

3
 each, their maximum life spans are less than 

~50 million years and they are characterised by igneous peaks of short duration 

(Generally 1 to 5 million years), during which most of the total igneous volume is 

produced (Bryan and Ernst, 2008). Other studies have suggested that the term LIP 

should be used in broader terms for all igneous provinces, irrespective of 

petrogenesis or compositional affinity, which are exposed over a minimum area of 

around 50000 km
2
 (Sheth, 2007). LIP exposures have been documented on 

continents, on oceanic plateaus, on ocean basins, on submarine ridges, on ocean 

islands/seamount chains and at volcanic rifted margins (Bryan and Ernst, 2008). Well 

known onshore examples of basaltic LIP include the NAIP, the Deccan Traps and the 
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Figure 2.1. The ellipses on the Mercator map indicate a few (out of numerous) parts of the Earth that 

have been affected by the actions of well known basaltic Large Igneous Provinces (LIP) previously. 

Numbers refer to approximate timing for initiation of magmatism (Ages are from the compilation of 

Bryan and Ernst, 2008). See text. 

 

Paraná – Etendeka basalts, which formed in rift-related settings, and the Siberian 

Traps in addition to the Columbia River flood basalts (Fig. 2.1), the generation of 

which were do not appear to be linked to such rifted continental settings (Coffin and 

Eldholm, 1992). 

This chapter contains a general description of the North Atlantic Igneous Province 

(NAIP) (2.2) and of the Faroe Islands Basalt Group (FIBG) (2.3). Earlier theories 

and petrogenetic models on the NAIP formation are discussed (2.4) followed by a 

description of the geological settings within the province based on earlier 

publications on the subject (2.5).  Particularities of individual regions within the 

province are briefly outlined (2.6) and the NAIP is considered in the context of rift 

geometries (2.7) and in the context of global and provincial plate tectonic processes 

(2.8) A brief  summary with concluding remarks bring this chapter to an end (2.9). 

 

2.2. General characteristics of the North Atlantic Igneous Province 

The North Atlantic Igneous Province (NAIP) is a classic Large Igneous Province 

(LIP) associated with a volcanic rifted margin. It has traditionally been considered to 

comprise the voluminous Palaeogene igneous rocks occurring at the conjugate E 
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Greenland – NW European margins and in the W Greenland – Baffin Bay area 

(Upton, 1988; Saunders et al., 1997; Meyer et al., 2007 and references therein). 

However, other contemporaneous magmatism also occurred in the northernmost 

parts of Greenland (Kap Washington Group at ~64  3 Ma, Estrada et al., 2001) and 

in the W Barents Sea (Vestbakken Volcanic Province, ~54 Ma, Tsikalas et al., 2002) 

(Fig. 2.2). In general, the bulk of the Early Palaeogene NAIP rocks can be grouped 

into the following regions: W Greenland – Baffin Island, SE Greenland, (central – 

east) CE Greenland, NE Greenland, Vøring margin, Møre margin, Faroe Islands, 

Rockall – Hatton area, Faroe – Shetland Basin, Rockall Trough and the NW British 

Isles (e.g. Saunders et al., 1997) (Fig. 2.2). Other contemporaneous, but smaller and 

more isolated, parts of the NAIP are also shown in Figure 2.2. The CE Greenland – 

Faroe Islands Ridge and Iceland formed subsequent to the onset of seafloor 

spreading within the province (Meyer et al., 2007). Exposed and submerged basaltic 

rocks of the NAIP extend in a roughly NE–SW direction for more than 2000 km 

along the conjugate East Greenland – NW European margins (Saunders et al., 1997) 

(Fig. 2.2). The extrusive rocks of the NAIP cover a surface area of at least ~1.3  10
6
 

km
2
, while extrusive and intrusive rocks of all regions of the province combined 

have been estimated to comprise a volume of ~6.6  10
6
 km

3
 (Eldholm and Grue, 

1994). The surface area of the onshore lava pile of the Faroe Islands is a mere ~1400 

km
2
, but when offshore igneous successions are included, the total area overlain by 

the basalts of this region is estimated at ~120000 km
2
 (Passey and Jolley, 2009). The 

rocks of the NAIP occur in a variety of modes each reflecting the environments that 

dominated the actual source regions during the time of emplacement. Most of the 

extrusive rocks at the conjugate E Greenland – NW European margins (the Faroe 

Islands; Rockall – Hatton and Vøring – Møre) were extruded in subaerial or shallow-

marine environments onto continental crust (e.g. Boldreel and Andersen, 1998; 

Natland and Winterer, 2005). Also, the majority of the Early Palaeogene W 

Greenland igneous products were emplaced onto/into continental crust (Larsen et al., 

1999a) and in subaerial or shallow marine environments (Storey et al., 1998). 
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Figure 2.2. Simplified map showing the extent of the North Atlantic Igneous Province and 

surrounding areas modified from Saunders et al. (1997); Nielsen et al. (2002); Nielsen et al. (2007). 

The central igneous complexes and/or seamounts are modified from Bull and Masson (1996); Ritchie 

et al. (1997); Naylor et al. (1999); Edwards (2002); Hitchen (2004); Archer et al. (2005). Figures in 

the open squares indicate ages of magmatism occurring prior to or subsequent to the peak of igneous 

activity in the province at ~62 to ~53 Ma. Abbreviations: BJ – Bjørnøya; BJH – Bjørnøya High; 

CGFZ – Charlie Gibbs Fracture Zone; EEC – East Erlend Complex; GFZ – Greenland Fracture Zone; 

JM – Jan Mayen; JMFZ – Jan Mayen Fracture Zone; JMR – Jan Mayen Ridge; MTFC – Møre–

Trøndelag Fault Complex; RB – Rosemary Bank; SFZ – Senja Fracture Zone; UFZ – Ungava Fracture 

Zone; VS – Vesteris Seamount; VV – Vestbrona Volcanic rocks; VVP – Vestbakken Volcanic 

Province; WEC – West Erlend Complex. See text. 
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2.3. General characteristics of the Faroe Island Basalt Group (FIBG) 

The emplacement of the Faroe Island Basalt Group (FIBG) at the NW European 

margin occurred in Early Cenozoic times (Waagstein et al., 2002; Abrahamsen, 

2006; Storey et al., 2007), meaning that it was a central part of the contemporaneous 

NAIP magmatism (Upton, 1988; Waagstein, 1988; Saunders et al., 1997; Meyer et 

al., 2007). Previous geophysical studies of the archipelago and surrounding areas 

suggested that the Early Cenozoic basalts building up the Faroese block rest on a ~30 

km thick continental crust that in turn form part the Rockall – Faroe Islands  

microcontinent (Bott et al., 1974). More recent seismic interpretations indicate that 

the Moho reaches a maximum thickness of 40 – 46 km beneath the Faroe Islands. 

Here, the Early Cenozoic basalts probably rest on some Palaeozoic and Mosozoic 

cover material to ~30 km of stretched Archaean continental crust, which in turn is 

underplated by and perhaps also intruded by additional Early Cenozoic basaltic 

material (Richardson et al., 1998). The total stratigraphic thickness of exposed and 

drilled lavas of this region (the layers of which generally dip gently ~2° towards the 

ESE or SE in the main study area) measure ~6.6 km (Rasmussen and Noe-Nygaard, 

1969; Rasmussen and Noe-Nygaard, 1970; Waagstein, 1988; Passey and Bell, 2007; 

Passey and Jolley, 2009) (Fig. 2.3). The onshore lava succession covers an area of 

~1400 km
2
 (Fig. 2.3), but as offshore basalt sequences also extend from the Faroe 

Islands and into the Faroe-Shetland basin the total area overlain by the rocks of this 

basalt group is estimated at ~120000 km
2
 (Passey and Jolley, 2009). The basalts of 

the FIBG were grouped into Upper, Middle and Lower Series basalts previously 

(Rasmussen and Noe-Nygaard, 1970; Waagstein, 1988), but recent studies have 

resulted in a revised nomenclature where the volcanic successions are grouped into 

seven formations (Passey and Bell, 2007; Passey and Jolley, 2009).  Starting from 

the base of the lava pile and upwards these formations are: the ~1075 m thick 

volcaniclastic Lopra Formation; the ~3250 m thick Beinisvørð Formation composed 

of tabular lava flows; the ~9 m thick sedimentary Prestfjall Formation; the 40 – 50 m 

thick sedimentary Hvannhagi Formation; the 1250 – 1350 m thick Malinstindur 

Formation mostly composed of compound lava flows; the ~30 m thick sedimentary 

Sneis Formation and the ~900 m thick Enni Formation composed of compound and 

tabular lava flows (Passey and Bell, 2007; Passey and Jolley, 2009 and refs. therein) 

(See stratigraphic column in Fig. 2.3). Individual lava flows of the thicker crystalline  
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Figure 2.3. The geological map and stratigraphic column of the Faroe Islands are mainly based on 

studies of Rasmussen and Noe-Nygaard (1970) and Passey and Bell (2007). Initial nomenclature from 

Noe-Nygaard and Rasmussen (1968); Rasmussen and Noe-Nygaard (1970) and Waagstein (1988) is 

indicated to the left of the stratigraphic column whereas recent revised nomenclature from Passey and 

Bell (2007) is shown to the right. Only the major lava formations are displayed on the map, but the 

thinner sedimentary formations are shown in the stratigraphic column. Sills from this study are 

indicated by orange colour on the map and their total vertical extent is indicated by orange rectangle 
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on the stratigraphic column. Dark blue fields indicate local freshwater lakes. The 3D map, produced 

by means of ArcGIS software, is shown in orthogonal projection onto UTM net (only nautical grid is 

shown) WGS 1984 – 29N. See text. 

 

formations are commonly separated by thin volcaniclastic lithologies and/or 

weathering surfaces mostly measuring a few centimetres to a few tens of centimetres 

in thickness, but occasionally these can be measured in metres (Rasmussen and Noe-

Nygaard, 1970; Passey and Bell, 2007; Passey and Jolley, 2009). The crystalline 

rocks that represent the Beinisvørð Formation are generally aphyric whereas those 

belonging to the Malinstindur and Enni formations include both olivine and 

plagioclase phyric rocks in addition to aphyric basalts (Rasmussen and Noe-Nygaard, 

1969; Waagstein, 1988; Passey and Jolley, 2009 and references therein). 

The lavas of the Faroe Islands are commonly grouped into two main categories 

according to their geochemical compositions where high-TiO2 lavas (TiO2 >1.5 wt%) 

make up most of the volume in the lowermost ~5.5 km of the lava pile and low-TiO2 

lavas (TiO2 <1.5 wt%) are becoming increasingly common in the remaining upper 

parts (Rasmussen and Noe-Nygaard, 1969; Hald and Waagstein, 1984; Waagstein, 

1988; Passey and Jolley, 2009 and references therein; Søager and Holm, 2009, 

2011). Dykes are ubiquitous at all levels of the lava pile while saucer-shaped sills are 

confined to the uppermost parts of the Malinstindur Formation, the Sneis Formation 

and the lowermost parts of the Enni Formation (Rasmussen and Noe-Nygaard, 1970; 

Passey and Bell, 2007; Passey and Jolley, 2009) (Fig. 2.3). Invasive sills or dykes? of 

unknown extent/geometries can be found in the lowermost ~400 m of the Lopra 

Formation (Passey and Bell, 2007). Like the local lavas, dykes and sills are often 

categorised according to their TiO2 content (Hald and Waagstein, 1991; Holm et al., 

2001). While high-TiO2 dykes and lavas occur throughout the archipelago, low-TiO2 

dykes and lavas are mostly concentrated in the northern parts of the islands (Hald 

and Waagstein, 1991; Søager and Holm, 2011). The sills display a geochemical trend 

being somewhat different, with low-TiO2 intrusions occurring towards the SW and 

those with high-TiO2 content occurring towards the NE (Hald and Waagstein, 1991). 

 

2.4. Competing theories on the NAIP petrogenesis 

A number of theories and geodynamic models seeking to define the nature of 

common mechanisms, which can explain all aspects of the Early Cenozoic 
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magmatism that eventually resulted in the igneous products making up the NAIP 

(and other LIPs), have been proposed pr 

eviously. These have often been grouped into two end member categories, one of 

which argue in favour of rifting and magmatism in response to the ascent of large 

plumes from the deep mantle (e.g. White and McKenzie, 1989; Campbell and 

Griffiths, 1990) whereas the other infer lithospheric control on these processes (e.g. 

Ziegler, 1992).  

Although a variety of plume models for the NAIP genesis have been proposed earlier 

(e.g. Meyer et al., 2007 and references therein) most are ultimately based on one of 

two models: 1) The White and McKenzie (1989) "static" plume model, infer a plume 

that rises passively from the mantle-core boundary in a whole-mantle convectional 

regime, and upon reaching the lithosphere generates temperatures of up to ~200ºC 

above those of the ambient mantle in a circular area extending up to ~2000 km in 

diameter (Fig. 2.4a). The resulting surface uplift then triggers crustal rifting, which in 

turn is accompanied by extensive igneous activities. 2) The Campbell and Griffiths 

(1990) "impinging" plume model, suggests that a plume with a bulbous head and a 

narrow feeder conduit ascend from the lower mantle propelled by thermal buoyancy 

(in a whole-mantle convectional regime), and upon impinging at the lower 

lithosphere generates a large crustal uplift with associated rifting and relatively brief 

but vigorous magmatism over a comparable area of 2000-2500 km across (Fig. 2.4a). 

This model infers high temperature MgO-rich melts to be generated only above the 

hot narrow plume stem, and the associated rifting requires pre-existing 

heterogeneities in the lithosphere. 

In accordance with previous inferences for general LIP genesis by extension from 

global scale plate movements and associated decompression melting (e.g. Ziegler, 

1992), Korenaga (2004) and Lundin and Doré (2005a; 2005b) invoke lithospheric 

control on both rifting and magmatism of the NAIP. These authors suggested that 

both the Early Cenozoic NAIP and the present day Iceland magmatism represented a 

"top down" effect of extension from plate tectonic processes, where decompression 

melting of upper mantle source rocks generated the rocks of the NAIP (Fig. 2.4b).  

Other studies have suggested that the present day "Iceland Hotspot" extends to no 

greater depths than the bottom of the upper mantle (e.g. Foulger et al. 2001). 

Korenaga and Keleman (2000) and Lundin and Doré (2005a, 2005b) have interpreted 

the wide range in geochemical and isotopic compositions in both Early Cenozoic 
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NAIP rocks, as well as in recent Icelandic melts to result from partial melting of a 

heterogeneous fertile upper mantle. Recent re-interpretations of rifting processes in 

the Early Cenozoic NAIP have suggested a slightly different variant of lithospheric 

control in connection with global plate reorganisations. Here, numerous local sites of 

extension, resulting from cessation/relaxation of earlier compressional stress regimes 

that were unevenly distributed within the affected tectonic plates, are dispersed over 

plate-wide areas where they initiate rifting and associated LIP magmatism (Nielsen 

et al., 2007).  

Other potential processes that are not directly related to global plate reorganisations 

or large plumes from the deep mantle, but which are sometimes thought to initiate 

large-scale partial melting include: i) spontaneous upwellings that are initiated by 

crustal/lithospheric perturbations could generate excessive decompression melting in 

near-solidus buoyant material of the upper mantle (Raddick et al., 2002); ii) 

delamination of lower crustal rocks into the upper mantle provide fertile material that 

melt at lower temperatures relative to the surrounding mantle; iii) edge-driven 

convection cells in the upper mantle result in extensive decompression melting to 

produce flood basalts (e.g.Meyer et al., 2007 and references therein) (Fig. 2.4c). 

These LIP studies seem to suggest that the most notable differences between the 

source materials of the early “plume” models and the “lithospheric” models are their 

presumed origin in the deep mantle and in the upper mantle respectively. However, 

still other studies have suggested that the sources to large basaltic provinces 

worldwide originated in at least three distinct levels in the sub-lithospheric mantle 

(Courtillot et al., 2003) (Fig. 2.4). Such tapping of compositionally diverse basaltic 

magmas from different mantle levels could point to some degree of mantle 

heterogeneity at the vertical scale. 

On the assumption that magmas were produced by partial melting of material 

originating at any depths in the sub-lithospheric mantle, earlier studies have 

suggested that the ability/strength of the lithosphere to resist penetration of 

ascending melts was a critical factor that has influenced the ultimate magma volumes 

of many LIPs (e.g. Coffin and Eldholm, 1992). These authors also stated that the 

velocities of lithospheric plates, which experience lateral motion above these 

ascending magmas, were an important factor in determining ultimate magma 

volumes of mantle-derived basaltic melts. 
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Figure 2.4. Possible scenarios during continental break-up and NAIP formation. a) Rifting occur in 

response to the activity of a large mantle plume originating at the mantle-core boundary in a whole-

mantle convectional regime. b) Rifting and decompression melting in the sub-continental lithospheric 

mantle (SCLM) occur in response to (far-field) extension and mantle drag. c) Rifting and upper 

mantle melting occur in response to activity of upper mantle plume(s) where slab recirculation or 

crustal delamination enriched igneous products in an upper-mantle convectional regime. See text. 
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2.4.1. Mantle heterogeneity 

There is a general consensus amongst most geologists that the entire compositional 

variation occurring in basaltic rocks world-wide both in large flood basalt provinces 

and in comparatively smaller igneous events, cannot result from differences in melt-

forming processes alone, but require some compositional heterogeneities of the 

presumed mantle sources to these basalts. 

A variety of causal mechanisms/processes have been suggested to explain mantle 

heterogeneities, these include: 1) Gravity induced decoupling/settling of oceanic 

lithosphere originating from subduction zones provide oceanic crust to the mantle in 

regions adjacent to active or extinct subduction zones (Alberede and Van der Hilst, 

2002; Meibom et al., 2003; Donnely et al., 2004; Anderson, 2006). 2) Delamination 

of the lower crust/lithosphere due to extension, thermal erosion and/or density 

contrast to provide the upper mantle with oceanic (eclogitic) crust (Anderson, 2005; 

Lustrino, 2005). 

(1) The exact fates of subducted oceanic crust with attached sediments/fluids have 

been longstanding themes of debate amongst many geologists. The main issue is 

whether subducted materials inevitably plunge right down to the mantle-core 

boundary, due to their large negative buoyancies, or if subducted lithosphere 

material sometimes is distributed in higher levels of the mantle as well. 

Interpretations from seismic tomography and numerical modelling seem to 

suggest that old and relatively cold oceanic lithosphere from subduction zones 

can eventually find their way down to the lowermost 200 km of the mantle i.e. 

the "D" layer (Zhao, 2004; Lay, 2005). Consequently, the addition of mostly 

oceanic crustal material to the lowermost few hundred kilometres of the mantle 

are assumed to have resulted in a heterogeneous region within the "D" layer 

(Hedlin et al., 1997; Helffrich and Wood, 2001; Alberede and Van der Hilst, 

2002; Lay, 2005). Based on low velocity zones and/or presumed temperature 

anomalies in the middle mantle, some authors argue in favour of a heterogenous 

zone at this level as well in response to the addition of subducted oceanic crust 

(Hedlin et al., 1997; Helffrich and Wood, 2001; Courtillot et al., 2003; Zhao, 

2004). Korenaga (2004) argued that the crustal part of subducting slabs become 

strongly buoyant below the 660 km discontinuity zone and so are expected to be 

entrained at levels no deeper than this zone. Remnants of young and hot oceanic 

lithosphere that are too buoyant to be subducted to great mantle depths may 
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come to rest in the upper mantle when decoupled from their subducting slab, 

thus probably resulting in upper mantle heterogeneities as well (e.g. Alberede 

and Van der Hilst, 2002; Meibom et al., 2003; Anderson, 2006).  

(2) Delamination processes have previously been interpreted to occur in a number of 

ways: i) Rayleigh-Taylor instabilities in the lower crust result in detachment of 

slices of dense hydrated material that descend down into hotter mantle 

environments where it is exposed to partial melting and dehydration, the 

products of which in turn trigger hydrous melting of overlying mantle material 

thus initiating a chain reaction (Elkins-Tanton, 2005). ii) Extension related 

ascent of MOHO can cause lateral thermo-mechanical erosion of the 

surrounding lithosphere on its flanks thus resulting in decoupling and 

descent/settling of slices of lithospheric material (Morency and Doin, 2004). iii) 

Mechanical thickening and shortening of the lithosphere induced by 

compression can enhance gravitational instability of cold and dense lithospheric 

roots that finally become detached from the lithosphere due to lateral thermal 

attenuation from the increasingly hot surroundings (Kay and Kay, 1993; Conrad, 

2000; Lustrino, 2005). iv) As the density of cold eclogitic rocks at the base of 

thick continental/oceanic crust is 3 to 10 % denser than normal mantle 

peridotites, some authors infer that delamination of the eclogites can occur due 

to density differences alone, if the eclogitic layer is sufficiently thick (Zegers 

and Van Keken, 2001; Anderson, 2005). 

Perhaps of equal importance, compared to compositional heterogeneities in the upper 

mantle, is the possible presence and distribution of fluids/water, which has the 

potential of greatly enhancing partial melting (Hirose and Kawamoto, 1995; Green 

and Falloon, 2005). The origin of water in the mantle could be subducted oceanic 

crust or fluids expelled during earlier small-scale melting events in the mantle 

(Nichols et al., 2002). Small-scale heterogeneities (ranging from metres to a few 

kilometres) due to metasomatism  in the lithospheric mantle are also inferred to have 

developed in response to transport of water and enriched material via deep 

lithospheric shear zones (Bonatti, 1990; Downes, 1990; Donnely et al., 2004). Other 

authors have argued in favour of the existence of water-rich cold plume-like 

structures in the upper mantle, which are inferred to have obtained their water from 

pristine mantle regions or from stalled oceanic subducted crust above the 660 or 410 

km discontinuity zones (Dixon et al., 2002; Gerya and Yuen, 2003). With respect to 
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the NAIP, Jamtveit et al. (2001) detected elevated H2O content in Early Cenozoic 

igneous products of W Greeenland; CE Greenland; NE Greenland; Iceland and the 

Faroe Islands. Similarly, Nichols et al. (2002) recorded elevated H2O contents in 

rocks from the Iceland area that systematically increase northwards along the 

offshore Reykjanes Ridge towards the most active igneous regions of onshore 

Iceland where the largest values were measured.  

 

2.4.2. Lithospheric strength 

A relevant issue to be addressed in complex and diverse extension-related large 

igneous provinces like the NAIP is: what caused the magmatism to be so wide-

spread until a relatively narrow seafloor-spreading zone finally was established? 

Obviously, the strength of certain parts of the lithosphere and its relative capability to 

resist stretching, rupture and/or intrusion of magmas must have played a major role. 

The strength of the lithosphere depends on a few main factors. Clearly, certain 

mineral assemblages are less resistant to fracturing/penetration than other e.g. 

sedimentary and quartzo-felspathic igneous rocks, typical for the upper continental 

crust/lithosphere, are considerably weaker than olivine dominated rocks that are 

common for the lower lithosphere (Kohlstedt et al., 1995; Kusznir and Park, 2002). 

The presence of water and increased fluid pressure in general further weakens all 

affected rock assemblages in the lithosphere (Kohlstedt et al., 1995; Hirth and 

Kohlstedt, 1996; Jackson et al., 2008). As many parts of the lithosphere often have 

had a complex magmatic/tectonic history, lateral as well as vertical compositional 

heterogeneities are of common occurrence (Kohlstedt et al., 1995; Harry and 

Bowling, 1999) rendering some sections of the crust/lithosphere prone to rifting at 

lower extensional stresses than is the case for the average lithosphere. Also, tectonic 

activities commonly leave complex assemblages of shear zones in the lithosphere 

which in turn may facilitate rifting both by enhancing partial melting and by 

reactivation of these old shear zones (Kohlstedt et al., 1995; Holdsworth et al., 1997; 

Ryan and Dewey, 1997; Harry and Bowling, 1999). In the context of lithospheric 

strength, the “soft-point model” (Corti et al., 2001; Callot et al., 2002; Geoffroy, 

2005) suggests that magmas ascending from the sub-lithospheric mantle in regions 

already undergoing extension, will penetrate the lithosphere at locations that are pre-

weakened by previous small-scale igneous activity. Callot et al. (2002); and Geoffroy 

(2005) further suggested that the configurations of such pre-weakened zones in the 
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North Atlantic region prior to the final seafloor spreading event exerted significant 

control on the geometry of rift propagation and the spatial distribution of igneous 

centres/regions building up the NAIP. 

Extensional strain rates and general changes in heat flow are important factors in 

governing whether the affected lithosphere experiences a net strengthening or a net 

weakening in a laterally homogeneous and relatively undeformed lithosphere, which 

is exposed to extensional forces (Kohlstedt et al., 1995; Hirth and Kohlstedt, 1996; 

Kusznir and Park, 2002; Jackson et al., 2008). These authors suggested that when a 

laterally homogeneous lithosphere experiences stretching from lateral extension, the 

high temperature MOHO will temporarily ascend in the area(s) of locus, and if 

minerals are given time enough to re-crystallise (strain hardening) and temperatures 

are given enough time to re-equilibrate, the MOHO will eventually descend to its 

previous level again leaving strong olivine dominated rocks in the lower crust, hence 

resulting in a net lithospheric strengthening. Conversely, high strain rates will not 

allow minerals to re-crystallise (strain softening) or temperatures to re-equilibrate 

and will eventually result in necking of the lithosphere (Kohlstedt et al., 1995; Hirth 

and Kohlstedt, 1996; Kusznir and Park, 2002; Jackson et al., 2008). The former 

process would probably cause the locus of stretching to shift to a new preferred and 

weaker location (e.g. Sonder and England, 1989; Harry and Bowling, 1999; Kusznir 

and Park, 2002). 

 

2.5. Geological settings 

In the context of large igneous provinces, it is relevant to consider relevant tectonic 

events within the area of interest and to consider potential temporal and spatial links 

between igneous products formed within the LIP in question. With respect to the 

structural settings, tectonic signatures and effects associated with the closure of the 

Iapetus Ocean in Silurian – Devonian times and the subsequent collapse of the 

Caledonian Orogen in Devonian times (Roberts, 2003) may be of particular 

relevance, as the bulk of the Early Cenozoic magmatism that eventually gave rise to 

the NAIP occurred in those parts of the proto-North Atlantic area that were affected 

by these events in some ways. 
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2.5.1. Tectonic settings 

In the period from the collapse of the Caledonian Orogen and until the final break-up 

in Early Cenozoic times, various extensional systems were active for shorter or 

longer periods during a total time span of ~350 Ma, which resulted in the formation 

of widespread sedimentary basins (Doré et al., 1999; Skogseid et al., 2000). Early 

Cenozoic exploitation/reactivation of both Precambrian and Palaeozoic Caledonian 

shear zones/structures have been inferred previously (Doré et al., 1997, 1999; 

Skogseid et al., 2000). Following the closure of the Iapetus Ocean and the collapse of 

the Caledonian Orogen in Silurian–Devonian times (Roberts, 2003), the proto-North 

Atlantic area to the south of the Caledonian front was characterised by a patchwork 

of Archaean and Proterozoic terranes (Dickin, 1992). Early Cenozoic magma 

formation by melting/recycling of fertile source material that originated from 

tectonic activities associated with Precambrian orogens have been suggested earlier 

for some parts of the NAIP (e.g. Lundin and Doré, 2005a). 

The main structures that formed during the various post-Caledonian tectonic events 

in the proto-North Atlantic, i.e. at the conjugate E Greenland – NW European 

margins, and at the W Greenland margin are introduced below. 

 

2.5.1.1. Carboniferous – Triassic 

During this time span, broadly E-W directed lithospheric extension between Eurasia 

and Greenland resulted in the formation of large half-graben basins that become 

widely dispersed in the proto N Atlantic area and which were subsequently filled 

with thick successions of continental sediments (Ziegler, 1989; Surlyk et al., 1990; 

Brekke et al., 1999; Doré et al., 1999). In Permian – Triassic times this extension was 

non-orogenic and linked to basin subsidence in response to thermal relaxation of the 

lithosphere (Ziegler, 1989). In the latest part of this period the area north of N 

Greenland was exposed to moderate NNW directed extensional stress (Ziegler, 

1989). 

 

2.5.1.2. Jurassic – Cretaceous 

Extensional activity in the proto N Atlantic area that was related to sea-floor 

spreading in Mid Jurassic between West Africa and North America (Wilson, 1997) 

resulted in faulting and subsidence in regions off Mid-Norway (Blystad et al., 1995). 

Surlyk et al. (1981) argued in favour of extensional activity throughout Jurassic times 
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for NE Greenland. Late Jurassic E–W extension, possibly linked to rifting in central 

Europe and seafloor spreading in the Tethys (Ziegler, 1989), resulted in stretching 

and subsidence of the Rockall Trough, the Faroe – Shetland Basin and the Vøring – 

Møre basins (Ziegler, 1989; Brekke et al., 1999; Cole and Peachey, 1999). In the 

Early Cretaceous the central Atlantic spreading ridges propagated northward and 

reached the northern parts of Spain and probably caused a considerable NW–SE 

extensional stress to be built up in the already stretched northern parts of the proto N 

Atlantic area, thus causing further extension and rapid subsidence in the existing 

sedimentary basins listed above (Cole and Peachey, 1999; Doré et al., 1999). The 

switch from Tethyan seafloor spreading to subduction at its northern margin caused 

the tectonics on the future N Atlantic margin to change from rifting in broadly N-S 

directions to one dominated by NE-SW directed rifting during this period (Doré et 

al., 1999). Shrivastava and Tapscott (1986) suggested that spreading in the Rockall 

Trough occurred during the Mid Cretaceous (Albian time, 100-105 Ma), whereas 

Knott et al. (1993) proposed that spreading occurred in the Rockall Trough in the 

time span from Late Carboniferous to Late Cretaceous times and that the Rockall 

Plateau detached from Greenland at around 83 Ma. Surlyk et al. (1981) argued in 

favour of the occurrence of extension in NE Greenland throughout the Cretaceous. 

Being located between E Greenland and NW Europe, extension across the Rockall 

Plateau in Cretaceous times was accommodated by stretching of the Rockall – 

Hatton area (Bull and Masson, 1996; Tate et al. 1999). On the one hand, Roest and 

Shrivastava (1989) and Rumph et al. (1993) suggested that E–W extension between 

Greenland and North America in Late Cretaceous times caused rifting to propagate 

rapidly from the proto Bay of Biscay area and northward, thus initiating the 

formation of the Labrador Sea, on the other hand Ziegler (1989) interpreted this 

extensional event to have taken place in Late Jurassic–Early Cretaceous times. 

However, Chalmers (1991) and Chalmers and Laursen (1995) opposed these authors 

and pointed out that the most likely timing for the onset of sea-floor spreading in the 

Labrador region was in the Early Palaeocene times rather than in the Late 

Cretaceous, thus reducing the estimated amount of new sea-floor formed, compared 

to previous calculations. Throughout this period the area north of N Greenland was 

exposed to moderate NNW directed extensional stresses (Ziegler, 1989). 
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2.5.1.3. Pre-rift Cenozoic 

Some of the most recent theories regarding the evolution of the NE Atlantic suggest 

that a weak NE–SW directed, relatively short-lived, extensional episode occurred at 

around 60 Ma causing NW directed rifting in a relatively narrow area reaching from 

the British Isles via the Faroe Islands and CE Greenland to the Disko area in W 

Greenland, and possibly linked to spreading centres in the Baffin Bay (Lundin and 

Doré, 2005a, 2005b). Early Palaeogene extension across the Rockall – Hatton area 

has been inferred previously (Doré et al., 1999; Tate et al., 1999), and Edwards 

(2002) suggested an increasing degree of extension across the Rockall – Hatton area 

from the north towards the south during this period. Cole and Peachey (1999) 

interpreted extension to have occurred across the Rockall Trough in Early Paleocene 

times, an extensional event that probably continued into the Eocene as well. Frequent 

episodes with short WNW-ESE or NW-SE directed extension with various loci of 

rifting occurred in the Faroe-Shetland Basin in Early and Mid Paleocene times (Dean 

et al., 1999), and Lundin and Doré (1997) likewise inferred broadly NW-SE directed 

extension to have occurred in the Møre and Vøring basins during this period. 

Timewise, the NE-SW directed extension discussed at the start of this sub-section 

(Lundin and Doré, 2005a, 2005b) seems to be at odds with the NW-SE extension 

suggested for large parts of the N Atlantic during this period by other authors. 

Supplementary to the interpretations by these authors, Harrison et al. (1999) 

suggested that all of the NW European offshore basins were the sites of one 

continuous rift with sinistral strike-slip movements in the Mid Paleocene. Two sub-

parallel sinistral strike-slip events occurring at around 62 Ma have been inferred for 

the E Greenland margin in a line that broadly coincides with the subsequent Early 

Eocene break-up trend and for the NW European margin from the Vøring Basin in 

the north to the Rockall Trough in the south Nielsen et al. (2007).  

Ziegler (1989) argued in favour of considerable extensional NNW directed 

extensional stresses off N Greenland in the Late Palaeocene and Harrison et al. 

(1999) also suggested considerable N directed extensional stresses for Greenland in 

in general in Late Paleocene and Earliest Eocene times. 

Regional vertical movements and the formation of transient domal uplifts preceded 

the main phases of Early Palaeogene igneous activities in many parts of the NAIP 

(e.g. Maclennan and Jones, 2006; Meyer et al., 2007; Saunders et al., 2007).  
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Table 2.1. Early Palaeogene transient uplifts have been reported for many regions within the North 

Atlantic Igneous Province (NAIP) 

 

Published examples of some regional domal uplifts are listed in Table 2.1. Without 

constraining the depth of origin, Saunders et al. (2007) suggested that the ascent of 

narrow hot mantle jets and broadly contemporaneous rifting in areas of uplifts within 

the NAIP resulted in crustal doming. 

A number of Early Cenozoic tectonic events occurred in the Faroe Islands and 

surrounding areas some of which are exposed onshore as displacements along 

dyke/fault systems (Rasmussen and Noe-Nygaard, 1970; Geoffroy et al., 1994). 

Based on measurements onshore of the Faroe Islands Geoffroy et al. (1994) reported 

two Paleocene strike slip and one compressional event that was contemporaneous 

with the latest stages of magmatism in the area. Hald and Waagstein (1991) and 

Waagstein (1988) suggested that the emplacement of the sills of the Faroe Islands 

was related to tectonically induced doming in the area during the latest stages of or 

immediately following the final volcanic activity in the area, whilst Geoffroy et al. 

(1994) more specifically suggested sill emplacement in response to reverse faulting 

in a NE-SW directed compressional environment shortly prior to the onset of the N 

Atlantic opening. Localised NE-SW directed extension at 59 – 55 Ma was proposed 

for the Faroe Islands region by Walker et al. (2011). Ellis et al. (2009) speculated 

that the positions of the larger sills adjacent to narrow fjords in the actual area could 

be explained by the involvement of deep-seated lineaments, occurring in these fjords, 

in the igneous processes during emplacement of these sills. 

 

Regions Cited authors 

Disko area, W Greenland Japsen et al. (2005) 

Ammassalik area, SE Greenland Clift et al. (1995); Larsen and Saunders (1998) 

Kangerlussuaq area, CE Greenland Peate et al. (2003) 

Scoresby Sund area, CE Greenland Mathiesen et al. (2000) 

Hold With Hope, NE Greenland Thomson et al. (1999) 

Vøring margin, off mid Norway  Ren et al. (2003) 

Møre margin, off  mid Norway Brekke et al. (1999) 

Northern North Sea Basin Nadin et al. (1997) 

Faroe-Shetland Basin Nadin et al. (1997); Rudge et al. (2008) 

North Rockall Trough Archer et al. (2005) 

Moray Firth to Shetland Mackay et al. (2005); Rudge et al. (2008) 

NW British Isles (Scotland) Green et al. (1993); Mudge and Jones (2004) 
Irish Sea Cope (1994) 

Porcupine Basin Jones et al. (2001) 
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2.5.1.4. Syn-rift Cenozoic 

At around 56-54 Ma the focus of the broadly E-W directed crustal stretching in the 

proto N Atlantic area, which had previously been accommodated in a relatively wide 

NNE–SSW trending zone including the Rockall Trough, the Rockall – Hatton area, 

the Faroe – Shetland Basin and the Møre and Vøring basins as well as at the NE 

Greenland margin,  was re-located into a zone west of the Hatton – Rockall area, the 

Faroe Plateau and the Vøring Margin on the European side and to the east of the E 

Greenland margin as seafloor spreading was initiated (Roest and Srivastava, 1989; 

Saunders et al., 1997; Brekke et al., 1999). At the same time extension between 

Greenland and North America continued in the Labrador Sea, forming a triple 

junction with the NE Atlantic rifting south of S Greenland (Roest and Srivastava, 

1989). Transform movements between Greenland and N America, which also 

occurred during this period, were accommodated by the Ungava Fault Zone 

(Chalmers et al., 1995). The combined spreading on the E and W side of Greenland 

caused it to move in a roughly northward direction relative to the European and 

American continents (Roest and Shrivastava, 1989; Geoffroy et al., 1994; Harrison et 

al., 1999). Late Paleocene to Early Eocene roughly NW-SE trending compressional 

structures, perhaps related to the northward movement of Greenland during this 

period of incipient rifting, have been recorded in the northern parts of the Faroe 

Islands, the Hatton Bank, the N Rockall Trough and in the Faroe-Shetland Basin 

(Boldreel and Andersen, 1993; Geoffroy et al., 1994; Boldreel and Andersen, 1998; 

Dean et al., 1999). It is unclear whether similar contemporaneous and perhaps related 

compressional structures have been recorded at the conjugate E Greenland margin. 

The Earliest Eocene onset of seafloor spreading in the Norwegian-Greenland Sea and 

in the Eurasian Basin (Shrivastava and Tapscott, 1986; Ziegler, 1992) were also 

accompanied by a clockwise rotation of Greenland relative to N America and 

Eurasia, thus causing compressional deformation in NW Greenland and in the W 

Barents Shelf (the Eurekan and Spitsbergen orogens) and differences in the rate of 

seafloor spreading in the initial N Atlantic Ocean (Ziegler, 1992). High spreading 

rates during the initial phases of seafloor opening of the N Atlantic have been 

suggested by structural and geochronological studies on pseudotachylites in E 

Greenland (Larsen and Jakobsdóttir, 1988; Karson et al., 1998). Broadly N – S 

directed extension has been inferred for the region encompassing the Faroe Islands at 

~55 Ma (Walker et al., 2011). 



 

30 
 

2.5.1.5. Post-rift Cenozoic 

Seafloor spreading in the Labrador Sea dissipated prior to about 36 Ma and the main 

axis of spreading migrated to the existing NE Atlantic spreading ridge (Roest and 

Srivastava, 1989; Saunders et al., 1997). 

Following the peak of igneous and tectonic activity, associated with the formation of 

the majority of the NAIP in Palaeocene/Eocene times, parts of the crust on both sides 

of the NE Atlantic rifted margin experienced some comparatively less violent, but in 

some cases significant, tectonic events in e.g. Mid Cenozoic times often involving 

vertical movements from local compressional stress regimes, possibly related to 

intraplate transpression from the actively spreading Mid-Ocean Ridge (MOR) or 

regional movements in the European plate (Boldreel and Andersen, 1993, 1998; 

Brekke et al., 1999; Doré et al., 1999). Onshore structural evidences recorded in the 

Faroe Islands have pointed to the occurrences of broadly NW – SE directed local 

extension at ~48 Ma and broadly NW – SE oriented compression at ~20 Ma (Walker 

et al., 2011). In Early Neogene times, dome-shaped uplifts occurred in many places 

on both sides of the continental margins of the NAIP area (e.g. Japsen and Chalmers, 

2000 and references therein; Lundin and Doré, 2002). Asthenospheric diapirism 

caused by Rayleigh-Taylor instability has been suggested as a causal mechanism for 

these domal uplifts earlier (e.g Rohrman and Van der Beek, 1996). 

 

2.5.2. Igneous settings 

The igneous rocks of the NAIP cover a compositional spectrum ranging from 

ultramafic picrites to silicic rocks (Table 2.2), but the vast majority of the rocks 

encountered in the province today are of basaltic compositions. Rocks having been 

contaminated with crustal material typically occur at or close to the base of volcanic 

successions in of the basaltic sequences of this province (Larsen et al., 1998; Gibson, 

2002). The igneous products occur in a wide variety of modes including fissure or 

point-source fed lava-flows (e.g. Peate et al., 2003; Single and Jerram, 2004)  and 

ignimbrites as well as plutonic or sheet intrusions (sills/dykes) (Table 2.2), each 

reflecting the processes and crustal environment that prevailed in that particular area 

during emplacement of these melts. Most of the igneous activities of the NAIP 

occurred in the time span from around 64 Ma to around 52 Ma. Two main periods of 

melt emplacement have been inferred for the NAIP representing overlapping ages at 

around 62 Ma to 58 Ma and at around 57 Ma to 54 Ma with detectable peaks at ~60 
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Ma and at ~55 Ma, respectively (e.g. Saunders et al., 1997; Jerram and Widdowson, 

2005) (Table 2.2). Igneous activity on smaller scales preceded these main igneous 

periods in e.g. the N Rockall Trough (Morton et al., 1995; O’Connor et al., 2000) and 

continued subsequently in many parts of the NAIP area for tens of millions of years 

(Storey et al., 1998; O’Connor et al., 2000; Tegner et al., 2008) and may still be 

encountered today on Iceland and on the island of Jan Mayen (Trønnes et al., 1999) 

(Table 2.2). 

 

2.5.2.1. Early-Middle Paleocene 

In a reconstructed map of the NAIP region, intended to show the spatial distribution 

of the igneous activities for the Early to Middle Paleocene (Fig. 2.5; Table 2.2), the 

magmatic regions and/or centres at the conjugate E Greenland – NW European 

margins seem to form irregular and roughly NNE–SSW directed trends, from just to 

the north of Hold With Hope and southwards to the Ammassalik area along the E 

Greenland margin and from the Vøring area and southwards to the NW British Isles 

area at the NW European margin, converging at the CE Greenland–Faroe Islands 

area (Fig. 2.2; Fig. 2.5). According to current published data the igneous activities in 

N and W Greenland were spatially isolated from these events. 

It is noticeable that regions of the NAIP where igneous activities have been recorded 

for the Early-Middle paleocene, coincide well with regions that experienced transient 

uplifts during this period (Fig 2.5.; Table 2.1; Table 2.2). Also, it appears that both 

the uplifted regions and those parts of the NAIP that experienced the most 

voluminous igneous production during this period, namely the NW British Isles, the 

Faroe Islands, the central-east Greenland (CE Greenland) and the Disko region in W 

Greenland (Upton, 1988; Saunders et al., 1997; Meyer et al., 2007), occurred in the 

vicinity of old orogenic sutures or fronts from the Palaeozoic Caledonian Orogen at 

the conjugate E Greenland – NW European margins, from Archaean–Proterozoic 

orogens at the conjugate E Greenland – NW European margins and from Archaean 

Nagssugtoqidian–Rinkian Orogen at the conjugate W Greenland – N America 

margins, i.e. in the Disko – Baffin Island area (Fig. 2.4.; Fig. 2.5.).  

 

2.5.2.2. Late Paleocene and Early Eocene 

The inferred trends of igneous activities at the conjugate E Greenland–NW European 

margin from the Early-Middle Paleocene seem to be more or less repeated in the  
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Table 2.2. Summary of Early Palaeogene ages for key regions of the North Atlantic Igneous Province. 

Overlapping ages are commonplace. 

The ages presented in this table reflect only the main phases of NAIP magmatism. Earlier and 

subsequent magmatism occurred in many of the same regions as those presented in this table (e.g. 

Morton et al., 1995; Storey et al., 1998; O’Connor et al., 2000; Tegner et al., 2008 and references in 

these papers). 

 

Regions Rock compositions: 

modes of emplacements 

Cited authors 

British Isles: ~61 to ~55 Ma Ultramafic, mafic, silicic: 

volcanic, plutons, sills, 

dykes 

Gamble et al. (1999); Chambers et al. 

(2005); Storey et al. (2007) 

   

Rockall-Hatton margin: ~58 to 

~53 Ma 

Mafic, silicic: volcanic, 

plutons, sills, dykes 

Sinton and Duncan (1998); Hitchen 

(2004)  

   

Rockall Trough: ~70 to ~54 
Ma 

Mafic, silicic: volcanic, 
sills 

Hitchen and Ritchie (1993); Morton 
et al. (1995); Sinton et al. (1998);  

O’Connor et al. (2000); Archer et al. 

(2005);  

   

Faroe-Shetland Basin: ~61 to 

~55 Ma 

Mafic, silicic: volcanic, 

sills, dykes 

Hitchen and Ritchie (1993); Trude et 

al. (2003) 

   

Vøring margin: ~61 to ~55 Ma Mafic, silicic: volcanic, 

sills, dykes 

Skogseid et al. (1992); Sinton et al. 

(1998);  Planke et al. (2005)  

   

Møre Margin: ~56 to ~55 Ma Mafic: sills Planke et al. (2005) 
   

Faroe Islands: ~61 to ~55 Ma Ultramafic, mafic: 

volcanic, sills, dykes 

Waagstein et al. (2002); Storey et al. 

(2007)  

   

NE Greenland: ~59 Ma to ~53 

Ma 

Ultramafic, mafic: 

volcanic, sills, dykes 

Upton et al. (1995); Price et al. 

(1997)  

   

CE Greenland: ~61 to ~53 Ma Ultramafic, mafic, silicic: 

volcanic, plutons, sills, 

dykes 

Karson et al. (1998); Tegner et al. 

(1998a); Hald and Tegner (2000); 

Lenoir et al. (2003); Peate et al. 

(2003);  Storey et al. (2007)  
   

SE Greenland: ~62 Ma to ~55 

Ma 

Ultramafic, mafic, silicic: 

volcanic, sills, dykes 

Sinton and Duncan (1998); Sinton et 

al. (1998); Tegner and Duncan 

(1999);  Storey et al. (2007)  

   

W Greenland: ~61 Ma to ~54 

Ma 

Ultramafic, mafic, silicic: 

volcanic, dykes 

Storey et al. (1998); Larsen et al. 

(1999a);  Geoffroy et al. (2001)  

   

N Greenland: ~64 Ma Mafic, silicic: volcanic, 

dykes 

Estrada et al. (2001) 

   

Bjørnøya Marginal High: ~54 
Ma 

Mafic: volcanic Tsikalas et al. (2002) 

   

Vestbrona, off SW Norway: 

~55 Ma 

Mafic: volcanic Bugge et al. (1980) 
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Figure 2.5. Simplified map of the NAIP at around 62 to 58 Ma based on Torsvik et al. (2001a, 201b). 

The inferred locations of the Caledonian fronts and the Iapetus suture zone are from: Bott (1987); 

Soper et al. (1992); Ziegler (1992); Masson et al. (1999); Skogseid et al. (2000); Hansen and Brooks 

(2002); Roberts (2003); Cocks (2005); Foulger et al. (2005a, 2005b). The inferred Archaean–

Proterozoic suture zone in the Rockall–Hatton–NW Britain area is modified from Dickin (1992). The 

inferred Nagssuqtocidian–Rinkian suture zone in the Disko region is modified from Connelly et al. 

(2006). The three major NE-SW trending sinistral transforms are modified from Nielsen et al. (2007). 

Broadly NW-SE trending lineaments at the NW European margin are from Kimbell et al. (2005). 

General spreading directions are from Harrison et al. (1999) and Nielsen et al. (2007). Abbreviations: 

ADL – Anton Dohrn Lineament; CGFZ – Charlie Gibbs Fracture Zone; CL – Claire Lineament; JL – 
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Judd Lineament; JML – Jan Mayen Lineament; FI – Faroe Islands; MF – Moray Firth; MFL – Marflo 

Lineament; MTFC – Møre–Trøndelag Fault Complex; PB – Porcupine Basin; SHL – South Hatton 

Lineament; SI – Shetland Islands; UFZ – Ungave Fault Zone;WTR –Wyville-Thomson Ridge; YR – 

Ymir Ridge. Roman numbers I to VIII refer to igneous regions. See text for further explanation.  

 

Late Paleocene and Early Eocene (Fig. 2.6.), apart from a westward relocation of 

magmatism at the Vøring margin, an eastward relocation of magmatism at the 

Blosseville Kyst and the establishment of volcanism in the W Barents Sea. Final sea-

floor spreading just north of the Faroe Islands occurred farther to the east at ~54 Ma  

(Bott, 1985). Each part of the double zigzag geometry for the inferred Early 

Palaeogene magmatic trends of the NAIP in the NE Atlantic area seem to resemble 

classic rifting trends associated with the embryonic stages of continental rifting 

where the surface expression of the rift processes appears as interconnected triple 

junctions at various stages of development (Burke and Dewey, 1973; Ziegler, 1989; 

Park, 1995; Sears et al., 2005). 

The ages and the emplacements of the igneous products of the Rockall-Hatton area 

have hitherto been poorly constrained although Late Paleocene and/or Early Eocene 

ages (around 57-55 Ma) are indicated for the Rockall and Hatton banks (Table 2.2). 

O'Reilly et al. (1998) detected major thermal anomalies west of the Rockall Bank 

that overprinted all signatures, generated by previous extensional events. As the 

latest extensions recorded for this area occurred in Early/Mid Paleocene times 

(Lundin and Doré, 1997; Doré et al., 1999; Tate et al., 1999) it is suggested that, if 

they formed broadly contemporaneously, the majority of the lavas and central 

igneous complexes occurring in the Rockall-Hatton area could have been emplaced 

in the Late Paleocene/Earliest Eocene. 

 

2.5.2.3. Post-rift Cenozoic 

Palaeogene post-rift igneous activity within the NAIP in the form of central igneous 

complexes, sills/dykes/plutons or volcanics of modest volumes of various ages have 

been reported from W Greenland, E Greenland, NW British Isles and in the N 

Rockall-Trough (e.g. Storey et al., 1998; O’Connor et al., 2000; Tegner et al., 2008 

and references in these papers) and these rocks were emplaced in the same areas as 

those experiencing voluminous igneous activity in the Paleocene and Early Eocene. 

Although the only documented igneous activity in Neogene times outside the Iceland  
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Figure 2.6. Simplified map of the NAIP at around 57 to 54 Ma based on Torsvik et al. (2001a; 

2001b). Roman numbers I to IX refer to igneous regions. Other explanation and abbreviations as in 

Figure 2.3. See text for further explanation. 

 

region occurred on the Jan Mayen Ridge in the Norwegian-Greenland Sea 

(Gudlaugsson et al., 1988), it is noticable that widespread uplifts within the NAIP 

during this period were confined to regions, which experienced the most voluminous 

igneous activity in the Early Palaeogene (Japsen and Chalmers, 2000). 
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Other late NAIP magmatism, including Iceland and the Faroe-Greenland Ridge, 

occurred in regions with previous Palaeogene magmatism or they were related to 

relatively recent NAIP plate reorganisations and the current Iceland igneous region. 

 

2.6. Brief considerations on individual regions of the NAIP 

2.6.1. The NW British Isles (Fig. 2.2; I in Fig. 2.5 and Fig. 2.6) 

Previous studies have suggested that magmatic centres, concentrated around an Early 

Palaeogene triple junction in the Hebrides – Ireland area, were instrumental in 

propelling the contemporaneous magmatism in the NW British Isles (Burke and 

Dewey, 1973; Geoffroy et al., 1996). The observed NW-SE directed orientation of 

widespread Paleocene dykes in the NW British Isles (e.g. Speight et al., 1982; 

England, 1988) point to roughly NE-SW directed extension during emplacement of 

these intrusions (England, 1988; Geoffroy et al., 1996) and Geoffroy et al. (1996) 

further proposed that the dyke swarms represented a SE branch (failed arm) of a 

triple junction that was located in the NW parts of this area. The later Eocene 

extension in NW Britain (England, 1988; Geoffroy et al., 1996) has been interpreted 

to result from broadly NW–SE-directed crustal extension associated with the opening 

of the North Atlantic (Geoffroy et al., 1996). The Early Palaeogene magmatism in 

NW Britain has previously been associated with melting of the “Iceland Plume” 

(Upton et al., 2002), although Nadin et al. (1997) tentatively suggested that a 

separate distinct mantle source may have been active in the NW Britain area during 

this period. Tectonic activity has also been invoked by some authors to have 

facilitated melt generation in the area (Upton et al., 2002; Chambers et al., 2005). 

 

2.6.2. The Faroe Islands – N Rockall Trough (Fig. 2.2; II in Fig. 2.5 and Fig. 2.6, 

as well as V in Fig. 2.6) 

Geoffroy et al. (1994) argued in favour of an Early Palaeogene triple junction that 

was more or less centred on the Faroe Islands, while Burke and Dewey (1973) 

proposed that a contemporaneous triple junction was situated in the Faroe Island – N 

Rockall Trough area with associated magmatic centres in the N Rockall Trough and 

to the SSW and/or SW off the Faroe Islands. This accords with inferences by 

Waagstein (1988) suggesting that the depocentre that provided igneous products to 

the Beinisvørð Formation (formerly lower basalt series: e.g. Passey and Bell, 2007) 

in the Faroe Islands was located in the southern or central part of the Faroe Islands 
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shelf. A number of NW-SE trending lineaments have been reported for this region 

(Kimbell et al., 2005) and sub-parallel igneous emplacement trends of 

contemporaneous central igneous complexes in the SW parts of the area have been 

interpreted to result from control by local lineaments (e.g. Archer et al., 2005). In 

theory, failed NW-SE trending rift arms or leaky transforms from a triple junction 

that migrated within this region during Paleocene and Eocene times could have 

generated some of these sub-parallel igneous trends. If potential triple junctions 

located in the Faroe Islands area and off NW Britain were joined by 

extensional/transform faults, these would presumably have been sub-parallel to the 

N–S-trending contemporaneous dykes reported for mainland Scotland to the E and S 

of Skye as reported by Speight et al. (1982). Morton et al. (1995) tentatively 

suggested that volcanism at the Rosemary Bank in the N Rockall Trough was due to 

a separate underlying source, and Hitchen et al. (1997) likewise argued in favour of a 

local source for the Early Palaeogene rocks in the same area. Other authors have 

associated the Early Cenozoic magmatism in this area with the “Iceland plume” 

(Holm et al. 2001; Archer et al. 2005). 

 

2.6.3. The NE Faroe – Shetland Basin; N North Sea; offshore SW Norway (Fig. 

2.2; III in Fig. 2.5 and Fig. 2.6) 

Previous studies have suggested that a triple junction to the NNE off the Shetland 

Isles was operational in Paleocene times (Burke and Dewey, 1973) and farther to the 

NNE, i.e. off the SW Norwegian coast, a magmatic centre was active during Late 

Paleocene and Early Eocene (Bugge et al., 1980). While Kanaris-Sotiriou et al. 

(1993) interpreted Paleocene basaltic and intermediate volcanic rocks of the Erlend 

Complex in the northern North Sea to be a result of volcanism induced by extension 

in the area, Mudge and Jones (2004) and Rudge et al. (2008) attributed 

contemporaneous uplifts and igneous activity, recorded in the northern North Sea 

and the NE Faroe – Shetland Basin area, to the activity of the “Iceland Plume”. 

Active involvement of a Paleocene precursor to the Jan Mayen Fracture Zone during 

the formation of the igneous products at the Vestbrona area offshore SW Norway has 

been inferred previously (Torske and Prestvik, 1991).  The Møre – Trøndelag Fault 

Complex, which intersects the same area offshore the SW Norwegian coast, was 

probably active during this period as well (Doré et al., 1997; Redfield et al., 2004). 
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2.6.4. The Vøring margin; NE Greenland (Fig. 22; IV in Fig. 2.5 and Fig. 2.6) 

Inferred magmatic activity at the Vøring margin in Early Paleocene times occurred at 

some distance to the east of the future break-up zone, but it migrated westwards with 

time (Eldholm et al., 1989). Early Eocene magmatism in NE Greenland and at the 

Vøring margin were closely related spatially (Viereck et al., 1988; Upton et al., 

1995) and recent studies have revealed a continuous Early Eocene igneous complex 

that directly linked these two regions together in the earliest stages of sea-floor 

spreading (Olesen et al., 2007). The volume and rock types of Early Cenozoic 

igneous products of the Vøring margin resemble those commonly found in the 

Rockall Trough (Upton, 1988) and on the NW British Isles (Viereck et al., 1988 and 

references therein). Volumes of igneous products from this period decreased from 

the central Vøring margin towards the south and north respectively (Berndt et al., 

2001), thus perhaps indicating melt supplies from a relatively confined central 

magmatic source. On the one hand, an “Iceland Plume” origin has been inferred 

previously for the magmatism in NE Greenland and at the Vøring margin (Skogseid 

et al., 1992; Upton et al., 1995); on the other hand, Eldholm et al. (1989) and Van 

Wijk et al. (2001) suggested that decompression melting triggered by 

extension/rifting was responsible for the magma generation at the Vøring margin. 

Recent re-interpretations of available magnetic, bathymetric, gravity and seismic data 

from the Vøring margin strongly suggest local Eocene magmatism related to an 

Azores-type triple junction, linked to the embryonic stages of sea-floor spreading in 

the Norwegian–Greenland Sea (Gernigon et al., 2008). 

 

2.6.5. The (central-east) CE Greenland (Fig. 2.2; V in Fig. 2.5 and Fig. 2.6) 

The voluminous and widespread Early Cenozoic igneous products in this region may 

have been produced by the activities of several contemporaneous magmatic centres 

(Callot et al., 2002). Localities of active triple junctions for this period have been 

suggested previously for the region off Kangerlussuaq (Burke and Dewey, 1973; 

Karson and Brooks, 1999; Tegner et al., 2008), but other potential sites of 

tectonomagmatic activity may be inferred from Early Paleocene magmatism and 

uplifts reported for this area in previous studies (Larsen and Watt, 1985; Nielsen, 

1987; Mathiesen et al., 2000; Callot et al., 2002; Peate et al., 2003). This vast area 

was characterized by Early Cenozoic episodic igneous activity and frequent 

migration of magmatic centres (Larsen and Watt, 1985; Peate et al., 2003), and at 



 

39 
 

least three distinct Early Cenozoic rifting events have been recorded for this region, 

some of which occurred far inland (Nielsen, 1987; Olesen et al., 2007). The bulk of 

the rift-related magmatism in CE Greenland and the Faroe Islands at ~55 Ma 

occurred close to the Blosseville Kyst (Nielsen, 1987; Larsen and Watt, 1985; Larsen 

et al., 1999b), which is in accordance with previous inferences suggesting that the 

magmas of the younger basalt formations of the then neighbouring Faroe Islands 

were supplied from the north during this period (Waagstein, 1988; Larsen et al., 

1999b). The onset of final sea-floor spreading at latitudes intersecting the Blosseville 

Kyst occurred farther to the east along the now extinct Ægir Ridge at ~54 Ma (Bott, 

1985). On the one hand, Larsen and Marcussen (1992) and Hanghøj et al. (2003) 

considered the Early Cenozoic magmatism in CE Greenland to be linked to extension 

in the area; on the other hand Tegner et al. (2008 and references therein) suggested 

that the same magmatism resulted from actions of the “Iceland Plume”. 

 

2.6.6. The Hatton – Edoras margin; SE Greenland (Fig. 2.2; VI in Fig. 2.5 and 

Fig. 2.6) 

Only parts of this extensive area have been investigated in details, but their close 

proximity in Early Cenozoic times may suggest that these two margins perhaps 

shared some magmatic centres prior to the sea-floor spreading in the region. Sites of 

potential Early Cenozoic triple junctions within this region have been implied 

previously (Burke and Dewey, 1973; Bull and Masson, 1996; Karson and Brooks, 

1999; Nielsen et al., 2002; Nielsen et al., 2007) while contemporaneous separate 

magmatic centres and domal uplifts recorded within this region previously (e.g. 

Morgan and Barton, 1990; Barton and White, 1997; Larsen and Saunders, 1998; 

Elliot and Parson, 2008) could point to separate events that involved 

tectonomagmatic activities outside potential sites of triple junctions of this region as 

well. The occurrences of major lineaments within the actual region (Kimbell et al., 

2005) could potentially have facilitated igneous activity if these were active during 

the actual time span. Morgan and Barton (1990) detected a large separate magmatic 

centre that was active on the NW Hatton Bank in the Early Cenozoic, and recent 

work by Elliot and Parson (2008) suggested that the Hatton rifted margin could be 

divided into three separate segments, each of which with a distinct magmatic 

evolution. These authors tentatively suggested that the northern parts of the Hatton 

margin only experienced diffuse spreading in the Early Eocene prior to Chron 21 
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(~50 Ma) when regular coherent spreading was established. The phenomenon of 

diffuse sea-floor spreading has previously been interpreted to reflect low obliquity 

rifting in a magmatically starved environment (Corti et al. 2001). In the southernmost 

parts of this margin, Elliot and Parson (2008) recorded relatively concentrated syn- to 

post-break-up volcanism. Most authors infer the “Iceland Plume” to be the main 

source for the magmatism at these two margins (Barton and White, 1997; Fitton et 

al., 2000), but Edwards (2002) considered any “Iceland Plume” dominated processes 

occurring further eastwards toward the Rockall – Hatton Basin to be problematic, 

and Barton and White (1997) suggested that there was no major long-distance lateral 

migration of the melt supplies to the magmatism at the Edoras Bank. 

 

2.6.7. TheWest Greenland – Baffin Island area (Fig. 2.2; VII in Fig. 2.5 and Fig. 

2.6) 

Reported trends of major faults that presumably were active in the W Greenland – 

Baffin Island area in Early Cenozoic times (Chalmers et al., 1995; Geoffroy et al., 

2001; Callot et al., 2002; Skaarup et al., 2006) together with reported locations of 

concentrated contemporaneous igneous activities and doming (Chalmers et al., 1995; 

Callot et al., 2002; Japsen et al., 2005; Skaarup et al., 2006) suggest that magmatism 

was confined to areas adjacent to kinks in the contemporaneous rifting trends. These 

areas of concentrated tectonomagmatic activity include the southern tip of the 

Ungava Fault System and the area in the vicinity of the islands of Ubekendt Ejland 

and Disko. Another kink or potential triple junction between major faults interpreted 

to have been active during the same period occurred further to the north between 

Baffin Island, Ellesmere Island and W Greenland (Burke and Dewey, 1973; Torsvik 

et al., 2001; Nielsen et al., 2007). Gill et al. (1995) associated the high-temperature 

melting required for the generation of Early Cenozoic picrites in this region with a 

separate hot “Baffin Bay Plume” rather than with a distant asymmetric/irregular 

“Iceland Plume” as suggested by e.g. Chalmers (1997) and Storey et al. (1998). The 

generation of Eocene dykes in SW Greenland and the volcanism along the Ungava 

Fault System have been attributed to melting in response to plate reorganizations in 

the area during that period of time (Storey et al., 1998; Larsen et al., 1999a; Skaarup 

and Pulvertaft, 2007 and references therein). 
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2.6.8. N Greenland (Fig. 2.2; VIII in Fig. 2.5) 

The Early Cenozoic Kap Washington Group is thought to have been generated in 

response to continental rifting related to the break-up of the Laurasian plate (Estrada 

et al., 2001). A contemporaneous active triple junction off Kap Washington would be 

in accordance with studies of Torsvik et al. (2001a, 2001b) and Nielsen et al. (2007). 

 

2.6.9. The W Barents region (Fig. 2.2; IX in Fig. 2.6) 

Volcanic rocks in the W Barents Sea (Vestbakken Volcanic Province) located at the 

inferred trace of the Caledonian suture zone are interpreted to have formed in 

response to Early Eocene transtension associated with plate reorganizations in this 

region (Tsikalas et al., 2002). 

 

2.6.10. Recent magmatism NE Atlantic (Fig. 2.2) 

Apart from Iceland, which is considered to be the embodiment of the “Iceland 

plume” by many authors, recent volcanism in the NAIP area occurring on Jan Mayen 

and at the Vesteris Seamount have been interpreted to result from extension-related 

decompression melting, where enhanced melting has been inferred for the Jan Mayen 

magmatism due to elevated water content in the source region (Haase and Devey, 

1994; Haase et al., 1996). 

 

2.7. The NAIP in the context of rift geometries 

The overall geometry of the NAIP with apparent double zigzag trends of igneous 

activities at the conjugate NW European – E Greenland margins (Fig. 2.4; Fig. 2.5) 

and the longevity of the igneous activity, together with the involvement of the Faroe 

Islands – Rockall microcontinent and the Jan Mayen microcontinent in the rift 

processes (Roberts and Searle, 1979; Kodaira et al., 1998; Edwards, 2002; Mjelde et 

al., 2008), seem to suggest a complex and discontinuous break-up history. A 

comparable complex rifting evolution has been reported for the recent Afar (E 

African – Arabian) Volcanic Province where migration of magmatic centres and 

triple junctions have been of common occurrences and where microcontinents 

(Danakil and Aisha) have been involved in the rifting/igneous processes and not 

uncommonly have defined their own secondary triple junctions with associated 

magmatism (Tesfaye et al., 2003; Wolfenden et al., 2004; Garfunkel and Beyth, 

2006). 
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Individual large mantle plumes have been linked to the magmatism, rifting and triple 

junction formation in the Afar Volcanic Province previously (Garfunkel and Beyth, 

2006), but other authors have argued that the East African rift system in general 

developed in response to global plate reorganizations (e.g. Wolfenden et al., 2004). 

The association between enhanced magmatism and rift geometry, that is, triple 

junctions (Sears et al., 2005) or kinks in rifting trends (Abdel-Rahman and Nassar, 

2004; Wolfenden et al., 2004), is well known. In this context the evolution of the 

proto-Iceland region may be of relevance for the Early Palaeogene NAIP 

magmatism, as a great increase in the volume of magma production in that area in 

Middle Palaeogene times (Foulger and Anderson, 2005) coincided with the 

establishment of the ridge – ridge – transform triple junction (Reykjanes ridge – 

Kolbeinsey ridge – Faroe transform fault) as recorded by Bott (1985). Indeed, the 

present rifting trend of the N Atlantic displays a pronounced anticlockwise rotation 

in going from south to north across Iceland (Fig. 2.2), and a recent study has pointed 

to the potential existence of a current active E-W trending transform fault underneath 

Iceland (Foulger, 2006), i.e. the Iceland area could in fact still harbour an active 

triple junction. The common occurrences of dissimilar geochemical and isotopic 

signatures in rift-related basalts produced within constricted periods of time and 

within confined areas in: the East African rift system (Barrat et al., 1998; Orihashi et 

al., 1998; Rogers et al., 2000; George and Rogers, 2002; Keranen and Klemperer, 

2008); in Iceland (Kitagawa et al., 2008); in E Greenland (Hanghøj et al., 2003; 

Peate and Stecher, 2003), around the N Rockall Trough (Hitchen et al., 1997) and in 

the Azores (Beier et al., 2008) may point to heterogeneous compositions of their 

respective mantle reservoirs. 

 

2.8. The NAIP in the context of plate tectonic processes in adjacent areas 

In the context of Early Cenozoic global plate-tectonic processes, it is noteworthy that 

the relative convergence of Africa and Iberia with respect to W Europe and the 

associated compression between these two tectonic plates came to a standstill from 

the earliest Paleocene to the Early Eocene (Rosenbaum et al., 2002), that is, in the 

same time interval as the occurrence of most of the Early Cenozoic NAIP 

magmatism and the initial stages of continental break-up of the proto N Atlantic area. 

The causal mechanism for the standstill in relative plate convergence has previously 

been interpreted to result from a contemporaneous continental collision in the Alps 
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between the African and European plates (eastern parts) at around 65 Ma (Jolivet and 

Faccenna, 2000; Rosenbaum et al., 2002). A recent complementary tectonic model 

suggested termination of compression and promotion of extension in the NW 

Atlantic area in the Early Palaeogene in response to major left-lateral displacements 

between Greenland and NW Europe, which ultimately resulted in narrowing 

(contraction) and retreat of the European plate relative to the African plate (Nielsen 

et al., 2007). In a rifting perspective, Lundin and Doré (2005) argued that the Early 

Cenozoic igneous–tectonic activities in the proto N Atlantic area that generated the 

NAIP were merely a result/expression of the final phases of the ongoing break-up of 

Pangaea, spatially and temporally linking the Early Paleocene central Atlantic rifting 

(Ziegler, 1989, 1992) in the south with the Early Eocene rifting in the Eurasian Basin 

to the north (Srivastava, 1985; Brown et al., 1987). 

 

2.9. Summary of chapter 2 and concluding remarks 

In this chapter a brief review has been attempted on the key magmatic centres of the 

NAIP presented in a geodynamic framework, focusing on their interrelationships and 

the tectonic developments during the onset of the NAIP. The specific conditions 

directly prior to the onset of the NAIP and the continued development of the region 

during the Palaeogene, based on the findings of the present study, can be highlighted 

as follows:  

(1) The onset of the rifting and igneous activity of the NAIP area was a temporal and 

spatial continuation of the rifting in the adjacent central Atlantic Ocean to the 

south and a precursor for the rifting in the Eurasian Basin to the north. The main 

igneous and tectonic activities in the NAIP in Early Palaeogene times coincide 

with contemporaneous changes in the relative motion between the European and 

African plates, which perhaps halted the previous compressional regimes in the 

NW Atlantic during this time span. 

(2) Taken all together, the apparent geometry of the main igneous regions of the 

NAIP at the conjugate E Greenland – NW European margins displays 

similarities with trends inferred for the embryonic stages of classic continental 

rifting regimes consisting of numerous more or less interconnected triple 

junctions. The occurrences of numerous smaller central igneous complexes 

and/or seamounts that are widely scattered at the NW European margin may not 
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be entirely in accordance with a simple rifting model, if most of these formed 

contemporaneously with the larger igneous regions of the NAIP.  

(3) The close proximity between ancient orogenic sutures/fronts and regions of the 

NAIP that experienced Early Cenozoic magmatism and/or transient uplifts may 

indicate that the embryonic stages of magmatism and continental rifting within 

these areas could have been facilitated by lithospheric heterogeneities and/or 

weaknesses commonly associated with such tectonic features, irrespective of 

whether global plate reorganizations or a single large mantle plume were the 

driving forces for the onset of the NAIP. 
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Chapter Three 

 

3. Field occurrences and geometries of sills and associated 

dyke networks 

 

3.1. Prelude to chapter three 

Flood basalt provinces and associated volcanic rifted margins remain some of the 

largest manifestations of igneous activity at the Earth’s surface (Chapter 2). They are 

generally emplaced as an initial onset phase, through a main eruptive sequence and 

finally a waning phase and intrusive equivalents can be emplaced throughout these 

phases (Jerram and Widdowson, 2005). The intrusive networks or “plumbing 

systems” that underpin flood basalt systems can be extensive and varied (e.g. Ernst et 

al., 2005; Cartwright and Hansen, 2006) and provide important information on how 

the magmas reach the surface. Large sill complexes have been reported for many of 

the large igneous provinces such as Karoo (Cox, 1980; Galerne et al., 2008), 

Etendeka (Thompson et al., 2007) and the NAIP (Bell and Butcher, 2002; Cartwright 

and Hansen, 2006). Sill emplacement frequently accompanied the Early Cenozoic 

igneous phases of the NAIP and have been recorded for: several offshore 

sedimentary basins at the NW Atlantic margin (Hansen, 2006 and references 

therein), onshore NW Britain (Gibb and Henderson, 2006), onshore Faroe Islands 

(Rasmussen and Noe-Nygaard, 1970; Passey and Bell, 2007; Passey and Jolley, 

2009), at the E Greenland margin (Larsen and Marcussen, 1992) and at the W 

Greenland margin (Storey et al., 1998) (See also Fig. 2.2). The large sills of the 

Faroe Islands are intruded into the main lava pile, a phenomenon that is important for 

several reasons including that it can potentially provide a better understanding of the 

nature of active plumbing systems during the latest stages of igneous activity in 

continental flood basalt provinces (CFB). Also, the features of these sills, which crop 

out in crystalline rocks, can be compared with sills encountered in sedimentary 

basins/sequences thus perhaps offering additional insights into the formation of sill 

complexes occurring in sedimentary settings. 

While dykes are ubiquitous at most crustal levels in regions that have experienced 

igneous activity, the role of sills in magmatic plumbing systems that feed igneous 



 

46 
 

activity on the surface and the exact sill-feeder relationships are more ambiguous. 

Sills may themselves be fed either by dykes or other adjoining sills (Hansen et al., 

2004; Cartwright and Hansen, 2006; Thomson, 2007) and interconnected sills 

building up intrusive complexes in sedimentary basins could initially have acted as 

active parts of plumbing systems that fed surface magmatism (Larsen and 

Marcussen, 1992; Bell and Butcher, 2002; Hansen et al., 2004; Cartwright and 

Hansen, 2006; Thomson, 2007). While some previous studies have suggested 

formation of saucer-shaped sills by melts being supplied from marginal dykes that 

first intrude/inflate the inclined outer sill sections followed by intrusion/inflation of 

the inner sub-horizontal basal sections (Francis, 1982; Chevallier and Woodford, 

1999) (Fig. 3.1a; Fig. 3.1b), more recent models mostly infer melt injection from 

central sources that first generate sub-horizontal inner sill sections followed by the 

development of more inclined outer parts (Malthe-Sørensen et al., 2004; Thomson, 

2004; Thomson and Hutton, 2004; Hansen and Cartwright, 2006; Goulty and 

Schofield, 2008) (Fig. 3.1c). Variations in sill shapes may reflect differences in the 

depth of intrusion and/or differences in the mechanical properties of the host-rocks as 

well as presence or absence of tectonic activity in the affected area (Galland et al., 

2003; Malthe-Sørensen et al., 2004; Galland et al., 2006). Mechanical and numerical 

modelling studies have shown that melt intruded into static non-deformed 

homogeneous sediments have the potential to develop into saucer-shaped sills 

(Galland et al., 2003; Malthe-Sørensen et al., 2004; Galland et al., 2006; Galland et 

al., 2009) (Fig. 3.1d). It has been argued earlier that the saucer-shape of a sill (sill 

climbing) results from asymmetries in the local stress fields that develop during sub-

horizontal sill propagation in response to interactions between the inflating sill and 

its overburden and starts to form when the length across the inner section of the sill 

versus the thickness of the overburden reach a certain factor (e.g. Pollard and 

Holzhausen, 1979; Fialko, 2001; Malthe-Sørensen et al., 2004; Thomson, 2007; 

Goulty and Schofield, 2008; Polteau et al., 2008). More specifically, i) Malthe-

Sørensen et al. (2004) argued that sills would be flat unless their inner diameter 

exceeded the intrusion depth by a factor of two or three ii) Pollard and Holzhausen 

(1979) suggested that sill climbing would be greatly enhanced when intrusion depth 

divided by sill radius d/r  2 while iii) Fialko (2001) interpreted radius versus depth 

ratios of r/d  1 to be necessary for upward deflections of propagating sill margins to  
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Fig. 3.1. a) Saucer-shaped sill fed from a marginal dyke on one side of the sill (e.g. Francis, 1982). b) 

Saucer shaped sill fed from more than one marginal dyke (e.g. Chevallier and Woodford, 1999). c) 

Saucer-shaped sill is fed from a central source (e.g. Rasmussen and Noe-Nygaard, 1970; Malthe-

Sørensen et al., 2004). d) Sills intruded into sedimentary basins commonly develop flat inner sections 

and steeply inclined outer sections (Malthe-Sørensen et al., 2004; Galland et al., 2009). e) 

Asymmetrical sill inflation in homogeneous material due to displacement/doming of overburden result 

in extension and rotation of the least principal stress axes (3) at sill margins thus triggering upward 

deflection of propagating margins (Pollard and Holzhausen, 1979) or tensile failure of overburden 

above these margins (Goulty and Schofield, 2008). f) Sub-horizontal sill propagation in a relatively 

‘weak’ layer in stratified host rocks (1) gives way to sill climbing through a more competent layer (2), 

due to asymmetries at sill margins resulting from rupture/folding of overburden, followed by 

propagation in a ‘weak’ layer (3) at higher crustal level (Based on: Kavanagh et al., 2006; Thomson 

2007; Menand, 2008). Full arrows indicate directions of magma flow. Open arrows indicate direction 

of least principal stress axes 3. One-sided arrows indicate relative shear movements. See text. 

 

occur. In more details, the processes of sill climbing in homogeneous host-rocks, 

where certain sill sizes versus intrusion depths can be observed, are thought to 

involve asymmetrical sill inflation in response to larger volumes of magmas being 

emplaced above an initial sub-horizontal plane of sill emplacement than below the 

same plane in response to displacement/doming of the Earth’s (free) surface (Pollard 

and Holzhausen, 1979; Fialko, 2001; Goulty and Schofield, 2008) (Fig. 3.1e). The 

displacement/doming of the overburden should in turn result in sub-horizontal 

extension and rotation of the least principal stress axes (3) at sill margins (Fig. 3.1e) 

thus triggering upward deflection of the propagating margins (Pollard and 
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Holzhausen, 1979) or result in tensile failure of the overburden immediately above 

these margins (Goulty and Schofield, 2008). If true, these inferences would mean 

that sills intruded into homogeneous host-rocks at similar crustal levels should 

possess roughly similar lengths across their inner sections while sills intruded at any 

crustal depths may take the form of sub-horizontal sheets if the desired radiuses 

versus depths ratios are not achieved. Broadly similar processes during sill 

emplacement in stratified sedimentary successions that possess variable mechanical 

properties would expectedly result in sub-horizontal sill propagation in a relatively 

‘weak’ layers and sill climbing through more competent layers (Kavanagh et al., 

2006; Thomson, 2007; Menand, 2008) (Fig. 3.1f). Sill intrusion into unconsolidated 

sediments may require mechanisms that are different from those suggested for sill 

emplacements in relatively rigid host-rocks, as volume changes in strata both below 

and above a propagating sill from sediment compaction and fluid expulsion may 

match the volume of the intruding sill (Einsele et al., 1980), thus probably nullifying 

the sill–overburden interactions required to generate asymmetries of the stress fields 

at sill margins. 

In this thesis the first detailed documentation of a sill complex intruded into a 

basaltic lava pile is presented. Field relationships of the saucer-shaped sills i.e. the 

Eysturoy Sill, the Streymoy Sill, the Svínoy-Fugloy Sill, the Kvívík Sill, the 

Morskranes Sill, the Sundini Sill and the (much smaller) Langaregn Sill as well as at 

the dyke network intersecting the area intruded by these sills are investigated. 

This chapter contains a thorough description of the field occurrences of sills from the 

Faroe Islands at all scales including mapping in electronic 3D maps and in ordinary 

2D profiles (3.2) in addition to field descriptions and mapping of dykes/feeders in the 

actual area (3.3). Particularities of sill margins are described and sill–sill contacts, 

sill–dyke contacts as well as sill–host rock contacts are dealt with (3.4). Tectonic 

effects on host rocks associated with sill emplacement and post-magmatic 

deformation within the investigated sills are briefly described/interpreted (3.5). 

Various physical conditions necessary for sill emplacement to occur are considered 

in a discussion section together with earlier emplacement theories, new proposed 

emplacement theories as well as host rock environment during emplacement of the 

actual sills (3.6). The chapter ends with a brief summary and concluding remarks 

(3.7). 
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3.2. General sill occurrences and geometries 

The investigated sills have been plotted in 3D maps (Fig. 3.2; Fig. 3.3; Fig. 3.4) 

using ArcGIS software. The workflow during ArcGIS plotting is briefly outlined in 

appendix 1. 

The 7 sills of dealt with in this study underlie an area measuring more than 60 km
2
 

combined and they can be encompassed within a total sub-vertical distance of ~840 

m perpendicular to the layered basalts of the Malinstindur, Sneis and Enni 

formations, but there is a considerable overlap in the sub-vertical extent at which 

many of the sills are exposed in the regional stratigraphy (Fig. 3.2; Fig. 3.3). The 

sedimentary Sneis Formation (Passey and Jolley, 2009) is intersected by the 

Streymoy, the Eysturoy and the Morskranes sills and perhaps also by the Svínoy-

Fugloy Sill (Fig. 3.2). The general appearances of the investigated intrusions indicate 

sub-horizontal or slightly inclined basal sections for all sills that gradually give way 

to slightly steeper outer sections without any detectable transition zone(s) between 

inner and outer sections (Fig. 3.4; Fig. 3.5). The inclinations of the steeper sill 

sections rarely exceed around 45°, but far the largest parts of these intrusions display 

inclinations that are less than 15° relative to the horizontal plane. Hence, any specific 

angles of sill transgression cannot be determined due to the gradual changes in sill 

inclination.  

Although all sills from this study display similar very low-angle contacts between 

basal sill sections and layered crystalline/sedimentary host-rocks in addition to 

displaying similarities in their overall saucer-shaped geometries and arcuate inclined 

margins (e.g. Fig. 3.6), they can be grouped into two distinct categories based on 

some distinct characteristics. 

 

(1) In accordance with distinct bimodal thickness occurrences and general geometric 

characteristics, each of the Streymoy and the Eysturoy sills can be divided into 

two (NW and SE) segments joined roughly halfway along their apparent 

longitudinal axes (Fig. 3.4; Fig. 3.5). The maximum thicknesses of the NW 

segments of both these sills measure 25 ± 5 m whereas maximum thicknesses of 

45 ± 5 and 55 ± 5 m have been measured for the SE segments of the Streymoy 

and the Eysturoy sills respectively. As there are only moderate thickness  
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Fig. 3.2. Basaltic formations and stratigraphic column are as in Fig. 2.3. Sills from this study are 

indicated by labelled rectangles on the map and their vertical extents are indicated by vertical bars on 

the stratigraphic column. The sills are arranged from left to right in the stratigraphic column according 

to decreasing altitudes of their basal sections. See text. 
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variations within each of these segments, similarities in emplacement processes 

might be envisaged for these two sills. The NW segments of both sills were 

emplaced at ~200 to ~250 m lower stratigraphic levels relative to their SE 

counterparts when measured at locations roughly halfway along their respective 

longitudinal (A – A
I
 – A

II
) profiles (Fig. 3.5a; Fig. 3.5b). These two segmented 

sills appear to have been preserved in near original extent along their longest 

axis and parallel alignments of layers in uplifted overburdens relative to layers in 

the surrounding host basalt suggests sub-vertical uplifts on top of relatively 

uniformly inflated intrusions. The uniform and relatively great thicknesses along 

the basal SW margins of the Eysturoy and the Streymoy sills and the NE 

directed dip of their SW extremities (Fig. 3.3a; Fig. 3.3b) may suggest that the 

segments building up these sills originally displayed some degree of symmetry 

with broadly NE directed dip along their presumed missing palaeo SW margins. 

The NE-SW directed cross-section of the well-preserved SW margin currently 

exposed of the Svínoy–Fugloy Sill could give a hint to original geometries of 

these presumed missing SW sections in the Eysturoy/Streymoy sills (Fig. 3.5a; 

Fig. 3.5b). Reconstructions based on combinations of NE-SW directed cross-

sections from all these three sills suggest maximum initial widths of ~5 km ± 0.5 

km (Fig. 3.3a; Fig. 3.3b). For the Streymoy Sill the reconstructed area of extent 

would accordingly be ~45 ± 4.5 km
2
, and for the Eysturoy Sill it would 

approximate ~40 ± 4 km
2
 (Fig. 3.3a; Fig. 3.3b). Consequently, estimates of the 

maximum initial volumes for the reconstructed Streymoy and Eysturoy sills 

suggest figures in the vicinity of ~2 km
3
 for each of these intrusions. Composite 

sills of comparable sizes are of common occurrences in sedimentary basins 

along the NW European margin (e.g. Hansen et al., 2004). 

(2) The Kvívík, the Morskranes and the Sundini sills all display increased 

thicknesses from less than 0.5 m at their basal NW or W margins to a maximum 

of 20 ± 5, 15 ± 5 and ~7 m respectively, at their elevated SE, E or NE margins 

(Fig. 3.5). There are no evidences of any uplifts of the strata overlying the basal 

and thinnest parts of these intrusions, suggesting accommodation of intruding 

melts solely by elastic displacement of the host basalts at these localities. The 

slightly saucer-shaped geometry of these sills and the low average thicknesses of 

their basal sections, which commonly are no greater than those of intersecting 

linear sub-vertical dykes, suggest different intrusion styles for these sills 
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compared to the dykes they intersect. Also, the very limited thicknesses of the 

bulk of the saucer-shaped basal parts of these intrusions clearly demonstrate that 

large-scale sill inflation is not necessarily a precondition for the formation of 

saucer-shaped sills in basaltic lava piles. The wedging-out of the sills at their 

basal sections suggests that if these intrusions initially covered a larger area, any 

potential missing parts were attached to the thicker inclined margins. 

It is problematic to determine the exact geometry of the Svínoy-Fugloy Sill, as only 

parts of it are exposed above sea level. Although most parts of this sill display 

thicknesses of 30  5 m, reduced thicknesses in the NNE and the SSW parts may 

suggest similarities with the sills in group (2) even though the intrusion could be  

 

 



 

53 
 

Figure 3.3. (Continued) 
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Figure 3.3. (Continued) 

 

Figure 3.3. The figure show enlarged map views of the individual sills from Fig. 3.2. a) Eysturoy Sill; 

b) Streymoy Sill and Langaregn Sill; c) Svínoy-Fugloy Sill; d) Kvívík Sill; e) Sundini Sill; f) 

Morskranes Sill. Main magma sources (open red ellipses with red crosses) are estimated from 

measured dip and feeder/protrusion directions whereas minor magma sources (dotted open black 

ellipses) have been determined from sites of thin inclined feeder dykes/sheets. Dip directions of 

labelled inclined feeder dykes at the immediate dyke/sill contacts are for the Eysturoy Sill: 1 = ~15°   

NE; 2 = ~15°   ESE and for the Streymoy Sill: 3 = ~30°   S; 4 = ~45°   SW; 5 = ~30°  W. The 

dips of most feeders increase to sub-vertical angles a few metres to a few tens of metres below the 

dyke/sill contacts. Note the different scales for some individual sills. See text. 

 

composed of two segments. The poorly exposed Langaregn Sill has a uniform 

thickness of 8 – 10 m in localities were it is well preserved, but it does not appear to 

fit into any of the two mentioned categories as it is much smaller (Less than ~800 m 

along its longest axis). 

The field occurrences and overall geometries on macroscopic scales for all the sills 

combined show that apart from similarities in the overall saucer-shaped nature of the  
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Figure 3.4. Panorama views of some of the sills from Fig. 3.2 and Fig. 3.3. a) and b) The Streymoy 

Sill. c) and d) The Eysturoy Sill. e) The Sundini Sill. f) The Morskranes Sill. See text. 
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Figure 3.5. (Previous two pages). The simplified cross-sections and longitudinal profiles shown in 

this figure refer to the labelled dashed lines that are indicated on the map sections in Fig. 3.3. a) Cross-

sections of the Eysturoy Sill (Profiles: B - BI - BII; C - CI from Figure 3.3a); b) Cross-sections of the 

Streymoy Sill (Profiles: B - BI - BII; C - CI; D - DI from Figure 3.3b); c) Cross-section of the Kvívík 

Sill (Profile: B - BI from Figure 3.3d); d) Cross-section of the Morskranes Sill (Profile: B - BI from 

Figure 3.3f); e) Cross-sections of the Svínoy-Fugloy Sill (Profiles: A - AI; B - BI from Figure 3.3c); f) 

Longitudinal profile of the Streymoy Sill (Profile: A - AI - AII from Figure 3.3b); g) Longitudinal 

profile of the Eysturoy Sill (Profile: A - AI - AII from Figure 3.3a); h) Longitudinal profile of the 

Kvívík Sill (Profile: A - AI from Figure 3.3d); i) Longitudinal profile of the Sundini Sill (Profile: A - 

AI from Figure 3.3e); j) Longitudinal profile of the Morskranes Sill (Profile: A - AI from Figure 3.3f). 

Vertical exaggeration is ~1.35 and distances along X and Y axes are indicated in metres. Sill 

thicknesses indicate maximum values. The stratigraphy is indicated with the same colours as shown in 

the stratigraphical column of Fig. 2.3 and Fig. 3.2. Comparison between profiles representing the 

Eysturoy and Streymoy sills with profiles representing the smaller sills of this study (shapes with open 

black outlines) may hint to original geometries of the Eysturoy and Streymoy sills and to potential 

similarities in emplacement mechanisms. See text. 

 

investigated sills (Fig. 3.4; Fig. 3.5) relative to sills intruded into sedimentary strata 

(e.g. Chevallier and Woodford, 1999), the gradual and gently upward-curving 

geometries displayed by all sills from this study differ from the geometries that are 

typical for sills intruded into sedimentary successions, where well-defined sub-

horizontal inner sections abruptly give way to more steeply inclined middle/outer 

sections that in turn sometimes give way to flat outer rims (Chevallier and 

Woodford, 1999; Polteau et al., 2008; Thomson, 2007; Thomson and Hutton, 2004). 

Comparable relatively abrupt changes of inclination angles in the intrusions from this 

study have only been observed at a few localities at elevated sill margins (Described 

below). Hence, it is not possible with any reasonable degree of certainty to categorise 

the sills/segments of the Faroe Islands into distinct inner, middle and outer sections 

using the same criteria commonly used for sills intruded into sedimentary strata. 

However, if those parts of the measured and reconstructed sills that possess 

inclinations  ~15°  with the horizontal plane (Around 70 – 80 %) are considered to 

match the inner saucers of sills from sedimentary settings, the corresponding 

maximum inner widths would range from ~3.0 to ~4.0 km. If only the sub-horizontal 

basal sections of the investigated sills should be considered to match inner saucers of 

sills from sedimentary settings, these figures would be in the range from 1.5 to 2.0 

km. 
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Figure 3.6. Yellow dotted lines indicate lower sill contacts. a) The along-strike view shows the 

saucer-shaped geometry of the Streymoy Sill (See also figure on title page). b) Arcuate upper 

margin/rim of the Kvívík Sill. c) Upward-curving termination of the SW parts of the Eysturoy Sill 

(See also Fig. 1.3). See text. 
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3.3 Dykes and feeders 

A number of dyke systems mostly ranging in thickness from ~0.5 to ~4 m intersect 

the area underlain by the sills of the Faroe Islands (Fig. 3.3). However, the few 

exposed accessible dyke-sill contacts of sub-vertical dyke systems in the area suggest 

that all these systems pre-date the sills. This inference is supported by geochemical 

constraints (Not shown). A total number of five moderately inclined dykes/sheets, 

each exposed only for very limited lateral distances and ranging in thickness from 

~0.4 to ~2.0 m, have been identified as feeders for the Eysturoy and the Streymoy 

sills (Fig. 3.3a; Fig. 3.3b). The identification is based partly on field evidences, as 

shown below, and partly on geochemical constraints (e.g. chapter 4). The inclined 

feeders dip between ~15° and ~45° at their contacts, but their dip angles are rotated 

to sub-vertical orientations a few metres to a few tens of metres below the dyke-sill 

contacts. There are no observations to suggest that any of these inclined dykes acted 

as conduits for magma transport between individual sills during emplacement. Three 

of the dykes (labelled 3, 4 and 5 in Fig. 3.3b) apparently fed the uppermost parts of 

the elevated E, NE and N facing parts of the NW sill segment of the Streymoy Sill. 

These three dykes strike in directions broadly similar to those of the local sill 

sections they once fed, and field relationships suggest they supplied melts only to the  

uppermost ~50 to ~100 metres of the actual sills. The remaining two dykes (labelled 

1 and 2 in Fig. 3.3a) probably fed the base of both segments of the Eysturoy Sill. 

Field evidences show that the thin inclined dykes that presumably fed the NW 

segments of the Eysturoy and Streymoy sills close to the junctions with their 

respective SE sill segments (Dyke 2 in Fig. 3.3a and dyke 5 in Fig. 3.3b) apparently 

only supplied melts to these for lateral distances of less than ~200 m. In spite of 

direct evidence showing that some parts of the uppermost sections of the Streymoy 

Sill probably were fed from dykes directly at their elevated and inclined margins, 

numerous examples of sub-horizontal protrusions from inclined basal sections of this 

and all the other larger sills, investigated in this study, seem to suggest that the main 

magma supplies for all sills were channelled via their basal sub-horizontal sections. 

Inferred magma sources to the sills of the Faroe Islands, are indicated in Fig. 3.3. 

 

3.4. Sill margins and contacts 

3.4.1. Distinct features of sill margins 

Some of the field relationships encountered in the sill complex of the Faroe Islands  
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Figure 3.7. a) Sub-horizontal protrusion from the lower contact of the Streymoy Sill at its inclined SE 

extremity. b) Sub-vertical protrusion from the top of the Eysturoy Sill. Dotted yellow lines indicate 

lower sill contacts or outlines. 

 

seem to suggest that some of these sills could have been active parts of more 

extensive plumbing systems. For instance, a thick (>5 m) sub-horizontal layer is 

branching out from the base of the steeply inclined rim of SE extremity of the the 

Streymoy Sill on the top of the mountain of Núgvan and proceeds into the host rocks 

as a layer-parallel sequence (Fig. 3.7a). A kink in the lower sill contact at lower 

stratigraphic level in the same area could be a manifestation of an earlier failed 

attempt of sub-horizontal protrusion (Fig. 3.7a). Also, a ~6 m thick vertical dyke-

shaped protrusion, attached directly to top the N extremity of the Eysturoy Sill (Fig. 

3.7b), suggests vertical magma transport from this sill. Currently, the maximum 

distances of potential magma transport via these protruding bodies cannot be 

determined due to erosion, but they could in theory have supplied melts to adjoining 

sills or perhaps to surface magmatism. 

Thinner protrusions (squirts), which terminate a few metres or a few tens of metres at 

most from their sill sources, have been injected sub-horizontally into the host rocks 

from the lower margins of many of the investigated sills, particularly the Eysturoy, 

the Streymoy and the Morskranes sills. A common feature for the sites of these 

protrusions is that the lower contacts of the main sill bodies that supplied the injected 

melts display inclined geometries, which may be of various angles with the 

horizontal plane (Fig. 3.8a; Fig. 3.8b). Another noticeable feature that is 

characteristic for many of the protrusions in question is that they have been injected 

laterally into homogeneous crystalline sequences irrespective of the existences of 

presumed less competent sedimentary sequences above or below the actual levels of  
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Figure 3.8. a) Thin sub-horizontal protrusion from inclined base of the Morskranes Sill into host 

basalts. b) Protrusion from the base of the Eysturoy Sill. Yellow arrows suggest direction of palaeo 

magma flow. Yellow dotted lines show lower sill contacts and outlines of protrusions. See text. 

 

 

Figure 3.9. Yellow dotted lines indicate sill outlines in a) the Kvívík Sill and b) the Morskranes Sill. 

Curved yellow arrows suggest directions of initial sill propagation. Red arrows suggest orientations of 

local least principal local axes 3. Rucksack measures ~45 cm. See text. 
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injection. 

The thinnest sections in the basal parts of some of the smaller sills from this study 

such as the Kvívík and the Morskranes sills (e.g. Fig. 3.5) commonly display 

irregular margins with slightly protruding tongue-shaped inflated forms that give 

way to thinner and slightly inclined upward-curving sections on one or both sides 

(Fig. 3.9). The combined field evidences from these margins seem to suggest that the 

inclined thinner sections initially propagated out from the more inflated central 

regions of these protrusions. As these thin margins define terminations of the 

intrusions, it seems reasonable to assume that their geometries reflect initial intrusion 

styles with upward-curving fracture propagation from slightly inflated sill sections 

probably resulting from rotation of least principal stress axes 3 (Fig. 3.9). 

 

3.4.2. Sill – sill contacts 

Most of the investigated sills are not directly spatially related, but the Eysturoy and 

the Sundini sills both crop out in the same area in the NW parts of the island of 

Eysturoy (Fig. 3.2; Fig. 3.3c; Fig. 3.4e). The geochemical compositions of these two 

sills are identical (Unpublished data) thus perhaps indicating that they may have been 

derived from a common magma reservoir during the same period of time. The 

Sundini Sill is exposed at lower stratigraphic levels relative to the Eysturoy Sill in 

this area, and a ~1.5 m thick sub-vertical dyke separates both sills (Fig. 3.10). 

Geochemical differences between this dyke and these two sills (Unpublished data) in  

 

 

Figure 3.10. Yellow dotted lines indicate the lower contacts of the Eysturoy and Sundini sills. Red 

line indicates a sub-vertical dyke. See text. 
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addition to field evidences suggest that these two sills were emplaced subsequent to 

the dyke intrusion. The very close proximity between these two sills renders it 

possible that the Sundini Sill could have acted as a feeder to the Eysturoy Sill, if it 

did penetrate the dyke during emplacement, or they may have been fed from the 

same dyke network. 

Contacts or junctions within individual sills can be encountered in each of the large  

 

 

Figure 3.11. Views from two different angles of the same zone of merging between the NW and SE 

segments of the Streymoy Sill on the NE flank of the mountain of Skæling. a) View from east. b) 

View from north (closer). Yellow dotted lines indicate lower sill contacts whereas black dashed lines 

indicate upper boundaries. The quarry measures ~500 m along its longest axis. See text. 
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Eysturoy and the Streymoy sills at the zones merging between their respective NW 

Streymoy Sill are crosscutting (Fig. 3.11) and define a particularly good example of a 

and SE segments. On the NE flank of the mountain of Skæling the segments of the 

class C” sill junction as described previously using seismic interpretations from 

offshore sedimentary basins at the NW European margin (Hansen et al. 2004, their 

Fig. 11). The NW sill segment of this sill crops out at ~50 m lower stratigraphic level 

relative to its SE counterpart in the vicinity of their mutual contact at this locality 

(Fig. 3.11). Actual centimetre scale contacts of this sill junction are concealed by 

rock debris. On the SW flank of the mountain of Skæling the contact between these 

segments is less conspicuous as they do not crosscut at the SW sill margin. 

The junction between the NW and SE segments of the Eysturoy Sill is well exposed  

 

 

Figure 3.12. Opposite views of the zones of merging between the NW and SE segments of the 

Eysturoy Sill exposed roughly halfway along the SW and NE margins of this sill. a) View from SW. 

b) View from ENE. Yellow dotted lines indicate lower sill contacts. See text. 
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at localities roughly halfway along the SW and NE margins of this sill, whereas it is 

due to erosion that has masked potential differences in the original upper sill surfaces 

less conspicuous in the interior of the intrusion due to welding of the segments and 

(Fig. 3.12a). It is conspicuous that the NW segment is exposed at ~50 m lower 

stratigraphic levels relative to its SE counterpart close to the junction at the SW sill 

margin (Fig. 3.12a) whereas the opposite is through with the SE segment being 

exposed at 40 – 50 m lower levels relative to its NW matching part close to the 

junction at the NE sill margin (Fig. 3.12b). These features are perhaps best explained 

by the emplacement of the NW segment farther to the SW relative to its SE 

neighbour. Consequently, both the NW segment of the Eysturoy Sill and the Sundini 

Sill display a trend with sinistral dislocation relative to their SE neighbours. 

 

3.4.3. Sill – dyke contacts 

A significant number of dykes intersect the investigated sills (Fig. 3.3), but actual 

contacts are most often concealed beneath earth or rock debris. However, at the 

vertical cliff of Líraberg a well-exposed intrusive contact shows how the NW 

segment of the Streymoy Sill cuts through a sub-vertical dyke (Fig. 3.13a; Fig. 3.13b; 

Fig. 3.14a). The NE leaning geometry of the dyke at the sill-dyke contact could 

potentially point to magma flow within the sill from the SW towards the NE during 

the initial phases of emplacement. This inference would be in accordance with the 

orientations of nearby protrusions from the base of the actual sill. The fact that this 

dyke protrudes several metres into the sill may suggest that it acted as a temporary 

barrier to sill/fracture propagation during early stages of sill emplacement, until the 

intrudinng magma forced its way through it. A similar scenario may be envisaged for 

parts of the Morskranes Sill, the magmas of which appear to have been guided along 

a sub-vertical dyke system at its southern rim (Fig. 3.3f). More often than not, the 

sub-vertical dyke systems are manifested by the occurrences of canyons, being sub-

parallel to dyke trends, cutting through sills at locations where they intersect (Fig. 

3.13c). As all sub-vertical dykes with exposed contacts to the sills are cut by these, 

the activities of post-magmatic tectonic events most probably resulted in fracturing 

of the sills along zones pre-weakened by the dykes. It is noteworthy that while the 

Streymoy Sill is intact where it has cut a sub-vertical dyke at the cliff of Líraberg on 

the SE flank of the Mountain of Sátan (Fig. 3.13a; Fig. 3.13b; Fig. 3.14a), it is itself 

cut by a deep canyon on the NW flank of the Mountain of Sátan, i.e. around 1 km  
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Figure 3.13. a) Sub-vertical en-echelon dyke with dextral steps cut by NW segment of the Streymoy 

Sill. Yellow arrows suggest direction of palaeo magma flow. b) Same as in a) but showing a close-up 

view of the sill-dyke contact with foliated chilled sill margin. c) Deep canyon in the SE segment of the 

Streymoy Sill where it cuts a sub-vertical dyke. Yellow dotted lines indicate lower sill contacts, red 

dotted lines indicate dyke outlines and black dashed line indicates upper sill contact. See text. 
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Figure 3.14. Feeders from Fig. 3.3. a) Inclined feeder No. 4 with ramp-flat geometry. b) Inclined 

feeder(s) No. 3. c) Inclined feeder No. 2. d) Inclined feeder No. 1. e) Upper contact (diagonal from 

upper right) of inclined feeder No. 1. Yellow dotted lines indicate lower sill contacts, red dotted lines 

indicate dyke contacts/outlines. Yellow arrows suggest palaeo magma flow directions. See text. 
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farther to the NW, where a sill – dyke contact to the same dyke is exposed.  

Well exposed contact zones between the investigated sills and inclined dykes show, 

that the lower sill contacts immediately above these presumed feeders invariably 

display upwards and outwards/upwards sloping geometries (funnel-shaped) away 

from their inferred feeders (Fig. 3.14). Similar features have not been detected 

anywhere else within the actual sills. The ~1.5 m thick supposed feeder No. 4 to the 

Streymoy Sill displays a pronounced ramp-flat geometry and steepens to a sub-

vertical orientation a few tens of metres below the sill it may have fed (Fig. 3.14a). It 

is noteworthy that the dip of this dyke/sheet just below the contact and that of the sill 

margin to the NE above it are virtually identical and are much steeper than the 

general dip of the sill to the SW of the sub-vertical dyke shown in Fig. 3.14a. The 

supposed feeder No. 3 to the Streymoy Sill, which is exposed on the NW flank of the 

mountain of Sátan, is in fact composed of one main ~1.0 m thick dyke/sheet and few 

additional <~0.3 m thick sheet intrusions that probably supplied magmas to the NW 

extremity of this sill (Fig. 3.14b). The ~0.4 m thick supposed feeder No. 2 to the 

Eysturoy Sill appartently supplied melts to the NW segment for a lateral distance less 

than ~150 m adjacent to the junction that connect segments of this sill. The site 

where presumed main magma supplies from the WNW have coalesced with magmas 

from inferred feeder No. 2 to the NW segment of the Eysturoy Sill crops out as an 

angular kink (~90°) at the base of the sill ~50 m to the WNW of the feeder-sill 

contact (Fig. 3.14c). The ~2 m thick supposed feeder No. 1 was probably a major 

magma source to the SE segment of the Eysturoy Sill, the base of which it is 

currently attached to (Fig. 3.14d). It is noteworthy that the transition zone between 

this relatively thick dyke/sheet and the actual sill crops out entirely within a 

homogeneous crystalline basaltic layer rather than in one of the sedimentary 

sequences occurring just below the sill-feeder contact. Occasionally, mapping on 

centimetre scales have been required in order to pin point sites of presumed magma 

supplies to the investigated sills, as intrusive contacts between inferred feeders and 

volcanic basaltic host rocks may be elusive due to similarities in rock types, 

weathering and/or lichen growths (Fig. 3.14e). 

 

3.4.4. Sill – host rock contacts 

In general, the contacts between the investigated sills and their host volcanic rocks 

are sharp and well-defined (Fig. 3.15a), especially if they are compared to contacts of  
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Figure 3.15. Sill – host rock contacts. a) Knife-sharp contact (Yellow dotted line) between the main 

body of the Streymoy Sill and overlying volcanic strata. The shaft of the hammer measures ~30 cm. b) 

Peperitic contact zone between a basaltic sill (dark) and sedimentary strata (white) in the Huab Basin, 

Namibia. Lens cap is for scale. See text. 

 

mafic sills intruded into relatively unconsolidated sedimentary successions, where 

intrusive contacts commonly can be measured in metres (Fig. 3.15b).  

Although relatively large sections of the Eysturoy and Streymoy sills are well 

exposed (Fig. 3.3a; Fig. 3.3b), most sill surfaces appearing in map view are eroded to 

lesser or greater degrees. Hence, evidences of the exact nature of upper sill contacts 

are not of common occurrences even though chilled upper sill margins can be 

encountered in a few localities. Also, imprints on sill surfaces from protruding 

irregular features in host basalts may occur locally within very restricted locations, 

sometimes associated with stoped blocks of roof material (Fig. 3.16a; Fig. 3.16b). 

The angular or curved imprints of roof rocks in the investigated sill generally occur 

at scales ranging from a few tens of centimetres to a few metres. The stoped material 

may occur as blocks that are only partly incorporated in their host sills (e.g. Fig. 

3.16a) or it can occur as blocks of sizes ranging from a few tens of centimetres to a 

few metres that are completely embedded in their host sills (Fig. 3.16b). The latter 

type of stoped basalt blocks are sometimes hard to distinguish from their host sills in 

cases where both are affected by weathering and/or lichen growths or if they are of 

broadly similar consistency and compositions. The preservation of host rocks trapped 

within sill bodies during magma intrusion into sedimentary sequences that are less 

refractive than the intruding material may require mechanisms that are different from 

those applying to sill intrusion into crystalline basaltic host rocks like those of this 

study. Examples include a sub-horizontal, relatively large (a few hundred m
2
) and 

thin (<1 m thick) layer of silica-rich sediments that have experienced contact  
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Figure 3.16. a) Partially embedded block of stoped host rock (dark brown) at the centre of an angular 

imprint (dark grey) in the Streymoy Sill. b) Stoped basalt blocks of various sizes completely 

embedded in the Streymoy Sill. The rucksack measures ~45 cm. c) Sub-horizontal ~0.6 m thick layer 

of a silica-rich intensely hornfelsed/baked sedimentary sequence (outlined by yellow dotted line) 

embedded in a mafic sill cropping out in the Huab Basin, Namibia. See text. 

 

metamorphosis triggered by ascending hot sill material before ultimately being 

covered/embedded by newer magma pulses (Fig. 3.16c).  

The exposed sill-host rock contacts are not uniform throughout the sill boundaries,  
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but may vary according to the type of host rocks (e.g. crystalline versus sedimentary 

sequences), and the nature of chilled sill margins may differ between upper versus 

lower boundaries. Also, various sections of individual sills may have been affected  

 

 

Figure 3.17. a) Densely spaced platy jointing at lower chilled margin of the Eysturoy Sill. Yellow 

dotted line indicates lower sill contact. b) Platy jointing across the entire thickness of a thin part of the 

Morskranes Sill. Rucksack measures ~45 cm. c) Brecciated chilled upper margin in an angular 

outcrop of the Streymoy Sill. Yellow dotted line indicates sill edge. Arrow 1 indicates sub-horizontal 

direction (including thickness of breccia) whereas arrow 2 indicates sub-vertical direction (the contact 

surface of the sill). The shaft of the hammer measures ~30 cm. See text. 
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differently by post-magmatic tectonic events. Hence, the appearances of sill 

boundaries may differ according to location relative to deformation activities. These 

differences are sometimes manifested by either welded contact or sills and host rocks 

can be detached. 

A consequence of the different contact styles occurring along the margins of the 

investigated sills is that both sills and host rocks immediately at their respective 

contacts may have been affected in different manners by sill emplacement and/or 

subsequent deformation events. 

One feature sometimes occurring at chilled lower sill margins in intrusions apparent 

from this study, is a more or less well-developed platy jointing, which generally is 

oriented orthogonal to sill – host rock contacts and frequently reach ~0.5 metres or 

more into the sills in question (Fig. 3.17a). These lower margin characteristics could 

perhaps point to some water influx in e.g. non-crystalline layers in host rocks (Lyle, 

2000). In localities where sill thicknesses measure less than ~2 metres, platy jointing 

may occur throughout the sills in question (Fig. 3.17b). In outcrops where chilled 

upper sill margins display distinctive features, these sometimes occur as zones of  

 

 

Figure 3.18. a) Relatively large amygdales are concentrated in the central parts of a thin part of the 

Kvívík Sill. Yellow bar indicates sill thickness. Yellow dotted line indicates lower sill contact. b) 

Amygdales at the upper margin of the Streymoy Sill. Small yellow bar measures ~2 cm and indicates 

zone with relatively large amygdales (1 to 4 mm) whereas the larger bar measures 6 – 8 cm and 

indicates zone with small amygdales (< 1 mm). Yellow dotted line indicates upper sill contact. Lens 

cap is for scale. See text. 
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brecciated structures immediately at the contact, the thicknesses of which commonly 

measure 0.15 to 0.2 metres (Fig. 3.17c). 

Amygdaloidal rocks at chilled sill margins are not of common occurrences at the 

lower margins of the larger sills of the Faroe Islands, but in outcrops where sill 

thicknesses measure < ~0.5 metres, i.e. in the smaller sills that wedge out at one end, 

amygdaloidal rocks may be encountered at both lower and upper margins. If a sill 

section measures < ~0.2 metres in thickness, the largest amygdales tend to be 

concentrated in the interior of the sills in question (Fig. 3.18a). In these very thin sill 

sections amygdales commonly make up 15 to 20 percent of the total rock volume 

(Fig. 3.18a). Amygdaloidal rocks are occasionally encountered at the upper chilled 

margins of the larger sills where they not uncommonly make up an outer thin (~2 cm 

thick) zone, with sizes of individual amygdales measuring ~1 to ~4 mm, and an inner 

thicker (~5 to ~10 cm) zone where individual amygdales generally measure < 1 mm 

(Indicated with small and large yellow bars respectively in Fig. 3.18b). It is 

noteworthy that while sizes of amygdales increase with decreased distances to upper 

contacts of the larger sills, sizes of amygdales in very thin sill sections decrease with 

decreasing distances to sill contacts (Fig. 3.18a; Fig. 3.18b). 

As the host rocks are composed of basalts with geochemical and mineralogical 

compositions that are comparable to the investigated sills, they have not been 

particularly susceptible to melting and they have not experienced contact 

metamorphism at any significant scales in consequence to thermal effects from sill 

intrusion. Hence, the host rocks along many parts of the margins of sill from this  

 

 

Figure 3.19. Increasing degrees of compaction/baking and discolouring of tuff samples with 

decreasing distance to the upper contact of the Streymoy Sill. a) Tuff sample collected immediately at 

sill contact. b) Tuff sample collected ~0.75 metres from the same contact. c) Tuff sample collected 

~1.50 metres from the same contact. See text. 
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Figure 3.20. a) Host rock (lower parts of photo) is welded to the Streymoy Sill. A brownish coating 

measuring < 1 cm separates sill and welded basalt. Yellow dotted line indicates the upper sill contact. 

b) Closer view of the irregular contact from a). Shaft of hammer measures ~30 cm. See text. 

 

study do not display clear/visible signs of intrusive activity. However, baking and 

compaction of tuffaceous strata immediately at intrusive contacts are occasionally 

associated with some of the larger sills. In a 1.5 to 2.0 metre thick tuff sequence on 

top of the NW segment of the Streymoy Sill there is an increasing degree of 

compaction/baking with decreasing distance to the sill contact. In this location a 10 

to 15 cm thick zone immediately at the sill contact is dark coloured (Fig. 3.19a) and 

has a density approaching that of crystalline basalt. At a distance of ~0.75 metres 

from the sill contact the tuff is slightly compacted/baked and discoloured (Fig. 3.19b) 

whereas tuff at a distance of ~1.5 metres from the contact shows no apparent signs of 

modification from thermal effects (Fig. 3.19c), but has a density and colour similar to  

material from the same tuff horizon several tens of metres away from the sill contact. 

Welding of host rocks to sill intrusions is another feature that may be encountered 

within limited parts of the upper margins of the larger sills from this study (Fig.3.20). 

The zones of welded basalts rarely reach maximum thicknesses of more than ~1.0 

metre, but most often these vary significantly and display jagged surfaces. In many  
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Figure 3.21. Increased amygdale densities in welded basalts with decreasing distances to the upper 

contact of the Streymoy Sill. a) Basalt sample collected ~0.5 metres from the sill contact. b) Basalt 

sample collected ~0.75 metres from the same contact. c) Basalt sample collected ~1.0 metres from the 

same contact. Plag = plagioclase crystals; Zeol = zeolite crystals in amygdales. The larger plagioclase 

crystals generally measure 1.0 to 1.5 cm. See text. 

 

cases no apparent evidences of metamorphism can be seen in the welded basalts in 

hand specimen. However, in a way that is comparable to the amygdaloidal zones in 

sill margins immediately at their upper contacts, welded host rocks may also display 

various densities of amygdales. Relatively dense amygdale populations commonly 

occur up to around 0.5 metres away from upper sill contacts (Fig. 3.21a) and less 

dense populations can also be encountered up to ~0.75 metres away from sill 

contacts (Fig. 3.21b), but at distances larger than ~1.0 metres from the intrusive 

contacts these welded basalts are often free of amygdales (Fig. 3.21c). It is 

noteworthy that no clear signs of amygdales can be observed in host rocks to the very 

thin parts of the smaller sills of the Faroe Islands. Obviously, the amygdales in the 

welded host basalts result from gas exsolution/migration across contacts from the 

sills followed by filling of the resulting vesicles with secondary zeolite minerals. 

The best direct evidences of the exact nature of welded sill – host rock contacts and 

chilled sill/dyke margins in general can be obtained by careful examination of 

relevant thin sections of actual contacts. Inspection under the microscope of a welded 

transition zone between an amygdale-free basaltic apophysis in the immediate 

vicinity of the Streymoy Sill, which it is connected to, and amygdaloidal host basalts 

reveal an undulating contact where melts with or without small plagioclase crystals 

have protruded up to 4 – 5 millimetres into the zeolite-bearing host rocks (Fig.  
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Figure 3.22. a) Ordinary image showing undulating contact (yellow dotted line) between intrusive sill 

material (generally dark grey glass, but light brown at contact) and host rock. White minerals set in 

the sill glass are mostly plagioclases and the odd clinopyroxenes. The groundmass of the host rock is 

composed of fine-grained plagioclase and clinopyroxene. Phenocrysts (amygdales) in host rock are 

zeolites. b) Image under plane-polarised light showing a closer view of the right hand side of the 

photo in a), but rotated ~90° anticlockwise. Glass in the sill material (black) is connected to 

interstitial/interconnected glass (tiny black patches) in the host rock via the intrusive contact (yellow 

dotted line). Plag = plagioclase; Cpx = clinopyroxene; Zeol = zeolite. See text. 

 

3.22a). An even closer view of this transition zone shows that the apparent contact is 

in fact itself a transition zone where the melt (glass) in the vein is connected to tiny 

interconnected interstitial melt (glass) batches in a fine-grained groundmass of 

plagioclase and clinopyroxene within the host rock, hence explaining the welding  

(Fig. 3.22b). Clearly, contact metamorphism has resulted in sufficient degrees of 

melting of the least refractive parts of the fine-grained host rock so as to produce the 

interconnected network of partial melts (glass) that have acted as cement between 

intrusive rocks and host rocks. 

 

3.5 Tectonic effects on sills and host rocks 

As many of the investigated sills and the host basalts in the immediate vicinity of 

these sills commonly are characterised by conspicuous deformation structures at 

various scales, it is pertinent to present a brief introduction of their modes of 

occurrence and try to determine the nature of causal mechanisms. 

 

3.5.1. Syn-magmatic deformation 

Apart from the common occurrences of sub-vertical foliation at lower sill margins in 

the larger sills (e.g. Fig. 3. 17a), foliation around assimilated blocks of host basalts at 

a few localities and foliation across entire sill thicknesses in some thin parts of the 



 

78 
 

smaller sills, deformation associated with sill emplacement does not appear to have 

affected the intrusions from this study significantly. However, cooling fractures in 

the form of columnar jointing are of common occurrences in many parts of the 

investigated sills. In general, these columns/joints are oriented orthogonal to 

upper/lower sill margins (Fig. 3.23a), but in a few sites the columns define a lower 

and an upper group where columns of one group are oriented almost perpendicular to  

 

 

Fig. 3.23. a) Parts of the Eysturoy Sill display sub-vertical columnar jointing oriented orthogonal to 

sill contacts (yellow dotted lines). The columns are particularly conspicuous in the canyon walls, from 

where one column has broke loose and tipped over across the canyon. b) Columnar jointing in the 

Langaregn Sill where columns in the lower parts of the sill are oriented orthogonal to the lower 

contact in contrast to column in the upper parts that are sub-parallel to the upper contact. Yellow 

dotted line indicates lower sill contact. Red dotted lines indicate orientations of columns. Red dotted 

circles indicate ends of some sub-horizontal columns. 
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columns of the other group (Fig. 3.23b). In the example shown in Fig. 3.23b, the 

columns in the lower part of the actual sill are oriented at right angles to the lower 

sill contact whereas those of the upper part are sub-parallel to the upper contact. 

The host basalts have been affected by the intrusive activities associated with sill  

 

 

Figure 3.24. a) Marker horizon (red dotted lines) in basaltic overburden has been uplifted vertically 

(~45 m) by the SE segment of the Streymoy Sill. A 40 to 45 metres sub-horizontal displacement of the 

overburden towards the east or northeast is suggested by lateral overlap of marker horizons (vertical 

semi-transparent yellow lines). b) Same as in a), but showing a view from the opposite side of the 

mountain of Stallur. c) Marker horizon (red lines composed of closely spaced red dots) in host basalts 

has been uplifted (15 – 20 m) by the NW segment of the Eysturoy Sill. Three marker horizons at 

different stratigraphic levels (red dotted lines) in the host basalts have been uplifted (6 – 7 m each) by 

the Sundini Sill. Yellow dotted lines indicate lower sill contacts.  
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intrusion to various degrees and sometimes display thin zones of densely spaced 

fracturing/faulting close to sill margins. These fractures are mostly sub-parallel to the 

sill margins at the actual sites and could be a result of intrusive activities or they 

formed in response to subsequent tectonic events. However, the most prominent 

manifestations of intrusive activities in the host basalts are in the form of sub-vertical 

displacement of strata on top of the sills in question. An especially good example is 

exposed at the mountain of Stallur, where the SE segment of the Streymoy Sill has 

displaced a marker horizon upwards by around 45 metres during 

emplacement/inflation (Fig. 3.24a; Fig. 3.24b). Other good examples include an 

exposure on the southern flank of the mountain of Stórarók where emplacement of 

the thinnest parts of the NW segment of the Eysturoy Sill resulted in 15 to 20 metres 

uplift of the overburden (Fig. 3.24c). Also, uplifted marker horizons (6 to 7 metres) 

at three distinct stratigraphic levels on top of the thickest sections of the Sundini Sill 

(Fig. 3.24c) probably owe their displacement to sill inflation. It is likely that some of 

the uplifted overburdens also “floated” in sub-horizontal directions for short 

distances during sill emplacement as evidenced by ~40 metres of displacement in 

easterly direction of the overburden atop the Streymoy Sill at the mountain of Stallur 

(Fig. 3.24a). 

 

3.5.2. Post-magmatic deformation 

All exposed parts of the lava pile of the Faroe Islands have been affected by various 

regional tectonic events, some of which have been interpreted earlier to have 

occurred prior to or contemporaneous with sill intrusion in the area (e.g. Geoffroy et 

al., 1994). However, as the investigated sills represent the latest known phases of 

igneous activity in the actual region, deformation structures recorded within these 

intrusions must represent post-magmatic regional or local tectonic events. 

A few structural characteristics dominate the deformation features observed within 

the actual sills. Broadly E–W trending sub-vertical fractures occurring either as 

closely spaced (2 to 3 cm apart) microscopic joints, which in many cases only 

become apparent when sill samples are split apart, or as more conspicuous and 

slightly more distantly spaced fractures appearing as linear sub-parallel surface 

structures (Fig. 3.25a) are of common occurrences in many parts of the sills from this 

study.  Other prominent signs of tectonic activities that are particularly visible within 

the Eysturoy and Streymoy sills include well-defined sets of relatively large NNE–
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SSW trending faults that often define conjugate sets dipping at low angles with the 

horizontal plane (Fig. 3.26a). Views at more detailed scales of rocks adjacent to these 

large faults commonly disclose the occurrences of multiple smaller faults/fractures 

that define broadly similar trends, but which often also dip at lower angles with the 

horizontal plane and may occur as individual faults rather than in conjugate sets (Fig. 

3. 26b). Clear evidences of reverse movements along some of these faults in ESE 

direction at the SE margin of the Streymoy Sill (Fig. 3.26b) and in WNW direction at  

 

Figure 3.25. a) E–W directed sub-vertical fractures occurring in a more than 10 metres wide zone of 

the Streymoy Sill. b) In the Eysturoy Sill NE–SW trending millimetre thick sub-vertical mineralised 

extensional fractures (yellow dotted lines) have been displaced by sinistral strike-slip movements in 

E–W trending sub-vertical faults (red dotted lines) that appear to have affected the host sill in a semi-

plastic manner. c) In the Kvívík Sill, NE–SW trending fibre lineation from sub-vertical dextral strike-

slip movements (yellow dotted lines) have been overprinted by sub-horizontal E–W trending fibre 

liniation (red dotted lines) where the sense of movement (i.e. sinistral versus dextral) cannot be 

determined. Semi-transparent yellow full line indicates the contact where the face with E–W trending 

fibre lineation overprints the face with NE–SW trending fibre lineation. See text. 
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Figure 3.26. a) A number of conjugate faults (yellow dotted lines) that trend in a broadly NNE–SSW 

direction cut the the Streymoy Sill at low angles with the horizontal plane adjacent to the village of 

Norðadal. b) A closer view of a) reveal intense fracturing/faulting at all scales. The yellow circle 

encloses an example of limited reverse movement in a broadly ESE direction (yellow arrow). c) The 



 

83 
 

yellow circles enclose examples of limited reverse movements in a broadly WNW direction (yellow 

arrows) at the intensely faulted NW extremity of the Streymoy Sill on the NW flank of the mountain 

of Sátan. d) Sub-vertical broadly N–S oriented normal faults (yellow dotted lines) have cut initial 

inclined columnar jointing (red dotted lines), and apparently some of the reverse faults as described 

above as well (e.g. thick semi-transparent yellow dotted line),  at the SE extremity of the Streymoy 

Sill at the mountain of Núgvan. See text. 

 

the NW extremity of the same sill (Fig. 3.26c) strongly suggest formation of these 

faults in response to a compressional/shortening event. A succession of sub-vertical 

broadly N–S trending normal faults cut the original columnar jointing of the 

Streymoy Sill at its SE extremity on the mountain of Núgvan, as well as parts of the 

reverse faults described above (Fig. 3.26d). Less conspicuous are NE–SW trending 

sub-vertical tensile fractures occurring in some sills either as metre thick open 

faults/canyons, or as millimetre thick mineralised veins (Fig. 3.25b; Fig. 3.25c). 

Direct relationships between deformation structures of different orientations within 

the sills that indicate the temporal sequence of deformation events have only 

occasionally been recorded in this study. In a narrow NE–SW trending canyon 

cutting into the Eysturoy Sill, sub-vertical NE–SW trending mineralised thin 

fractures are intersected by E–W trending sub-vertical fractures that form parts of a 

~2 m wide fracture zone. Slight sinistral strike-slip movements within the fracture 

zone have resulted in slight dislocation of the mineralised NE–SW trending fractures, 

which themselves together with the canyon, in which the they crop out, probably 

result from NW–SE directed extension (Fig. 3.25b). Intersecting deformation 

structures encountered within the Kvívík Sill display a slightly different angle of the 

same aspect, where a sub-vertical face with NE–SW trending fibre lineation from 

dextral strike-slip motion is overprinted by a sub-horizontal face that contains E–W 

trending fibre lineation (Fig. 3.25c). Hence, these two exposures suggest that the 

observed E–W trending deformation structures were generated or reactivated 

subsequent to formation of the NE–SW trending deformation structures. The broadly 

E–W directed extension required to generate the observed normal sub-vertical faults 

could be of local origin e.g. sagging faults, but if they are of regional origin there 

may exist a link between these normal faults and the E–W directed strike-slip faults 

described previously. 

Altogether, the combined field evidences on deformation structures recorded within 

the investigated sills in the course of this study do not yield conclusive results with  
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Figure 3.27. Simplified drawings of presumed deformation events. a) Reverse faulting from WNW–

ESE or E–W directed compression. b) E–W directed compression-transpression or extension-

transtension generates E–W trending strike-slip faults. c) Normal faulting from E–W directed 

extension. d) NW–SE directed extension generates NE–SW trending faults. e) Broadly E–W directed 

compression-transpression, extension-transtension or WNW–ESE compression-transpression on pre-

existing NE–SW trending fractures can generate dextral strike-slip movements along the fracture 

planes. Full arrows = compression-extension; one-sided arrows = shear movements. See text. 

 

respect to the temporal relationships between the observed features, apart from the 

overprinting of NE–SW trending structures by E–W directed movements (Fig. 3.25b; 

Fig. 3.25c). However, these observations provide strong indications on some palaeo 

stress directions in the actual area. Briefly, these can be listed as: Broadly WNW–

ESE or E–W directed compression/shortening resulted in the formation of low-angle 

conjugate reverse faults in the Streymoy and Eysturoy sills in particular (Fig. 3.26a; 

Fig. 3.26b; Fig. 3.27a). Transpression and strike-slip faulting/jointing from this same 

compression event may have had the potential to generate the pervasive sub-vertical 

E–W directed joints that are of common occurrence in most of the sills from this 

study (Fig. 3.25a; Fig. 3.27b). E–W directed extension resulted in relatively closely 

spaced sub-vertical N–S trending normal faults at the inclined SE margin of the 

Streymoy Sill (Fig. 3.26d; Fig. 3.27c). Overprinting of sub-vertical NE–SW trending 

fibre lineation by sub-horizontal E–W directed fibre lineation (Fig. 3.25c) was 

probably generated by broadly E–W directed compression/transpression or 

extension/transtension. Roughly NW–SE directed extension produced NE–SW 

trending sub-vertical faults/joints in some of the sills (Fig. 3.25b; Fig. 3.25c; Fig 

3.27d). Broadly E–W directed stresses (compression/transpression or 

extension/transtension?) could be responsible for slight sinistral displacements of 
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sub-vertical NE – SW trending mineralised fractures within narrow sub-vertical E–W 

trending fracture zones in e.g. the Eysturoy Sill (Fig. 3.25b; Fig.3.27b) and for fibre 

lineation on NE–SW trending fractures (Fig. 3.25c; Fig. 3.27e).  

It would require a more extensive investigation of surrounding host basalts to 

establish whether all the observed deformation structures are of regional extent or if 

some of them are of more local character. 

 

3.6. Discussion 

The geometries of the investigated sills in addition to their general field occurrences 

may hint to particular emplacement styles and mechanisms, which are not 

necessarily entirely in accordance with earlier models proposed for sills intruded into 

sedimentary successions. However, a few physical criteria need to be satisfied for 

sill emplacement to occur irrespective of the nature of their host rocks. 

 

3.6.1. Physical conditions and emplacement criteria for sheet intrusions 

Some of the criteria that govern magma transport and emplacement of sheet 

intrusions include: (1) excess magma pressure in the melting region in addition to 

positive buoyancy/gravity of the intruding magmas contribute to the development of 

and, (2) principal stresses encountered in the intruded host-rocks and (3) elasticity 

and cohesive strength of the host rocks contribute to the inhibition of sill evolution 

(Bradley, 1965; Delaney et al., 1986; Gudmundsson, 1986; Lister and Kerr, 1991; 

Rubin, 1995; Kavanagh et al., 2006; Burchardt, 2008). 

(1) Regions experiencing partial melting are sometimes interpreted to be the 

ultimate sources of excess magma pressures (Bradley, 1965), as melts + residues 

combined are expected to possess larger volumes compared to their unmelted 

source rocks (e.g. Maaløe, 2003). Newly generated magmas are expected to 

possess large positive buoyancies relative to their source rocks, which will exert 

upward-directed stresses on the lower parts of their plumbing systems (Morgan, 

1997; Raddick et al. 2002), whereas magmas in dykes and sills at very shallow 

crustal levels may exert gravity-induced lateral stresses on their surroundings 

(Lister and Kerr, 1991; Varga et al. 1998). 

(2) In homogeneous non-deformed host rocks, magmas in sheet intrusions are 

expected to propagate in planes perpendicular to the least principal stress σ3 

(Pollard, 1973; Geoffroy et al., 1994; Valentine and Krogh, 2006), meaning that 
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for sub-vertical dykes σ3 lay in the sub-horizontal plane (Valentine and Krogh, 

2006). For sill intrusions to be initiated, σ3 is expected to have near vertical 

orientations where the lithostatic load of the overburden pgzoverburden (p = bulk 

density of the overburden; g = gravity and z = depth) exert stress on the intrusion 

(Kavanagh et al., 2006; Valentine and Krogh, 2006; Motoki and Sichel, 2008). 

Hence, for melts intruded from sub-vertical or oblique feeder dykes in relatively 

homogeneous host rocks, sill emplacement would be expected to occur at a 

depth range where a localised rotation of 3 from a sub-horizontal or inclined 

orientation to a sub-vertical orientation has taken place (Valentine and Krogh, 

2006). Melt injection and fault propagation in any dyke or sill regime require a 

magmatic pressure Pm that is greater than σ3, and in cases where the Pm of 

intruding melts is larger than the greatest principal stress σ1 and the cohesive 

strength σc of the host rock combined, sheet intrusions oriented at angles other 

than 90° relative to the regional 3 can be formed (Rubin, 1995; Valentine and 

Krogh, 2006). The invasion of magmas into pre-existing fractures can 

sometimes lead to sheet intrusions oriented at angles other than 90º relative to 3 

as long as Pm exceed the normal components of any regional 3 resolved on the 

invaded fracture planes (Delaney et al., 1986; Baer et al., 1994; Rubin, 1995; 

Valentine and Krogh, 2006). At crustal levels with near-vertical 3, sill 

emplacement is commonly thought to occur preferably in “weak” layers when 

intruded into host-rocks composed of sub-horizontal strata of contrasting 

mechanical properties (Bradley, 1965; Kavanagh et al., 2006; Burchardt, 2008). 

Fracture propagation and emplacement of sheet intrusions into relatively 

homogeneous non-deformed host rocks require a Pm that is greater than 3 and 

the ability of the host rock to resist compression/stretching and possible 

fracturing combined (Gudmundsson, 1986; Menand and Tait, 2002; Valentine 

and Krogh, 2006). The thickness of a young sub-horizontal sill, prior to 

wholesale failure and uplift of the overlying strata, depends on the elastic 

properties of the host-rocks i.e. their capacity to expand/compress without 

fracturing (Pollard, 1973; Gudmundsson, 1986; Rubin, 1995) (e.g. Fig. 3.28). 

The change in thickness of a vertical column of uniform rocks, in response to 

applied symmetrical compressional-extensional vertical forces, can in its 

simplest form be expressed as (Ohanian, 1989): 
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Figure 3.28. a) Dyke intrusion by elastic displacement of host rocks requires a sub-horizontal 

orientation of 3. b) Sill intrusion by elastic displacement of host rocks requires a sub-vertical 

orientation of 3. Intrusion thicknesses prior to rupture of wallrocks/overburdens depend on sizes 

of 3 and the capacities of host rocks to contract/expand elastically. See text. 

 

                                                                                                 (1) 

where   represents the vertical extent of affected host-rocks,    is the total 

vertical change in thickness of affected host-rocks (same as change in sill 

thickness during inflation),   is the Young's modulus of affected rocks,   is the 

sub-horizontal area at the end(s) of rock column(s) (equal to surface area of sill 

during inflation) and   (negative for compression) is the total vertical force 

acting on the affected rocks i.e. for sill intrusion   equals magmatic pressure    

(for a Newtonian liquid) per area unit times the whole sill area:        

Equation (1) then reduces to: 

                                                                                                           (2) 

The elastic response of a rock to shear stress of any direction may play an 

additional role for sill emplacement and can be expressed as (Ohanian, 1989): 

                                                                                                  (3) 

or in reduced version: 

                                                                                                           (4) 

where    is change of rock dimensions (thickness),   is the Shear modulus, 

which is two to three times smaller than   for most materials (Ohanian, 1989). 
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Apart from the vertical stress σv, and the cohesive strength of the host-rocks σc, 

an additional barrier to be overcome during sill intrusion is the horizontal stress 

   expressed as (Fyfe et al., 1978): 

                                                                                                   (5) 

where    is the vertical stress (load of overburden), m is Poisson's number 

(reciprocal to Poisson's ratio),    is the horizontal strain (compressive strain is 

positive) and   is the Young's modulus. This means that prior to rupture of the 

overburden the vertical inflation of any sills emplaced at specific magmatic 

pressures rely on   in particular in addition to the vertical extent of affected 

host-rocks as critical factors in governing the accommodation of these intrusive 

bodies by elastic displacement. 

 

3.6.2. Application of earlier emplacement theories 

It is not straightforward to compare the investigated sills with sills from other similar 

settings, as emplacements of saucer-shaped sills into igneous host-rocks have not 

been described in the published literature earlier (to this students knowledge), but the 

emplacements of tabular sub-horizontal sills in volcanic successions from NE and E 

Iceland have been interpreted to result from rotation of σ3 from sub-horizontal to 

sub-vertical orientations due to contrasting mechanical properties in layered host-

rocks (Burchardt, 2008; Gudmundsson, 2011). While the feeders from this study 

display similarities with the inclined dykes/sheets that fed these Icelandic sills, 

magma intrusions along sub-horizontal mechanical boundaries like those reported 

from Iceland (Burchardt, 2008) has only been observed in a feeder to the Streymoy 

Sill that displays a ramp-flat geometry (Fig. 3.14a) and in a few localities where 

magmas of propagating and otherwise climbing sills may have been guided along 

sub-horizontal weakness zones for very short distances (Fig. 3.6a; Fig. 3.14a). It 

remains an open question if the interaction mechanism between a sill and its total 

overburden mechanism, which has been interpreted to generate the asymmetry 

necessary for climbing of saucer-shaped sills with distinct sub-horizontal inner and 

steeply inclined middle/outer sections (e.g. Malthe-Sørensen et al., 2004; Thomson, 

2007; Goulty and Schofield, 2008; Polteau et al., 2008), is applicable for the 

formation of saucer-shaped sills where the saucer gradually curve upwards all the 

way from the sub-horizontal base to the inclined rim. If hypothetic diameters of low-
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angle inner sections ( ~15) of the smaller sills and individual sill segments from 

the Faroe Islands measure ~3.0 to ~4.0 km (section 3.2) and if it is assumed that the 

diameter of these hypothetic inner sills were ~4 times the overburden (e.g. Polteau et 

al., 2008) their emplacement depths would accordingly have ranged from ~800 to 

~1000 m, i.e. at equal or just slightly shallower depths than the estimated values of 

~1000 m indicated by measurements of palaeo thicknesses in the area intruded by the 

Svínoy-Fugloy Sill (Jørgensen, 2006). Using these same hypothetical inner sill 

diameters on other expressions for length of inner sill sections versus intrusion 

depths, i.e. depth/radius  2 (Pollard and Holzhausen, 1979) and radius/depth  1 

(Fialko, 2001) would yield intrusion depths of 3 – 4 km and 1.5 – 2 km respectively. 

According to previous studies on palaeo thicknesses of the basalt formations of this 

region (Jørgensen, 2006), such intrusion depths would be unrealistically high. If the 

Streymoy and the Eysturoy sills were intruded as homogeneous single elliptic 

intrusions, the maximum diameters of their inner sill sections that possess inclination 

angles less than ~15° would have approached ~7.5 km and ~5.0 km respectively, 

meaning that these intrusions would have been intruded at depths ranging from 

~1400 to ~2000 m, when an inner diameter versus overburden ratio of ~4 is assumed. 

As these depths also exceed the actual palaeo thicknesses indicated for the actual 

basalt sequences (Jørgensen, 2006), it is unlikely that each of these two sills formed 

as single elliptic intrusions, if the criterion with a diameter/overburden ratio of ~4 is 

valid within reasonable margins. If depth estimates are only based on sub-horizontal 

innermost sill/segment sections measuring 1.5 – 2km across (section 3.2), a 

diameter/overburden ratio of ~4 (Polteau et al., 2008) would yield maximum 

overburden thicknesses of only 0.4 to 0.5 km whereas the ratios depth/radius  2 

(Pollard and Holzhausen, 1979) and radius/depth  1 (Fialko, 2001) would yield 

intrusion depths of 1.5 – 2 km and 0.75 – 1 km respectively. Consequently, only 

depth estimates from the expression of Fialko (2001) approach realistic values in this 

particular case. It remains an open question whether the sills from this study owe 

their saucer-shaped geometry to symmetrical wholesale uplifts of sill overburdens in 

response to certain intrusion sizes versus intrusion depths, as the actual sizes of these 

sills commonly vary, even though they are intruded at similar stratigraphic levels. 

Also, the asymmetrical nature of both smaller sills and individual segments of the 

larger sills as well as common occurrences of gradual and continuous upward-
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curving geometries all the way from central sections of the actual sills seem to 

suggest the actions of other emplacement mechanisms. 

 

3.6.3. Exploring other potential emplacement mechanisms 

As each of the Kvívík, Morskranes and Sundini sills have only been inflated to 

relatively great thicknesses at their inclined margins and approach zero thicknesses in 

their opposite ends at lower altitudes, the development of these sills may have been 

halted prematurely before they reached their full potential when compared to the 

much thicker and uniformly inflated Streymoy and Eysturoy sills. The magmas 

building up the two uniformly inflated Streymoy and Eysturoy sills must have 

supported their overburdens entirely in contrast to the magmas of the three (four?) 

partially inflated sills, which could only have supported the bulk of their overburdens 

at their thickest ends. If these three partly inflated intrusions do indeed represent less 

evolved stages of sill formation compared to the neighbouring Streymoy and 

Eysturoy sills, they may offer important and unique insights into the embryonic 

stages of sill emplacement into relatively rigid host-rocks. The asymmetric saucer-

shapes and systematic thickness variations of these three intrusions suggest that 

physical conditions, such as sizes and directions of the principal stress axes acting on 

the sills, underwent temporal and spatial variations during their development. If the 

orientations of thin sub-horizontal protrusions into host basalts from slightly inclined 

basal sections, common to all the studied sills (Fig. 3.8), can be taken as indications 

of magma transport directions, these seem to suggest that the actual intrusions 

initially developed radially outwards at slightly inclined angles from their lowermost 

stratigraphic levels. Indeed, previous studies have suggested that additional 

fracture/magma propagation from the margins of developing sheet intrusions 

primarily take place in directions that possess the largest values of a parameter K, 

expressed as (Baer, 1991): 

        
                                                                                                               (6) 

where Pd is the driving pressure and l is the distance to the magma source. As is 

suggested from equation 6, continued propagation of dyke/sill margins or protrusions 

from these would predominally be directed away from their respective magma 

sources. Determination of the most probable directions of palaeo magma flows from 

orientations of protrusions from larger sheet intrusions have also been utilised earlier, 
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e.g. in a study of the Great Whin and Midland Valley dolerite sills (Goulty, 2005) 

and in other studies of sheet intrusions in general (Correa-Gomes et al., 2001, and 

refs. therein). Similar growth models for saucer-shaped sills have sometimes been 

inferred for sills intruded into sedimentary successions as well (Thomson, 2004; 

Thomson and Hutton, 2004; Hansen and Cartwright, 2006). Also, Pollard and 

Johnson (1973) stated that rocks around developing sheet intrusions would pull apart 

in plane continous with the length of the actual intrusions. The very restricted lateral 

extent of exposed feeder/sill transition zones (e.g. Fig. 3.14) indicate that these sills 

were fed from point sources rather than laterally extensive dykes/fissures. 

As no crustal uplifts have been detected in the overburdens above the thin basal parts 

of the Kvívík, the Morskranes and the Sundini sills, their overall saucer-shaped 

geometries and upward-curving propagation trends (Fig. 3.9) cannot readily be 

explained by a mechanism with sill climbing due to wholesale uplifts/doming of their 

respective overburdens that generated the asymmetries at their propagating margins, 

as discussed above for sills occurring in sedimentary strata. Instead we envisage 

continuous mechanisms that occur at much smaller scales involving interactions 

between the invading magmas and the intruded strata above and below the 

propagating sill margins. 

Due to the effect of lithostatic load the values of   for crustal rocks increase with 

depths in a non-linear manner where the relative increase of   for fixed distance  

 

 

Figure 3.29. The values of Young’s modulus for basaltic crustal rocks increase systematically with 

increasing depths in a non-linear fashion with the largest relative increase occurring at relatively 

shallow depths. (Based on the study of Schultz et al., 2006). See text. 
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intervals is largest at relatively shallow crustal levels (Schultz et al., 2006) (Fig. 

3.29). As   is expected to be constant at fixed depths in laterally homogeneous host-

rocks, no noticeable variations in elasticity of host-rocks should be expected in the 

sub-horizontal plane. Hence, for a young sill propagating laterally into host-rocks 

that behave as isotropic units on vertical scales of a few hundreds of metres (e.g. 

Hatcher, 1995), the variations of   (Fig. 3.29) should render the strata atop the 

ambientintrusion more prone to elastic stretching/compression compared with a 

similar rock suite below it. During inflation/dilation of sheet intrusions behind 

existing single extension fractures, the nature of the stress fields within host-rocks 

adjacent to both sides of the propagating tips/margins may be be influenced by the 

invading magmas. Such effects on the host material may include a drop in pressures 

immediately behind the propagating tip (Rubin, 1995) and rearrangements of 

principal stress axes/trajectories in the immediate vicinity of the intruding sheets 

relative to orientations of these axes within ambient host-rocks (Pollard, 1973). 

Accordingly, a previous study (Pollard, 1973) suggested that the local largest 

principal stress axes/trajectories 1 adjacent to an embryonic sheet intrusion were 

rotated from orientations being sub-parallel to the plane of the intruding sheet just in 

front of the propagating margin to orientations broadly orthogonal to the developing 

intrusion behind the advancing tip  (Fig. 3.30a). Correspondingly, the local least 

principal stress axes/trajectories 3 are expected to be near-vertical on both sides of 

the very tip of the developing sheet intrusion immediately at the fracture plane and 

then gradually have their farther end rotated inwards behind the propagating tip 

(Pollard, 1973) (Fig. 3.30a). Based on Fig. 3.30a, two inferences can be made. 1) The 

configuration of the local 1 and 3 as shown in Fig. 3.30a renders it unlikely that 

propagation direction of potential magma protrusion near such a propagating sheet 

margin would deviate substantially from the general direction of margin propagation. 

2) The probable increase in local values of Young’s modulus E in host-rocks on both 

sides of an inflating/propagating sheet intrusion due to compression would most 

probably reduce the likelihood of magma protrusions in directions opposite to the 

general direction of margin propagation. These two arguments support previous 

inferences, suggesting that orientations of protrusions from sills of this study 

probably point to approximate directions of palaeo magma flows (See also discussion 

around equation 6 above). 
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Figure 3.30. a) Symmetric sill inflation (radial?) with sub-horizontal fracture propagation. b) 

Asymmetric sill inflation with inclined fracture propagation. a and b = host rocks above and below 

single extension fractures respectively; Da, ta, Ea = values of dilation, tension and Youngs modulus 

respectively in host rocks above a single extension fracture; Db, tb, Eb = values of dilation, tension and 

Youngs modulus respectively in host rocks below a single extension fracture; Pm = magmatic 

pressure; 1, 3, v, c and h = largest principal, least principal, vertical, cohesion and horizontal 

stress axes respectively. Dotted and dashed semi-transparent grey lines/curves of different 

orientations, shown in a) represent local 1 and 3 trajectories respectively, which result from 

interaction between intruding magmas and their host-rocks (Trajectories adopted from Pollard, 1973). 

See text. 
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Gravity-induced differences in elastic properties of isotropic host-rocks on either side 

of a laterally propagating single extension fracture could in theory cause a young sill 

to inflate disproportionally behind the propagating tip, with relatively larger melt 

volumes being emplaced above a vertically fixed initial plane of propagation than 

GPa, 1000 - 1300 m = 26.8 GPa) are used, show that the dilation above the initial 

plane of propagation for this theoretical sill is ~7.5% larger than it is below it. below 

it (in accordance with equation 2). It may be envisaged that such asymmetric dilation 

could lead to a slightly larger drop in the relative least principal stress above the 

propagating tip than below it, thus resulting in asymmetries of the local 3 

trajectories that would trigger an upward deflection of the propagating tip relative to 

the previous plane of propagation (Fig. 3.30b). A testing of this scenario by means of 

equation 2, where a sill is being intruded at a depth of ~1000 m with ~300 m of host-

rocks above and below this embryonic intrusion being affected by the sill dilation 

and where average values of Young’s modulus from Fig. 3.29 (700 - 1000 m = 24.8 

Although this inferred process of sill climbing is interpreted to occur at much smaller 

scales and to take place at the very sill margins, the principle is quite similar to a 

mechanism where propagating sill margins are interpreted to be deflected upwards in 

response to stress asymmetries at sill margins, due stretching of entire overburdens 

ocurring in response to asymmetrical inflation of entire sills, associated with 

displacement or doming of the Earth’s (free) surface on top of developing intrusions 

(Pollard and Holzhausen, 1979; Fialko, 2001; Goulty and Schofield, 2008) (e.g. Fig. 

3.1e). As the relative increase of   for fixed vertical distances becomes lesser with 

increasing depth (Schultz et al., 2006) (Fig. 3.29), asymmetric sill inflation, as 

inferred above, should be expected to become less prevalent with increasing depths. 

The result of these depth-dependant differences should in turn result in less inclined 

and successively larger basal sill sections with increasing depths, which is in 

accordance with previous interpretations on sill/overburden ratios (Pollard and 

Holzhausen, 1979; Fialko, 2001; Malthe-Sørensen et al., 2004; Goulty and Schofield, 

2008; Polteau et al., 2008). As long as a notable asymmetric inflation is maintained, 

a gradual rotation of the propagating edges towards increasing angles relative to the 

sub-horizontal plane may be expected. The overall elliptic appearances of the Kvívík, 

the Morskranes and the Sundini sills in map view and the locations of their inferred 

magmatic sources (Fig. 3.3d; Fig. 3.3e; Fig. 3.3f) suggest that these sills probably 
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also progressed at uneven/asymmetric  rates in the sub-horizontal plane, in addition 

to inferred upward-curving propagations in the sub-vertical plane (Fig. 3.30b).  

As the distance to the Earth's surface from the margins of a sill that propagates at an 

inclined angle is becoming lesser, a reduction of the total cohesive/necking strength 

of the remaining overburden must be expected. Also, as the total vertical extent of a 

magma column is increased a gravity controlled pressure gradient (∆pgzmagma) will 

develop, which for a tholeiitic melt with an average density of 2.65 g/cm
3
 will result 

in differences from bottom to top of ~6.5 and ~13 MPa for melt columns measuring 

250 and 500 m respectively. Boiling of magmas with gas exsolution and segregation 

is commonly associated with the ascent and cooling of melts in the upper crust, and 

the associated volume increase will generally lead to overpressure in the affected 

magma chambers (Woods and Cardoso, 1997; Sparks, 2003). Provided that a 

developing sill system functions as a closed hydraulic system, overpressure from gas 

exsolution may partly compensate for a gravity-controlled pressure drop as melts 

ascend towards shallow crustal levels. The process of gas exsolution has clearly been 

active during margin propagation in some of the sills of the Faroe Islands, as 

evidenced by mineralized vesicles that make up 15% to 20% of the total intrusion 

volumes in some of the thinnest parts of sill margins (Fig. 3.18a). Calculations have 

shown that the exsolution and segregation of gas in basaltic melts with a H2O content 

of ~0.3 % result in a pressure increase on top of vertical magma columns measuring 

250 and 500 m of ~2.65 and ~5.30 MPa respectively (Woods and Cardoso, 1997). 

These figures are much smaller than the gravitational pressure drops for similar 

height differences in vertical magma columns, as shown above. Also, the inclined 

nature of the upper sections of all sills in question (as opposed to the unrestricted 

vertical distances encountered in sub-spherical magma chambers) would probably 

put significant limitations on the formation of any large overpressures from exsolved 

gases. If necking of strata above propagating sill margins occur at relatively fixed 

crustal depths, sills initiated at similar depths and expanding by gradual upward 

curving propagation in radial modes and at broadly similar angles with the horizontal 

plane should develop roughly similar sizes, where total sills sizes should be expected 

to increase with increasing depths. The relatively thick elevated NE, SE and E 

margins of the Kvívík, the Morskranes and the Sundini sills respectively (Fig. 3.3d; 

Fig. 3.3e; Fig. 3.3f) could not have been accommodated solely by elastic 

displacement of the host-rocks, but would have required rupture and some uplift of  
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Figure 3.31. Inclined section of the Streymoy Sill displays a noticeable sudden anticlockwise rotation 

as it climbs from the SSW towards the NNE. The orientation of a feeder dyke/sheet just below the 

dyke/sill contact is similar to the uppermost section of the Streymoy Sill. Yellow dotted lines indicate 

lower sill margin and red dotted line indicates trend of feeder dyke/sheet. Red arrows show presumed 

palaeo orientation of local (and not necessarily regional) least principal stress axes 3. See text. 

 

the overlying strata. When failure of a relatively competent and brittle overburden 

finally occurs on top of a propagating sill margin, as is inferred for the Kvívík, the 

Morskranes and the Sundini sills, a relatively rapid pressure release, due to the 

opening up of a previously closed hydraulic system together with a sudden 

abandonment of cohesive/necking forces to be overcome, may be envisaged. The 

occurrences of relatively abrupt changes in sill inclinations toward steeper angles 

with the horizontal plane, observed only at inclined rims in some of the investigated 

sills (e.g. Fig. 3.31) may signal the occurrences of relatively sudden necking of 

overburdens during late stages of sill intrusion that in turn resulted in marked shifts 

of local σ3 orientations, perhaps in a fashion similar to what has been proposed for 

the onset of sill climbing inn sedimentary strata (Malthe-Sørensen et al., 2004; 

Thomson, 2007; Goulty and Schofield, 2008). As the thin dykes/sheet, which fed a 

part of the inclined margin of the Streymoy Sill that show abrupt inclination changes 

(Fig. 3.31), display similar strike/dip orientations immediately below their contact 

and probably also shared local (and not necessarily regional) palaeo σ3 directions 

with the rim it once fed, some kind of interaction between feeder and the uppermost 

parts of this sills may have occurred during their intrusions? Potential scenarios 

include dyke intrusions triggered by sudden local reorientations/resizing of σ3 due to 

wholesale necking of the strata above the propagating sill margins, or perhaps the 

crustal necking was associated with and triggered by late intrusion of marginal 
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dykes. However, the very restricted lateral extent of these dykes signal that if they 

did influence the intrusion styles of any parts of these inclined sill margins, it 

probably was at insignificant scales. 

The pronounced wedge-shaped thickness variations of the Kvívík, the Morskranes 

and the Sundini sills (Fig. 3.5) show that the main phases of sill inflation preferably 

took place at the most steeply inclined sill sections at their NE, SE and E margins 

respectively. Also, the general geometries of these sills suggest that the local σ3 axes 

close to these margins had been rotated towards lesser angles with the horizontal 

plane relative to the local σ3 axes closer to the thinner parts of the intrusions. The 

disproportionate inflation and uplifts of overlying strata, which generated the wedge-

shaped thickness variations in these sills, would have resulted in slight tilts/rotations 

of their respective overburdens toward slight inward-directed dips. The asymmetric 

inflation styles displayed by these three sills are partly in accordance with earlier 

inferences suggesting that large-scale sill inflation is initiated at the inclined outer 

margin at one end of the sill in question (Francis, 1982; Chevallier and Woodford, 

1999). However, while Francis (1982) as well as Chevallier and Woodford (1999) 

inferred main magma supplies to their sills from marginal dykes (e.g. Fig. 3.1.a; Fig. 

3.1.b), central feeders are interpreted to have acted as major magma sources to the 

sills from this study, in addition to lesser magma supplies via marginal feeders to the 

rims of the NW segment of the Streymoy Sill. 

The clear division of the large Streymoy and Eysturoy sills into two distinct partly 

saucer-shaped segments each, together with the close similarities between the general 

geometries and profiles representing these segments and the general geometry and 

profiles representing the Kvívík, the Morskranes and the Sundini sills (Fig. 3.5), may 

suggest similarities in emplacement mechanisms for all of these intrusions albeit they 

probably represent different evolution stages. The close spatial relationships between 

these sills, which mostly occur at overlapping crustal levels and in identical host-

rocks (Fig. 3.2), further strengthen inferences of a common emplacement 

mechanism. If each of the Streymoy and the Eysturoy sills indeed formed by 

merging of two partly saucer-shaped asymmetric sill segments broadly similar to the 

Kvívík, the Morskranes and the Sundini sills, the cohesion stress σc in the host-rocks 

to be overcome by propagating sill margins would have cancelled out at their zones 

of merging prior to their solidification if they were broadly contemporaneous. Hence, 

at this inferred stage of evolution the obstacles for large-scale sill inflations to occur 
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would perhaps only have included the horizontal stress σh (equal to average 

magmatic pressure Pm of the merged segments) and the lithostatic load of the 

overburden (pgzoverburden), thus rendering sill inflation/expansion free to occur until 

hydrostatic equilibrium was obtained. The ultimate sill thicknesses would depend on 

a number of factors including the heights and densities of the overburdens as well as 

the magmatic (over)pressures or the densities and heights of the actual magma 

column in the open plumbing system (e.g. Goulty, 2005). 

 

3.6.4. Environment of emplacement and host-rocks  

At present it has not been possible to constrain the timing and duration of sill 

intrusion and determine if they are broadly contemporaneous, as no absolute dating is 

available for any sills or associated dykes. As the sills of the Faroe Islands apparently 

post-date all sub-vertical dyke systems intersecting the actual area, some of which 

are interpreted to have been emplaced during various Early Cenozoic tectonic events 

(Geoffroy et al., 1994), the sill intrusions are probably not linked to any particular 

stress regime belonging to one of these particular events. Also, the large differences 

in strike directions between individual feeder dykes as well as between individual 

sills suggest that, if emplaced broadly contemporaneously, the local magma supplies 

to these intrusions possessed pressures larger than the largest principal stress σ1 thus 

being a governing factor in determining the mode of sill emplacement. Possible links 

between some of the investigated sills and deep-seated lineaments in adjacent fjords 

(Ellis et al., 2009) cannot be ruled out completely, but locations and geometries of 

feeder dykes as well as orientations of numerous protrusions from inclined basal sill 

sections suggest that magma supplies for many of the sills in question were derived 

from the interior of the islands where they are exposed at the present time (Fig. 3.3). 

Anisotropic behaviour of host-rocks due to contrasting mechanical properties, e.g. at 

sites containing sub-vertical fracture/dyke zones or sub-horizontal layering, appear to 

have affected intrusion styles of sills and/or dykes of the Faroe Islands preferably at 

relatively high stratigraphic levels. Examples of sub-vertically influenced intrusion 

styles include the whole linear NNE facing inclined margin of the NW segment of 

the Eysturoy Sill (Fig. 3.3a) and smaller parts of the SE facing inclined margin of the 

Morskranes Sill (Fig. 3.3f) where intruding melts appear to have been guided along 

pre-existing fracture/dyke systems. The effect of anisotropy in sub-horizontal 

layering is particularly evident in one of the feeder dykes to the Streymoy Sill, where 
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a pronounced ramp-flat geometry point to melt intrusion into layers of different 

mechanical competences (Fig. 3.14a; Fig. 3.31). Possible effects of sub-horizontal 

layering in host-rocks that involve the sills themselves include the NW segment of 

the Streymoy Sill, which flattens out for a short distance as it transects the Sneis 

Formation as shown at the centre of figures 3.14a and 3.31. Also, the SE segment of 

the same sill that takes a gentle turn towards a sub-horizontal orientation, which it 

follows for a distance of around 200 to 250 metres, as it climbs towards the mountain 

of Núgvan (Centre-right in Fig. 3.6a). 

A significant degree of isotropic behaviour in host-rocks at sites of presumed 

embryonic sill formation at relatively low stratigraphic levels is suggested by the 

general occurrences of low-angle contacts between basal sill sections and layered 

host-rocks of the Early Cenozoic Faroe Islands (Fig. 3.6a). Additionally, the common 

occurrences of dyke to sill transitions and protrusions into homogeneous crystalline 

host basalts rather than in adjacent sedimentary sequences (e.g. Fig. 3.8; Fig. 3.14d) 

point to a significant degree of isotropic behaviour of these host-rocks. The inferred 

differences in intrusion styles according to crustal depths seem to suggest that a large 

lithostatic load may partly suppress the effect of contrasting mechanical properties in 

host-rocks thus increasingly leaving them as isotropically homogeneous units with 

increasing depths. 

Sites that represent the lowermost parts of sub-horizontal basal sections of the 

investigated sills, which arguably represent the embryonic emplacement stages of 

these intrusions, define a trend in the regional stratigraphy where plotted altitudes 

representing the lowermost points of individual sills decrease towards the NW or 

WNW relative to the base of the Enni Formation (Stratigraphic column, Fig. 3.2). 

This trend is particularly conspicuous when the sills occurring in the main study area 

are considered as two separate groups, each of which occur on either of the islands of 

Streymoy (Streymoy and Kvívík sills) and Eysturoy (Morskranes, Eysturoy and 

Sundini sills) (Fig. 3.2). Similar trends, with basal sill sections occurring at 

increasing stratigraphic depths towards the NW or WNW, are also displayed by 

individual segments building up both the Streymoy and the Eysturoy sills 

(Longitudinal profiles, Fig. 3.5f; Fig. 3.5g). If all the sills were emplaced broadly 

contemporaneously, such variations could reflect initial sill emplacement at various 

crustal depths or, if emplaced at roughly similar depths, they may result from 

systematic thickness variations of the overlying Enni Formation. The palaeo 
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thickness of this formation is not known for the main area of investigation on the 

larger islands, but a minimum thickness of ~1100 m is suggested for the Enni 

Formation in the NE parts of the islands not far from the Svínoy–Fugloy Sill 

(Jørgensen, 2006). If the current exposed sub-horizontal base of the Svínoy–Fugloy 

Sill can be taken as a reliable proximate of the palaeo crustal level where a rotation 

of regional σ3 from sub-horizontal or inclined orientations to a sub-vertical 

orientation occurred in the Early Cenozoic lava pile of the Faroe Islands, an ~1100 m 

thick Enni Formation would initially have been intruded by the embryonic Svínoy-

Fugloy Sill at a depth of roughly 1000 m. On the assumption that the other 

investigated intrusions were also initiated at depths close to 1000 m they may 

actually provide a record of an Early Cenozoic decrease in thickness of the Enni 

Formation towards the NW or WNW compared to the central and NE parts of the 

islands. Future geobarometry calculations may help to constrain this matter. A 

possible thinning of the palaeo Enni Formation towards the NW and WNW could be 

due to erosion, but such systematic thickness reduction is also in accordance with 

previous interpretations suggesting that magma supplies to the final stages of surface 

magmatism in the Faroe Islands were provided from sources located in the eastern 

parts of the region (Rasmussen and Noe-Nygaard, 1970; Jørgensen, 2006; Passey and 

Jolley, 2009). 

The above discussion seems to suggest that initial sill intrusion into the Early 

Cenozoic Faroe Islands were not linked to any particular rock types, i.e. lavas versus 

sedimentary sequences, within the affected strata. The occurrences of intrusive 

complexes other than dykes at distinct crustal levels (Stratigraphic column, Fig. 3.2) 

may indicate distinct magmatic events. The irregular sills intruded into the 

sedimentary Hvannhagi and Prestfjall formations (~4500 m, Stratigraphic column, 

Fig. 3.2) were probably intruded at very shallow crustal levels contemporaneously 

with the lowermost parts of the Malinstindur Formation, as indicated by the common 

occurrences of non-intrusive contacts between this formation and these irregular sills, 

i.e. these activities must have occurred prior to the emplacement of the studied sills. 

Any relationship between the invasive sequences occurring in the Lopra Formation 

(Lowermost 100 – 500 m, Stratigraphic column, Fig. 3.2) and the studied sills cannot 

be established as they are separated by a stratigraphic thickness of ~5000 m with 

volcanic sequences. 
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3.7. Summary of chapter 3 and concluding remarks 

In this chapter it has been demonstrated that the investigated sills display more or 

less symmetrical saucer-shaped geometries where inner sub-horizontal sill sections 

gradually curve upwards and outwards toward slightly steeper outer sections without 

any abrupt changes in inclination angles between inner and outer sections. The 

Streymoy and Eysturoy sills are clearly composite intrusions, each being built up by 

two merged individual sill segments, each of which displays geometries and sizes 

broadly similar to the smaller sills of this study. In spite of the similarities in their 

general physical appearances the great and uniform thicknesses of the segments 

making up the Streymoy and Eysturoy sills contrast with those of the much thinner 

individual or smaller sills, each of which are inflated to relatively large thicknesses at 

their most elevated margins only and gradually wedge out to near-zero thicknesses 

towards their opposite ends at lower stratigraphic levels. A number of inclined dykes 

or sheets have been identified as feeders for various stratigraphic levels of the actual 

sills, but while the bulk of the total magma volumes were supplied via the lowermost 

sub-horizontal parts of these sills, the feeders that are attached to inclined sill 

margins only fed the uppermost 50–100 m of these. Based on field relationships, 3D 

geometry and the observed systematic thickness trends of the sills in question, a 

simplified three-stage evolution sequence, occurring during a period with large 

regional melt production and magmatic pressures, is proposed for these intrusions 

(Fig. 3.32). 

(1) Rotation of local least principal stress axes 3 from inclined or sub-horizontal to 

sub-vertical orientations probably resulted in initial lateral melt injections into 

the sub-horizontal plane in the lava pile of the Faroe Islands, presumably 

accommodated by elastic displacement of ambient host-rocks (Fig. 3.30; Fig. 

3.32a). It is suggested that different values of E on either side of the embryonic 

sills of the Faroe Islands, within host-rock assemblages that possessed 

significant degrees of isotropy at vertical scales being affected by the sill 

intrusions (tens/hundreds of metres), resulted in continuous asymmetrical small-

scale inflations/dilations (<3 m thick) behind the propagating margins (Fig. 

3.30b; Fig. 3.32a). Inferred rotations of local least principal stress axes 3 

towards gentler angles with the sub-horizontal plane, resulting from effects 

associated with the small-scale asymmetrical inflations, arguably generated  



 

102 
 

 

Figure 3.32. Inferred model of sill evolution in the Early Cenozoic Faroe Islands, shown in a few 

simplified drawings. a) Rotation of regional/local least principal stress axes from sub-horizontal to 

sub-vertical orientations during periods of igneous activity initiated emplacement of embryonic sills in 

the sub-horizontal plane. Subsequent small-scale asymmetric inflations (<~3 m thick) behind existing 

propagation fractures resulted in slightly inclined sill propagation. b) As propagating sills breach the 

crust atop one end of their propagating margins, local reorientations of least principal stress axes, 

perhaps in response to sudden pressure changes from wholesale crustal failure, resulted in asymmetric 

sill inflation and inward tilts of their respective overburdens. The intrusions of a second generation of 

inclined feeder dykes or sheets that fed the inclined sill margins could have been linked to this 
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inferred stage of development. c) 1. Sill intrusions initiated from different point sources a few 

kilometres apart at similar crustal levels (dotted open circles) are bound to coalesce if they experience 

radial magma propagations. 2. The small individual sills of the Faroe Islands (e.g. Kvívík Sill, orange) 

most probably experienced radial magma propagations from their main sources (dotted circles and 

dashed ellipse). 3. and 4. Radial magma propagation from the inferred main sources to the segments 

of the Streymoy and Eysturoy sills (orange bodies) would have resulted in merging of each segmental 

pair at some point regardless of directions of maximum magma propagation (dotted circles and dashed 

ellipses). d) Sill segments at development stages broadly similar to that shown in b) have merged to 

form a semi-symmetric saucer-shaped sill. e) Large-scale sill inflations, perhaps facilitated by 

abandonments of cohesion stresses c in host-rocks close to the site of sill merging. The Streymoy and 

Eysturoy sills supplied melts to sub-horizontal as well as sub-vertical protrusions that potentially fed 

other adjoining intrusions or surface magmatism. See text. 

 

continuous upward deflections of the young sill margins (Figs 3.13b; Fig. 3. 14a;  

Fig. 3.30b; Fig. 3.32a; Fig. 3.32b). 

(2) Potential rapid gas release from the opening up of previously closed hydraulic 

systems together with sudden abandonment of cohesive/necking forces within 

the host-rocks, in response to breaching of overburdens atop one end of 

propagating sills, are inferred to have resulted in relatively swift local 

reorientations/reductions of principal stress axes σ3 acting on the sill margins 

(Fig. 3.31; Fig. 3.32b). The presumed reorientations/reductions of σ3 at sill 

margins probably facilitated inflation preferably at these locations and associated 

asymmetrical uplifts with associated inward tilts of the respective overburdens 

(the Kvívík, Morskranes and Sundini sills). A second generation of inclined 

dykes that fed inclined sill margins locally were most probably intruded at this 

inferred stage of development (Fig. 3.31; Fig. 3.32b). 

(3) Sills at development stages comparable to those inferred for (2) may not be able 

to produce or sustain magmatic pressures Pm (pgzmelt) large enough to overcome 

the combined stress of their overburdens σv (pgzoverburden), the sub-horizontal 

stresses σh (Equation 5) and the cohesive stress σc of the host-rocks with a 

margin that is sufficiently large so as to ensure continued sill propagation and 

full-scale inflation at all levels. This could be due to pressure release from melt 

extrusion onto the Earth’s surface before the magma column could reach 

sufficiently large vertical extent in order to produce/maintain the required 

magmatic pressure within the plumbing system. Two sills that are initiated ~4.5 
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and ~3.0 km apart (distances between estimated magma sources to the sill 

segments of the Streymoy and Eysturoy sills respectively, Fig. 3.3a; Fig. 3.3b) at 

roughly similar crustal depths and propagate outwards and upwards in a radial 

fashion are bound to coalesce when the radiuses of both intrusions exceed 1.5 to 

2.0 km (Fig. 3.32c1). The elliptic outlines in map view of the smaller sills of the 

Faroe Islands (Fig. 3.3d; Fig. 3.3e; Fig. 3.3f: Fig. 3.32c2) point to radial melt 

propagation from their inferred magma sources. If a similar growth style was 

dominating during emplacement of the sill segments that built up the Streymoy 

and Eysturoy sills, these could have coalesced at some point regardless of the 

directions of maximum melt propagation (Fig. 3.32c3; Fig. 3.32c4). It is 

tentatively suggested that merging of the segments to produce the Streymoy and 

Eysturoy sills resulted in the cancelling out of the σc in their host-rocks around 

their zones of merging and it is further speculated that this inferred termination 

of σc could have facilitated the uniform large-scale inflations that distinguish 

these two composite sills from all the thinner individual sills. Merging of sill 

segments could have occurred prior to complete development of inclined sill 

margins at the sites of merging or at a later stage. The crosscutting of sill 

segments in the pronounced class C junction at the elevated NE margin of the 

Streymoy Sill (Fig. 3.11) could point to partially crystallised magmas in one of 

the segments during sill propagation and merging at this location or perhaps 

alternating inflation of each sill segment from magma pulses from different 

directions. 
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Chapter Four 

 

4. Petrography, major elements, trace elements and isotopes 

in basalts from the saucer-shaped sills of the Faroe Islands 

 

4.1. Prelude to chapter four 

The ascent of magmas through the Earth’s crust presents opportunities for possible 

assimilation of crustal materials to take place, but the chief potential of basaltic 

magmatism is that it directly samples the shallow mantle. Also, such magmatism 

may be able to sample even deeper levels in response to solid-state convection of 

deep mantle material toward (shallower) sites of basalt formation by means of partial 

melting (e.g. Hofmann, 1997). 

Characteristics/particularities of major and trace elements, including REE, of flood 

basalts can be used in order to gain information concerning their petrogenetic 

evolution following the initial melting events. The development of primary magmas 

may involve crystallisation processes, as well as potential assimilation of crustal 

material prior to the ultimate ascent/emplacement in the uppermost crust. Key 

components of such information are sometimes contained within rocks that once 

formed parts of the active plumbing systems of these provinces such as dykes and 

sills (e.g. Thompson et al., 2001). These intrusive rocks may represent the only 

remnants of the final stages of magmatism in the actual province, especially if the 

youngest onshore/offshore lava flows have been heavily eroded or are difficult to 

sample in other ways (Jerram et al., 2009). 

A number of hypotheses seeking to define possible common sources, e.g. the sub-

continental upper mantle versus more deep seated mantle plumes, have been 

proposed previously in order to explain the geochemical characteristics of the 

igneous products building up provinces of mainly basaltic compositions such as the 

NAIP (e.g. Meyer et al., 2007 and references therein). Three main basaltic rock types 

have been identified throughout the NAIP (Kerr, 1995) and each of these may 

indicate similarities in source-rock compositions and/or hint to relevant petrogenetic 

processes that were widespread in this province. These three basalt types can be 

categorised in terms of their chondrite-normalised REE patterns according to the 
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following characteristics: type 1 basalts possess relatively low REE concentrations 

with normalised trends that generally display gentle negative slopes with (La/Nd)N = 

~1 and (Sm/Yb)N  2; type 2 basalts are MORB-like and possess relatively low REE 

concentrations with normalised trends that usually display gentle positive slopes with 

(La/Nd)N  1 and (Sm/Yb)N  1; type 3 basalts possess relatively high REE 

concentrations with normalised trends that generally display moderate to steep 

negative slopes with (La/Nd)N =  1 and (Sm/Yb)N  2 (Kerr, 1995). Previous 

interpretations have suggested that types 1 and 2 basalts formed in response to partial 

melting of a slightly depleted mantle source at relatively shallow depths, whereas 

partial melting of a slightly enriched mantle source at greater depths produced type 3 

basalts (Kerr, 1995). This same author suggested that relatively high degrees of 

melting resulted in the formation of types 1 and 2 basalts whereas lower degrees of 

partial melting were required in order to produce the type 3 basalts that display 

higher trace element concentrations than the other two basalt types. Apart from being 

categorised according to their trace element concentrations and/or MgO contents, 

compositional variations between high-TiO2 and low-TiO2 basalts have been utilised 

previously in order to characterise and distinguish between various units within flood 

basalt provinces (e.g. Gibson et al., 1995; Peate and Hawkesworth, 1996; Waagstein, 

1988, Holm et al., 2001; Søager and Holm, 2011). Differences in TiO2 contents 

within basaltic rock suites worldwide have occasionally been interpreted to result 

from heterogeneous mantle sources (e.g. Xiao et al., 2004) where low-TiO2 basalts 

sometimes are inferred to have formed in response to contamination of mantle 

sources with fluids expelled from subducted crust/sediments (Walker et al., 1990; 

Ivanov et al., 2008) whereas high-TiO2 basalts sometimes are assumed to be the 

result of contamination of mantle sources with small-degree melts (< 10 %) of 

recycled oceanic crust (Prytulak and Elliot, 2007). High-TiO2 basalts from W 

Greenland are thought to have developed from low-TiO2 basaltic melts by fractional 

crystallisation of mainly plagioclase and clinopyroxene in periodically replenished, 

periodically tapped and continuously fractionated magma chambers (Larsen and 

Pedersen, 2009). These authors proposed that primary melts to relatively low-TiO2 

magmas of W Greenland formed by 16 to 20% melting of a moderately depleted 

mantle. Early Cenozoic basaltic rocks from E Greenland are thought to have formed 

by various degrees of partial melting where generation of primary melts to relatively 
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high-TiO2 basalts have been interpreted to result from ~4 to ~8% mantle melting 

(Tegner et al., 1998b; Momme et al., 2006) whereas 19 to 20% mantle melting have 

been inferred for generation of primary magmas to low-TiO2 basalts in parts of this 

region (Momme et al., 2006). Slight compositional differences in mantle sources to 

these two basalt groups have been suggested earlier (Momme et al., 2006). A broadly 

similar scenario has been envisaged previously for basaltic rocks of the Faroe 

Islands, where high-TiO2 primary magmas are interpreted to have formed by 2.5 to 

3.5% mantle melting compared to ~20% melting for primary magmas to low-TiO2 

rocks (Holm et al., 2001). Compositional differences of mantle sources to the high-

TiO2 versus low-TiO2 basalts of the Faroe Islands have been proposed in previous 

studies (Holm et al., 2001; Søager and Holm, 2011). The geochemical make-up of 

silicic basalts, cropping out within relatively restricted parts of the lava pile of the 

Faroe Islands point to the involvement of crustal materials during ascent of magmas 

that gave rise to these rocks (Hald and Waagstein, 1983, Holm et al., 2001). Other 

studies have also pointed to compositional variations of end-member mantle sources 

as reasons that may explain some of the differences in geochemical compositions of 

Early Cenozoic basalts encountered in other individual regions of the north Atlantic 

area such as E Greenland (Fram and Lesher, 1997; Bernstein et al., 2001; Peate and 

Stecher, 2003) and Iceland (Kitagawa et al., 2008). Earlier works have also proposed 

the involvements of crustal materials during evolution of Early Cenozoic basaltic 

melts from E Greenland (Fram and Lesher, 1997; Hanghøj et al., 2003), W 

Greenland (Larsen and Pedersen, 2009) and NW Britain (Font et al., 2008). Melting 

at successively shallower mantle depths has been invoked earlier in order to explain 

increased melt percentages during basalt formation in other contemporaneous parts 

of the NAIP such as the NW parts of the British Isles (Kerr, 1994). As previous 

studies have indicated a trans-Atlantic correlation between Early Cenozoic volcanic 

successions of the Faroe Islands and E Greenland with matching basaltic 

compositions and evolution patterns with time (Larsen et al., 1999b; Søager and 

Holm, 2009), similarities in their petrogenetic processes, as proposed for these two 

regions in earlier studies, are not unexpected. 

Potential uncertainties with respect to petrogenetic histories of basaltic rock suites, as 

interpreted from major/trace element compositions, may be clarified and constrained 

by careful interpretations of isotopic compositions of the actual basalts. In addition to 

the frequent use of trace element ratios to detect particular mantle or crustal 
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reservoirs (e.g. Rollinson, 1998), geological interpretations based on isotopic ratios 

of the elements Sr (
87

Sr/
86

Sr), Nd (
143

Nd/
144

Nd) and Pb (
206

Pb/
204

Pb, 
207

Pb/
204

Pb, 

208
Pb/

204
Pb) are commonly used for investigations of both felsic and basic rock suites 

(e.g. Faure, 1986, 2001). These isotopic ratios are useful tools if one attempts to 

identify/quantify potential contributions to actual rock samples from specific end-

member mantle reservoirs and/or for detection of potential crustal components in 

mantle-derived melts, i.e. isotopic differences/characteristics may help to 

discriminate between relevant events that have taken place in the source region 

during earlier igneous events or they may indicate the actions of specific syn-

magmatic processes. Also, details of crustal assimilation processes, as recorded in 

magma compositions, can themselves provide important information and be used to 

track the temporal evolution of magmatic plumbing systems during changes in 

tectonic environments and igneous activity within the actual flood basalt province 

(e.g. Peate et al., 2008). 

Distinct global isotopic mantle reservoirs commonly considered for geological 

interpretations include primitive upper mantle (PUM) or the bulk silicate Earth 

(BSE), which plot at zero Sr and Nd values in 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd 

diagrams, depleted MORB mantle reservoir (DMM), in addition to three enriched 

(HIMU, EMI and EMII) mantle reservoirs (Zindler and Hart, 1986; Hart, 1988; 

Hofmann, 1997). Here Sr and Nd notations refer to presumed uniform Sr and Nd 

isotopic reservoirs with present day 
87

Sr/
86

Sr and 
143

Nd/
144

Nd values of 0.7045 and 

0.512638 respectively. These presumed Sr and Nd reservoirs can then be age 

corrected back to desired ages (Ma) using decay constants relevant for the generation 

of radiogenic 
87

Sr and 
143

Nd respectively (e.g. Faure, 1986, 2001). Mantle-derived 

melts that have interacted extensively with continental materials during their ascent 

are expected to have had their isotopic compositions modified significantly, as most 

rocks of the continental crust are likely to have isotopic and other elemental 

compositions that are markedly different when compared to mantle-derived magmas 

(Peate et al., 2008). Here the general rule is that 
87

Sr/
86

Sr ratios increase and 

143
Nd/

144
Nd ratios decrease with increasing crustal contamination, although an 

anticipated decrease in 
143

Nd/
144

Nd ratios with increasing crustal contamination is 

expected to be more prevalent for older material originating in the lower crust 

compared to similar amounts of contamination with younger material originating in 
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the upper crust (Rollinson, 1998). Isotopic enrichment from crustal contamination 

can occur in response to bulk mixing or mixing with interstitial liquids (Foland et al., 

2000), and continued use of an existing magma conduit system has previously been 

interpreted to lead to a progressive decrease in the extent of assimilation, while a 

shift in the location of feeder systems to new conduits in the crust has been suggested 

to result in a sudden increase in the extent of assimilation (Peate et al., 2008). 

Numerous individual studies on basaltic rocks occurring within regions of the NAIP 

have hinted to the presence of several mantle sources possessing distinct isotopic 

compositions. Three isotopically distinct end-member mantle sources have been 

identified for the Neogene magmatism in Iceland, where geochemically/isotopically 

enriched basalts were produced during periods with high magma productivity 

compared to extrusion of magmas with relatively depleted isotopic signatures during 

periods of lower melt productivity (Kitagawa et al., 2008). The inferred 

asthenospheric mantle sources to Early Cenozoic basalts of W Greenland dominantly 

possessed MORB-like isotopic signatures with an additional less depleted isotopic 

component comparable to Iceland-type sources, while an additional incompatible-

element enriched mantle component is inferred to have supplied melts to other parts 

of the actual region (Larsen and Pedersen, 2009). Peate and Stecher (2003) suggested 

magma tapping from sources that possessed a broad isotopic range, comparable in 

isotopic compositions to recent Icelandic basalts, during formation of Cenozoic E 

Greenland basalts, while other authors more specifically inferred magma supplies 

from an isotopically depleted sub-continental lithospheric source in addition to an 

Iceland-type source (Hanghøj et al., 2003). Based on examples from the British 

Tertiary Igneous Province (BTIP) and SE Greenland, Ellam and Stuart (2000) argued 

in favour of a common primitive end-member isotopic mantle source, the North 

Atlantic end-member source (NAEM, 
207

Pb/
204

Pb ~15.4,
 208

Pb/
204

Pb ~37.4), the melts 

from which ultimately evolved by interaction with material originating in the 

lithosphere to the isotopic compositions of basalts found in both Iceland and the 

Early Cenozoic BTIP. The 
206

Pb/
204

Pb and 
207

Pb/
204

Pb ratios of NAEM are broadly 

similar to the depleted MORB mantle (DMM A) of Zindler and Hart (1986). 

Comparable results were obtained in the course of a contemporaneous isotope study 

on the basalts of the Shiant Isles Main Sill, Scotland (Foland et al., 2000). An earlier 

study has suggested that melt supplies from a Faroese main mantle plume component 

with relatively depleted isotopic signatures resulted in the generation of the bulk of 
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the Early Cenozoic high-TiO2 basalts of this region while a mixture of this main 

component and a radiogenic mantle plume component gave rise to other local high-

TiO2 magnesian basalts being LREE-enriched and displaying elevated 
206

Pb/
204

Pb 

ratios (Holm et al., 2001). An origin by partial melting of another more depleted 

isotopic source contained within the same mantle plume has been invoked previously 

in order to explain the moderate volumes of low-TiO2 basalts encountered in this 

area (Holm et al., 2001). A broadly similar scenario, involving partial melting at 

relatively great depths of a plume source being relatively enriched with respect to its 

isotopic compositions to produce high-TiO2 basalts and melting at shallower levels 

of an isotopically depleted (NAEM-like) source, which was contained within the 

same mantle plume, to generate the low-TiO2 basalts of the Faroe Islands has been 

envisaged in a recent study (Søager and Holm, 2011). However, still other authors 

have advocated in favour of melting of an isotopically depleted asthenospheric 

source to produce LREE depleted (low-TiO2) basalts of this region while associated 

LREE-enriched (high-TiO2) basalts have tentatively been interpreted to have formed 

by melting of a likewise isotopically depleted source within the sub-continental 

lithosphere (Gariépy et al., 1983). 

In accordance with some of the geochemical studies mentioned above, several 

isotopic studies on the main regions making up the NAIP (excluding Iceland) suggest 

variable degrees of isotopic contamination with crustal lithologies of various 

compositions. With respect to the Faroe Islands, the occurrences of substantial 

enrichments in isotopic signatures of silicic lavas have previously been explained in 

terms of contamination with Lewisian-type amphibolite facies gneisses (Gariépy et 

al., 1983; Holm et al., 2001). While Gariépy et al. (1983) interpreted the occurrences 

of moderate isotopic variations in non-silicic basalts of the Faroe Islands to have 

developed in response to mild crustal contamination, Holm et al. (2001) suggested 

that slight isotopic variations in high-TiO2 basalts from this region most likely 

reflected isotope compositions inherited from their mantle sources. 

The saucer-shaped sills that crop out within the Faroe Islands Basalt Group (FIBG), 

being mapped in detail in the course of this study (chapter 3), provide an ideal 

opportunity to investigate key geochemical variations of late stage magma types 

aiming at a better understanding of the nature of mantle sources and the extent of 

melting in a key area of the NAIP where no sub-basaltic sequences are exposed. In 

this thesis/chapter, new petrographic, geochemical and isotopic data for seven 
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saucer-shaped sills of basaltic compositions that crop out in the lava pile of the Faroe 

Islands (Fig. 3.2) are presented. Intrusive relationships suggest that they were the 

latest manifestation of igneous activity of any significant scale in that particular area 

(Rasmussen and Noe-Nygaard, 1970; Hald and Waagstein, 1991; Passey and Jolley, 

2009). The aim is to use major/trace elements including REE as well as relevant 

isotopes in order to link these intrusions to potential mantle sources and potential 

crustal contaminants in order to detect/quantify the nature of relevant rock-forming 

processes that contributed to formation of the magmas that ultimately gave rise to the 

actual sills. 

This chapter starts with a brief description of rock sampling including site maps 

(4.2). In the petrography section (4.3) each of the investigated sills are briefly 

discussed with the aid of representative photomicrographs. The geochemistry section 

(4.4) starts with an introduction of the geochemistry of lavas/dykes within the actual 

region as presented in earlier studies and then introduces compositions of major 

elements and trace elements including the REE of intrusions from this study, using 

tables in addition to variation diagrams where individual sills are 

compared/contrasted. The results of the isotope analyses as well as various 

calculations such as age-corrected isotope ratios are presented in table format (4.5). 

Ratio – ratio plots are presented for measured and age-corrected lead isotopes from 

this and previous studies and measured ratios are contrasted against isotopes from 

neighbouring basaltic regions (4.5.1.). Sr and Nd isotopes from this and earlier 

studies are briefly presented in ratio-ratio plots at different scales (4.5.2.). Pb isotope 

ratios are contrasted against Sr and Nd isotope ratios (4.5.3.). The discussion section 

(4.6) is divided into sub-sections dealing with: element mobility (4.6.1.), 

geochemical constraints on potential crustal contamination (4.6.2.), isotopic 

constraints on potential crustal contamination (4.6.3.), partial melting (4.6.4.), 

fractional crystallisation (4.6.5.), constraining depths of formation (4.6.6.), 

geochemical constraints on potential mantle sources (4.6.7.) and isotopic constraints 

on potential mantle sources (4.6.8.). Summary and concluding remarks (4.7) based 

on isotopes (4.7.1.) and geochemistry (4.7.2.). 

 

4.2. Rock sampling 

Following careful inspection of collected rock samples a total of 44 specimen 

representing seven sills and four feeder dykes, which supplied melts to two of the  
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Figure 4.1. Localities of rock samples accepted for use in this study are indicated by black circles 

labelled with sample designations. (S) = sill sample; (D) = dyke sample. 

 

sills, were selected for use in this study (Fig. 4.1). Due to weathering and intense 

fracturing in many parts of the investigated sills (e.g. sub-section 3.5.2.), a relatively 
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large proportion of collected rock samples have been discarded, particularly from 

those parts of the Eysturoy Sill that have experienced more intense chemical 

weathering relative to the other sills. 

The samples were crushed to fine gravel using standard techniques and subsequently 

ground to fine powder using agate ball mills at the Department of Earth Sciences at 

Durham University. 

Analyses of major elements and some selected trace elements (44 samples, Table 

4.2) were carried out at the Open University in Milton Keynes, UK. Analyses of 

trace elements including the REE (14 samples, Table 4.3) were done at Durham 

University. Overviews of analytical techniques employed during the analyses of 

major elements as well as trace elements are outlined in appendices 2 and 3 

respectively. Also, a detailed description of the techniques utilised in the preparation 

of samples for ICP–MS analyses at Durham University is given in Ottley et al. 

(2003) and Thompson et al. (2005). Isotopic analyses were performed on all sills 

from this study (8 samples, Table 4.4). Apart for the sample 08-JMS-14, these 

specimens are also included in the trace element analyses shown in Table 4.3. The 

analyses involved measurements of isotope ratios of the elements: Sr, Nd and Pb, i.e. 

87
Sr/

86
Sr, 

143
Nd/

144
Nd, 

206
Pb/

204
Pb, 

207
Pb/

204
Pb and 

208
Pb/

204
Pb ratios. The isotope 

analyses were carried out at Durham University. Analytical techniques and the 

methods employed in calculations of isotopic ratios (
87

Rb/
86

Sr and 
147

Sm/
/144

Nd) as 

well as age correction of measured ratios are outlined in appendix 4. 

 

4.3. Petrography 

Variations in textures and petrographic characteristics between some of the seven 

sills that are included in this study, as demonstrated under the microscope, may 

reflect some variations in their crystallisation sequences and cooling histories, but do 

not necessarily reflect significant geochemical variations of their mantle sources. 

 

4.3.1. The Streymoy and Kvívík sills 

Intergranular plagioclase constitute ~35 % of most samples from these sills and 

occur as 0.07 – 0.75 mm randomly oriented subhedral laths and 0.75 – 1 mm equant 

anhedral grains (Fig. 4.2a; Fig. 4.2d). Additional plagioclases constituting perhaps 15 

– 20 % of the total rock volume occur as scattered 1.5 to 3 mm subhedral and often 

chemically zoned phenocrysts, which commonly contain minute melt inclusions (Fig.  
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Figure 4.2. Photomicrographs representative of the Streymoy and Kvívík sills. a) Image under plane-

polarised light displaying general distribution of most common minerals. b) Image under crossed-

polarised light showing chemically zoned plagioclase phenocryst. c) Image under crossed-polarised 

light showing partially resorbed olivine phenocryst (outlined by yellow dotted line). d) Image under 

plane-polarised light showing distribution of tiny partially resorbed olivines. cpx = clinopyroxene; ol 

= olivine; ox = oxide; plag = plagioclase. 

 

4.2b). Intergranular anhedral equant 0.07 – 0.75 mm grains of clinopyroxene count 

for ~40 % of these rocks (Fig. 4.2a). Randomly strewn <0.25 mm anhedral equant 

olivine grains that are partly altered to phyllosilicates (partly resorbed = “cracked-

eggs” appearance) make up 2 – 6 % of the volumes of these rocks joined by <3 % of 

oxide grains of roughly similar sizes (Fig. 4.2d). A few larger 0.5 – 1 mm partially 

resorbed olivine grains constitute <0.5 % of these sills (Fig. 4.2c). 

 

4.3.2. The Eysturoy and Sundini sills 

Randomly oriented subhedral lath-shaped 0.07 – 1 mm subhedral plagioclase grains 

make up 35 – 40 % of the Eysturoy and Sundini sills and anhedral to subhedral 0.1 –  

0.75 mm equant grains of clinopyroxene constitute 45 – 50 % of samples from both 

of these sills (Fig. 4.3a; Fig. 4.3d). The clinopyroxene and plagioclase may occur as  
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Figure 4.3. Photomicrographs representative of the Eysturoy and Sundini sills. a) Image under plane-

polarised light displaying general distribution of three of the most common minerals. b) Image under 

crossed-polarised light showing subophitic texture. c) Broadly similar to b, but also showing 

pseudomorphed olivine grains. d) Image under plane-polarised light showing distribution of most 

common minerals including pseudomorphed olivines. Abbreviations are as in Fig. 4.2. 

 

intergranular grains or they display subophitic textures where pyroxene grains partly 

enclose smaller laths of plagioclase (Fig. 4.3b; Fig. 43c). Scattered <0.25 mm olivine 

grains constitute 4 – 6 % of these sills and, in contrast to olivines from the Streymoy 

and Kvívík sills, these appear to have been entirely pseudomorphed (Fig. 4.3c; Fig. 

4.3d). Anhedral to subhedral oxide grains measuring 0.05 – 0.5 mm count for 4 – 6 

% of samples from these sills (Fig. 4.3a; Fig. 4.3d). 

 

4.3.3. The Svínoy-Fugloy Sill 

Samples of the Svínoy-Fugloy Sill display ophitic to subophitic textures where laths 

of subhedral 0.05 – 0.75 mm plagioclase grains, amounting to 35 – 40 % of total rock 

volume, are poikilitically enclosed by larger 0.35 – 2 mm anhedral equant 

clinopyroxene grains that make up 45 – 50 % of these rocks (Fig. 4.4a; Fig. 4.4b). 

Partly resorbed (“cracked-eggs”) or entirely pseudomorphed anhedral 0.05 – 0.35  
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Figure 4.4. Photomicrographs representative of the Svínoy-Fugloy Sill. a) Image under plane-

polarised light showing ophitic to subophitic texture and general distribution of the most common 

minerals of this sill. b) Same as a, but under crossed-polarised light. c) Some partly resorbed olivines 

are outlined by yellow dotted lines. d) Same as c, but under plane-polarised light. Abbreviations are as 

in Fig. 4.2.  

 

mm olivine grains in addition to oxides of similar grain sizes constitute 5 – 10 % of 

the Svínoy-Fugloy Sill each (Fig. 4.4a; Fig. 4.4b; Fig. 4.4c; Fig. 4.4d). These minor 

mineral phases are commonly relatively concentrated at contacts between individual 

clinopyroxene phenocrysts. 

 

4.3.4. The Morskranes Sill 

The Morskranes Sill is broadly similar to the Svínoy-Fugloy Sill with respect to most 

parts of the petrography (Fig. 4.5a), but it has a slightly larger content of olivines and  

oxides. Parts of the Morskranes Sill contain 5 – 10 % of a mineral phase that has not 

been encountered in any of the other sills from this study. The geochemistry of this 

mineral phase has not been positively identified, as no relevant microprobe analyses 

are available. However, incompletely developed twinning (according to the albite 

and pericline laws) in some of these mineral grains may point to a (potassium- 
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Figure 4.5. Photomicrographs representative of the Morskranes Sill. a) Ophitic texture under crossed-

polarised light with clinopyroxene poikilitically enclosing smaller laths/needles of plagioclase. b) 

Image under plane-polarised light showing scattered mostly sub-spherical whitish grains of unknown 

geochemical compositions (feldspars/zeolites?) and olivines (small specimen outlined by yellow 

dotted circles) in ophitic sill material. c) Image under plane-polarised light showing clinopyroxene 

poikilitically enclosing laths of plagioclases that in turn are wrapped around a large sub-spherical 

grain (feldspar?). d) Image under crossed-polarised light showing the remnants of a spherical grain 

(enclosed by yellow dotted circle) almost entirely replaced by clinopyroxene, plagioclase and 

phyllosilicates. The centre-right of image shows alteration of olivine and presumed feldspar to brown 

phyllosilicates. e) Image under crossed-polarised light showing laths of plagioclase being poicilitically 

enclosed by clinopyroxene and a presumed low-temperature variety of potassium-bearing feldspar. f) 

Image under plane-polarised light displaying a scenario broadly similar to that of e, but with 

additional olivines (dotted outlines). fsp? = unknown mineral. Other abbreviations are as in Fig. 4.2. 
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bearing?) feldspathic composition. This mineral phase may occur as <0.7 mm sub-

spherical grains (Fig. 4.5b; Fig. 4.5c) or as <1 mm oikocrysts that partially enclose 

laths of plagioclase and the odd clinopyroxene (Fig. 4.5e; Fig. 4.5f). Their poikilitic 

nature suggests that some of these mineral grains were among the latest phases to 

solidify. The wrapping of plagioclase laths around some sub-spherical specimen of 

this mineral (Fig. 4.5c) and the apparent replacement of others by pyroxene, 

plagioclase and phyllosilicates (Fig. 4.5d) could suggest early crystallisation or 

perhaps even an exotic origin of some of the sub-spherical varieties of these 

minerals. An origin of these mineral phases by solidification from tiny pockets of 

immiscible liquids or from secondary processes such as vesicle infills remains an 

alternative explanation. 

 

4.3.5. The Langaregn Sill 

Subhedral <5 mm plagioclase phenocrysts with partially resorbed margins, set in a 

fine-grained matrix, make up <10 % of this sill (Fig. 4.6b; Fig. 4.6c). <0.5 % of 

partly resorbed olivine microphenocrysts (0.15 – 0.7) mm commonly occur within 

these phenocrysts (Fig. 4.6b; Fig. 4.6c). The matrix is made up of intergranular (0.02  
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Figure 4.6. (Previous page). Photomicrographs representative of the Langaregn Sill. a) Image under 

plane-polarised light showing general distribution of the most common minerals that make up the 

matrix of this sill (olivines are enclosed yellow dotted circles). b) Image under crossed-polarised light 

showing subhedral slightly resorbed plagioclase phenocrysts and sub-spherical brightly coloured 

olivine microphenocrysts set in a fine grained matrix of composition as in a. c) Image under crossed-

polarised light showing a closer view of a broadly similar scenario as in b, but with larger an 

differently shaped olivine microphenocrysts. d) Image under plane-polarised light showing a closer 

view of matrix minerals as in a (olivines enclosed by yellow dotted circles). Abbreviations are as in 

Fig. 4.2. 

 

– 0.35 mm) subhedral randomly oriented plagioclase laths making up 35 – 40 % of 

these rocks and anhedral equant clinopyroxenes (0.02 – 0.35 mm) constituting 45 – 

50 % of total rock volume (Fig. 4.6a; Fig. 4.6d). Scattered (<0.12 mm) grains of 

(“cracked-eggs”) olivine in the matrix count for <5 % and oxides measuring <0.2 

mm count for 3 – 6 % of total volume of the Langaregn Sill (Fig. 4.6a; Fig. 4.6d). 

 

4.3.6. Feeder dykes to the Streymoy Sill 

The feeders to the Streymoy Sill generally display similar proportions/volumes of 

plagioclase (micro) phenocrysts when compared to the Streymoy and Kvívík sills, 

i.e. around 15 – 20 %. These phenocrysts are set in basaltic glasses immediately at 

dyke – host rock contacts together with the odd clinopyroxene grains (Fig. 4.7a; Fig. 

4.7d), but at distances greater than 1 – 2 cm from the dyke contacts these glasses 

gradually begin to be replaced by a very fine grained matrix consisting mainly of 

plagioclase and clinopyroxene (Fig. 4.7b; Fig. 4.7c). It is conspicuous that 

plagioclase phenocrysts generally are euhedral to subhedral and completely fresh 

when set in a glassy substance close to dyke contacts (Fig. 4.7a; Fig. 4.7d), but are 

subhedral and partly resorbed when set in a matrix of both glass and very fine 

grained plagioclases and clinopyroxenes only centimetres from the dyke contacts 

(Fig. 4.7b: Fig. 4.7c). On a few occasions plagioclase (micro) phenocrysts set in 

glassy basalt of the investigated feeder dykes have acted as nucleus to crystallisation 

of fine grained clinopyroxenes (Fig. 4.7d). The overall impression obtained from the 

petrography of the investigated feeder dykes is that plagioclase was a dominating 

early crystallisation phase and that these crystals subsequently reacted with 

surrounding melts to produce other fine grained plagioclases and clinopyroxenes. 

Reaction of Ca-rich plagioclases with surrounding basaltic melts to generate more  



 

120 
 

 

Figure 4.7. Photomicrographs under crossed-polarised light that are representative of feeder dykes to 

the Streymoy Sill. a) Euhedral completely fresh grains of plagioclase and the odd clinopyroxene set in 

basaltic glass immediately at dyke contact (yellow dotted line). b) Slightly resorbed plagioclase grains 

set in a fine grained matrix of glass, plagioclase and clinopyroxene  2 cm from the dyke contact. c) 

Broadly similar to b, but with the larger plagioclase grains being slightly more altered/resorbed. d) 

Similar scenario as in a, but also showing an individual plagioclase grain acting as a nucleus for the 

growth of tiny clinopyroxene crystals (enclosed by yellow dotted circle). Abbreviations  as in Fig. 4.2. 

 

Table 4.1. Brief summary of the petrography that characterise the sills of the Faroe Islands. 

Mineral abbreviations are as in Fig. 4.2. 

 

 

Sills, Faroe Islands Ol Cpx Plag Ox Texture 

Streymoy Sill < 6 ~ 40 50 – 55 <3 Feldspar-phyric 

Kvívík Sill < 6 ~ 40 50 – 55 < 3 Feldspar-phyric 

Langaregn Sill < 5 ~ 45 45 – 50 < 6 Feldspar- and olivine-phyric 

Eysturoy Sill < 6 ~ 45 40 – 45 < 6 Intergranular + Cpx oikocrysts 

Sundini Sill < 6 ~ 45 40 – 45 < 6 Intergranular + Cpx oikocrysts 

Svínoy-Fugloy Sill < 10 ~ 45 35 – 40 < 10 Ophitic 

Morskranes Sill < 10 ~ 45 35 – 40 < 10 Ophitic 
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Na-rich plagioclases in addition to clinopyroxenes upon cooling would be in 

accordance Bowen’s reaction series. However, as no microprobe analyses are 

available on minerals from any samples used in this study, it has not been possible to 

document potential compositional differences between e.g. plagioclase phenocrysts 

versus associated fine grained specimens of this mineral. Earlier studies on basalts of 

the Faroe Islands have suggested olivine compositions of Fo86-88 in low-TiO2 basalts 

and Fo72-73 in high-TiO2 basalts whereas An64-70 has been indicated for plagioclases 

from both these rock types (Holm et al., 2001). 

A brief summary of the petrography that characterise the sills of the Faroe Islands is 

given in Table 4.1. 

 

4.4. Geochemistry 

4.4.1. Dykes and lavas of the Faroe Islands 

Earlier studies on the geochemical composition of the Faroe Islands have shown that 

the basalts building up this lava pile and associated dyke systems are all of tholeiitic 

composition with MgO contents ranging from ~4.5 to ~23.0 wt% and TiO2 contents 

ranging from ~0.6 to ~4.0 wt% (Waagstein, 1988; Holm et al., 2001; Søager and 

Holm, 2009, 2011). However, the bulk of analysed samples from the Faroe Islands 

display MgO 7 to 9 wt% (e.g. Hald and Waagstein, 1984; Holm et al., 2001; Søager 

and Holm, 2011). A few lava flows in the uppermost parts of the Malinstindur 

Formation (Stratigraphy explained in sub-section 2.3; Fig. 2.3; Fig. 3.2) display 

anomalously high SiO2 contents of ~54.0 wt% (Hald and Waagstein, 1983). Both 

MgO and TiO2 contents commonly vary between individual lava flows within basalts 

of this region irrespective of stratigraphic levels (e.g. Hald and Waagstein, 1984; 

Søager and Holm, 2009, 2011). The observed differences of these two major 

elements in addition to common occurrences of up-section variations of Y and Zr 

concentrations in basalts of the Beinisvørð Formation (Stratigraphy explained in sub-

section 2.3; Fig. 2.3; Fig. 3.2) led Hald and Waagstein (1984) to suggest that magmas 

were supplied from at least two independent volcanic systems during extrusion of the 

lava flows building up this formation. Basalts from this region have commonly been 

grouped according to their REE compositions or their titanium contents, i.e. high-

TiO2 versus low-TiO2 rocks, during previous studies (Gariépy et al., 1983; 

Waagstein, 1988; Hald and Waagstein, 1991; Holm et al., 2001; Søager and Holm, 

2009, 2011). Relatively high-TiO2 lavas make up most of the volume in the 
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lowermost ~5.5 km of the lava pile whereas low-TiO2 lavas are becoming 

increasingly common in the remaining upper parts (e.g. Hald and Waagstein, 1984; 

Passey and Jolley, 2009; Søager and Holm, 2011), but the overall geochemical 

compositions of dykes/lavas of the Faroe Islands suggest that both these titanium 

groups were emplaced throughout the final stages of magmatism within this region 

as well (Hald and Waagstein, 1991). Increased TiO2 contents of dykes from this area 

are generally linked to a clockwise rotation of their REE trends towards steeper 

negative slopes. Low-TiO2 dykes (0.75 – 1.75 wt% TiO2) from this area display flat 

or MORB-like depleted trends of (La/Sm)N = 0.4 – 1.2 and (Sm/Yb)N = 0.5 – 1.15; 

intermediate-TiO2 dykes (1.45 – 2.45 wt% TiO2) display (La/Sm)N = 1.0 – 1.6 and 

(Sm/Yb)N = 1.35 – 2.35 whereas high-TiO2 dykes (2.6 – 3.8 wt% TiO2) display 

(La/Sm)N = 1.25 – 1.75 and (Sm/Yb)N = 1.95 – 2.65 (Holm et al., 2001). Of the 

basalts occurring above sea level, lava flows of the Beinisvørð and Malinstindur 

formations are LREE enriched ((La/Yb)N = 1.4 – 3.3) with a relatively wide range in 

overall REE concentrations, whereas many parts of the Enni Formation display 

depleted MORB-like LREE trends ((La/Yb)N = 0.45 – 0.62) while other parts display 

REE trends that are comparable to those of the Beinisvørð and Malinstindur 

formations  (Gariépy et al., 1983). 

An earlier comprehensive study has suggested that high-TiO2 basalts of this region 

formed by 2.5 to 3.5% mantle melting compared to ~20% melting to produce local 

low-TiO2 basalts (Holm et al., 2001). However, while Holm et al. (2001) in addition 

to Søager and Holm (2011) proposed depleted and more enriched sources to low-

TiO2 and high-TiO2 basalts respectively, both sources originating within a deep-

seated mantle plume (the Iceland Plume), Gariépy et al. (1983) tentatively suggested 

the sub-continental lithospheric mantle (SCLM) as the source of LREE enriched 

basalts of the Faroe Islands and hence also the source of the bulk of the basalt 

volumes encountered in the actual region. Gariépy et al. (1983) further suggested that 

LREE enriched and LREE depleted basalts formed in response to melting of two 

distinct, but depleted, mantle sources. While fractionation of mainly olivine is the 

mechanism preferably inferred to explain the compositional gap between primary 

magnesian basic magmas and more evolved basaltic melts (e.g. Yaxley, 2000), the 

observed variations within the low-TiO2 dykes of the Faroe Islands have previously 

been explained by low-pressure fractional crystallisation of olivine  plagioclase  
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clinopyroxene (Hald and Waagstein, 1991) whereas the observed variations amongst 

high-TiO2 lavas of the Beinisvørð Formation have been explained previously in 

terms of high-pressure fractional crystallisation of plagioclase + clinopyroxene + 

garnet (Bernstein, 1994). 

This first detailed study on geochemistry of seven sills occurring in the upper parts of 

the Malinstindur Formation, the Sneis Formation and the lower parts of the Enni 

Formation (Fig. 4.1) shows that these intrusions can be categorised into three groups 

with well-defined major and trace element characteristics (Table 4.2; Table 4.3).  

 

4.4.2. Major elements 

Altogether the sills of the Faroe Islands display SiO2 contents ranging from 47.5 to 

50.5% and total Na2O + K2O contents ranging from 1.9 to 2.9% i.e. in a silica versus 

total alkalis diagram (Rickwood 1989; Rollinson 1998) they can be classified as 

subalkaline or tholeiite series basalts (Table 4.2; Fig. 4.8a). In a ternary Fetot + Ti – 

Al – Mg classification diagram (Rickwood 1989; Rollinson 1998), where cation 

percentages have been recalculated to 100%, the sill data straddle the margins of 

fields representing three main basalt types (Fig. 4.8b). More specifically the  

 

 

Figure 4.8. a) The investigated sills all plot in the subalkaline/tholeiite field in a SiO2 versus total 

Na2O + K2O diagram. The line defining the alkaline and the subalkaline/tholeiite fields is from 

MacDonald (1968). b) The sills plot in three fields in a Fetot – Al – Mg cation diagram of Rickwood 

(1989) and Rollinson (1998). See text. 
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       Table 4.2. Whole rock XRF data on major and trace elements from the sills of the Faroe Islands analysed on glass discs and pressed powder pellets respectively. 

                                 _                                                                                                              Streymoy Sill_____________________________________________________________________ 

Sample 09-JSS-02 07-JSS-21 07-JSS-23 08-JSS-24 07-JSS-26 07-JSS-28 07-JSS-29 08-JSS-29 07-JSS-38 07-JSS-39 07-JSS-40 07-JSS-42 07-JSS-43 07-JSS-44 07-JSS-45 

Wt. % Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill Sill 

SiO2 49.05 49.58 49.55 50.00 49.64 49.19 49.23 49.55 47.80 49.70 49.42 49.37 49.67 50.29 50.44 

TiO2 0.76 0.76 0.75 0.80 0.79 0.76 0.78 0.78 1.13 0.78 0.73 0.76 0.76 0.77 0.82 

Al2O3 17.04 16.90 17.75 16.90 16.61 17.00 17.15 16.51 14.76 16.68 17.55 16.71 17.41 17.45 17.03 

Fe2O3 9.91 10.13 9.68 10.25 10.35 9.99 10.06 10.34 12.05 10.27 9.65 10.27 9.93 10.01 10.34 

MnO 0.16 0.16 0.16 0.16 0.17 0.16 0.16 0.17 0.19 0.17 0.16 0.16 0.16 0.16 0.17 

MgO 6.74 6.92 6.56 7.03 6.93 6.73 6.76 6.92 8.46 6.94 6.74 6.86 6.83 6.83 6.92 

CaO 12.98 13.07 13.40 13.18 13.01 13.08 13.07 13.11 12.96 13.09 13.31 13.22 13.40 13.25 13.13 

Na2O 1.88 1.96 1.87 1.95 1.96 1.92 1.93 1.92 1.89 1.93 1.91 1.91 1.91 1.93 1.95 

K2O 0.20 0.21 0.21 0.21 0.22 0.21 0.22 0.21 0.06 0.19 0.20 0.19 0.20 0.20 0.22 

P2O5 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08 0.07 0.07 0.08 0.08 0.08 
a
LOI 0.14 0.33 0.45 0.11 0.19 0.28 0.27 0.19 0.43 0.11 0.18 0.23 0.32 0.26 0.46 

                

Total 98.92 100.11 100.46 100.67 99.95 99.40 99.71 99.77 99.81 99.95 99.91 99.73 100.67 101.24 101.58 

ppm                

Sr            197            199            205           195            199            196            196            190            113            197            203            180            198             193             189 

Y              16              18             16             18               18               17              18              18              27             18              16              18              17               17               18 

Zr              50              50             49             49               52               49              51              51              58             52              46              46              47               48               50 

Ba              64              66             63             67               75               66             66              64              25             69              65              54              63               57               59 

Sc              36              37             35             43               39               34             40              38              46             39              36              37              36               38               37 

V            242            228           229           251             247            228           250           252            298           254            228            248            218             247             244 

Cr            181            176           166           200             184            170           182           179            359           176            183            174            175             181             178 

Ni              80              78             73             86               81              78             76             77            132             79              74              79              85               86               81 

Cu           118            110           114           114            122            113            113           106            137           118            107            127           114             114             122 

Zn             56              56              53              60              60              54              58              58              74              60              55              60              52               59               59 

Y/TiO2 21.67 24.03 21.73 22.41 22.81 22.65 23.31 23.74 23.77 22.59 22.25 23.31 22.72 21.39 21.46 
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    Table 4.2. (continued) 

                 _                                      Streymoy Sill_____________________________                 _            Kvívík Sill________                 _Langaregn Sill_        _     __Sundini Sill__ _
b
Ey. S.__ 

Sample 07-JSS-52 07-JSS-55 07-JSS-57 07-JSS-58 07-JSS-09 09-JSS-09 09-JSS-10 08-JKS-05 08-JKS-18 07-JSS-49 07-JSS-50 07-JSS-51 08-JES-01 09-JH-01 08-JES-03 

Wt. % Sill Sill Sill Sill F.Dyke F.Dyke F.Dyke Sill Sill Sill Sill Sill Sill Sill Sill 

SiO2 50.29 50.27 49.56 49.67 49.39 50.00 49.98 49.15 49.04 49.51 48.86 48.84 49.44 49.43 50.28 

TiO2 0.82 0.75 0.80 0.71 0.79 0.81 0.79 0.79 0.76 0.76 2.58 2.51 2.12 2.19 2.07 

Al2O3 16.95 17.72 16.90 17.82 16.50 17.02 17.11 16.74 16.85 17.16 13.80 13.81 13.43 13.40 13.54 

Fe2O3 10.42 9.68 10.37 9.53 10.57 10.41 10.36 10.47 10.20 10.11 14.97 14.79 15.16 14.92 14.60 

MnO 0.17 0.16 0.17 0.15 0.17 0.17 0.17 0.17 0.17 0.17 0.21 0.22 0.21 0.22 0.21 

MgO 6.86 7.21 6.70 6.79 6.63 6.75 6.65 6.60 6.68 6.81 6.47 6.35 6.32 6.16 6.47 

CaO 13.22 13.35 12.86 13.50 13.31 13.38 13.27 13.07 13.46 13.42 10.80 10.76 11.01 10.85 11.15 

Na2O 2.00 1.96 2.00 1.91 1.91 1.88 1.86 1.91 1.82 1.89 2.36 2.36 2.34 2.38 2.36 

K2O 0.20 0.22 0.23 0.20 0.14 0.09 0.18 0.20 0.10 0.18 0.20 0.25 0.31 0.30 0.33 

P2O5 0.09 0.08 0.09 0.08 0.07 0.08 0.08 0.08 0.07 0.07 0.24 0.24 0.21 0.23 0.21 
a
LOI 0.14 0.39 0.17 0.20 0.36 0.28 0.17 0.27 0.50 0.24 0.01 -0.23 -0.12 -0.29 0.07 

                

Total 101.17 101.78 99.86 100.57 99.84 100.88 100.62 99.46 99.64 100.31 100.51 99.90 100.45 99.79 101.29 

ppm                

Sr            198            195            202           200            176            181            181             185             180            178            255            253            170            176             169 

Y               19              17               19             16              19             18              18               18               18               18              34              34               38               38               37 

Zr               53              47               52             46              48             51              50               50               46               47           166            164             139             145             132 

Ba               72              65               74             64              55             34              55               55               43               60              73              66               89               91               90 

Sc               38              34               36             33              43             39              37               39               39               37              41              39               48               41               47 

V            244            217             236           214            252           250           254             260             252             238            378            392             419             433             422 

Cr            168            189             159           178            171           162           166             154             170             162            148            140               59               52               65 

Ni              74              81               75             74              80              83             80               79               79               77              94               94               68               63               64 

Cu            115            106            117              99            131            133           128             129             127             121            192            216             253            264             228 

Zn              59              53              57              52              65              64              61               60               62               56            104            106               97            100               94 

Y/TiO2 22.57 22.82 23.57 23.02 23.82 22.61 22.19 23.15 23.94 24.05 13.00 13.53 17.69 17.20 17.71 
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 Table 4.2. (continued) 

                _                                                          Eysturoy Sill________     _        __________________                __ __Morskranes Sill_    ____ _            __ __Svínoy-Fugloy Sill_  ___ 

Sample 08-JES-04 08-JES-07 08-JES-08 08-JES-10 08-JES-11 08-JES-19 08-JES-20 09-JES-08 08-JMS-14 08-JMS-16 08-JMS-17 08-JFS-21 08-JSVS-22 08-JSVS-23 

Wt. % Sill Sill Sill Sill Sill Sill Sill F.Dyke Sill Sill Sill Sill Sill Sill 

SiO2 49.67 49.27 49.69 49.23 49.59 49.33 49.28 49.13 48.73 48.87 47.65 48.37 48.49 48.58 

TiO2 2.11 1.97 2.09 2.06 2.01 2.13 2.06 2.16 1.20 1.20 1.21 2.09 2.10 2.10 

Al2O3 13.47 13.26 13.22 13.41 13.39 13.31 13.34 13.54 15.19 14.48 13.83 13.89 13.54 13.86 

Fe2O3 14.99 14.62 14.94 13.48 14.94 14.69 15.13 14.89 14.85 12.33 12.66 12.83 14.37 14.22 

MnO 0.22 0.21 0.22 0.22 0.22 0.22 0.22 0.22 0.21 0.20 0.21 0.21 0.21 0.20 

MgO 6.25 6.23 6.18 6.26 6.55 6.22 6.46 6.26 7.06 8.09 8.22 7.00 7.07 6.95 

CaO 10.91 10.87 10.83 10.75 11.19 11.07 11.16 11.10 13.26 12.86 11.86 11.74 11.66 11.77 

Na2O 2.45 2.37 2.39 2.32 2.33 2.34 2.32 2.32 1.95 1.86 1.68 2.26 2.18 2.26 

K2O 0.34 0.36 0.32 0.57 0.30 0.26 0.31 0.23 0.04 0.03 0.79 0.17 0.15 0.18 

P2O5 0.22 0.22 0.22 0.21 0.20 0.22 0.21 0.22 0.10 0.10 0.10 0.19 0.19 0.19 
a
LOI 0.06 0.07 -0.10 0.07 0.09 -0.09 -0.15 -0.17 0.64 0.61 2.01 -0.22 0.00 -0.22 

               

Total 100.67 99.44 100.01 100.65 100.04 100.56 100.15 100.10 99.85 100.70 100.95 100.39 100.08 99.80 

ppm               

Sr 174 167 170 168 171 174 170 175 88 86 94 215 213 214 

Y 37 37 38 36 35 36 36 37 29 27 29 29 28 29 

Zr 138 139 141 135 125 141 134 142 63 61 62 124 117 126 

Ba 88 88 96 101 95 84 90 79 19 18 25 56 64 63 

Sc 43 44 43 44 44 45 45 45 49 44 45 39 39 38 

V 426 419 426 427 413 432 418 425 350 326 349 352 359 371 

Cr 59 63 60 66 66 62 72 58 361 344 352 215 237 228 

Ni 58 64 61 61 60 64 63 66 119 109 112 100 118 101 

Cu 236 243 236 221 208 257 219 250 173 157 132 194 203 210 

Zn 93 98 101 95 91 101 95 95 83 77 77 89 92 93 

Y/TiO2 17.46 18.89 18.04 17.61 17.28 17.08 17.25 17.11 23.70 22.73 23.67 14.00 13.28 13.93 

Major elements are indicated in weight percent and trace elements are indicated in parts per million. All iron given as Fe2O3. Sample 07-JSS-38 (in bold Italic) represents 

weathered basalt. The abbreviation F. Dyke indicate feeder dyke. aLOI indicate loss on ignition. bEy.S. indicates the Eysturoy Sill. Sample 07-JSS-38 in bold italic represents 

rocks that show clear signs of weathering. Control analyses of major elements using the standards WS-E and G94 and using the standards BHVO-1, QLO-1, DNC-1 and W-2 

for trace elements during XRF analyses are shown in tables labelled Appendix 2.1. and Appendix 2.2. respectively in appendix 2. Error bars representing obtained values of 

St. Dev. for the actual standards would be smaller than the symbols used to plot major/trace element compositions in relevant diagrams. 
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Figure 4.9.  Bivariate plots of MgO versus the other major element oxides from Table 4.2. Vectors 

indicate calculated crystallisation trends (wt%). Ol = olivine (2 wt%); Opx = orthopyroxene (2 wt%); 

Cpx = clinopyroxene (10 wt%); Plag = plagioclase (5 wt%); Grt = garnet (3 wt%). Major element 

compositions used in the vector mass-balance calculations are from the compilation of Deer et al. 

(1992), where Ol = Table 1, sample 1; Grt = table 6, sample 1; Opx = table 18, sample 1; Cpx = table 

18, sample 8; Plag = table 38, sample 6. The starting (parent) composition of the calculated vectors 

does not represent any specific sample, but resembles the average of the Morskranes Sill. See text. 
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Figure 4.10. The compositional spectrum of the investigated sills (enclosed by red outlines) is 

contrasted against data representative of lava flows and dykes of the Faroe Islands (black crosses) in 

bivariate plots of MgO versus other major element oxides. Data on lavas and dykes are from: Hald 

and Waagstein (1984, 1991); Holm et al. (2001); Søager and Holm (2009, 2011). In the MgO versus 

FeOtot diagram, total iron for the sills (Given as Fe2O3, Table 4.2) is contrasted against total iron 

(Expressed as raw wt% = FeO + Fe2O3) from the literature. See text. 

 

Eysturoy, Langaregn, Sundini and Svínoy-Fugloy sills plot in the high-Fe tholeiite 

basalt field; the Morskranes Sill plots in the high-Mg tholeiite basalt field while the 
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Kvívík and Streymoy sills plot in the calc-alkaline basalt field (Fig. 4.8b). The total 

range in MgO for all the sills combined is 6.15 – 8.25, but overlaps in MgO 

concentrations for individual sills are of common occurrences (Table 4.2; Fig. 4.9).  

Bivariate plots of MgO versus the other major oxides from Table 4.2 show that apart 

from the SiO2 and K2O plots, which display considerable spread and overlaps 

between individual intrusions, the sills in question can be grouped into three main 

categories (Fig. 4.9). The Kvívík and Streymoy sills are relatively enriched in Al2O3 

and CaO and the Eysturoy, Langaregn, Sundini and the Svínoy-Fugloy sills are 

relatively enriched in Na2O, TiO2 and Fe2O3 whereas samples representing the 

Morskranes Sill generally plot in between these two groups (Fig. 4.9). 

Most of the geochemical range displayed by the investigated intrusions falls within 

the compositional range of lavas/dykes of the Faroe Islands as determined during 

previous studies, but some sills (especially the Streymoy and Kvívík sills) also 

display higher concentrations of SiO2 and Al2O3 and lower concentrations of TiO2 

and Fe2O3 when compared to most of the lavas/dykes that possess MgO 

compositions comparable to the sills (Fig. 4.10). 

 

4.4.3. Trace elements 

The concentrations of trace elements such as Sr, Ba, Zr and Y from individual sills of 

this study (Table 4.3.) define groups that being slightly different from those of Fig. 

4.9 (particularly the Svínoy-Fugloy Sill) when plotted against MgO (Fig. 4.11a, b, c, 

d). These trace elements define tight clusters for individual sills in Sr versus Ba and 

Y versus Zr plots (Fig. 4.11e, f). The concentrations of these 4 trace elements in each 

of the pairs of Streymoy/Kvívík sills and the Eysturoy/Sundini sills respectively plot 

in identical clusters on all bivariate diagrams shown in Fig. 4.11. 

Trace-element data from Table 4.3 normalised to primordial mantle values and 

plotted in order of increasing (MORB source) compatibility from left to right in a 

spider diagram (Fig. 4.12a) define three main trends being in accordance with the 

three basalt groups shown in the classification diagram in Fig. 4.8b and the High, 

intermediate and low-TiO2 groups of Fig. 4.9. Apart from strong enrichments in Rb 

and K, the high-Mg (intermediate-TiO2) tholeiite Morskranes Sill displays a gradual 

and smooth depletion in trace elements from right to left in Fig.4.12a. Variations in 

Ba, Rb, Th and K within individual intrusions are particularly evident in the Eysturoy 

Sill (Fig. 4.12b). Apart from slight negative P anomalies, both of the two main sill  
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  Table 4.3. Whole rock ICP-MS data on trace elements from the sills of the Faroe Islands. 

 _                                   
a
Str. S.                          _   

b
Kv. S. _  

c
Lr. S. _  

d
Su. S.  _ _                                     

e
Ey. S._________________   _

f
Mn. S.__    ____

g
Sv.-Fu. S.______ 

Ppm 07-JSS-26 07-JSS-40 07-JSS-52 07-JSS-09 07-JSS-49 07-JSS-50 08-JES-01 08-JES-08 08-JES-10 08-JES-11 08-JES-19 08-JMS-17 08-JFS-21 08-JSVS-22 

Rb                   3.81                   3.45                 1.98                   1.42                   3.00                  3.40                      6.71                   7.03                 10.34 7.14 4.83                   24.04                      3.50                      3.19 

Sr         208         215       204         186         185        260            176          176          174 174 180                 97.9             220            217 

Y              18.8              17.1            18.7              19.4              18.2             34.9                 38.9               39.8               38.9                36.6                 39.1                 29.9                  31.2                 29.1 

Zr              50.8              46.3            50.9              47.4              45.2        173           144          147          142           135           147                 61.7            132            123 

Nb                  2.87                  2.61                 2.81                  2.65                  2.47                13.98                  11.89                 11.81                 11.57                  10.85                   11.73                     1.54                   11.05                   10.47 

Ba              59.3              53.8             62.8              47.7              44.9              64.9                77.4               84.4               87.0                76.4                 74.0                 15.8                 47.1                 49.4 

La                  4.24                  3.62                  4.24                  3.50                  3.28                11.37                  10.37                 10.87                 10.48                    9.38                   10.61                     2.65                     8.76                     8.47 
Ce                10.28                  8.74                10.20                  8.55                  8.04              29.7                25.7               26.8               26.2               23.2                 26.1                     6.54                 22.4                 21.6 

Pr                  1.60                  1.36                  1.57                  1.34                  1.28                  4.80                    3.99                   4.13                   4.01                   3.60                     4.05                     1.11                     3.59                     3.43 

Nd                  7.40                  6.39                  7.39                  6.48                  6.09                22.76                 18.80                 19.47                 18.83                 17.34                  19.03                     6.67                  17.22                   16.53 

Sm                  2.04                  1.78                  2.03                  1.86                  1.79                  6.00                   4.98                   5.22                   5.03                   4.63                    5.07                     2.57                     4.61                     4.50 

Eu 0.757 0.663 0.744 0.719 0.674 1.973 1.642 1.702 1.667 1.545 1.668 1.004 1.532 1.507 

Gd                  2.57                  2.25                  2.65                  2.57                  2.41                  7.03                   6.14                   6.38                    6.17                   5.63                   6.17                     4.39                     5.45                     5.30 

Tb 0.457 0.403 0.484 0.464 0.440                  1.10                    1.02                    1.07                    1.03 0.945 1.055 0.787 0.900 0.876 

Dy                  2.84                  2.46                  2.95                  2.93                  2.77                  6.11                   6.15                    6.31                    6.24                   5.70                   6.16                     4.83                     5.15                     4.88 

Ho 0.634 0.540 0.647 0.654 0.604                  1.20                   1.28                    1.33                    1.30                   1.18                    1.30                     1.06                     1.04 0.988 

Er                  1.79                  1.54                  1.86                  1.82                  1.80                  3.08                   3.53                    3.68                   3.57                   3.24                    3.51                     2.95                     2.74                     2.64 

Yb                  1.79                  1.56                  1.87                  1.92                  1.75                  2.70                   3.37                   3.45                   3.39                   3.13                    3.39                     2.90                     2.49                     2.36 
Lu 0.294 0.254 0.307 0.315 0.294 0.422 0.557 0.554 0.547 0.499 0.550 0.475 0.395 0.380 

Hf                  1.34                  1.17                  1.40                  1.25                  1.21                  4.37                   3.56                   3.67                   3.53                   3.30                    3.63                     1.81                     3.31                     3.07 

Ta 0.177 0.150 0.180 0.160 0.158 0.869 0.696 0.707 0.699 0.625 0.697 0.105 0.667 0.636 

Pb 0.770 0.730 0.844 0.731 0.681                  1.09                   1.20                   1.23                   1.23                   1.26                   1.22 0.336 0.845 0.900 

Th 0.525 0.439 0.526 0.421 0.374 0.854 0.961 0.993 0.949 0.854 0.944 0.171 0.692 0.661 

U 0.140 0.127 0.138 0.112 0.111 0.262 0.287 0.287 0.285 0.252 0.284 0.050 0.216 0.208 
h(Ce/Sm)N                  1.19                  1.15                  1.18                  1.08                  1.05                  1.16                   1.21                   1.20                   1.22                   1.17                    1.21                     0.60                     1.14                     1.13 
h(Sm/Yb)N                  1.23                  1.24                  1.18                  1.05                  1.11                  2.41                   1.60                   1.64                   1.61                   1.60                    1.62                     0.96                     2.00                     2.06 

Nb/Ta               16.21                17.37                15.63                16.53                15.61                16.09                 17.09                 16.70                 16.55                 17.36                  16.84                  14.70                   16.57                   16.47 

Trace element concentrations are indicated in parts per million. aStr.S. = Streymoy Sill; bKv.S. = Kvívík Sill; cLr.S. = Langaregn Sill; dSu.S. = Sundini Sill; eEy.S. = Eysturoy 

Sill; fMn.S. = Morskranes Sill; gSv.-Fu.S. = Svínoy-Fugloy Sill. hNormalising chondrite values from Nakamura (1974). Control analyses of trace elements using the standards 

NBS688, BHVO-1, W-2 and AGV1 during the ICP-MS analyses are shown in table labelled Appendix 3.1. in appendix 3. Error bars representing the obtained values of St. 

Dev. for the actual standards would be smaller than the symbols used to plot trace element compositions in relevant diagrams.  
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Figure 4.11. Bivariate plots involving Sr, Ba, Zr and Y from sills of the Faroe Islands. The plotted 

clusters are broadly similar to the inferred groups from Fig. 4.9, i.e. low, intermediate and high-TiO2 

groups. Percentages in calculated fractionation vectors (see equation 9 below) are as in Fig. 4.9 and 

start (parent) composition does not represent any specific sample, but is chosen at random. See text. 

 

groups display separate well-defined relatively flat sub-parallel trends in most of 

their trace elements, but the high-TiO2 sills display negative Sr anomalies and the 

low-TiO2 sills display positive Sr anomalies (Fig. 4.12). The high-TiO2 Eysturoy and 

Sundini sills display stronger Sr depletion relative to the Langaregn and Svínoy-

Fugloy sills, but the two latter display stronger depletion in Ba, Rb, Th and K (Fig. 

4.12b; Fig. 4.12c). Perhaps less conspicuous are moderately positive Nb and Ta 

anomalies in the Langaregn and Svínoy-Fugloy sills and moderately negative Nb and 

Ta anomalies in the Streymoy and Kvívík sills (Fig. 4.12a; Fig. 4.12c; Fg. 4.12d). 
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Figure 4.12. (Previous page). Trace elements normalised to primitive mantle composition (PM) of 

Sun and McDonough (1989). a) The investigated sills define three main trends with the incompatible 

element depleted Morskranes Sill being characterised by strong Rb and K enrichments. b) Most 

samples of the the Eysturoy and Sundini sills display negative P, Sr, K, Th, Rb and Ba anomalies. c) 

The Langaregn and Svínoy sills display negative anomalies for the same elements as in b, but also 

display moderately positive Ta and Nb anomalies.  d) The Streymoy and Kvívík sills display positive 

Sr anomalies and moderately negative P, Ta and Nb anomalies. y axes are in log scales. See text. 
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Figure 4.13. (Previous and current pages). REE concentrations of sills from this study and selected 

local literature basalts normalised to chondrite values of Nakamura (1974). a) The sills can be grouped 

into three main categories according to their REE compositions. b) Same as in a, but with linear scale 

on the y axis. c) The Langaregn Sill displays steeper HREE trend compared to the rest of the LREE 

enriched sill samples in this linear plot. d) The Streymoy and Kvívík sills display relatively flat REE 

trends whereas the Morskranes Sill is depleted with respect to its LREE concentration as shown in this 

linear plot. e) Linear plot of local basalts from the literature for comparison, including a very high-

TiO2/LREE specimen. f) A silicic basalt sample shows clear enrichment with respect to its LREE, 

while low-TiO2 local basalt samples are LREE depleted in this linear plot. Note differences in scales 

at y axes. See text. 
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4.4.4. REE 

Chondrite-normalised REE data from Table 4.3 representing sill samples of the 

Faroe Islands display three distinct and well defined trends (Fig. 4.13a, Fig. 4.13b), 

which correspond to basalt types 1, 2 and 3 reported for most regions of the NAIP 

previously (Kerr, 1995). The sills that define each of these three REE trends 

correspond to each of the three groups of Fig. 4.8b and Fig. 4.9 and the 

categories/trends from Fig. 4.12. The Morskranes Sill is depleted in the LREE, but 

displays a relatively flat HREE trend (Fig 4.13d). Both of the other two groups 

display relatively uniform flat LREE trends with (Ce/Sm)N ratios ranging from 1.05 

to 1.23 (Fig 4.13c; Fig. 4.13d). Samples of the low-Ti group display relatively flat 

HREE trends with (Sm/Yb)N ratios ranging from 1.05 to 1.24 (Fig. 4.13d) compared 

to more steeply sloping trends for the same elements belonging to the high-Ti group 

with (Sm/Yb)N ratios ranging from 1.6 to 2.1 (Fig. 4.13c). It is noteworthy that the 

Langaregn Sill has a steeper HREE slope than any other sill from this study (Fig. 

4.13c). 

 

4.5. Isotopes 

4.5.1. Lead isotopes 

Apart from the Kvívík Sill, all of the saucer-shaped sills from this study are 

represented by the samples analysed for 
206

Pb/
/204

Pb, 
207

Pb/
204

Pb and 
208

Pb/
204

Pb 

isotope ratios (Table 4.4; Fig. 4.14). The measured lead isotope ratios (Fig. 5.1a, b, c) 

and the ratios being corrected/adjusted back to 54 Ma (Fig. 4.14a*, b*,  c*) display 

broadly similar configurations and define positive slopes (Apart from one sample of 

the Morskranes Sill where no Pb, Th and U are available). Although the sills from 

this study display moderate spread in measured/age-corrected lead isotope ratios and 

also show overlapping values for some samples, they can be grouped into two main 

categories according to their 
206

Pb/
204

Pb ratios (Fig. 4.14. Fig. 4.15a; Fig 4.15b). The 

group defined by the Morskranes Sill exhibits 
206

Pb/
204

Pb ratios in the range from 

18.2442 to 18.2501 compared to 
206/204

Pb ratios of 18.0436 to 18.4444 for the other 

category defined by the rest of the investigated sills (Table 4.4; Fig. 4.14). 

Only measured lead isotope ratios are shown in Table 4.4 and used in the 

comparisons/calculations below, as there are relatively limited differences between 

measured and age-corrected lead isotope ratios for both sills and basement samples. 

For instance, the maximum deviations of Pb isotopic ratios associated with age  
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Table 4.4. Whole rock isotope data on sill samples (MC-ICP-MS) and selected lavas/dykes of the Faroe Islands and selected basement samples from neighbouring regions. 

Samples 206/204
Pb

 207/204
Pb 

208/204
Pb Pb                     Rb                Sr 

87/86
Sr (0) 

87
Rb/

86
Sr 

87/86
Sr (t) 

(t)
UR (Sr) Sm Nd 

143/144
Nd (0) 

147
Sm/

/144
Nd  

143/144
Nd (t) 

(t)
CHUR (Nd) 

08-JSVS-22 
a
18.3736 

b
15.4482 

c
38.2266 0.85 3.19 217.10 

d
0.703306 

f
0.060346 0.703260 -16.718 4.52 16.53 

e
0.512987 

g
0.211594 0.512912 6.706 

07-JSS-49 ----- ----- ----- ----- 3.00 185.08 
d
0.703255 

f
0.066592 0.703204 -17.510 1.76 6.09 

e
0.513032 

g
0.223383 0.512953 7.503 

07-JSS-50 
a
18.2326 

b
15.4246 

c
38.1692 1.08 3.40 259.63 

d
0.703266 

f
0.053838 0.703225 -17.215 5.93 22.76 

e
0.512999 

g
0.201413 0.512928 7.010 

07-JSS-52 
a
18.4444 

b
15.4756 

c
38.2700 0.85 1.98 203.59 

d
0.703313 

f
0.039892 0.703282 -16.396 2.06 7.39 

e
0.513023 

g
0.215840 0.512947 7.379 

08-JES-10 
a
18.2501 

b
15.4493 

c
38.1765 1.28 10.34 174.13 

d
0.703380 

f
0.244165 0.703193 -17.669 5.02 18.83 

e
0.512983 

g
0.206201 0.512910 6.665 

08-JES-01 
a
18.2442 

b
15.4493 

c
38.1727 1.19 6.71 176.03 

d
0.703308 

f
0.156658 0.703188 -17.738 4.93 18.80 

e
0.512986 

g
0.202623 0.512914 6.749 

08-JMS-17 
a
17.9505 

b
15.4086 

c
37.9737 0.32 24.04 97.92 

d
0.703693 

f
1.008897 0.702919 -21.553 2.62 6.67 

e
0.513073 

g
0.303742 0.512966 7.749 

08-JMS-14 
a
17.9131 

b
15.4536 

c
37.8876 ----- 2.70 86.00 

d
0.702895 

f
0.129173 0.702796 -23.302 1.80 4.45 

e
0.513086 

g
0.312780 0.512976 7.940 

K-11 17.9830 15.4140 37.6010 ----- 2.50 94.00 ----- ----- h0.702660 ----- ----- ----- ----- ----- h0.513071 ----- 
K-1 16.1000 15.1840 39.8250 ----- 3.90 131.00 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 

Sv-12 17.8920 15.3770 37.6490 ----- 2.90 72.00 0.702780 0.119900 0.702688 -24.833 1.49 4.09 0.513151 0.221000 0.513073 9.841 

Str-188 18.3570 15.4940 38.0150 ----- 1.90 176.00 0.703000 0.031600 0.702976 -20.749 2.77 8.38 0.513062 0.201000 0.512991 8.242 

Va-20 18.2310 15.4420 38.0990 ----- 13.00 327.00 0.703388 0.142000 0.703279 -16.443 8.19 35.80 0.513023 0.171000 0.512963 7.688 

X14 16.2330 15.0930 37.3660 ----- 17.00 193.00 ----- ----- i0.709990 i75.900 ----- ----- ----- ----- i0.512070 i-9.7 

X16 17.1720 15.3140 39.6650 ----- 12.00 179.00 ----- ----- i0.716260 i164.900 ----- ----- ----- ----- i0.511760 i-15.7 

69A 15.2750 14.9060 36.6590 ----- 15.00 243.00 ----- ----- ----- ----- ----- ----- ----- ----- ----- ----- 
Lewis.Ampbh. 14.5000 14.8000 38.2000 12.00

 
----- 493.00 ----- ----- h

0.717000 ----- ----- 25.00 ----- ----- h
0.510600 ----- 

Lewis.Gran. 14.5000 14.8000 34.1000 5.00 ----- 387.00 ----- ----- h
0.703000 ----- ----- 25.00 ----- ----- h

0.510600 ----- 
SMZ-AMG-01 ----- ----- ----- ----- 18.70 349.00 ----- ----- h

0.717000 ----- 14.90 71.50 ----- ----- h
0.511350 ----- 

P42 14.5900 14.8450 35.4090 13.49 101.00 541.00 0.723478 0.747784 0.722904 262.152 3.94 23.08 0.510588 0.132521 0.510541 -39.552 

A 16.5980 15.3750 35.7900 25.00 116.00 309.00 0.729330 1.097800 0.728488 341.414 12.13 68.69 0.511828 0.118800 0.511737 -14.639 

B 16.7420 15.4180 35.9840 17.00 34.00 428.00 0.708320 0.246200 0.708131 52.435 29.59 127.08 0.512118 0.148000 0.512066 -9.809 

E 21.7990 15.8800 39.1010 19.00 160.00 51.00 0.914010 9.024800 0.907087 2876.760 4.18 30.45 0.511524 0.091800 0.511454 -20.167 

KS60/KS19A 20.4670 15.8410 60.4680 12.66 38.00 250.l00 0.726550 0.416500 0.726231 309.369 1.76 40.00 ----- ----- 
j
0.510700 ----- 

229632 13.9620 14.7420 33.6930 
k
25.00 19.00 553.00 0.705200 0.100000 0.705123 9.737 1.56 10.88 0.510724 0.092100 0.510691 -36.621 

229642 16.7400 15.5890 35.4950 
k
25.00 33.00 460.00 0.713090 0.210000 0.712929 120.543 6.56 43.13 0.510600 0.092100 0.510567 -39.040 

229661 13.7150 14.6510 33.2400 
k
25.00 11.00 598.00 0.703560 0.055000 0.703518 -13.054 0.74 6.01 0.510463 0.092100 0.510430 -41.713 

Numbers displayed in rows 1 to 8 indicate data from this study, numbers in rows 9 to 16 indicate data from earlier studies on selected dykes/lavas of the Faroe Islands 

(Gariépy et al., 1983; Holm et al., 2001) and numbers in rows 17 to 28 indicate data on basement samples from NW Britain, Rockall Plateau and E Greenland (Sample 

identifications given in figures below). Unless otherwise stated, (t) refer to age correction back to 54 Ma for data on the actual column. a2SE range from 0.0013 to 0.0053, 
b2SE range from 0.0015 to 0.0051, c2SE range from 0.0049 to 0.0190, d2SE range from 0.000004 to 0.000023, e2SE range from 0.000006 to 0.000014, fcalculated ratios (see 

appendix 4 for methods), gcalculated ratios (see appendix 4 for methods), hage corrected to 60 Ma, iage corrected to 56 Ma, jinterpolated ratio based on average E Greenland 

data, kinterpolated from average E Greenland data. Rb, Sm and Nd concentrations for sample 08-JMS-14 are interpolated from published samples with identical compositions 

of other trace elements (Gariépy et al., 1983). Decay constants used in the calculated age corrections are recommended by the IUGS and are: 87Rb87Sr = 1.4210-11 yr-1 

(Steiger and Jäger, 1977) and 147Sm143Nd = 6.5410-12 yr-1 (Lugmair and Marti, 1978).  Control analyses of isotope ratios using the standards NBS 981, NBS 987 and J&M  
during MC-ICP-MS analyses are shown in table labelled Appendix 4.1. in appendix 4. Error bars for analysed sill samples are shown in Fig. 4.14a-c and Fig. 4.16a.
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Figure 4.14. Measured isotope ratios in a), b) and c) (Table 4.4) show configurations similar to those 

of the same samples being age-corrected back to 54 Ma, as shown in a*), b*) and c*) and using decay 

constants as recommended by the IUGS where: 238U206Pb = 1.5512510-10 yr-1, 235U207Pb = 

9.848510-10 yr-1 and 232Th208Pb = 4.947510-11 yr-1 (Steiger and Jäger, 1977). Measured and age-

corrected isotope ratios display broadly linear trends that define positive slopes in diagrams a) to c*) 

apart for one sample of the Morskranes Sill, the isotope ratios of which are relatively enriched in 

207Pb/204Pb. Samples of the Morskranes Sill are relatively depleted in 206Pb/204Pb and 208Pb/204Pb 

ratios. Pb ratios of the Svínoy-Fugloy and Langaregn sills vary relative to those of the others. 

Measured St. Dev. values (Table 4.4) are indicated by shaded grey error bars in a), b) and c). See text.  

 

corrections back to 54 Ma of the basalt sills in question are: 
206

Pb/
/204

Pb = -0.13; 

207
Pb/

204
Pb = -0.006 and 

208
Pb/

204
Pb = -0.14, compared to maximum deviations for 

similar age corrections of a typical felsic basement sample (e.g. P42 of Kerr et al.,  
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Figure 4.15. (Previous page). a) and b) Same as in Fig. 4.14a and Fig. 4.14b but with selected 

dyke/lava samples from the Faroe Islands published earlier (red and yellow symbols). c) and d). Fields 

representing isotopic data from Iceland (red outlines) are from Thirlwall et al. (2004) and the 

compilation of Kitagava et al. (2008). Field representing isotopic data from E Greenland (green 

outlines) are from Hanghøj et al. (2003); Peate and Stecher (2003) and the compilation of Peate et al. 

(2008). Fields representing isotopic data from W Greenland (blue outlines) are from Larsen and 

Pedersen (2009). Fields representing isotopic data from previous studies of the Faroe Islands (yellow 

outlines) are from Gariépy et al. (1983), Holm et al. (2001) and Søager and Holm (2011). Fields 

representing isotopic data from the Reykjanes Ridge MORB (grey outlines) are from Mertz and Haase 

(1997). Sample data are from Table 4.4. See text. 

 

1995) are: 
206

Pb/
/204

Pb = -0.01; 
207

Pb/
204

Pb =  -0.001 and 
208

Pb/
204

Pb = -0.14).  Also, 

all the Pb isotope data published previously on basalts from the Faroe Islands and on 

most basalts from other parts of the NAIP, in addition to the vast majority of 

basement samples from neighbouring regions such as the NW British Isles, the 

Rockall Plateau and E Greenland are only given as measured values and mostly lack 

data on one or more of elements such as Pb, Th and U. 

Representative Pb isotope data from dykes and lava flows of the Faroe Islands that 

have been published earlier define trends that are broadly similar to those of the 

investigated sill samples and can be grouped into the same two categories. Compared 

to the relative stable configurations of most samples in Fig. 4.15a and Fig. 4.15b, one 

sample of the Morskranes Sill in addition to the yellow rhombus and the red square 

covary and occupy different positions in each of these two diagrams. 

The Pb isotope ratios of individual basalt samples from the Faroe Islands being used 

in this study (Sills and selected lavas/dykes) all fall within the compositional range of 

published E Greenland and W Greenland data and many are also encompassed 

within the fields for published Icelandic data (Fig. 4.15c; Fig. 4.15d). However, the 

sill samples of the Faroe Islands generally display higher 
208

Pb/
204

Pb ratios relative to 

basalts from Iceland, including MORB samples from the Reykjanes Ridge (Fig. 

4.15d). Otherwise, only sill samples that are relatively enriched with respect to their 

Sr and Nd isotopes (Fig. 4.16a) fall within the range defined by 
206

Pb/
204

Pb versus 

207
Pb/

204
Pb ratios of MORB samples from the Reykjanes Ridge (Fig. 4.15c). 
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Figure 4.16. a) Age-corrected Sr versus Nd isotopic ratios representing sills and selected dykes/lavas 

of the Faroe Islands define a negative slope with samples apparently being concentrated in three 

clusters. Potential isotopic enrichments of depleted samples of the Morskranes Sill due to potential 

contamination with crustal material or in response to time-integrated enrichments (e.g. Anderson, 

1982) are shown by dotted arrows. Yellow outline = field of other basalts of the Faroe Islands (Holm 

et al., 2001). Grey outline shows parts of the isotopic composition of Reykjanes Ridge MORB (Mertz 

and Haase, 1997). Dotted outline indicates parts of Theistareykir, Iceland (Stracke et al., 2003). b) 

Basalts from a) plot in II quadrant of a Sr versus Nd isotopic diagram while contaminated/silicic lava 

samples of the Faroe Islands plot in the IV quadrant, indicating the involvement of continental crustal 

material in the contamination process. Distribution of crustal material in the IV quadrant is from 

DePaolo and Wasserburg (1979). DMM, HIMU, BSE, EM I and EM II compositions are from Zindler 

and Hart (1986) and Hart (1988). Measured St. Dev. (Table 4.4) is indicated by shaded grey error bars 

in a). See text. 
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4.5.2. Sr and Nd isotopes 

Representative samples from all sills of this study are analysed for Sr and Nd 

isotopes (Table 4.4). Relative to bulk silicate Earth (BSE), the Sr and Nd isotopic 

composition of the investigated sills define 
54Ma

UR(Sr) values ranging from -6.40 to 

-23.30 and 
54Ma

CHUR(Nd) values in the range from 6.67 to 7.94 (Table 4.4; Fig. 

4.16). The sill samples from this study and some (supposed) uncontaminated dykes 

and lava flows from the literature define a broad linear negative slope that is roughly 

similar to trends representing the mantle array in a 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd 

diagram (Fig. 4.16a). Combined, the sills themselves define two clusters 

(Morskranes Sill versus all the other sills) similar to those inferred for the Pb 

isotopes (Fig. 4.16a; Fig. 4 14). Three samples from silica-rich lava flows of the 

Faroe Islands that have been dealt with in earlier isotopic studies (Gariépy et al. 

1983; Holm et al. 2001) all plot in the IV quadrant in a 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd 

diagram (Fig. 4.16b), i.e. indicating significant degrees of crustal involvement.  

Basalts of the Faroe Islands being affected by Sr and Nd isotopic contamination to 

any significant degrees are also relatively enriched with respect to SiO2 compared to  

 

 

Figure 4.17. a) SiO2 versus age-corrected Sr isotopes of sills and other selected basalts of the Faroe 

Islands. b) K2O versus age-corrected Sr isotopes of sills and other selected basalts. c) SiO2 versus age-

corrected Nd isotopes of sills and other selected basalts of the Faroe Islands. d) K2O versus age-

corrected Nd isotopes of sills and other selected basalts. See text. 
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other less contaminated samples originating within the same area (Fig. 4.17a; Fig. 

4.17c). The same is partly true for the K2O content of these contaminated samples, 

but comparable K2O enrichment of other basalt samples, which do not display clear 

signs of considerable isotopic contamination, are sometimes encountered as well 

(Fig. 4.17b; Fig. 4.17d). This is particularly true for the sample 08-JMS-17 of the 

Morskranes Sill (Brown square); which is more enriched in K2O than any other 

basalt sample that has been encountered hitherto in the Faroe Islands.  

Magmas being significantly enriched in K2O (and Rb) may be the result of very 

small degrees of partial melting or they may represent the latest stages of melt 

evolution in consequence to their incompatible nature in silicate melts (e.g. 

Rollinson, 1998). However, as the other investigated samples from this relatively 

small sill are depleted with respect to K2O and do not display any abnormal 

concentrations in other major elements (Table 4.2; Fig. 4.9), it is hard to envisage 

that they too could have been affected by any significant degrees of magma 

evolution. Also, if selective K2O enrichment occurred in response to e.g. 

immiscibility or other late-stage melt processes, one would have expected that major  

elements such as SiO2 or Na2O in addition to incompatible trace elements other than 

Rb (e.g. Ba, Sr, Th etc.) would have been affected to some degree as well during 

potential magma evolution. Alternative explanations of K2O (and Rb) enrichment in 

the sample 08-JMS-17 could be selective assimilation of K2O/Rb – rich material with 

relatively short residence time, which resulted in moderate modifications of initial Sr 

and Nd isotopic compositions in the affected rocks (e.g. as indicated by dotted 

arrows in Fig. 4.16a), or the addition of K2O/Rb could result from post-magmatic 

crystallisation of secondary minerals that scavenged these elements from other 

weathered basalts. However, as the sample 08-JMS-17 appears to be completely 

fresh without the faintest signs of microscopic joints, this latter option cannot be 

stated with any degree of certainty. Relative to samples showing obvious signs of 

contamination with crustal material, most ordinary basalts of the Faroe Islands 

display flat trends in plots of SiO2 and K2O versus Sr and Nd isotopes (Fig. 4.17). 

More detailed views of plots representing these ordinary basalts show scattered 

distributions in K2O versus 
87

Sr/
86

Sr and K2O versus 
143

Nd/
144

Nd diagrams (insets in 

Fig. 4.17b, Fig. 4.17d), but with a broad positive trend in the SiO2 versus 
87

Sr/
86

Sr 

diagram (inset in Fig. 4.17a) and a broadly equivalent negative trend in the SiO2 

versus 
143

Nd/
144

Nd diagram (inset in Fig. 4.17c).  
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Hence, it appear as if the more evolved basalts of the Faroe Islands, i.e. specimens 

displaying slight relative enrichments in silica, in many cases also display slight 

relative enrichments in their Sr and Nd isotopic compositions. 

 

4.5.3. Combined isotopes 

Comparisons between different types of isotopes of the Faroe Islands, involving plots 

of measured Pb isotopes contrasted against age-corrected Sr and Nd isotopes, yield 

positive slopes for Pb versus Sr isotope ratios and Pb versus Nd isotope ratios define 

broadly equivalent negative slopes (Fig. 4.18). It is noteworthy that plots involving 

208
Pb/

204
Pb ratios (Fig. 4.18e; Fig. 4.18f) display well-defined linear slopes compared 

 

 

Figure 4.18. The plots show measured Pb isotope ratios versus age-corrected Sr and Nd isotopic 

ratios. See text.  
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to more scattered trends in the other diagrams displayed in Fig. 4.18. The fact that 

samples representing the Morskranes Sill (brown square and rhombus) plot amongst 

the most depleted basalts (red and yellow rhombuses) in Fig. 4.18a, define their own 

field in Fig. 4.18b, plot in-between depleted and more enriched basalts in Fig. 4.18c 

and Fig. 4.18e and plot amongst relatively enriched basalts in Fig. 4.18d as well as in 

Fig. 4.18f may suggest that the primary melts that ultimately gave rise to this sill 

were exposed to various degrees of isotopic influence. 

 

4.6 Discussion 

4.6.1. Element mobility 

The reliability of geochemical data as petrogenetic indicators should be evaluated 

carefully, as post-magmatic mobilisation of major and/or trace elements and potential 

mineral break-down or recrystallisation at the whole-rock scale may affect igneous 

rocks under a variety of hydrothermal conditions (e.g. Rollinson, 1998). The major 

elements Si, Mg and K in addition to the large ion lithophile elements (LILE) may be 

mobilised by low-grade metamorphism/weathering (Wood et al., 1976; Higgins et 

al., 1985) whereas hydrothermal activity associated with moderate metamorphism 

has the potential of mobilising Si, Mg, Ca, Fe, Na, K and Mn as well as the LILE and 

perhaps some of the LREE (Ordóñez-Calderón et al., 2008). Trace elements such as 

the high field strength elements (HFSE) Th, Nb, Ta, Zr, Y and Ti are commonly 

considered to remain relatively unaffected during moderate metamorphic events 

(Wood et al., 1976; Ordóñez-Calderón et al., 2008). 

In the Faroe Islands various degrees of weathering and/or or low-grade 

metamorphism have affected parts of the sills in question. The most common 

manifestation of element mobilisation in the investigated intrusions are the partial 

alteration (deuteric?) of minute olivine grains to phyllosilicates at the microscopic 

scale, but visually there is nothing in these samples that indicate element transport 

for distances greater than fractions of millimetres (Fig. 4.2 to Fig. 4.6). Hints of 

element mobilisation at scales of hand specimen and on microscopic scales are 

sometimes encountered in samples having experienced fracturing (Not used for 

geochemical interpretations), where thin (<0.5 mm wide) joints commonly display a 

greenish coating of low-temperature minerals derived from hydrothermal solutions. 

Comparison of geochemical compositions between rocks showing clear signs of 

element mobilisation in hand specimen (sample 07–JSS–38, shown in bold italic in 
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Table 4.2) and an apparently fresh and intact rock specimen (sample 09–JSS–02, 

Table 4.2), being collected ~100 metres apart, strongly suggest geochemical 

modification at the whole-rock scale for the first sample, which has resulted in 

relative depletion in Si, Al, K, Sr and Ba and relative enrichment in Mg, Fe, Ti and 

Y. Relative enrichment in e.g. Ti and Y may in this case well reflect relative stability 

of minerals such as oxides and/or clinopyroxene during the weathering process. Only 

samples showing a relatively high degree of geochemical correlation in most 

elements within each sill/region have been accepted for use in this study and all 

samples displaying signs of fracturing or element mobilisation at the whole-rock 

scale have been discarded. 

 

4.6.2. Trace element constraints on potential crustal contamination 

Apart from enrichments in some of the most incompatible elements, the trace 

element concentrations of the Morskranes Sill are virtually identical to those of N-

MORB (Fig. 4.19a). In the other sills, compatible trace element concentrations of the 

low-TiO2 sills and incompatible element concentrations of many of the high-TiO2 

sills resemble those reported for E-MORB (Fig. 4.19a). While negative Rb and K 

anomalies encountered in some sill samples could reflect geochemical characteristics 

inherited from their mantle sources, the clear positive anomalies in these two 

elements that are encountered in some of the investigated specimens (particularly 

sample 08-JMS-17) could in theory point to selective enrichment/contamination. 

Potential candidates that could have acted as enrichment sources include material 

from the upper crust (e.g. Fig. 4.14a) or perhaps metasomatic fluids containing 

elements leached from other adjacent basalts could be to blame (i.e. vesicle 

infillings). Comparison between presumed contaminated sill samples and various 

basement samples from neighbouring regions (Fig. 4.19b) indicates that a number of 

basement specimens have the potential to act as possible K and Rb contaminants. 

The incorporation of crustal material into magmas en-route to the upper crust is 

commonly interpreted to result either from bulk assimilation with concomitant 

fractional crystallisation and/or from partial/net assimilation of fusible felsic material 

(Thompson et al., 1983; Kerr et al., 1995; Font et al., 2008). In the first case the 

mechanism involves heating of wallrocks in response to crystallisation from a near-

stationary melt in a sub-spherical magma chamber (DePaolo, 1981) whereas 

turbulent flows of very hot magmas in dyke swarms are thought to provide the means  
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of heat for partial melting of wall-rocks in the latter case (Huppert and Sparks, 1985).  

The lack of any microprobe data on grains of unknown compositions, being 

encountered in the Morskranes Sill, is a substantial obstacle to correct interpretation 

with respect to their origin. If some of them do indeed represent assimilated material,  
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Figure 4.19. a) Trace element concentrations, normalised to primitive mantle values (Sun and 

McDonough, 1989), from representative samples of the sills of the Faroe Islands are contrasted 

against published examples of well known rock types. OIB, E-MORB and N-MORB concentrations 

are from Sun and McDonough (1989) whereas elemental concentrations from the upper and lower 

crust are from the compilation of Rollinson (1998). Upper and lower thick grey shaded lines represent  

high-TiO2 and low-TiO2 sills from this study respectively. Thinner grey shaded line indicates the 

Morskranes Sill (08-JMS-17). b) Representative sill samples are compared with basement samples 

from neighbouring regions. c) Two-component mixing between lowest common sill ratios (Rb/K2O = 

10 and Th/Nb = 0.05) and some of the basement samples that are indicated in 4.19b. Mixing 

hyperbolas labelled i. and ii. represent bulk assimilation and assimilation from 15% partial melts 

respectively. Partition coefficients used in partial melting calculations are from Table 4.5 (For rocks of 

intermediate/felsic compositions). Markers on hyperbolas indicate 1, 2.5, 5, 10, 20, 30 (and so forth) 

% basement contribution to the mixing. d) The Zr/Nd versus Nd/Ce ratios of the Morskranes Sill 

normalised to primitive mantle values could be recreated if N-MORB-like material was contaminated 
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with around 1% basement material comparable in composition to the average of basements from all 

regions of the N Atlantic. E Greenland basement from: Kays et al. (1989); Kalsbeek (1995); Thrane 

(2002). NW Britain basement from: Weaver and Tarney (1980); Thompson et al. (1986); Kerr et al. 

(1995); Meyer et al. (2009). Rockall Plateau basement from: Morton and Taylor (1991). (Results from 

modelling in Fig. 4.19c are shown in appendix 5.1). See text. 

 

the common occurrences of sub-spherical specimen of these mineral grains could in 

theory point to mechanical abrasion, i.e. they could have been incorporated 

mechanically by bulk assimilation as discussed by DePaolo (1981). However, it may 

be hard to envisage that broadly sub-spherical forms of individual grains in e.g. 

dismembered sandstones or granulitic material would retain their original shapes 

when heated close to their solidus during assimilation. The common occurrences of 

plagioclase laths being wrapped around sub-spherical specimen of these minerals 

(e.g. Fig. 4.5c) seems to suggest that the plagioclases must have crystallised prior to 

a possible assimilation event. However, a scenario with vesicle expansion in partially 

molten magmas that oriented crystallised plagioclase laths is perhaps a more likely 

explanation of this phenomenon. If the poikilitic minerals of presumed feldspathic 

compositions encountered in the Morskranes Sill originate from wallrock 

assimilation, they could have been incorporated as tiny melt batches or the melting 

may have occurred subsequent to assimilation. Alternatively, these minerals may be 

of secondary origin (zeolites?) or they could represent late stage crystallisation 

phases from the basaltic magmas that gave rise to this sill.  

As comparisons between data from representative sill samples and published data 

from basement material originating in E Greenland, NW Britain and the Rockall 

Plateau suggest that potential contamination was selective and primarily involved the 

incompatible elements K and Rb (Fig. 4.14b), a Rb/K2O versus Th/Nb ratio diagram 

is utilised in an attempt to identify/quantify potential contamination (Fig. 4.19c). Due 

to similarities in their bulk partition coefficients, ratios of these elements are 

relatively insensitive to fractionation of plagioclase, olivine and clinopyroxene from 

basaltic melts and to partial melting in a peridotitic mantle. However, as the low field 

strength elements K and Rb may be mobilised by post-magmatic processes, 

calculations involving these elements should be interpreted with caution. 

Calculations of two-component mixing between the lowest common ratios 

representing all the sills (Rb/K2O = 10 and Th/Nb = 0.05) and the published data  
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from basement material have been carried out using the expression (Faure, 1986): 

RM = (RAXAƒ + RBXB(1 – ƒ)) / (XAƒ + XB(1 – ƒ))                                                       (7) 

where RM is the element ratio in a mixture of components A and B, RA and RB are the 

element ratios in A and B, XA and XB are the element concentrations in A and B and 

ƒ is the weight fraction of A. Two sets of calculated mixing hyperbolas representing 

bulk assimilation and assimilation of melts extracted from ~15 % partial melts from 

the same basement samples are labelled i. and ii. respectively in Fig. 4.19c. Partial 

melting calculations of the basement samples were carried out assuming low and 

broadly similar Kd’s of residual minerals and modal melting that leaved anhydrous 

residues (pyroxenes + plagioclase + quartz) using the expression (Rollinson, 1998): 

CL / C0 = 1 / (DRS + F(1 – DRS))                                                                                 (8) 

where CL is the wt% of a trace element in the produced liquid, C0 is the wt% of a 

trace element in the original unmelted solid, DRS is the bulk distribution coefficient 

of the residual solids and F is the weight fraction of melt produced in partial melting. 

Clearly, potential residual phases such as biotite (strongly partitioning K and Rb) or 

zircon (strongly partitioning Th and Nb) would affect the outcome of partial melting 

calculations according to potential differences in the partitioning of the elements 

making up the pairs Rb/K2O and Th/Nb. However, as the modelling in Fig. 4.19c is 

merely an attempt to demonstrate the differences between bulk and partial/net 

assimilation of crustal material, modelled results should be interpreted with caution. 

As a result of the much larger concentrations of trace elements in the partial melts 

compared to the original unmelted basement rocks, only around ~2% assimilation of 

the 15% partial melt is required to match ~10% of bulk assimilation (Fig. 4.19c). In 

theory, crustal samples with geochemical compositions found in any of the regions 

NW Britain; Rockall Plateau and E Greenland could have contributed as 

contaminants, if an initial magma with a composition comparable to that of N-

MORB is considered (Fig. 4.19c). In the case of the Morskranes Sill, ~15% of bulk 

assimilation of either granites or gneisses could explain the Rb/K2O and Th/Nb ratios 

of this intrusion, whereas perhaps only ~3% of net contamination (with ~15% melts) 

of these same potential contamination sources are required to obtain the same results 

(Fig. 4.19c). As high field strength elements are not easily affected by post-magmatic 

processes, plots of the actual sill samples and relevant basement samples in a  
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Table 4.5. Partition coefficients used in calculations of batch-melting and fractional crystallisation. 

Unless otherwise stated, the partition coefficients for the different minerals are for melts of basaltic 

composition from Table 4.1 in the compilation of Rollinson (1998). aPartition coefficients (basalts) 

from Fig. 15C of Bédard (2005). bPartition coefficients (basalts) from Table 3 of Frei et al. (2009). 
cPartition coefficients (basalts) from Table 5 of Aigner-Torres et al. (2007). dPartition coefficient 

(basalts) from Table 1 of Berlo et al. (2004). eInterpolated values. fExtrapolated values. gPartition 

coefficients for felsic rocks from Table 4.3 in the compilation of Rollinson (1998). Qtz = quartz and 

Sp = spinel, the other mineral abbreviations are as in Fig. 4.9. 

 

(Zr/Nd)N versus (Nb/Ce)N diagram may yield additional and perhaps more reliable 

information with respect to potential crustal contamination (Fig. 4.19d). If the initial 

mantle derived melts of the Morskranes Sill had trace element compositions 

comparable to those of N-MORB or other local depleted basalts (red circle), around 

1.5% bulk assimilation of a basement contaminant possessing a composition roughly 

similar to the average of selected N Atlantic basement samples could explain the 

ratios of these trace elements within this sill (Fig. 4.19d). If potential contamination 

involved partial/net assimilation of material derived by ~15% melting of fusible 

crustal material instead, less than 0.5% assimilation would be required, as these (low-

degree) melts would be enriched in the actual trace elements (e.g. Fig. 4.19c). 

 

4.6.3. Isotopic constraints on potential crustal contaminants 

It has been firmly established earlier that the enriched isotopic signatures of silicic 

basalts from the Enni Formation of the Faroe Islands originate from substantial  

       Ol      Opx Opx         Cpx         Plag Plag         Grt     Sp         Qtz 

Sr a 0.0050 b 0.0037 - 0.060 c 1.715 - 0.012 - - 

Nb a 0.0005 b 0.0023 g0.800 0.005 c 0.029 g0.060 0.020 - e 0.015 

Th 
a
 0.0015

 b
 0.0010

 g
0.130 0.030 

c
 0.173

 g
0.048 

d
 0.010

 
- 

g
0.009 

Ta e 0.0010 b 0.0070 - 0.013 c 0.042 - 0.060 - - 

K 0.0068 0.0140 g0.002 0.038 0.170 g0.263 0.015 - g0.013 

Ti 0.0200 0.1000 - 0.400 0.040 - 0.300 - - 

Rb 0.0098 0.0220 g0.003 0.031 0.071 g0.048 0.042 - g0.041 

Ba 0.0099 0.0130 - 0.026 0.230 - 0.023 - - 

Zr 0.0120 0.1800 - 0.100 0.048 - 0.650 - - 

Y 0.0100 0.1800 - 0.900 0.030 - 9.000 - - 

La f 0.0074 f 0.0100 - f 0.056 f 0.180 - 0.001 2.25 - 

Ce 0.0069 0.0200 - 0.092 0.120 - 0.007 2.15 - 

Nd 0.0066 0.0300 - 0.230 0.081 - 0.026 2.00 - 

Sm 0.0066 0.0500 - 0.500 0.067 - 0.290 1.65 - 

Eu 0.0068 0.0500 - 0.474 0.340 - 0.243 1.05 - 

Gd 0.0077 0.0900 - 0.556 0.063 - 0.680 - - 

Dy 0.0096 0.1500 - 0.582 0.055 - 1.940 - - 

Er 0.0110 0.2300 - 0.583 0.063 - 4.700 - - 

Yb 0.0140 0.3400 - 0.620 0.067 - 11.500 1.35 - 
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Figure 4.20. a) Two-component mixing calculated for contamination of an Early Cenozoic depleted 

basalt sample of the Faroe Islands with Proterozoic/Archean crustal basement samples from the North 

Atlantic. Crosses on dotted/dashed lines indicate 0.5, 1.0, 2.5, 5.0, 10.0, 20.0, 30.0............90.0 % 

mixing of basalts with basement samples. b) Closer view of II quadrant from a). See text. 
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contamination with crustal material (Gariépy et al., 1983; Hald and Waagstein, 1983; 

Holm et al., 2001). Previous studies have suggested that basement material 

comparable in composition to Lewisian amhibolites best fit the observed isotopic 

characteristics of these lavas (Gariépy et al., 1983; Holm et al., 2001). Two-

component mixing calculations (equation 7) involving representative 

Proterozoic/Archean basement samples/compositions from NW Britain, the Rockall 

Plateau and from E Greenland mixed with a depleted basalt sample utilised in this 

study and using age corrected 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd ratios seem to suggest that 

a number of contamination sources have the potential to shift the compositions of 

these isotopes from those displayed by ordinary local basalts (i.e. not significantly 

contaminated) to those observed for the contaminated silicic basalts (Fig. 4.20). Of 

these basement samples, mixing lines from Lewisian amphibolite, felsic granulite 

from NW Britain, trondhjemitic gneiss from E Greenland, felsic gneiss from E 

Greenland and felsic granulite from the Rockall plateau most closely approach the 

plotted positions that represent the contaminated silicic basalts in Fig. 4.20a. In 

general, contribution of 10 to 20% of these basement samples can explain the 

isotopic range displayed by the silicic basalts plotting in the IV quadrant (Fig. 4.20a). 

If the LREE depleted samples from the Morskranes Sill initially possessed Nd 

isotopic composition comparable to those of other depleted basalts of the Faroe 

Islands (Red and yellow rhombuses), less than 0.5% contributions from 

contamination sources possessing isotopic compositions broadly similar to e.g. 

Lewisian amphibolites, coastal granulites from E Greenland or mafic granulites from 

the Rockall Plateau could account for the potential enrichments in the 
143

Nd/
144

Nd 

ratios of these samples (Fig. 4.20a; Fig. 4.20b). The enrichment in 
87

Sr/
86

Sr ratio of 

sample 08-JMS-17 relative to that of sample 08-JMS-14 (both samples belonging to 

the small Morskranes Sill, Table 4.4; Fig. 4.16a; Fig. 4.20b) may be an argument in 

favour of some Rb (and K) enrichment of the former sample perhaps from a felsic 

basement source (e.g. with 
87

Sr/
86

Sr ratios comparable to felsic gneiss/granulite or 

granite from E Greenland and/or the Rockall Plateau as shown in Fig. 4.20) upon 

ascent of the actual magmas, as might be indicated by petrographic observations (e.g. 

Fig. 4.5) and trace element characteristics (e.g. Fig. 4.12; 4.19). If the variations in Sr 

and Nd isotopic compositions within the more enriched sills (High-TiO2 and low-

TiO2 sills) originated only from contamination with basement sources comparable to 

e.g. felsic rocks from E Greenland and/or the Rockall Plateau, less than 0.25%  
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Figure 4.21. The Pb isotope ratios (measured) in the diagrams show potential relationships between 

various basalt samples of the Faroe Islands and Proterozoic/Archaean basement samples from the 

North Atlantic area. The notation “ordinary sills/dykes/lavas” refer to basalts that do not appear to be 

significantly contaminated. Enlarged views of the diagrams to the left (a, b and c) are shown in the 

diagrams to the right (a*, b* and c*). Dotted arrows indicate directions from ordinary basalts of the 

Faroe Islands toward the contaminated silicic basalt samples, i.e. toward potential contaminants as 

well, as mixing of Pb isotope ratios between any samples will always be defined by straight lines on 

these diagrams. Arrows in b*) and c*) strongly suggest two distinct contamination sources. See text. 
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contributions from these would be required in order to explain the observed isotopic 

range (Fig. 4.20b).  

Comparisons between Pb isotopic compositions of relevant basement samples and 

basalt samples of the Faroe Islands yield a slightly more nuanced picture of potential 

crustal contamination processes when compared to the Sr and Nd isotopes. At a first 

glance, it appears as if basement samples from E Greenland and NW Britain best 

explain the shift in Pb isotope ratios of contaminated silicic basalts of the Faroe 

Islands (large red and yellow symbols) relative to the ordinary basalts (rocks that do 

not appear to be significantly contaminated) from this region (Fig. 4.21a; Fig. 4.21c; 

Fig. 4.21e). As two-component mixing between ordinary tholeiitic basalts and 

basement samples will produce straight mixing lines in Pb isotopic ratio diagrams, a 

more detailed inspection of relevant/potential contaminants suggests that none of the 

plotted basement samples from NW Britain or a combination of these can produce 

the whole span displayed by the contaminated basalts when mixed with ordinary 

basalts of the actual region due to their relatively low 
208

Pb/
204

Pb ratios (e.g. dotted 

arrows, Fig. 4.21b; Fig. 4.21d and Fig. 4.21f). However, most features of the 

contaminated samples could be explained, if the assimilated crustal material 

possessed Pb isotopic composition(s) close to average values of the selected E 

Greenland samples (Fig. 4.21). If the actual contaminants indeed possessed Pb 

compositions comparable to the average of the E Greenland samples, contributions 

from materials with Pb isotopic compositions comparable to that of the high 

208
Pb/

204
Pb basement specimen (green rhombus, Fig. 4.21) would have been an 

important factor in explaining the relatively high 
208

Pb/
204

Pb ratios of some of the 

contaminated samples (yellow circle and red rhombus, Fig. 4.21c; Fig. 4.21d; Fig. 

4.21e; Fig. 4.21f). Also, some isotopic contribution from the relatively high 

207
Pb/

204
Pb sample (green circle, Fig. 4.21) could explain relatively high ratios of 

these isotopes in some of the contaminated basalts (yellow circle, Fig. 4.21a, Fig. 

4.21b). A closer comparison/investigation of potential relationships between the Pb 

isotopic compositions of sills as well as selected lavas/dykes of the Faroe Islands and 

various basement samples from the North Atlantic area indicates that variations in Pb 

isotopic ratios of one sill sample in particular (red square with black outline), 

contrary to most of the other plotted ordinary basalts, covary with a basement sample 

from E Greenland (green circle, dashed arrows) and (but perhaps less likely) to two 

basement samples from the Rockall Plateau (Fig. 4.21; Fig. 4.22). Attempts to  
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Figure 4.22. A sample from the Morskranes Sill vary relative to the other sill samples in Pb isotope 

ratio diagrams. Potential crustal contaminants include basement samples from the Rockall Plateau and 

a basement sample from E Greenland. Genetic links to DM could be an alternative explanation. 

Dashed arrows suggest directions to potential contaminants. See text. 
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Figure 4.23. (Previous page) a), c) and e) Age-corrected 87Sr/86Sr ratios versus measured 206Pb/204Pb, 

207Pb/204Pb and 208Pb/204Pb ratios. b), d) and f) Age-corrected 143Nd/144Nd ratios versus measured 

206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios and modelled mixing lines (at 10% intervals from 

basement samples). See text. 

 

quantify any potential Pb contamination of this sample with the actual E Greenland 

basement sample have not been done (Fig. 4.22), but two-component mixing 

calculations involving 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios strongly suggest that less than 

0.5% contribution from this potential contaminant to more depleted basalts used in 
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this study would be required in order to explain such moderate isotopic variations 

(Fig. 4.20b). It is clear that one dyke sample (red square) covary closely with 

Atlantic depleted mantle (Fig. 4.22). Likewise, it is possible that the variations in Pb 

isotopes of the actual sill sample (red square with black outline) relative to the other 

sill samples could result from a particular link with a DM source instead of 

contamination with ancient basement material from E Greenland, although the latter 

option best explain the observed variations with respect to all Pb isotopes in question 

(Fig. 4.22). 

Comparisons and mixing calculations (equation 7) between ordinary sill/dyke/lava 

samples and basement samples using age-corrected 
87

Sr/
86

Sr and 
143

Nd/
144

Nd ratios 

versus measured 
206

Pb/
204

Pb, 
207

Pb/
204

Pb and 
208

Pb/
204

Pb ratios (Fig. 4.23) seem to 

support earlier inferences (e.g. Fig. 4.21) suggesting that involvement of crustal 

material comparable in isotopic composition to the average of the plotted E 

Greenland basement samples best explain the isotopic characteristics of some of the 

contaminated silicic basalts (particularly the yellow circle and red rhombus, Fig. 

4.23). The apparent requirement for a basement component that is particularly 

enriched with respect to its Pb isotopes is well illustrated in Fig. 4.23b; Fig. 4.23e 

and Fig. 4.23f, where some contribution from a source comparable in isotopic 

composition to the sample represented by the green rhombus seems to be needed in 

order to explain high 
206

Pb/
204

Pb and 
208

Pb/
204

Pb ratios of some of the silicic basalts 

(particularly the yellow circle and red rhombus). Contamination of ordinary basalts 

of the Faroe Islands with material possessing isotopic composition comparable to a 

combination of basement samples from NW Britain could in theory explain the 

observed 
87

Sr/
86

Sr versus 
206/204

Pb and 
87

Sr/
86

Sr versus 
207

Pb/
204

Pb ratios of all the 

contaminated basalts (Fig. 4.23a; Fig. 4.23c), but fail to account for the whole range 

in Pb isotopes of the silicic basalts in the other diagrams shown in Fig. 4.23. The 

calculated mixing lines between basement specimen from both E Greenland and NW 

Britain and ordinary (presumably uncontaminated) basalts from the actual region 

suggest contamination percentages in the range from 10 to 20%. Neither individual 

basement samples from the Rockall Plateau nor a combination of these can 

reproduce the isotopic compositions of the actual contaminated basalts upon mixing 

with ordinary basalts of the Faroe Islands (Fig. 4.23). 
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4.6.4. Partial melting 

Although major elements may be useful in determining which processes led to 

compositional variations within individual basalt groups, the compositions of these 

elements alone are not likely to provide reliable evidences of all aspects of the 

petrogenetic processes that led to the formation of the investigated sills. In attempts 

to constrain degrees of partial melting and geochemical compositions of the primary 

melts that gave rise to the basalts of the Faroe Islands, batch melting 

modelling/calculations (equation 8) have been carried out using REE compositions 

from a wide array of relevant mantle sources and assuming residual mineral 

assemblages broadly similar to those commonly encountered during experimental 

melting of mantle lithologies to produce basaltic liquids (e.g. Gudfinnson and 

Presnall 1996; Kogiso et al. 1998). Potential corrections of melting percentages from 

the partial melting modelling/calculations that may be relevant due to potential 

fractional crystallisation effects are dealt with in the fractional crystallisation sub-

section below. In the batch melting calculations used in this chapter it is assumed that 

the produced melts were in perfect equilibrium with the actual source region prior to 

their uninterrupted ascent as a closed system to distinct crystallisation chambers at 

shallower depths, while the real situation would probably have been one in which the 

melts migrated at finite rates and continuously interacted with the matrixes they 

passed through (e.g. Richter, 1986). However, earlier testing of simple batch melting 

scenarios (equation 8) against more real and complex melting/extraction/interaction 

processes have demonstrated that batch melting calculations involving trace elements 

do indeed provide reliable indications on actual degrees of partial mantle mantle 

melting in most cases (Richter, 1986).  

Out of several potential mantle sources, partial melting of mantle sources with trace 

element compositions comparable to fertile spinel lherzolites from the sub-

continental lithospheric mantle (SCLM), as reported by Lesnov et al. (2009), could 

explain much of the compositions of sills and lava flows displaying negative REE 

slopes (Fig. 4.24a). The calculations (Fig. 4.24a) suggest that the entire span in REE 

concentrations of these basalts can be recreated by ~4.5 to ~25% partial melting of a 

fertile spinel lherzolite, where samples displaying low REE concentrations (low-TiO2 

sills) can be linked to moderate/large degrees of melting (20 – 24%) in contrast to 

high REE samples (high-TiO2 sills) that can be associated with lower degrees of 

melting (7 – 8%). Residual mineral assemblages used in the calculations shown in  
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Figure 4.24. (Previous page). a) Compositions of most LREE enriched sills and lava flows (from Fig. 

4.13) can be reproduced by 4.5 – 23% partial melting of a moderately fertile mantle of composition 

comparable to those reported by Lesnov et al. (2009) leaving residual assemblages of olivine + 

orthopyroxene  clinopyroxene  spinel  garnet. (Results from modelling are shown in appendix 

5.2). b) Compositions of LREE depleted sill and lava flow (from Fig. 4.13) can be recreated by 7 to 

8% partial melting of a depleted spinel lherzolite of composition similar to the average values of 

depleted morb mantle (DMM) as reported by Workman and Hart (2005). (Results from modelling are 

shown in appendix 5.3). c) Alternatively, 3.5% partial melts originating from a depleted mantle, of 

composition similar to that reported by Rampone et al. (2004), mixed with 10 – 20% melts of 

compositions broadly similar to sample 08-JSVS-22 (open green circles) could potentially explain the 

depleted trends of some basalts of the Faroe Islands. Figures in open arrows indicate melt percentages 

and thick grey shaded lines indicate the calculated REE trends. Residual assemblages = olivine + 

orthopyroxene  clinopyroxene. Partition coefficients (for mafic melts) used in the calculations are 

shown in Table 4.5. Dashed red line(s) = primordial mantle (Sun and McDonough, 1989); full blue 

line = fertile mantle (Lesnov et al., 2009); full green line(s) = depleted mantle (Workman and Hart, 

2005; Rampone et al., 2004). Normalising values are as in Fig. 4.13. (Results from modelling are 

shown in appendix 5.4). See text. 

 

Fig. 4.24a includes various combinations of the minerals: Olivine (75 – 85%) + 

orthopyroxene (15 – 25%)  clinopyroxene (< 8%)  spinel (< 2%)  garnet (< 1%). 

Hence, the range in relative mineral abundances in these modelled residues are 

positioned well within the limits commonly encountered in naturally occurring 

peridotites (e.g. Obata and Morten, 1987; Choi and Kwon, 2005). Although trace 

amounts of garnet can be accommodated in the residue for a few of the modelled 

samples especially for the Langaregn Sill and samples of very high-TiO2 lavas, these 

calculations also suggest that it is equally possible that olivine and pyroxenes were 

the only residual phases following partial melting to produce most of the investigated 

sills. As experimental melting of peridotites/pyrolites suggest residual garnets only at 

pressures higher than 2.6 to 3.0 GPa (Kushiro 1996; Robinson and Wood 1998; 

Kogiso et al. 1998), the modelling seem to suggest that most of the primary melts 

that gave rise to the basalts shown in Fig. 4.24a probably formed at  2.6 GPa i.e. 

within the spinel lherzolite stability field, but with some samples perhaps also 

straddling the lower limits of the garnet stability field.  

The compositions of some of the LREE-depleted sills and lava flows of the Faroe 

Islands can be explained by moderate degrees (7 to 8%) partial melting of a depleted 

source (Fig. 4.24b) having composition broadly similar to the average values of 
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depleted MORB mantle (DMM) as reported by Workman and Hart (2005). 

Alternatively, these LREE-depleted basalts could have been generated by low degree 

(~3.5%) partial melting of a depleted source having a composition broadly similar to 

a spinel lherzolite recovered from an abyssal peridotite (Rampone et al. 2004), which 

left residues broadly similar to those produced by melting of the fertile lherzolites 

(Fig. 4.24c). However, the incorporation of some additional LREE-enriched material 

would have been required in order to compensate for a slight deficiency of these 

elements in the modelled melts. LREE-enriched crustal rocks could perhaps have 

acted as secondary sources to such potential melts, but ~10 to ~20% hybridisation 

with mantle-derived melts of compositions broadly similar to the high-TiO2 sills (e.g. 

08-JSVS-22) could also explain parts of the observed REE trends (Fig. 4.24c). 

The relationships between the sills of the Faroe Islands and their inferred fertile 

versus depleted end-member sources are perhaps better illustrated in a (Yb)N versus 

(Ce/Sm)N binary diagram, where various degrees of melting of fertile and depleted 

sources are calculated for various residual assemblages and compared with sill and 

other basalt samples (Fig. 4.25). The modelled melting curves define distinct trends 

for individual residual mineral assemblages where the calculations suggest 

generation of the high-TiO2 sills by low/moderate degrees melting of fertile mantle 

rocks compared to moderate/high degree melting of similar source rocks for the low-

TiO2 rocks (Fig. 4.25). Various degrees of melting of depleted mantle sources can 

generate the (Ce/Sm)N and (Yb)N variations observed in the LREE-depleted basalts 

(Fig. 4.25). However, all modelled melts from the most strongly depleted mantle 

material (Large grey rhombus) become exhausted with respect to (Ce/Sm)N ratios 

before the desired concentrations are encountered for melt percentages >1%, 

irrespective of the chosen residual mineral assemblages. Two-component mixing 

calculations (equation 7) involving (Ce/Sm)N ratios suggest that the differences 

between low-degree partial melts  from the most depleted mantle source (large grey 

rhombus) and (Ce/Sm)N ratios representing the LREE-depleted samples from Fig. 

4.13 can be matched by the addition of 5 to 20% melts of compositions similar to the 

high-TiO2 sample 08-JSVS-22 (Fig. 4.25). In theory, infinitesimal melt percentages 

from melting of the strongly depleted mantle (Large grey rhombus) with garnet 

present in the residue could reach (Ce/Sm)N ratios comparable to the LREE-depleted 

basalts, but it is open to discussion whether this scenario would be realistic. 
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Figure 4.25. Partial melting calculations of a moderately fertile mantle (Large grey circle, Lesnov et 

al., 2009) versus a moderately depleted mantle (Large grey square, Workman and Hart, 2005) and a 

more strongly depleted mantle (Large grey rhombus, Rampone et al., 2004). Residual mineralogies 

used in calculations: Trend i. = 84% Ol + 16% Opx; trend ii. = 76% Ol + 24% Opx; trend iii. = 76% 

Ol + 20% Opx + 4% Cpx; trend iv. = 76% Ol + 23% Opx + 1% Grt; trend v. = 84% Ol + 16 Opx; 

trend vi. = 83% Ol + 15% Opx + 2% Sp; trend vii. = 84% Ol + 16% Opx; trend viii. = 80% Ol + 12% 

Opx + 8% Cpx; trend ix. = 80% Ol + 11% Opx + 8% Cpx + 1% Grt. Mineral abbreviations are as in 

Fig. 4.9 and Table 4.4. Melt percentages (numbers at blue dotted lines) increase from right to left. 

Melting intervals for depleted mantle (not labelled) are similar to those calculated for the fertile 

mantle. Mixing with ~5 to ~20% melts comparable in composition to high-TiO2 sills from this study 

(red dashed line with black crosses) may be required in order to reproduce the LREE-depleted basalts 

from Fig. 4.13 (yellow/red rhombuses and brown square) if these initially resulted from low-degree 

melting of mantle material comparable in composition to the strongly depleted mantle reported by 

Rampone et al. (2004). Normalising chondrite values as in Fig. 4.13. Partition coefficients (mafic 

melts) used in the calculations are shown in Table 4.5. (Results from modelling are shown in appendix 

5.5.i to 5.5.ix). See text. 

 

Testing of the results from the REE modelling by means of plots where Zr 

concentrations are contrasted against Y/TiO2 ratios support the inferences regarding 

formation of most sills by various degrees of melting of fertile mantle material 

(Fig.4.26). The observed variations in Y/TiO2 ratios at relatively constant Zr 

concentrations within the high-TiO2 sill group could result from a relative depletion  
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Figure 4.26. Partial melting of a fertile mantle (Large grey circle). Residual mineralogies used in the 

calculations are: Trend i. = 84% Ol + 16% Opx; trend ii. = 76% Ol + 24% Opx; trend iii. = 76% Ol + 

16% Opx + 8% Cpx and trend iv. = 76% Ol + 19% Opx + 4% Cpx + 1% Grt. Trend v. is similar to 

trend iii, but is based on a lower Y/TiO2 ratio in the source material. Mineral abbreviations are as in 

Fig. 4.9. Partition coefficients are shown in Table 4.5. Calculated melt percentages (numbers at blue 

dotted lines) increase from right to left. (Results from modelling are shown in appendix 5.6.i to 

5.6.iv). See text. 

 

of Y, which again could be indicative of residual garnet following partial mantle 

melting or the involvement of garnet during fractional crystallisation. In the case of 

the Langaregn Sill, the low Y/TiO2 ratios shown in Fig. 4.26 could be related to the 

relatively pronounced HREE depletion observed for this sill (Fig. 4.13c). 

Alternatively, the variations in Y/TiO2 ratios displayed by some of the sill/lava 

samples from the Faroe Islands could reflect partial melting along two distinct sub-

parallel trends (i.e. along melting curves iii. and v. in Fig. 4.26) due to slight 

differences in Y/TiO2 ratios of their respective mantle sources. 

The pronounced negative/positive Sr anomalies and weak negative/positive Eu 

anomalies, best observed in the Eysturoy and Sundini sills versus the Streymoy and 

Kvívík sills (Fig. 4.12 and Fig. 4.13 respectively), suggest the involvement of 

plagioclase at some point during their magmatic evolution. Calculations (not shown) 

indicate that even very small volumes of residual plagioclase (< 5%) during partial 
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melting of fertile lherzolitic source rocks will produce conspicuous negative Eu 

anomalies in normalised diagrams, which is at odds with the trends observed in Fig. 

4.13. Also, the overall tholeiitic nature of the sills in question seems to suggest 

primary magma formation by partial melting outside the plagioclase stability field, in 

accordance with results from experimentally produced basalts (e.g. Kushiro 1996; 

2001). Alternatively, the observed Sr and Eu anomalies (Fig. 4.12; Fig. 4.13) could 

be primary features resulting from partial melting of plagioclase-free sources 

possessing “ghost” plagioclase signatures inherited from earlier geologic events, as 

proposed for basaltic rocks from Hawaii (e.g. Sobolev et al., 2000). However, such 

“ghost” signatures would require the involvement of substantial proportions of 

subducted/recycled crustal material during mantle melting (Sobolev et al., 2000) and 

the overall low Pb isotopic ratios in sills from this study (Table 4.4, Fig. 4.14) are not 

in accordance with typical (higher) Pb isotopic ratios encountered in basalts thought 

to result from melting of mantle sources contaminated with recycled oceanic crust, 

i.e. containing clear HIMU signatures as demonstrated in the compilation of 

Rollinson (1998) and in the recent study of Day et al. (2010). 

Although the observed relative abundances of most major elements in high-TiO2 

versus low-TiO2 sills seem to support the trace element modelling suggesting 

formation of these two main sill groups by different degrees of melting, the higher 

Al2O3 and lower Fe2O3 contents in the low-TiO2 Streymoy and Kvívík sills relative 

to those of the high-TiO2 Eysturoy and Sundini sills (Fig. 4.9) seem to be at odds 

with high or moderately high degrees of melting during formation of the low-TiO2 

sills compared to low degrees of melting during formation of the high-TiO2 sills, as 

relative abundances of Al2O3 and FeOtot in experimentally produced basalts are 

expected to decrease and increase respectively during increased degrees of melting 

(Table 1.1; Fig.1.5). 

Hence, an additional mechanism seems to be required in order to fully explain this 

apparent inconsistency in Al2O3 and Fe2O3 compositions measured for the high-TiO2 

Eysturoy and Sundini sills versus those measured for the low-TiO2 Streymoy and 

Kvívík sills (Fig. 4.9) as well as the common occurrences of Sr and Eu anomalies 

within these sills (Fig. 4.12; Fig. 4.13). 
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4.6.5. Fractional crystallisation 

The geochemical spread observed in flood basalts might reflect differences in e.g. 

percentages of mantle melting, but fractional crystallisation too has a significant 

potential to modify geochemical compositions of basaltic melts and MgO-rich 

primary basaltic magmas typically evolve to other less magnesian basalt varieties by 

olivine fractionation (Hald and Waagstein, 1991; Yaxley, 2000). In order to 

investigate to what degree fractional crystallisation processes affected trace element 

compositions of the investigated sills, calculations/modelling have been carried out 

using the expression for Rayleigh fractionation (Rollinson, 1998): 

CL / C0 = F
(D – 1)

                                                                                                          (9) 

where CL is the wt% of a trace element in the residual liquid, C0 is the wt% of a trace 

element in the parental liquid, D is the bulk distribution coefficient of the 

fractionating assemblage during crystal fractionation and F is the fraction of 

remaining melt. Rayleigh fractionation infers effective removal of newly formed 

crystals from residual melts without significant incorporation of new material from 

external sources i.e. wallrock assimilation or additional magma injection. Earlier 

studies have pointed to potential evolution of magmas by complex periodical 

replenishment/tapping/fractionation (RTF) processes (O’Hara and Mathews, 1981). 

However, while Larsen and Pedersen (2009) suggested that Early Cenozoic high-

TiO2 basalts from W Greenland evolved by RTF processes from contemporary low-

TiO2 basaltic melts, based on his study of trace element compositions of flood basalt 

sequences within the Deccan Traps Cox (1988) came to the conclusion that there was 

no proof to suggest that continental flood basalts (CFB) should evolve via RTF 

processes. 

Plots representing Sr/Nb versus Eu/Eu* (Chondrite normalised) ratios of the sills 

from this study support inferences suggesting the involvement of plagioclase during 

evolution of these intrusions (Fig. 4.27). If normalised Eu/Eu* ratios of ~1 are used 

as estimates of basaltic melts that are unaffected by the activity of plagioclase, both 

fractionation and accumulation of this mineral seem to be required in order to explain 

the entire range in Eu/Eu* ratios defined by these sills (Fig. 4.27). Calculations of 

plagioclase fractionation and accumulation (Equation 9) from the average Sr/Nb 

versus Eu/Eu* ratios between the high-TiO2 sample 08-JES-11 and the low-TiO2 

sample 07-JSS-52 (i.e. ~45 versus ~1) suggest that 20 to 25 wt% plagioclase  
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Figure 4.27. The plots of high-TiO2 versus low-TiO2 sill in a Sr/Nb versus Eu/Eu* (Normalised to 

chondrite values of Nakamura, 1974) ratio diagram seem to suggest both plagioclase fractionation and 

accumulation respectively. The starting ratios (~45 versus ~1) for the modelling represents a broad 

average between the two samples of the Eysturoy and Streymoy sills respectively that most closely 

approach an Eu/Eu* ratio of 1. Partition coefficients used in calculations are shown in Table 4.5. 

(Results from the modelling are shown in appendix 5.7). See text. 

 

fractionation and accumulation from these starting ratios would be required to cover 

the span in Eu/Eu* ratios displayed by the high-TiO2 and the low-TiO2 sills 

respectively (Fig. 4.27). However, 20 to 25 wt% of fractionated/accumulated 

plagioclase using the partition coefficients for basaltic melts shown in Table 4.5 fail 

to reproduce the observed span in Sr/Nb ratios of high-TiO2 versus low-TiO2 sills 

(Fig. 4.27), suggesting that either different degrees of partial melting (as suggested 

previously) and/or differences in the concentrations of these two elements in the 

respective mantle sources to these two sill groups generated the observed gap in their 

Sr/Nb ratios. Clearly, the Morskranes Sill does not fit in with the other sills, probably 

because it is derived from quite different source material as suggested earlier. 

The weak negative Eu anomalies of chondrite normalised REE samples representing 

the high-TiO2 intrusions of this study (Fig. 4.13) can be reproduced by ~20 wt% 

fractional crystallisation of plagioclase from parental melts that display smooth REE 

trends (Fig. 4.28), while moderate/large degrees (15 to 20 wt%) of olivine or 

clinopyroxene fractionation from basaltic liquids (not shown) would not result in any 

noticeable Eu anomalies. Around 20 wt% plagioclase fractionation from liquids  
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Figure 4.28. Plagioclase fractionation (~20 wt%) from a high-TiO2 basaltic liquid would result in an 

overall increase in REE concentrations and a weak negative Eu anomaly in the residual melts (Bold 

green semi-transparent line). Net plagioclase accumulation (~20 wt%) from an external source into a 

low-TiO2 basaltic liquid would result in an overall decrease in REE concentrations and a weak 

positive Eu anomaly in the cumulate-bearing melts (Bold blue semi-transparent line). Normalising 

values are as in Fig. 4.13. Partition coefficients are shown in Table 4.5. (Results from modelling are 

shown in appendix 5.8). See text. 

 

REE compositions broadly similar to those of high-TiO2 sills like the sample 08-

JSVS-22 would generate an overall increase in their REE sample/chondrite ratios of 

6 to 8, i.e. corresponding to a change/increase in REE concentrations that would be 

produced if these melts were generated by 2 – 3% lower degrees of melting of the 

same sources (Fig. 4..13; Fig. 4.28). The slight positive Eu anomalies displayed by 

the low-TiO2 sill samples could be explained by a net addition/accumulation of ~20 

wt% plagioclase from an external source to parental melts possessing relatively 

smooth REE trends (Fig. 4.28). The addition of ~20 wt% plagioclase to melts having 

REE compositions broadly similar to those of low-TiO2 sills like the sample 07-JSS-

52 would lower their overall REE sample/chondrite ratios of 1 to 2 i.e. corresponding 

to the change/decrease in these elements that would be associated with 2 – 3% higher 

degrees of melting of the same sources (Fig. 4.13; Fig. 4.28). 

Calculations/modelling (not shown) indicate that fractional crystallisation of ~15 

wt% olivine will generate an overall increase in REE concentrations similar to what 

would be associated with a similar amount of plagioclase fractionation, when Eu is 

not included (e.g. Fig. 4.28). Consequently, ~20 wt% fractionated olivine should 
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result in an increase/change in REE concentrations similar to what would be 

associated with 2 – 3% lesser degrees of partial melting of the same source, meaning 

that this figure would be 1 – 1.5% for 10 – 15wt% fractional crystallisation of this 

mineral. 

The results from the REE modelling in Fig. 4.27 and Fig. 4.28 have been further 

tested by means of binary plots of representative sill samples with Nb concentrations 

being contrasted against Ta, Th, Eu and Sr concentrations where calculations 

involving both partial melting (equation 8), fractional crystallisation and 

accumulation (equation 9) have been utilised in order to get a more detailed 

knowledge about the processes that were active during magma genesis (Fig. 4.29). 

The configurations of the plotted sill samples in the four diagrams suggest that they 

perhaps may be further sub-divided according to two distinct melting trends. 

Combined plots of samples from some of the relatively small sills from this study 

(The Langaregn, Svínoy-Fugloy and Morskranes? sills) define the first trend i., 

which display linear trends indicated by thin black dotted lines that are sub-parallel 

to calculated melting trends (Large grey open arrows labelled with melt percentages 

and shown on the left side of all part-figures) on the diagrams in Fig. 4.29. Combined 

plots of samples that represent the larger high-TiO2 sills (The Eysturoy and Sundini 

sills) and the larger low-TiO2 sills (The Kvívík and Streymoy sills) define the second 

trend ii., which display linear trends shown as thin black dashed lines being sub-

parallel to both calculated melting trends and the trends of the first group in the Nb 

versus Ta and Th diagrams (Fig. 4.29a; Fig. 4.29b). However, when compared to the 

trends representing the calculated partial melting as well as those that represent the 

first trend i., the trend representing the second trend ii. displays a slight clockwise 

rotation in the Nb versus Eu diagram (Fig. 4.29c) and a conspicuous anticlockwise 

rotation in the Nb versus Sr diagram (Fig. 4.29d). The fixed configurations of the 

first trend i. relative to calculated partial melting trends in all diagrams of Fig. 4.29 

seem to suggest that if these sills experienced fractional crystallisation following 

their genesis by partial melting; it affected them all in broadly similar proportions. 

Fractional crystallisation calculations show that fractionation trends for minerals 

common in typical basalts such as olivine and clinopyroxene are sub-parallel to the 

calculated partial melting trends for all the elements used in the diagrams of Fig. 

4.29. Consequently, fractional crystallisation of only olivine or clinopyroxene cannot 

explain the rotation of linear trends representing the second trend ii. relative to  
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Figure 4.29. (Previous page). Thick open grey arrows shown on left side of all diagrams indicate 4.8 

to 28% calculated partial melting with residual mineral assemblages: 76% Ol + 16% Opx + 8% Cpx 

(Mineral abbreviations are as in Fig. 4.9). Initial elemental concentrations used in partial melting 

calculations of Nb = 0.85 ppm; Ta = 0.04 ppm; Th = 0.038 ppm; Eu = 0.17 ppm; Sr = 17 ppm are 

encompassed by analyses of samples 1 – 6 encountered in fertile spinel leherzolites (Lesnov et al., 

2009). The sill samples can be categorised into trend i. (thin black dotted lines) and trend ii. (thin 

black dashed lines) according to the configurations of their plots on all diagrams. Lines representing 

trend i. are sub-parallel to the calculated melting trends on all diagrams whereas this is true for trend 

ii. in diagrams shown in a) and b) only. Trend ii. displays a slight clockwise rotation in the diagram 

shown in c) and a conspicuous anticlockwise rotation in the diagram shown in d) relative to trend i. 

and relative to the calculated melting trends. Calculations shown to the right in diagrams a), c) and d) 

indicate that high-TiO2 sills (high Nb) of trend ii. could have evolved by ~20 wt% plagioclase 

fractionation whereas low-TiO2 sills (low Nb) could have evolved by ~20 wt% net accumulation from 

an external source from/to their respective primary melts. The bold grey dotted lines that indicate 

trends chosen to represent parental melts, from which fractionation/accumulation of plagioclase are 

calculated, are sub-parallel to the thin dotted lines representing trend i. and to the calculated melting 

trends on the actual diagrams. Bold grey dashed lines connecting the points that resulted from 

calculated fractionation/accumulation of plagioclase are parallel to the black thin dashed lines 

representing trend ii. on the actual diagrams. The presumed initial concentrations of parental melts to 

sills in trend ii. are indicated by large open crosses and the presumed melting trends of their parental 

melts are indicated by thick grey shaded arrows. Partition coefficients used in the calculations are 

shown in Table 4.5. (Results from modelling are shown in appendix 5.9). See text. 

 

calculated partial melting trends in the Nb versus Eu and Sr diagrams. Calculated 

trends representing fractional crystallisation of plagioclase are sub-parallel to the 

calculated partial melting trends in the Nb versus Ta and Th diagrams (vector shown 

in the right side of Fig. 4.19a only), but relative to the calculated melting trends 

calculated trends from fractionation of plagioclase display a slight clockwise 

rotations in a Nb versus Eu diagram and a considerable anticlockwise rotation in a 

Nb versus Sr diagram (calculated vectors shown to the right in Fig. 4.19c and Fig. 

4.19d). Hence, the involvement of plagioclase seems to offer a satisfactory 

explanation with respect to the trends of the second group ii. in Fig. 4.19. However, 

if selective removal of plagioclase alone was to count for all the observed 

characteristics of group ii., around 40 wt% plagioclase fractionation from parental 

melts to the high-TiO2 sills (Open and filled circles) would be needed  in order to 

recreate the observed element configurations (calculations not shown). This figure is 

unrealistically high and is not supported by petrographic observations or by the trace 



 

171 
 

element and REE characteristics (e.g. Fig. 4.12; Fig. 4.13). Fractional crystallisation 

of ~20 wt% plagioclase from parental melts to the high-TiO2 sills together with the 

addition of ~20 wt% accumulated plagioclase from an external source to melts being 

parental to the low-TiO2 sills (calculated vectors shown in the right sides of 

Fig.4.29a; Fig. 4.29c; Fig. 4.29d) would be a more suitable explanation and would be 

in accordance both with the petrographic evidences i.e. ubiquitous plagioclase 

phenocrysts in the low-TiO2 sills, with trace element and REE characteristics (Fig. 

4.12; Fig. 4.13) and with the modelling as shown in Fig. 4.27 and Fig. 4.28. A 

process where cumulate plagioclases in the low-TiO2 sills originate from external 

sources are fully in accordance with a recent isotope study on plagioclase crystals 

from the Early Cenozoic basaltic lavas on the Island of Skye, NW Britain, which 

suggested that individual crystals had been aggregated in magmas from different 

sites of storage and differentiation during magma ascent (Font et al., 2008). 

As the sub-parallel trends representing the first group i. (dotted thin black lines) 

versus trends inferred to represent parental magmas to the sills in the second group ii. 

(indicated by thick full grey arrows in Fig. 4.29b; Fig. 4.29c and Fig. 4.29d) display 

slight lateral displacements relative to each other, slight compositional differences of 

their mantle reservoirs may be envisaged.  

Least square mass-balance calculations involving most major elements suggest that 

fractionation/accumulation of plagioclase from/to basaltic melts would chiefly affect 

their Al2O3, Fe2O3 and MgO concentrations (Table 4.6; see also Fig. 4.9). These 

backtrack/reiteration calculations show that if some of the high-TiO2 sills evolved by 

~20 wt% fractionation and the low-TiO2 sills evolved by ~20 wt% accumulation of 

this mineral from/to their respective parental melts, as suggested by the trace element 

modelling, the Al2O3 and the Fe2O3 contents of the high-TiO2 sills would be lower 

and higher respectively compared to their parental melts whereas the Al2O3 and the 

Fe2O3 contents of the low-TiO2 sills would be higher and lower respectively 

compared to their parental melts (Table 4.6; Fig. 4.30). Another noticeable 

consequence associated with these inferred fractionation/accumulation processes 

would be inverted relative abundances of Al2O3 and the Fe2O2 in parental melts to 

high-TiO2 versus low-TiO2 sill relative to measured relative abundances of these 

oxides in the actual sills (Table 4.6; Fig. 4.30). Hence, in contrast with the measured 

relative abundances of Al2O3 and Fe2O2 in the high-TiO2 versus low-TiO2 sills, the 

relative abundances of calculated Al2O3 and Fe2O2 in the precursor melts to these  
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Table 4.6. Least square mass-balance calculations of plagioclase fractionation and plagioclase 

accumulation in basaltic melts.
 

aPlagioclase composition used in the mass-balance calculations is from Table 38, sample 6 in the 

compilation of Deer et al. (1992). bSill compositions from Table 4.2; cValues are found by 

backtrack/reiteration calculations on the high-TiO2 sill sample 08-JES-11 on the assumption that 

parent 1 represents its precursor melt prior to ~20 wt% net plagioclase fractionation; dValues are 

found by backtrack/reiteration calculations on the low-TiO2 sill sample 07-JSS-52 on the assumption 

that parent 2 repreents its precursor melt prior to net accumulation of ~20 wt% plagioclase. Sums of 

squared differences were ~0.001 during both calculations. See text.  

 

sills define trends that are in accordance with the production of parental melts to 

some of the high-TiO2 sills by low degrees of melting and formation parental melts 

to the low-TiO2 sills by higher degrees of partial melting of broadly similar mantle 

sources (Fig. 4.30), i.e. these calculated data support the inferences from the trace 

element modelling above and are also in agreement with experimental results on 

basalt formation by various degrees of partial melting (Table 1.1; Fig. 1.5). The 

relative abundances displayed by most of the remaining major elements in the high-

TiO2 and low-TiO2 sills are maintained in their calculated parental melts i.e. 

abundances of MgO and CaO are higher and abundances of Na2O and TiO2 are lower 

in the calculated parental melts to the low-TiO2 sills compared to the calculated 

parental melts to the high-TiO2 sills (Table 4.6). Hence, the compositions of the 

major elements in the calculated parental melts all support the inferences suggesting 

increasing degrees of melting in going from high-TiO2 to low-TiO2 sills. Plots of the 

calculated melts from Table 4.6 would straddle the border between calc-alkaline 

basalt and high-MgO tholeiite basalt in a classification diagram similar to that of Fig.  

Major 

elements 

aPlag 

 

bHigh-TiO2 sill 

(08-JES-11) 

c Parent 1 

(Calculated) 

bLow-TiO2 sill 

(07-JSS-52) 

dP arent 2 

(Calculated) 

SiO2 49.60 49.59 49.50 50.29 50.50 

Al2O3 32.14 13.39 17.15 16.95 13.90 

Fe2O3 0.27 14.69 11.80 10.42 12.45 

MgO 0.20 6.55 5.28 6.86 8.20 

CaO 15.38 11.19 12.03 13.22 12.80 

Na2O 2.57 2.33 2.38 2.00 1.90 

K2O 0.17 0.30 0.27 0.20 0.20 

 TiO2 0.00 2.01 1.61 0.82 1.00 

Sr  174.40  204.60  203.60 178.70 

Eu  1.55 1.34 0.74 0.84 

Th  0.85 0.71 0.53 0.62 

Nb  10.85 8.74 2.81 3.35 

Ta  0.63 0.51 0.18 0.21 
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Figure 4.30. Some of the results from the backtrack/reiteration calculations shown in Table 4.6. As 

olivine fractionation is not accounted for in this figure, the inferred initial partial melting trends would 

have been located at higher MgO values in a more realistic scenario. a) If some of the high-TiO2 sills 

evolved by ~20 wt% plagioclase fractionation and the low-TiO2 sills evolved by ~20 wt% plagioclase 

accumulation, their relative concentrations in Al2O3 would be inverted when compared to their 

respective calculated parental melts, i.e. the calculated partial melting trend would define a negative 

slope. b) A similar scenario would apply for the Fe2O3 concentrations of these sills, the difference 

only being that the relative Fe2O3 contents in the high-TiO2 versus low-TiO2 sills are opposite to their 

Al2O3 contents and the same would apply for their respective calculated parental melts, i.e. the 

calculated partial melting trend would define a positive slope. See text.  

 

4.8b, but they would form a tighter cluster compared to the actual measured data 

from the sills shown in Fig. 4.8b. 
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Mass-balance calculations show that ~2 wt% olivine fractionation can count for a 

~1.5 wt% decrease in the MgO content of mafic melts (Fig. 4.9), i.e. the entire range 

of MgO observed within the investigated sills of the Faroe Islands (6.15 to 8.25 wt%) 

can be covered by 3 to 4 wt% olivine (Forsterite) fractionation from melts with 

compositions similar to the most primitive sill samples (Fig. 4.9).  

Interpretations on MgO compositions of primary magmas to Early Cenozoic basalts 

of the NAIP from previous studies have yielded various results where estimates for 

W Greenland vary from 10.0 – 13.0 wt% MgO (Yaxley, 2000) to 17.0 – 18.5 wt% 

MgO (Larsen and Pedersen, 2009). MgO contents of primary melts to basalts of the 

Faroe Islands have been estimated at 16.0 – 18 wt% earlier (Holm et al., 2001), 

whereas 12.0 – 13.6 wt% MgO have been inferred for primary melts to basalts from 

E Greenland (Momme et al., 2006) compared to 13.0 – 15.0 wt% for primary melts 

that gave rise to Early Cenozoic basalts on the Isle of Skye, NW Britain (Scarrow 

and Cox, 1995). 

As the SiO2 content of olivines and clinopyroxenes in MgO-rich mafic rocks 

produced by partial melting of peridotitic lithologies commonly range from 40 – 42 

wt% and 51 – 54 wt% respectively (e.g. Falloon et al., 1999; Dasgupta et al., 2007), 

fractional crystallisation of clinopyroxenes from primary mafic magmas comprising 

~46.3 wt% SiO2 and ~15.4 wt% MgO (similar to the picrite sample 121456 from the 

Faroe Islands of Søager and Holm., 2011) would have resulted in further silica 

depletion meaning that olivine probably would be more suitable as a fractionation 

phase, which could have modified such MgO-rich melts towards silica contents of 49 

to 50 wt% being typical for the sills of the Faroe Islands.  Mass balance calculations 

of olivine fractionation (Table 4.7) show that while fractionation of 15 – 20 wt% 

olivines with 41 – 42 wt% SiO2 from potential primary melts with compositions 

comparable to some of the picrites encountered in the Faroe Islands (~46.3 wt% SiO2 

and ~15.4 wt% MgO) could generate the calculated (and measured) span in MgO 

values as presented in Table 4.6, such fractionation would fail to produce the 

calculated (and measured) silica levels as presented in Table 4.6. Hence, some 

additional fractionation of silica deficient phases (magnetite?) seems to be required 

as well in order to explain observed SiO2 contents, if primary melts to the actual sills 

indeed had compositions comparable to picrites encountered in the Faroe Islands. 

As both petrographic observations in sills from this study and the high silica content 

of clinopyroxenes in general seem to suggest that his mineral mainly crystallised  
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Table 4.7. Least square mass-balance calculations of olivine fractionation from potential primary 

magmas comparable in composition to observed picrites of the Faroe Islands.
 

aPicritic lava of the Faroe Islands (Sample 121456 of Søager and Holm., 2011); bOlivine composition 

used in the mass-balance calculations is from Table 1, sample 1 in the compilation of Deer et al. 

(1992). cCalculated sill parent 1 from Table 4.6; dValues are calculated assuming 20 wt% olivine 

fractionation from magmas similar to observed picrite sample 121456. eCalculated sill parent 2 from 

Table 4.6; fValues are calculated assuming 15 wt% olivine fractionation from magmas similar to 

observed picrite sample 121456. Sums of squared differences for calculated basalts 1 and 2 were 9.1 

and 13.5 respectively. See text. 

 

during relatively late stages of magma solidification, their selective 

removal/fractionation from primary melts that gave rise to the sills of the Faroe 

Islands was probably not a dominating factor during evolution of these melts. 

The density of olivine (Forsterite) is around 3.2 g/cm
3
 compared to 2.76 g/cm

3
 for 

pure anorthites (Deer et al., 1992), meaning that if these minerals crystallised from a 

typical tholeiitic magma at ~1250° C and with a density of around 2.6 g/cm
3
 (Hall, 

1996) the olivine would be far more susceptible to gravitational settling compared to 

the plagioclase, a fact that would also be in accordance with the general scarcity of 

olivine phenocrysts in sills from this study. However, in order to explain the 

petrographic observations as well as the inferred effects of plagioclase 

fractionation/accumulation on the geochemistry of most of the investigated sills, 

some settling of plagioclase crystals, which resulted in layers of mostly residual 

melts from plagioclase fractionation on top of magma layers rich in cumulate 

plagioclase, may be a requirement. Selective extraction/removal of residual melts 

following plagioclase fractionation, which left an excess of cumulate plagioclase 

crystals in the affected magma chambers, could also be an alternative explanation. 

When fractional crystallisation of clinopyroxene during early stages of magma 

evolution is considered to have been relatively insignificant and corrections are made 

for fractional crystallisation of ~15 wt% olivine from primary melts to all the 

investigated sills, in addition to fractional crystallisation of ~20 wt% plagioclase 

Major 

Elements 

aObserved 

picrite 

bOlivine 

 

cHigh-TiO2 

sill precursor 

dCalc. 

Basalt 1 

eLow-TiO2 

sill precursor 

fCalc. 

Basalt 2 

SiO2 46.34 41.85 49.50 47.46 50.50 47.13 

Al2O3 12.93 0 17.15 16.16 13.90 15.21 

Fe2O3 11.16 2.05 11.8 13.44 12.45 12.77 

MgO 15.36 56.17 5.28 5.16 8.20 8.16 

CaO 10.46 0 12.03 13.08 12.80 12.31 

Na2O 1.74 0 2.38 2.18 1.90 2.05 

K2O 0.06 0 0.27 0.08 0.20 0.07 

TiO2 1.06 0.07 1.61 1.31 1.00 1.23 
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from primary melts to some of the high-TiO2 sills and accumulation of ~20 wt% 

plagioclase to parental melts to all the low-TiO2 sills, and when uncertainties with 

respect to exact compositions of potential moderately fertile spinel lherzolite sources 

(e.g. Lesnov et al., 2009) are accounted for, melting percentages of 20 – 22% for 

low-TiO2 sills and 10 – 12% for high-TiO2 sills seem to be reasonable estimates. If 

the depleted Morskranes Sill is corrected for similar amounts of olivine fractionation, 

8 – 10% melting of a depleted mantle (Workman and Hart, 2005) could account for 

the observed trace element compositions. However, if the Morskranes Sill 

experienced 10 – 12 wt% plagioclase fractionation as well, as suggested by its 

calculated Eu/Eu* ratio and the fractionation modelling shown in Fig. 4.27, then 9 – 

11% melting of depleted mantle material may well be a more correct estimate for this 

intrusion, i.e. broadly similar to what is inferred for the high-TiO2 sills. 

While the 20 to 22% partial melting that is inferred to have generated the primary 

magmas to the low-TiO2 sills from this study broadly resemble estimates of melting 

percentages inferred previously for primary magmas that gave rise to low-TiO2 

basalts of W Greenland (Larsen and Pedersen, 2009), E Greenland (Momme et al., 

2006) and the Faroe Islands (Holm et al., 2001), the 10 to 12% partial melting 

proposed for primary magmas to the high-TiO2 sills in question is slightly higher 

than comparable estimates for other high-TiO2 basalts of the Faroe Islands (Holm et 

al., 2001) and E Greenland (Momme et al., 2006). However, as most of the sills from 

this study being termed high-TiO2 basalts display TiO2 compositions of only ~2.1 

wt% compared to 2.5 to 3.5 wt% TiO2 for other high-TiO2 basalts of e.g. the Faroe 

Islands (Holm et al., 2001), the melting percentages obtained during the current work 

for primary magmas to this sill group broadly resemble the results for similar rock 

types of other basalts from e.g. E Greenland and the Faroe Islands. 

 

4.6.6. Constraining depth(s) of formation 

Production of geochemically distinct basalts by different degrees of partial melting of 

broadly similar source-rocks, as is inferred for many of the high-TiO2 versus the low-

TiO2 sills from this study, could result from slight differences in T or in P between 

source regions to the respective basalts or differences in the compositions of source 

materials (Table 1.1). The very limited lateral distances between geochemically 

distinct sills from the Faroe Islands (Fig. 3.2) renders it unlikely that there existed 

any significant differences in T between their source regions at depth if they formed 
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broadly contemporaneously. Instead, the low-TiO2 sills could have formed in 

response to partial melting at slightly shallower depths and lesser P compared to 

those of the high-TiO2 sills, but differences in degrees of metasomatism in the 

respective source regions could perhaps also have resulted in uneven melt 

production. 

As the upper limit of the plagioclase stability field in rocks of lherzolitic composition 

is defined by a P of ~0.9 GPa (Borghini et al., 2010) and as the products from partial 

melting of fertile plagioclase-bearing lherzolites are expected to be of quartz 

tholeiitic compositions (Kushiro, 1996, 2001), the olivine tholeiites building up the 

sills of the Faroe Islands probably formed at P greater than ~0.9 GPa. Also, the 

formation of the bulk of the primary melts that gave rise to the investigated sills can 

probably be constrained to a P at the lower limit of the garnet stability field or 

slightly below it, as the previous modelling suggest that only very small amounts of 

garnet could have been involved in the melt formation if any at all, i.e. these melts 

were probably produced at pressures between ~0.9 GPa and ~2.8 GPa (Garnet 

stability field from Robinson and Wood, 1998) corresponding to depths in the range 

from ~30 to ~85 km. The common occurrences of ophitic to subophitic 

clinopyroxenes poikilitically enclosing plagioclase laths in samples from these same 

intrusions suggest that these clinopyroxene grains mostly formed during the latest 

stages of crystallisation following plagioclase crystallisation. This inference is 

strongly supported by the predominance of plagioclase crystals at chilled margins of 

feeder dykes to the Streymoy Sill (Fig. 4.7). As crystallisation of plagioclase prior to 

clinopyroxene crystallisation only occurs at P lower than ~0.5 GPa (Grove et al., 

1992; Korenaga and Keleman, 2000), initiation of plagioclase crystallisation in 

parental melts to many of the sills from the Faroe Islands probably took place at P 

lower than 0.5 GPa corresponding to depths less than ~18 km. However, as 

clinopyroxene (Augite) has a density of around 3.37 g/cm
3
 (Deer et al., 1992), grains 

of this mineral that potentially crystallised early in the evolution process may have 

fractionated out of the actual magmas thus still rendering it possible that initiation of 

plagioclase crystallisation occurred at greater depths. 

 

4.6.7. Geochemical constraints on potential mantle sources 

The previous calculations strongly suggests that the geochemical compositions of 

most sills from the Faroe Islands can be explained by partial melting of moderately 
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fertile mantle material whereas one of the investigated sills, in addition to a few the 

lava flows, probably owe their geochemical characteristics to melting of more 

depleted mantle sources. There is a general consensus amongst many geologists that 

depleted mantle material probably represents residue(s) following partial melting of 

primordial mantle reservoirs to produce basaltic melts (Wood, 1979; Rampone et al., 

2004; Workman and Hart, 2005). The geochemical compositions of fertile mantle 

material are sometimes interpreted to result from metasomatic processes, where a 

primordial mantle is contaminated with ascending low-degree basaltic magmas or 

with fluids expelled from these (Wood, 1979; Dupuy et al., 1991; Grégoire et al., 

2003; Lesnov et al., 2009). Other authors suggest that fertile mantle material can 

evolve in response to assimilation of recycled oceanic crustal material (Kogiso et al., 

1998; Korenaga and Keleman, 2000; Yaxley, 2000; Kogiso et al., 2004) perhaps 

associated with earlier subduction or delamination processes (e.g. Meyer et al., 2007 

and references therein). With respect to compositions of major elements, the 

enrichment of iron (Expressed as FeOtot) in a basaltic melt is commonly taken as an 

indication of contamination with mafic crustal material, where average FeOtot values 

of around 13 wt% (HIMU basalts) suggest a strong signature of recycled oceanic 

crust (Kogiso et al., 1998). Although the investigated high-TiO2 sills display average 

Fe2O3 contents of ~14.5 wt%, the calculated/inferred parental melts to some of the 

high-TiO2 and the low-TiO2 sills of the Faroe Islands display Fe2O3 values ranging 

from 11.8 to ~12.45 wt% (Table 4.6; Fig. 4.30), i.e. well within the ranges displayed 

by both mid ocean ridge basalts and ocean island tholeiites (Blatt and Tracy, 1995). 

Hence, if the results from the calculations shown in Table 4.6 give reliable 

indications of major element compositions of the primary melts that gave rise to 

some of the investigated sills, the makeup of these elements do not hint to any 

significant recycling/involvement of oceanic crustal material during mantle melting 

to produce these sills. However, as the Langaregn and Svínoy-Fugloy sills display 

weaker negative Sr and Eu anomalies compared to the Eysturoy and Sundini sills 

(Fig. 4.12c; Fig. 4.13c), their relatively high Fe2O3 contents (Table 4.2; Fig. 4.9) 

could potentially in part stem from sources that are more enriched relative to those 

that gave rise to the two latter sills. 

Negative Nb and Ta anomalies in normalised multi-element diagrams representing 

basaltic rocks have often been linked to subduction-zone environments where the 

partial melting in the presence of fluids to produce these Nb and Ta depleted basalts 
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are inferred to have occurred. These elements are thought to be retained in mineral 

phases that are stabilised by fluids/elements from subducted material, which 

metasomatise the mantle wedge(s) above subducting oceanic slabs and sediments 

(e.g. Thompson et al., 1983). Conversely, a residual dry mantle with a previous 

history of metasomatism followed by dehydration melting and magma extraction 

could be relatively enriched with respect to Nb and Ta (Thompson et al., 1983). 

Also, partial melting of sources that have experienced different sorts of mantle 

metasomatism could result in the generation of igneous products possessing negative 

versus positive Nb and Ta anomalies (Thompson et al., 1983). Nb and Ta troughs in 

normalised multi-element diagrams that represent suites of low-TiO2 flood basalts 

from the Siberian Traps, some of which display geochemical compositions that are 

virtually identical to those of the low-TiO2 sills from this study, have previously been 

interpreted to result from partial melting in the upper mantle following 

metasomatism from percolation of fluids originating in segments of stagnant ancient 

subducted slabs stored at greater depths (Ivanov et al., 2008).  

The moderately positive/negative Nb and Ta anomalies displayed by some of the 

sills of the Faroe Islands (Fig. 4.12c; Fig. 4.12d) most probably reflect characteristics 

of their respective source regions, as neither different degrees of partial melting of 

moderately fertile mantle material nor fractionation/accumulation of e.g. plagioclase  

 

 

Figure 4.31. a) 5, 10 and 20% partial melting of a moderately fertile mantle (Lesnov et al., 2009), 

leaving residual mineral assemblages composed of 76 wt% Ol + 16 wt% Opx + 8 wt% Cpx 

(Abbreviations are as in Fig. 4.9), do not result in fractionation of Nb and Ta relative to La and Ce. b) 

20 wt% fractionation/accumulation of plagioclase from a basaltic melt (green line = 10% melt from 

4.31a) do not produce any Nb and Ta fractionation relative to La and Ce. Partition coefficients used in 

the calculations are from Table 4.5 and normalising values are as in Fig. 4.12. (Results from 

modelling are shown in appendix 5.10). See text. 
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(or olivine, calculations not shown) from/to basaltic melts can explain any potential 

fractionation of Nb and Ta relative to e.g. La and Ce (Fig. 4.31). 

If melting of a metasomatised mantle, which retained Nb and Ta during magma 

extraction, also produced the low-TiO2 sills of the Faroe Islands that display 

moderately negative Nb and Ta anomalies, the moderately positive Nb and Ta 

anomalies displayed by the Langaregn and Svínoy-Fugloy sills (Fig. 4.12c) could in 

theory indicate magma tapping from a dryer Nb and Ta enriched mantle reservoir 

representing residual material from partial melting as envisaged by Thompson et al. 

(1983). Also, the previous inferences based on calculations/modelling, suggesting 

production of the low-TiO2 sills by higher percentages of partial melting compared to  

the melting percentages that generated their high-TiO2 counterparts, would be in 

accordance with higher degrees of metasomatism (hydration?) in sources to the low-

TiO2 sills compared to sources to the high-TiO2 sills (See also Table 1.1). Therefore, 

it seems reasonable to assume that the sources to the low-TiO2 sills could have 

experienced moderate metasomatism of some sort prior to the partial melting event. 

However, as all the investigated high-TiO2 sills are enriched with respect to the 

LREE (Fig. 4.13), the formation of the Langaregn and Svínoy-Fugloy sills by low-

degree melting of a relatively dry Nb and Ta enriched source that had already 

experienced a partial melting event may appear to be problematic at a first glance, as 

the incompatible LREE of these source rocks would have been strongly partitioned 

into the first melts (See also Table 4.5) leaving the Nb and Ta enriched residue 

relatively depleted in LREE. This apparent paradox regarding provenance of the Nb 

and Ta enriched high-TiO2 sills can perhaps be evaded if one of two possible 

scenarios are envisaged for their mantle source(s): 1. Refertilisation of a residual Nb 

and Ta enriched mantle, which had already experienced a metasomatic and a partial 

melting event, by means of metasomatism with highly LREE enriched alkali-basalts 

from very low degrees of melting that had occurred at deeper mantle levels resulted 

in a moderately fertile Nb and Ta enriched mantle; 2. Metasomatism of a moderately 

fertile mantle by very low-degree melts selectively enriched with respect to Nb and 

Ta, which were derived from a Nb and Ta enriched residual mantle reservoir that had 

already experienced an earlier metasomatic and partial melting event, resulted in a 

moderately fertile Nb and Ta enriched mantle. Of these two hypothetical options the 

second one appears to be the most appealing as it invokes one initial metasomatic 

event in the entire region that stabilised Nb and Ta bearing mineral phases, 
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potentially affecting both a moderately fertile source to the low-TiO2 sills and the 

source from where a second generation of low-degree melts in turn metasomatised a 

moderately fertile source to the high-TiO2 sills. It is not clear whether either of these 

two suggested options could have involved enrichment in Fe2O3 of the sources that 

gave rise to the relatively high-Fe2O3 Langaregn and Svínoy-Fugloy sills as well. If 

not, components of ancient recycled oceanic crust could in theory have contaminated 

their mantle source(s) during earlier magmatic events. However, the low Pb isotopic 

ratios in all sills from this study (Table 4.4, Fig. 4.14) are dissimilar to the relatively 

high Pb isotopic ratios typical for basalts interpreted to result from melting of mantle 

sources containing clear HIMU signatures (e.g. compilation of Rollinson (1998; Day 

et al., 2010), i.e. components of recycled oceanic crust are included in such sources. 

Hence, in accordance with some of the Eu/Eu* ratios recorded for these two sills 

(e.g. Fig. 4.27), some plagioclase fractionation most likely affected their parental 

melts too albeit probably at smaller scales compared to what is inferred for melts 

parental to the Eysturoy and Sundini sills. 

In the context of Nb and Ta systematic it is perhaps of some relevance that rutile, 

into which these two elements are strongly partitioned from basaltic melts (Klemme 

et al., 2005), is not a stable mineral phase at T higher than ~1200° C (Xiong et al., 

2005), i.e. it is unlikely that this mineral contributed to the observed Nb and Ta 

anomalies. Apart from the Morskranes Sill that has a Nb/Ta ratio of ~14.7, most of 

the investigated sill samples display relatively uniform super-chondritic ratios with 

average values of ~16.5 (Table 4.3), thus perhaps strengthening inferences regarding 

relatively homogeneous fertile mantle sources for the majority of the investigated 

sills. In theory, the occurrence of metasomatised and/or depleted mantle sources to 

the sills of the Faroe Islands could be in accordance with the local geological history, 

in which these intrusions represent the latest known phase(s) of igneous activity in a 

region that had already experienced extensive basaltic magmatism with associated 

mantle melting and magma tapping, as both mantle metasomatism and formation of 

depleted mantle material are natural consequences being associated with partial 

melting and magma tapping (Wood, 1979). However, metasomatic activities 

associated with other igneous events that occurred in the local mantle prior to the 

well documented Early Cenozoic magmatism of this region could be an alternative 

explanation.  
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The occurrence of low-TiO2 sills in lavas of the Malinstindur and Enni formations 

that are dominated by high-TiO2 basalts (e.g. Søager and Holm, 2009) and of high-

TiO2 sills adjacent to low-TiO2 dykes and lavas occurring in the northern parts of the 

archipelago (e.g. Hald and Waagstein, 1991; Søager and Holm, 2011) may suggest 

that, unless some of the magmas that gave rise to these basalts experienced 

noticeable lateral transport, different degrees of partial melting occurred at the same 

localities but at different depths. This could in turn point to different sort of 

metasomatism at different mantle levels in these particular locations. 

As both fertile and depleted naturally occurring peridotites reported worldwide 

commonly display compositional variations (Dupuy et al., 1991; Grégoire et al., 

2003; Rampone et al., 2004; Workman and Hart, 2005; Lesnov et al., 2009), the 

results obtained from calculations/modelling on partial melting carried out in this 

chapter probably give reliable indications of relevant rock-forming processes, but 

slight uncertainties in quantification of these processes should be expected. 

 

4.6.8. Isotopic constraints on potential mantle source(s) 

If some of the variations in isotopic ratios observed in samples representing the sills 

of this study do not result from crustal contamination, they must point to some sort of 

isotopic heterogeneity in mantle sources to the primary melts that ultimately gave 

rise to these basalts. Relative isotopic enrichments of samples from this study are 

signified by systematic increases of 
206

Pb/
204

Pb, 
207

Pb/
204

Pb and 
208

Pb/
204

Pb ratios 

with increasing 
87

Sr/
86

Sr ratios and decreasing 
143

Nd/
144

Nd ratios respectively (Fig. 

4.18a-e). Most ordinary basalt samples (presumably not significantly affected by 

contamination) from the Faroe Islands plot slightly below the Northern Hemisphere 

Reference Line (NHRL) in a 
206

Pb/
204

Pb versus 
207

Pb/
204

Pb diagram whereas all 

samples plot slightly above the NHRL line in a 
206

Pb/
204

Pb versus 
208

Pb/
204

Pb 

diagram (Fig. 4.32). The close proximity of Pb isotope ratios representing the actual 

samples to ratios representing sources to N-MORB could perhaps point to a genetic 

link, but potential isotopic contributions from a primitive N Atlantic end-member 

mantle source (NAEM) reservoir (Ellam and Stuart, 2000) and/or from enriched 

sources of isotopic compositions comparable to HIMU, EM II or EM I reservoirs 

(Zindler and Hart, 1986; Hart, 1988) need some attention too (Fig. 4.32). The sample 

08-JMS-14 of the depleted Morskranes Sill (Red square with black outline) could 

potentially have developed from a source that possessed a Pb isotope composition 
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similar to that of N-MORB mixed with a source comparable to EM I, but the 

collective Pb isotopic compositions of the other sill samples do not seem to be in 

accordance with an origin from a N-MORB-like isotopic composition mixed with 

any of the enriched mantle reservoirs shown in Fig. 4.32. As all the sill samples apart 

from 08-JMS-14 of the Morskranes Sill define broadly linear trends between the 

NAEM and HIMU sources (Fig. 4.32), development of primary melts to these basalts 

by different degrees of isotopic enrichments of a NAEM source with e.g. HIMU-like 

material remains a theoretical possibility. While Ellam and Stuart (2000) argued in 

favour of Pb isotopic enrichment by the addition of lithospheric components into 

NAEM sources of the BTIP, Stracke et al. (2003) more specifically concluded that 

the spread in Pb isotopic compositions of Icelandic lavas mainly resulted from 

contamination of depleted mantle sources possessing Pb isotopic compositions 

comparable to those of picrites from Theistareykir, Iceland, with HIMU-like 

components, i.e. containing recycled oceanic crust. If a comparable isotopic 

enrichment process, which involved contributions from a HIMO-like source to 

potential NAEM-like primary melts to sills of the Faroe Islands, was active in Early 

Cenozoic times, increasing degrees of HIMO contribution could perhaps be 

expressed as: depleted source  Morskranes Sill  high-TiO2 sills  low-TiO2 

sills. The deviation of the sample 08-JMS-14 of the Morskranes Sill (red square with 

black outline) from the trend defined by the other sills in 
206

Pb/
204

Pb versus 

207
Pb/

204
Pb diagrams (Fig. 4.32a; Fig. 4.32a*) could in theory result from a slight 

involvement of a source similar to EM I, but as a similar association of this sample 

with an EM I reservoir is not observed in 
206

Pb/
204

Pb versus 
208

Pb/
204

Pb diagrams 

(Fig. 4.32b; Fig. 4.32b*), contributions from other isotopic sources seem to be 

needed in order to explain the Pb isotopes of the actual sample. The discussion above 

on trace element and REE characteristics of the sill samples in question suggested 

two main melting regimes as the main mechanism that generated distinct 

trends/clusters for high-TiO2 versus low-TiO2 sills, but slight differences in 

metasomatism or source rock compositions were also indicated by variations in e.g. 

Nb and Ta concentrations and slight positive versus negative anomalies of these. The 

relative enrichments in Pb isotopes displayed by the Streymoy Sill relative to e.g. the 

Eysturoy Sill as shown in Fig. 4.32 could be a potential result of an origin from a 

more metasomatised/enriched mantle source of the former sill as tentatively  
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Figure 4.32. a) and b) Sill samples as well as selected dykes and lava flows of the Faroe Islands 

straddle the NHRL line when plotted in Pb isotope diagrams. a*) and b*) Closer view of a) and b). 

Isotopic compositions of Northern Hemisphere Reference Line (NHRL), HIMU, EM II, and EM I are 

based on Zindler and Hart (1986); Hart (1988). Isotopic composition of North Atlantic end-member 

NAEM is from Ellam and Stuart (2000). See text. 

 

suggested previously. However, the observed differences in Pb isotopes between the 

Svínoy-Fugloy Sill and the Langaregn Sill as shown in Fig. 4.32 do not seem to be in 

accordance with an origin of these two sills from a completely uniform mantle source 

as might be suggested by multi element plots of these sills (Fig. 4.12c), but may 

point to a slightly heterogeneous source. Then again, these differences between their 

Pb isotopes do not preclude similar mechanisms in the sources to both of these two 

sills, as potential metasomatising/enrichment agents could themselves originate from 

slightly different sources. If the slight isotopic variations between most of the sills 

that possess gentle/steep negative REE slopes do indeed originate in mantle sources 

that were affected by enrichment processes, small-degree melts or fluids from some 

of the sources to the lavas/dykes of the Faroe Islands could be potential candidates, 

as these basalts possess a much wider range in Pb isotopic compositions compared to 

the sills in question (Fig. 4.15c; Fig. 4.15d). 

As the Morskranes Sill displays depleted signatures with respect to both trace 

elements (Fig. 4.12a) and REE (Fig. 4.13d), as well as showing depleted signatures 
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for some radiogenic isotopes (e.g. Fig. 4.18a), it seems reasonable to assume that its 

primary melts could have developed from a relatively depleted mantle reservoir, 

perhaps comparable in composition to the source of other depleted lavas/dykes of the 

Faroe Islands (e.g. red and yellow rhombuses in Fig. 4.18a and Figure 4.32). In 

theory, the marked differences in 
87

Sr/
86

Sr, 
143

Nd/
144

Nd and 
207

Pb/
204

Pb ratios 

between the two samples that represent the small Morskranes Sill could result from 

crustal contamination (See previous discussion), but source heterogeneity due to e.g. 

metasomatism remains an alternative explanation. A process with metasomatic 

enrichments of the mantle source of the Morskranes Sill with small-degree melts 

from mantle sources to basaltic lavas/dykes of the Faroe Islands or from sources 

displaying Pb isotopic compositions similar to those that produced basalts of other 

North Atlantic regions is not likely to explain the observed Pb isotopic range of this 

small sill, as none of these basalts display sufficiently large excess Pb isotopic ranges 

for both 
206

Pb/
204

Pb versus 
207

Pb/
204

Pb ratios and 
206

Pb/
204

Pb versus 
208

Pb/
204

Pb ratios 

relative to both these sill samples (Fig. 4.15c; Fig. 4.15d). 

Potential implications from similarities/covariance in Pb isotopes of the actual sills 

with those from other regions of the North Atlantic area e.g. Iceland, E Greenland, W 

Greenland and other basalts of the Faroe Islands (e.g. Fig. 4.15c; Fig. 4.15d) will be 

briefly discussed in chapter 5. 

 

4.7. Summary and concluding remarks 

4.7.1. Concluding remarks and summary on isotopic characteristics 

This chapter has dealt with relevant isotopes of the elements Sr, Nd and Pb 

representing basaltic sills of the Faroe Islands and these have been contrasted with 

isotopes of selected basement samples from NW Britain, the Rockall Plateau, E 

Greenland and other basalts (lavas/dykes) of the Faroe Islands as well as relevant 

isotopic mantle reservoirs. Due to the limited isotopic dataset on the sills of the Faroe 

Islands, it has not been possible to determine whether there exist isotopic variations 

within individual sills and the lack of Pb isotope data on the Kvívík Sill renders it 

impossible to examine whether the observed differences in Sr and Nd isotopic 

compositions between this sill and the geochemically identical Streymoy Sill are 

reflected by their Pb isotopic ratios too.  

It is unclear whether specific reservoirs from the literature like HIMU, EM I or EM 

II did have any bearing on the isotopic compositions of the high/low-TiO2 sills from 
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this study or if very slight crustal contamination played any role. The relatively tight 

clustering of all samples representing high/low-TiO2 sills in Sr versus Nd isotope 

ratio plots (Fig. 4.16a) seems to suggest that the primary magmas that gave rise to 

these intrusions could have been tapped from broadly similar (only slightly 

heterogeneous) mantle sources. A slightly relatively homogeneous mantle source for 

all investigated sills, apart from the Morskranes Sill, is also suggested by their fairly 

uniform Nb/Ta ratios averaging ~16.5 (Table 4.3). Hence, partial melting of a very 

slightly heterogeneous and isotopically depleted mantle source with Pb isotopic 

compositions not very different from that of N-MORB (Zindler and Hart, 1986) and 

DM (Saunders et al., 1988) could have produced the bulk of the high/low-TiO2 sills 

sills (Relatively LREE enriched) whereas the LREE-depleted Morskranes Sill 

probably originates from a more depleted mantle source with an isotopic composition 

that are closer to NAEM (Ellam and Stuart, 2000) or DMM (Zindler and Hart, 1986). 

The slight relative enrichments in 
87

Sr/
86

Sr and 
207

Pb/
204

Pb ratios between the 

samples 08-JMS-17 and 08-JMS-14 respectively of the Morskranes Sill might point 

to very slight contamination of these two samples by two different crustal sources. If 

true, such isotopic differences between two individual samples collected within short 

distances of the same small sill could in theory point not only to slight compositional 

heterogeneities in potential contamination sources, but may also indicate differences 

in the absolute ages of such sources. Consequently, potential assimilation of 

basement material by primary melts to the Morskranes Sill could have occurred at 

different stratigraphic levels, as the crust/lithosphere is expected to be isotopically 

stratified depending on ages of formation (e.g. Gariépy et al., 1983; Peate et al., 

2008). 

It is evident that the strongly enriched isotopic signatures of the 4 samples of silicic 

basaltic lavas utilised in this chapter probably originate from contamination with 

crustal material (Gariépy et al., 1983; Holm et al., 2001), but the entire range in 

isotopic compositions of these rocks cannot be recreated by contamination of 

ordinary basalts of the Faroe Islands with material possessing isotopic composition 

similar to any individual basement specimen from any of the neighbouring regions 

(Table 4.4). More likely, contamination of tholeiitic basalts with material originating 

at various lateral or vertical sections in an isotopically heterogeneous basement 

region resulted in the observed isotopic span of the contaminated silicic basalt 

samples. Contamination with crustal material comparable in Sr and Nd isotopic 
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composition to the average of the basement samples from the Rockall Plateau could 

explain the range in 
87

Sr/
86

Sr versus 
143

Nd/
144

Nd ratios of all these 4 specimens of 

contaminated silicic basalts, but contributions to the actual basalts of Pb isotopes 

similar to any combinations of basement material from this region would fail to 

account for the observed Pb isotopic compositions of any of the actual samples. In 

theory, assimilation of crustal rocks, displaying isotopic compositions similar to a 

combination of those representing the plotted basement samples of NW Britain, 

could explain the Sr and Nd isotopic compositions of all the 4 contaminated silicic 

basalt samples as well as potentially explaining the Pb isotopic compositions of two 

of these (red circle and triangle), but would fail to reproduce the isotopic 

compositions of any of these rocks when these are plotted in Pb versus Nd isotopic 

ratio diagrams. Contamination (~10 to ~ 20 %) of presumed uncontaminated basalts 

from the Faroe Islands with material possessing isotopic compositions resembling 

various combinations of basement samples from E Greenland could reproduce the 

entire Sr, Nd and Pb isotopic range of all the 4 samples of contaminated silicic 

basalts, but assimilation of material from two distinct basement sources would be 

required in order to explain the marked differences in 
208

Pb/
204

Pb ratios in particular 

between some of the contaminated silicic basalt samples (e.g. Fig. 4.21b*; Fig. 

4.21c*). As average Th/U ratios are much higher for mafic material relative to felsic 

rocks, i.e. ~2.75 and ~1.55 respectively (Haack, 1983), the noticeable higher 

208
Pb/

204
Pb ratios in 2 of these contaminated basalts relative to the other 2, could 

indicate mafic versus felsic contaminants. Alternatively, different ages (i.e. different 

stratigraphic levels) of assimilated material could be a potential explanation of these 

variations in 
208

Pb/
204

Pb ratios. 

 

4.7.2. Concluding remarks and summary on geochemical characteristics 

In this chapter it has been shown that the sills of the Faroe Islands are composed of 

tholeiitic basalts, which can be divided into three main groups according to their 

TiO2 contents where the large Streymoy Sill and the smaller Kvívík Sill define a 

low-TiO2 group in contrast to the large Eysturoy Sill, the Sundini Sill, the Langaregn 

Sill and the Svínoy-Fugloy Sill that all define a high-TiO2 group. The TiO2 

composition of the Morskranes Sill is positioned in between these two main groups. 

Comparable correlations also exist between most of the other major elements from 

these sills apart from SiO2 and MgO. The investigated sills also define three distinct 
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groups in terms of their trace elements including their REE where each group display 

REE configurations that resemble each of those that define basalt types 1, 2 and 3 

that have been reported from widespread regions of the NAIP (Kerr, 1995). The 

modelling carried out in this study suggest that observed differences in TiO2 contents 

for most sills as well as Sr and Eu anomalies can be explained by differences in the 

degrees of partial melting of their mantle sources in addition to modification of 

primary melts by fractional crystallisation of olivine and plagioclase and 

accumulation of plagioclase. Moderately positive and negative Nb and Ta anomalies 

displayed by some of the actual sills seem to suggest that their mantle sources could 

have been affected by different sorts of metasomatism. 

More specifically, it is suggested that the sills of the Faroe Islands developed in 

response to the petrogenetic processes outlined below and indicated in the simplified 

profile shown in Fig. 4.33. 

(1) Partial melting of moderately fertile and slightly metasomatised mantle material, 

taking place at depths and pressures corresponding to the upper limits of the 

spinel stability field and perhaps also approaching the lower limits of the garnet 

stability field could have generated the primary basaltic magmas that eventually 

gave rise to most of the saucer-shaped sills exposed in the Faroe Islands. 

Differences in the degrees of partial melting probably resulted in much of the 

compositional diversity displayed by the investigated intrusions, where low 

degrees of melting (7 to 8%) could explain the directly observable geochemical 

compositions of most high-TiO2 sills, while the measured geochemical 

compositions of the low-TiO2 sills that may be explained by higher degrees 

(~23%) of mantle melting. Also, ~4.5% partial melting of slightly fertile mantle 

material can reproduce the compositions of some of the very high-TiO2 dykes 

reported from earlier studies of the Faroe Islands. 

(2) Low degrees of partial melting (7 to 8%) of a moderately depleted mantle, 

occurring at depths and pressures corresponding to the upper limits of the spinel 

stability field can explain most of the measured depleted REE signatures that 

characterise the Morskranes Sill and some lava flows of the Enni Formation. 

Alternatively, lesser degrees of partial melting (4  1%) of more depleted mantle 

material occurring at similar depths can explain the REE compositions of these 

rocks. However, hybridisation of these latter low-degree melts with around 5 to 

10% of magmas having compositions broadly similar to those of some of the  
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Figure 4.33. The simplified profile summarises inferred petrogenetic processes during formation of 

the sills of the Faroe Islands. Vertical distances are drawn at arbitrary scales. a) Primary magmas to 

the Streymoy and Kvívík sills form in response to high-degree melting of a moderately fertile mantle, 

during ascent they experience fractional crystallisation of mainly olivine followed by net 

accumulation of plagioclase at depths of <~18 km prior to the ultimate emplacement. b) Primary 

magmas to the Eysturoy and Sundini sills form in response to low-degree melting of a moderately 

fertile mantle, during ascent they experience fractional crystallisation of mainly olivine followed by 

fractional crystallisation of plagioclase at depths of <~18 km prior to the ultimate emplacement. c) 

The processes that generated the Svínoy-Fugloy and Langaregn sills were probably broadly similar 

those envisaged under b), but with a slightly different composition of moderately fertile mantle 

material and perhaps lesser degrees of plagioclase fractionation. d) Primary magmas to the 

Morskranes Sill form in response to low-degree melting of depleted mantle material. During ascent 

these magmas experience fractional crystallisation of mainly olivine perhaps probably followed by by 

some plagioclase fractionation. Slight hybridisation with more fertile liquids and very minor amounts 

of contamination with crustal material could have occurred during ascent of these depleted melts. The 

garnet stability field is from Robinson and Wood (1998) and the compilation of Presnall et al. (2002). 

The plagioclase stability field is from Borghini et al. (2010) and the compilation of Presnall et al. 

(2002). The thickness of the lava pile is from Rasmussen and Noe-Nygaard (1970); Waagstein (1988); 

Passey and Bell (2007); Passey and Jolley (2009). The inferred crustal thickness and crustal 

lithologies are from Bott et al. (1974) and Richardson et al. (1998). 

 

high-TiO2 sills seems to be a requirement in order to fully explain the observed  

LREE compositions of these depleted basalts. 

 (3) Fractional crystallisation of olivine (15  2 wt%) probably modified parental 

melts to most of the sills from this study. The changes in REE concentrations 
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associated with this amount of olivine fractionation would correspond to 1 – 1½ 

% change in the degree of partial melting, i.e. all calculated partial melting 

percentages (Fig. 4.24) should probably be adjusted upward by 1 – 1½%. 

Plagioclase fractionation (~20 wt%?) from parental melts to many of the high-

TiO2 sills best explain the observed negative Eu and Sr anomalies in these 

intrusions as well as their relative depletion in Al2O3 and relative enrichment in 

Fe2O3. It is noteworthy that changes in REE concentrations associated with 

fractional crystallisation of ~20 wt% plagioclase, in addition to ~15% olivine 

fractionation, from magmas having compositions broadly similar to the high-

TiO2 sills from this study, would correspond to 2 or 3% change in the degree of 

partial melting, i.e. the partial melting percentages calculated for the high-TiO2 

sills (Fig. 4.24a) can probably be adjusted upwards to 10  2%. 

(4) The positive Eu and Sr anomalies displayed by samples representing the low-

TiO2 sills, their relative enrichment in Al2O3 and relative depletion in Fe2O3 in 

addition to the ever-present plagioclase phenocrysts are best explained by net 

accumulation of plagioclase (~20 wt%) into their parental melts. Around 20 wt% 

plagioclase cumulation, in addition to ~15% olivine fractionation,  would result 

in a modification of REE concentrations in melts having compositions broadly 

similar to the low-TiO2 sills from this study that correspond to a 2 or 3% change 

in partial melting, i.e. the partial melting percentages calculated previously for 

the low-TiO2 sills (Fig. 4.24a) can probably be adjusted downwards to 20  2%. 

(5) Parental magmas to some parts the Morskranes Sill may have experienced very 

slight crustal contamination in the course of their evolutions. 
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Chapter Five 

 

5. Synopsis 

 

5.1. Prelude to chapter five 

The current study on the sills of the Faroe Islands offers a good opportunity to 

compare, contrast and evaluate the obtained results/interpretations, as presented in 

preceding chapters, with established theories and propositions from previous studies. 

The previous interpretations of particular physical features that crop out at various 

scales within the investigated sills (chapter 3) have led to proposals of applicable 

emplacement theories as well as measurements of post magmatic stress/deformation 

orientations within the area in question. These findings can be contrasted and 

evaluated against emplacement theories established previously for sills occurring in a 

number of locations worldwide, where the main points from the results obtained in 

this study may be compared to interpretations of similar features of sills from these 

earlier works. Also, the observed deformation characteristics within the sills from the 

current study can be compared to other structural works on basalts occurring within 

the actual region in an attempt to establish the status of these deformation structures 

in a regional context. 

The geochemical and isotopic parts of this work (chapter 4) offer a wider range of 

potential outcomes and some of the proposed petrogenetic processes that occurred at 

depths in the mantle/crust could thus be interpreted slightly differently if e.g. other 

partition coefficients were used in the trace element modelling or if different values 

of mantle sources for the same modelling were chosen. Similarly, the general 

scarcity of isotope analyses representing ancient basement samples from NW Britain 

and the Rockall Plateau in particular could mean that the isotopic data from these 

regions being used in this study are not entirely representative of ther actual 

basement make-up. However, based on the assumption that the geochemical/isotopic 

interpretations of this study provide fairly reliable indications on the petrogenetic 

processes that gave rise to the sills in question, these results can be evaluated and 

contrasted with previous studies on flood basalts from Large Igneous Provinces in 

general (e.g. chapter 2) and also evaluated in the context of earlier studies on the host 

basalts of the Faroe Islands. 
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In this chapter, the proposed sill emplacement theory is briefly contrasted against 

earlier models of sill intrusions into sedimentary strata and potential applications of 

these models during sill emplacement into different settings are briefly considered 

(5.2). The structural measurements from chapter 3 are compared/contrasted against 

published results on tectonic events within the actual area (5.3). Potential links 

between earlier basaltic magmatism in the actual region and sill geochemistry is 

evaluated using trace element compositions, (5.4). Isotopic compositions of sills and 

dykes/lavas of the Faroe Islands together with earlier models on dykes/lavas from 

this region are contrasted against Icelandic data and earlier theories on these (5.5). A 

brief outline on potential future research topics, which could test many of the 

inferences made in this work complete this Ph.D. thesis (5.6). 

 

5.2. Assessment of sill emplacement mechanisms 

Despite the many similarities between the saucer-shaped sills from this study and 

sills intruded into sedimentary successions worldwide e.g. in terms of their sizes, 

thicknesses and general geometries, some aspects of the sill emplacement 

mechanisms proposed in this thesis are at odds with some of the interpretations 

proposed in earlier studies on the subject. Some of the major issues and potential 

differences regarding emplacement mechanisms and developments of saucer-shaped 

sills, being discussed in chapter 3, include: i) Propagation directions and geometries 

of developing sills are governed by differences in the mechanical properties of 

stratified host-rocks (Bradley, 1965; Pollard, 1973; Kavanagh et al., 2006; Thomson, 

2007; Burchardt, 2008; Menand, 2008; Gudmundsson, 2011). ii) Sill climbing is 

initiated and maintained in response to uplift, folding and perhaps also faulting of 

entire sill overburdens (Pollard and Holzhausen, 1979; Fialko, 2001; Galland et al., 

2003; Malthe-Sørensen et al., 2004; Hansen and Cartwright, 2006; Thomson, 2007; 

Goulty and Schofield, 2008; Galland et al., 2009; Galland, 2012). iii) 

Processes/mechanisms at more local scales, associated with small-scale inflation 

within the developing sills themselves, explain most characteristics observed in these 

kinds of intrusions, as tentatively proposed in chapter 3. iv) Saucer-shaped sills are 

fed by central feeders (Rasmussen and Noe-Nygaard, 1970; Malthe-Sørensen et al., 

2004; Thomson, 2007) or by peripheral/marginal feeder dykes/sheets (Francis, 1982; 

Chevallier and Woodford, 1999; Goulty, 2005). 
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It is not uncomplicated to determine with any degrees of certainty, which of these 

mechanisms could have been in action during emplacement of the actual sills and 

which should be rejected alltogether, as some of these could have contributed to local 

characteristics within the actual intrusions. The scenario under i) is well documented 

from naturally occurring sills emplaced in sedimentary successions and from 

numerical and mechanical experiments, while sills intruded at sub-horizontal rock 

interfaces in volcanic settings are best documented in Iceland. The concordant 

Njardvik Sill (intruded at unknown depth and fed by peripheral inclined sheets) in 

NE Iceland was emplaced at the sub-horizontal interface between a rhyolitic unit and 

underlying basaltic lava flows (Burchardt, 2008), while another concordant basaltic 

sill (intruded at ~1200 m depth and fed by central sub-vertical dykes) from E Iceland 

was emplaced at the interface between sub-horizontal lava flows and tuff horizons 

(Gudmundsson, 2011). Althoug these two sills are intruded into settings comparable 

to those of the Faroe Islands, the only feeder/sill parts of these that bear resemblance 

to equivivalent intrusive systems within the investigated area are the inclined feeder 

sheets to the Njardvik Sill. It should be noted however, that these two sills from 

Iceland never reached scales, which are comparable to those typical for the sills of 

the Faroe Islands, and so may not give a correct picture of large-scale sill intrusion in 

this kind of settings? With respect to climbing of sheet intrusions between sub-

horizontal layers of presumed different competences (Thomson, 2007; Menand, 

2008), the best example from this study is displayed by the inferred feeder sheet to 

the NW segment of the Streymoy Sill (Fig. 3.14a), while the best examples from the 

actual sills themselves are displayed, where their margins seem to have been guided 

along sub-vertical dyke/fracture systems locally at high stratigraphic levels (Fig. 

3.3a; Fig. 3.3f). There are no clear field evidences to suggest that the sub-horizontal 

basal sections of the investigated sills should primarily have been emplaced at 

interfaces between sub-horizontal layers of contrasting competences; rather the basal 

sections of these sills commonly cut such layers at very low angles. The scenario 

under ii) could in theory be responsible for the features associated with the larger 

sills from this study in particular, as these two intrusions undoubtedly have displaced 

their entire overburdens in sub-vertical directions (Fig. 3.24). Also, the linear dip of 

the discordant NE rim of the NW segment of the Streymoy Sill (Fig. 3.14a) could in 

theory point to abrupt tensile failure above a propagating intrusive margin due to sill 

inflation, in a similar fashion that what was described by Goulty and Schofield 
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(2008). Then again, apart from this solitary example, all exposed parts of the 

investigated sills display continuous and gradual upward-curving geometries from 

base to rim (Fig. 3.6). Moreover, there are no field evidences to suggest any 

systematic doming and associated sub-vertical fracturing of sill overburdens in 

response to sill inflation, as might be expected in arched semi-brittle basaltic 

overburden material (e.g. Pollard and Johnson, 1973). Obviously, the exact 

mechanism of fracture propagation, during evolution of embryonic sills, is a 

pertinent issue that need to be evaluated too. The splitting of host-rocks along 

extension fractures may occur as single fractures, as brittle faulting or as ductile 

faulting (Pollard, 1973). The two latter fracturing styles or a combination of these 

typically result from the propagation of blunt sill margins that result in multiple 

jointing of host-rocks around propagating sill tips (Pollard, 1973), while single 

fractures, in accordance with their very nature, are not expected to leave much traces 

in their host-rocks. As host-rocks immediately at intrusive margins to sills from this 

study do not appear to be significantly fractured/faulted, propagation via single 

fractures may have been the dominating mechanism during growth of these 

intrusions, as suggested in chapter 3. This inference is supported by the wedge-

shaped terminations of protrusions and sills from this study (Fig. 3.8; Fig. 3.9a). If 

most of the smaller sills of this study indeed represent typical early stages of sill 

evolution in volcanic settings, as tentatively suggested in chapter 3, the slightly 

saucer-shaped geometries that characterise all parts these intrusions (Fig. 3.4f; Fig. 

3.5) may be an argument in favour of the small-scale intrusion model under scenario 

iii) above, as tentatively proposed in chapter 3. This inference is chiefly based on the 

fact, that although the thinnest parts of these sills display clear upward-curving 

geometries (e.g. left hand side in Fig. 3.4f), no clear evidences of uplifts/folding are 

detected above these, as should be expected according to scenario ii) above.  

The principal differences between the scenario, under ii) and that under iii) above, 

are the distinct scales and zones of elastic deformation within host-rocks to sills in 

each of these scenarios. Doming-folding of free surfaces above inflating large sills or 

laccolithic intrusions is expected to result in large-scale elastic stretching, oriented 

sub-parallel to the upper contacts of the developing intrusions, within the 

overburdens (Pollard and Johnson, 1973; Pollard and Holzhausen, 1979; Goulty and 

Schofield, 2008) (Fig. 5.1a). The model proposed in this study would involve small-

scale sill inflation and elastic stretching within their overburdens that are sub-parallel 
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Figure 5.1. The simplifyed cartoons portray potential effects of sill inflation/dilation on their 

overburdens. a) Elastic deformation/stretching of overburden occur in planes sub-parallel to sill 

contacts during large-scale inflation and doming of the free surface. b) Same as in a), but with 

associated sub-vertical elastic compression components that affect host rocks relatively close to sill 

contacts during small-scale sill inflation. Large double-sided arrows indicate relative elastic extension 

while vertical double arrow sets in b indicate relative elastic compression. See text. 

 

to intrusive contacts, in addition to elastic compression of host-rocks, being oriented 

broadly orthogonal to sill contacts (Fig. 5.1b). Hence, the capacity of sill 

overburdens to compress elastically in sub-vertical directions prior to wholesale 

doming/folding will in part control whether the intrusion style under scenario ii) or 

that under scenario iii) will prevail during sill climbing. Systematic elastic 

compaction/thinning of strata on either side of developing sill intrusions, the 

magnitude of which decrease with increasing distance from sill contacts, in response 

to compressive forces from sill dilation, have also been reported in earlier studies 

(Pollard, 1973, his Fig. 26c; Pollard and Johnson, 1973, their Fig. 18b). However, the 

single most important mechanism, required to generate the inferred asymmetries 

necessary for sill climbing to occur in the model from this study, would still be the 

systematic depth-dependent variations of Young’s modulus in wet basaltic crust (Fig. 

3.29), as reported by Schultz et al. (2006). The most obvious differences and 

similarities between emplacement mechanisms, inferred under scenarios ii) and iii) 

above, can briefly be outlined as follows: 

In scenario ii), the entire sub-horizontal basal sill section is formed prior to any 

noticeable inflation and associated displacement of surrounding sedimentary strata 

(Fig. 5.2a). The subsequent asymmetrical large-scale sill inflation primarily affects 

sedimentary strata in the overburden, causing it to dome/fold all the way to the free 

surface (Fig. 5.2b). The stretching of sedimentary layers within the domed 

overburden will in turn generate local asymmetries of least principal stress axes 3 at 

sill margins, thus abruptly initiating sill climbing (Fig. 5.2c). 
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Figure 5.2. The simplified profiles portray two styles of sill emplacement mechanisms (a, b and c 

versus a*, b* and c*). Vertical/horizontal distances are not drawn at realistic scales. a) A thin sill 

propagates in sedimentary strata without displacing surrounding layers. a*) A thin sill propagates in 

volcanic strata thus symmetrically displacing surrounding layers. b) Wholesale uplift/folding of 

overburden in response to large-scale asymmetrical sill inflation. b*) Disproportional displacement of 

volcanic strata surrounding a sill, experiencing asymmetrical small-scale inflation. c) Sill starts 

climbing due to asymmetries in 3 at propagating margins, triggered by large-scale asymmetrical 

inflation. c*) Sill starts climbing due to asymmetries in 3 at propagating margins, triggered by small-

scale asymmetrical inflation. a), b) and c) are developed from profiles presented by Pollard and 

Holzhausen (1979); Malthe-Sørensen et al. (2004) and Goulty and Schofield (2008) while a*), b*) and 

c*) are developed from profile presented by Pollard and Johnson (1973). Double-sided arrows indicate 

sizes and directions of relative elastic extension triggered by sill inflation. Dashed lines in c indicate 

potential fractures/faults while horizontal dotted lines indicate initial planes of sill 

emplacement/propagation. “Damage zone” refer to the sub-vertical extent of folding/doming. See text. 

 

In scenario iii), an embryonic sill, intruded into volcanic strata, immediately start to 

inflate slightly and displace its host rocks, but the inflation is not large enough at first 

to generate any large damage zones, and hence no noticeable effects from differences 

in Young’s modulus, on either side of intrusions (Fig. 5.2a*). A sill, intruded into 

volcanic strata, experience small-scale asymmetric inflation due to variations of 
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Young’s modulus, thereby displacing host strata on either side disproportionally, i.e. 

the damage zone above the intrusion is larger than the damage zone below it (Fig. 

5.2b*). The disproportionate sill inflation generates relatively larger stretching of 

volcanic strata above the intrusion than below it, thus resulting in local asymmetries 

of least principal stress axes 3 at sill margins, which initiate gradual sill climbing 

(Fig. 5.2c*). 

As is indicated in Fig. 5.2, that the model from scenario ii) and the model proposed 

in this thesis differ mainly with respect to the scales at which sill inflation initiate sill 

climbing and with respect to the elastic/mechanical properties of their host rocks. As 

scenario ii) have been reported from sedimentary settings compared to the volcanic 

settings for scenario iii) from this study, the inferred differences in their intrusion 

styles could just reflect the variations in mechanical properties of sedimentary versus 

crystalline rock suites. Also, the extent of the damage zones on both sides of an 

inflating sill (e.g. Fig. 5.2) will determine the differences in average values of 

Young’s modulus above and below the actual intrusion, as is indicated in Fig. 3.29. 

Some sorts of experiments may be needed in order to further constrain these theories. 

With respect to scenario iv) above, the asymmetrical geometries displayed by some 

of the smaller sills of the Faroe Islands (Kvívík, Morskranes and Sundini sills), 

characterised by very thin basal sections that gradually give way to much thicker 

inclined rims, may at a first glance appear to be in accordance with the early stages 

of intrusion processes that are initiated from marginal feeders at inclined sill margins, 

in a similar manner to that proposed earlier for sills being intruded into sedimentary 

strata (e.g. Francis, 1982; Chevallier and Woodford, 1999). However, as it has been 

established in the course of this study, that these smaller asymmetric sills probably 

were fed from central feeders via their basal sections, intrusion processes broadly 

similar to those suggested by these two authors are not likely to have controlled the 

emplacements of the actual saucer-shaped sills. 

The question whether aspects of the emplacement theories proposed in this thesis 

also could be applicable to some sills intruded into sedimentary successions remains 

an interesting, but unanswered possibility at the present time. Nevertheless, seismic 

profiles showing images of saucer-shaped sills from a number of offshore 

sedimentary basins worldwide commonly indicate gradual and continuous upward-

curving geometries for some of these intrusions (e.g. Hansen et al., 2004; Hansen and  
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Figure 5.3. a) A small/thin irregular sill, which was intruded into a sedimentary sequence within the 

basaltic lava pile of the Faroe Islands, displays gradual and continuous upward-curving geometry 

toward both ends. b) A thin sill (segmented?), being intruded into sedimentary successions within the 

Huab Basin, Namibia, displays gradual and continuous upward-curving geometry from two sides 

toward a common point. Yellow dotted lines on both images indicate lower sill contacts. Red dotted 

lines indicate extrapolated continuations of lower sill contacts. Area enclosed by the densely dotted 

elliptic line could be a potential site of other inclined sills? See text. 

 

Cartwright, 2006; Rocchi et al., 2007), i.e. these features are in accordance with 

geometries displayed by all the sill intrusions from this study. Direct evidences of 

gradual and continuous upward-curving geometries displayed by small mafic sills 

intruded into sedimentary strata can be observed in some onshore outcrops found in 

the Faroe Islands and in the Huab Basin, Namibia (Fig. 5.3). It is not known at which 

crustal depths the sills in the Huab Basin (Fig. 5.3b) were intruded, but field 

relationships suggest that some of the irregular small sills of the Faroe Islands (Fig. 

5.3a) were emplaced at very shallow levels. The curved geometries displayed by all 

parts of these two small sills seem to suggest that the stress fields around their 
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margins were asymmetrical during all stages of propagation. Vertical differences in 

compressibility (Young’s modulus) of host-rocks on both sides of these intrusions 

could potentially have resulted in the inferred continuous stress asymmetries, but 

continuous uplifts of entire overburdens at infinitesimal intervals immediately above 

the propagating edges of these intrusions during emplacements also remains an 

alternative explanation. 

 

5.3. Sill deformation structures in a regional context  

Faults and fractures are conspicuous features within many of the saucer-shaped sills 

of the Faroe Islands and in host-rocks adjacent to these. Measurements have been 

done on some of the most prominent/visible of these deformation structures, but as 

the current project is not aiming at structural interpretations in particular, features 

that would have been detected in a more extensive structural study may not have 

been recorded in the course of this work. Relative to the actual sills the recorded 

deformation structures could have been produced by syn-magmatic and/or post-

magmatic processes (chapter 3). Many of the sub-vertical structures/displacements in 

host-rocks immediately at sill contacts (e.g. Fig. 3.23) probably originate from 

processes related to the emplacements of these intrusions, but deformation structures 

within the sills themselves (e.g. Fig. 3.24; Fig. 3.25) can only be grouped according 

to their relative ages. As absolute ages have not been determined on any of these 

intrusions at the present time, establishments of potential correlations between 

measured structures/features observed within these sills and measurements and 

interpretations of comparable structures recorded outside these sills during earlier 

studies may help to ascertain their status in a local or regional context.  

A recent comprehensive structural study on the basalts of the Faroe Islands has 

pointed to the occurrence of a broadly E–W directed regional shortening event at ~55 

Ma, which also affected some of the saucer-shaped sills in the actual area (Walker et 

al., 2011, stage 4 in their Fig. 14b). The broadly WNW–ESE directed reverse 

movements recorded in the Streymoy Sill in the course of this study (e.g. Fig. 3.26) 

seems to be in accordance with this compressional event and the same seems to be 

the case for the broadly E–W directed pervasive fracturing/jointing observed within 

most sills (e.g. Fig. 3.25). As extrusion of the uppermost parts of the lava pile of the 

Faroe Islands (the Enni Formation) took place at ~55 Ma. (Storey et al., 2007), 

deformation of some of the sills of the Faroe Islands by the recorded E–W shortening 
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event would mean that these were emplaced shortly following the cessation of 

extrusive activity in the area, if the age estimate of ~55 Ma for this deformation 

episode is reliable within reasonable margins. 

The deformation phase involving broadly NW–SE directed extension, inferred to 

have generated sub-vertical NE–SW trending faults/fractures in some of the 

investigated sills (e.g. Fig. 3.25), would be in agreement with the direction of 

minimum horizontal stress suggested to have occurred in the actual region during an 

estimated time span from chrons 24 to 21, i.e. ~55 to ~48 Ma (Geoffroy et al., 1994, 

their Fig. 5c) as well as corresponding to more recent interpretations of extension in 

the same area estimated at ~48 Ma (Walker et al., 2011, stage 5 in their Fig. 14c). If 

this recorded NW–SE directed extension event at ~48 Ma or earlier indeed produced 

the observed NE–SW faults/fractures observed within the actual sills, additional 

deformation episodes that must have occurred subsequent to ~48 Ma resulted in: i) 

strike-slip movements along NE–SW trending sub-vertical fractures that produced 

fibre lineation (Fig. 3.24c), ii) overprinting of these lineation features at an even later 

stage by E–W directed strike-slip movements in the sub-horizontal plane (Fig. 3.24c) 

and iii) strike-slip movements along E–W trending sub-vertical fractures that resulted 

in slight sinistral displacements of intersecting NE–SW trending sub-vertical 

fractures (Fig. 3.24b). Previous studies have argued in favour of an Oligocene N–S 

directed compressional event to the east of the Faroe Islands (Boldreel and Andersen, 

1998) and a single WNW–ESE extensional pulse in areas around and within the 

Norwegian Sea in Oligocene–Miocene times (Doré et al., 1999) while other studies  

 

 

Figure 5.4. a) N–S directed Oligocene compression and associated transpression generates sinistral 

strike-slip movements in reactivated E–W trending fractures. b) Minimum E–W directed horizontal 

stress from N–S directed Oligocene shortening result in N–S trending sub-vertical normal faults. c) 

NW–SE directed Miocene compression/transpression generates dextral strike-slip movements in 

reactivated NE–SW trending fracture. Full black arrows indicate regional compression. Grey arrows 

indicate minimum horizontal stress. One sided arrows indicate strike-slip movements. See text. 
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have suggested an episode with Miocene NW–SE oriented compression in the region 

around and within the Faroe Islands (Boldreel and Andersen, 1998; Walker et al., 

2011, stage 6 in their Fig. 14d). It is unclear whether the inferred Oligocene–

Miocene extensional pulse (Doré et al., 1999) could have affected the region 

encompassing the Faroe Islands. However, local sinistral transpression from the 

suggested N–S directed Oligocene compression event could have reactivated some 

E–S trending fractures within some of the investigated sills (Fig. 5.4a), N–S trending 

normal faults occurring at some inclined sill margins could potentially have formed 

in response to the reported Oligocene N–S compression (Fig. 5.4b), although local 

sagging could be an alternative explanation. The Miocene NW–SE oriented 

compression event could have resulted in local dextral transpression and reactivation 

of E–W trending fractures, thus producing dextral movements in some sub-vertical 

specimen of these (Fig. 5.4c). The slip movements that produced the E–W directed 

fibre lineation observed in some sub-horizontal fractures may be related to one of 

these events, they could also result from a later regional event has not been recorded 

yet or they may have a more local origin. 

 

5.4. Evaluation of sill geochemistry in a wider framework 

The mantle/lithosphere in many regions of the North Atlantic Igneous Province 

(NAIP) could have been affected by the complex geological history of this part of the 

northern hemisphere during tectonic/igneous events that preceded the bulk of 

magmatism that eventually gave rise to the Early Cenozoic igneous products 

encountered in this province. Such potential effects on the mantle/lithosphere could 

result from contamination with recycled (subducted/delaminated) crustal material, 

from various sorts of mantle metasomatism and/or from earlier melting events that 

may have resulted in compositional heterogeneities in the mantle/lithosphere and 

lithospheric weakening (chapter 2). Previous theories on basalt petrogenesis within 

the NAIP have suggested melt formation from a variety of potential sources 

including mantle plumes of various sizes and depths of origin and/or upper mantle 

sources possessing various degrees of heterogeneities with respect to both rock 

compositions and/or fluid contents (chapter 2; chapter 4). 

The inferred petrogenesis of the sills from this study by melting of a variously 

metasomatised sub-continental lherzolitic mantle (chapter 4; see also Fig. 2.4c) is at 

odds with earlier theories that argue in favour of magma supplies from a deep-rooted  
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Figure 5.5. a) Representative low-TiO2 dykes of the Faroe Islands (coloured lines) display strong 

depletion in Nb and enrichment in Ta relative to La and Ce whereas equivalent lavas (bold grey line) 

are moderately depleted with respect to Nb and Ta. Shaded field represents low-TiO2 sills. b) 

Representative intermediate-TiO2 dykes from the same region display strong enrichment in Ta and 

slight enrichment in Nb for some samples relative to La and Ce. Shaded field represents high-TiO2 

sills. c) Samples representing high-TiO2 dykes from the actual area display Ta and Nb characteristics 

relative to La and Ce that are broadly similar to those of the intermediate-TiO2 dykes while equivalent 
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lavas (bold grey line) are moderately enriched in these elements. Shaded field represents high-TiO2 

sills. Normalising values are as in Fig. 4.12. See text. 

 

mantle plume during formation of lavas/dykes of the Faroe Islands (Holm et al., 

2001; Søager and Holm., 2011; see also Fig. 2.4a).  

The sills from this study are generally not very different from most of the (older) 

basaltic dykes/lavas of the Faroe Islands with respect to major element compositions 

(Fig. 4.10). Comparisons of trace elements representing sills from this study with 

representative lava/dyke samples from the actual area as presented in multi-element 

diagrams normalised to primitive mantle values (Sun and McDonough, 1989), reveal 

substantial differences between trends representing low-TiO2 sill samples and those 

representing low-TiO2 dykes (Fig. 5.5a) whereas high-TiO2 sills display trends that 

are broadly similar to those of many samples from the intermediate-TiO2 and high-

TiO2 dykes although the overall concentrations in the actual elements in sills versus 

dykes may differ somewhat (Fig. 5.5b; Fig. 5.5c). Low-TiO2 lavas from the actual 

region display overall lower concentrations in their incompatible elements relative to 

the sills (Fig. 5.5a) while high-TiO2 sills and lavas display broadly similar trace 

element characteristics (Fig. 5.5c). Some of the most notable differences in trace 

element compositions between sills and dykes irrespective of their TiO2 contents 

include their relative Nb and Ta concentrations, where those representing the sills 

show relatively flat normalised trends compared to relatively steep positive slopes for 

these two elements in most of the normalised dyke samples (Fig. 5.5). The Nb/Ta 

ratios in the low-TiO2 dykes range from 6.75 to 13.90 whereas ratios for these 

elements range from 10.75 to 14.60 in dykes with high and intermediate TiO2 

compositions (Fig. 5.5). Only the Morskranes Sill displays a comparable low Nb/Ta 

ratio of ~14.7 whereas all the other investigated sills display relatively uniform 

slightly super-chondritic ratios with average values of ~16.5 (Table 4.3). The lavas 

shown in Fig. 5.5 display Nb/Ta ratios (16.10 – 16.25) that are broadly similar to 

those of most sills from this study. The wide range in Nb/Ta ratios displayed by the 

dykes may point to mantle sources that are significantly more heterogeneous 

compared to the mantle sources to most of the sills in question. As fractionation of 

Nb versus Ta towards lower Nb/Ta ratios commonly is interpreted to occur in 

response to processes associated with Ti-bearing minerals such as rutile and the 

subduction of oceanic crust (e.g. Münker, 1998; Xiong et al., 2005), the low Nb/Ta 



 

204 
 

ratios in many basaltic dyke samples from the Faroe Islands could reflect the 

presence of components originating from ancient recycled oceanic crust or a mantle 

wedge. At a first glance, the large differences in Nb/Ta ratios for sills versus local 

basaltic dykes seem to suggest that the potential metasomatism inferred to have 

influenced the mantle sources to most sills from this study was not significantly 

affected by previous local Early Cenozoic basaltic magmatism, like it is tentatively 

suggested in chapter 4. However, as the ratios of these two elements in both high-

TiO2 and low-TiO2 lava samples from the actual area resemble those of equivalent 

sills (Fig. 5.5a; Fig. 5.5c), lavas and sills could originate from common sources, or 

the fluids originating from the lava sources may have metasomatised the sill sources. 

It is puzzling that most high/intermediate/low-TiO2 basalt samples from the study of 

Holm et al. (2001) display Nb/Ta ratios markedly different from those obtained in 

the study of Søager and Holm (2011) and those of the current study, but it is unclear 

whether potential differences in analytical techniques could have played any role in 

yielding these contrasting results. If the inferred mantle metasomatism originated 

from sources other than local magmatism this could point to the activities of other 

geological events within this part of the North Atlantic area prior to the igneous 

activity that generated the local lava pile (chapter 2). If mantle sources to both 

sills/lavas and dykes indeed were contaminated/enriched by different mantle 

processes being linked to previous tectonic/igneous events and perhaps also to 

recycled material from earlier episodes with crustal subduction or delamination, the 

complex geological history of the North Atlantic region could have imposed control 

on some of the geochemical signatures observed in Early Cenozoic igneous products 

of the Faroe Islands. 

A mechanism with production of high-TiO2 and low-TiO2 sills by low and high 

degrees of partial melting respectively, as proposed for sills from this study, would 

be in accordance with results from earlier studies on basalts from E Greenland and 

the Faroe Islands, but it would be at odds with previous studies suggesting 

continuous replenishment/tapping/fractionation (RTF) as the main process that 

resulted in the generation of high-TiO2 basalts from low-TiO2 basaltic magmas in 

Early Cenozoic basalts of W Greenland (Larsen and Pedersen, 2009). A similar 

evolution of high-TiO2 sills in the Faroe Islands by RTF from low-TiO2 magmas 

could explain much of the differences in trace element and REE concentrations 

between these two basalt groups. However, as Nb and Ta are not noticeably 
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fractionated relative to e.g. La and Ce during partial melting to produce basalts or 

during fractional crystallisation of typical basaltic minerals (e.g. Fig. 4.31a; Fig. 

4.31b), it is not likely that the moderately negative Nb and Ta anomalies in low-TiO2 

sills within the actual region could have developed into the moderately positive Nb 

and Ta anomalies that characterise most of the high-TiO2 sills from this study by 

RTF processes (e.g. Fig. 4.12). 

 

5.5. Evaluation of isotope compositions in a wider framework 

The very limited amount of isotopic data from the current work renders it 

problematic to be conclusive about possible pre-magmatic developments in potential 

mantle sources, but based on the observed characteristics a few inferences can be 

made. As the 
207

Pb/
204

Pb versus 
208

Pb/
204

Pb ratios of sill samples from the Faroe 

Islands are encompassed by fields that represent ratios of these isotopes in 

basalts/picrites encountered in lavas from Iceland and dykes/lavas exposed in the 

Faroe Islands (Fig. 5.6), previous interpretations on source characteristics from these 

regions may be pertinent to the current study.  

Holm et al. (2001) proposed that the development of Pb isotopic variations among 

presumed uncontaminated picritic/basaltic magmas of the Faroe Islands originated 

from three main mantle components being a Faroe Islands main plume source, a 

depleted plume source and a high 
206

Pb/
204

Pb ratio plume source (Fig. 5.6). More 

specifically, they suggested the derivation of low-TiO2 magmas from the depleted 

mantle source, the derivation of high-TiO2 magnesian lavas from mixtures of this 

depleted source with a high 
206

Pb/
204

Pb ratio source and the derivation of basaltic 

high-TiO2 dykes from the main Faroe Islands plume component (Fig. 5.6). Holm et 

al. (2001) used Pb isotopic compositions of low-TiO2 picrites to define the isotopic 

composition of their inferred depleted mantle source, but the Pb isotopic range of 

these picrites also reach values defined by average 
207

Pb/
204

Pb ratios of Theistareykir 

basalts and NAEM (Figure 5.6). Low-TiO2 basalts from the study of Holm et al. 

(2001) mostly plot adjacent to average values of Theistareykir/NAEM and their main 

plume component. Isotopic compositions of the basaltic high-TiO2 dykes mostly 

straddle the inferred main Faroe Islands plume source (Holm et al., 2001). Based on 

the assumption that crustal contamination was insignificant during evolution of most 

basalts from the Faroe Islands, Holm et al. (2001) further suggested that their 

proposed Faroe Islands main plume source and depleted plume source were not  
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Figure 5.6. Holm et al. (2001) invoked a three-component model in order to explain the Pb isotopic 

compositions of dykes/lavas of the Faroe Islands. Large octagons indicate their proposed end-member 

mantle sources while dashed line points towards their inferred crustal contaminants. Light grey shaded 

field indicates Pb isotopic ratios of dykes/lavas of the Faroe Islands (Holm et al., 2001) while darker 

grey shaded field indicates Pb isotopic ratios of high-TiO2 and low-TiO2 lavas from the same area 

(Søager and Holm, 2011). Red and grey outlines indicate isotopic data from Iceland and Reykjanes 

Ridge respectively (Mertz and Haase, 1997). Dotted circle represent average isotopic data from 

Theistareykir, Iceland (Mertz and Haase, 1997; Stracke et al., 2003). Arrows labelled KS 60 and 

229642 indicate directions to isotope ratios of these two basement samples from E Greenland. See 

text. 

 

represented in later Icelandic and Reykjanes Ridge rocks/magmas, but were 

particular features that occurred only in the Faroe Islands region. Søager and Holm 

(2011) invoked a broadly similar scenario with basalt genesis from three end-

member mantle plume sources possessing isotopic components similar to NAEM and 

an enriched EM-type component as well as a component somewhere intermediate 

between those two. Other interpretations of potential mantle sources giving rise to 

basalts within the actual region have pointed to the probable existence of two distinct 

depleted upper mantle sources perhaps including the sub-continental lithospheric 

mantle (Gariépy et al., 1983).  



 

207 
 

A model with three mantle components has also been suggested in an earlier study in 

order to explain the entire isotopic range of volcanic rocks encountered in Iceland 

(Hanan and Schilling, 1997), but where the Pb isotopic range outlined by the 

individual mantle components display a wider span toward more depleted and 

enriched Pb isotopic compositions respectively than the three end-members that have 

been inferred for the Faroe Islands earlier (Fig. 5.6). These three Icelandic end-

member mantle sources labelled p, d and e by these authors have been estimated at: p 

 
207

Pb/
204

Pb = 15.59, 
208

Pb/
204

Pb = 39.45; d  
207

Pb/
204

Pb = 15.13, 
208

Pb/
204

Pb = 

35.60; e  
207

Pb/
204

Pb = 15.85, 
208

Pb/
204

Pb = 39.00, where p is assumed to represent 

an EM I-like reservoir (Hanan and Schilling, 1997). However, Stracke et al. (2003) 

attributed the impressive correlation observed between radiogenic isotope ratios of 

Icelandic basalts to contributions from a HIMU-like component to a depleted end-

member source comparable in Pb composition to Theistareykir picrites, perhaps also 

with the involvement of small amounts of an enriched component similar to an 

enriched mantle EM I- type source. Hence, Stracke et al. (2003) infer a mechanism 

and an initial uncontaminated depleted end-member mantle source that fits parts of 

the model proposed earlier for the generation of basalts of the BTIP (Ellam and 

Stuart, 2000). Although the 
208

Pb/
204

Pb ratios of most sills from this study plot at the 

upper limit of the isotopic field representing Icelandic basalts, they define the same 

good isotopic correlation (Fig. 5.6), thus perhaps implying similarities in pre-

magmatic mantle processes between these two regions. Apart from the wider range 

of Pb isotopic ratios of the Icelandic basalts/picrites compared to those of similar 

rocks from the Faroe Islands, the main differences in the Pb isotopic ratios between 

these two regions are exhibited by slightly more elevated 
208

Pb/
204

Pb ratios at low 

207
Pb/

204
Pb ratios and slightly lower 

208
Pb/

204
Pb ratios at higher 

207
Pb/

204
Pb ratios in 

rocks from the Faroe Islands compared to those encountered in Iceland and in part 

also at the Reykjanes Ridge (Fig. 5.6). According to Holm et al. (2001), these 

differences could be ascribed to differences in end-member mantle sources, provided 

that no crustal contamination was involved. The discussion in the isotope part of 

chapter 4 strongly suggested the involvement of local crustal contaminants heavily 

enriched with respect to their 
208

Pb/
204

Pb ratios during evolvement of two of the four 

contaminated silicic basalt samples of the Faroe Islands (Yellow circle and red 

rhombus in: Fig. 4.21d; Fig. 4.21f; Fig. 4.23e; Fig. 4.23f). Also, contamination with 

high 
207

Pb/
204

Pb ratio (and low 
208

Pb/
204

Pb ratio) crustal material could potentially 
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explain the observed variations of these isotopes within parts of the Morskranes Sill 

(Fig. 4.22). Mixing calculations in chapter 4 further demonstrated that assimilation of 

even very small amounts (< 0.5%) of virtually any kind of basement material could 

affect isotopic compositions of individual samples noticeably (Fig. 4.20b). Hence, 

contributions to some of the basalt samples presented in Holm et al. (2001) with only 

fractions of a percent of materials possessing Pb isotopic compositions comparable to 

e.g. basement samples KS60 or 229642 from E Greenland, could in theory generate 

enrichments or depletions in the 
208

Pb/
204

Pb ratios of individual basalt/picrite samples 

of the Faroe Islands at scales that could account for many of the observed differences 

in 
208

Pb/
204

Pb ratios between rocks from this region and those encountered in Iceland 

(Fig. 5.6). In general, ~0.5% assimilation of basement material, with ~15 ppm Pb and 

with 
208

Pb/
204

Pb ratios being ~5 higher/lower than those of contaminated basalts 

possessing Pb concentrations of ~0.5 ppm, would result in a ~0.65 increase/decrease 

in values of 
208

Pb/
204

Pb ratios of the target basalts. However, it is not straightforward 

to test potential small-scale assimilation by means of e.g. REE compositions, as 

LREE enrichments from crustal contamination at such insignificant scales would 

hardly be detectable in contrast to the LREE enrichment associated with the 10 – 

15% basement assimilation encountered by the contaminated silicic basalt sample K-

1 of the Faroe Islands (large yellow circle, Fig. 4.13e: Fig. 4.20a). 

As the observed systematic correlation in 
207

Pb/
204

Pb versus 
208

Pb/
204

Pb ratios of 

most sills from this study is in good accordance with the trend observed for these 

isotope ratios in Icelandic basalts (Fig. 5.6), similar processes could have modified 

the mantle sources of both regions. Hence, a process with systematic isotopic 

enrichments of a depleted end-member primitive mantle source comparable in 

isotopic composition to NAEM or Theistareykir picrites (e.g. Ellam and Stuart, 2000; 

Stracke et al., 2003) may be applicable for mantle sources to the actual sills, although 

local mantle metasomatism (e.g. chapter 4) could have played some role too. Some 

MgO-rich rocks of the Faroe Islands display Pb isotopic compositions akin to those 

of isotopically depleted rocks from Theistareykir, Iceland (red and yellow rhombuses 

in Fig. 5.6) while samples representing the Morskranes Sill in turn display depleted 

206
Pb/

204
Pb and 

87
Sr/

86
Sr ratios that are broadly similar to these same local MgO-rich 

rocks (Fig. 4.18a). Hence, an origin from a depleted source may be envisaged for the 

Morskranes Sill. Although the possibility of hybridisation between melts of the 

Morskranes Sill and melts with compositions comparable to some of the high-TiO2 
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sills of this study was left open in chapter 4 (e.g. Fig. 4.24c; Fig. 4.25), the lack of 

systematic correlations in Pb versus Sr and Nd isotopic ratios of the Morskranes Sill 

with any of the other (LREE enriched) sills of the Faroe Islands (Fig. 4.18) renders 

this scenario rather unlikely. Hence, there is no robust evidence to suggest that the 

opserved spread in 
207

Pb/
204

Pb ratios within the small Morskranes Sill (Fig.5.6) 

should result from various input of magmas from two distinct mantle sources. 

Instead, it is tentatively suggested that the higher 
208

Pb/
204

Pb and 
207

Pb/
204

Pb ratios 

displayed by samples of this sill relative to local MgO-rich rocks (and rocks of 

Theistareykir) as well as the observed internal isotopic differences resulted from very 

slight (< 0.5%) contamination with crustal material. 

 

5.6. Potential future research topics 

A number of interpretations and inferences on geochemical, isotopic and physical 

aspects, thought to have been associated with the petrogenesis and emplacement of 

seven saucer-shaped sills of the Faroe Islands, have been made in the course of the 

current Ph.D. project. However, in order to further constrain a few of the proposed 

processes and models, some additional analyses and testing would be desirable in a 

potential future continuation of the current work. Such future research topics could 

include:  

(1) Whole-rock ICP-MS analyses of additional sill samples in order to get a better 

coverage of the trace element (including the REE) compositions of these 

intrusions. Whole-rock isotope analyses of additional sill samples in order to 

reveal potential internal isotopic variations within individual sills. 

(2) Microprobe analyses of selected minerals in order to detect the provenance of 

unknown minerals of the Morskranes Sill. Microprobe analyses of selected 

minerals (plagioclase and clinopyroxene) and their melt inclusions in order to 

perform geothermobarometric calculations and to detect paths of melt evolution.  

(3) Absolute dating of all the investigated sills by means of the argon–argon and/or 

the rhenium–osmium methods in order to establish potential differences in 

emplacement ages between individual sills and to establish the geochronological 

status of the actual sills in a regional and provincial context. 

(4) Geochemical analyses of vertical profiles from selected sills of this study in order 

to detect potential multiple magma pulses and to investigate if in-situ fractional 

crystallisation had any bearing on geochemical/mineralogical distributions. 
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(5) A series of comprehensive mechanical experiments/modelling in order to test the 

effect of systematic depth-related variations of Young’s modulus on sill 

emplacement processes. 
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Appendix 1 

 

Outline of the workflow employed during transfer of field 

data to 3D electronic maps (ArcGIS software) 

 

Loading maps: Printed topographic maps containing relevant field measurements 

were scanned, saved as jpg files and subsequently loaded in the  ArcCatalog 

program by selecting  folder  new  layer  new layer  browse jpg file  

save under new selected/chosen file name. 

Assigning coordinate systems to loaded maps: Relevant coordinate systems were 

assigned to loaded maps in the ArcMap program by selecting  add data  folder 

 open relevant file (from ArcCatalog)  map appear on screen  right click on 

mouse while cursor is positioned on map  data frame properties  coordinate 

system  predefined  projected coordinate systems  UTM  WGS 1984  

WGS 1984 UTM zone 29N (WGS_1984_UTM_zone_29N; Projection: 

Transverse_Mercator; False_Easting: 500000; False_Northing: 0; 

Central_Meridian: -9; Scale_Factor: 0.9996; Latitude_of_Origin: 0; Linear Unit: 

Meter)  select no frame in data view  right click on mouse while cursor is 

positioned on map  properties  grids  new grid  measured grid  assign 

intervals on x/y axes e.g. 1000 metres  next  finish (grid appear on screen)  

right click on mouse while cursor is positioned on map (again)  properties  

assign origin in x/y space e.g. 0.0  OK  data frame  fixed extent  assign the 

same four coordinates that define four preselected corners of the actual map section 

 OK (numbered meridians appear on grid)  activate GeoReferencing function in 

 view  toolbars  GeoReferencing (if map is out of frame then select  

GeoReferencing  fit to display)  add control points  left click on mouse while 

cursor is positioned on preselected coordinates that represent one corner of map  

left click on mouse while cursor is positioned on grid coordinates that correspond to 

those just selected for map corner  repeat this process on the remaining three 

map/grid corners  select GeoReferencing  update GeoReferencing  right click 

on Layers  file  save as layer file  select/choose new file name  OK. 
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Creating shapefiles: New shapefiles were created in ArcCatalog by selecting  

folder  new  shapefile  select/choose new file name  polyline  edit  

predefined coordinate system (then assigning the same coordinate system as above 

i.e. WGS-1984, UTM-29N)  OK. 

Producing geological surfaces/layers: Maps with assigned coordinate systems were 

used to produce surfaces of individual geological formations and sills in ArcMap by 

selecting  add data  open empty shapefile (from ArcCatalog)  editor  start 

editing  sketch tool  draw outline with cursor/mouse  save edits. Alternatively 

surfaces of individual geological formations and sills can be produced in e.g. 

CorelDRAW and then assigned relevant coordinate systems using the procedure 

described above for maps. 

Draping of surfaces onto electronic 3D topographic maps: Predefined electronic 

topographic data that represent the Faroe Islands (WGS-1984, UTM 29N, 10 metres 

height intervals) were supplied from the company of MUNIN, Tórshavn, Faroe 

Islands and stored as layer files in ArcCatalog. These topographic data were 

conversed to TIN surfaces in ArcMap by selecting  add data  open file (with 

topographic map from ArcCatalog)  create TIN from features  select/choose 

new file name for output TIN (height source = Z values; triangulate as hard line)  

OK  save as layer or as ArcMap project. 

Draping of surfaces to produce 3D geological maps were done in ArcScene by 

selecting  add data  open TIN file  add data (again)  open file with a 

geological formation or sill  use mouse to position/drag this latter file on the top of 

the TIN file in the left panel of the screen  right click on layer  properties  

base heights  obtain heights for layer from surface  rendering  shade areal 

features relative to the scene’s light position  OK  save draped feature. 

 

The draped features will appear as 3D electronic geological maps that can be rotated 

and viewed from any angles in ArcScene. These features can be converted to jpg 

images. Examples are shown in Fig. 2.3; Fig. 3.2; Fig. 3.3 (orthogonal views) and 

Fig. 3.4 (oblique views). 
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Appendix 2 

 

C1 X-Ray Fluorescence (XRF) analysis methodology 

The geochemical datasets used in chapter 4 of this thesis are based on whole-rock 

analyses of samples representing basaltic sills and a few of their feeders. More than 

400g of the fine to medium grained basalt samples were crushed to fine gravel/sand 

(< 0.5 cm) using standard crushing techniques. Around 100g of each of the crushed 

samples were subsequently ground to fine powder using an agate ball mill at Durham 

University. In order to avoid/reduce any kind of contamination, thorough cleaning on 

all used instruments was carried out between the processing of each sample. 

Major elements and selected trace elements (Table 4.2) for samples and standards 

were measured on an ARL 8420+ dual goniometer wavelength dispersive XRF 

spectrometer in the X.R.F. Laboratory at the Department of Earth Sciences, Open 

University, Milton Keynes, United Kingdom. 

Major elements: For XRF analyses of major elements a suitable amount of finely 

ground rock powder from each sample and a suitable amount of flux (lithium 

metaborate/tetraborate, Johnson Matthey Spectroflux 100B) were dried overnight in 

an oven at ~110° C. Exactly 0.7 g of each dry sample and 3.5 g of flux (1:5 ratio) 

were weighed out and mixed in Pt crucibles. Following stirring, each mixed sample 

was fused at 1100° C for 15-20 minutes during which the crucibles were swirled 

every 5 minutes or so to ensure thorough mixing. The melted samples were 

subsequently poured into pre-heated brass moulds and pressed to form glass discs. 

Glass discs for two well known standards (WS-E and G94) were produced parallel to 

the rock samples and both were analysed together with every batch of samples.  

Potential losses of fluids/volatiles (H2O and/or CO2) during fusion were determined 

by means of 1 to 2g of dried powder from each sample being heated for 30 to 45 

minutes at 1000C in a muffle furnace. Loss on ignition (LOI) for individual samples 

was then calculated to two decimal places using the expression: 

                              
                                     

                              
      

The reproducibility of major element concentrations on the standards during the 

analyses was usually better than 1% (See the table Appendix 2.1. below). 
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Appendix 2.1. Control analyses of major elements of the standards WS-E and G94 during XRF 

analyses on glass beads (as shown in Table 4.2) at the Open University, Milton Keynes. 

 

A few of the analysed samples display negative LOI values (Table 4.2). If all 

preparation steps of the actual samples were done correctly, near-absence of 

secondary alteration and relative weight gain from the oxidation of FeO (Fe
++

) to 

Fe2O3 (Fe
+++

) could be an explanation (Ionov, 2010). This scenario may be supported 

by the fact that negative LOI values only occur in iron-rich sill samples. Five sill 

samples display slightly high totals of 101-102%, all of which possess unusually high 

silica contents of 50.3 to 50.45 wt% (Table 4.2). High totals can result from 

preferential evaporation of flux during production of the glass beads, but can also 

reflect uncertainties in the determination of SiO2 (e.g. Boström and Bach, 1995).  

 

Trace elements: The preparation of samples for XRF analyses of trace elements 

involved ~9 g of finely ground powder from each sample being thoroughly mixed 

with ~0.9 ml of polyvinylpyrollidone (P.V.P.) binder. Each mixed sample was then 

pressed to a powder pellet in a mould at ~5 ton for a few moments and subsequently 

dried overnight at ~110° C. Powder pellets for four standards (BHVO-1; QLO-1; 

DNC-1 and W-2 all being United States Geological Survey international reference 

materials) were produced parallel to the rock samples and analysed for trace 

elements together with every batch of samples from this study. The reproducibility of 

each standard during analyses of the trace elements, shown in Table 4.2, was usually 

better than 4% apart from Y that was usually better than 5 to 10% (See the table 

Appendix 2.2. below for selected trace elements).  

 WS-E WS-E WS-E G94 G94 G94 

wt% Expected Average (n=6) St.Dev. Expected Average (n=6) St.Dev. 

SiO2 51.10 51.13 0.033 69.95 69.79 0.023 

TiO2 2.425 2.41 0.013 0.314 0.31 0.003 

Al2O3 13.78 13.95 0.021 14.66 14.65 0.019 

Fe2O3 13.25 13.27 0.016 3.05 3.06 0.007 

MnO           0.171 0.17 0.001               0.075 0.08 0.002 

MgO 5.55 5.55 0.014 1.04 1.05 0.011 

CaO 8.95 9.07 0.009 1.34 1.37 0.004 

Na2O 2.47 2.44 0.008 4.60 4.61 0.019 

K2O 1.00 1.00 0.003 2.96 2.98 0.008 

P2O5           0.302 0.30 0.002               0.165 0.17 0.002 

LOI 0.85 0.85 0.000 1.97 1.97 0.000 

Total 99.85 100.14 0.059 100.12 100.03 0.056 
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Appendix 2.2. Control analyses of selected trace elements, used in this study, by means of the standards BHVO-1, QLO-1, DNC-1 and W-2 during XRF analyses on pressed 

powder tablets (as shown in Table 4.2) at the Open University, Milton Keynes. 

 

 

 

 

 BHVO-1                 BHVO-1 BHVO-1 QLO-1                   QLO-1 QLO-1 DNC-1                   DNC-1 DNC-1 W-2                      W-2                    W-2 
ppm Expected Average (n=6) St.Dev. Expected Average (n=6) St.Dev. Expected Average (n=6) St.Dev. Expected Average (n=6) St.Dev. 

Sr 403 402.65 1.22 336 332.82 1.04 145 147.72 0.54 194 201.08 0.73 

Y 27.6 27.77 0.44 24.0 25.12 0.16 18.0 18.85 0.37 24.0 23.13 0.8 

Zr 179 175.22 1.36 185 186.82 1.13 41 40.12 0.5 94 93.32 1.29 

Ba 139 135.12 3.02 1370 1378.73 18.07 114 108.52 4.09 182 179.12 5.99 
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Appendix 3 

 

Inductively coupled plasma emission spectrometry (ICP-

MS) analysis methodology 

Finely ground powder from actual basalt samples and from the international standard 

NBS 688, each sample weighing 0.100  0.001g, was used for ICP-MS analyses of 

trace elements and REE (Table 4.2). The powder was dissolved in a mixture of 1 ml 

HNO3 (69%) + 4 ml HF (40%) in a Savillex 22 ml PFA vial and left on a hotplate at 

~150° C for ~48 hours with the seal on (reflux). The mixture in each sample was 

subsequently allowed to evaporate to near dryness. 1 ml HNO3 was applied to each 

sample, which was again allowed to evaporate to near dryness; this procedure was 

repeated once. 2.5 ml HNO3 + 10 ml 18M H2O was subsequently applied to each 

sample, which was left on a hotplate at ~100°C overnight with the seal on (reflux). 1 

ml of 1 ppm Re and Rh internal ‘spikes’ was then applied to each of the cooled 

samples to yield 20 ppb in solution followed by the addition of 18M H2O until each 

sample was diluted to exactly 50 ml in order to yield a solution of approximately 

3.5% HNO3. Prior to analyses each sample was diluted 10 fold by the addition of 3 

% HNO3. One standard (NBS 688) and three blanks were prepared parallel with the 

rock samples. Trace elements and REE in samples, standards and blanks were 

determined on an Elan 6000 Perkin Elmer-Sciex inductively coupled plasma mass 

spectrometer (ICP-MS) at the Department of Earth Sciences, Durham University, 

Durham, United Kingdom. Calibration of the Perkin Elmer Sciex Elan 6000 ICP-MS 

was achieved via the use of in-house standards and international reference materials 

(e.g. W-2, BHVO-1, AGV1, BE-N and NBS688), together with procedural blanks. In 

order to ascertain the magnitude of calibration drift, three blanks and all the five 

standards were run at the start and at the end of the performed analyses and one 

blank was run for every 8-10 samples. The reproducibility of trace elements from in-

house standards analysed on this apparatus is usually better than 5% and frequently 

3% (See table Appendix 3.1. below for control analyses of the standards NBS688, 

BHVO-1, W-2, AGV1 and BE-N). More details on methods for the dissolution of 

geological samples for analysis of REE and trace elements via ICP –MS are given in 

Ottley et al. (2003) and Thompson et al. (2005).  
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Appendix 3.1. Control analyses of selected trace elements of the standards NBS688, BHVO-1, W-2, AGV1 and BE-N during ICP-MS analyses on dissolved rock samples 

(as shown in Table 4.3) at the Department of Earth Sciences, Durham University. 

 

 

   

 NBS688 NBS688 NBS688 BHVO-1 BHVO-1 BHVO-1 W-2 W-2 W-2 AGV1 AGV1 AGV1 BE-N BE-N BE-N 

ppm Expected Aver.(n=7) St.Dev. Expected Aver.(n=2) St.Dev. Expected Aver.(n=2) St.Dev. Expected Aver.(n=2) St.Dev. Expected Aver.(n=2) St.Dev. 

Rb 1.91 1.95 0.04 11.00 9.62 0.06 20.00 20.14 0.05 67.00 67.80 1.05 47.00 48.81 0.27 

Sr 169.20 173.38 3.43 403.00 411.27 8.20 194.00 199.06 1.67 662.00 673.98 20.95 1370.00 1275.72 23.55 

Y 17.00 21.53 0.43 27.60 28.01 0.58 24.00 22.60 0.19 21.00 20.11 0.33 30.00 30.75 0.65 

Zr 61.00 56.54 1.09 179.00 175.78 1.36 94.00 89.81 0.05 225.00 231.76 3.09 265.00 277.15 0.80 

Nb 5.00 4.41 0.11 19.00 19.58 0.32 7.90 7.63 0.05 15.00 14.76 0.10 100.00 119.40 0.90 

Ba 200.00 185.78 5.89 139.00 136.33 6.89 182.00 172.12 8.40 1221.00 1255.39 47.25 1025.00 1062.49 46.45 

La 5.30 5.18 0.14 15.80 15.65 0.53 11.40 10.47 0.42 38.00 39.03 0.97 82.00 83.72 2.90 

Ce 13.00 11.82 0.29 39.00 38.14 1.52 24.00 22.75 1.08 66.00 69.02 2.14 152.00 153.04 6.06 

Pr 2.40 1.86 0.06 5.70 5.84 0.29 5.90 3.18 0.17 6.50 9.04 0.43 16.90 18.75 0.90 

Nd 9.60 8.96 0.28 25.20 27.10 1.26 14.00 13.67 0.48 34.00 34.18 1.37 70.00 71.90 2.93 

Sm 2.50 2.46 0.07 6.20 6.50 0.26 3.25 3.36 0.15 5.90 5.96 0.17 12.00 12.72 0.63 

Eu 1.01 1.00 0.03 2.06 2.11 0.07 1.10 1.10 0.06 1.66 1.75 0.08 3.60 3.83 0.12 

Gd 3.20 3.28 0.08 6.40 6.77 0.13 3.60 3.90 0.02 5.20 4.70 0.01 9.00 9.68 0.06 

Tb 0.52 0.56 0.01 0.96 1.01 0.04 0.63 0.66 0.01 0.71 0.67 0.02 1.30 1.33 0.05 

Dy 3.40 3.43 0.09 5.20 5.48 0.15 3.80 3.84 0.06 3.80 3.60 0.16 6.29 6.44 0.16 

Ho 0.81 0.74 0.02 0.99 1.01 0.02 0.76 0.81 0.04 0.73 0.69 0.01 1.03 1.10 0.03 

Er 2.10 2.09 0.04 2.40 2.47 0.02 2.50 2.14 0.05 1.61 1.73 0.03 2.48 2.42 0.07 

Tm 0.29 0.33 0.01 0.33 0.35 0.00 0.38 0.33 0.01 0.32 0.26 0.01 0.37 0.32 0.01 

Yb 2.05 2.10 0.04 2.02 2.05 0.01 2.05 2.03 0.02 1.67 1.65 0.02 1.80 1.83 0.05 

Lu 0.35 0.35 0.01 0.29 0.31 0.01 0.33 0.33 0.00 0.28 0.27 0.01 0.24 0.28 0.00 

Hf 1.55 1.52 0.02 4.38 4.51 0.09 2.56 2.37 0.01 5.10 5.16 0.08 5.40 5.86 0.11 

Ta 0.31 0.28 0.00 1.23 1.25 0.01 0.50 0.49 0.00 0.92 0.91 0.00 5.50 6.13 0.04 

Pb 3.30 2.89 0.08 2.60 2.08 0.03 9.30 7.59 0.09 36.00 35.80 0.38 4.00 3.99 0.09 

Th 0.33 0.33 0.01 1.08 1.25 0.00 2.20 2.16 0.03 6.50 6.42 0.03 11.00 10.63 0.09 

U 0.31 0.26 0.03 0.42 0.42 0.01 0.53 0.49 0.01 1.89 1.91 0.02 2.40 2.42 0.04 
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Appendix 4 

 

Multi-collector inductively coupled plasma emission 

spectrometry (MC-ICP-MS) analysis methodology 

(Adopted from “Electronic Appendix A” of G. Nowell 2010) 

 

Isotope ratios for Sr, Nd and Pb were measured using the AHIGL ThermoElectron 

Neptune Multi-collector Plasma Mass Spectrometer (MC-ICP-MS) at the Arthur Holmes 

Isotope Geology Laboratory (AHIGL) Durham University, Durham, United Kingdom.  

The basic analytical method used for each element on the Neptune comprises a static 

multi-collection routine of 1 block of 50 cycles with an integration time of 4sec per 

cycle; total analysis time 3.5mins.  

For the Sr and Nd chemistry, samples were dissolved in Teflon beakers with 1ml 

l6N HNO3 and 3mls 29N HF at 120°C for 48hrs. After dissolution Sr and Nd were 

separated using a combination of cation and anion exchange columns (Dowall et al., 

2003). 

After chemistry, Sr samples were taken up in 1ml of 3% HNO3 and introduced into 

the Neptune using an ESI PFA50 nebuliser and a dual cyclonic–Scott Double Pass 

spraychamber. With this sample introduction set up, and the normal H skimmer cone, 

the sensitivity for Sr on the Neptune is typically ~60V total Sr ppm-1 at an uptake 

rate of 90μl min-1. Prior to analysis a small aliquot was first tested to establish the Sr 

concentration of each sample by monitoring the size of the 84Sr beam (88Sr was too 

high in non-diluted aliquot to measure directly) from which a dilution factor was 

calculated to yield a beam of approximately 20V 88Sr. Instrumental mass bias was 

corrected for using a 88Sr/86Sr ratio of 8.375209 (the reciprocal of the 86Sr/88Sr 

ratio of 0.1194) and an exponential law. The sill samples from the Faroe Islands were 

analysed in a single session during which the average 87Sr/86Sr value for the NBS 

987 standard was 0.710270  0.000016 (21.8 ppm 2SD; n = 9, see also table 

appendix 4.1 below).  

Following chemistry the REE cuts containing the Nd fraction were taken up in 1ml 

of 3% HNO3 and introduced into the Neptune using an ESI PFA50 nebuliser and a 

dual cyclonic–Scott Double Pass spraychamber. With this sample introduction set
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up, and the normal H skimmer cone, the sensitivity for Nd on the Neptune is 60-80V 

total Nd ppm-1 at an uptake rate of 90μl min-1. Instrumental mass bias was corrected 

using a 146Nd/145Nd ratio of 2.079143 (equivalent to the more commonly used 

146Nd/144Nd ratio of 0.7219) and an exponential law. The 146Nd/145Nd ratio is 

used for correcting mass bias since at Durham Nd isotopes are measured on a total 

REE-cut from the 1st stage cation columns and this is the only Ce and Sm-free stable 

Nd isotope ratio. This approach requires a correction for isobaric interferences from 

Sm on 144Nd, 148Nd and 150Nd. The correction used is based on the method of 

Nowell and Parrish (2001). The accuracy of the Sm correction method during 

analysis of a total REE fraction is demonstrated by repeat analyses of BHVO-1, 

which gave an average 143Nd/144Nd ratio of 0.512982±0.000007 (13.5ppm 2SD, 

n=13) after Sm correction; identical to the TIMS ratio of 0.512986±0.000009 

(17.5ppm 2SD; n=19) obtained by Weis et al. (2005). During analysis of the sill 

samples from the Faroe Islands the pure and Sm-doped J&M standards gave an 

average 143Nd/144Nd ratio of 0.511115  0.000014 (26.7 ppm 2SD; n = 9, see also 

table appendix 4.1. below). 

Sill Pb was separated using small Sr Spec resin columns (Charlier et al., 2006).  

After chemistry, Lead samples were taken up in 1ml of 3% HNO3. Prior to analysis 

each sample was tested on the Neptune to determine its Pb concentration and thereby 

calculate the appropriate amount of tantalum spike to add in order to obtain a Pb/Tl 

ratio of ~12. After spiking with Tl each sample was introduced into the Neptune 

using an ESI PFA50 nebuliser and a dual cyclonic–Scott Double Pass spraychamber. 

With this set-up, and the normal H skimmer cone, the sensitivity for Pb on the 

Neptune is typically ~100V total Pb ppm-1 at an uptake rate of 90μl min-1. Pb mass 

bias was corrected for externally using the 205Tl/203Tl ratio of the admixed Tl spike 

and an exponential law. The 205Tl/203Tl ratio used for correcting the Pb ratios is 

determined for each analytical session by minimising the difference in offset between 

the session average Pb ratios (all ratios) and the Galer and Abouchami (1998) values, 

i.e. it is the ratio that gives the best fit for all the Pb ratios to the values of Galer and 

Abouchami (1998) simultaneously that is used. Samples were analysed in a single 

analytical session during which the 205Tl/203Tl ratio used for mass bias correction 

was 2.38835 and the average 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios 
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for the NBS 981 Pb std were 16.9402  0.0020, 15.4972  0.0024, 36.7176  0.0060 

respectively (all 2SD; n=9, see also table appendix 4.1. below). 

 

Calculations of 
87

Rb/
86

Sr and 
147

Sm/
144

Nd ratios. As 
87

Rb/
86

Sr and 
147

Sm/
144

Nd 

ratios were not supplied together with the Sr and Nd isotope data, these values had to 

be calculated separately using the expressions (Faure, 1986, 2001): 

87
Rb/

86
Sr = (Rb/Sr)  (Ab

87
Rb  WSr) / (Ab

86
Sr  WRb) and 

147
Sm/

144
Nd = (Sm/Nd)  (Ab

147
Sm  WNd) / (Ab

144
Nd  WSm) 

where Ab refer to isotopic abundances and W refer to atomic weights. Isotopic 

abundances of 
87

Rb and 
147

Sm are 0.278346 and 0.150000 respectively (Faure, 

1986). Calculations of unknown 
86

Sr and 
144

Nd (and some other) isotopic abundances 

can be tabulated as (e.g. Faure, 2001): 

  

 Ratio Isotope Abundance 

84
Sr/

88
Sr 

a
Calculated 

84
Sr  (

84
Sr/

88
Sr)/Sum 

86
Sr/

88
Sr 

b
 0.119400 

86
Sr  (

86
Sr/

88
Sr)/Sum 

87
Sr/

88
Sr 

c
Calculated 

87
Sr  (

87
Sr/

88
Sr)/Sum 

88
Sr/

88
Sr 1.000000 

88
Sr  (

88
Sr/

88
Sr)/Sum 

 
d
Sum   

a(84Sr/86Sr)/(86Sr/88Sr) where 84Sr/86Sr = 0.056584 (Steiger and Jäger, 1977); bValue from Steiger and 

Jäger (1977); c(86Sr/88Sr)/(87Sr/86Sr)measured; 
dcombined value of Sr isotopic ratios. 

and 

 Ratio Isotope Abundance 

145
Nd/

146
Nd 

a
Calculated 

145
Nd  (

145
Nd/

146
Nd)/Sum 

144
Nd/

146
Nd 

b
 1.389535 

144
Nd  (

144
Nd/

146
Nd)/Sum 

143
Nd/

146
Nd 

c
Calculated 

143
Nd  (

143
Nd/

146
Nd)/Sum 

146
Nd/

146
Nd 1.000000 

146
Nd  (

146
Nd/

146
Nd)/Sum 

 
d
Sum   

a(145Nd/144Nd)/(144Nd/146Nd) where 145Nd/144Nd = 0.347280 (Faure, 2001); bValue from Faure (2001); 

c(144Nd/146Nd)/(143Nd/144Nd)measured; 
dcombined value of Nd isotopic ratios. 
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Equation used for age correction of 
87

Sr/
86

Sr ratios (Faure, 1986). 
87

Rb/
86

Sr ratios 

may be either measured or calculated (as shown above). 

(
87

Sr/
86

Sr)
54 Ma

 = (
87

Sr/
86

Sr)measured – 
87

Rb/
86

Sr * (EXP(RbSr*54 Ma) – 1) 

 

Equation used for age correction of 
143

Nd/
144

Nd ratios (Faure, 1986). 
147

Sm/
144

Nd 

ratios may be either measured or calculated (as shown above). 

 (
143

Nd/
144

Nd)
54 Ma

 = (
143

Nd/
144

Nd)measured – 
147

Sm/
144

Nd * (EXP(SmNd*54 Ma) – 1) 

 

Equation used for age correction of 
206

Pb/
204

Pb ratios (Faure, 1986). 
238

U/
204

Pb ratios 

may me either measured or calculated. 

(
206

Pb/
204

Pb)
54 Ma

 = (
206

Pb/
204

Pb)measured – 
238

U/
204

Pb * (EXP(UPb*54 Ma) – 1) 

 

Equation used for age correction of 
207

Pb/
204

Pb ratios (Faure, 1986). 
235

U/
204

Pb ratios 

may me either measured or calculated. 

(
207

Pb/
204

Pb)
54 Ma

 = (
207

Pb/
204

Pb)measured – 
235

U/
204

Pb * (EXP(UPb*54 Ma) – 1) 

 

Equation used for age correction of 
208

Pb/
204

Pb ratios (Faure, 1986). 
232

Th/
204

Pb 

ratios may me either measured or calculated. 

(
208

Pb/
204

Pb)
54 Ma

 = (
208

Pb/
204

Pb)measured – 
232

Th/
204

Pb * (EXP(ThPb*54 Ma) – 1) 

 

Appendix 4.1. Control analyses of isotopic ratios on the standards NBS 981, NBS 987 and J&M 

during MC-ICP-MS analyses of dissolved rock samples (as shown in Table 4.4) at the Department of 

Earth Sciences, Durham University. 

 
 NBS 981 NBS 981 NBS 981 NBS 987 J&M 

Ratios 206
Pb/

204
Pb 

207
Pb/

204
Pb 

208
Pb/

204
Pb 

87
Sr/

86
Sr 

143
Nd/

144
Nd 

Expected 16.9405 15.4963 36.7219               0.71024               0.51111 

Average 16.940 15.497 36.718               0.71027               0.51112 

St.Dev. 0.002 0.002 0.006                   0.0000155                   0.0000136 
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Appendix 5   

 

Results from geochemical modelling   

 
Appendix 5.1. Results of 15% ‘modal melting’ of selected basement samples from NW Britain, 

Rockall and E Greenland as modelled in Fig. 4.19. 

aResidual phases used in the calculations with numbers in each column representing percentages of 

residual minerals. bMeasured elemental concentrations/ratios in basement samples. cCalculated 

elemental concentrations/ratios from 15% modal melting. 

 

Appendix 5.2. Results of 4.5%, 7-8% and 23% modal melting respectively of a fertile spinel 

lherzolite (Average of samples 1 to 5, Lesnov et al., 2009) as modelled in Fig. 4.24a. 

aResidual mineral phases used in the calculations with numbers in each column representing 

percentages of residual minerals. bMeasured elemental concentrations in spinel lherzolite (Lesnov et 

al., 2009) normalised to chondrite values of Nakamura (1974). cCalculated elemental concentrations 

from partial melting normalised to chondrite values of Nakamura (1974). Only two decimals are 

shown in this table while six decimals were used in the actual calculations/figure. For convenience, 

only olivine and orthopyroxene were used as residual phases in the calculations that resulted in the 

data shown in this table, but the inclusion of small amounts of clinopyroxene and spinel as additional 

residual phases could yield broadly similar results. 

 

Appendix 5.3. Results of 7% and 8% modal melting respectively of the average of a depleted MORB 

mantle (Workman and Hart, 2005) as modelled in Fig. 4.24b. 

aResidual mineral phases used in the calculations with numbers in each column representing 

percentages of residual minerals. bMeasured elemental concentrations in DMM (Workman and Hart, 

2005) normalised to chondrite values of Nakamura (1974). cCalculated elemental concentrations from 

partial melting normalised to chondrite values of Nakamura (1974). Only two decimals are shown in 
this table while six decimals were used in the actual calculations/figure. For convenience, only olivine 

and orthopyroxene are displayed as residual phases in this table while  2% spinel was used as an 
additional residual phase in the actual calculations. 

Sample aPlag aQtz aOpx Rb K2O Th Nb Rb/K20 Th/Nb 

KS19A ~55 ~40 ~5 
b38 

c192 

b0.96 
c4.09 

b5.19 
c31.79 

b7.00 
c42.13 

b39.58 
c46.86 

b0.74 
c0.75 

KS60 ~55 ~40 ~5 
b28 

c153 

b1.66 
c8.25 

b31.30 
c178.91 

b20.00 
c103.21 

b16.87 
c18.53 

b1.57 
c1.73 

B ~60 ~10 ~30 
b34 

c123 

b1.45 
c6.01 

b3.65 
c19.31 

b8.00 
c41.10 

b23.45 
c20.46 

b0.46 
c0.47 

E ~55 ~40 ~5 
b160 
c808 

b4.62 
c19.70 

b8.75 
c53.60 

b16.00 
c96.30 

b34.63 
c41.00 

b0.55 
c0.56 

P42 ~55 ~40 ~5 
b101 
c551 

b4.20 
c20.87 

b3.99 
c24.44 

b4.00 
c24.07 

b24.05 
c26.41 

b1.00 
c1.02 

Sample aOl aQpx La Ce Nd Sm Eu Gd Dy Er Yb 

1-54.5% ~76 ~24 
b3.19 

c60.60 

b3.06 
c56.12 

b2.94 
c51.82 

b2.51 
c41.02 

b2.21 
c40.19 

b2.50 
c35.10 

b2.19 
c25.32 

b2.13 
c20.18 

b2.05 
c15.37 

1-57-8% ~84 ~16 
b3.19 

c29.82 

b3.06 
c28.34 

b2.94 
c26.86 

b2.51 
c22.86 

b2.21 
c21.96 

b2.50 
c21.05 

b2.19 
c16.97 

b2.13 
c15.08 

b2.05 
c12.82 

1-523% ~84 ~16 
b3.19 

c13.52 

b3.06 
c12.93 

b2.94 
c12.34 

b2.51 
c10.45 

b2.21 
c10.26 

b2.50 
c10.16 

b2.19 
c8.59 

b2.13 
c8.04 

b2.05 
c7.28 

Sample aOl aQpx La Ce Nd Sm Eu Gd Dy Er Yb 

DMM7% ~84 ~16 
b0.58 
c7.55 

b0.64 
c8.11 

b0.92 
c11.58 

b1.18 
c14.25 

b1.25 
c15.07 

b1.30 
c14.51 

b1.47 
c14.75 

b1.55 
c13.71 

b1.66 
c12.61 

DMM8% ~84 ~16 
b0.58 

c4..54 

b0.64 
c4.98 

b0.92 
c7.32 

b1.18 
c9.63 

b1.25 
c11.19 

b1.30 
c13.20 

b1.47 
c13.63 

b1.55 
c12.87 

b1.66 
c10.21 
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Appendix 5.4. Results of 3.5% modal melting of a depleted spinel lherzolite (Sample ETR3, 

Rampone et al., 2004) mixed with 10% and 20% material similar to sill sample 08-JSVS-22 (Table 

4.2) respectively as modelled in Fig. 4.24c. 

aResidual mineral phases used in the calculations with numbers in each column representing 

percentages of residual minerals. bMeasured elemental concentrations in depleted spinel lherzolite 

(Rampone et al., 2004) normalised to chondrite values of Nakamura (1974). cCalculated elemental 

concentrations from partial melting of depleted spinel lherzolite mixed with more enriched material 

normalised to chondrite values of Nakamura (1974). Only two decimals are shown in this table while 

six decimals were used in the actual calculations/figure. For convenience, only olivine and 

orthopyroxene are displayed as residual phases in this table while  2% spinel was used as an 
additional residual phase in the actual calculations. 

 

 

Appendix 5.5.i. Results of partial melting calculations of a moderately fertile mantle (Lesnov et al., 

2009) as modelled in trend i of Fig. 4.25. 

Residual mineralogy fertile lherzolite: 84% Ol. + 16% Opx. Lowermost row shows initial values. 

Normalising values from Nakamura (1974). 

 

Appendix 5.5.ii. Results of partial melting calculations of a moderately fertile mantle (Lesnov et al., 

2009) as modelled in trend ii of Fig. 4.25.  

Residual mineralogy fertile lherzolite: 76% Ol. + 24% Opx. Lowermost row shows initial values. 

Normalising values from Nakamura (1974). 

Sample aOl aQpx La Ce Nd Sm Eu Gd Dy Er Yb 

ETR3+10% ~84 ~16 
b
0.05 

c4.16 

b
0.04 

c3.89 

b
0.26 

c8.30 

b
0.58 

c13.31 

b
0.66 

c14.44 

b
0.86 

c16.06 

b
1.12 

c16.66 

b
1.09 

c13.51 

b
1.14 

c11.44 

ETR3+20% ~84 ~16 
b0.05 
c7.35 

b0.04 
c7.01 

b0.26 
c10.95 

b0.58 
c14.64 

b0.66 
c15.30 

b0.86 
c16.53 

b1.12 
c16.37 

b1.09 
c13.24 

b1.14 
c11.38 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

140.17 21.79 5.96 162.05 107.33 27.09 1.51 1 

91.96 15.33 5.30 106.32 75.51 24.11 1.41 2 

68.43 11.82 4.78 79.11 58.24 21.72 1.36 3 

54.49 9.62 4.35 62.99 47.40 19.76 1.33 4 

45.26 8.11 3.99 52.33 39.96 18.13 1.31 5 

31.81 5.83 3.30 36.77 28.70 15.02 1.28 7.5 

24.52 4.55 2.82 28.34 22.39 12.82 1.27 10 
16.81 3.16 2.18 19.43 15.56 9.92 1.25 15 

12.79 2.42 1.78 14.79 11.92 8.09 1.24 20 

10.32 1.96 1.50 11.93 9.66 6.83 1.24 25 

8.65 1.65 1.30 10.00 8.12 5.91 1.23 30 

5.25 1.01 0.84 6.07 4.96 3.84 1.22 50 

2.65 0.51 0.45 3.06 2.51 2.05 1.22 100 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

132.87 19.00 4.44 153.61 93.58 20.19 1.64 1 

88.80 13.91 4.08 102.66 68.50 18.53 1.50 2 

66.68 10.97 3.77 77.09 54.02 17.12 1.43 3 

53.38 9.05 3.50 61.71 44.60 15.91 1.38 4 

44.51 7.71 3.27 51.45 37.97 14.86 1.36 5 

31.44 5.62 2.81 36.35 27.69 12.76 1.31 7.5 

24.30 4.42 2.46 28.10 21.79 11.18 1.29 10 
16.72 3.10 1.97 19.32 15.28 8.96 1.26 15 

12.74 2.39 1.64 14.73 11.76 7.47 1.25 20 

10.29 1.94 1.41 11.90 9.56 6.41 1.24 25 

8.63 1.64 1.23 9.98 8.05 5.61 1.24 30 

5.25 1.00 0.82 6.07 4.94 3.75 1.23 50 

2.65 0.51 0.45 3.06 2.51 2.05 1.22 100 
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Appendix 5.5.iii. Results of partial melting calculations of a moderately fertile mantle (Lesnov et al., 

2009) as modelled in trend iii of Fig. 4.25. 

Residual mineralogy fertile lherzolite: 76% Ol. + 20% Opx. + 4% Cpx. Lowermost row shows initial 

values. Normalising values from Nakamura (1974). 

 

Appendix 5.5.v. Results of partial melting calculations of the average of a moderately depleted 

mantle (Workman and Hart, 2005) as modelled in trend v of Fig. 4.25. 

Residual mineralogy depleted lherzolite: 84% Ol. + 16% Opx. Lowermost row shows initial values. 

Normalising values from Nakamura (1974). 

 

Appendix 5.5.vi. Results of partial melting calculations of the average of a moderately depleted 

mantle (Workman and Hart, 2005) as modelled in trend vi of Fig. 4.25. 

Residual mineralogy depleted lherzolite: 83% Ol. + 15% Opx. + 2Sp. Lowermost row shows initial 

values. Normalising values from Nakamura (1974). 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

116.25 11.42 4.00 134.39 56.25 18.20 2.39 1 

81.13 9.39 3.71 93.79 46.25 16.85 2.03 2 

62.30 7.97 3.45 72.02 39.28 15.69 1.83 3 

50.57 6.93 3.23 58.46 34.13 14.68 1.71 4 

42.55 6.13 3.04 49.19 30.17 13.80 1.63 5 

30.48 4.75 2.64 35.23 23.39 11.98 1.51 7.5 
23.74 3.88 2.33 27.44 19.10 10.59 1.44 10 

16.46 2.84 1.89 19.03 13.98 8.60 1.36 15 

12.60 2.24 1.59 14.57 11.02 7.23 1.32 20 

10.20 1.85 1.37 11.80 9.09 6.24 1.30 25 

8.57 1.57 1.21 9.91 7.74 5.49 1.28 30 

5.23 0.99 0.82 6.05 4.85 3.71 1.25 50 

2.65 0.51 0.45 3.06 2.51 2.05 1.22 100 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

29.09 10.21 4.83 33.63 50.30 21.95 0.67 1 

19.09 7.18 4.30 22.07 35.37 19.55 0.62 2 

14.20 5.54 3.88 16.42 27.29 17.64 0.60 3 

11.31 4.51 3.53 13.08 22.22 16.05 0.59 4 

9.39 3.80 3.23 10.86 18.72 14.68 0.58 5 

6.60 2.73 2.68 7.63 13.45 12.18 0.57 7.5 
5.09 2.13 2.29 5.88 10.49 10.41 0.56 10 

3.49 1.48 1.77 4.03 7.29 8.05 0.55 15 

2.65 1.13 1.44 3.06 5.57 6.55 0.55 20 

2.14 0.92 1.22 2.47 4.53 5.55 0.55 25 

1.80 0.77 1.05 2.08 3.79 4.77 0.55 30 

1.09 0.47 0.68 1.26 2.32 3.09 0.54 50 

0.55 0.24 0.37 0.64 1.18 1.66 0.54 100 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

8.99 4.30 3.70 10.39 21.18 16.82 0.49 1 

7.78 3.67 3.39 8.99 18.08 15.41 0.50 2 

6.86 3.20 3.12 7.93 15.76 14.18 0.50 3 

6.13 2.84 2.90 7.09 13.99 13.18 0.51 4 

5.55 2.55 2.70 6.42 12.56 12.27 0.51 5 

4.48 2.03 2.31 5.18 10.00 10.50 0.52 7.5 
3.75 1.69 2.02 4.34 8.33 9.18 0.52 10 

2.84 1.26 1.61 3.28 6.21 7.32 0.53 15 

2.28 1.01 1.34 2.64 4.98 6.09 0.53 20 

1.90 0.84 1.15 2.20 4.14 5.23 0.53 25 

1.64 0.72 1.01 1.90 3.55 4.59 0.53 30 

1.05 0.46 0.67 1.21 2.27 3.05 0.54 50 

0.55 0.24 0.37 0.64 1.18 1.66 0.54 100 
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Appendix 5.5.vii. Results of partial melting calculations of a depleted mantle (Rampone et al., 2004) 

as modelled in trend vii of Fig. 4.25. 

Residual mineralogy depleted lherzolite: 84% Ol. + 16% Opx. Lowermost row shows initial values. 

Normalising values from Nakamura (1974). 

 
Appendix 5.5.viii. Results of partial melting calculations of a depleted mantle (Rampone et al., 2004) 

as modelled in trend viii of Fig. 4.25. 

Residual mineralogy depleted lherzolite: 80% Ol. + 12% Opx. + 8% Cpx. Lowermost row shows 

initial values. Normalising values from Nakamura (1974). 

 

Appendix 5.5.ix. Results of partial melting calculations of a depleted mantle (Rampone et al., 2004) 

as modelled in trend ix of Fig. 4.25. 

Residual mineralogy depleted lherzolite: 80% Ol. + 11% Opx. + 8% Cpx. + 1% Grt. Lowermost row 

shows initial values. Normalising values from Nakamura (1974). 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

2.01 5.04 3.31 2.32 24.83 15.05 0.094 1 

1.32 3.55 2.95 1.52 17.47 13.39 0.087 2 

0.98 2.74 2.65 1.13 13.47 12.07 0.084 3 

0.78 2.23 2.42 0.90 10.97 10.98 0.082 4 

0.65 1.88 2.22 0.75 9.25 10.07 0.081 5 

0.46 1.35 1.84 0.53 6.64 8.34 0.079 7.5 
0.35 1.05 1.57 0.41 5.18 7.12 0.078 10 

0.24 0.73 1.21 0.28 3.60 5.51 0.077 15 

0.18 0.56 0.99 0.21 2.76 4.49 0.077 20 

0.15 0.45 0.83 0.17 2.23 3.79 0.077 25 

0.12 0.38 0.72 0.14 1.88 3.28 0.076 30 

0.08 0.23 0.47 0.09 1.15 2.13 0.076 50 

0.04 0.12 0.25 0.04 0.58 1.14 0.076 100 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

1.51 1.94 2.26 1.75 9.57 10.28 0.183 1 

1.09 1.68 2.09 1.26 8.27 9.50 0.152 2 

0.85 1.48 1.94 0.98 7.29 8.84 0.134 3 

0.70 1.32 1.82 0.80 6.51 8.26 0.123 4 

0.59 1.20 1.71 0.68 5.89 7.76 0.116 5 

0.43 0.96 1.48 0.49 4.75 6.73 0.104 7.5 

0.33 0.81 1.31 0.39 3.98 5.94 0.097 10 

0.23 0.61 1.06 0.27 3.00 4.81 0.090 15 

0.18 0.49 0.89 0.21 2.41 4.04 0.086 20 
0.15 0.41 0.77 0.17 2.02 3.48 0.083 25 

0.12 0.35 0.67 0.14 1.73 3.06 0.082 30 

0.07 0.22 0.45 0.09 1.11 2.06 0.078 50 

0.04 0.12 0.25 0.04 0.58 1.14 0.076 100 

Ce Sm Yb (Ce)N (Sm)N (Yb)N (Ce/Sm)N Melt % 

1.52 1.87 1.13 1.76 9.21 5.14 0.191 1 

1.09 1.63 1.09 1.26 8.01 4.96 0.157 2 

0.85 1.44 1.06 0.98 7.08 4.80 0.139 3 

0.70 1.29 1.02 0.81 6.35 4.64 0.127 4 

0.59 1.17 0.99 0.68 5.76 4.50 0.119 5 

0.43 0.95 0.92 0.49 4.66 4.17 0.106 7.5 

0.33 0.80 0.86 0.39 3.92 3.89 0.099 10 

0.23 0.60 0.75 0.27 2.97 3.43 0.091 15 

0.18 0.49 0.67 0.21 2.39 3.07 0.087 20 
0.15 0.41 0.61 0.17 2.00 2.77 0.084 25 

0.12 0.35 0.56 0.14 1.72 2.53 0.082 30 

0.07 0.22 0.41 0.09 1.10 1.87 0.078 50 

0.04 0.12 0.25 0.04 0.58 1.14 0.076 100 
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Appendix 5.6.i. Results of partial melting calculations of a fertile mantle (Lesnov et al., 2009) as 

modelled in trend i of Fig. 4.26. 

Residual mineralogy fertile lherzolite: 84% Ol. + 16% Opx. Lowermost row shows initial values.  

 

Appendix 5.6.ii. Results of partial melting calculations of a fertile mantle (Lesnov et al., 2009) as 

modelled in trend ii of Fig. 4.26. 

Residual mineralogy fertile lherzolite: 76% Ol. + 24% Opx. Lowermost row shows initial values.  

 

Appendix 5.6.iii. Results of partial melting calculations of a fertile mantle (Lesnov et al., 2009) as 

modelled in trend iii of Fig. 4.26. 

Residual mineralogy fertile lherzolite: 76% Ol. + 16% Opx. + 8% Cpx. Lowermost row shows initial 

values.  

Zr Y TiO2 Y/TiO2 Melt % 

309.33 111.04 5.18 21.44 1 

258.16 92.11 4.22 21.83 2 

221.52 78.69 3.56 22.11 3 

193.99 68.68 3.08 22.32 4 

172.54 60.93 2.71 22.48 5 

135.18 47.53 2.09 22.76 7.5 
111.12 38.96 1.70 22.93 10 

81.95 28.63 1.24 23.15 15 

64.91 22.63 0.97 23.27 20 

53.73 18.71 0.80 23.35 25 

45.84 15.95 0.68 23.41 30 

28.88 10.03 0.43 23.54 50 

15.00 5.20 0.22 23.64 100 

Zr Y TiO2 Y/TiO2 Melt % 

242.73 86.25 4.51 19.13 1 

210.46 74.52 3.77 19.79 2 

185.76 65.59 3.23 20.28 3 

166.25 58.58 2.83 20.67 4 

150.45 52.92 2.52 20.99 5 

121.56 42.63 1.98 21.56 7.5 

101.98 35.69 1.63 21.94 10 
77.13 26.92 1.20 22.43 15 

62.02 21.61 0.95 22.72 20 

51.86 18.05 0.79 22.92 25 

44.56 15.50 0.67 23.06 30 

28.51 9.90 0.42 23.38 50 

15.00 5.20 0.22 23.64 100 

Zr Y TiO2 Y/TiO2 Melt % 

270.46 44.33 3.03 14.62 1 

230.76 41.19 2.69 15.34 2 

201.23 38.48 2.41 15.97 3 

178.39 36.10 2.19 16.52 4 

160.22 33.99 2.00 17.00 5 

127.69 29.67 1.65 18.00 7.5 

106.14 26.32 1.40 18.77 10 

79.35 21.48 1.08 19.89 15 
63.36 18.14 0.88 20.66 20 

52.74 15.70 0.74 21.22 25 

45.16 13.83 0.64 21.65 30 

28.68 9.38 0.41 22.67 50 

15.00 5.20 0.22 23.64 100 
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Appendix 5.6.iv. Results of partial melting calculations of a fertile mantle (Lesnov et al., 2009) as 

modelled in trend iv of Fig. 4.26. 

Residual mineralogy fertile lherzolite: 76% Ol. + 19% Opx. + 4% Cpx. + 1% Grt. Lowermost row 

shows initial values.  

 

Appendix 5.7. Results of plagioclase fractionation/accumulation calculations from/to a melt with a 

Sr/Nb versus Eu/Eu* ratio intermediate between high/low-TiO2 sills as modelled in Fig. 4.27. 

Uppermost row shows starting values. Normalising values from Nakamura (1974). 

 

Appendix 5.8. Results of 20 wt% plagioclase fractionation and 20 wt% plagioclase accumulation 

from sample 08-JSVS-22 and to sample 07-JSS-40 respectively as modelled in Fig. 4.28. 

aActive mineral phase used in the calculations with numbers in each column representing fractionating 

and accumulating percentages. 
b
Measured elemental concentrations in actual sill samples normalised 

to chondrite values of Nakamura (1974). cCalculated elemental concentrations from plagioclase 
fractionation and accumulation normalised to chondrite values of Nakamura (1974). 

 

 

 

 

Zr Y TiO2 Y/TiO2 Melt % 

237.03 29.53 3.51 8.41 1 

206.20 28.19 3.05 9.24 2 

182.47 26.98 2.70 10.01 3 

163.64 25.86 2.42 10.70 4 

148.33 24.83 2.19 11.35 5 

120.21 22.59 1.77 12.75 7.5 
101.05 20.72 1.49 13.92 10 

76.63 17.77 1.13 15.77 15 

61.71 15.56 0.91 17.15 20 

51.66 13.84 0.76 18.23 25 

44.42 12.46 0.65 19.09 30 

28.47 8.91 0.42 21.32 50 

15.00 5.20 0.22 23.64 100 

Sr Nb Sr/Nb (Sm)N (Eu)N (Gd)N (Eu/Eu*)N  

202.5 4.50 45.00 16.13 15.55 15.00 1.00 Initial 

187.8 4.99 37.67 17.80 16.68 16.50 0.97 -10% Plag 

172.6 5.59 30.89 19.87 18.03 18.35 0.94 -20% Plag 

216.8 4.10 52.85 14.76 14.60 13.76 1.02 +10% Plag 

230.7 3.77 61.19 13.61 13.79 12.72 1.05 +20% Plag 

Sample aPlag La Ce Nd Sm Eu Gd Dy Er Yb 

08-JSVS-22 -20 % 
b 25.75 
c 30.85 

b25.02 
c30.52 

b26.23 
c32.14 

b22.28 
c27.39 

b20.25 
c22.99 

b19.18 
c23.62 

b14.68 
c18.10 

b11.67 
c14.44 

b11.05 
c13.64 

07-JSS-40 +20 % 
b11.00 

c9.33 

b10.11 
c8.51 

b10.14 
c8.52 

b8.73 
c7.34 

b8.95 
c7.78 

b8.16 
c6.85 

b7.37 
c6.18 

b6.88 
c5.78 

b6.95 
c5.86 
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Appendix 5.9. Results of partial melting calculations in addition to plagioclase 

fractionation/accumulation calculations as modelled in Fig. 4.27. 

 

Appendix 5.10. Results of the modelling shown in Fig. 4.31. 

Fig. 4.31a. aElements representing a moderately fertile mantle normalised to primitive mantle (Sun 

and McDonough, 1989). bMantle normalised values from 5% partial melting of moderately fertile 

mantle with residual mineral assemblage: 76% Ol + 16% Opx + 8% Cpx.  cMantle normalised values 

from 10% partial melting of moderately fertile mantle with residual mineral assemblage: 76% Ol + 

16% Opx + 8% Cpx.  dMantle normalised values from 20% partial melting of moderately fertile 

mantle with residual mineral assemblage: 76% Ol + 16% Opx + 8% Cpx.   

Fig. 4.31b. eElements representing a typical basalt (from c) normalised to primitive mantle (Sun and 

McDonough, 1989). fMantle normalised values representing 20 wt% plagioclase fractionation from 
typical basalt. fMantle normalised values representing 20 wt% plagioclase accumulation to typical 

basalt. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nb Ta Th Eu Sr  

0.85 0.04 0.038 0.17 17.0 Initial (partial melting) 

17.31 0.79 0.74 1.75 299.6 4.8% melt 

3.027 0.14 0.13 0.54 59.7 28% melt 

9.00 0.81  2.00 325.0 Initial (Plag fractionation) 

11.18 0.99  2.27 273.9 -20% Plag 

4.00 0.50  1.65 260.0 Initial (Plag accumulation) 
3.27 0.41  1.49 296.2 +20% Plag 

Nb Ta La Ce Nb Ta La Ce 

a1.19 a0.76 a17.18 a40.76 e11.80 e9.51 e13.83 e13.07 
b23.34 b18.54 b25.01 b22.96 f14.63 f12.20 f16.61 f15.90 
c11.80 c9.51 c13.83 c13.07 g9.87 g8.29 g11.91 g11.13 

d
5.93 

d
4.88 

d
7.31 

d
7.02     
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written about the NAIP, these authors have actually managed to write the review 

from an original point of view that really adds value to it. I enjoyed reading the 
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One reviewer commented: 

The paper provides a very good description of saucer-shaped sills in the Faroe 

Islands. These sills are intruded into a thick basaltic lava pile, which has rarely 

been described in the literature and as such the paper offers new and important 

insight into igneous emplacement into non-sedimentary host-rocks. 

 

 


