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Summary

Three dimensional (3D) finite element analysis (FEA) allows the mechanical integrity of complex struc-

tures to be estimated with some confidence. This research is concerned with extending an existing parallel

FEA code. This code has been run on up to 16 processors on Durham University’s high performance com-

puting (HPC) cluster and two different parallel linear solvers have been compared. A key feature of the

work has been to develop tools for structural analyses. An automatic mesh refinement program has been

written, the Zienkiewicz and Zhu error estimator has been coded for 3D hexahedral meshes and post

processing techniques have been used to calculate and visualise principal stress data and peak stress

criteria. This project also reports on three peak stress envelopes used to assess the condition of a concrete

sub-structure.

The development of this parallel code has enabled the deformation behaviour of a key component of

a nuclear rector vessel to be determined. The BCU is a prestressed cylindrical concrete vessel (depth

of 1.73m and diameter of 3.37m) sealing the top of a boilers housed within the walls of the reactor. In

recent years possible problems have been identified at the Hartlepool and Heysham I Advance Gas-Cooled

nuclear reactors (AGR) with respect to the structural condition of the BCU (in particular the condition

of the prestressed circumferential wires designed to maintain the BCU in a state of compression). This

problem provides an interesting case study for this project. Four different BCU meshes have been used

containing either 40201 or 321608 elements (the elements are either 8 or 20-noded hexahedral elements).

Three different load cases have been used to model the BCU. The results of the analyses confirm that the

circumferential pre-stressing is vital in order to keep the BCU is a state of compression and operating

under safe working conditions. These results have been confirmed using principal stress plots and three

different peak stress envelopes. The results show that when the pre-stressing is released approximately

one quarter of the elements contain stresses at Gauss points which exceed the peak strength of the

concrete. This suggests that under these extreme conditions the BCU’s structural integrity has been

severely compromised, concrete rupture is possible and the nuclear reactor is no-longer safe to operate.
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Nomenclature
and
abbreviations

Firstly non-Greek symbols will be listed in alpha-
betical order. Scalars, vectors and tensors will be
grouped separately. Greek symbols will then be
listed in the same way followed by mathematical
operators and abbreviations.

dr Radial displacement

dt Tangential displacement

u Displacement in the global direction
x

v Displacement in the global direction
y

w Displacement in the global direction
z

c Circumference

d Total length of BCU penetration

f Yield function

f bc Equal biaxial compression, nor-
malised with respect to fc

fc Uniaxial compressive strength

fext External force

fht Equal hydrostatic tension, nor-
malised with respect to fc

f t Uniaxial tensile strength, normalised
with respect to fc

ft Uniaxial tensile strength

g Acceleration due to gravity

h Height of BCU

l Distance to a point on a plate from
the origin

p Pressure

r̂ Deviatoric shape function

r Radius

r0 Smooth peak stress envelope (Senv)
variable used to calculate r̂

r1 Senv variable variable used to calcu-
late r̂

r2 Senv variable variable used to calcu-
late r̂

t Thickness of radial wire windings
x Global co-ordinate direction
y Global co-ordinate direction
z Global co-ordinate direction
A Area
E Young’s modulus
Fb Force due to bolt loads
Fi Force due to shear stresses in BCU

inlets
Fsw Force due to self weight of the BCU
Fu Force on BCU due to underside pres-

sure
Fc Force due to wire windings
G Gravitational force
Pz Nodal equivalent force in z direction

due to self weight
V Volume

{a} Polynomial coefficients vector
{d} Displacement
{eσ} Error in stress
{fb} Body force
{n̂} Unit vector normal to a plane
{n} Vector normal to a plane
{p̂} Polynomial terms
[B] Strain-displacement matrix
[D] Constitutive matrix
{de} Element displacement vector
{fe} Element force vector
[I] Identity matrix
[J ] Jacobian matrix
[K] Global stiffness matrix
[Ke] Element stiffness matrix
[L] Matrix of differential operators
[N ] Shape function matrix
{P} PCCG vector
{Q} PCCG vector
{R} PCCG residual vector
{U} PCCG solution vector

Dijkl Constitutive tensor
ρ Stress invariant

α Senv variable
α̂ PCCG scalar
β̂ PCCG scalar
ν Poisson’s ratio
ω Integration weights
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ω∗ Virtual displacement

ρ Density of concrete

̺ Stress invariant

̺c Compression meridian

̺e Extension meridian

σc Stress in pre-stress wires

ϕ Lode angle

ξ̂ Local co-ordinate direction

ξ Stress invariant

η̂ Local co-ordinate direction

ζ̂ Local co-ordinate direction

Ω Domain of a body in the reference
configuration

Θ Angle

{ǫ} Strain vector

{σ} Stress vector

{σ∗} Exact stress vector

{σh} FEA stress vector

ǫkl Stress tensor

σij Stress tensor

δ
δa
(·) Derivative of (·) with respect to a

det(·) Determinant of (·)

△(·) Increment of (·)
(·)T Transpose of (·)

AGR Advanced gas cooled nuclear reactor

BCU Boiler closure unit

CIS Computer Information Service

FEA Finite element analysis

FE Finite element

FEM Finite element method

GUTS Guaranteed ultimate tensile strength

HPS High performance computing

MPenv Multi-planar peak stress envelope

MPI Message passing interface

nGp Number of Gauss points per element

nGppP Number of Gauss points per SPR
patch

PCCG Pre-conditioned conjugate gradient

PCPV Pre-stressed concrete pressure vessel

PFEA Parallel finite element analysis

Senv Smooth C2 peak stress surface

SPR Superconvergent patch recovery

ssh Secure shell

TCenv Tension cut-off peak stress envelope

Z2 Zienkiewicz Zhu

– xii –



Chapter 1

Introduction

1.1 Scope of the thesis and background to the study

The pre-stressed boilure closure unit (BCU) provides a pressure barrier to the boiler within an advanced

gas cooled nuclear reactor (AGR). The BCUs are subject to high gas pressure. Good structural condition

of these units is vital for the safety of the reactor. This structure provides an application for the code

development featured in this project. Finite element analysis (FEA) studies were initially carried out on

the BCU around four years ago when four AGR reactors had to be shut down (Hartlepool and Heysham

I). These shut-downs were due to concern over the structural condition of the BCU, in particular what

would happen if the pre-stressed wire windings snapped or their condition deteriorated. The shut down

was initiated when a broken wire was suspected on a BCU at Hartlepool I during a planned inspection

in September 2007. This project has further investigated this problem, looking at how the code could

(i) be run faster using different solvers and (ii) more accurately using different meshes, while obtaining

an error estimation for each mesh and evaluating the structural condition using different post processing

procedures.

FEA is widely used in industry for stress and deformation analysis, allowing the structural integrity

and safety of the BCU to be evaluated. Speed and accuracy are two factors which must be balanced

when carrying out FEA within a fixed time frame and budget. Most of the run time in a large FEA is

expended on solving the system of linear equations. This increasingly becomes the case as the mesh is

refined, therefore it is advantageous to implement parallel solvers. Greater accuracy can be achieved by

re-meshing, however this is computationally expensive and requires careful judgement to ensure accuracy

is reached whilst not wasting resources.

Numerous penetrations pass through the cylindrical BCU making the geometry non-axisymmetric. There-

fore one-quarter of the unit has been analysed using a minimum of 40201 hexahedral finite elements. An

existing parallel finite element (FE) code has been adapted for this project, allowing a more detailed

analysis of the BCU to be carried out. The code can now handle pressure loads and self weight and can

use one of two linear solvers (an iterative or a direct solver) to find a solution. Re-meshing schemes and

error analysis have also been implemented for the BCU analyses.
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These new tools have been used to carry out the analyses, looking at three different loading conditions for

each of the four meshes. Conclusions have been drawn on the safety of the BCU under these conditions

and the necessity for remeshing. Concrete peak stress envelopes for elastic analysis and principal stress

plots have been used in post processing of the data, allowing the structural condition of the BCU to be

investigated. Concrete behaviour is not very well understood under multi-axial loading conditions due

to difficulty in obtaining laboratory data (particularly under combined tension and compression). Three

different peak stress envelopes are considered and compared when carrying out elastic failure analysis of

the BCU.

1.2 Project aims

The aims for the project are as follows: :

1. To make use of MPI to extend and run a parallel finite element program on a distributed computer

(specifically using the Durham University’s facilities)

2. To develop an existing parallel finitie element (FE) code (ParaFEM[20]) in order to analyse part of

a nuclear reactor vessel (the BCU) subjected to extreme loading.

3. To understand how to use an advanced linear solver (a key component of FEA) called MUMPS and

incorporate this into ParaFEM

4. To refine an existing BCU mesh, generating meshes containing higher order elements and more

elements

5. To generate realistic loading files and boundary condition files for the BCU analysis

6. To run BCU analyses using different numbers of computer cores and compare runtime speeds.

7. To understand and then code the Z2 error estimator for 3D hexahedral finite elements.

8. To obtain error estimations for the meshes used in the BCU analyses.

9. To make use of principal stress plots and peak stress envelopes to evaluate the FEA results and

illustrate the differences between the various strength criteria employed.

1.3 Thesis breakdown

Chapters 2 and 3 provide a description of FEA theory and how FEA code can be run in parallel,

specifically looking at the distributed computer available for research at Durham University. Chapters 4

and 5 contain a record of the most significant part of the project’s contribution. Chapter 4 describes how

ParaFEM, an existing parallel FEA code has been developed to incorporate features allowing the BCU to

be analysed and the error in the analysis estimated. This section also describes a new mesh refinement

strategy coded in Fortran 90, written to allow 8 and 20-noded hexahedral element meshes, such as the

mesh available for the BCU, to be automatically refined. Chapter 5 describes the application for this work

(the BCU), how the ParaFEM input files were generated and the FEA results obtained. Postprocessing

results are also described where peak stress envelopes and principal stress plots have been used to get
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an idea of the structural condition and safety of the BCU under different loading conditions. Finally in

Chapter 6 the author’s original contributions have been summarised, a series of conclusions are drawn

from the work and several recommendations are made for possible future extensions to this study.
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Chapter 2

Finite element analysis

Throughout the project Finite Element Method (FEM) has been used to carry out the stress analyses.

Here some background information is provided on the theoretical basis of 3D linear FEM. The governing

system of equations (the strong form) for standard structural stress analysis will be developed by consid-

ering three fundamental concepts used in continuum mechanics: equilibrium, constitutive relationships

and strain-displacement relationships (see Sections 2.1, 2.2 and 2.3 respectively). In Section 2.4 the weak

form is presented, allowing algebraic FEM equations to be developed which describe the behaviour of the

solid by relating the nodal displacements to the nodal forces via the structural stiffness. In Section 2.5

information will be given on the 8 and 20-noded isoparametric hexahedral elements used in this project,

and finally some attention is given to non-linear FEA, even though such analyses have not been carried

out in this project.

2.1 Equilibrium

The strong form solution will be derived here by considering the force equilibrium of a small element

(see Figure 2.1). Equilibrium describes the balance of internal and external forces acting on a body.

Equilibrium of a 3D body can be written in terms of the stresses,

{σ} =







σxx

σyy

σzz

σxy

σyz

σzx







, (2.1)

and body forces per unit volume,

{fb}







fbx

fby

fbz







. (2.2)

The following expression may be written for equilibrium when considering the forces acting in the x
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Figure 2.1: Stresses at a point in equilibrium - considering the x direction.

direction as shown in Figure 2.1

σxx∆y∆z +
σxx

∆x
∆x∆y∆z − σxx∆y∆z+

σyx∆x∆z +
σyx

∆y
∆y∆x∆z − σyx∆x∆z+

σzx∆x∆y +
σzx

∆z
∆z∆x∆y − σzx∆x∆y + fbx∆x∆y∆z = 0. (2.3)

Similar expressions can be written in the y and z directions. All three expressions simplify to form the

following three equations

∂σxx

∂x
+

∂σyx

∂y
+

∂σzx

∂z
+ fbx = 0,

∂σyy

∂y
+

∂σxy

∂x
+

∂σzy

∂z
+ fby = 0 and

∂σzz

∂z
+

∂σxz

∂x
+

∂σyz

∂y
+ fbz = 0. (2.4)

Given symmetry of the stress tensor (σxy = σyx etc.), these three equations can be combined in a single

matrix equation






∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂z

0

0 0 ∂
∂z

0 ∂
∂y

∂
∂x












σxx

σyy

σzz

σxy

σyz

σzx







+







fbx

fby

fbz







=







0

0

0







. (2.5)

When (2.5) is written in a symbolic matrix notation it takes the following form

[L]T {σ}+ {fb} = {0} . (2.6)

This partial differential equation of equilibrium (together with the boundary conditions) is known as

the strong form expression. The strong form will now be modified in the following sections through the
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consideration of strain-displacement and constitutive relationships.

2.2 Constitutive relationships

Linear elastic constitutive models are used to describe the relationship between stresses and strains

in a continuum during the deformation process. The constitutive relationship for all stress and strain

components, independent of symmetries existing in the body, can be written in tensor notation as

σij = Dijklǫkl. (2.7)

Dijkl, is the 4th order constitutive stiffness tensor, containing 81 constants. Dijkl maps the relationship

between σij , the 2nd order stress tensor containing 9 stress components, and ǫkl, the 2nd order strain

tensor containing 9 strain components. The 81 constants in the constitutive stiffness tensor are called

elastic constants. However, two symmetries exist in all constitutive tensors

1. Dijkl = Djikl due to symmetry of the stress tensor (σij = σji) and

2. Dijkl = Dijlk due to symmetry of the strain tensor (ǫkl = ǫlk).

These symmetries allow the constitutive tensor to be expressed as a 6 by 6 constitutive matrix, [D], such

that

{σ} = [D] {ǫ} . (2.8)

Using 2.8, the strong form solution, 2.6, can now be written as,

[L]
T
[D] {ǫ}+ {fb} = {0} . (2.9)

{σ} and {ǫ} are 6 by 1 column vectors containing the 6 unique stress and strain values respectively. This

reduced form of constitutive relationship will be used in this thesis for the linear elastic behaviour.

2.3 Strain-displacement relationships

Deformation of a solid body is dependent on the rate of deformation (movement of material particles

relative to each other). This property is called strain. Small strain takes account of relative fractional

movements of particles and is described by the following six components

{ǫ} =







∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂w
∂x

+ ∂u
∂z







, (2.10)
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where u, v, and w are the components of displacement in the x, y and z directions respectively. Strain–

displacement relationships can also be written in matrix notation

{

ǫ
}

=














∂
∂x

0 0

0 ∂
∂y

0

0 0 ∂
∂z

∂
∂y

∂
∂x

0

0 ∂
∂z

∂
∂y

∂
∂z

0 ∂
∂x




















u

v

w







(2.11)

or, more compactly, as

{ǫ} = [L] {d} (2.12)

where [L] is the differential operator. The strong form expression (2.6) can now be written as

[L]
T
[D] [L] {d}+ {fb} = {0} . (2.13)

2.4 Finite element equations

So far, only the strong form solution has been derived providing force equilibrium in terms of the spatial

derivatives of displacement (2.13). This cannot be solved in its current form using the FEM therefore

the strong form solution is adapted to derive the weak form solution. This derivation is carried out by

pre–multiplying the equation by an arbitrary vector expressed in terms of the shape functions [N ] and

integrating over the volume and applying the Gauss-Green theorem, to give

∫

Ω

([L] [N ])
T
[D] [L] [N ] dΩ {d} =

∫

S

[N ]
T {t} dS +

∫

Ω

[N ]
T {fb} dΩ. (2.14)

where [N ] is a matrix containing the shape functions associated with each node, such that for an 8-noded

element

[N ] = [N1 [I] ...N8 [I]] , (2.15)

where [I] is the identity matrix. The weak form solution provides an equation which can be established

by integrating over the body to form a stiffness matrix relating nodal displacements to nodal forces

[7]. This stiffness matrix, [K], is formed on the left hand side by integrating the expression numerically

using Gaussian quadrature, considering contributions from each Gauss point (i = 1....number of Gauss

points(nGp))
i=nGp
∑

i=1

[B]
T
[D] [B]ω det(J)

︸ ︷︷ ︸

[K]

{d} = {fext}+ {fb} , (2.16)

where det(J) is the determinant of the Jacobian matrix and w is the weight function associated with

each Gauss point. The two terms on the right of (2.14) are expressed as {fext} and {fb} and [B] is the

strain-displacement matrix containing the shape function derivative with respect to the global co-ordinate

system. That is

[B] = [L] [N ] (2.17)
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where [L] is a matrix of differential operators. The FE equilibrium equation for a single element is

[Ke]{de} = {fe} (2.18)

where [Ke] is the element stiffness matrix, {de} is the vector of element nodal displacements and {fe} is

the element nodal force vector.

Traditionally FEM programs have been based on the assembly techniques where all the element

[Ke] matrices and {fe} vectors are assembled to form a global system of linear simultaneous equations

for the complete structure

[K] {d} = {f}. (2.19)

The weak form solution provides a linear system of equations which can then be solved either by iterative

methods or by direct methods. Memory storage of the global system can present a problem in large

meshes. Certain iterative techniques may offer advantages in this respect as they do not require the

global system to be assembled therefore reducing the memory requirements for the problem.1 Solution

techniques for the linear system of equations (both iterative and direct) are discussed in Chapter 3.

2.5 Isoparametric hexahedral elments

The hexahedral elements used in this project are isoparametric. This implies that the same shape function

are used to define the geometry as well as the variation in the displacements. In this section the global

and local co-ordinate systems will be explained and the shape functions will be listed.

2.5.1 Local co-ordinate system and the co-ordinate mapping technique

The local and global domains are shown in Figure 2.2. The element can be defined within the local domain

by defining the element boundaries using a local co-ordinate system (ξ̂ = ±1, η̂ = ±1 and ζ̂ = ±1). It

is possible to map the local domain to the global domain, which is defined in terms of the Cartesian

co-ordinate system x, y and z, such that x = x
(

ξ̂, η̂, ζ̂
)

, y = y
(

ξ̂, η̂, ζ̂
)

and z = z
(

ξ̂, η̂, ζ̂
)

where every

point identified by the local co-ordinate system has a unique point identified by the Cartesian co-ordinate

system in the global domain. This mapping is carried out using the chain rule of differentiation given by







dx

dy

dz







=







δx

δξ̂

δx
δη̂

δx

δζ̂
δy

δξ̂

δy
δη̂

δy

δζ̂
δz

δξ̂

δz
δη̂

δz

δζ̂













dξ̂

dη̂

dζ̂







,

or 





dx

dy

dz







= [J ]







dξ̂

dη̂

dζ̂







,

where [J ] is the Jacobian matrix (a matrix containing first order partial derivatives of the global co-

ordinate system with respect to the local co-ordinate system). This matrix allows the local co-ordinate

1Direct solvers also can be constructed in an element-by-element form.
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Figure 2.2: Mapping from the local to the global domain

system to be mapped to the global co-ordinate system and vice versa. The determinant of the Jacobian

(detJ) must be non zero in order for a unique mapping to exist. This ensures the system of elements is

stable which is one of the requirements needed for convergence towards a solution. This can be achieved

by using a consistent node ordering pattern. Throughout this project a clockwise ordering of nodes has

been used starting at node 1, when viewing an element face from the outside of the element, as shown

in Figure 2.3. [J ] is used to calculate [K] (as seen in Section 2.4), so that the variables and domain with

respect to which the integration is made are transformed.
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Figure 2.3: Node numbering for 8 and 20-noded element shape functions

2.5.2 Shape functions and their derivatives

Shape functions describe the geometry and displacements of an element. In this way the location of any

point in an element can be calculated by knowing the local co-ordinates of the point, the shape functions

for the element and the nodal displacements. The following equation illustrates this relationship for an

8-noded element,






x

y

z







= [N ]
{

x1 y1 z1 . . . x8 y8 z8

}T

, (2.20)

where [N ] (see 2.15) contains the shape functions for nodes 1 to 8. Throughout this project both 8 and

20-noded hexahedral isoparametric elements have been used. The 8-noded element uses tri-linear shape

functions, with either a single point reduced integration scheme or an eight point full integration scheme.

The 20-noded element uses tri-quadratic shape functions, with either an eight point reduced integration

scheme or a twenty-seven point full integration scheme. Both sets of shape functions are available within

ParaFEM and can be specified within the input file p121.dat. Because 8-noded elements employ linear

shape functions, they generally provide a less accurate solution compared to that provided by 20-noded

elements where quadratic shape functions are employed, however when 20-noded elements are used the

size of problem increases requiring more time and memory to solve. For each node there is an associated

shape function. The nodes are identified using a consistent node numbering scheme shown in Figure 2.3.

The 8-noded element shape functions are as follows

N1 =
1

8

(

1− ξ̂
)

(1− η̂)
(

1− ζ̂
)

N2 =
1

8

(

1− ξ̂
)

(1− η̂)
(

1 + ζ̂
)

N3 =
1

8

(

1 + ξ̂
)

(1− η̂)
(

1 + ζ̂
)

N4 =
1

8

(

1 + ξ̂
)

(1− η̂)
(

1− ζ̂
)

N5 =
1

8

(

1− ξ̂
)

(1 + η̂)
(

1− ζ̂
)

N6 =
1

8

(

1− ξ̂
)

(1 + η̂)
(

1 + ζ̂
)

N7 =
1

8

(

1 + ξ̂
)

(1 + η̂)
(

1 + ζ̂
)

N8 =
1

8

(

1 + ξ̂
)

(1 + η̂)
(

1− ζ̂
)

(2.21)
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and the 20-noded element shape functions are as follows

N1 =
1

8

(

1− ξ̂
)

(1− η̂)
(

1− ζ̂
)(

−ξ̂ − η̂ − ζ̂ − 2
)

N2 =
1

4

(

1− ξ̂
)

(1− η̂)
(

1− ζ̂2
)

N3 =
1

8

(

1− ξ̂
)

(1− η̂)
(

1 + ζ̂
)(

−ξ̂ − η̂ + ζ̂ − 2
)

N4 =
1

4

(

1− ξ̂2
)

(1− η̂)
(

1 + ζ̂
)

N5 =
1

8

(

1 + ξ̂
)

(1− η̂)
(

1 + ζ̂
)(

ξ̂ − η̂ + ζ̂ − 2
)

N6 =
1

4

(

1 + ξ̂
)

(1− η̂)
(

1− ζ̂2
)

N7 =
1

8

(

1 + ξ̂
)

(1− η̂)
(

1− ζ̂
)(

ξ̂ − η̂ − ζ̂ − 2
)

N8 =
1

4

(

1− ξ̂2
)

(1− η̂)
(

1− ζ̂
)

N9 =
1

4

(

1− ξ̂
) (

1− η̂2
) (

1− ζ̂
)

N10 =
1

4

(

1− ξ̂
) (

1− η̂2
) (

1 + ζ̂
)

N11 =
1

4

(

1 + ξ̂
) (

1− η̂2
) (

1 + ζ̂
)

N12 =
1

4

(

1 + ξ̂
) (

1− η̂2
) (

1− ζ̂
)

N13 =
1

8

(

1− ξ̂
)

(1 + η̂)
(

1− ζ̂
)(

−ξ̂ + η̂ − ζ̂ − 2
)

N14 =
1

4

(

1− ξ̂
)

(1 + η̂)
(

1− ζ̂2
)

N15 =
1

8

(

1− ξ̂
)

(1 + η̂)
(

1 + ζ̂
)(

−ξ̂ + η̂ + ζ̂ − 2
)

N16 =
1

4

(

1− ξ̂2
)

(1 + η̂)
(

1 + ζ̂
)

N17 =
1

8

(

1 + ξ̂
)

(1 + η̂)
(

1 + ζ̂
)(

ξ̂ + η̂ + ζ̂ − 2
)

N18 =
1

4

(

1 + ξ̂
)

(1 + η̂)
(

1− ζ̂2
)

N19 =
1

8

(

1 + ξ̂
)

(1 + η̂)
(

1− ζ̂
)(

ξ̂ + η̂ − ζ̂ − 2
)

N20 =
1

4

(

1− ξ̂2
)

(1 + η̂)
(

1− ζ̂
)

. (2.22)

2.6 Non-linear finite element analysis

Throughout this project the behaviour of the BCU has been restricted to the linear case, however real

concrete structures exhibit non-linear responses under loading. We will therefore briefly discuss concrete’s

generalised non-linear response under multi-axial loading and how our linear assumptions could affect

our results. A short summary will also be given on how to incorporate non-linear analysis into a FEA

code and an example pseudo-code presented. Idealised one-dimensional stress-stain curves for tension

and compression are shown in Figure 2.4. In compression, concrete initially behaves linearly elastically

and then some non-linearity appears. Depending on the degree of compressive confinement present the

material may exhibit a ductile response as the peak is attained. Thereafter softening occurs before reaching

a point when no more load can be carried by the material. Concrete behaves quite differently under

tension. Initially the behaviour is linear before showing a brittle softening response. The uniaxial tensile

strength (ft) of concrete is generally between 10 − 20% of the uniaxial compressive strength (fc). The

strength of concrete under multi-axial loading is more complicated. A combination of all stresses must be

considered since simple limitations of tensile and compressive uniaxial strength do not accurately predict

the strength. For example, if a concrete specimen were subject to tensile loading in one direction and

compressive loading in another then the stress state may be within the uniaxial tensile and compressive

strength limits yet the specimen could still fail.

Non-linear FEA has not been used during this work, however it would be useful to incorporate non-linear

analysis into the code to develop the work further. The pseudo- code which follows this description has

been used to show how a non-linear algorithm might look (the numbers on the left hand side of the

code represent the line numbers and are not part of the code, they have been used to reference lines

of code as it is described). During non-linear analysis the solution is determined in a number of steps

by applying the external force in a series of discrete load steps (line (9)). Before the external force is
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Figure 2.4: Idealised stress-strain curves for concrete under one-dimensional loading

applied the elastic stiffness matrix [K] is calculated (lines (2)-(7)). The loads steps are then applied

and a solution approached (lines (9)-(35)). For each load step (applied in line (9)) an iterative (typically

Newton-Raphson) procedure is carried out until the out of balance force Df is less than a given tolerance.

This iterative procedure is shown in lines (13)-(26). Df is calculated by finding the difference between the

externally applied force vector f ext and the internal force vector f int (line (11) initially and line (27)

during each iteration). During each iteration a new f int and stiffness matrix [K] are calculated (lines

(13)-(26)). This procedure is carried out until Df is less than a given tolerance, or the maximum number

of permitted iterations is reached. At this point the estimated displacement vector d old is reassigned

(line (29)) and the stress vector can then be calculated (lines (30)-(34)). The pseudo-code is shown below:

(1) {d_old}={0}, {d_new}={0}, {sig_old}={0}, {f_int}={0}, ||Df||=2xtol

(2) do elem=1:nelm

(3) do gp=1:ngp

(4) [Ke]=sum([B]^T[De][B]w|J|

(5) end

(6) [Ke]-->[K]

(7) end

(8)

(9) do loadstep=1:nloadstep
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(10) read in {f_ext}

(11) {Df}={f_ext}-{f_int}

(12) NRit=0

(13) while(||Df||>tol & NRit<maxNRit)

(14) NRit=NRit+1

(15) [K]{Dd}={Df}

(16) {d_new}={d_old}+{Dd}

(17) do elem=1:nelm

(18) do gp=1:ngp

(19) {Deps}=[B]{{d_new}-{d_old}}

(20) {Deps}, {sig_old}-->constitutive model-->{Dsig}, [Dep] or [De]

(21) [Ke]=sum([B]^T[Dep][B]w|J|

(22) {fe_int}^T=sum{{sig_old}+{Dsig}}^T[B]w|J|

(23) end

(24) {fe_int}-->{f_int}

(25) [Ke]-->[K]

(26) end

(27) {Df}={f_ext}-{f_int}

(28) end

(29) {d_old}={d_new}

(30) do elem=1:nelem

(31) do gp=1:ngp

(32) {sig_new}={sig_old}+{Dsig}

(33) end

(34) end

(35) end
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Chapter 3

Parallel finite element analysis

In this section, parallel computing, the Message Passing Interface (MPI) and the high performance com-

puting (HPC) service at Durham University will be described. ParaFEM[20], the existing parallelised

Fortran 90 FEA code will be introduced and two alternative parallel linear solvers will be discussed.

3.1 Parallel computing

In order to understand the mechanics of parallel programming it is important to be clear on terminology.

Often literature and instruction manuals can confuse the matter by interchanging terminology. Common

definitions for a computer cluster, node, processor, core, process, memory bus and thread have been listed

here and then used to mean the following throughout the thesis.

• Computer Cluster: A set of computers, usually physically located near one another and con-

nected to one another in order to solve computing problems more efficiently. These networks of

computers are often referred to as HPC services, super-computers or distributed memory

environments.

• Node: A piece of computer hardware connected to and communicating with other nodes within

a computer cluster. Each node runs its own operating system, and can consist of one or several

processors. Within a cluster, nodes include compute nodes, I/O nodes, service nodes and network

nodes and special-purpose nodes.

• Processor: A computing component able to read and execute a program. Processors are made up

of cores. Processors can be single or multi-cored.

• Core: A sub-component of a processor. Each core can read and execute programs separately.

• Process: A process is the reading and execution of programming instructions. One process can be

run on each core.

• Memory Bus: Subsystem involved in data transfer between processors.
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• Thread: A thread is a subdivision of a process. A core can execute threads within a process

simultaneously without them interfering with each other, for example a process might be separated

into threads so that one thread carries out the task, another calculates the error and a third sends

an error message to the user. This process is known as multi-threading. OpenMP can be used to

make jobs run in parllel using multi-threading, however multi-threading has not be used in this

project.

Parallel computing potentially speeds up calculations by performing multiple operations simultaneously.

These operations would otherwise be carried out one at a time by a serial program. Parallel programming,

as used in this project, reduces the computational effort by sharing the work load between cores. This

reduction in computational effort must outweigh the time spent during inter–processor information shar-

ing in order to have a net time saving. Parallel programming may also alleviate memory requirement if

a distributed memory environment is being used where different processors each with their own memory

space stores part of the program’s data. There are two models available for parallel computing where the

parallelism is specified by the programmer;

• Shared memory model: Multiple cores share access to a global memory space allowing them to

exchange or share data efficiently, shown in Figure 3.1. The number of cores sharing a single memory

space is limited by the bandwidth of the memory bus connecting the cores. This is generally in the

region of 2− 16 cores.

Figure 3.1: Shared memory model

• Message passing model: Multiple processors each with their own local memory communicate

with each other by passing messages, shown in Figure 3.2. Message passing between two memories

requires both processors to pass a message. MPI is a specific implementation of the message passing

model and will be discussed in more detail in the next section.

Computer clusters are typically made up of a combination of the two models. Each processor contains

multiple cores which share a memory (shared memory model). The processors are interlinked in a network

(message passing model) to provide the complete service.
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Figure 3.2: Message passing model

3.1.1 Message Passing Interface (MPI)

MPI is a language independent communications protocol for parallel computing. It is a library of function

calls that co-ordinate the program as it runs on multiple cores in a distributed memory environment.

Each time data is communicated between cores (i.e. data is copied from one memory to another if it

is not shared) MPI calls are made by all cores involved. Communication is always cooperative, which

means that it can only be executed fully if the first core executes a send function and the second core

executes a receive function. For such functions to be operational, certain arguments must be provided by

the core calling them, for example: the address, size and type of data to be communicated and the core

involved in the communication (destination and source core). A tag or matching integer is required as an

argument to ensure the co-operative nature of communication. The tag ensures that the send function is

only deemed complete once the receive operation capable of identifying data containing that tag has been

completed. The structure of a typical MPI program will now be described using a piece of pseudo-code.

An explanation for each line will be given in the next paragraph (the numbers on the left hand side of

the code represent the line numbers and are not part of the code, they have been used to reference lines

of code as it is described). The pseudo-code is shown below:

1 program program name

2 include ‘mpif.h’

–variable declaration–

11 call MPI INIT(ierr)

12 call MPI COMM RANK(MPI COMM WORLD, myid, ierr)
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13 call MPI COMM SIZE(MPI COMM WORLD, numpe, ierr)

–main program–

101 call MPI FINALIZE(ierr)

102 program end

The program includes starting and finishing the program (lines 1 and 102), declaring the library files

(line 2) and four MPI calls. MPI INIT(ierr) (line 11) must be the first MPI subroutine called within

any MPI code. It establishes the MPI environment and allows other MPI functions to be called. ierr

(lines 12, 13 and 101) is the error code argument and is the last argument of every MPI subroutine, it

returns either MPI SUCCESS or an appropriate error code. MPI COMM SIZE (line 13) returns the number of

cores/number of processes being run (numpe). This is defined by the user when the program is executed.

By calling MPI COMM RANK (line 12) each core can find its rank (the core identification number used

for each communication) in the group associated with the communicator. MPI FINALIZE (line 101) is

the last MPI subroutine to be called and it closes down the MPI environment. MPI INIT(ierr) and

MPI FINALIZE(ierr) can only be called once in any program.

Here is an example hello world.f90 Fortran 90 program where MPI messages are passed between cores

in the main body of the program:

1 program hello world

2 include ‘mpif.h’

3 integer rank, size, ierr, tag, status(MPI STATUS SIZE)

4 character(12) message

5

6 call MPI INIT(ierr)

7 call MPI COMM SIZE(MPI COMM WORLD, size, ierr)

8 call MPI COMM RANK(MPI COMM WORLD, rank, ierr)

9 tag = 100

10

11 if(rank .eq. 0) then

12 message=‘hello’

13 do i=1, size-1

14 call MPI SEND(message, 12, MPI CHARACTER, i, tag, MPI COMM WORLD, ierr)

15 end do

16 else

17 call MPI RECV(message, 12, MPI CHARACTER, 0, tag, MPI COMM WORLD, status, ierr)

18 end if

19 print(*,*) ‘node’, rank, ‘:’, message

20

21 call MPI FINALIZE(ierr)

22 end program hello world

Lines 11-19 are the main body of the program. Each core is running the program but the program specifies
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different cores to do different things. Lines 11− 15 specifies the core of rank 0 must send the message to

all the other cores (cores of rank 1 to size−1). Lines 15− 18 ask all cores bar the core of rank 0 to receive

the message sent. The message is then printed by all cores (line 19).

This program gives examples of several MPI functions where the function requires several arguments. For

example MPI SEND has seven arguments. The message is the character data being sent, 12 is the number

of data elements of the specified type to be sent, MPI CHARACTER is the type of data, i is the destination

of the data, tag is the tag given to the message, MPI COMM WORLD is the group of cores communicating

and ierr is the error message.

MPI parallel programs have to be complied and linked with MPI libraries mpif.h (compiled by the same

compiler). The MPI compiler mpif90 ensures the MPI libraries are linked successfully with the Fortran

90 compiler. MPI programs can then be executed interactively from the command line or by using a

batch queue system.

3.1.2 The high performance computing service in Durham

Durham University’s HPC service is a computer cluster known by the name Hamilton. Such a service

enables researchers to verify, validate and execute parallel programs. Hamilton consists of a 228 node

(1824 processor core) SuSE Linux Cluster. Each node comprises of two quad-core Intel Xeon E5520/2.26

GHz Nehalem processors (total of eight cores per node), 24 GB Memory, 160 GB disk space and a QDR

InfiniBand interconnection. Throughout this project Hamilton has been used, initially in an interactive

mode to test and debug the code, and then in batch mode to run the code on up to sixteen cores. Hamilton

allows parallel code to run on up to 128 cores but the ParaFEM code used in this project is hardwired to

be run on up to sixteen cores.

Access to Hamilton is provided via a Durham University CIS Linux service from within the University

network. It is possible to connect to Hamilton from outside the university network by connecting to

another public university computer, for example Vega. Connecting to Hamilton from a Windows PC

requires PuTTY, a client which runs on a PC under Microsoft Windows and allows access to Linux machines

remotely using Secure Shell (ssh). ssh is a network protocol that allows data to be exchanged between two

network devices via a secure channel. PuTTY is run via the command line, however a graphical interface

can be provided by VCN Viewer. This viewer allows the user to use a windowing environment whilst

connected to a Linux desktop computer enabled by a Gnome Desktop environment. Once connected to

a Durham University Linux machine, a connection can be made directly to Hamilton via the command

line. The required ssh command is ssh hamilton-new.

Detailed instructions on how to use PuTTY and VNC Viewer to connect to Vega and Hamilton from a

remote Windows PC can be found by authorised users on the Durham University HPC web pages [6].

Hamilton is a complex computer system and therefore requires a modular environment to allow users to

set up their own user environment in order to find the required executable and libraries for their usage.

Environment modules provide a way of selectively activating and deactivating the complete environment

to allow particular packages and versions of library files to be found. The commands required to set up

a unique user environment are:
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module print usage instructions

module av prints modules available

module load <module name> add a module to user’s environment

module unload <module name> removes a module from user’s environment

module purge removes all modules from user’s environment

module list lists all modules loaded by user

The following modules were required for the work carried out in this thesis:

openmpi/intel/64/1.4.2 Provides access to an Intel Fortran 90 compiler and

Intel compiled MPI libraries

intel/mkl/10.1.1 Provides access to Intel Compiled BLAS, BLACS

and ScaLAPACK libaries within the Math Kernel

Library (mkl)

sge/current Provides access to the Grid Engine, e.g. allows use

of queueing commands: qrsh, qsub etc.

Hamilton controls the job (the name given to the execution of a program) using a queuing system called

Grid Engine. This is a software package made available by Oracle[19]. This system functions to manage

work on behalf of the user and efficiently manage the resources of the system. Jobs will be held until

the correct number of cores become available. On Hamilton, the correct way to execute a parallel job is

by using the batch queue system, however special nodes have been reserved for debugging code where

code can be executed interactively using up to sixteen cores. These nodes can be accessed by the queuing

system via the qrsh command. Once logged into one of these allocated nodes the following command

can be typed into the command line, mpirun -np number of processes ./executable where np is the

number of processes the user wishes to run. Alternatively, a batch file can be written and then submitted

to a specified queue. Templates are provided by Durham University’s Computer Information Service

(CIS). Users can then monitor the status of their job using the qstat command.

To protect the system, users’ Durham University network drives are not mapped to their Hamilton

directory where each user has their own memory allocated to them. Files must be copied across the

secure channel using the ssh copy command (scp). The copy command is,

scp filename and location destination

for example,

scp p121.f90 vega:./MSc work/bcu analyses

which copies p121.f90 from the local directory on Hamilton to the folder bcu analyses on Vega.

3.2 Parallel finite element analysis

When using FEA to analyse large structures, computational effort and memory requirements can be high

due to the quantity of input data and the size of the system of equations. A significant percentage of

the total runtime for large structures is taken up in solving the system of linear equations. As described

in Chapter 2, the central equation in displacement based FEA stress analysis is [K] {d} = {f} (2.19).
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This equation must be solved to find the displacement vector {d}. Due to the size of the system, [K]

cannot easily be inverted, so {d} has to be solved for using a linear solver. The efficient running of the

linear solver is vital for the efficiency of the code as a whole. In this section we will focus on parallel

linear solvers, in particular looking at the implementation of a direct solver into an existing parallel finite

element analysis (PFEA) code called ParaFEM.

3.2.1 ParaFEM

ParaFEM [20] is a freely available parallel FEA code, downloaded from the ParaFEM website. The sub-

routines are written in Fortran 90 making use of MPI. The code was developed from existing software

created by Lee Margetts [16] under the supervision of I.M. Smith and M.A. Pettipher at the University

of Manchester. That work was an extension of serial codes written by I.M. Smith and D.V. Griffiths. A

description of the ParaFEM software and its functionalities is provided in Chapter 12 of Smith and Grif-

fiths book: Programming the Finite Element Method [22]. ParaFEM is built by assembling subroutines,

grouped in modules, from within the Smith and Griffiths’ FE library. ParaFEM subroutines and FEA code

structure have been used as the building blocks and provide the backbone for the parallel analysis carried

out in this project.

The original ParaFEM program p121.f90 uses fourteen modules containing subroutines. To compile

p121.f90 quickly, with all the modules, a makefile was written. The module files *.mod, main program

p121.f90 and makefile makefile.mk were placed in the same folder. To run the makefile, the following

command was used, make -f makefile.mk. This compiled all the modules and the main program and

outputted an executable p121 exe. The program could then be run using a batch script or interactively,

see Section 3.1.1.

ParaFEM requires four input files to run. An additional input file has also been added to provide pressure

data inputed into the FEA model. Table 3.1 summarises the contents of each input file and further

information on the format and contents of each input file can be found in Appendix A (along with

examples of all the input files and the makefile for ParaFEM).

File Contents
p121.dat Basic control data
p121.d The geometry of the problem
p121.bnd The boundary conditions
p121.lds Nodal loads to be applied
p121.prs Pressure loads to be applied

Table 3.1: ParaFEM input file summary

The program is split into 14 sections and each section is given a title (existing in the code as a comment,

providing helpful markers to navigate the program). Sections 1 and 2 declare variables used in the main

program and the dynamic arrays - these have to be allocated memory, however this is done later in the

program only when the arrays need to be used. In the third section the job name, control data, mesh data,

boundary conditions and loading conditions are read from the input files specified in 3.1. The dynamic

arrays are then allocated memory space in Section 4. Section 5 then loops through the elements to find the

steering array (the node numbers for each element listed in the correct order) and the number of equations
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to be solved. The inter-processor communication tables are then formed in Section 6. More arrays (this

time arrays local to each processor) are allocated memory space in Section 7, this allocation is dependent

on the number of equations that each processor has to solve. In Section 8 the element stiffness matrices are

calculated and stored. Each processor calculates and stores only the element stiffness matrices required to

solve the equations it has been specified. The diagonal pre-conditioner is formed in Section 9. The force

vector is organised in Section 10 and then the PCCG solver carries out the iterative process of finding

the estimation to the nodal displacements in Section 11. Finally in Sections 12, 13 and 14 the stresses

and nodal displacements are collected back on the host processor and the run-time performance data is

outputted.

3.2.2 Linear solvers

The equilibrium equations (2.19) can be solved either by an iterative method or by a direct method.

ParaFEM uses a diagonally pre-conditioned conjugate gradient (PCCG) solver, which is an iterative solver.

This element–by–element approach avoids the need to assemble the global stiffness matrix. ParaFEM’s

p121 Fortran 90/MPI program was modified by the author such that MUMPS could be used instead of the

conjugate gradient solver. MUMPS’ direct solver adopts a multi frontal strategy, having the potential to

solve larger problems more quickly. In this section both solvers will be described. The implementation of

the MUMPS package on Durham’s HPC service will be explained, and integration of this solver into the

existing Fortran code will be explained by identifying necessary calls and parameter settings. The code

is also shown in Appendix C.

3.2.3 Pre-conditioned conjugate gradient solver (PCCG)

The PCCG method[22] is an iterative technique where the algorithm generates a sequence of improving

approximate solutions, until it lies within a given tolerance. A description, as found in Smith Giffiths

book[22], will be given here.

An initial guess is made for the vector {U}, this guess is called the initial trial solution ({U}0).
Then the residual or error {R0} is calculated for the trial solution

{P0} = {R0} = {F} − [Km]{U}0. (3.1)

Here we are considering the finite element equation Equation 2.19, therefore {U} is the displacement

vector, {F} is the force vector and [K] is the stiffness matrix. The following k steps (see 3.2)[22] are

carried out until the difference between the displacement calculated in two consecutive steps {U}k+1 and

{U}k is smaller than a specified tolerance (in ParaFEM this tolerance is specified in the input file p121.d
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- see Table 3.1).

{Q}k = [K]{P}k (3.2)

α̂k =
{R}Tk {R}k
{P}Tk {Q}k

{U}k+1 = {U}k + αk{P}k
{R}k+1 = {R}k − αk{U}k

β̂k =
{R}Tk+1{R}k+1

{R}Tk {R}k
{P}k+1 = {R}k+1 + βk{R}k

Note that {Q}, {P} and {R} are vectors, with a length equal to the number of equations which need

to be solved and α̂ and β̂ are scalars. This process can be carried out element by element without

assembling [K], such that {Q} = Σnels
i=1 [K

e]i{p}i where [Ke]i is the stiffness matrix of the ith element,

nels is the number of elements and {p}i is the appropriate part of {P}.

Preconditioning is used to accelerate convergence. The FE equation is pre-multiplied by the ’pre-

conditioner’ matrix [P ] such that

[P ][Km]{U} = [P ]{F}. (3.3)

If [Km]−1 could be calculated the solution could be obtained in one step

{U} = [Km]−1{F}. (3.4)

However this is not computationally possible for larger matrixes therefore relatively crude approximations

to [Km]−1 can be used to construct [P ] and then be used in the iterative process. For example, diagonal

pre-conditioning uses the inverse of the diagonal terms of [Km] as a matrix [P ]. The PCCG solver within

ParaFEM uses the simplest form of diagonal pre-conditioning [22].

3.2.4 MUMPS

MUMPS [2] [3] [18] is a package for solving systems of linear equations using a direct method based on a

multi-frontal approach. The parallel version of MUMPS makes use of BLAS, BLACS and ScaLAPACK libraries

[18]. These libraries contain linear algebra sub-programs capable of carrying out operations such as

vector and matrix operations. These libraries are available on the Hamilton cluster within the mkl-intel

libraries and access can be provided by specifying the correct path location within the make file and

using the correct modules openmpi/intel/64/1.4.2 and intel/mkl/10.1.1

MUMPS uses the direct method to solve the linear system of equations. This method obtains a so-

lution using Gaussian elimination. MUMPS uses a frontal system. The main idea of a frontal system is to

assemble equations and eliminate the variables (using Gaussian elimination) at the same time, rather

than assembling the whole matrix then solving the whole system[10]. As soon as all contributions to

the stiffness matrix for a given degree of freedom within a finite element mesh have been accumulated

the degree of freedom is eliminated from the system using standard Gaussian operations. The degrees
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of freedom currently being worked on can be visualised as a front. This area of the stiffness matrix is

a transition region between the part of the system solved for and the part not touched yet. The whole

stiffness matrix is never assemble in memory, instead assembly and elimination are alternated with the

factors written to disk as the process is carried out. Re-ordering of the stiffness matrix is crucial to the

speed of the the process. MUMPS is also a multi-frontal solver. This means it uses several fronts at the

same time to solve the system of equations. This means several processors can be used each working on

their own front.

Running MUMPS as part of an existing Fortran 90 code

MUMPS is able to solve linear systems of equations either in assembled, elemental or distributed assembled

form. These forms indicate how the stiffness matrix is stored on the cores. Assembled form means that

the stiffness matrix is initially assembled on the host core, elemental form means that the stiffness matrix

is inputted in terms of individual element stiffness matrices on the host core, whilst distributed assembled

form means the stiffness matrix is assembled across the cores, each core storing the part of the stiffness

matrix it will solve. For each of the three problem types a set of MUMPS variables have to be defined on either

the host processor or the local processors. Within ParaFEM the system of linear equations can be solved

using all three methods. All three have been successfully implemented providing identical displacement

outputs to at least six significant figures when solving simple unit cube problems and also the BCU (both

of these implementations have been explained in Chapter 4). However a distributed assembled matrix

input was used for the BCU FEAs because this method allowed a larger system of equations to be solved

without running into memory allocation problems. The variables required to run a distributed assembled

problem are listed in Table 3.2. The stiffness matrix is defined by MUMPS matrix [A], and the force vector

is defined by MUMPS array RHS. The solution is then stored in RHS once the system has been solved. To

implement MUMPS within ParaFEM such that it can solve the problem as a distributed assembled problem

the following steps had to be taken;

1. Include new library files

add lines:

include ’mpif.h’

include ’dmumps\_struc.h’

and ensure makefile specifies library file locations

2. Identify MUMPS package required and data structure name

add line:

TYPE (DMUMPS_STRUC) id

3. Name error variable ierr

add line:

INTEGER ierr

4. Define if problem is un-symmetric

add line:
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Variable Description Size Stored on host or local?
NZ Number of entries being inputed

into the definition of matrix A
1 host

IRN Integer array containing row in-
dices for the matrix A entries

NZ host

JCN Integer array containing column
indices for the matrix A entries

NZ host

RHS Real array containing values in
the vector on the right hand side
of the equation

N host

NZ loc Number of entries stored locally
on a processor being inputed into
the definition of matrix A

1 local

IRN loc Integer array containing row in-
dices for entries into matrix A
calculated locally on processor

NZ loc local

JCN loc Integer array containing column
indices for entries into matrix A
calculated locally on processor

NZ loc local

A loc Real array containing matrix A
entries calculated locally on pro-
cessor, A loc(k) corresponding to
the indices of IRN loc(k) and
CN loc(k)

NZ loc local

Table 3.2: List of MUMPS variables for distributed assembled problems

id%SYMM=0

5. Ask host core to be involved in factorisation

add line:

id%PAR=1

6. Initialise instance of MUMPS package

add lines:

id%JOB=-1

CALL DMUMPS(id)

7. Allocate and assign MUMPS variables as listed in Table 3.2 using information already generated by

ParaFEM such as array storkm pp containing the stiffness matrix information associated with each

core’s assigned elements and array r pp containing force vector information associated with each

core’s assigned elements.

8. call MUMPS package for solution

add lines:

id%JOB=6

CALL DMUMPS(id)
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9. Assemble solution on host

add lines:

IF(numpe==1)THEN

WRITE(*,*)’Solution is,’, id%RHS

END IF

10. Destroy instance of MUMPS package

add lines:

id%JOB=-2

CALL DMUMPS(id)
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Chapter 4

Code development: extra features

added to ParaFEM

The ParaFEM code has been extended by the author through adding the following features: (i) self weight,

(ii) non-uniform pressure loading expressed in terms of the local element face co-ordinates, and (iii)

error analysis. Throughout this chapter the theory behind the code features will be explained and an

example problem shown to verify the code extension. Most of the example problems are based on a cube

where one-eighth of the cube is modelled (taking advantage of three planes of symmetry). The cube

is therefore subject to roller boundary conditions on its horizontal base and two vertical surfaces, see

Figure 4.1. A pre-processor mesh refinement algorithm has also been developed. This will be presented

alongside the error analysis capability added into ParaFEM by the author. This algorithm can only deal

with whole domain refinement, the limitations of this will be discussed in Section 4.3.3 where the benefits

of local mesh refinement are also described. The history of local refinement of hexahedral meshes will

be summarised and difficulties associated with such refinement highlighted. Finally principal stress plots

and peak stress envelopes used in this project are described.

Figure 4.1: Boundary conditions for the unit cube used in the example problems
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4.1 Self weight

All loadings on a finite element need to be modelled as nodal loads. These point loads, known as the equiv-

alent nodal forces, can be calculated using the principle of virtual work. The infinitesimal gravitational

force, dG, acting on a element of density, ρ, and volume, dV , can be written as

dG = −ρgdV. (4.1)

This gravitational force acts in the direction of the gravitational acceleration. If the direction of gravita-

tional loading coincides with the global z axis then the components of, dG, are as follows,

dGx = 0

dGy = 0

dGz = −ρgdV. (4.2)

The principle of virtual work states that a continuous body is in equilibrium if the virtual work of all

the forces acting on the body is zero in a virtual displacement. Therefore the total work done by the

gravitational force due to a virtual displacement must equal the sum of the work contribution from each

node in a finite element in a virtual displacement. The total work done in a virtual displacement can be

calculated by integrating the work done over the element using the element shape functions. This gives

the expression

{Pz}w∗ =

∫

V

[N ]Tw∗ρgdV, (4.3)

where Pz is a vector of equivalent nodal forces for each node acting in the z direction such that for an

eight noded element,

{Pz} =







Pz1

Pz2

Pz3

Pz4

Pz5

Pz6

Pz7

Pz8







, (4.4)

w∗ is the virtual displacement applied to the element and [N ] is a matrix of shape function associated

with the nodes such that for an eight noded element,

[N ] = [N1N2N3N4N5N6N7N8] . (4.5)

Since the virtual displacement equation holds for all values of w∗, the integration term is independent of

w∗ and this term can therefore be cancelled from both sides of the equation. The integral expression for

Pz can be calculated easily using Gaussian quadrature, as follows.

{Pz} =

nGp
∑

i=1

[N ]ρgw det(J), (4.6)
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where w is the weight function associated with each Gauss point i, det(J) is the determinant of the

Jacobian matrix, [N ] is the matrix of the shape functions associated which each of the nodes at Gauss

point i. and nGp is the number of Gauss point used in the integration scheme. This calculation must be

done for each node in the element to find all the nodal equivalent forces (the shape function, N , will also

depend on the node being considered).

4.1.1 Self weight example

To confirm that the self weight capability has been successfully added into ParaFEM a simple analysis was

carried out on a unit cube (see Figure 4.1 for boundary conditions). No external forces are applied but

it is assumed that the cube has a density of 2400kgm−3. If the acceleration due to gravity is taken as

g = 9.81ms−2 acting in the z direction, then the total vertical force acting on the unit cube is
∫

V
ρgdV .

This would give a total vertical load of 23.54kN . FEA was carried out on four different meshes to verify

the subroutine, see Figures 4.2(a)-(d). 8-noded hexahedral elements were used with 8 Gauss points per

element. The results confirm that the force fz due to gravity is being calculated correctly. The total loads

(a) (b) (c) (d)

Figure 4.2: Self weight capability example problems

for each analysis are recorded in Table 4.1.1 .

Mesh Volume (m3) fx(kN) fy(kN) fz(kN) FEA fz(kN)
(a) 1.0000 0 0 23.54 23.54
(b) 1.0000 0 0 23.54 23.54
(c) 0.7500 0 0 17.66 17.66
(d) 0.6186 0 0 16.19 16.19

Table 4.1: Self weight example problem results (total forces)

4.2 Pressure loading

To calculate the nodal equivalent forces corresponding to non-uniform pressures acting on the element

faces a similar Gaussian integration scheme was used where four or nine Gauss points were set up over

the pressure surface (depending on whether 8 or 20-noded hexahedral elements were being considered),

see Figure 4.3. The pressure was applied on an element face in a direction defined by a local co-ordinate.

That is, either normal to the face (η̂) or tangential to the face (ξ̂ or ζ̂). There are three steps required to

calculate the equivalent nodal forces from the local nodal pressures:
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(a) 8-noded element (b) 20-noded element

Figure 4.3: Integration schemes for pressure loading

1. Step 1: calculate the local Gauss point pressures from the local nodal pressures.

2. Step 2: calculate the global Gauss point pressures from the local Gauss point pressures.

3. Step 3: calculate the global nodal forces from the global Gauss point pressures.

Firstly the local Gauss point pressures must be calculated (Step 1). This is possible by using the shape

functions. The expression for the pressures in each of the local directions pGpζ
, pGpη

and pGp
ξ̂
are as

follows

pGp
ζ̂
=

nn∑

i=1

Nipi
ζ̂

pGpη̂
=

nn∑

i=1

Nipiη̂ and pGp
ξ̂
=

nn∑

i=1

Nipi
ξ̂

(4.7)

where i is the node number (i = 1...number of nodes (nn)) and pi
ζ̂
, piη̂ and pi

ξ̂
are the local nodal

pressures associated which each of the nodes i. Secondly the local pressures are transformed into global

pressures pGpx
, pGpy

and pGpz
at each of the Gauss points (Step 2). The expressions for global Gauss

point pressure in the three global directions at each Gauss point are as follows

pGpx
=

pGp
ζ̂

δx

δζ̂

|ζ̂|
+

pGp
ξ̂

δx

δξ̂

|ξ̂|
+

pGpη̂
vareax

det(J)
(4.8)

pGpy
=

pGp
ζ̂

δy

δζ̂

|ζ̂|
+

pG
ξ̂

δy

δξ̂

|ξ̂|
+

pGη̂
vareay

det(J)
and (4.9)

pGpz
=

pGp
ζ̂

δz

δζ̂

|ζ̂|
+

pG
ξ̂

δz

δξ̂

|ξ̂|
+

pGη̂
vareaz

det(J)
(4.10)
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where

|ζ| =
√

((
δx

δζ̂
)2 + (

δy

δζ̂
)2 + (

δz

δζ̂
)2) (4.11)

|ξ̂| =
√

((
δx

δξ̂
)2 + (

δy

δξ̂
)2 + (

δz

δξ̂
)2) (4.12)

vareax =
δz

δξ̂

δy

δζ̂
− δy

δξ̂

δz

δζ̂
(4.13)

vareay =
δx

δξ̂

δz

δζ̂
− δz

δξ̂

δx

δζ̂
(4.14)

vareaz =
δy

δξ̂

δx

δζ̂
− δx

δξ̂

δy

δζ̂
(4.15)

and

det(J) =
√

(vareax)2 + (vareay)2 + (vareaz)2. (4.16)

Finally once the global Gauss point pressures have been obtained we can use Gaussian quadrature to

obtain an expression for the equivalent nodal forces. The expression for these nodal forces are as follows,

px =

nGp
∑

i=1

NipGpxi
widet(J) py =

nGp
∑

i=1

NipGpyi
widet(J) and pz =

nGp
∑

i=1

NipGpzi
widet(J) (4.17)

where i is the Gauss point number, Ni is the shape function for the node under evaluation at Gauss point

i and wi is the weight function for Gauss point i. This calculation must be carried out for each node.

4.2.1 Pressure loading example

Uniform pressure applied to a unit cube

Note: the boundary conditions for this problem are described at the beginning of this chapter and can be

viewed in Figure 4.1 When a uniform pressure of 1MPa is applied in the z direction to the top surface

(perpendicular to the x − y plane) of a unit cube containing 27 equally sized 8-noded elements, we can

expect to see a uniform stress distribution of 1MPa at each of the Gauss points throughout the cube. To

check that this is the case, the principal stress vectors at each integration point have been plotted (Figure

4.5). This plot shows that under these loading conditions only principal stresses in the z direction are

generated, this is because the uniform pressure in the z direction generates nodal displacements in the z

direction only.

Linearly varying pressure applied to a unit cube

When a linearly varying pressure (from 0MPa at y = 0 to 1MPa at y = 1) is applied in the z direction

to the top surface (perpendicular to the x − y plane) of a unit cube, one would expect a non-uniform

variation in the stress distribution within the cube due to non-uniform nodal force vectors and nodal

displacement vectors. Such deformation means that varying shear stresses are generated in the material,
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Figure 4.4: Uniform pressure load on the example cube

Figure 4.5: Gauss point principal stress vectors resulting from a uniform pressure load

this means that the principal stress directions also vary throughout the structure. To check that this is

the case, the principal stress vectors have been plotted at each of the Gauss points (see Figure 4.7).

4.3 Mesh refinement

The accuracy of a FEA solution can be increased by using more elements in areas where the stress gradient

varies in a manner not fully captured by a single element. This process is called mesh refinement. Mesh

refinement will increase the computational requirements of the problem and therefore should only be
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Figure 4.6: Linearly varying pressure acting on the example cube

Figure 4.7: Gauss point stresses due to a linearly varying pressure load

carried out when necessary. To identify when mesh refinement is necessary an error measure should be

used. This section focuses on mesh refinement and the following section describes error analysis, however

the two are closely linked and rely upon each other when implemented within a FEA code.

The two major classes of mesh refinement are h-refinement and p-refinement. h-refinement describes

a form of refinement where the element type is kept the same, but the number of elements is changed.

Alternatively, p-refinement is a method whereby the order (type) of the element is increased whilst keeping

the number of elements unchanged [26]. The Fortran code refine mesh.f90 was written by the author to

carry out a remeshing scheme where a process of progressive h and p-refinement is applied to hexahedral

elements. This code requires a ParaFEM co-ordinate and 8-noded element topology input file called p121.d,

see Table 3.1. Firstly the order of each element is increased from eight nodes to twenty nodes, then each

20-noded element is split into eight 8-noded elements. The process can be repeated, see Figure 4.8. For
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Figure 4.8: Mesh refining process

each conversion step, 8-noded mesh → 20-noded mesh and 20-noded mesh → 8 × 8-noded mesh, new

nodal coordinates and element topologies must be determined. The next two subsections describe how

these conversions are carried out within the Fortran code. To distinguish between mesh arrays, array

names are followed by an 8 for the 8-noded mesh, 20 for a 20-noded mesh and 88 when the 20-noded

elements are split into 8 × 8-noded elements.

4.3.1 p-refinement: 8 → 20-noded elements

(a) Edge and node numbering for mesh re-
finement 8 → 20

(b) 8-noded element etpl (c) 20-noded element etpl

Figure 4.9: etpl node ordering

The following 5 steps describe the process of p-refinement for the hexahedral elements:

1. For each element, determine the two vertex nodes associated with each edge

2. For each element, loop around each edge 1 − 8 and check if the mid-edge node associated with

the edge has been assigned a node number by checking vertex nodes against the values stored in

the new-node array newn(total number of new nodes, Corner Node Values 1:2). If the vertex

node associated with the edge of the element is not already stored in newn, then store the new-node

number and associated vertex nodes in newn array.

3. For each mid-edge node on each edge assign the correct node number to the element topology array

(etpl20). Note the element topology for the first eight nodes of the 20-noded hexahedral correspond

to the 8-noded hexahedral element topology etpl8, see Figure 4.9(b) . The additional twelve terms

in etpl20 correspond to the mid-edge nodes, see Figure 4.9(c).
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Edge, see Figure 4.9(a) Vertex node 1 Vertex node 2
1 1 2
2 2 3
3 3 4
4 4 1
5 5 6
6 6 7
7 7 8
8 8 5
9 1 5
10 2 6
11 3 7
12 4 8

Table 4.2: Table to show the verteces associated with each new edge node for p-refinement

Surfaces see Figure 4.10 Vertex Node 1 Vertex Node 2 Vertex Node 3 Vertex Node 4
1 3 7 8 4
2 4 8 5 1
3 1 5 6 2
4 2 6 7 3
5 5 6 5 8
6 2 3 4 1

Table 4.3: Table to show the vertex nodes associated with each new surface node for h-refinement

4. For each new node calculate its coordinates and store in the coord20 array. These coordinates are

given by half the sum of the vertex node cn co-ordinate values in each global co-ordinate direction

1− 3, for example, coord20(newn,1)=(coord8(cn1,1)+coord8(cn2,1))/2 .

5. Once etpl20 and the new node coordinates have been established, the new input files can be

written.

4.3.2 h-refinement: each 20-noded element → eight 8-noded elements

Figure 4.10: New nodes for 8 x 8-noded mesh

The following 6 steps describe the process of h-refinement for the hexahedral elements:

1. For each element, determine the 4 vertex nodes associated with each new face node and the eight
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vertex nodes used to define the new centre node (Figure 4.10).

2. For each element, loop around each face 1 − 6 and check if the face-node associated with the

four vertex nodes has been assigned a new node number by checking the vertex nodes against the

values stored in the array newn(total number of new nodes, vertex node values 1:4). If a

new node is found, give that node a new node number and store the vertex nodes in he newn array.

3. For each face node, assign the correct node number to the array elnewn(1:7).

4. For each central node, assign a new node number to the array elnewn(1:7). Note, there will be

seven new nodes associated with each original 20-noded element.

5. For each 20-noded element, loop through the eight new sub-elements and assign etpl88 from etpl20

and elnewn. The nodes associated with each subelement (a) to (h) are shown in Figure 4.11.

(a) (b) (c) (d) (e)

(f) (g) (h)

Figure 4.11: Sub-elements 1-8 node numbering scheme

6. For each new surface node, calculate its coordinates and store in the coord array. The coordi-

nates are given by one quarter of the sum of the vertex node cn co-ordinate values in each global

co-ordinate direction 1 − 3, for example, coord88(newn,1)=(coord20(cn1,1)+coord20(cn2,1)

+coord20(cn3,1)+coord20(cn4,1))/4.

7. For each new central node calculate its coordinates and store in the coord array - an eigth of the

sum of the vertex node cn co-ordinate values in each global co-ordinate direction 1−3, for example,

coord88(newn,1)= 1
8*(coord20(cn1,1)+coord20(cn2,1) +coord20(cn3,1)+coord20(cn4,1)+

coord20(cn5,1)+coord20(cn6,1) +coord20(cn7,1)+coord20(cn8,1)).

4.3.3 Local mesh refinement

Unacceptable errors in the stress field may appear in a local region within the whole domain. Use of a

re-meshing algorithm which refines the whole domain can be wasteful, and it is therefore necessary to

consider local remeshing strategies. Such strategies require a transition zone between the original coarse

meshed areas and the new fine meshed areas. Difficulty arises when generating all hexahedral meshes in

– 35 –



a conforming way, that means when elements join to form a mesh they connect together in such a way

that no nodes are left intersecting with an element and not being used to define its topology (such a node

is called a hanging node). This is relatively simple when considering triangular and tetrahedral meshes,

however for hexahedral elements the procedure is more complicated. Note that none of the schemes

described in this section (4.3.3) were implemented in ParaFEM due to time constraints. This section had

been included in order to point the way forward for future developments.

Figure 4.12: Unconforming hexahedral 8-noded mesh

Two different options are available for hexahedral 8-noded element refinement: two-refinement (2-Ref)

and three-refinement (3-Ref) schemes. 2-Ref divides each hexahedral element into eight new elements

whilst 3-Ref divides each hexahedral element into twenty-seven new elements. Both these elements form

a transition zone by joining template elements together. Template elements model the possible ways

an element could be sub-divided whilst maintaining conformity. A family of template elements can be

produced which represent all possible ways of subdividing an element for a given refinement scheme. These

template elements usually model a sub-division pattern which allows the element to match a coarse mesh

on one face and a more refined mesh on another face allowing connection. Example of the 2-Ref and

3-Ref templates are given in Figures 4.16 and 4.17 respectively. In many cases 2-Ref will produce a mesh

with fewer elements and a smoother transition zone. However, complications arise when developing a

robust 2-Ref algorithm, because pairs of adjacent elements must be considered. This is not the case for

3-Ref where refinement can be carried out locally. This means that the transition templates fit together

irrespective of the geometry of the refined area as the templates do not rely on pairs of elements to

generate a conforming zone. These templates are shown in Figure 4.13(b). Template-based refinement

methods have been widely used for 8-noded hexahedral mesh generation [11]. Most of these methods use

3-Ref templates, originally introduced by Schneiders in 1996 [21]. He proposed four 3-Ref templates for

node, edge, face and volume refinement (see Figure 4.16). The elements in the area of refinement are

subdivided using the volume template (d), then neighbouring elements are subdivided using one of the

four templates, (a), (b), (c) or (d) to generate a transition zone. Other templates (one is shown in Figure

4.14) are also available but they do not provide a stable refinement. The latter refers to the condition

where the minimum element internal angle of the refined mesh does not depend on the subdivision level

[21]. Figures 4.14(a) and (b) show how the quality of the elements reduces as this template is used to

refine the mesh. When the elements get very elongated as shown in 4.14(b), they will no longer provide

a good estimation for the stress distribution.

2-Ref is limited to structured meshes (meshes which conform to specific geometric characteristics). The
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(a) Unrefined mesh (b) 3-Ref refined mesh with high-
lighted transition zone

Figure 4.13: 3-Ref example

Figure 4.14: 3-Ref unstable template

use of such strategies can result in large volumes of the mesh being replaced by template (d). They can

only be used robustly on convex domains. Another method of refinement (also suggested by Schneiders)

is a shrink-and-connect strategy based on pillowing [17]. Pillowing is the name given to this technique

which essentially identifies a problem node and one of its problem elements. A group of elements is

then defined by taking a different node (the star node) from the problem element and forming a group

of elements all of which share the star node (this group is called the shrink set). The shrink set is

then shrunk, the problem element re-shaped and finally the whole group is connected in a conforming

way to the surrounding elements. Figure 4.15 shows the basic concept of a pillowing strategy for 2D

quadrilateral elements. This method extends Schneider’s original template based method by providing

additional templates generated by pillowing element layers in alternating x, y, and z directions. Additional

work has been provided by Tchon et al.. [23], Marechal [15], Yamakawa et al [24], Harris [9], Zhang et

al. [25], Parrish et al. [25] and Ito et al. [11] mostly focusing on providing more robust 3-Ref strategies.

Ebeida et al. [7] have implemented Schneiders 2-Ref template, see Figure 4.17, using two novel methods

overcoming concavity restrictions, and providing an algorithm which works for unstructured meshes and

parallel implementation. Method 1 simply implements 2-Ref templates in a new way suitable for parallel

implementation but problems with generating a conforming mesh and fitting templates together still

exist. Method 2 adds an additional pillowing capability, overcoming a restriction of Method 1 involving

template connectivity and the interaction of transition zones. The last of these restrictions occurs when

the distance between refined zones is only one element thick. The orientation of the template inserted due
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(a) Find a shrink set (b) Shrink (c) Connect

Figure 4.15: Pillowing of a quadrilateral mesh [7]

to one refined zone will conflict with the required orientation of the template inserted due to the other

refined zone. In this case one template orientation must be chosen. This results in hanging nodes on the

boundary between the transition zone and the other refined zones. Method 2 uses a pillowing technique to

resolve this problem. This method only requires template A, see Figure 4.17(a), then subsequent hanging

nodes are dealt with by a 3D pillowing technique.

(a) (b) (c) (d)

Figure 4.16: Four 2-Ref refinement templates by Schneiders et al for (a) node; (b) edge; (c) face; (d)
volume

(a) (b) (c) (d)

Figure 4.17: Three 3-Ref refinement templates by Schneiders et al for (a) A; (b) B; (c) C and (d) D

4.4 Error analysis

Mesh refinement will increase the computational effort of the FEA and therefore will normally only be

carried out when the jumps in the local stress fields between adjacent elements are unacceptable. An error
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indicator is required to identify when this is the case. To analyse the errors associated with the FEA

solution, the Zienkiewicz and Zho [27] error estimator (referred to here as the Z2 error estimator) has

been implemented into ParaFEM for the 8-noded and 20-noded 3D hexahedral elements. This estimator

uses a Super-Convergent Patch Recovery (SPR) technique [28] to estimate the nodal stresses according to

a polynomial expansion. These estimated stresses are called recovered stresses {σ∗} and are used instead

of the exact stresses, {σ}, to calculated the error in stress eσ.

The stress error can be defined as the difference between the approximate FEA solution, {σh} and {σ}.
For nodal stresses this can be written as

{eσ} = {σ} − {σh} . (4.18)

However, the exact stress is not known, therefore {σ∗} is substituted into (4.18) to obtain an estimated

error meassure

{eσ} ≈ {e∗σ} = {σ∗} − {σh} . (4.19)

The energy norm of the error ‖e‖ is used as an appropriate measure to compare errors within domains.

This is written as

‖e‖ =

(∫

Ω

{e∗σ}
T
[D]−1 {e∗σ} dΩ

) 1

2

. (4.20)

Integration is carried out using numerical Gaussian quadrature summing the contribution from each

Gauss point (i = 1...nGp) in each element using the following expression,

‖e‖ =

(
nGP∑

i=1

{e∗σ}T [D]−1 {e∗σ}ωi det(Ji)

) 1

2

. (4.21)

In the following subsection, the SPR technique will be described and then a benchmark problem will be

presented to verify this recovery process for both 8 and 20-noded hexahedral elements.

4.4.1 Calculating recovered nodal stresses within a 3D mesh using SPR

The SPR technique is used for recovering nodal stresses. This method assumes that each stress component

in {σ∗} belongs to a polynomial expansion of the same order as the FEA shape functions used in the

original FEA analysis. The polynomial expansion for each component of {σ∗} is valid over a small discrete

area of the mesh called a patch. In the next two subsections patches for 3D hexahedral meshes will be

described. Firstly the general case where patches are within the domain are addressed and secondly

special consideration is given to patches on the domain boundaries.

Setting up patches within the domain

A patch is defined by a group of elements surrounding a vertex node (otherwise known as the patch-node)

where the approximation for {σ∗} is calculated. This corresponds to eight nodes per element for both 8 and

20-noded hexahedral elements. Stresses at Gauss points within these patches are used to estimate {σ∗}
for the patch-node and other nodes lying within the boundary of the patch. Figure 4.18 shows an example

patch for 8 and 20-noded hexahedral elements and identifies the patch-node and other nodes where {σ∗}
is calculated. For 8-noded hexahedral element patches within the domain, {σ∗}, is only estimated at the

– 39 –



Figure 4.18: Setting up 8 and 20-noded patches within the domain

patch-node, but for 20-noded hexahedral elements additional stress vectors are estimated at the mid-side

nodes within the element. In the example in Figure 4.18 a patch of eight elements is shown and {σ∗}
is estimated at an additional six mid-side nodes. When patch-nodes are not on a domain boundary the

patch includes all elements surrounding the patch-node. However for boundary nodes the patches require

special consideration. A description of how to choose the patch at domain boundaries is given in the

following sub-section.

Setting up patches at domain boundaries

The general procedure for determining the patch elements has been described above. That process has

to be adapted for patch-nodes at boundaries. The Z2 paper [28] only describes SPR for 2D 9-noded

quadrilateral elements only. In 2D quadratic meshes the general procedure presents a problem when

patch-nodes are located at domain vertices. In this case patches consist of a single element and therefore

provide insufficient stress data to determine {σ∗}. This is because a single Gauss point stress vector

cannot be used to determine a 2D linear stress field through a 4-noded quadrilateral element and four

Gauss point stress vectors cannot be used to determine a 2D quadratic stress field through an 8-noded or

9-noded quadrilateral element. The patch has to be extended so that an interior patch of four elements is

used to determine {σ∗} at the patch-node and other nodes within the element at the domain boundaries
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Figure 4.19: 2D quadrilateral element patch extensions at domain boundaries

(see Figure 4.19).

For 3D meshes there are three boundary cases which require special consideration, vertex patch-nodes,

face patch-nodes and edge patch-nodes all generate inadequate patches in order to estimate {σ∗}. To
deal with this problem the author has devised a rule to determine the patches in such situations. The

rule states that if a patch-node is located on a domain boundary (at a vertex, on a surface or at an

edge) the original patch must be extended. The extended patch will include all elements sharing nodes

with elements already part of the original patch. Figures 4.20 shows how in these situations the patch

is extended to include the additional elements resulting in a usable patch. In some cases the size of the

patch increases by a factor of eight. This may seem an unnecessary expansion (since fewer elements could

be used to determine a stress field), however the author’s approach ensures there is no directional bias

introduced into the recovered stress estimate due to the shape of the patches.

(a) Vertex patch-node (b) Edge patch-node (c) Face patch-node

Figure 4.20: 3D hexahedral element patch extensions at domain boundaries

Recovering stesses through each patch

{σ∗} is estimated by considering each component of the stress vector in turn, the polynomial expansion

for these stress components can be split into its two components; {p̂} containing the polynomial terms
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and {a} containing the polynomial coefficients such that

{σ∗} = {p̂}T {a} . (4.22)

For 8-noded hexahedral elements the polynomial expansions will be linear and contain x, y and z com-

ponents such that,

{p̂} = {1, x, y, z} (4.23)

and

{a} = {a1, a2, a3, a4}T . (4.24)

For 20-noded hexahedral elements the polynomial expansions will be quadratic and contain x, y and z

components as follows,

{p̂} =
{
1, x, y, z, xy, yz, zx, x2, y2, z2

}
(4.25)

and

{a} = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}T . (4.26)

{a} can be determined by assuming a least squares fit between the polynomial expansion and the FEA

solution obtained at the Gauss points (i = 1...number of Gauss points per patch (nGppP ))

F (a) =

nGppP
∑

i=1

(
σhi

− σ∗
p̂i

)2
(4.27)

=

nGppP
∑

i=1

(σhi
− {p̂i} {ai})2 (4.28)

By differentiating this expression with respect to a and setting it equal to zero we find

nGppP
∑

i=1

{p̂i}T {p̂i} {ai} =

nGppP
∑

i=1

{p̂i}T {σhi
} (4.29)

This expression can be written and solved in matrix form

{a} = [A]−1 {b} . (4.30)

We can see that

[A] =

nGPpP
∑

i=1

{p̂i}T {p̂i} (4.31)

and

{b} =

nGPpP
∑

i=1

{p̂i}T σhi
. (4.32)

For regular hexahedral meshes (where each interior node is surrounded by eight elements), each interior

patch will consist of 8 elements. A reduced integration scheme will be used, such that nGP = 1 for

8-noded elements and nGP = 8 for 20-noded elements, as suggested by Zienkiewicz and Zhu [28]. This

means that for our example the polynomial expansion will be fitted to a total of eight Gauss point values

(nGppP=8) for the 8-noded elements and 64 Gauss point values (nGppP=64) for the 20-noded elements,

– 42 –



see Figure 4.21. Once both [A] and {b} have been calculated a linear solver must be used to obtain {a}.

(a) nGppP for the 8-noded
hexahedral patch

(b) nGppP for the 20-noded
hexahedral patch

Figure 4.21: SPR Gauss point integration schemes for hexahedral patches

We have used the MUMPS solver [18]. For each patch-node [A] will be calculated once while {b} and {a}
will be calculated six times, once for each stress component of {σp}. When a 20-noded hexahedral mesh

is used, the recovered stress will be calculated at the mid-side nodes by at least two patches. In this case

the mean value from the two patches would be taken, as suggested by Zienkiewicz and Zhu [28].

4.4.2 SPR error analysis example

The original Z2 paper [28] which describes the SPR procedure, presented an example problem which

considered a portion of an infinite plate with a central circular hole subject to a uniform pressure applied

in the x direction. Plane strain conditions were assumed with a Poisson’s ratio of ν = 0.3 and Young’s

modulus E = 1000 (units were not given). The boundary conditions were prescribed such that on edges

AE and CD symmetry conditions were imposed and on edges BC and DC the plate was loaded with

tractions (calculated using the analytical solution for the stresses in an infinite plate), see Figure 4.22.

The analytical solutions for the stress are expressed as

Figure 4.22: Infinite plate with a circular hole example problem
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σx = 1− l2

r2
(
3

2
cos(2Θ) + cos(4Θ)) +

3

2

l4

r4
cos(4Θ),

σy = − l2

r2
(
1

2
cos(2Θ)− cos(4Θ))− 3

2

l4

r4
cos(4Θ) and

σxy = − l2

r2
(
1

2
sin(2Θ) + sin(4Θ)) +

3

2

l4

r4
sin(4Θ). (4.33)

The SPR algorithm implemented by the author in ParaFEM is specifically for 3D problems therefore this

2D problem was modeled in 3D. The mesh required 2 elements to model the thickness of the plate to

enable the SPR procedure to capture the stress field in the z direction, see Figure 4.22.

Graphs a, b and c in Figure 4.23 illustrate how the recovered stresses at point X (with coor-

dinates 1.0606602, 1.0606602, 0.500000) converged to the analytical solution (σxx = 1.1481481,

σyy = −0.14814810 and σxy = −0.22222229), as the mesh is refined. The error in energy norm per

element has been calculated for each of these meshes. The results show how the error in the FEA reduces

as the mesh is refined. Tables 4.4 and 4.5 show how both the maximum error (in energy norm per

element) and the mean value over the whole domain reduces as the mesh is refined, for both the 8 and

20-noded elements.

(a) σxx (b) σyy

(c) σxy

Figure 4.23: In-plane stresses at point X for meshes 1 to 5
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Mesh No. of elements |e| |emax|
Mesh 1 144 0.6948× 10−3 2.0116× 10−3

Mesh 2 576 0.1784× 10−3 0.7241× 10−3

Mesh 3 1296 0.0776× 10−3 0.3706× 10−3

Mesh 4 2304 0.0426× 10−3 0.2261× 10−3

Mesh 5 9216 0.1003× 10−3 0.0657× 10−3

Table 4.4: SPR example 8-noded element results

Mesh No. of elements ‖e‖ ‖emax‖
Mesh 1 144 0.2123× 10−3 9.8158× 10−3

Mesh 2 576 0.2194× 10−3 0.1841× 10−3

Mesh 3 1296 0.0573× 10−3 0.6065× 10−3

Mesh 4 2304 0.0221× 10−3 0.2661× 10−3

Mesh 5 9216 0.0025× 10−3 0.0347× 10−3

Table 4.5: SPR example 20-noded element results

Figure 4.24 shows the result for the error analysis for Mesh 3 for both (a) the 8 and (b) the 20-noded

elements. These figures show the error distribution throughout the structure and are closely comparable

to plots included in [27]. The plots show high errors around the hole particularly around point E (see

Figure 4.22).

(a) 8-noded elements (b) 20-noded elements

Figure 4.24: Energy norm error, |e|, visualisation for Mesh 3
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4.5 Post processing

In this section post-processing methods used in this project will be described. Firstly three peak stress

envelopes used to investigate structural integrity of concrete will be described. Secondly Gmsh, a piece

of mesh generating software used in post-processing of the FEA results, will be introduced and finally

principal stress plots will be described.

4.5.1 Peak stress envelopes

Peak stress envelopes are a way of describing the limiting stresses permissible when carrying out elastic

analysis. A peak stress envelope can be visualised as a surface in principal stress space separating stress

states which exceed the material’s peak stress capacity and stress states which do not. When stress states

lie outside the peak stress envelope during FEA, this suggests that cracking may be occurring in this

part of the structure. This in itself does not indicate structural failure, however when large areas of the

structure are experiencing stresses which lie outside the envelope, this could be highlighting a problem

and indicate the structure has lost some (or all) of its integrity. Three different peak stress envelopes

for concrete are used in this project to analyse the FEA results. Two multi-planar envelopes are used, a

tension cut off envelope (Tenv) and a multi-planar envelope (MPenv). Figure 4.25 compares the Ottosen

criterion and biaxial test data obtained by Kupfer et al [12] [13]. The plot shows that under bi-axial

loading conditions (when the loading consists of a tensile and compressive component) the strength of

concrete cannot be modeled accurately using a simple tension cut off envelope (an envelope where the

peak stress equals the tensile strength of concrete in each principal direction). This is because the bi-axial

experimental peak stress data recorded (where concrete is subject to compressive and tensile loads) is less

than the tensile strength of concrete. MPenv has been developed by extrapolating from the biaxial data

Figure 4.25: Bi-axial peak stress envelope showing tensile and compressive behaviour [5]

– 46 –



(this data is obtained more easily from experimental data). When the bi-axial envelope is extrapolated

to the multi-axial case an envelope of this form is generated [4].

Planar peak stress envelope

A multi-planar peak stress envelope (MPenv) for concrete has been defined by considering nine intersect-

ing planes. Three of the planes are described by the equation

a1σ1 + a2σ2 + a3σ3 − a4 = 0, (4.34)

where the constants a1, a2, a3 and a4 are given in Table 4.6. These planes generate the tension cut-off

a1 a2 a3 a4
1 0 0 ft
0 1 0 ft
0 0 1 ft

Table 4.6: TCenv constants

envelope (TCenv). To determine whether the stress state lies inside the envelope, each component of

the principal stress vector must be checked to determine whether σi is less than ft. If this is the case,

then the stress state is within TCenv. In order to capture the behaviour of concrete in the regions where

the principal stress vector comprises of compressive and tensile components, six additional planes are

required, described by

b1σ1 + b2σ2 + b3σ3 − b4 = 0 (4.35)

where the constants b1, b2, b3 and b4 are given in Table 4.7 and fc = −60MPa and ft = 3MPa. The

b1 b2 b3 b4
fc
ft

1 0 ft

1 fc
ft

0 ft

0 fc
ft

1 ft

0 1 fc
ft

ft
fc
ft

0 1 ft

1 0 fc
ft

ft

Table 4.7: Additional constants for MPenv

envelope is shown in Figure 4.26. An algorithm has been developed to identify whether stress states are

inside or outside the envelope. For each plane a stress state is declared to be inside or outside the envelope

(if it is declared to be inside this does not mean it is fully inside the envelope but rather the criteria have

been met for one out of the six planes). To determine which side of a plane a stress point is on, firstly a

normal vector {n} to the plane must be defined. The normal to a plane b1σ1 + b2σ2 + b3σ3 − b4 = 0 is

{n} =







b1

b2

b3







,
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1

2

3

Figure 4.26: Concrete peak stress envelope

with the unit normal vector given by,

{n̂} =
1

|n|







b1

b2

b3







.

An alternative way of expressing the equation for the plane b1σ1+b2σ2+b3σ3−b4 = 0 is {n}T {σ}−b4 = 0.

For the six planes considered the normal vectors are all directed outwards from the envelope, away from

the origin of stress space. The shortest distance, l, of each stress state to the plane (the distance from

the stress state along a line perpendicular to the plane) can then be calculated using a single stress state

on the face {σ̂}, see Figure 4.27. The equation to calculate l is,

l = {n̂}T






σ1 − σ̂1

σ2 − σ̂2

σ3 − σ̂3







. (4.36)

Using l, a test stress state can be calculated {σtss} = {σ} + |l| {n̂}. If this stress state {σtss} lies on the

plane ({n}T {σtss} − b4 = 0) the stress state has met the inside criteria for this plane. If the stress state

lies within the envelope (when considering all six planes), then this inside criteria will be met for all six

planes, and the stress state will also fall inside TCenv.
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Figure 4.27: Figure to show how to determine whether stress state is inside or outside the peak stress
envelope

4.5.2 A smooth peak stress envelope for structural concrete

This smooth peak stress envelope (Senv) was first presented in [14], and was initially developed as part

of an advanced elasto-plasticity model to study the response of pre-stressed concrete nuclear reactor

vessels. Senv is expressed in terms of (i) a deviatoric shape function, r̂, (ii) the compression meridian,

̺psc , and (iii) the extension meridian, ̺pse . Both ̺psc and ̺pse are functions of the mean stress, ξ (where

ξ = (σ1+σ2+σ3)√
3

). The Senv yield function is given by

f = ̺model − ̺actual, (4.37)

where

̺actual = r̺̂psc

and r̂ is a function of the Lode angle ϕ, ̺e and ̺c such that

r̂ =
r1α+

√
2r1α2 + r2

2r1α2 + 1
(4.38)
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where

α = cos(ϕ +
pi

6
), r0 =

̺pse
̺psc

, r1 =
2(1− r20)

(2r0 − 1)2
and r2 =

r0(5r0 − 4)

(2r0 − 1)
. (4.39)

An overbar on a stress measure indicates normalisation with respect to the uniaxial compressive strength,

fc. ̺e and ̺c are functions of the stress invariant ξ (a measure of a stress state’s location along the

hydrostatic axis in principal stress space), see Figure 5.29, and calculated using six dimensionless positively

valued material constants. Each of these constants can be determined from the following experimental

data: uniaxial compression (fc), uniaxial tension (ft), equal biaxial compression (f bc), hydrostatic tension

(fht) and high level triaxial confinement on the compression meridian (ξtc,̺c). To generate this model

stresses (fc, ft, fbc and fht) have a positive value irrespective to whether they are tensile or compressive,

but all other stress measures respect a tension-positive sign convention. This function generates a smooth

locus with 6-fold symmetry in the deviatoric planes that remains convex when r̂
(
π
6

)
> 1

2 .

Figure 4.28: Meridional section for Senv

4.5.3 Comparing TCenv, MPenv and Senv

The plot of ̺ against ξ has been used to visualise the relationship between the three envelopes. The

extension and compression meridion, ̺e and ̺c, have been plotted in 5.29 above. Senv would lie between

these two meridions, the precise location would depend on the load angle ϕ. In Figure 4.29, the principle

stress axis σ1 and the axis where σ2 = σ3 have been plotted as dotted lines. TCenv has been plotted

parallel to σ1 as a dashed line and MPenv has been plotted as the dot and dashed line. MPenv initial

lies on top of TCenv but when the stress state is no longer purely tensile the envelopes separate. This

plot can be used to understand the plots in Chapter 5 (Figues 5.28 - 5.30).

TCenv has the largest ̺ values in the regions where the stress states have a tensile and compres-

sive component. Therefore it provides the least conservative safety criterion under this loading condition.
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MPenv cuts below ̺c on the plot, having the smallest ̺ values in the regions where the stress states

have a tensile and compressive component. Therefore it provides the most conservative safety criterion

under this loading condition. In the purely tensile region MPenv and TCenv extends further along the

hydrostatic axis (the envelope cuts the x axis at a higher value of ξ) and these envelopes have high

values of ̺ than Senv. These envelopes therefore provide a less conservative safety criterion under this

purely tensile loading condition.

σ1

σ2 σ3=

MPenv

TCenv

Senv

Figure 4.29: Meridional section for Senv, MPend, TCenv

4.5.4 Introduction to Gmsh

Gmsh [8] is a 3D FE mesh generator with built-in pre- and post-processing facilities. This software is freely

available to download online. .msh files have be used to view the BCU meshes (original and deformed)

using hexahedral elements and generate principal stress plots using line elements. .msh files have also been
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used to generate the error in energy norm plots, the peak stress envelope plots and coloured principal

stress plots where elements are coloured to highlight specific areas of the mesh by specifying element data

(see Section 5.6.2).

4.5.5 Principal stress plots

Principal stresses are the three stress vectors normal to the principal planes within the stressed body

where there are no shear stresses. These stresses can be defined by principal stress values and principal

stress direction vectors. Principal stresses have been calculated from the stress vectors stored at each

Gauss point. When FEA is carried out the initial output is nodal displacement. Within ParaFEM these

displacements are stored in eld pp. Using these displacements, stresses can be recovered at the Gauss

points and stored in tensor pp. This is carried out by using the following ParaFEM subroutines shape der,

invert and beemat and the f90 intrinsic function MATMUL, in the following order,

CALL shape der(der,points,i)

jac=MATMUL(der,g coord pp(:,:,iel))

CALL invert(jac)

deriv=MATMUL(jac,der)

CALL beemat(deriv,bee)

eps=MATMUL(bee,eld pp(:,1))

sigma=MATMUL(dee,eps)

der contains the shape function derivatives with respect to the local co-ordinate system, points

contains the Gauss point locations, g coord pp contains the global nodal co-ordinates stored on each

processor, jac is the Jacobian, deriv contains the shape function derivatives with respect to the

global co-ordinate system, bee is the strain-displacement matrix, eps is the strain vector and dee is

the constitutive matrix. tensor pp is a ParaFEM array which stores the Gauss point stresses as six

component column vectors. These vectors can be outputted to a text file. During post processing, MATLAB

has been used to calculate the principal stresses and their direction vectors. The stresses were stored

as a 3x3 matrix and the principal stresses and their directions were calculated. The MATLAB function

[V, D]=eig(sigma) was used to calculate these values, where V is the eigen values (principal stresses),

D is the eigen vectors (principal directions) and sigma is the 3x3 matrix. The principal stress vectors

have been plotted as lines proportional to the size of the principal stresses (the three principal stresses

intersect at each Gauss point). Principal stress plots have been produced using .msh files. Tensile and

compressive stress were distinguished using blue for tensile stresses and red for compressive stresses (see

Section 5.6.4).
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Chapter 5

Nuclear reactor BCU: specific

application for the developed ParaFEM

code

In this chapter the BCU will be described in detail. The BCU meshes and loading conditions will be

introduced. The linear solvers discussed in Section 3.2.2 will be compared when analysing the BCU and

instructions will be given on how to refine the meshes further. The results for the BCU FEAs will finally

be presented and discussed.

5.1 The boiler closure unit

The Heysham I and Hartlepool reactors comprise upright cylindrical vessels with a multi-cavity design

in which the boilers are housed in eight vertical cylindrical cavities, each of which is sealed at its top

end by a boiler closure unit and at the bottom by a gas circulator assembly, see Figure 5.1. The boiler

closure units are essentially pre-stressed concrete cylinders with nine major vertical cylindrical steam/feed

penetrations and two minor inspection and instrumentation penetrations, see Figure 5.2. Each cylinder

has an overall diameter of 3.37m (including the casing) and depth of 1.73m. The BCUs are pre-stressed

by circumferential wire windings contained within an outer steel casing. The casing is designed to provide

a gas tight environment and limit the moisture movement in the concrete, thus protecting the wire

windings.

Independent layers of pre-stressing are provided. The active pre-stressing system consists of three layers

of 2.6mm diameter wire, each initially stressed to 69% of their Guaranteed Ultimate Tensile Strength

(GUTS). The active system was designed to maintain a tension-free stress field in the concrete under

normal operating conditions, and to provide a minimum ultimate load factor of three times the design

pressure. An additional passive pre-stressing system, which comprises six layers of 2.6mm diameter wire

(each initially stressed to 18% of their GUTS) is also provided. This passive pre-stress was designed to

be independently capable of ensuring a minimum ultimate load factor of three. Each layer of wire was
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Figure 5.1: Hartlepool/Heysham I PCPV boiler details [1]

wound through approximately six hundred turns onto an outer steel membrane, with the three active

layers being wound initially, followed by the six passive layers. Grease was applied to each layer of wire

prior to fitting the outer steel casing, see Figure 5.3. The gap between the wires and outer casing was then

filled with Fillite thermal insulation and the casing closed by a continuous seal weld around its periphery.

Two independent holding down systems are provided to ensure that the closure unit is secured to the

pre-stressed concrete pressure vessel. Each system is designed with a factor of safety of three times the

design pressure. The primary system consists of forty-eight, 69mm thread diameter, holding down bolts

which pass through the full depth of the closure within steel tubes; anchoring the closure to the boiler
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Figure 5.2: Hartlepool/Heysham I PCPV BCU: Sectional elevation. The concrete is identified by the
darker grey shading. [1]

Figure 5.3: Photograph of pre-stressed wires being wound around the BCU [1]

liner closure flange. The gas tight connection between the closure unit and boiler liner flange is achieved

using O-ring seals. The secondary system, which forms a restraint in the unlikely event of failure of the

primary system, comprises steel shoes which transfer the gas load to a reinforced concrete back-up ring,
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located above the closure, which is anchored to the top of the PCPV by thirteen vertical tendons.

Each major penetration comprises of three concentric cylinders which form a shutter tube, inner sleeve

(water jacket tube) and insulation sleeve. On the gas side face of the closure unit, a bottom liner plate

is welded to the bottom seal ring and the penetration shutter tubes to form a gas tight membrane. The

total weight of each boiler is supported from the closure unit by a vertical spine which is attached to the

boiler closure via the centrally located feed penetration.

The penetration sleeves and bottom liner plate are insulated against boiler gas temperatures, and a

cooling system is provided in the form of water jackets to the penetrations and cooling water pipes

welded to the bottom liner plate and seal ring. The shutter tubes of the penetrations and the liner plate

are constructed from mild steel.

5.2 BCU mesh generation

An 8-noded hexahedral element mesh of one quarter of the BCU was made available at the start of the

project. It was originally created by the UK consulting engineers undertaking a safety analysis. That

mesh has been refined using the Fortran 90 program mesh refine.f90. The mesh refinement strategy

converts the 8-noded elements initially into 20-noded elements before subdividing each element into eight

8-noded elements. The procedure can then be repeated. The following meshes have been generated for

the BCU: 8(8-noded elements), 20(20-noded elements), 88(each 20-noded element is subdivided into eight

8-noded elements) and 820(each 8-noded element within 88 is converted to a 20-noded element). Table

5.1 provides the number of elements and nodes within each mesh.

Mesh No. of elements No. of nodes
8 40,201 48,330
20 40,201 185,403
88 321,608 354,536
820 321,608 1,385,616

Table 5.1: No. of elements and nodes in each BCU mesh

5.3 BCU loading conditions

The BCU will experience different loading conditions dependent on whether it is operational or not,

and whether the BCU wire windings are intact or not. To model these conditions five possible loading

conditions have been considered:

1. underside pressure and associated loading within each penetration

2. bolt loads

3. radial pre-stress due to radial wire windings

4. weight of the boiler

5. self weight
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Loading condition 3:

Pre-stress due to radial wire windings acts on

the outer cylindrical surface of the BCU

Loading condition 2:

11 full bolt holes and 2 half bolt holes can be 

seen along the outer edge of the BCU. The 

pressure due to the bolts has been applied 

onlong the element in the refined meshed area 

identified here

Loading condition 1:

Under pressure is modelled 

as shear forces acting in 

the 5 penetrations - labelled 1 - 5

Loading condition 4:

The weight of the boiler is 

modelled as vertical loads 

acting on the nodes on the 

top surface of the BCU 

around penetration 4. 

BCU co-ordinate system: a right 

hand co-ordinate system is 

used. The x and z axes act 

along the top surface of the 

BCU whilst the y axis acts in a 

vertical direction downward 

from the top surface. The origin 

in found at the centre of 

penetratin 4 on the top surface 

of the BCU.

Figure 5.4: BCU mesh showing loading conditions and co-ordinate system used

Figure 5.4 highlights where these loading conditions are action on the mesh and identifies the co-ordinate

system used for the BCU. Three load cases have been chosen for the analyses and are modelled, using a

combination of the above loads as follows:

Load case 1: pre-operational condition - BCU is pre-stressed but there is no under pressure

because the nuclear reactor is not operating

• bolt loads

• radial pre-stress due to radial wire windings

• weight of the boiler

• self weight

Load case 2: normal operational condition - the maximum pressure is applied under normal

operating conditions and pre-stressing remains intact

• underside pressure and loading within each penetration

• bolt loads

• radial pre-stress due to radial wire windings

• weight of the boiler
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• self weight

Load case 3: operational conditions with loss of pre-stressing - maximum pressure is applied

but pre-stressing has been lost

• underside pressure and associated loading within each penetration

• bolt loads

• weight of the boiler

• self weight

A Fortran program calc bcu lds.f90 has been written to generate the loading files p121.lds and

p121.prs. In the following five subsections, the loading conditions are described in more detail. The

contribution of each loading condition to the total force will be estimated and checked by running an

example BCU problem using ParaFEM. Similar checks were carried out for each load case for each mesh.

Areas, the circumference and the depth have all been estimated using the BCU nodal co-ordinates.

5.3.1 Underside pressure and associated loading within each penetration

The pressure (pu) applied to the underside of the BCU is 3.6MPa. This pressure acts on all element

faces in the x− z plane at y = 0. This surface has a total area Au. To verify that this pressure is being

applied correctly to this face, the following check was carried out.

Au = Total area in x− z plane at y = 0 - cross sectional area of inlets in x− z plane = A−Ai

A =
(
1
4 × π × (1334)2

)
= 1, 397, 660mm2

Ai = 21, 343 + 141, 637+ 145, 437+ 145, 437 + 102, 670 = 556, 524mm2

therefore,

Au = 1, 397, 660− 556, 524 = 841, 136 mm2.

The force in the y direction applied to the BCU due to the pressure acting on its underside (not

including the loading within the inlets) can now be determined as

Fuy
= puAu

= 3.6× 841, 136 = 3.028MN.

When this pressure was the only loading applied to the BCU, for the 8-noded mesh the total applied

force in the vertical direction was, Fy = −2.983MN .

The underside pressure also acts within the penetrations and can be modeled as upward forces acting

around the circumference of the penetrations. The nodal forces must be equivalent to pu = 3.6MPa

acting over the area of the inlets Ai in the x − z plane. The nodal forces have been calculated by

determining the upward force associated with each penetration and then applying a fraction of the

force to each node. The nodal forces around a penetration are directly proportional to the length of the
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element edges associated with each node around the circumference (or arc length) of the penetration

(dependant on whether penetration is at a BCU boundary or not).

The force in the y direction applied to the BCU due to the pressure acting on its underside act-

ing within the penetration only, can now be estimated as

Fiy = piAi

= 3.6× 556, 524 = 2, 003, 486N.

When these nodal forces were the only loading condition applied to the BCU, for the 8-noded mesh the

total applied force in the vertical direction was, Fy = −2.003MN .

Having undertaken some preliminary analyses, it became apparent that applying nodal forces

around the top circumference of the penetrations causes more local deformation of the concrete than

is realistic, see Figures 5.5. The ridges around each penetration distort the error analysis due to the

Figure 5.5: Deformed mesh with nodal ring loading due to maximum underside pressure (deformation
scale factor 200)

unrealistically high local loading in these areas. The loading conditions were reconsidered and a linearly

varying shear force was applied across the element surfaces within each penetration. The shear force

varied from zero at the underside to a maximum shear force σxymax
at the top. The total force exerted

due to these shear forces was Fiy as calculated above.
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The vertical shear stress acting within the penetration follows a linear variation,

σxy = σxymax

z

d
. (5.1)

To calculate σxymax
, the force acting on the elements within the penetration is given by the integral of

the shear stress acting over the area inside the penetration, where the circumference of the penetration,

c, the length on the penetration, d, and the total force due to the underside pressure, Fi are known.

Fiy =

∫ d

0

cσxymax

z

d
dz. (5.2)

The only unknown in (5.2) is σxymax
. If the integration is carried out, an expression for σxymax

is obtained,

Fi =

[
c

d
σxymax

z2

2

]d

0

(5.3)

=
c

2d
σxymax

(d2 − 0) (5.4)

σxymax
=

2Fi

cd
(5.5)

Once σxymax
is obtained σxy can be applied to the nodes inside the penetration using (5.1). The shear

stresses are converted to nodal forces using the prs2nforce subroutine, see Section 4.2. The deformed

meshes shown in Figure 5.6 show the improved realism around the penetrations.

Figure 5.6: Deformed mesh with linearly varying shear forces acting inside the penetrations (deformation
scale factor 200)
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Figure 5.7: Forces acting on the BCU due to the pre-stressed wire windings

5.3.2 Bolt loads

Each of the twelve bolts running the length of the BCU exerts a vertical compressive force of 974kN .

The total force due to the bolts is 11.688MN . This is modelled as a pressure applied to the upper

face of the BCU around the bolts; that is on the elements within the refined meshed area around

each bolt. This area, Ab = 369, 035mm2 implies that the pressure applied due to the bolt loads is

pb =
11,688,000
369,035 = 31.7MPa.

When this pressure was the only loading applied to the BCU, for the 8-noded mesh, the total

applied force in the vertical direction was, Fy = 11.780MN .

5.3.3 Pre-stress due to radial wire windings

Pre-stressed wires were wrapped around the circumference of the BCU. There are nine layers of closely-

packed wires. The total pressure exerted by these wires on the BCU can be calculated by summing the

pressure contribution from each wire layer i = 1, 9 over a height h, where the wire has a thickness, ti.

By considering equilibrium, the equivalent pressure exerted on the BCU can be calculated for each wire

winding,

Fy = p (2 (r + t))h = 2thσc

p (r + t) = tσc

p =
tiσc

ri + ti
. (5.6)

When nine wires are considered,

P =

9∑

i=1

tiσc

ri + ti
. (5.7)

The pre-stress wire contributions have been calculated and listed in Table 5.2,

The total pressure exerted onto the outer cylindrical surface by the radial wire windings is pw = 8.65MPa.

This pressure can be considered to have two components: one acting in the x direction and another in
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Layer i ti (mm) ri (mm) σc (MPa) Pi (MPa)
1 2.6 1616.1 1185 1.9034
2 2.6 1618.7 1185 1.9004
3 2.6 1621.3 1185 1.8973
4 2.6 1623.9 310 0.4955
5 2.6 1626.5 310 0.4948
6 2.6 1629.1 310 0.4940
7 2.6 1631.7 310 0.4932
8 2.6 1634.3 310 0.4924
9 2.6 1636.9 310 0.4916

Table 5.2: BCU pre-stress wire loading contributions

the z direction. The area on which these pressure components act is Awx,z
= 2, 586, 083mm2, therefore

the force components acting in the x and z directions can be determined as

−Fwx
= pw ×Awx

= 8.65× 2, 586, 083 = 22.370MN

Fwz
= pw ×Awz

= 8.65× 2, 586, 083 = 22.370MN.

When this pressure was the only loading condition applied to the BCU, for the 8-noded mesh the total

applied force in the x and z directions were,

−Fwx
= 22.370MN

Fwz
= 22.370MN

5.3.4 Weight of boiler

The weight of the boiler is 100kN . This is modeled as a vertical load acting downwards from the central

penetration. The total load is shared between the nodes proportional to the length of element associated

with the node. Only 1
4 of the BCU is being considered, therefore 25kN is distributed between the nodes.

The total vertical force due to the weight of the boiler is Fyb
= 25kN . When these nodal forces were

the only loading conditions applied to the BCU, for the 8-noded mesh the total applied force in the y

direction was

Fyb
= 25kN.

This load is very small compared to the other loads acting on the BCU.

5.3.5 Self weight

The BCU is a concrete structure with a density, ρ = 2.4× 10−6kgmm−3. The self weight of the BCU can

be estimated by assuming an acceleration due to gravity of g = 9810mms−2 and estimating the volume
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of the BCU. The estimated volume of the BCU is

V = (Au × 1600) + (Ab × 1708) + (Aj × (1708− 108))

= (841136× 1708) + (369035× 1600) +
(π

4

(
14092 − 133342

)
× (1708− 108)

)

= 590, 456, 000+ 1, 436, 660, 288+ 259, 946, 900 = 2, 287, 063, 188mm3.

The self weight of the BCU can therefore be estimated as

Fswy
= ρ× g × V

= −2.4× 10−6 × 9810× 2, 287, 063, 188

= −5.385MN.

When the self weight of the BCU was the only loading condition considered, for the 8-noded mesh the

total applied force in the vertical direction was

Fswy
= −5.345MN.

A summary of the loading conditions for each mesh is provided in Table 5.3.

Mesh Load case 1 Load case 2 Load case 3
Nodal loads Pressurised faces Nodal loads Pressurised faces Nodal loads Pressurised faces

8 15 2160 15 7715 15 6131
20 29 2160 29 7715 29 6131
88 29 8640 29 30860 29 24524
820 57 8640 57 30860 57 24524

Table 5.3: Summary of the number of nodal loads and pressurised faces for each BCU load case and mesh

5.4 Using different linear solvers for BCU FEAs

As described in Section 3.2.2 two parallel linear solvers can be run within p121.f90: the PCCG solver

and MUMPS. Here we will present a run time comparison for the two solvers, taking the mean of three

run times for all meshes, when carrying out the analysis for load case 2. A tolerance of 0.1E−7 was

used for the PCCG solver (note that this tolerance the solutions outputted by the PCCG solver matched

those provided by the direct solver, to the nearest 0.0001mm). Run times have been recorded using the

function elap time(), however it can be observed that run times are not very repeatable. This could

be due to allocation of different Hamilton nodes or interference from other Hamilton jobs slowing down

communication between processors. To solve this problem specific nodes (see reference to computer nodes

in Section 3.1) would have to be reserved for the jobs. However general trends in run times can be identified

and conclusions drawn.
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5.4.1 BCU FEAs run time comparisons

It was hoped that the multi-frontal strategy adopted by MUMPS would have the potential to solve larger

problems more quickly than the PCCG solver on parallel machines. Speed gain was seen using MUMPS,

however parallel speedup when using more processors was very limited, see Table 5.4. When running

analyses for load case 2 on Mesh 8, 20 and 88 the run times were quicker when using MUMPS and up

to 4 nodes, however when the number of nodes increased from 8 to 16 the run times decreased most

significantly when using the PCCG solver. For the coarser meshes (Mesh 8 and 20) the analysis using 16

nodes was still quickest when using MUMPS - 22 seconds and 239 seconds for the two meshes compared

with 40 seconds and 377 seconds when using the PCCG solver. However for a more refined mesh, Mesh

88, there was not only greater speed up when using the PCCG solver but when 16 nodes where used

the PCCG solver also carried out the analysis twice as quickly as MUMPS (2436 seconds using MUMPS and

1182 seconds using the PCCG solver. MUMPS also carried out the analysis 4 times slower when using 16

nodes compared to 1 node. When carrying out analyses on the larger meshes, Mesh 88 and 820, MUMPS

often struggled to complete the analysis. This was due to memory shortages. This meant that results

were not obtained using MUMPS for Mesh 820 and results were only obtained for Mesh 88 when using

1 to 8 nodes. The PCCG solver however continued to show speed up when using more nodes for these

larger meshes. For all the meshes there was an increase in run time when using 16 nodes in comparison

to 8 nodes (except for Mesh 8 when using MUMPS). There were also some results where the run time was

significantly increased when using 8 nodes. Both of these findings could be explained by the fact that

cores on Hamilton either consist of 4 or 8 nodes. When analyses require more than one core the analysis

could be slowed down due to communication between cores. Unfortunately investigation did not fully

allow the underlying problems to be identified or solved, and although MUMPS did provide a faster analysis

for Meshes 8, 20 and 88 when using 1 to 4 nodes, this solver’s performance was worse than the the PCCG

solver for the finer meshes especially when using more than 8 nodes.

5.5 Running a BCU parallel FEA

5.5.1 Steps required to further refine the BCU mesh

In the following, the instructions are given on how to further refine the BCU mesh and generate

the required input files. Three Fortran programs have been written to allow this to be accomplished,

mesh refine.f90, find bcu bnd and cal bcu ld.f90. The steps are as follows.

1. Use mesh refine.f90 to obtain new element topology (etpl) and global co-ordinates (coord) and

generate the input file p121.d. To run mesh refine.f90 correctly the input and output file names

must be altered and the correct subroutines must be commented in or out of the program. For

example, to convert an 8-noded mesh to a 20-noded mesh, the subroutine convert8to20nod must

be included in the main program whilst if the conversion is from a 20-noded mesh to an eight 8-

noded mesh the subroutine convert20to88nodmust be included in the main program. The correct

input must be entered into the subroutines read data and write input files.

2. Use find bcu bnd.f90 to locate the boundary conditions for the BCU and generate p121.bnd. To

run find bcu bnd.f90, the variables nn (number of nodes) and ne (number of elements) must be
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Mesh Solver Number of cores Solver run time /s
8 MUMPS 1 120

2 45
4 31
8 153
16 22

PCCG 1 177
2 92
4 48
8 32
16 40

20 MUMPS 1 274
2 235
4 241
8 1203
16 239

PCCG 1 1799
2 968
4 666
8 324
16 377

88 MUMPS 1 589
2 547
4 681
8 2436

PCCG 1 4365
2 3789
4 2111
8 1110
16 1182

820 PCCG 8 45883
16 15692

Table 5.4: Linear solver run time comparisons for BCU FEA (load case 2)

correct and the corresponding p121.d and p121.dat files must be stored in the same folder.

3. Use calc bcu ld.f90 to calculate the BCU’s loading conditions and generate p121.prs for the

pressure loading and p121.lds for the point loads. To run calc bcu ld.f90, the variables nn,

ne and nod (number of nodes per element) must be correct and the corresponding p121.d and

p121.dat files must be stored in the same folder. The variables pre-stress and maxP must take

the value 1 or 0. When pre stress= 1, the pre-stressing is undamaged but if pre-stress= 0 the

pre-stressing is no longer present. When maxP= 1, the under-pressure on the BCU is at operational

level, but if maxP= 0 then the BCU is is not subject to any under-pressure. Combinations of these

variables allow the files for the three loading cases to be generated.
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5.6 Results

Results have been processed from the FEAs carried out on the four meshes for the three different load

cases. In this section the results are presented and discussed by considering the displacements, principal

stresses, peak stress envelopes and error analyses.

5.6.1 Displacements

The displacements of the same three nodes have been recorded for each mesh as a displacement vector

{u v w}T and also in terms of radial dr and tangential movement dt, where a positive radial movement

indicates the BCU node in question is being squeezed inwards towards the BCU origin and a positive

tangential movement indicates the BCU node is moving to the right if the BCU is viewed down the radius

from the node to the origin, see Figure 5.8. The location of the three nodes have been highlighted in Figure

5.8. The displacements are recorded in mm at each node (for the four meshes and three load cases) in

Tables 5.5, 5.6 and 5.7. Figures 5.9, 5.10 and 5.11 show how the meshes deform under the different load

cases. The displacement of each node is scaled by a factor of 400, then added to the original global

co-ordinates to obtain the new exaggerated plot co-ordinates. These highly exaggerated deformation plot

indicate how the BCU distorts under the different loading conditions.

The weight of the boiler causes localised large deformations in the z direction across the top row of

elements around the inner penetration under load case 1. The bolt loads cause significant deformation

across the top of the BCU and very considerable distortion around the step on the underside of the BCU.

The actual structure however had a steel plate across the step which will have reduced the distortion.

The effect of the underside pressure and associated penetration shear stresses can be seen in load case 2.

The BCU is pushed upwards. This reduces the effect of the distortion due to the weight of the boiler. The

distortion due to the bolt loading is also altered. The pinching-in on the outer edge of the BCU (seen in

the deformation plots for load case 1) is reduced and less distortion is seen around the underside step.

Most striking is the change that occurs between load cases 2 and 3. When the pre-stressing is removed

from around the circumference of the BCU, the BCU expands outwards and the the structure is seen to

bulge more across its top surface.

These observations are backed up by the numbers in the displacement tables (Tables 5.5, 5.6 and 5.7). The

radial movement for each mesh and for each of the three nodes shows how, under load cases 1 and 2, the

pre-stressing causes the node to move inwards towards the origin of the BCU (a positive displacement),

however when the pre-stressing is released, under load case 3, the node moves outwards. The magnitude

of the radial displacements can also be observed. The maximum displacement for node 795 is seen under

load case 1 (≈ 0.3mm). The maximum displacement for node 560 is seen under load case 3 when the

pre-stressing is removed (≈ 0.5mm). The maximum displacement for node 6956 is seen under load cases

1 and 2 when the pre-stressing is in place (≈ 0.6mm).
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Figure 5.8: Identification of three BCU nodes and radial and tangential displacement directions

Node 795

Original coordinates (255.7, 1708.0,−255.7)

Mesh Load case u mm v mm w mm dr mm dt mm

8 1 -0.1757 -0.1819 0.1991 0.2650 0.0165
2 -0.0507 0.4201 0.0621 0.0798 0.0081
3 0.1422 0.2966 -0.1600 -0.2137 -0.0126

20 1 -0.1941 -0.2159 0.2140 0.2886 -0.0142
2 -0.0509 0.4226 0.0617 0.0796 0.0076
3 0.1448 0.3014 -0.1622 -0.2171 -0.0123

88 1 -0.1875 -0.2069 0.2088 0.2801 0.0151
2 -0.0509 0.4219 0.0619 0.0797 0.0078
3 0.1440 0.3001 -0.1616 -0.2160 -0.0125

820 1 -0.2044 -0.4389 0.2229 0.3021 0.0059
2 -0.0508 0.4227 0.0616 0.0794 0.0076
3 0.1450 0.3017 -0.1623 -0.2173 -0.0122

Table 5.5: Displacement recorded in mm for node 795 of the BCU meshes
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Node 560

Original coordinates (1143.0, 1708.0,−1143.0)

Mesh Load case u mm v mm w mm dr mm dt mm

8 1 -0.2393 -0.6509 0.2438 0.3417 0.0032
2 -0.1316 -0.5586 0.1346 0.1882 0.0021
3 0.3432 -0.7534 -0.3449 -0.4865 -0.0012

20 1 -0.2473 -0.6526 0.2518 0.3529 0.0032
2 -0.1393 -0.5586 0.1426 0.1993 0.0023
3 0.3434 -0.7551 -0.3452 -0.4869 -0.0013

88 1 -0.2453 -0.6534 0.2498 0.3501 0.0032
2 -0.1371 -0.5589 0.1403 0.1962 0.0023
3 0.3434 -0.7546 -0.3452 -0.4869 -0.0013

820 1 -0.2523 -0.6404 0.2606 0.3627 0.0059
2 -0.1404 -0.5582 0.1436 0.2000 0.0023
3 0.3431 -0.7551 -0.3448 -0.4864 -0.0012

Table 5.6: Displacement recorded in mm for node 560 of the BCU meshes
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Node 6956

Original coordinates (1143.0, 855.7,−1143.0)

Mesh Load case u mm v mm w mm dr mm dt mm

8 1 -0.4444 -0.1980 0.4487 0.6316 0.0031
2 -0.4451 -0.1189 0.4500 0.6329 0.0034
3 0.0007 -0.2109 -0.0007 -0.0009 0.0000

20 1 -0.4508 0.2004 0.5552 0.6406 0.0031
2 -0.4513 -0.1198 0.4562 0.6417 0.0035
3 0.0017 -0.2116 -0.0012 -0.0020 0.0003

88 1 -0.4491 -0.2007 0.4535 0.6414 0.0030
2 -0.4496 -0.1196 0.4545 0.6425 0.0036
3 0.0014 -0.2114 -0.0012 -0.0018 0.0001

820 1 -0.4514 -0.2001 0.4556 0.6414 0.0030
2 -0.4518 -0.1200 0.4568 0.6425 0.0036
3 0.0017 -0.2117 -0.0014 -0.0022 0.0002

Table 5.7: Displacement recorded in mm for node 6956 of the BCU meshes

The results recorded in Tables 5.5, 5.6 and 5.7 indicate that the coarse mesh provided a (perhaps

surprisingly) good estimate of the displacements at 3 particular nodes singled-out for examination. The

difference between the run-times from mesh 8 and mesh 820 is dramatic (the later takes 700 times

longer to complete, when using the PCCG solver with 16 cores for load case 2 - see Table 5.4 for run

time comparisons) whereas the displacements in the radial direction (dr) differ by less at 0.01mm at

node 6956 (out of a maximum of ≈ 0.64, 0.64 and 0.002mm for load cases 1, 2 and 3 respectively). The

difference in displacement at the other two nodes is just as surprising: at node 795 the difference is less

than 0.04mm (out of a maximum of ≈ 0.30, 0.08 and 0.22mm) whilst at node 560 the difference is less

than n0.03mm (out of a maximum of ≈ 0.36, 0.2 and 0.49mm).
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Figure 5.9: Exaggerated deformation plots: view 1 (deformation scale factor 400)

y
z axis

points out of 

the page

x

(a) undeformed mesh (b) loading 1 (c) loading 2 (d) loading 3

Figure 5.10: Exaggerated deformation plots: view 2 (deformation scale factor 400)
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Figure 5.11: Exaggerated deformation plots: view 3 (deformation scale factor 400)
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Load case 1 2 3

Mesh Senv MPenv TCenv Senv MPenv TCenv Senv MPenv TCenv

8 921 2572 1236 851 2517 944 8351 10922 9552
20 1838 2764 1621 1949 2521 1155 8657 11477 9951
88 6733 15610 7255 7346 15684 5468 64259 82878 72227
820 10005 16324 8174 11337 16273 6260 65071 85004 73775

Table 5.8: Table to show the number of elements with principal stresses lying outside the peak stress
envelopes

5.6.2 Peak stress envelopes

Here the FEA results are examined to determine how the release of the pre-stressing (due to the circum-

ferential wires corroding) would affect the structural integrity of the BCU. Three different peak stress

envelopes are used: Senv, MPenv and TCenv, as introduced in Section 4.5.1. The effect of refining the

BCU mesh will be discussed and a comment made on how non-linear analysis could affect the results if

it was incorporated in the code.

Peak stress envelope results

The number of elements within each mesh containing at least one Gauss point stress lying outside the

peak stress envelopes have been recorded in Table 5.8 for each of the load cases. The number of elements

where this is the case increases significantly when the pre-stressing is released (load case 3). The number

of elements lying outside each peak stress envelope increases from approximately 2% to 24% for Senv,

approximately 6% to 27% for MPenv, approximately 2% to 21% for TCenv when considering Mesh 8.

Figures 5.12 - 5.23 show these elements highlighted in green for all four meshes. Figures 5.24 - 5.27 present

similar results however information for all three peak stress surfaces is provided on the same mesh allow-

ing comparisons to be made. The figures can be understood by looking at the key provided in Figure 5.28.

Figures 5.12, 5.15, 5.18 and 5.21 show that under load case 1 elements located at the top of the

inner penetration, some elements within each penetration and around the bolts contain stress states

which lie outside the peak stress envelopes. When load case 2 is considered (see Figures 5.13, 5.16, 5.19

and 5.22) the elements around the top of the inner penetration no longer contain stress states which

lie outside the peak stress envelopes, but the number of these elements on the surface of the other

penetrations increases. Finally when load case 3 is considered (see Figures 5.14, 5.17, 5.20 and 5.23) the

number of elements where stress states exceed the peak stress increases significantly, particularly across

the top of the BCU and within each of the penetrations.

For all three load cases there are areas of the BCU where stress states are only outside MPenv

or Senv (but inside Senv and TCenv or MPenv and TCenv respectively). There are never any areas

where stresses are only outside TCenv (but inside Senv and MPenv). TCenv is the least conservative

of the three envelopes, this is because it does not consider the multi-axial behaviour of the concrete (as

explained in Section 4.5.1).
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For load cases 1 and 2, TCenv and MPenv indicate over-stressed areas around the bolts and the

underside-step of the BCU. Senv does not pick up as many elements around the bolts where the gauss

point stresses exceed the peak stress, however some over-stress is captured. All three envelopes indicate

over-stressed elements around the inner penetration for load case 1. This is due to the application of

nodal loads along the penetration’s top elements used to model the weight of the boiler. There are areas

within the penetrations which appear to be over-stressed only according to the MPenv and Senv. TCenv

does not pick up these areas of over-stress within the penetrations. This can be seen in Figures 5.12 -

5.23 where the green area for load cases 1 and 2 is considerably smaller within the outer penetration on

view.

For load cases 3 all three peak stress envelopes predict that a large volume of the BCU will have

stress states lying outside the peak stress envelope (≈ 21%, 27% and 24% for Senv, MPenv and TCenv

respectively when using Mesh 8). MPenv gives rise to extra elements violating the criterion around the

edge of the zone of over-stressed elements.

Figure 5.29 allows comparison between Senv and MPenv further. All the stress states which lie

outside MPenv have been plotted in ξ, ρ space. This plot shows the compression meridian (ρc) and ex-

tension meridian (ρe) for Senv. Senv will lie between these two meridians. The exact location will depend

on the Lode angle. From Figure 5.29 many of the stress states lie between ρc and ρe. Under load case

2 nearly all the stress states have some compressive component (defined by negative ξ values), however

under load case 3 the stress states become dense around ξ = 0 and there is a significant proportion

which lie in the area of the plot where ξ > 0 indicating more of the stress states have at least one tensile

component. Since the stress states lie between ρe and ρc it is not possible to determine whether they lie

inside or outside Senv. For more information on whether the stress states lie inside Senv when outside

MPenv see Figure 5.30. These figures show how some of the stress states lying outside MPenv fall inside

Senv. This could occur when the stress state is a combination of tensile and compressive components.

This is an area of interest because concrete can fail even when all three components of the stress state

are lower than the tensile and compressive strength of concrete. It is therefore important to model the

strength accurately. This is most notable under load case 3, where there are stress states outside Senv

but inside MPenv. These are densely plotted close to where ξ = 0. Figure 5.31 shows that there are also

stress states that lie inside MPenv but outside Senv. The figures (both 5.30 and 5.31) do not tell us

the Lode angle of the stress states so it is not possible to determine exactly where these stress states occur.

Figure 5.29 shows that some of the stress states have some tensile component under load case 3.

The BCU was design to avoid the situation where any of the stresses were tensile. The number of tensile

stress states was recorded for Mesh 8 under load case 3. The number of Gauss points where the stress

state is tensile and outside MPenv is 21, 409 whereas for Senv the number is 20, 828 (when there are a

total of 321, 608 Gauss points in the mesh). This corresponds to approximately 6.7% and 6.5% of the

total Gauss point for MPenv and Senv respectively.

The FEA results for the BCU suggests that under extreme conditions when all the pre-stress is

lost (load case 3) the BCU’s structural integrity is severely compromised. In the analyses (when using

the most conservative model) 27% of the Gauss point stresses fell outside the peak strength envelope and
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6.7% of the stresses had at least one tensile principal stress component. These results suggest that the

BCU would be no-longer safe to operate under these condition because there would be the possibility

of concrete rupture within the BCU. However, in reality such an extreme situation where all pre-stress

is lost is unlikely to occur. A more realistic situation would be the gradual reduction in pre-stress due

to deterioration of individual wires. The results do suggest that when modeling the BCU, care must be

taken when using any peak stress envelope in isolation. When the BCU comes under combined tensile

and compressive loads the two most accurate envelopes, Senv and MPenv, suggest slightly different

failure criterion. MPenv predicts than more elements will be over-stressed. This thesis does not address

which of these envelopes provides the most accurate estimation but rather highlights the need to be

careful when considering the strength of concrete under these conditions. The results also show that care

must be taken when using TCenv for the analysis of concrete structures under combined tensile and

compressive loading.

5.6.3 How non-linear FEA could alter the findings on the structural condition

of the BCU

Non linear FEA would almostly certainly result in more Gauss point stresses reaching the peak stress

critera. When non linear FEA is carried out, the stress states are prohibited from lying outside the

yield surface. This means that where stresses meet the yield surface, the self-equilibrating internal

body forces in the area of high stress are redistributed, this has the effect of redistributing the stresses

amongst adjacent Gauss points ensuring that the yield criteria is satisfied, see Section 2.6. The elastic

analyses and peak stress envelope results presented earlier are certainly under-estimating the number

of integration points which have reached a peak stress caused by the pre-stressing wires failing. A

non linear analysis could result in different trends in tensile and compressive behaviour being seen

because in such analyses, stresses will reduce and rotation of the principal stress directions will take place.
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(a) MPenv (b) MPenv (c) TCenv

Figure 5.12: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 8, load case 1

(a) Senv (b) MPenv (c) TCenv

Figure 5.13: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 8, load case 2

(a) Senv (b) MPenv (c) TCenv

Figure 5.14: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 8, load case 3
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(a) Senv (b) MPenv (c) TCenv

Figure 5.15: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 20, load case 1

(a) Senv (b) MPenv (c) TCenv

Figure 5.16: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 20, load case 2

(a) Senv (b) MPenv (c) TCenv

Figure 5.17: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 20, load case 3

– 75 –



(a) Senv (b) MPenv (c) TCenv

Figure 5.18: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 88, load case 1

(a) Senv (b) MPenv (c) TCenv

Figure 5.19: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 88, load case 2

(a) Senv (b) MPenv (c) TCenv

Figure 5.20: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 88, load case 3
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(a) Senv (b) MPenv (c) TCenv

Figure 5.21: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 820, load case 1

(a) Senv (b) MPenv (c) TCenv

Figure 5.22: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 820, load case 2

(a) Senv (b) MPenv (c) TCenv

Figure 5.23: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 820, load case 3
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(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.24: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 8, load cases 1-3 (see the colour code given on Figure 5.28)

(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.25: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 20, load cases 1-3 (see the colour code given on Figure 5.28)

(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.26: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 88, load cases 1-3 (see the colour code given on Figure 5.28)
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(a) Load case 1 (b) Load case 2 (c) Load case 3

Figure 5.27: Deformation mesh plots (scale factor 200) showing the elements where the stresses lie outside
the peak stress envelopes: mesh 820, load cases 1-3 (see the colour code given on Figure 5.28)

Figure 5.28: Peak stress envelope indicators used to identify where the stresses exceed the strength limit
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(a) Load case 2 (b) Load case 3

Figure 5.29: Meridional section for Senv showing location of stress states which lie outside MPenv

(a) Load case 2 (b) Load case 3

Figure 5.30: Meridional section for Senv showing location of stress states which lie outside MPenv and
inside Senv

(a) Load case 2 (b) Load case 3

Figure 5.31: Meridional section for Senv showing location of stress states which lie inside MPenv and
outside Senv
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5.6.4 Principal stress plots

The BCU was designed to operate under compressive stresses. Figures 5.32, 5.33 and 5.34 show the tensile

principal stress components for Mesh 8. It is clear that for load case 3 (Figure 5.32) the number of stress

states with a tensile component is significant. The number of plotted lines has increased from the few

visible along the underside, bolts and inner penetration of the BCU under load case 1 (Figure 5.32)). This

is seen in particular across the top surface of the BCU under load case 3 (Figure 5.34) where the structure

curves due to the under pressure and bolt loads. The magnitudes of these tensile stresses are largest in this

area. The tensile stresses inside the penetrations increase as they approach the top of the BCU. Coloured

principal stress plots for load cases 2 and 3 have been plotted looking at three horizontal cross sections

through the BCU structure for a single level of Gauss points(that is planes parallel to the x−z axis: Cuts

A,B and C). These cuts are shown in (Figures 5.35, 5.36 and 5.37). Tensile stress components have been

plotted in red and compressive stress components in blue. The orientation of the vectors indicate the

direction of the principal stress axes and the length of the lines indicates the magnitude of the principal

stresses. In this way, the flow of stress through the BCU can be determined. It is clear when considering

load cases 2 and 3 that the BCU moves from a state where many of the stress components are compressive

to a state where most of the stress components are tensile when the pre-stress is removed. The tensile

stresses are largest on the top surface of the BCU. This is visible in Figure 5.35 for load case 3 where

the tensile stresses coloured in blue are much larger than for the other two planes under this load case

shown in Figures 5.36 and 5.37 (the ‘blueness’ of the plots is much stronger). Under load case 2 there are

small areas where tensile principal stress components exist, most notably on the approach to the bolts

on the top surface (cut A) , see Figure 5.35(a). The size of the tensile area is significantly larger and the

magnitude of the tensile principal stresses increased when the pre-stressing is removed in load case 3, see

Figure 5.35(b). This supports the findings of Section 5.6.2 that suggested that under the extreme case of

load case 3 the nuclear reactor is no longer safe to operate due to concrete’s low strength in tension.
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Figure 5.32: Tensile principal stress vectors located outside MPenv - load case 1
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Figure 5.33: Tensile principal stress vectors located outside MPenv - load case 2
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Figure 5.34: Tensile principal stress vectors located outside MPenv - load case 3
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(a) Load case 2 (b) Load case 3

Figure 5.35: Cross section A: tensile and compressive principal stress vectors near the top surface of BCU
(at depth y = 1697)

(a) Load case 2 (b) Load case 3

Figure 5.36: Cross section B: tensile and compressive principal stress vectors in the middle of the BCU
(at depth y = 866)

(a) Load case 2 (b) Load case 3

Figure 5.37: Cross section C: tensile and compressive principal stress vectors near the bottom of the BCU
(at depth y = 111)
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5.6.5 Error analysis

For each of the four meshes and for the three load cases, error analyses has been performed using the Z2

error estimator, see Section 4.4. The error in energy norm |e| is calculated for each element. The maximum

error in energy norm, |e|max and the mean error in energy norm |e| for the whole mesh have been recorded

in Table 5.9. The element at which the |e|max occurs has also been recorded in square brackets after |e|max.

Figure 5.38 highlights the elements where the maximum error in energy norm occurs for each BCU mesh,

and the element numbers have also been displayed in square brackets. For load cases 1 and 2 the maximum

error is generally seen in an element close to the step on the underside of the BCU. The exceptions are

for Mesh 8 load case 1 where the maximum error occurs in the smallest penetration near the bottom

of the BCU and for Mesh 820, load case 1 where the maximum error occurs on the top surface in the

inner penetration where the weight of the boiler is acting. For load case 3, the maximum error for all four

meshes is seen on the top surface close to the bolts where large distortion occurs. If local refinement, see

Section 4.3.3, was to be carried out it should take place around the penetrations (especially around the

elements where the weight of the boiler is loaded at the top of the inner penetration), near the bolts and

around the step on the underside of the BCU. From the displacement and peak stress envelope results

shown in this chapter, although the results for the four meshes are not identical the main trends are

captured by the coarsest mesh (Mesh 8). On average this took less than a minute to run (when using the

optimum linear solver and number of processors see Table 5.4) in comparison with 262 minutes for mesh

820.

Load Case 1 2 3
Mesh |e| |e|max |e| |e|max |e| |e|max

8 2.8577 28.7821 [36993] 2.685 15.4395 [29539] 0.8918 9.7614 [16011]
20 0.9298 26.8783 [36995] 0.8223 9.2894 [14821] 0.2418 8.3074 [16487]
88 0.4432 17.9764 [295941] 0.412 4.7804 [118561] 0.1527 3.5605 [128085]
820 0.1054 17.7006 [236937] 0.0898 4.0005 [118561] 0.0252 2.8992 [320244]

Table 5.9: BCU SPR error analysis results
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Figure 5.38: Location of the element where the maximum error in energy norm occurs for each BCU mesh
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Chapter 6

Conclusions and recommendations

for further work

Here the original contributions made by this project will be summarised. The key findings are highlighted

and suggestions made for further work. Four original contributions have been made.

1. An automatic subdivision program has been written in Fortran 90 (mesh refine.f90). This pro-

gram can take any 8 or 20-noded hexahedral mesh and refine the whole domain further, by either

h-refinement (increasing the number of nodes per element from 8 to 20) or by p-refinement (sub-

dividing each 20-noded element into eight 8-noded elements). This program has been successfully

run, refining a 40201 element 8-noded hexahedral mesh (Mesh 8) three times to produce three

new meshes: a 40201 element 20-noded hexahedral mesh (Mesh 20), a 120603 element 8-noded

hexahedral mesh (Mesh 88) and finally a 120603 element 20-noded hexahedral mesh (Mesh 820).

The full program including subroutines for both refinement algorithms, reading input mesh data

and outputting mesh data for both ParaFEM and Gmsh is approximately 700 lines of code. It takes

approximately 10 minutes to convert Mesh 8 to Mesh 20, 100 minutes to convert Mesh 20 to Mesh

88 and 200 minutes to convert Mesh 88 to Mesh 820 when the program is run on the linux service

at Durham University (Vega).

2. MUMPS, a parallel direct linear solver, has been successfully introduced into ParaFEM. In order to run

this parallel direct solver, four new Fortran sub-routines were written (calc ke red, calc urdof,

calc eltvar and calc NZ) and organised within a new module MUMPS.mod.

3. The Z2 error estimator has been coded for a 3D mesh (in total 453 lines of Fortran code incorporated

into ParaFEM’s p121.f90), and a new strategy has been developed to handle hexahedral elements

at mesh boundaries. This 3D Z2 error estimator has been used to carry out an error analysis on the

BCU meshes. Error analysis for Mesh 8 takes under 30 minutes to complete, while error analysis

for Mesh 820 takes approximately 10 hours.

4. A simple multi-planar peak stress envelope (MPenv) has been devised to analyse the FEA results.

This criterion has been compared with a tension cut off peak stress envelope (TCenv) and a smooth
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C2 yield surface (Senv).

As described in Section 3.2.2, MUMPS was successfully incorporated into ParaFEM and the correct

displacements were outputted from the FEA. Speed up was achieved, however parallel benefits were

very limited when running p121.f90 on multi-cores on Hamilton and problems were experienced when

running the analysis on the largest mesh (Mesh 820 containing 1385616 nodes). When the original

iterative solver was used, speed up was seen when using up to sixteen cores for the larger meshes, but

when using the MUMPS solver, although the problem was generally solved quicker, speed up was only seen

when using up to four cores.

When analysing the BCU, the results confirm that the pre-stressing wire windings are necessary

to retain the BCU concrete in a state of multi-axial compression. When the pre-stressing is removed

(load case 3) a large area of the BCU experiences tensile stresses. These areas of tension indicate

a structural problem because concrete has very little strength in tension. The peak stress envelope

analyses also show how under load case 3 many more of the BCU’s Gauss point stress states lie outside

the peak stress envelopes. Both these findings suggest that if the pre-stressing wire windings snap or

deteriorate, the structural integrity of the BCU is lost and the nuclear reactor is no longer safe to operate.

Automatic mesh refinement was successfully implemented. The FEA results for the BCU show

that although progressive refinement reduces the error in the FEA, Mesh 8, the coarsest BCU mesh,

provides an adequate mesh to capture the trends in displacement and structural condition.

By comparing peak stress envelopes it became clear the the TCenv was an insufficient model for

determining the failure of concrete due to concrete’s multi-axial behaviour. Both MPenv and Senv picked

up on stress states outside the peak stress envelope which were not identified by TCenv. However Senv

and MPenv provide different models to represent concrete’s limiting multi-axial strength. The differences

between the models resulted in different areas of the BCU being highlighted as having stress states

outside the envelope, with MPenv being the most conservative model and identifying the most elements

outside the envelope. Although peak stress envelopes such as Senv and MPenv attempt to model this

behaviour, they have not been satisfactorily validated due to lack of experimental data, particularly in

the multi-axial tension-compression regions. The results presented here highlight how using different

models can result in different conclusions being drawn on the structural condition of different parts

of the mesh under multi-axial loading conditions. It is therefore important to consider such loading

conditions and take care when using one peak stress envelope model in isolation.

The development of a parallel FE code for the elastic analysis of the BCU has provided an inter-

esting initial study, allowing the structural condition of the BCU to be assessed and the suitability of

peak stress envelopes to be discussed. To investigate this problem further and to provide a more realistic

analysis of the BCU’s behaviour the code should be extended to allow non-linear analysis to be carried

out, see Section 2.6. It would be interesting to see exactly how the trends (about the structural condition

of the BCU) suggested by the elastic analysis alter when carrying out a non-linear analysis.
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Appendix A

ParaFEM Input Files

Example input files are provided in this appendix. The problem presented is a unit cube made up of

eight, 8-noded hexahedral elements subjected to a uniform pressure p = 1 and a single point load f = 1

(Figure A.1). The boundary conditions for this problem are roller boundary conditions on two corner

faces and on the bottom face, as used in the unit cube problems of Chapter 4.

Figure A.1: Example problem
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A.1 p.121.dat

p121.dat is the control data file. It provides data about the problem such as the number of elements,

nodes and restrained degrees of freedom.

Variable Name Type Purpose
element character the element type: hexahedron or tetrahedron
mesh integer element node ordering scheme: 1-Smith and Griffiths

or 2-Abaqus
nels integer number of elements in mesh
nn integer number of nodes in mesh
nr integer number of integration points
nip integer number of nodes per element
nod integer number of nodes with fixed displacements
loaded nodes integer number of nodes with externally applied loads
e real Young’s modulus
v real Poisson’s ratio
tol real convergence tolerance for PCG
limit integer iteration ceiling for PCG
pressure faces integer number of element surfaces with applied pressure

Table A.1: Variables listed in p121.dat

Figure A.2: Example p121.dat file
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A.2 p.121.d

p121.d provides data on the nodal coordinates and element topology.

Variable Name Type Purpose
*THREE DIMENSIONAL character a keyword describing the model as three dimensional
*NODES character a keyword marking the start of a list of nodes and

their coordinates
*ELEMENTS character a keyword marking the strat of a list of element data
nodeID integer a unique number that identifies the node. ParaFEM

assumes sequential numbering from 1 to nn
x-co-ordinate real the x-co-ordinate of the node
y-co-ordinate real the y-co-ordinate of the node
z-co-ordinate real the z-co-ordinate of the node
elementID integer a unique number that identifies the element. ParaFEM

assumes sequential numbering from 1 to nels
ndim integer the number of dimensions. ParaFEM only supports

3D elements
nod integer the number of nodes in the element. ParaFEM only

supports the values 4, 8, 10 and 20
num integer list element topology listed according to Smith and Grif-

fiths or Abaqus node numbering
materialID integer a number that identifies which material properties to

select for the element

Table A.2: Variable listed in p121.d
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Figure A.3: Example p121.d file
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A.3 p.121.bnd

p121.bnd provides data on the boundary conditions.

Variable Name Type Purpose
nodeID integer a unique number that identifies the node, nodes were

all the restraints are free need not be included
restraint x integer restraint in x direction, the convention is that 0=re-

strained and 1=free
restraint y integer restraint in y direction, the convention is that 0=re-

strained and 1=free
restraint z integer restraint in z direction, the convention is that 0=re-

strained and 1=free
nr integer number of restrained node

Table A.3: Variables listed in p121.bnd

Figure A.4: Example p121.bnd file
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A.4 p.121.lds

p121.lds provides data on the externally applied nodal point loads.

Variable Name Type Purpose
nodeID integer a unique number that identifies the loaded node,

nodes which do not have applied loads need not be
included

value x real value of load applied in x direction
value y real value of load applied in y direction
value z real value of load applied in z direction
loaded nodes integer the number of loaded nodes in the model

Table A.4: Variables listed in p121.lds

Figure A.5: Example p121.lds file
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A.5 p.121.prs

p121.prs provides data on the pressures applied to element faces, for 8 and 20-noded hexahedral elements

only.

Variable Name Type Purpose
elementID integer a unique number that identifies the element
prs face num integer list list of node numbers to identify element face, list

in a clockwise order when looking from an external
position onto the face

value a real shear force acting across element face in direction
from surface node 1 to 2

value b real pressure acting perpendicular to element face
value c real shear force acting across element face in direction

from surface node 2 to 3 (8-noded hexahedron) and
from surface node 3 to 4 (20-noded hexahedron)

snod integer number of surface nodes, 4 for 8-noded hexahedron,
8 for 20-noded hexahedron

Table A.5: Variables listed in p121.prs

Figure A.6: Example p121.prs file

– 96 –



Appendix B

make File Example

This appendix provides the make file used to compile the main program p121.f90 with all the module

files containing the subroutines. Comments are given to explain the purpose of each part of the file.
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Figure B.1: Example make file (a)
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Figure B.2: Example make file continued (b)
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Appendix C

Code Appendix

C.1 ParaFEM - with MUMPS solver

The code presented here is the adapted ParaFEM p121 program. The MUMPS solver has been adapted.

MUMPS is called at the start of the program and the appropriate parameters set to allow the program to

be run of Hamilton and to analysis the BCU. All ParaFEM modules have been left untouched. The SPR

error estimator has also been added and the code is visible at the end of the program.

PROGRAM p121

!------------------------------------------------------------------

! Program 12.1 three dimensional analysis of an elastic solid

! Adapted by Lorna van Griethuysen

! MUMP solver added - PCCG solver removed

! SPR error estimator added

!------------------------------------------------------------------

USE precision ; USE global_variables ; USE mp_interface

USE input ; USE output ; USE loading

USE timing ; USE maths ; USE gather_scatter

USE partition ; USE elements ; USE steering

USE pcg ; USE mumps

IMPLICIT NONE

INCLUDE "dmumps_struc.h"

TYPE (DMUMPS_STRUC)id

!------------------------------------------------------------------
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! 1. Declare variables used in the main program

!------------------------------------------------------------------

! neq,ntot are now global variables - not declared

INTEGER,PARAMETER :: nodof=3,ndim=3,nst=6

INTEGER :: loaded_nodes,iel,i,iters,limit

INTEGER :: nn,nr,nip,nod,nels,ndof,npes_pp

INTEGER :: node_end,node_start,nodes_pp

INTEGER :: meshgen

REAL(iwp) :: e,v,det,tol,up,alpha,beta,tload

REAL(iwp),PARAMETER :: zero = 0.0_iwp

CHARACTER(LEN=15) :: element

CHARACTER(LEN=50) :: program_name=’p121’

CHARACTER(LEN=50) :: fname,job_name=’p121’,label

LOGICAL :: converged = .false.

!Additional variables

INTEGER :: fi,fk,fj,c,k,j,l,nlface,mc,mc2,iproc,ierr

INTEGER :: snod,urdof,size_nftot,statu(MPI_STATUS_SIZE)

INTEGER :: leltvar,na_elt

INTEGER :: dummy,dummy_r,bufsize1,bufsize1_r,nels_pp_r

INTEGER :: tpos,nrot,inod,inels=0,patchnode,pnc

REAL(iwp) :: xinorm,zenorm,P(4,1),Pt(1,4),A(4,4),b(4,6),&

Atot(4,4),btot(4,6),a(4,6)

!------------------------------------------------------------------------------

! 2. Declare dynamic arrays

!---------------------------------------------------------------------------

INTEGER, ALLOCATABLE :: rest(:,:),g_num_pp(:,:),g_g_pp(:,:),node(:)

REAL(iwp),ALLOCATABLE :: points(:,:),dee(:,:),weights(:),val(:,:),disp_pp(:)

REAL(iwp),ALLOCATABLE :: g_coord_pp(:,:,:),jac(:,:),der(:,:),deriv(:,:)

REAL(iwp),ALLOCATABLE :: bee(:,:),storkm_pp(:,:,:),eld(:),eps(:),sigma(:)

REAL(iwp),ALLOCATABLE :: timest(:)

REAL(iwp),ALLOCATABLE :: diag_precon_tmp(:,:),eld_pp(:,:),tensor_pp(:,:,:)

!Additional dynamic arrays

INTEGER, ALLOCATABLE :: bc(:,:),g_num(:,:),eurdof(:),eltptr(:),eltvar(:)

INTEGER, ALLOCATABLE :: redtpl(:),gtpl(:),gtpl_r(:),redtpl_pp(:),gtpl_pp(:)

INTEGER, ALLOCATABLE :: pstore(:,:),pestore(:,:),perstore(:,:)

REAL(iwp),ALLOCATABLE :: bee_t(:,:),fun(:),fun_mat(:,:),g_coord_pp_v(:)

REAL(iwp),ALLOCATABLE :: stress_pp(:),g_coord_pp_ip(:,:,:),eig_v(:,:,:,:),ndis(:,:)
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REAL(iwp),ALLOCATABLE :: redk_pp(:,:,:),redf(:),f(:),redk_pp_r(:,:,:),varea(:),&

bftot(:)

REAL(iwp),ALLOCATABLE :: sigma_mat(:,:,:,:),tensor(:,:,:),d(:,:,:),&

tensor_r(:,:,:),g_coord_pp_ip_r(:,:,:)

!---------------------------------------------------------------------------

! 3. Read job_name from the command line.

! Read control data, mesh data, boundary and loading conditions.

!---------------------------------------------------------------------------

ALLOCATE(timest(20))

timest = zero

timest(1) = elap_time()

CALL find_pe_procs(numpe,npes)!MPI Initialised in this function

CALL read_p121(job_name,numpe,e,element,limit,loaded_nodes,meshgen,nels,nip,&

nn,nod,nr,tol,v,nlface)

CALL calc_nels_pp(nels,iel_start)

ndof = nod*nodof

ntot = ndof

IF(nod==8)THEN

snod=4

ELSEIF(nod==20)THEN

snod=8

END IF

ALLOCATE(rest(nr,nodof+1),g_num_pp(nod,nels_pp),g_coord_pp(nod,ndim,nels_pp),&

bc(nn,nodof+1),g_num(nod,nels),eurdof(nels),eltptr(nels+1))

g_num_pp = 0; g_coord_pp = 0; rest = 0

eurdof = 0; leltvar = 0; na_elt = 0

urdof = 0; k = 1; bc = 0

CALL read_g_num_pp(job_name,iel_start,nels,nn,numpe,g_num_pp,g_num)

IF(meshgen == 2) CALL abaqus2sg(element,g_num_pp)

CALL read_g_coord_pp(job_name,g_num_pp,nn,npes,numpe,g_coord_pp)
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CALL read_rest(job_name,numpe,rest)

!---------------------------------------------------------------------------

! 4. Initialise MUMPS

!---------------------------------------------------------------------------

id%COMM = MPI_COMM_WORLD

id%SYM = 2 !Unsymmetric matrix

id%PAR = 1 !Host is involed in factorisation phase

id%JOB = -1 !Call to MUMPS initialisation phase

CALL DMUMPS(id) !Requires MPI to be initiailised

CALL calc_urdof(nn,bc,rest,urdof,nels,nod,g_num,eurdof,leltvar,na_elt,eltptr)

IF(numpe==1)THEN

id%N=urdof

END IF

ALLOCATE(eltvar(leltvar))

!---------------------------------------------------------------------------

! 5. Allocate dynamic arrays used in main program

!---------------------------------------------------------------------------

ALLOCATE(points(nip,ndim),dee(nst,nst),jac(ndim,ndim), &

der(ndim,nod),deriv(ndim,nod),eld_pp(ntot,nels_pp),bee(nst,ntot), &

storkm_pp(ntot,ntot,nels_pp),eld(ntot),eps(nst),sigma(nst), &

weights(nip),g_g_pp(ntot,nels_pp),fun(nod),fun_mat(ndim,ndof), &

redf(urdof), g_coord_pp_v(ndof),g_coord_pp_ip(ndim,nip,nels_pp), &

bee_t(ntot,6), redtpl(urdof),gtpl(leltvar),gtpl_r(leltvar), &

redk_pp(ntot,ntot,nels_pp),redk_pp_r(ntot,ntot,nels_pp), &

ndis(nn,ndim),varea(nodof))

fun = 0; fun_mat = 0;

g_coord_pp_v = 0; g_coord_pp_ip = 0

!---------------------------------------------------------------------------

! 6. Loop the elements to find the steering array and the number of

! equations to solve.

!---------------------------------------------------------------------------
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CALL rearrange(rest)

g_g_pp = 0

elements_1: DO iel = 1, nels_pp

CALL find_g(g_num_pp(:,iel),g_g_pp(:,iel),rest)

END DO elements_1

neq = 0

elements_2: DO iel = 1, nels_pp

i = MAXVAL(g_g_pp(:,iel))

IF(i > neq) neq = i

END DO elements_2

neq = MAX_INTEGER_P(neq)

!---------------------------------------------------------------------------

! 7. Create interprocessor communication tables

!---------------------------------------------------------------------------

CALL calc_neq_pp

CALL calc_npes_pp(npes,npes_pp)

CALL make_ggl(npes_pp,npes,g_g_pp)

!---------------------------------------------------------------------------

! 8. Element stiffness integration and storage

!---------------------------------------------------------------------------

CALL deemat(e,v,dee)

CALL sample(element,points,weights)

storkm_pp = zero

diag_precon_tmp = zero

dummy = 1

gtpl = 0

redk_pp = 0

elements_3: DO iel=1,nels_pp

gauss_pts_1: DO i=1,nip

CALL shape_der(der,points,i)

jac = MATMUL(der,g_coord_pp(:,:,iel))

det = determinant(jac)

CALL invert(jac)
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deriv = MATMUL(jac,der)

CALL beemat(deriv,bee,bee_t)

storkm_pp(:,:,iel) = storkm_pp(:,:,iel) + &

MATMUL(MATMUL(TRANSPOSE(bee),dee),bee) * &

det*weights(i)

END DO gauss_pts_1

CALL calc_ke_red(nn,nod,g_num_pp,iel,bc,redk_pp,storkm_pp,redtpl,&

g_g_pp,dummy,gtpl)

END DO elements_3

CALL calc_eltvar(dummy,eltvar,npes,gtpl,gtpl_r)

CALL calc_NZ(id%NZ,id%NZ_loc,nels_pp,iel_start,nels,eltptr)

!---------------------------------------------------------------------------

! 9. Get force vector

!---------------------------------------------------------------------------

IF(loaded_nodes > 0 .OR.nlface>0) THEN

CALL read_loads2(job_name,numpe,nlface,loaded_nodes,snod,nod,nn,size_nftot)

ALLOCATE(node(size_nftot),val(3,size_nftot),f(nn*nodof),bftot(nn*3))

val = 0

node = 0

f = 0

c = 0

CALL read_loads(job_name,numpe,node,val,loaded_nodes,nlface,snod,nod,nn,size_nftot)

CALL bodyforce(element,points,weights,nels,nn,nod,bftot)

DO i=1,size_nftot

DO j=1,3

k=node(i)

f(((k-1)*3)+j)=val(j,i)

END DO

END DO
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DO i=1,nn

DO j=1,3

IF(bc(i,j+1)>0)THEN

c=c+1

redf(c)=f(((i-1)*3)+j)

END IF

END DO

END DO

tload = SUM(redf)

DEALLOCATE(node,val)

END IF

!---------------------------------------------------------------------------

! 9. MUMPS SOLVER

!---------------------------------------------------------------------------

IF(numpe==1)THEN

ALLOCATE(id%IRN(id%NZ),id%JCN(id%NZ))

END IF

j=0

mc=0

k=0

IF(numpe==1)THEN

DO iel=1,nels

k=0

DO i=eltptr(iel),eltptr(iel+1)-1

k=k+1

!DO j=eltptr(iel),eltptr(iel+1)-1

DO j=eltptr(iel),eltptr(iel)+k-1

mc=mc+1

id%IRN(mc)=eltvar(i)

id%JCN(mc)=eltvar(j)

END DO

END DO

END DO

END IF

id%ICNTL(18)=2

id%ICNTL(7)=5

id%JOB =1
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CALL DMUMPS(id)

IF(numpe==1)THEN

DEALLOCATE(id%IRN,id%JCN)

END IF

ALLOCATE(id%IRN_loc(id%NZ_loc),id%JCN_loc(id%NZ_loc),id%A_loc(id%NZ_loc))

mc=0

DO iel=1,nels_pp

DO i=1,eltptr(iel_start+iel)-eltptr(iel_start+iel-1)

DO j=1,i

mc = mc+1

id%A_loc(mc)=redk_pp(i,j,iel)

END DO

END DO

END DO

mc = 0

DO iel=1,nels_pp

k=0

DO i=eltptr(iel_start+iel-1),eltptr(iel_start+iel)-1

k=k+1

DO j=eltptr(iel_start+iel-1),eltptr(iel_start+iel-1)+k-1

mc=mc+1

id%IRN_loc(mc)=eltvar(i)

id%JCN_loc(mc)=eltvar(j)

END DO

END DO

END DO

id%JOB =2

CALL DMUMPS(id)

IF(numpe==1)THEN

ALLOCATE(id%RHS(id%N))

id%RHS=redf

DEALLOCATE(redf)

END IF

id%JOB =3

CALL DMUMPS(id)
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DEALLOCATE(id%A_loc,id%JCN_loc,id%IRN_loc,eltvar)

IF(numpe==1)THEN

k = 0

DO i=1,nn

DO j=1,3

IF(bc(i,j+1).GT.0)THEN

k=k+1

ndis(i,j)=id%RHS(k)

END IF

END DO

END DO

DEALLOCATE(id%RHS)

!Nodal displacement output written to file

OPEN(7, FILE=’mumps_dis_output’, STATUS=’replace’, ACTION=’write’)

WRITE(7,*)’*DISPLACEMENT, CALCULATED USING MUMPS LINEAR SOLVER’

DO i=1,nn

WRITE(7,’(i8,3(1p,e14.4))’)i,ndis(i,:)

END DO

DEALLOCATE(ndis)

END IF

id%JOB = -2

CALL DMUMPS(id)

!------------------------------------------------------------------------------

! 12. Recover stresses at centroidal gauss point

!------------------------------------------------------------------------------

ALLOCATE(tensor_pp(nst,nip,nels_pp))

tensor_pp = zero

nip = 8

eld_pp = zero
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CALL gather(xnew_pp,eld_pp)

Calculates displacement per processor required to calculated stresses at gps

DO i=1,nels_pp

DO j=1,nod

k=g_num_pp(j,i)

DO l=1,3

eld_pp((3*(j-1))+l,i)=ndis(k,l)

END DO

END DO

END DO

elements_6: DO iel=1,nels_pp

gauss_pts_2: DO i=1,nip

CALL shape_der(der,points,i)

jac = MATMUL(der,g_coord_pp(:,:,iel))

CALL invert(jac)

deriv = MATMUL(jac,der)

CALL beemat(deriv,bee,bee_t)

eps = MATMUL(bee,eld_pp(:,1))

sigma = MATMUL(dee,eps)

tensor_pp(:,i,iel)=sigma

END DO gauss_pts_2

END DO elements_6

!------------------------------------------------------------------------------

! Gauss Point Information - Added by Lorna

!------------------------------------------------------------------------------

DO iel=1,nels_pp

DO i=1,nip

CALL shape_fun(fun,points,i)

fk=0

DO fi=1,ndof,3

fk=fk+1

DO fj=1,3

fun_mat(fj,fi+fj-1) = fun(fk)

g_coord_pp_v(fi+fj-1) = g_coord_pp(fk,fj,iel)

END DO

END DO

g_coord_pp_ip(:,i,iel) = MATMUL(fun_mat,g_coord_pp_v)

END DO

END DO
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IF (numpe==1)THEN

fname = job_name(1:INDEX(job_name," ")-1)//".gp"

OPEN(25,file=fname,status=’replace’,action=’write’)

END IF

label = "*GAUSS POINT INFORMATION"

CALL WRITE_GAUSS_INFO(label,25,1,nip,nels_pp,npes,numpe,ndim,g_coord_pp_ip,tensor_pp)

!------------------------------------------------------------------------------

! SPC Error Analysis - Added by Lorna

!------------------------------------------------------------------------------

nip = 1

deallocate(points,weights,tensor_pp,g_coord_pp_ip)

allocate(points(nip,ndim),weights(nip),tensor_pp(nst,nip,nels_pp),&

sigma_mat(3,3,nip,nels),tensor(nst,nip,nels),&

d(ndim,nip,nels),eig_v(ndim,ndim,nip,nels),&

g_coord_pp_ip(ndim,nip,nels_pp),g_coord_ip(ndim,nip,nels)&

tensor_pp_r(nst,nip,nels_pp),g_coord_pp_ip_r(ndim,nip,nels_pp))

call sample(element, points, weights)

DO iel=1,nels_pp

DO i=1,nip

CALL shape_der(der,points,i)

jac = MATMUL(der,g_coord_pp(:,:,iel))

CALL invert(jac)

deriv = MATMUL(jac,der)

CALL beemat(deriv,bee,bee_t)

eps = MATMUL(bee,eld_pp(:,1))

sigma = MATMUL(dee,eps)

tensor_pp(:,i,iel)=sigma

END DO gauss_pts_2

END DO elements_6

DO iel=1,nels_pp

DO i=1,nip

CALL shape_fun(fun,points,i)

fk=0

DO fi=1,ndof,3

fk=fk+1

DO fj=1,3

fun_mat(fj,fi+fj-1) = fun(fk)
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g_coord_pp_v(fi+fj-1) = g_coord_pp(fk,fj,iel)

END DO

END DO

g_coord_pp_ip(:,i,iel) = MATMUL(fun_mat,g_coord_pp_v)

END DO

END DO

IF (numpe==1)THEN

tensor(:,:,1:nels_pp)=tensor_pp(:,:,:)

g_coord_ip(:,:,1:nels_pp)=g_coord_pp_ip(:,:,:)

tpos=nels_pp

END IF

DO iproc = 2,npes

IF (numpe==iproc) THEN

bufsize1 = nip*2*ndim*nels_pp

bufsize2 = nip*ndim*nels_pp

CALL MPI_SEND(bufsize1,1,MPI_INTEGER,0,iproc+npes,MPI_COMM_WORLD,ier)

CALL MPI_SEND(bufsize2,1,MPI_INTEGER,0,iproc+npes,MPI_COMM_WORLD,ier)

CALL MPI_SEND(tensor_pp,bufsize1,MPI_REAL8,0,iproc+npes,MPI_COMM_WORLD,ier)

CALL MPI_SEND(g_coord_ip_pp,bufsize2,MPI_REAL8,0,iproc,MPI_COMM_WORLD,ier)

END IF

IF (numpe==1)THEN

CALL MPI_RECV(bufsize1,1,MPI_INTEGER,iproc-1,iproc+npes,MPI_COMM_WORLD,statu,ier)

CALL MPI_RECV(bufsize2,1,MPI_INTEGER,iproc-1,iproc+npes,MPI_COMM_WORLD,statu,ier)

CALL MPI_RECV(tensor_pp_r,bufsize1,MPI_REAL8,iproc-1,iproc+npes,MPI_COMM_WORLD,statu,ier)

CALL MPI_RECV(g_coord_ip_pp_r,bufsize2,MPI_REAL8,iproc-1,iproc+npes,MPI_COMM_WORLD,statu,ier)

tensor(:,:,tpos+1:tpos+(bufsize1/(nip*ndim*2)))=tensor_pp_r(:,:,:)

g_coord_ip(:,:,tpos+1:tpos+(bufsize1/(nip*ndim*2)))=g_coord_pp_ip_r(:,:,:)

tpos=tpos+(bufsize1/(nip*ndim*2))

END IF

END DO

DO iel=1,nels

DO i=1,nip

sigma_mat(1,1,i,iel)=tensor(1,i,iel);

sigma_mat(2,2,i,iel)=tensor(2,i,iel);sigma_mat(3,3,i,iel)=tensor(3,i,iel)

sigma_mat(1,2,i,iel)=tensor(4,i,iel);sigma_mat(2,1,i,iel)=tensor(4,i,iel)

sigma_mat(2,3,i,iel)=tensor(5,i,iel);sigma_mat(3,2,i,iel)=tensor(5,i,iel)

sigma_mat(1,3,i,iel)=tensor(6,i,iel);sigma_mat(3,1,i,iel)=tensor(6,i,iel)

CALL jacobi(sigma_mat(:,:,i,iel),ndim,ndim,d(:,i,iel),eig_v(:,:,i,iel),nrot)

END DO

END DO
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CALL calc_nodes_pp(nn,npes,numpe,node_end,node_start,nodes_pp)

ALLOCATE(pestore(nodes_pp,9))

DO inod=node_start,node_end

DO iel=1,nels

DO k=1,8

IF(g_num(iel,k)==inod)then

inels=inels+1

pestore(inod-node_start+1,inels)=j

END IF

END DO

END DO

IF(iel==nels)THEN

pestore(inod-node_start+1,9)=inels

END IF

END DO

pnc=0

DO inod=node_start,node_end

IF(pestore(inod-node_start+1,9).gt.0)then

pnc=pnc+1

END IF

END DO

allocate(perstore(pnc,10))

pnc=0

DO inod=node_start,node_end

IF(pstore(inod-node_start+1,9).gt.0)then

pnc=pnc+1

perstore(pnc,:)=pestore(inod-node_start+1,:)

perstore(pnc,10)=inod-node_start+1

END IF

END DO

D0 inod=1,pnc

btot=0.0

Atot=0.0

patchnode=perstore(pnc,10)

DO iel=1,perstore(inod,9)

DO i=1,nip

P(1,1)=1
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P(2,1)=g_coord_ip(1,i,perstore(inod,iel)

P(3,1)=g_coord_ip(2,i,perstore(inod,iel)

P(4,1)=g_coord_ip(3,i,perstore(inod,iel)

Pt(1,1)=P(1,1);Pt(1,2)=P(2,1);Pt(1,3)=P(3,1);Pt(1,4)=P(4,1)

A=Pt*P

Atot=A+Atot

b=Pt*tensor(1,i,iel)

btot=b+btot

END DO

END DO

END DO

!------------------------------------------------------------------------------

! 14. End Program

!------------------------------------------------------------------------------

CALL WRITE_P121m(iters,job_name,neq,nn,npes,nr,numpe,timest,tload)

CALL shutdown()

END PROGRAM p121
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