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Abstract 

 

 

This thesis studies the development of agricultural settlements on the Central Iranian 

Plateau during the Neolithic and Chalcolithic periods. To date, no Early Neolithic 

sites (ca. 8000-6500 BC) are known on the Central Plateau. This thesis aims to 

establish whether there was an Early Neolithic presence on the Central Plateau 

through taking a combined approach involving: a review of the current information 

available on the Neolithic of Iran and surrounding areas; the re-calibration and 

chronometric hygiene evaluation of existing radiocarbon determinations for Neolithic 

sites in Iran and neighbouring areas in order to map the ‘spread’ of agriculture; and 

the analysis of new data from recent archaeological research the Central Iranian 

Plateau. In studying the development of agriculture on the Central Iranian Plateau 

this thesis will provide valuable information on the origins and spread of agriculture in 

Central and South Asia, a region which has received relatively little archaeological 

attention in comparison to Europe. In particular, this research will elucidate whether 

the prevalent model for the spread of agriculture across Europe – Ammerman and 

Cavalli-Sforza’s (1984) ‘Wave of Advance’ – is equally applicable to Central Asia, as 

has been suggested by Renfrew (1987), but never explicitly tested. As this research 

utilises both new and old data and provides both temporal and spatial perspectives, 

it represents an original study of the prehistoric period on the Central Iranian 

Plateau.  
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Chapter One 

 

Missing Links: Demic Diffusion and the Development of 

Agriculture in the Central Iranian Plateau 

 

 

1.0.  Introduction 

 

The focus of this thesis, the origin and development of agriculture in the 

Central Iranian Plateau, has captured the imagination of innumerable scholars 

over the last three centuries (e.g. de Candolle 1884; Childe 1934; 1952; 

Braidwood 1950; Braidwood & Howe 1960; Binford 1968; Flannery 1969; 

Renfrew 1987; Renfrew & Bellwood 2002; Sherratt 1980; 2007; 2009; Zeder 

2001; 2005; 2009). As early as 1884, Alphonse de Candolle identified 

southwest Asia, with Egypt, as one of the earliest centres of domestication in 

the world; a remarkable apt prediction considering he had no archaeological 

evidence with which to work. De Candolle’s work heavily influenced that of 

later scholars, including Vere Gordon Childe (1934) who also claimed Egypt 

to be the homeland of agriculture; although he subsequently retracted this 

statement in the face of increasing evidence of early food production in the 

Near East (Childe 1952: 25-7). Today, it is generally accepted that agriculture 

first originated in the Fertile Crescent: the fertile soils and rivers that stretch in 

an arc from the Nile to the Tigris and Euphrates in western Asia (e.g. Brown et 

al. 2008; Fuller et al. 2010; Zeder & Smith 2009; Nesbitt 2002). However, 

where exactly and whether one or multiple domestication centres for each 

species were involved, remains contested (Alizadeh 2003: 10). 

 

The prevailing model for the spread of agriculture is Ammerman and Cavalli-

Sforza’s (1984) ‘Wave of Advance’. The ‘Wave of Advance’ rests on two main 

assumptions: that growth occurs in a logistic manner; and that migrationary 

activity takes place at a constant rate in time and space, and according to a 

random walk process (Ammerman & Cavalli-Sforza 1984: 68). From these 

premises, Ammerman and Cavalli-Sforza predicted that a ‘wave front’ would 



2 
 

form at the periphery of the spread of farming and keep advancing at a 

constant rate, which they calculated from the radiocarbon (hereafter 14C) 

dates of early agricultural sites in Europe to be 1-kilometre per year, or 25 to 

30-kilometres per generation (Ammerman & Cavalli-Sforza 1971: 685).  

 

While Central and Western Europe has seen a deluge of archaeological 

research, particularly in the latter half of the twentieth century, the 

development of agriculture in Central and Southern Asia has received little 

attention. Indeed, the region has generally been portrayed as “a backwater 

sitting on the sidelines” (Zeder 2008b: 245). Ammerman and Cavalli-Sforza 

specifically applied the Wave of Advance to the western spread of agriculture 

across Europe, and while adaptations of the model have been applied to the 

eastwards spread of farming (e.g. Renfrew 1987; Renfrew & Bellwood 2002; 

Bellwood 2005), they have never been formally tested. Attempts to 

understand the development of agriculture in central and southern Asia are 

further complicated by the Early Neolithic (ca. 7000-5500 BC) levels at 

Mehrgarh, western Baluchistan (Jarrige et al. 1995), which evidence the on-

site domestication of sheep, cattle and possibly goats (Meadow 1981: 152; 

1984: 37-40; Meadow & Patel 2002: 396); and the presence of locally 

domesticated barley (Constantini 1984: 29-30; Jarrige et al. 1995: 64). 

Significantly, small amounts of domesticated wheat were also recovered, 

which were probably introduced in an already domesticated form from outside 

the region (Meadow 1996: 395). No precedents for Mehrgarh are known 

within Southern Asia; nor, does it seem possible that agriculture could have 

spread this quickly to the site by a Wave of Advance from the west: more than 

3500 kilometres separates Baluchistan from the Fertile Crescent, a distance 

over which, by Ammerman and Cavalli-Sforza’s (1971: 685), calculations, 

farming would have taken approximately 3500 years to spread. The presence 

of Mehrgarh, thus, presents an enigma in our current understanding of the 

origins and spread of agriculture. 

 

If, as Renfrew (1989: 149) suggests, agriculture did spread to Mehrgarh from 

the Fertile Crescent, then the development and spread of agriculture in Iran 

would have played a pivotal role in this process. Early farmers would need to 
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have crossed, or the idea of farming would have had to of spread, over Iran to 

reach Baluchistan. The Iranian Neolithic, then, potentially holds the key to our 

understanding of the development and spread of farming in South Asia. This 

research focuses on the origins and development of agriculture in Iran by 

specifically focusing on the Central Iranian Plateau, a region that has received 

little archaeological attention, despite its potential importance (Hole 2004). To 

date, no Early Neolithic (ca. 8000-6500 BC) or Middle Neolithic (ca. 6500-

6200 BC) sites are known in this region, and “one of the key archaeological 

problems with the Central Iranian Plateau is the lack of evidence for 

the…Early Neolithic period” (Fazeli et al. 2007: 7). 

 

 

1.1. Aims and objectives 

 

In view of the above lacuna, the aim of this research is to establish whether 

there were any Early to Middle Neolithic period (ca. 8000-6200 BC) 

settlements on the Central Iranian Plateau. The objectives of this research are 

to: (1) review models for the sequential Neolithic occupation of Iran; (2) 

analyse published material on the Early Neolithic (ca. 8000-6500 BC) of Iran 

and neighbouring regions; (3) recalibrate and evaluate the ‘chronometric 

hygiene’ (Spriggs 1989) of published 14C determinations for Neolithic sites in 

Iran and neighbouring regions; (4) spatially plot the ‘cleaned’ 14C 

determinations onto a geographic map of Iran; and (5) review the data from 

recent fieldwork – including my own research – on the Tehran, Qazvin and 

Kashan Plains. The impact of this research is that it will provide a fresh 

perspective on the Neolithic of Iran, and its potential influence on South Asia. 

Many of the 14C determinations of sites in Iran were measured in the formative 

years of the 14C process, and have not been calibrated using the latest 

calibration curves. The age of the 14C measurements also means that many of 

the determinations are unacceptable by present-day standards. Indeed, Paul 

Pettitt (2003) advises that one should have “little confidence” (Pettitt et al. 

2003: 1698) in any 14C determination that was measured before 1970. 

Assessing the chronometric hygiene of the 14C measurements used in this 

research, allows for the rejection of those 14C dates that are unacceptable by 
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modern standards, whilst allowing for the inclusion of those that are reliable 

enough to be used without further questioning. This research also presents 

new data from fieldwork on the Central Iranian Plateau, including my own 

survey and excavation work on the Kashan Plain. Such research is essential 

in improving our understanding of the development and spread of agriculture 

in this potentially important region. With many of the archaeological sites in 

the region under threat from industrial and urban expansion (cf. Coningham et 

al. 2004), it is also of the utmost priority that this research takes place now, 

before this invaluable resource is destroyed. A greater knowledge of the 

Neolithic of the Central Plateau will also further elucidate our understanding of 

the possible eastwards spread of agriculture to South Asia, and to identify 

potential flaws in our current understanding.   

 

 

1.2. Overview of research 

 

The structure of this thesis is as follows. The purpose of this chapter was to 

introduce the research themes, aims and objectives of this thesis. Chapter 

Two investigates the history of the study of the development and spread of 

agriculture in Eurasia over the last three centuries, and considers the 

strengths and weaknesses of the prevailing theories. Chapter Three provides 

a background to the environmental and geographical contexts of Iran, and 

contains a detailed study of the key Neolithic sites in the region, which 

include: Hajji Firuz (Voigt 1983), northwestern Iran; Tepe Sarab, Tepe Asiab 

(Braidwood 1961; Braidwood et al. 1961), Ganj Dareh (Smith 1967; 1968; 

1970; 1972a; 1972b; 1974; 1975; 1976) and Tepe Abdul Hosein (Pullar 1990) 

in the foothills of the Zagros Mountains; Ali Kosh (Hole et al. 1969) and 

Chogha Bonut (Alizadeh 2003) in the southwestern lowlands; Tall-e Mushki 

and Tall-e Jari (Alizadeh et al. 2005) on the Marv Dasht Plain; Sang-e 

Chakmaq (Thornton 2010), northeastern Iran; Jeitun, southern Turkmenistan 

(Harris et al. 2003; Harris 2010a); and Mehrgarh (Jarrige et al. 1995, 2005), 

western Baluchistan. Chapter Four discusses the aims and objectives of this 

research, and the methodology which will be used to attain them. Chapter 

Five contains the reanalysis of existing 14C determinations for Neolithic sites 
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in Iran and neighbouring region. The dates are recalibrated using the latest 

version of the calibration software OxCal (Brook Ramsey 2009); and 

assessed for their chronometric hygiene, in order that only those 

determinations deemed “reliable enough to be used…without further 

questioning” (Pettitt et al. 2003: 1690) are incorporated in this research. Such 

an analysis has never been undertaken before for the 14C dates for Iran, and 

is desperately needed in order to produce a database of verified 

determinations for the Iranian Neolithic. Chapter Six is a synthesis of the 

results of recent archaeological research on the Central Iranian Plateau within 

the Tehran, Qazvin and Kashan plains (e.g. Fazeli 2001; Coningham et al. 

2004; 2006; Fazeli et al. 2004; 2005; 2009), including previously unpublished 

data from fieldwork on the latter. In Chapter Seven, the results from the two 

main focuses of this research – the re-calibration and cleaning of the 14C 

dates for Neolithic Iran, and the findings from new fieldwork on the Central 

Plateau – are discussed. Chapter Eight draws together the different themes of 

this research and the conclusions that can be made, and outlines future 

research prospects. 

 

 

1.3. Conclusion 

 

In this introductory chapter, the aims and objectives of this thesis have been 

presented, and the range of data sources that will be used identified. These 

include: the analysis of existing information on the Neolithic of Iran; the re-

analysis of existing 14C determinations for Iranian sites through their 

recalibration and ‘cleaning’; and the results from recent fieldwork on the 

Central Iranian Plateau, including previously unpublished data from the 

Kashan Plain. Various theoretical approaches are examined in this research, 

and this data will be interpreted accordingly. By the utilization of both new and 

old data, and temporal and spatial perspectives, this research presents an 

original study of the Neolithic of the Central Iranian Plateau, which is 

invaluable in informing us of the development and possible spread of 

agriculture in this hitherto poorly-studied region. 
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Chapter Two 

 

The Agricultural Transition 

 

 

“Food-production – the deliberate cultivation of food plants, especially cereals, 

and the farming, breeding, and selection of animals – was an economic 

revolution – the greatest in human history after the invention of fire.”  

(Childe 1934: 42) 

 

2.0. Introduction 

 

No study of the Neolithic of Iran would be complete without first considering 

how the origins and spread of agriculture has been perceived over time, and 

the prevailing theories of today. For some 85 per cent of their history, humans 

have subsisted on wild resources, then, at the end of the Pleistocene (ca. 

8500 BC), food production emerged independently in a number of regions 

(Diamond 2002: 705). Since then, food production has spread, and today 

almost the entire world population is dependent on domesticated food 

resources. The questions of why and how this major transition, coined by 

Gordon Childe the “agricultural revolution” (1934: 74), occurred has intrigued 

scholars for over 300 years, and an enormous literature exists on the subject. 

Due to the limited archaeological research that has taken place in Iran, most 

of our knowledge of the origins and development of agriculture comes from 

the regions immediately to the west of Iran: modern-day Iraq, Syria and 

Turkey. This is the information, then, that is primarily utilized in this chapter, 

although wherever possible, reference to Iranian sites is made.   

 

Before any models for the development and spread of agriculture are 

considered, it is necessary to define the terms ‘domestication’, ‘cultivation’, 

and ‘agriculture’. In this research, ‘domestication’ is defined as an evolutionary 

process in which human cultivation/tending of plant and animal species lead 
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to morphological and physiological changes, that distinguish domestic taxa 

from their wild ancestors (Diamond 2002: 700; Zeder 2006a: 115; 

Purugganan & Fuller 2009: 843). This process creates an “increasingly mutual 

dependence between human societies and the plant and animal populations 

they target” (Zeder et al. 2006: 139). Cultivation itself, involves the 

manipulation of the soil and vegetational environment, and cycles of 

harvesting and storage, which exerts selective pressures for recurrent 

adaptations on the part of the cultivated species (Allaby et al. 2008; Fuller et 

al. 2010; Purugganan & Fuller 2009). It can be argued that cultivation is a 

human, and thus conscious, activity; whilst domestication consists of genetic 

and morphological changes within the taxa that people cultivate (Bellwood 

2005: 13; Fuller et al. 2010: 14). Agriculture is understood as the practice of 

cultivating the ground, including: the harvesting of domesticated crops; the 

rearing and management of livestock; and the processing of agricultural 

produce (Bellwood 2005: 13; van der Veen 2010: 2).  

 

 

2.1. What’s in a name? – The ‘Neolithic’ and ‘Mesolithic’ defined 

 

The term ‘Neolithic’ was originally used by Sir John Lubbock (1865: 2-3) in the 

mid-nineteenth century to distinguish the ‘New’ from the ‘Old’ Stone Age. 

Lubbock associated the Neolithic with modern fauna, cereal cultivation, 

animal husbandry and technical advances such as polished stone and pottery. 

However, it was Gordon Childe (1925) who first used the term to refer to a 

distinct agricultural economy. In so doing, Childe transformed the ‘Neolithic’ 

from an “explicitly chronological and evolutionary phenomenon…to a socio-

economic phenomenon” (Zvelebil 1998c: 1); and it is due to Childe’s legacy, 

that the ‘Neolithic’ is often perceived as synchronous with the introduction of 

farming. More recent scholars have also stressed the ideological significance 

of the Neolithic (e.g. Hodder 1990; Pluciennik 1998; Thomas 1998; Sherratt 

2003), perceiving the Neolithic as a ‘conceptual’, rather than ‘economic’ 

phenomenon. Others have argued that there were many different ‘Neolithics’, 

and that the ‘Neolithic’ was not a static entity held constant in time and space 

(e.g. Thomas 1998; Sherratt 2003; Robb & Miracle 2007). Indeed, it is 
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recognized that the ‘Neolithic’ is a product of archaeological thinking, a tool for 

understanding and interpreting the past, which has too often solidified into 

something real. After all, how many people living in the Neolithic would have 

considered themself to be ‘Neolithic’?  

 

The term Mesolithic arose to describe what was perceived as a hiatus 

between the Palaeolithic and the Neolithic (Zvelebil 1998c: 2). As a 

chronological period, the Mesolithic was first introduced by Hodder Westropp 

(1872 in Nicholson 1983) to denote the intermediate flint assemblages 

between the ‘Old’ and ‘New’ Stone Ages. However, it was not recognized as a 

distinct period until the 1930s; the reason for the reluctance to accept the term 

laying with its non-conformity with the prevailing social-evolutionary views 

(Zvelebil 1998b: 3). On a social-evolutionary scale, which should only have 

showed improvement, the Mesolithic was perceived as representing a period 

of decline. This view continued throughout the twentieth century, leading 

Richard Bradley to comment that, “in the literature as a whole successful 

farmers have social relations with one another, whilst hunter-gatherers have 

ecological relationships with hazelnuts” (1984: 11), and it was not until the 

1980s that the importance of the Mesolithic as a period in its own right began 

to be recognized (e.g. Bradley 1984; Zvelebil & Rowley-Conwy 1984; 

Pluciennik 1998; Zvelebil 1998a). 

 

Some scholars (e.g. Sherratt 2003; Boric 2005) have gone as far as to stress 

that the Mesolithic and the Neolithic were not two distinct entities at all, but a 

continual temporal sequence which scholars have categorized and labeled in 

order to better study. However, for the clarity of this research a distinction, no 

matter how arbitrary, needs to be drawn, for “regardless of their provisional 

and arbitrary invention, the terms Mesolithic and Neolithic have become the 

theoretical currency for debate of Mesolithic–Neolithic archaeology” (Boric 

2005: 17). Due to the economic focus of this thesis the ‘Neolithic’ will be 

understood as a chronological phase where early food production was 

practiced, which developed out of – although was not a necessary outcome – 

of the ‘Mesolithic’, a period principally defined by a hunting and gathering 
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economy. However, it is recognized that the boundary between the two 

‘periods’ was not fixed, but was fluid and permeable.  

 

 

2.2. The origins of food production 

 

One of the earliest attempts to study the origins of domestication was that of 

Alphonse de Candolle (1884), who identified that certain conditions were 

needed to make plant domestication successful including, “that such or such a 

plant, offering some of those advantages which all men seek, must be within 

reach…a not too rigorous climate; in hot countries, the moderate duration of 

drought; some degree of security and settlement; lastly a pressing necessity” 

(de Candolle 1884: 2). De Candolle’s conditions were remarkably apt for their 

time and, indeed, can still be found echoed in the work of modern scholars. 

Joy McCoriston and Frank Hole, for example, advocated that, “the impetus for 

domestication came from the synergistic effects of climate change, 

anthropogenic environmental change, technological change, and social 

innovation” (1991: 46). 

 

To locate the heartland of domestication, de Candolle (1884: 18) combined 

the available information from botany, palaeontology and historic sources, to 

identify Southwest Asia, with Egypt, as one of the earliest centres of 

domestication in the world. De Candolle’s work greatly influenced that of 

subsequent scholars including Vere Gordon Childe (1934), who following de 

Candolle, proclaimed Egypt to be the homeland of agriculture; although in 

light of increasing evidence of the early development of food production in the 

Near East he was later to retract this statement (Childe 1952: 25-7). 

 

Robert Braidwood (1960a, 1960b, 1960c, 1961; Braidwood & Braidwood 

1950; Braidwood & Howe 1960) was the first archaeologist to explicitly test in 

the field the origins of agriculture, by excavating at Jarmo, Iraqi Kurdistan, 

with a multidisciplinary team of scientists for three seasons, between 1948 

and 1955. His findings led him to suggest that plant domestication first 

occurred in the “hilly flanks” (Braidwood & Howe 1960: 131) of the Fertile 
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Crescent, one of the natural habitats of modern wheat and barley (Fig. 2.0). 

Braidwood’s hypothesis has since been repudiated (Binford 1968; Higgs & 

Jarmon 1969; Redman 1978: 98). Higgs and Jarmon, for example, argued 

that it was “absurd to look for a beginning of agriculture in a particular area” 

(Higgs & Jarmon 1969: 40), and posited instead that domestication events 

occurred many times over a large area, with the Near East representing the 

place “where different agricultural techniques collected together and 

integrated”(ibid.: 40). 

 

Lewis Binford (1968: 328) suggested that, rather than in the heart of the 

natural habitat zone of domesticates, domestication took place at the edge of 

the nuclear zone, where resources were scarcer; a view that was also held by 

Kent Flannery (1969; 1973). In the ‘marginal zone’ hypothesis, Flannery 

argued that farming did not begin in the optimal areas of wild cereal growth, 

where botanical experiments have shown that wild wheat can do as well as in 

a cultivated field (Zohary & Harlan 1966: 1079), but around the margins, 

where it was necessary to raise the food capita of the land. Flannery (1969: 

74) believed that animal domestication was subsequent to that of plants, and 

represented a way of banking the unpredictable surpluses from cereal 

cultivation in live storage. The marginal zone hypothesis has been informative 

in focusing research, however, as Flannery himself emphasized, it is only a 

hypothesis and, “although it has won an almost frightening acceptance among 

some of my colleagues it is still unproven and highly speculative” (1973: 284). 

More recent work has shown that the situation was more complex than the 

marginal zone hypothesis allowed for. It is now known that the limit of the 

nuclear zone, which itself moved over time in response to climate change 

(Bar-Yosef & Meadow 1995: 45), originally included areas that now lie outside 

it, and early farming villages are distributed throughout the whole of the 

nuclear zone, and not just on its fringes (Bar-Yosef & Meadow 1995: 65-6; 

Cauvin 2000: 106). Other authorities, including Joy  McCoriston and Frank 

Hole (1991) and A.M.T. Moore & Gordon Hillman (1992) have argued that due 

to the period of cooling associated with the Younger Dryas (ca. 10,000-9600 

BC) climatic episode, the highlands of southwestern Iran were cold, dry and 

mostly uninhabited between 10,0009000 BC, and domestication took place in 
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the lowlands of the Levantine Corridor. McCoriston and Hole (1991: 46), for 

example, placed the origins of agriculture in the Jordon valley and the 

surrounding regions of the southern Levant, whilst Moore and Hillman (1992: 

491) have argued that the development of agriculture occurred at relatively 

few large sites, located in areas with rich soils and ample surface water, such 

as Abu Hureyra. 

 

Since then the spot light has shifted to the Fertile Crescent, especially the 

upper reaches of the Tigris and Euphrates Rivers, which appear to be the 

homeland of initial domestication of a number of founder crops, e.g. einkorn, 

emmer and pulses (Hillman 2000; Lev-Yadum et al. 2000); and three, if not 

four, livestock species (sheep, pig, cattle & possibly goat; Zeder 1995, 2005; 

Horwitz et al. 1999; Peters et al. 1999; Horwitz 2003).  

 

The most recent genetic and archaeobotanical evidence (e.g. Tanno & 

Willcox 2006a, 2000b; Weiss & Zohary 2011; for overview see Zeder 2011) 

paints a much less focused, more diffuse picture of agricultural origins. The 

emergence of agriculture in the Near East now seems to have been a 

pluralistic process with initial domestication of various crops and livestock 

occurring, sometimes multiple times in the same species, across the entire 

region (Zeder 2011: 230). 

 

 

2.2a. Plant domestication 

 

Archaeological evidence 

Eight plant species are generally recognized as constituting the founder crops 

domesticated in the Fertile Crescent: three cereals – diploid einkorn wheat 

(Triticum monococcum), tetraploid emmer wheat (T. dicoccum) and barley 

(Hordeum vulgare) – two pulses – lentil (Lens culinaris) and pea (Pisum 

saivum) – flax (Linum usitatissimum), bitter vetch (Vicia ervilia) and chickpea 

(Cicer areitinum) (Zohary 1996: 143-4). To this list possibly could be added 

faba bean (Vicia faba) (Brown et al. 2008: 105). At the turn of the last century, 

when archaeobotanical research in the Near East was still relatively limited, it 
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was generally held that the domestication of each of the Fertile Crescent 

founder crops occurred only once, in a limited area of the Fertile Crescent 

(e.g. Heun et al. 1997; Lev-Yadum et al. 2000; Gopher et al. 2002). Lev-

Yadum, for example, claimed, based on the restricted distribution of modern 

wild chickpea, that all of the main founder crops of the Near East were 

domesticated within a single small area of northern Syria and northeastern 

Anatolia (Lev-Yadum et al. 2000: 1062-3). It was also the common contention 

that domestication – in terms of the development of morphological traits – was 

a rapid event, which was initiated and completed in the brief period that 

marked the Pleistocene/ Holocene transition (Blumer 1992: 101; Diamond 

1997: 1243; McCoriston & Hole 1991: 58; Zohary 1992: 84). For instance, 

Jared Diamond advocated, “that at most a few centuries were required for the 

transition from hunter-gatherer villages harvesting wild plants to farming 

villages planting fully domesticated crops” (1997: 1244), whilst Hillman and 

Davies suggested, based on a computer simulation, that  “…domestication 

could be achieved within 20-30 years” (Hillman & Davies 1990: 189, 191). 

 

With the growth of quantitative archaeobotanical evidence in the last decade, 

both of these contentions have been challenged. Monophyletic models for the 

origin of crop domestication have been questioned by a growing body of 

research, that has emphasized the complexity of the processes that preceded 

and accompanied the development of plant domestication (Brown et al. 2008: 

105; Purugganan & Fuller 2009: 845; Fuller et al. 2010: 17). ‘Hard’ 

domestication traits e.g. non-shattering in cereals and increased size and loss 

of germination inhabitation in seeds, are generally used as indicators of 

cultivation because they are the least ambiguous (Balter 2007: 1832; Brown 

et al. 2008: 105; Fuller et al. 2010: 14). However, archaeological remains 

indicate that the fixation of these morphological traits was a “slow process” 

(Purugganan & Fuller 2009: 843) with, for example, the fixation of non-

shattering rachises perhaps taking 3000 years or more (Tanno & Willcox 

2006b: 1886). Thus, instead of a starting point, we need to see these 

morphological changes as “a result…in what was likely a long chain of 

innovations that constitutes a domestication pathway’ (Fuller et al. 2010: 14). 

Domestication, therefore, rather than the ‘event’ it has originally been 
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perceived as (e.g. Hillman & Davies 1990; Diamond 1997), should be 

considered to have been “a protracted and biologically complex process” 

(Brown et al. 2008: 104). 

 

Arguably, the earliest evidence of plant domestication in the Near East comes 

from Abu Hureyra, Syria, where a few reportedly ‘domesticated’ grains of rye 

have been identified from Epipalaeolithic levels (ca. 11,000-10,000 cal BC) 

(Hillman 2000: 376). However, the domestic status of the rye is controversial 

(Nesbitt 2002: 120), and even if the rye were domesticated, “it does not seem 

to have made much of a mark on Near Eastern subsistence economies” 

(Zeder 2011: 224). Indeed, domesticated rye is not seen in the region again 

for another 2000 years, where it is found in low numbers in central Anatolia at 

Can Hassan II (Hillman 1978), and it was never a prominent component of the 

Neat Eastern cereal crops (Zeder 2011: 224). 

 

The first securely identified and dated evidence of domesticated plants in the 

Near East, is not found until the Early Pre-Pottery Neolithic B (PPNB) (ca. 

8,500-8,200 cal BC), where domesticated emmer (Triticum turgidum spp. 

dicoccum) and einkorn (T. monoccocum) has been reported from Navali Çori, 

Cafer Höyük and possible Cayönü, in the Upper Euphrates Valley (Tanno & 

Willcox 2006b: 1886); while the first firm evidence of domesticated barley 

does not occur until the Middle PPNB (ca. 8000 cal BC), at which time it is 

recovered from sites throughout the Fertile Crescent and Central Anatolia 

(Nesbit 2002). Additional evidence for the late, or at least delayed, 

appearance of morphologically domestic cereals in the Near East comes from 

Tanno and Wilcox (2006b), who document the gradual increase in the 

proportion of tough-rachis domestic morphotypes among wheat and barley 

recovered from sites in the Middle and Upper Euphrates.  

 

Substantial quantities of lentils have been recovered from PPNA sites (ca. 

8500-7600 BC) in both the southern and northern Levant. Wild lentils are not 

a common component of Near Eastern plant communities, and Weiss et al. 

(2006) and Tanno and Willcox (2006b) suggest that the hundreds of lentils 

found in storage bins at site such as Netiv Hagdub and Jerf el Ahmar, are 
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unlikely to be from wild, unmanaged plants (see also Weiss & Zohary 2011). 

Similarly, Tanno and Willcox (2006b) report that the large numbers of 

chickpeas (Cicer sp.) recovered from Tel el-Kerkh (ca. 8200 cal BC), 

northwestern Syria, represent an early stage in the cultivation of this well-

known Near Eastern crop plant (Zeder 2011: 225).  

 

Kislev et al. (2006) argue that the earliest morphologically altered plant 

domesticate in the Near East was neither a cereal nor a pulse but the fig. 

They interpret the presence of parthenocarpic figs, a mutant, infertile variety 

that remains on the tree longer & develops sweeter, softer fruit (Zeder 2011: 

225), at the PPNA site of Gigal in the southern Levant (ca. 9400-9200 cal 

BC), as a clear indication of human selection. The domestication of 

parthenocarpic figs, they maintain, could be accomplished by replanting cut 

branches of trees that naturally produce these sweeter fruits. 

 

Refinement in archaeobotanical identification criteria has provided another 

source of evidence for multiple domestications of the ‘same’ (or similar) crops, 

although not all of the taxa have survived (Fuller 2007: 908).  It is possible on 

the basis of grain shape, to distinguish einkorn wheat with single-grained 

spikelets (T. boeoticum subsp. Aegilopodes) from einkorn with two-grained 

spikelets (from wild T. b. subsp. thaudor or T. urartu), suggesting at least two 

independent domestications of einkorn (ibid.). Modern domesticated einkorn 

(T. monococcun) is normally only one grained, but archaeobotanical evidence 

indicates the presence of two-grained forms from the Late Pleistocene at the 

Syrian sites of Mureybet, Jerf el Ahmar and Abu Hureyra, and later as a 

domesticated cereal in Syria, Turkey, and into Neolithic Europe, although it 

subsequently disappears from Europe (Willcox 2005: 537). This implies an 

additional two-grained einkorn domestication, although this crop went extinct 

in prehistory (Fuller 2007: 908). 

  

Prior to the appearance of morphological traits of domestication, plants can be 

considered to be under ‘pre-domestication’ cultivation (Colledge 1998; 2002); 

a condition which may have lasted for hundreds, if not thousands, of years 

before the manifestation of morphologically indicators of plant domestication 
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(Piperno et al. 2004: 670; Willcox & Tanno 2006b: 1886; Balter 2007: 1831; 

Fuller 2009: 904; Zeder 2011: 231). For example, the presence of distinctive 

complexes of weedy species characteristic of fields under human cultivation, 

suggest that humans were actively tilling and tending wild stands of einkorn 

and rye at both Abu Hureyra and nearby Mureybit during the Late 

Epipalaeolithic (ca. 11,000-10,000 cal. BC) (Colledge 1998; 2002; Hillman 

2000: 378). Increases in this weed complex at the PPNA sites of Qarmel (ca. 

9500 cal BC) and Jerf el Ahmar (ca. 9000 cal BC), indicates an intensification 

of plant cultivation in the ensuing period (Willcox et al. 2008). The antiquity of 

broad-spectrum plant-exploitation stretches back even further, to at least the 

Late Glacial Maximum (ca. 21,000 cal BC) (Zohary 2011: 225), where it is 

evidenced by the remarkably well-preserved plant assemblage recovered 

from water-logged deposits at the Levantine site of Ohallo II, which contained 

a diverse array of large- and small-seeded cereals and legumes (Piperno et 

al. 2004). 

 

The delayed expression of domestication-induced morphological changes in 

managed plants (at 8500-8000 cal BC in cereals & later still in pulses; Zeder 

2011: 226) may be attributed to the frequent importation of new wild plants 

when cultivated crops failed (Tanno & Willcox 2006b: 1886). It is also possible 

that the harvesting practise of early farmers did not encourage the 

morphological changes in cereal dispersal mechanisms, which have 

traditionally been interpreted as markers of domestication (Zeder 2011: 226). 

For example, farmers harvesting cereals before they were fully ripe and/or 

collecting shattered heads of grain from the ground, might have led to the 

retention of the brittle rachis in cultivated cereals (Willcox & Tanno 2006: 296). 

Melinda Zeder suggests that the appearance of morphological change, rather 

than being a cutting-edge indicator of domestication, is “most likely an artefact 

of a change in management or harvesting practises of cultivated crops” 

(Zeder 2011: 226), that may occur hundreds of years after plants were first 

brought under human control. The total time length for which pre-

domestication occurred before the appearance of morphological changes in 

the Near Eastern founder crops, remains unclear (Fuller et al. 2010: 17; Zeder 

2011: 230). Dorian Fuller et al. (2010: 18) infer, from archaeobotanical 
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remains of weed flora in the Near East, an extended period of perhaps two or 

more millennia of cultivation prior to the start of the recognizable selection for 

morphological traits of domestication. 

 

Genetic evidence 

A modern crop is a relatively recent descendant from the wild populations 

from which it derived, thus, comparison between the genotypes of modern 

crop varieties and landraces of wild populations, should indicate which wild 

populations were ancestral to the crop (Brown et al. 2008: 106). The earliest 

work on the genetics of plant domestication was conducted in the 1990s, 

when the “genetics behind this issue [were] a little clouded” (Bellwood 2005: 

49). Multilocus analysis was first applied to einkorn wheat by Heun et al. 

(1997) who, through the typing of 288 amplified fragment length 

polymorphism (AFLP) in 338 wild and cultivated accessions, were able to 

construct phylogenetic trees from the AFLP data, which showed domestic 

einkorn to be monophyletic (Heun et al. 1997: 1313), i.e. all modern crop 

plants shared a common descendent from a single progenitor population of 

early domesticates (Brown et al. 2008: 106). Based on the general similarities 

between the early domesticates and wild plants from the Karacadağ 

Mountains, Heun et al. suggested that this region was “the very probable site 

of einkorn domestication” (Heun et al. 1997: 1313). Heun et al.’s findings were 

supported by the archaeological record, as only a few kilometres from the 

Karacadağ Mountains lie archaeological sites (e.g. Navali Çori & Cafer 

Höyük) that have yielded some of the earliest evidence of single grained 

einkorn domestication (Zeder 2011: 288). 

 

Subsequent study by Kilian et al. (2007), however, contends that the wild race 

named by Heun et al. as ancestral to all modern populations, is instead a 

closely related sister group. Kilian et al. maintain that this more distant 

relative, and the high level of genetic diversity evidence in domestic einkorn, 

argues against a monophyletic origin. Instead, they propose a ‘dispersed 

specific model’, in which multiple local populations of the originally more 

widely dispersed sister race of wild einkorn, were taken under cultivation and 

eventually domesticated multiple times by communities across a broad area 
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(Kilian et al. 2007: 256-7). This model is more in line with current 

archaeological evidence, which shows that multiple sites from southeastern 

Turkey to the Middle Euphrates were involved in a protracted process of 

cultivation of both local and imported wild progenitors of later crops (Zeder 

2011: 288).  

 

Earlier genetic analyses of domestic emmer were also interpreted as 

demonstrating the monophyletic origin of the plant, with Őzkan et al. (2002) 

believing the closest living wild populations of emmer to occur in the same 

region of the Karacadağ as Heun et al. (1997) identified as the homeland of 

einkorn domestication. Subsequent studies, however, suggest that at least 

two separate domestications occurred (Brown et al. 2008: 107), although the 

geographic distance and degree of cultural independence between these 

events is unclear (Zeder 2011: 229). More recent work by Őzkan and 

colleagues (Őzkan et al. 2005; see also Őzkan et al. 2010) led them to 

suggest that, as well as the major domestication event at Karacadağ, a 

secondary domestication event of a population near the Kartel Mountains, 300 

kilometres to the west of Karacadağ, occurred (Őzkan et al 2005: 1058-9). 

There is also some indication that populations in Iran and Iraq may have 

contributed to the gene pool of domestic emmer (Őzkan et al. 2005: 1057). 

Luo et al. although concurring with Őzkan et al. (2005) that einkorn was first 

likely to have been domesticated in southeast Turkey, propose that there was 

a subsequent hybridization and introgression into domestic emmer from wild 

emmer in the southern Levant (Luo et al. 2007: 957).  

 

Initial indicators of a single domestication of barley in the Jordan Valley (Badr 

et al. 2000) have also been revised to include a second domestication of this 

crop (Molina-Cano et al. 2005; Morrell & Clegg 2007). Molina-Cano et al.’s 

work on chloroplast-based cluster analysis indicates that modern barley 

landraces fall into at least two genetically and geographically distinct groups, 

leading them to conclude that barley was probably independently 

domesticated in the subregions of the Fertile Crescent, the western 

Mediterranean and Ethiopia (Molina-Cano et al. 2005: 617). Subsequent work 

by Morrell and Clegg, involving a more extensive resequencing of 18 loci 
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containing 684 polymorphisms, indicates that barley was probably 

domesticated not only in the Israel-Jordon region, but also in a region to the 

east of the Fertile Crescent, possibly in the western foothills of the Zagros 

Mountains (Morrell & Clegg 2007: 3291).This corresponds well with 

archaeological evidence of domesticated barley at Zagros sites at about 8000 

BC (Zeder 2011: 229).  

 

Lev Yadum et al. (2000) have proposed a model for a single centre of origin of 

agriculture, based on the modern-day limited distribution of chickpeas. 

However, chickpeas are evidenced at Early PPNB sites lying outside their 

area of natural distribution today (e.g. Tel el-Kerkh) suggesting that their 

distribution in the past was greater than that of today (Tanno & Willcox 2006a: 

197). This conclusion is supported by the genetic evidence, which indicates 

that the modern wild chickpea populations that are genetically closest to 

domestic chickpeas are found growing at the far western end of the current 

distribution of this plant in southern Turkey, close to Tel el-Kerkh (Sudupak et 

al. 2004). Genetic evidence also points to the initial domestication of lentils in 

southeast Turkey/northern Syria (Ladizinsky 1989), where there is early 

evidence for the initial chickpea cultivation. 

 

 

2.2b. Animal domestication 

 

Early research on the origins of agriculture focused on the highland valleys 

and piedmont flanks of the Zagros Mountains, as the likely heartland of both 

plant and animal domestication (Braidwood & Howe 1960; Braidwood et al. 

1983; Hole et al. 1969). It was demonstrated that animals were domesticated 

as least as early as plants in the Zagros, and perhaps slightly earlier, in the 

context of semi-sedentary communities centred on the intensive utilization of 

wild plants and animals (cf. Hole 1996). After the 1970s, the geographic focus 

of the study of agricultural origins in the Near East shifted to the southern and 

northern Levant in the western arm of the Fertile Crescent (Zeder 2008a: 

245). Here, it seemed that plant domestication occurred at least 1000 years 

earlier than in the Zagros, and that animal domestication was a delayed and 
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subsequent development, occurring more than 1000 years after the initial 

plant domestication (Bar-Yosef & Meadow 1995: 82, 91). There is still no 

consensus on where initial animal domestication took place (Zeder 2008a: 

245). Both the southern and northern Levant, and southeastern Anatolia have 

been argued as likely homelands for the domestication of different livestock 

species (Bar-Yosef 2000b: 195; Horwitz 2003: 20; Horwitz et al. 1999: 76-7; 

Legge 1996: 259; Peters et al. 1999: 43), while more recent researchers have 

returned to the Zagros region (e.g. Peters et al. 2005; Zeder 2001b; 2006b; 

2008; 2009; Zeder & Hesse 2000).  

 

Archaeological evidence 

Until the late 1990s, archaeozoologists relied on morphological changes in 

target species to identify where and when wild animals were transformed into 

herded livestock (Zeder 2006a: 171-4; 2008b: 11597). One of the most widely 

accepted morphological markers of domestication was a sharp and overall 

rapid reduction in body size (Uerpmann 1978; Meadow 1989b: 82-7; Bar-

Yosef & Meadow 1995: 86). On the basis of reduction in body size, the 

established consensus was that the domestication of goats occurred between 

the late tenth to early ninth millennium BC, while sheep were domesticated 

somewhat later, after the first quarter of the ninth millennium BC (Bar-Yosef & 

Meadow 1995: 89-90). However, the utility of size reduction, and indeed of all 

morphological markers of domestication, is questionable (Zeder 2006: 189). 

Through a comprehensive analysis of archaeological and modern collections 

of sheep and goat skeletal remains from the Near East, Melinda Zeder and 

Brian Hesse (2000) were able to show that sex and, to a lesser extent, 

temperature, are the most important factors affecting the body size in sheep 

and goats. Domestic status, on the other hand, has no effect on the size of 

female caprines and only a limited effect on males, manifested as a decrease 

in the degree of sexual dimorphism (Zeder 2001; 2005). This work has also 

shown that apparent evidence of domestication-induced body size reduction 

in Near Eastern archaeological assemblages is not, as has been assumed, 

the result of a morphological response to human control. Instead, the 

apparent shift towards smaller animals is “an artefact of the different culling 

strategies employed by hunters…and herders” (Zeder 2011: 226). Hunters’ 
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aim to maximise the return of the hunt, often results in an archaeological 

assemblage dominated by prime-age males, while herders, who seek to 

maximize the long-term yield of the herd, cull younger males and females who 

have passed peak reproduction (Zeder 2008a: 11597). Due to various 

taphonomic factors and methodological practises, the herder’s harvest 

strategy produces an archaeological assemblage dominated by smaller adult 

females (Zeder 2001; 2008; 2011). Zeder, thus, advocates that instead of 

morphological markers, harvest profiles of male and female animals should be 

used to document domestication (Zeder 2008a: 11597-8). 

 

Morphologically unaltered, but clearly managed, goats are first seen in their 

natural habitat at the highland site of Ganj Dareh, central Zagros, around 

8000 cal BC (Zeder 2008a: 265; 2011: 226), and are evidenced at lowland 

sites (e.g. Ali Kosh; Hole et al. 1969), outside the natural habitat of wild goats, 

around 500 years later (Zeder 2008a: 254). Precisely where in their natural 

habitat region goats were first domesticated remains hard to say, although 

emerging archaeological evidence strongly suggests that it took place 

somewhere between Nevali Cori and Ganj Dareh in the northwestern 

Zagros/eastern Taurus region (Zeder 2008a: 265).  

 

Sheep domestication appears to have followed a different trajectory. Recent 

evidence from southeastern Anatolia suggests initial sheep domestication 

took place somewhere in the upper reaches of the Euphrates and Tigris 

valleys around 8500-8000 cal BC (Zeder 2008a: 265). However, well-

documented domesticated sheep do not appear in the central Zagros until at 

least 1000 years later, where they are evidenced at the Early Pottery Neolithic 

(hereafter PNL) sites of Tepe Guran, Sarab and Jarmo ca. 5900 BC (Zeder 

2008a.: 265). Earlier evidence of sheep domestication in the highlands of the 

Zagros Mountains is possibly represented by the unusual demographic profile 

of sheep from Zawi Chemi Shanidar (ca. 9000 cal BC) (Perkins 1964), but this 

remains contested (Zeder 2008a: 261; 2008b: 11597; 2011: 227) 

 

Herded sheep are not evidenced at lowland sites in Iran until about 6000 cal 

BC, where they are seen at Farukhabad, Sharafabad, Chogha Sefid and Ali 
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Kosh from the PNL onwards (Zeder 2008a: fig. 9; Zeder 2011: 227). Recent 

analysis of the faunal remains from the sites of Tall-e Mushki, Tall-e Jari and 

Tall-e Bakun on the Marv Dasht Plain, Fars, also demonstrates a significant 

delay of the introduction of sheep into the region (Mashkour et al. 2006). A 

possible explanation for the delayed spread of sheep compared to goats, is 

that goats are generally adapted to dryer conditions, although at present there 

is not sufficient data to say (ibid.: 104).  

 

The outlines of cattle (Bos Taurus) domestication in the Near East are still 

sketchy (Zeder 2011: 227). The ancestral species of modern domestic cattle 

was Bos primigenius (now extinct), and common usage gives two taxa for the 

domestic descendants, Bos indicus and Bos taurus (Bradley & Magee 2006: 

317). Bos taurus cattle predominate in the temperate lands of Europe, West 

Africa and northern Asia, whereas Bos indicus are generally found in the hot-

arid or semi-arid regions of South Asia and Africa.  

 

The earliest evidence for the domestication of cattle during the eighth 

millennium BC, points towards the marshlands and forests of the Middle 

Euphrates Basin, from where Helmer et al. (2005) report evidence of a degree 

of sexual dimorphism at several Early and Middle PPNB including Halula and 

Dja’de, and to a lesser extent at Cafer Hoyuk and Aswad, which they link to 

an on-going process of domestication. However, the animals fall within the 

size range of wild aurochs (Bos primigenius), and cattle from contemporary 

sites in the same region are still highly sexually dimorphic, and thus seen as 

being wild (Zeder 2011: 228). Later evidence in the region for elevated female 

to male ratios, and the absence of older individuals within the slaughter 

remains (ca. 7000 BC) suggests a culling strategy and domestication (Bradley 

& Magee 2006: 317). Domesticated cattle spread out of this heartland of initial 

domestication slowly (Zeder 2011: 228), reaching the southern Zagros around 

6500 cal BC (Hole et al. 1969: 303; Zeder 2008b: 11598). 

 

It has been postulated that both Bos taurus and Bos indicus cattle were 

derived from the western Eurasian aurochs (B. primigenius) within southwest 

Asia during the Early Neolithic (e.g. Epstein 1971; Epstein & Mason 1984). 
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However, a more widely held view is that Bos indicus were domesticated 

independently or subsequently to Bos taurus from a biologically distinct wild 

progenitor within the Indian subcontinent (Bradley & Magee 2006: 317). 

Archaeological fieldwork at Mehrgarh, Baluchistan, has provided plausible 

evidence for the domestication of Bos indicus cattle, most probably from local 

Bos primigenius namadicus populations, ca. 5000 BC (Meadow 1993; 1996; 

Bökönyi 1997).  

 

In pigs (Sus scrofa), a reduction in the size of molars, especially of the M3, is 

thought to be an early marker of domestication (Flannery 1983; Zeder 2011: 

228). It is thought that pigs, similarly to dogs, entered into domestication 

through a commensal route, initiated when less wary individuals entered into 

human habitations to scavenge for food (Zeder in press; Zeder 2011: 228). It 

is therefore hard to know whether initial changes in the jaw and tooth 

morphology seen in the animals reflects true domestication, or simply an 

adaption to living alongside humans (Zeder 2011: 228). Redding has reported 

that pigs at Hallan Çemi show some evidence of tooth size reduction 

(Redding & Rosenburg 1998). He also interprets an increase in the number of 

pigs through time at the site, and data on age and sex, as indicative of a 

developing association between humans and wild boar (Rosenburg & 

Redding 2000; Rosenburg et al. 1998; Redding 2005). At nearby Çayönü, 

clear signs of a gradual change in tooth size, age structure and biometry, are 

thought to represent a gradual process in which pigs moved from a wild to a 

commensal to a fully domestic status (Ervynck et al. 2001). As with sheep and 

cattle, pigs seem to have spread slowly out of the Fertile Crescent (Zeder 

2008b: 11598; 2011: 228), and although domesticated pig are identified at 

Jarmo in the northwestern Zagros by 7000 cal BC (Flannery 1983), 

morphologically altered domestic pigs are not found in lowland Iran until 6500-

6000 BC (Zeder 2008b: 11598). 

 

Genetic evidence 

Genetic analysis of both modern and ancient materials has brought fresh 

insight into the geographical and temporal context of livestock domestication 

(Zeder 2008b: 11598). To trace the evolutionary ancestry of domesticates, 
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geneticists study neutrally evolving, noncoding loci and organellar genomes, 

particularly focusing on those that are specifically selected for or against by 

domestication (Zeder et al. 2006: 141-2). Most domesticated animals that 

have been subject to genetic analysis seem to have been domesticated 

several times (Jones & Brown 2000: 773; Luikart et al. 2001: 5929; 

Hiendleder et al. 2002: 901; Dobney & Larson 2006: 265; Zeder et al. 2006: 

147; Zeder & Smith 2009: 684). 

 

Hiendleder et al. (2002) conducted the first phylogenetic analysis of sheep, 

sequencing 63 unique control regions from wild sheep (Ovis musimin, O. 

orientalis, O. vigne, O. ammon & O. canadenis) and domesticated sheep (O. 

aries) from Asia, Europe and New Zealand. Their study identified two well-

separated mtDNA lineages (A & B) among modern domestic sheep, with an 

estimated divergence time of 1.54 MyrBP or more (Hiendleder et al. 2002: 

902). As this time vastly predates sheep domestication – which is unlikely to 

have been much before 10,000 years ago – it suggests that sheep were 

domesticated from two distinct wild populations, a conclusion supported by 

Hiendleder’s earlier work (Hiendleder et al. 1998; 1999). More recent 

phylogenetic analysis by Pedrosa (2005) of mtDNA from local sheep breeds 

reared throughout Turkey, identified three major maternal lineages (B, A, C), 

for which the divergence times were estimated to be ca. 160,000 to 170,000 

years ago for lineages A and B, and 450,000 to 700,000 years ago for lineage 

C (Pedrosa et al. 2005: 2216). These times greatly predate domestication, 

and suggest a further independent sheep domestication event, as well as the 

two purported by Hiendleder (Hiendleder et al. 1998; 1999; 2002). 

 

In terms of goats, Luikart et al.’s (2001) phylogenetic analysis of modern goat 

breeds, revealed 3 highly divergent goat lineages, with an estimated 

divergence of over 200,000 years ago. As with the divergence times of sheep 

mtDNA clades, this divergence time greatly predates goat domestication, and 

“suggests that the three goat lineages arose from genetically discrete 

populations” (Luikart et al. 2001: 5929). From a combination of the molecular 

genetics and archaeological data, Luikart et al. propose that goats were first 

domesticated in the southern Turkish region of the Euphrates valley, ca. 9000 



24 
 

BC, as evidenced at Nevali Cori, with secondary, independent, domestication 

events occurring in the Zagros Mountains of modern Iran and Iraq ca. 8000 

BC (as evidenced by the archaeological site of Ganj Dareh); and in the Indus 

Basin at the site of Mehrgarh, Baluchistan, ca. 7000 BC (Luikart et al. 2001: 

5930), however this remains controversial.  

 

The maternal lineages of modern cattle also show a polyphyletic signature. 

The primary feature of the analysis of both mtDNA and microsatellite genetic 

distances of both modern and ancient cow populations is the marked 

dichotomy between Bos taurus and B. indicus (Bradley & Magee 2006: 319, 

321). The divergence between B. taurus and B. indicus has consistently been 

estimated to have a time depth of hundreds of thousands of years (e.g. Loftus 

et al. 1994; Bradley et al. 1996), meaning that the diversity between the two 

could not have arisen within the purported 10,000-year history of animal 

herding (Bradley & Magge 2006: 321). Y-chromosomes also show a strict 

dichotomy (Bradley et al. 2004). This supports a domestication of Bos taurus 

in the Near East, as traditionally identified, and a different centre for the 

domestication of Bos indicus (Bradley & Magge 2006: 325), possibly in 

Baluchistan, where Mehrgarh has yielded archaeological evidence pertaining 

to the domestication of B. indicus, possibly as early as 7000 BC (Meadow 

1993).  

 

Within the Bos taurus clade, five main lineages are recognized (T, T1, T2, T3 

& T4/J5). The lineages are geographically distributed with three, possibly four 

likely to be from domestication events in the Fertile Crescent (Bradley & 

Magge 2006: 323). The lineages, thus, are consistent with a history of cattle 

domestication in the Near East and subsequent population expansion (ibid.; 

Zeder 2011: 230).  

 

Near Eastern wild boar matrilines are not represented among modern 

domestic swine, as they were replaced by those of domestic swine with 

maternal origins from European wild boar by about 4000 BC (Larson et al. 

2005), however, ancient-DNA analysis points to at least four different lineages 

of Near Eastern domestic pigs (Larson et al. 2007). 
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To summarize, advancements in archaeological techniques and the use of 

genetic evidence are increasingly suggesting that different species were 

initially brought under domestication several times, in different parts of the 

Fertile Crescent, from where they spread (Fig. 2.1) (Fuller 2007:; Fuller et al. 

2010; Allaby et al. 2008; Brown et al. 2008; Fuller et al. 2010; Zeder 2008a; 

2009; 2011; Zeder & Smith 2009). Plants and animals were domesticated at 

the same time – or animals even earlier – in the eastern arc of the Fertile 

Crescent around 11,000-10,500 years ago (Zeder 2008a: 243). In contrast, in 

the southern and northern Levant (the western arc of the Fertile Crescent) 

plant domestication seems to have occurred at least 1000 years earlier 

(Nesbitt 2002: 122), and animal domestication seems to have been a 

“delayed, somewhat subsidiary development” (Zeder 2008a: 245). Sheep 

were probably domesticated in the eastern Taurus Mountains at the apex of 

the Fertile Crescent, the genetic evidence suggesting at least twice 

(Hiendleder et al. 1998; 1999; 2002); while  the archaeological record 

indicates that goats were domesticated in its eastern arm, in the northwest or 

Central Zagros; the natural homeland of wild goats (Zeder 2008: 265). Where 

precisely within this region goats were domesticated is unclear from the 

current archaeological evidence, but the genetic data points to between three 

to five genetically independent domestication events (Luikart et al. 2006: 304). 

As regards cereals, the archaeobotanical evidence implies geographically 

independent domestication events for each species (Tanno & Willcox 2006a: 

1886; Brown et al. 2008: 206; Zeder 2009: 14), a scenario supported by the 

genetic evidence (Willcox 2005: 540; Fuller 2007: 907; Brown et al. 2008: 

107). Einkorn domestication was probably restricted to southeastern Anatolia 

(Kilian et al. 2007: 265-7); emmer wheat may have been independently 

domesticated in both the southern and northern Levant (Ozkan et al. 2005: 

1058-9; Luo et al. 2007: 957); and barley domesticated in the southern Levant 

and western Zagros (Molina-Cano et al. 2005: 617; Morrell & Clegg 2007: 

3291). 

 

There are, then, “no easy answers to the central questions about 

domestication and agricultural origins” (Zeder 2006b: 115). The distribution of 

the wild ancestors of the future Near Eastern founder crops and livestock in 
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the Pleistocene-Holocene transitory period is still not known exactly, making it 

difficult to determine where they were originally domesticated (Zeder 2008a). 

The problem is further exacerbated by the gradual nature of the transition. 

Although Gordon Childe (1925) labelled the development of agriculture the 

‘Neolithic Revolution’, the favoured view today is that it was a slow, not 

necessarily unilinear, transition (Meadow 1989b: 80; Hodder 1990: 102; 

Gebauer & Price 1992a: 7; Ingold 1996: 12; Brown et al. 2008: 106; Zeder 

2009: 46, 2011: 231; Fuller et al. 2010: 17). It has been contended (e.g. 

Cohen 1977: 23; Meadow 1989b: 80; Ingold 1996: 12; Zeder 2008b: 11598) 

that domestic status is not a definite category, but rather part of a continuum 

of human-animal relations, including random hunter-gathering, intentional 

game cropping, herd following, animal penning and cultivation of wild cereal 

stands, to the breeding of genetically isolated stock, “along which humans, 

animals and plants became increasingly intertwined” (Meadow 1989: 80). 

Indeed, Zeder argues that “estimating when during this extended co-

evolutionary process a plant or animal species crossed the domesticated 

threshold is now more a semantic issue than a substantive research question” 

(Zeder 2008b: 11602). Thus, while it is recognized that the Near East is one 

of the oldest, if not the oldest, centre of domestication in the world, and that 

the domestication of most plants and animals was polyphyletic; where exactly 

in the Near East these domestication events took place is still a matter of 

great controversy. Having considered the geographic origins of agriculture, it 

will now be considered why the agricultural transition occurred. 

 

 

2.3. Why did food production occur? 

 

“If agriculture provides neither better diet, nor greater dietary reliability, nor 

greater ease, but conversely appears to provide a poorer diet, less reliably, 

with greater labor costs, why does anyone become a farmer?” (Cauvin 1977: 

141) 

 

Traditionally, it was believed that the advantages of food production were so 

great, that agriculture would be adopted automatically if available (Perry 1937: 
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46; Childe 1952: 23; Braidwood 1960: 134). Stemming from the work of the 

seventeenth century philosopher Thomas Hobbes, who described life in the 

state of nature as “solitary, poor, nasty, brutish and short” (Hobbes 1651: 86), 

food production was understood as a preferable alternative to hunting and 

gathering. It was an opportunity, which “opened up a richer and more reliable 

supply of food, brought now within man’s own control and capable of almost 

unlimited expansion by his unaided effort” (Childe 1953: 23). According to 

Braidwood, everybody practicing food production, “had a more rounded diet; 

they were all stronger, and there were more children…the villagers wouldn’t 

starve, even if the hunters and fishermen came home empty-handed...There 

was more time to do different things, too” (Braidwood 1951: 86). In contrast, 

Braidwood described hunting and gathering as, “an existence which takes 

nature as it finds it, which does little or nothing to modify nature - all in all, a 

savage’s existence, and a very tough one... [hunting & gathering] is really 

living just like an animal” (1951: 86), and it was generally believed that hunter-

gatherers “must work much harder to live” (Lowie 1946: 13) than food 

producers.  

 

Many of the initial explanations for the transition to agriculture were heavily 

influenced by Darwin’s notions on evolution and vitalism, with scholars (e.g. 

Childe 1952; Braidwood 1951, 1960) arguing that the development of 

agriculture was an inevitable stage in human evolution. Braidwood believed 

that food production emerged when it did, because “around 8000 BC the 

inhabitants of the fertile crescent had come to know their habitat so well that 

they were beginning to domesticate the plants and animals they had been 

hunting” (Braidwood 1960: 134), but prior to this, “culture was not yet ready to 

achieve it” (Braidwood & Willey 1962: 134). Such vitalistic explanations can 

be heavily critiqued, for, as Binford has argued, they are untestable and thus, 

“unacceptable as an explanation” (Binford 1968: 322). A further issue is that 

the timescale is wrong. Why, if as Braidwood argues, food production was the 

result of “the ever increasing cultural differentiation and specialization of 

human communities” (Braidwood 1960: 134), has it only appeared in the last 

10,000 years of human history? (Richerson et al. 2001: 399). 
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It was not until the late 1960s, through the publication of anthropological 

works like Lee and Devore’s (1968) Man the Hunter, that the hardships 

involved in early agricultural economies, and the relative ease of hunter-

gatherer strategies, was recognized. Lee’s revolutionary study of the !Kung 

Bushmen of semi-arid Kalahari Desert, who he describes as living “by any 

account a marginal environment” (Lee 1968: 30), revealed that adults on 

average worked (gathering or hunting food) for only two-and-a-half-days per 

week, with an average working day of six hours (ibid.: 38). This modest work 

effort provided sufficient calories to support not only the active adults, but also 

a large number of youngsters, middle-aged and elderly people (ibid.: 39). 

Indeed, a Bushmen when asked this very question replied, “why should one 

plant, when there are so many mongongo nuts in the world?” (ibid.: 33), 

calling into question why there was ever a need to undertake food production. 

In comparison, the Hanunoo agriculturalists of the Philippines put in around 

1200-hours per year into agricultural activities alone, an average of over 3-

hours-per-person per day, excluding hunting, gathering and secondary 

activities (Conklin 1957: 58). Lee’s (1968) study also showed that the diet of 

the !Kung Bushmen, which consisted largely of Mongongo (mangelti) nut, was 

both more nutritious and more reliable than one based on cultivated foods 

(Lee 1968: 33).  

 

Ethnographic studies like Lee’s (1968), led Marshall Sahlins (1972) to 

challenge anthropologists’ generally low opinion of hunter gatherers. Sahlins 

considered hunter gatherers to be the original affluent society, who were able 

to achieve affluence by, “desiring little and meeting those desires/needs with 

what is available to them” (Sahlins 1972: 1). Sahlins believed hunter-

gatherers to have a “marvellously varied diet” (Sahlins 2005, online), based 

on the abundance of the local environment, and to have worked less than 

agriculturalists, so that “rather than a continuous travail, the food quest is 

intermittent, leisure abundant, and there is a greater amount of sleep in the 

daytime per capita than in any other condition in society” (Sahlins 1972: 14). 

Thus, archaeologists (e.g. Cohen 2009: 591) increasingly came to 

acknowledge that under normal conditions the adaptive pressures or ‘pull’ 

factors (e.g. new knowledge, invention or technology) were not strong enough 
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for developing an agricultural economy, and that people must have been 

forced or ‘pushed’ into food production.  As Flannery succinctly put it, “people 

did it because they had to, not because they wanted to” (1967: 74; original 

emphasis). Since the 1960s an almost endless list (Table 2.0) of explanations 

for the development of agriculture has been suggested, although several 

prime mover models have dominated the debate. 

 

 

2.3a. Population pressure  

 

Proponents of population pressure models (e.g. Binford 1968; Smith & Young 

1972; Cohen 1977; 2009; Redding 1988), suggest that population pressure 

stressed the carrying capacity of the local environment to the extent that 

agriculture became a viable alternative to hunter-gatherer strategies. Many 

population pressure models draw heavily on the work of Ester Boserup 

(1965), who contended that population density compelled societies to invent 

new technology in order to increase food production. Mark Cohen (1977; but 

see Cohen 2009), one of the originally advocates of population pressure, 

argued that the only economic benefit of agricultural over hunter-gatherer 

strategies was, “the ability to grow and harvest more food from a unit of space 

in a unit of time” (Cohen 1977: 39). He thus proposed, that agriculture would 

only have arisen as a result of population pressure, which he describes as “an 

imbalance between a population, its choice of foods, and its work standards” 

(ibid.: 50). Cohen suggested that the nearly simultaneous adoption of 

agricultural economies throughout the world at the end of the Pleistocene can, 

“only be accounted for by assuming that hunting and gathering populations 

had saturated the world approximately 10,000 years ago and had exhausted 

all possible (or palatable) strategies for increasing their food supply within the 

constraints of the hunting-gathering life-style” (Cohen 1977: 279). He 

proposed that plant cultivation arose in those areas where both the population 

pressure was the greatest, and there were plants and animals suitable for 

domestication. Agriculture then spread, “because the world, in effect, was 

saturated with hunters and gatherers” (Cohen 1977: 53). Cohen (1977: 60) 
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argues that animal domestication followed later, as wild meat resources 

declined. 

 

Cohen’s population paradigm can be queried in a number of ways. Firstly, like 

with Braidwood’s (1960) vitalistic explanation, the timescale is wrong: why in 

90,000 years of human history were so many places in the world suddenly 

saturated with hunter-gatherer groups around 10,000 years ago? Secondly, 

Cohen offers no explanation for why hunter-gatherer groups would have over 

stretched their resource base in the first place. Hunter-gather groups today 

tend to live in equilibrium with their environment (cf. Lee & Devore 1968), and 

there is no reason to suppose that this would have been different in the past 

(Binford 1968). In more recent work, Cohen has come to accept that he 

“clearly overestimated the effect of [Palaeolithic] growing population” (2009: 

591).  

 

Population pressure or ‘packing’ models have also been favoured for 

explaining the agricultural transition in Southwest America and Mesoamerica. 

Both Lewis Binford (1968) and Kent Flannery (1969) have proposed that 

increasing population densities among relatively sedentary fisher-forager 

groups during the Late Pleistocene, led to an overflow of people into marginal 

zones, resulting in cereal cultivation in order to increase the food supply.  

 

Lewis Binford (1968) rejected the concept that human populations are 

constantly growing, and continually seeking new means of acquiring food. 

Rather, he argued that conditions of disequilibrium between human groups 

and their local area, caused either by environmental change or by groups 

immigrating into already settled areas, created resource stress. At the time 

Binford was writing, the prevailing belief was that there had been no dramatic 

climate change during the agricultural transition (see, for example, Charles 

Reed & R.J. Braidwood in Braidwood & Howe 1960: 163). Therefore, he 

suggested that population increase would have occurred because of the influx 

of people into already populated areas. Binford modelled that in such 

situations, a marked discrepancy would have arisen in the population growth 

between the two groups, with the more sedentary group experiencing a 
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growth in population, which would have stressed the carrying capacity of their 

area, eventually necessitating the emigration of people into the territory of the 

neighbouring group. This group in turn would have experienced population 

growth and resource growth, inevitably resulting in emigration into a new 

territory. Binford (1968: 328) argued that under these conditions, there would 

have been strong selective pressure favouring the development of food 

production for both groups. However, in more recent work, Binford (2001) has 

downplayed the role of population growth in the agricultural transition, and 

instead emphasized the impact of ‘population packing’, in particular the 

threshold limit of 9.098 people-per-100-kilometres squared, as “the universal 

conditioner of change in…subsistence strategy” (Binford 2001: 374). 

 

Population pressure models, although convincing at a general level, do not 

explain everything, including why agriculture did not develop in all affluent 

hunter-gatherer societies; or why it only emerged in the last 10,000 years of 

human history (Richerson et al. 2001: 396; Bellwood 2002: 22). Another issue 

with population pressure models, is that due to the focus on a limited number 

of resources and heavy dependence on climate, early food production was 

inherently unreliable (Feynman & Ruzmaikan 2007: 299-300); as well as 

being  more labour intensive than hunting and gathering (Lee 1968: 39; 

Richerson et al. 2001: 388). Population pressure is also difficult to identify in 

the archaeological record, and is usually identified by proxy evidence, such as 

sedentism, increased storage and resource intensification, giving the models 

a “certain tautological burden” (Zeder & Smith 2009: 683), in that population 

pressure causes sedentism, which is then used as evidence of population 

pressure. Today, it is generally recognized that population pressure did not 

operate alone, and was one of a number of factors that played a significant 

role in the agriculture transition (Bellwood 2005: 25; Cohen 2009: 592; Zeder 

2006: 115; Zeder & Smith 2009: 687). Population pressure has been 

described as the “snowball factor” (Bellwood 2009: 625), which got things 

rolling and escalated the speed of the whole process. Another influential and 

related factor was climate change. 
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2.3b. Climate change 

 

The relationship between climate change and the development of agriculture, 

has been widely debated for many years, by both archaeologists and the 

scientific community. The situation is not helped by the “complex climatic 

system of the Near East today [which] makes it difficult to reconstruct the 

patterns of the past” (Bar-Yosef & Meadow 1995: 43), nor by the conflicting 

nature of the climatic evidence for the Near East during the Neolithic (Lovell 

2004: 18). The geologist Raphael Pumpelly (1908), was one of the earliest 

proponents for a climate-induced agriculture transition. He hypothesized that 

the warming climate of the Holocene, forced hunter gatherers to settle near 

drying lakes, where they domesticated plants and animals. Pumpelly’s work 

influenced that of Gordon Childe, who posited in the ‘Oasis’ theory (Childe 

1952; 1956) that at the termination of the Pleistocene the Near East 

experienced a period of desiccation which forced plants, animals and humans 

to congregate around oases and other areas of permanent water. Childe 

believed that through intensive interaction, a symbiotic relationship developed 

between humans and certain plants and animals (the future domesticates), 

that eventually culminated in their domestication (Childe 1952: 35). Childe 

asserted that plants were domesticated first, following which it was easier to 

domesticate animals, as the stubble in the harvested fields offered the 

animals grazing, especially in the dry season (ibid.). 

 

Childe’s model was innovative for its time, and he was the first to really 

consider why the transition to food production occurred. However, it suffered 

from a lack of archaeological evidence, that led Robert Braidwood to 

scathingly comment, “so far this theory is pretty much all guess-work, and 

there are certain questions it leaves unanswered. I will tell you quite frankly 

that there are times when I feel it is plain balderdash” (Braidwood 1951: 85). 

The Oasis theory can also be queried on the basis that similar environmental 

changes have occurred in the past without initiating food production 

(Braidwood 1950: 82; Richerson et al. 2001: 396; Feynman & Ruzmaikan 

2007: 297), and for its implicit assumption that prior to 10,000 years ago, 

hunter-gatherers had no knowledge of plants and animals, when there is 
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plenty of ethnographic evidence to the contrary (see Cohen 1977: Chap. 2 for 

an overview; also Bellwood 2005: 25).  

 

During the late 1950s and 1960s, there was a general acceptance that there 

was no major climate change during the agricultural transition (e.g. Braidwood 

& Reed in Braidwood & Howe 1960: 193; Binford 1968), and climate-induced 

models for the development of agriculture fell out of favour. However, 

subsequent work (e.g. Wright 1968; 1976; 1993; Roberts & Wright 1993) 

revealed a much closer temporal correlation between climatic change and 

agriculture origins than had been previously postulated. This led scholars 

such as Henry Wright, who had previously advocated that there was no 

climate change during the period of the agricultural transition (cf. Wright 

1969), to argue that, “the origin of agriculture in the Near East can be 

attributed to the response of early people to a unique sequence of climatic 

events from 13,000 to 10,000 years BP” (Wright 1993: 466). More recently, 

Peter Richerson and colleagues (Richerson et al. 2001; Bettinger et al. 2009) 

have argued that agriculture was impossible during the Pleistocene, but 

compulsory in the Holocene. Richerson et al. (2001: 394) refer specifically to 

two climatic changes that occurred during the Early Holocene – an increase in 

atmospheric carbon dioxide, & the end of rapid fluctuations in world 

temperatures –  which they suggest enabled the development of agriculture in 

many places. Richerson et al. (2001: 404) argue that agriculture was 

compulsory in the Holocene, because early farming groups, who made better 

utilization of the land, where able to outcompete local hunter gatherers, 

generating “a competitive ratchet favouring the origin and diffusion of 

agriculture” (ibid.: 389). 

 

Joan Feynman and Alexander Ruzmaikan (2007) have also stressed the 

importance of climate stability in the agricultural transition, arguing that 

agricultural societies dependence on relatively few species compared to most 

hunter-gatherer societies, means that climate instability strongly inhibits 

agriculture (Feynman & Ruzmaikan 2007: 299-300). They estimate based on 

a study of prehistoric sites in the Middle East, that the transition from hunter-

gather to agricultural subsistence strategies required the absence of large-
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scale climate variability for a period of at least 2000 years. Climate proxy 

records suggest that there was probably no time span as long as this that was 

free of relatively large century-scale climate variation between 50,000 years 

ago and the Younger Dryas (ca. 10,800-9500 BC). Feynman and Ruzmaikan 

argue, then, that it was only possible for agricultural economies to develop in 

the last 10,000 years (ibid.: 300).  

  

A number of scholars have invoked the Younger Dryas climatic episode (ca. 

10,800-9500 BC) as the driving force behind the development of agriculture 

(Bar-Yosef & Belfer-Cohen 1991; 1998a; 1998b; Bar-Yosef & Belfer-Cohen 

2002; Belfer-Cohen & Bar-Yosef 2000; McCoriston & Hole 1991; Moore & 

Hillman 1992; Harris 2003; Hole 2006). Over the years, Ofer Bar-Yosef has 

refined his argument for an association between the Younger Dryas and the 

origins of agriculture. Bar-Yosef’s basic contention is that, “the climatic crisis 

of the Younger Dryas…resulted in major environmental deterioration which 

undoubtedly affected the subsistence strategies of the Natufian populations” 

(Bar-Yosef 1998b: 147). He suggests that the onset of cold and dry conditions 

with the Younger Dryas, reduced the yields of natural cereal stands, forcing 

human groups to change their food procurement strategies. This lead to 

“experimental planting, shifts in the location of settlement, and the clearing of 

land patches” (Bar-Yosef 1998a: 174), that culminated in the development of 

food production. Alternatively, Dow et al. (2005) argue, that the Younger 

Dryas downturn crowded populations, which had grown large during the 

preceding climatic amelioration of the Early Holocene, into a few favourable 

environments, in which agriculture became a viable solution to food 

shortages. However convincing as these arguments may sound, there is no 

evidence, with the possible exception of a fleeting appearance of 

domesticated rye at Abu Hureyra ca. 9000 BC (Hillman 2000; but see Nesbitt 

2002), for agriculture during the Younger Dryas (Bellwood 2005: 24; Bettinger 

et al. 2009: 628; Zeder & Smith 2009: 682). Nor, is there any evidence for 

intensive food resources use or food stress in the Early Holocene (Munro 

2003: 62). Rather, recent evidence suggests that the beginning of agriculture 

fell well after the Younger Dryas interstadial, during the period of climatic 

stability in the eighth millennium BC (Cauvin 2000: 107; Richerson et al. 2001: 
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388; Willcox 2005: 540). A further problem with correlating the Younger Dryas 

with the origins of agriculture, is that during the last 40,000 years there have 

been approximately 9 other similar events, but agriculture developed only 

after the most recent one (Richerson et al. 2001: 396; Feynman & Ruzmaikan 

2007: 297). Today, it is generally accepted that climate change, like 

population pressure, was not the sole reason for the agricultural transition, but 

it was a “necessary ingredient” (Wright 1976: 385) that “set the stage” 

(Bettinger et al. 2009: 629; see also Bar-Yosef & Cohen 2002; Cohen 2009; 

Zeder & Smith 2009).  

 

 

2.3c. Coevolutionary models 

 

Eric Higgs and colleagues (e.g. Higgs & Jarmon 1969; 1972) took an 

alternative view of the agricultural transition, and argued that animal 

domestication occurred as a gradual refinement of human hunting and 

husbandry practices that began in the Pleistocene. David Rindos (1980; 1984; 

1986) expanded on Higgs’ work to propose a co-evolutionary model, in which 

humans and plants became increasing interdependent in an obligate 

relationship. Rindos believed that thousands of years of interaction between 

humans and plants were needed to allow for wild plants to become pre-

adapted for agriculture, before domestication could occur (Rindos 1984: xiv-

xv, 134-5, 142, 183). However, he did not explain why such co-evolutionary 

relationships would have developed in the first place, regarding the question, 

as “without meaning…the relationships were established as a result of the 

maximization of fitness in a given situation in time and space; they were 

neither inevitable nor desirable, but merely happened” (Rindos 1984: 141).  

 

Rindos’ paradigm is good in emphasizing the important role of the responses 

of target plant and animal species to increasing human intervention (Zeder & 

Smith 2009: 688; Zeder 2011: 11602). However, his assumption that 

coevolution was a “prolonged, gradual process” (Rindos 1984: 191) has come 

under criticism. There is no empirical support that the development of 

agriculture was prolonged over thousands of years (Blumer & Byrne 1991: 
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27), and most evolutionary biologists would favour that evolution is driven by 

great fluctuation, rather than long-term, gradual changes, which can often be 

diffuse and weak (Blumler 1996: 34-5). The model is further belied, “by the 

nearly synchronous appearance of domestication in many parts of the globe” 

(Blumler 1996.: 27) so recently in human history, and the fact that it does not 

address why food production only occurred in certain areas, from which it 

spread (Redding 1988: 60; Blumler & Byrne 1991: 35; Cohen 2009: 591; 

Zeder & Smith 2009: 966). Rindos (1984: 85-99, 94) denied that conscious 

selection or human intent played any role in the domestication of plants, an 

assumption which Blumler and Byrne described, as “overly 

progressionist…[and] a matter of semantics” (Blumler & Byrne 1991: 27). 

Human intent was obviously important in the agricultural transition, and it 

should not be “ignored in…enhancing the density and productivity of desired 

resources” (Zeder & Smith 2009: 966; see also Cohen 2009: 591).   

 

 

2.3d. Social and ideological change 

 

Some scholars have stressed the role of social and ideological change in the 

transition to agriculture (e.g. Bender 1978; Bender 1985; Hayden 1990; 1996; 

2001; 2003; 2009; Cauvin 2000), in what can be loosely categorized as 

‘universal stress free’ models (Zeder & Smith 2009: 682), in that they look to 

internal causes within human society and psyche in order to explain the 

development of agriculture (Zeder 2009: 42).  

 

Barbara Bender (e.g. 1978) was among the first to emphasise the social 

aspects of the agricultural transition, claiming that the success of food 

production was due to an individual’s ability to accumulate food surpluses, 

and transform them into valid items. Her work was followed by that of Brian 

Hayden (e.g. 1996; 2001; 2003; 2009), who, over the last 20 years, has 

refined a model in which agriculture arose as the outcome of competitive 

feasting (for a summary see Hayden 2001). Hayden’s central thesis is that a 

range of technological innovations, which only became widespread during the 

Mesolithic, made it possible for some complex hunter-gatherer groups to 
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accumulate an abundance of food (Hayden 1996: 143; 2009: 597). Within 

these groups, highly-motivated individuals (Hayden’s ‘Accumulators’) used 

competitive feasting as a means to develop and consolidate their power 

(Hayden 1990: 310; 2009: 600). Hayden argues that it was within this context 

food production first occurred; as Accumulators could never have too much 

surplus, the incentive was to produce ever more, to the extent that certain 

favourable species of plants and animals came to be domesticated (Hayden 

1996: 143). Hayden (1990: 57-62; 1992: 13) posits that initially the production 

of domesticated, ‘feasting’ foods was too laborious for such foods to have 

been consumed on a daily basis, but that overtime genetic selection and 

technological developments made some of the labour-intensive feasting 

foods, such as cereals – which Hayden (1992: 13) believes were valued as 

feast foods because of their high carbohydrate content – cost competitive 

compared to wild foods.  

 

A primary objection to Hayden’s model is that it is just that, a model (Smith 

2001: 220). Hayden never explains how social inequality and Accumulators 

first emerged, and is quite dismissive of the issue, arguing that “the ultimate 

and immediate reasons for the emergence of socioeconomic inequalities are 

not essential to document for the presence discussion” (Hayden 1990: 33). 

But without explaining the underlying causes of competitive feasting, Hayden 

fails to explain the development of agriculture, and simply describes the 

process (Zeder & Smith 2009: 864). Hayden’s model also does not 

necessarily accord with the empirical record (Smith 2001: 220; Kuijt 2009: 

642-4; Zeder & Smith 2009: 684), and indeed, is described by Bruce Smith as 

“fact free” (Smith 2001: 219). Hayden (e.g. 2009) argues that the pre-

agricultural Early and Late Natufian periods were characterized by sufficient 

food storage and surpluses to allow for individuals to gain social power over 

others. However, researchers working in the Levant have found little direct 

evidence for food storage in the Naufian (Bar-Yosef 1998a: 164; Goring-

Morris & Belfer-Cohen 1998: 80). Indeed, Bar-Yosef (1998a: 173) has argued, 

that the archaeological record indicates that the surpluses needed for 

competitive feasting only became available as an outcome of food production, 

and not before. Nor, does the period directly before the appearance of 
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domesticates, provide any clear evidence of social differentiation (Kujit 2009: 

643; Smith 2001: 221). It is also unclear why Accumulators would have 

chosen to domesticate the initial domesticates, such as cereals and pulses, 

which “cannot be categorized as anything other than widely available, easily 

grown staples” (Zeder & Smith 2009: 684), rather than the prestige goods 

called for by Hayden’s model (Smith 2001: 220; Zeder 2009: 43). Whether or 

not competitive feasting was a driver for the origins of agriculture, Hayden’s 

feasting model has been useful in emphasizing the importance of food in the 

Neolithic, which despite its importance is often overlooked. Simmons, for 

example, argues “given that the Neolithic revolved around food in one way or 

another, it seems somehow appropriate that feasting be considered as 

reasons for its origins” (Simmons 2007: 19; see also Straus 2004: 104). 

 

A modern school of thought has emphasised the Neolithic as an ideological 

phenomenon, “a new way of thinking” (Rowley-Conwy 2004: 83, citing several 

authors). Charles Heiser (1990) suggests that planting began in order to 

appease the gods after harvest of wild plants, a hypothesis which, although 

incapable of being tested, is “interesting none the less” (Bellwood 2005: 25, 

while Jaques Cauvin (2000; 2001) has cast the emergence of agriculture in 

terms of a reordering of symbolic material, a ‘revolution of symbols’ that 

occurred in the period immediately preceding agriculture, ca. 13,000-10,000 

BC. Specifically, Cauvin (2000: 209) argues that it was the birth of divinities in 

human form, which he believes is evidenced in the archaeological record by 

female figurines (mother goddesses) and bull symbols, that created the 

agency and alienated sense of self that were necessary for agriculture. He 

does not, however, explain why this mental shift occurred (Hodder 2001: 108; 

Rollefson 2001: 112; Zeder 2009: 42), except for a passing reference to a 

“dissatisfied collective psychology” (Cauvin 2001: 65), an inadequate 

explanation, which essentially implies that “the imagination of the group 

psychology just changed, for no apparent reason” (Hodder 2001: 109).  

 

Hodder argues that Cauvin’s treatise for the primacy of ideological change 

over all other factors, including environmental, climatic and economic, “makes 

it impossible to explain the symbolic efflorescence at all” (2001: 109), and he 
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is not alone in voicing this view (Watkins 1997: 269; 2001: 118; Rollefson 

2001: 112; Arias 2004: 99; Budja 2004: 100; Rowley-Conwy 2004: 84; Straus 

2004: 103). Andrew Jones, for example, argues that economy and ecology 

can never be decoupled, and that “a proper study of the Neolithic requires that 

equal weight be given to both” (Jones 2004: 102; see also Thomas 2004: 

105). Cauvin’s ‘revolution of symbols’ also “has a hard time squaring itself 

with the empirical record” (Zeder & Smith 2009: 684), particularly the Younger 

Dryas climatic downturn, which makes it hard to accept Cauvin’s ‘Garden of 

Eden-like’ scenario, for encouraging the florescence of symbols (Zeder 2009: 

42).  

 

Richerson and colleagues (Richerson et al. 2001; Bettinger et al. 2009) 

recognise that both external and internal factors inhibited and encouraged the 

development of agriculture. Bettinger et al. (2009: 629) argue that although 

climate change was the major external constraint, its development after the 

climatic amelioration of the Holocene was retarded for around 1000-2000 

years by internal constraints, particularly the slow evolution of more 

sophisticated social organisation.  

 

In light of the archaeological data accumulated over the past several decades, 

it is easy to debunk earlier models for the agricultural transition, which were 

based on limited fieldwork and a misunderstanding of past climatic conditions. 

What is not so easy is to come up with viable alternatives. There is no 

evidence of drastic or catastrophic climate changes at the time of the Neolithic 

transition to support Pumpelly (1905) and Childe’s (1954) ‘Oasis’ theory 

(Richerson et al. 2001; Bettinger et al. 2009), and even if there was, similar 

climatic and environmental fluctuations have occurred many times in the past 

without initiating food production (Richerson et al. 2001: 396; Feynman & 

Ruzmaikan 2007). In terms of population pressure, there is little evidence 

from Late Palaeolithic sites of a broad-spectrum subsistence base (Simmons 

2007: 26), nor can it be explained why population pressure suddenly became 

such a major driving force at various places around the world ca. 10,000 

years ago. Models incurring population growth can also be questioned on 

theoretical grounds, as it is impossible to indict population growth as an 
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immediate cause of change (Bellwood 2005; Gebauer & Price 1992a; Price 

1995; 2000), and, moreover, in times of trouble people are much less likely to 

experiment with new ideas (Bellwood 2005: 24). Models of social and 

ideological change have also not escaped criticism, for while they may have 

considerable merit as intellectual concepts, they are not grounded on any 

archaeological evidence, and fail to account for why the ideological or social 

changes arose when and where they did (Hodder 2001: 109; Watkins 2001: 

118; Simmons 2007: 26; Smith 2001: 220; Zeder & Smith 2009: 691). 

Ideological and social change explanations for the origins of agriculture are 

also questionable, because of their implicit assumption that pre-Neolithic 

groups were somehow not quite fully modern in their mental capabilities, a 

concept that does not accord with much anthropological thought (Simmons 

2007: 27). 

 

Increasingly, it has come to be acknowledged, that the impetus for the 

transition to agriculture came from a complex intertwining of climate, 

environmental and social factors, and regional responses to them (Bellwood 

2005; 2009; Bettinger et al. 2009; Richerson et al. 2001; Simmons 2007; 

Zeder & Smith 2009). More recent models for food production, often represent 

a blend of several explanatory models, which include both social and 

environmental factors. Peter Bellwood, for example, conjectures that 

agriculture could not have occurred anywhere without deliberate planting and 

a regular annual cycle of cultivation; a situation, he argues, which would have 

been unlikely to occur without the climatic stabilization of the Holocene (& its 

warmer and wetter climates), and social change in the form of affluent hunter 

gatherers, where economic wealth and feasting were combined with a shift 

towards sedentism (Bellwood 2005: 25). 

 

 

2.4. The spread of agriculture 

 

“[T]he significance of agriculture cannot be elucidated in terms of its origins 

alone, but involves a more detailed understanding of the emergent structure 

of its continuing spread.” (Jones et al. 1996: 97) 
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Paradigms for the spread of agriculture generally fall into two main categories, 

which were defined by Albert Ammerman and Luigi Luca Cavalli-Sforza (1984: 

6) as: (1) demic diffusion, the spread of farming through the movement of 

farmers themselves; and (2) cultural diffusion, by which cereals and farming 

techniques were passed among local groups, without the geographical 

replacement of groups. The two paradigms are not mutually exclusive, and a 

third model can be proposed of mixed cultural and demic diffusion, where 

‘intermarriage’ occurs between hunter-gatherer and food-producing groups. 

 

 

2.4a. Demic diffusion 

 

The classic model of demic diffusion is the ‘Wave of Advance’ (Ammerman & 

Cavalli-Sforza 1971; 1973; 1979; 1984). Ammerman and Cavalli-Sforza (1971: 

687-9) observed that substantial increases in population density often took 

place concurrently with the shift to agriculture, due to a range of factors that 

include: increased food production-per-unit of land; a greater potential for the 

redistribution of food resources; and changes in the pattern of reproductive 

behavior, including increased female fertility, reduction in infanticide, and a 

preference for larger families. In an agricultural society children become 

productive earlier, and older children actually subsidize the investment in 

younger ones (Shennan 2009: 341). Ammerman and Cavalli-Sforza (1984: 66) 

argued, that population growth can only occur in a given area for so long; until 

the area’s carrying capacity is reached. On attaining this horizon, the 

population may either remain at its saturation level, in which case the growth 

rate falls to zero; or growth may continue to take place, in conditions where 

expansion to adjacent areas can occur at the same time. Ammerman and 

Cavalli-Sforza believed that wherever the situation permitted, the later would 

have occurred. To model the population expansion, Ammerman and Cavalli-

Sforza adopted a variant of the geneticist R.A. Fisher’s (1937) ‘Wave of 

Advance’, which he had created to predict the spread of an advantageous 

gene (Fig. 2.2). Fisher’s original model was of the stationary form of the wave, 

describing a spread in a one-dimensional habitat. J.G. Skellam (1951) later 
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applied the ‘Wave of Advance’ to population expansion, and it was a variant of 

the Fisher-Skellam model that Ammerman and Cavalli-Sforza (1971; 1973; 

1984) employed.  

 

The ‘Wave of Advance’ rests on two main assumptions. Firstly, that growth 

occurs in a logistic or sigmoid, as opposed to exponential, manner (Fig. 2.3); 

and secondly, that migrationary activity takes place at a constant rate in time, 

and according to a random walk process (Ammerman & Cavalli-Sforza 1984: 

68). From these premises, Ammerman and Cavalli-Sforza predicted that a 

‘wave front’ will form at the periphery of the spread, and keep advancing at a 

constant rate, driving the spread of agriculture across Europe. Ammerman 

and Cavalli-Sforza (1979: 296-8) recognized that the ‘Wave of Advance’ relied 

on a number of assumptions that are divergent from real world contexts. 

Firstly, it assumes that movement is continuous in space and time, whereas in 

reality the parameters of the ‘Wave of Advance’ would have varied with 

location and/or with time as a result of geographic and social conditions, and 

the movement would have been discontinuous, with individuals, or more often 

small groups or families, settling within walking distance of a previous 

settlement (Steele 2009: 129);. Secondly, the Wave of Advance relies on a 

conventional, random walk process or Gaussian distribution. However, in 

many empirical instances of human movement, the distribution of individual 

displacements is not Gaussian, and exhibits higher frequencies of both short- 

and long-distance movements (Steele 2009: 129). Thirdly, the Wave of 

Advance requires that dispersal is isotropic, that is movement is equally likely 

in all directions, and “serves to redistribute populations to achieve uniform 

densities regardless of local variation” (ibid.: 130). However, in human 

populations, the underlying motivation for movement may involve either one of 

attraction or repulsion to certain places, and “in any given time and space the 

density would be low in ‘repulsive’ places and high in ‘attractive’ places” 

(Ammerman & Cavalli-Sforza 1979: 351). Fourthly, the Wave of Advance 

assumes all movement to have ben statistically independent, and 

uncorrelated with any preceding movement, but migrations are informed by 

earlier migrations (Anthony 1990: 902), and in the spread of early farming 

there was a tendency towards outward or centrifugal movement (Ammerman 
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& Cavalli-Sforza 1979: 351). To justify the use of the ‘Wave of Advance’, 

Ammerman and Cavalli-Sforza (1979: 351) argued that these processes 

would have operated over short time and space intervals, and that the ‘Wave 

of Advance’ provides a useful approximation of the spread, what Steele 

describes as “a general, or basic, model of human population dispersals” 

(2009: 126).  

 

To test the validity of the ‘Wave of Advance’, Ammerman and Cavalli-Sforza 

‘measured’ the rate of the spread of farming in Europe by expanding on 

Clark’s (1965a; 1965b) (Fig. 2.4) map of radiocarbon (hereafter 14C) dates of 

Neolithic sites. Ammerman and Cavalli-Sforza defined sites as ‘Neolithic’ by 

the presence of a given trait of importance to early farmers, giving particular 

weight to the cereal crops wheat and barley, for which there is no evidence for 

the indigenous domestication of in Europe (Ammerman & Cavalli-Sforza 1971: 

675). Due to the limitations of the archaeological evidence at the time, at 

some of the sites used in the measurements, the presence of cereals was 

inferred by Ammerman and Cavalli-Sforza, rather than documented.  

 

Ammerman and Cavalli-Sforza’s original analysis was based on a group of 53 

Neolithic sites, on which regression techniques were used for measuring the 

rate of spread. The results of the analysis indicated that there appeared to be 

a fairly regular pattern to the spread of farming over Europe, at a rate of ca. 1-

kilometre-per year or 25–30-kilometres-per generation (Ammerman & Cavalli-

Sforza 1971: 685). The analysis was subsequently refined in 1973–4, with the 

addition of a further 51 sites, and the drawing of a series of isochrones onto 

the map of Europe (Fig. 2.5). An advantage of this approach was that it 

avoided attributing centres of origin for the spread, a somewhat ambiguous 

process, and a necessary requirement of the regression approach 

(Ammerman & Cavalli-Sforza 1984: 58), as well as providing a better idea of 

the regional variation in the spread. 

 

Ammerman and Cavalli-Sforza (1971: 680; 1984: 59-60) also looked at the 

spread of the Neolithic from the perspective of the survival of hunter-gatherer 

or Mesolithic populations in Europe. Using 14C determinations from 62 Late 
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Mesolithic sites, they produced an isochronal map similar in design to that for 

the Neolithic sites (Fig. 2.6). Ammerman and Cavalli-Sforza believed that “a 

comparison of the two isochronal maps shows a good overall correspondence 

between them [Mesolithic & Neolithic sites]” (1984: 60; original emphasis), 

although a potential problem with this conclusion is that nearly twice as many 

Neolithic sites (106) compared to Mesolithic sites (62) were used in the study; 

an idiosyncrasy which could easily have affected the outcomes of the two 

maps. More recently, the 14C record has been revisited by Gkiasta et al. (2003) 

and Pinhasi et al. (2005) using linear regression techniques on an expanded 

set of Neolithic sites and linear regression techniques. Both studies found an 

average rate of spread of the Neolithic transition in the range of 0.6-1.3-

kilometres per year, which is in agreement with the Wave of Advance model 

(Ammerman & Cavalli-Sforza 1984). 

 

Subsequent work since the publication of The Neolithic Transition and the 

Genetics of Population Growth in Europe (Ammerman & Cavalli-Sforza 1984), 

has transformed this simple picture. It has been shown mathematically that 

identical travelling waves for the spread of farming can be generated by demic 

expansion, demic diffusion, or by trait-adoption diffusion (Aoki et al. 1996: 15; 

Gkiasta et al. 2003: 60). The ‘Wave of Advance’ predicts that agriculture 

spread at a constant rate of one-kilometre-per year (Ammerman & Cavalli-

Sforza 1971: 685) but migrations of farming populations can be, and often are, 

“long-distance, highly-directed processes” (Anthony 1990: 902), particularly 

during pioneer colonization. Thus, whilst the ‘Wave of Advance’ might 

accurately account for the generalized results of diverse population 

movements, averaged over great spans of time, it does not describe the 

dynamics of actual population movements on a human time scale (Anthony 

1990: 902). The Wave of Advance rests on the assumption that each 

migratory movement was statistically independent, “a random walk process” 

(Ammerman & Cavalli-Sforza 1984: 68). However, Anthony (1990: 903) has 

argued migratory moves are highly dependent on previous moves, and 

generally proceed along well-defined routes towards a specific destination. 

Another common feature of long-distance migrations ignored by the ‘Wave of 
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Advance’ is ‘return’ migration, where a counterstream of migrants returns 

back to their place of origin (Anthony 1990: 904). 

 

In terms of the empirical evidence for a Wave of Advance, archaeologists (e.g. 

Zvelebil & Rowley-Conwy 1984; 1986; Zvelebil & Zvelebil 1988; Zvelebil 

1998a; Zvelebil 1998b; 2002; Dennell 1992; Fix 1996) have pointed out the 

very different rates of spread of farming in different regions of Europe; the lack 

of evidence for rapid population expansion in many Early Neolithic 

populations; and the evidence of relatively large, complex Mesolithic 

populations. The Wave of Advance presupposes the introduction of a 

‘Neolithic package’ into Europe. However, with the exception of southeast and 

central Europe, domesticates initially appear in Europe in a variety of contexts, 

often with many years - Zvelebil and Zvelebil (1988: 578) speak of millennia – 

separating the point at which they first appeared, to when they became 

economic staples (Dennell 1992: 76; Zvelebil 1998b). Archaeological 

evidence for the development of agriculture in Europe is affected by the 

nature of the archaeological record itself. Due to the ephemeral nature of 

many hunter-gatherer sites, there is a bias against their preservation and 

recovery, which has often resulted in an over emphasis on permanent 

agricultural settlements (Zvelebil & Zvelebil 1988: 579). The same is true for 

faunal remains, with a bias against the preservation and recovery of wild 

faunal remains at archaeological sites, meaning that the contribution of 

transient foraging-farming communities to the development of agriculture in 

Europe may be routinely underestimated (ibid.). 

 

A further problem with the Wave of Advance is the very great demographic 

differentials between farmers and foragers, which is required to generate a 

continuous wave of population spread (Fix 1996: 626). Pertinent 

ethnohistorical evidence reveals the potential for a wide overlap between 

hunter-gatherer and subsistence-farming population densities. Ethnographic 

studies have shown that hunter-gatherer population densities can range 

tremendously, from 0.02-people-per-square kilometre to up to 100 people-per-

square kilometre, with coastal, more sedentary, forgers having the highest 

population densities (cf. Kivisild et al. 2003; Sengupta et al. 2005; Sahoo et al. 
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2006). Meanwhile, the population density of subsistence farmers can vary 

enormously, ranging from 3-people-per-square kilometre, recorded in Laos 

and Zimbabwe; to 30-people-per-square kilometre in the Philippines; and over 

300 people in New Guinea (Hassan 1975: 40). Even though these figures are 

only rough approximations, they clearly show that in certain situations in the 

past the population densities of hunter gatherers and foragers could have 

been similar (Zvelebil 1998b: 413). Furthermore, it cannot be assumed that 

the potential for population growth that farming economies allow for, actually 

occurred (Zvelebil & Zvelebil 1988: 579). In many areas of Europe the size 

and density of farming populations does not always seem to have been 

enough to cause or require emigration into new areas, and even in the 

presumed core-area of such expansions –  southeastern Europe – the 

saturation process was slow and incomplete (Dennell 1992: 86; Zvelebil 1998: 

412; Zvelebil & Zvelebil 1988: 579). 

 

Subsequent research has also questioned the archaeological integrity of the 

‘Wave of Advance’. Many of the sites defined by Ammerman and Cavalli-

Sforza as ‘Neolithic’ have subsequently been interpreted as hunter-gatherer 

sites (Jordan & Zvelebil 2009; Zvelebil 1998b: 413), and improved 14C-dating 

techniques have revealed there to be regional variation in the speed of the 

spread of food production, suggesting much greater variance in the rate of 

spread of early farmers into different areas of Europe (Gkiasta et al. 2003: 

534; Pinhasi et al. 2005: 2223).  

 

 

2.4b. Population genetics 

 

Ammerman and Cavalli-Sforza (1984) sought to further test the ‘Wave of 

Advance’ using genetic evidence. Theoretically, demic and cultural diffusion 

should cause different genetic signatures, with demic diffusion resulting in 

significant changes in gene frequencies, while cultural diffusion should lead to 

no change (ibid.: 82-4). A combination of both forms of diffusion would be 

expected to generate a gradient or cline in the direction of migration, as a 
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result of the genes of the original farmers decreasing proportionally from 

southwestern Asia to northwestern Europe. 

 

In the 1970-80s when Ammerman and Cavalli-Sforza were working, it was 

only possible to study the genetics of modern European populations in the 

form of ‘classical’ (i.e. non-DNA) markers, such as allele frequencies in blood 

groups, the tissue antigen HLA system and enzymes (Richards 2003a: 160). 

Initially, Ammerman and Cavalli-Sforza used A.E. Mourant’s (1976) work on 

the Rhesus (Rh) gene. Mourant noted that the Rh negative gene, which is 

found almost exclusively in Caucasians (European populations are 

predominantly Rh positive), has its highest frequency among the Basques, 

who also speak a language quite distinct from the Indo-European-based 

languages spoken by most of Europe (Fig. 2.7). His observations led him to 

propose that the Basques represented the descendants of the oldest 

inhabitants of Europe, who mixed at a later date than the rest of Europe with 

immigrants from outside the region. Ammerman and Cavalli-Sforza (1984: 87) 

suggested that these immigrants were farming populations originally from 

southwest Asia. The modern distribution of the Rh gene, then, is not in 

disagreement with the Wave of Advance model.  

 

Following the success of the mapping of the Rh gene, Ammerman and 

Cavalli-Sforza (1984: 95-7) attempted a similar study with the ABO blood 

system. However, each of the blood groups were found to show a different 

pattern, none of which were in agreement with the Wave of Advance. 

Ammerman and Cavalli-Sforza (1984: 97) attributed the variation to the 

influence of factors other than migrations, such as natural selection and 

climate. The failure of the mapping of the distribution of the ABO blood groups 

emphasized to the pair, how individual gene maps can often show 

considerable variation to each other, making it difficult to obtain a clear overall 

picture of genetic trends in populations, an issue which they combated by the 

using a more synthetic approach: Principle Component Analysis (hereafter 

PCA).  
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PCA allows for the combining of the information from a number of genes. 

Ammerman and Cavalli-Sforza (1984: 105), for example, used 39. The 

method detects major patterns in the combined data from the genes, 

separates them from each other, shows each pattern in isolation, and 

estimates their relative importance as a fraction of the total amount of 

variation (Cavalli-Sforza 1997: 385). The name ‘principle’ refers to the fact 

that the method automatically selects the most important patterns, and sorts 

them in order of importance, as measured by their relative contribution to the 

total variation (ibid.). Ammerman and Cavalli-Sforza’s (1984: 105) PCA of 

modern European populations showed that the first Principle Component (PC) 

– accounting for about 27 per cent of the total variation in classical marker 

frequencies across Europe and the Near East – showed a southeast–

northwest cline (Fig. 2.8), which supported the ‘Wave of Advance’, and 

matched the distribution of Early Neolithic sites in Europe. The second and 

third PCs (Figs. 2.9 & 2.10), accounting for about 22 per cent and 11 per cent 

of the variation respectively, showed gradients that were orientated roughly 

southwest-northeast and east-west. Due to their lower impact on the genetic 

variation, Ammerman and Cavalli-Sforza assumed them to be the result of 

later dispersals, and suggested that the distribution pattern of the second PC 

could be the result of a series of migrations from Central Asia or parts of 

Russia towards Europe, perhaps starting with the movement of pastoral 

nomads in the third millennium BC; and that the third PC may reflect the 

expansion of Indo-European speaking people from their homeland in the 

Black Sea, or the so-called ‘Barbarian’ invasions in Late Roman times 

(Ammerman & Cavalli-Sforza 1984: 107-8).  

 

Ammerman and Cavalli-Sforza’s (1984) use of synthetic gene maps to 

validate the demic diffusion of agriculture has been questioned. Genetic clines 

can be produced by multiple mechanisms of which demic diffusion is only one 

(Fix 1996: 626, 631, 641; Barbujani & Bartorelle 2001: 21; Gkiasta et al. 2003: 

60; Currat & Excoffier 2005: 659). Sampling error and statistic artefacts are 

also a problem (Zvelebil 1998b: 415; Sokal et al. 1999). Thus, “the 

demonstration of a cline in gene frequencies…does not specify the cause of 

the pattern; casual explanation depends on other information” (Fix 1996: 631). 
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Instead, a cline may reflect adaptation to variable environmental conditions, 

population expansion at one moment in time, and/or continuous gene flow 

between groups that initially differed in allele frequency (Barbujani & 

Bartorelle 2001: 21). Fix (1996: 636) suggested that the genetic clines 

Ammerman and Cavalli-Sforza associated with the demographic spread of 

early farmers may have been caused by natural selection. He posited that 

genetic fitness changed through time, as a function of increased disease 

intensities associated with the spread of agriculture which, because 

agriculture required several thousand years to spread across Europe, 

generated a gradient in duration and selection. According to Fix (1996: 625), 

then, the gene-frequency clines in Europe may indeed be due to 

domestication, but are the outcome of natural selection rather than demic 

diffusion. The analysis of gene frequencies in extent populations, including the 

demonstration of clines, is therefore not sufficient to establish the mechanism 

which produced them. Furthermore, different genes are expected to show 

different modes of variation purely by chance, quite aside from the action of 

selective pressures upon them (Barbujani & Bartorelle 2001: 25). 

 

A further issue with the use of PC analysis is that genetic clines have no time 

depth (Sampietro et al. 2007: 2161). Thus, even if a genetic cline can be 

associated with a specific demic diffusion process, it does not correlate that it 

was created at this time (Currat & Excoffier 2005: 679; Richards 2003b: 157). 

Ammerman and Cavalli-Sforza’s interpretation of the first PCA solely in terms 

of a Neolithic expansion is therefore questionable, as there are currently two 

processes in the demographic and evolutionary history of Europe that could 

account for the cline: the Palaeolithic colonization of Europe starting ca. 

40,000 years ago, or the Neolithic agricultural diffusion (Sampietro et al. 2007: 

2161). Furthermore, Europe as a small peninsula of Eurasia has been the 

sink for many dispersals throughout prehistory, and the distribution of modern 

genetic lineages is consequently likely to represent a palimpsest of multiple 

dispersals (Zvelebil 1998b: 414; Richards 2003b: 143, 161; Richards et al. 

1996; Richards et al. 1997). Zvelebil describes Ammerman and Cavalli-

Sforza’s association of the first PCA with the spread of the Neolithic, as 

“tenacious at best” (1998b: 414). 
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Genetic clines, as well as no time depth, do not have any intrinsic 

stratigraphic order. Thus, Ammerman and Cavalli-Sforza’s (1984: 105) 

assumption that the first PC is older than the second and third PC cannot be 

proven. Indeed, more recent studies suggest that it is likely that the second 

PC (running from southwest to northeast) may in part be the result of Late 

Glacial hunter-gatherer expansions, which preceded the Neolithic by over 

50,000 years (Torroni et al. 1998: 1137). The direction of movement 

underlying a genetic cline can also be ambiguous, and the high frequency end 

of a cline can either represent: the area of pre-existing substrate least affected 

by a migration originating far away; or the final destination of a wave of 

migration into a thinly populated territory, where expansion and drift have had 

their greatest effects (Balaresque 2010: 1). 

 

A further problem with Ammerman and Cavalli-Sforza’s PC analyses, is that 

they rely on the ad hoc assumption of pre-Neolithic homogeneity across 

Europe, and account for neither back migration across Europe into the Near 

East, nor for subsequent post-Neolithic immigrations, both of which are known 

to have been high from mtDNA results as well as archaeological evidence 

Soanes et al. 2010: 179; see also Richards 2003).  

 

Kenichi Aoki et al. (1996: 2) have argued that a particular problem with using 

genetic clines to support the ‘Wave of Advance’ is that according to the model, 

by the time farming reached the northern edge of Europe, the indigenous 

European population would already have been completely overrun by people 

of Middle-Eastern origin. Aoki et al. also critique Ammerman and Cavalli-

Sforza for ignoring the fate of the indigenous hunter-gatherers, and whether 

they went extinct, continued to exist at a lower population density or become 

converted to farming? (Aoki et al. 1992: 2). To describe the spread of farming 

into regions where indigenous hunter-gatherers already existed, and to deal 

explicitly with the dynamics between them and early farming groups, Aoki et al. 

proposed the ‘Reaction-Diffusion’ model. The model diverges from the ‘Wave 

of Advance’, by expecting the spread of farming to be the result of both: the 

intrinsic growth rate of incoming farmers and their mobility; and the conversion 
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rate and carrying capacity of the indigenous hunter-gatherer populations. The 

Reaction-Diffusion model thus predicts that the clines seen in the genetics of 

modern European populations “are formed by diffusive admixture of the two 

farming populations” (Aoki et al. 1996: 15). 

 

 

2.4c. Molecular-genetic approaches 

 

In the late 1980s, it became possible to analyse not merely the products of 

certain genes, as done by Ammerman and Cavalli-Sforza (1984), but to 

analyse DNA sequences directly, enabling the study of the two non-

recombining loci in humans: mitochondrial DNA (mtDNA), which is inherited 

down the maternal line; and Y-chromosomal DNA, which is inherited father to 

son (Richards 2003b: 144). The molecular approach has the advantage over 

classical analyses, in that it introduces a chronological dimension, allowing for 

the tracing of lineages back through time, and their dating using the molecular 

clock (ibid.: 135; Soares et al. 2010: 174).  

 

The earliest molecular-genetic approaches focused on spatial autocorrelation 

analysis. Robert Sokal et al. (1991) sampled 26 genetic systems from 3373 

loci in Europe, testing the correlation between them and a hypothetical origin 

of agriculture. Their findings confirmed the existence of a northwest-southeast 

cline for gene frequencies in Europe, leading them to conclude that the 

spread of agriculture through Europe, “was not simply a case of cultural 

diffusion, but involved significant differential reproduction of the new farmers 

whose origins can be traced to the Near East” (Sokal et al. 1991: 144); a 

conclusion they were able to qualify the following year (Sokal et al. 1992: 

214). Other spatial autocorrelation analyses included that of Alberto Piazza et 

al. (1995), who used synthetic genetic maps to claim, in agreement with 

Ammerman and Cavalli-Sforza (1984: 105), that a Neolithic spread through 

Europe from the Middle East accounted for 26 per cent of modern genetic 

variation (Fig. 2.11) (Piazza et al. 1995: 5387); and Chikhi’s et al. (1998) study 

of seven hypervariable loci in Europe (4 microsatellite, 2 larger tandem-repeat 

loci & a sequence polymorphism), which produced a similar broad, clinal 
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pattern of DNA variation, in agreement with the ‘Wave of Advance’ (Chikhi et 

al. 1998: 9053).   

 

At the same time, Martin Richards et al. (1996; 1998) were using founder 

analysis to date the arrival of mtDNA lineages into Europe as a whole. Their 

results suggested that only a small minority of lineages dated to the Neolithic, 

with the remainder belonging to between 15,000–50,000 years ago, and 

presumably Middle or Late Upper Palaeolithic dispersals (Richards et al. 

1996: 185; 1998: 241). Richards et al.’s findings were tentative, due to their 

reliance on comparisons with a very small and inadequate sample from the 

Near East (Richards 2003b: 148), but  were confirmed by subsequent work by 

Antonio Torroni et al. (1998; 2001), who, by focusing on a particular mtDNA 

clade (haplogroup V), were able to show that a major Palaeolithic population 

expansion from southwest Europe, particularly Iberia, occurred around 

10,000–15,000 years ago, probably as a result of Late Glacial re-expansions 

(Torroni et al. 1998: 1137). Torroni (1998: 1149) suggests that these Late 

Glacial re-expansions could provide a plausible explanation for Ammerman 

and Cavalli-Sforza’s (1984) ambiguous second PC, which is orientated 

southwest–northeast. Brian Sykes (1999; see also Sykes 2003) refinement of 

the mtDNA phylogeny and enlargement of the sample size produced a similar 

conclusion, suggesting that the overall Neolithic contribution to modern 

mtDNA lineages was about 20 per cent, and that “the recolonization of Europe 

after the Ice Age from refugia…distributed the mitochondrial ancestors of 

most modern Europeans”, and that “this event, and not the Neolithic, that was 

the most significant in shaping the mitochondrial gene pool” (Sykes 1999: 

137). 

 

More recently, Richards et al. (2000) have used a greatly improved Near 

Eastern mtDNA database, as well as more sophisticated founder analysis, to 

build on their earlier work. Their findings show, that under various criteria, the 

putative Neolithic component in modern Europe was between 12–23 per cent, 

with the best estimate being ~13 per cent; the Early Upper Palaeolithic 

component between 2– 17 per cent, with ~7% the best estimate; and that the 

Late Glacial expansions, conflated with preceding Middle and Upper 
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Palaeolithic immigration, accounted for between about two thirds of modern 

lineages (Richards et al. 2000: 1272). Richards et al. also applied founder 

analysis at a more regional level, which showed that the highest Neolithic 

impact occurred in southeastern, central, northwestern and northeastern 

European populations, where it accounted for 15–22 per cent of modern 

haplogroups (Richards et al. 2000: 1267). Fewer Neolithic-derived lineages 

occurred along the Mediterranean and Atlantic coasts (~10%); while the 

Basque region, the outlier in PCA of mtDNA and classical markers, had the 

lowest Neolithic content of all (~7%). It appears, then, that at least on the 

maternal line of descent, only a minority of European ancestors were Near 

Eastern farmers, and that the majority were indigenous hunter gatherers who 

presumably adopted agriculture later on (Richards et al. 2000: 1272; Richards 

2003b: 149). 

 

Barbujani and Chikhi critiqued Richards et al.’s work, arguing that the ages of 

molecules cannot be equated with the ages of populations (Barbujani & Chikhi 

2006: 83; but see also Barbujani et al. 1998; Chikhi et al. 1998; Barbujani & 

Bartorelle 2001; Chikhi et al. 2002). They believe that migrating people carry 

alleles and haplogroups in their genome originally from mutations that 

occurred before, sometimes long before, the migratory movement started, and 

that inferring from the former the date of the latter is never straightforward 

(Barbujani & Chikhi 2006: 83). Richards and colleagues responded by arguing 

that mtDNA can be used to establish the age of a population, and that 

“founder analysis was explicitly designed to get round this problem” (Richards 

2003b: 151; see also Sokal et al. 2009). However, Barbujani and Chikhi’s 

work is useful in emphasising that, like with using classical markers, there are 

inherent problems with mtDNA founder analysis.  

 

Around the same time as the early mtDNA work was being conducted, similar 

studies were being undertaken on extant European Y-chromosome lineages. 

Ornello Semino et al. (1996) identified candidates for both an indigenous 

European clade of Y-chromosome lineages (paragroup R*), and a likely Near 

Eastern Neolithic component, haplogroup J. Haplogroup J showed a cline 

similar to Ammerman and Cavalli-Sforza’s first PC for classical markers, with 
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the highest diversity appearing to be in the Fertile Crescent, or possibly Iran 

(Quintana-Murci et al. 2001: 538). In comparison, paragroup R* was most 

common in Western Europe and declined moving east. Subsequent studies 

by Semino et al. (2000; 2004) and Z.H. Rosser et al. (2000) involving a larger 

set of markers, have substantiated these results, identifying hg-J2 and hg-

E1b1 as representing the Y-chromosome components of a Neolithic demic 

diffusion into Europe (see also Giacomo et al. 2004; Soares et al. 2010). The 

frequency of these haplogroups in modern populations, suggests that the 

Near Eastern contribution to Europe as a whole was about 20–25 per cent, 

with the remainder of the Y-chromosome gene pool (~78%) attributable to 

Palaeolithic expansions from glacial refugia in Iberia and the Ukraine (Semino 

et al. 2000: 1158). The association between Near Eastern haplogroups and a 

Neolithic diffusion into Europe is supported by the archaeological record. Roy 

King and Peter Underhill (2002: 712) have found evidence of a significant 

correlation between the distribution of Near Eastern Y-chromosome 

haplogroups (particularly Eu9), and Neolithic painted pottery of the Cardio 

Culture at Early Neolithic sites in Europe, supporting the demic diffusion, at 

least of early farming males, from the Fertile Crescent as far west as southern 

France (King & Underhill 2002: 713). 

 

By the early 2000s, the Y-chromosome dataset was sufficient to study 

worldwide patterns. Comparison of these showed that the Y-haplogroups of 

European and western and central Asian populations are closely related, 

particularly when compared to sub-Saharan African and East Asian 

populations (Underhill 2004: 492). Underhill et al. propose that two of the 

particular haplogroups concerned (hg-III & part of hg-VI), could have spread 

into Europe by Neolithic expansion, supporting a model of demic diffusion with 

population admixture, from southeast to northwest Europe during the Neolithic 

(Underhill 2003: 74; Underhill et al. 2001: 59).  

 

Lounges Chikhi et al. (2002) analysed 22 binary markers on the Y-

chromosome in order to model situations of admixture, followed by genetic 

drift, between two ‘ideal’ populations: one using modern Near Eastern 

samples to represent a ‘Neolithic’ node; and the other using modern Basque 
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and Sardinian samples to represent a ‘Palaeolithic’ node. Their findings led 

them to conclude, that the contribution of Near Eastern Neolithic farmers to 

Europe as a whole was on average greater than 50 per cent (Chikhi et al. 

2002: 11010). This figure is far higher than both the original estimate of 

Ammerman and Cavalli-Sforza (1984), and the evidence from mtDNA 

analysis (Richards et al. 1996, 1998, 2000) and other Y-chromosome studies 

(Semino et al. 2000), which have both yielded averages of under 30 per cent. 

The validity of Chikhi et al.’s findings can be critiqued on a number of 

grounds. Their approach lacks any time scale; makes no allowance for back 

migration into the Near East – which mtDNA data suggests was considerable 

(Richards et al. 2000: 1204); and assumes that Palaeolithic populations and 

Near Eastern populations were unitary groups (Richards 2003b: 154). 

 

Balaresque et al.’s (2010) Y-chromosome study, the most recent to date, 

refutes Chikhi et al.’s claims. Balaresque et al. focused on the haplogroup-

R1b1b2, which is carried by ca. 110,000,000 men in Europe, and has a 

southeast-northwest clining distribution, which reaches its highest frequency 

in Ireland (~85%) (Balaresque et al. 2010: 1) (Fig. 2.12). This cline has 

traditionally been interpreted as the result of a postglacial expansion. 

However, Balaresque et al.’s work indicates that it actually spread together 

with farming from the Near East, supporting the earlier work of Semino et al.  

(1996; 2000; 2004) and Rosser et al. (2000) on haplogroups J2 and E1b1. 

 

Recent advances in archaeogenetics have made possible the study of ancient 

DNA (hereafter aDNA), offering “a powerful new means to test evolutionary 

models and assumptions” (Haak et al. 2005). One of the earliest aDNA 

studies was Haak et al.’s (2005), which sequenced the HVR1 of mtDNA from 

24 Neolithic skeletons from various locations in Germany, Austria and 

Hungary, dating to the Linearbandkeramik or LBK, ca. 5500-4900 BC). Haak 

et al. (2005: 1017) found 25 per cent (6 out of 24) of the samples to have a 

distinctive rare N1a lineage of mtDNA, and that of these 5 out of 6  displayed 

different N1 haplotypes, and were wide spread in the LBK area. Modern 

Europeans have 150 times lower frequency (0.2%) of this mtDNA type, which 

suggested to Haak et al. (2005: 1018)  that the first farmers in this region did 
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not have a strong impact on the genetic impact of modern European female 

lineages. Consequently, they propose that small pioneering farming groups 

carried farming into new areas of Europe, and that once the technique had 

taken root, indigenous hunter-gatherer populations adopted them, 

outnumbering the original farmers and diluting the N1a frequency to its low 

modern value. More recent work by Haak et al. (2010) on LBK samples, 

involving a considerably extended genetic data set of 42 individuals, has 

shown that the LBK population shared an affinity with modern Near Eastern 

and Anatolian. However, the LBK population also showed unique genetic 

features, including a distinct distribution of mtDNA haplogroup frequencies, 

which suggests that major-demographic events continued to take place in 

Europe after the Early Neolithic. aDNA from a range of Mesolithic hunter-

gatherer samples from neighbouring regions to the LBK area, have been 

shown to be surprisingly homogenous across time and space, with an mtDNA 

composition almost exclusively of haplogroup U (ca. 80%), which is clearly 

different from the LBK dataset, as well as modern European populations (cf. 

Bramanti et al. 2009). The combined data from LBK and Mesolithic hunter-

gatherer populations is compatible with a model of Central Europe in the Early 

Neolithic of indigenous populations, plus significant inputs from expanding 

populations in the Near East (Haak et al. 2010: 8). Haak et al. conclude that, 

“Overall, mtDNA haplogroup composition of the LBK would suggest the input 

of Neolithic farming cultures (LBK) to modern European genetic variation was 

much higher than that of Mesolithic populations, although some unique 

characteristics of the LBK sample imply that further significant genetic 

changes took place in Europe after the Early Neolithic” (2010: 8).  

 

Conversely, Sampietro et al.’s phylogeographic analysis of HVR1 sequences 

from 11 Neolithic remains from Granollers, Catalonia, northeast Spain, dated 

to ca. 3500 BC, showed that the haplogroup composition of the samples was 

very similar to that found in modern populations from the Iberian Peninsula, 

“suggesting a long-time genetic continuity, at least since the Neolithic times” 

(2007: 2161), and that early farmers from the Near East have had little to no  

influence on modern genetics in the region. The contrast between Sampietro 

et al.’s findings and those from the LBK region, suggest that the spread of 



57 
 

early farming was complex.  Sampietro et al. (2007: 2161), for example, 

propose a ‘dual model’ for the Neolithic spread, with acculturation occurring in 

Central Europe and demic diffusion in southern Europe. Clearly, more 

regional studies of aDNA are needed before any firm conclusions can be 

made, but current evidence indicates that “the Neolithic spread was neither 

genetically nor geographically a uniform process” (Sampietro et al. 2007: 

2167).  

 

It would appear, then, that the overall Neolithic contribution to modern 

European populations was somewhere between 12–23 per cent on the female 

side (with the most likely value 13%), and up to 22 per cent on the male side, 

depending on how much overwriting there has been in recent times (Richards 

2003b: 154; Barbujani & Chikhi 2006: 84). A possible explanation for the 

disparity between the distribution of mtDNA and Y-chromosome lineages, is 

that it arose because of the increased and transmitted reproductive success 

of male farmers, compared to indigenous male hunter gatherers (i.e. male 

farmers ‘married’ female hunter gatherers, but not vice versa), without a 

corresponding difference between females from the two groups (Balaresque 

et al. 2010: 6). Perhaps, the best way of understanding the ambiguous nature 

of the genetic evidence, is to adopt Peter Bellwood “common sense scenario” 

(2005: 264), in which an early farming population spread into Europe from the 

southeast, but gradually disappeared in a genetic sense, as farming spread 

westwards across Europe. In a more refined version of Bellwood’s scenario, 

Soares et al. (2010: R183) use a synthesis of mtDNA and Y-chromosomal 

results to model that, first, farming was likely dispersed into Europe by human 

migration, accompanied by a spread of domesticated plants and animals 

beyond the migrants. Second, that immigration from the Near East was minor, 

and there was substantial adoption of farming by indigenous groups in many 

parts of Europe; and third that post-Neolithic migrations may have later 

considerably reshaped the genetic landscape.  

 

Colin Renfrew (1987), a staunch supporter of the Wave of Advance, contends 

that agriculture and the Proto-Indian European language family were 

introduced into Western Europe by a wave of from immigrant farmers from the 
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Fertile Crescent, ca. 8000 years ago. He argues that in prehistory major 

language replacements were only likely to occur when incomers speaking a 

different language moved into a new territory, and outcompeted the local 

population, and that the spread of agriculture was one, perhaps the only, way 

that this could have occurred (Renfrew 1987: 174). Similarly to Ammerman 

and Cavalli-Sforza (1984), Renfrew (1987: 174) argued that none of the 

incoming individuals need to have moved more than a few kilometres each in 

search for new farmland, for the gradual and cumulative effect of such 

displacements to result in the spread of a new population, whose descent 

could be traced back to the original early farming areas. 

 

Renfrew (1987; 1989) initially ignored genetic evidence, believing geneticists 

to “have brought historical linguists and indeed archaeologists nothing but 

confusion in the past” (Renfrew 1989: 149). However, in light of the great 

advancement in genetic studies, Renfrew has subsequently retracted his 

position, in favour of the use of genetic evidence, arguing that “it is clear that a 

brilliant future lies ahead for DNA-based work” (1992: 471). In response to the 

growing volume of genetic studies that suggest that the contribution of 

incoming Neolithic populations to the European gene pool was low (e.g. 

Sykes 1999, 2003; Richards et al. 1996, 1998, 2000; Toroni et al. 1998 

Richards 2003b), Renfrew proposed the Staged Population Interaction Wave 

of Advance (SPIWA) model. The SPIWA utilizes many of the assumptions of 

the original wave of advance, predicting that farming groups will outcompete 

hunter-gatherer groups in most territories, and that population spread will take 

the form of random displacement behavior. However, it differs by allowing for 

gene flow between incomers and indigenous populations, with asymmetry 

existing between male versus female, and incomer versus indigene gene flow 

and, thus, allowing for exponential decline in the frequency of incoming DNA 

with distance. Renfrew (2000: 13) argues that as time passed, genetic drift 

and further admixture would further have diminished frequency differences, 

and homogeneity would have increased. According to the SPIWA, then, in 

areas which were initially settled by Palaeolithic populations, the genetic 

frequency of Palaeolithic lineages will often be greater in magnitude than that 

of later ones, such as those of Neolithic farmers. 
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Due to their controversial nature, both the Farmer/Language Dispersal 

Hypothesis and the SPIWA have been heavily critiqued. At the most general 

level, the whole nature of the relationship between language, culture, and 

population assumed by the models has been questioned (Sherratt & Sherratt 

1988; Zvelebil & Zvelebil 1988; Kivisild et al. 2003: 216). The 

Farmer/Language Dispersal Hypothesis effectively equates the Indo-

European language group with people (the first farmers), and the 

archaeological context of the Neolithic. However, Renfrew makes no attempt 

to prove the association between a people, a language, and a cultural trait, 

and by so doing,  creates a normative view of culture, language and genetics, 

which is “inadequate and oversimplified” (Zvelebil & Zvelebil 1988: 575). To 

paraphrase Kohl, conflating language, culture and race is the “cardinal sin” of 

molecular anthropology (Kohl in Lawler 2008). Further, the notion of a 

widespread distribution of Indo-European languages in prehistory is 

questionable, and it is probable that the present distribution is the result of 

more recent dispersals (Sherratt & Sherratt 1988: 376; Zvelebil & Zvelebil 

1988: 576; Robb 1993). Even if Proto-Indo European did spread during the 

Neolithic, the idea that it spread by a single, continual process, is “highly 

questionable” (Zvelebil & Zvelebil 1988: 576).  

 

Renfrew (1987; 1989; 2000) posits that both the Farmer/Language Dispersal 

Hypothesis and the SPIWA are equally apposite to the spread of agriculture to 

South Asia, proposing that “some sort of Wave of Advance operated to the 

south and east as well as to the north and west from primary zones in and 

near East Anatolia” (Renfrew 1989: 149). He advocates that the development 

of farming in the Near East may have been responsible for several 

expansions and language replacements in addition to that from Anatolia (Fig. 

2.13), including to Khuzestan, “where the Deh Luran area was another focus 

of early farming [from which] we can predict another expansive process this 

time to the south and southeast” (1989: 134). In terms of where Mehrgarh fits 

into this model, Renfrew (1989: 134) hypothesizes that the origins of farming 

at the site can be situated in the Near East, with farming arriving in Pakistan 

by a process of demic diffusion analogous to the European case (1989: 134). 

Renfrew, in support of his conclusion, cites the work of Zohary and Hopf 
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(1988: 36) who believe the cereal species attested at Mehrgarh to be of Near 

Eastern origin. Peter Bellwood also supports Renfrew’s thesis believing, “the 

spread [of agriculture] to Pakistan probably occurred through northern Iran” 

(Bellwood 2005: 84). However, as Renfrew admits, the application of the 

Wave of Advance to Central Asia is purely hypothetical, and “what works in 

Europe does not necessarily apply so well for the transmission of farming 

across or along the western flanks of the Iranian plateau” (1987: 197). The 

situation is further complicated by the current lack of archaeological 

information from Central Asia and Afghanistan, which “makes further 

speculation rather difficult” (Bellwood 2005: 84). 

 

The genetic evidence of a Neolithic population dispersal from the Near East to 

South Asia is complex, and compared to Europe “the debate for this region is 

really only starting” (Bellwood 2005: 262). One of the earliest molecular-

genetic studies in South Asia was that of Giuseppe Passarino et al. (1996), 

who found evidence for a dilution of an ancient mtDNA marker in northern 

India, by Caucasoid populations coming in from western Asia, which they 

interpreted as supporting the demic spread of Indo Europeans into India. 

Their work was subsequently expanded on by Lluis Quintana-Murci et al. 

(1999; 2001; 2004) who analyzed a set of 459 Y-chromosomes from several 

populations, located in key geographical positions between the Fertile 

Crescent and northern India. Their results suggest that there were two 

episodes of demic diffusion from the northwest, represented by haplogroups 9 

and 3 (Quintana-Murci et al. 2001: 538). Haplogroup 9 – which has been 

interpreted as an indicator of the demic diffusion of farming into Europe (e.g. 

Semino et al. 1996) – is largely confined to Caucasoid populations, with its 

highest frequency occurring in Iranian populations (~30-60%), and its lowest 

in Pakistan (19%) and northern India (19%) (Quintana-Murci et al. 2001: 538). 

Quintant-Murci et al. argue that the high incidence, and global haplotype 

diversity, of Iranian haplogroup 9 chromosomes, suggests that Iran is the 

geographical origin of haplogroup 9, and that the decreasing frequency 

decline towards Pakistan and northern India, supports a model where farming 

spread by major population dispersal from Iran to India (Quintant-Murci et al. 

2001: 538-9).  
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Haplogroup 3 has its highest frequency in Central Asia, and exhibits a 

decreasing frequency cline westwards into Europe, which suggests that 

Central Asia is the source region (Quintana-Murci 2001: 539). The distribution 

of hapolgroup-3 in Iran shows a marked difference between western (3%) and 

eastern provinces (31%), with a decreasing frequency cline towards India, 

which again can be interpreted as evidence of an eastern spread of early 

farmers (Quintana-Murci et al. 2001: 539-40). The calculated dates for the 

spread of haplogroups 9 and 3 are between 4000–6000 years ago, and 3500–

4500 years ago, respectively (Quintana-Murci et al. 1996: table 2), leading  

Quintana-Murci et al. to conclude that the “geographical distributions, 

observed clines, and estimated ages of HG-9 and HG-3 chromosomes in 

southwestern Asia all support a model of demic diffusion of early farmers from 

southwestern Iran…into India” (Quintana-Murci et al. 2001: 541). 

 

Other mtDNA analyses, however, present a different picture. Toomas Kivisild 

et al. (2003) suggest that more than 50 per cent of the maternal lineages of 

most present-day Indians, derive from a common ancestor, haplogroup M, 

which split into Indian, eastern Asian, Papuan and Australian subsets 40,000–

60,000 mtDNA years ago (Kivisild et al. 2003: 215-6), and that the second 

major component in modern Indian mtDNA, traces back to the split of 

haplogroup U into Indian, western Eurasian and northern African variants, at 

approximately the same time. They suggest that at least 90 per cent of 

modern Indian maternal lineages date back to the Upper Palaaeolithic and, 

thus, do not support the demic diffusion of Indo-Europeans into India during 

the Neolithic (Kivisild et al. 2003: 220-1), although they do accept that the 

majority of Indian paternal lineages, do not share recent ancestor with eastern 

Asian populations, but stem from haplogroups common to eastern Europe or 

western Asian populations (ibid.: 215). However, they caution against 

interpreting this finding in favour of the demic diffusion of Indo-Europeans, 

believing that such an interpretation, “is probably caused by a 

phylogeographically-limited view of the Indian Y-chromosome gene pool” 

(Kivisild et al. 2003: 215). The genetic evidence as it currently stands for the 

spread of agriculture into South Asia, then, is ambiguous, and much more 

work is needed before any firm conclusions can be made.  
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2.4d. Cultural diffusion 

 

Although no scholar would deny the introduction of farming into Europe from 

the Near East, profound differences in opinion exist about the rate, direction 

and methods of dispersal (Zvelebil & Zvelebil 1988: 576). Some scholars have 

stressed the evidence of Mesolithic-Neolithic continuity in some parts of 

Europe, particularly north-western Europe, and argued that in regions such as 

these, farming spread by indigenous acculturation (e.g. Sherratt & Sherratt 

1988; Zvelebil & Zvelebil 1988; Zvelebil & Rowley-Conwy 1984, 1986; Dennell 

1992; Zvelebil 2002; Rowley-Conwy 2004). These scholars have also 

emphasised how the Neolithic transition over Europe as a whole, was a “slow, 

gradual process, taking upwards of 3000 years to complete” (Zvelebil & 

Rowley-Conwy 1984: 104). Dennell (1992: 86), for example suggests that in 

the UK, foraging and farming coexisted for much of the fourth millennium BC. 

 

Zvelebil and Rowley-Conwy’s (1984; 1986) ‘Availability’ model, is perhaps the 

most widely-accepted model of indigenous acculturation. It describes the 

spread of agriculture from a farming to a non-farming group as a ‘process’, 

which passes through three phases of frontier situation (availability, 

substitution & consolidation), before an agricultural economy is fully 

implemented (Zvelebil & Rowley-Conwy 1984: 104). During the availability 

phase, agriculture is available to hunter gatherers, but plays little or no role in 

their economy; in the substitution phase, agriculture accounts for 5–50 per 

cent of the diet; and during the consolidation phase, agriculture accounts for 

over 50 per cent of the diet (ibid.: 105-7). The actual transition to agriculture, 

the substitution phase, is very rapid as “people depend on agriculture either to 

a negligible extent or heavily” (Rowley-Conwy 2004: 97). Zvelebil and Rowley-

Conwy argue, that while the initial adoption of agriculture might have taken 

place for a multitude of reasons, the subsequent outcome of this process 

inevitably resulted in the demise of the hunter-gatherer economy, and “the 

Neolithic economy was in the end adopted because of a lack of alternative” 

(Zvelebil & Rowley-Conwy 1984: 124). 
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Robin Dennell expanded on the Availability model (Zvelebil & Rowley Conwy 

1983), by proposing a number of different forms that the agricultural frontier 

could have taken, “ranging from static to mobile…impervious to porous” 

(Dennell 1985: 135). Dennell (1992: 84) argues that agricultural frontiers 

existed in the regions for which there is ‘diffuse’, rather than ‘crisp’, evidence 

for the development of agriculture. ‘Crisp’ evidence refers to sites containing 

evidence for the earliest local use of domesticated plants and animals, pottery 

and polished stone artefacts, whilst at sites with diffuse evidence the 

“essential background to understanding the origins of… agriculture in these 

areas is the local Mesolithic”. Dennell’s (1992: 92) argued that it is in the latter, 

that long-lasting agricultural frontiers would have existed. 

 

In terms of how the genetic evidence may support indigenous acculturation 

models, Zvelebil argues that Ammerman and Cavalli-Sforza’s (1984) first PC 

does not necessarily have to represent the spread of Near Eastern farmers, 

but may instead represents a ‘starburst’ pattern, in which small communities 

of farmers colonized limited areas from the Near East, and then interacted 

with local hunter-gatherers within agricultural frontier zones (Zvelebil 1998b). 

Zvelebel proposes that these interactions would have involved both the 

transmission of cultural knowledge, including the practice of farming, and 

gene exchange through marriage alliances. Zvelebil argues that with the 

adoption of farming practices, hunter-gatherer-turned-farmer communities 

were able to grow and expand, “filling in niches hitherto suboptimal for hunting 

and gathering” (ibid.: 414). Zvelebil, thus, argues that “it was not farmers 

migrating from the Near East, but local hunter-gatherers-turned-farmers who 

were undergoing expansion after a period of contact and gene flow with 

earlier farming populations” (ibid.: 414-5), which spread farming across much 

of Europe, a pattern which Zvelebil believes better conforms with the 

archaeological evidence. 

 

Increasingly, it has come to be recognized that the ‘Wave of Advance’ 

describes a large-scale process, and that a refined version of an agricultural 

advance would involve a more selective colonization of specific areas, with 

frequent halts in the process of expansion, and input from local hunter-
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gatherer groups (van Andel & Runnels 1995; Zilhao 1993; 2000; Bogucki 

2000; Zvelebil 2000b; Zvelebil et al. 2000; Sherratt 2003; Zeder & Smith 

2009). The colonization is selective in that first the most fertile regions were 

settled, followed by a secondary colonization of suboptimal areas at a later 

date. Selective colonization allows for the existence of hunter-gatherer 

survivals in regions not initially colonized by farmers, and for the adoption of 

farming by local hunter-gatherer groups (Sherratt 2003: 61).  

 

Andrew Sherratt has emphasized how the distribution of Early Neolithic sites 

in the Near East and Europe, was “restricted and highly selective” (Sherratt 

1980: 314). They were generally associated with alluvial fans, lake edges, or 

other areas with high ground water, which would have been ideally suited to 

floodwater farming; a process which Sherratt defines as a “small-scale system 

of crop growing which takes advantage of seasonally wet ground, with sewing 

occurring after small annual inundations” (2007: 6). Floodwater farming would 

have idealy suited small groups of early farmers with simple technology, “as it 

requires less soil preparation and forest clearance than rainfall agriculture, 

and is more predictable than rainfall agriculture and therefore a safer 

economic strategy” (Sherratt 1980: 317). It also had the potential to spread 

widely, to wherever similar alluvial niches were to be found, resulting in a 

distribution pattern where sites, “although having locally high population levels, 

were spatially restricted with large intervening uncultivated areas between 

them” (ibid.: 318). Sherratt does not out rightly reject the ‘Wave of Advance’, 

believing it to “offer an adequate representation at low levels of spatial 

resolution” (2003: 61), however, he argues that higher magnification reveals a 

more detailed view in which a different set of patterns predominates, the 

modeling of which has largely been due to the work of Tjeerd van Andel and 

Curtis Runnels (1995). 

 

van Andel and Runnels, whose work primarily focused on early farming sites 

in southeastern Europe and the Balkans, model that farming in these areas 

spread by salutatory jumps or discrete steps, “the length and spacing of which 

was dictated by geography and population growth, in each of the parent 

areas” (1995: 497) (Fig. 2.14). They concur with Sherratt that the optimal 
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areas selected by early farmers for colonization were flood plains, believing 

that although other areas would have permitted the survival of early farmers, it 

was only on the flood plains that it was possible to support populations large 

enough to start the next migratory move (van Andel & Runnels 1995: 497). 

These migratory moves did not occur in a uniform direction, but rather spread 

in a “pattern of interstitial penetration around and among established 

populations, with early farmers occupying the areas no-one else wanted” 

(Sherratt 2003: 60). 

 

Following the work of van Andel and Runnels (1995) and Sherratt (1980, 

2003), more complex models for the spread of early farming have been 

proposed, which see a more staggered ‘pulse’-like rate of expansion, with 

long periods of stability in between, and which do not completely eradicate 

hunter gatherers in agricultural areas (Bellwood 2005: 277-8). Indeed, Peter 

Bellwood, although a firm advocate of the ‘Wave of Advance’, suggests that 

“as long as there are niches, hunters can of course survive for millennia 

amongst farmer” (Bellwood 2005: 84). Similarly, Peter Rowley-Conwy 

advocates that though “major movements of people were probably 

frequent…[they] were probably much slower and less directional” (Rowley-

Conwy 2004: 97) than suggested by the ‘Wave of Advance’. Rowley-Conwy 

models that farming probably spread through a range of processes including 

leapfrog migration, where a group or subgroup moves just beyond its 

neighbours into available space; trickle migration, involving the movement of 

individuals over periods of a generation or more; and creep migration, where 

migration is so slow that it may be scarcely discernible in a human generation 

(ibid.). Rowley-Conwy describes these processes as collectively creating a 

“rapid and massive socioeconomic…wave of disruption” (2004: 97).  

 

Such models are also supported by recent re-evaluations of the 14C evidence. 

Bocquet-Appel et al. (2009) were able to work on a more regional scale than 

Ammerman and Cavalli-Sforza (1984), facilitated by a 30-fold increase in 14C 

determinations. Using a sample of 3072 calibrated 14C dates from 940 

georeferenced Early Neolithic sites, Bocquet-Appel et al. (2009: 809-16) 

reconstituted the surface expansion of Early Neolithic sites to show, that 
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although the general pattern of the diffusion gradient was the same as 

Ammerman and Cavalli-Sforza’s, the expansion was not uniform or regular 

across Europe, but proceeded in leaps (Fig. 2.15). They conclude that 

“clearly, the whole does not correspond to a process of homogenous diffusion 

approximately steady, but a process marked by phases of geographical 

expansion and stasis” (Bocquet-Appel et al.: 816), and suggest that the leaps 

were caused by multiple obstacles including geographical, ecological, 

population and cultural (ibid.: 811).  

 

John Robb and Preston Miracle (2007) question whether the polar dichotomy 

drawn between demic diffusion and acculturation models is useful or, indeed, 

relevant. They argue that neither of the paradigms is really plausible, and that 

although it is conventionally perceived that a fast rate of spread is 

representative of the spread of early farmers, and a slow spread is consistent 

with acculturation models, that in reality hunter-gatherer acculturation need 

not have been a slow process. Robb and Miracle (2007: 102) argue that 

hunter-gatherer groups are often highly mobile and thus, that large distances 

of up to 50 kilometres could have been covered by a single transmission of 

agriculture from one foraging group to the next, while sedentary farmers, 

which are generally much less mobile, would have required many more steps 

to cover the same distance. In terms of the other criterion used to distinguish 

migration from acculturation – the spread of a complete or piecemeal 

‘Neolithic package’ – Robb and Miracle argue that there lies a double 

standard of logic. They argue that whilst farmers are perceived as carrying 

“their physical and conceptual baggage with them like a snail carrying its 

shell”, indigenous hunter gatherers “shop at the Neolithic store”, actively 

selecting elements to incorporate into their lifestyles (ibid.: 102). Instead, they 

believe that the Neolithic transmission from one group of farmers to another, 

would equally have been an active choice, and in areas where the transition 

to farming was slow (e.g. northern Europe), such a phase might have existed 

for several centuries. Robb and Miracle (2007: 106) also contend that farming 

and foraging groups were “fluid”, and not the closed, static entities that classic 

migrationist and acculturation models (e.g. Ammerman & Cavalli-Sforza 1984; 

Zvelebil & Rowley-Conwy 1984, 1987) have typically perceived them as. They 
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argue that people are always moving and that this movement can take many 

forms, including that of individuals and families, multi-family groups, and entire 

self-sufficient societies; and that it is not always directional. For example, 

hunter-gather women did not always ‘marry into’ farming groups as some 

scholars (e.g. Richards 2003b; Richards et al. 2000) suggest. They further 

caution that many outcomes are equifinal, leaving similar archaeological 

patterns, which make it difficult to interpret what was taking place, and that, 

indeed, this may have been a deliberate move on the part of early farmers, 

“who were consciously seeking to reshape their ancestry” (Robb & Miracle 

2007: 113). 

 

 

2.5. Conclusion 

 

It is clear, then, that while we may have a general appreciation of the 

processes involved in the development of agriculture, there exist several 

competing paradigms, and many questions remain unanswered. As Simmon’s 

(2007) states, echoing views voiced by Flannery over three decades earlier 

(Flannery 1973: 272), “it is unlikely that there will ever be one broad covering 

law to explain this process” (Simmon 2007: 26). However, though there may 

exist no broad covering law, there does appear to be a core of recurring traits, 

which “in their general sense are relevant in many, if not all, instances of 

agricultural emergence” (Zeder & Smith 2009: 688). These factors include 

population pressure, or at least high population density; environmental and 

climatic factors; and social and cultural change. Other factors may have been 

more significant at a more regional level, such as variable responses to global 

climatic shift; the diversity and distribution of potential domesticates; the 

appropriate harvesting and processing technology; storage; sedentism and 

trade and communication networks (ibid.). However, the circumstances of the 

agricultural transition seem to have varied locally, and these traits cannot be 

consistently and satisfactorily applied. Furthermore, as Zeder and Smith 

stress, “isolating and selectively emphasizing any of these very general 

macrolevel overarching factors…does not explain very much about how the 

process unfolded on the ground in either region” (Zeder & Smith 2009: 6878). 
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Perhaps, as Andrew Sherratt argues, the background to the agricultural 

transition is best understood as, “an unusual time in an unusual place, when 

the elements were shaken up and reconfigured, in the presence of 

behaviourally modern human populations” (Sherratt 2007: 3).  

 

There is also no universally accepted model for the spread of agriculture, and 

the nature of the spread appears to have varied both geographically and 

temporally. If we take the ‘long view’, as advocated by the historian Fernand 

Brandel (2001), and focus on long-term dynamics, then a ‘Wave of Advance’, 

similar to that originally described by Ammerman and Cavalli-Sforza (1984), 

can perhaps be said to apply, while a more nuanced approach reveals that 

the spread of agriculture involved a variety of, not mutually exclusive, 

mechanisms, which varied according to local environmental, social and 

economic conditions. These mechanisms, which have been summarized by 

Zvelebil (2000b), include: demic diffusion by means of a ‘Wave of Advance’ 

(Ammerman & Cavalli-Sforza 1984; Renfrew 1987; Bellwood & Renfrew 

2002); infiltration of communities by a small number of specialists fulfilling a 

particular need (e.g. livestock farmers) (Zvelebil 2000b); leapfrog colonization 

by small groups, targeting optimal areas (Sherratt 1980; van Andel & Runnels 

1995); frontier mobility or exchange between farmers and hunter gatherers at 

agricultural frontier zones (Zvelebil & Rowley-Conwy 1984; Dennell 1990); 

and regional contact involving trade and the exchange of ideas (Sherratt 

2007). Thus, perhaps as Sherratt comments, “almost all of the suggested 

models …for the last thirty years, have some elements of truth; the challenge 

is to mobilize them in their appropriate contexts…rather than treating them as 

competing universal explanations” (Sherratt 2007: 10). 

 

Some scholars (e.g. Bellwood 2005; Robb & Miracle 2007; Zeder & Smith 

2009) question whether the use of grand-scale models such as the Wave of 

Advance, actually help us to understand the processes of the agricultural 

transition, or merely serve to mask the nuances of local migration and 

acculturation events. However, more commonly it is held that both macro- (e.g. 

Wave of Advance) and micro- (e.g. ‘leapfrog colonization’) models can be 

reconciled, and understood as operating at the same time, depending on the 
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scale of observation. Albeit, there are exceptions, where there are very clear 

cases for one or the other, for example the acculturation of forager groups on 

the Atlantic seaboard and the demic diffusion of farmers from the Near East to 

southeastern Europe, but, on the whole, these are in the minority. 

 

In terms of the eastwards spread of agriculture, and the application of models 

for the origins and development of agriculture in Central and southern Asia, 

there has been relatively little progress. Colin Renfrew (1987; 1992) and Peter 

Bellwood (2005, 2007; Bellwood & Renfrew 2002) both propose that 

processes similar to the ‘Wave of Advance’, operated to the east, as well as to 

the west; but the issue has never been closely examined. It is one of the 

major objectives of this research to do this, by focusing on the Neolithic of Iran, 

and particularly that of the Central Iranian Plateau, and its implications for 

Central and southern Asia as a whole. In the following chapter the climatic 

and environmental context of Iran is described, and a summary of the key 

excavated Neolithic sites given.  
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Aliens 
‘Agriculture as a drug’ 

Big men 
Broad-spectrum adaptation 

Circumscription 
Climatic change 

Competition 
Cultural evolution 
Cultural diffusion 
Demic diffusion 
Domesticability 

Environmental degradation 
Familiarity 
Feasting 
Geniuses 

Girls’ hormones 
Hormones 
Intelligence 

It was the ‘right time’ (i.e. 
humans were ready) 
Kitchen gardening 
Land ownership 

Multi-causal 
Marginal environments 

Natural selection 
Natural habitat 

Nutritional stress 
Plant migration 

Population growth 
Population pressure 

Random genetic change 
Resource concentration 

Resource pressure 
Rich environments 

Rituals 
Scheduling conflicts 

Sedentism 
Storage 

Technological innovation 
Vitalism 

Water access 
Zoological diversity 

Table 2.0: Some suggested 
causes for the transition to food 
production. (After Gebauer & 
Price 1992.) 
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Figure 2.0: The Fertile Crescent showing the position of the earliest known village sites. (After Braidwood 1950: 51.) 
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Figure 2.4: Map showing locations and dates of early farming settlements in Europe and the Near East. (After 
Clark 1965a: 65.) 
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Figure 2.5: Isochronal map of spread of early farming in Europe. The isochrones are drawn at a 500-year time interval. The 
dates are conventional 

14
C ages in years BP. (After Ammerman & Cavalli-Sforza 1984: fig. 4.5.) 
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Figure 2.6: Isochronal map of the ‘latest’ Mesolithic occupation in Europe. The isochrones are drawn at a 500-year time 
interval. The dates are conventional 

14
C ages in years BP. (After Ammerman & Cavalli-Sforza 1984: fig. 4.6.) 

 



78 
 

 

 

Figure 2.7: Map of the Rhesus negative gene in the populations of Europe, Africa & 
western Asia. (After Mourant et al. 1976: fig. 22.)  
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 Figure 2.8: Contour map of the first PC of the genetic analysis of populations in Europe. (After Ammerman & Cavalli-Sforza 

1984: fig. 6.10.) 
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Figure 2.9: Contour map of the second PC of the genetic analysis of populations in Europe. (After Ammerman & Cavalli-Sforza 
1984: fig. 6.11.)  
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 Figure 2.10: Contour map of the third PC of the genetic analysis of populations in Europe. (After Ammerman & Cavalli-Sforza 1984: 
fig. 6.12.) 
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Figure 2.11: Synthetic map of the first PC values calculated from 95 gene frequencies in Europe. The map 
conveys 26 per cent of the total genetic variation. (After Piazza et al. 1995: fig.1.) 
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Figure 2.12: Maps showing the frequency and microsatellite variance of 
haplogroup R1b1b2: (A) Geographic distribution of haplogroup frequency of 
hgR1b1b2; (B) Geographic distribution of mean microsatellite variance within 
hgR1b1b2. Both maps are shown as an interpolated spatial frequency surface. 
(After Balaresque et al. 2010: fig. 1.) 
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Figure 2.13: Hypothetical application of the FLDH to the Neolithic Near East. Renfrew postulates that ca. 10,000 BC Proto-
Afro-Asiatic, Proto-Elamo-Dravidian, & Proto-Indo-European languages were spoken in the Near East within the hatched 
areas. The early development of farming within this nuclear area may have led to agricultural dispersals & hence language 
replacements responsible for the early widespread distribution of: (1) Proto-Afro-Asiatic languages; (2) Proto-Elamo-
Dravidian languages; & (3)Proto-Indo-European languages, possibly be 4000 BC. (After Renfrew 1989: fig. 8.) 
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a. b. 

Figure 2.14: (a) the original wave of advance model as applied by Ammerman and Cavalli-Sforza (1984); & (b) the wave of advance model modified by the 
addition of a barrier (e.g. sea, desert, mountain) to gradual movement, combined with a strong preference for optimal environments. (After van Andel & 
Runnells 1995: fig. 12.) 
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Figure 2.15: The distribution of 940 Early Neolithic sites bounded by 250-year isochrones. Five hundred-year 
isochrones can be obtained by skipping one isochrone. (After Bocquet et al. 2009: fig. 5.) 
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Chapter Three 

 

 The Neolithic of Iran and neighbouring areas 

 

 

3.0. Introduction 

 

Having discussed the development and spread of agriculture in the Near East 

in general, this chapter contextualizes the Neolithic of Iran. The first half of the 

chapter focuses on the geography and environment of modern Iran; an 

account of the palaeoclimates, zooarchaeology and palaeobotany of Iran is 

given in Chapter 6. The second half of the chapter deals explicitly with the 

Neolithic period. Compared to its westerly neighbours, the Iranian Neolithic 

has been subject to relatively little archaeological investigation. Only a handful 

of sites have been systematically excavated, and even fewer have had the 

findings from these investigations fully reported (Hole 2002; Alizadeh 2003). 

This chapter provides an overview of these sites, some of the details of which 

will be expanded on in subsequent chapters. Information is also given on 

significant Neolithic sites in the countries which neighbour modern Iran. Of 

particular note among these are the sites of Jeitun in southern Turkmenistan 

and Mehrgarh, western Baluchistan. Due to the hiatus in scientific research in 

Iran following the 1979 Islamic Revolution, the majority of the sources 

referenced in this chapter are from before 1980. 

 

 

3.1. The country of Iran 

 

Iran is located in southwest Asia, and borders the Gulf of Oman, the Persian 

Gulf and the Caspian Sea. It covers an area of 1,648,000 square kilometres 

and extends between latitude 25° and 40°N, and longitude 44° and 63°E 

(Fisher 1968: 3). It is the sixteenth biggest country in the world, measuring 

approximately three times the size of France (Brookes 1982: 191). It shares 
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its northern border, which extends over 2000 kilometres, with Armenia, 

Azerbaijan and Turkmenistan; to the west with Turkey (to the north) and Iraq 

(to the south); to the south the Persian Gulf and the Gulf of Oman littorals 

form the entire 1770 kilometres border; and to the east lie Afghanistan and 

Pakistan (Fisher 1968: 3).  

 

The country is essentially bowl-like in shape, with a mountain rim surrounding 

lower, but not low-lying, interior basins (Fig. 3.0) (Brookes 1982: 191; Fisher 

1968: 5). Indeed, the total area of land below 500-metres-above-sea level 

consists of only a small portion of the total land surface, and is limited to very 

narrow coastal plains (Fisher 1968: 5); while some 165,000 square kilometres 

(approximately one sixth) has an elevation exceeding 2000 metres (Dewan & 

Famouri 1968: 250; Ganji 1968: 220). It can be divided into four main 

physiographic areas, each with a distinctive character: the Zagros and Alburz 

Mountains, which together form a great ‘V’ shape; the area within the ‘V’, 

which begins as a high plateau with its own secondary ranges, and gradually 

levels towards the interior deserts; the low-lying plain of Khuzestan (a 

continuation of the Mesopotamian Plateau); and the Caspian littoral which lies 

below sea level and forms a separate climatic zone (Dewan 1968: 250). 

 

Iran is bisected from northwest to southeast by the Zagros mountain chain, 

which occupy almost one half of the total area of the country (Fisher 1968: 6). 

The general elevation of the Zagros Mountains spans from 2000–3000 

metres-above-sea level, with summit masses attaining heights of 3500–4500 

metres (Brookes 1982: 191), and their maximum width spans 350 kilometres. 

The massive bulk of the Zagros provide an effective barrier to atmospheric 

moisture from the Mediterranean Sea, creating a rain shadow in Central Iran. 

The Alburz Mountains are the other principal mountain chain. They diverge 

from the Zagros Mountains to encircle the southern edge of the Caspian Sea, 

continuing eastwards to the northern highlands (Kopet Dagh) (Fisher 1968: 5). 

The Alburz rise very steeply from the Caspian lowlands to a general level of 

more than 3000-metres-above-sea level, and contain Iran’s greatest peak: 

Mount Damavand (5654 metres) (Brookes 1982: 191; Fisher 1968: 38). The 
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Alburz also create a climatic border, obstructing precipitation from the coastal 

plains of the Caspian Sea, from entering the interior (Fazeli 2001: 11). The 

southern mountains of the Iranian Makran are lower and less massive than 

the Zagros and Alburz, and comprise a number of broken upland massifs with 

a general height of ca. 1000-2500 metres-above-sea level (Brookes 1982: 

191; Fisher 1968: 60). In terms of geomorphology, the Iranian mountain 

chains are comprised of essentially sedimentary rocks without volcanics, and 

are the result of the uplifting, faulting and folding of an ancient sea floor 

(Harrison 1968: 127, 142).  

 

Iran has only two expanses of lowlands: the Khuzestan Plain in the 

southwest; and the Caspian littoral in the north. The Khuzestan Plain, which 

averages ca. 160 kilometres in width, is a roughly triangular-shaped extension 

of the Mesopotamian Plain, much of which is covered by marshes (Fisher 

1968: 33). The Caspian Plain is both longer and narrower, extending some 

640-kilometres along the Caspian shore, with a maximum width of 50 

kilometres and a minimum width of less than 2 kilometres (ibid.: 47).  

 

The centre of Iran consists of a series of closed basins of irregular shape, 

which collectively form the high Central Iranian Plateau; a belt over 950 

kilometres across at its widest (Harrison 1968: 127). The majority of the 

Central Plateau lies at an altitude of around 900-metres-above sea level, but 

there are a few regions where the lowest basins are only 300 metres or less in 

elevation (Fisher 1968: 90). Most of these basins are covered by colluvial and 

alluvial deposits brought down from the surrounding mountains by rainfall 

runoff and snow melt; a process that is normally vigorous due to the 

preponderance of steep slopes, and has resulted in high rates of denudation 

(Brookes 1982: 192-3; Dewan & Famouri 1968: 254). Indeed, as much as four 

metres of alluvium has been deposited in the lowlands and intermountain 

valleys since the emergence of the first villages (Brookes 1982: 192). The 

deposits are mainly chalky (Afary et al. 2006), and can be either arid or fertile 

depending on the regional climate (Schmidt & Fazeli 2006: 38). Much of the 

present surface of the Central Plateau was once covered by large lakes, 
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however, today only the lowest parts of the plateau are occupied by residual 

salt lakes or marshes, and the majority of the plateau is covered by two salt 

deserts or ‘dasht’: the Dasht-e Kavir (Great Salt Desert) and the Dasht-e Lut 

(Fisher 1968: 90; Schmidt & Fazeli 2006: 10). Presently, and throughout much 

of history, with the exception of some scattered oases, these deserts are 

thought to have been largely uninhabited (Fisher 1968: 90). 

 

 

3.1a. Soils of Iran 

 

Due to its topographical, climatic and particularly its lithologic diversity, Iran 

displays a rich mosaic of soils (Fig. 3.1) (www.ecogeodb.com). Most of the 

soils are lithosols due to heavy erosion which does not allow for profile 

development. Other soils are alluvial-colluvial with steady rejuvenation of the 

profile. These occur in a variety of forms that can be readily distinguished 

from one another by vegetation. Climatically, the soils of Iran can be classed 

into humid, semi-humid and arid ones. From a geobotanical point of view the 

soils can be subdivided into regional and interregional ones. The former 

comprises all soil series which are definitely confined to climatic and plant 

geographical regions, such as forest soils and steppe soils. The latter are 

those that may occur in various plant geographical regions, although slightly 

or markedly varying in their vegetation cover in various regions. Such soils, as 

long as they preserve their primary pedological nature, will sharply differ in 

their vegetation from other soils of the region, while showing more 

vegetational affinity to similar soils in alien regions. 

 

Of the regional soil groups the following should be mentioned: 

 

a. Forest climax soils. These can be divided into three main types: Brown 

Forest soils, Chestnut soils and Rendzinas (Fig. 3.2). Brown Forest 

soils are confined to areas with high precipitation, part of which falls in 

the summer. Generally it has a well-developed profile with a 

humiferous A-horizon, moderately acid to alkaline. Beech and Oak 
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forests are the characteristic climax vegetation of the soil. Chestnut 

soils develop under humid climatic conditions from various parent 

materials such as limestone and igneous rocks (Dewan & Famouri 

1964: 15). They are characterized by a dark-brown to dark greyish-

brown surface horizon. It occurs in the Caspian Sea and the Zagros 

districts, where it supports a climax vegetation similar to that of the 

brown forest soil. True rendzinas, which develop from soft marly 

limestones, are confined to humid or semi-humid areas. They are 

generally characterized by their dark-colour, usually calcareous surface 

horizon, which sharply contrasts with the marly or chalky white parent 

rock. In Iran they are not uncommon in the forest areas of the 

mountains, but are often intermixed with other types. 

b.  Alluvial soils. These are the soils that fill the great plains and valleys. 

They are partly formed in situ, but largely transported from the 

mountains and redeposited, and thereby physically changed. There is 

no mature profile in these soils because of the steady rejuvenation of 

the upper horizons. Alluvial soils are ecologically zonal soils, because 

they are apt to harbour plant communities of the same regional 

vegetation complex as the adjacent mountains that supply the soil 

material, e.g. the alluvial soils of the intermountain valleys of the 

Zagros and Alburz Mountains support the same forest type that grows 

in similar altitudes of adjacent mountains.  

c. Steppe soils. The bulk of Iran is occupied by steppe and desert, which 

are characterized by dwarf shrubs or herbaceous formations, the 

density of which is largely dependent upon the amount of rainfall. Soil 

types include sierozems, brown steppe, loess and loess-like soils, and 

hammadas (Fig. 3.3). Of these Brown steppe soils are probably the 

most predominant (Dewan & Famouri 1964: 15). These soils are 

developed in semiarid climate under grass vegetation and suffer 

moisture deficiency during the summer months.  
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Interregional soils of note include: 

 

d. Hydromorphic soils. This type includes the soils of freshwater swamps 

and river banks. These soils are largely hydromorphous, not only by 

way of their transportation and deposition, but also by their 

pedogenesis and physical properties. In Iran types comprise river-bank 

soils, swamps, and alluvial soils under inundation or irrigation.  

e. Halomorphic soils. This type comprises saline soils, both solonchaks 

and solonetzs. The largest part of saline soils in Iran are solonchaks, in 

which sodium chloride is the dominant salt. Iran has its largest 

concentration of salines in the Central Plateau. The salines here 

belong to northern continental ones of Middle and Central Asia, notably 

of Turan. In addition, there are also human-made salines caused by 

irrational irrigation.  

f. Dunes and sandy soils (Fig. 3.4). Iran has considerable areas covered 

with sand and dunes. The largest of these is the Dasht-e Lut, on the 

southern fringe of the Dasht-e Kavir; some smaller areas are scattered 

in the Central Plateau and the coastal plains. Desert sand dunes and 

sandy soils in general, which are not in excessive movement, offer 

more favourable conditions for plant life than fine-textured soils. This is 

because of their capacity to absorb rain water without run-off and their 

lower evaporation rate. On the other hand, rain water accumulates 

here at greater depths and only deep-rooting perennials or shrubs can 

take foothold in this habitat. Accordingly, there is only a small number 

of plant communities specific to sandy soils.  

 

3.1b. Soil factors limiting agricultural production 

 

The soil factors which limit agriculture in Iran are several (Fig. 3.5). Soil 

salinity, alkalinity, and waterlogging affect large areas to the extent that they 
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do not support any crops or other vegetation. In Iran over 15 per cent of the 

land surface, or a total of about 250,000 metres squared, suffers from a 

combination of salinity, alkalinity and water logging (Dewan & Famouri 1964: 

234). Water, or the scarcity of it, is responsible for the greater part of the 

accumulation of salts in the soils of the arid and semiarid parts of Iran.  

Soil infertility and inadequate amounts of plant nutrients in the soils are other 

big limiting factors today, for increasing agricultural production. However, their 

role in the past is unclear, as they may be the result of centuries of over 

farming (Dewan & Famouri 1964: 240). 

 

The absence of organic matter in the soils of some of the arid and semiarid 

areas is another deficiency responsible for low crop production. In general, 

about 85 to 90 per cent of the land surface in Iran, including the cultivated 

areas, contain inadequate organic matter (Dewan & Famouri 1964: 259). In 

general the soils range from almost no organic matter to about two to three 

per cent in some Brown and Chestnut soils or alluvial soils (ibid.).   

Large areas of Iran are affected by water and wind erosion. A soil and water 

conservation program to control erosion is essential before such areas can be 

brought under efficient agriculture (Dewan & Famouri 1964: 234).  

 

 

3.1c. Land use 

 

Desert, wasteland and barren mountain ranges cover about half of Iran’s total 

land area (www.ecogeodb.com). Of the rest in the 1980s: 11 per cent was 

forested; about 8 per cent was used for grazing, and about 1.5 per cent was 

occupied by urban or industrial developments. The remainder included land 

that was cultivated either permanently or on a rotation: about 14 per cent on a 

dry-farming basis; and 15 to 16 per cent with adequate irrigation.  

In most regions the natural cover is insufficient to build up much organic soil 

content, and on steeper mountain slopes much of the original earth has been 

washed away. Although roughly half of Iran is made up of the arid Central 

Plateau, some of the gentler slops and the Gulf lowlands have relatively good 
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soils but poor drainage. In the southeast, a high wind that blows incessantly 

throughout the summer is strong enough to carry sand particles with it, 

destroying vegetation and stripping away the lighter soils of the region.  

In mountain valleys and in areas where rivers descending from the mountains 

have formed alluvial plains, much of the soil is of medium to heavy texture 

and is suited to a variety of agricultural uses when brought under irrigation. 

Northern soils are the richest and the best watered (www.ecogeodb.com). 

 

 

3.1d. Hydrology 

 

There are no major rivers in Iran (Fig. 3.6). Of the small rivers and streams 

only one is navigable, the 830 kilometre long Karun, which today shallow 

boats can negotiate along the 180 kilometre stretch from Khorramshahr to 

Ahvaz (Fig. 3.7) (Oberlander 1968: 273). It originates in the southwestern 

Zagros and flows south to the Shatt Al-Arub (Arvand Rūd), which drains into 

the Persian Gulf (Afary et al. 2006). Other large rivers include the Sefid 

(Sefad) Rūd, which begins in the Alburz Mountains, and flows across the 

Gīlān Plain into the Caspian Sea, and the Zāyandeh Rūd, which is the largest 

river on the Central Plateau. The Zāyandeh starts in the Zagros Mountains 

and travels 400 kilometres eastward before ending in a seasonal salt lake, 

southeast of Isfahan. There are several other smaller rivers that drain into the 

Persian Gulf, and a number of minor rivers that originate in the northwestern 

Zagros or Alburz Mountains, and run into the Caspian Sea (Oberlander 1968: 

273). Most of these are seasonal and variable, and spring floods can do 

enormous damage, while in summer many streams disappear (Afary et al. 

2006). Water is also stored naturally underground, finding its outlet in springs 

and, since the first millennium onwards, by qanats; human-made underground 

water conduits. The largest inland body of water is Lake Urmia in the 

northwest, which covers an area that varies from 5200-6000 square metres 

depending on the season. Other lakes are principally seasonal and dry up in 

summer. All have a high salt content (Afary et al. 2006). 
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3.1e. Climate 

 

The mostly Mediterranean climate of Iran is governed by the pressure 

systems of the westerly cyclones, the Siberian High and the SW Monsoon 

(Kehl 2009: 2). Around 75-per cent of the total land area of Iran is dominated 

by an arid or semiarid climate, with annual precipitation rates from ca. 350 

mm to less than 50 mm. The dryness is caused by intense solar radiation and 

north-westerly to north-easterly winds, which transport dry air masses; and is 

further enhanced by the Alburz and Zagros Mountains, which prevent north-

westerly and westerly depressions from the Caspian and Mediterranean Seas 

from entering the plateau. As a result, regional rainfall and temperatures are 

locally very pronounced (Fig. 3.8 & 3.9) (Kehl 2009: 2). Only the highest 

peaks of the Alburz and Zagros Mountain systems (e.g. Kuh-e Damavand, 

5671 metres; Alam Kuh, 4850 metres; Kuh-e Savalan, 4811 metres; Zardeh 

Kuh 4548 metres) bear small glaciers and exhibit features of active nivation 

and glaciation (Bobek 1968) – or at least they did in the 1960s; unfortunately 

more recent information on the extent of glaciers in Iran is not available (Kehl 

2009: 4-5). 

 

Climatically, Iran experiences a marked seasonality of temperature and 

precipitation regimes, which is emphasized locally by the complex topography 

of the country, maritime influences and seasonal winds (Beaumont 1974: 418; 

Bobek 1968: 281; Ganji 1968: 230; Brookes 1982: 192; Stevens et al. 2001: 

748; Afary et al. 2006). In general, Iranian summers are hot and dry with 

persistent northerly winds (Kendrew 1961: 608). July and August are the two 

warmest months of the year, and average daily temperatures in the hottest 

parts of the country e.g. Abadan, Khuzestan Province, can top 43°C (Ganji 

1968: table 3). January, with the exception of the Caspian Plain, is 

everywhere the coldest month of the year, with mean temperatures varying 

from 20°C in southeast Iran to less than -10°C in Azerbaijan (Ganji 1968: 

220). Officially, the lowest temperature is -36°C, recorded at Bijar, 

northeastern Iran, in January 1964 (ibid.: 233). To the west and the north of 

the Central Plateau, annual temperatures decrease under the influence of 

higher latitudes and also greater altitudes. Generally speaking temperatures 
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decrease over Iran from the southeast to the northwest (Stevens et al. 2001: 

748). The northern and western parts of Iran experience four distinct seasons, 

whilst towards the south and east, spring and autumn become increasingly 

short and ultimately merge into an area of mild winters and hot summers 

(Afary et al. 2006). 

 

Iran is an arid county, with water surpluses existing only in the northern and 

western parts, and precipitation, with the exception of the Caspian area, is a 

winter phenomenon (Beaumont 1974: 418; Brookes 1982: 193; Dewan 1968: 

250). The mean annual precipitation for the entire country is 400 millimetres 

(Ganj 1968: 234), although the average distribution of moisture varies 

considerably throughout the region (Stevens et al. 2001: 748). Shielded by 

mountains, large areas of central, eastern and southeastern Iran receive less 

than 100 mm of precipitation annually, whilst the Caspian region enjoys some 

1980 mm (Afary et al. 2006; Brookes 1982: 193). As a whole, annual 

precipitation generally increases to the north and east, except where the relief 

of the land upsets the regularity in this arrangement (Ganji 1968: 234; 

Stevens et al. 2001: 748). Summer is a dry season all over, with the exception 

of the Caspian area, and “all through the long summer clear skies are 

generally the rule over many places in the interior of the country, where there 

is no chance even of a shower” (Ganji 1968: 241). Iran is subject to disastrous 

floods and droughts, which repeatedly devastate city and farm communities 

(Melville 1984). On the one hand more than 90 per cent of the land areas in 

Iran are arid or semi-arid regions, whilst on the other flooding is one of the 

most prevalent natural disasters occurring in Iran each year (Ghayoumian et 

al. 2005: 493). 

 

During the winter months, the general wind regime is governed by air 

pressure gradients between Siberian anticyclone and equatorial low pressure 

systems (Kehl 2009: 2). In the summer, a strong heat low develops over 

southern-central Iran (Ganji 1968), and a relatively high pressure high prevails 

over Eurasia, resulting in north-easterly to north-westerly winds (Kehl 2009: 2, 
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4). Beginning in October and ending in April westerly winds prevail, caused by 

depressions entering eastern Iran from the eastern Mediterranean (ibid.: 4).  

 

 

3.1f. Vegetation 

 

More than 6000 years of cultivation and intensifying human occupation has 

had a pronounced effect on the distribution of vegetation in Iran, and the 

modern vegetation pattern is thought to bear little resemblance to the original 

cover (Bobek 1968: 281; Dewan 1968: 250). The broad topography and 

varied climate of the country, has resulted in a huge diversification of 

vegetation cover, and more than 10,000 plant species are known from the 

Central Plateau alone (Bobek 1968: 280-1; Dewan 1968: 250). Most species 

belong to the Irano-Turanian group, which dominates the vegetation of the 

interior plains and uplands (Bobek 1968: 280), although the Caspian, Persian 

Gulf and Makran shores are characterized by species from the Euro-Siberian, 

the Nubo-Sindian and Sudanian groups respectively. Bobek (1968: 283) 

divides the types of vegetation in Iran into three main groups, each with its 

own geographical distribution: humid forests; semi-humid and semi-arid 

forests; and steppes and deserts (Fig. 3.10). To these he adds three azonal 

types: sand brushwoods; riparian forests; and salt-marsh brushwoods and 

coastal forests (Bobek 1968: 283).  

 

The ‘Hyrcanian forest’ on the Caspian Plain is the only true humid forest in 

Iran, while extending across southwestern Iran lies the ‘Zagrosian forest’, a 

semi-humid oak forest, which floristically belongs to the Irano-Turanian 

complex (Bobek 1968: 284-5). On the intermediate plateau between the 

Hyrcanian and Zagrosian forests, “nothing but various associations of open 

steppe are to be found nowadays, which gradually taper out towards the 

deserts of the Central Iranian depressions” (ibid.: 286). Two dry forests within 

this area, ‘Juniper forest’, which once covered the southern slopes of the 

Alburz chain and the main ranges of Khurasan; and ‘Pistachio-Almond-Maple 

forest’ which have covered the more elevated parts of the interior plateau 
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(ibid.: 287). Similar, but very much thinner, stands of pistachio trees, together 

with shrubs of several almond and other drought-resistant species, are found 

combined with steppe- and even true desert-formations, at lower elevations 

throughout the Central Plateau. The vegetal ground cover on the latter can be 

zoned according to the limits of potential rainfall cultivation, which is around 

the 250-300 mm isohyet (Oates & Oates 1976: 111). Down to this boundary, 

the steppe cover is “very closely set and well developed” (Bobek 1968: 288). 

Within this cover lie two main groups of associations: spiny bushes or 

brushwood (of tragacanthic or other astragulus and acantholimon sp.) and 

other dwarf bushes and many grassy and herbaceous species; and 

artemisieta-type associations, where the scrub is composed of wormwood 

and other variable species of dwarf bushes, grasses and herbs. The latter 

generally covers areas of medium elevation, while the former association 

typically occupies elevated areas of 1800 metres or more (ibid.: 289). Outside 

the limits of potential rainfall agriculture, the steppe gradually thins out. There 

is an intermediate zone – the ‘desert steppe’ – where the patches of bare-

ground become considerable; and finally, bare ground and the “true desert” 

predominates (ibid.: 289). The largest area without any vegetation is the 

depression of the southern Lut, which declines to around 250 metres in 

altitude. The Great Kavir of Khurasan is also devoid of vegetation, as are 

many other small kavirs all over the central part of the Plateau (ibid.: 288-9). 

 

 

3.1g. Fauna  

 

There is an abundance of fauna in Iran: 129 species of mammals have been 

recorded including: 15 insectiovora, 21 chiroptera, 28 carnivora, 1 pinniped, 

12 ungulta, 4 lagomorpha and 48 rodents (Misonne 1968: 294). By 

comparison Europe, which is 4 times larger and much more varied 

ecologically, contains only 133 species, very few more than are found in Iran. 

Iranian carnivora include tiger, lion (now extinct), cats, leopards (including 

cheetahs), lynx, wolves, hyena and various foxes (ibid.: 295). Ungulates 

include onager on the edge of the central desert), red and roe deer in the 
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higher levels of the Caspian forest, and fallow deer in the foothills of the 

western Zagros. Gazelle (Gazella subguttorisa & G. gazelle bennetti) and wild 

goat (Capra hircus aegagrus) and sheep (Ovis orientalis) are numerous. 

 

There are a wide variety of lagomorpha and rodents (Misonne 1968: 296). 

Pikas (Ochtona rufesceus) inhabit the mountains of central and eastern Iran, 

as well as eastern parts of the Alburz, and six different types of jerboas are 

present; although the majority of Iranian rodents (~90%) are jirds and gerbils 

(ibid.: 296). As regards chrioptera and insectivore, little is known, although at 

least 21 species of bat have been recorded, and hedgehogs are common 

(ibid.). 

 

Studies made in Khuzestan Province, the Baluchistan region, and along the 

slopes of the Alburz and Zagros chains, have revealed the presence of a 

remarkably wide variety of amphibians and reptiles including toads, frogs, 

tortoises, salamanders, boas, racers, rat snakes (Phytas), cat snakes 

(Tarbophis fallx) and vipers (Anderson 1968: 306). There are approximately 

450 species of birds, which can be broadly divided into residents, summer 

visitors, winter visitors and passage migrants (Read 1968: 372). The species 

are broadly similar to those found in Europe, with the addition of species from 

Siberia, Africa and southern Asia (ibid.). In terms of aquatic wildlife, seals 

(Phoca caspica) and 30 species of fish are known from the Caspian Sea, and 

some 200 varieties of fish, shrimps, lobsters and turtles live in the Persian 

Gulf (Misonne 1968: 295). 

 

 

3.2. Chronological considerations 

 

A plethora of chronological periodizations for the Neolithic has been proposed 

during the history of archaeological research in Iran (e.g. Schmidt 1935; 

Ghirshman 1938; McDonald 1942; Majidzadeh 1981; Hole 1987; Voigt & 

Dyson 1992; Malek Shahmirzadi 1995), each with its own strengths, 

weaknesses and terminological idiosyncrasies (Potts et al. 2006: 6), and it is 
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important to establish the chronology that will be used in this research. The 

generally excepted prehistoric sequence for Iran has been built up from the 

results of excavations carried out through the 1920s to 1970s, archaeological 

surveys (e.g. Sumner 1990), soundings and the reassessment of published 

material (e.g. Voigt & Dyson 1992). However, despite the compilation of these 

general syntheses, the relative chronology of Iran remains somewhat 

contested, and reinterpretations continue to be proposed (e.g. Fazeli 2001; 

Alizadeh 2004; Coningham et al. 2004; 2006; Potts & Roustaei 2006; Fazeli et 

al. 2009). The uncertainties in the relative and absolute chronology of Iran 

reflect a number of factors, including the size and geographical diversity of the 

country; the limited amount of fieldwork that has been undertaken in the 

region; and restriction of the country to foreign archaeologists following the 

1979 Islamic Revolution (Potts et al. 2006: 6).  

 

In recent years, a number of new research projects have commenced work in 

Iran, and have greatly expanded our knowledge of the archaeological material 

sequences and absolute chronologies of the region. Examples include: The 

Mamasani Archaeological Project excavation at Tal-e Nurabad and Tal-e Spid 

(Potts et al. 2006); the joint Oriental Institute-Iranian Cultural Heritage and 

Tourism Organisation (hereafter ICHTO) excavations of Tall-e Jari A and B, 

Tall-e Bakun A and B and Tall-e Mushki on the Marv Dasht Plain (Alizadeh 

2004; 2006); the Central Zagros Archaeological Projects excavations at 

Sheikh-e Abad and Jani (Matthews et al. 2010); and Hassan Fazeli (2001; 

Fazeli et al. 2001; 2002; 2005; 2009) and Robin Coningham’s work on the 

Central Plateau (Coningham et al. 2004; 2006). 

 

 

3.2a. Proposed chronologies for the prehistoric period of Iran 

 

Traditionally, the chronology of prehistoric Iran has been based entirely on a 

series of relative ceramic chronologies. The first archaeologists to propose 

cultural sequences for the prehistory of Iran were Erich Schmidt and Roman 

Ghirshman, both of who conducted archaeological investigations on the 
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Central Iranian Plateau. Prior to this, information relating to the study of the 

cultural sequences of Iran was based on surface surveys, which had been 

conducted by French archaeologists in southwestern Iran during the early 

twentieth century (Fazeli 2001: 30). Schmidt’s excavations at Cheshmeh Ali 

on the Tehran Plain (see p. 303), led him to distinguish three cultural periods: 

the Islamic Period; Parthian Period; and Neolithic and Chalcolithic Period. He 

divided the latter into three main phases on the bases of the ceramic typology: 

the first phase, represented by the cultural deposits of the lowest levels at 

Cheshmeh Ali, yielded a crude, handmade ware, painted with simple 

geometric motifs; the second phase was distinguished by the appearance of 

black-on-red painted wares (hereafter ‘Cheshmeh Ali Ware’); and the third 

phase was characterized by the introduction of wheel-made ceramics. 

 

Ghirshman (1938) utilized material from the North and South Mounds at Sialk 

to distinguish four main cultural periods: Sialk I and II (corresponding to the 

Late Neolithic) on the North Mound; and Sialk III (Chalcolithic) and Sialk IV on 

the South Mound. Ghirshman used site type terminology to construct this 

chronology, and divided each period into several subphases. Schmidt (1935; 

1936) and Ghirshman (1938) both attempted to indicate the emergence of 

new cultural groups on the Central Plateau, corresponding to the different 

periods they had identified at Cheshmeh Ali and Tepe Sialk. Their work has 

strongly influenced later work, and subsequent archaeologists have employed 

their approach to study the prehistory of the region (e.g. McCown 1942a; 

1942b; Majidzadeh 1981; Dyson 1991; Malek 1995).  

 

Donald McCown (1942a; 1942b) divided the prehistoric sequence of Iran into 

two main cultural areas: western and southern Iran, which was characterized 

by the ‘Buff Ware Culture’; and north-central and northeastern Iran, which 

contained three successive cultures named after the type sites: Sialk, 

Cheshmeh Ali and Hissar. McCown then compared the prehistoric cultural 

sequences of western and southern Iran, and north-central and northeastern 

Iran with each other (Table 3.0). 
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After the Second World War, research in Iran entered a new stage and many 

sites were excavated and surveyed (Fazeli 2001: 32). This, in conjunction with 

the introduction of the 14C-dating method, led to the development of new 

chronologies for Iran, and the dismissal of McCown’s chronology (Table 3.1) 

(e.g. Dyson 1968; Majidzadeh 1976; 1981). From the 1970s, Iranian 

archaeologists proposed their own chronologies for the Central Plateau, with 

‘types’ and ‘cultures’ used to indicate temporal and spatial relations between 

different cultural groups (e.g. Negahban 1977; Majidazadeh 1976; 1981; 

Malek Shahmirzadi 1995). Yousef Majidzadeh (1981), based on Negahban’s 

(1974; 1977; 1979) excavations at Zagheh on the Qazvin Plain (see Chapter 

Six) assumed Zagheh to be a key site in the study of the Neolithic culture of 

the Central Plateau; although more recent excavation has shown the site to 

have been entirely Transitional Chalcolithic (Fazeli et al. 2005). Majidzadeh 

thus divided the prehistory of the Central Plateau into four distinct periods: 

Archaic Plateau, Early Plateau, Middle Plateau and Late Plateau (Table 3.2). 

Majidzadeh (1981: 141) proposed that the Archaic Period was to be found 

only at the lower levels at Zagheh, and preceded the earliest levels at Sialk; 

the Early Plateau Period incorporated Sialk I and II, Cheshmeh Ali and 

Zagheh Levels VIII-I; the Middle Plateau Period was characterized by Sialk 

III1-5; and the Late Plateau Period was represented by Sialk III6-7b, Hissar IC 

and Ghabristan IV. 

 

Malek Shahmirzadi (1995) also proposed a cultural sequence for the Central 

Plateau based on ceramic characteristic. His chronology comprised the: 

Formative Period; Zagheh Period, Cheshmeh Ali Period (Sialk I & II); and the 

‘Wheel-Made Pottery’ Period (Fazeli 2001: 37-8). Based on ceramic 

characteristics, Malek Shahmirzadi proposed that the inhabitants of 

Mehranabad on the Tehran Plain, were the first human inhabitants of the 

Formative Period; the Zagheh Period began with the introduction of Zagheh 

Ware at Zagheh; and the Cheshmeh Ali Period was represented by Sialk 

Periods I and II which Malek conflated, and by the site of Cheshmeh Ali (see 

Chapter Six). Majidzadeh’s (1981) and Malek Shahmirzadi’s (1995) 

assignment of Zagheh to a period which preceded the foundation of Sialk 
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North, when subsequent excavations and 14C dating have established that 

Zagheh was entirely Transitional Chalcolithic (Fazeli et al. 2005) and Sialk I 

was actually earlier, demonstrates the dangers of building chronologies for a 

region based purely on ceramic types. 

 

Increasingly, scholars have utilized both the relative dating methods of 

stratigraphy, cross-dating and seriation, and absolute dating techniques to 

propose chronologies for the prehistoric period of Iran (e.g. Hole 1987; Voigt 

& Dyson 1992; Fazeli 2001; Coningham et al. 2004; 2006; Fazeli 2009). Hole 

(1987) defines the period from 8000-4000 BC in western Iran as the ‘village 

period’, which he subdivided into the Initial, Early, Middle and Late Village 

periods (Table 3.3). Hole adopted this terminology because he felt that to use 

the terms ‘Neolithic’ and ‘Chalcolithic’, as most authors do to refer to the 

earlier and later stages of the village period, “conflates chronology and 

cultural development” (1987: 30). Hole was also opposed to the use of 

regional sequences, which he believed were confusing to the non-specialist. 

Hole argued that the benefit of his system is that it is devoid of cultural 

implications, and “allows us to look at four slices of time for purposes of cross-

regional comparisons, while retaining the ability to examine development and 

change within each region” (1987: 30). 

 

Mary Voigt and Robert Dyson (1992), constructed a general chronology for 

Iran, which focused on regional sequences that they linked “through the 

traditional archaeological method of artefact comparisons” and 14C dating 

(Voigt & Dyson 1992: 122). They placed a particular emphasis on ceramics in 

the construction of their relative chronology, because of the good 

representation of pottery in the archaeological record after 6500 BC: the fact 

that the ceramic industry generally changed more rapidly than any other 

artefact category; and because of their first-hand knowledge of Iranian 

ceramics (Voigt & Dyson 1992: 123). The resulting table (Table 3.4) shows 

the temporal position of Neolithic sites in Iran using their stylistic relationships. 

Voigt and Dyson deliberately constructed the table using no lines, since they 



 

 

 

 
 

104

believed “that the available evidence does not permit such delimitations” 

(ibid.: 127). 

 

Hassan Fazeli’s (2001) cultural sequence for the Central Iranian Plateau is 

“based on the relative dating methods of stratigraphy, cross dating and 

seriation methods” (Fazeli 2001: 39). Utilizing the results from the excavation 

of Cheshmeh Ali in 1997 and settlement survey on the Tehran Plain, Fazeli 

(2001: 40-1) defines the Late Neolithic and Chalcolithic sequence of the 

Tehran Plain as covering the following periods: Late Neolithic (ca. 6200-5500 

BC); Transitional Chalcolithic (ca. 5500-4700 BC); Early Chalcolithic (ca. 

4700-4000 BC); Middle Chalcolithic (ca. 4000-3500 BC); and Late Chalcolithic 

(ca. 3500-3000 BC). Fazeli (2001: 41) introduced the ‘Transitional 

Chalcolithic’ Period, to account for the clear distinction between its ceramics 

and those of the preceding Late Neolithic Period. The Transitional Chalcolithic 

Period is defined by the presence of ‘Cheshmeh Ali Ware’; a black-on-red 

ware, “typified by the use of elaborate designs and high technical quality 

(Fazeli et al. 2004: 17). In comparison, the characteristic ware of the Late 

Neolithic Period was a handmade, chaff-tempered software, usually coated 

with a thick slip, and fired in variable conditions (ibid.). 

 

More recently, Fazeli (2009) has revised his chronology in light of evidence 

from excavations at Chahar Boneh, Ebrahim Abad (Fazeli et al. 2009), 

Zagheh and Ghabristan (Fazeli et al. 2005) on the Qazvin Plain; and at 

Cheshmeh Ali (Fazeli et al. 2004) and Tepe Pardis (Coningham et al. 2004; 

Fazeli et al. 2007) on the Tehran Plain. The ceramic variation at the two newly 

excavated sites of Chahar Boneh and Ebrahim Abad allowed Fazeli (2009: 7) 

to divide the Late Neolithic (ca. 6000-5200 BC) into two subphases: Late 

Neolithic I (ca. 6000-5600 BC) and Late Neolithic II (ca. 5600-5200 BC). 

Based on the evidence from excavations at Ebrahim Abad, Tepe Pardis and 

Cheshmeh Ali, and the new dates for Zagheh (which placed the lower levels 

much later than expected at 5200 BC; Fazeli et al. 2005), Fazeli was also able 

to divide the Transitional Chalcolithic into two phases: Transitional Chalcolithic 

I (5200-4600 BC) and Transitional Chalcolithic II (4600-4300 BC).   
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3.2b.The Neolithic and Chalcolithic periods – some definitions 

 

As the above study demonstrates, the chronology of prehistoric Iran is 

regionally defined, and based upon local and site type names. It is also clear 

that date ranges and nomenclature of relative chronologies for the country 

differ substantially (Table 3.5). Consequently, these conventions are not 

utilized in this study and instead Neolithic and Chalcolithic terminology is 

adopted, for ease of application and interregional comparison. In this thesis 

the terminology used will be as follows. The Early Neolithic (ca. 8000-6500 

BC) period will be defined as that which immediately preceded the 

introduction of pottery. Elsewhere in the literature this period is referred to as 

both the ‘Pre-Pottery’ (e.g. Hole 2004) or ‘Aceramic’ Neolithic (e.g. Dupree 

1980). The Early Neolithic period began in Iran ca. 8000 BC and ended ca. 

6500 BC with the introduction of pottery (Hole 2004). The Middle Neolithic (ca. 

6500-6200 BC) period will be characterized by the introduction of handmade, 

chaff-tempered pottery (Hole 2004). The Late Neolithic (ca. 6200-5500 BC) 

period will be defined as the final phase of the ceramic Neolithic, and is 

characterized by thick, low-fired, chaff tempered pottery, sometimes coated 

with a fine sand slip (Fazeli 2001: 41). It was a period of greater complexity 

and networks, anticipating the introduction of metallurgy. It should be noted 

that these are working definitions, which will be returned to later in the course 

of this thesis, and discussed in light of the cleaning and analysis of 14C dates 

for Iranian Neolithic sites, and new findings from the Central Plateau.  

 

The Late Neolithic period on the Central Plateau is generally equated with 

Sialk I Ware, and the Transitional Chalcolithic period by the appearance of 

Cheshmeh Ali Ware. It is therefore relevant to give a short description of 

these two types of ware, as their presence/absence will be noted at sites 

throughout this thesis.  Sialk I Ware belongs to the Neolithic ‘software’ 

tradition, and is handmade, usually from poorly levigated clay, and chaff-

tempered (Fig. 3.11 & 3.12). The surfaces are generally wet-smoothed by 

hand, but on certain examples the polishing is done with a damp cloth or 

piece of leather (Ghirshman 1938: 11). The surfaces are irregular with pot 
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marks and bumps from where the chaff has burnt out. Generally, the interior is 

better treated than the exterior. The colour of the vessels varies; the earliest 

vessels are dirty and dark, but this progressively improves, and later vessels 

are white. It is irregularly fired, and the middle sections crumble under the 

fingers (ibid.: 12). Deep bowls with concave bases, which are designed to be 

placed in the floor, pedestalled vases and pot stands are the main shapes 

(ibid.: 12-13).  Vessels were decorated on interior and/or exterior surfaces 

with geometric motifs in brown or, more commonly, black paint. Typical 

decoration includes large horizontal bands of crosshatches, triangles, or 

straight lines with festoons, which may be derived from basketry (ibid.: 13). 

Black spots, circles, asymetrics and superimposed chevrons are also 

common. 

  

Cheshmeh Ali Ware (Fig. 3.13 & 3.14) is a finely-made, painted, Transitional 

Chalcolithic Ware, which characterizes the upper part of Cheshmeh Ali IA, 

and is found distributed across the Central Plateau, from the Gorgan Plain to 

the east, to the Qazvin and Kashan Plains to the west (Dyson 1991; Wong et 

al. 2010). It is highly distinctive, and this, in conjunction with its widespread 

distribution across northern Iran, means that it is used as a marker of the 

Transitional Chalcolithic Period. The most readily identifiable examples have 

an orange-to-red surface colour, with a thin light-grey or pink core (Dyson 

1991). The vessels are handmade and tempered with grit or very fine chaff. 

The thinnest, densest pieces, produce a ‘clink’ when struck (Voigt & Dyson 

1992: 166). The surfaces are usually smoothed or lightly burnished, and often 

show signs of scraping (Malek Shahmirzadi 1977: 279, 281-4; Dyson 1991). 

Vessels range from egg-shell thin cups to storage vessels with sides two to 

three centimetres thick, and are characterized by a number of handless forms, 

the most common of which are small round-bottomed cups with flaring rims, 

large spherical bowls and pedestalled vases (Matney 1995). Cheshmeh Ali 

Ware, however, is best identified by its painted decoration. The paint itself is 

either dark brown, or more commonly black. The majority of the sherds are 

painted with geometric motifs including parallel bands, vertical strips, 

diagonals, wavy lines, chevrons, dots and dashes (Voigt & Dyson 1992: 166). 
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Another frequent motif is a floral or tree pattern, with curling branches 

emanating from a vertical stalk or trunk. Less common, are animal designs, 

including goats, ibexes, gazelles, snakes and stylized birds, which are 

arranged in horizontal bands across the vessels (Matney 1995). Vessel 

interiors are often painted in bands with cross-hatching which, like the 

decoration on Sialk I Ware, closely resembles basketry work.  

 

 

3.3. The Iranian Neolithic 

 

The second part of this chapter contains a review of the key Early Neolithic 

sites of Iran and the surrounding areas. The Neolithic of Iran has been poorly 

studied, particularly the earlier periods. In part this is due to the closure of Iran 

to western archaeologists for many years, following the 1979 Islamic 

Revolution, a period when Neolithic archaeology was becoming increasingly 

popular elsewhere in the world; and an emphasis among Iranian 

archaeologists on the Islamic period. As a result, most prehistoric sites were 

excavated prior to 1980, and these excavations, although well done for their 

day, cannot compare in terms of stratigraphic control and efficiency of 

recovery, to the standards established since then (Voigt & Dyson 1992: 122). 

The situation is slowly changing, and a number of Neolithic sites have been 

excavated by both Iranian and joint foreign and Iranian teams since 2000 (cf. 

Azamoush & Helwing 2006). However, it does mean that there has been an 

absence of archaeological science over the last 30 years, particularly in 

regard to radiocarbon dating, 

 

Due to the size and diversity of Iran, it is useful to conceive of a number of 

core regions during the Neolithic (Hole 1987; 2004). Principally these are the 

northern, central and southern Zagros; the Khuzestan lowland; southern Iran; 

and the northeastern Kopet Dag region. Most of southern Iran, which is likely 

to have been important in the Neolithic, has not been sufficiently investigated, 

a situation which also pertains to much of northeastern Iran (Hole 2004). 

Outside of Iran proper, the Neolithic of Turkmenistan shares many similarities 
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with that of northeastern Iran, while Afghanistan – potentially important – has 

seen little research (cf. Dupree 1980). The Early Neolithic site of Mehrgarh is 

known from Baluchistan, but is poorly reported. To the west of Iran, many 

western Zagros sites in modern day Iraq and Turkey share similarities with the 

Iranian Neolithic sites in the Zagros Mountains (Hole 2004). 

 

Only a handful of Early Neolithic sites have been excavated and published in 

sufficient detail to inform on the development of the Neolithic in Iran (Fig. 

3.15). All are situated in areas where dry farming was possible (Hole 1998). 

From north to south these sites are: Hajji Firuz Tepe on the Solduz plain of 

Azerbaijan, Tepe Sarab on the Kermanshah plain, Tepe Guran in the Hulailan 

valley, Tepe Asiab, Ganj Dareh and Tepe Abdul Hosein in the mountains of 

Luristan, Ali Kosh on the Deh Luran plain, Chogha Bonut on the Susiana 

plain, Tall-e Mushki and Tall-e Jari A and B in the Kur River Basin, Tol-e 

Nirabad on the Mamasani Plain and Sang-e Chakmaq West in northeastern 

Iran.  Final reports are available only for Hajji Firuz Tepe, Tepe Abdul Hosein, 

Ali Kosh, Chogha Sefid and Chogha Bonut, although important aspects of 

each of the others have been published. In terms of key sites excavated 

outside the borders of modern Iran, a final report is available for Jeitun, 

Turkmenistan, but none available for Mehrgarh, despite the site’s potential.  

 

  

3.3a. Northwestern Iran 

 

Hajji Firuz Tepe  

Hajji Firuz, the earliest well-excavated site in northwestern Iran, is located 

approximately 13 kilometres southwest of Lake Urmia, in the northeastern 

part of the Solduz Valley. Five other excavated sites have Hajji Firuz material 

at their bases, including Dalma Tepe (Young 1982), Yanik Tepe (Burney 

1964), Hassanlu (Dyson et al 1969) and Tepe Seavan (Solecki 1969), but little 

of these have been reported (Meadow 1975: 282). Burney (1964: 55; see also 

Meadow 1975: 282) reports that more than four metres of alluvium have 

covered the plain surrounding Yanik Tepe since it was first occupied, and the 
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burial of early sites under alluvial deposits is a potential problem in the region 

(Brookes et al. 1989)  

 

Sir Aurel Stein first investigated the site in 1936 (Stein 1940: 382-404). It was 

later excavated by members of the University of Pennsylvania Museum 

between 1958 and 1968 (Voigt 1983), who assigned the site a Late Neolithic 

date of ca. 6000-5700 BC. Hajji Firuz is an oval-shaped mound which, in its 

truncated state, approximately 140 metres by 200 metres in plan (Fig. 3.16) 

(ibid.: 7). It stands at just over 10 metres above the modern plain surface, and 

contains at least 12 metres of cultural deposits, of which the bottom 3-4 

metres are Neolithic (ibid.: 18). The actual depth of the mound is not known, 

since the presence of a high water table prevented excavation to virgin soil. 

The site is situated within easy access to a variety of environments, and 

today, within a radius of five kilometres lies a perennial freshwater lake, 

marshes, a river, and cultivated fields (Meadow 1975: 282). Irrigation is not 

essential to farming in the area on the hillside slopes, although grain is usually 

irrigated on the plain (Hole 1987: 44).  

 

The inhabitants of Hajji Firuz pursued an agro-pastoral economy 

supplemented by foraging and hunting (Voigt 1983: 295). Domesticated crops 

include emmer wheat, hexaploid bread wheat and lentil. Remains of rye and 

knotgrass – weeds that grow in cereal fields – were also present in the 

botanical remains. Hole (1987: 44) suggests that the agricultural fields were 

probably the muddy shores of seasonally filled fresh-water basins surrounding 

the site. Two types of wild pulses were found, which may have been gathered 

for food (Voigt 1983: 295). The inhabitants of Hajji Firuz kept domesticated 

dogs, goats, sheep and pigs, the latter three of which Meadow (1983: 401) 

reports were in the early stages of domestication. Goat bones outnumber 

those of sheep, but the sample is too small to say more than that they are 

equally represented (Meadow 1975: 282). Both small and large wild game 

were hunted, including red deer (Cervus elaphus, L.), aurochs (Bos 

primigenius boj.), wild boar (Sus scrofa L.), hare (Lepus capensis L.), badger 

(Meles meles L.) and red fox (Vulpes vulpes L.). No specimens of roe and 
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fellow deer or gazelle were identified, and they are assumed to have been 

absent from the area around Hajji Firuz as they are today (Voigt 1983: 270). 

 

If bone weight is taken as a valid indicator of meat yield, then wild ungulates 

(including wild boar) contributed about 25 per cent of the total meat yield 

(Meadow 1975: 282). If, however, bone counts are taken as a base, and 

multiplied by factors expressing the relative weights of different species, then 

the yield from wild ungulates approaches, and even exceeds, 50 per cent. 

Thus, it is difficult to quantify the importance of wild species to the subsistence 

economy of the inhabitants of Hajji Firuz (ibid.: 282). Hole (1987: 44) has 

suggested that Hajji Firuz was inhabited by semi-transhumant pastoralists, 

who had permanent villages in the lowlands, but moved seasonally into the 

mountains to graze their animals. A similar practice has until recently been 

followed by modern Kurdish tribes living in the region (Hole 1987: 43). 

 

The Neolithic period at Hajji Firuz is divided into 12 building phases labelled A 

(earliest) to L (latest), of which phase C is the best known. Buildings were 

generally similar in size and plan, consisting of free-standing, square or 

rectilinear houses, which ranged from five to eight metres in length (Meadow 

1975: 226; Voigt 1983: 31-6). The buildings were separated by alleyways or 

large open spaces, and all were similarly aligned, with walls running in 

approximately cardinal directions (Voigt 1983: 306). Internally, the buildings 

were divided by short partition walls into two distinct areas which, on the basis 

of artefact typology and decoration Voigt (1983: 101) described as a ‘storage’ 

and ‘living’ room. Features include hearths and bins, and many of the houses 

had adjoining ‘courtyards’. Two non-domestic structures were identified, the 

smaller of which (Structure VII) had no defining features and was probably 

used for storage (ibid.: 207). The other, larger, building (structure VI) had a 

number of unusual interior features including a hearth, a low plaster platform 

with a central depression flanked by two blocks, a large number of food 

vessels and clay ‘tokens’ and some human burials. Voigt (1983: 315) 

suggests the building had a special function, perhaps serving as a meeting 

house, a women’s menstrual hut or a ritual structure.    
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Only the pottery from the later levels at Hajji Firuz was sampled, and the 

descriptions given cannot be taken as representative of the whole 

assemblage (Voigt 1983: 97). The pottery was handmade, poorly fired and 

chaff tempered, with vessels manufactured either by freehand forming, or a 

combination of freehand forming and basket moulding (ibid.: 149). The 

majority of the vessels were burnished on both external and internal surfaces, 

and larger vessels were wet smoothed. Most vessels were decorated with a 

red or brown slip. Vessel sizes range from miniatures, with rim diameters of 

less than 8 centimetres, to very large with rim diameters of over 50 

centimetres, and some vessels were over 1-metre high. Common forms 

include carinated and straight-sided ‘cups’ or small bowls, open and closed 

bowls, trays, husking trays, collared jars and large pithoi. Decoration included, 

painted designs and, more rarely, incision (Voigt 1983: 99-102). Other baked-

clay artefacts include arrow-shaft straighteners; miscellaneous geometrics or 

‘tokens’, which were possibly ‘memory aids’ in an early recording system (cf. 

Schmandt-Besserat 1977); sealings; ‘stamps’, and a large number of spindle 

whorls (Meadow 1975: 282; Voigt 1983: 168). Unbaked and lightly-fired clay 

was used to produce animal and highly-schematic human figurines, including 

T-shaped figurines (Voigt 1983: 175-8). 

 

The chipped-stone industry is described by Voigt as “quantitatively and 

qualitatively poor” (1983: 218), which is probably due to the lack of local, good 

quality stone. Most of the flint at the site would have to of been imported from 

outside the Ushnu-Solduz Valley, probably somewhere else in the Zagros. 

Obsidian was recorded from the site, which was sourced from at least two 

regions: one in the Lake Van region of eastern Turkey; and the other in the 

area of the Urmia Basin (Voigt 1983: 220). The industry is predominantly 

blade-based, and common tools include sickle blades, backed blades, 

retouched blades, reaming tools and geometrics in the form of trapezes (ibid.: 

224).There is a general lack of cortical pieces, which suggests that the initial 

stages of core preparation occurred elsewhere, perhaps at or near the source 

of the raw material (ibid.: 227). In terms of artefact counts, obsidian pieces 

slightly outnumber those of flint, although obsidian only accounts for 31 per 
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cent of the assemblage by weight (Voigt 1983: 224). There is a scarcity of 

chipped-stone artefacts at Hajji Firuz compared to other contemporary sites 

(e.g. Ali Kosh, Tepe Sabz) which is probably explained by the lack of local flint 

sources (Hole et al.1969; Voigt 1983: 221). 

 

Thirty-six ground stone artefacts were recovered, of which nearly 70 per cent 

were grinding tools (e.g. querns, mullers, mortars, pestles) (Voigt 1983: 245). 

No luxury items of ground stone, such as jewellery or stone bowls, were 

found, which is probably due to the lack of locally available suitable stone. A 

unique type of artefact were ‘stamps’ – large, rectangular blocks engraved 

with linear patterns – which may be related to the stamp seals that are found 

at contemporary sites in Mesopotamia and Anatolia (Voigt 1983: 259). 

 

The majority of the bone artefacts were awls, which were presumably used for 

skin processing and the manufacture of textiles and baskets; although some 

may have been used as ornaments, applicators for cosmetics, or clasps or 

belt fasteners (Voigt 1983: 204). Only two types of shell artefacts were found: 

disc beads made from mother of pearl, which probably came from local 

freshwater clams; and a cowry shell bead or pendant, sourced from either the 

Persian Gulf or the Mediterranean.   

 

Fifteen burials, containing the remains of at least fifty-three individuals, were 

recovered, all of which were confined to domestic houses (Voigt 1983: 60, 

77). Bones were disposed of in a variety of ways, but most individuals were 

placed in ossuaries, usually in the form of bins or platforms, although in one 

case a large storage jar was used as a receptacle, and in other buildings 

bones were strewn on the floor. The skeletons that were articulated were laid 

in a flexed position, usually on their left side, with their torsos lying roughly 

north–south, and their heads to the north. Grave goods were relatively simple 

– typically small pottery vessels and clay spindle whorls, but occasionally 

tools – and were generally limited to large multiple burials (ibid.: 74). 
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3.3b. Central western Iran 

 

Tepe Sarab 

Tepe Sarab is located in the Mahidasht region of the central Zagros 

Mountains. The site is a very low mound, with two ‘lobes’ separated by a 

central north-south depression (Voigt & Dyson 1992: 157). It was originally 

excavated in the early 1960s under the direction of Robert Braidwood 

(Braidwood & Howe 1960; Braidwood et al. 1961), and was excavated again 

in 1978 by Louis Levine. Braidwood’s earlier investigation identified only an 

Early Neolithic occupation, whilst Levine’s revealed the presence of a distinct 

Early Neolithic and Middle-Late Neolithic occupation lying side by side. No 

botanical remains were recovered from the site, although it did yield many 

animal bones (Braidwood et al. 1961: 2009), particularly goats, which 

outnumbered sheep by about four to one (Legge 1996: 248). Legge (1996: 

249), who analysed the faunal assemblage, suggests that the herd 

demography of the goats is consistent with that of a managed herd, and that 

the domesticated status of the sheep can be assumed as well. Gazelles were 

the principal wild species exploited (accounting for 12.3% of the animal 

remains), whilst cattle, pig and deer were uncommon (ibid). There was a great 

concentration on the exploitation of local land snails, which until recently were 

collected and eaten in great numbers by villagers in Kurdistan and Luristan 

(Braidwood et al. 1961: 2009). 

 

Braidwood’s original excavation recovered no architecture, with occupation 

represented by a series of ashy layers and a semi-pit structure, which led  

Braidwood (2001: 1961) to conclude that the site was only semi-permanently 

occupied. Frank Hole (1987: 47) has suggested, by ethnographic analogy with 

modern Kermanshah herders that the ash layers are the remains of seasonal 

campsites, occupied by transhumant pastoralists who constructed houses of 

reeds which they burnt on leaving.  

 

Levine’s later excavation identified both an Early Neolithic – as encountered 

by Braidwood (Braidwood et al. 1961) – and a Middle-Late Neolithic deposit. 
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The Middle-Late Neolithic deposits displayed some fragmentary evidence of 

mudbrick architecture, which suggests that the site may have been occupied 

for longer durations during this period. However, Hole (1987: 47) believes it 

unlikely that it was ever permanently occupied, as winters on the Kermanshah 

Plain are harsh, with temperatures reaching as low -20°C. The Middle 

Neolithic levels were characterized by a chaff-tempered ‘Buff’ and ‘Sarab 

Standard Painted’ Ware; and the Late Neolithic by ‘Red Slipped’ Ware, ‘Sarab 

Linear Painted’ Ware and ‘Black-Slipped’ Ware (Voigt & Dyson 1992: 157). 

Other small finds include animal and human clay figurines, including T-shaped 

(Alizadeh 2003: 6), chipped-stone tools in flint and obsidian, and finer works in 

ground stone, which Braidwood et al. (1961: 2008) believed shared strong 

similarities with elements from Jarmo, Iraq. 

 

Tepe Guran  

Tepe Guran lies in the Hulailan Valley of Luristan, western Iran, approximately 

65 kilometres south of Kermanshah, at an elevation of 950 metres (Meldgaard 

et al. 1963: 104). It was excavated in 1963 by a Danish team under the 

direction of Mortensen (1964, 1974). It is a small mound, which measures 100 

metres by 80 metres, and contains some 6-7 metres of cultural deposits, that 

span an occupation of at least 700 years. Twenty one architectural levels (A-

V) are identified, of which levels D-V are Neolithic. The excavator dated the 

site to ca. 7300-6000 BC (Mortensen 1964: 30).  

 

Botanical remains were only recovered from the later deposits, and evidence 

the cultivation of possibly domesticated two-row hulled barley, wild two-row 

barley, and the collection of pistachio (Mortensen 1974: 24). Domesticated 

goats were present from the earliest levels, where they represent 80-100 per 

cent of the ungulate remains, and wild animals, with the exception of gazelle, 

were rare (ibid): a few foxes and hares were recorded, but these may be 

intrusive (Bökönyi 1969: 4). In later levels, the importance of gazelle 

increased, and by the sixth millennium BC the ratio of goat to gazelle was 

roughly equal (Mortensen 1974: 25). The increase in the consumption of 

gazelle was accompanied by a corresponding increase in red deer, wild cattle, 
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wild pig, fox and wolf, and the profuse collection of the land snail Helix 

salominiaca. The change in subsistence – both in terms of a greater emphasis 

on hunting, and an increase in the species utilized – led Mortensen (1974: 24) 

to suggest that Tepe Guran transformed from a semi-permanent site, 

occupied by transhumant pastoralists, to a permanent site occupied by 

inhabitants who were more dedicated to cultivation, and had to venture further 

afield to gather wild resources; a conclusion supported by the fact that the first 

evidence of cereal cultivation roughly corresponds with the appearance of 

more substantial architecture, around 6200 BC. 

 

The earliest settlement at Guran (levels Q-V) was made up of small 

rectangular and sub-rectangular wooden huts, with two or three rooms, which 

were spaced apart from each other, (Meldgaard et al. 1963: 110; Mortensen 

1974: 21). The remains of straw-tempered mudbrick houses with stone 

foundations first appear in Level P alongside the wooden huts (Meldgaard et 

al. 1963: 110). For a short period both architectural traditions were in use 

together, but from Level M onwards all structures were of mudbrick (ibid.: 110-

11). Generally rooms were small with rather thick interior walls, sometimes 

with recesses for low benches, tables, or openings to domed ovens. In later 

phases some of the internal walls were covered with a thin layer of white or 

red gypsum, and floors were paved in a kind of ‘terrazzo’ technique, with 

small pieces of white feldspar laid into red-coloured clay (ibid.: 111).  

 

Clay was used from the earliest levels at Guran to produce human and animal 

figurines, although the first pottery is not evidenced until Level S, where it 

occurs in the form of an undecorated, lightly-fired, coarse ware (Meldgaard et 

al.1963: 113). Meldgaard (1963: 106, 119) believes the pottery production to 

be an indigenous development, which was technically related to that of the 

clay figurines. The ware was principally used for making thick-walled bowls 

with vertical or slightly-curved sides and flat or rounded rims, which were wet 

smoothed or burnished. In Level R a second type of ware, an undecorated 

buff ware, came into use. This ware was chaff tempered, surface slipped and 

occasionally burnished, with a colour varying from buff to orange buff. It was 
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primarily used to make oval or circular bowls, some of which were carinated. 

A third type of ware, a fine ‘Red Burnished’ ware, came into use from Level H, 

and common forms include open bowls and cups with flat or rounded bases 

(ibid.: 117-8). The earliest painted ware, ‘Archaic Painted’ Ware, is recorded 

from Level R, and was characterized by a chaff-tempered fabric, which was 

surface slipped and occasionally burnished (ibid.: 116). Typical forms include 

bowls and beakers with curved or vertical sides, decorated with motifs that 

resemble basketry or netting. It was later replaced by ‘Standard Painted’ Ware 

– a finely chaff-tempered, surface-slipped and occasionally burnished ware, 

which developed over time. The earlier vessels were typically bowls with 

curved sides and flat bases, whilst later vessels occurred in the form of 

slightly-carinated bowls (ibid.: 117). Motifs were applied obliquely in the form 

of blobbed lines which, over time, evolved into small, square, rectangular or 

polyhedric spots.  

 

The chipped-stone industry was based on flakes and blades, including 

microliths (Meldgaard et al. 1963: 118). The most common tool types were 

sickle blades with surface gloss, end-of-blade scrapers and borers. The vast 

majority of the utilized pieces (~80%) were not retouched (ibid.: 119).  In later 

levels large numbers of tools typically associated with agriculture, including 

querns, mullers and sickle blades with gloss, were found. Such tools are 

noticeably absent in the lowest levels, perhaps because cereal cultivation was 

not practiced by Guran’s earliest inhabitants (ibid.: 120). Flint dominates in all 

levels amounting to an average of 90–95 per cent of the total, and only a 

small amount of obsidian was found.  Ground-stone types include a single 

celt, sling shots, polishing and rubbing stones, palettes, mortars, pestles, 

mullers and querns. Marble was used to manufacture semi-globular bowls 

and inverted, conical vessel forms with flaring rims. Polished stone was also 

used to produce what the excavators identified as a ‘phallus’ sculpture (ibid.: 

116). Worked-bone tools include awls, spatulas and pins. Ornaments in the 

form of buttons, beads, and pendants were made of shell, bone, stone, 

mother-of-pearl and slightly-baked clay. Necklaces and bracelets were made 
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of alabaster and marble. Clay ‘nails’ of uncertain use were also recovered. 

Most of the burials at Guran were primary interments beneath house floors.  

The exception is a one-metre deep pit at the base of the site which contained 

the probable secondary interment of at least four individuals (Meldgaard et al. 

1963: 112). Grave goods were rare. Those that were found include perforated 

animal teeth, shell beads and geometric microliths. 

 

Tepe Asiab 

Tepe Asiab is an Early Neolithic open-air site, situated on the Qara Su River, 

in the western foothills of the Zagros Mountains, approximately five kilometres 

east of Kermanshah. The site has only been explored through a small 

sounding dug under the direction of Robert Braidwood (Braidwood & Howe 

1960; Braidwood et al. 1961), the findings of which were inconclusive. The 

sounding revealed 2.5-3.0 metres of cultural deposits consisting of alternating 

layers of clay, stones, ash and a number of circular fire pits, some of which 

contained fire-cracked rocks. At the base of the sounding a large oval basin 

(ca. 10-metre wide), dug into virgin soil, was exposed. The basin contained 

two burials – one flexed; and one extended body covered with red ochre 

(Braidwood et al. 1961: 2008). Braidwood tentatively dated the site to ca. 

10,000-9600 BC. 

 

No botanical remains were recovered from Asiab, but indirect evidence in the 

form of blades with sickle sheen suggests the harvesting of wild cereals 

(Braidwood et al. 1961: 2008). A considerable diversity of animals were 

exploited including sheep, goat, cattle, pig, onager, red roe and fallow deer, 

and gazelle (Legge 1996: 248; Hole 1987: 33). Goat and to a lesser extent 

sheep, both probably in the early stages of domestication, account for 36 per 

cent of the identified bones (Bökönyi 1977: 20-2), and red deer constituted a 

further 38 per cent (Legge 1996: 248). Wild boar made up 18.6 per cent and 

wild cattle 6.5 per cent (Bökönyi 1977: 22). Various small mammals including 

badger, red fox and hare were also probably hunted, although it is possible 

that some of these animals may have burrowed into the site to die, and had 

nothing to do with the Neolithic inhabitants’ subsistence (Bökönyi 1969: 4). 
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Various game birds were exploited, and great quantities of river clams were 

collected, but surprisingly, virtually no land snails, despite their importance at 

contemporary sites (e.g. Tepe Guran) (Braidwood et al. 1961: 2008). The 

diversity of the bone assemblage suggests that the inhabitants of Asiab 

ranged widely to obtain animals from different environments (Bökönyi (1977: 

36-7). Bökönyi (1977: 37) suggests from the presence of corn crake (Crex 

crex), which winters in Iran, that Asiab was occupied during winter, however, 

Hole (1987: 33) cautions that the crake bones could also have been obtained 

in late autumn or spring. 

 

Braidwood describes the chipped-stone industry at Tepe Asiab as “markedly 

homogenous” (Braidwood et al. 1961: 2008). Tools were predominantly of 

flint, and common forms include microlith blades, bipolar, discoids, 

amorphous blades, as well as cores with single platform and pyramidal 

shapes (Alizadeh 2003: 6). Lunates, semilunates and celts were notably 

absent. Other artefacts reported from Asiab include some “beads, pendants 

and bracelet fragments of marble, and numerous small clay objects, including 

a few enigmatic figurines” (Braidwood et al. 1961: 2008), some of which were 

‘T-shaped’ (Alizadeh 2003: 6). 

 

Ganj Dareh 

Ganj Dareh (Fig. 3.17), which literally translates as ‘treasure valley’, is located 

in the Bisitun valley system of the Zagros Mountains at ca. 1350 metres 

above sea level, 37 kilometres from the provincial city of Kermanshah. It was 

excavated under the direction of Philip E.L. Smith (Smith 1967; 1968; 1972; 

1974; 1975; 1978; 1990) during the 1960s and 1970s, who dated the site to 

ca. 8400-7000 BC (Early Neolithic). Unfortunately a full site report was never 

published. 

 

Ganj Dareh is a tepe site, ca. 40 metres in diameter, which contains 

approximately 8 metres of cultural deposits that are almost totally Neolithic; 

there is a small amount of intrusive Islamic material in the uppermost levels 

(Smith 1974: 538). Smith (1972: 165) divides the Neolithic deposits into five 
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distinct occupational levels labelled A-E, of which the oldest (Level E) is 

aceramic (Smith 1972: 165). Level D is the best preserved due to its partial 

destruction by fire. 

 

Smith (1968, 1972) reports that the botanical remains recovered from Ganj 

Dareh were inconclusive. There is some indirect evidence for the cultivation of 

cereals and legumes in the form of mortars, pestles, clay bins and containers 

found at the site (Smith 1968: 159). Frank Hole (1987: 49) reports that Ganj 

Dareh is situated at an elevation well above the zone of wild cereals today, 

and that it is probable cereals were brought to Ganj Dareh in an already 

domesticated form. The faunal remains include goat, sheep, wild cattle, deer, 

gazelle and boar (Smith 1974: 168). Goat was the principal meat animal, 

outnumbering sheep by about 15:1 (Zeder 1999: 15).  M. Zeder (1999: 15; 

Zeder & Hesse 2000) reports that the demographic profile of the goats is 

consistent with that of a managed herd, and that the domestic status of the 

sheep can also be assumed; conclusions consistent with those of Richard 

Meadow (Meadow 1989a; 1989b; Bar-Yosef & Meadow 1995). The domestic 

status of the goats is further confirmed by evidence of several caprid hoof 

prints in the mudbricks of Level D, where goats had presumably walked over 

the bricks whilst they were drying. The high elevation of Ganj Dareh means 

that the inhabitants of Ganj Dareh would have had relatively easy access to 

wild goats, which inhabit the nearby flanks of the Zagros Mountains, thus they 

could potentially have been domesticated at or near Ganj Dareh (Zeder 1999: 

15). 

 

No architecture was recovered from Level E, but a number of round or oval 

shallow depressions containing fire-cracked rocks (fire pits?) were discovered 

dug into virgin soil (Smith 1974: 207). It is probable that for the duration of 

Level E Ganj Dareh was ephemerally occupied (Smith 1972: 167). Permanent 

architecture (presumably corresponding to permanent settlement) first 

appears in Level D in the form of solidly built, rectilinear, mudbrick houses 

(Smith 1968: 159). Many of the buildings contained very small rooms or 

cubicles, most of which were rectilinear, although some were round (Smith 
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1974: 207). Although no traces of material were preserved, clay containers 

resembling jars and small domed ‘bins’ set against the walls suggest that 

these areas were used for storage (Smith 1990: 332). The buildings were 

clustered together with no paths or lanes between them, and no clearly 

defined doors, although some rooms had round ‘port holes’ (ibid.). Some may 

have been two storeys with a living surface supported by wooden beams 

overlying the small rooms (Smith 1972: 166). 

 

The lithic industry comprised both blade and flake tools, and was virtually 

undifferentiated throughout the levels (Smith 1968: 159). Common tool types 

include well-made parallel-sided blades, backed blades, side scrapers, end 

scrapers, cylindrical cone choppers, and a small number of geometric 

microliths in the form of trapezes and lunates. Alizadeh (2003: 5) regards the 

types of lithics at Ganj Dareh as comparable to assemblages from Tappeh 

Asiab, Chogha Bonut and Ali Kosh, however, in contrast to other Iranian Early 

Neolithic sites all of the tools at Ganj Dareh were made of flint, and no 

obsidian was recovered (Smith 1968: 159; 1974: 164). Ground stone tools 

include a large number of mortars, pestles, and rubbers (Smith 1968: 159). 

 

Clay was used throughout the occupation of the site for the production of 

small human and animal figurines, a number of which were decorated with 

“peculiar fingernail impressions” (Smith 1968: 159). The majority of the animal 

figurines were fairly naturalistic and probably represent sheep or goat (Smith 

1968: 159). Some human figurines were in stylized forms, including the so-

called ‘T-shaped figurines, which have been reported from other 

contemporary sites (e.g. Asiab, Sarab) (Alizadeh 2003: 5). One sherd of 

pottery was found just above virgin soil, however, it was probably intrusive, 

and the manufacture of ceramic vessels did not begin properly until Level D 

(Smith 1972: 167-8; 1974: 539). The earliest pottery was a soft, lightly-fired, 

chaff-tempered ware. Some of the later sherds were decorated with peculiar 

crescent-shaped or ‘fingernail’ impressions (Smith 1968: 159; 1972: 167). 

Large bowls and jars were the primary forms. A well-made stone-lined kiln or 

oven filled with small fragments of clay was found in Level D, which may 
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represent an early attempt to create a controlled environment in which to fire 

pottery (Smith 1974: 207) 

 

Most of the human skeletal material (comprising at least 41 individuals) was 

recovered from Level D, including several infant burials in small mud-walled 

cubicles under house floors (Smith 1972: 167). Adult burials occurred in both 

flexed and extended positions, and some burials may have been secondary. 

Only child and adolescent burials were associated with grave goods (Smith 

1974: 207). There were two burials of particular note, one held the remains of 

an adult, an adolescent and a child interred in a ‘sarcophagus’ made of 

mudbrick and covered with a mud roof; the other contained an adolescent, 

wearing an elaborate necklace of 71 stone and shell beads (Smith 1972: 167). 

Included among these were five perforated shells tentatively identified as the 

marine gastropod Oliva, thus, part – or all – of the necklace represents an 

import, presumably from the Persian Gulf although the Mediterranean is a 

possibility (Smith 1974: 208). This is intriguing as there is no evidence of other 

imported materials at Ganj Dareh. 

 

Tepe Abdul Hosein 

Tepe Abdul Hosein lies some 75 kilometres east-southeast of Ganj Dareh, on 

the Khawa plain, ca. 1860 metres above sea level. It is a small mound, some 

6 metres in height by 50 metres in diameter, which has been damaged by 

local villagers removing deposits for their fields (Fig. 3.18). The site was first 

visited by C. Goff and J. Pullar in 1970, and later excavated under the 

direction of Pullar for two months in the summer of 1978. There were two 

distinct prehistoric occupations of Abdul Hosein separated by a clear hiatus. 

Pullar (1990: 5) dates the earlier occupation, which is without pottery, to the 

early- to mid-seventh millennium BC (Early Neolithic); although it may be even 

earlier for virgin soil was never reached at the western edge of the site. The 

later occupation is dated by Pullar to the fifth millennium BC. It has been badly 

disturbed, and is not considered here.  
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Botanical remains were rare at the site, which may be because it was only 

occupied during winter (Hubbard 1990: 217). Agrostid grass was the most 

common seed encountered in terms of number, although in respect to bulk, 

roasted pistachio (which were commonly used in the past to preserve meat) 

and almond stones were the greatest. This, however, is probably a feature of 

preservation (ibid.). Three crop plants were identified: domesticated two-row 

hulled barley (Hordeum distichon); emmer wheat (Triticum diccocum) 

(possibly domesticated); and one seed of lentil (Lens sp.) of indeterminable 

status (Pullar 1990: 12). Several samples of oat were recovered, but Hubbard 

(1990: 120) argues that there is no reason to assume that it was cultivated. 

The majority of other plant remains, which include knotgrass (Polygonum 

spp.), milfoils (Achillea cf. wilhelmsii), sedge seeds and fenugreeks (Trigonella 

sp.), parallel the plant community existing in the immediate vicinity of the site 

today, and were probably used for animal fodder (Willcox 1990: 227). The 

restriction of the crop assemblage at Tepe Abdul Hosein to two or three crops, 

and the subordination of emmer to barley are unusual, as at most other 

contemporary sites emmer wheat dominated, and a greater variety of crops 

were cultivated (Hubbard 1990: 220). The faunal remains from the site have 

yet to be analysed, although a first impression suggests a change in 

emphasis from wild animals to domesticated caprines (Pullar 1990: 10). From 

the worked bones, sheep, goat, deer, boar and wolf/leopard have been 

identified. 

 

No architecture was recovered from the earliest levels at Abdul Hosein, but 

this may be due to excavation bias as very little of the earliest levels was 

uncovered (Pullar 1990: 5). Occupation is instead represented by a number of 

pits dug into virgin soil. Traces of architecture appear gradually, and in later 

levels substantial mudbrick houses were constructed. It is possible that 

collectively these levels represent the transition from temporary to permanent 

settlement at the site (Pullar 1990: 6).  

 

Although the earlier occupation of the site was aceramic, clay was used to 

manufacture tokens and animal figurines which, with the exception of two (a 
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boar & a pig), are similar to those found at other eighth to seventh millennium 

BC sites in western Iran (Alizadeh 2003: 5; Pullar 1990: 10). The chipped-

stone industry was predominantly a blade industry, which Pullar (1979: 154, 

1990: 12) reports shared many similarities with that of Tepe Asiab and Ganj 

Dareh.  Common forms include: bladelets, blades and blade cores, sickle 

blades and end scrapers. Obsidian, though absent from the earliest levels, 

was recovered from the later levels associated with architecture. It was 

primarily sourced from the Nemrut Dagh Mountains of Anatolia, and 

represents to date the earliest evidence of obsidian in the Zagros Mountains 

(Pullar 1990: 6, 12). Thus, it has important implications for understandings of 

trade and cultural contact in the Zagros Mountains during this period. In terms 

of other small artefacts worked-bone tools and beads of shell, stone and 

polished tortoise shell were recovered from most levels. Several Neolithic 

burials – primarily from the upper aceramic levels – were exposed (Pullar 

1990: 10). One burial consisted of a fully-extended young woman, associated 

with the bones of a baby or foetus buried beneath a house floor. In an earlier 

phase of the same building a crouched burial was found blocking a doorway, 

which had been plastered up with mud (ibid). 

 

 

3.3c. Southwestern Iran 

 

Deh Luran and Susiana Plains 

 

Ali Kosh 

Ali Kosh is located on the Deh Luran plain in the northwest corner of 

Khuzestan (Voigt & Dyson 1992: 123). The site, which was excavated under 

the direction of Frank Hole in 1963, is a roughly flat-topped circular mound 

with a diameter of some 135 metres (Fig. 3.19) (Hole et al. 1969: 29). It 

contains seven metres of deposits, of three of which lie below the present 

plain surface, and which collectively span period the Early-Late Neolithic. 

Three distinct occupational phases are distinguished at Ali Kosh: Bus Mordeh 
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(ca. 7500–6750 BC); Ali Kosh (ca. 6750–6000 BC); and Mohammad Jaffar 

(ca. 6000-5600 BC). 

  

The botanical remains were analysed by Hans Helbaek (1969). Ninety per 

cent of the seeds identified from the Bus Mordeh phase were from annual 

legumes and wild grasses native to northern Khuzestan including: alfalfa, 

spiny milk grass, Trigonella (a small plant of the pea family), oats and caper 

(Hole et al. 1969: 343). Some of these seeds are no larger than a clover seed, 

and the amount of work involved in their harvest must have been considerable 

(Hole & Flannery 1967: 169; Helbaek 1969: 389). In addition emmer wheat 

and two-row hulled barley were cultivated. Although the number of seeds of 

these plants constituted less than 10 per cent of the carbonized seed remains, 

wheat and barley have significantly larger grains than most of the other plants 

mentioned and were probably two of the preferred foods (Hole & Flannery 

1967: 171). Seeds of Scirpus (sea club-rush) mixed in with the grains suggest 

that the fields were near marshy grounds (Helbaek 1969: 389).  

 

In the ensuing Ali Kosh phase, there was a drastic increase in the cultivation 

of cereals, with emmer wheat and two-rowed hulled barley grains accounting 

for around 40 per cent of the identified remains (Hole & Flannery 1967: 175). 

There was a corresponding increase in the presence of weedy taxa 

associated with cultivation, and a real tapering off in the collection of small-

seeded wild legumes, with the latter accounting for only 20 per cent of the 

identified carbonized seeds (a decrease of some 70 per cent from the Bus 

Mordeh Phase) (ibid.: 175). The preference for cereals continued into and 

during the Mohammad Jaffar phase.  

 

Goats formed a major component of the diet throughout the occupation of Ali 

Kosh, and their importance is further attested by the production of lightly-

baked clay goat figurines (Hole et al. 1969: 344). During the Bus Mordeh 

phase the herd demography of the goats is consistent with that of a managed 

herd (Hole & Flannery 1967: 173), although the animals barely differed 

morphologically from their wild phenotype, suggesting they were in the initial 
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stages of domestication (Hole et al. 1969: 334). The Ali Kosh phase goats 

were “clearly domesticated” (Hole & Flannery 1967: 175), whilst those of the 

Mohammad Jaffar phase were “highly domesticated” (Hole et al. 1969: 4). 

Sheep were also herded, but were greatly outnumbered by goat in all phases 

(Hole & Flannery 1967: 177). Hunting was an important part of the economy 

in all phases, and gazelle, auroch, onager and wild boar were all important 

resources. During the Ali Kosh phase, there was an increase in the hunting of 

wild ungulates, which was accompanied by the development of a special set 

of butchering tools (Hole et al. 1969: 348). Aquatic resources, including carp, 

catfish, mussel and turtle, also formed an important part of the diet. Small 

mammals contributed only a minor part of the diet during the Bus Mordeh and 

Ali Kosh phases, although they were more widely utilized in the Mohammad 

Jaffar phase. This may have been because herd animals had out-competed 

the larger wild ungulates for grazing land (Hole et al. 1969: 334). 

 

The earliest architecture at the site is in the form of single-roomed buildings, 

constructed from large untempered clay slab bricks, held together with mortar 

(Hole et al. 1969: 42). These structures were generally no more than two-by-

two-metres wide, and were often built adjacent to each other so as to share a 

common wall (ibid.: 342). In contrast, the structures of the Ali Kosh and 

Mohammad Jaffar phases, were large multi-roomed buildings, with rooms 

exceeding three-by-three metres in diameter and external walls more than 

one-metre thick (Hole & Flannery 1967: 175). The buildings were still 

constructed of large, clay slab bricks, although the walls were often finished 

with fine mud plaster. Where walls came together they were simply butted 

against each other, with no attempt made to interlock them (Hole et al. 1969: 

42). House floors were of stamped mud or clean clay, often covered by woven 

mats of reed or club rush. Many houses had associated ‘courtyards’, often 

containing domed, brick ovens and brick-lined roasting pits. No ovens 

occurred inside the buildings, which is unsurprising given the heat of 

Khuzestan summers (Hole et al. 1969: 347). Mohammad Jaffar phase houses 

were built on solid stone foundations and, in some cases, interior walls were 

painted with red ochre (ibid.: 350). 



 

 

 

 
 

126

The lithic industry at Ali Kosh was predominately blade-based (Hole et al. 

1969: 76-91). The blades were generally well made and frequently quite 

narrow, some measuring only a few millimetres in width, and most were used 

without any further modification (ibid.: 348). Common forms included backed 

blades with, and without, oblique truncations; blade end scrapers; and flake 

scrapers. Drills, reaming tools, burins, and large-core based scrapers were 

also manufactured and used. Most tools were made of locally-sourced flint, 

but a small number were manufactured from obsidian (1% in Bus Mordeh & 

2% in Ali Kosh & Mohammad Jaffar phases), probably from the Lake Van 

region of southeastern Anatolia (ibid.: 74-5). Ground stone querns and mullers 

were used during the Bus Mordeh phase, but became more common during 

the ensuing Ali Kosh phase, from which mortar and pestle was also an 

innovation (ibid.: 188). Implements of worked bone include awls, spatulas and 

needles (ibid.: 214-9). 

 

Figurines were manufactured from unbaked and lightly-fired clay. The earliest 

forms were rather generalized animal figurines, which Hole et al. (224-5) 

suggested, on the basis of body shape, were probably goats and/or sheep. In 

the Ali Kosh phase both animals and humans were represented, including ‘T-

shaped’ figurines (ibid.: 224), while in the Mohammad Jaffar phase animal 

figurines were negligible (Hole 1977: 5). Pottery was not present during the 

Bus Mordeh and Ali Kosh phases, and during these phases soft stone vessels 

were used. Forms include low, open bowls with flat bases; bowls with out-

turned or beaded rims; oval bowls with slightly incurved rims; and low shallow 

trays (Hole et al. 1969: 107). The first evidence of basketry occurs in the Ali 

Kosh phase (although it was probably practiced in earlier periods as well; ibid.: 

224), and some baskets were waterproofed with asphalt. Pottery, in the form 

of soft, friable, chaff-tempered vessels, first appears in the Mohammad Jaffar 

phase, and is divided into three types: ‘Jaffar Plain’, ‘Jaffar Painted’ and 

‘Khazineh Red’ wares (Hole et al. 1969: 352). ‘Jaffar Plain’ Ware was a chaff-

tempered, buff ware that was burnished or wet smoothed. Vessel forms 

include small carinated bowls, bowls with convex walls, and slightly out-turned 

rims, rounded vases, and deep bowls with simple rims and flat, rounded, or 



 

 

 

 
 

127

slightly carinated bases (ibid.: 115-7). ‘Jaffar Painted’ Ware was identical, 

except for the addition of geometric designs in fugitive red ochre paint (e.g. 

zigzags, chevrons, pendant triangles & lozenges) (Hole et al. 1969: 352), 

which reportedly share some similarities with the designs on contemporary 

pottery from Tepe Guran, Tepe Sarab and Hajji Firuz Tepe (Flannery & Hole 

1967: 181; Hole 1977: 5). ‘Khazineh Red’ Ware first appeared ca. 6000 BC as 

a minor part of the assemblage, although it steadily increased in importance 

(Hole 1977: 5). It is a chaff-and-grit tempered ware, with a soft red slip and 

burnish, and common forms include hole-mouthed jars, hemispherical bowls 

with beaded or occasionally slightly curved rims, and carinated bowls. 

  

In a tradition that lasted throughout the Neolithic, the inhabitants of Ali Kosh 

wore pendants of boar tusk, shell and polished flat pebbles, ‘buttons’ of tusk 

and pearl, and necklaces and bracelets of stone and shell beads (Hole et al. 

1969). Later additions include the addition of turquoise and cold-hammered 

beads. Thus, it is evident that the inhabitants of Ali Kosh were participating in 

an ever-widening trade network (although the amount of material circulated 

was fairly small), with obsidian from Turkey, turquoise from northeastern Iran, 

specular hematite from Fars and seashells from the Persian Gulf (Hole 1977: 

5).  

 

No burials were recovered from the Bus Mordeh phase. During the 

succeeding Ali Kosh individuals were buried under house floors, in a flexed 

position, and were often accompanied by grave goods; while in the 

Mohammad Jaffar, individuals were inhumed outside, in a semi-flexed 

position, generally on their left side, facing west (Hole 1977: 5). The majority 

of burials were accompanied by grave goods, which included items of 

personal adornment, baskets (possibly with perishable food stuffs) and red 

ochre. It is evident from the burials that skull deformation was practiced (Hole 

et al. 1969: pl. 12). 
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Chogha Bonut  

Chogha Bonut is a small mound, lying on the northeastern edge of the 

Susiana plain. In its truncated and artificially rounded state, the site measures 

some 50 metres in diameter by 5 metres in height (Fig. 3.20) (Alizadeh 2003: 

1). It was originally excavated by Helen Kantor for two seasons in 1976/77 

and 1977/78, however, further investigation was abruptly halted by the 1979 

Islamic Revolution, during which most of the material excavated by Kantor 

was destroyed or disappeared (Alizadeh 2003: xxxi). Excavation was renewed 

in 1996 under the direction of Abbas Alizadeh, for one short season. 

Occupation at the site is divided into six chronological phases (Bonut A-F), the 

earliest of which, Bonut A, is pre pottery. Alizadeh (2009) dates the site to the 

late eighth millennium BC Early (Neolithic), making it, to date, the oldest 

lowland village site, known in southwestern Iran. 

 

Chogha Bonut is located in the 250-mm precipitation isohyet, the borderline of 

successful rainfed agriculture in the Near East. Today, the area surrounding 

the site is treeless, however prior to human interference it would have 

supported steppe or savannah vegetation (Miller 2003: 127). The botanical 

remains are mainly comprised of cereals, principally domesticated two-row (& 

possibly six-row) barley (Hordeum vulgare), and domesticated emmer wheat 

(Triticum dicoccum) (Miller 2003: 125). A small amount of einkorn wheat (T. 

monococcum), as well as a few grains tentatively identified as hard wheat (T. 

durum), are also represented, but may have not been crops in their own right. 

Pulses and other legumes include a wild heterogeneous type, 

Pisum/Vicia/Lathyrus (pea/vetch/grasspea), and a few seeds of probable lentil 

(Lens) of indeterminable status (ibid.: 123, 125). Prosopis, a non-pulse 

legume was also found, as well as a few wild grasses, including goat-face 

grass (Aeiglops), wild oat (Avena), and rye grass (Lolium) (ibid.: 127). 

 

The faunal remains were dominated by domesticated goat, with a small 

number of sheep; cattle (both wild & domesticated); and gazelle (Gazelle 

subgutturoso) (Redding 2003: 140). Other hunted animals include wild pig 

(Sus scrofa), birds and brown bear. From the extreme range in size of the 
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cattle remains Redding (2003: 140) proposes that a small number of domestic 

cattle were kept, probably as an insurance resource (although perhaps for 

milk) while wild cattle were hunted. Goitered-gazelle (Gazelle subgutturoso) 

was the principal hunted animal.  Brown bear is not found on the Susiana 

plain, and its presence indicates that the inhabitants of Chogha Bonut 

travelled into the surrounding mountains. The remains of a number of giant 

Indian gerbil (Tatera indica) were also recovered, which do not appear to 

represent recent intrusions (Redding 2003: 141). The area does not support 

this type of gerbil today, and their presence suggests that during the 

occupation of Chogha Bonut, the area around it was much wetter. Indeed, 

Redding (2003: 141) suggests it may even have been irrigated.  

 

No solid architecture was recorded from the earliest phase (Bonut A), but a 

few fragmentary pieces of mudbrick suggest that solid architecture might be 

present elsewhere on site (Alizadeh 2009). The buildings of the later phases 

were typically small, rectangular mudbrick houses, with two or three rooms, 

and an associated open courtyard (Alizadeh 2003: 32, 40). They were built of 

long, cigar-shaped, mudbricks, similar to those across the Susiana Plain to 

southern and central Mesopotamia (ibid.: 40). No special structures are 

reported, but parts of a much larger building were recovered from Bonut C. 

 

Unfired and lightly-baked clay was used to manufacture human and animal 

figurines. Crudely-shaped animal figurines were recorded from the earliest 

levels, whilst anthropomorphic T-shaped figurines occur only from the upper 

layers of Bonut A onwards (Alizadeh 2003: 22). Pottery first appears in Bonut 

B in the form of a straw-tempered software. Basket impressions exhibited on 

a few pieces of the ware indicates that some, if not all, the vessels were 

basket moulded (ibid.: 47). Shapes were simple and include dimpled-based, 

open hemispherical bowls, straight-sided shallow trays and hole-mouth jars. 

The majority of the vessels were plain, though some were decorated with a 

simple band of red paint. A variety of this ware, ‘Red-slipped Straw-tempered’ 

Ware, had a denser paste, was surface smoothed, and had a red wash (ibid.: 

47). Some vessels were also burnished. A slightly later development was 
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‘Smear-Painted’ ware. This ware was rather well-baked, tempered with fine 

straw, or more frequently chaff, and coated on both surfaces with brownish-

buff or light-maroon slip or wash (ibid.: 47-8). The exterior surface was usually 

decorated with a red-brown paint apparently applied by fingers. Simple forms 

include hemispherical bowls with a beaded or blunt lip, and dimple-base and 

hole-mouthed jars (ibid.: 48). 

 

The chipped-stone industry was “an advanced, basically blade industry” 

(Alizadeh 2003: 21), which remained largely undifferentiated throughout the 

Neolithic occupation of the site. The presence of some non-local, high-quality 

flint cores indicates some form of regional exchange, although in contrast to 

the neighbouring, roughly contemporary site of Ali Kosh, obsidian blades were 

rare (Hole et al. 1969: 105; Alizadeh 2003:  21, table 3.1). Few ground-stone 

tools were recovered, but this may be an accident of discovery (Alizadeh 

2003: 22). Fragments of polished-stone vessels and bracelets were found, 

and bone tools were present, predominantly in the form of awls, although a 

needle and a ‘spatula’ were also recovered (ibid.: 82). 

 

 

Marv Dasht and Mamasani Plains 

 

Tell-e Mushki  

Tell-e Mushki It is a small circular mound, located in the Marv Dasht Plain, 

some 12 kilometres southeast of Persepolis (Alizadeh 2006: 43). It measures 

some 70 metres by 70 metres in extent, stands 1 metre above the present 

plain surface, and contains some 1.7 metres of cultural deposits (Hole 1987: 

54; Alizadeh 2006: 43).. The site was first excavated in the 1950s by Louis 

Vanden Berghe. It was later excavated by a Japanese team led by Shinji 

Fukai (Fukai et al. 1973) in 1965; and was most recently excavated in 2004 

for a short season, by a joint expedition from ICHTO and Chicago’s Oriental 

Institute.  
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No faunal or botanical material was reported from the Japanese excavation, 

and not enough material was recovered from the 2004 excavation to draw any 

definitive conclusions, from which barley (probably domesticated) was the 

only cereal recorded (Miller & Kimiaie 2006: 109). This is in sharp contrast 

with sites in southwestern Iran (e.g. Ali Kosh & Chogha Bonut), where wheat 

is attested from the earliest levels (Alizadeh 2006: 13). Wild plant species, 

especially those species well-suited for fodder, are well represented, 

suggesting that pastoralism may have been the main source of subsistence, 

and cereal cultivation of minor importance (Miller & Kimiaie 2006: 110). 

However, this conclusion is not supported by the faunal remains, which show 

a conspicuous absence of domesticated sheep, and a very low presence of 

goat, with the majority of the assemblage belonging to wild species of bovines 

and equids (Mashkour 2006: 105), although this may be due to excavation 

bias (Alizadeh 2006: 13).  

 

The Japanese team defined five architectural phases (I-V), of which level I is 

the earliest (Alizadeh 2006: 43). Pisé and straw-tempered mudbrick fragments 

were found, but no complete architectural plans could be identified. Similar 

architecture was recorded by the 2004 excavation, associated with domestic 

structures including ovens, fire pits and storage bins. Frank Hole (1987: 54) 

and Abbas Alizadeh (2006: 10) have both suggested that Mushki was a 

seasonal campsite used by pastoralists (Hole 1987: 54; Alizadeh 2006: 10).  

 

Pottery was present throughout the sequence. The Japanese expedition 

reported both red-washed and buff-slipped varieties, although the latter was 

less prevalent (Fukai et al. 1973: 24). The 2004 expedition identified three 

types of handmade, straw-tempered software (‘Plain Coarse’, ‘Painted 

Burnished’ & ‘Painted Buff’ Ware), as well as several other minor types of 

decorated pottery (Alizadeh 2006: 8-9, 42).  

 

The artefact assemblage was simple and comprised stone and bone tools, a 

few cold-hammered copper points, flint and obsidian blades, stone bracelets, 

beads and labrets, shell (dentalium & cowrie) ornaments and a few simple 
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animal figurines (Alizadeh 2008: 43). The presence of obsidian at Mushki 

points to the connection of the inhabitants with the northwest, the presence of 

seashells (possibly from the Persian Gulf) attests to contact with southern 

regions, whilst the copper objects and beads made of turquoise evidences 

connections to the east and northeast (ibid.: 9-10).    

  

Tall-e Jari A 

Tall-e Jari A is located on the Marv Dasht plain, some 200 metres southeast 

of Tall-e Mushki. It measures ca. 120 metres in length, and stands 2.5-2.8 

metres above the present plain surface (Alizadeh 2006: 43). The site was 

originally excavated by a Japanese expedition, but their final results remain 

unpublished. More recently, it was excavated for a short season in 2004, 

under the direction of Abbas Alizadeh. 

 

No botanical and faunal information is available from the Japanese 

excavation, while the botanical assemblage from the 2004 excavation is too 

small to make any firm conclusions. Some remains of domesticated barley 

were found, but, like Tall-e Mushki, the majority of the plant remains 

recovered were from wild species, particularly those that make good fodder 

(Miller & Kimiaie 2006: 110). The faunal record is dominated by domesticated 

sheep and goat, suggesting that the site was primarily a pastoral site. A few 

domesticated cattle, and a small amount of gazelle, were also evidenced 

(Mashkour 2006: 105).  

 

Straw-tempered mudbricks and pisé were used from the earliest levels to 

construct small, rectangular, multi-roomed houses with open courtyards, 

hearths, and ovens (Alizadeh 2006: 10, 43). The Japanese team documented 

three architectural phases (Levels I-III), although the 2004 excavation report 

the architecture to be homogenous throughout (ibid.: 41). 

 

The Japanese expedition reported plain and decorated varieties of a straw-

tempered software (‘Jari Plain’ & ‘Jari Decorated’ ware) from the basal levels, 

and a ‘Black-on-Buff Painted’ Ware from the later levels. However, the 2004 
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excavation recorded only ‘Black-on-Buff Painted Ware, which Alizadeh 

describes as “typical Bakan B2/Gap ware” (2006: 43). Alizadeh (2006: 42) 

tentatively suggests that the discrepancy between the findings of the two 

excavations may be because different areas of the site were sampled. 

 

Tall-e Jari B 

Tall-e Jari B lies some 150 metres from Tall-e Jari A, and shares a similar 

history of excavation. It measures ca. 120 metres in length, and rises 2.5-2.8 

metres above the present plain surface (Alizadeh 2006: 43).No information is 

available on the botanical or faunal remains. From the earliest levels, pisé and 

mudbrick was used to construct buildings with small, cubic rooms, ranging in 

size from 2.0 by 1.5 metres, to 3.5 by 2.5 metres (ibid.: 43). The walls were 

decorated with red paint, and some of the structures had stone foundations 

(ibid.: 43). Alizadeh (Alizadeh et al. 2005: 103; Alizadeh 2006: 42) reports 

that, as at Jari A, the architecture and material culture, including pottery, was 

homogenous throughout; although the Japanese team claimed differently.  

 

The pottery consisted of typical Jari painted and plain wares, which can be 

divided into three types: two plain wares and one prominent painted buff ware 

(Alizadeh et al. 2005: 103). The plain wares were much the same as those 

recovered from Jari A and Bakun B1, and were chaff-tempered with 

occasional small grits. Where decoration was applied, the paint was fugitive. 

Wide shallow and bell-shaped bowls were common; as were tall, cylindrical 

beakers with concave sides (ibid.). Small finds include simple stone and bone 

tools, copper pins, shell and stone ornaments, flint and obsidian blades, clay 

animal figurines, spindle whorls and some grinding stone tools (ibid.: 43, 46). 

No intramural burials were found, with the exception of a doubtful child burial 

(ibid.: 43). 

 

Tol-e Băsi 

Tol-e Băsi (Fig. 3.21) lies in the eastern Rāmjerd Plain, Fars, and consists of 

two originally separate roughly circular mounds: A and B. Based on surface 

survey, Mound A measures 220 metres in diameter and has an elevation of 
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1631 metres above sea level; and Mound B measures 200 metres in diameter 

and stands 1629 meters above sea level (Fig. 3.22) (Bernbeck 2010a: 21). If 

both mounds were occupied simultaneously in the Late Neolithic, the 

settlement would have had a maximal extent of 6.9 hectares. However, it is 

unclear whether the occupation of the two mounds was continuous or 

sequential during this period. At present irrigation is encroaching the mound 

and farmers have pumped water up on to its lower southern end (Bernbeck 

2010a: 21). Not long ago, Mound A was bulldozed along its northwestern 

edge in order to extend the irrigable agricultural land, and approximately one 

quarter of the mound was destroyed in the process. Damage to Mound B has 

also occurred, and its southeastern periphery is cut away, leading to the 

destruction of approximately one third of the mound (ibid.). Radiocarbon 

dating suggests that the Neolithic phase at Tol-e Băsi can be dated to ca. 

6200-5530 cal. BC or, of the single oldest date is excluded, ca. 6020-5530cal 

BC (Pollock 2010: 263). 

 

Based on the distribution of surface pottery it appears that the Late Neolithic 

occupation of the site was concentrated in the northwestern part of Mound A, 

and consequently this area was selected for excavation in 2003 (Bernbeck 

2010a: 27). Five excavation units (A-E) were opened. Little architecture was 

encountered, and that which was exposed all seems to have consisted of 

rectangular, multi-roomed structures that were built of chineh (Pollock 2010: 

64). The remainder of the excavated area comprised mainly of large open 

areas that seem to have been used for a variety of activities. Ashy deposits 

and other evidence of burning were common, as were fire installations of 

various kinds. Some exterior surfaces were covered with considerable 

quantities of artifacts. The occupants engaged in repeated preparation of 

surfaces, but appear to have made little effort to keep them clean of burnt 

debris and other debris. Together with the general paucity of artifacts, Pollock 

(2010: 64) suggests that the debris accumulation on the surface implies 

successive, short-term occupation, probably in the colder months of the year 

when fires would have been needed for warmth. Pollock argues that if the 
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occupations were relatively brief then the residents might not have seen the 

need to remove debris.  

 

The faunal remains from Băsi are poorly preserved and highly fragmented 

rendering identification difficult (Pollock et al. 2010: 292). The majority of 

mammalian remains derive from domesticated goats and sheep. 

Domesticated cattle are the second most common animal resource. A few pig 

bones are present, suggesting that pig was only of limited economic 

importance. In terms of wild species, gazelle is the one species clearly 

attested, particularly in the earlier levels. Minor species include felids, rodents, 

birds, fish, amphibians, reptiles and terrestrial crabs, although none of these 

were necessarily used for human food (ibid.). 

 

Densities of plant remains were low. In terms of domesticated species 

remains of two-row barley, einkorn (Triticum monococcum) and free-threshing 

wheat (T. aestivum/durum) are present. Wild taxa include Aegilops, Scripus 

maritimus (fresh-water weed), Setaria – which were probably used are fuel – 

and almond and pistachio. Pollock et al. (2010: 292) comment that the 

botanical assemblage from Băsi is more restricted than that of contemporary 

sites, where lentils, flax and six-row barley are typically present. They suggest 

that the absence of these taxa at Băsi may be due to small sample sizes or 

poor preservation. 

  

Bernbeck describes the Neolithic pottery at Băsi as, “a highly fragmented 

assemblage that is to some extent similar to ceramics known from other Late 

Neolithic sites in the Kur River Basin” (2010b: 65). Bernbeck (2010b: 71, tab. 

5.4) identifies 17 different types of ware, which can be broadly be divided into 

two distinct groups: “vegetal temper” and “vegetal-mineral temper” (ibid.: 69). 

The distribution of the wares is very uneven, with 11 of the wares amounting 

to less than 1 per cent of the total assemblage each, while the other 6 occur in 

significant proportions.  “Vegetal Unpainted Ware” (49% of the total count) 

and ‘Vegetal-Mineral Unpainted Ware” (18%) are the most frequent. Bernbeck 

suggests that both of these are complement wares, i.e. the sherds were from 
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unpainted parts of otherwise painted vessels (Vegetal Black-on-Buff & 

Vegetal Mineral Black-on-Buff account for 14.2 % & 4.2 % of the total count 

respectively. The other two most prominent wares are “Vegetal Coarse Chaff” 

(7.2%) and “Vegetal Straw Tempered” (3%).  

 

The repertoire of vessel shapes was very restricted. “Bag-shaped” vessels are 

the most common, accounting for 70 per cent of all the identified shapes, and 

unlike the other forms are usually painted (Bernbeck 2010b: 72, 77; Pollock et 

al. 2010: 289). Coarse, large basins are also well represented, while vats and 

hole-mouth vessels are less common. Bernbeck suggests that ceramic 

production at Băsi during the Late Neolithic, “focused on the fabrication of a 

few basic shapes, each of which was used for a multiplicity of different tasks” 

(2010b: 72), rather than specificity. 

 

The overall decorative structure of the Baši vessels is very similar to that of 

Jari B vessels in that all of the vessels have horizontal registers and vertical 

registers are not used; and almost all of the painted vessels are decorated 

with three superimposed registers (Bernbeck 2010b: 80). In such cases the 

upper register (at the rim) and the lower one contain identical motifs, while the 

main motif is always different to these peripheral motifs i.e. A-B-A structure.  

Eighty-seven per cent of the main motifs are comprised of three designs: a 

“Baši” motif, consisting of a stepped pattern with lines extending obliquely 

from the sides and ending in points; a “ladder” motif, consisting of pairs of 

lines with points or short slashes in between, giving the motif the appearance 

of multiple ladders; and a “Hook” motif, consisting of small unconnected 

design elements in the shape of hooks (Bernbeck 2010b: 80). The “Hook” 

motif is known from a wide geographical area, stretching from the Mamasani 

region to the Marv Dasht (Weeks et al 2006b).  

 

The overall density of chipped stone at Baši is relatively low, as is also the 

case at a number of other Late Neolithic sites in the Zagros and neighbouring 

lowlands (Pollock et al. 2010: 290). Early stage reduction appears to have 

occurred off site, possibly near the raw material sources. The assemblage is 
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essentially blade-based. Most tools are plain retouched pieces, but there are 

also a number of sickle blades, notched pieces, geometric microliths, 

perforators and truncated blades. Pollock et al. (2010: 290) believe the tool 

repertoire to show similarities to that of Tal-e Muški and Tal-e Jari. Grinding 

and pounding implements include hammer stones, grinding slabs and pecking 

stones made from locally available limestone and sandstone (Pollock et al. 

2010: 291).  

 

More than 180 “miniature cylindrical objects” or labrets were recovered 

(Pollock et al. 2010: 290). Most of the objects are ceramic, but a small number 

are made of a soft whitish stone and one of bone (ibid.). Some show traces of 

paint. Similar objects are known from more or less contemporary sites over a 

wide geographical region extending from southern Turkmenistan to 

southwestern Iran, which are otherwise characterized by distinctive ceramic 

assemblages. The use of labrets remains controversial. Based on use wear 

analysis it seems unlikely that they were used as tools (Pollock et al. 2010: 

291), presenting two possible alternatives: either they were used as some sort 

of mnemonic device; or they were worn as personal ornamentation. Bernbeck 

et al. (2010: 291) suggest based on ethnographic parallel that the latter 

seems the more likely.    

 

Other small finds were mainly made of clay or fired ceramic and include sling 

balls, spindle whorls, and bits of clay containing dark red paint, seemingly 

from walls or floors (Javeri et al. 2010: 192-3). A single animal figurine with 

horizontal black stripes and two horns was recovered, which the excavators 

suggest represents domesticated cattle or wild equid (Javeri et al. 2010: 197). 

Seven bone awls and reamers were recovered, pointing to the working of 

hides or fabric (ibid.: 193; Bernbeck et al. 2010: 291). In terms of personal 

ornamentation two possible pendants were recovered: one made from 

turquoise and pear shaped; the other a small pierced conical shell most likely 

of Chalcolithic date (Javeri et al. 2010: 194). Beads were made of stone and 

dentalium. 
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Fragments of limestone and sandstone vessels were present, which probably 

originally formed part of square- or rectangular-shaped vessels (Javeri et al. 

2010: 195).  Several other pieces of worked stone were recovered, including a 

hammerstone, two stone balls, and a shaft straightener (Bernbeck et al. 2010: 

291). A few small pieces of copper, including some fragments of pins, could 

not be clearly dated (Javeri et al. 2010: 198).  

 

In general, the inhabitants of Baši relied on resources available at or quite 

near to the settlement, including limestone, sandstone and cherts (Pollock 

2010: 294). However, long-distance connections are attested by the presence 

of shell from the Persian Gulf and turquoise, the presence of which 

underscores the importance of Băsi in the Bakun period (Javeri et al. 2010: 

194). At the neighbouring site of Tal-e Bakun A long-distance connections is 

evidenced by the presence of obsidian, Persian Gulf shells, bitumen, lapis 

lazuli and turquoise (Alizadeh 1988), leading Javeri et al. (2010: 194) to 

suggest that either a small portion of these items reached Baši via Bakun, or 

the site itself was directly part of such a network of interregional interaction.  

 
 
A survey of rock shelters near Tol-e Baši. 

During survey near Tol-e Băsi four rockshelters (Dareh Gaći I-IV) and a chert 

quarry were discovered (Heydai 2010: 265). The rockshelters were small, 

tower-shaped structures, formed by large erratic boulders, and are situated at 

the base of Kuh-e Ayub, ca. four kilometres south of Tol-e Băsi. They are not 

large or particularly well-suited for protection from the wind and the rain, but 

their existence between the plain and the mountains means that they are 

convenient for people to use while in transit or for short stops. Ethnographic 

and contextual evidence shows that the shelters are used today for bird 

hunting, and Heydai (2010: 265) suggests a possibly functional analogy is 

their use as refuges for hunting expeditions in the past. Some lithic artefacts 

were found, although the distribution between the sites is highly uneven, 

possibly because of depositional processes. The chert quarry was located in a 

ravine near to the main rocky bluff of the Kuh-e Ayub. The position of the 

rockshelters between the quarry and Tol-e Băsi leads to an alternative 
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explanation for their use. They may have been way stations for villagers on 

the way to the quarries, and given the lack of cortex at Baši and its presence 

at the rockshelters, were perhaps where the primary stages of lithic 

production took place (Heydai 2010: 267).  

 

Tol-e Nurabad 

Tol-e Nurabad lies on the Dasht-e Nurabad, on the outskirts of the modern 

town of Nurabad-e Mamasani, western Fars (Potts et al. 2005: 89). It is 

situated next to a perennial stream, the Korr-e Sangan, which was probably 

influential to the location of the site (Weeks et al. 2006: 31). It was excavated 

for two seasons in 2003 and 2004, by a joint research team from the ICHTO 

and the University of Sydney (Potts et al. 2005; Potts & Roustaei 2006).  The 

site lies at an elevation of 965 metres above sea level, measures 90,000 

square metres, and stands 24 metres above the current plain surface (Potts et 

al. 2005: 87). Today, the entire area around and on the mound, is under 

cultivation, and ploughing along the east and north sides have exposed a 

section approximately 16-18 metres high, into which two small soundings 

were dug (ibid.: 90).  

  

No information is currently available on the botanical remains from the site 

(Weeks et al. 2006: 67). The faunal assemblage was analysed by Marjan 

Mashkour. Caprines are by far the predominant taxa in all periods at the site. 

They represent 65-95 per cent of the number of identifiable specimens of taxa 

used for food, followed by cattle which never exceed 15 per cent (Mashkour 

2006: 136). However, Mashkour cautions that if the same data were analysed 

in terms of meat weight, the impression would be very different, since cattle 

provide on average 10 times more meat than caprines. Rather surprisingly, 

there is an almost total absence of evidence of hunting (ibid.: 137). This is in 

contrast to other contemporary sites elsewhere in Fars (e.g. Tall-i Mushki, Tal-

i Jari A & B, Tal-i Bakun A & B), where gazelle and equid hunting were still 

important. 
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The Neolithic occupation of the site was substantial, and eight Neolithic 

architectural phases are recognised (A27-19). The earliest phase, A27, is 

represented by only a small, ephemeral, ashy fireplace and overlying fill. 

However, given the limited area excavated, it is probable that more 

substantial occupation existed elsewhere on the site (Weeks et al. 2006: 71). 

The architecture from the other Neolithic phases is comprised of 

superimposed, substantial mudbrick and pisé rectilinear structures, which 

exhibited a general continuity in alignment. 

 

The pottery was a handmade, chaff-tempered software, which was present 

from the earliest levels. It was well-fired, handmade and generally slipped or 

burnished on both interior and exterior surfaces, and the majority were 

decorated on the exterior surface with mono- or biochrome painted motifs 

(e.g. grouped horizontal lines, diagonal lines, ‘basketry’ & crosshatching) 

(Weeks et al. 2006: 41-3). Bowls were the most common form, and closed-jar 

forms and carinated vessels were also represented (ibid.: 43).  

 

The chipped stone tool assemblage was very small. Only one obsidian 

artefact was found, and the great majority of the tools were chert or flint, 

which was probably sourced locally (Weeks et al. 2006: 63). It was essentially 

a blade-based industry, with a high proportion of debitage. Small finds include 

clay ‘labrets’, balls and tokens, two possible clay figurines, and small bone 

beads (Weeks et al. 2006: 64-5). 

 

Tang-e Bolaghi: TB130 and TB75 
 
Tang-e Bolaghi or the Bolaghi Valley (Fig. 3.23) was subject to two seasons 

of survey and excavation in 2005 and 2006 by a joint Iranian-Japanese team, 

as part of a salvage project for the Sivand Dam area (cf. Tsneki & Zeidi 2008)  

Tang-e Bolaghi covers an area of ca. 25 kilometres squared. Located 

between Pasargadae and Persepolis it must have been an extremely 

important traffic route from at least as early as the Epipalaeolithic (Tsneki & 

Zeidi 2008: 5, 7); a conclusion supported by archaeological survey (Yamauchi 

& Nishiyama 2008: 216). 
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According to earlier work (cf. Tsneki & Zeidi 2008 & references therein), there 

are more than 100 archaeological sites in Tang-e Bolaghi, including modern 

nomadic camps and graveyards. The prehistoric material is found in a few 

caves and shelters at the foot of the mountains surrounding the valley. Two of 

these caves have been excavated (TB130 & TB75; Fig. 3.24) and date to the 

Epipalaeolithic/Early Neolithic (Tsneki & Zeidi 2008: 7). TB75 or Hajji Bahrami 

(Fig. 3.25) is a relatively large cave, strategically located so that from the 

entrance the central part of the Bolaghi Valley, with a partial view to the south 

through to the Kamin Plain, is visible (ibid.: 43). The cave is situated 1875 

metres above sea level, and the opening measures 9 metres wide by 2.8 

meters high, with a depth of 19 metres (Fig. 3.26). Four small trenches were 

opened: A-D. Trench B was sunk in the middle of the terrace slope and 

contained approximately one metre of cultural deposits, all of which were 

assigned to the Proto-Neolithic. Trenches C and D were sunk in the frontal 

part of the cave. Both reached virgin soil at ca. two metres depth, and 

produced the same cultural phases: Islamic, Achaemenid, Proto-Neolithic and 

Epipalaeolithic (ibid.: 45).  

 

TB130 is located ca. 1.2 kilometres east of TB75. It is not as deep, and is 

described as “more of a shelter than a cave” (Tsneki & Zeidi 2008: 71) (Fig. 

3.27). Its outlook is not as open as that of TB75, with only a limited view of the 

Bolaghi Valley.  The cave opening stands at 1848 metres above sea level, 

and measures 9-metres high by 8-metres wide; the interior covers an area of 

ca. 50-metres squared (Fig. 3.28) (ibid.: 71). Five trenches (A-E) were 

opened, all of which – with the exception of A – contained Proto-Neolithic 

layers (ibid.: 74). 

  

There is no fertile land for agriculture near to either of the caves (Tsneki & 

Zeidi 2008: 71). Botanical information is only available from TB75. Just a 

small number of charred seeds were recovered. The initial plant list for the 

site is: Astragalus/Trigonella type legumes, Gramineae, lentil, barley, an intact 

wheat grain (bread wheat?), which given the early date of the context is 
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probably intrusive, Prunus or Amygdalus and Papaveraceae (Tanno 2008: 

151-3). 

 

Information on the faunal remains is available only from TB75 (Hongo & 

Mashkour 2008). Gazelle (Gazella sp.) are the most commonly encountered 

taxa both in the Epipalaeolithic and Proto-Neolithic layers. Sheep (Ovis sp.) 

and goats (Capra sp.) are also present in both levels, and dramatically 

increasing in number (particularly goats) in the Proto-Neolithic, i.e. the total 

number of identified sheep and goat in the Epipalaeolithic layers is 17 per 

cent, increasing to 46 per cent in the Proto Neolithic (ibid.: 136). Cattle (Bos 

sp.) are not encountered in the Epipalaeolithic, and a single molar was 

identified in Proto-Neolithic layers (ibid.: 137-8). Pigs are similarly not present 

in the Epipalaeolithic, but a few specimens occur in the Proto-Neolithic. In 

terms of miscellaneous small mammals and other animals, a few fox (Vulpes 

vulpes sp.) and hare (Lepus capeusis) are found in Proto-Neolithic layers, and 

birds, reptiles, rodent and amphibian bones are occasionally found (ibid.: 

139). Among the reptiles, land turtle is relatively common. The results of the 

faunal analysis suggest a wide range of fauna were exploited at TB75. 

Medium-sized bovids were the most important game, of which gazelle were 

the most significant (ibid.: 143). An increase in proportion of sheep and goat, 

especially goat, from the Epipalaeolithic to the Proto Neolithic is evident, 

possibly related to domestication. However, “this cannot be determined with 

the evidence at hand” (ibid.: 144).  

 

In total 10,703 stone artefacts were collectively recovered from TB75 and 

TB130, manufactured from a chert-like flint, varying in colour from dark-brown 

to green (Ohnuma 2008: 87). The assemblage is composed of tool types such 

as: end-scrapers, thumbnail scrapers, denticulated pieces, notched pieces, 

non-geometric and geometric microliths (ibid.: 96). Katsuhiko Ohnuma, who 

analysed the assemblage, believes that the lithic assemblage as a whole, 

might be easily dated to the Epipalaeolithic of the Zagros Mountains, but 

taking the overall technological-typology into consideration, “can be more 
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readily placed within the chronological framework from the Zarzian to the 

Proto-Neolithic of the Zagros Mountains” (Ohnuma 2008: 97).   

 
 

3.4. The Neolithic of surrounding areas 

 

3.4a. Turkmenistan 

 

Jeitun 

Jeitun is the Neolithic type site of southwestern Turkmenistan. The site, which 

lies 25 kilometres northwest of the city of Ashkabad (Fig. 3.29), measures 

some 7000-square metres, stands 5.5 metres above the present plain 

surface, and contains approximately 3 metres of cultural deposits (Fig. 3.30) 

(Harris & Gosden 1996: 376). It was discovered and first excavated in the 

1950s by V.M. Mason; a subsequent phase of excavations was carried out by 

the Jeitun Archaeological Project, a British-Soviet collaboration, between 

1989 and 1992 (Harris et al. 1993); and a British team, under the direction of 

David Harris returned to the site from 1993-1994. Most recently, Harris has 

undertaken a larger regional investigation in the region, searching for the 

precedent(s) of Jeitun (cf. Harris 2010b). 

 

Jeitun lies in a liminal location, between the fault-mountain front and 

piedmont, which mark the northern edge of the Iranian plateau; and the 

southern edge of the Karakum desert. As such, its inhabitants would have had 

access to a range of different ecotones, which included the foothills of the 

mountains; the whole width of the piedmont; and the sand ridges and clay 

flats of the southern Kara Kum desert (Harris et al. 1993: 327). Today, the 

area around Jeitun receives around 200 mm of rainfall annually (Harris 2010a: 

27). This is the very limit for rainfed agriculture (Oates & Oates 1976: 111), 

suggesting that the inhabitants of Jeitun may have utilized locally high water-

tables to water their crops (Harris et al. 1993: 327). 

 

The botanical remains evidence the cultivation of  hulled and naked varieties 

of (probably six-row) cultivated barley (Hordeum vulgare L.), domesticated 
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einkorn (Tritticum monococcum L., both one- & two-grained forms), another, 

emmer-like, type of wheat of uncertain origin; and, tentatively identified, free-

threshing wheat (of T. aestivum/durum type) (Charles & Bogaard 2010: 151-3; 

Harris 2010a: 73-74, 147). Of the cereals wheat, predominantly einkorn, was 

the most abundant type (Charles & Bogaard 2010: 151; Harris et al. 1993: 

332; 1996: 436-9). This is unusual, as at most early agricultural sites in 

southwest Asia, einkorn wheat usually constitutes part of a more diverse crop 

assemblage (Harris et al. 1993: 31-2), and it may be that the emphasis on it at 

Jeitun was for ecological reasons (Harris 2010a: 147). Wild plant remains 

include a relative abundance of caper seeds (Capparis sp.), which suggests 

that the fruits may have been collected for human food (Charles & Boggard 

2010: 153); and the grasses Bromus spp. and Eremopyrum sp., Alyssum sp., 

and club rush (Scirpus maritimus), which were probably brought onto the site 

as animal dung (ibid.: 154, 165; Larkum 2010: 148). 

 

Phytolithic analysis of the botanical remains evidences numerous large silica 

skeletons, which may imply that cereal cultivation at Jeitun involved irrigation 

(cf. Rosen & Wiener 1994: 126-30), and was not dependent only on ground 

water and the low annual rainfall (Larkum 2010: 149). Supporting this 

interpretation are the archaeological findings from the most recent 

investigations at the site, where a human-made ditch-like feature was 

encountered close to the site, with 14C dates that suggest that it was 

contemporary with Jeitun (Harris 2010b). The practice of irrigation agriculture 

at Jeitun is also suggested by the wild plant remains, which include moisture-

loving species such as club rush, which grow in areas of high water table, 

such as deliberately irrigated plots (Harris et al. 1993: 327-8).    

  

Morrell and Clegg (2007: 3289) interpret the presence of domesticated barley 

at Jeitun, as evidence of a possible secondary domestication of barley. 

However, there is presently insufficient archaeobotanical evidence to resolve 

whether barley was domesticated, or introduced into the region as an already 

domesticated crop from northern Iran (Harris & Gosden 1996: 381; Willcox 

2005: 535-8; Harris 2010a: 75-6, 226). In terms of wheat, Harris reports that  
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there is no evidence it was domesticated locally in Turkmenistan and its 

presence at Jeitun, “is almost certainly the result of its introduction as a 

domesticated cereal from somewhere west of the Caspian” (Harris 2010a: 

76). This hypothesis is supported by the evidence from Mehrgarh, western 

Baluchistan (see below), where domesticated einkorn is reported from the 

earliest levels; Constantini (1984: 31), but is unlikely to have been 

domesticated locally, as the region lies outside of the known range of wild 

einkorn (Harris 2010a: 78). 

 

The faunal remains evidence the presence of domesticated sheep, goat and 

dog, attesting to the practice of caprine pastoralism (Harris et al. 1993: 334). 

The herd demography suggests that the caprines were exploited mainly for 

meat, although their function as multi-purpose animals – also supplying meat, 

hair, wool and skins – cannot be ruled out (ibid.: 335; Harris 2010a: 175). Both 

the zoogeographic and genetic evidence presently available, suggest that the 

animals were not domesticated locally (Harris 2010a: 226-7). In terms of 

hunted wild animals, goitred gazelle (Gazella subgutturosa) were the most 

heavily exploited; other wild animals include red fox (Vulpes vulpes), wild boar 

(Sus scrofa), hare (Lepos tolai), steppe cat (Felis libyca) and tortoise (Testudo 

sp.), as well as possible wild bezoar goat (Capra aegagrus) and urial sheep 

(Ovis vignei). Whilst the gazelle were locally available, the wild sheep and 

goats (if they have been correctly identified) would have had to have been 

hunted some distance (up to 40 kilometres?) away from the site (Harris et al. 

1993: 334). 

 

The earliest occupation of the site is represented by a series of cultural levels 

with no architecture, which are suggestive of possible earlier seasonal 

encampments at the site before the more permanent occupation (Kehl 1984: 

49). The architecture of the later levels is characterized by small, one-roomed, 

mudbrick buildings, with associated courtyards and outhouses (Masson 1961: 

204). The buildings vary in size from ca. 3.5 by 3.5 metres to ca. 6.25 by 6.25 

metres, with the exception of three small structures, which may have been 

used for storage (Harris 2010a: 191). Common features include internal 
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hearths, storage bins, painted projections and niches, and floors of painted 

lime plaster (Masson 1961: 204). It is unclear whether Jeitun was occupied 

continuously year round, and from year to year, by the whole population, or 

whether some, or all, of the Jeitun inhabitants moved seasonally (Harris 

2010a: 194). An alternative possibility is that Jeitun was occupied for short 

periods of several years, interspersed with periods of temporary abandonment 

followed by reoccupation.  

 

The lithic industry is essentially blade based, and dominated by fine and 

regular blades extracted from single platform cores (Harris 2010a: 180). 

Sickle blades were particularly abundant, and account for 37 per cent of the 

assemblage (Harris et al.1993: 324). Thus, “in the most general terms the 

Jeitun assemblage is not atypical of what one would expect for an early 

Neolithic settlement” (Conolly in Harris 2010a: 180). 

 

Pottery, in the form of a handmade, chaff-tempered software, is present from 

the earliest levels (Masson 1961: 204; Harris 2010a: 188). Jennifer Coolidge 

(in Harris 2010a: 188), who analysed the pottery from both Mason’s original 

excavation and the 1994 excavation, identified four types of ware: a ‘Buff’ 

Ware and ‘Red’ Ware, which predominate; and small amounts of a ‘White’ 

Ware and ‘Grey’ Ware. Decoration, where present, was simple, consisting 

mainly of wavy or ‘bracket-line’ lines or a ‘cellular pattern’ (Masson 1961: 

204). There is no definite evidence of kiln structures, nor is there any 

evidence of the systematic exchange of pottery with other groups, and it is 

probable that pottery production at Jeitun was a household activity (Harris 

2010a: 188-9). 

 

Other small artefacts include bone borers, needles and spatulas (Masson 

1961: 204); a number of lightly-baked clay animal figurines, some of which 

were distinctly dog like (Harris & Gosden 1996: 380); and three unworked 

cowry (Harris et al. 1993: 336). The latter represent the only evidence of long 

distance trade at Jeitun, from which most of the evidence points to localized 
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activity at the household level. Only one burial was recovered, in the form of a 

child buried in the yard of one of the buildings (Harris 2010a: 195). 

 

No pre-Jeitun sites are known from southwestern Turkmenistan, and it is 

difficult to ascertain where the site’s first inhabitants came from. Harris 

(2010a: 233) suggests that Jeitun, and similar sites, may have been founded 

as sedentary settlements by migrant agropastoralists, seeking new land to 

occupy with their crops and livestock, who possibly interacted with pre-

existing, more mobile groups.    

 

 

3.4b. Caspian Sea Plains 

 

Two Early Neolithic sites are known from the Caspian Sea plains, the 

neighbouring sites of Hotu and Belt Caves (Fig. 3.31), which lie in the cliffs of 

the southeastern Caspian shore near Sari. Both were excavated under the 

direction of C.S. Coon from 1949–51 (Coon 1952; 1951; 1957), who reported 

them to have long sequences of occupation, which included Neolithic 

deposits. 

 

Belt Cave 

The Neolithic deposits at Belt Cave are divided into a pre pottery (Level 2b) 

and a pottery (Level 2a) phase. No botanical remains were recovered, but 

Coon (1952: 231) reported the presence of domesticated sheep and goat 

throughout the deposits, although there presence has not been verified. A 

variety of wild animals were exploited, including wild sheep and goats, seals, 

gazelles, voles and birds. The pottery from Level 2a was characterized by a 

handmade, chaff-tempered software, the surface of which was often 

burnished, and in some cases rubbed with red ochre (Coon 1952: 242; Voigt 

& Dyson 1992: 171). Other small finds included bone tools, hand stones, 

querns, microliths, blades and flakes (Coon 1952: 242). 
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Hotu Cave 

At Hotu Cave, which appears to be later than Belt Cave, pottery is present 

from the earliest levels, and Coon (1952: 242) believes the site to have been 

founded by the people who left Belt Cave. It contained 2. 5 metres of Neolithic 

deposits, from which Coon (1952: 243) reported the presence of domesticated 

sheep and goat. The earliest pottery was a similar software to that found at 

Belt Cave, but a few pieces had the addition of a brown slip or a fugitive red 

paint (Voigt & Dyson 1992: 171); and from the later levels, a thin-walled 

‘Black-on-Red’ Ware, typical of the Transitional Chalcolithic, is reported (Coon 

1952: 242; Voigt & Dyson 1992: 172). The chipped stone tool industry was 

predominantly comprised of flake and pebble tools, as well as some blades 

and microblades (Dupree 1952: 250-3, 257). Other small finds include 

piercing tools of bone and polished stone; and six skeletons, sprinkled with 

red ochre, from towards the back of the cave (Coon 1952: 242). 

 

 

3.4c. Afghanistan 

 

No recent archaeological work has been done in this region. C.S. Coon 

identified a ‘Mesolithic’ at Kara Kamar, which yielded 58 tools, primarily cores 

and blades, but no geometrics; and the remains of wild sheep, gazelle and 

mole vole (Coon 1957). Two reputedly Early Neolithic sites are reported at Aq 

Kupruk (Dupree 1952; 1980; Dupree et al. 1972) in northern Afghanistan; and 

two further prehistoric sites have been reported from Harzar Su and Gurziwa, 

but these need further confirmation (Srivastava 2008: 10).  

 

Aq Kupruk I & II 

Aq Kupruk I (Ghar-i Mar or ‘Snake Cave’) and Aq Kupruk II (Ghar-i Asp or 

‘Horse Cave’) are neighbouring cave sites located on the terraces of the River 

Balkh, near the modern town of Aq Kupruk, northern Afghanistan. Both were 

excavated by the Louis Dupree from 1962 to 1964, who identified a pre-

pottery Neolithic period at the site, which he subdivided into subphases A and 

B; and a pottery Neolithic period (Dupree et al. 1972). No botanical evidence 
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is available, but the presence of sickle blades implies that some sort of 

harvesting may have occurred (Dupree et al. 1972: 80). The faunal remains 

evidence what were originally interpreted as domesticated sheep, goat and 

cattle (Dupree et al. 1972: 73); although their domestic status has since been 

questioned (Harris 2010a: 51). Wild animals included red deer (Cervus 

elaphus); gazelle (Gazella subgutturosa); horse (Equus caballus) and onager; 

possibly wild goat (Capra hircus spp.); and freshwater mollusks (Dupree et al. 

1972: 57, 73). No architectural remains were encountered at either site, and it 

is possible that they were inhabited by nomadic groups (Dupree et al. 1972: 

33; Srivastava 2008: 100). Chipped-stone tools were manufactured from a 

local flint, and types included blades, perforators, end and side scrapers, 

points, burins, sickle blades and microblades (Dupree et al. 1972: 14, 28);  

groundstone tools were present in later levels, and included limestone hoes, 

querns, celts and pounders (ibid.: 75). Bone tools were rare, although this 

may be a feature of preservation, and types included awls, points and needles 

(ibid.: 28, 30). Other small finds included steatite bowl fragments and 

fragments of incised turtle shell (Dupree et al. 1972: 75; Dupree 1980: 264). 

 

Dupree reported that, “a change in the stratigraphy at Aq Kupruk I and II 

heralded the introduction of pottery into the area” (1980: 263). Two types of 

ceramic wares were identified: a more common, crude, undecorated software, 

tempered with sherds or chaff (Dupree et al. 1972: 33, 75; Srivastava 2008: 

101); and a better-fired ware, with zigzag incisions characteristic of the 

Neolithic pottery of the ‘Jeitun Culture’ of Turkmenistan (Dupree 1980: 263). 

Dupree (1980: 263) suggested that this pottery also offered close parallels to 

that from Hotu and Belt Caves.  

 

 

3.4d. Baluchistan 

 

Mehrgarh 

Mehrgarh remains, to date, the earliest known Neolithic settlement in South 

Asia. It has been subjected to two major excavation campaigns between 1974 
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to 1985 and 1997 to 2000, under the direction of Jean-Francois Jarrige, on 

behalf of the French Archaeological Mission in Pakistan. Mehrgarh is located 

at the foot of the Bolan Pass, ca. 150 metres above sea level, in a rich alluvial 

landscape, which would have offered a range of different ecological niches 

(Jarrige et al. 1995: 63). It spreads over some 200 ha, but this area was never 

totally settled at any one time, and the Neolithic occupation was limited to 

areas MR3 and 4 (Fig. 3.32) (Jarrige & Lechevailler 1980: 253). Some seven 

metres of Neolithic deposits have been recorded, which are divided into 

Period I (pre pottery), Period IIA (first appearance of pottery); and Period IIB, 

(distinguished by the development of a more advanced pottery industry) 

(Jarrige et al. 2005: 130). There is a problem with the 14C determinations for 

Mehrgarh (see Chapter Five), and consequently most of the 14C 

measurements show little coherence with the archaeological stratigraphy and 

context (Jarrige 2000: 282). The excavators estimate that Period I spanned 

the eighth millennium BC to ca. 6000 BC, while Periods IIA and B cover the 

sixth millennium BC (Jarrige 2005: 27). 

 

The botanical remains were preliminarily analyzed by Constantini, and are still 

awaiting further analysis. Constantini reported that they were dominated by 

domesticated six-row barley, and that wild and domesticated species of two-

rowed barley, spheroccoid barley, einkorn wheat and free-threshing wheat 

were also present in much smaller amounts (Constantini 1984: 24; 

Constantini & Lentini 2000: 136). The barley from the earliest levels is 

believed to exhibit poorly domesticated characteristics (Constantini 1984: 29-

30; Jarrige 2005: 27), and given this, and the presence of both wild and 

domesticated species of two-row barley at the site, it is probable that barley 

was domesticated at Mehrgarh (Jarrige et al. 1995: 64). Indeed, Baluchistan 

has long been considered by botanists to have been one of the probable 

centres of the origins of barley (Jarrige & Lechevallier 1980: 254). The local 

domestication of wheat at Mehrgarh cannot be ruled out (Possehl 2002: 27-8), 

however, no morphological wild wheat is known from South Asia, and it is 

probable that it was domesticated elsewhere (Meadow 1996: 395). 

Constantini (1984: 29) also identified the presence of cotton (Gossypinu sp.), 
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which represents the earliest example of the use, and possible domestication, 

of cotton in the Old World. Its use at the site is further attested, by the finding 

of several remains of cotton threads on a copper bead from a Neolithic burial 

(Moulherat et al. 2002: 1395).  

 

Richard Meadow (e.g. 1981; 1984; 1996), who analyzed the faunal remains, 

reported a major shift in Period I from the hunting of wild animals, to the 

herding of domesticated sheep, goat and cattle (Meadow 1984: 35). While in 

the earliest levels of Period I wild animals accounted for over 50 per cent of 

the faunal assemblage, in later levels over 90 per cent of the remains were 

from domesticated sheep, goat and cattle; although a low representation of 

gazelle, wild sheep, onager, and other occasional forms continued (Meadow 

1981: 152). It is suggested that sheep and cattle were domesticated at 

Mehrgarh, while the goats were already domesticated, or at least ‘proto-

domesticated’ before the occupation of the site (Meadow 1984: 37-40; 

Meadow & Patel 2002: 396). Domesticated cattle increased in importance 

throughout the Neolithic, and came to dominate the assemblage. This 

contrasts sharply with the situation at southwest Asian sites, where caprines 

dominated throughout the Neolithic. It also has important implications for the 

social organization at Mehrgarh, for whereas a sheep or goat can feed a 

family, the slaughter of a cow provides more than ten times as much meat, 

and far more than one family could consume, meaning that the meat would 

either have to be preserved and stored, or distributed amongst a larger group 

(Meadow 1984: 37). Cattle also involve a greater investment in time and 

resources than smaller ungulates, and thus constitute a greater risk (ibid.: 37).  

 

Nine Neolithic architectural phases are recognized. Each was initiated with 

the edification of mudbrick houses, which at some point, maybe after two to 

three generations (Jarrige et al. 2005: 132), were abandoned (Fig. 3.33). 

Settlement then appears to have moved elsewhere on the site, and the 

abandoned buildings filled with rubbish and human burials. After an unknown 

duration of time, burial in the area ceased, the area was leveled and buildings 

were once more erected. 
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The buildings were quadrangular structures, typically divided into 4, 6 or 10 

small rooms or compartments, which were internally or externally connected 

by small openings (Jarrige et al. 2005; Lechevallier & Quivron 1981: 75-7). 

There is a great deal of homogeneity between the buildings, which suggests 

they were constructed to a rather stereotypical plan. With the exception of 

numerous charred seeds, no artefacts were found within the buildings, and 

Jarrige et al. (1995: 248, 372) have suggested that they were used for grain 

storage. Numerous post holes and fire pits occur around the edges of the 

built-up areas of the site, which may be the remains of temporary domestic 

structures (Jarrige et al. 1995: 366). It is possible, then, that Mehrgarh was 

primarily used for storage, and only semi-permanently occupied. 

 

There was an intensive use of stone tools. Generally local flint from the bed of 

the River Bolan was used, although occasionally other hard stones, including 

limestone, sandstone, diorite and chlorite, were used (Lechevallier 1995: 280). 

The industry was “predominantly a blade and bladelet industry which showed 

great homogeneity” (Lechevallier 1984: 50). Common types include microliths, 

sickle elements, borers and pointed tools; and heavy duty tools for tasks such 

as wood cutting and tilling. The predominant ground stone tools were grinding 

stones and small hand grinders (Lechevallier 1995: 281). Tools from the 

earliest levels were usually rougher than those of later ones, and it was only in 

the later levels that stone axes were polished. Stone vessels were generally 

absent in Period I, except for a few shallow bowls found in the upper levels 

and in graves in Cemetery 9 (Jarrige et al. 2005: 139). The principal form of 

container at Mehrgarh before the advent of pottery appears to have been 

bitumen-coated baskets. Bone tools occurred throughout the deposits and 

include points, needles, picks, chisels, choppers and scrapers, which were 

used for a variety of functions including the working of animal products, 

digging, piercing, sewing leather and cloth, basketry, weaving and pottery 

decoration (Russell 1995: 585). 

 

A few fragments of fire-hardened clay are reported from Period I levels, but 

these were probably intrusive, and fully-fledged pottery production does not 
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appear until Period IIA (Jarrige 2000: 268, 281). The earliest ware was a 

handmade, chaff-tempered software, which was occasionally burnished and 

red slip, and is believed to have been an indigenous development (Vandiver 

1995: 658). A later, albeit rare, development was a finer ‘Red’ Ware, which 

was occasionally decorated with simple geometric designs in black paint 

(Jarrige 2000: 281). The vessels varied in size and shape, from small bowls to 

basins with flat bases (Jarrige 1995: 422). 

 

Clay figurines were a major element of the material culture, and were present 

from the earliest levels (Jarrige 2005: 27). To begin with the majority of the 

figurines were anthropomorphic, although in later levels animal figurines did 

become more prevalent (ibid.: 28). The anthropomorphic figurines are divided 

into two main kinds: standing and flexed or sitting types. Standing figurines 

were almost exclusive to Period I, and often bore traces of red ochre; while 

sitting or flexed figurines, which were first evidenced from Period II, were 

largely schematic, and generally biconical. A number of the human figurines 

show clear marks of having been pierced through the body by small twigs, 

perhaps in some form of ritual activity, although it is difficult to ascertain, as 

few figurines occurred in primary contexts, and most were found broken in 

trash deposits or in the secondary fill of abandoned rooms (ibid.: 31-34). 

 

Ornaments occurred primarily in burial contexts, and types include beads – 

used to make headbands, necklaces, belts, bracelets, anklets and pubic 

coverings –pendants, rings and armlets (Jarrige et al. 1995). They were made 

from an extensive array of materials including both local (e.g. stone, leather, 

bone & copper) and more ‘exotic’ materials (notably marine shells, lapis lazuli, 

serpentine and turquoise. The latter evidence the practice of long-distance 

trade, as the nearest source of marine shell is over 500 kilometres away on 

the Makron Coast (Kenoyer 1995: 566), the lapis lazuli is probably from 

Khorassan; and the turquoise from Badakhshan (Lechevallier & Quivron 1981: 

89). No evidence for the processing of any of these ‘exotic’ materials was 

found at suggesting it was the finished artifacts that were traded (Jarrige et al. 

2005).  
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Over 200 Neolithic burials were excavated, most of which were single 

interments of fully-articulated skeletons with grave goods (Jarrige et al. 2005: 

137); where disarticulation did occur, it was predominantly of young 

individuals whose graves nearly all lacked grave goods (Sellier 1995: 465). 

The standard orientation of the burials was east to west (81.3%), with heads 

to the east, facing south (Lechevallier 1995: 367). The skeletons were mainly 

flexed, and lay predominantly on their left sides, with the arms and legs drawn 

together, and the hands in front of the face in a ‘praying’ position. Almost all of 

the burials were in funerary chambers, which had been dug into one side of 

the bottom of a pit, and were sealed with a mudbrick wall (Cucina & Petrone 

2005: 81). A large amount of ochre was used in the burials. Indeed, 

sometimes whole cakes of ochre were placed next to the corpse, which may 

have been in some way connected with mummification (ibid.). Grave goods 

included a rich variety of both utilitarian and ornamental offerings (Jarrige et al. 

2005: 138). Particularly striking examples of the latter include elaborate shell 

headbands which were on the skulls of several females. Other interesting 

deposits include unretouched blades, microliths, and flint cores all positioned 

along the body of an adult male; a display of stone and bone tools placed in 

the hand of another; and an interesting cluster of bone tools and ornaments 

found next to an adult female (Jarrige et al. 2005: 138). Several burials 

occurred in which offerings of one or more young goats were placed in a 

semicircle at the feet of the deceased, which was often a young female 

(Cucina & Petrone 2005: 81; Jarrige 2005: 137). Such burial offering are 

unique in the Neolithic of South Asia (Lechevallier et al. 1982: 105; Petrone 

2000: 295), and are indicative of the important social and economic changes 

that were occurring at Neolithic Mehrgarh (Petrone 2000: 296). Eleven drilled 

teeth were identified from among the Neolithic burials. These teeth, some of 

which were drilled more than once, represent the earliest proto-dentistry 

known in the world (Coppa et al. 2006: 756). 
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3.5. Discussion 

 

This chapter has provided an overview of our current knowledge of the 

Neolithic of Iran and neighbouring regions. As even the most cursory glance 

reveals, there exists wide variation in the amount of archaeological research 

that has occurred in different regions. While southwestern Iran and the 

Central Zagros have been relatively well investigated, there exist large 

lacunas in our knowledge of the Neolithic of other regions, particularly that of 

the Central Plateau, northeastern and southern Iran. The situation is further 

hindered by the lack of absolute chronologies for most regions, meaning that 

it is often difficult to compare the Neolithic of different regions. In this thesis, 

the pre pottery or Early Neolithic, is considered to be from ca. 8000-6500 BC, 

and the Middle Neolithic and Late Neolithic, both of which had pottery, from 

ca. 6500-6200 BC and ca. 6200-5500 BC respectively. 

  

The Neolithic of each region was unique; however, there were a number of 

core reoccurring factors (Table 3.6). All known Early Neolithic sites (ca. 8000-

6500 BC) in Iran were situated in regions where dry farming was possible, 

either by rainfall and/or locally high water tables. The settlements were few, 

and often widely spaced, usually in areas with a good source of water, arable 

land and easy access to wild species of plants and animals (Hole 1987; 

2005).  People lived in structures of unbaked mudbrick and pisé, or in tents 

and bush shelters, and there was a general trend throughout the Neolithic 

towards the more permanent occupation of settlements. For example, the 

archaeological evidence points to the presence of ephemeral occupations 

during the Early Neolithic at Tepe Guran, Tepe Sarab, Tepe Abdul Hosein, 

and possibly Chogha Bonut, before the appearance of substantial mudbrick 

architecture in later periods, presumably evidencing the permanent 

occupation of the sites, at least by some members of the group. 

 

Nearly all of the sites had a subsistence economy based on agropastoralism, 

supplemented by hunting and foraging. The one exception is Tell-e Mushki, 

from where no domesticated sheep and few goats remains were recovered 



 

 

 

 
 

156

(Mashkour 2006: 105), although this may be a feature of excavation bias 

(Alizadeh 2006: 13). The continuation of both hunting and foraging alongside 

agropastoralism, emphasises how the Iranian Neolithic was very much a 

period of transition. At all the sites for which quantitative data is available (e.g. 

Tepe Sarab, Tepe Guran, Ganj Dareh Tepe, Ali Kosh), goats greatly 

outnumbered sheep, which is surprising, given that in later periods sheep 

were to become the preferred domesticate in Iran (Hole & Flannery 1967: 

177). It is possible that this had something to do with the differential speed of 

the spread of sheep and goats across the western Zagros after their initial 

domestication, as the spread of sheep was much slower than that of goats (cf. 

Mashkour et al. 2006; Zeder 2011).  

 

The importance of cereal cultivation varied between sites, and different 

phases within sites. For example, in the earliest period at Ali Kosh, the Bus 

Mordeh Phase, 90 per cent of the botanical remains were from wild annuals, 

with only 10 per cent coming from cultivated emmer wheat and two-row 

barley, but in the succeeding Ali Kosh Phase, the gathering of wild annual 

decreased in importance, and more than 40 per cent of the assemblage was 

comprised of cultivated cereals (Helbaek 1969: 389). Emmer wheat was the 

dominant cultivated cereal at Hajji Firuz Tepe, Ali Kosh, Jarmo and Jeitun, 

while two-row barley was the dominant species at Tepe Guran, Tepe Abdul 

Hosein, Chogha Bonut, and Mehrgarh. The subordination of emmer wheat to 

barley at the latter sites is unusual for the Neolithic sites, where emmer 

usually dominates (Hubbard 1990: 220), and may have something to do with 

local environmental conditions. The cereal species cultivated at all of the 

Iranian sites, was largely limited to two-row barley and emmer wheat. The 

restriction to these cereals is unusual compared to contemporary sites in the 

Near East, where generally a greater variety of crops were cultivated 

(Hubbard 1990: 220; Harris et al. 1993: 31-2; Harris 2010a: 147). There is 

greater diversity at some of the sites from neighbouring regions, for example, 

domesticated einkorn, emmer and barley are known from Jarmo (Watson 

1983: 501), and domesticated six-row and two-row barley, einkorn and free-

threshing wheat are all attested at Mehrgarh (Constantini 1984: 29).  
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During the Early Neolithic (ca. 8000-6500 BC) tools were made exclusively of 

stone, bone or wood, and other perishable fibrous materials (Hole 2005). At 

some sites (e.g. Ali Kosh, Mehrgarh) there is evidence that baskets coated in 

bitumen to waterproof them, were used as vessels. The chipped stone 

industry was essentially a blade industry, and was remarkable homogenous 

throughout the Neolithic. Both local flint, and at many of the sites, obsidian, 

were used to manufacture tools. The exceptions are Tepe Asiab, Ganj Dareh 

and the earlier levels at Tepe Abdul Hosein, from which obsidian was not 

recovered, possibly because of the early date of these sites. 

Clay was used from the Early Neolithic (ca. 8000-6500 BC) to manufacture 

unbaked or lightly baked clay animal and human figurines, which were 

common at most sites, perhaps, indicating some sort of shared cultural 

practise or belief. A thesis further supported by the widespread distribution of 

enigmatic T-shaped figurines, which are reported from Hajji Firuz Tepe, Ganj 

Dareh, Sarab, Asiab, Ali Kosh, Chogha Bonut and Jarmo. Pottery is 

evidenced from the beginning of the Middle Neolithic period (ca. 6500 BC), in 

the form of a widely-distributed, handmade, chaff-tempered software. At a 

number of sites the appearance of pottery has been explained as an 

indigenous development (e.g. Hajji Firuz Tepe, Ali Kosh, Mehrgarh), although 

its presence can alternatively be perceived as part of a much larger 

phenomenon, in which the means and methods for manufacturing pottery 

spread between groups.  

 

What we would understand today as personal ornamentation was popular, 

and people wore bracelets, pendants, rings and labrets (Hole 2005). Many of 

these items were made from non-local resources, including marine shells from 

the Persian Gulf (found at Ali Kosh, Hajji Firuz Tepe, Ganj Dareh Tepe Abdul 

Hosein, Tall-e Jari, Jarmo, Jeitun & Mehrgarh), lapis lazuli (Mehrgarh), 

turquoise (Ali Kosh, Mehrgarh), serpentine (Mehrgarh) and specular hematite 

(Ali Kosh), the presence of which attests to the existence of long-distance 

trade and communication networks. These became increasingly developed 

throughout the course of the Neolithic, and by the Late Neolithic period (ca. 

6200-5500 BC) cold-hammered copper is known from Ali Kosh, Tall-e Mushki, 
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Tall-e Jari B and Mehrgarh, anticipating the introduction of widespread 

metallurgy (cf. Thornton 2009).  

   

Burials primarily involved the interment of individuals in a flexed position, 

under house floors, and the spreading of red ochre (possibly something to do 

with the process of mummification; Cucina & Petrone 2005: 81) was common. 

There is though, variation between the sites as to whether or not grave goods 

were offered. For example, the inclusion of grave goods in all burials was the 

norm at Ali Kosh and Mehrgarh and in child burials at Ganj Dareh; while no 

grave goods were reported from burial contexts at Hajji Firuz Tepe, Tepe 

Guran and Hotu Cave. Burials were also reported from Tepe Asiab, Tepe 

Abdul Hosein, Tall-e Jari B and Jeitun, but not in any great number, and there 

is not enough information to reach any firm conclusion as to whether it was 

customary to include grave goods. 

 

As well as the similarities outlined above, there were also marked variations 

between the cultural practises at different sites. For example, Ali Kosh is the 

only site to date, from which there is evidence of deliberate skull deformation 

(Hole et al. 1969: 349), while at Ganj Dareh Tepe both the clay figurines and 

pottery were ‘decorated’ with distinct fingernail impressions. While the majority 

of sites from the Middle Neolithic period onwards (ca. 6500 BC) appear to 

have been permanently occupied, at least by some members of the group, it 

is possible that Mehrgarh was never permanently occupied, and that the site 

was used for storage; a conclusion further supported by the small size of the 

rooms in the compartmented buildings, the lack of any domestic material from 

within them, and the evidence of numerous postholes and fire pits from the 

perimeters of the site, which are interpreted as the remains of semi-

permanent domestic structures (Jarrige et al. 1995: 366). The burials at 

Mehrgarh were also distinct to any evidenced elsewhere in the Near East, 

Central or South Asia. The burials were highly standardized, with individuals 

interred in a funerary chamber, in a flexed position, orientated east-west, with 

the heads to the east, facing south (Lechevailler 1995: 367). Grave goods 

accompanied nearly all of the burials, and included a rich variety of both 
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ornamental and utilitarian offerings. The choice of grave goods often seems to 

have been very personal with, for example, in one grave an adult male 

(possibly a flint knapper?) buried with unretouched blades, microlithics and 

flint cores positioned down one side of the body; and several burials occurred 

with offerings of one or more goats placed in a semicircle at the feet of the 

decreased, who was usually a young female (Jarrige 2005: 137). 

      

 
3.6. Conclusion 
 
 
Both similarities and differences, then, exist between the Neolithic sites of Iran 

and neighbouring regions. Though a number of traits were shared, including 

the location of sites in areas where dry farming was possible; an economy 

based on agropastoralism and supplemented by foraging and hunting; the use 

of mudbrick and/or pisé architecture, the trading and use of obsidian, and 

from the beginning of the Middle Neolithic (ca. 6500) the widespread 

manufacture of handmade, chaff-tempered software, there were also 

important differences. These include the emphasis that was placed on 

different domesticated species at individual sites, be it sheep, goat, cattle, 

barley or einkorn; disconformity in the internal layout of domestic buildings; 

the presence of a special building at Hajji Firuz Tepe, possible used for 

meetings or ritual purposes (Voigt 1983: 315); and distinct variations in the 

amount and different types of non-local materials found at each site. Indeed, 

some sites appear to have been far more actively involved in trade networks 

than others. For example, while at Ali Kosh turquoise from northeastern Iran, 

shells from the Persian Gulf, copper from the Central Plateau, specular 

hematite from Fars and obsidian from Turkey, are all found (Hole et al. 1969); 

at Jeitun the only evidence of long-distance trade is the presence of three 

cowrie shells (Harris et al. 1993).  

 

The evidence, therefore, points to the existence of increasingly complex 

networks of trade and communication, along which ideas and technology 

were shared, but also the importance of regional cultural identities, and the 

local interpretation and adaption of this technology. Further understanding of 
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the important interplay of the adoption of shared cultural adaption and the 

maintenance of regional and local identities, will be gained through the study 

of the emergence and development of Neolithic societies on the Central 

Plateau, a previously underexplored, but potentially very important region. In 

the next chapter the methodology of this research is outlined.  
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Table 3.0: McCown’s comparative stratigraphy for Iran. The vertical height of a 
column covered by a period does not indicate length of time. The relative upper and 
lower limits of the levels and Mesopotamian periods are indicated by the horizontal 
half lines which are joined vertically by arrow headed lines separated by question 
marks (e.g. in the column headed ‘Tepe Hissar’, Hissar IC may be as late as Sialk 
III7b, or Hissar IIA may start almost at the beginning of Sialk III7). Virgin soil is 
abbreviated ‘v.s.’ (After McCown 1942a: table 2.) 
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Table 3.1: 
R.H. 
Dyson’s 
relative 
chronology 
of Iran. 
(After Dyson 
1968: 310) 
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Table 3.2: Majidzadeh’s relative chronology for the early prehistoric period of the Central Iranian Plateau. (After 
Majidzadeh 1981: 142.) 
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Period Deh Luran Susiana Azerbaijan Kangavar 
Karkheh 
Drainage 

Fars 

Late Village Period 
(ca. 4500-4000) 

Saragarab 
Susa A 

Terminal Susa A                  
Susa A (4200-
4000) 

   
Middle Chalcolithic 

Lapui (3900-3400) 

Middle Village 
Period (ca. 4500-
5000) 

Farukh (4400-
4200)              
Bayat             
(4600-4400)   
Mehmeh      
(4800-4600) 

Susiana d (Choga 
Mish Phase) 
Susiana C 

 
Pisdeli (4700-
3900) 

Godin VIII 
Godin IX (4400-
3800) 

 Bakun (4800-
3900) 

Early Village 
Period (ca. 6000-
5000) 

Khazineh       
(5000-4800) 
Sabz               
(5200-5000)           
CMT              
(5400-5200) 

Susiana b 
(Jaffarabad 
Phase)         
Susiana a 
Archaic III         

 
 
Dalma (5200-
4700) 

 
Godin IX    
Shahnabad (5200-
5000) 

 
 
Early Chalcolithic     
J-Ware 

 
 
              
Shamsabad   
(5500-4800) 

Initial Village 
Period (ca. 8000-
6000) 

Surkh              
(5700-5400)          
Sefid               
(6000-5700)  
Mohammad Jaffar 
(6300-6000) 

Archaic II    
                           
                      
Archaic I 

Hajji Firuz (6100-
5400) 

 Late Neolithic 
(5500) 
                           
Early Neolithic 
(6000) 

Jari (6000-5500) 
Mushki  (6000) 

Pre-ceramic (pre-
8000) 

Ali Kosh         
(6700-6300)             
Bus Mordeh 
(7500-6700) 

Preceramic     

Table 3.3: Relative chronology of regions during the village period. All the dates are approximate according to their best calibration at the 
time of publication in 1987. (After Hole 1987: table 1 & 2.) 
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Date 
(BC) 

Southwest Lowlands 
(Khuzestan) 

Southwest 
Zagros 

Southeast Iran Central west Iran 
Central north & 
northeast Iran 

Northwest Iran 

 
Deh Luran Susiana 

Marv 
Dasht 

Kerman Soghun 
Mahidash

t 
Kangava

r 
Central 
Plateau 

Damghan/ 
Khorsan 

S. Urmia 
NE 

Urmia 

450
0 
 
 
 
 
500
0 
 
 
 
 
550
0 
 
 
 
 
?? 

 
 
 
 
Bayat 
 
Mehmeh 
Khazineh 
Sabz 
 
Chogha 
Mami 
Transition. 
 
Surkh 
 
Sefid 
 
 
 
 
Mohamma
d Jaffar 
 
 
 
Ali Kosh 
 
 
 
Bus 
Mordeh 

 
 
 
 
M. 
Susuana 3 
M. Susiana 
2/1 
E. Susiana 
 
Archaic 
Susiana 3 
 
 
Archaic 
Susiana 2 
Archaic 
Susiana 1 
 
Formative 
Susiana 
 
 
 
Aceramic 
Susiana 

 
 
 
 
 
 
Transitiona
l 
 
Jaffarabad 
 
 
 
Jari 
 
Mushki 

 
 
 
 
 
 
Iblis I 
 
 
 
Iblis 0 

 
 
 
 
 
 
Yahya VI 
 
 
 
Yahya VII 
 
Murabad 

 
 
 
E. Siahbid 
 
J Ware 
 
 
 
 
 
L. Sarab 
 
 
 
 
 
 
 
E. Sarab 
 
 
 
 
 
 
 
Ganj 
Dareh 

 
 
 
Godin X 
 
Shanaba
d 
 
 
 
 
 
 
Sarab 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Abdul 
Hosein 

 
 
 
 
 
 
 
 
 
 
Cheshmeh 
Ali 
 
Sialk I 
 
 
 
 
 
Zagheh 

 
 
 
 
 
 
 
 
 
 
Cheshmeh 
Ali 
 
Jeitun 
 
 
 
 
Sang-i 
Chakhmaq 

 
 
Hassanlu 
IX (Dalma) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hassanlu X 
(Hajji Firuz) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Yanik L. 
Neolithic 
 
 
 
 
 
 
 

Table 3.4: Chronological chart showing a summary of the relationships between regional sequences. (After Voigt & Dyson 1992: fig. 2.) 
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Schmidt 
(1936) 

Ghirshman 
(1938) 

McCown (1942) 
Dyson 
(1968) 

Majidzadeh 
(1981) 

Dyson 
(1968) 

Voigt & 
Dyson (1992) 

Malek 
Shahmirzadi 

(1995) 
Fazeli (2001) 

Cheshmeh 
Ali Upper IA 

Sialk II,1-3 
Cheshmeh 
Ali Upper 

IA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Cheshmeh 
Ali Lower 

IA 
 

Gap 

Gap 

Plum Ware A 

Gap 

Cheshmeh Ali 
(5500 BC) 

Cheshmeh Ali 
Period (Sialk I 

& II) 

Early 
Chalcolithic 
Period (ca. 

4000-4700 BC) 

Sialk II 
(4100-4600 

BC) 

Sialk II 
(4100-4600 

BC) 

Sialk II 

Early Plateau A 

Sialk I 
(4600-5400 

BC) 

Sialk I 
(4600-5400 

BC) 

Transitional 
Chalcolithic 
Period (ca. 

4700-5500 BC) 

Cheshmeh 
Ali Lower IA 

Sialk I, I-5 

Early Plateau B 

Sialk I 

? 

? 

Zagheh Period Late Neolithic 
Period (ca. 

5500-6200 BC) 
Archaic 
Plateau 

Sialk I (??) 

Zagheh (??) 
Formative 

Period 

Table 3.5. ‘Table of Tables’: proposed chronologies for the Central Plateau. 
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Site Region Economy Cereals Animals Architecture 
Typical 
burials 

Chipped 
stone 

industry 

Ceramic 
industry 

Figurines 
Non-local 
materials 

Hajji Firuz 
Tepe 

NW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Dom. emmer  Dom. sheep, 
goat, pig & 
dog 

Mudbrick 
buildings 
divided into 2 

Subfloor 
burials in 
ossuaries 

Blade 
based 

Chaff-
tempered 
software 

Animal & 
human, 
(including 
T-shaped) 

Obsidian; cowry 
shell beads 

Tepe 
Sarab 

NW Iran Pastoral? 
suppl. by 
foraging & 
hunting 

n.d. Dom. goat (& 
sheep 

Later levels 
mudbrick 
buildings 

None 
recovered 

n.d. Chaff-
tempered 
software 

Animal & 
human 
(including 
T-shaped) 

Obsidian 

Tepe 
Guran 

NW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Later levels 
dom. 2-row 
barley 

Dom. goat & 
sheep; 
increase in 
importance of 
hunting  

Wooden huts 
followed by 
mudbrick 
buildings 

Individual, 
subfloor 
burials  

Blade 
based  

Chaff-
tempered 
software in 
later levels 

n.d. Obsidian 

Tepe 
Asiab 

NW Iran Pastoral? 
suppl. by 
foraging & 
hunting 

n.d. Dom.(?) 
sheep & goat; 
but mainly red 
deer & wild 
boar  

None 2 burials: one 
flexed; one 
semi-flexed.  

Blade 
based 

Pre pottery Stylistic 
figurines 
including-
shaped 

Obsidian, but 
may be intrusive; 
marble beads, 
pendants & 
bracelet 
fragments 

Ganj 
Dareh 

NW Iran Pastoral? 
suppl. by 
foraging & 
hunting 

n.d. Dom. goat & 
sheep; wild 
cattle, deer, 
gazelle, boar 

Later levels 
mudbrick 
buildings 

Individual 
subfloor 
burials; only 
children grave 
goods 

Blade 
based 

Pre pottery Animal & 
human 
(including 
T-shaped) 

Marine shell 
beads; notably no 
obsidian 

Tepe 
Abdul  
Hosein 

NW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Dom. 2-row 
barley; dom. 
emmer  

Not reported Mudbrick 
buildings 
appear 
gradually 

1 subfloor 
burial  

Blade 
based 

Chaff-
tempered 
software in 
later levels 

Animal Obsidian in later 
levels); marine 
shell & stone 
beads; & 
fragments of 
tortoise shell  

Ali Kosh SW Iran Agro- Dom. Dom. goat Mudbrick Transition Blade Chaff- Animal & Obsidian; 
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pastoral 
suppl. by 
foraging & 
hunting 

emmer;  
dom. 2-row 
barley; 
dom.(?) lentil 

(dominant) & 
sheep; 
hunting of wild 
animals 
important 

buildings 
with 
courtyards 

from subfloor 
to outdoor 
burials, both 
with grave 
goods 

based tempered 
software in 
later levels 

human 
(including 
T-shaped) 

turquoise, marine 
shell; specular 
hematite & 
copper beads 

Chogha 
Bonut 

SW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Dom. 2-row 
barley; dom. 
emmer  

Dom. sheep, 
goat & 
cattle(?); 
gazelle 
principal wild 
animal  

Later levels 
mudbrick 
buildings 

None 
recovered 

Blade 
based 

Chaff-
tempered 
software in 
later levels 

Animal & 
human 
(including 
T-shaped) 

Obsidian (but 
rare); polished 
stone vessels & 
bracelets 

Tell-e 
Mushki 

SW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Some 
dom(?) 
barley but 
mainly wild 
species  

No sheep & 
few goats; 
mainly wild 
equids 

Remains of 
mudbrick 
and pisé, but 
no 
architectural 
structures 

None 
recovered 

Blade 
based 

Chaff-
tempered 
software  

Animal Obsidian; copper 
points; turquoise 
beads; marine 
shell ornaments 

Tell-e Jari SW Iran Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Some 
dom(?) 
barley but 
mainly wild 
species 

Dom. sheep & 
goat, some 
dom. cattle; 
gazelle 

Mudbrick & 
pisé 
buildings 

Doubtful child 
burial 

n.d. Chaff-
tempered 
software 

Animal Obsidian; copper 
pins; shell & 
stone ornaments  

Tol-e Băsi SW Iran Agro-
pastoral 
suppl. by 
hunting.  

Some dom. 
Barley, 
einkorn & 
bread wheat 

Dom. sheep & 
goat; some 
dom. cattle; 
gazelle 

Little archit.; 
mainly open 
platforms 
with fire 
installations.  

None 
recovered 

Blade 
based 

Chaff and 
mineral-
chaff 
tempered 
software 

1 animal 
figurine 

Shell ornaments, 
turquoise; clay & 
soft stone labrets 

Tol-e 
Nurabad 

SW Iran Pastoral n.d. Dom. caprines 
(dominate) & 
cattle; almost 
no hunting 

Mudbrick & 
pisé 
buildings 

None 
recovered 

Blade 
based 

Chaff-
tempered 
software  

Animal? Obsidian (1 
piece); clay 
labrets 

Tang-e 
Bolaghi: 
TB75 & 
TB130 

SW Iran Foragin & 
hunting; 
possibly 
pastoral 

 Gazelle; 
sheep & goat 
(status 
unclear), 

None None 
recovered 

Geometri
cs 

None 
recovered 

None 
recovered 

None recvoered 
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some cattle & 
pig 

Jarmo NE Iraq Agro-
pastoral 
suppl. by 
foraging & 
hunting 

Dom. 
Einkorn, 
emmer & 
dom(?) & 
wild 2-row 
barley; 
legumes & 
wild grasses 

Dom. goats, 
sheep & 
cattle; gazelle 

Mudbrick 
buildings 

None 
recovered 

Blade 
based 

Later 
levels 
chaff-
tempered 
software 

Animal & 
human 
(including 
‘mother 
goddess’ 

Obsidian; marine 
shell beads 

Jeitun SW 
Turkme
nistan 

Agropastor
al 

Dom. 
einkorn & 
barley; wild 
grasses 

Dom. sheep & 
goat; gazelle 

Mudbrick 
buildings 
with 
courtyards 

1 child burial Blade 
based 

Chaff-
tempered 
software 

Animal 
(dog?) 

Marine shell 
beads  

Hotu Cave Caspian 
Sea 
Plains 

Pastoral? 
suppl. by 
foraging & 
hunting 

n.d. Dom(?) sheep 
& goat; wild 
sheep & goat, 
seals, gazelle, 
birds 

None 6 skeletons 
buried 
towards back 
of cave 

Pebble & 
flake tool 
based; 
some 
blades 

Later 
levels 
handmade 
chaff-
tempered 
software 

None 
reported 

None reported 

Belt Cave Caspian 
Sea 
Plains 

Pastoral 
suppl. by 
foraging & 
hunting 

n.d. Dom. sheep & 
goat & dom(?) 
pig; gazelle 

None None 
recovered 

Blade 
based 

Chaff-
tempered 
software; 
later levels 
‘Red-on-
Black’ 
ware 

None 
reported 

None reported 

Aq Kupruk NE 
Afghanis
tan 

Pastoral 
suppl. by 
foraging & 
hunting 

n.d. Dom(?) sheep 
& goat; 
gazelle, red 
deer, equids, 
wild goat 

None None 
recovered 

Blade 
based 

Chaff-
tempered 
ware 

None 
reported 

Steatite bowl 
fragment & 
incised turtle 
shell 

Mehrgarh Baluchis
tan 

Agro-
pastoral 
suppl. by 

Dom. 6-row 
& 2-row 
barley, 

Dom. goat, 
sheep & cattle 

Mudbrick 
compartment
ed buildings; 

Individuals in 
flexed position 
in burial 

Blade 
based 

Chaff-
tempered 
software 

Mainly 
human, but 
animal 

Marine shell, 
turquoise, lapis 
lazuli & 
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foraging & 
hunting  

einkorn & 
free-
threshing 
wheat; wild 
barley 

firepits & 
postholes on 
peripheries 

chambers 
with grave 
goods 

from later 
levels 

increase in 
later levels 

serpentine 
jewellery 

 
 Table 3.6: Summary of the economy and cultural attributes of the Neolithic sites mentioned in the text. 
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Figure 3.0: Topographical map of Iran showing main geographical features. 
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Figure 3.1: Soil map of Central Plateau. Scale 1: 2,500,000.  (After Dewan & Famouri 
1964.) 
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Key to Figure 3.1. 
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Figure 3.2: Distribution of Brown Soils & Chestnut Soils. (After Dewan & Famouri 1964: 
map D7.) 
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Figure 3.3: Distribution of Sierozem Soils. (After Dewan & Famouri 1964: map D6.) 
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Figure 3.4: Distribution of Desert Soils. (After Dewan & Famouri 1964: map D5.) 
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Figure 3.5: Soil potentiality map for the Central Iranian Plateau. Expressed in terms of soil 
limitations for agricultural production October 1963. Scale 1: 2,500,000. (After Dewan & 
Famouri 1964.) 
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Key to Fig. 3.5 
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Figure 3.6: Map showing the rivers of Iran. (After ECO Geoscience Database) 
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Figure 3.7: Map of the River Karan, the only navigable river in Iran. (After ECO 
Geoscience Database) 
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Figure 3.8: Mean annual amount of precipitation (mm), 1951-60. Dot marks study area. 
(After Ganji 1968: 79.) 
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Figure 3.9: Mean annual range of temperature (°C). Dot marks study area. (After 
Ganki 1968: fig. 78.) 
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Figure 3.10: Types of vegetation. Dot 
marks study area. (After Bobek 1968: 
fig. 88.)  
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Figure 3.11: Design motifs from Sialk I Ware. 
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Figure 3.12: Typical Sialk I ‘Buff’ Ware 

Figure 3.13: Typical ‘Chesmeh Ali’ Ware of the Chalcolithic Period. 
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Figure 3.14: Design motifs from 
Cheshmeh Ali Ware. 
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Figure 3.15: Map of Iran showing key Neolithic sites in Iran and surrounding areas. 
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Figure 3.16: Contour plan of Hajji Firuz Tepe. Contour interval: 1 m. (After Voigt 1983: fig.5.) 
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Figure 3.17: Aerial view of Ganj Dareh under excavation in the 1970s. (After Brian Hesse, University of Alabama 
at Birmingham.) 
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Figure 3.18: Plan of Tepe Abdul Hosein showing location of squares opened in 
1978. (After Pullar 1990: fig. 2.) 
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Figure 3.19: Site plan of Ali Kosh. (After Hole et al 1969: fig. 4.) 
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Figure 3.20: 1978 contour map of Chogha Bonut. (After Alizadeh 2003: fig. 4.) 
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 Figure 3.21. View of Tol-e Baši with excavation in progress. (After Pollock et al. 2010: fig. 1.2.) 
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Figure 3.22: Plan of Tol-e Baši & location of collection fields of 2006 survey. (After Pollock et al. 
2010: fig. 3.1.) 
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Figure 3.23: General view of Tang-e Bolaghi. (After Tsuneki & Zeidi 2008: pl. 1.21.) 
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Figure 3.24: Satellite image of the area of TB75 & TB130. (After Tsuneki & Zeidi 2008: pl. 4.1.) 
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Figure 3.25: TB75 cave. (After Tsuneki & Zeidi 2008: pl. 1.25.) 
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Figure 3.26: Plan of TB75. (After Tsuneki & Zeidi 2008: fig. 4.3.) 
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Figure 3.27: Shelter of TB130. (After Tsuneki & Zeidi 2008: fig. 5.3.) 

Figure 3.28 Shelter of TB130. (After Tsuneki & Zeidi 2008: fig. 5.3.) 
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Figure 3.29: Southern Turkmenistan showing the location of Jeitun & other sites of the Jeitun culture. (After Harris et al 
1993: fig. 1.) 
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Figure 3.30: Sketch plan of Jeitun. (After Harris et al 1993: fig. 2.) 
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Figure 3.31: Hotu & Belt caves as seen from the road. (After Coon 1952: fig. 1.) 
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Figure 3.32:  Site plan of Mehrgarh. Neolithic deposits are found areas 
MR3 and MR4. (After Jarrige et al.1995: 98.) 
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Chapter Four 

 

Methodology 

 

“New problems arise as more is learned of the first attempts at food 

production and settled village life” (Braidwood et al. 1961: 2008) 

 

 

4.0. Introduction 

 

The preceding two chapters have considered the origins and spread of 

agriculture in the Near East and Central Asia, and the regional characteristics 

of the Neolithic of Iran and neighbouring regions. It will have become 

apparent, that although no consensus exists as to exactly where and when 

agriculture originated, it is generally accepted that it first appeared in the 

Fertile Crescent, especially the upper reaches of the Tigris and Euphrates 

Rivers ca. 8000 BC, from where it spread into and across Europe, probably by 

a mixture of migration and indigenous development, although the significance 

attributed to either varies enormously between scholars (e.g. Ammerman & 

Cavalli-Sfroza 1984; Zvelebil & Rowley-Conwy 1984, 1987; Renfrew 1987; 

Dennell 1992; Whittle 1996; Thomas 1998, 2001; Diamond 1997, 2002; Price 

et al. 2001; Bellwood 2002; Hather & Mason 2002). In comparison, the spread 

of agriculture in Central Asia has received surprisingly little attention, and it 

has been assumed, rather than tested, that agricultural spread eastwards by a 

‘wave of advance’ similar to that which operated in Europe (Renfrew 1987; 

1989). It is a primary aim of this research to address the current lacuna in our 

understanding of the origins and spread of agriculture in Central and southern 

Asia, and to assess whether, as hypothesised by Renfrew (1989: 149) a wave 

of advance operated to the east as well as the west. All known Early Neolithic 

sites in Iran are located in western Iran, in the Central Zagros (e.g. Asiab, 

Sarab, Ganj Dareh, Hajji Firuz Tepe) and southwestern lowlands (e.g. Ali 

Kosh, Choga Bonut) and, to date, none are known on the Central Iranian 

Plateau. In order to ascertain whether the dearth of sites is a result of lack of 
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archaeological research, or represents a real absence, this research will 

involve a review of the existing material from the Central Plateau, and the 

results of new archaeological research on the Tehran, Qazvin and Kashan 

Plains, in which I participated. The purpose of this chapter is to explicitly state 

the aims and objectives of this research, and to establish the methodology 

through which they will be achieved.  

 

 

4.1. Aims and objectives 

 

As noted in Chapter One, the aim of this research is to test for the presence of 

Early Neolithic occupation on the Central Iranian Plateau, with particular focus 

on the Qazvin, Tehran and Kashan Plains. The objectives of this research are 

to: 

 

i. Review models of the sequential Neolithic occupation of Iran; 

ii. Analyse the published material on Early Neolithic sites in Iran and 

neighbouring regions;  

iii. Recalibrate and evaluate the “chronometric hygiene” (Spriggs 1989) of 

the available 14C determinations for Neolithic sites in Iran and 

neighbouring regions;  

iv. Spatially plot the evaluated 14C dates on to a geographic map of Iran; 

and 

v. Review the data from recent survey and excavation projects on the 

Tehran, Qazvin, and Kashan Plains, including my own research on the 

latter, to evaluate the evidence of early Neolithic occupation.  

 

 

4.2. Modeling  

 

Explaining the transition to agriculture is a long-standing and central problem 

in prehistoric archaeology, which traces its history back to the large-scale 

synthetic works of Vere Gordon Childe (Childe 1925; 1942; 1953). Childe 

believed that agriculture originated in the uplands of Southwest Asia, where 
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wild grasses and animals fit for domestication could be found. The control of 

food production allowed for population expansion, “beyond the narrow limits 

imposed by the naturally available supply of wild fruits and game” (Childe 

1925: 15), facilitating the spread of farming into Europe, by “the migration or 

colonization of farmers and shepherds from the Near East” (Childe 1968: 

368). To demonstrate the pattern of the spread, Childe produced two maps 

plotting the distribution of Early Neolithic sites (Fig. 4.0 & 4.1), which he 

believed to “exhibit quite clearly the gradual spread of Neolithic farmers, or at 

least farming from the south-east” (Childe 1925: 321). The maps did not have 

any temporal scale, but this aside, were remarkably accurate considering the 

time at which Childe was writing. Roman Ghirshman was one of the first 

scholars to specifically focus on the development of agriculture in Iran. He 

perceived agriculture to have emerged as the outcome of a long, slow 

indigenous process, which was facilitated by a postulated switch to a ‘dry’ 

climatic regime ca. 13,000 BC, and human intuition and general familiarity 

with the landscape (Ghirshman 1951: 28). Ghirshman specifically accredited 

the development of food production to women, arguing: that, “whereas man 

made but little progress, woman with her primitive agriculture introduced many 

innovations during the Neolithic period” (1954: 28). 

 

The advent of 14C dating in the 1950s (cf. Libby 1955), and its subsequent 

refinement throughout the second half of the twentieth and early twenty-first 

century, has provided a new, sensitive instrument for testing models of the 

spread of agriculture (Dolukhanov et al. 2005: 1441). Grahame Clark (1965a; 

1965b) mapped the earliest uncalibrated 14C determinations from a sample of 

Neolithic sites onto a map of Europe, by dividing the sites into a three-fold 

grading system dependent on age: over 5200 BC; 5200-4000 BC; and 4000-

2800 BC (Clark 1965b: 45) (Fig. 4.2). From the resulting “clear and coherent” 

pattern of site distribution, Clark (1965b: 48) was able to discern a clinal 

pattern of spread into Europe along the Danube front, similar to that described 

by Childe (1925). The determinations Clark used were uncalibrated, and he 

made no attempt in his analysis to convey the standard deviation of individual 

samples, sharing Waterbolk’s view that “one carbon-14 date from a site or 

culture is no date; only series of dates that mutually make sense, can be used 
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for chronological purposes” (Waterbolk 1960: 18). His map was also sketchy 

in places, particular for much of Eastern Europe, for where there was a lack of 

14C determinations. However, Clark saw his work very much as a preliminary 

guide to future research, believing that, “even a crude message is better than 

none” (1965a: 66). 

 

Clark's pioneering work was followed by more extensive and inclusive studies 

by Albert J. Ammerman and Louis L. Cavalli-Sforza (1971; 1973; 1979; 1984) 

who used 14C measurements from a total of 53 Neolithic sites to map the 

spread of farming. Sites were selected for having: (a) dated deposits 

belonging to one of the ‘Neolithic cultures’ in the region; (b) no suspected 

contamination of the dating sample; and (c) 14C determinations with a 

standard error of 200 years or less (ibid. 1984: 55). Where more than one 

layer or level was dated at a site, only the date from the earliest level was 

used; and in situations where this level had more than one date, a weighted 

average of the available data was used. Excluded from the analysis were 

sites from the Alps, as “retardation of the spread was expected owing to 

unfavourable ecological and geographical factors” (ibid.: 55-6). As was the 

convention of the time, all of the 14C ages used were uncalibrated.  

 

Following Clark (1965a; 1965b), Ammerman and Cavalli-Sforza applied their 

set of 14C determinations to a geographic map of Europe (Fig. 4.3), and found 

that the distribution of the 14C determinations showed a clear cline from 

southeast to northwest, mirroring the pattern depicted in Clark’s maps. 

Ammerman and Cavalli-Sforza also produced a second map, which used a 

series of 500-year interval isochrones or lines to represent the 14C 

determinations (Fig. 2.5). This map too exhibited the same clinal pattern, with 

the oldest sites closest to the origin in the Near East, and the sites becoming 

increasingly younger with movement in a northwest direction from this origin. 

Ammerman and Cavalli-Sforza acknowledged that the coverage on some 

parts of the maps was “thin”, but argued that “the map as a whole should only 

be viewed as a current approximation” (1984: 59). They advocated that the 

map could be progressively improved as more 14C determinations become 

available, and knowledge of local Neolithic sequences increased. Such work 
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has been done more recently by Gkiasta et al. (2003), Pinhasi et al. (2005) 

and Bocquet-Appel et al. (2009).  

 

Gkiasta et al. (2003) re-evaluated the 14C record, in order to establish the 

extent to which the inclusion of 14C dates produced in the 20 years since 

Ammerman and Cavalli-Sforza’s (1984) original analysis, supported or 

modified their work. Using a data set of  14C determinations from 508 Neolithic 

sites, Gkiasta et al. (2003: 48) performed a major axis regression analysis, 

similar to that originally employed by Ammerman and Cavalli-Sforza (1984) 

(Fig. 4.4 & 4.5). They then expanded on Ammerman and Cavalli-Sforza’s 

work: undertaking other map visualizations and statistical analysis, 

experimenting with geographically-weighted regression, which allows for the 

detection of local variation in trends in large-scale spatial datasets; and using 

ranges of calibrated dates rather than point values (Gkiasta et al. 2003: 49). 

Despite the use of a larger dataset, the results of Gkiasta’s spatial analyses 

closely resembled Ammerman and Cavalli-Sforza’s: sites were older close to 

the origin in the Near East and become increasingly younger in a north-

westwards direction from this origin (ibid.: 51). Gkiasta et al.’s work also 

provided a similar overall rate of spread (~1.3 kilometres/year), although the 

dispersion around the mean rate was somewhat greater, which suggests that 

may be due to greater variance in the rate of spread of early farmers across 

Europe than Ammerman and Cavalli-Sforza originally assumed (Gkiasta et al. 

2003: 54-5). 

 
Susan Colledge et al. (2004) were the first to test the ‘Wave of Advance’ using 

both 14C determinations and the archaeobotanical record. Colledge et al. used 

existing data on the distribution of Neolithic founder crops, including einkorn, 

barley, wheat, flax, lentil, pea, bitter vetch and chickpea, and 14C 

determinations for 40 Early Neolithic sites in southwest Asian and 

southeastern Europe, to elucidate the nature and probable routes of the 

spread of agriculture (Colledge et al. 2004: 26) (Fig. 4.6a & b). Colledge et 

al.'s (2004: 37) findings indicate that cereal domestication first emerged in the 

Levantine corridor during the early tenth millennium BC (where it was 

restricted to just a few sites for the next 400–500 years), before spreading 
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further westwards across Europe, ca. 8700 BC, and support the ‘Wave of 

Advance’.  

 

John Robb (1991; 1993) offers a different perspective on the spread of 

agriculture. Robb identifies a paradox applicable to all archaeological study, in 

that “random, directionless processes can add up to ‘directed’ results” (1991: 

287), the results of which are sometimes so strikingly large and unidirectional, 

that they resemble central problems in archaeology. Robb employs a 

simulation of the spread of Indo-European languages across Eurasia to 

demonstrate this paradox, which is equally applicable to the spread of 

agriculture. The parameters of the stimulation are based on several 

generalizations about tribal social life which include: that groups generally live 

at low population densities in networks of villages of 100–1000 people; that 

social life is typically very fluid e.g. groups grow, dwindle, merge, go extinct; 

and that this ‘normal’ social flux may change the language and the language 

family spoken in a given region. Finally, groups that share language familiarity 

need not share anything else e.g. technology, economy, religion and, thus, 

“language affiliation is a neutral trait…and language change is random” (Robb 

1991: 288).   

 

To run the simulation, hypothetical ‘territories’ on a map of Eurasia were filled 

by a symbol signifying the linguistic family there (Fig. 4.7), with the resulting 

map depicting the hypothetical language distribution at time 0. The number 

chosen to represent the probability that a given territory will undergo language 

change during one turn was set arbitrarily at 0.35 (Robb 1991: 288). During 

each turn for every territory a random number was generated. If this number 

fell below the pre-set probability, the territory was considered to have 

undergone linguistic change and been re-colonized by a neighbouring 

territory, also selected randomly (ibid.). The simulation was run for 2000 turns 

(Figs. 4.8-4.10), the results of which showed how individual language families 

can be rapidly replaced by just a few groups by a totally random process: after 

120 turns only 20 of 64 language families remained; after 340 only 9 

remained; and during the last 400 turns only 2 language families remained. 

The pattern shown by the simulation is general to any situation, in which 
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traceable lineages may go extinct every generation or time interval, including 

inherited surnames, the inheritance of mitochondrial DNA, and – as is 

particularly apposite to this research - the replacement of forager economies 

by farming economies (Robb 1996: 288-9). 

 

 

4.3. The Neolithic of Iran  

 

The history of archaeological investigation in Iran has been sporadic. Nearly 

50 years on, Ghirshman’s statement that “whole areas of Iran remain 

untouched by archaeological research” (1954: 29), unfortunately, still holds 

true. Hassan Fazeli (2001: 27) divides twentieth century archaeology in Iran 

into two stages: pre- and post-World War II. To these might be added a third 

stage: after the Islamic Revolution of 1979. From 1928 to the beginning of 

World War II a number of excavations took place by foreign archaeologists, 

including Ernest Hertzfeld and Eric Schmidt’s excavation of Persepolis in Fars 

(Schmidt 1953; 1957; 1970) and Schmidt’s (1935a, 1935b, 1936) excavations 

at Cheshmeh Ali; Alexander Langsdroff and Donald McCown’s excavation of 

Tall-i Bakun; Georges Contena and Roland Ghirshman’s excavation of Giyan, 

near Nihavand (Ghirshman 1954); Ghirshman’s excavation of Tepe Sialk on 

the Central Plateau (Ghirshman 1938); and the excavation of Tureng Tepe by 

Frederick Wulsio.  

 

After World War Two, the focus of archaeological research changed, partly as 

the result of Gordon Childe’s (1942; 1953) hypothesis that the origins of the 

Neolithic were to be found in the Near East (see p. 10). This attracted many 

archaeologists to work in the Zagros Mountains. Perhaps the two most prolific 

archaeological projects of this period were those of Robert Braidwood 

(Braidwood 1960; 1961; Braidwood & Howe 1960; Braidwood et al. 1983), 

who began excavations at the Neolithic sites of Ganj Darah, Sarab and 

Siahbid in the Kermanshah region; and Frank Hole and colleagues’ survey 

and excavation work on the Deh Luran Plain (Hole & Flannery 1967; 1968; 

1977; 1987; Wright 1969; 1981; Hole et al. 1969). Indeed, archaeology in Iran 

during this time has been described as, “at the cutting edge of record and 
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data processing” (Winter quoted in Lawler 2003: 971). One area that was 

largely ignored during this period was the Central Iranian Plateau, despite 

Schmidt’s and Ghirshman’s earlier excavations in the region (Fazeli 2001: 

29). Some work was done by Iranian archaeologists such as Ezzat O. 

Negahban’s (1979) excavation of the prehistoric sites of Zagheh, Ghabristan 

and Sagzabad on the Qazvin Plain, but this all came to an abrupt halt with the 

Islamic Revolution of 1979. 

 

In the aftermath of the revolution all foreign digs were stopped, universities 

were closed, and Iranian archaeologists were forced to either flee or wait for 

an intellectual thaw (Lawler 2003: 971). Sites were looted and/or destroyed by 

urban expansion, and previously excavated archaeological material was lost 

(Alizadeh 2003: xxxi; Lawler 2003: 971). It is only within the last decade that 

western archaeologists have been readmitted back into Iran, to work in equal 

collaboration with Iranian archaeologists (Lawler 2003: 970). However, this 

situation is liable to change with the current political situation in the country. 

 

As part of this research, published material on the Early Neolithic of Iran and 

neighbouring regions is considered, with particular weight given to: the 

subsistence economies, architecture, material culture and burial practice, 

which are all believed to be important components of the ‘Neolithic’ (Hodder 

1990). It is recognized that the recovery and analysis of both botanical and 

faunal remains will always be biased by preservation processes, cultural 

practice and excavation methodology (Zvelebil 1993: 150). The presence of 

architecture at a site indicates it was semi-, if not permanently, occupied. It 

also provides a useful indicator of the economic and social structure of a site 

(Hodder 1990; Watkins 1990). Material culture, including stone tools, pottery, 

jewellery and figurines, is an important medium for the portrayal of group and 

individual identity (cf. Díaz-Andreu et al. 2005), as well as providing a useful 

proxy for marking prehistoric trade and communication networks. It would be 

expected, although cannot be presumed, that if agriculture spread by 

migration it would have followed earlier trade routes (Sherratt 2007: 20). 

Burial practice provides an important insight into a group's beliefs and 

customs. Similar burial practices between sites can be indicative of a shared 



 

 

212 
 

cultural and belief system, which may be due to the spread of a common 

ancestral population, and/or the maintenance of community ties.  

 

In light of the disrupted history of archaeological research in Iran, the majority 

of prehistoric sites were excavated in the 1960s and 1970s, before many of 

the archaeological procedures (e.g. fine sieving, floatation, 14C dating) that 

are treated as routine today had come into practice. There is, then, a lack of 

scientific methods in much Iranian archaeology. This has not been helped by 

the isolation of Iranian archaeologists working in the 1980s and 1990s from 

the rest of the world. Due to limited research there also exist extensive 

lacunas in our knowledge of certain regions, particularly southern and 

northeastern Iran (Hole 1998). 

 

For those sites that have been excavated, a wide discrepancy exists between 

the levels of information available. Whereas the findings of some excavations 

have been fully published e.g. Ali Kosh, Choga Bonut, Tepe Abdul Hosein, 

others such as Tepe Sabz, Asiab and Ganj Dareh, remain lost in an 

evanescence of seasonal reports and short notes in journals. The type and 

range of data recovered and recorded from different sites also varies 

considerable depending on the aims and objectives of the excavator(s), and 

time and financial constraints. Although this research does the best to 

overcome these handicaps, a full report on the Neolithic of Iran – as is 

available for the Neolithic of Mesopotamia – is not possible given the current 

level of information.   

 

 

4.4. Radiocarbon determinations 

 

A fundamental part of this research involves the creation and analysis of a 

dataset of all the 14C determinations for Neolithic sites in Iran and 

neighbouring regions that are currently available. Sites are classified as 

Neolithic, ca. 8000–5500 BC, on the basis of conventional assignment. 14C 

determinations will be obtained from a variety of sources including site 

excavation reports, Radiocarbon and other journals, laboratory databases, 



 

 

213 
 

and relevant datasets from universities and archaeological bodies. In 

conjunction with the 14C determinations, additional information that will be 

collected includes: the laboratory number of each 14C determination; the 

nature of the material dated; the contexts of the 14C samples; any economic 

and/or cultural associations; and relevant excavator or laboratory comments. 

 

 

4.4a.The radiocarbon method  

 

This section outlines the radiocarbon (14C) method, for it is requisite to 

understand the processes by which 14C determinations are attained in order 

to be able to assess their chronometric hygiene and level of confidence. A 

number of the references cited in this section are relatively old. This is 

because the vast majority of 14C dates available for Iranian sites were 

measured before 1980 and, therefore, the published material relative to the 

problems associated with 14C dating during this period, is most appropriate.  

 

The dominant natural mechanism for the production of 14C is a secondary 

effect of cosmic-ray bombardment in the upper atmosphere (Taylor 1997: 66). 

Following production, 14C is rapidly oxidized to form carbon dioxide (CO2). 

Most 14C –  around 85 per cent – is absorbed in the oceans, while about 1 per 

cent enters the terrestrial biosphere, primarily by means of the photosynthesis 

pathway (ibid.: 66). Consequently, all living organisms are constantly 

exchanging 14C with their environment. Once an organism dies, carbon 

exchange stops, and the amount of 14C gradually decreases through 

radioactive beta decay. The best estimate of the half life of 14C is 5730 years, 

however, for historical reasons the Libby half life of 5568 years is 

conventionally used in the calculation of a 14C result (Bowman 1990: 11).   

 

14C dating is a radiometric-dating method, which uses the naturally occurring 

radioisotope 14C to estimate the age of carbonaceous material up to around 

58,000–62,000 years ago (Plastino et al. 2001: 161). Measurements are 

conventionally made by counting the radioactive decay of individual carbon 

atoms by Gas Proportional Counting (GPS) or Liquid Scintillation Counting 
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(LSC), and for samples of a sufficient size (several grams of carbon) this 

technique is still used. However, most methods are relatively insensitive, and 

due to the long decay rate of 14C subject to large statistical uncertainties: 

when there is little 14C to begin with, the relatively long half life of 14C means 

that very few of the 14C atoms will decay during the time allotted for their 

detection (ibid.; Bowman 1990: 33). Accelerator Mass Spectrometry (AMS) 

which directly measures the number, or proportion of the number, of 14C 

atoms in a sample, greatly increases the sensitivity of conventional dating 

methods (Bowman 1990: 34). AMS requires much smaller sample sizes – 

typically towards a factor of 1000 smaller (www.radiocarbon.eu) – which 

means that small carbon samples such as seeds, which would be totally 

destroyed by conventional-dating methods, can be measured. Although the 

techniques of conventional and AMS dating are fundamentally different, both 

produce 14C results that can be interpreted in the same way (Bowman 1990: 

31). The AMS method is not without its issues, and in particular the dating of 

plant macrofossils can be problematic (Lowe & Walker 2000: 56; for case 

studies see Walker et al. 1999; Turney et al. 2000). Consequently, similarly to 

conventional determinations, AMS dates should not be taken at face value, 

and individual determinations need to be evaluated for their reliability.  

 

Two major issues associated with both conventional and AMS dating are: the 

stratigraphical integrity of the sample; and the level of contamination. Matthew 

Spriggs and Atholl Anderson have developed a methodology for evaluating 

the ‘chronometric hygiene’ of 14C dates (Spriggs 1989; Spriggs & Anderson 

1993). In brief, this method consists of setting out a protocol of acceptability 

for 14C ages, whereby dates are accepted or rejected according to sample 

material, pretreatment conditions, stratigraphic context, cultural association 

and other criteria (Spriggs & Anderson 1993: 207-8; see also Millard 2008: 

849). 

 

A fundamental assumption of 14C dating is that no process other than 

radioactive decay has altered the level of 14C in a sample since its removal 

from the atmosphere (Bowman 1990: 27). Thus, any addition of carbon-

containing material is contamination, and must be removed. This is done by 
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the pretreatment of samples in laboratories. The risk of contamination 

increases with decrease in sample size – very small samples pose a greater 

risk (Barker 1970: 39). Two of the main contaminants are calcium carbonates 

(e.g. limestone), which dissolve in groundwater and can then be deposited in 

a sample; and humic acids from buried soils (Bowman 1990: 27). In most 

samples carbonates can be removed by an acid wash, whilst humic acids can 

be eradicated using dilute alkali and acid washes in sequence (ibid.). A 

particular problem in earlier measured samples that were hand sorted, was 

contamination by rootlet penetration (Barker 1970: 39). 

 

Some sample materials are easier to pretreat than others. One of the easiest 

to treat materials is wood charcoal, which due to its burning is chemically inert 

(Bowman 1990: 27). More difficult materials include wood, shell and bone. A 

specific problem with bone is that whilst the protein fraction is the easiest to 

date, it is not always well preserved, can begin to degrade in warm conditions, 

and is susceptible to attack by fungi or bacteria (ibid.: 29). Some samples are 

too chemically fragile to be pretreated, and for these samples contamination 

cannot be ruled out (Barker 1970: 39).    

 

The apparent age of a sample can also be influenced by affects beyond 

laboratory control. Of these probably the most commonly encountered is ‘pre-

sample growth’ or the ‘Old Wood’ effect. Wood, particularly timbers, can be 

recycled and reused in later buildings or structures, resulting in the wood 

having a much earlier 14C age than the building it is supposed to ‘date’.  Trees 

can also be very long lived, and this represents another problem, with the age 

difference between the heartwood and sapwood of some trees being 

hundreds of years, for example, bristlecone pines can live for some 4000 

years (Bowman 1990: 51). It is consequently advisable, whenever possible, to 

date samples of twiggy material or short-lived species (ibid.).  

 

The apparent age of carbon samples can also be affected by the ‘marine’ or 

‘reservoir’ effect (Aitken 1990; Lowe & Walker 2000; Lowe et al. 2001). The 

mixing rate of carbon in deep oceans is slow, and really deep waters of the 

present day can show a 14C age of several millennia (Bowman 1990: 24; 
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Lowe et al. 2001: 1176). Upwelling of 14C depleted deep water means that 

surface water – and the marine animals and carbonates that feed on it – can 

have an apparent 14C age relevant to the atmosphere (Lille et al. 2008; 

Zaitseva et al. 2009); an effect that cannot be accurately quantified 

(Dolukhanov et al. 2009: 784). Freshwater shells, although escaping the 

marine effect, can be affected by hard water, in which the presence of 

dissolved calcium ions, or other sources of carbon, results in depleted 14C 

concentrations (Bowman 1990: 25-6). The hard-water effect can also 

influence the apparent 14C age of marine organisms where a substantial 

carbon-rich freshwater influx is encountered, such as at river mouths and 

estuaries (ibid.). 

 

Isotopic fractionation can also effect the 14C concentration of a sample. Three 

isotopes of carbon (12C, 13C & 14C) exist. In any biological pathway there is a 

tendency for the lightest isotope (in this case 12C) to be preferentially taken 

up, followed by the next lightest (Bowman 1990: 20). Thus, growing plants 

and animals have lower 14C levels than the atmosphere, and if this difference 

is significant, will appear older when dated. Fortunately fractionation can be 

corrected for after laboratory analysis (ibid.: 21).  

 

Another issue with 14C dating is the issue of bulk sampling. Conventional 

dating requires large samples, and in the earlier days of the process bulk 

carbon samples were often used, the resulting 14C determination of which was 

an average of several carbon sources and thus meaningless. Small samples 

can be equally problematic, as there is a greater risk of stratigraphic mobility, 

and although sample selection should control for this possibility, this is not 

always the case (Pettitt et al. 2003: 1690). It is also important that an 

association can be established between a carbon sample and the 

archaeological event it is supposed to date, for unless it is possible to infer a 

definite relationship between the two, “a large and indeterminable error is 

introduced” (Barker 1970: 39). 

 

All dates published by a laboratory are given an associated error term, which 

corresponds to the laboratory’s estimate of the precision of the measurement; 
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it does not take into account all of the factors that can influence 14C 

measurements. As 14C measurements can often not be repeated (due to time, 

resources, the depletion of the sample material etc.) error terms are usually 

estimated (Bowman 1990: 38). The distribution of results for 14C 

measurements that can be repeated is Normal or Gaussian. Assuming this 

holds for 14C ages when the error is estimated at a 1 sigma error term (±1σ), 

means there exists: a 68.3 per cent chance that the true result will lie within 

±1σ; a 95.4 per cent chance within ±2σ; and a 99.7 per cent chance within 

±3σ (ibid.: 38). Alternatively, there is nearly a 1 in 3 chance that the result 

does not lie within ±1σ of the experimental one. 
14C ages are conventionally 

published with a ±2σ error term (Bowman 1990: 39). To evaluate the true 

error in a 14C result three sets of counting statistics need to be incorporated 

for the sample, background and modern standard. 

 

Unfortunately, there is no convention for defining how a laboratory should 

perform error estimates, and error terms need to be addressed with caution 

(Pettitt et al. 2003: 1989). Traditionally, error terms often included only the 

statistical counting uncertainty (usually of ±60 years or less) giving a false 

sense of accuracy (Barker 1970:  40). Today, laboratories are encouraged to 

try to quote the overall uncertainty, which is determined from a control sample 

of a known age and verified by international inter-comparison exercises (Scott 

2003). 

 

All 14C determinations that have been accepted by the laboratory are issued 

with a laboratory reference number. Such reference numbers consist of a 

laboratory identifier (e.g. BM for British Museum) followed by a hyphen and 

then a number (e.g. BM-1224) (Bowman 1990: 42). Table 4.0 lists the lab 

codes of all the 14C measurements used in this research.  

 

Systematic errors can arise in a laboratory resulting in erroneous 14C ages. 

Laboratories can test whether they have systematic errors by taking part in 

both official Inter-Laboratory Comparability tests and unofficial comparisons. 

Systematic errors can occur in many different ways depending on the method 
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used to measure the 14C content. In Liquid Scintillation Counting for example, 

care has to be taken to avoid evaporation of benzene. An unexpected loss of 

1 per cent in the modern reference can give sample ages too young by 

around 80 years, and continued evaporation will give even larger biases 

(Bowman et al. 1990: 59). This was experienced by the British Museum in the 

early 1980s (Tite et al. 1987), and would have gone undetected if not for 

interlaboratory comparison, which showed that the British Museum’s dates 

were on average some 200 years younger than the consensus data (Bowman 

et al. 1990: 59). Cases such as these emphasise the importance for 14C 

laboratories to participate in regular interlaboratory comparisons, to ensure 

accurate and consistent 14C measurements (cf. Scott 2003; Scott et al. 1989).  

 

14C ages are usually reported in 14C years before present (BP), where 

‘present’ is defined as 1950. This is based on a nominal, and assumed 

constant, level of 14C in the atmosphere equal to the 1950 level. A raw BP 

date cannot be used directly as a calendar date, because the level of 

atmospheric production of 14C has not been strictly constant (Niklaus et al. 

1994: 194). The level is affected by variations in cosmic ray activity, which is 

in turn effected by changes in the earth’s magnetic field (Kudela & Bobik 

2004). In addition, there are substantial reservoirs of carbon in organic matter, 

the ocean, ocean sediments and sedimentary rock, and changes in the 

earth’s climate can affect the carbon flow between these reservoirs and the 

atmosphere, leading to changes in the atmosphere’s 14C fraction (Bowman 

1990: 18). Aside from these natural processes, the level can also be affected 

by human activity. Starting with the beginning of the Industrial Revolution in 

the 1700s and continuing to the 1950s, the fraction level of 14C in the 

atmosphere has decreased, because of the admixture of large quantities of 

CO2 into the atmosphere from the combustion of fossil fuels (the Suess effect) 

(Bowman 1990: 19). However, during the 1950s and 1960s atmospheric 14C 

almost doubled, due to atmospheric bomb tests (Reimer et al. 2004: 1299). 

 

To correct for variations in atmospheric 14C, 14C ages (BP) need to be 

calibrated into calendar dates (BC/AD). Standard calibration curves are 

available, based on comparison of 14C dates of samples that can be dated 
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independently by other methods (e.g. dendrochronology & deep ocean 

sediments). Originally, calibration curves only extended back to around 5000-

years ago and calibration was problematic (Waterbolk 1971: 15). However, 

recent calibration curves (e.g. IntCal 09) extend back over 50,000 years 

(Reimer et al. 2009).  

 

The calibration curve is not a monotonic function, thus, as true age increases 

the 14C age does not necessarily increase, and in fact it may decrease as a 

consequence of wiggles (Bowman 1990: 46). If the Gaussian or normal 

distribution of a 14C result and associated error term is transformed by such a 

curve on the calendar axis, the distribution of the calendar dates is no longer 

Gaussian, nor is it is mathematically definable, and its form will depend on the 

part of the calibration curve under consideration (ibid.). Calibrated dates are 

therefore not central dates with an error term, but a range of ranges. 

 

There are significant plateaus in the calibration curves, for example, the 

plateau at 11,000–10,000 14C BP that is believed to be associated with 

changing ocean circulation during the Younger Dryas. Over the period of 0–

10,000 years BP, the average width of the uncertainty of calendar dates is 

~335 years, although in well-behaved regions of the calibration curve the 

width decreases to ~113 years, while in ill-behaved regions it increases to a 

maximum of 801 years. Significantly, in the ill-behaved regions of the 

calibration curve, increased precision of measurement does not have a 

significant effect on increasing the accuracy of the dates (Niklaus et al. 1994: 

196).   

 

Many 14C measurements from Iranian Neolithic sites – some of which were 

produced as early as the 1950s – are not calibrated, and those which are 

have not been calibrated with the most recent, internationally accepted, 

calibration curve, IntCal09 (Reimer et al. 2009). To improve the validity of the 

measurements in this thesis, all 14C ages are calibrated using the calibration 

software OxCal 4.1 which utilises IntCal09 (Brook Ramsey 2009). 

 

 



 

 

220 
 

4.4b. Chronometric hygiene 

 

As emphasised in the above section there are a range of questions that must 

be asked of any 14C measurement before it can be accepted. However, to 

date there is no systematic procedure for quatlity control for 14C dating in 

archaeology (Pettitt 2003: 1685). In this research the ‘chronometric hygiene’ 

(Spriggs 1989: 601), or ‘robustness’ (Lowe et al. 2001: 1176) of individual 14C 

determinations will be evaluated in accordance to how well they fulfil the 

criteria described below. Those that fail to meet the criteria will be assigned a  

chronometric hygiene score of ‘no confidence’, whilst those that fully meet the 

criteria will be scored as ‘reliable enough to accept without further 

questioning’. 14C determinations that fall inbetween the two will be assigned 

scores of ‘questionable’ or ‘acceptable’ confidence, depending on how well 

they fulfil the following criteria: 

 

i. The sample material. A wide range of materials are employed in 14C 

dating, each of which has been affected to a greater or lesser 

extent by physical processes, including reburial or redisposition, 

and/or chemical alteration (Lowe et al. 2001). Thus, in all cases it is 

essential to know the material of the carbon sample that is being 

measured.  

ii. The proficiency of the laboratory in which the determination was 

recorded. To achieve consistency between the 14C determinations 

made by different laboratories most, although not all, laboratories 

participate in laboratory inter-comparison. In this research if a 14C 

determination is from a laboratory which does not participate in 

regular laboratory inter-comparison, or the laboratory is not well 

known, the determination will be treated with ‘no confidence’. 

iii. The pretreatment conditions. All 14C determinations should be 

published with the appropriate contextual information concerning 

the nature of the samples selected for dating, the treatment of the 

sample prior to and during measurement, and any correction factors 

employed (Lowe et al. 2001: 1177). Thus, it is important that the 14C 

determinations used in this research come from well-recorded 
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contexts and are stratigraphically secure, for if the sample material 

is suspect “any further manipulation of the date…can only lead to 

spurious results” (ibid.: 1176). In this research, the following 

information on the pretreatment of a sample is required as a 

minimum: (a) the dating laboratory’s sample codes; (b) the type of 

measurement (i.e. AMS or radiometric) conducted by the 

laboratory; (c) a note of any non-routine pretreatment if appropriate; 

and (d) a statement of any correction factors applied in the age 

calculation, e.g. marine reservoir correction.   

iv. The number of dates available for the site. It must be ensured that 

14C determinations are stratigraphically secure. If only one 14C 

determination is available for a site, then its confidence must be 

questioned, for in such a case it is difficult – Pettitt argues 

“impossible” (Pettitt et al. 2003: 1690) – to assess the date’s 

accuracy (Buck et al. 1994: 245; Lowe et al. 2001: 1176). 

Interpretation is similarly difficult if the only dates that are available 

for a particular horizon are widely spaced (Pettitt et al. 2003: 1690). 

v. The level of association between what is being dated and the 

anthropomorphic activity that it is supposed to date. In all cases it 

needs to be established that the 14C determination dates the 

earliest occupation of the site (Millard 2008: 851). Where contexts 

are dubious the determinations will be treated with little to no 

confidence.   

vi. The error term. It is generally advised that samples with error terms 

of ±100 or more 14C years should be rejected, because the 

laboratory treatment is unreliable (Pettitt, pers. comm.). However, 

given that most 14C dates used in this research were measured on 

the early days of 14C dating, when error terms were generally much 

higher than they are today, such an approach would risk throwing 

the baby out with the bath water. Consequently, in this research 

error terms of up to ±150 14C years will be accepted as reliable 

enough to be used without further questioning for conventional 

measurements. In the case of AMS dates, due to their higher 
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precision and the more recent adoption of the procedure, dates with 

error terms of ±100 14C  years or more will be treated as unreliable. 

 

In accordance with the above criteria, an example of 14C determinations which 

can be treated with ‘confidence’ (i.e. ‘good’ dates) are the 14C determinations 

for the Neolithic site of Tal-e Bakun A, southwestern Iran: 

 

Lab. 
no. 

Context 
Sample 
material 

14
C date 
(BP) 

Date (cal. BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
207562 

Sq. BB 27, 
Level 3: trash 
heap 

Charred 
seeds 

5560±40  
4447-
4357 

4462-
4338 

Reliable 
Known 
material & 
context 

Beta-
210983 

Sq. BB27, 
Level 4 
(basal) 

Charred 
seeds 

5570±40 
4448-
4362 

4488-
4342 

Reliable 
Known 
material & 
context 

 

(After Alizadeh 2006: table 9.) 

 

Both of the carbon samples were recently collected, from well-secured 

contexts, by the 2004 Joint ICHTO-Oriental Institute excavation. The 14C 

dates were measured by AMS by a well-known laboratory, Beta-Analytic, 

which participates in interlaboratory comparisons (Scott 2003). Both dates are 

assigned laboratory codes, and are in stratigraphic agreement. Consequently, 

the dataset provides a relatively secure basis for calibration exercises (Lowe 

et al. 2001: 1176). 

 

On the other hand, an example of a date set with ‘no confidence’, i.e. a ‘bad’ 

date, is the single 14C measurement available for the site of Sayid 

Hammandini, in the Solduz Valley, Azerbaijan. 

 

Lab. no. Context 
Sample 
material 

14
C 

date 
(BP) 

Date (cal. BC) 
Hygiene Reason 

68.2% 95.4% 

Shell 
Development 
Co. 

Vertical 
face cut in 
mound by 
villagers 

Charcoal 
& ash 

7800±
210 

7027-
6462 

7296-
6241 

Unreliable Only 
date for 
site 

 
 (After Hole et al. 1969: table. 78.) 
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The sample was collected from an unsecure context, and submitted to the 

Shell Development Company laboratories, now defunct, for conventional 

measurement. The 14C determination it is not assigned a laboratory number; 

is from a bulk sample; has an error of ±210 14C years; comes from an 

unsecure context; and as the only date for the site is stratigraphically 

unsupported. In cases such as these, it is difficult to assess the accuracy of 

the date, to isolate adverse dates, and to obtain realistic calculations of the 

age estimate (Lowe et al. 2001: 1176). The 14C determination, then, cannot 

be treated with any confidence. 

 

It is generally advisable to be suspicious of all dates produced before the 

1990s, as it has been discovered that in previous years, more contamination 

occurred than was originally assumed (Pettit pers. comm.). Indeed, M.G.L. 

Baille (1990) reports that for determinations made in the 1970s and early 

1980s, some 30 per cent of results had true dates outside the predicted 95 

per cent ranges based on the laboratories deviations. However, as the 

majority of the 14C determinations of for prehistoric sites in Iran were made 

before 1980, in this research all determinations that meet the chronometric 

hygiene criteria, whether made prior to 1980 or not, are used. Furthermore, no 

distinction is made in this research between 14C dates obtained by 

conventional or Accelerator Mass Spectrometry (AMS) techniques, because 

given the date at which many of the 14C determinations cited in this research 

were measured, the main source of their uncertainty is not the accuracy of 

radioactivity measurements in the laboratory, but effects of contamination in 

the field by older or younger carbon (Dolukhanov et al. 2005: 1442). Similarly, 

no division is made between dates from short-lived, e.g. carbonized seeds 

and long-lived, e.g. charcoal materials, as in nearly all cases the plausible life 

time of the later is still comparable – or less than – the typical total error of 14C 

dates (ibid.). In terms of the dates used in this research, no claim to avoid 

errors of both exclusion and exclusion is made, but since the interest is 

identifying large-scale processes on the basis of a large number of 

observations, it is not believed that this will affect the conclusion.  
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4.4c. Calibration 

 

The level of 14C in the atmosphere is not constant, and 14C determinations 

need to be calibrated into calendar dates, before they can provide reliable 

estimates of the dates of events of interest (Blackwell & Buck 2003: 223). 

Calibration has greatly improved in recent years, but no attempt has been 

made since Voigt and Dyson’s (1992) study of the chronology of Iran, to 

recalibrate the Iranian Neolithic series of determinations. An important 

component of this research, then, is the calibration of the existing ‘raw’ 14C 

dates using the software program Ox Cal 4.1 (Bronk Ramsey 2009), which 

employs the calibration curve IntCal 09 (Reimer et al. 2009). The spatial-

temporal distribution of the calibrated 14C determinations will then be 

explored, by plotting the determinations onto a geographic map of Iran. A 

similar methodology will be used to that of Clark (1965b: 48) with the 14C 

determinations grouped into temporal categories, in this case of 1000 years. 

Where a number of carbon samples from a site have been measured over an 

extended period e.g. in cases where sites have been re-excavated, the most 

recently measured samples will be used. Where two samples have been 

tested from the same laboratory at the same time that with the earlier 

laboratory number will be the one quoted. No major claim is made that the list 

is in any sense complete. To achieve this would require a major collaboration 

between Iran and all the countries that have, and are continuing, to excavate 

it, which would take many years. 

 

It may seem, given all the problems associated with 14C dating outlined 

above, and the issues with statistical reliability and calibration, that 14C dating 

is not always worth the effort. However, the advantage of 14C dating is that for 

all these problems, it provides a chronological framework whose precision can 

be refined within scientific and operational parameters (Lowe et al. 2001; 

Blackwell & Buck 2003; Gamble et al. 2005). 
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4.5. Excavation and settlement survey in the Central Iranian Plateau 

 

To date, no Early Neolithic sites are known from the Central Iranian Plateau. 

There are two possible explanations for this: either there was no Early 

Neolithic occupation of the Central Plateau and settlement was confined to 

larger sites from the Mid-Neolithic onwards; or depositional processes have 

buried all but the largest of Neolithic sites (cf. Brookes et al. 1982). 

 

Alluvial aggradation is a major inhibiting factor in the identification and 

recording of prehistoric sites on the Central Plateau. Within the last 1000 

years there has been a dramatic shift in environmental regime, and “while it is 

not known at present what effect the shift had on human populations, this 

event and subsequent environmental recovery have greatly affected the 

available surface record of the majority of occupations” (Brookes 1989: 35). 

Ian Brookes (Brookes 1989; Brookes et al. 1982) instigated some of the 

earliest work on investigating the impact of alluvial processes on the visibility 

of archaeological sites. Using the evidence from archaeological and 

geographical survey in the Qara Su Basin, central west Iran, Brookes 

demonstrated that more than 10 metres of alluvium had accumulated in some 

areas of the basin since the abandonment of pre-Bronze Age sites (Brookes 

1989: 36). Brookes employed two types of evidence to support his case: 

stratigraphic evidence from Jameh Shuran, and the geographic distribution of 

visible pre- and post-Bronze Age sites. Jameh Shuran is a five-metre high tell 

site in the Qara Su Basin. Whilst the top one metre of cultural deposits at the 

site date to ca. 200-400 BC, the material from one metre below the surface 

was estimated to be from ca. 1000 BC (Brookes 1989: 36). Thus, at least one 

metre of alluviation has accumulated since the earlier occupation of the site. 

Further evidence of site burial is apparent in the distribution of sites mapped 

by size and age in the Qara Su Basin, which indicates that small – and even 

some large – prehistoric sites now lie beneath the alluvial surface (Fig. 4.11). 

 

Brookes’ work on alluvial processes in the Qara Su Basin is supported by 

Gavin Gillmore and colleagues (Gillmore et al. 2007; 2009; 2011) more recent 
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work on the Central Plateau. Gillmore et al. (2007: 44) used geomorphological 

survey to show that Late Neolithic deposits on the Tehran Plain can be 

covered by up to five metres of alluvial sediment from adjacent alluvial fans, 

and suggest that earlier sites may be buried even deeper. Gillmore’s findings 

for the Tehran Plain are paralleled by those of Armin Schmidt and Hassan 

Fazeli on the Qazvin Plain, from where they report the base of the Chalcolithic 

tell of Ghabristan to be buried beneath more than six metres of alluvium 

(Schmidt & Fazeli 2006: 39). Collectively, these studies indicate that on the 

Central Plateau extensive alluvial deposits have been responsible for the 

partial, or in some cases complete (Gillmore et al. 2007: 51), burial of 

archaeological sites, and that this is something that needs to be factored into 

any study of the region. 

 

A method for combating the effects of alluviation is qanat survey, a technique 

that was effectively employed on the Tehran Plain by Robin Coningham and 

colleagues (Coningham et al. 2004; 2006; Fazeli et al. 2007). In most of Iran 

the average annual precipitation is less than 250 mm, which is the minimum 

required for successful rainfall cultivation (Oates & Oates 1976: 111). 

Therefore, for successful crop production water has to be imported. Until 

recently, this has achieved through the widespread use of underground water 

conduits or qanats, the number of which in Iran is quite outstanding: there 

have been estimates of over 40,000, although an estimate of around 40,000 

seems more probable (Cressey 1958: 39; Beaumont 1974: 421).  

 

Qanats are created by digging a vertical shaft (the madar chah or ‘mother 

well’) down to the groundwater horizon on alluvial fans and plains, usually to a 

depth of between 10–50 metres (Beaumont 1974: 421; 1989: 128). From the 

mother well the qanat is continued by driving vertical shafts and excavating a 

tunnel down slope from the mother well. The shafts are usually spaced 

between 8–50 metres apart, depending on the overburden and the depth of 

the tunnel, and it is through these shafts that all the excavated material is 

removed. The excavated material accumulates in ring-like mounds (kavar) 

around the shaft, which from the air resemble small craters or huge 

‘doughnuts’. Kavars, then, effectively provide an inverted stratigraphy of the 
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plain (Gillmore et al. 2007: 430). Coningham (Coningham et al. 2004; 2006; 

see also Gillmore et al. 2007: 430) has demonstrated that by fieldwalking 

along qanat lines, and examining the pottery and stone artefacts from the 

kavars, it is possible to ascertain whether prehistoric sites are buried beneath 

the surface, providing much needed information on site visibility and size. For 

example, in the 2004 season of settlement survey on the Tehran Plain, 

Coningham (2006: 57–8) identified 6 prehistoric sites from 30 kilometres of 

qanat line, whilst only 8 prehistoric sites were recorded from 105 kilometres of 

transect walking.  

 

Due to the success of Coningham’s qanat survey on the Tehran Plain, qanat 

settlement survey was undertaken as part of this research, in order to collect 

data regarding the frequency, distribution and density of prehistoric sites on 

the Kashan Plain. It was anticipated that due to alluvial deposition on the 

plain, prehistoric sites – particularly those of the earlier periods – may have 

become buried. The methodology of the qanat survey is as follows. Qanat 

systems were selected at random, and their length was walked by a survey 

team of three or more people. Following Coningham et al. (2004: 3), sites 

were defined by the presence of a feature, a single lithic find spot, a scatter of 

ceramics, or fire-cracked rocks. When found, sites were located using 

handheld GPS units, photographed, measured and sketched. Major 

chronological indicators were noted, and samples of ceramic sherds and 

lithics collected, bagged, and returned to the field laboratory for further 

analysis. Information on each site was catalogued using a recording sheet, 

which included a record of the site’s name (where available), coordinates, 

elevation, general description, condition and finds. A major issue with the 

qanat survey was that many qanat lines on the Central Plateau are being – or 

have been – replaced by electric water pumps and irrigation systems. As a 

result qanat lines are rapidly disappearing or falling into disrepair and, thus, it 

is of the utmost importance that qanat surveys – which provide a valuable tool 

for identifying buried sites (Coningham 2006: 58) – are conducted as soon as 

possible. 
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4.6. Conclusion 

 

The methodology is implicit in all research, and structures, some might say 

determines, its outcome. It is thus vital in any archaeological research to 

clearly state the aims and objectives, and the nature by which they will be 

achieved. This chapter has identified and discussed the methodologies that 

will be used in this thesis, including a review of the existing information 

available on the Iranian Neolithic; the chronometric evaluation and calibration 

of the currently available 14C determinations for Neolithic sites in Iran; the 

study of the spatial and temporal distribution of the latter; and a review of 

recent archaeological survey and excavation work on the Tehran, Qazvin and 

Kashan Plains, including my own work on the Kashan Plain.  

 

The strength of the approach outlined in this chapter is that it combines a 

range of complementary archaeological tools and techniques to produce a 

synthetic report on the Neolithic of Iran. Such a synthesis has not been 

attempted before and will provide a useful reference, not only for the Iranian 

Neolithic, but for the spread and development of agriculture in Central Asia as 

a whole. The approach is limited to some extent by a shortage of reliable 14C 

dates for Iran, and the country’s sporadic history of archaeological 

investigation, but it is hoped that new data from the Central Iranian Plateau 

will more than compensate for these short comings. In conclusion, this thesis 

will utilize both existing and new material in order to bring a fresh perspective 

to the study of the development and spread of agriculture in Iran and Central 

Asia.  

In the following chapter the available 14C dates from Neolithic sites in Iran (as 

of 2010), will be collated, assessed in terms of their chronometric hygiene, 

and re-calibrated using the calibration software program OxCal (Brook-

Ramsey 2009). 
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Laboratory 
code 

Laboratory 

AA NSF, USA 

Beta Beta Analytic, USA 
BM* British Museum, England 

C* Chicago 
GAK Gakushuin University, Japan 
Gif Gif sur Yvette, France 

GrN Groningen, The Netherlands 
Gx Geochron Laboratories, USA 

I* Teledyne Isotopes, USA 
K National Museum, Denmark 

0* Humble Oil & Refining, USA 
OxA Oxford Radiocarbon Accelerator Unit, England 
P* University of Pennsylvania, USA 

PRL Physical Research Laboratory, India 
Qu* Centre de Recherches Minerales, Quebec, Canada 

Sh* Shell Development Co., USA 
SI* Smithsonian Laboratories, USA 
TUNC* Tehran University Nuclear Centre, Iran 

UCLA* University of California, Los Angeles, USA 
UGa University of Georgia, USA 

WSU* Washington State University, USA 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Table 4.0: A list of Radiocarbon laboratories and their laboratory codes. Not all of the 
laboratories that are listed are still in operation, and those that have ceased to 
operate, or have changed their code designations, are marked with a *. (After 
www.radiocarbon.org/Info/labcodes.html.) 
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4.3a. Neolithic site 
14C ages greater 
than 5200 BC. 

 

4.3b. Neolithic sites, 
14C ages from 5200-
4000 BC. 

 

4.3c. Neolithic sites, 
14C ages from 4000-
2800 BC. 

 

Figure 4.3: Maps to 
show the spatial 
distribution of 
Neolithic sites. (After 
Gkiasta et al. 2002: 
fig. 4.) 
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4.3d. Neolithic 
sites, 14C ages from 
2800 BC. 

 

4.3e. All the 
Neolithic sites 
grouped within the 
1200-year time 
intervals. 
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1  Gediki  14 Mylouthkia   27 Ramad 
2  Argissa  15 Shilourokambos  28 Ghoraife 
3   Seskio  16 Khirokitia   29 Aswad  
4   Franchthi Cave 17 Dhali-Agridhi  30 Nahal Hemar 
5   Knossos  18 Cape Andreas Kastros 31 Netiv Hagdud 
6   Hacilar  19 Ras Shamra  32Jericho 
7   Can Hassan III 20 Dja’de   33 Iraq ed-Dubb 
8   Catalhoyuk  21 Halula   34 ‘Ain Ghazal 
9   Asiklihoyuk  22 Jerf al Ahmar  35 Wadi Jilat 7/13 
10 Nevali Cori  23 Mureybit   36 Azraq 
11 Cafer Hoyuk 24 Abu Hureya   37 Wadi Fidan A/C 
12 Cayonu  25 El Kowm I/II   38 Beidha 
13 Hallon Cemi  26 Bouqras   39 Basta 

 

Figure 4.6a: Sites with references to domestic hulled barley 10,000-6500 cal BC. 
(After Colledge et al. 2004: fig. 3.) 
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1  Gediki  14 Mylouthkia   27 Ramad 
2  Argissa  15 Shilourokambos  28 Ghoraife 
3   Seskio  16 Khirokitia   29 Aswad  
4   Franchthi Cave 17 Dhali-Agridhi  30 Nahal Hemar 
5   Knossos  18 Cape Andreas Kastros 31 Netiv Hagdud 
6   Hacilar  19 Ras Shamra  32Jericho 
7   Can Hassan III 20 Dja’de   33 Iraq ed-Dubb 
8   Catalhoyuk  21 Halula   34 ‘Ain Ghazal 
9   Asiklihoyuk  22 Jerf al Ahmar  35 Wadi Jilat 7/13 
10 Nevali Cori  23 Mureybit   36 Azraq 
11 Cafer Hoyuk 24 Abu Hureya   37 Wadi Fidan A/C 
12 Cayonu  25 El Kowm I/II   38 Beidha 
13 Hallon Cemi  26 Bouqras   39 Basta 

 

Figure 4.6b: Sites with reference to domestic emmer/einkorn, 10,000-6500 cal BC. 
See key to Fig. 4.5. (After Colledge et al. 2004: fig 4.) 
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Figure 4.11: Distribution and present height of archaeological sites in the 
Mahidasht project areas containing pre-Bronze Age material. In the figure sites 
abandoned before the Bronze Age (i.e. Neolithic & Chalcolithic sites containing no 
later material) are almost all restricted to the area outside of the alluvium or lie close 
to its border with fans where it would be expected to be the thinnest (ibid..: 36). 
(Although 2 sites occur well within the alluvial border, these are only 0.5 m and 0.2 
m high and so could represent only the unburied summits of larger mounds.) Sites 
with only some pre-Bronze Age components show no such geographic restriction, 
because as they were occupied longer they were likely higher than the older 
mounds, and therefore less susceptible to burial by alluvium. (After Brookes et al. 
1982: fig. 10.) 
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Chapter Five 

 

Radiocarbon Dating 

 

 

“Dates in the early Near East are troublesome; we just guess.”  

(Braidwood 1950: 89) 

 

 

5.0. Introduction   

 

A key objective of this research is to collate, assess the chronometric hygiene 

of, and calibrate existing 14C determinations from Neolithic sites in Iran and 

neighbouring regions. Such a comprehensive study has not been undertaken 

before, but is essential in order to gain an informed understanding of the 

absolute chronology of the development and spread of agriculture in Iran. 

Using the methodology described in Chapter Four, in the first section of this 

chapter a dataset of all 14C determinations for Neolithic sites in Iran and 

surrounding regions currently available to the author is collated. The 14C 

determinations were obtained from a range of sources that include: fully-

published site reports, seasonal excavation reports, Radiocarbon and on-line 

resources. All of the 14C determinations were calibrated using the calibration 

software OxCal 4.1 (Brook-Ramsey 2009), which employs the calibration 

curve IntCal 09 (Reimer et al. 2009); and their chronometric hygiene 

evaluated using criteria similar to that originally employed by Spriggs and 

Anderson (1993: 207-8; Anderson 1991: 782-3), and expanded on by Paul 

Pettitt et al. (2007) and Andrew Millard (2008). In the second section of the 

chapter, the spatial and temporal distribution of the calibrated, ‘cleaned’ 14C 

determinations is plotted, in order to gain a clear understanding of the 

distribution pattern of early farming sites in Iran and neighbouring regions.  
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5.1. The 14C determinations 

 

This section contains a list of all the 14C determinations from the earliest 

phases/levels of Neolithic sites in Iran and neighbouring regions that were 

available at the time to the author. It is important to note that the list does not 

exclude determinations rejected by the excavator, since new data can 

sometimes result in the rehabilitation of dates rejected at an earlier stage of 

study (Voigt & Dyson 1992: 123). All of the 14C determinations cited in this 

research, unless otherwise noted, are calculated and published in terms of the 

original Libby half-life value of 5568±30 (Libby 1949) to ensure uniformity. The 

14C determinations are all listed with the error terms with which they were 

originally published, although the author is aware that some published error 

terms – in particular those from the earlier days of 14C dating – do not take 

into account all the factors that can be measured in a laboratory. 

Unfortunately, it has not been possible to subject any of the 14C 

measurements to Bayesian analysis, because for the majority of the 

measurements the stratigraphic associations between the dates could not be 

assured. The 14C determinations are listed according to geographical region, 

with dates for Iran considered first, followed by those from key Neolithic sites 

in neighbouring regions. 

  

 

5.2. Neolithic sites in Iran 

 

5.2a. Northwestern Iran 

 

Southern Urmia Basin  

 

South of Lake Urmia lies the Ushnu-Solduz Valley; a rich, well-watered plain, 

which forms a crossroads with routes leading: west through the Keleshin Pass 

into northern Mesopotamia; east onto the plateau; and north into the 

Caucasus (Voigt & Dyson 1992: 174). Information on the Neolithic of the 

region comes primarily from excavations at Hajji Firuz Tepe (Voigt 1983), 

Dalma Tepe and Pisdeli Tepe. 14C dates are available for all three sites.  
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Hajji Firuz Tepe, 36º59’30 N, 45º27’28 E, Solduz Valley 

Hajji Firuz Tepe (see pp. 108-12) is located in the northeastern portion of the 

Solduz Valley, and was excavated for three seasons in 1958, 1961 and 1968 

by the University of Pennsylvania (Voigt 1983). The site, which currently 

measures 140 metres by 200 metres in plan (although it is probable that it 

originally extended further west), stands 10.3 metres above the present plain 

level (ibid.: 10). The Neolithic period is divided into phases A (earliest) to L 

(latest), of which Phase C is the best known. Three 14C dates are available for 

the site measured by the University of Pennsylvania (laboratory code prefix 

P). P-455 is from a bulk sample and should be ignored; small rootlets were 

noted throughout the stratum from which P-502 was taken, and although all 

visible rootlets were removed by hand (the standard procedure of the day), 

the sample was probably contaminated. P-1843 is from a known material and 

context, but given that the measurement was made in the 1960s in the 

formative years of the 14C method, the date should be treated as of 

questionable confidence.  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-455 D-15, 
basal 
stratum 

Charcoal, 
clay & 
ash 

7926
±86 

7027-
6686 

7059-
6611 

Unreliable Bulk sample 

P-502 Op. V: 
upper part 
of 3-m 
deep cut 

Fine ash 
& clay 
sample 

6895
±83 

5881-
5714 

5978-
5641 

Unreliable Possible 
contamination 

P-
1843 

Lvl 6, Ph. 
D, struct. 
VI, 2 

Charcoal 6870
±100 

5873-
5663 

5983-
5621 

Quest. Measured 
before 1980 

 
(1963, R. Vol. 5: 90; 1974, R. Vol. 16: 219-37.) 

 

Dalma Tepe, 37º00’ N, 45º29’ E, Solduz Valley 

Dalma Tepe was excavated for brief periods under the direction of C. Burney 

from 1958–9; and by T.C. Cuyler Young in 1961 (Hamlin 1975). It is located at 

the southwestern end of Lake Urmia, and is a small, nearly circular mound, 

some 50 metres at its base and 4 metres in height. Due to the high water 

table, excavations were only conducted to 3.5 metres depth, and virgin soil 
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was never reached. Only one 14C date is available for this site (P-503), and as 

it is stratigraphically unsupported, it cannot be treated with any confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-503 Op. 4 Ashy soil 5986±87 
4996-
4779 

5207-
4687 

Unreliable 
Only 1 
date  

 
(1963, R. Vol. 5: 90) 
 

Pisdeli Tepe, 37º00’ N, 45º29’E, Solduz Valley 

Pisdeli is a small mound that was excavated by the University Museum of the 

University of Pennsylvania between 1958 and 1961. Three 14C determinations 

are available for the site:  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-504 
Op II, 
Strat. 5 

Ashy soil 
5518
±81 

4455-
4269 

4544-
4084 

Question. 
Measured 
before 1980 

P-505 
Op. II, 
Strat. 10 

Ashy soil 
5638
±85 

4545-
4265 

4685-
4341 

Question. 
Measured 
before 1980 

P-157 
S. I: 240 
cm depth 

Ash 
5460
±160 

4457-
4064 

4681-
3966 

Unreliable High error 

 
(1958, R. Vol. 1: 50; 1963, R. Vol. 5: 89) 
 

P-157 has a large error term and should be ignored; P-505 and -504 are in 

stratigraphic support, from a well-recorded context, and have error terms of 

less than 100 14C years, however, they should be treated with caution due to 

their measurement in the 1950s. 

 

Sayid Hammadani, Solduz Valley 

No excavation has been conducted at Sayid Hammadani. A single carbon 

sample was collected from the site by Frank Hole and K. Flannery in 1961, 

and submitted to the Shell Development Co. (laboratory code prefix Sh-) for 

dating (Hole et al. 1969: 339).  
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Sh- Vertical face 
cut by 
villagers 

Charcoal 
& ash 

7800
±210 

7027-
6462 

7296-
6241 

Unreliable Single date, 
no lab. code, 
etc. 

 
(Hole et al. 1969: 339.) 

 

The date is published without a laboratory code; is from a bulk sample which 

is stratigraphically insecure; and has an error of over 100 14C years. It should 

be treated with no confidence.   

 

RY-2, 37º42’N 45º48’E, Urmia, Azerbaijan 

RY-2 is an unexcavated site near the modern town of Urmia. Two 14C 

determinations are available for the site, the carbon samples for which were 

collected from a vertical face cut into the mound by villagers. Consequently, 

both dates are stratigraphically insecure and unreliable. 

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Sh- n.d. Charcoal 
& ash 

5730±190 4688-
4489 

4781-
4369 

Unreliable No context 

P-
866 

n.d. Charcoal 5445±72 4365-
4177 

4450-
4057 

Unreliable No context 

 
(Hole et al.1969: 339) 

 

 

Northeastern Urmia Basin 

 

Most of the archaeological information for the prehistoric period of this area 

comes from the Late Neolithic levels at Yanik Tepe (Burney 1961; 1962; 

1964; Burney & Lang 1972), for which, unfortunately, only four 14C 

determinations are available. 

 

Yanik Tepe, 37º56’ N, 45º54’ E, Khosrowshah Valley 

Yanik Tepe lies east of Lake Urmia, approximately ca. 40 miles southwest of 

Tabriz, and was excavated for three seasons in 1960–2 under the direction of 

C.A. Burney (Burney 1961; 1962; 1964). It is a large mound, covering an area 
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of 20 acres, with a maximum height of 16.50 metres, and contains levels 

spanning from the Late Neolithic to the Early Bronze Age (Burney 1961: 138). 

The Neolithic occupation at the site is restricted to Trench P, which was dug in 

a low mound a few 100 metres from the main mound.  

 

 
(1969, R. Vol. 11: 150)  
 

The 14C determinations for Yanik Tepe were measured from known sample 

materials from secure contexts. However, given that the measurements were 

made in the 1960s, the 14C dates should be treated with questionable 

confidence.  

 

5.2b. Central Western Iran 

 

Western Luristan 

 

Western Luristan is characterized by folded mountain chains and associated 

valley systems (Voigt & Dyson 1992: 153). 14C dates are available for two 

prehistoric sites in the region: Tepe Guran (Meldgaard et al. 1963) and Bog-i-

No (Hole et al. 1969), although only the former has been excavated.  

 

Tepe Guran, 32º30’ N, 47º15’ E, Hulailan Valley 

Tepe Guran (see pp. 114-17) lies at an elevation of ca. 1000 metres in the 

foothills of western Lorestan. It is a modest site of less than two hectares, 

which was excavated by a Danish team in 1963. Twenty-one architectural 

strata (A-V) are distinguished at the site, of which Level V is the earliest 

(Meldgaard et al. 1963: fig. 9). The lowest 1.5 metres of the mound (levels V-

Lab. 
no 

Context 
Sample 

type 

14
C 

age  
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-
1244 

Level P7 Charcoal 
7035±
69 

5991-
5846 

6026-
5752 

Quest. 
Before 
1980 

P-
1243 

Level P5 Charcoal 
6926±
80 

5889-
5730 

5983-
5671 

Ques. 
Before 
1980 

P-
1246 

Level 
MC17 

Charcoal 
5267±
73 

4229-
3991 

4318-
3961 

Quest. 
Before 
1980 

P-
1245 

Level 
MC8 

Charcoal 
5090±
56 

3961-
3801 

3989-
3714 

Quest. 
Before 
1980 
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T) are aceramic, but until the final report is published a more detailed 

description of these strata is not possible (Voigt & Dyson 1992: 154). Two 14C 

date sets are available for the Neolithic occupation of the site: a set from 

samples submitted by the original excavation team to The National Museum, 

Denmark (laboratory prefix K); and a set from bone samples submitted by 

Melinda Zeder for AMS dating to Beta Analytic (prefix Beta); in the early 

2000s.  

 

Lab. 
no. 

Context Sample type 

14
C 

age 
(BP) 

Date (BC) 
Hygiene  Reason 

68.2% 95.4% 

K-
1006 

S. GII: 
12-15 cm 
above 
virgin soil 

Charcoal 
(Pistacia sp. & 
indeterminate 
species) 

8410
±200 

7607-
7091 

8170-
6831 

Unreliable Unadjusted 
for 
fractionation 

K-
879 

S. GI, 
Level H 

Charcoal from 
herbaceous 
stalks 

7760
±150 

6811-
6445 

7060-
6366 

Unreliable Unadjusted 
for 
fractionation 

K-
856 

Grave no. 
11, Level 
C 

Charcoal 
(Quercus sp.) 

3170
±120 

1608-
1307 

1741-
1123 

Unreliable Unadjusted 
for 
fractionation 

Beta-
1471
11 

Level D Bone 
(collagen) 

7630
±60 

6563-
6430 

6599-
6396 

Reliable Known 
material & 
context 

Beta-
1471
12 

Level F Bone 
(collagen) 

7260
±40 

6208-
6069 

6223-
6050 

Quest. Rather late 

Beta-
1471
13 

Level H Bone 
(collagen) 

7950
±40 

7027-
6713 

7035-
6696 

Reliable Known 
material & 
context 

Beta-
1471
31 

Level H Bone 
(collagen) 

7810
±40 

6679-
6598 

6751-
6508 

Reliable Known 
material & 
context 

Beta- 
1471
14 

Level K Bone 
(collagen) 

7080
±60 

6015-
5900 

6066-
5838 

Quest. Rather late 

Beta-
1471
15 

Level L Bone 
(collagen) 

7940
±40 

7023-
6700 

7032-
6690 

Reliable Known 
material & 
context 

Beta-
1771
16 

Level L Bone 
(collagen) 

8130
±40 

7171-
7062 

7298-
7047 

Reliable Known 
material & 
context 

Beta-
1471
16 

Level N Bone 
(collagen) 

3690
±40 

2140-
2026 

2199-
1960 

Unreliable Too late 

Beta-
1471
17 

Level P Bone 
(collagen) 

7890
±40 

6811-
6654 

7027-
6642 

Reliable Known 
material & 
context 

Beta-
1471
18 

Level Q Bone 
(collagen) 

8070
±40 

7132-
6860 

7174-
6829 

Reliable Known 
material & 
context 
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Beta-
1471
19 

Level R Bone 
(collagen) 

8000
±50 

7048-
6828 

7062-
6706 

Reliable Known 
material & 
context 

Beta-
1471
22 

Level T Bone 
(collagen) 

8170
±40 

7248-
7075 

7308-
7065 

Reliable Known 
material & 
context 

Beta-
1471
20 

Level U Bone 
(collagen) 

8060
±40 

7081-
6842 

7141-
6825 

Reliable Known 
material & 
context 

Beta-
1171
21 

Level V Bone 
(collagen) 

7820
±50 

6735-
6592 

6916-
6506 

Quest. Rather late 

Beta-
1771
77 

Level V Bone 
(collagen) 

8280
±40 

7453-
7196 

7469-
7184 

Reliable Known 
material & 
context 

 
(Zeder 2008a: 258) 

 

None of the samples submitted to the National Museum were adjusted for 

fractionation, and the measurements should therefore be treated as 

unreliable. In terms of the Beta-Analytic dates, Beta-147116 is completely out 

of stratigraphic agreement and should be ignored; and Beta-146112, -147114 

and -11712 are rather late compared to the other dates. The remainder of the 

dates are AMS measurements from known sample materials and contexts, 

are in loose stratigraphic agreement, and are reliable enough to be used 

without further questioning.   

 

Bog-i-No, 33º28’ N, 48º21’ E, near Khorramabad 

Bog-i-No is an unexcavated site that lies near to the modern city of 

Khorramabad (Young 1966).  A single 14C date is available for the site, which 

was obtained from a sample collected by Frank Hole and Kenneth Flannery 

from a vertical face cut into the mound by local brick makers (Hole et al. 1969: 

339). 

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Date (BC) 
Hygiene Reason 

68.2% 95.4% 

I-1492 n.d. Charcoal 
& ash 

6200± 
140 

5317-
4987 

5470-
4836 

Unreliable Only one 
date for site 

 
(Hole et al. 1969: 339) 
 

The date is stratigraphically insecure, from a bulk sample and unsupported; it 

should not be treated with any confidence. 



 

 

252 
 

Eastern Luristan: Kermanshah and Kangavar 

 

Eastern Luristan consists of a series of valley systems running roughly east to 

west, which formed part of the great trade route or High Road that crossed 

from Iraq through the Zagros to the Central Plateau (Voigt & Dyson 1992: 

156). It covers a large region, which incorporates Kermanshah to the west; 

and Kangavar to the east. Most archaeological studies in the Kermanshah 

region have focused on the Marv Dasht, Kermanshah, and Bistiun plains, and 

smaller immediately adjacent valleys (Voigt & Dyson 1992: 156). The Early 

Neolithic of the region is defined by Philip E. Smith’s excavations at Ganj 

Dareh from 1967-74 (Smith 1967; 1968; 1982; 1974; 1975; 1978), while the 

Middle to Late Neolithic is represented by Tepe Sarab (Braidwood et al.1961).  

The Kangavar Valley lies 90 kilometres east of the city of Kermanshah. 

The Early Neolithic of the region is traditionally defined by Tepe Abdul Hosein 

in the Khawa Valley (Pullar 1979; 1992). 14C determinations are available for 

five sites in eastern Luristan: Tepe Asiab, Tepe Sarab, Ganj Dareh, Tepe 

Abdul Hosein and Seh Gabi.  

 

Tepe Asiab, co-ordinates of Kermanshah: 34º18’ N, 47º04’ E  

Tepe Asiab (see pp. 117-18) lies five kilometres east of the modern city of 

Kermanshah, and is an open-air, midden campsite on the banks of the River 

Kara Su, ca. 1330 metres above sea level. The size of the site is ambiguous, 

but surface survey suggests that it originally extended over 20,000 square 

metres (Howe 1983: 115). It was excavated in 1959–60 by Robert Braidwood, 

of the Oriental Institute of Chicago, who uncovered some three metres of 

aceramic deposits with no architecture. Several different laboratories have 

14C-dated samples from Asiab, including The University of California 

(laboratory prefix UCLA), Beta Analytic, and Grongingen, Netherlands (prefix 

GrN). 
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Lab. 
code 

Context 
Sample 

type 

14
C 

date 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 95.4% 

UCLA-
1714C 

120-140 
cm 
depth 

Caprid 
bone 
(collagen) 

8700
±100 

7937-
7595 

8200-
7575 

Questionable Before 1980  

UCLA-
1714B 

140 cm 
depth 

Caprid 
bone 
(collagen) 

8900
±100 

8247-
7979 

8287-
7731 

Questionable Before 1980  

UCLA-
1714F 

150-60 
cm 
depth 

Caprid 
bone 
(collagen) 

9050
±300 

8847-
7659 

9123-
7475 

Unreliable Error of >150 

GrN-
6413 

165-70 
cm 
depth 

Charcoal 9775
±85 

9329-
8961 

9449-
8839 

Acceptable Known material 
& context 

Beta-
15955
5 

30-45 
cm 
depth 

Bone: 
collagen 

9480
±80 

9118-
8638 

9152-
8575 

Questionable Stratigraphy 
inconsistent 

Beta-
15955
4 

45-60 
cm 
depth 

Bone: 
collagen 

9380
±60 

8741-
8572 

8808-
8473 

Questionable Stratigraphy 
inconsistent 

Beta-
15955
2 

75-90 
cm 
depth 

Bone: 
collagen 

7790
±60 

6684-
6529 

6801-
6471 

Unreliable Too late 

 
(Berger & Protsch 1973: tables 1 & 2; Howe 1983: 116; Zeder 2008a: 257.) 

 

UCLA-1714F has an error term of ±300 years and is unacceptable. UCLA-

1714B and -1714C are acceptable with a degree of caution as the 

measurements were made before 1980. The determinations are also 

somewhat controversial. Berger and Protsch (1973) extracted carbon samples 

from bone fragments provided by Braidwood from his excavations at Asiab. 

However, whereas the excavators had been unable to identify the bone 

fragments, or to report on the domesticated status of the animals, Berger and 

Protsch claimed that the bones were from domesticated sheep and goats (cf. 

Bökönyi et al. 1973; Howe 1983: 116). GrN-6413 is of known context and 

material. Although the only 14C sample measured by Groningen Laboratories, 

it is stratigraphically supported by the UCLA measurements and can be 

accepted with a degree of caution. The Beta-Analytic measurements were 

made more recently, from samples submitted by Melinda Zeder in 2005. Beta-

159552 is younger than would be expected, and should be ignored; Beta-

159555 and -159554 are stratigraphically inconsistent and can be accepted 

with a degree of caution. 
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Tepe Sarab, 34º39’ N, 47º15’ E, Kermanshah 

Tepe Sarab (see pp. 113-14) lies seven kilometres northeast of the city of 

Kermanshah. Three sets of 14C dates are available for the site, two are 

conventional measurements made by the University of Pennsylvania 

(laboratory prefix P) and the University of California (laboratory prefix UCLA) 

in the 1960s; and the other are AMS measurements made by Beta Analytic in 

the early 2000s.  

 

Lab. 
no. 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 

Hygiene Reason 
68.2% 95.4% 

P-466 Op. 1, 
Level 5 

Charcoal  7956 
±98 
 

7033-
6708 

7127-
6599 

Questionable Possible 
contamination 

P-465 Op. 1 , 
Level 4 

Charcoal  7605 
±96 

6589-
6392 

6640-
6252 

Questionable Possible 
contamination 

P-467 Op. 1, 
Level 1 

Charcoal  7644 
±89 

6591-
6433 

6656-
6266 

Questionable Possible 
contamination 

UCLA-
1714A 

n.d. Bone 7850
±0 

- - Unreliable No error term 

Beta-
159547 

Level 1A Bone 
(collagen) 

7470
±70 

6414-
6255 

6458-
6221 

Reliable Known material 
& context 

Beta-
159548 

Level 3 Bone 
(collagen) 

7950
±60 

7028-
6710 

7048-
6682 

Reliable Known material 
& context 

Beta-
159550 

Level 4 Bone 
(collagen) 

8070
±60 

7142-
6835 

7292-
6772 

Reliable Known material 
& context 

Beta-
159549 

Level 5 Bone 
(collagen) 

7800
±60 

6692-
6530 

6817-
6477 

Reliable Known material 
& context 

 
(1963, R. Vol. 15: 82, 91; Mellaart 1975; Zeder 2008a: 259) 
 

UCLA-1714A is from an unknown context and is not published with an error 

term; it cannot be treated with any confidence. P-465, -466 and -467 were 

associated with snail shell and bone (1963, R. Vol. 15: 82), and may have 

been contaminated. They were also measured before 1960 and their level of 

confidence is questionable. The Beta Analytic measurements are from known 

materials and contexts and, although there are some internal inconstancies 

(Beta-159548 and -159550 although stratigraphically later are earlier in date 

than B-159549, perhaps suggesting that the accumulation of cultural deposits 

at Sarab was rapid), are reliable enough to be used without further 

questioning.  
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Ganj Dareh Tepe, 34º26’ N, 48º07’ E 

Ganj Dareh (see pp. 118-21) is situated ca. 1350 metres above sea level in 

the Bisitun Valley, some 37 miles from the city Kermanshah. It is an oval site, 

measuring approximately 40 metres in diameter, and containing some 8 

metres of Neolithic deposits, divided into Levels E to A. It was excavated by 

P.E.L. Smith for a number of field seasons during the late 1960s and 1970s 

(cf. Smith 1967; 1968; 1972; 1974; 1975; 1978; 1990), but a full report has yet 

to be published. Efforts to date the sites have been problematic. The earliest 

attempts produced a series of 14C dates which suggested that the initial 

occupation of Ganj Dareh (Level E) was established ca. 9000 BC, after which 

there was a hiatus, until the occupation of the four subsequent levels ca. 7500 

BC. However, more recent AMS dates for the site suggest that occupation 

was continuous (Zeder & Hesse 2000: 256).  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 95.4% 

SI-
4732 

Level A n.d. 8590±
70 

7648-
7547 

7790-
7517 

Unreliable Material 
unknown 

SI-
4733 

Level B n.d. 8525±
70 

7597-
7525 

7716-
7462 

Unreliable Material 
unknown 

SI-
4734 

Level B n.d. 8110±
70 

7293-
7033 

7330-
6826 

Unreliable Material 
unknown 

SI-
4735 

Level B n.d. 8460±
70 

7582-
7488 

7597-
7355 

Unreliable Material 
unknown 

P-
1486 

Level B, 
210-40 cm 
depth  

Charcoal 8888±
98 

8236-
7873 

8282-
7725 

Quest. Before 
1980 

P-
1485 

Level C, 
450 cm 
depth 

Charcoal 9329±
190 

8726-
8462 

8800-
8305 

Unreliable Undersize
d 

SI-
4736 

Level C n.d. 8540±
70 

7604-
7524 

7727-
7482 

Unreliable Material 
unknown 

SI-
4737 

Level C n.d. 8650±
70 

7731-
7591 

7939-
7572 

Unreliable Material 
unknown 

SI-
4738 

Level D n.d. 8485±
70 

7589-
7508 

7608-
7356 

Unreliable Material 
unknown 

SI-
4739 

Level D n.d. 8140±
70 

7292-
7053 

7748-
6836 

Unreliable Material 
unknown 

SI-
4740 

Level D n.d. 8535±
70 

7601-
7523 

7723-
7479 

Unreliable Material 
unknown 
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SI-
4741 

Level D n.d. 8950±
70 

8258-
7982 

8291-
7844 

Unreliable Material 
unknown 

P-
1484 

Level D, 
620 cm 
depth 

Charcoal 8970±
100 

8284-
7970 

8418-
7753 

Quest. Before 
1980s 

Gak-
994 

Level D, 1 
m higher 
than Gak-
807 

Charcoal 
mixed with 
ash & earth 

8910±
100 

8251-
7941 

8290-
7737 

Unreliable Bulk 
sample  

Gak-
807
  

Level E, 
basal 

Charcoal 
mixed with 
ash & earth 

10,400
±150 

10,581-
10,109 

10,676
-9771 

Unreliable Bulk 
sample  

 
(1967, R. Vol. 9: 61;1970, R. Vol. 12: 579) 

 

The dates measured by Gakushuin Laboratory (laboratory prefix Gak) are 

from bulk samples and should be ignored. The Smithsonian Institute (prefix SI) 

measurements are published without the sample material, and should also be 

ignored. Their reliability can be further questioned, due to assignment of a 

single error term of ±70 14C year to all the measurements, implying that the 

error term only accounts for the statistical counting uncertainty, rather than the 

laboratory uncertainty. In terms of the University of Pennsylvania (prefix P) 

dates, P-1485 was undersized before NaOH pretreatment and should be 

ignored. P-1486 and -1484 were measured from known materials and secure 

contexts, and stratigraphically support each other, with the narrow time span 

separating them suggesting a rapid accumulation of deposits. However, given 

that the dates were measured in the 1970s, they should be treated with 

questionable confidence, due to the problems associated with 14C dating 

during this period.   

 

The Smithsonian Institute measured another series of carbon samples from 

Ganj Dareh in the early 1970s. Two of these determinations (SI-922 & -923) 

have large error terms and are unreliable. The other two dates (SI-924 & SI-

925) are from known materials, well-recorded contexts, and have error terms 

of less than 100 14C years. However, the measurements were made before 

1980, and need to be treated as of questionable confidence. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 96% 

SI-
922 

Level E, 670-
80 cm depth 

Charcoal 8570
±210 

7975-
7360 

8242-
7144 

Unreliable Error of 
>150 

SI-
923 

Level E, 750-
60 cm depth 

Charcoal 8625
±195 

8165-
7491 

8270-
7202 

Unreliable Error of 
>150 

SI-
924 

Level E, 760-
80 cm depth 

Charcoal 8340
±90 

7525-
7206 

7576-
7143 

Acceptable Before 
1980 

SI-

925 

Level E, below 

780 cm depth 

Charcoal 8385

±75 

7536-

7356 

7584-

7193 

Acceptable Before 

1980 

 
(1973, R. Vol. 15: 398-9) 

 

A series of AMS date sets are also available for Ganj Dareh. The first set to 

be made were measured in the early 1990s at the Oxford Accelerator Unit 

(laboratory prefix OxA), while a second set was more recently measured from 

bone samples submitted to Beta Analytic by Melinda Zeder (Zeder & Hesse 

2000). 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 95.4% 

Beta-
1082
38 

Level A, 180-
200 cm 
depth 

Bone 
(collagen) 

8780
±50 

7952-
7748 

8179-
7612 

Reliable Known 
material & 
context 

OxA-
2099 

Level B 
(F1.70) 

Charred 
barley 
(Hordeum 
sp.) seed 

8840
±110 

8204-
7793 

8249-
7614 

Unreliable Error of 
>100 

Beta-
1082
39 

Level B, 165-
80 cm depth 

Bone 
(collagen) 

8930
±50 

8239-
7948 

9267-
7956 

Reliable Known 
material & 
context 

Beta-
1082
40 

Level B, 220-
40 cm depth 

Bone 
(collagen) 

8780
±50 

7952-
7748 

8179-
7612 

Reliable Known 
material & 
context 

Beta-
1082
41 

Level B, 240-
60 cm depth 

Bone 
(collagen) 

8720
±50 

7789-
7611 

7939-
7601 

Reliable Known 
material & 
context 

Beta-
1082
42 

Level B, 280-
300 cm 
depth 

Bone 
(collagen) 

8940
±50 

8246-
7987 

8270-
7962 

Reliable Known 
material & 
context 

OxA-
2100 

Level C 
(F1.110) 

Charred 
barley seed 

9010
±110 

8309-
7969 

8533-
7794 

Unreliable AMS with 
error of 
>100 

Beta-
1082
43 

Level C, 460-
80 cm depth 

Bone 
(collagen) 

8920
±50 

8231-
7982 

8271-
7941 

Reliable Known 
material & 
context 

OxA-
2102 

Level E 
(F1.136) 

Charred 
barley seed 

8690
±110 

7937-
7591 

8201-
7548 

Unreliable AMS with 
error of 
>100 
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OxA-
2101 

Level D 
(F1.129) 

Charred 
barley seed 

8850
±100 

8205-
7826 

8251-
7658 

Unreliable AMS with 
error of 
100 

Beta-
1082
44 

Level D, 430-
60 cm depth 

Bone 
(collagen) 

8840
±50 

8181-
7825 

8210-
7756 

Reliable Known 
material & 
context 

Beta-
1082
45 

Level D, 580-
600 cm 
depth 

Bone 
(collagen) 

8940
±50 

8246-
7987 

8270-
7962 

Reliable Known 
material & 
context 

Beta-
1082
46 

Level E, 580-
5 cm depth 

Bone 
(collagen) 

8870
±50 

8205-
7956 

8231-
7817 

Reliable Known 
material & 
context 

Beta-
1082
47 

Level E, 665-
75 cm depth 

Bone 
(collagen) 

8830
±50 

8171-
7795 

8208-
7749 

Reliable Known 
material & 
context 

  
(Hedges et al. 1990: 231)  

 

Despite the usually high precision of AMS dating, the Oxford Accelerator Unit 

dates all have high error terms and should be treated as unreliable. The Beta-

Analytic dates are from known sample materials, collected from secure 

contexts, and have error terms of less than ±100 14C years. Although there 

are some internal inconsistencies in the date set, for example, Level E 

contains some of the oldest and earliest dates, this is probably due to the 

rapidity with which the deposits accumulated (Zeder & Hesse 2000: 2256). 

The dates, then, can be accepted as reliable enough to be used without 

further questioning: 

 

Tepe Siahbid, 34°30’ N, 47°15’ E, Kermanshah 

Tepe Siahbid is located 10 kilometres to the northeast of Kermanshah. It was 

excavated under the direction of Braidwood, who described the site as a 

“small painted pottery site” (Braidwood et al. 1961: 208). Braidwood divided 

the deposits at the site into two chronological units on the basis of stratigraphy 

and changes in the ceramic industry (ibid.). Two 14C dates are available for 

the site measured by the University of Pennsylvania (laboratory prefix P) and 

The Centre de Recherches Minérales, Québec (prefix QU). P-442 was 

measured from a bulk sample and should be ignored. The sample material for 

QU-1035 is unknown, and it too should be ignored. 
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Lab. 
code 

Context Sample type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 95.4% 

P-
442 

Op. 1, Level 
1, 105 cm 
depth 

Charcoal & 
large amounts 
of clay 

5828
±80 

4786-
4590 

4896-
4493 

Unreliable Bulk 
sample 

QU-
1035 

Op. 1, Level 
1, Lot 130 

n.d. 5870
±120 

4896-
4561 

5038-
4458 

Unreliable Material 
unknown 

 
(1963, R Vol. 5: 91; Voigt & Dyson 1992: 134.) 

 

Sheikh-e Abad, 34º36’42 N, 47º16’11 E, Kermanshah 

Sheikh-e Abad lies in the highland Zagros at an altitude of 1425 metres above 

sea level. It, and the nearby contemporary site of Jani (see below), were 

identified during survey by Y. Mohammadifar, A. Mortarjem and K. Abdi, and 

both are currently being investigated by the Central Zagros Archaeological 

Project (CZAP), a joint Irano-British project. Sheikh-e Abad contains an 

occupation sequence of some 10 metres, which is almost entirely aceramic 

Neolithic. There are currently three 14C dates available for the site, but 

unfortunately they have been fully published. The sample material for Beta-

258646 and – 258648 is unknown, and the 14C dates must be treated as 

unreliable. Although the sample material for Beta- 258647 is published, it 

lacks stratigraphic support, and is of questionable confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
258647 

Tr. 1, 
above 
virgin soil 

Ash 9810
±60 

9312-
9238 

9436-
9176 

Quest. Stratigraphically 
unsupported 

Beta-
258646 

Tr. 2, -350 
cm depth 

n.d. 7690
±60 

6590-
6472 

6637-
6446 

Unreliable Sample mat 
unknown 

Beta-
258648 

Tr. 3 n.d. 7590
±40 

6468-
6426 

6504-
6390 

Unreliable Sample mat 
unknown 

 
(Matthews et al. 2010) 

 

Jani, 33º56’52 N, 46º47’00 E, Kermanshah  

Jani lies 90 kilometres southwest of Sheikh-e Abad, and is situated in the 

lower, warmer mountain valleys at 1280 metres above sea level. It is subject 

to on-going excavation by the CZAP project (Matthews et al. 2010). Currently, 

only one 14C determination is available for the site, the material and 
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pretreatment of which is unknown. Thus, the determination as it stands cannot 

be treated with any confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
258649 

Main section: 
mid-sequence 

n.d. 8140±
60 

7282-
7057 

7344-
6867 

Unreliable Single 
date  

 
(Matthews et al. 2010) 

 

 

Kangavar Region and Eastern Luristan 

 

Tepe Abdul Hosein, 34º11’ N, 48º10’ E, Kangavar 

Tepe Abdul Hosein (see pp. 121-23) is located in the Khawa Valley, Lurestan. 

It is a small mound some 6 metres high, with a diameter of ca. 50 metres. 

There is evidence of a distinct aceramic and ceramic Neolithic occupation of 

the site with a clear break in between. 14C samples were collected from the 

lower and middle sections during the 1978 excavation season and submitted 

to Geochron Laboratories (laboratory prefix GX) for measurement (Pullar 

1981: 179). Unfortunately, the sample material for all the determinations is 

unreported, and the measurements cannot be treated with any confidence. 

 

Lab. 
Code. 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

GX-
6353 

Unit 12032, 22 cm 
depth 

n.d. 8100
±255 

7351-
6699 

7589-
6472 

Unreliable Material 
unknown 

GX-
6355 

Unit 12053, 32 cm 
depth 

n.d. 8665
±100 

7819-
7580 

8171-
7523 

Unreliable Material 
unknown 

GX-
6357 

Unit 11021, 150 
cm above natural 

n.d. 8935
±245 

8326-
7682 

8728-
7539 

Unreliable Material 
unknown 

GX-
6356 

Unit 11045, 100 
cm above natural  

n.d. 8945
±275 

8426-
7676 

9112-
7485 

Unreliable Material 
unknown 

GX-
6358 

Unit 11051, 75 cm 
above natural 

n.d. 7485
±280 

6636-
6056 

7058-
5811 

Unreliable Material 
unknown 

GX-
6359 

Unit 11061, basal 
deposit 

n.d. 8655
±240 

8197-
7519 

8322-
7142 

Unreliable Material 
unknown 

 
(Pullar 1981, 1990: 4) 
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Seh Gabi, 34º35’ N, 48º00’ E, Mahidasht Province 

Seh Gabi is situated at a strategic location on the natural road leading from 

the Mesopotamian Plain to the Central Iranian Plateau, across the Zagros 

Mountains (Levine & Hamlin 1974). The site is formed of seven small mounds 

(A-G), of which only Mound C contains Neolithic material. Although three 14C 

dates are available for Mound C, the sample material is unreported and the 

dates cannot be treated with any confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

SI-
2668 

AA20 
313#301 

n.d. 6220±80 5298-
5066 

5362-
4964 

Unreliable Material 
unknown 

SI-
2669 

AA21 
319#301 

n.d. 6195±105 5297-
5028 

5372-
4848 

Unreliable Material 
unknown 

SI-
2670 

BB21 
315#301 

n.d. 6055±80 5190-
4841 

5212-
4787 

Unreliable Material 
unknown 

 
(Voigt & Dyson 1992: 135.) 
 

 

5.2c. Southwestern Iran 

 

Deh Luran 

 

The Deh Luran Plain lies in the northwestern corner of Khuzestan, on a 

traditional trade route between Mesopotamia and the Susiana Plain. 14C dates 

are available for the sites of Ali Kosh, Tepe Sabz and Chogha Sefid (Hole et 

al. 1969; Hole 1977). The earliest settlement in the area – known locally as 

the Bus Mordeh phase – is defined at Tepe Ali Kosh (Hole et al. 1969: 34-40). 

 

Ali Kosh, 32º33’ N, 47º19’ E 

Ali Kosh (see pp. 123-27) lies at an altitude of ca. 200 metres. It is a roughly 

flat-topped, circular mound, with a diameter of 135 metres, which was 

excavated by Frank Hole and Kent Flannery in 1961 (Hole et al. 1969: 29). 

The mound is comprised of seven metres of cultural deposits, which are 

divided into three distinct Neolithic occupational phases: the aceramic Bus 

Mordeh (BM) and Ali Kosh (AK) phases and the ceramic Mohammad Jaffar 

(MJ) phase. 
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The 14C determinations for Ali Kosh are problematic. The first set of 14C 

measurements were made by a number of different laboratories during the 

1960s. Due to the lack of standardization between 14C laboratories during this 

period, the dates are from a range of sample materials, upon which different 

extraction techniques were practiced, and the result is several non-conforming 

data sets (Zeder & Hesse 2000), which cannot be treated with any 

confidence.  

 

Lab. 
no 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

I-
1496 

BM, Zone 
C1, Sq. 91, 
525 cm depth 

Charred 
seeds & 
ash 

7380±
180 

6410-
6078 

6596-
5902 

Unreliable Bulk 
sample 

I-
1489 

BM, Zone 
C2, Sq. 94, 
690 cm depth  

Carbonized 
seeds & 
ash 

7670±
170 

6744-
6266 

7037-
6277 

Unreliable Bulk 
sample 

UCL
A-
750D 

BM, Zone 
C2, Sq. 76, 
680 cm depth 

Bits of 
charcoal 

9900±
200 

9862-
9187 

10,141
-8790 

Unreliable Bulk 
sample 

I-
1491 

AK, Zone B1, 
Sq. 69, 260 
cm depth 

Charcoal & 
ash 

8100±
170 

7326-
6816 

7501-
6644 

Unreliable Bulk 
sample 

I-
1490 

AK, Zone B1 Bits of 
Charcoal 

9950±
190 

9862-
9254 

10,257
-8837 

Unreliable Bulk 
sample 

SI-
207 

AK: Zone B1, 
260 cm depth 

Charcoal 7740±
600 

7448-
6060 

8268-
5562 

Unreliable Error of 
>150 

O-
1845 

AK, Zone B2 Organic  8250±
170 

7476-
7081 

7591-
6775 

Unreliable Error of 
>150 

O-
1848 

AK, Zone B2 Organic  7700±
330 

7031-
6251 

7460-
5992 

Unreliable Error of 
>150 

O-
1833 

Same as O-
1848 

Charcoal 8425±
180 

7602-
7186 

8165-
7039 

Unreliable Error of 
>150 

O-
1816 

Same as O-
1848 

Charcoal 8425±
180 

7602-
7186 

8165-
7039 

Unreliable Error of 
>150 

Sh-
1246 

AK, Zone B2 Charcoal 8410±
200 

7607-
7091 

8170-
6831 

Unreliable Error of 
>150 

Sh-
1174 

AK, Zone B2 Charcoal 8850±
210 

8245-
7722 

8538-
7537 

Unreliable Error of 
>150 

I-
1494 

MJ, Zone A2, 
Sq. 59, 150 
cm depth 

Charcoal & 
ash 

7820±
190 

7025-
6478 

7293-
6263 

Unreliable Bulk 
sample 

I-
1495 

MJ, Zone A2 Charcoal/ 
charcoal & 
ash 

7220±
160 

6826-
5915 

6419-
5792 

Unreliable Bulk 
sample 
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SI-
160 

MJ: Zone A2  Ash & 
carbonized 
Prosopis 
seeds 

8920±
100 

8253-
7954 

8293-
7745 

Unreliable Bulk 
sample 

SI-
160R 

MJ: Zone A2  Same 
sample as 
SI-160 

8890±
200 

8268-
7754 

8542-
7581 

Unreliable Error of 
>150 

 
(1965, R. Vol. 7: 354-5; 1968, R. Vol. 10: 290; Hole et al. 1969: 336-8) 

 

All of the dates in the above table were processed in the 1960s, and no 

pretreatment data is available. It is probable that the majority of the 

measurements were made from bulk samples, even if this is not explicitly 

stated. Given this, and the fact that all of the 14C dates have errors of over 

150 14C years (with the exception of SI-160 which has an error term of 100 

14C years), they should be treated as of no confidence. Other issues with the 

dates include that the nature of the sample material for O-1845 and -1848 is 

not specified, and that UCLA-750D SI-160 and SI-160R are much older than 

expected by the excavator (Hole et al. 1969: 338). Voigt and Dyson (1992: 

135) have suggested that the reason some of the dates for Ali Kosh appear 

too old, may be due to the common use of bitumen by the early inhabitants; 

and the contamination of charcoal samples by this material. This would also 

account for the inconsistencies in the determinations. 

 

More recently a set of AMS measurements have been made from bone 

samples from Ali Kosh, submitted to Beta-Analytic and Oxford Accelerator 

Unit (laboratory prefix OxA). 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
1187
19 

MJ, 70-80 
cm depth 

Bone 
(carbon) 

8130
±70 

7292-
7048 

7350-
6830 

Acceptable Known 
material & 
context  

Beta-
1187
20 

MJ, 130-40 
cm depth 

Bone 
(carbon) 

8140
±70 

7292-
7053 

7748-
6836 

Acceptable Known 
material & 
context  

Beta-
1187
22 

AK, 210-30 
cm depth 

Bone 
(carbon) 

8110
±80 

7301-
6863 

7347-
6776 

Acceptable Known 
material & 
context 

Beta-
1187
23 

AK, 280-
300 cm 
depth 

Bone 
(carbon) 

8490
±90 

7600-
7471 

7716-
7336 

Questionable High error for 
AMS date 

Beta- AK, 380- Bone 8340 7525- 7576- Questionable High error for 
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1187
24 

400 cm 
depth 

(carbon) ±90 7206 7143 AMS date 

OxA-
1773 

BM, 100 
cm above 
OxA-1774 

Burnt 
bone 
(goat)  

7830
±90 

6824-
6513 

7029-
6480 

Questionable High error for 
AMS date 

OxA-
1774 

BM, 100 
cm below 
OxA-1773 

Burnt 
bone 
(goat)  

7950
±110 

7031-
6700 

7173-
6591 

Unreliable AMS date 
with error of 
>100 

OxA-
1775 

n.d. Burnt 
bone 
(goat)  

7480
±90 

6428-
6253 

6484-
6100 

Unreliable Unknown 
context 

Beta-
1082
56 

BM, 546 
cm depth 

Bone 
(collage
n) 

8000
±50 

7048-
6828 

7062-
6706 

Acceptable Known 
material & 
context  

Beta-
1227
21 

BM, 635 
cm depth 

Bone 
(carbon) 

8540
±90 

7651-
7491 

7793-
7356 

Questionable High error for 
AMS date 

 
(1994, R. Vol. 36: 55-73; Zeder & Hesse 2000: 2256) 
 

The Beta Analytic dates were all measured from bone fractions from secure 

contexts. However, they need to be accepted with a degree of caution, as 

they are inexplicable later than any of the Oxford measurements. Frank Hole 

believes “that the differences between the two laboratories are difficult to 

explain except as laboratory effects” (2000: 13), and suggests that either the 

Oxford measurements are around 500 years too young, or the Beta Analytic 

measurements around 500 years too old. The Beta Analytic measurements 

also suffer from some internal consistencies. For example, more than 500 

years separates the two Bus Mordeh phase samples (Beta-122721 & Beta-

108256). Zeder and Hesse (2000: 2256) suggest that this may be due to the 

use of both bone carbon and bone collagen samples. A number of the Beta 

and Oxford determinations (B-118724, OxA-1773, -1774, 1775) have high 

error terms given the usual precision of AMS measurements, and should be 

treated with questionable confidence. It is possible the high error terms are 

because after pre-treatment the sample quantity of bone carbon was very 

small (Zeder & Hesse 2000: 2256). However, as no pretreatment information 

on the samples is provided it is impossible to say. The provenance label for 

OxA-1775 was partly defaced, and it was sorted, perhaps incorrectly, into a 

Bus Mordeh context (Hole 2000: 13). The date should be ignored. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
137020 

MJ, 50-60 
cm depth 

Bone 
(carbon) 

7100
±70 

6048-
5903 

6096-
5801 

Acceptable Known mat. 
& context 

Beta-
177122 

MJ, 90-100 
cm depth 

Bone 
(carbon) 

7550
±40 

6451-
6399 

6473-
6270 

Acceptable Known mat. 
& context 

Beta-
118721 

AK, 180-200 
cm depth 

Bone 
(carbon) 

8720
±100 

7938-
7601 

8201-
7548 

Unreliable Error of 
±100 

Beta-
177124 

AK, 230 cm 
depth 

Bone 
(carbon) 

8050
±40 

7075-
6840 

7131-
6823 

Acceptable Known mat. 
& context 

Beta-
137021 

AK, 250-270 
cm depth 

Bone 
(carbon) 

8450
±70 

7581-
7481 

7594-
7354 

Acceptable Known mat. 
& context. 

Beta-
177126 

BM, 680 cm 
depth 

Bone 
(carbon) 

8530
±40 

7589-
7548 

7597-
7529 

Acceptable Known mat. 
& context 

Beta-
137024 

BM, 680-710 
cm depth 

Bone 
(carbon) 

8410
±50 

7545-
7382 

7577-
7355 

Acceptable Known mat. 
& context 

 
(Zeder 2008a: 258) 

 

The most recent set of 14C measurements for Ali Kosh listed above represent, 

the most consistent set of 14C determinations to date. The only date of 

concern is Beta-118721, which has an error term of 100 14C years and 

appears too old. It should be ignored. The other dates are all from known 

sample materials and contexts, and should be treated as of acceptable 

confidence. 

 

Chogha Sefid, 32º37’ E 47º15’ N, Khuzestan 

Chogha Sefid was excavated under the direction of Frank Hole in 1968-9. The 

site is located near to Ali Kosh on a well-drained alluvial fan, and is roughly 

oval in shape. It measures some 16 metres by 120 metres, and contains 20 

metres of deposits, of which 3.5–5 metres are buried beneath the present 

plain surface (Hole 1977: 90). A number of phases are recognized at Chogha 

Sefid, of which the earliest are the Ali Kosh (AK), Mohammad Jaffar (MJ), 

Sefid (SF) and Surkh (SK) phases. A series of 10 14C determinations are 

available for the site, which were measured by the University of Georgia 

(laboratory prefix UGa). 
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Lab. 
no 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

UGa-
305 

AK, Zone A1 n.d. 10,245±40 10,130-
9887 

10,179-
9866 

Unreliable Material 
unknown 

UGa-
294 

AK, Zone A1 n.d. 8760±150 8169-
7604 

8251-
7577 

Unreliable Material 
unknown 

UGa-
302 

MJ, Zone 
SB/A 

n.d. 8085±145 7301-
6817 

7455-
6651 

Unreliable Material 
unknown 

UGa-
296 

MJ, Zone 
SB/A 

n.d. 8760±150 8169-
7604 

8251-
7577 

Unreliable Material 
unknown 

UGa-
293 

SE, Zone C1 n.d. 8000±720 7823-
6101 

9131-
5617 

Unreliable Material 
unknown 

UGa-
297 

SE, Zone C1 n.d. 8040±90 7122-
6778 

7294-
6679 

Unreliable Material 
unknown 

UGa-
310 

SE, Zone B2 n.d. 9530±145 9152-
8718 

9277-
8487 

Unreliable Material 
unknown 

UGa-
300 

SE, Zone B2 n.d. 11,270±90 11,325-
11,146 

11,391-
10,964 

Unreliable Material 
unknown 

UGa-
295 

SF, Zone A4 n.d. 9690±100 9274-
8852 

9306-
8785 

Unreliable Material 
unknown 

UGa-
291 

SK, Zone F n.d. 7730±110 6678-
6455- 

7025-
6394 

Unreliable Material 
unknown 

 
(Hole 1977: 25)  

 

Unfortunately, the sample material for the measurements is unpublished, and 

given this, the generally high errors of the dates, and the fact that they were 

measured in a laboratory before 1980, all the measurements should be 

ignored. 

 

Tepe Sabz, 32º36’ N, 47º16’ E, Khuzestan 

Tepe Sabz lies approximately 16 kilometres west-northwest of Ali Kosh. It is a 

large, squat mound, measuring 120 by 140 metres, which was originally 

almost square in shape; although nearly a third has now been eroded. It was 

excavated in 1963 under the direction of Frank Hole and Kenneth Flannery 

(Hole et al. 1969), and comprises 10.5 metres of cultural deposits, 7 metres of 

which stand above the current plain surface.  Four phases of occupation are 

identified: the Sabz (SZ), Khazineh (KH), Mehmeh (MM) and Bayat (BY). A 

total of 16 14C samples from the site were collected by Frank Hole, and 

submitted to 3 different laboratories for analysis: Isotopes (laboratory prefix I), 

the University of California (prefix UCLA) and the Smithsonian Institute (prefix 

SI). 
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Lab. 
code 

Context Sample type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

I-
1499 

BY, Zone A1 Bits of 
charcoal 
from midden 

6050
±140 

5207-
4739 

5314-
4618 

Unreliable Bulk sample 

I-
1503 

BY, Zone A2, 
TS 9-167 

Carbonized 
wood 

5860
±230 

4996-
4462 

5315-
4266 

Unreliable Bulk sample 

UCL
A-
750A 

BY, Sq. 14, 270-
80 cm depth 

Carbonized 
wood & 
sheep/goat 
dung 

6070
±100 

5205-
4842 

5286-
4727 

Unreliable
. 

Bulk sample 

SI-
203 

BY, Zone A2, 
Sq. 1, 125 cm 
depth 

Chunks of 
charcoal 

6170
±200 

5322-
4849 

5520-
4619 

Unreliable  Bulk sample 

SI-
204 

BY, Zone A2, 
Sq. 1, 135 cm 
depth 

Charcoal 
fragments 
from midden 
area 

6060
±200 

5218-
4729 

5467-
4538 

Unreliable  Bulk sample 

SI-
156 

BY, Zone A3, 
300 cm depth 

Charcoal, 
seeds & 
sheep/goat 
dung 

5770
±120 

4768-
4489 

4901-
4359 

Unreliable  Bulk sample 

I-
1502 

BY, Zone A2, 
Sq. 15, 310 cm 
depth 

Charred 
wood, seeds 
& dung 

6060
±140 

5207-
4801 

5320-
4619 

Unreliable Bulk sample 

SI-
205 

Zone A2, Sq. 
34, 620-30 cm 
depth 

Carbonized 
wood 
(Tamarix?) 

5700
±250 

4881-
4269 

5208-
4042 

Unreliable Error of >150 

I-
1500 

MH, Zone B1, 
Sq. 7, 380 cm 
depth & Sq. 9, 
400 cm depth 

Wood/carbon
ized wood  

5410
±160 

4442-
4044 

4604-
3815 

Unreliable Bulk sample 

I-
1493 

MH, Zone B3, 
Sq. 25, 500 cm 
depth 

Charcoal 6470
±160 

5614-
5302 

5710-
5062 

Unreliable Error of >150 

SI-
206 

KZ, Zone C1, 
Sq. 34, 620-30 
cm depth 

Carbonized 
wood  
(undersized) 

7200
±100 

6211-
5992 

6343-
5849 

Unreliable Possibly 
contaminated 

UCL
A-
750B 

KZ, Zone C3, 
Sq. 11, 270-80 
cm depth 

Carbonized 
grains of 
barley  

6925
±200 

5992-
5645 

6212-
5491 

Unreliable  Bulk sample 

I-
1501 

KZ, Zone C1, 
Sq. 21, 680 cm 
depth 

Charcoal 7460
±160 

6465-
6106 

6631-
6018 

Unreliable Error of >150 

UCL
A-
750C 

SZ, Zone D, Sq. 
76, 680 cm 
depth 

Chunks of 
carbonized 
wood 

9050
±160  

8527-
7969 

8699-
7732 

Unreliable Bulk sample 

SI-
255
  

SZ, Zone D1, 
Sq. 20, 940-60 
cm depth 

Charcoal 
fragments 
from midden 
(undersized) 

1460
±400  

133-
976 

376-
1276 

Unreliable Too late & 
poss. 
contaminated 

I-
1497
  

SZ, Zone D, Sq. 
25, 960 cm 
depth 

Carbonized 
wood 

6740
±190 

5835-
5485 

6006-
5340 

Unreliable Error of >150 

 

(1965, R. Vol. 7: 355; 1966, R. Vol. 8: 413-22; 1967, R. Vol. 9: 379; 1968, R. Vol. 10(2): 290; 

Hole et al. 1969: 335-6) 
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According to the excavator, SI-255 was “apparently contaminated” (Hole et al. 

1969: 336), and should be ignored. SI-206 was very small, and should also be 

treated as unreliable. Of the remaining dates, the majority were measured 

from bulk samples and/or have error terms of over 150 14C years, and should 

be treated as unreliable. Of particular note is SI-255 which is far too late. 

Other determinations which also stand out as being too late in respect to their 

stratigraphic positions are: SI-156, SI-150, SI-205 and I-1497, while UCLA-

750C appears to be too early. 

 

 

The Susiana Plain 

 

From Deh Luran a route leads along the foothills to the southeast. The earliest 

farmers in Susiana seem to have settled within this zone, moving east of the 

River Dez before colonizing the rolling gravel plains to the south (Voigt & 

Dyson 1992: 129). 14C dates for the region are available from Chogha Bonut 

and Chogha Mish.  

 

Chogha Bonut, 32º13’20 N, 48º13’18 E, Khuzestan  

Chogha Bonut (see pp. 128-30) is located on the Susiana Plain at an 

elevation of 100 metres, roughly 20-kilometres southeast of the modern city of 

Dezful (Alizadeh 2009). It is a small mound which has been badly damaged 

by bulldozing, and in its truncated state it measures some 50 metres in 

diameter by 5 metres in height (Alizadeh 1997). Helene Kantor (1978; 1979; 

1980) conducted a salvage excavation at the site in 1976, and it was more 

recently excavated by Abbas Alizadeh in 1996. AMS measurements have 

been made for the site by Beta Analytic from samples submitted by both 

Abbas Alizadeh and Melinda Zeder. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
104552 

L39 
(D.T.) 

Organic 
sediment 

8270±
100 

7457-
7180 

7521-
7072 

Unreliable Error of 
>100 

Beta-
106164 

L39 
(D.T.) 

Charred 
material 

8170±
60 

7292-
7072 

7346-
7050 

Reliable Known mat. 
& context 

Beta-
104553 

Layer 13 Organic 10,980
±100 

11,097-
10,756 

11,151-
10,702 

Unreliable Error of 
>100 

Beta-
104554 

S.T. 
(76.10) 

Organic 41,930
±1000 

Out of range 
Unreliable Huge error 

term 

Beta-
104555 

Feat. 28 Charred 
material 

8070±
50 

7139-
6841 

7181-
6817 

Reliable Known mat. 
& context 

Beta-
106165 

F26/L32 Charred 
material 

8020±
50 

7059-
6830 

7076-
6708 

Reliable Known mat. 
& context 

Beta-
106166 

Feat. 14 Charred 
material 

7950±
50 

7028-
6711 

7041-
6692 

Reliable Known mat. 
& context 

Beta-
177134 

n.d. Bone 
(collagen) 

8040±
40 

7068-
6836 

7081-
6815 

Unreliable Unknown 
context 

Beta-
177132 

n.d. Bone 
(collagen) 

8070±
40 

7132-
6860 

7174-
6829 

Unreliable Unknown 
context 

Beta-
177133 

n.d. Bone 
(collagen) 

8120±
40 

7142-
7058 

7296-
7043 

Unreliable Unknown 
context 

 
(Alizadeh 2003: 149; Zeder 2008a: 258)  
 

Unfortunately, no information is available on the context of Beta-177134, -

177132 and -177133, and they cannot be treated with any confidence 

because they are stratigraphically unsupported. The remainder of the dates 

were measured from samples submitted by Abbas Alizadeh (2003). Beta-

104554 is obviously contaminated and unreliable. Beta-104552 and -104553 

have high errors for AMS measurements and should not be treated with any 

confidence. Beta-106164, -104555, -106165 and -106166 are from known 

materials and contexts, and are reliable enough to be used without further 

questioning.  

 

Chogha Mish, 32º13’26 N, 48º33’22 E, Khuzestan 

Chogha Mish lies in the area below the Zagros foothills between Dezful and 

Susa, six kilometres to the east of Chogha Bonut.  It was excavated under the 

direction of Pinhas Delougaz and Helene Kantor (Delougaz 1976; Kantor 
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1978; 1979; 1980; Delougaz & Kantor 1973; 1975; Delougaz, Alizadeh & 

Kantor 1996), on behalf of the Oriental Institute of The University of Chicago, 

for 11 seasons between 1961 and 78. They suggest that the site was 

occupied continuously, except for one or two presumably short breaks, from 

approximately the late sixth to early forth millennium BC. Three AMS dates 

are available for Chogha Mish, which were measured from samples collected 

by Abbas Alizadeh subsequent to the site’s excavation (2003).  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
106168 

Sq. S18: 
902 

Charred 
material 

6610
±50 

5615-
5511 

5623-
5483 

Reliable Known material 
& context 

Beta-
106169 

Sq. P22: 
629 

Charred 
material 

6600
±50 

5611-
5490 

5621-
5481 

Reliable Known material 
& context 

Beta-
106167 

Sq. S22: 
823 

Charred 
material 

8300
±60 

7478-
7201 

7519-
7176 

Unreliable Too early 

 
(Alizadeh 2003: 149) 

 

Beta-106167 stands out as much older than the other two dates, and in light 

of the dates for Chogha Bonut – which is believed to have been abandoned 

contemporaneously with the establishment of Chogha Mish (Alizadeh 2003: 

149) – should be ignored. Beta-106188 and Beta-106169 stratigraphically 

support each other, suggesting a mid-sixth millennium BC date. 

 

 

Marv Dasht/Kur River Basin 

 

The areas within the Kur drainage investigated most intensively by 

archaeologists are the Baiza and the Marv Dasht or Persepolis Plains (Voigt & 

Dyson 1992: 135). The key sites of this region for which 14C dates are 

available are: Tal-i Mushki, Tal-i Jari A and B, Tal-i Bakun A and B and Tal-i 

Gap. More recently, Fars has been subject to archaeological research by a 

joint team from ICHTO and the University of Sydney, who have conducted 

survey and excavation work on the Mamasani Plain (Potts et al. 2005; Potts & 

Roustaei 2006), and obtained 14C dates from eight Neolithic-Chalcolithic sites 

in the region. 
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Tal-i Mushki, 26º46’ N, 52º53’ E, Marv Dasht Plain  

Tal-i Mushki (see pp. 130-2) was first tested by Vanden Berghe (1954), whose 

work was subsequently followed by Naomi Egnami’s more extensive 

excavations on behalf of the University of Tokyo (Fukai et al. 1973). More 

recently the site was excavated for a short season in 2003 under the direction 

of Abbas Alizadeh (cf. Alizadeh et al. 2005). Two 14C date sets are available 

for Tal-i Mushki: one set was conventionally measured by the University of 

Tokyo (laboratory code prefix TK) from samples collected during the 1960s 

excavation; the other from samples collected and submitted for AMS dating by 

Alizadeh (2003) to NSF (prefix AA) and Beta Analytic. 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 68.2% 95.4% 

TK-34 Level 
2A 

Soil/ 
charcoal 

8460
±120 

7595-
7355 

7752-
7175 

Questionable Measured in 
1960s 

TK-35b Level 
2A 

Bone 
(organic) 

6800
±600 

6382-
5078 

7133-
4460 

Unreliable Error of >150 

TK-35a Level 
2A 

Bone 
(carbonate) 

3610
±110 

2137-
1781 

2292-
1687 

Unreliable Too late 

AA-
56409 

Level  
3a 

Bone 7347
±71 

6339-
6062 

6381-
6065 

Acceptable Known 
material & 
context 

Beta-
210984 

Level 
12  

Charred 
bones 

7250
±40 

6207-
6062 

6219-
6032 

Acceptable Known 
material & 
context 

Beta-

207563 

Level 

17 

Charred 

seeds 

7220

±40 

6202-

6021 

6211-

6013 

Reliable Known 
material & 
context 

AA-
63493 

Level 
22 
(basal) 

Bone 7707
±76 

6600-
6470 

6681-
6431 

Acceptable Known 
material & 
context 

 
(1969, R. Vol. 11: 513; Alizadeh 2006: 121)   
 

In terms of The University of Tokyo’s measurements, TK-35a is clearly too 

late and should be ignored, and TK-35b has an error of 600 14C years and 

should also be ignored. Its high error lays testament to the problems of 14C 

dating bone in the early days of 14C measurement. TK-34 is acceptable, with 

a degree of caution, as it was measured before 1980. In terms of the AMS 

measurements, Beta-207563 is from a known material and context and can 

be treated as reliable, whilst AA-56409, -63493 and Beta-210984 should all 

be treated with a degree of caution, as the bone fraction from which they were 

measured is not stated. There are some internal inconsistencies between the 
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AMS dates, however as all the dates lie relatively close together, this may be 

due to the rapid accumulation of deposits at the site. 

 

Tal-i Jari A, 29º56’ N 52º53’ E, Marv Dasht Plain 

Tal-i Jari A (see pp. 132-3) was excavated by a Japanese expedition in the 

1960s, the findings of which have yet to be fully published. The site was 

briefly re-excavated in 2004 under the direction of Abbas Alizadeh, and it is 

from the latter excavation that carbon samples were collected for AMS dating. 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
207564 

B1, Feat. 13 Charred 
seed 

6170
±40 

5208-
5062 

5221-
4999 

Reliable Known mat. 
& context 

Beta-
210982 

B1, Feat. 9 Charred 
seed 

6010
±40 

4951-
4841 

5000-
4769 

Reliable Known mat. 
& context 

AA-
63492 

20 cm above 
virgin soil 

Bone 6280
±69 

5359-
5082 

5465-
5052 

Reliable Known mat. 
& context 

 
(Alizadeh 2006: 220) 

 

The 14C dates for Jari A have errors within the accepted limits, are from 

known materials and contexts, and are in stratigraphic support; they are 

reliable enough to be used without further questioning. 

 

Tal-i Jari B, 29º56’ N 52º53’ E, Marv Dasht Plain 

Tal-i Jari B (see pp. 133) lies 200 metres south of Jari A. A Japanese 

expedition first excavated it in the 1960s, but their findings were never fully 

reported. More recently, the site was excavated under the direction of Abbas 

Alizadeh for a short season in 2004. Carbon samples collected by both 

excavation teams were submitted for AMS dating in 2004: AA-65264, AA-

56413 and Beta-207565 were collected in 2004; while AA-56410 to -56415 

are from samples that were collected in the 1960s (Alizadeh 2006).  The bone 

fraction from which the samples were extracted is not stated, and as such the 

dates should be treated with a degree of caution. This aside, the dates are 

from known contexts and in stratigraphic agreement, with the sample from the 

lowest level (AA-65264) yielding one of the earliest dates. Although Beta-

207565 is the only sample measured by Beta laboratory, it is in stratigraphic 
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agreement with the 14C dates from NSF-Arizona AMS laboratory (prefix-AA) 

and can be accepted with a degree of caution.  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

AA-
56413 

Area A III, 
Level 1-2 

Bone 6867
±50 

5835-
5707 

5877-
5659 

Acceptable Known 
material & 
context 

AA-
56412 

Area C, 
Level 2 

Bone 6969
±72 

5971-
5771 

5991-
5725 

Acceptable Known 
material & 
context 

AA-
56415 

Area WT, 
Level 2, 
Room 1 

Bone 7127
±69 

6066-
5917 

6206-
5845 

Acceptable Known 
material & 
context 

Beta-
207565 

165 cm 
depth 

Charred 
seeds 

7140
±40 

6050-
5990 

6075-
5920 

Reliable Known 
material & 
context 

AA-
56411 

Area A III 
Level 5, 
Room 7 

Bone 7259
±74 

6213-
6064 

6334-
5991 

Acceptable Known 
material & 
context 

AA-
56410 

Area WT, 
Level 6, 
Room 5a 

Bone 7173
±71 

6202-
5931 

6219-
5911 

Acceptable Known 
material & 
context 

AA-
65264 

50 cm 
above 
virgin soil 

Charred 
bone 

7297
±45 

6216-
6103 

6237-
6062 

Acceptable Known 
material & 
context 

 
(Alizadeh 2006: 221)  

 

Tal-i Bakun A, 33º10 N, 68º20 E, Marv Dasht Plain 

Langsdorff excavated Tall-i Bakun A in the 1930s, and was closely followed 

by McCown who excavated there in 1942. More recently the site was 

excavated in 2004 by Abbas Alizadeh, who submitted three carbon samples 

for AMS dating (Alizadeh 2006).   

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
207562 

Sq. BB27, 
Level 3 

Charred 
seeds 

5560±
40 

4447-
4357 

4462-
4338 

Reliable Known mat. 
& context 

Beta-
210983 

Sq. BB27, 
Level 4 (basal) 

Charred 
seeds 

5570±
40 

4448-
4362 

4488-
4342 

Reliable Known mat. 
& context 

AA-
63491 

Sq. BB27, 
Level 3 

Bone 5162± 
63 

4044-
3814 

4226-
3793 

Accept. Known mat. 
& context 

 
(Alizadeh 2006: 120) 
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Beta-207562 and -210983 are from known materials and contexts, and are 

reliable enough to be used without further questioning. AA-63491 was the 

only measurement made by NSF-Arizona AMS laboratory. Although from the 

same level as Beta-207562, AA-63491 is somewhat earlier, possibly because 

two different materials were dated. It is not stated what bone fraction the 

sample was extracted from, and the measurement is of questionable 

confidence.  

 

Tal-i Bakun B, 33º10 N, 68º23 E, Marv Dasht Plain 

Tal-i Bakun B was originally excavated in the 1960s by a Japanese 

expedition, but their findings were never fully published. It was re-excavated in 

2004 under the direction of Abbas Alizadeh (Alizadeh 2006). Two sets of 14C 

dates are available: one set was collected and submitted for conventional 

dating by R.H. Dyson during the original excavation of the site; the other was 

collected and submitted for AMS measurement in 2004 by Alizadeh.  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-
438 

300 cm 
depth 

Charcoal 
& dirt 

5990±
80 

4987-
4790 

5204-
4691 

Unreliable Bulk sample 

P-
931 

Same 
area as 
P-438 

Ash 6264±
70 

5320-
5079 

5462-
5030 

Question. Known mat. & 
context, but 
meas. before 
1980 

Beta-
2109
85 

190 cm 
above 
natural 

Charred 
seeds 

6160±
40 

5207-
5054 

5217-
5000 

Acceptable Known mat. & 
context 

AA-
6348
9 

140 cm 
above 
natural 

Bone 6234±
72 

5302-
5076 

5356-
5001 

Acceptable Known mat. & 
context 

 
(1962, R. Vol.. 5: 90; 1966, R. Vol.. 8: 350; Alizadeh 2006: 120)  

 

P-438 is from a bulk sample and should be ignored. P-931 is from a known 

material and context, but should be treated as questionable due to its 

measurement in the formative years of 14C dating. AA-63489 and Beta-

210985 are from known materials and contexts, but are not in stratigraphic 

agreement; perhaps because of the different sample materials used. They are 

acceptable with a degree of caution. Unfortunately, due to the different 
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stratigraphic descriptions given for the two date sets (depth below present & 

height above natural respectively) it is impossible to compare them. 

 

Tal-i Gap, 29º55’ N, 53º00’ E, Marv Dasht Plain 

Tal-i Gap is a round mound measuring some 120 metres in diameter, and 5 

metres in height. The second Tokyo University Iraq-Iran Archaeology 

Expedition excavated the site in 1959, but their findings remain unpublished. It 

was more recently excavated for a brief season in 2004 under the direction of 

Abbas Alizadeh (Alizadeh 2006).  

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

GaK-
197 

GAT-I, 
Layer 17 

Charcoal 5870±160 4934-
4546 

5207-
4371 

Unreliable Error of 
>150 

GaK-
198 

GAT-II, 
Layer 6 

Charcoal 5540±120 4521-
4260 

4684-
4060 

Questionable Before 
1980 

 
(1963, R. Vol. 5: 115). 

 

Gak-197 has an error of more than 150 14C years and should be ignored; 

GaK-198 is from a known material and context and has an acceptable 

context, but due to its measurement in the formative period of 14C dating, 

should be treated as of questionable confidence. 

 

Tol-e Baši, Kor River Basin, Fars 

Tol-e Baši lies in the eastern Ramjerd Plain, Fars. It was identified in 

archaeological surveys of the Kor River Basin by Louis Vanden Berghe, Paul 

Gotch and William Sumner, and excavated in 2003 by an American-Iranian 

project (cf. Pollock, Bernbeck & Abdi 2010). The site is comprised of two 

mounds: Mound A measuring roughly 3.8 hectares and Mound C measuring 

roughly 3.1 hectares (Bernbeck 2010a: 21).The Neolithic occupation of the 

site is thought to be restricted to the northwestern part of Mound A. To date 

the site represents the oldest attested evidence for agrarian lifeways in the 

area. Twelve samples were submitted by the excavators for 14C dating using 

the AMS method. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

AA-
5634
1 

Unit A Loc. 
74, Level I  

Charred 
plant 
material 

6028
±44 

4989-
4849 

5040-
4800 

Unreliable Wide 
discrepancy 
with other 
determination 
for Level 1 

AA-
5633
8 

Unit A Loc. 
49, Level I 

Charred 
plant 
material 

7037
±46 

5986-
5888 

6013-
5811 

Unreliable Wide 
discrepancy 
with other 
determination 
for Level 1 

AA-
5634
2 

Unit B Loc. 
24, Level II 

Charred 
plant 
material 

6702
±39 

5659-
5567 

5706-
5546 

Reliable AMS date from 
known material 
& context 

AA-
5634
3 

Unit D Loc. 
17, Level 
IV 

Charred 
plant 
material 

6977
±43 

5969-
5802 

5981-
5147 

Reliable AMS date from 
known material 
& context 

AA-
5635
3 

Unit D Loc. 
13, Level 
IV 

Charred 
plant 
material 

7082
±39 

6010-
5916 

6031-
5886 

Reliable AMS date from 
known material 
& context 

AA-
5634
0 

Unit C Loc. 
40, Level 
IV 

Charred 
plant 
material 

7123
±49 

6051-
5927 

6072-
5899 

Reliable AMS date from 
known material 
& context 

AA56
355 

Unit D Loc. 
11, Level 
IV 

Charred 
plant 
material 

7157
±42 

6059-
6001 

6096-
5921 

Reliable AMS date from 
known material 
& context 

AA56
339 

Unit C Loc. 
71, Level V 

Charred 
plant 
material 

6949
±47 

5886-
5766 

5975-
5732 

Reliable AMS date from 
known material 
& context 

AA56
354 

Unit C Loc. 
54, Level V 

Charred 
plant 
material 

7132
±40 

6049-
5986 

6072-
5917 

Reliable AMS date from 
known material 
& context 

AA56
351 

Unit C Loc. 
61, Level V 

Charred 
plant 
material 

7283
±43 

6213-
6089 

6230-
6061 

Reliable AMS date from 
known material 
& context 

AA56
352 

Unit C Loc. 
68, Level 
VI  

Charred 
plant 
material 

5830
±42 

  Unreliable Possible 
contamination 

AA58
025 

Unit C Loc. 
70, Level 
VI 

Charred 
plant 
material 

5837
±40 

  Unreliable Possible 
contamination 

 
(Pollock et al. 2010: table 19.1.) 
 

It is immediately apparent that in several respects the sequence of dates does 

not reflect the expected ordering based on the stratigraphic positioning of the 

samples.  AA-56352 and -58025, for example, although from the earliest level 

of the dated sequence, are actually the latest in date. It is probable both 

samples are contaminated or intrusive. They are from isolated pockets within 

a deep deposit in Unit C, and Pollock (2010b: 262) reports that although no 

rodent holes were recognised at the time of excavation, it was recognized that 

the general character of the deposits was suspicious.  Although the remaining 
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dates do not yield a sequence that corresponds exactly to their stratigraphic 

position – some Level V dates are later than some from Level IV – overall, 

they fall relatively closely together, and are reliable enough to be used without 

further questioning. The lack of clear chronological distinction between Level 

VI and V samplers may be indicative that these two phases are so close 

together in time that the 14C determinations cannot reliable separate them 

(Pollock 2010: 263).  

 

Hajji Bahrami or TB75, Tang-e Bolaghi  

TB75 is located in the Bolaghi Valley, Fars. The site was excavated in 2004 

and 2006 by an Iran-Japan joint expedition to the Savant dam salvage area 

(cf. Tsuneki & Zeidi 2008). Ten charcoal samples (although one proved too 

small to be dated),  were collected from TB75 during the 2004 excavation and 

submitted to Nagoya University, Japan, for AMS measurement (Nakamura & 

Minami 2008: 159).  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

NUTA
2-
12455 

Tr. D, 
basket 
no. 4, 
layer 3  

Samp. 
No. 2: 
charcoal 

8480±
45 

7577-
7528 

7589-
7490 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12456 

Tr. D., 
basket 
no. 9, 
layer 4 

Samp. 
No. 7: 
charcoal 

9265±
45 

8599-
8353 

8621-
8337 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12457 

Tr. D, 
basket 
no. 12, 
layer 4 

Samp.no. 
13: 
charcoal 

9965±
45 

9648-
9318 

9665-
9301 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12459 

Tr. D, 
basket 
no. 14, 
layer 4 

Samp. 
No. 22: 
charcoal 

10190
±45 

10042-
9825 

10116-
9762 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12460 

Tr. D, 
basket 
no. 19, 
layer 5 

Samp. 
No. 24: 
charcoal 

12640
±50 

13200-
12851 

13282-
12614 

Question. Possible 
contamination 

NUTA
2-
12461 

Tr. D, 
basket 
no. 19, 
layer 5 

Samp. 
No. 25: 
charcoal 

12255
±50 

12264-
12043 

12856-
11959 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12462 

Tr. D, 
basket 
no. 19, 
layer 5 

Samp. 
No. 28: 
charcoal 

12225
±50 

12264-
12043 

12856-
11959 

Reliable Known material 
& context; 
stratigraphically 
supported 
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NUTA
2-
12463 

Tr. D, 
basket 
no. 23, 
layer 6 

Samp. 
No. 34: 
charcoal 

16330
±60 

17592-
17470 

17879-
17357 

Reliable Known context 
& material; 
stratigraphically 
supported 

NUTA
2-
12464 

Tr. D, 
basket 
no. 24, 
layer 6 

Samp. 
No. 35: 
charcoal 

16650
±70 

17951-
17626 

18191-
17581 

Reliable Known context 
& material; 
stratigraphically 
supported 

 
(Nakamura & Minami 2008: tab. 10.2.) 

 
Four charcoal samples (nos. 2, 7, 13 & 22) were collected from excavation 

layers attributed to the Proto-Neolithic, and dated to 8480±45 to 10190±45 14C 

years BP, or 7589-7490 to 10116-9762 calibrated years BC within the two-

sigma age range. Five samples (nos. 24, 25, 28, 34 & 35) were collected from 

Epipalaeolithic layers and dated to 12225±50 to 16650±70 14C years BP, or 

12856-11959 to 18191-17581 calibrated years BC with the two-sigma age 

range. According to the excavators the 14C ages and calibrated dates for the 

two groups of samples are quite consistent with the respective age 

classifications, Proto-Neolithic and Epipalaeolithic, based on archaeological 

contexts (Nakamura & Minami 2008: 160, tab. 10.1). NUTA2-12460, -12461 

and -12462 are from the same layer. 

 

The dates for NUTA2-12461 and -12462 are consistent with each other, but -

12460 is a bit older. The excavators suggest that this may be as a result of 

the contamination of sample no. 24 by foreign older carbon during sample 

preparation at the laboratory (ibid.: 160). All of the other 14C dates get older as 

the sample collection layers become deeper, and are quite consistent. They 

are reliable enough to be treated without further questioning.  

 

Ten charcoal samples (one of which proved to be too small to be dated) were 

collected from the 2006 excavation at TB75 and submitted for AMS 

measurement (Yoneda 2008). Samples no. 3 to 12 are from layers assigned 

to the Proto-Neolithic and samples no. 18 to 29-1 are from the Epipalaeolithic. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

TERRA-
070407
a30 

Tr. D, 
basket no. 
6, layer 4 

Samp. no: 
3, charcoal 

8403±
43 

7537-
7385 

7571-
7356 

Unreliable Unknown 
lab. 

TERRA-
070407
a33 

Tr. D, 
basket no. 
7, layer 4 

Samp. no: 
5, charcoal 

9421±
47 

8753-
8637 

8813-
8569 

Unreliable Unknown 
lab. 

TERRA-
070407
a34 

Tr. D, 
basket no. 
8, layer 4 

Samp. no: 
6, charcoal 

9452±
47 

8796-
8641 

9116-
8616 

Unreliable Unknown 
lab. 

TERRA-
070407
a35 

Tr. C, 
basket 
no.13, layer 
4 

Samp. no: 
9, charcoal 

1368±
33 

641-
676 

605-
764 

Unreliable Unknown 
lab. 

TERRA-
070407
a36 

Tr. C, 
basket 
no.13, layer 
4 

Samp. no: 
11, 
charcoal 

1448±
33 

589-
645 

557-
654 

Unreliable Unknown 
lab. 

TERRA-
070407
a37 

Tr. C, 
basket 
no.13, layer 
4 

Samp. no: 
12, 
charcoal 

1407±
36 

614-
657 

575-
670 

Unreliable Unknown 
lab. 

TERRA-
070407
a04 

Tr. C, 
basket 
no.15, layer 
5 

Samp. no: 
19, 
charcoal 

11930
±56 

11916-
11771 

12007-
11667 

Unreliable Unknown 
lab. 

TERRA-
070407
a05 

Tr. C, 
basket 
no.17, layer 
5 

Samp. no: 
27, 
charcoal 

14774
±61 

16478-
15867 

16535-
15714 

Unreliable Unknown 
lab. 

TERRA-
070407
a30 

Tr. C, 
basket 
no.17, layer 
5 

Samp. no: 
29-1, 
charcoal 

13231
±56 

14598-
13972 

14741-
13534 

Unreliable Unknown 
lab. 

 

(Yoneda 2008: tab. 10.3, 10.5) 

 

The laboratory code TERRA is not listed in the Radiocarbon list of current and 

past lad codes (see www.radiocarbon.org/info/labcodes.html which is based 

on the list to be published in Radiocarbon 54(4)). The credibility of the 

laboratory is therefore questionable, and the dates cannot be treated as 

reliable.  

 

Tal- Nokhodi, 30º20’ N, 38 º10’ E 

Tal-Nokhodi lies beneath the Achaemenid capital of Pasargadea. Only one 14 

C date is available for the site. It is from a sample collected in 1961 by D.B. 

Stronach and submitted by M.E.L. Mallowan. It is stratigraphically 

unsupported and should be ignored.  
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Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

BM-
171 

Tr. B, 
Level 4C 

Charcoal 5050±150 3982-
3662 

4238-
3527 

Unreliable Single 
14

C date 
 
(1968, R. Vol. 10: 3-4) 

 

Tol-e Nurabad, Mamasani Plain, 51°30’ E, 30°07’ N 

Tol-e Nurabad (see pp. 129-40) is located in Dasht-e Nurabad, on the 

outskirts of the modern town of Nurabad-e Mamasani. It lies on the main 

communication route between the Kur River Basin and lowland Khuzistan, 

and is situated next to the perennial Korr-e Sangan stream; both of these 

factors probably influenced the site’s location (Weeks et al. 2006: 31). 

Nurabad measures some 90,000 square metres, and currently stands 24 

metres above the plain surface. It was excavated for two seasons in 2003 and 

2004 under the direction of D.R. Potts (Potts et al. 2005; Potts & Roustaie 

2006). The Neolithic occupation of the site was substantial, and eight 

occupational phases (A26-20) are recognised (Weeks et al. 2006: 68). In all, 

10 AMS 14C determinations are available for the Neolithic-Chalcolithic 

deposits at Nurabad (Weeks et al. 2006: 67, table 3.2). 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

WK-
13989 

Tr. A., 
Ph. A27   

Charcoal 6488±
54 

5490-
5375 

5542-
5328 

Unreliable Too late 

WK-
13990 

Tr. A, 
Ph. A26 

Charcoal 6977±
56 

5972-
5792 

5984-
5741 

Reliable AMS date from 
known mat. & 
context 

OZI-
128 

Tr. A, 
Ph. A25 

Charcoal 6950±
50 

5887-
5765 

5976-
5731 

Reliable AMS date from 
known mat. & 
context 

WK-
13991 

Tr. A, 
Ph. 
A24b 

Charcoal 6952±
61 

5892-
5753 

5982-
5726 

Reliable AMS date from 
known mat. & 
context 

WK-
13992 

Tr. A, 
Ph. A23 

Charcoal 6938±
54 

5878-
5748 

5977-
5723 

Reliable AMS date from 
known mat. & 
context 

WK-
13993 

Tr. A, 
Ph. A20 

Charcoal 6810±
56 

5733-
5645 

5833-
5622 

Reliable AMS date from 
known mat. & 
context 

WK-
13994 

Tr. A, 
Ph. A19 

Charcoal 5850±
49 

4791-
4619 

4835-
4556 

Reliable AMS date from 
known mat. & 
context 

OZI- Tr. A, Charcoal 5910± 4837- 4933- Reliable AMS date from 
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129 Ph. A19 50 4772 4688 known mat. & 
context 

OZI-
130 

Tr. A, 
Ph. A18 

Charcoal 6290±
60 

5341-
5212 

5465-
5064 

Reliable AMS date from 
known mat. & 
context 

WK-
13996 

Tr. A, 
Ph. A16 

Charcoal 5785±
51 

4706-
4560 

4770-
4502 

Reliable AMS date from 
known mat. & 
context 

 
(Weeks et al. 2006: table 3.2.) 

 
WK-13989, from the earliest level of Nurabad (A27), is considered by the 

excavators to be contaminated or intrusive (Weeks et al. 2006: 67), and given 

its somewhat younger date than the other samples, I concur with this, and the 

date should be ignored. The excavators comment that the rest of the dates, 

are, “consistent with their stratigraphic position and…more-or-less reliable 

indicators of the age of the deposits from which they have come” (Weeks et 

al. 2006: 67). I would agree with this interpretation of the data: the dates are 

from known sample materials and contexts, and internally consistent; they are 

reliable enough to be used without further questioning.  

 

 

5.2d. Central Iranian Plateau  

 

The Central Iranian Plateau incorporates the Tehran, Qazvin and Kashan 

Plains. Prior to recent work on the Central Iranian Plateau (e.g. Coningham et 

al. 2004; 2006; Fazeli et al. 2005; 2009) (see Chap. 6), the Neolithic period of 

the region was defined at the sites of Cheshmeh Ali, Zagheh and Sialk, with 

Zagheh reportedly the earliest of the three (e.g. Voigt & Dyson 1992: 165).  

Although 14C dates for Zagheh have been published since the 1970s, until 

recently only one 14C date was available for Sialk, and none had been made 

for Cheshmeh Ali, despite the chronological importance of the latter two sites. 

 

Tepe Sialk, 34º23’ N, 51º38’ E, Kashan Plain 

Tepe Sialk lies in the suburbs of the modern city of Kashan. The site consists 

of two mounds, located some 600 metres apart, of which the North Mound is 

the earlier. Roland Ghirshman excavated both mounds during the 1930s, 

identifying two distinct Neolithic phases on the North Mound: Sialk I and II. 
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Ghirshman’s extensive studies were followed by excavations directed by D.E. 

McCown, V. Majidzadeh and P. Amieh, after which the site was neglected for 

more than 20 years. In the early 2000s, the Iranian Cultural Heritage 

Organization (ICHO) reviewed the site, and five season of excavation were 

subsequently undertaken (Malek Shahmirzadi 2002; 2003; 2004; 2006a; 

2006b). A joint collaboration between the University of Tehran, Durham 

University and ICHO is currently excavating the North Mound as part of a five-

year project initiated in 2008 (see pp. 363-73). Prior to their work, only one 

14C date (Gx-949) existed for the site, measured from a carbon sample taken 

from the surface of a bowl more than 30 years after it was excavated (Böhner 

& Schyle 2008). It is probably contaminated, and even if it is not, as the only 

date available for the site it is stratigraphically insecure site and cannot be 

treated with any confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Gx-
949 

Sialk I2: 
balk 

Organic 
material 
(barley?) 

5700±90 4681-
4456 

4726-
4354 

Unreliable Only 1 date 
for site 

 
(Voigt & Dyson 1992: 135) 

  

Zagheh, 35º48’57 N, 49º56’49 E, Qazvin Plain 

Zagheh is an oval mound, measuring some 300 metres by 200 metres in 

extent that contains 6.5 metres of deposits, 6 metres of which are buried 

below the present plain surface (Schmidt & Fazeli 2006: 39). E.O. Neghaban 

(1974; 1977; 1979) first excavated the site from 1970-9, after which it was 

excavated under the direction of a team of staff from the Iranian Department 

of Archaeology, including Malek, Mostof, Golzarim Daneshpoor, Frirozmandi 

and Salehi. The site was more recently excavated under the direction of 

Hassan Fazeli (Fazeli et al. 2005). Prior to Fazeli’s excavations, two date sets 

existed for Zagheh, measured from charcoal samples submitted by Neghabad 

to Tehran University Nuclear Centre (laboratory code prefix TUNC) in the 

1970s; and from bone samples submitted by Mashkour (Mashkour et al. 

1999) to Gif sur Yvette (laboratory code prefix Gif) for AMS dating.. 
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Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 

68.2% 95.4% 

TUNC-
10 

Test Tr. 
Fx, Level 1 

Charcoal 4909
±73 

3773-
3640 

3941-
3526 

Unreliable Unadjusted 
for 
fractionation 

TUNC-
12 

Tr. Fx, 289 
cm depth 

Charcoal 7147
±90 

6098-
5902 

6221-
5845 

Unreliable Unadjusted 
for 
fractionation 

Gif-
10343 

Tr. A8/4, 
33 cm 
depth  

Bone 
(coll. 
1994) 

5930 
±70 

4899-
4721 

4998-
4618 

Questionable Known mat. 
& context 

Gif-
10344 

Tr. DIX, 
110-30 cm 
depth 

Bone 
(coll. 
1973) 

5885 
±75 

4876-
4620 

4938-
4553 

Questionable Known mat. 
& context 

Gif-
10226 

Tr. FGX, 
323-35 cm 
depth 

Bone 
(coll. 
1973) 

6100 
±60 

5206-
4936 

5213-
4849 

Questionable Known mat. 
& context 

Gif-
10345 

Tr. FIX Bone 
(coll. 
1973) 

5900 
±55 

4837-
4714 

4934-
4618 

Questionable Known mat. 
& context 

 
(1972, R. Vol.. 14: 459; Mashkour et al. 1999: 69) 

 

Neither of the samples measured at Tehran University were adjusted for 

fractionation (1972, R. Vol.. 14: 459), and the dates cannot be treated with 

any confidence. The dates obtained by Mashkour are from known sample 

materials and contexts. However, three of the samples were from bones 

which were originally collected in 1973, and thus may have become 

contaminated. Consequently, Gif-10344, -10266 and -10345 must be treated 

as of questionable chronometric hygiene.  Gif-10343 is measured from a 

sample collected in 1994, but as there are no other dates of ‘acceptable’ or 

‘reliable’ hygiene with which to insure its stratigraphy, and in light of more 

recent dates for the site (see pp. 349-50), it must be treated with questionable 

confidence 

 

 

5.2e. Northeastern Iran 

 

Damghan/Khurasan 

 

Information for the prehistoric period of northeastern Iran comes primarily 

from: the Damghan Plain, south of the Alburz Mountains; and the Atrek and 

Darreh Gaz Valleys which lead north towards Turkmenistan. The Neolithic 
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sequence of the region has traditionally been based on the excavations 

carried out by the Japanese-Iranian Joint Archaeological Mission at the 

double mound of Sang-i Chakhmaq, just to the east of the Damghan Plain 

(Voigt & Dyson 1992: 169). 

 

Sang-i Chakhmaq, 36º23’N, 55º06’E 

Sang-i Chakhmaq lies near the modern city of Sahrud, and was excavated in 

the 1970s under the direction of Seiichi Masuda, although the findings remain 

unpublished. It consists of two low mounds, of which the western mound 

(Sang-I Chakhmaq West) is the earlier. Five levels of occupation are identified 

on the west mound – Levels 2-5 (aceramic) and Level 1 (ceramic) – for which 

two 14C determinations are available. Unfortunately neither is published with 

its lab code, context or sample material, and they cannot be treated with any 

confidence.  

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

n.d. n.d. n.d. 7270±125
 

6249-
6010 

6415-
5911 

Unreliable No lab. 
code etc. 

n.d. n.d. n.d. 7240±150 6331-
5929 

6246-
5841 

Unreliable No lab. 
code etc. 

 
(Voigt & Dyson 1992: 222.) 

 

 

Mazandaran/Gurgan 

 

This region consists of the coastal plain lying at the southeastern corner of the 

Caspian Sea, and the adjacent plain. The Neolithic period of the region has 

traditionally been defined by Belt Cave, Levels 10-8, and the ‘sub-Neolithic’ 

levels at Hotu Cave (Coon 1951: 30-1; 1957: 149-51). 

 

Belt Cave (Ghar-i-Kamarband), 36º39’ N, 53º27’ E, Mazandaran 

Belt Cave and neighbouring Hotu Cave (see pp. 147), lie in the foothills of the 

Alburz Mountains overlooking the Caspian Sea, just east of the modern 

village of Turnjan, and were excavated by Carleton S. Coon (1951; 1952; 

1957) in the 1950s. Nineteen 14C dates are available from Belt Cave, five of 
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which were measured by Willard Libby (1955) in the 1950s. None of Libby’s 

measurements were adjusted for fractionation or assigned laboratory (they 

are cited with numbers allocated by Libby), and they cannot be treated with 

any confidence. The remaining 14C dates for Belt Cave were measured by the 

University of Pennsylvania (laboratory code prefix P). All of these 

measurements have high error terms and should be ignored. The two sets of 

measurements are listed separately, as the stratigraphy descriptions are 

inconsistent, and the two date sets cannot be reconciled.  

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

494, 
495, 
523  

NL Bone 
(burnt) 

8085±720 7961-
6239 

9157-
5666 

Unreliable No lab. code 
& high error 
term  

524 Layer 10, 
125-140 
cm depth 

Bone 
(burnt) 

10,560±610 11,145
-9461 

11,814
-8714 

Unreliable No lab. code 
& high error 
term  

574  Layer 15-
16, 125-
215 cm 
depth 

Bone 
(burnt) 

8485±500 8257-
6846 

9119-
6416 

Unreliable No lab. code 
& high error 
term  

525  Same 
context as 
No. 574 

Bone 
(burnt) 

1130±300/ 
1260±430 

646-
1207/ 
349-
1213 

259-
1404/3
54-
1453 

Unreliable No lab. code 
& high error 
term  

492 & 
547  

Level 21-
8, 300-
405 cm 
depth 

Bone 
(burnt) 

8004±415 7455-
6497 

8168-
6066 

Unreliable No lab. code 
& high error 
term  

 
(Libby 1955: 71-2) 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-
19a 

Strip C, 95-
105 cm 
depth  

Charcoal 7015±
405 

6354-
5553 

6901-
5076 

Unreliable High error 
term 

P-
19b 

Same as P-
19a 

Charcoal 7395±
495 

6814-
5742 

7541-
5390 

Unreliable High error 
term 

P-
19c 

Same as P-
19a 

Charcoal 7430±
460 

6897-
5812 

7475-
5536 

Unreliable High error 
term 

P-26 Strip C, 160 
cm depth 

Charcoal 7680±
470 

7137-
6069 

7717-
5664 

Unreliable High error 
term 

P-
26a 

Same as P-
26 

Charcoal 7905±
475 

7466-
6391 

8197-
5908 

Unreliable High error 
term 
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P-24 Strip C, 175-
90 cm depth 

Charcoal 8785±
575 

8711-
7180 

9660-
6503 

Unreliable High error 
term 

P-
24a 

Same as P-
24 

Charcoal 8360±
510 

8165-
6691 

8762-
6236 

Unreliable High error 
term 

P-27 Strip C -200-
30 cm depth 

Charcoal 12,775
±825 

Date out 
of range 

Date out 
of range 

Unreliable Date out 
of range 

 
(Ralph 1955: 149-51) 
 

Hotu Cave, 36º47’ N, 53º24’ E, Mazandaran  

Hotu Cave was excavated in the 1950s under the direction of C.S. Coon 

(1951; 1952; 1957). Seven 14C dates are available for Hotu Cave, which were 

measured in the 1950s in the formative years of 14C dating. All have very high 

error terms, and there is a risk of contamination: P-34 and P-35 were 

contaminated with bat dung, and the excavators suspect that Trench D was 

also contaminated (1971, R. Vol.. 13: 372). All the dates should be treated as 

highly unreliable.  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-45 Tr. B, 535 
cm depth  

Charcoal 6515±
425 

5877-
4995 

6342-
4533 

Unreliable High error 
term 

P-34 Tr. A, Level 
34-8, 520-90 
cm depth 

Charcoal 4830±
480 

4226-
2941 

4771-
2350 

Unreliable High error 
term 

P-35 Tr. B, Level 
39-41, 590-
660 cm 
depth 

Charcoal 4730±
320 

3926-
3028 

4258-
2668 

Unreliable High error 
term 

P-36 Tr. B, 580 
cm depth 

Charcoal 6386±
425 

5715-
4846 

6205-
4373 

Unreliable High error 
term 

P-37 Tr. D, Level 
A-49, 765 
cm depth 

Charcoal 8070±
500 

7590-
6447 

8318-
5996 

Unreliable High error 
term 

P-12 Tr. D, 950 
cm depth 

Charcoal 9190±
590 

9246-
7615 

10,430
-7081 

Unreliable High error 
term 

P-38 Tr. D, 1015  
cm depth 

Charcoal 9220±
570 

9259-
7682 

10,430
-7179 

Unreliable High error 
term 

P-
1623/I-
635 

Tr. D Charcoal 
& soil 

10,730
±370 

11,128-
10,192 

11,412
-9457 

Unreliable High error 
term 

 
(1971, R. Vol. 13: 372; Ralph 1955: 149-51) 
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5.2f. Southeastern Iran 

 

Kerman 

 

Kerman province incorporates the fertile Soghun Valley, which lies 

approximately 200-kilometres south of regional capital. The largest mound in 

the Soghun valley is Tepe Yahya, which has been the major focus of 

research, although the earliest settlement in the area is reported from Tepe 

Gaz Tavila (ibid.: 147-8). 

Tal-i Iblis, 32º12’ N, 48º13’ E, Mashiz  

Tal-i Iblis or ‘Devil’s Mound’ lies in the Mashiz Valley, 12 kilometres southeast 

of Mashiz, and 70 kilometres southwest of Kerman city. The site has been 

badly damaged, and in its truncated state measures 118 metres by 100 

metres in extent, and stands approximately 11 metres above the present plain 

surface. J.R. Caldwell (1967) directed excavation at the site in the 1960s, and 

identified six cultural periods at the site, of which the earliest (Iblis 0) 

represents pre-mound occupation, and Iblis 1-2 represent the Iblis period, 

which is reported to be roughly contemporary with Sialk III. However, 

Caldwell’s cultural periods have subsequently been questioned, and Voigt and 

Dyson have argued that based on the available evidence (including 14C dates 

for the site), “Iblis 0 cannot stand as a time unit distinct from Iblis I, and this 

‘period’ should be rejected” (1992: 143). Ten 14C dates are available for the 

site, from samples submitted by Caldwell to the University of Pennsylvania, 

USA (laboratory code prefix P); and Geochron Laboratories, Germany 

(laboratory code prefix GX). 

 

Lab. 
code 

Context Sample type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

P-
924 

Level 
0/Iblis 0 

Charred 
seeds & bits 
of charcoal 

5706
±70 

4652-
4460 

4713-
4371 

Unreliable Bulk sample 

P-
925 

Level 
1/Early 
Iblis II 

Charred 
seeds & 
small bits of 
charcoal 

5865
±72 

4832-
4618 

4929-
4545 

Unreliable Bulk sample 

Gx-
869 

Level 1, 
House G n.d. 

6210
±130 

5311-
5004 

5468-
4848 

Unreliable Material 
unknown 
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Gx-
867 

Level 1, 
Area B 

n.d. 6180
±160 

5315-
4939 

5474-
4771 

Unreliable Material 
unknown 

Gx-
863 

Level 1, 
House F 

n.d. 5780
±160 

4827-
4457 

5050-
4333 

Unreliable Material 
unknown 

Gx-
868 

Level 1, 
Area B,  

n.d. 5460
±110 

4451-
4082 

4520-
4004 

Unreliable Material 
unknown 

P-
926 

Level 
2/Late 
Iblis II 

Charcoal 5857
±73 

4826-
4616 

4908-
4540 

Questionable Measured 
before 1980 

Gx-
864 

Level 2, 
Area A 

n.d. 6060
±140 

5207-
4801 

5320-
4619 

Unreliable Material 
unknown 

Gx-
865 

Level 2, 
Area E 

n.d. 5880
±150 

4933-
4555 

5207-
4405 

Unreliable Material 
unknown 

Gx-
870 

Unknown  n.d. 5580
±110 

4542-
4333 

4707-
4181 

Unreliable Material 
unknown 

 
(1966, R. Vol. 8: 351; Voigt & Dyson 1992: 131) 

 

In terms of the University of Pennsylvania measurements, P-924 and -245 are 

from bulk samples and should be ignored. It is unclear whether P-926 is from 

a bulk sample or not, and given its measurement in the 1960s it should be 

treated with questionable confidence. The sample material for all of the 

Geochron dates is unreported, and subsequently the determinations cannot 

be treated with any confidence 

 

Tepe Langar, 30º55’ N, 57º34’ E, Dasht-e Kavir 

Tepe Langar is located approximately 30 kilometres southeast of Kerman, 

near the village of Langar. The site measures ca. 50,000 metres squared, and 

was identified during survey by C.C. Lamberg-Karlovsky, working on behalf of 

the Peabody Museum, Harvard University. It is unexcavated, but pottery in the 

form of a handmade coarse ware, similar to that recovered from Tepe Yahya, 

is reported (Goff Meade et al. 1968: 167-8). Only one 14C date is available for 

Tepe Langar, and as it is consequently stratigraphically unreliable, it should 

be ignored.  

 
Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

WSU-
671 

n.d. n.d. 6050±270 5300-
4692 

5510-
4369 

Unreliable Single date 
for site 

 
(Voigt & Dyson 1992: 131) 
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Tepe Gaz Tavila/R37 (co-ordinates Daulatabad 33°36’ N, 52°11’ E) 

Tepe Gaz Tavila, located near Daulatabad in the Soghun Valley, and was 

identified during survey of the Rud-i Gushk area by Martha Prickett (1976). 

Five phases of mudbrick architecture are recognized, for which three 14C 

determinations are available for the site. Unfortunately, all of the 

determinations have errors of 150 14C years or more, and should be ignored.  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2%   95.4% 

PRL-
744 

Tr. 1, Layer 
4.3, 96-100 cm 
depth 

Charcoal 6670±
150 

5717-
5481 

5879-
5327 

Unreliable  Error of 
>150 

PRL-
748 

Main sect. 
Layer 14, 340-
50 cm depth 

Wood 
twig 
Charcoal 

6640±
180 

5730-
5382 

5971-
5227 

Unreliable Error of 
>150 

PRL-
749 

Main sect., 
Layer 19.1, 
444 cm depth 

Charcoal 6650±
180 

5737-
5383 

5977-
5230 

Unreliable Error of 
>150 

 
(1985, R. Vol. 27: 102)  

 

Tepe Yahya 28º12’ N, 55º59’ E, Soghun Valley 

Excavations were carried out at Tepe Yahya from 1976-75 by the Harvard 

University Yahya Project, under the direction of C.C. Lamberg-Karlovsky 

(1968; 1969; 1970; 1971; 1972l 1974; 1976). The mound stands 19.8 metres 

high, measures 187 metres in diameter, and is reported to have a sequence 

spanning from the Late Neolithic to the third millennium BC (Potts 2004). 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

PRL-
748 

Tr. R37, 
Level 1, Ft. 4 

n.d. 6640
±180 

5730-
5382 

5971-
5227 

Unreliable Unknown 
material 

PRL-
749 

Tr. R37, 
Level 1 Ft. 
9.1 

n.d. 6650
±180 

5737-
5383 

5977-
5230 

Unreliable Unknown 
material 

PRL-
744 

Tr. R37, Test 
Tr. 1, Level 
3, Ft. 3 

n.d. 6670
±150 

5717-
5481 

5879-
5327 

Unreliable Unknown 
material 

TUNC-
37 

Tr. R37, Test 
Tr. 1, Lvl3, 
Ft, 3  

n.d. 4817
±120 

3711-
3378 

3941-
3355 

Unreliable Unknown 
material 

Beta-
6561 

Tr. D, Test 
Tr. 2, L. 14 

n.d. 5680
±200 

4777-
4338 

5003-
4052 

Unreliable Unknown 
material 
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Beta-
6659 

Tr. D, Test 
Tr. 6, L. 1-2 

n.d. 5550
±80 

4463-
4333 

4552-
4238 

Unreliable Unknown 
material 

Beta-
6477 

Tr. C, Test 
Tr. 3, L 1, 
Feat. 2 

n.d. 6870
±550 

6402-
5230 

7078-
4618 

Unreliable Unknown 
material 

Beta-
6476 

Tr. C, Test 
Tr. 1, L. 5 

n.d. 5210
±130 

4223-
3818 

4333-
3715 

Unreliable Unknown 
material 

Gx-
1509 

Tr. D, Level 3 n.d. 6070
±180 

5217-
4787 

5461-
4550 

Unreliable Unknown 
material 

Gx-
1737 

Tr. D, Level 4 n.d. 5570
±160 

4609-
4252 

4777-
4045 

Unreliable Unknown 
material 

Gx-
1728 

Tr. D, Test 
Tr. 1, Level 7 

n.d. 5610
±140 

4682-
4329 

4827-
4054 

Unreliable Unknown 
material 

WSU-
871 

C Test Tr. 1, 
3-4 

n.d. 5610
±140 

4682-
4329 

4827-
4054 

Unreliable Unknown 
material 

WSU-
872 

Tr. C, Test 
Tr. 7, level 1 

n.d. 5580
±280  

4726-
4055 

5205-
3797 

Unreliable Unknown 
material 

 
(Lamberg-Karlovsky 1970: 197-9; Voigt & Dyson 1992: 131-2)   
 

The sample material for all of the measurements is unreported, and a number 

of the determinations have error terms of over 150 14C years; Beta-7477, 

which has an error of 550 14C years, is of particular concern. The dates 

should all be treated as unreliable. 

 

5.3. Neighbouring regions 

 

5.3a. Turkmenistan 

 

Jeitun, 37°57’N, 58°14’E 

Jeitun (see pp. 143-7) is situated in southwestern Turkmenistan, at the 

interface which marks the northern edge of the Iranian Plateau, and the 

southern edge of the Kara Kum desert. The site measures 7000-square 

metres in size, stands 5.5 metres above the present plain surface, and 

contains some 3 metres of cultural deposits. It originally identified and 

extensively excavated by V. M. Masson (1961) in the 1950s, but no carbon 

samples were collected during this period. Renewed excavation and 

palaeoenvironmental research was conducted at the site from 1989-92 by the 

Djeitun Project, a British-Soviet collaboration (Harris et al. 1993), who 
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collected samples for 14C dating. Recently, further carbon samples were 

collected from the site by a British Project (Harris 2010).  

 
The five samples that were originally submitted for AMS dating at the Oxford 

Accelerator Unit (OxA-2912, -2913, -2914, -2915, -2916) lack stratigraphic 

information,  and “their relationship with Masson’s building phases is inferred, 

and cannot be substantiated” (Harris 2010a: 122). Given this, and the 

relatively high error terms of the dates for AMS measurements, they should 

be ignored. Dates OxA-4690, -4691. -4692, -4693, -4694 and -4695 were 

measured from samples submitted by Harris (1996: 437) from known contacts 

from his excavation. However, despite the fact that the samples were 

collected from successively deeper levels, they fail to demonstrate any 

chronological order, and can only be treated as of acceptable hygiene. Harris 

(Harris et al. 1993; Harris 2010) suggests that the stratigraphic inconsistency 

is because Jeitun was only occupied for a relatively short period of time, “at 

most 300–400 years, and possibly only 100–200 years” (2010: 122-3). 

   

Lab. 
code 

Context Sample type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

OxA-
2912 

Ph. I? Einkorn wheat 
(Triticum 
Monoccocum)  

7100
±90 

6061-
5889 

6208-
5772 

Unreliable Context 
inferred 

OxA-
2913 

Ph. 
II/III? 

T. monoccocum 7180
±90 

6207-
5984 

6236-
5881 

Unreliable Context 
inferred 

OxA-
2914 

Ph. 
III/IV? 

T. monoccocum 7270
±100 

6230-
6032 

6378-
5985 

Unreliable Context 
inferred 

OxA-
2915 

Ph. IV? T. monoccocum 7200
±90 

6208-
5997 

6246-
5891 

Unreliable Context 
inferred 

OxA-
2916 

Below 
Ph. IV? 

T. monoccocum 
 

7190
±90 

6207-
5989 

6241-
5887 

Unreliable Context 
inferred 

OxA-
4690 

12 Wheat (Aegilops 
sp.) 

7035
±65 

5990-
5846 

6023-
5762 

Accept. Known mat. 
& context  

OxA-
4691 

17 Indeterminable. 
seeds  

6850
±65 

5794-
5665 

5879-
5633 

Accept. Known mat. 
& context  

OxA-
4692 

37 Aegilops sp. 7025
±70 

5987-
5844 

6019-
5749 

Accept. Known mat. 
& context 

OxA-
4693 

Test pit 
4 

Aegilops sp. 7000
±70 

5982-
5810 

6003-
5741 

Accept. Known mat. 
& context 

OxA-
4694 

111 Aegilops sp. 7125
±70 

6065-
5916 

6206-
5844 

Accept. Known mat. 
& context 

OxA-
4695 

Test pit 
7 

Cereal grain & 
chaff 

6127
±70 

5207-
4992 

5291-
4848 

Accept. Known mat. 
& context  

 
(1992, Archaeometry 32: 352; 1996, Archaeometry 36: 202) 
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Three further samples were collected and submitted for dating from off site at 

Jeitun (OxA-4914, -4915, -4916), where it appeared that two artificially cut 

ditch-lie features had been cut adjacent to the site (Harris 2010a: 214).  

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 68.2% 95.4% 

OxA-
4914 

160-200 
cm dpth 

Charcoal 6940
±100 

5970-
5720 

6016-
5650 

Questionable Error of ±100 or 
more 

OxA-
4915 

510-650 
cm dpth 

Charcoal 7080
±65 

6020-
5890 

6070-
5800 

Acceptable Known material 
& context 

OxA-
4916 

850-100 
cm dpth 

Charcoal 7140
±220 

6230-
5800 

6450-
5600 

Unreliable Error of ±100 or 
more 

 
(Harris 2010a: table 9.2.)  

 

OxA-4916 has an error of 220 14C years and cannot be treated with any 

confidence. The error of OxA-4914 is also high, and the measurement should 

be accepted with caution. Harris (2010: 124) attributes the high errors to the 

presence of relatively low amounts of carbon in the samples. OxA-4915 is 

from a known material and context, and is in stratigraphic agreement with 

OxA-4914; it is of acceptable hygiene. 

 

 

5.3b. Afghanistan 

 

Darra-i-Kur (Baba Darwish), 36°47’ N, 70°00’ E 

Darra-i-Kur is a cave site, located just northeast of Kalafgan, near the village 

of Chinar-i Gunjus Khan, Badakhshan Province, northeastern Afghanistan 

(Ball 1982: 245). The cave is high up on the side of a valley, near the hamlet 

of Baba Darwish. The rock shelter is well stratified in silt deposits laid down by 

a stream. Both Middle Mesolithic and Late Neolithic deposits are reported 

from the site, although only details of the dates for the Late Neolithic 

occupation are given here. Dupree reports that the site has a distinctive 

Neolithic culture, which he refers to as the ‘Goat Cult’ Neolithic (1980: 264). 
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Lab. 
code 

Context 
Sample 

type 

14
C age 

(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Gx-
0910 

‘Goat 
Cult’ 
Neolithic 

Collagen/
carbonate 

3780±130/ 
3425±125 

2454-
2034/ 
1893-
1538      

2577-
1833/ 
2112-
1441 

Unreliable Same lab. 
code for 2 
dates 

 
(Dupree 1980: chart 19) 

 

Two dates are reported from Darra-i-Kur with the same laboratory code; their 

chemistry is uncertain, and they should be ignored.  

 

Ghar-e Mar (Ak Kupruk I) and Ghar-e Asp (Aq Kupruk II) (co-ordinates Aq 

Kupruk, 36°05’ N, 66°50’ E) 

The two neighbouring cave sites of Aq Kupruk I and Aq Kupruk II (see pp. 

148-9) are located on a river bank above the modern town of Aq Kupruk, 

northern Afghanistan. The material is unknown for both of the measurements, 

and given that the two dates are separated by more than 2000 years, they 

should be treated with no confidence.  

 

Lab. 
code 

Context 
Sample 

type 

14
C age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Hv-
425 

Non-
ceramic 
Neolithic 

n.d. 8650±100 7816-
7579 

8170-
7520 

Unreliable Material 
unreported 

Hv-
1335 

Non-
ceramic 
Neolithic 

n.d. 10,210±235 10,431
-9461 

10610-
9297 

Unreliable Material 
unreported 

 
(Dupree 1980: chart 19) 

 

 

5.3c. Baluchistan 

 

Mehrgarh, 29º25’ N, 67º35’ E 

Mehrgarh (see pp. 149-54) is located at the foot of the Bolan Pass, in the 

Kachi Plain, western Pakistan.  It is a spatially and temporally extensive site 

measuring some two kilometres squared; although the entire area was never 

occupied simultaneously. It was discovered in 1974 by a French 

archaeological team, and was excavated by the latter and their counterparts 
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at the Pakistan Department of Archaeology for 11 seasons from 1974 to 1986 

(Jarrige et al. 1995), although a full report was never published. Excavation 

was resumed at the site in 1997, and continued for four seasons until 2000 

(Jarrige et al. 2005). The Neolithic at Mehrgarh is divided into four periods: IA, 

IB, IIA, and IIB, of which IA is pre pottery. There is a problem with the 14C 

dates for Mehrgarh, which has been attributed to a range of factors that 

include bitumen contamination, exposure of samples to the Bolin River, tree 

root contamination, and/or the use of the area for animal grazing (Jarrige et al. 

1995: 1995: 282, 456; Jarrige 2000: 282). Consequently, many of the 14C 

dates for Mehrgarh show little coherence with the archaeological stratigraphy 

and context (Jarrige et al. 1995: 59; C. Jarrige 2005: 27), and they are of 

questionable, if not unreliable, confidence. 

 

Lab. 
code 

Context 
Sample 

type 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

Beta-
1407 

Period IA, 
MR3T 550; 
580 cm 
depth  

Charcoal 
mixed 
with ash 

6925±
80 

5889-
5730 

5983-
5670 

Question. Possibly 
contaminated 

Beta-
1408 

Period IA, 
MR3T 545; 
620 cm 
depth 

Charcoal 
mixed 
with ash 

7115±
290 

6327-
5720 

6567-
5488 

Unreliable High error 

Ly. 
1948 

Period IA, 
MR3T 537; 
340-70 cm 
depth 

Charcoal 5720±
730 

5467-
3808 

6222-
2939 

Unreliable High error & 
too late 

Ly. 
1949 

Period IA, 
MR3T 537; 
340-70 cm 
depth 

Charcoal 5530±
180 

4586-
4078 

4777-
3977 

Unreliable High error & 
too late 

Ly. 
1947 

Period IA, 
MR3T 536; 
340-70 cm 
depth 

Charcoal 5830±
190 

4931-
4464 

5208-
4342 

Unreliable High error & 
too late 

Beta 
1721 

Period IA, 
MR3T 534 

Charcoal 9385±
120 

9105-
8459 

9134-
8314 

Question. Possibly 
contaminated 

Beta-
7316 

Period IA, 
MR3D 
D9E, Level 
2 

Charcoal 5990±
70 

4978-
4762 

5056-
4712 

Question. Possibly 
contaminated 

Beta-
2686 

Period IA, 
MR3S 811 

Charcoal 5869±
70 

4827-
4618 

4906-
4543 

Question. Possibly 
contaminated 

Lv. 
993 

Period IB, 
MR3 Bolan 
foyer S 

Charcoal 6110±
90 

5207-
4943 

5296-
4805 

Question. Possibly 
contaminated 

Lv. 
994 

Period IB, 
MR 3 N 

Charcoal 6290±
70 

5367-
5208 

5467-
5059 

Question. Possibly 
contaminated 
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Beta-
1719 

Period IB, 
MR3 D10A, 
Level 5 

Charcoal 13,340
±125 

14,803-
14,142 

14,895-
13,596 

Unreliable Too early 

Ly. 
1946 

Period IB, 
MR3 AIA 
433 

Charcoal 32,650
±3000 

39,536-
32,773 

45,076-
30,223 

Unreliable High error & 
too early 

Ly. 
1950 

Period IB, 
MR3 AIA 
433 

Charcoal 8440±
250 

8247-
7653 

8638-
7376 

Unreliable High error 

Lv. 
906 

Period IB, 
MR3 D10A 

Charcoal 5950±
65 

4932-
4729 

4998-
4694 

Question. Possibly 
contaminated 

Lv. 
907 

Period IB, 
MR3 A1A 

Charcoal 6020±
80 

5011-
4798 

5207-
4722 

Question. Possibly 
contaminated 

Lv. 
908 

Period IB, 
MR3 locus 
II 

Charcoal 6090±
70 

5205-
4856 

5216-
4836 

Question. Possibly 
contaminated 

Lv. 
909 

Period IB, 
MR3 103 

Charcoal 5940±
100 

4952-
4707 

5196-
4549 

Question. Possibly 
contaminated 

Lv. 
910 

Period IB, 
MR3 A1A 

Charcoal 5880±
100 

4895-
4612 

4997-
4504 

Question. Possibly 
contaminated 

Beta 
7315 

Period IIA, 
MR3/4 
M91, F 

Charcoal 5620±
100 

4546-
4351 

4707-
4268 

Question. Possibly 
contaminated 

Beta 
2688 

Period IIA, 
MR4 B61, 
Level 3, 
813 

Charcoal 5490±
70 

4446-
4262 

4493-
4081 

Question. Possibly 
contaminated 

Beta 
7314 

Period IIB, 
MR3/4 F2, 
locus 14 

Charcoal 5400±
90 

4344-
4072 

4446-
3996 

Question. Possibly 
contaminated 

Beta 
1720 

Period IIB, 
MR4 F6B 5 

Charcoal 7115±
120 

6094-
5843 

6225-
5747 

Unreliable Too early 

Beta 
2687 

Period IIB, 
MR4 F5F, 
Level 4, 
812 

Charcoal 5240±
110 

4230-
3966 

4328-
3804 

Question. Possibly 
contaminated 

Ly. 
1945 

Period IIB, 
MR4 F5F, 
Level 4 

Charcoal 5360±
310 

4519-
3802 

4940-
3524 

Unreliable High error 

 
(Jarrige et al. 1995: 555-6) 

 
 

5.4. Spatial analysis 

 

A set of spatial-temporal analyses was carried out using the 14C 

determinations from the earliest level at each site. In accordance with 

Ammerman and Cavalli-Sforza’s (1984) ‘Wave of Advance’ it would be 

expected that the earliest Neolithic sites in Iran would be situated in the 

central Zagros – the area closest to the origin of farming in the Fertile 

Crescent – and that sites would progressively decrease in age in an easterly 

direction from this region. Sites were classified as ‘Neolithic’ or ‘Chalcolithic’ 
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on the basis of conventional assignment. It is recognised that while in 

principle it is important to distinguish the spatial and chronological distribution 

of different elements of the ‘Neolithic’ package (Gkiasta et al. 2003: 48), it is 

not currently possible to do this with the level of available information. 

 

The single, earliest date was taken from each site. Following Ammerman and 

Cavalli-Sforza (1971: 677) at sites for which there were multiple 14C dates, 

only the earliest determination was taken, and where the information was 

available the date from the earliest stratigraphic level was used. The visual 

techniques employed in the analysis were similar to those used by Clark 

(1965a, 1965b) and Ammerman and Cavalli-Sforza (1971, 1984). Dates were 

grouped into temporal categories of 1000-year intervals from ca. 10,000 to 

4000 cal. BC. Where the distribution of a calibrated date straddled two 

temporal intervals it was grouped in the period which it fell into the most. For 

example, 4800-5300 BC would be assigned to the interval ca. 5000–6000 BC, 

whilst 4800–5100 would be placed in the interval ca. 4000–5000 BC. In order 

to define the main lines of expansion, varied symbols were used to express 

degrees of age of the sites. Where the methods employed in this research 

differ from those of Clark (1961a, 1961b) and Ammerman and Cavalla-Sforza 

(1984), is in the use of calibrated, rather than raw 14C dates, and the 

employment of chronometric hygiene selection criteria.  

 

Two sets of spatial analyses were conducted. In the first set, only calibrated 

dates for which the chronometric hygiene of the original 14C determinations 

had been classed as ‘reliable’ or ‘acceptable’ were used. In the second set, 

the earliest calibrated date from each site was used, regardless of the hygiene 

of the original 14C determination. The second set of spatial analyses was 

conducted in order to emphasise the importance of assessing the 

chronometric hygiene of 14C determinations before conducting further 

analysis. For, as is clear from the two different sets of maps produced in this 

research (see Fig. 5.0-5.13), the use of 14C determinations with poor 

chronometric hygiene can create a very different pattern, to that which is 

observed when only ‘acceptable’ and ‘reliable’ determinations are used. In this 

study, the earliest 14C dates for sites, where they have not been 
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chronometrically ‘cleaned’, are generally much earlier, than the earliest ‘clean’ 

14C dates for the same sites.  

 

The earliest site with a ‘clean’ date is the cave site of TB75 in the Bolaghi 

Valley, Fars, which falls into the 10,000-9000 BC interval. However, the 

evidence for the practice of agropastoralism at TB75 is controversial, and the 

site is currently classed as Proto-Neolithic. Until further evidence becomes 

available, it will be ignored in the consideration of the spread of farming in Iran 

in this research.  

 

The first Neolithic sites, for which there is evidence of animal domestication 

and/or cultivation, do not appear in Iran until the 9000-8000 BC temporal 

interval. During this period there is an efflorescence of Neolithic sites in the 

Central Zagro, which continues into the following period (e.g. Sheikh-e Abad, 

Asiab, Ganj Dareh &Tepe Guran). This is followed by dispersal down onto the 

southwestern lowlands 8000-7000 BC, evidenced by the founding of Ali Kosh 

and Chogha Bonut. During 7000–6000 BC, Neolithic sites are found further to 

the southeast in Fars Province (e.g. Tell-e Mushki, Tall-e Jari B & Tol-e Băsi), 

and in southwestern Turkmenistan at Jeitun. During the period 6000–5000 BC 

settlement continued to flourish in Fars, with the establishment of Tol-e 

Nurabad, and a subsequent settlement expansion occurred to the southeast, 

with the founding of Tepe Yahya and Tall-i Iblis in the Kerman Province. This 

period also witnessed the establishment of the first Neolithic sites in the 

Ushnu-Solduz Valley, northwestern Iran (e.g. Hajji Firuz Tepe, Yanik Tepe). In 

the following period, 5000–4000 BC, further expansion occurred to the 

southeast, with the settlement of Tepe Langar and Tall-e Iblis in the Gorgan 

and Damghan region, Kerman province. 

 

The spatial analysis of the earliest dates for Neolithic sites in Iran, when no 

account is made for chronometric hygiene of the 14C determinations, exhibits 

a clearly different pattern. The distribution of the 'uncleaned' dates suggests 

that Neolithic settlement begun much earlier and, indeed, a new temporal 

period of ca. 10,000–9000 BC had to be introduced in the spatial analysis. 

The ‘unclean’ dates also suggest that Early Neolithic settlement was much 
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more widely dispersed, evidencing Early Neolithic occupation at  ca. 10,000-

9000 BC in the highland Zagros (Ganj Dareh, Sheikh-e Abad & Asiab), the 

southwestern lowlands (Ali Kosh & Chogha Sefid)  and on the Caspian littoral 

lowland (Hotu Cave). The sites dating to the next period (ca. 9000-8000 BC) 

show a similar distribution, suggesting a long period of occupation at a 

number of sites (e.g. Asiab, Ganj Dareh, Ali Kosh, Chogha Sefid). During 

8000–7000 BC, the number of sites in the highland Zagros and neighbouring 

lowland plains increased, and settlement on the Caspian Sea Plain continued 

with the occupation of Belt Cave. Settlement on the Marv Dasht Plain, 

southwestern Iran, occurred for the first time with the establishment of Tel-e 

Mushki. During 7000–6000 BC, further settlement occurred in Fars with the 

occupation of Tall-e Jari B and Tol-e Băsi, and Neolithic sites appear for the 

first time in northwestern Iran, in the Ushnu-Solduz Valley (e.g. Yanik Tepe). 

On the Qazvin Plain, Neolithic settlement is evidenced at Zagheh, and 

Neolithic sites are also found in northeastern Iran at Sang-i Chakmaq West 

and in southeastern Turkmenistan at Jeitun. In the 6000–5000 BC period 

settlement continues in Fars with the occupation of Tol-e Nurabad, and there 

is further expansion southeast, represented by the occupation of Tepe 

Langar, Tall-e Iblis and R-37 in Kerman. During ca. 5000–4000 BC, there is 

no evidence of highland occupation, with instead the emphasis placed on 

lowland situations. 

 

The results of the spatial analysis using ‘unclean’ 14C dates can be queried in 

a number of ways. Firstly, it suggests that the Neolithic settlement of the 

highland Zagros and southwestern lowlands was contemporaneous, when the 

use of ‘clean’ dates suggests that there was actually a temporal gap in the 

occupation of the two regions, and that the highland Zagros settlements were 

earlier than those on the southwestern lowlands. Secondly, the dates suggest 

that Hotu Cave was also occupied during the period 10,000-9000 BC. 

However, given that the dates for this site were measured in the 1950s, in the 

formative years of 14C dating, this is highly debatable.  The ‘uncleaned’ 

determinations also imply that many sites (e.g. Asiab, Ganj Dareh, Ali Kosh, 

Chogha Sefid), were occupied for hundreds of years, however, given that 

none of the dates have been assessed for chronometric hygiene, it is 
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probable that this is just an outcome of the high error terms of the dates. The 

unclean dates also point to the earliest Neolithic settlement of the Central 

Plateau having been the occupation of Zagheh, during the period 7000-6000 

BC. However, the dates for this site are of poor chronometric hygiene, and 

more recent 14C dates for the site (cf. Fazeli et al. 2005) have thrown them 

into complete disrepute.   

 

 

5.5. Discussion 

 

The first section of this chapter inVol.ved the calibration and chronometric 

hygiene evaluation of the currently available 14C determinations for Neolithic 

sites in Iran and neighbouring regions. The list is by no means exhaustive, 

and there is plenty of scope for the inclusion of new dates as, and when, this 

material becomes available. In the second section, the spatial and temporal 

distribution of the Neolithic sites for which dates were available was assessed, 

by plotting the earliest date for each site onto a geographical map of Iran. This 

was done using both: the earliest ‘clean’ date; and the earliest date regardless 

of chronometric hygiene from each site. The two sets of analyses reveal 

remarkably different patterns in the distribution of Neolithic sites. The temporal 

and geographical distribution of the dates for which no chronometric hygiene 

selection criteria had been applied, suggests that the Neolithic of Iran began 

ca. 10,000-9000 BC in three different regions: the Central Zagros; lowland 

southwestern Iran; and the Caspian Sea Plain. In comparison, when dates 

which had been chronometrically assessed were used, these show that the 

Neolithic of Iran did not begin until 9000-8000 BC, and that settlement during 

this period was restricted to the Central Zagros. The ‘clean’ dates indicate that 

it was not until the subsequent period, ca. 8000-7000 BC, that the first 

Neolithic sites were occupied in the southwestern lowlands (e.g. Ali Kosh, 

Chogha Bonut), and that the history of Neolithic settlement in the Caspian 

Sea Plain is unclear, due to the poor hygiene of the 14C dates from Hotu and 

Belt Caves. The discrepancy between the analysis of the ‘clean’ and the 

‘uncleaned’ 14C dates, emphasizes the need to employ stringent chronometric 

hygiene procedures in the analysis of 14C dates, in order to avoid misleading 
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results. In this example, the large variation between the ‘clean’ and ‘unclean’ 

dates, is partially due to the fact that the majority of the 14C dates available for 

Iran were made between the 1950s and 1970s, in the formative years of the 

14C dating method. Due to the high potential for error in the use of 14C 

determinations which have not been evaluated for their chronometric hygiene, 

in the remainder of this thesis only ‘cleaned’ 14C determinations will be used.  

 

 

5.6. Conclusion 

 

The temporal and spatial distribution of the Neolithic sites of Iran and 

neighbouring regions, as revealed by the earliest date from each site for 

which 14C dates are available, exhibits distinct regional clustering. The earliest 

Neolithic occupation of Iran is represented by the occupation of Asiab and 

Sheikh-e Abad, in the Central Zagros, ca. 9000-8000 BC. In the subsequent 

period, ca. 8000-7000 BC, there is an increase in the number of Central 

Zagros sites, as attested by the occupation of Tepe Abdul Hosein, Ganj Dareh 

Tepe and Tepe Guran. It is also during this period that the first southwestern 

lowland sites were occupied, i.e. Ali Kosh and Chogha Bonut. During the 

period ca. 9000-7000 BC, then, the Neolithic occupation of Iran was restricted 

to central western and southwestern Iran. In the following period, ca. 7000-

6000 BC, Neolithic settlements expanded further into southwestern Iran, were 

they are represented at Tal-e Jari B, Tal-e Mushki and Tol-e Băsi, Fars 

Province. The site of Jeitun, southwestern Turkmenistan, for which the 

precedent(s) are unknown, was also founded during this period. The period 

ca. 6000-5000 BC witnessed an efflorescence of settlement, with as well as 

the aforementioned regions, settlements also appearing for the first time in the 

Ushnu-Solduz Valley of northwestern Iran, a pattern which continued into the 

period 5000-4000 BC.  

 

It appears, then, that various regions of Iran were occupied at different 

periods of time during the Neolithic, with the central Zagros Mountains and 

southwestern lowlands occupied first, followed by lowland Fars and 

southwestern Turkmenistan, and subsequently northwestern Iran. This 
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distribution pattern is not what would be expected if farming had spread by a 

Wave of Advance, and is more in keeping with zonal models for the dispersal 

of early farmers, such as those of Sherratt (1980; 2007) and van Andel and 

Runnels (1995), where distinct locations were targeted by early farmers, 

whilst others were deliberately ignored.  

 
In light of the temporal and geographical distribution of the Neolithic sites, 

some refinements need to be made to the chronology for the Neolithic of Iran, 

which was proposed in Chapter Three (see p. 86). It was suggested, on the 

bases of the material assemblages, that the following periods should be 

recognized: the Early Neolithic (ca. 8000-6500 BC), characterized by the 

absence of pottery; the Middle Neolithic (ca. 6500-6200 BC), marked by the 

introduction of chaff-tempered software; and the Late Neolithic (ca. 6200-5500 

BC), which was a period of increasing trade networks and complexity in 

anticipation of the development of metallurgy. Reviewing the definitions of 

these periods in respect to the 14C evidence, it is apparent that the Early 

Neolithic period needs to be proceeded by a proto-Neolithic or Neolithic 

transitory stage from ca. 9000-8000 BC, as evidenced at Asiab, Sheikh-e 

Abad and possibly Tang-i Bolaghi, and that the Late Neolithic period should 

be expanded to 6200-5000 BC, to incorporate a transitory period between the 

Late Neolithic and the Early Chalcolithic. 

 

As is evident from the maps of the earliest 14C dates for sites in Iran, the 

Central Iranian Plateau represents a large lacuna in our knowledge of the 

Neolithic of Iran. To date, no Early Neolithic sites are known in the region. 

This is either because the Early Neolithic sites have been buried by alluvial 

deposition (Brookes 1982; Brookes et al. 1982), which is well attested in the 

area (Gillmore et al. 2007); or because there was no Early Neolithic 

occupation of the Central Plateau, due to the inhospitableness of the region. 

The Central Plateau has witnessed relatively little archaeological attention 

compared to other regions of Iran, and using the available published material 

neither explanation can be ruled out. Consequently, in the next chapter new 

archaeological research from the Tehran, Qazvin and Kashan Plains, of which 
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I was part, is reviewed in order to establish the pattern of Neolithic settlement 

on the Central Plateau.   
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Site 

Date from earliest stratigraphic 
level regardless of hygiene 

Earliest acceptable date from 
earliest stratigraphic level (where 

available) 

14C yrs BP Cal. BC 14C yrs BP Cal. BC 

Hajji Firuz 
Tepe 

7926±86 7059-6610 6870±100 5983-5621 

Dalma Tepe 5986±87 5207-4687 
- - 

Pisdeli Tepe 5460±160 4681-3966 5638±85 4685-4341 

Sayid 
Hammandani 

7800±210 7296-6241 
- - 

RY-2 5445±72 4450-4057 
- - 

Yanik Tepe 7035±69 6026-5752 7035±69 6026-5752 

Tepe Abdul 
Hosein 

6359 8655±240 8322-7142 
- - 

Tepe Sarab 7800±60 6817-6477 7800±60 6817-6477 

Sheikh-e 
Abad 

9810±60 9436-9179 
- - 

Jani 8140±60 7344-6867 
- - 

Ganj Dareh 
Tepe 

10,400±150 10,676-9771 8840±50 8210-7756 

Tepe Asiab 9775±85 9449-8839 9775±85 9449-8839 

Seh Gabi 6220±80 5362-4964   

Tepe Guran 8410±200 8170-6831 8280±40 7419-7184 

Bog-i-No 6200±140 5470-4836   

Zagheh 7147±90 6221-5845 6100± 60 5213-4849 

Sialk North 5700±90 4726-4354 
- - 

Belt Cave 6785±575 9660-6503 
- - 

Hotu Cave 10,730±370 11,412-9457 
- - 

Sang-i 
Chakhmaq 

7270±125 6415-5911 
- - 

Ali Kosh 9900±200 10,141-8790 8540±90 7793-7356 

Chogha Sefid 10,245±40 10,179-9866 
- - 

Tepe Sabz 9050±160 8699-7732 6070±100 5286-4727 

Chogha 
Bonut 

10, 980±100 11,151-10,702 8120±40 7296-7043 
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Chogha Mish 8300±60 7519-7176 6600±50 5621-5481 

Tall-e Gap 5870±160 5207-4371 5540±120 4684-4060 

Tall-e Jari A 6280±69 5465-5052 6280±69 5465-5052 

Tall-e Jari B 7297±45 6237-6062 7297±45 6237-6062 

Tall-e Bakun 
A 

5570±40 4488-4342 5570±40 4488-4342 

Tol-e 
Nurabad 

6977±56 5984-5741 6977±56 5984-5741 

Toll-e Băsi 7283±43 6230-6061 7283±43 6230-6061 

TB75 (Proto-
Neolithic lyrs) 

10190±45 10116-9762 10190±45 10116-9762 

Tall-e Mushki 8460±120 7752-7175 7720±40 6211-6013 

Tal-i Iblis 6210±130 5468-4848 5857±73 4908-4540 

Tepe Langar 6050±270 5510-4369 
- - 

Tepe Yahya 6670±150 5879-5329 
- - 

R-37 6650±180 5977-5230 BC) 
- - 

 
 
 
 
 
 
 

Table 5.0: The earliest 14C determination (BP) and calibrated age (BC) for each site. All 
calibrated dates are given at the 95.4% confidence interval.  
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Temporal 
interval (yrs BC) 

Site  

5000-4000 BC Pisdeli Tepe, Tal-i Gap, Tal-i Bakun A, Tal-i Iblis 
6000-5000 BC  Hajji Firuz Tepe, Yanik Tepe, Zagheh, Chogha Mish, Tal-i Jari A, Tal-i 

Bakun B, Tepe Gaz Tavila/R37, Tepe Sabz, Tepe Yahya, Tole- Nurabad  

7000-6000 BC  Tal-i Jari B, Tal-i Mushki, Jeitun,  Tol-e Băsi 
8000-7000 BC Tepe Abdul Hosein, Ganj Dareh Tepe, Tepe Guran, Ali Kosh, Chogha 

Bonut 
9000-8000 BC  Asiab 
10,000-9000 BC TB75 
10,000+ BC  

Temporal 
interval (yrs BC) 

Site 

5000-4000 BC  Pisdeli Tepe, RY-2, Sialk, Tal-i Gap, Tal-i Bakun A, Dalma Tepe 
6000-5000 BC  Yanik Tepe, Seh Gabi, Bog-i-No, Tal-i Jari A, Tal-i Bakun B, Tal-i Iblis, 

Tepe Langar, Tepe Gaz Tavili/R37, Sang-i Chakhmaq West, Tol-e 
Nurabad  

7000-6000 BC  Hajji Firuz Tepe, Sayid Hammadani, Tepe Sarab, Tepe Guran, Zagheh , 
Tal-i Jari B, Jeitun, Jani, Tol-e Băsi 

8000-7000 BC  Tepe Abdul Hosein, Belt Cave, Chogha Mish, Tal-i Mushki, Tepe Guran 
9000-8000 BC  Tepe Sabz 
10,000-9000 BC  Sheikh-e Abad, Ganj Dareh, Αsiab, Ali Kosh, Chogha Sefid, TB75 
10,000+ BC Hotu Cave, Chogha Bonut,  

Table 5.1: Sites assigned to temporal groups according to the earliest ‘clean’ 14C date. 

Table 5.2: Sites assigned to temporal groups according to the earliest 14C date, regardless 
of chronometric hygiene. 
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Figure 5.0: Distribution of sites ca.10,000-9000 BC using cleaned dates. 
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Figure 5.1: Distribution of sites ca. 9000-8000 BC using cleaned dates. 
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Figure 5.2: Distribution of sites ca. 8000-7000 BC using cleaned dates. 
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Figure 5.3: Distribution of sites ca. 7000-6000 BC using cleaned dates. 
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Figure 5.4: Distribution of sites ca. 6000-5000 BC using cleaned dates. 
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Figure 5.5: Distribution of sites ca. 5000-4000 BC using cleaned dates. 
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Figure 5.6: Distribution of sites ca. 10,000-9000 BC (no chronometric hygiene). 
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Figure 5.7: Distribution of sites ca. 9000-8000 BC (no chronometric hygiene). 
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Figure 5.8: Distribution of sites ca. 8000-7000 BC (no chronometric hygiene). 
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Figure 5.9: Distribution of sites ca. 7000-6000 BC (no chronometric hygiene). 
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Figure 5.10: Distribution of sites ca. 6000-5000 BC (no chronometric hygiene). 
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Figure 5.11: Distribution of sites ca. 5000-4000 BC (no chronometric hygiene). 
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Chapter Six 

 

The Central Iranian Plateau: the Tehran, Qazvin and 

Kashan Plains 

 

6.0. Introduction 

 

As identified in Chapter 3, Iran has long been the focus of archaeological 

studies which have examined the development and spread of the Neolithic 

(e.g. Stein 1940; McCown 1942; Ghirshman 1954; Hole et al. 1969; Malek 

Shahmirzadeh 1979; Voigt 1983). These studies, however, have been largely 

restricted to western Iran, and other regions, particularly the Central Plateau, 

have been largely ignored. To date, although a number of Early Neolithic sites 

(ca. 8000-6500 BC) are known from western Iran, none have been recorded 

on the Central Plateau. There are two plausible explanations for this. Either 

the sites have been buried by alluvial deposition and now lie below the 

present plain surface (Brookes et al. 1982; Gillmore et al. 2007; 2011); or 

there was no Early Neolithic occupation of the Central Plateau as a direct 

result of the development of farming. It is a major objective of this research to 

establish whether there are any Early Neolithic sites on the Central Plateau. 

To this end, this chapter focuses specially on the Central Plateau. In the first 

section a detailed study of the geography and environmental context of the 

Central Plateau is given, which is essential in order to contextualise the 

region. In the second section the results from new archaeological research on 

the Tehran, Qazvin and Kashan Plains is reviewed, and our current 

knowledge of the Neolithic development of these three regions assessed.  
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6.1. Geography of the Central Iranian Plateau 

 

As discussed in Chapter 2, the Central Plateau covers nearly one third of Iran, 

measuring some 3200 kilometres in length, and forms a distinct geographic 

entity, bounded to the north, south and southwest by the high peaks of the 

Alburz and Zagros Mountains (Bobek 1968: 280; Fazeli 2001: 8). This entity, 

however, is far from uniform, ranging in elevation from 2500 to 5000 metres 

above sea level, and encompassing mountains and foothills, other hills, lake 

basins and several alluvial plains (Fisher 1968: 90–1). It can be divided into 

four major geomorphological units: the high plateau of northwest-central Iran 

(including the Urmia basin), at 1200–2500 metres elevation; the Isfahan-

Saidabad basin at 1000–1200 metres elevation; the salt desert basin 

(Masileh-Kavir) at 600–1000 metres elevation; and the Lut desert basin 

(Dasht-i Lut) at 500–600 metres elevation (Dewan & Famouri 1968: 22-3). 

These basins are dissected; surrounded and partly subdivided by mountain 

ranges along which extend large outwash fans, and alluvial plains grading into 

the desert proper (ibid.: 23).  

 

The term ‘plateau’ is applied in a general way by several American and British 

writers to the whole upland mass; whereas French and German geographers 

consider the term to cover the inner central basin of Iran only, and regard the 

surrounding highland ring as a distinctive, somewhat separate mountain zone. 

However, such purely physical descriptions can be unhelpful due to their 

disregard of modern political boundaries, and W.B. Fisher restricts the use of 

the term ‘Central Plateau’ to the upland area, actually territorially within the 

boundaries of the present state of Iran (Fisher 1968: 5). It is his definition that 

is used in this thesis.  

 

In terms of geology, a great tectonic line separates the Central Plateau from 

the geological deposits to the south (Dewan & Famouri 1968: 26). In the 

Upper Cretaceous and Tertiary Periods, eruptive rocks, such as andesite, 

were formed in different places on this tectonic line. Along this line there are 

many springs which have caused deposition of travertine – a form of 

limestone – and sediments of Palaeozoic, Mesozoic and Tertiary are also 
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present (ibid.). The gypsiferous and saline series of Eocene to Miocene age 

characterize this unit, and are made up of salt, gypsum, clays, mudstones, 

siltstones and sandstones. Much of the present area of the Central Plateau 

was once occupied by large lakes, but today only the lowest parts of the 

plateau are occupied by residential salt lakes (kavirs) or marshes (Fisher 

1968: 92). 

 

The plateau can be broadly divided into three geographical regions: the 

mountains, the plain proper and desert. The Zagros Mountain chain flanks the 

north–west to south–east of the plateau for nearly 1000 kilometres, measuring 

over 190 kilometres in width at its broadest, and rising 1000–1700 metres 

above sea level (Ghirshman 1954: 21). The Zagros are extremely rich in 

mineral resources, and enclose valleys that “are well suited to small scale 

agriculture and/or large-scale pastoral lifestyles” (Thornton 2009: 306). The 

Alburz Mountains encircle the northern edge of the Central Plateau, flanking 

the Caspian Sea littoral and continuing eastwards to the northern highlands 

(Kopet Dagh) (Fisher 1968: 38).  They are currently undergoing uplift and 

denudation, ensuring an abundant supply of gravels and sands to the alluvial 

fans of the rivers which drain them. This has created a highly unstable 

geomorphological environment, where “river channels are in constant flux and 

episodes of sedimentation and erosion are highly variable” (Gillmore et al. 

2011: 51). The mountains bordering the Central Plateau are completed by the 

southern chain, the Makran, which is pierced by two passes: the Bander 

Abbas on the Gulf of Oman; and the other leading east to Baluchistan and 

Quetta (Ghirshman 1954: 23).  

 

The plain itself is covered by water-transported alluvial sediment, and it 

appears that the shifting of river systems over time may have had a 

considerable effect on the fluctuation of human settlement patterns since 

prehistory (Tehrani-Mogaddam 1996 [in Persian] in Fazeli 2001: 14). It also 

contains a number of inter-montane areas and small kavirs which can be 

divided into different micro-environmental zones (Fazeli 2001: 14). Important 

in the context of this research, are the alluvial fans, the presence of which 

Brookes describes as “ubiquitous and extensive” (Brookes 1989: 20). Alluvial 
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fans are fan-shaped deposits formed where a fast-flowing stream flattens, 

slows and spreads, typically at the exit of a canyon or valley onto a flatter 

plain. They are the main site of deposition in an erosional-deposition system, 

in which mountains tend slowly to wear away, and basins to fill with sediment, 

through geological time (Wilkinson 2003). On the Central Plateau, they range 

in size from less than 1-kilometre squared, to massive fans such as the Jaj 

Rud which measure over 2500-kilometres squared (Beaumont 1972: 251). At 

the base of alluvial fans occurs a seepage zone, where groundwater 

approaches the soil surface and sometimes forms springs. The hydraulic 

conductivity of alluvial fans is high. For example, the Garmsar alluvial fan, 

located on the southern fringe of the Alburz Mountains, 120 km southwest of 

Tehran, discharges water at a rate of at least 10-metres-per day (Oosterbann 

2000: 4). Consequently, alluvial fans, particularly in arid and semiarid regions, 

are often the principle groundwater source for farming and the sustenance of 

life. They also contain rich soils, suitable for agriculture (ibid.).  

 

The exact phasing of alluvial fan sedimentation on the Central Plateau is not 

clear, although sedimentological and geomorphological evidence (e.g. 

gullying, fan-head trenching, the occurrence of large areas of desert varnish) 

suggests that for at least the last 750 years, the fans have been relatively 

stable (Beaumont 1972: 258, 267; Gillmore et al. 2011: 51). The optimum 

conditions for fan formation are thought to have occurred mainly during the 

glacial phases of the Pleistocene, and two major phases of alluvial deposition 

in Iran are recognized (Vita-Finzi 1968: 951; Beaumont 1972: 269). An earlier 

phase, which began no more than 50,000 years ago and probably, had ended 

by the fourth millennium BC; and a second phase of deposition that occurred 

during the Middle Ages. The thickness of the alluvial fans is difficult to 

determine, due to a lack of data, but limited boring on the Jaj Rud fan, at a 

point 19-kilometres south of Veramin, revealed up to 275 metres of deposits, 

but greater thickness than this might occur elsewhere (Beaumont 1972: 255-

6). Such findings have important implications for the visibility of archaeological 

sites from the surface, particularly those from the earlier periods (cf. Brookes 

et al. 1982; Coningham et al. 2004; 2006). 
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The third geographical region, the desert or kavir, is an inhospitable region, 

parts of which are completely inhabitable (Fazeli 2001: 19). The topography is 

characterized by a landform assemblage of bare, steep, rugged mountains, 

with debris-strewn pediments, compound fans, and basin floors underlined by 

mud, salt crusts or marshlands (Brookes 1982: 192). Salt crusts cover areas 

of mud, which conceal deep subterranean channels, and the fragile structure 

of the surface is extremely dangerous. These render cultivation impossible, 

indeed, in places even travel is hazardous (Fazeli 2001: 19). Some surfaces 

of the desert are nearly 10-centimetres thick and are covered by a salty 

viscous mud. Summer is often cloudless, and consequently temperatures are 

very high during the day (over 50°C); while the winter temperature can drop 

below freezing. Because of the lack of cloud, the elevation, and the dryness of 

the air, there is a rapid radiation of heat from the surface at night leading to 

temperature extremes (Fisher 1968: 93). Although the region is generally unfit 

for human habitation, it is favourable for wildlife, especially seasonal birds, 

which migrate from Siberia during the winter, and the Iranian zebra, which 

look like wild ass, and live on the edge of the central desert (Fazeli 2001: 20).  

 

The climate of the Central Plateau is heavily influenced by the Zagros and 

Alburz Mountain systems, which form climatic barriers separating it from the 

warm, moist Mediterranean weather systems to the west, and the coastal 

weather system of the Caspian Sea to the north. As a result, the Central 

Plateau is characterized by a semi-arid/arid climate, which becomes highly 

arid in its large and depressed centre (Bobek 1968: 280). Summers are often 

virtually cloudless, and consequently temperatures are very high during the 

day, though there is wide diurnal variation due to the high elevations, dryness 

of air, and lack of clouds (Ganji 1968: 220). In winter, temperatures are 

generally low. For example, temperatures as low as -16ºC have been 

reported from Tehran for January, the coldest month of the year (Ganji 1968: 

table 1). From February onwards, the land begins to warm up, and 

temperatures as high as 36ºC have been recorded in July and August (ibid.: 

table 2). Precipitation is limited, averaging ca. 25–150 mm annually, with an 

incidence sharply confined to the winter months (Fisher 1968: 91); and 



 

 

323 
 

decreases from north (average rainfall over 200 mm per annum) to south 

(average less than 120 mm per annum) (Dewan & Famouri 1968: 250) 

(Tables 6.0–6.2). 

 

The history of vegetation and climate change in the Near East is poorly 

understood, and only a few palaeoclimate proxy data exist for the Holocene in 

Iran (Djamali, Beaulieu et al. 2008: 413; Schmidt et al. 2011: 587).  These are 

mainly from studies located in the Zagros Mountains (Wright 1966; van Zeist 

1967; van Zeist & Wright 1963; van Zeist & Bottema 1977; Bottema 1986; 

1993; Djamali, Beaulieu et al. 2008), and more proxy information and 

geochronological data are needed for other areas, particularly central and 

southern Iran (Kehl 2009: 2). 

 

The best proxies for the Central Plateau come from lake cores from Lake 

Urmia and Lake Zeribar which are located in the Zagros Mountains, 

approximately 300 kilometres apart. Both pollen and sedimentological studies 

have been published from Lake Urmia (Bottema 1986; Kelts & Shahrabi 1986) 

and proxy palaeoclimate records are available from Lake Zeribar, based on 

sediment chemistry (Hutchinson & Cowgill 1963), pollen (van Zeist & Wright 

1963; van Zeist & Bottema 1977), palaeoliminological indicators (Griffiths et 

al. 2001; Wasylikowa et al. 2006), diatoms (Snyder et al. 2001) and stable 

isotope patterns (Stevens et al. 2001; 2006). These studies generally suggest 

that during the Late Glacial-Early Holocene transitional period, an increase in 

temperature enabled the establishment of a grass-dominated savannah, with 

few oak trees and varying pistachio abundance (Stevens et al. 2001: 451-2; 

Kohl 2009: 10; Schmidt et al. 2011: 587). (Pistachio is more drought resistant 

than oak, the main limiting factor of which is total moisture availability; 

Schmidt et al. 2011: 588.) This was followed by a period of temperature and 

aridity amelioration throughout the Early to Mid Holocene, which had resulted 

in a marked decrease in pistachio by ca. 6200 yr BC, and a gradual, then 

sharp, increase in oak (Wright et al. 1967: 441; Smith et al. 2001: 453; 

Schmidt et al. 2011: 587). At Lake Zeribar, oak forests reached their greatest 

distribution at 4750 BC, and then steadily declined from 4450 BC to enter a 

pronounced depression in 2550 BC; while at Lake Mirabad, oak pollen rose 



 

 

324 
 

later and more slowly, only reaching the levels of Lake Zeribar at 4000 BC 

(Schmidt et al. 2011: 588). By the early fourth millennium BC, modern climatic 

conditions had been established (Wright et al. 1967: 441; Vita-Fenzi 1968: 

967; Smith et al. 2001: 453; Djamali, Beaulieu et al. 2008: 128; Kehl 2009: 

10). 

 

The seasonality of the climate of the Zagros Mountains is determined by the 

interactions of rain-bearing westerlies from the Mediterranean, the Siberian 

high in winter that blocks their progress, and hot winds which emanate from 

the Central Plateau in summer and deflect the westerlies along the western 

foothills and mountain range (Schmidt et al. 2011: 588; Stevens et al. 2006). 

Due to this the palynological analysis from Lake Zeribar, which lies along a 

track of westerlies to the north of the Zagros, is more relevant for the Central 

Plateau than Lake Mirabad, which is located in the southwest flanks of the 

Zagros Mountains (Schmidt et al. 2011: 588). When the palynological record 

from Lake Zeribar is compared with the archaeological chronology of the 

Central Plateau, the onset of the Transitional Chalcolithic (ca. 5000 BC) 

generally coincides with an increase in oak pollen, and by proxy moisture, 

after ca. 5500 BC (ibid.). 

 

Lake cores also allow for the reconstruction of past vegetation patterns. 

Pollen analysis of cores from Lake Zeribar and Lake Mirabad (also in the 

Zagros Mountains), suggests that at the beginning of the Holocene, the 

catchment area of both lakes was dominated by an Artemisia steppe (Wright 

et al. 1967: 441). Around 9500 BC, the climate became warmer and wetter, 

allowing for the expansion of oak-pistachio savannah, and by ca. 3500 yr BC 

this had thickened to become the oak woodland that still prevails in the region 

today (Wright et al. 1967: 441; Vita-Fenzi 1968: 967; Kehl 2009: 10). In 

northeastern Iran the analysis of cores from Lake Urmia indicates a similar 

pattern (Bottema 1986: 241; Djamali, Kürschner et al. 2008: 68). Until around 

7000 BC the area around Lake Urmia was dominated by Artemisia steppe; 

between 7000–6000 BC the steppe vegetation was gradually succeeded by 

forest-steppe; and by ca. 5000 BC this had developed into open forest 

(Bottema 1986: 241, 256; Djamali, Beaulieu et al. 2008: 419).  
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Bobek (1968: 288) broadly divides the modern vegetational cover on the 

Central Plateau into two groups: that within the 250-300 mm precipitation 

isohyet (the minimum for rainfed agriculture; Oates & Oates 1976: 111); and 

that in areas which receive less than 250 mm precipitation annually. Within 

the 250-300 mm precipitation isohyet, two main groups of associations can be 

distinguished: : tragacanthic or astragaleta types, with spiny bushes or 

brushwood of tragacanthic or other astragalus and acantholimon species, 

together with other dwarf bushes and many grasses and herbaceous types; 

and artemisieta-type associations, which include scrub composed 

predominantly of worm wood (Artemisia, mostly Herba alba) (Bobek 1968: 

288-9). Outside the limits of potential rainfed agriculture, the steppe thins out, 

without greatly changing composition. There is an intermediate zone, the 

‘desert-steppe’, where patches of bare-ground become considerable, before 

finally the true desert (largely confined to depressions below 1000 metres), in 

which bare ground predominates. 

 

In terms of the fauna, carnivores include: wolves, hyenas, various foxes and 

ichneumon, cats, leopards and lynxes (Misonne 1968: 295). Ungulates 

include Iranian onager, which live on the edge of the central desert, fellow 

deer, gazelles, wild boar, wild goat and red sheep. There is a wide variety of 

lagomorpha and rodents. The great majority of rodents (ca. 90%) are jirds and 

gerbils, while other rodents are of small numerical importance (ibid.: 296). 

Insectivora have been poorly studied, but include several species of 

hedgehog and bat (ibid.: 300). Domesticated species include Iranian saddle 

horses, numerous donkeys, cattle, sheep, goat, dromedaries and dogs (ibid.: 

301-2). It is of interest to note, in regards to the origins and spread of 

agriculture, that domesticated cattle on the Central Plateau are generally large 

and without a hump, while those found on the Caspian Sea Plain are of a 

smaller stature, and have a hump like Zebu cattle, suggesting the possibility 

of two different origins.  

 

There is a lack of perennial, and even seasonal streams, on parts of the 

Central Plateau, and the availability of water, both surface and underground, 

has always been a major defining feature in human activity (Dewan & Famouri 
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1964: 40; Oberlander 1968: 265; Goldsmith 1984; Fazeli 2001: 11). Roland 

Ghirshman writes, for example, that “at all times on the Plateau, the question 

of water has been vital”, arguing that “despite the extremes of climate, intense 

cold in winter and heat in summer, the ground yields abundantly wherever 

man can bring water” (Ghirshman 1954: 25). Annual surpluses of water and 

seasonal surpluses occur in the Zagros and Alburz mountains (Oberlander 

1968: 265). Their perennial rivers are maintained throughout the rainless 

summers and early autumn by snowmelt, which also contributes to seasonal 

springs. Major permanent rivers of the region include the Karaj, Talegan, 

Abhor, Kan, Solequn, Qazvin and Shour, of which the Karaj, which flows 

through the Alburz Mountain range, is the longest (Fazeli 2001: 11). 

 

The limitation of available agricultural land in combination with annual rainfall 

and topography, has significantly affected the distribution of modern 

settlement, which is largely confined to the plain, although particular areas of 

the mountains, intermountain valleys and desert are also important (Fazeli 

2001: 8, 13). For example, the highland valleys receive more rain than the 

plain, and provide excellent vegetation for pasturage during the summer 

months, and this may have facilitated seasonal movements of the earliest 

pastoral communities of the plain (ibid.: 13). Like many settlements in Iran 

(both past & present), those on the Central Plateau are generally situated on 

active alluvial fans, which pose flood and sediment inundation hazards, but 

provide fertile soil for agriculture (Schmidt et al. 2011: 585). 

 

Historically, there have existed two main types of pastoral groups on the 

plateau, defined by their migratory activity (Fazeli 2001: 14). One type inhabit 

a permanent village in the winter, with members from the group migrating in 

the summer up to higher pastures in the Alburz Mountains to pastoral camps 

at considerable distances (up to 25 km away) from the village. The other type 

followed a traditional route of vertical migration from the north to the south of 

the plains during the autumn and spring. Nowadays, both types of movement 

have greatly declined (ibid.). 
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Contemporary agricultural settlements can be broadly divided into upland and 

lowland settlements. Although the situation is rapidly changing, upland 

settlements are in the form of unfortified hamlets or small-scale clustered 

houses grouped alongside a few fields (Fisher 1968: 46). They are generally 

situated on the first rocky slopes rising above the valley floors, with terraced 

slopes roughly divided into meadows by low dry-stone walls or willow hedges 

(Deplanhol 1968: 419). In areas with sufficient rainfall, fertile and cultivable 

patches of soil allow for the cultivation of winter wheat, spring barley, alfalfa, 

fruit and vegetables, although crops can be grown extensively only one year 

out of every two or three; the intervening seasons being used for grazing 

animals (Fazeli 2001: 13). In areas with insufficient rainfall, irrigation is 

possible on a very small scale (ibid.). In the late 1960s, many villages in the 

central Alburz still had seasonal settlements in the highland occupied from 

May until August/September by pastoral groups from the permanent villages 

(Fisher 1968: 54). However, today this economic life has decreased and most 

villagers have migrated to Tehran or other cities to the north and south of the 

Alburz (Fazeli 2001: 13-4).  

 

Lowland or ‘landlord’ villages are mudbrick walled, largely self-contained 

settlements, which consist of a landlord’s house and associated outbuildings, 

farmers’ houses and animal yards (Planhol 1968: 425; Fazeli & Young 2008: 

348; Fazeli et al. 2009: 149). They are usually surrounded with high walls and 

corner towers, the purpose of which is ambiguous. Ethnographic sources 

claim that they were there to protect the villages from wild animals and 

thieves, but that they were also there because the structure was a ‘castle’ 

(Fazeli et al. 2009: 157). Analysis of the actual structures provides no further 

elucidation, with some of the corner towers entered from outside the village, 

others having no entrances, and yet others having been used for penning 

animals (Fazeli & Young 2008; Fazeli et al. 2009). Landlord villages played a 

major role in rural life in Iran for many centuries, although they were 

abandoned following the ‘White Revolution’ of the 1960s and 1970s (Fazeli et 

al. 2009: 149). The antiquity of the villages is thought to be rooted in the early 

Islamic period (Lambton 1953: 4), although their origins and actual dates 

remain largely conjecture (Fazeli et al. 2009: 149). What is clear from a range 
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of records, is that landlord villages were an accepted and extensive form of 

social and economic organisation for large segments of Iran’s rural population 

for centuries leading up to the radical changes of the 1960s and 1970s (ibid.). 

 

 

6.2. Prehistoric sites 

 

The current level of information does not indicate the presence of Early 

Neolithic (ca. 8000-6500 BC) or Middle Neolithic (ca. 6500-6200 BC) period 

settlements on the Central Plateau (Coningham et al. 2004; 2006; Fazeli et al. 

2004; 2005; 2009; Malek Shahmirzadi 2002; 2003; 2004; 2006a; 2006b). The 

earliest recorded settlements are Late Neolithic (ca. 6200–5500 BC) in origin, 

and include Cheshmeh-Ali, Sadeghabadi and Tepe Pardis on the Tehran 

Plain; Chahar-Boneh and Ebrahim Abad on the Qazvin Plain; and Tepe Sialk 

and Ghabristan on the Kashan Plain.  

 

Following the Late Neolithic, a ‘Transitional Chalcolithic’ period (ca. 5500-

4700 BC)  is recognized on the Central Plateau (Fazeli 2001; Coningham et 

al. 2004; 2006; Fazeli et al. 2004). The Transitional Chalcolithic is defined 

primarily by the presence of Cheshmeh Ali Ware. It was a period of both 

continuity and change, which was not restricted to ceramic production, but 

included general transformations within the lithic industry, inter-site and intra-

site patterns and long-distance contact (Fazeli 2001; Fazeli et al. 2001; 2002; 

2004). It was also marked by a substantial increase in the number of sites, 

which is attributed to “an increasing human population and economic 

achievements” (Fazeli 2001: 42). Transitional Chalcolithic settlements include: 

Cheshmeh-Ali, Tepe Chouqali, Tepe Sadeghabadi, Tepe Pardis, Mehdikani, 

Kara Tepe Sharyae, Fakrabad, Mafinabad, Poeinak, Tepe Mortezagerd, 

Ismailabad and Ozbaki on the Tehran Plain; Zagheh, Cheshmeh Bolbol and 

Akbarabad on the Qazvin Plain; and Sialk on the Kashan Plain. The Early 

Chalcolithic period (ca. 4700–4000 BC) settlements on the Tehran Plain 

comprise: Cheshmeh-Ali, Tepe Pardis, Mehdikani, Mafinabad, Fakrabad, 

Tepe Sadeghabadi, Tepe Chouqali, Kara Tepe Sharyar, Mortezagerd and 
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Poeinak on the Tehran Plain; Zagheh on the Qazvin Plain; and Tepe Sialk on 

the Kashan Plain.  

 

 

6.3. The Tehran Plain 

 

Archaeologically, the Tehran Plain is the area that lies immediately below the 

southern slopes of the central Alburz Mountains (Fazeli 2001: 10). It is a 

region characterized by steep topographic relief, arid or semi-arid climates, 

and absence of vegetation (Gillmore et al. 2007: 40), which is formed by the 

massive alluvial fan of the Jaj Rud (more than 2500 square kilometres in 

extent), which drains the main ridge of the Alburz Mountains (Beaumont 1972: 

251; Gillmore et al. 2009: 287). The Alburz Mountains to the north and east 

are currently undergoing active uplift and denudation, and this ensures a very 

abundant supply of gravel and sands to the plain, creating a highly unstable 

geomorphological environment, “where the river channels are in constant flux 

and episodes of sedimentation and erosion are highly variable through time 

and space” (Gillmore et al. 2011: 51). As a consequence alluvial deposition on 

archaeological sites is a major issue. For example, at Tepe Pardis (see Fig. 

6.12) around 1.5 metres of sediments have been deposited since the Iron Age 

(ibid.: 52). 

 

The Tehran Plain is a microcosm of the Central Plateau, encompassing three 

major environmental zones: the southern foothills of the Alburz Mountains; the 

central plain proper; and the desert fringe (Coningham et al. 2006: 54). 

Modern settlements are largely confined to the plain, but the physical 

characteristics of the mountains, intermountain valleys and desert are also 

important (Fazeli 2001: 8). For example, the highland valleys receive more 

rain than the plain, and provide excellent vegetation for pasturage during the 

summer months, which may have facilitated seasonal movements of the 

earliest pastoral communities of the plain (ibid.). 

 

Precipitation, which averages less than a few 100 mm per annum, is confined 

to the winter months (Gillmore et al. 2009: 40). Most of the water on the plain 
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comes from the rivers draining the highlands to the north and west, where the 

maximum discharge is associated with spring snowmelt (Gillmore et al. 2011: 

50). Temperatures in the summer are amongst the hottest in the world for the 

elevation with highs of over 40ºC recorded in Tehran for July, while winter 

temperatures can reach as low as -20ºC (Gillmore et al. 2011: 42; Ilkhani-

Moghadam et al. in press). Moreover, the duration of periods of coldness and 

hotness is relatively long, and as a result few perennial plants – with the 

exception of desert and semi-desert scrub plants – can survive. No 

information is currently available about the palaeobotany of the Tehran Plain. 

Today, the remains of woodland dominated by Juniper and Ponderosa Pine 

are mostly located between 2000–4500 metres above sea level (Ilkhani-

Moghadam et al. in press). In the low hills the main taxa are A. Scoporra, 

Fraxinus spp., Crataegus spp., Fircus carica and Cotoneaster spp., whilst in 

lowland areas, because of the arid climate and the high level of soil salinity, 

salt-tolerant shrubs make up most of the plant cover (ibid.). In total 39 

different botanical species are recognized on the Tehran Plain. The dominant 

taxa are the low shrub species Artemisia sieberi (accounting for 34% of the 

vegetation cover) and A. aucheri, larger shrubs of Tamarix sp. sub shrub 

Salsola (Chenopodiaceae), and a variety of wild grasses (ibid.). The best time 

for growing crops is in the relatively milder spring and autumn, when plants 

such as thorny bushes, poppy, alfalfa, gum, camel thorn and different types of 

tamarisk and triticum grow (Fazeli 2001: 15). The main crops of the region are 

cereals, cotton, and sugar beet. Wild animals species found on the plain 

include caprine, gazelle, suids (especially equids), fox, camelids, small 

herbivores and different species of migratory birds (ibid.). Domestic animals 

consist of pig, caprines, equids (horse & ass), cattle and dog (Mashkour et al. 

1999: 74).   

 

Today, owing to the presence of both the Jaj Rud and its rich alluvial deposits, 

and the qanat irrigation system, the Tehran Plain is one of the key centres of 

agriculture in Iran (Coningham et al. 2006: 54; Ilkhani-Moghadam et al. in 

press). Farmers both in the past and present have preferred to settle on the 

alluvial fans that fringe the mountain ranges, due to the advantage of the 

water supplies in these areas. Although such areas are hazardous to live in – 



 

 

331 
 

Melville (1984: 131-2) reports that villages are often abandoned following a 

disaster that permanently affected the water supply – the advantage of the 

water supply in the years when no disastrous flood events occurs more than 

compensates the risk (ibid.). 

 

 

6.3a. History of archaeological investigation 

 

Hassan Fazeli, from Tehran University, has been largely responsible for 

bringing the prehistory of the Central Plateau to the forefront of archaeological 

research in Iran, and has published extensively on the region (Fazeli 2001; 

Fazeli & Djamali 2002; Fazeli et al. 2001; 2002; 2004; 2005; 2007; 2009). 

Since 1997, Fazeli, in cooperation with Robin Coningham, has carried out 

surface collection for sampling purposes on prehistoric settlement mounds on 

the Tehran Plain. Beginning in 2003, soundings in selected sites were also 

conducted, in order to obtain stratified typological assemblages and carbon 

samples for establishing an absolute chronology for the Tehran Plain. 

 

Three types of survey strategy were implemented. As an extension of Fazeli’s 

(2001) earlier work, non-random survey was implemented, although the main 

form of survey was random transect survey, and a total of 147 kilometres 

(discontinuous) of 100-metre wide transects were walked. Qanat survey, a 

new form of survey – first piloted on the Tehran Plain in 2003 (Coningham et 

al. 2004) – was also used, and a total of 35 kilometres (discontinuous) of 

qanat lines were surveyed (Coningham et al. 2006: 55). Work such as this is 

vital, for, owing to the rapid rise of population in the area (Iran’s population 

has almost doubled since 1979), the Tehran Plain is highly susceptible to site 

damage and loss through urban and agricultural expansion, and illegal 

excavations are also a continuing problem (Coningham et al. 2004; 2006: 55; 

Azamoush & Helwing 2005: 192). Indeed, Coningham et al. (2004: 10) report 

that considerable damage had been inflicted to near 90 per cent of the 

registered sites that they surveyed.  
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6.3b. Settlement survey 

 

The 2003, 2006 and 2008 expedition survey teams recorded a total of 32 

prehistoric sites, of which 13 were assigned to the Chalcolithic period (Table 

6.3). It should be noted that none of the sites were radiocarbon dated, and 

cultural periods, where they are assigned, were on the basis of the surveyor’s 

discretion. The majority of the sites were pottery scatters, which were followed 

in number by tells and low mounds. This is unsurprising, given that pottery is 

one of the more enduring and distinctive features of the archaeological record, 

and tells are highly visible and long lasting (Coningham et al. 2006: 55). It is 

apparent from the poor state of preservation of most of the sites, that 

agricultural and urban encroachment poses a major threat. This emphasizes 

the need for conducting survey and excavation in the region now, before this 

important resource is destroyed. A significantly large number of prehistoric 

sites were recorded from qanat survey compared to transect survey: 6 sites 

from 35 kilometres of qanat survey; compared to 12 from 147 kilometres of 

transect survey (ibid.). This result emphasizes the problems alluvial deposition 

can cause to archaeological visibility (cf. Brookes et al. 1989), which can 

render sites invisible on the plain surface. In such circumstances the spoil 

heaps to qanat lines provides a valuable way of accessing evidence of early 

occupation.  

 

Seventeen Late Neolithic and Chalcolithic sites were recorded by Coningham 

et al. (2004; 2006) three seasons (2003, 2004 & 2006) of settlement survey 

on the Tehran plain. Of these 10 were tell sites. The remainder were pottery 

scatters, one of which (BO28) is thought to represent the remains of a 

ploughed out tell. Details of the tell sites, followed by that of the pottery 

scatters, are given below. 

 

A03/Chaleh Khakesary is a Middle Chalcolithic, ploughed out tell, which 

measures approximately 350 metres by 80 metres in size. Surface finds from 

the site include chalcolithic pottery and bone. A06/Tepe Pardis has 

subsequently been excavated (see pp. 340-5). It is a large tell site, which is 

badly damaged, and has been encroached on three sites by a brick quarry. It 
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currently stands some 7 metres above the surrounding ground level, and 

covers an area of 4200 metres squared (Coningham et al. 2006: 34). It has a 

combined depth of occupation of 10.5 metres above and below the surface, 

which spans the Late Neolithic-Chalcolithic periods. The site is badly 

damaged, and is being encroached on three sites by a brick quarry. A20/Deh 

Mohesen is a tell site, which measures 70 metres by 70 metres in extent. 

Chalcolithic, Iron Age and glazed (Islamic) ceramics were collected from the 

surface. The site is currently situated on agricultural land, and the edges have 

been ploughed out. A31/Farakhabad is an 80-metre wide by 80-metre long 

tell, which stands 4 metres above the current plain surface. Finds include 

Early Chalcolithic pottery, bones and lithics. The site is not in good condition: 

it has been heavily eroded; is partially cut by a road; and is being encroached 

by agriculture. A50/Tepe Davoudabad is an Early Chalcolithic and Iron Age 

tell, measuring 150 metre by 350 metre in size. Surface finds include Early 

Chalcolithic and Iron Age ceramics. The site has been badly damaged: the 

edges are ploughed out, salination is a problem and there is evidence of 

illegal excavation. A117 is a tell site that was occupied during the Late 

Neolithic-Late Chalcolithic period and again during the Islamic period. Finds 

include chalcolithic and glazed (Islamic) ceramics. The site is in a poor state 

of conservation: the edges have been ploughed out and there are signs of 

illegal excavation. Taherabad/B005 is a low mound, measuring 45 metres by 

45 metres and standing 0.5 metres above the present plain surface. It is a 

Chalcolithic period site. The tepe has been ploughed- out, and the 

surrounding area has been intensively farmed. B006 represents another low 

mound/ploughed out tepe. It measures 500 metres by 100 metres and stands 

0.5 metres high. Finds include Chalcolithic pottery and brickbats. B118/Tepe 

Tar is a 65-metre by 50-metre tell which, despite being heavily eroded, stands 

10 metres above the current plain surface. Finds include Chalcolithic and 

glazed (Islamic) pottery. B223 is a low mound, which measures 100 metres by 

200 metres in area. It is thought to have been occupied in the Middle-Late 

Chalcolithic and again in the Iron Age. Finds include Chalcolithic and Iron Age 

pottery, brick and slag. 
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The largest pottery scatter was DV1, which was discovered off transect within 

qanat spoil in the Damavand Valley. Finds include Neolithic pottery and 14 

lithics: 9 flakes; 3 blades; 1 polyhedral core; and 1 piece of shatter. Six other 

pottery scatters were recorded. A114 is a pottery scatter that was discovered 

in a qanat spoil heap. The extent of the scatter measures 10 metres by 10 

metres, and finds include Chalcolithic, glazed (Islamic) and modern ceramics, 

mudbrick and slag. B002 is a pottery scatter measuring five metres by 10 

metres. The pottery is entirely Chalcolithic. The scatter is located at the edge 

of a ploughed field, and is cut by an irrigation channel. B007 represents a 

lithic find plus pottery, which were found in and around a qanat spoil heap. 

The area of the scatter measures 40 metres by 30 metres. The pottery is 

thought to be Chalcolithic in date. B027 is Chalcolithic pottery scatter, 

measuring 150 metres by 100 metres in area. B028 is a pottery scatter that is 

thought to represent the remains of a ploughed out mound or tell. It measures 

50 metres by 25 metres. Surface finds include Chalcolithic pottery. B205 is a 

pottery scatter found within qanat spoil. It measured one metre by one metre 

in area, and contains Chalcolithic pottery.  

 

 

6.3c. Archaeological sites 

 

Yan Tepe (Late Neolithic) 

In the vicinity of an abounding stream, next to the village of Ozbaki in the 

Savojbolag district, lie a cluster of one major and nine smaller settlement 

mounds, which are collectively known as Tepe Ozbaki. Between 1998 and 

2002, Youssef Majidzadeh excavated several of these mounds on behalf of 

the Iranian Centre for Archaeological Research (hereafter ICAR). The oldest 

mound, Yan Teppe, dates to the Neolithic (Azamoush & Helwing 2005: 196). 

No information on the botanical or faunal remains from the site is available, 

but five architectural levels were distinguished. The buildings were 

constructed from handmade mudbrick, and generally had very small rooms, 

which did not exceed 2.5 to 3.5 square metres, and subfloor burials under 

living floors were common. One building had walls and floors covered with red 

ochre and an L-shaped platform, and perhaps served a special function. The 
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pottery assemblage is similar to that found at Sialk Periods I and II (ibid.). The 

site was abandoned at the end of the Neolithic period, and settlement shifted 

to another small mound, Jeyrān Tappe, located 300-metres away (ibid.).  

 

Sadeghabadi (Late Neolithic to Middle Chalcolithic) 

Sadeghabadi lies in the southern foothills of the Alburz Mountains between 

the villages of Mahammadabad and Ashtazon, some 20 kilometres from the 

outskirts of Tehran. It measures some 90 by 90 metres in extent, and stands 

at a height of 5–6 metres above the present plain surface (Fazeli 2001: 78). 

The site was recorded on survey by Hassan Fazeli, and has not been 

excavated. A small area to the northwest has been disturbed, and Late 

Neolithic ceramics exposed in the section. Today, the nearest water source is 

the Karaj River, located nearly one kilometre away. 

 

Fakrabad (Early Chalcolithic) 

Fakrabad (Fig. 6.) is located around eight kilometres from Sadeghabadi, south 

of the modern town of Veramin, and was recorded by Hassan Fazeli (2001). It 

is one of the few sites on the Central Plateau that was occupied during the 

Early Chalcolithic. It currently measures around two hectares in size, but has 

been badly disturbed by ploughing and road construction. Today, the nearest 

water source today is the Karaj River, ca. one kilometre away.  

 

Mafinabad (Middle Chalcolithic)  

Mafinabad (Fig. 6.2) is located to the southwest of Veramin, in the Sharyar 

region, and was recorded by Hassan Fazeli in the late 1990s. The site, which 

appears to have been occupied throughout  has been badly damaged in 

recent years, but the analysis of a deep cut in the southeast section 

suggested that it used to measure at least 5.5 hectares in extent, and that 

there some 6 metres of Middle Chalcolithic deposits (Fazeli 2001: 79). A 

palaeochannel, 30-metres across, was exposed in excavations for building 

work, approximately 300 metres from the site (Gillmore et al. 2009: 299). In 

one horizon occurred an abundance of Middle Chalcolithic pottery, with 

covered another pottery layer below (ibid). 
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Mehedikani (Early to Late Chalcolithic) 

Mehedikani (Fig. 6.3) is situated close to one of the branches of the Karaj 

Rud. It was recorded during survey by Fazeli in the late 1990s, who reported 

that it to stand nearly 5 metres above the modern plain surface and measure 

90 by 122 metres in extent (Fazeli 2001: 79).  

 

Chakhmak Tepe (Middle Chalcolithic) 

Chakhmak Tepe (Fig. 6.4) is located to the west of Tehran, and was recorded 

by Fazeli during survey in the late 1990s. It stands one to two metres above 

the modern plain surface, and covers an area (including lithic & ceramic 

scatters) of over two and a half hectares (Fazeli 2001: 80). Two obsidian 

flakes were recovered from the site, which is of considerable interest as, with 

the exception of from Tepe Pardis from which one flake was recovered, 

obsidian is not known from any other Chalcolithic sites on the Tehran Plain 

(Fazeli et al. 2007). The source of the obsidian is unknown, but the closest 

potential sources are around the peak of Damavand in the Alburz Mountains, 

and Sareh in the western part of the plain (Fazeli 2001: 185). 

 

Cheshmeh-Ali (Late Neolithic to Middle Chalcolithic & Parthian) 

Cheshmeh Ali is a seven-metre high mound, which abuts a rocky ridge at the 

edge of the Islamic city of Rayy (Fazeli et al. 2004: 13). It is located beside a 

spring (from which it gains its name), which was probably an important 

contributory factor in selecting the site’s location. Indeed, before the 

widespread drilling of deep wells, the spring at Cheshmeh Ali was one of the 

most important sources of water for both domestic use and irrigation in the 

area (Alizadeh 1990). Originally, the site covered an area of more than 3500 

square metres, but today it is hemmed in by houses (Alizadeh 1990).  

 

Cheshmeh Ali has been the focus of archaeological research since the 1920s, 

due to its visibility and close proximity to Tehran. De Morgan, the director of 

the French Archaeological Mission, was the first to excavate the site between 

1912 and 1913, and his excavations were closely followed by those of Dayat, 

a diplomat from the French embassy in Tehran. In 1924 Erich F. Schmidt 

conducted the first systematic campaign at Cheshmeh Ali, directing 
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excavations at the site between 1934 and 1936 (Fig. 6.5 & 6.6). Schmidt’s 

excavations were extensive, and during this period he opened an area of 

more than 600 square metres, using a workforce of 200 workmen (Schmidt 

1936: 79). From his findings, Schmidt was able to successfully identify the 

presence of two historic periods, Islamic and Parthian; and two major 

prehistoric levels, Chalcolithic and Neolithic, but was unfortunately killed in a 

plane crash before his findings were ever published. Following Schmidt’s 

death, interest in Cheshmeh Ali lapsed, and urban encroachment substantially 

reduced the tell. Archaeological research was resumed in 1997, after a break 

of 61 years, by a collaborative team from ICHO, the University of Tehran and 

the University of Bradford (Fazeli et al. 2004). Two trenches were excavated –  

E4-5 on the western side of the tell; and H7 on the eastern side – exposing 11 

metres of archaeological deposits, spanning the Late Neolithic, Transitional 

Chalcolithic and Early Chalcolithic periods (Fig. 6.7 & 6.8). A total of 10 14C 

samples were selected for dating purposes from the excavation: 1 from 

Trench E4-5 (Fig. 6.9) and a further 9 from Trench H7 (Fig. 6.10). 

  

Lab. 
code 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene  Reason 68.2% 95.4% 

OxA-
9996 

Tr. H7, 
context 
56 

Charcoal 6155±
45 

5207-
5050 

5221-
4963 

Reliable Known mat. & 
context 

OxA-
9995 

Tr. H7, 
context 
55 

Charcoal 6160±
40 

5207-
5054 

5217-
5000 

Reliable Known mat. & 
context 

OxA-
9994 

Tr. H7, 
context 
50 

Charcoal 6175±
45 

5211-
5060 

5291-
4997 

Reliable Known mat. & 
context 

OxA-
9997 

Tr. H7, 
context 
33 

Charcoal 5875±
45 

4795-
4695 

4846-
4613 

Reliable Known mat. & 
context 

OxA-
9956 

Tr. H7, 
context 
32 

Charcoal 5965±
45 

4928-
4791 

4957-
4725 

Reliable Known mat. & 
context 

OxA-
9955 

Tr. H7, 
context 
16 

Charcoal 5815±
45 

4725-
4602 

4780-
4550 

Reliable Known mat. & 
context 

OxA-
9954 

Tr. H7, 
context 
15 

Charcoal 5865±
45 

4789-
4691 

4841-
4609 

Reliable Known mat. & 
context 

OxA-
9937 

Tr. H7, 
context 
15 

Charcoal 5940±
55 

4897-
4729 

4962-
4705 

Reliable Known mat. & 
context 

OxA-
9905 

Tr. H7, 
context 

Charcoal 5885±
40 

4795-
4713 

4874-
4620 

Reliable Known mat. & 
context 
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14 

OxA-
9855 

Tr. E4-5, 
context 
50 

Charcoal 6075±
70 

5199-
4851 

5211-
4808 

Accept. Known mat. & 
context, but 
rel. high error 

 
(After Fazeli et al. 2004: table 2.) 

 

All of the dates were submitted for AMS dating at Oxford Accelerator Unit. 

They are from well-recorded contexts and known sample materials; have error 

terms of less than 100 14C years; and are in loose stratigraphic agreement. 

They are consequently reliable enough to be used without further questioning. 

Unfortunately, dates are only available for the middle part of the sequence, for 

the upper and lower parts did not yield suitable material for AMS dating 

(Fazeli et al. 2004: 13). 

 

No information is available on the botanical remains from Cheshmeh Ali. The 

faunal assemblage evidences the presence of domesticated sheep, goats, 

cow and dog, and possibly domesticated pig (Fazeli & Young 2009). The 

amount of pig represented is unusually high compared to other contemporary 

sites on the Central Plateau, although it is not clear if it was wild or 

domesticated (ibid.: 241). Unfortunately the amount of animal remains 

recovered was too small for any statistical analysis to be significant. 

 

The architecture recovered from Late Neolithic contexts, was limited to a 

small mudbrick wall built on a fine-sand foundation (Fazeli 2001: 76). In 

comparison, in the succeeding Transitional Chalcolithic period, many 

architectural units and installations were identified, including ovens and 

burials, although no architectural remains were recovered from the Early 

Chalcolithic levels. 

 

The generally poor preservation of low-fired ceramics, combined with the 

unsuitable burial conditions at the site (there are high levels of permanent 

moisture in the lower levels), has resulted in the recovery of only a small 

amount of Late Neolithic wares. All were handmade, probably by the 

sequential-slab technique, chaff tempered, and had a thick, pale-brown slip; 

they are classified by Fazeli as a “coarse to medium-fine software” (2001: 
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121). Decoration, where present, was in the form of simple close-patterned 

and linear geometric designs, and hatched and crosshatched rows of 

diamonds and triangles were particularly common. Vessel types were 

restricted to a limited range of thick-based containers, which may have been 

used for utilitarian purposes, such as food storage and cooking (Fazeli 2001: 

121). There is a general lack of homogeneity in ceramic production, 

suggesting that during the Late Neolithic it was probably “a non-specialized, 

household industry” (Fazeli 2001: 124). 

 

The transition from the Late Neolithic to the Transitional Chalcolithic period 

was a gradual process, marked by the appearance of ‘Cheshmeh-Ali’ black 

on-red ware (Dyson 1991; Fazeli 2001; Matney 1995). ‘Cheshmeh-Ali’ Ware 

was handmade, highly burnished and elaborately decorated with geometric 

designs in a dark brown or black paint (Fazeli 2001: 127). Common forms 

included small round-bottomed cups with flared rims, large spherical bowls, 

and pedestalled vases (Matney 1995: 30). During the Early Chalcolithic 

Period there occurred a substantial increase in the standardization and 

specialization of pottery manufacture, represented by the progressive 

replacement of the sequential-slab technique by the coil technique; the 

introduction of wheel throwing; the use of new motifs; and the introduction of 

new ceramic forms (Fazeli 2001: 136). Fazeli (2001: 143) suggests that by the 

Early Chalcolithic period, pottery production at Cheshmeh Ali had become a 

standardized and specialized industry; a development that is observed across 

the Central Plateau during this period.   

 

Fazeli (2001: 189) reports that the chipped-stone tools were predominantly 

manufactured from a local grey chert, and that an increase in blade 

production occurred throughout the prehistoric occupation of the site, with 

blade tools increasing from 16 per cent of the total assemblage in the Late 

Neolithic, to 36 per cent in the Transitional Chalcolithic, and 50 per cent in the 

Early Chalcolithic (Fazeli 2001: 189). Accompanying the increase in blade 

production was an increase in the processing of cores off site, possibly 

indicating an increase in specialization, similar to that exhibited in ceramic 
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production.  A number of metal artefacts were also recovered from Cheshmeh 

Ali, but have yet to be studied (Thornton 2009: 311).  

 

Two sets of limited information are available on the burial practices: Schmidt’s 

excavation photos and notes, as reported by Matney (1995); and two adult 

burials recorded from the 1997 excavation (Fazeli 2001). Matney (1995: 28) 

describes a single internment excavated by Schmidt, in which the body lies on 

the right side, in a flexed position, with the hands near the pelvis. The two 

skeletons from the 1997 excavation were both recovered from under house 

floors (Fazeli 2001: 217). The skeletons bore traces of red ochre, and grave 

goods included a small bowl and a large, possibly imported, trapezoid blade.  

 

Tepe Pardis (Late Neolithic–Late Chalcolithic) 

Besides Cheshmeh Ali, the other well-recorded, excavated site on the Tehran 

Plain is Tepe Pardis (Fig. 6.11). It is located besides a natural deposit of clay, 

in the lower stretches of the Jaj Rud fan, on the western outskirts of Garchek, 

to the southeast of Cheshmeh Ali (Coningham et al. 2006: 68; Gillmore et al. 

2009: 287). The site has been badly damaged by quarrying, and in its 

truncated state stands 7 metres in height, with a combined depth of 

occupation of 10.5 metres above and below the plain surface, and measures 

ca. 4200 square metres in extent (Fig. 6.12 & 6.13) (Coningham et al. 2006: 

34). Tepe Pardis was first identified by N. Pazuki of ICHTO, and was visited at 

his request by a survey team comprised of members from the universities of 

Durham, Leicester, Kingston and Bradford, who returned to excavate it for 

three seasons in 2004, 2006 and 2007 (Coningham et al. 2006: 49–50; Fazeli 

et al. 2007). 

 

Ceramic analysis and 14C dating has shown the sequence at Tepe Pardis to 

be continuous from the Late Neolithic (ca. 6200-5500 BC), through the 

Transitional Chalcolithic (ca. 5500-4700 BC), to the Early Chalcolithic (ca. 

4700-4000 BC), with a break then occurring before the resumption of 

settlement in the Middle Chalcolithic, ca. 3960–3770 BC (Coningham 2006: 

33, 49-50). The main deposits are from the Transitional Chalcolithic period 
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(ibid.: 39). Fifteen 14C determinations are available for the site from carbon 

samples submitted by Robin Coningham. 

 

Lab. 
code 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date 
(BC/AD) Hygiene Reason 

68.2% 95.4% 

OxA-
14736 

Tr. I, 
Context 4 

Bone: thoracic 
spine (cattle?) 

1967
±31 

AD 3-
70 

43 BC-
AD 115 

Unreliable Too late 

OxA-
14739 

Tr. I, 
Context 4 

Bone: 
calcaneus 
(sheep) 

5894
±37 

4769-
4719 

4845-
4690 

Reliable Known 
mat. & 
context 

OxA-
14738 

Tr. I, 
Context 5 

Charcoal, 
tamarix sp. 
(short-lived 
type) 

5156
±37 

4038-
3946 

4043-
3810 

Quest. Rather 
late 

OxA-
14737 

Tr. I, 
Context 8 

Long bone 
fragment 

5050
±35 

3942-
3794 

3957-
3767 

Quest. Rather 
late 

OxA-
14740 

Tr. I, 
Context 8 

Charcoal (too 
small to 
identify) 

6004
±38 

4944-
4842 

4993-
4797 

Reliable Known 
mat. & 
context 

OxA-
14741 

Tr. I, 
Context 
14 

Charcoal, 
Populus sp. 
(short-lived 
type) 

5928
±35 

4842-
4729 

4903-
4717 

Reliable Known 
mat. & 
context 

OxA-
14742 

Tr. I, 
Context 
18 

Charcoal (too 
small to 
identify) 

5978
±38 

4932-
4801 

4984-
4775 

Reliable Known 
mat. & 
context 

OxA-
14743 

Tr. II, 
Context 
1003 

Charcoal (too 
small to 
identify) 

5976
±36 

4909-
4800 

4981-
4748 

Reliable Known 
mat. & 
context 

OxA-
14744 

Tr. II, 
Context 
1008 

Bone (long 
bone 
fragments) 

6000
±38 

4941-
4841 

4990-
4795 

Reliable Known 
mat. & 
context 

OxA-
14745 

Tr. II, 
Context 
1014 

Charcoal (too 
small to 
identify) 

6100
±39 

5194-
4950 

5209-
4912 

Reliable Known 
mat. & 
context 

OxA-
14746 

Tr. II, 
Context 
1015 

Bone 
fragments 
(bird) 

6226
±37 

5295-
5079 

5304-
5061 

Reliable Known 
mat. & 
context 

OxA-
14747 

Tr. II, 
Context 
1017 

Long bone 
fragment, 
small mammal 

6230
±45 

5298-
5079 

5309-
5057 

Reliable Known 
mat. & 
context 

OxA-
14748 

Quarry 
Context 
G1 

Bird 1018
±29 

992-
1027 

904-
1148 

Unreliable Too 
young 

OxA-
14749 

Quarry 
irrigation 
channel 
NX 

Sheep teeth, 
young animal 

6152
±40 

5207-
5046 

5216-
4994 

Reliable Known 
mat. & 
context 

OxA-
14750 

Quarry 
irrigation 
channel 
DX 

Long bone 
fragment 
(cattle?) 

6153
±38 

5207-
5048 

5214-
5000 

Reliable Known 
mat. & 
context 

 
(Coningham et al. 2006: 46-7.) 
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None of the charcoal was identifiable to species; and there was a high failure 

rate among the bone samples due to their low collagen yield (Coningham et 

al. 2006: 45). OxA-14736 was rejected by the excavator as clearly too late, 

with which the author agrees. There are some internal inconsistencies with 

the dates for Trench I. For example, OxA-14740 is older than both -14741 and 

-14742, which are from earlier contexts. However, the majority of the dates 

from Trenches I and II are in loose stratigraphic order, are from known 

materials and well-secured contexts, and are reliable enough to be accepted 

within reason. In terms of the Quarry irrigation channels, OxA-14749 and -

14750 compare favourably to each other, and are reliable enough to be 

accepted within reason.  

  

Many carbonized plant remains were recovered, primarily from ash deposits 

in pit structures. The identified remains mostly comprised cultivated plants 

(Ilkhani-Moghadam et al. in press). Cultivated hulled barley (Hordeum 

vulgare) was the most abundant species. A few examples of six-row barley 

(H. vulgare L. subsp. vulgare) were also present, but wheat grains, in the form 

of free-threshing (Triticum astivum/ T. turgidum subsp. durum) and emmer 

wheat, were less common (ibid.). In terms of pulses, lentil (Lens culinaris), 

pea (Pisum) and Vicia (vetch) were all probably cultivated. Grape seeds (Vitis 

vinifera) were recovered from a Chalcolithic period context, although whether 

they were cultivated remains ambiguous. Wild plant seeds occur in small 

numbers in all of the sampled contexts, and include ruderal and field weed 

taxa. It is unclear if the weeds are from cereal fields, or represent wild plants 

eaten by domestic animals. Vicia/Lathyrus is the most common wild seed, 

followed by grass grains (Gramineae), none of which were identifiable to 

species; Astragalus (Fabaceae family) was also very abundant. Other taxa 

include Lithospermun (Boragnaceae family), Galium (Rubiaceae family), 

Chenopodiaceae (goosefoot family) and Solanaceae (nightshade family) 

(ibid.).  

 

In general the animal bones were very fragmented, rendering identification 

difficult. The vast majority of the identifiable bone is tentatively assigned to 

domesticated sheep and goat, but due to the small size of the assemblage it 
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is difficult to distinguish between wild and domesticated animals (Coningham 

et al. 2006: 45). A much smaller number of bones were attributable to cattle 

and pig, and a very few to gazelle, equid, fowl, fish and dog. The low number 

of bones attributed to wild species contrasts with that recorded from other 

contemporary sites, for example Zagheh on the Qazvin Plain (see p. 317) 

(Mashkour et al. 1999), but is in keeping with a pastoral economy, possibly 

linked with long-distance, transhumant activity (Coningham et al. 2006: 45).  

 

Complementary information about the agriculture practices at Tepe Pardis is 

provided by geoarchaeological evidence for water management, in the form of 

a triangular cross-section channel, measuring 1.0 metre in width by 0.24 

metres in depth (Gillmore et al. 2009: 285). The antiquity of the channel is 

supported by 14C measurements from strata directly above and below, 

association with ceramic sherds, and correlation with Late Neolithic levels. To 

date, the artificial water channel represents the earliest evidence of the 

human manipulation of water or irrigation agriculture on the Central Plateau 

(Gillmore et al. 2007; 2009; 2011). It correlates well with the irrigation 

agriculture reported by Oates and Oates (1976) from the sixth millennium BC 

site of Choga Mami, Iraq, and that reported by Hole et al. (Hole 1977; Hole et 

al. 1969; Neely & Wright 1994) on the Deh Luran Plain. The practice of 

irrigation agriculture at Tepe Pardis is significant. Not only does irrigation 

agriculture require a greater investment in labour – in terms of the 

construction and maintenance of channels – but it also has a significant social 

impact. Hole and Flannery (1967: 181) argue that irrigation systems add a 

new dimension to the alteration of the natural landscape, in which fields 

become improved property on which labour has to be regularly spent.  

 

In the three seasons of excavation at Tepe Pardis, more than 70 square 

metres of mudbrick structures of Transitional Chalcolithic date, including 5 

kilns and associated wall alignments, were exposed (Fazeli et al. 2007: 269). 

Indeed, most of the architecture recovered is thought to relate to industrial 

installations, and the remains of domestic structures were few. A terracotta 

slow wheel – measuring 36 centimetres in diameter and 12 centimetres thick 

– was recovered from one of these kilns (ibid.: 270). It represents a unique 
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discovery in Iran, and is one of the earliest slow wheels known in the Middle 

East. The presence of five large kilns at Tepe Pardis, and the unique 

terracotta slow wheel, attests to a large investment in the technological 

infrastructure at the site during the Transitional Chalcolithic, which Fazeli 

(2007: 270) reports is unlike anything else that has previously been seen for 

this period. Excavation has shown the craft area to have been separated from 

the domestic/residential sections of the site which, in conjunction with the 

site’s situation next to a rich clay deposit (which is still quarried), suggests the 

presence of a specialized pottery production site (Coningham et al. 2006: 68). 

This represents a “significant change in the organization of production during 

the Transitional Chalcolithic” (ibid.: 19) on the Tehran Plain compared to 

earlier periods. 

 

Late Chalcolithic ceramics were identified during the exploratory survey in 

2003 (Coningham et al. 2004). However, only examples from the Late 

Neolithic, Transitional, Early and Middle Chalcolithic periods were recovered 

from excavation, possibly because of a major rebuilding phase (Coningham et 

al. 2006: 39). Late Neolithic examples are limited to two coarse, buff-coloured 

body sherds, which conform well with contemporary examples from 

Cheshmeh Ali (ibid.). The Transitional Chalcolithic ceramics are represented 

by ‘Cheshmeh Ali’ Ware, “surface treatment, colour, temper, manufacturing 

technology and paint [of which] are remarkably different from those sherds at 

the site from the Late Neolithic period” (Coningham et al. 2006: 40). 

Cheshmeh Ali Ware was highly fired, with a fine organic and inorganic grit 

temper, and the surfaces were highly smoothed or burnished. The exteriors 

were decorated in black paint in geometric and naturalistic designs, which 

included goats and birds. Coningham (2006: 40) believes that both the Late 

Neolithic and the Transitional Chalcolithic wares from Tepe Pardis exhibit  

strong parallels with Cheshmeh Ali, as well as with surface materials from 

other sites on the Tehran and Kashan Plains. Of the Early and Middle 

Chalcolithic pottery, Coningham comments that it is “not remarkable” 

(Coningham et al. 2006: 39), although there are some changes in the 

technology of production, and in the use of new forms of painting. 
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Lithics include various tool forms, cores, blades, flakes, and miscellaneous 

debris (Coningham et al. 2006: 43). The majority of the lithics were of chert, 

varying in colour between brown, green, grey, honey, red and tan. A small 

number were of while or milky quartz, and one obsidian blade was recovered 

(Fazeli et al. 2007: 270). The latter is of considerable note, as obsidian is rare 

on the Tehran Plain, with the only other known example found at Chakhmak 

Tepe (see p. 303) (Fazeli 2001: 185). It appears that while the majority of the 

lithics were manufactured on site, probably from a single local source 

(represented by the tools produced from red, brown & grey cherts), the 

presence of an obsidian blade, and four imported blades of honey chert, 

suggests the existence of specialist blade manufacture and long-distance 

trade (Coningham et al. 2006: 43). Two burials were encountered, the grave 

goods from which include cowrie shells and turquoise, agate, shell and lapis 

lazuli beads (Fazeli et al. 2007: 269), thus, providing further evidence of 

existence of long-distance trade networks. Other notable small finds from 

Tepe Pardis include terracotta beads, spindle whorls and slingshots, and clay 

tokens (Fazeli et al. 2007). 

 

 

6.3d. Summary of settlement pattern on the Tehran Plain (Table 6.4) 

 
The archaeological evidence suggests that the Tehran Plain was not occupied 

until the Late Neolithic (ca. 6200-5300 BC), and that during this period the 

settlement distribution was spare, with settlement only attested at Cheshmeh 

Ali, Tepe Pardis and Sadeghabadi. During the Transitional Chalcolithic (ca. 

5300-4300 BC), a dramatic increase in the number of sites occurred, and nine 

sites are known from this period (Parandak, Poeinak, Kara Tepe, Chouqali, 

Mehdikani, Mafinabad, Sadeghabadi, Tepe Pardis, Cheshmeh Ali). The 

growth in site number continued into the Early Chalcolithic (ca. 4300-4000 

BC) for which 16 sites are known (Parandak, Poeinak, Kara Tepe, 

Mortezagerd, Chouqali, Ozbaki, Tepe Siah, Tepe Surk Khub, Ismailabad, 

Barkin, Mehdikhani, Mafinabad, Farakhabad, Sadeghabadi, Tepe Pardis, 

Cheshmeh Ali). There was also continuity in site occupation between these 

two periods, with all of the Transitional Chalcolithic period sites continuing to 
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be occupied during the Early Chalcolithic. During the succeeding period there 

is an abrupt decrease in site number, and only eight sites are reported for the 

Middle Chalcolithic period (ca. 4000-3700 BC) (Mortezagerd, Chouqali, 

Ozbaki, Tepe Chakhmah, Mehdikani, Mafinabad, Sadeghabadi, Tepe Pardis). 

The decline in site numbers continued into the Late Chalcolithic period (ca. 

3700-3000 BC) for which only six sites are known (Chouqali, Maymonabad, 

Ozbaki, Mehdikani, Mafinabad, Tepe Pardis). The evidence, thus, points to a 

cycle of growth and collapse in settlement on the Tehran Plain during the Late 

Neolithic to Late Chalcolithic periods (ca. 6200-3000 BC). After the initial 

occupation of the plain in the Late Neolithic, a period of settlement growth 

ensued in the Transitional and Early Chalcolithic periods. This appears to 

have been a period of relative stability, and all of the settlements that were 

occupied in the Transitional Chalcolithic, continued to be inhabited in the Early 

Chalcolithic. An apparent period of decline follows this, during which the 

number of settlements steady decreased through the Middle to Late 

Chalcolithic periods. The settlements at most sites were generally short-lived, 

with occupation at most sites tending to last no more than one or two cultural 

periods. Only five sites appear to have been longer lived, and these are 

Cheshmeh Ali, Tepe Pardis, Sadeghabadi, Mafinabad and Mehdikhani. Two 

of these sites were associated with springs or water channels (Cheshmeh Ali 

& Mafinabad), and at Tepe Pardis there is evidence of the human 

manipulation of water (Coningham et al. 2006; Gillmore et al. 2007). There 

appears, then, to have been a rather dynamic, shifting pattern of settlement 

and population on the Tehran Plain during the Late Neolithic and Chalcolithic 

periods, which can perhaps be attributed to the braided channel regime that is 

known to have been operating in the region during this period (Gillmore et al. 

2009: 299). This thesis is further supported by the fact that three of the five 

longest-lived settlements on the plain (Cheshmeh Ali, Mafinabad, Tepe 

Pardis), are associated with permanent water sources. 

 
 
6.4. The Qazvin Plain 

 
The Qazvin Plain forms the northwestern part of the Central Plateau, and is 

enclosed to the north by the Alburz Mountains, to the west by the Zagros 
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Mountains, and to the immediate south by the Raymond Mountains; to the 

southeast lies the Dasht-i-Kavir, which is connected to the plain by a valley in 

the Karaj Basin (Malek Shahmirzadi 1977: 462). Since prehistoric times 

downwash from the mountains has led to considerable deposition on the 

plain. Armin Schmidt and Hassan Fazeli (2007: 38-9) report that at the Iron 

Age site of Sagzabad more than five metres of alluvium has been deposited 

since the third millennium BC. 

 
The plain has an average elevation of 1175 metres above sea level, although 

the plain gently slopes from the north and south towards a flat flood plain in 

the centre, and covers an area of 443,200 hectares, of which ca. 310,000 

hectares is cultivable (Malek Shahmirzadi 1977: 16). In the southwest and 

southeast sections, it is divided into two parts by mountains (e.g. Mount 

Raymond & Mount Jaru), creating a larger, wider area to the north; and a 

narrower, geomorphologically more diverse region to the south (ibid.: 18). 

Important trade and communication routes traditionally crossed the Qazvin 

Plain, most prominently the ancient Silk Road from east to west, but also 

north to south links from the Caspian Sea to Rudbar and Manjil (Voigt & 

Dyson 1992: 164).  

 

The plain lies in a semi-steppe/arid zone, and summers are dry and hot, with 

temperatures reaching up to 35ºC, whilst winters are cool, with temperatures 

as low as 2.5ºC, and relatively wet (Malek Shahmirzadi 1977: 32). The 

maximum annual rainfall is reported as 339.1 mm (Ganji 1968: 248), but this 

is misleading as it decreases from north to south. The average annual rainfall 

in the north is over 200 mm, while in comparison, that of the south and 

southeast is less than 120 mm (Dewan & Famouri 1964: 80; Malek 

Shahmirzadi 1977: 48). As the plain is enclosed on three sides by mountain 

ranges, but open to the Dasht-i-Kavir to the east-southeast, most of the time a 

strong current of wind blows across the plain, and the two principle winds (one 

are the Bad-i-Meih, a cold, dry wind from the northwest; and the hot, dry Bad-

i-Raz, which blows from the southeast (Malek Shahmirzadi 1977: 32-3).  
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The vegetation varies according to climate and the texture and organic 

content of the soil (ibid.: 35). Two main soil types dominate the plain, 

scattered patches of fine-textured alluvial soil and ‘Brown Soil’ (Dewan & 

Famouri 1964: 142). Today, when irrigated, the former can sustain extensive 

agriculture, and Malek Shahmirzadi (1977: 29) has suggested that this may 

also have been practiced in prehistoric times. Some dry farming is also 

reported.  

 
 
6.4a. History of archaeological investigation 

 
Archaeological investigations on the Qazvin Plain focusing on the Neolithic 

have been underway since the 1970s (e.g. Negahban 1977; 1979). Yet, 

decades after these first studies, “there is still no evidence for a Mesolithic 

period in this region, nor any new information about the origins of agricultural 

societies” (Fazeli 2001: 1).  

 
 
6.4b. Settlement survey  

 

Under the direction of Hassan Fazeli, in 2001 a five-year archaeological 

excavation and settlement survey was begun, with the objective of 

investigating the socioeconomic development of Neolithic to Bronze Age 

societies on the plain. As part of this project, in 2003 an extensive 

archaeological survey was conducted. Twenty-three new Neolithic, 

Chalcolithic and Bronze Age sites were found (Fig. 6.15), of which two (Tepe 

Chahar Boneh & Ebrahim Abad) were selected for subsequent excavation 

(Fazeli et al. 2009: 1-2). Unfortunately, no further information is presently 

available for any of the other sites. 

 
 
6.4c. Archaeological sites 

 
Zagheh (Transitional Chalcolithic) 

Zagheh lies 10 kilometres north-northwest of the village of Sagzabad, in the 

Bluk-i-Zahra microregion of the southern Qazvin Plain. The region is easily 
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accessible from the south along the western fringe of the desert, and serves 

as a crossroad connecting the south, southwest, northeast and northwest of 

Iran (Malek Shahmirzadi 1977: 463). The only water source in the area today 

is the Hajji Arab, the seasonal floods of which are reported to reach an area a 

few kilometres south of the site (ibid.) Zagheh is an almost circular mound, 

which although only standing one-metre above the modern plain surface, 

contains seven metres of cultural deposits (Neghaban 1977: 34; Schmidt 

2006: 39). It has been badly damaged by villagers carrying soil away to 

cultivate their fields, rainwater and illegal excavations, and in its current state 

measures some 15,000 square metres in extent, including pottery scatters 

(Malek Shahmirzadi 1977: 49). Zagheh was first excavated under the 

direction of E.O. Neghaban in the 1970s, who exposed more than 1350 

square metres, although only 1 deep trench (TTFGX) was dug (Fig. 6.12) 

(Malek Shahmirzadi 1980: 14). In 2001, a further eight trenches were opened 

at the site, under the direction of Hassan Fazeli (Fig. 6.13) (Fazeli et al. 2005). 

 

The dating of Zagheh is controversial. Neghaban originally assigned the site 

to the late seventh millennium-early sixth millennium, on the basis of the 

pottery typology and two 14C dates (pp. 282-3). However, 10 recent AMS 

measurements for the site, made from samples submitted from the 2001 

excavation, repudiates Neghaban’s chronology: 

 

Lab. 
code 

Context 
Sample 
material 

Comm. 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

WK-
1285
4 

Trench A, 
Context 1, 
2 cm 
depth 

Carbon 
particles 

Directly 
sub-
surface  

6154
±49 

52008-
5047 

5222-
4953 

Unreliable Possibly 
disturbed 
&/or 
contamin
ated 

WK-
1285
5 

Trench A, 
Context 7, 
44 cm 
depth 

Carbon 
particles 

Secure 
context 

5489
±45 

4436-
4266 

4449-
4257 

Acceptable Known 
material & 
context 

WK-
1285
6 

Trench A, 
Context 
11, 50 cm 
depth 

Carbon 
particles 

Secure 
context 

5936
±69 

4901-
4723 

5001-
4619 

Acceptable Known 
material & 
context 

WK-
1285
7 

Tr. A, 
Context 
16, 95 cm 
depth 

Carbon 
particles 

Secure 
context: 
sand floor 

6152
±46 

5207-
5046 

5220-
4961 

Acceptable Known 
material & 
context 
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WK-
1285
8 

Tr. A, 
Context 
17, 111 
cm depth 

Carbon 
particles  

Secure 
context: 
oven 

6124
±46 

5207-
4991 

5211-
4946 

Acceptable Known 
material & 
context 

WK-
1285
9 

Tr. A, 
Context 
35 cm 
depth 

Carbon 
particles  

Secure 
context: 
ash layer 

5991
±65 

4956-
4794 

5043-
4722 

Acceptable Known 
material & 
context 

WK-
1286
0 

Tr. A, 
Context 
38, 170 
cm depth 

Carbon 
particles  

Secure 
context: 
ash layer 

6233
±48 

5300-
5079 

5311-
5056 

Acceptable Known 
material & 
context 

WK-
1286
1 

Tr. A, 
Context 
45, 255 
cm depth 

Carbon 
particles 

Secure 
context: 
ash layer 
under 
collapsed 
wall 

6169
±78 

5217-
5011 

5311-
4912 

Acceptable Known 
material & 
context 

WK-
1286
2 

Tr. A, C. 
45, 305 
cm depth 

Carbon 
particles 

Security 
of context 
equivocal: 
unsealed 
ash pit 

6140
±50 

5207-
5006 

5217-
4947 

Quest. Possibly 
contamin
ated 

WK-
1286
3 

Tr. A, C. 
47, 4 cm 
above 
virgin soil 

Carbon 
particles 

Secure 
context: 
large 
broken 
storage 
jar 

6295
±47 

5314-
5223 

5375-
5078 

Acceptable Known 
material & 
context 

 
(Fazeli et al. 2005: table 13.) 

 

The measurements were made by New Zealand’s Waikato University. There 

are some issues with the measurements. The security of the context from 

which WK-1284 was extracted is equivocal as the sample is from directly 

subsurface, and given the early age of the measurement compared to WK-

1285 and -1286, which were taken from contexts beneath it, it should be 

treated as unreliable. The security of WK-12862 is also questionable, as the 

sample was taken from an unsealed ash pit. The remainder of the dates are 

reported to come to be from secure contexts (Fazeli et al. 2005: 46), and are 

of acceptable hygiene. Collectively, they suggest that Zagheh was settled 

sometime between 5370-5070 BC, and was abandoned around 4460-4240 

BC (ibid.: 20), placing the site firmly in the Transitional Chalcolithic period. 

 

The botanical remains have yet to be published. Many of the faunal remains 

were fragmented, which rendered identification difficult. Of the bones that 

could be assigned to species, the majority (70%) are from domesticated 
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sheep (Ovis aeries) and goat (Capra hircus), which were kept in similar 

numbers (Young & Fazeli 2008: 159–60). The herd demography (nearly 40 

per cent of the caprines survived for 4 or more years), suggests a diversified 

herd management strategy, which possibly utilized milk, meat and wool (ibid.: 

159-60, 166). Bovines (6%) and wild caprines (1%) were the next most 

significant types in the faunal assemblage; and gazelle (Gazella 

subguttorods), pig (Sis sp.) (possibly domesticated) and deer (Cervus sp.) are 

present in small amounts. In total wild types account for 20 per cent of the 

assemblage, indicating that they too were an important component of the diet 

(ibid.: 160). Young and Fazeli suggest that the inhabitants of Zagheh probably 

practiced “small scale, mixed farming keeping a range of animals in order to 

spread risk, management and so forth, and regular hunting to supplement the 

domesticates occurred” (ibid.: 166). 

 

Both domestic and craft/industrial areas were identified. Domestic areas 

contained mudbrick walls, floors, ovens, pits, animal bones, stone tools and 

ceramics; while the latter were distinguished by the presence of kilns  

associated with a highest concentration of sherds (31.8% of the total 

assemblage), but no ovens, walls or floors (Young & Fazeli 2008: 155–6). Of 

particular note is the ‘Painted Building’, an L-shaped building, which is larger 

than the others, has walls decorated with red and black motifs, and was found 

to contain thirty-nine clay figurines (Negahban 1974: pl. II-III, VI-VIII). 

 

Fazeli (ibid.: 156; Fazeli et al. 2009) suggests that it may have had a special 

function, perhaps serving as a temple or other public building. In contexts 

related to the pottery kilns, occur fragments of finished, unfinished, and 

deformed figurines, and unworked lumps for pottery production. Textile 

production is evidenced by the presence of hundreds of spindle whorls 

(Matthews & Fazeli 2004: 63), and a number of flint cores showing signs of 

heating suggests that lithic production may also have taken place here 

(Young & Fazeli 2008: 156). 

 

Pottery is the most abundant type of artefact, and is broadly divided into 

‘Zagheh’ and ‘Cheshmeh Ali’ wares (Malek Shahmirzadi 1977; Fazeli et al. 
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2005). The Zagheh wares are divided into three types, ‘Simple’, ‘Painted’ and 

‘Crusted’,  of which ‘Simple’ Ware was the most abundant. It is characterized 

by a coarse sand, sand and straw, or organic temper, poorly levigated clay, 

and surfaces which were either smoothed with a wet hand or washed (Fazeli 

et al. 2005: 19). Concave-based bowls with tapered rims are the most 

common form (Malek Shahmirzadi 1977: 404). ‘Painted’ Ware was very 

similar, but with the addition of geometric motifs in red paint, and ‘Crusted’ 

Ware is thick walled, with an exterior crusted with fine grains of sand and 

highly burnished insides. Signs of scorching on some of the outer surfaces, 

suggests that the ware was probably used for cooking, a conclusion 

supported by the use of a similar ware region for baking today (Fazeli et al. 

2005: 26). ‘Cheshmeh Ali ‘Ware is technologically more advanced, and the 

painted decoration is typically more complex (Malek Shahmirzadi 1977: 

18104, 279; Fazeli et al. 2005: 26). A greater variety of overall forms exist, of 

which bowls with oblique or concave walls, and concave or trumpet vases 

were particularly common (Malek Shahmirzadi 1977: 404).  

 

Based on Neghaban’s investigations, Malek Shahmirzadi (1977: 404) 

proposed that the lower levels at Zagheh contained only ‘Zagheh’ wares, and 

he assigned these levels to the ‘Archaic Plateau’ or Neolithic period, and that 

the upper levels, which were characterized by both ‘Zagheh’ and ‘Cheshmeh 

Ali’ ware, belonged to the ‘Early Plateau’ or Transitional Chalcolithic period. 

However, the results from the more recent excavation refute Shahmirzadi’s 

proposed chronology, by evidencing the coexistence of both wares from the 

earliest levels (Fazeli 3002: 27, 41-2). Indeed, Fazeli found there to be little 

change in the technological production of the ceramics and their forms 

throughout the occupational sequence (Fazeli et al. 2005: 43). This indicates 

that the technology for the production of both types of wares were known from 

the beginning of the settlement, and that rather than representing 

technologically development, as originally advocated by Majidzadeh (1981: 

141), the production of the two different wares was most likely related to 

function (Fazeli et al. 2005: 43). 
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The figurines recovered from the Painted Building include both realistic 

portrayals of seated females with heavy legs and stalk-like upper bodies 

(some of which appear to be pregnant); and more stylized forms with 

fingernail impressed bodies, similar to those reported from Chogha Sefid 

(Hole 1977: 299; Voigt & Dyson 1992: 165). Other small artefacts of note are 

clay, stone and bone ornaments, copper pins, awls and palettes, which were 

all recovered from grave contexts. Non-local materials are represented by 

lapis lazuli, turquoise and shell. The geographic distribution of lapis lazuli in 

Iran has been poorly studied, and the origin of that used in the Central 

Plateau is unknown, although Fazeli (2005: 16) suggests it may have been 

imported from eastern Iran. The turquoise was probably sourced from 

Kerman, and the shell from the Persian Gulf or Caspian Sea (Fazeli 2001: 

216-7). Zagheh, then, was evidently part of an active, wide-reaching trade, 

and presumably communication, network. In terms of funerary practice graves 

were located within the village (Malek Shahmirzadi 1988: 10-12). Infants of 

less than three years were buried under the floors of houses, with very small 

infants sometimes placed in holes dug into the walls, and no grave goods 

accompanied these burials. Adults were buried in open areas such as 

courtyards, or entirely outside living areas in alleys or other open sites. The 

bodies were covered in red ochre, and many of the graves were topped with 

piles of elongated mudbricks. A few examples had low brick walls aligned in 

the same way as the bodies beneath, which Malek Shahmirzadi (1988: 12) 

interpreted as early forms of tomb construction. 

 

Tepe Chahar Boneh (Late Neolithic) 

Chahar Boneh (Fig. 6.18) was identified during settlement survey in 2003, and 

excavated in 2006 (Fazeli et al. 2004; 2009). It covers an area of 2000 square 

metres (or 4000 square metres if the surrounding scatters are included), and 

lies in a small depression at an elevation of 1279 metres, some 3.3 kilometres 

southeast of Zagheh (Fazeli et al. 2009: 2). Before the site was excavated it 

was tentatively assigned an Early Neolithic (ca. 6500-4500 BC) date (Fazeli et 

al. 2009: 7), but excavation and 14C dating has proven the site to be of solely 

Late Neolithic date. 
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Lab. 
No. 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

OxA-
17744 

Tr. IV, Context 
403, 64 cm 
depth 

Charcoal 6835
±37 

5740-
5672 

5792-
5642 

Reliable Known 
material & 
context 

OxA-
17704 

Tr. V, Context 
508, 64 cm 
depth 

Charcoal 6210
±35 

5222-
5071 

5296-
5056 

Reliable Known 
material & 
context 

OxA-
17745 

Tr. V, Context 
508, 64 cm 
depth 

Charcoal 6345
±34 

5371-
5299 

5465-
5222 

Reliable Known 
material & 
context 

OxA-
17746  

Tr. V, Context 
508, 64 cm 
depth 

Charcoal 6241
±34 

5303-
5028 

5380-
5072 

Reliable Known 
material & 
context 

OxA-
17752 

Tr. VIII, 
Context 702, 
82 cm depth 

Charcoal 6289
±37 

5307-
5226 

5353-
5211 

Reliable Known 
material & 
context 

OxA-
17747 

Tr. V, Context 
10, 140 cm 
depth 

Charcoal 6267
±34 

5229-
5221 

5321-
5080 

Reliable Known 
material & 
context 

OxA-
17748 

Tr. V, Context 
510, 140 cm 
depth 

Charcoal 6311
±36 

5322-
5226 

5362-
5217 

Reliable Known 
material & 
context 

OxA-
17749 

Tr. V, Context 
512, 140 cm 
depth 

Charcoal 6308
±35 

5320-
5226 

5358-
5217 

Reliable Known 
material & 
context 

OxA-
17750 

Tr. V, Context 
512, 191 cm 
depth 

Charcoal 6355
±35 

5374-
5302 

5467-
5277 

Reliable Known 
material & 
context 

OxA-
17742 

Tr. III, Context 
306, 246 cm 
depth  

Charcoal 7123
±35 

6031-
5930 

6063-
5919 

Reliable Known 
material & 
context 

OxA-
17743 

Tr. III, Context 
306, 246 cm 
depth  

Charcoal 7035
±36 

5983-
5892 

5998-
5843 

Reliable Known 
material & 
context 

 
 (Fazeli et al. 2009: tables 1 & 2) 

 

The 14C measurements from Chahar Boneh can be considered reliable 

enough to be used without further question. The dates are all from charcoal 

samples, from well-recorded contexts, and have errors of below 40 14C years. 

The samples from virgin soil in Trench III (OxA-17742 & 017743) provide 

dates of 6063–5919 BC and 5998–5843 respectively, placing Chahar Boneh 

firmly in the Late Neolithic, an assignment which is supported by the ceramic 

typology (Fazeli et al. 2009: 11).  

 

A small number of seeds and charcoal residue were recovered. Domesticates 

include Triticum-dicoccum, Triticum free threshing, Hordeum sp., six-row 

barley and small legumes (Fazeli et al. 2009: 15). Other cereals were 
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obtained, but have been too badly damaged by burning and breaking to 

identify. A larger amount of wild plants were recorded, and in total with 93 

species identified including: Gramineae, Chenopodiaceae, large Compositea, 

Crucifera and Aegilops (ibid.: 16). In terms of the faunal remains, the bones 

were quite fragmented, and only 10 per cent were identifiable to species. 

There is also a bias towards larger bones, as systematic sieving was not 

implemented (Fazeli et al. 2009: 17). Caprines are the most numerous 

species represented, accounting for 59 per cent of the identified bones, while 

wild cattle, equid, gazelle, boar and goat collectively account for the remaining 

35 per cent. It appears, then, that the inhabitants of Chahar Boneh exploited a 

range of different animal types for economic purposes, although the limited 

amount of identified bone makes it difficult to make anything other than 

tentative conclusions.  

 

Occupation was primarily represented by a series of cultural contexts 

interspersed with natural deposit, and no architectural remains and very few 

coherent contexts were defined (Fazeli et al. 2009: 2). In terms of artefacts, 

only pottery, lithics and animal bones were recovered. The pottery is 

characterized by ‘Simple Buff’ and ‘Painted Buff’ wares, both of which are 

handmade, chaff tempered and covered with a fine slip (Fazeli et al. 2009: 

11). The vessels are generally coarse and thick, although some medium and 

fine wares are present, and there is a general lack of consistency in form. 

Painted decoration was generally applied to the interior surfaces, and motifs 

include triangles, lozenges, cross hatchings, basket impressions and 

checkers. The chipped stone industry is represented by blades, debitage and 

cores, with a notable lack of agricultural tools (Fazeli et al. 2009: 3). This, in 

conjunction with and the absence of architectural phases, the limited evidence 

of occupation at the site, the small amount of cereal and food plant remains 

and the predominance of caprines in the faunal remains, suggests that 

Chahar Boneh was a short-lived, seasonal settlement, that was probably used 

by pastoralists (ibid.: 9, 15). 
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Tepe Ebrahim Abad (Late Neolithic–Transitional Chalcolithic) 

Tepe Ebrahim Abad (Fig. 6.19) lies close to the foothills of the Alburz 

Mountains, 20 kilometres southeast of the modern town of Qazvin, and is 

surrounded by agricultural fields. It measures 240 by 250 metres in area, 

stands 8 metres above the modern plain surface, and contains 5 metres of 

archaeological deposits (Fazeli et al. 2009: 3). It was identified by survey in 

2003, and excavated in 2006 under the direction of Hassan Fazeli (Fazeli et 

al. 2004, 2009). It was originally anticipated that the site would provide 

evidence of the Early Neolithic (ca. 6500-4500), but excavation and 14C dating 

place the site firmly in the Late Neolithic–Transitional Chalcolithic (Fazeli et al. 

2009: 7).  

 

Lab. 
code 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

OxA-
17602 

Tr. II, Context 
214, 304 cm 
depth 

Charcoal 6265±
33 

5299-
5220 

5321-
5080 

Reliable Known 
mat. & 
context 

OxA-
17604 

Tr. II, Context 
238, 384 cm 
depth 

Charcoal 6266±
33 

5299-
5220 

5321-
5080 

Reliable Known 
mat. & 
context 

OxA-
17605 

Tr. II, Context 
239, 413 cm 
depth 

Charcoal 6291±
33 

5308-
5226 

5327-
5212 

Reliable Known 
mat. & 
context 

OxA-
17606 

Tr. II, Context 
241, 434 cm 
depth 

Charcoal 6335±
35 

5366-
5231 

5463-
5219 

Reliable Known 
mat. & 
context 

OxA-
17603 

Tr. II, Context 
244, 486 cm 
depth 

Charcoal 6493±
34 

5463-
5219 

5519-
5372 

Reliable Known 
mat. & 
context 

OxA-
17607 

Tr. II, Context 
266, 722 cm 
depth 

Charcoal 6579±
33 

5548-
5486 

5613-
5479 

Reliable Known 
mat. & 
context 

OxA-
17736 

Tr. III, Context 
325, 257 cm 
depth 

Charcoal 6176±
35 

5208-
5068 

5221-
5011 

Reliable Known 
mat. & 
context 

OxA-
17737 

Tr. III, Context 
341, 323 cm 
depth 

Charcoal 6191±
35 

5221-
5011 

5291-
5032 

Reliable Known 
mat. & 
context 

OxA-
17738 

Tr. III, 
Context. 355, 
533 cm depth 

Charcoal 6201±
34 

5217-
5073 

5293-
5051 

Reliable Known 
mat. & 
context 

 
(Fazeli et al. 2009: table 3) 
 

Nine charcoal samples were submitted to The Oxford Accelerator Unit for 

AMS measurement. The samples are from secure, well-recorded contexts, 

and the measurements have associated errors of less than 40 14C years and 
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are in general stratigraphic agreement. The dates, thus, are reliable enough to 

be used without further questioning, and firmly place Ebrahim Abad in the 

Late Neolithic (ca. 6200-5500 BC) and Transitional Chalcolithic (ca. 5500-

4300 BC) periods, a conclusion supported by the relative chronology of the 

site (Fazeli et al. 2009). 

 

A great number of domesticated plant remains were recovered, and identified 

species include Triticum dicoccum, Triticum free threshing, hulled Hordeum, 

Hordeum vulgare, Triticum sp., lens, Vicia, Pisum, Triticum hexaploid rachis, 

Hordeum vulgare rachis, Hordeum sp. rachis, small legume, Gramineae, 

Chenopodiaceae, large Compositea, Cyperaceae, medicago, fumaria, 

Rubiaceae, lithospermum, Vicia lathyroides, polygonum sp., as well as many 

small legumes (Fazeli et al. 2009: 15). A transition in plant type occurs during 

the occupation of Ebrahim Abad, and while the lower levels are dominated by 

wild species, in the upper levels domesticated species outnumber those of 

wild plants, attesting to an increasing reliance on subsistence agriculture 

(ibid.: 16). The faunal remains were very fragmented, and it was only possible 

to identify nine per cent of the bones to species. Of these 74 per cent were 

attributable to domesticated caprines, 12 per cent to domesticated cattle, and 

10 per cent equids (Fazeli et al. 2009: 17). The low number of wild types in 

conjunction with the abundance of caprines led Fazeli et al. (2009: 18) to 

suggest that Ebrahim Abad was a relatively specialized pastoral site, but the 

faunal assemblage is too small to make a firm interpretation.  

 

Four distinct architectural phases of mudbrick and pisé were recorded (Fazeli 

et al. 2009: 4). One living floor was found paved with 1641 sherds, while 

another  contained a large amount of dung from sheep and goats, as well as 

straw and grass, suggesting the area was used for housing animals (ibid.: 5).  

The ceramics can be divided into five Late Neolithic (‘Simple Buff’, ‘Simple 

Red’, ‘Ebrahim Abad Painted’, ‘Black-on-Red’, Sialk I) and three Transitional 

Chalcolithic (‘Cheshmeh Ali’, ‘Zagheh Crusted’, ‘Zagheh Painted’) wares 

(Fazeli et al. 2009: 12). The Sialk I ware is of particular note, for although it is 

known to be regionally distributed across the Kashan and Tehran Plains, it 

has not previously been recorded on the Qazvin Plain (ibid.: 3). Other small 
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finds include awls, sling stones, beads, stone vessels, spindle whorls and 

softly-fired animal figurines, and one burial of an adult laid in a foetal position, 

with the hands raised in front of the face (ibid.: 5-6). 

 

Tepe Cheshmeh Bolbol (Transitional Chalcolithic) 

Cheshmeh Bolbol lies five kilometres south of Zagheh. It has not been 

excavated, but Neghaban during his 1970 field season on the Qazvin Plain 

collected a sample of sherds from the site. The sherds have been analysed by 

Malek Shahmirzadi, who reported them to be “exactly similar” (1977: 423) to 

the Transitional Chalcolithic Ware at Zagheh. 

 

Ismailabad (Late Chalcolithic) 

Ismailabad is located in the hilly flanks of the southern Alburz Mountains. 

Although much later than the other sites reviewed in this section, it is 

included, as to date, it represents the only recorded Chalcolithic site from the 

foothills, rather than plain. It is a tepe site, standing 10- metres in height, and 

covering an area of approximately 300 square metres, which contains 4.2 

metres of cultural deposits. It was excavated in 2003 under the direction of 

Hassan Fazeli (Fazeli et al. 2007). No 14C dates are available for the site, and 

it is classified as Late Chalcolithic (ca. 3500-3000 BC) purely on the basis of 

the ceramic typology 

 

The majority of the faunal remains were fragmented, rendering identification 

difficult. Of the bones that can be assigned to species, the majority are from 

domesticated caprines (60%), with sheep and goat represented in equal 

numbers (Young & Fazeli 2008: 159–60). The herd demography suggests a 

specialized herd management strategy directed towards meat production, with 

few of the animals lasting beyond four years in age (ibid.: 166). Bovines and 

wild caprines were the next most significant types, with gazelle (Gazella 

subguttorods), possibly domesticated pig (Sis sp.), and deer (Cervus sp.) 

present in smaller amounts. Collectively, the percentage of wild types is 19 

per cent, implying that they were an important component of the diet, and that 

a diversity of species was exploited (ibid.: 160).  
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Sixteen archaeological contexts are identified. No mudbrick or pisé 

architecture is apparent, and settlement is represented by the remnants of 

stone walls, which may have been parts of circular foundations for temporary 

structures (Young & Fazeli 2008: 157, 168). Other features include stone 

walls, pits and ovens or hearths (Fazeli & Ajourli 2007).  

 
The pottery assemblage is described as “characteristic Late Chalcolithic” 

(Young & Fazeli 2008: 157). Intriguingly, one of the main identified ceramic 

types is ‘Burnished Grey’ Ware, which is usually associated with the earliest 

Kura-Araxes Transcausians assemblages to the northeast, rather than with 

other Chalcolithic ceramics on the Central Plateau (Young & Fazeli 2008: 

157). The primary economic base of Kura-Araxes Transcausians is mobile 

pastoralism, and this affinity in economy and pottery type between them and 

the inhabitants of Ismailabad, suggests that there was contact between them. 

The majority of the lithics are flakes and blades, which were primarily used for 

non-agricultural tasks such as butchering; agricultural tools are noticeably 

lacking (ibid.). 

 
 
6.4d. Summary of settlement distribution on the Qazvin Plain (Table 6.5) 

 

Similar to the situation on the Tehran Plain, no Early or Middle Neolithic sites 

are known on the Qazvin Plain, and settlement does not appear until the Late 

Neolithic, where it is represented at the sites of Chahar Boneh and Ebrahim 

Abad. However, unlike on the Tehran Plain, in the ensuing Transitional 

Chalcolithic, there is no apparent growth in settlement numbers, and only 

three sites are known from this period (Ebrahim Abad, Cheshmeh Bolbol & 

Zagheh). Of these only Zagheh remains occupied during the Early 

Chalcolithic, following which there is a hiatus in settlement, with no further 

settlements known in the region until the Late Chalcolithic period, when 

Ghabristan and Ismailabad were founded. The prehistoric sites on the Qazvin 

Plain are not as well published as those on the Tehran Plain, and this may 

have contributed to creating the apparent differences in the occupation 

sequences of the two regions. However, using the current information 

available, it would appear that the Qazvin Plain was much more sparsely 
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occupied in the Chalcolithic than the Tehran, particularly during the Middle 

Chalcolithic, for which no settlements are known.  

 

 

6.5. The Kashan Plain 

 

The Kashan Plain, which is located to the west of the Dasht-e Kavir, is 

comprised of three major environmental zones: the Markazi Mountains to the 

west, the plain proper, and the desert. The Markazi Mountains are effectively 

the eastern fringes of the larger Zagros range. Reaching a maximum 

elevation of 3900 metres above sea level, they form the western boundary of 

the plain. They are rich in mineral resources, including copper, which have 

been exploited since prehistory (Danti 2006: 68).  

 

The plain itself is formed by a series of alluvial fans, which are fed by several 

wadi systems that drain the easternmost range of the Markazi Mountains 

(Tenberg 2003: 9; Danti 2006: 72). The arid climate of the plain is greatly 

affected by the close proximity of the Dasht-e Kavir. Temperatures can range 

from -3 ºC to 40 ºC and it has an annual rainfall of up to ca. 230-300 mm per 

year, which is largely confined to the winter and early spring (Kourampas et 

al. in press). Today, cultivation in the region has to be aided by qanat systems 

and electric pumps. Sedimentation is a major issue, and survey work has 

shown that some 7 metres of sediments have been deposited over the last 

6500 years (Malek Shahmirzadi 2004: 14). The principal city on the plain 

today is Kashan, which is one of a series of oasis cities along the western 

edge of the Dasht-i Kavir, and also lies on a major trade route running from 

Qazvin in the northwest to Kirman in the southeast (Voigt & Dyson 1992: 

165). 

 
The desert proper, lies at altitude of ca. 1000 metres above sea level, and is 

characterized by mountain ridges, fans and marshy basins of mud and salt. Its 

lack of water, swift evaporation and high temperature extremes make it 

unsuitable for cultivation. Summers are scorching, with temperatures in July 

and August reaching 45–50ºC in the shade, and winters are harsh 
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(Ghirshman 1938: 4). Precipitation is relatively rare, and as a result the 

vegetation coverage is poor.  

 
 
6.5a. History of archaeological investigation 

 

Since the turn of the last century, archaeological research on the Kashan 

Plain has focused on Tepe Sialk. Tepe Sialk was first excavated by Roland 

Ghirshman, who directed excavations at the site for four seasons between 

1933 and 1937. He published his findings in two monumental volumes 

(Ghirshman 1938), and his chronology for the site has come to be used to 

define that of the Central Plateau at large (e.g. McCown 1942b; 1954; 

Majizadeh 1976; Voigt & Dyson 1992). Sialk was then largely abandoned until 

the 2000s, when investigation was renewed at the site by The Sialk 

Reconsideration Project, whose remit also included settlement survey in the 

surrounding plain and foothills (Malek Shahmirzadi 2002; 2003; 2004; 2006a; 

2006b). The most recent archaeological investigations on the Kashan Plain 

have been conducted by a joint Irano-British team, of which I was a member. 

 
 
6.5b. Settlement survey 

 
Archaeological research in the Kashan Plain has focused on Tepe Sialk, and 

little is known about prehistoric settlement elsewhere on the plain. To date, no 

Early Neolithic (8000-6500 BC) sites have been recorded, and the earliest 

evidence of prehistoric occupation comes from the Mid-Late Neolithic (ca. 

6500-5500 BC) levels at Sialk North. To test for prehistoric occupation 

elsewhere on the Kashan Plain, in 2009 I piloted a settlement survey of the 

region. The Kashan Plain is aggrading, and in many places all but the largest 

of archaeological sites have been buried (Brookes et al. 1982; Gillmore et al. 

2007; 2009). To determine whether the absence of Early Neolithic sites, along 

with the absence of small-scale sites from other periods, was a function of 

alluvial deposition, or whether settlement was confined to larger sites from the 

Mid Neolithic period (ca. 6500 BC) onwards, qanat  survey, similar to that 
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successfully employed by Coningham et al. (2004; 2006) to identify prehistoric 

sites on the Tehran Plain, was implemented. 

 

Five days of qanat survey were conducted. Although I had originally planned 

to survey for 10 days, political circumstances meant that the period had to be 

curtailed. The aim of the survey was to survey qanat lines in a range of 

different geographical environments, to establish where archaeological sites 

were concentrated. Following Coningham et al. (2006: 55), sites were defined 

by the presence of a feature, a single lithic find spot, a ceramic scatter of 

more than five-per-square metre or fire-cracked rocks, and were recorded 

using handheld GPS (Global Positioning System) unit, photographed and 

sketched. Samples of ceramics and lithics were collected and catalogued at 

the project base in Kashan for subsequent analysis by specialists. In addition 

to features and finds relevant to each site, information was also recorded on 

the topography, the type of terrain, the availability of local water sources, land 

use and any potential or actual threats to the site. A total of 18.5 kilometres 

was walked, and 15 sites recorded, of which 2 were prehistoric (Table 6.6). Of 

these, one (DK005) was previously unknown. Compared to the success of 

Coningham et al.’s (2004; 2006) qanat survey on the Tehran Plain, relatively 

few prehistoric sites were identified on the Kashan Plain. In part, this is 

probably due to the short period of survey. It may also reflect modern use 

patterns, as the majority of the area surveyed on the Kashan Plain was 

currently being used for agricultural purposes, and due to the modern use of 

electric pumps for irrigation it was found that many of the qanat lines had 

been abandoned or in-filled.  

 

 

Qomrud survey, Qom 

 

Mir Abedin Kaboli, by permission of ICAR, between 1988 and 1995, 

undertook a survey of the valley of the Qom Rud.  Although technically not on 

the Kashan Plain, the results of his survey are included in this section, due to 

the close proximity of the survey area to the Kashan Plain. (The same 

reasoning also applies to the inclusion of the Arisman survey, the results of 
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which are given below.) In total, Kabouli recorded 93 archaeological sites, 

including 2 Palaeolithic, 6 Neolithic and 15 Chalcolithic period sites. 

Settlement continuity in the region seems to have been extremely low. For 

example, only three Neolithic sites continued to be occupied in to the 

Chalcolithic (Azamoush & Helwing 2005: 197). Excavation at the major 

prehistoric site in the area, Qara Tappe, uncovered a sequence of domestic 

architecture comprised of pisé walls, associated with Transitional Chalcolithic 

‘Cheshmeh Ali’ Ware (ibid.).  

 
 
Arismān survey, Esfahan 

 

One season of settlement survey was conducted in the Arismān region, in 

relation to the Joint Iranian-German excavation at Alismān. In total, 38 

archaeological sites were registered, including a group of 4 small Neolithic 

mounds, located between 1-2 kilometres from each other along a small 

stream. The two earliest sites contained monochrome pottery and a flake 

industry that seems to correlate with Tepe Shurabad in the vicinity of Sialk, 

while the third yielded a few pottery fragments that seem to belong to a 

tradition of biconical vessels, such as those known from Fars, and the fourth 

had pottery of a Sialk II-lie type (Azamoush &Helwing 2005: 199). Azamoush 

and Helwing suggest that the widespread distribution pattern of the sites may 

be due to the continuous shifting of settlement along the stream (ibid.).  

 
 
6.5c. Archaeological sites 

 
Tepe Sialk (Late Neolithic–Early Chalcolithic) 

Tepe Sialk (Fig. 6.20-6.22) is located in the outer suburbs of Kashan, and 

consists of a North and South Mound situated several hundred metres apart. 

It lies within the eastern margins of a constellation of prehistoric settlements 

that extended from the domestication centres of Upper Mesopotamia and the 

Zagros Mountains, to the salt desert of the Iranian Plateau and the southern 

shores of the Caspian Sea (Kourampas et al. in press). Until about 30 years 

ago, Sialk was located in a rural agricultural field area, around 4 kilometres 
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south of Kashan. Today, however, due to the recent rapid growth of Kashan, it 

lies within the main city, and is threatened by urban encroachment. The North 

Mound, which measures ca. 2.5 hectares, is the older, and emerged in the 

Late Neolithic, between ca. 6000 BC and 5700 BC, and was abandoned at 

the beginning of the Chalcolithic period (ca. 4900 BC) (Kourampas et al. in 

press).  After an apparent occupation hiatus of 400-600 years, the larger (ca. 

4.5 hectares) site of Sialk South emerged, and continued to be occupied 

throughout the Chalcolithic, Bronze Age and Iron Age period. 

 

As a result of the decades of neglect that followed Ghirshman’s excavations in 

the 1930s, Sialk has been badly damaged, and until the intervention of the 

ICHTO in 2002, the area was used as a dumping ground for domestic waste 

and construction garbage, the surfaces of the mounds were used for 

motorcycling, and in order to build a football field for local residents a vast 

area of the southeastern part of the South Mound had been levelled by 

bulldozers (Malek Shahmirzadi 2006b: 17). Indeed, despite the recent 

recognition of the South Mound as a national heritage site, both mounds are 

still threatened by illegal constructions and excavations (Malek Shahmirzadi 

2006b: 27; http://www.cais-soas.com/News/2006/July2006/25-07.htm). 

 

Sialk’s setting is liminal. To the south lies a gravel fan, supporting an even 

spread of vegetation of dwarf shrubs, which gradually merges into the foothills 

of the Markazi Mountains; while to the north lies a zone of sand dunes, 

characterized by psammophilous taxa (e.g. Calligonum & Haloxylon), that 

form part of the extensive desert plain that links the Zagros highlands to the 

west with the Central Asian steppe to the east (Tenberg 2003: 9; Kourampas 

et al. in press). Geomorphological study has revealed the existence of a relic 

palaeochannel, lying between the North and South Mounds, which would 

have probably supported a gallery forest, with hygrophilous trees (e.g. 

tamarisk, poplar, willow), and palaeoenvironmental evidence suggests the 

environment around Sialk 6000 years ago, would have been much greener 

and wetter than today (Malek Shahmirzadi 2003: 7, 9; Tenberg 2003: 9; 

Kourampas et al. in press). 
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Ghirshman’s original excavations opened three trenches on Sialk North 

(Operations I, II & III), of which Operation I, measuring 15 metres by 10 

metres, was the largest (Fig. 6.23) (Ghirshman 1938: 9). Based on his 

findings from these three trenches, Ghirshman divided the occupation of the 

North Mound into two phases: Sialk Period I1-5 (Late Neolithic) and Period 

II1-3 (Transitional Chalcolithic), which have become paradigmatic in Iranian 

prehistory. Between 2002 and 2007, the Sialk Reconsideration Project 

opened three trenches on the North Mound: Test Trench B, a five metre by 

three metre trench, the location of which is unclear; a stratigraphic section cut 

into the southeast corner of Ghirshman’s Operation I; and a section on the 

‘pinnacle’, which reputedly traced a mudbrick fortification wall (Malek 

Shahmirzadi 2006b). Commencing in 2008, the most recent archaeological 

investigations at Sialk, a joint Irano-British project, of which I was a member, 

cut back a section into Ghirshman’s Operation II (Fig. 24) in order to establish 

a relative and absolute chronology for the site; and opened a 10 metre by 10 

metre horizontal trench in order to sample the structural and architectural 

sequence of the deposits. 

 

The Irano-British project (2009) collected charcoal samples from Trench V 

and VI on the North Mound, and Trench B on the periphery of the North 

Mound, which Trench VI; 3 Trench B), which they submitted for AMS 

measurement. 

 

Lab. 
code 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

n.d. Tr. V, Lyr 
5195 

Charcoal 6185
±33 

5212-
5072 

5282-
5026 

Unreliable No lab. 
code 

OxA-
22347 

Tr. V, Lyr 
5127, 
SKZ 5114 

Charcoal 6263
±33 

5298-
5220 

5320-
5079 

Reliable Known 
material & 
context 

OxA-
22505 

Tr. V, Lyr 
5123, 
SKZ 5110 

Charcoal 6149
±34 

5207-
5041 

5211-
5003 

Reliable Known 
material & 
context 

OxA-
22504 

Tr. V, Lyr 
5105, 
SKZ 5104 

Charcoal 6185
±33 

5212-
5072 

5283-
5026 

Reliable Known 
material & 
context 

OxA-
22503 

Tr. V, Lyr 
5095, 
SKZ 5093 

Charcoal 6251
±35 

5298-
5214 

5314-
5076 

Reliable Known 
material & 
context 

n.d. Tr. V, Lyr Charcoal 6256 5298- 5316- Unreliable Known 
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5089 ±31 5216 5078 
(95.3%) 

material & 
context 

OxA-
22502 

Tr. V, Lyr 
5087, 
SKZ 5082 

Charcoal 6364
±35 

5461-
5306 

5470-
5231 

Reliable Known 
material & 
context 

OxA-
22501 

Tr. V, Lyr 
5085. 
SKZ 5080 

Charcoal 6141
±32 

5207-
5017 

5210-
5000 

Reliable Known 
material & 
context 

OxA-
22500 

Tr. V, Lyr 
5080, 
SKZ 5072 

Charcoal 6163
±33 

5207-
5056 

5215-
5011 

Reliable Known 
material & 
context 

n.d. Tr. V, Lyr 
5078 

Charcoal 6364
±35 

5461-
5306 

5470-
5231 

Unreliable No lab. 
code 

OxA-
22499 

Tr. V, Lyr 
5073, 
SKZ 5073 

Charcoal 6179
±34 

5209-
5069 

5221-
5019 

Reliable Known 
material & 
context 

OxA-
22498 

Tr. V, Lyr 
5051, 
SKZ 5061 

Charcoal 6188
±34 

5212-
5071 

5286-
5029 

Reliable Known 
material & 
context 

OxA-
22497 

Tr. V, Lyr 
5046, 
SKZ 5042 

Charcoal 6201
±31 

5216-
5075 

5292-
5052 

Reliable Known 
material & 
context 

OxA-
22496 

Tr. V, Lyr 
5037, 
SKZ 5037 
(508) 

Charcoal 6191
±33 

5213-
5072 

5289-
5035 

Reliable Known 
material & 
context 

OxA-
22495 

Tr. V, Lyr 
5033, 
SKZ 5046 

Charcoal 6112
±31 

5201-
4986 

5208-
4945 

Reliable Known 
material & 
context 

OxA-
22494 

Tr. V, Lyr 
5026, 
SKZ 5033 

Charcoal 5984
±34 

4932-
4808 

4982-
4786 

Reliable Known 
material & 
context 

n.d. Tr. VI, Lyr 
6038 

Charcoal 6830
±34 

5735-
5672 

5774-
5642 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6037 

Charcoal 6828
±32 

5733-
5673 

5764-
5642 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6035 

Charcoal 6925
±40 

5841-
5747 

5894-
5725 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6031 

Charcoal 6417
±33 

5468-
5366 

5472-
5328 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6028 

Charcoal 6497
±33 

5509-
5383 

5523-
5374 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6022 

Charcoal 6322
±31 

5338-
5227 

5363-
5222 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6021 

Charcoal 6279
±32 

5302-
5226 

5321-
5212 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6019 

Charcoal 6280
±33 

5303-
5226 

5322-
5211 

Unreliable No lab. 
code 

n.d. Tr. VI, Lyr 
6018 

Charcoal 6275
±33 

5300-
5226 

5325-
5207 

Unreliable No lab. 
code 

OxA-
22508 

Tr. VI, Lyr 
6017, 
Z6018 

Charcoal 6333
±36 

5365-
5230 

5463-
5218 

Reliable Known 
material & 
context 

OxA-
22507 

Tr. VI, Lyr 
6009, 
Z6008 

Charcoal 6344
±35 

5371-
5234 

5465-
5222 

Reliable Known 
material & 
context 

OxA-
22506 

Tr. VI, Lyr 
6006, 
Z6001 

Charcoal 6290
±34 

5308-
5226 

5339-
5212 

Reliable Known 
material & 
context 
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(Z6000) 

n.d. Tr. VII, 
Lyr 7024 

Charcoal 6172
±31 

5207-
5068 

5217-
5031 

Unreliable No lab. 
code 

n.d. Tr. VII, 
Lyr RRF 

Charcoal 6055
±33 

5004-
4859 

5047-
4848 

Unreliable No lab. 
code 

n.d. Tr. VII, 
Lyr RR2 

Charcoal 5926
±31 

4839-
4746 

4896-
4719 

Unreliable No lab. 
code 

 
(Coningham et al. in press) 

 
The dates are arranged in chronological sequence (Fig. 6.25). Trench VI is 

thought to be the earlier, and the sequence of layers for each trench is 

arranged oldest to youngest. The 14C dates which have been assigned 

laboratory codes can be treated as of reliable confidence. They are AMS 

measurements of charcoal samples, from a known context, with errors of 

fewer than 50 14C years. Unfortunately, the other 14C dates cannot be treated 

with confidence until they have published with laboratory codes, for their 

chemistry is uncertain. Using the evidence currently available, it appears that 

Sialk North was occupied between ca. 6000 to 5700 BC, and abandoned ca. 

5700 BC. Three 14C dates are available from Trench B, on the periphery of 

the North Mound.  

 

Lab. 
code 

Context 
Sample 
material 

14
C 

age 
(BP) 

Cal. date (BC) 
Hygiene Reason 

68.2% 95.4% 

GU-
21012 

Tr. B, Unit 
4 

Charcoal 5610
±40 

4490-
4360 

4520-
4350 

Reliable Known mat. 
& context 

GU-
21013 

Tr. B, Unit 
10 

Charcoal 5590
±45 

4455-
4365 

4510-
4340 

Reliable Known mat. 
& context 

GU-
21014 

Tr. B, Unit 
12 

Charcoal 5970
±40 

4910-
4790 

4960-
4720 

Reliable Known mat. 
& context 

 
(Kourampas et al. in press) 

 
The dates are AMS measurements from charcoal samples, taken from well 

recorded contexts and have error terms of below 45 14C years. They are thus, 

reliable enough to be used without further questioning. GU-21012 and -21013 

are almost isochronous, and appear to fall in the occupation hiatus between 

the abandonment of Sialk North (ca. 5700 BC) and the occupation of Sialk 

South (ca. 4100 BC) (Kourampas et al. in press). They suggest that people 

may have remained in the vicinity of Sialk even after the abandonment of the 

North Mound. The implications of this are that the abandonment of the North 

Mound may have involved decentralisation of settlement, perhaps consistent 
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with more mobile practises (e.g. pastoralism &/or shifting agriculture), or that 

people may have settled elsewhere, but nearby on the adjacent plain (ibid.). 

 

No botanical remains were recovered by Ghirshman’s excavations, but he 

inferred the practise of cereal cultivation, from the presence of sickles and 

grinding stones (Ghirshman 1938: 74). The botanical remains from the Sialk 

Reconsideration Project were analysed by M. Tenberg (2003; 2004). 

Unfortunately, no data was recovered from the earliest levels, and nothing can 

be said about the beginning of agriculture at Sialk. The bulk of the sample 

from the higher levels was comprised of cereal remains, of which hulled 

barley was the predominate type. Emmer was the principal wheat species, 

and a single grain of free-threshing wheat (durum sp. or bread wheat) was 

also identified. Einkorn was not identified with any certainty although its 

presence cannot be ruled out (Tenberg 2004: 27). The presence of numerous 

grains of chaff among the botanical remains suggests that some crop 

processing activities, notably the dehusking of hulled cereals, was undertaken 

at the site, perhaps directly in connection with the preparation of food. No 

cultivated pulses (Fabaceae family) were identified with any certainty, despite 

their presence at most prehistoric sites in Iran (Miller 2003: 11), although 

Tenberg (2003: 28) suggests that this may be a hazard of sampling. In terms 

of other species, several varieties of wild Fabaceae were recorded, including 

vetches (Vivia spp.) and Medicago or Astragalus types, and a limited number 

of Atriplex (Chenonpodiaceae) and Galium (Rubiaceae), which were all 

probably collected accidently alongside the crops during harvesting (Tenberg 

2003: 28). Several wild grass species (Poaceae) were noted, but could not be 

identified further due to their limited number and sometimes poor state of 

conservation (ibid.). 

 

Although finding no evidence of it, Ghirshman believed that irrigation 

agriculture would have been inevitable at Sialk (Ghirshman 1938: 74). Some 

60 years later, his observation has been substantiated by the interpretation, in 

the field, of sharp-based stratigraphic units on the fringe of the North Mound 

as irrigation canal fill (Simpson & Nejad 2008). This interpretation is consistent 

with reports of irrigation canals around Late Neolithic villages elsewhere in 
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Iran (e.g. Choga Sefid, Tepe Pardis: Hole 1977; Gillmore et al. 2009) and 

Upper Mesopotamia (e.g. Choga Mami; Oates & Oates 1977). However, it is 

also possible that the ‘channel-like’ feature at Sialk represents an enclosed 

depression or linear hollow, as have been observed at many Levantine and 

Mesopotamian tell sites, and which results from repeated human and animal 

traffic from and to the site (Wilkinson 2003). Further study is needed, then,  

before the practise of irrigation agriculture at Sialk North can be verified. One 

potential form that this could take would be through identifying species in the 

botanical remains, which could only have been grown with irrigation.  

  

Domesticated sheep, goat and cattle were evidenced in Ghirshman’s 

excavations (Ghirshman 1938: 74). No wild animal remains were found, but 

Ghirshman believed the remains of many clay slingshot balls to imply the 

hunting of wild animals which, on the basis of the ceramic decorations of 

Period II, he suggested included wild cattle and gazelles (ibid.). The analysis 

of the faunal remains from the Sialk Reconsideration Project excavations 

evidences the presence of both domesticated and wild caprines; onager, dog, 

hyena, leopard/cheetah and turtle (Mashkour 2004). The assemblage is 

dominated by caprines, with sheep slightly outnumbering goats (ibid.: tables 1 

& 2). Gazelle comprise the next biggest group, followed by bovids, with other 

species present in only limited numbers. The combined results from 

Ghirshman’s excavations, The Sialk Reconsideration Project, and the recent 

work of the Irano-British team, indicate that the inhabitants of Sialk had an 

economy based on intensive mixed farming, which Kourampas et al. (in 

press) argue may have been produced and maintained by “the perpetual 

interdependence of the livestock herding, cultivation, and settlement”. 

 

Ghirshman found no evidence of architecture in the earliest levels at Sialk, 

which he reported were comprised of a series of ash layers, alternating with 

bands of clay (Ghirshman 1938: 10, 74), and suggested that permanent 

structures did not appear until Period II1, during which houses were 

constructed with mudbrick floors and pisé walls (ibid. 1954: 29). The interior of 

the houses were plastered, and decorated in a red-ochre paint, and fitted with 

crapandines (‘door sockets’) and large containers and jars for storing 
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provisions (Ghirshman 1938: 76). In contrast to Ghirshman’s findings, Malek 

Shahmirzadi reports evidence of architecture from the earliest levels, during 

which he suggests that Sialk’s inhabitants lived in small pisé huts, roofed with 

twigs and leafs coated with mud plaster (Malek Shahmirzadi 2004: 10). Malek 

Shahmirzadi also reported that both house walls and floors were built of 

mudbrick from the beginning of Period II, while Ghirshman had suggested that 

this was a later development. At present there is no way of reconciling these 

two accounts. Ghirshman reported there to be an ancient wall located to the 

west of the site, the defining feature of which, the ‘pinnacle’, is a cylindrical-

shaped mudbrick structure, which can still be seen today (Fig. 6.26). Malek 

Shahmirzadi believes this wall to represent the “remains of the oldest 

fortification wall at a Neolithic village in Iran” (Malek Shahmirzadi 2006b: 33), 

but this remains unsubstantiated. 

 

Recent micromorphological and microstratigraphic analysis (Kourampas et al. 

in press) has identified the present of putative ‘preoccupation’ deposits that 

contain small quantities of silt sized microcharcoal, which may or may not 

have resulted from human-induced fires. If it is human induced, Kourampas et 

al. suggest that the microcharcoal may have been reworked from domestic 

hearths, associated with domestic dwellings dispersed on the landscape, or 

could reflect agricultural-related activities, such as wood clearance or post-

harvest burning of straw etc. However, they argue that more direct evidence is 

needed, before either of these hypotheses can be substantiated.  

 

Ghirshman’s chronology for Sialk North was based on ceramic typology. He 

identified four Period I wares, which loosely translate as ‘Black-Painted’, ‘Red 

Monochrome’ or ‘Decorated’, ‘Black’ and ‘Plain’ wares. Following the Neolithic 

software tradition of the Central Plateau, all of the wares were handmade from 

poorly levigated clay, chaff-tempered and irregularly fired. ‘Black-Painted’ and 

‘Red’ Ware were present from the earliest levels. ‘Black Painted’ Ware was 

decorated with decorated with large horizontal bands of crosshatches, 

triangles or straight lines with festoons, applied in a pattern which Ghirshman 

(1938: 13-14; 1954: 29) believes to be derived from basketry, and common 

forms include large, wide-mouthed storage jars designed to be embedded into 
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house floors (Ghirshman 1938: 12-13). Ghirshman reports that ‘Red’ Ware 

was finer, and that the vessels generally smaller in size, with common forms 

including wide-mouthed bowls with straight or slightly flared sides; goblets; 

and from Period I4 onwards, deep dishes with wide, flat bases (ibid.: 15). The 

earliest vessels were undecorated, while the designs used on later vessels 

were similar to those applied to ‘Black-Painted’ Ware. Only 10 sherds of Black 

Ware, provenanced to Period I1-3, were found, and it is impossible to comment 

any further on the ware besides that it was well fired and undecorated (ibid.: 

16). ‘Plain’ Ware was made from a dark clay paste with a vegetable and/or grit 

temper and was fired in an open kiln (ibid.: 16). Common forms include large 

terrines with openings up to 0.75 metres in diameter. Period II is characterized 

by the presence of Cheshmeh Ali Ware, which Ghirshman referred to as 

‘Black-on-Red’ Ware (1938: 28). It had a finer paste than the Period I wares, 

was better fired, probably in a purpose built kiln (Ghirshman 1938: 77), and 

the vessels were generally smaller. The painted decoration was more 

advanced: several registers were used and both geometric and naturalistic 

motifs, including plants, birds, boars and goats, were employed (ibid.: 29). 

 

Baked and unbaked clay was also used to make beads, pendants, and 

slingshot balls (Ghirshman 1938: 22-4, 32). A large number of clay spindle 

whorls were recovered, evidencing the “commencement of the textile industry” 

(ibid.: 74). Small pestles in baked clay were used for crushing pigments in 

small groundstone mortars, which may have been used for tattooing (ibid.: 21, 

23). Ghirshman found no evidence of clay figurines, although one carved 

stone sculpture, possibly of a dog, was reported (Ghirshman 1938: 31, 75). 

However, while I was excavating at the site several animal figurines, possibly 

of caprines, were recovered. 

 

The chipped-stone tool industry included flint blades, sickles, saws, borers, 

scrappers and piercers (Ghirshman 1938: 22). White marble was also 

occasionally used, and one obsidian blade was recovered. Distinct to Period I, 

was the mounting of flint blades in carved bone handles to form a composite 

tool, which Ghirshman (1938: 16) refers to as ‘porte-silex’. The carving of the 

handles was particularly fine, and designs included animal heads (e.g. 



 

 

372 
 

caprines, hares) and an upright man wearing a loin cloth (ibid.: 16-17, 1954: 

29). Porte-silex are not known from anywhere else on the Central Plateau, 

although similar carved bone tools are reported from Sang-i Chakmaq West, 

northeastern Iran (Thornton 2010). Bone was also used for manufacturing 

awls, and burnishing tools used in pottery production. The groundstone tool 

assemblage included maces, awls, axes and small mortars (Ghirshman 1938: 

32). Carved stone bowls were relatively rare in Period I, although they 

increased in number in Period II, which Ghirshman (1938: 31) attributed to the 

development of better tools. Stone was used for manufacturing jewellery 

including bracelets made from slate, black volcanic stone and, from Period II, 

alabaster and white and green marble; rings in alabaster; and cylindrical 

beads of slate, white marble diorite, turquoise and carnelian (ibid.: 20, 30-1). 

Shell was also used to produce decorative elements. Three shell pieces of 

Conus and Cerithiide were recovered from Period I, and several pieces of 

large Pterocera shell were found in Period II contexts, where they had been 

used for manufacturing beads (Ghirshman 1938: 24, 32). Hundreds of 

dentillium shells were also used in Period II for forming necklaces. 

 

The abundance of non-local materials implies that Sialk was an important 

node in trade and communication networks across the Central Plateau and 

beyond. The turquoise and carnelian were probably sourced from the Meshed 

region of eastern Iran, and the shell from the Persian Gulf (Ghirshman 1938: 

24, 31-2). The obsidian, the use of which is rare on the Central Plateau, was 

probably from sources in the Lake Van region of eastern Turkey, while the 

presence of Cheshmeh Ali Ware, which is found distributed across the Central 

Plateau from the Gurgan Plain in the east, to the Qazvin Plain in the west 

(Wong et al. 2010), suggests wide-spread contact across this vast region. 

Small, cold-hammered copper objects, including small balls, pin heads and 

needles, were also recorded from Period I3 onwards (Ghirshman 1938: 75.), 

and although the copper was probably locally sourced from the Markazi 

Mountains (Negatati 2004: 63), the practise of early metallurgy, and the 

technological ‘know how’ associated with it, can also be interpreted as 

evidence of expanding trade and social networks (cf. Thornton 2009).    
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Individual subfloor burials were recorded in all levels at Sialk North. The 

orientation of the burials was not strict, and bodies were interred lying on 

either side in a flexed position, and generally aligned east to west (Ghirshman 

1938: 10). The majority of the skeletons bore traces of red ochre. With the 

exception of one burial from Period I, which contained a mace head and two 

sheep’s mandibles, none contained grave goods, although Ghirshman (1938: 

76) has suggested that perishable items may have been offered. Infants were 

buried in the ground or in small jars, and their bones were often burnt and 

covered in red ochre (ibid.: 11). Similar infant burials were recovered from the 

2009 excavation at Sialk. 

 
Tepe Shurabeh (Neolithic) 

Tepe Shurabeh (Fig. 6.27 & 6.28) is a small settlement site, located about  

five kilometres to the southwest of Sialk, in the foothills of the Markazi 

Mountains, which was identified during survey by members of the Sialk 

Reconsideration Project (Danti 2006: 73). The site was in the process of being 

bulldozed, and on the basis of the surface pottery, Malek Shahmirzadi dated 

the site to before the beginning of the Neolithic sequence at Sialk (Malek 

Shahmirzadi 2006: 13).  However, the site’s chronology was never confirmed, 

and it has now been completely destroyed (Coningham pers. comm.).  

 

Ghabristan (Late Neolithic) 

Ghabristan (Fig. 6.29) is located 10 kilometres northwest of Sialk. It is a 

shallow mound that has been badly damaged by erosion and bulldozing to 

provide soil for agricultural activities. The site was identified during survey by 

members of the ICHTO, who tentatively assigned the site an Early Neolithic 

date (ca. 8000-6500 BC), but subsequent excavation in 2008 by a joint Irano-

British project, of which I was a member, established the site to be entirely 

Middle to Late Neolithic. Unfortunately, no 14C dates are available for the site, 

but the assignment of a Late Neolithic date is supported by the ceramic 

typology, which is of the Neolithic software tradition. 

 

No information is available on the botanical or faunal remains, and no 

architecture was recorded. The absence of architecture suggests that the site 
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was ephemeral or semi-permanently occupied, and that it may have 

represented a specialized site for lithic production, or a pastoralist camp. 

However, more information is needed, particularly on the nature of the faunal 

assemblage, before either of these claims can be substantiated.   

 

Three types of decorated ceramics were identified (‘Red-on-Buff’, ‘Black-on-

Red’ & ‘Black-on Buff’ wares), which were decorated with geometric motifs 

including horizontal waved lines; zigzags; lozenges; rectangles; horizontal 

bands; checkers; and chevrons. According to the excavators, the assemblage 

represents a local ceramic tradition, which bears little resemblance with the 

lowest levels of Sialk (Coningham et al. in press). This implies that 

chronologically, Ghabristan is earlier than the Late Neolithic period at Sialk 

(ca. 5500–4500 BC). 

 

A total of 1085 lithics were recovered, ranging from debitage and flakes to 

bullet cores and blades. Initial analysis suggests 11.5 per cent of the collected 

lithics are obsidian. Although the use of obsidian has been widely 

documented at Neolithic sites in southwestern Iran (e.g. Ali Kosh; Hole et al., 

1969, Chogha Bonut; Alizadeh 2004), it is rare on the Central Plateau, and it 

has only been found in small amounts at Tepe Pardis, Chakhmak Tepe and 

Tepe Sialk (Ghirshman 1938; Coningham et al. 2004; Fazeli et al. 2007). The 

comparatively large amount recovered from Ghabristan, implies that its 

inhabitants were connected to part of a larger regional trade network that 

extended beyond the Central Plateau. This hypothesis is further supported by 

the recovery of a mother-of-pearl pendant at the site, the shell for which 

probably came from the Persian Gulf.  

*** 

A small number of other prehistoric sites have been recorded, or briefly 

excavated, on the Kashan Plain. Malek Shahmirzadi (1977: 410) has reported 

the presence of Sialk I and II and Cheshmeh Ali-type Transitional Chalcolithic  

wares at Meshreh, which lies near the modern town of Sareh. This suggests 

that the site, which lies about halfway between Zagheh and Sialk, was 

possibly in contact with groups both to the north (on the Tehran & Qazvin 
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Plains and the south (on the Kashan Plain). Cheshmeh Ali-style ware has also 

been described at Kale Dasht, which was commercially excavated in 1937 

(ibid.: 410), and Mohammadabad, which lies on the road to Qum, 50 

kilometres from Tehran, at the very fringe of a salt desert (ibid.: 410-1). 

Ghirshman reported another site from near Qum, which allegedly also 

contained Cheshmeh Ali-style and Sialk II wares, but this has not been 

corroborated (Ghirshman 1938: 91-2). Tahen Abad has also been identified 

as a Chalcolithic period site by Ms Saroukhani of the Sialk Archaeological 

Research Centre, but no further information is currently available for this site.  

 

 

6.5d. Summary of the distribution of settlement on the Kashan Plain 

(Table 6.7) 

 

With the exception of Sialk, the evidence of Late Neolithic and Chalcolithic 

period settlements on the Kashan Plain, is much more fugitive than that for 

the Qazvin and Tehran Plains, and the sites for which firm chronologies exist 

are limited to Ghabristan and Tepe Sialk. It is possible that Neolithic 

settlement began on the Kashan Plain, earlier than on the Tehran and Qazvin 

Plains, at Tepe Shurabeh. However, the Early-Middle Neolithic period 

assignment of this site has not been substantiated.  

 

Five potentially Transitional Chalcolithic sites have been identified on the 

basis of ceramic surface scatters, indicating that perhaps there was an 

increase in the number of settlement during this period, roughly corresponding 

with the abandonment of Sialk North, but further research is needed before 

this can be ascertained. The most marked feature of the settlement pattern on 

the Kashan Plain is the large-scale, enduring occupation of Sialk North, which 

is unknown from the Tehran and Qazvin plains. Sialk North has a massive 12 

metres of Late Neolithic cultural deposits, which is unprecedented on the 

Central Plateau, and contrasts sharply with the 1 metre reported for 

Cheshmeh Ali, and the ephemeral deposits at Tepe Pardis. This suggests that 

the Neolithic-Chalcolithic period occupation of the Kashan Plain was 

regionally distinct, and different to that of the Tehran and Qazvin Plains.  One 
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possible explanation for this is the nature of the Kashan plain itself. The 

Kashan alluvial fan is much smaller than that of the Tehran and Qazvin 

Plains, and thus whereas on the latter it was possible for a dispersed 

settlement pattern, on the Kazvin Plain people may have been forced to 

concentrate at Sialk. Tepe Sialk’s important nodal position on both east-west 

and north-south trade networks, as inferred from the expanse of non-local 

materials evidenced the site, may also have contributed to its size and 

permanence (cf. Sherratt 2007). 

 

 

6.6. Discussion  

 

The most striking outcome of the recent archaeological investigations on the 

Central Plateau is the continued failure to recover any evidence of Early 

Neolithic (ca. 8000-6500 BC) settlements. Traditional explanations for the 

dearth of sites have emphasised the active alluvial regime on the plateau, and 

suggested that prehistoric sites may exist, but are buried beneath the present 

plain surface (Brookes et al. 1982). However, despite digging sites on the 

Tehran, Qazvin and Kashan plains down to virgin bedrock, transect survey, 

and qanat survey, specifically designed to avoid the problems associated with 

archaeological visibility on alluvial plains, no evidence of Early Neolithic 

settlement has been recovered. It appears, then, that the lack of Early 

Neolithic settlement on the Central Plateau represents a real absence of sites, 

rather than being an issue of site visibility, and that permanent agricultural 

settlement did not become established in the region until the Middle-Late 

Neolithic period (ca. 6500-5500 BC).  

 

When settlements do appear, their pattern and distribution varies regionally. 

While on the Tehran Plain there was a cycle of rapid growth in settlement 

number during the Transitional–Early Chalcolithic, followed by a period of  

decline during the Middle to Late Chalcolithic,  on the Qazvin Plain the 

number of sites remains relatively unchanged during the Late Neolithic–

Transitional Chalcolithic, after which there actually occurred a decrease in the 

number of sites with Zagheh the only Early Chalcolithic site known, (Zagheh is 
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followed by an absence of settlement altogether in the Middle Chalcolithic, 

until the occupation of Ghabristan in the Late Chalcolithic. In contrast, on the 

Kashan Plain the Late Neolithic to Chalcolithic period occupation is restricted 

almost entirely to a massive agglomeration of Sialk. There is possible 

evidence of an earlier settlement at Tepe Shurabeh, but this is unconfirmed, 

and one ephemeral Late Neolithic site and a couple of potential Transitional 

Chalcolithic sites are known, but this is it. 

 

One plausible explanation for the concentration of people at one site on the 

Kashan Plain, compared to the more dispersed Late Neolithic and Chalcolithic 

period settlement patterns evidenced on the Qazvin and Tehran plains, is the 

smaller size of the Kashan alluvial plain compared to the latter. This would 

have seriously limited the potential agricultural land in the region, and may 

have been a contributory factor in leading people to congregate at Sialk. 

Trade may also have played a role in encouraging people to move to and stay 

at Sialk, as the site occupies an important nodal position on both north–south 

and east–west trade routes across Iran. Social choices can also not be 

excluded.  

 

 

6.7. Conclusion  

 

A main objective of this research was to test for the presence of Early 

Neolithic (ca. 8000-6500 BC) settlement on the Central Plateau. New 

archaeological research on the Tehran, Qazvin and Kashan Plains has failed 

to identify any Early Neolithic settlements, and the current information 

suggests that there was no Early Neolithic occupation of the Central Plateau, 

and settlement did not appear in the region until the Middle to Late Neolithic 

period (ca. 6500-5500 BC). The distribution of settlement during this period, 

was not uniform across the Plateau, but instead exhibits regional 

differentiation. Whereas on the Tehran Plain, the settlement pattern during the 

Late Neolithic to Late Chalcolithic was one of boom and bust, on the Qazvin 

Plain the number of settlements remained low and relatively constant, and the 

population of the Kashan Plain appears to have been agglomerated at the site 
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of Sialk. The difference in the settlement patterns on the three plains 

suggests, that though the technology for the settlement and farming of the 

Central Plateau may have spread during the Late Neolithic to Chalcolithic 

period, how it was adopted, and subsequently adapted, varied regionally
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Period Number of sites 

Palaeolithic 1 

Prehistoric 18 

Chalcolithic 9 

Chalcolithic & Iron Age 2 

Chalcolithic & Islamic 2 

Historic 31 

Parthian 1 

Sasanian 3 

Islamic 58 

Modern 69 

No period assigned 14 

Total: 208 

Table 6.3: Survey sites from the Tehran Plain, attributed to broad 
chronological periods. The sites labelled ‘prehistoric’ represent lithics 
which could not be given a more detailed chronological assignment. 
(After Coningham et al. 2006.) 
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Site 
no. 

Site name Terrain Finds, features etc. Preservation 

DK001  Plain ca. 700-year fortified 
site 

Very few standing remains, 
used for dumping rubbish 

DK002  Plain  Caravanserai Eroding mudbrick, robber pits 

DK003 Ghabrista
n 

Plain Late Neolithic site 
excavated 2008 

Has been bulldozed in the 
past, but condition today is 
stable 

DK004  Plain Modern coins in 
qanat soil 

Disused qanat 

DK005  Plain Chalcolithic 
ceramics 

Number of robber pits 

DK006  Plain Caravanserai Located at edge of town; risk 
of urban encroachment   

DK007  Plain Disused bridge Collapsing 

DK008  Plain Caravanserai Eroding mudbrick 

DK009  Plain Caravanserai Eroding mudbrick 

DK010  Plain Large mound 
surrounded by other 
smaller mounds & 
decaying mudbrick 
structures in an area 
rich with Islamic 
ceramics 

Mounds stable; mudbrick 
structures decaying 

DK011  Plain Caravanserai  

DK012  Plain Modern shrine ca. 
100-200 yrs old 

Well-maintained 

DK013  Plain Ceramic sherd from 
qanat spoil 

Disused qanat  

DK014  Plain  Currently used for penning 
livestock 

DK015  Plain  Eroding mudbrick 

 
 
 
 
 
 
 
 

Table 6.6: Finds from 2009 pilot qanat survey. Due to the problem of systematic 
looting in the area the GPS coordinates of the sites are not provided here.  
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Site 

Date from earliest 
stratigraphic level regardless 

of hygiene 

Earliest acceptable date from 
earliest stratigraphic level (where 

available) 
14C yrs BP Cal. BC 14C yrs BP Cal. BC 

Tepe Pardis 6230±45 5309-5057 6230±45 5309-5057 

Zagheh 6295±47 5375-5078 6295±47 5375-5078 

Tepe Chahar 
Boneh 

7123±35 6063±5919 7123±35 6063±5919 

Ebrahim Abad 6201±34 5293-5051 6201±34 5293-5051 

Sialk North 6364±35 5470-5231 6364±35 5470-5231 

 
 
 
 
 
 
 
 
 
 

Table 6.8: The earliest 14C determination (BP) and calibrated age (BC) for each site. 
All calibrated dates are given at the 95.4% confidence interval.  
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Figure 6.0: Map of the Central Iranian Plateau showing key Late Neolithic and 
Chalcolithic sites.  
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Figure 6.1: Topographic map of Fakrabad. Scale 1: 200. (After Fazeli 2001: fig. 5.8.) 
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Figure 6.2: Topographic map of Mafinabad. Scale 1: 250. (After 
Fazeli 2001: fig. 5.10.)   
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Figure 6.3: Topographic map of Mehedikani. Scale 1: 250. (After Fazeli 2001.) 
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Figure 6.4: Topographic map of Chakmahk Tepe. Scale 1: 250. (After Fazeli 
2001.) 
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Figure 6.5: The south slope of Chesmeh Ali showing the beginning of excavation in 1934. (Photo: Schmidt, 
in Matney 1995: fig. 10.) 
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Figure 6.6: Topographic plan of Cheshmeh Ali showing the areas excavated by Schmidt’s expedition. (After 
http://gozips.uakron.edu/~matney/RChMaps.htm.) 
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Figure 6.7: 
Topographic 
map of 
Cheshmeh-Al 
showing areas 
excavated by 
Fazeli. (After 
Fazeli 2001: fig. 
5.1.) 
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Figure 6.8: Trenches E4-5 & H7 from the 1997 excavation at Cheshmeh Ali: (a) 
Trench E4-5; & (b) Trench H9.  (After Fazeli 2001: fig. 5.3.) 

a. 

b. 
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Figure 6.9: East facing section of Cheshmeh Ali Trench H7, showing 
contexts carbon samples extracted from. (After Fazeli et al. 2004: fig. 
6.) 
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Figure 6.10: West facing section of Cheshmeh Ali Trench E4-5, 
showing contexts carbon samples extracted from. (After Fazeli et al. 
2004: fig. 5.) 
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Figure 6.11: General view of Tepe Pardis (photo Coningham). 
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Figure 6.12: Tepe Pardis Trench I (photo: Coningham). 
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Figure 6.13: 
Topographic 
drawing of 
the exposed 
north section 
of Tepe 
Pardis. (After 
University of 
Tehran, 
Institute of 
Archaeology, 
2003.) 
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Figure 6.14: North-south section and northern elevation of Tepe Pardis showing contexts from which carbon samples extracted. (After 
Coningham et al. 2006: fig. 12.) 
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Figure 6.15: Distribution of prehistoric sites on the Qazvin plain. (After Fazeli et al. 2009: fig. 1.) 
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Figure 6.16: Topographic map of Zagheh, showing the location of the trenches 
of the 2001 excavation. (After Fazeli et al. 2001: fig. 1.) 
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Figure 6.17: General view of Chahar Boneh. (After Fazeli et al. 2009: fig. 2.) 
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Figure 6.18: General view of Ebrahim Abad showing the location of Trenches I-III. (After Fazeli et al. 2009: fig. 5.) 
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Figure 6.19: Aerial view of Kashan and surrounding alluvial plain. Tepe Sialk marked with red dot.  
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Figure 6.20: Topographic map of Sialk North and South and the 
Sialk Rud, showing the orientation of each one. (After Malek 
Shahmirzadi 2006b: map 2.) 
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Figure 6.21: General view of Sialk North Mound (photo: Coningham) 
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Figure 6.22: Contour map of the North Mound of Sialk showing the position of 
Ghirshman’s Operations Number 1-3. (After Malek Shahmirzadi 2006b: map 3.) 
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Figure 6.23: Cutting in Trench II, Sialk North (photo: Coningham). 
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Figure 6.24a. Section drawing of Sialk North 
Trench 5 showing contexts of 14C dates. 
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Figure 6.24b. Section drawing of 
Sialk North Trench 6, showing 
contexts of 14C dates. 
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Figure 6.25: General view of part of the mudbrick ‘fortification’ wall looking from west to east. The ‘pinnacle’ is to the 
right of the picture. (After Malek Shahmirzadi 2006b: fig. 104.) 
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 Figure 6.26: 
Map showing 
location of Tepe 
Shurabad in the 
piedmont of the 
Karkas 
Mountains. 
(After Malek 
Shahmirzadi 
2006b: map 5.) 
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Figure 6.27: Tepe Shurabeh and natural hill to the right, in the process of being levelled. (After Malek Shahmirzadi 2006b: fig. 
31.) 
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Figure 6.28: General view of Ghabristan (photo: Coningham). 
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Figure 
6.29: Map 
of Iran 
showing 
the 
temporal 
distributio
n of early 
farming 
sites in 
Iran 
including 
new sites 
on the 
Central 
Iranian 
Plateau, 
using 
‘clean’ 
dates. 
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Chapter Seven 

 

Discussion 

 

7.0. Introduction  

 

The two main aims of this research were to chronometrically evaluate and 

recalibrate existing 14C dates for Neolithic sites in Iran and neighbouring 

regions, and to test for the presence of Early Neolithic settlement on the 

Central Plateau. To this end, in the proceeding chapters, models for the 

origins and spread of food production and the current state of knowledge of 

the Iranian Neolithic were reviewed; existing 14C determinations for Iranian 

Neolithic sites were chronometrically assessed and recalibrated using OxCal 

(Brook-Ramsey 2009), and the spatial-temporal distribution of the sites 

evaluated; and the results of recent and new archaeological investigations on 

the Central Plateau were reported. In this chapter, the results and different 

strands of evidence that have emerged from these studies are brought 

together and discussed. Of particular importance, is the implication that these 

findings have for the development and spread of agriculture in Iran, and how it 

accords with the prevailing model for the spread of agriculture, the ‘Wave of 

Advance’ (Ammerman & Cavalli-Sforza 1984). 

 

 

7.1. 14C dates for the Iranian Neolithic 

 

A main objective of this research was to recalibrate the existing 14C 

determinations for Neolithic sites in Iran and neighbouring regions, assess 

their ‘chronometric hygiene’ (Spriggs 1989), and to map the cleaned dates to 

investigate their spatial and temporal distribution.  

 

The robustness of a 14C chronology is “dependent on the quality assurance 

procedures that underlie sample selection and treatment” (Lowe et al 2001: 

176), and the benefits of applying chronometric hygiene criteria to a 14C 
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chronology are clear in the results of this research. In Chapter Five, the 

spatial-temporal distribution of both ‘clean’ and ‘unclean’ 14C dates for early 

farming sites in Iran was mapped. The distribution of the ‘unclean’ dates 

revealed a much wider geographical and temporal distribution of Early 

Neolithic sites in Iran than that of the ‘clean’ dates. Evaluation of the unclean 

dates, suggested not only that the Neolithic began around a thousand years 

earlier (ca. 10,000-9000 BC rather than ca. 9000-8000 BC), but that there 

were at least two homelands, in the Central Zagros and on the Caspian Sea 

Plain, while the ‘clean’ dates suggested that the earliest Neolithic sites only 

occurred in the Central Zagros. The contrast between conducting further 

evaluation on the clean and unclean 14C dates, emphasises the need to 

employ stringent chronometric hygiene assessment criteria when analysing 

14C determinations, as not using it can result in the generation of potentially 

misleading results.  

 

The spatial-temporal distribution pattern of Neolithic sites in Iran is not in 

accordance with what would be expected from a Wave of Advance. If farming 

had spread by a Wave of Advance, it would be expected that there would be a 

west to east cline in site age, caused by the eastwards spread of farmers from 

their homeland in the Near East at a rate of approximately one-kilometre per 

year (Ammerman & Cavalli-Sforza 1984: 68). However, the distribution of 

early farming sites in Iran shows a distinct clustering, rather than a cline. The 

earliest sites are found in western Iran distributed along the Zagros Mountain 

chain, and although this is in keeping with the Wave of Advance model, the 

next earliest Neolithic sites are found in the southwestern lowlands, rather 

than directly to the east on the Central Plateau as would be expected from a 

Wave of Advance. Indeed, the analysis of ‘new’ 14C determinations for sites 

on Central Plateau shows that there was actually a lag of several thousand 

years, before the first Neolithic settlements are evidenced on the Plateau in 

the sixth millennium BC (e.g. Tepe Pardis, Cheshmeh Ali, Ebrahim Abad, 

Tepe Sialk). Prior to the establishment of Neolithic sites on the Central 

Plateau, early farming sites are known at Hajji Firuz Tepe, in the Ushnu-

Solduz valley (Pullar 1990), Jeitun in southern Turkmenistan (Harris 2010a) 

and Mehrgarh, Baluchistan (Jarrige et al. 1995). Thus, the distribution of Early 
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Neolithic sites in Iran represents more of a ‘starburst’ pattern, than the clinal 

spread that would be predicted by a wave of advance.  

 

 

7.2. The Central Iranian Plateau 

 

The second main objective of this research was to test for the presence of 

Early Neolithic sites on the Central Plateau. Traditionally, the lack of Early 

Neolithic sites has been explained in terms of a lack of archaeological 

research in the area, and/or because the sites were buried under later 

settlements or alluvial deposits (Brookes et al. 1982). However, extensive 

study on the Central Plateau over the last decade (Coningham et al. 2004; 

2006; in press; Fazeli 2001; Fazeli & Abbasnezhad 2005; Fazeli et al. 2004; 

2005; 2007; 2009; Malek Shahmirzadi 2002; 2003; 2004; 2006a; 2006b) has 

failed to record any earlier sites, evidencing that this is not the case. Another 

explanation, then, for the absence of Early Neolithic settlement is needed. 

 

The Central Plateau, by all accounts, is a hostile environment. Ghirshman 

wrote of it that, “the physical aspects of the Plateau were harsh and austere. 

The oases were dispersed over difficult country, the population was sparse 

and scattered. As a result the urban revolution was retarded, and society 

continued in its prehistoric stage for centuries” (1954: 42). He suggested, that 

“at all times on the plateau the question of water has been vital” (1954.: 25), a 

conclusion with which many other scholars concur (Bowen-Jones 1968: 571, 

575; Oberlander 1968: 265; Wulff 1968: 105; Goldsmith 1984; Danti 2006). 

For example, Michael Danti, who conducted the geoarchaeological research 

for the Sialk Reconsideration Project, argues that “any intensive settlement in 

the area…depends on a ready source of water” (2006: 69). With this in mind, 

it is interesting to note that many of the Late Neolithic-Chalcolithic sites 

recorded on the Central Plateau were short-lived, and occupied for just one or 

two cultural periods before they were abandoned, presumably because of 

shifting water courses. That channels at this time were highly mobile and 

unreliable is evidenced at Mafinabad, where building work has exposed the 

remains of a migrating, braided watercourse, about 300 metres from the main 
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tepe (Gillmore et al. 2007: 299). These braided sequences had Middle 

Chalcolithic (ca. 4000-3700 BC) pottery in abundance, with another pottery 

layer below. However, there was no evidence of watercourses in the two 

metres of sediment exposed above, suggesting that during this later period 

the water flow had stopped.   

 

The limited number of Neolithic-Chalcolithic period sites on the Central 

Plateau that were more enduring (e.g. Cheshmeh Ali, Tepe Pardis, Sialk), 

were located close to permanent water sources on alluvial fans (Fig. 7.0). For 

example, a spring emerges at Cheshmeh Ali (after which the site is named); 

and there is evidence of a palaeochannel at Mafinabad (Gillmore et al. 2007) 

and between the North and South Mounds at Sialk (Malek Shahmirzadi 2005; 

2006a, 2006b; Simpson & Nejad 2008). The one exception is Tepe Pardis, a 

long-lived, substantial Late Neolithic-Early Chalcolithic period settlement, 

which is not associated with a palaeochannel or spring. However, instead, 

“there is clear evidence at this site of some form of water management or 

environmental exploitation and manipulation taking place in the Neolithic-

Chalcolithic” (Gillmore et al. 2011: 66). 

 

Excavation at Tepe Pardis highlighted a small channel-like feature (1 m in 

width & 0.24 m in depth), which was triangular in profile, possessed a very 

different fill from the surrounding sediments, and ran at right angles to a 

number of other apparently natural channels in the sequence (Gillmore et al. 

2009: 285; 2011: 50). It is interpreted as an artificial irrigation canal, and is 

stratigraphically linked to Late Neolithic levels at the site (Gillmore et al. 2007; 

2009; 2011). The antiquity of the channel is further confirmed by an OSL date 

for the channel at 6.7±0.4 ka (5100-4300 BC), and by 14C dating of the 

surrounding sediments to 5220-4990 cal. BC (Gillmore et al. 2011: 52). The 

channel, thus, represents the earliest evidence of irrigation agriculture in Iran 

to date. The OSL and 14C dates for the channel suggest that it was formed at 

about the same time as (or is even older than) a number of palaeochannels 

also found at the site, leading Gillmore et al. to conclude that the channel, 

“was constructed as a response to the availability of water from natural 



 

 

422 
 

channels at this point and may be considered designed to harness this 

resource” (2011: 64).  

 

Prior to Gillmore and colleagues’ (Coningham 2004; Fazeli et al. 2007; 

Gillmore et al. 2007; 2009; 2011) work at Tepe Pardis, the only direct 

evidence of irrigation agriculture in the Near East during the Neolithic-

Chalcolithic period came from an excavated irrigation channel at Choga 

Mami, eastern Iraq (Oates 1969; Oates & Oates 1976). Choga Mami is a tell 

site, situated on an alluvial fan between the Zagros foothills and the 

Mesopotamian plain, near to the modern town of Mandali (Wilkinson 2003: 

73). It lies within an area that receives well over 200 mm of rainfall per year, 

but this fluctuates, for example, varying between 192 mm per year to 549 mm 

per year in the period of 1935-56 (Helbaek 1972: 35). Oates and Oates (1976: 

111) have argued that some form of irrigation is necessary for successful crop 

production in all parts of the Near East where rainfall is less than 200 mm per 

year, suggesting that at Choga Mami in some years, rainfall alone would have 

been insufficient for reliable cereal cultivation (Helbaek 1972: 39) 

 

Excavation at Choga Mami in 1967-8 exposed a series of six channels 

(measuring approximately two metres wide), which were stratified within 

deposits on the edge of the mound (Oates 1969: 123-4). The first two 

channels (A & B) lay below the inferred plain level of the period and were 

interpreted as natural watercourses, but channels E and F lay at elevations 

above the contemporaneous plain level, and were identified as artificial water 

channels, which diverted the water supply around the settlement (Oates 1969: 

125; Oates & Oates 1976: 132). The antiquity of the channels is supported by 

the stratification of the channels with Sammarran cultural deposits (Oates & 

Oates 1976), although unfortunately only one 14C determination, of 6200-5325 

cal BC, is available (Oates 1969: 125). Hans Helbaek who analysed the 

botanical remains from the site, suggested that irrigation agriculture is further 

inferred by the presence of six-row barley and lentils, which he argued would 

have been unable to grow in the region without some form of irrigation 

agriculture (Helbaek 1972: 36, 39; see also Field in Oates 1969: 140-1).  
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Apart from the new evidence reported from Tepe Pardis (Gillmore et al. 2007; 

2009; 2011), there is no other direct evidence of irrigation in Iran during the 

Late Neolithic-Early Chalcolithic period. However, the judicious use of a range 

of indirect evidence, has been used to suggest that irrigation agriculture was 

introduced to the Deh Luran plain, southwestern Iran, in the late sixth 

millennium BC (ca. 5400-5200 BC) (Hole et al. 1969; Hole 1977; 1992; Neely 

& Wright 1994). The macrobotanical remains from Tepe Sabz (ca. 5000-4200 

BC) and the Choga Mami Transitional phase at Chogha Sefid (ca. 5400-5200 

BC) included the remains of several plants (e.g. flax, lentil, six-row barley, 

hexaploid free-threshing wheat, bread wheat) which it is argued could only 

have been grown in the area using some form of irrigation (Helbaek in Hole et 

al. 1969: 416; Neely & Wright 1994: 183-4). Neely and Wright also use the 

juxtaposition of a number of broad, shallow depressions with prehistoric sites 

to suggest the antiquity of irrigation practices in the area (ibid.). However, no 

channels have been found in stratigraphic contexts associated with the sites, 

nor have any been independently dated, and they could be much younger 

than the prehistoric sites (Wilkinson 2003: 73).  

 

Later evidence of the practice of irrigation agriculture in Iran, comes from the 

Daultabad region in the southeast, where due to a remarkable stroke of luck 

in preservation, Chalcolithic period irrigation systems, dating to the latter part 

of the sixth millennium BC, survived until the 1970s and 1980s (Prickett 1986; 

Wilkinson 2003). The Daultabad is an arid region where rainfall is insufficient 

for agriculture, and no large perennial rivers are present. Instead, Wilkinson 

(2003: 74) argues, that the prehistoric communities were probably dependent 

on ephemeral wadis, and would have had to of made use of runoff and spates 

for irrigation. The irrigation system employed took the form of small fields (ca. 

0.06-0.07 hectares), usually 30 to 40 metres apart, constructed on a series of 

gravel fans, which were bounded by low ridges and alignments of silt, cobbles 

and/or stones to capture floodwater (Wilkinson 2003: 75).  Such practices of 

floodwater farming are known ethnographically. For example, tribes in 

Baluchistan have traditionally employed a similar system, known locally as the 

Sailaba, in which floodwater from natural watercourses is captured behind 
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earthen bunds built across the slopes and intercepting the fields (Oosterbaan 

1983: 56). 

 

Broadly speaking there are two possible alternatives for the origins of water 

management and irrigation technology in Iran. One view is that the technology 

spread through the migration of people from the west. For example, Hole 

(1977: 12) has argued based on evidence of cultural disjunction on the Deh 

Luran Plain, that both domesticated plants and the irrigation technology 

needed to grow them were introduced to the plain by the migration of people 

from eastern Iraq, where the same complex of irrigated crops and evidence of 

irrigation are found at Choga Mami from ca. 6000 BC (Oates 1969; Hole 

1977; Oates & Oates 1977). Hole argued that the spread of irrigation 

agriculture to the Deh Luran Plain was, “part of a general expansion by people 

who were able to exploit intensively locales suitable for irrigation” (Hole 1998), 

which took place across Iran. More recently, Gillmore et al. (2011) has 

similarly suggested that irrigation technology was introduced to the Central 

Iranian Plateau from eastern Iraq. The age of the channel at Tepe Pardis is 

close to that proposed for the channel at Choga Mami, leading Gillmore et al. 

to suggest that there was a rapid diffusion of irrigation technology from the 

west to more arid, peripheral regions in the east, facilitated by “potentially 

strong links between Mesopotamia and the Tehran Plain” (Gillmore et al. 

2011: 64), although they do not expand on what the evidence for these 

“strong links” is. 

 

Alternatively, Neely and Wright (1994) have argued that irrigation technology 

developed in Iran by itself. They have described a process, in which the 

earliest forms of water management made use of the natural seasonal 

phenomena of watercourse overflow and floodplain inundation, and that 

building on such natural conditions, “it would seem a logical next step for the 

agriculturalists to envision their control of such water supply events through 

the excavation of small channels or ditches leading from water sources to 

their fields” (Neely & Wright 1994: 184-5). Tony Wilkinson proposes a similar 

progression for the development of irrigation agriculture at Chogha Mami, 

suggesting that the artificial channels appear to have been in use when the 
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land surface was aggrading, and were probably part of an early phase of 

canal irrigation that directed water down the main slope of the fan in the 

manner of natural drainage, but at a higher level (Wilkinson 2003: 73). Once 

irrigation agriculture had developed in Iran, it would certainly have had the 

potential to spread if the wide-spread distribution of Cheshmeh Ali Ware 

across the Central Plateau, and the far-reaching trade networks in obsidian, 

copper, turquoise, and marine shell that are known to have operated in the 

Neolithic and Chalcolithic periods are anything to go on.  

 

Although it is certainly plausible that irrigation agriculture developed locally in 

Iran, there is currently not enough information to reach any firm conclusions, 

and more research on the development of irrigation agriculture in both Iran 

and Iraq is needed. Whether irrigation agriculture developed independently in 

Iran or not, the evidence suggests that irrigated landscapes were in use in 

Iran from the sixth millennium BC, if not earlier (Wilkinson 2003: 73; Gillmore 

et al. 2011). These systems were of modest size, employing only the most 

rudimentary technique of channelling water along existing ground slopes or 

down alluvial fan gradients (Wilkinson 2003: 74). Although it has traditionally 

been argued that irrigation agriculture represented a major department from 

earlier agricultural systems (cf. Hole & Flannery 1967), this is not necessarily 

true. Rather, early irrigation systems “followed a natural progression from the 

earliest surface- and groundwater-based systems through an increased 

management of sources of surface water and its distribution to suitable 

locations” (Sherratt 1980: 325). Such forms of irrigation would have required 

only a small input of effort, involving communal groups only within individual 

settlements, and were therefore achievable by Late Neolithic and Chalcolithic 

period groups with only limited technology  (Sherratt 1980: 322; Wilkinson 

2003: 74). The fact that no agricultural settlements are known on the Central 

Plateau until the Middle to Late Neolithic (ca. 6500-5500 BC), suggests that 

permanent settlement on the Plateau was not possible until the development 

of water manipulation technology. This is supported by the location of the 

sites themselves, as the longest-lived sites were all situated in areas where 

local water resources could be manipulated: relict palaeochannels have been 

identified at Sialk (Simpson & Nejad 2008) and Mafinabad (Gillmore et al. 
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2007), Cheshmeh Ali is situated next to a spring (Fazeli et al. 2004), and an 

artificial water channel is evidenced at Tepe Pardis (Gillmore et al. 2007; 

2009; 2011).  

 

When the first settlements appear on the Central Plateau during the Middle to 

Late Neolithic-Chalcolithic, their size and pattern of distribution varies 

regionally. Late Neolithic to Early Chalcolithic period settlement on the Tehran 

Plain shows an increase in site number throughout this period, followed by a 

decrease in settlement number during the Middle to Late Chalcolithic periods. 

Meanwhile, on the Qazvin Plain the number of settlements appears to have 

remained relatively constant through the Late Neolithic to Early Chalcolithic 

periods, after which there was a hiatus in settlement until the occupation of 

Ghabristan in the Late Chalcolithic; whilst on the Kashan Plain settlement was 

agglomerated throughout the Late Neolithic and Chalcolithic periods at Sialk, 

with few other sites recorded in the plain for this period. The difference in 

settlement patterns between the three plains, suggests that though the 

technology for irrigation agriculture may have spread – possibly from Iraq 

(Gillmore et al. 2011: 64) – how it was adopted and adapted varied locally, 

probably as a result of environmental and social considerations. As Chris 

Thornton has argued, the landscape of the Central Plateau, “has lent itself to 

a great diversity of localized communities and cultures in the past as well as 

the present” (2009: 306), and as a result the region has always been highly 

diversified. 

 

Irrigation agriculture, which would have been a communal enterprise , 

probably at the village level (Wilkinson 2003: 74), developed at a time in 

which increasing complexity is evidenced on the Central Plateau, in terms of 

the economy, social organization, and craft industries. Markers of rising 

complexity in the Late Neolithic-Chalcolithic period include the development of 

long-distance trade (Coningham et al. 2004; Fazeli 2001; Fazeli et al. 2005; 

2007), the herding of domesticated sheep, goat and cattle (Mashkour et al. 

1999; Young & Fazeli 2008), complex ritual activities, specialization and 

standardization in craft production (Fazeli 2001; Fazeli et al. 2007) and new 

production technology (Fazeli et al. 2007; 2010; Thornton 2009). However, 
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whether the use of irrigation techniques was part of, or a result, of these 

changes is unclear. Intra- and inter-regional interaction was in place in the 

Central Plateau by at least the Neolithic-Chalcolithic transition, as evidenced 

by the wide distribution of Late Neolithic ‘Sialk I’ Ware and Transitional 

Chalcolithic ‘Cheshmeh Ali’ Ware. As well as in the Kashan region, Sialk I 

Ware is known from Ebrahim Abad on the Qazvin Plain (Fazeli et al. 2007); 

and on the Tehran Plain at Cheshmeh Ali (Fazeli et al. 2001), Tepe Pardis 

(Coningham et al. 2004), Tepe Sadeghabadi and Tepe Arastu (Fazeli et al. 

2007: 9). The later Cheshmeh Ali Ware has a much wider spread distribution 

and has been recorded at sites across the Central Plateau, from the Gorgon 

plain to the east and the Qazvin Plain to the west (Wong et al. 2010). There is 

also evidence for the inter-regional trade of specialized tools and materials in 

the lithic industry (Fazeli 2001; Fazeli et al. 2002). Although the majority of the 

stone tools were made from local chert sources, a limited number were 

manufactured from non-local materials (e.g. obsidian, quartz, tan chert & 

chalcedony), which were probably imported materials. Obsidian is reported 

from Chaqmak Tepe and Tepe Pardis on the Tehran Plain (Fazeli et al. 2010), 

at Zagheh on the Qazvin Plain (Malek 1977), and at Sialk North (Ghirshman 

1938) and Ghabristan (Coningham et al. in press) on the Kashan Plain. 

Chalcedony is found only at Sadeghabadi (Fazeli et al. 2002: 6); and a type of 

tan chert is found across the Tehran Plain, only in the form of pressure-flaked 

blades or formal tools, suggesting that the material was worked outside the 

region and imported only as finished tool forms (Fazeli 2001; Fazeli et al. 

2002: 7). Temporal variation in the lithic industry suggests that during the Late 

Neolithic local craft specialists produced the lithic tools for each site, with the 

possible exception of the tan-chert tools, while during the Transitional-Early 

Chalcolithic local production was increasingly replaced by offsite, possibly 

centralized, production (Fazeli 2001; Fazeli et al. 2002: 8-9). 

 

The intra and inter-regional increase in the trade of materials and finished 

artefacts on the Central Plateau, is associated with a dramatic increase in 

craft specialization and standardization of production (cf. Fazeli 2001). At 

Tepe Pardis there is evidence of specialized ceramic production from the end 

of the sixth millennium BC (Fazeli et al. 2010). From the earliest occupation of 
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the site, in the latter half of the sixth millennium BC, it appears that the 

residential areas were separated from the workshop areas, and that from ca. 

5200-4600 BC the whole area was used for making vessels (ibid.: 87), and a 

similar spatial separation of the residential and workshop areas is reported at 

Zagheh (Fazeli et al. 2007: 19). The growing specialization and intensification 

of the ceramic industry, is also marked by the major change in pottery style. 

Across the Central Plateau during the Transitional Chalcolithic Period, Late 

Neolithic ‘Buff Ware’ was replaced by ‘Cheshmeh Ali’ Ware (Wong et al. 

2010). Transitional Chalcolithic Cheshmeh Ali Ware was finer than Buff Ware, 

had a uniform vegetable temper, was fired more efficiently, at higher 

temperatures and for longer times in more controlled kilns, was carefully 

burnished and was decorated with painted geometric and naturalistic motifs. 

(Fazeli et al. 2007: 14; 2010: 87). These decorations became finer and more 

complex over time, suggesting a “growing specialization of the painters” 

(Fazeli et al. 2010: 109)  

 

A further indicator of the growing specialization and intensification of craft 

production during the Late Neolithic and Chalcolithic periods on the Central 

Plateau, is the terracotta ‘slow wheel’ recovered from Transitional Chalcolithic 

(ca. 5500-4300 BC) levels at Tepe Pardis (Fazeli et al. 2007: 14; 2010: 89). 

To date, this represents not only the earliest evidence of a slow wheel on the 

Central Plateau, but also across the whole of South and Middle Asia, and has 

important implications for the development of craft specialization at Tepe 

Pardis (Fazeli et al. 2007: 19; 2010: 108-9). 

 

Parallel to the development and specialization of the ceramic industry on the 

Central Plateau, was the emergence and spread of metallurgy (Thornton 

2009). The earliest evidence of metal use in Iran comes from Ali Kosh, where 

a rolled bead of native copper has been dated to the late eighth/early seventh 

millennium BC (Hole 2000: 13), and isolated finds of native copper from late 

seventh/early sixth millennium contexts at Mehrgarh (Moulherat et al. 2002: 

1393) suggest that native copper may have been manipulated in eastern Iran 

by the mid-late seventh millennium BC (Thornton 2009: 310). However, the 

true adoption of copper is not evidenced until the early-mid sixth millennium 
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BC, when native copper artefacts were utilized consistently in various parts of 

the Central Plateau (Thornton 2009: 308). Chris Thornton suggests that 

although there exist important synchronisms between the development of 

metallurgy in the Central Plateau and the Levant, “there are also significant 

chronological and technological differences” (2009: 318), leading him to 

conclude that the “Iranian Plateau served as one of the early ‘heartlands’ of 

metallurgy” (2009: 318; author’s original emphasis).  

 

Fazeli and colleagues (Fazeli 2001; Fazeli et al. 2005; 2007; 2010) argue that 

population growth and increasing social complexity during the Late Neolithic-

Chalcolithic period is also evidenced by the increase in social ranking, as 

reflected in mortuary practices, ritual activities and “ideological domination” 

(Fazeli et al. 2007: 7). The most tangent archaeological evidence of this is the 

presence of the ‘Painted Building’ at Zagheh (Neghaban 1974; 1979; Fazeli et 

al. 2005). The ‘Painted Building’ is a large, roughly rectangular structure 

measuring some 11 by 7 metres, containing a small annex room, surrounded 

by a large U-shaped main hall with benches set against the wall. The walls 

were plastered with red ochre plaster, and decorated with a black and white 

zigzag design. Of particular significance were 18 mountain goats’ skulls and 

horns, found in-situ below where they had fallen off a wall, and 2 hearths 

(Neghaban 1979: 247). It is interesting to note that a similar deposit has been 

recovered from the Neolithic site of Sheikh-e Abad in the Central Zagros, 

where four skulls of large wild goats placed in pairs, and a large sheep’ skull, 

were found in a room which the excavators suggest may have been a ritual 

building (Matthews et al. 2010). This suggests that the development and 

growth of social complexity witnessed on the Central Plateau may have been 

part of a geographically wider phenomenon.  

 

The evidence of increasing complexity and rising population numbers outlined 

above, suggests that the use of water manipulation techniques and irrigation 

on the Central Iranian Plateau during the Late Neolithic-Chalcolithic periods, 

was part of a larger trajectory of growing social complexity and change. Fazeli 

(2001) argues that the rapid growth in settlement and population during this 

period was due to an escalation in craft production and specialization, and 
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trade and exchange. Thornton agrees, suggesting that the Central Plateau 

provided the, “perfect setting for significant technological innovations, in that 

craft specialists could be supported by the community and given time to 

experiment” (Thornton 2009: 321). It can be envisaged, that it was the 

outcome of the complex interplay of this growing social and economic 

complexity that enabled the settlement of the Central Plateau during the 

Middle to Late Neolithic period and its continuity during the Chalcolithic, 

although a significant role has to be given to the development of water 

manipulation techniques. For, without it, the permanent occupation of the 

“harsh and austere” (Ghirshman 1954: 42) Central Plateau would not have 

been possible. Returning to the models for the development of agriculture that 

were discussed in Chapter Two, it would appear, then, that on the Central 

Plateau two main factors contributing to the continued development and 

growth of the agricultural economy during the Late Neolithic and Chalcolithic 

periods: population growth, in contrast to population pressure (e.g. Cohen 

1977), as originally advocated by Binford (1968); and increasing social 

complexity. Added to this could, perhaps, be included growing networks of 

communication and trade, and the development of new technologies such as 

water manipulation (Sherratt 2007; Gillmore et al. 2007; 2009; 2011).  

 

Cultural complexity and interaction on the Central Plateau during the Late 

Neolithic and Chalcolithic periods is evidenced by the presence of non-local 

materials, e.g. turquoise, obsidian, marine shell, and the distribution patterns 

of manufactured products (see Tab. 7.0). For example, ‘Cheshmeh Ali’ Ware 

is found at Cheshmeh Ali and Tepe Pardis on the Tehran Plain; at Ebrahim 

Abad and Cheshmeh Bolbol on the Qazvin Plain; and at Sialk on the Kashan 

Plain. In terms of the distribution of non-local materials, obsidian is relatively 

rare on the Central Plateau in comparison to Late Neolithic-Transitional 

Chalcolithic sites in western Iran (e.g. Ali Kosh, Tepe Sabz; Hole et al. 1969). 

One obsidian blade was found at Sialk; one at Tepe Pardis; and two were 

collected during surface survey at Chakhmak Tepe. The one site at which 

obsidian was more plentiful was at Ghabristan on the Kashan Plain, where 

initial analysis suggests that some 11 per cent of the lithic assemblage was 

comprised of obsidian (Coningham et al. in press). This suggests that unlike 
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the former sites, the inhabitants of Ghabristan participated in what was 

possibly a larger trade network, extending beyond the Central Plateau, along 

which the trade of obsidian was more common. The source of the obsidian is 

unknown, but the closest potential sources are around the peak of Damavand 

in the Alburz Mountains and Sareh in the western part of the plain (Fazeli 

2001: 185) (see also Fig. 7.0). In comparison to obsidian, marine shells from 

the Persian Gulf are much more widely distributed across the Central Plateau, 

and have been recorded at: Tepe Pardis, Zagheh, Cheshmeh Bolbol, Sialk 

North and Ghabristan. This suggests that the inhabitants of these sites 

perhaps had a stronger link with trade networks to the north of the Plateau, 

rather than those to the south and east. As, with the exception of the 180-

kilometre long stretch on the Karun (Fig. 3.6), none of the rivers in Iran are 

navigable, trade routes would have operated over land. 

 

In terms of other non-local materials, lapis lazuli is found at Tepe Pardis and 

Zagheh, and turquoise is evidenced at Tepe Pardis, Zagheh and Sialk. The 

geographic distribution of lapis lazuli has been poorly studied, and the origin 

of that used on the Central Plateau is not known. Fazeli (2001: 216-7) 

suggests that it may have come from eastern Iran. Ghirshman (1938: 24, 31-

2) suggested that the turquoise and carnelian may had been sourced from the 

Meshed region of eastern Iran. Another potential source area for the turquoise 

is Kerman Province (Beale 1972: fig. 1). Much of this interaction can be 

probably be interpreted as “trickle trade” (Beale 1973: 141), which included 

low-level, routine contact between neighbouring communities. Fazeli and 

Abbadbezhad (2005: 12) suggest that weapons, tools and ornaments may 

have changed hands as items in dowries, as elements of gift exchange 

between local dignitaries, or as spoil of conflicts.  

 

Small, cold-hammered copper objects are reported from Tepe Pardis, 

Zagheh, and Sialk North. Although the copper found at these sites was 

probably locally sourced (Negatiti 2004: 63), the practice of early metallurgy 

and the technological ‘know how’ associated with it, can be interpreted as 

evidence of expanding trade and social networks (Thornton 2009). 
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With the exception of the visible remainders of the presence of non-local 

materials and the trade of manufactured products, little is known of prehistoric 

trade routes on the Central Iranian Plateau. One possible way of 

reconstructing ancient trade routes is to look at the distribution of modern 

caravanserai. Caravanserai “have been erected in almost all parts of the 

Iranian Plateau since the earliest times” (Kleiss & Kiani 1995: 778), and 

although their exact origin is contentious, their antiquity is in no doubt. W. 

Kleiss and M.Y. Kiani have conducted a comprehensive study of Iranian 

caravanserai, and have recorded all that are still visible (Fig. 7.1-7.2). 

Although the historical patterns marked by caravanserai will have been greatly 

influenced by the construction of qanat lines from the first millennium BC 

onwards, some will be based on ancient, perhaps prehistoric, networks. The 

ancient routes are most likely to be the peripheral ones which skirt the kavirs 

along the alluvial fans, where the water sources were; the regions where 

prehistoric sites such as Tepe Pardis, Cheshmeh Ali and Sialk were also 

located.  

 

 

7.3. The spread of agriculture in Central and South Asia 

 

Recent archaeological research on the Central Plateau, specifically targeted 

at identifying the presence of Early Neolithic sites, has failed to recover any 

evidence of occupation during this period (Coningham et al. 2004; 2006; 

Coningham et al. in press). Instead, the evidence indicates that early farming 

settlements were not established on the Central Plateau until the late sixth 

millennium BC. This is very much at odds with the pattern that would be 

expected from a Wave of Advance. The Wave of Advance model uses short-

distance migrations to describe the expansion of early farmers by a random-

walk process, which has been calculated from the dates of early farming sites 

in Europe to have occurred at a rate of one-kilometre per year (Ammerman & 

Cavalli-Sforza 1971: 685). Such a pattern of dispersal would result in a steady 

cline in the age of sites, with the oldest sites located closest to the homeland 

of farming, and the youngest sites situated furthest away. 
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The Wave of Advance model was originally proposed for Europe (Ammerman 

& Cavalli-Sforza 1984), but is has been subsequently applied to the eastern 

spread of agriculture (e.g. Renfrew 1987; Bellwood & Renfrew 2002; Bellwood 

2005; 2009). Peter Bellwood, for example, argues that  “after about 7000 BC, 

an efflorescence of Neolithic expansion occurred out of Anatolian and the 

northern Zagros, initially into Greece and Armenia by about 7000 BC, onward 

into the Balkans and east into Pakistan and Turkmenistan” (Bellwood 2009: 

625). However, the absence of Early Neolithic settlements on the Central 

Plateau, and their subsequent appearance in the Middle-Late Neolithic period 

in conjunction with irrigation technology, calls this into question.  

 

Andrew Sherratt has suggested that in early farming groups, the decisions on 

where to settle were “restricted… [and] highly selective” (Sherratt 1980: 314). 

He argued that rather than proceeding by a random-walk process, as 

described by the Wave of Advance model, early farmers chose to settle only 

in ‘optimal’ areas, with high soil fertility and moisture content. Consequently, 

the initial spread of farming was not uniform, involving instead the infilling of 

optimal areas within a region, by the spread of the daughter settlements to 

sites comparable to those occupied by their mother settlements (Sherratt 

1972: 516). This form of spread, with early farmers ‘leapfrogging’ from one 

niche environment to another, is described by van Andel and Runnels as 

having a pattern, “like the tongues of the incoming tide as it first advances 

across the sand” (van Andel & Runnels 1995: 497), and fits more comfortably 

with the pattern of settlement on the Central Plateau. Early farmers would 

initially have avoided the generally hostile environment of the Central Plateau 

in favour of more optimal areas (e.g. the Ushnu-Solduz Valley, southern Iran, 

& perhaps southern Turkmenistan & Baluchistan?). The appearance of early 

farming settlements on the Central Plateau during the Middle to Late Neolithic 

period (ca. 6500-5500 BC), simultaneously with evidence of water 

manipulation and/or irrigation agriculture, suggests that the occupation of the 

Central Plateau by prehistoric farmers was not possible until the development 

of this technology. 

 

 



 

 

434 
 

7.4. Conclusion 

 

This research shows, that despite extensive settlement survey and excavation 

on the Tehran, Qazvin and Kashan plains, including qanat survey specifically 

designed to combat potential problems in archaeological visibility (cf. Brookes 

et al. 1982; Coningham et al. 2004), there exists no evidence of Early 

Neolithic (ca. 8000-6500 BC) settlement on the Central Plateau. Instead, the 

results from both the relative and absolute dating of Tepe Pardis, Cheshmeh 

Ali, Zagheh, Chesmeh Bolbol, Ebrahim Abad and Sialk North, imply that the 

Plateau was not occupied until sometime during the Middle to Late Neolithic 

period (ca. 6500-5500 BC). In conjunction with the appearance of settlement 

during this period, is evidence of water manipulation and/or irrigation 

agriculture, suggesting that occupation of the Central Plateau was not 

possible until the development of this rudimentary technology.  

 

The re-calibration and chronometric assessment of the 14C dates already 

available for Neolithic sites in Iran and neighbouring regions, emphasises the 

retardation in the settlement of the Central Plateau, compared to other regions 

within Iran, notably the Central Zagros, the southwestern and southern 

lowlands and the Ushnu-Solduz Valley. Outside of Iran, the absolute dating of 

Jeitun, southern Turkmenistan and Mehrgarh, Baluchistan, implies that these 

areas too were settled before the Central Plateau. Such a pattern is not what 

would be exhibited by a wave of advance, where farming would have spread 

by a random-walk process at a uniform rate and rather, it is in accord van 

Andel and Runnel’s (1995) model of ‘leapfrog’ colonization (Fig. 2.14), in 

which farming groups sought only optimal areas to settle, ‘leapfrogging’ over 

areas like the Central Plateau, which were unsuited for early farming 

technology. It was not until later, during the Middle-Late Neolithic (ca. 6500-

5500 BC) period, when, in conjunction with other social and technological 

changes, that water manipulation techniques had been developed, that 

farming groups were able to settle in the region. However, even then, their 

distribution was limited, restricted by the need for local permanent, or 

manipulable, water sources. Envisioning the spread of farming to have been 

targeted and specific, as proposed by van Andel and Runnel’s leapfrog 
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model, also explains for the presence of the seventh millennium BC site of 

Mehrgarh in Baluchistan, the existence of which cannot be explained using 

the conventional model of a wave of advance. In the next chapter the aims 

and objectives of this research, and how they were met is reviewed, and 

areas of future research considered.  
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Site Period 

Marine 
shell 

Pottery Copper Lithics Obsidian Other 

T
e

h
ra

n
 P

la
in

 

Yan Tepe Late Neolithic No Sialk I & II Ware No Local chert No  

Cheshmeh 
Ali 

Late Neolithic-
Early 
Chalcolithic 

No Neolithic ‘Buff’ Ware; 
‘Cheshmeh Ali’ Ware 

No Local grey 
chert 

No  

Tepe 
Pardis 

Late Neolithic-
Transitional 
Chalcolithic 

Yes Neolithic ‘Buff’ Ware; 
‘Cheshmeh Ali’ Ware 

Cold 
hammered 
copper 

Local chert; 4 
imported 
honey chert 
blades 

1 obsidian 
blade 

Agate; lapis 
lazuli, 
turquoise 

Q
a

z
v

in
 P

la
in

 

Chahar 
Boneh 

Late Neolithic No Neolithic ‘Buff’ Ware;  No Local chert No  

Ebrahim 
Abad 

Late Neolithic-
Transitional 
Chalcolithic 

No Neolithic ‘Buff’ Ware; ‘Sialk I’ 
Ware; ‘Zagheh’ Ware; 
‘Cheshmeh Ali’ Ware 

No Local chert No  

Zagheh Transitional 
Chalcolithic 

Yes ‘Zagheh’ Ware; ‘Cheshmeh Ali’ 
Ware 

Cold- 
hammered 
copper 

Local chert No Lapis lazuli; 
turquoise 

Cheshmeh 
Bolbol 

Transitional 
Chalcolithic 

No ‘Zagheh’ Ware; ‘Cheshmeh Ali’ 
Ware 

No Local chert No  

K
a

s
h

a
n

 P
la

in
 

Sialk North Late Neolithic-
Transitional 
Chalcolithic 

Yes ‘Sialk I’ & Sialk II’ Ware, 
‘Cheshmeh Ali’ Ware 

Cold- 
hammered 
copper 

Local chert; 
occasionally 
marble 

1 obsidian 
blade 

White 
marble; 
alabaster; 
carnelian; 
turquoise 

Ghabristan Late Neolithic Yes Neolithic ‘Buff’ Ware No Local chert 11% lithic 
assemblage 

 

 

 

 

Table 7.0: Imported materials and manufactured ceramics and lithics found at sites on the Central Iranian Plateau.  
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 Figure 7.0: Soil 
map of the Central 
Plateau showing 
key sites. Scale 1: 
2,500,000. (After 
Dewan & Famouri 
1964). 
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Key to Fig. 7.0. 
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Figure 7.1: Map of some source areas and prehistoric sites in Iran. (After Beale 1972: 
fig. 1.) 
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Figure 7.2: Location of caravanserai in Central Iran. Red lines mark possible routes of interest in terms of 
trade on the Central Plateau during the Neolithic & Chalcolithic periods (After Kleiss & Kiani 1995: 710.) 
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Figure 7.3: Distribution of caravanserai in eastern Iran. Red lines mark 
possible routes of interest in terms of trade on the Central Plateau during 
the Neolithic & Chalcolithic periods. (After Kleiss & Kiani 1995: 407.) 
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Chapter Eight 

 

Conclusion and Outline of Further Research 

 

 

8.0. Introduction 

 

The aim of this research was to test for the presence of Early Neolithic occupation 

on the Central Iranian Plateau, with particular focus on the Qazvin, Tehran and 

Kashan plains. The objectives of this research were to: (1) review models of the 

sequential Neolithic occupation of Iran; (2) analyse published material on the earlier 

Neolithic of Iran and neighbouring regions; (3) recalibrate and evaluate the 

chronometric hygiene of published 14C determinations for Neolithic sites in Iran, and 

neighbouring regions; (4) to spatially plot the evaluated 14C determinations onto a 

geographic map of Iran; and (5) to review the data from recent survey and 

excavation work on the Tehran, Qazvin and Kashan plains. 

 

Objective one was achieved by reviewing existing models for the origins and spread 

of agriculture. It was established that although it is generally accepted that 

agriculture first developed within the Fertile Crescent (e.g. Allaby et al. 2009; Brown 

et al. 2010; Zeder 2008a; 2008b; 2009; Zeder & Smith 2009), how it spread from 

there is more controversial. The prevailing model for the spread is the ‘Wave of 

Advance’ (Ammerman & Cavalli-Sforza 1984), which predicts that agriculture spread 

via demic diffusion at an average rate of one-kilometre per year, from its homeland in 

Central Anatolia (ibid.: 68). Ammerman and Cavalli-Sforza (1984) originally applied 

the Wave of Advance only to the southeast–northwest spread of agriculture across 

Europe. It has subsequently been applied to account for the spread of agriculture 

across Central Asia by Colin Renfrew (1987; 1989), but this has never been explicitly 

tested. 

 

The Wave of Advance is not without its critics. In particular, scholars (e.g. Zvelebil 

1986; 1993; 1998a; 1998b; 2000a; 2000b; 2002; Zvelebil & Rowley-Conwy 1984; 

Zvelebil & Zvelebil 1988; Dennell 1992) have stressed the role of indigenous hunter-
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gatherer populations in the spread and development of food production. 

Furthermore, Ammerman and Cavalli-Sforza (1984) originally applied the Wave of 

Advance only to the southeast–northwest spread of agriculture across Europe. And 

although it has subsequently been applied to the eastward spread of agriculture 

across Central Asia by Colin Renfrew (1987) and Peter Bellwood (2002), this has 

never been tested.  

 

Objective two was achieved by conducting a review of the published material on the 

Neolithic of Iran and neighbouring regions. The history of archaeological 

investigation in Iran has been sporadic (cf. Niknami 2000). In the chaos that ensued 

after the Islamic Revolution of 1979, all archaeological activities in Iran were 

indefinitely interrupted, and the situation did not improve until the founding of the 

Iranian Cultural Heritage Organisation (ICHO) in 1985 (Alizadeh 2004: xxxi; 

Azamoush & Helwing 2005: 192). The activities of the ICHO since 1990 have 

included the resumption of problem-based archaeological research, the registration 

of archaeological sites and monuments, the assignment of guards to protect 

archaeological sites, and the opening up of Iran to foreign archaeologists working in 

conjunction with Iranian teams 

(http://en.icar.ir/documents/document/0/11587/ICAR.aspx). For example, more than 

250 field expeditions were undertaken in Iran between March 2005 and March 2006, 

including a dozen foreign-Iranian joint missions since 2000 (Azamoush & Helwing 

2005: 192). Unfortunately, the present political unrest in Iran means that access to 

foreigners is currently once more restricted, and a number of archaeological projects 

have been put on hold. 

 

As a result of the disjointed history of archaeological research in Iran, there exist 

large gaps in our knowledge of the Iranian Neolithic. Most of our information comes 

from sites in the Central Western Iran (e.g. Sarab, Asiab & Ganj Dareh) and the 

southwestern lowlands (e.g. Ali Kosh, Chogha Bonut, Tall-e Mushki), while other 

areas of Iran – particularly southern and northeastern Iran – although potentially 

important have seen little archaeological excavation (Hole 2004). Consequently, the 

excavated sites reviewed in this research were principally located in the Zagros 

Mountain valleys, and the Deh Luran and Susiana lowland plains, and further 

research in other parts of Iran is needed to establish whether the concentration of 
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Early Neolithic sites in this region is due to actual historical processes, or the result 

of limited archaeological research elsewhere in Iran. These limitations aside, there 

does appear to be a number of shared traits between the sites, including the location 

of sites in areas where dry farming was possible, an economy based on 

agropastoralism and supplemented by foraging and hunting, the use of mudbrick or 

pisé architecture, the trading of obsidian, and as of the start Middle Neolithic period 

(ca. 6500 BC) a shared Neolithic ‘software’ ceramic tradition. However, there are 

also important difference including the emphasis placed on different species of 

domesticated and wild animals and plants, how the settlements were organized and 

individual buildings divided, and the level of trade in non-local goods that the 

inhabitants of the site participated in. These contrasts suggest that even if the 

technology of early farming was shared, how it was used and adapted varied 

regionally, presumably as a result of both environmental and cultural choices.  

 

Objective three involved the study of published 14C determinations for Neolithic sites 

in Iran and neighbouring regions. Many of the 14C dates for Iranian sites are not 

calibrated, and those that are, have not been calibrated with the most recent 

calibration curve IntCal 09 (Reimer et al. 2009). Consequently, all of the 14C dates 

utilized in this research were calibrated using the calibration software program OxCal 

(Bronk Ramsey 2009). 14C datasets may be “significantly weakened by questionable 

dates and/or questionable associations between dated samples, and the 

archaeological phenomena they are intended to represent” (Pettit et al. 2003: 1685). 

To avoid this scenario, in this research the chronometric hygiene of all the 14C dates 

was rigorously assessed, and only those that were considered to be ‘clean’ (i.e. of 

‘acceptable’ or ‘reliable’ hygiene) were used for subsequent analysis. 

 

To examine the spatial and temporal distribution of Neolithic sites in Iran and 

neighbouring regions, the earliest ‘clean’ 14C dates for each site was plotted onto a 

map of Central and South Asia.  A map was also produced using the earliest 14C 

date for each site regardless of its hygiene, in order to emphasise the need to 

employ stringent chronometric hygiene evaluation. The resulting maps showed a 

wide discrepancy. The site distribution on the map of the 'uncleaned' dates implied 

that the Neolithic of Iran began some 1000 years earlier than was indicated by the 

clean dates, and that there were three initial centres, central western Iran, 
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southwestern Iran, and the Caspian Sea plains.  In comparison, the distribution of 

the ‘clean’ dates evidences only one early centre of agriculture in the Central 

western Zagros, and the development of the Neolithic sites in southwestern Iran and 

the Caspian Sea Plains was a subsequent development. The differences between 

the two sets of maps, emphasizes the importance of evaluating the chronometric 

hygiene of a 14C determination or date set before analysing it further; to not do so 

can result in the inclusion of erroneous 14C determinations in the analysis, potentially 

creating highly misleading results. 

 

Charting the spread of the Neolithic in Iran, the distribution of the ‘clean’ dates shows 

a disjointed pattern. The earliest Neolithic sites were concentrated in the central 

Zagros region, followed by the appearance of settlements in the southwestern 

lowland around a thousand years later. Mehrgarh in Baluchistan was reputedly also 

occupied during this period, but there is a problem with the 14C dates and the site is 

probably actually early seventh millennium (Jarrige 2000: 282). Later, sites appear 

further south on the Marv Dasht and Mamasani Plains, to the northwest in the 

Ushnu-Solduz Valley, and in southern Turkmenistan at Jeitun. However, it is not until 

the late sixth millennium BC that the first Neolithic sites are attested on the Central 

Iranian Plateau. This is not the pattern that would be expected if farming had spread 

across Central Asia by a wave of advance as Colin Renfrew (1987; 1989) 

suggested. The later would have resulted in a clinal pattern, with the oldest sites 

situated in central western Iran, closest to the homeland of agriculture in the Near 

East, and the youngest sites lying in the west. Instead, the distribution of Neolithic 

settlements in Iran is more in accordance with the model of ‘leapfrog’ colonization 

that has been described by van Andel and Runnels (1995) and Sherratt (1980; 

2003).  

Objective five was achieved by analysing the results of recent archaeological 

research projects on the Tehran, Qazvin and Kashan Plains, in conjunction with my 

own settlement survey on the Kashan Plain. Archaeological projects on the Central 

Plateau within the last decade include Hassan Fazeli’s and Robin Coningham’s work 

on the Tehran Plain, involving excavations at Cheshmeh Ali (Fazeli et al. 2004) and 

Tepe Pardis (Coningham 2004; 2006; Fazeli et al. 2007; Fazeli et al. 2009), and 

three seasons of settlement survey (Coningham et al. 2003; 2004; 2006); Fazeli and 

colleagues excavations on the Qazvin Plain at Zagheh, Tepe Ebrahim Abad and 
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Chahar Boneh (Fazeli et al. 2005; 2009), and settlement survey; and Malek 

Shahmirzadi’s (2002; 2003; 2004; 2006a; 2006b) excavation of the North Mound at 

Tepe Sialk on the Kashan Plain. The most recent work to date has been by a joint 

Irano-British project between the University of Tehran, ICHTO and Durham 

University, of which I was a member, and has involved excavations at Sialk North 

and Ghabristan, on the Kashan Plain.  

 

However, despite extensive archaeological investigation, including qanat survey 

specifically designed, and proven (cf. Coningham et al. 2004), to compensate for 

alluvial deposition restricting the archaeological visibility of prehistoric sites, no Early 

Neolithic (ca. 8000-6500 BC) sites were found. Rather, it would seem that 

settlements did not become established on the Central Plateau until the Middle to 

Late Neolithic period (ca. 6500-5500 BC), for which they are attested at Tepe Pardis, 

Cheshmeh Ali and Sialk North. In conjunction with the first appearance of 

settlements on the Central Plateau, is evidence of water manipulation and/or 

irrigation agriculture. The implication, then, is that settlement was not possible on the 

Central Plateau, until humans had developed the technology to manipulate local 

water sources. This is attested by the location of the sites, with all of the longest lived 

sites located either next to permanent water sources (e.g. the spring at Cheshmeh 

Ali; the palaeochannels at Sialk & Mafinabad) or in areas where they could control 

the local water supply (e.g. the canal at Tepe Pardis &, possibly, Sialk North). 

 

Comparison of the regional distribution of settlement on the Tehran, Qazvin and 

Kashan Plains shows that settlement patterns varied locally, and were distinct to 

each plain. While on the Tehran Plain there was an efflorescence of sites in the 

Transitional–Early Chalcolithic period (ca. 5500-4000 BC), followed by a decline in 

number during the Mid–Late Chalcolithic periods (ca. 4000-3000 BC); on the Qazvin 

Plain the present evidence1 indicates that there were only a limited number of sites 

occupied during the Late Neolithic–Early Chalcolithic (ca. 5500-4000 BC) period, 

following which there was a hiatus in settlement until the Late Chalcolithic (ca. 3700-

3000 BC) settlement at Ghabristan. Meanwhile, on the Kashan Plain, the settlement 

pattern was much more agglomerated, with the majority of the plain’s population 

                                            
1
 Although Fazeli’s 2003 settlement survey on the Qazvin Plain identified 23 ‘new’ archaeological sites, 

no chronological information is currently available for these sites (Fazeli et al. 2009: 1-2). 
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concentrated at Sialk North during the Late Neolithic to Transitional Chalcolithic 

(6200-4300 BC), and then, after a short hiatus, at Sialk South for the remainder of 

the Chalcolithic period (ca. 4300-3000 BC).   

 

Environmental factors probably contributed to the differences in settlement patterns 

between the three plains. The Kashan alluvial plain is much smaller than that of the 

Tehran and Qazvin plains, and this may partially explain the agglomeration of people 

next to the river at Sialk throughout the Late Neolithic (ca. 6200-5500 BC) and 

Chalcolithic periods (ca. 5500-3000 BC). However, social and cultural preferences 

cannot be ignored, and probably also contributed to the differences in regional 

settlement patterns. Population increase may also have played a role. Fazeli has 

suggested that the growth in settlement numbers during the Early–Mid Chalcolithic 

period (ca. 4300-3700 BC) on the Central Plateau was due to increasing social 

differentiation and economic change, with the development of full-time specialization, 

long-distance trade and ideological domination (Fazeli 2001: 291; Fazeli et al. 

2007:7; 2010: 87). He argues that growing specialization in craft production is 

evidenced by the replacement of Neolithic Sialk I Ware, by the finer, more 

standardized ‘Cheshmeh Ali’ Ware of the Transitional Chalcolithic, which was mass 

produced by part or full-time specialists (Fazeli 2001: 290; Fazeli et al. 2010: 87, 

108-9). Further evidence of increasing craft specialization and standardization during 

the Chalcolithic, is found at the specialized pottery production centre of Tepe Pardis, 

at which mass production is evidenced by the presence of a slow wheel dating to ca. 

4800 BC, and the use of well-controlled, multi-chambered kilns in the firing process 

(Fazeli et al. 2010: 108-9). 

 

One important aspect of prehistoric settlement on all three plains is the instability of 

settlement occupation. Fluctuations in the abandonment of sites, emergence of new 

sites, and increases/decreases of population were regularly repeated on the Tehran, 

Qazvin and Kashan Plains throughout the Mid-Late Neolithic (ca. 6500-5500 BC) 

and Chalcolithic periods (ca. 5500-3000 BC). On the Tehran Plain, for example, 

Cheshmeh Ali and Sadeghabadi emerged as large autonomous settlements during 

the Transitional-Early Chalcolithic periods (ca. 5500-4000 BC), but waned in 

importance during the Middle Chalcolithic (4000-3700 BC), while the nearby site of 

Mafinabad expanded to five hectares (Fazeli 2001: 293). Mafinabad itself, then 
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decreased in size during the Late Chalcolithic (ca. 3700-3000 BC), while 

Maymonabad, situated only two kilometres away, emerged as the new major 

settlement on the Tehran Plain. Very few long-lived settlements are known from the 

Central Plateau. The exceptions are Cheshmeh Ali, Tepe Pardis and Mafinabad on 

the Tehran Plain; and Tepe Sialk on the Kashan Plain, all of which are associated 

with permanent water sources. A spring emerges at Cheshmeh Ali; Mafinabad and 

Tepe Sialk are both associated with relic palaeochannels; and at Tepe Pardis there 

is direct evidence, in the form of an artificial water channel, of the earliest use of 

irrigation technology in Iran (Gillmore et al. 2007; 2009; 2011). 

 

The distribution of Late Neolithic–Chalcolithic sites on the Tehran, Qazvin and 

Kashan Plains, the fact that the majority of the sites were short lived, and that the 

few sites that were long-lived were all located in areas with permanent water 

supplies and/or the potential for water manipulation, suggests that the location and 

longevity of late prehistoric settlements on the Central Plateau was highly dependent 

on the availability and accessibility of water. The earliest known evidence of irrigation 

agriculture in the Near East comes from Chogha Mami, northeastern Iran, where two 

artificial water channels have been excavated dating to the Samarran phase (ca. 

6000-5400 BC) (Oates 1969; Oates & Oates 1976). It is suggested that irrigation 

technology – or the knowledge of it – spread from here to the Deh Luran Plain (Hole 

1977; Neely & Wright 1994) and the Tehran Plain by the late sixth millennium BC 

(Gillmore et al. 2007; 2009; 2011); although there is no tangent evidence of irrigation 

technology on the Deh Luran plain during this period (Wilkinson 2003: 74). The 

absence of prehistoric settlement on the Central Plateau until the late sixth 

millennium BC, when the first evidence of irrigation technology is also attested, 

suggests that agriculture on the Central Plateau was highly dependent on the 

management and manipulation of water, and may not have been possible before the 

technology to do this was known. 

 

In terms of how the Neolithic–Chalcolithic period settlement pattern of the Central 

Plateau fits with the Wave of Advance model for the spread of agriculture across 

Central Asia, the answer is, as with the 14C dates from Neolithic sites from the rest of 

Iran, not well. Rather than the steady spread of agriculture that is predicted by the 

Wave of Advance, the Early Neolithic (ca. 8000-6500 BC) settlement of Iran was 
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patchy and piecemeal, with the settlement of the Central Plateau greatly retarded 

compared to that of other regions such as the Central Zagros. Indeed, rather than a 

‘Wave of Advance’, the distribution of early farming sites in Iran, particularly that on 

the Central Plateau, better described by van Andel and Runnel’s ‘leapfrog’ model, in 

which niche environments are targeted by early farmers, with other, less attractive 

areas, in-filled later when the appropriate technology (in this case water 

manipulation) was available or all other areas had been settled. 

 

 

8.1. Limitations of this research & future prospects 

 

A problem with linking this thesis to a current project is that more results are coming 

out all the time, and our understanding of prehistoric settlement on the Kashan Plain 

is continually evolving. This thesis, thus, presents a summary of the evidence as it 

stands at present. However, it is anticipated that within a few years time, when all the 

information from Sialk has been published, more evidence will be available, to either 

substantiate or refute the interpretations made here. In this vein, work is currently 

being prepared for publication on the micromorphology of Sialk (Kourampas et al. in 

press), and a geomorphological study of the Tehran Plain has recently been 

published (Gillmore et al. 2011). Studies such as these, in which a combined 

approach is taken, and micromorphological, geomorphological and archaeological 

data are combined, are important in elucidating further information on the 

development of farming and settlement in the Central Plateau during the Neolithic 

and Chalcolithic periods, and it is anticipated that more such studies will be 

conducted in the future. 

 

The qanat survey of the Kashan Plain in 2009 was intended to be the first of two 

seasons of survey on the plain. However, political circumstances prevented a team 

from returning in 2010, and subsequently the survey results with which this research 

has had to work have been rather limited. Due to the nature of the political climate in 

Iran, the survey area was restricted to certain areas of the Kashan Plain, and it was 

not possible to survey other areas of potential interest, including the foothills of the 

Markazi Mountains from where members of the ICHTO have reported an Early 

Neolithic site. The areas of the Kashan Plain that were surveyed were all active 
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agricultural lands, and this may have affected the visibility of prehistoric artefacts in 

the spoil heaps around the qanat holes, many of which had been destroyed by 

ploughing. It was apparent that due to the widespread adoption of electric-powered 

water pumps many of the qanat systems in the study region were falling out of use 

and in need of repair, or had been abandoned all together and infilled. This 

emphasises the importance of doing qanat survey to identify prehistoric sites (a 

technique which has been proven to work on the Tehran Plain; cf. Coningham et al. 

2004; 2006), now, before this valuable means of accessing an inverted stratigraphy 

of the plain is destroyed.   

 

The Kashan Plain is flanked by the Markazi Mountains and foothills to the west, and 

desert to the north and northeast. However, apart from the Sialk Reconsiderations 

Project’s limited geoarchaeological survey of some of the intermountain valleys of 

the Markazi (Danti 2006), no information is available about the settlement pattern of 

the mountain regions or desert for the Neolithic-Chalcolithic period (ca. 8000-3000 

BC). This is despite the fact that both regions would have been at least suitable for 

pastoralism during prehistory (Fazeli 2001: 296), and the important mineral 

resources of the mountains, such as copper, which are known to have been 

exploited at Sialk.  

 

Thus, future work could involve transect settlement survey in the intermountain 

valleys of the Markazi, as well as in the deserts to the north and northeast of 

Kashan. In terms of the plain itself, further qanat survey in different areas of the plain 

is needed. Collectively, these settlement surveys could have the potential to provide 

more evidence of prehistoric plant and animal raising in the region, and to further 

elucidate our understanding of the relationships between societies during the 

Neolithic and Chalcolithic periods. Survey is also necessary in the Kashan Plain due 

to the rapidity with which this archaeological resource is being destroyed. As on the 

Central Plateau in general, archaeological sites on the Kashan Plain are under threat 

from increased population, industrial activities, sewage, mechanized cultivation and 

illegal excavation (Fazeli 2001; Coningham et al. 2004), and conducting 

archaeological research in the region is of the upmost importance.  
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8.2. Conclusion 

 

In terms of the overall results of this research, this study has shown that although 

Early Neolithic sites (ca. 8000-6500 BC) are known from central western and 

southwestern Iran, prehistoric occupation of the Central Plateau is not evident until 

the Middle-Late Neolithic periods (ca. 6500-5500 BC). Once settlement does emerge 

on the Central Plateau, the distribution of sites varied regionally. On the Tehran Plain 

there was a period of rapid growth in settlement from the Late Neolithic period (3 

sites) through the Transitional Chalcolithic (9 sites) and Early Chalcolithic periods (16 

sites), which Fazeli (2001; Fazeli et al. 2007; 2010) attributes to population 

expansion and increasing craft specialization and industrialization. This rapid growth 

was followed by a period of apparent population decline during the succeeding 

Middle Chalcolithic (8 sites) and Late Chalcolithic (6 sites) periods, which is 

associated with the de-specialization of some craft industries, such as stone tool 

production, which reverted from centralized to household production (Fazeli 2001: 

291). The Qazvin Plain has not been as well studied as the Tehran Plain, but present 

evidence suggests that there was little growth in the number of settlements between 

the Late Neolithic (2 sites) and Transitional Chalcolithic (3 sites) periods, following 

which only Zagheh was occupied during the Early Chalcolithic (ca. 4300-4000 BC), 

and no settlements are known from the Middle Chalcolithic period (ca. 4000-3700 

BC). The plain is once more settled in the Late Chalcolithic (ca. 3700-3000 BC) with 

the occupation of Ghabristan. Meanwhile, on the Kashan Plain settlement seems to 

have been concentrated on the North Mound (Late Neolithic-Transitional 

Chalcolithic) and then, after a short hiatus, the South Mound (Early Chalcolithic-

Bronze Age) at Sialk, with few confirmed prehistoric settlements known from 

elsewhere. The exception is the Late Neolithic site of Ghabristan (pp. 373-4), but the 

absence of architecture at this site and the abundance of lithics, particularly obsidian 

pieces, imply that the site was probably a specialist camp used to manufacture 

lithics, and that it was not permanently occupied.  

 

What is a common feature of all three plains is the short duration of the occupation of 

most settlements, with the majority only being occupied for one or two cultural 

periods, e.g. Ghabristan on the Kashan Plain; Zagheh, Ghabristan, Tepe Chahar 

Boneh, Ebrahim Abad and Cheshmeh Bolbol on the Qazvin Plain; and Parandak, 
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Poeinak, Kara Tepe; Mortezagerd, Maymonabad, Tepe Sialk, Tepe Surk Khub, 

Ismailabad, Barkin, Tepe Chakhmah and Fakhrabad on the Tehran Plain. The sites 

that were long lived are all associated with permanent water sources. Cheshmeh Ali 

lies next to the exit of a spring; evidence of palaeochannels has been found at both 

Sialk and Mafinabad; and at Tepe Pardis there is evidence, in the form of a human-

made channel, of water manipulation and/or irrigation agriculture. Tentative evidence 

of water manipulation is also reported from Jeitun (Harris 2010b) and Sialk North 

(Kourampas et al. in press), but this awaits further confirmation. The implication, 

then, is that permanent settlement was not possible on the Central Plateau until the 

development of some form of water manipulation, although even with this 

technology, the braided channel systems of the Plateau meant that many sites were 

still only short-lived. For example, there is evidence that Mafinabad was abandoned 

as a result of the local water channel shifting (Gillmore et al. 2007: 299).  

 

It has been suggested that irrigation technology spread to Iran from central eastern 

Mesopotamia (Hole 1977; Gillmore et al. 2011), where evidence of irrigation 

agriculture is found at the mid-sixth millennium site of Choga Mami (Oates 1969; 

Oates & Oates 1976; Helbaek in Oates & Oates 1976). However, to date, there is no 

tangible evidence for this link, and further investigation is needed before it can be 

substantiated. What is apparent is that even if the technology itself was spreading, 

whether it was for dry or irrigated agriculture, how it was adapted and used regionally 

varied, as the different settlement distribution patterns on the Qazvin, Kashan and 

Tehran Plains attests to.  

 

In terms of the wider-reaching impact of this research, it indicates that the application 

of a wave of advance model to account for the spread of agriculture in Iran, and 

central and south Asia as a whole, is inappropriate. The distribution of Early Neolithic 

sites (ca. 8000-6500 BC) in Iran and neighbouring regions does not follow a clinal 

spread, with the oldest sites concentrated in central western Iran and the youngest 

sites occurring in eastern Iran. Rather, the pattern is much more dispersed with, for 

example the sites of Jeitun, Turkmenistan and Mehrgarh, Baluchistan being 

occupied long before settlement began on the Central Plateau. Recent research on 

the Central Plateau suggests that instead, early farmers were highly selective in the 

areas that they choose to settle, selecting only ‘optimal areas’ with high soil fertility 
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and moisture content (Sherratt 1980: 314). The spread of agriculture, then, was 

more like the children’s game of ‘leapfrog’ rather than a wave (Fig. 2.14) with early 

farming settling only in the most suitable areas, and leaving large gaps in between 

(van Andel & Runnels 1995; Sherratt 1980; 2003). It was not until later 

developments, such as the technique of water management and manipulation, that 

farming groups were able to settle in more hostile regions, such as the Central 

Plateau, which they would originally have found difficult, if not impossible, to survive 

in. The application of ‘one model fits all’ to account for the spread of agriculture in 

both Europe and Central and South Asia as applied by Renfrew (1987), therefore 

clearly does not fit, and more work needs to be undertaken in order to establish 

where and how the founders of Mehrgarh came from.  
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