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Abstract 
This thesis focuses on Intermediate View Reconstruction (IVR) which generates 

additional images from the available stereo images. The main application of IVR is 

to generate the content of multiscopic 3D displays, and it can be applied to generate 

different viewpoints to Free-viewpoint TV (FTV). Although IVR is considered a 

good approach to generate additional images, there are some problems with the 

reconstruction process, such as detecting and handling the occlusion areas, 

preserving the discontinuity at edges, and reducing image artifices through formation 

of the texture of the intermediate image. The occlusion area is defined as the 

visibility of such an area in one image and its disappearance in the other one.  

Solving IVR problems is considered a significant challenge for researchers.   

In this thesis, several novel algorithms have been specifically designed to solve IVR 

challenges by employing them in a highly robust intermediate view reconstruction 

algorithm. Computer simulation and experimental results confirm the importance of 

occluded areas in IVR. Therefore, we propose a novel occlusion detection algorithm 

and another novel algorithm to Inpaint those areas. Then, these proposed algorithms 

are employed in a novel occlusion-aware intermediate view reconstruction that finds 

an intermediate image with a given disparity between two input images. This novelty 

is addressed by adding occlusion awareness to the reconstruction algorithm and 

proposing three quality improvement techniques to reduce image artifices: filling the 

re-sampling holes, removing ghost contours, and handling the disocclusion area.  

We compared the proposed algorithms to the previously well-known algorithms on 

each field qualitatively and quantitatively. The obtained results show that our 

algorithms are superior to the previous well-known algorithms. The performance of 

the proposed reconstruction algorithm is tested under 13 real images and 13 synthetic 

images. Moreover, analysis of a human-trial experiment conducted with 21 

participants confirmed that the reconstructed images from our proposed algorithm 

have very high quality compared with the reconstructed images from the other 

existing algorithms. 
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 1 Introduction 

Recently, the multiview 3D display has been developed to overcome the deficiencies 

of stereoscopic systems. These displays need to generate multiple images from the 

available stereo image pairs in the stereoscopic system. This generation process is 

called Intermediate View Reconstruction (IVR).  Although it is considered a good 

approach for generating multiple images, there are some problems through the 

reconstruction process such as finding a reliable disparity map, handling the 

occlusion areas and preserving the discontinuity of edges. Solving these problems is 

considered a significant challenge for researchers. Thus, the main aim of this thesis 

is to reconstruct an intermediate image while detecting and handling the occlusion 

areas, preserving the discontinuity at edges, and reducing image artifices through 

formation of the texture of the intermediate image. 

1.1 Introduction 

hanks to the recent advances in media technology, many devices and 

displays have been developed to simulate the stereo vision of the human 

eyes, allowing the viewer to perceive depth. In computer vision, the human 

eyes are replaced by two cameras separated by the same distance between the human 

eyes and then acquiring two different images; these two images are called “stereo 

images” and this system is called the stereoscopic system. When these two images 

are delivered to the viewer’s eyes, each eye receives a corresponding image, and the 

viewer will perceive depth. This depth is generated when each eye sees a separate 

2D image of the same scene from different perspective; then the brain extracts the 

difference between these images to generate the perceived depth. As a next step, it is 
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worth knowing how the idea of a stereoscopic system was formed and by whom; this 

is introduced in the next section. 

1.2 A Brief History of the Stereoscopic System 

The concept of 3D was established a long time ago, amazingly, before the invention 

of photography. The scientist and artist Leonardo da Vinci (1452-1519) studied the 

concept of depth perception, according to his notes and drawings, when he tried to 

understand the difference between how humans see a scene in the real world and 

how it is painted [1]. He subsequently concluded that it is impossible to perceive 

depth as a human perception from a single picture [2]. This concept remained 

ambiguous for 300 years until the physicist Charles Wheatstone (1802-1875) 

invented the first stereoscopic device. He explained this invention in his publication 

in June,1838 [3] and presented it to the Royal Society. Wheatstone explained in his 

article that the perception of depth is achieved by showing each eye a different 2D 

image of the same scene but from different viewpoints. These two images must be 

different only in the horizontal coordinate to imitate the human binocular vision. As 

photography had yet to be invented, Wheatstone used simple hand drawings to 

demonstrate his newly discovered device, which is called “Mirror Stereoscope” and 

is now preserved in the Science Museum in London. Figure 1.1 (a) shows one of the 

hand drawings used by Wheatstone’s stereoscopic device which is also shown in 

Figure 1.1 (b). As shown in the Figure 1.1, the Wheatstone stereoscope used angled 

mirrors A and A’ to reflect the stereoscopic drawings E and E’ toward the viewer’s 

eyes.  

 

 
 

 
)a(  (b) 

Figure  1.1: (a) Wheatstone’s hand drawing (b) Wheatstone’s stereoscopic device 
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After Wheatstone’s invention, Dr. David Brewster (1781-1868) greatly influenced 

the stereoscopic field with his new stereoscope in 1849; this is called the Lenticular 

Stereoscope. This new stereoscope is completely different from the Wheatstone 

devices. After that, a company started to manufacture this stereoscope and exhibited 

at the Great Exhibition in London in 1851. Queen Victoria visited this exhibition and 

listened in wonder as Dr. Brewster explained this stereoscope to her. Within a few 

months, 250,000 stereoscopes had been sold, thus representing the first widespread 

use of stereoscopic devices [4]. Since the first stereoscopic device invention, many 

new technologies have emerged. In the following chapter, we will cover the main 

developments in stereoscopic devices.  

1.3 Stereoscopic Benefits and Applications 

Due to the importance of the presence of depth in a scene, its employment on a 

computer can be exploited in many applications and in different areas such as in 

entertainment, medicine, scientific research, virtual reality, business etc. Some of the 

benefits of binocular vision [5] are summarized as follows: 

 Sense of depth: this depth can be used to determine the relative distance of objects 

from the viewer. 

 Analyzing complex data more efficiently: since binocular vision allows humans to 

focus on certain objects and ignore others [5], presenting a pair of stereo images 

on a 3D display will improve the understanding of a complex scene due to the 

viewer’s ability  to separate the object from the background [6].  

 Binocular unmasking: binocular vision allows humans to easily distinguish the 

desired object in a noisy environment [7]. Thus, a noisy pair of stereo images in a 

3D display will be seen more clearly than a single 2D image with the same degree 

of noise. So, the object can be easily detectable in a noisy scene by separating the 

noise from the object when presenting a pair of stereo images. Thus, presenting 

depth in a 3D scene is not hampered by the presence of image noise in the stereo 

images as the retinal disparity cues are not highly dependent on the image quality 

[8]. 



Chapter1: Introduction 
 

4 
 

By demonstrating stereoscopic benefits, stereoscopic images can be exploited in 

many applications. Entertainment is one the major applications for stereoscopic 

displays, since there is no doubt that the presence of depth in images gives the 

viewer a more pleasant experience. Therefore, 3D cinema has become popular – for 

example, the IMAX TM movie theatres - since the first 3D cinema movie was 

produced in 1966 [9]. For a long time, researchers have been working hard to 

generate a satisfactory 3D TV; this may be the next generation of TVs and may 

replace conventional ones [10-12]. Recently, 3D technology has been playing its part 

in video games. Adding depth to the video games allows the player to become more 

excited and enthusiastic about a game. 3D video games can be run on 3D displays of 

a PC or Laptop, 3DTV, 3D mobile, or on specialized games devices; for example, 

the Nintendo Inc. developed a 3D DS console that does not require the player to 

wear glasses.      

Since a stereoscopic imaging system enables complex data to be more 

understandable and clear for the viewer, it is suitable for use in scientific 

visualisations to analyze data. It is also considered useful in remote guidance, 

especially in tasks that are hazardous for humans, as well as in medical surgery. 

Furthermore, as a stereoscopic system is useful in breaking camouflage that is 

extended from binocular unmasking, it can be employed in underwater tasks that 

suffer from a turbid environment and low illumination [13].   

Videoconferencing is one of the more recent uses of autostereoscopic system 

application, since it creates an interactive communication between the remote 

conferees. Researchers are trying to make this contact seem as real as possible by 

entering the world of virtual reality; this can be done by trying to imitate the same 

capability of the real contact. In reality, if one of the conferees move their head, 

different viewpoints will be seen. So, two stereo images for the same scene are not 

enough to make the remote appear natural, because the conferee will see the other 

end from one viewpoint; this conflicts with reality. Therefore, videoconferencing is 

done via a multiview autostereoscopic system. Thus, a good multiview display and 

software for generating the intermediate images between the stereo pair (i.e. the 

multiview images), with high quality is required.         
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1.4 The Reality of Stereoscopy 

Since the main goal of a stereoscopic system is to imitate the human ability to see the 

world in 3D, an essential question must be answered: Does the stereoscopic system 

achieve a real 3D, and to what degree does it look like the natural viewing 

capability? By introducing the main characteristics of a real viewing capability, this 

question will be answered. 

1.4.1 The Realistic Aspects of Viewing 3D 

The presence of depth alone in a scene is not enough to give a natural viewing 

capability, so two main aspects must also be available while watching a 3D scene. 

1. Natural look-around capability: 

In the real world, if the viewer’s head moves, and different images will be seen; this 

is called motion parallax which in turn let us see around the object. Thus, motion 

parallax gives us the look-around capability that can be defined as the ability to see 

different perspectives of the same scene from different positions. Thus, there is no 

system that gives a real viewing experience without the availability of motion 

parallax. Since stereoscopic systems try to generate depth by seeing a separate 2D 

image in each eye, the viewer sees just one fixed scene from different positions; 

therefore a stereoscopic system cannot achieve real 3D. 

The solution is to generate multiple images of the same scene from different 

perspectives. Technologies to display these multiple images are available, but the 

process of generating these images is considered a hard task and is not without 

problems. 

2. Comfortable viewing: 

Since a stereoscopic system is devised to simulate the stereo vision of the human 

eyes, they will receive via a stereoscopic system two images supplied by two 

cameras separated by a distance equal to the distance between the human eyes. 

However, do all humans have the same distance between their eyes? If not, what 

would be a suitable separation distance to select? Unfortunately, human eye 
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separation varies between 40 mm and 80 mm [14]. By this, the perception of depth 

present in the view is dependent on the viewing ability of the observer [15], in that 

each observer can see a different degree of depth. The availability of just two images 

in the stereoscopic images doesn’t permit the viewer to perceive the preferred depth, 

thus obligating him/her to converge and accommodate his/her eyes according to the 

depth presented in the scene. Consequently, this will cause eye strain and visual 

discomfort to the viewer. This discomfort is due to the inconsistency between 

accommodation and convergence of the viewer’s eyes, especially when the depth 

presented in the scene is larger than the preferred depth. Therefore, the researchers 

have agreed to separate the cameras by the average human eye separation (65 mm) 

[14], which is not a comfortable solution for all viewers, especially if the observer 

has an eye separation far from the average; for example 80 . 

Presenting multiple images of the same scene but from different perspectives will 

allow the viewer to select a pair of images with the preferred sense of depth for 

comfortable viewing.  

1.4.2 The Reality and Multiview Systems: Thesis Motivations 

As was mentioned above, the reality of a stereoscopic system is achieved by 

presenting the two essential elements of realism: the “natural look-around” 

capability, also called “continuous motion parallax”, and comfortable viewing. One 

suggestion for achieving this is to present multiple images of the same scene from 

different perspectives to the viewer, thus presenting different pairs of views as the 

viewer’s head moves. In this way, the viewer can select a suitable pair of views that 

deliver the preferred sense of depth for comfortable viewing. State-of-the-art 

techniques for displaying these images already exist but there is a problem of how to 

generate these multiple images. The generation process for these images is not a 

trivial task and still has problems. Two solutions have been presented to perform this 

task: 

1. Multi camera system:  

This begins by acquiring multiview images of the same scene from multiple cameras 

from different viewpoints as shown in Figure 1.2, but using many cameras has 
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disadvantages and is considered an expensive system. This system cannot produce 

continuous viewpoints; for example, if we need an image from a position between 

camera 2 and camera 3, this system cannot generate this image. Using many cameras 

also requires a lot of effort to calibrate the cameras and produces a large amount of 

data that are not effective for transmission. An alternative solution for this system is 

to use “Intermediate View Reconstruction”, which is explained below.  

 

Figure  1.2: Multi camera system 

2. Intermediate view reconstruction:  

This approach involves generating additional images from the existing few images 

by positioning virtual cameras between a few real cameras to create virtual views at 

that position, as shown in Figure 1.3, where the two original real cameras are 

denoted by “L” and  “R” and the other dotted cameras are the virtual ones denoted 

by V1, V2, etc. This approach is also called multiview image interpolation or view 

synthesis or image-based rendering. This approach is considered a main goal of this 

thesis, as it produces continuous viewpoints that enable us to experience a natural 

look-around feeling and a comfortable view to simulate the reality of viewing. 

 

Figure  1.3: Original and virtual cameras in the intermediate view reconstruction 
process 

V1 L R V2 Vn Vn+1 

Camera-1 Camera-2 Camera-3 Camera-4 Camera-n 
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Intermediate view reconstruction is a good approach to find additional images but 

there are problems in that the generation process struggles to give an accurate 

intermediate image. These problems present difficult challenges for the researchers. 

One of these problems is finding the disparity map, which has to be available before 

the reconstruction process because it determines the structure of the view. Since the 

image points in occluded areas are visible in one image, the disparity cannot be 

estimated there; thus, the occluded areas cannot be reconstructed in the intermediate 

image. Therefore, finding the location of the occluded areas is considered an 

important challenge for the reconstruction process. Evaluating the correct disparity 

in those areas is considered another challenge to the reconstruction of an accurate 

image. 

In addition, there are a number of image artifices that are generated through 

formation of the intermediate view and that must be solved, such as the generation of 

holes and cracks due to image resampling, generation of ghost contours due to the 

disparity’s sharp edges, and the appearance of disoccluded areas due to the cameras 

changing position. Moreover, because the intermediate image is generated from 

interpolation of more than one view, preserving the discontinuities in the 

reconstructed image is required and is considered a challenge to the reconstruction 

process. More details about these challenges are described in Chapter 3. Many 

researchers are working very hard to solve these problems, and a comprehensive 

review of their work is introduced in Chapter 3. 

1.5 Application of Intermediate View Reconstruction (IVR) 

Intermediate View Reconstruction (IVR) has many applications on 2D and 3D 

systems. In the following we will mention how it is applicable on each system 

separately. 

1.5.1 Application of IVR on 3D System 

Following recent advances in 3D display technologies, multiview displays have 

emerged and the need for multiple views has become an urgent requirement. 

Intermediate View Reconstruction (IVR) is a preferable solution to this because it 

generates the content of multiview displays using the minimum number of cameras. 
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In addition, it can be used to transfer the content of two-view stereoscopic displays 

to multiview displays using the same previous stereo image acquisition parameters. 

Also, it can be used to create additional images when the number of the available 

images is not the same as the required number of images for multiview display. 

Through communication processes, IVR can be used to reduce the transmission 

bandwidth by sending a minimum number of images sufficient to generate additional 

images at the other end. Videoconferencing is an example of a communication 

process that uses IVR to make this process more efficient. Moreover, IVR provides 

the viewer with a natural look-around feeling with comfortable viewing. This is 

achieved by presenting multiple view windows, as depicted in Figure 1.4, and 

allowing the viewer to select the preferred sense of depth for comfortable viewing. 

IVR can also be used to create the content of video games; for example, the Sony 

Company uses IVR for this purpose. Firstly, they use the IVR to create an 

intermediate image in a central position between the reference images. Then, they 

use the centre view and one of the reference images to create any additional images. 

This is done because, when using a smaller baseline, the interpolation errors will be 

minimized.   

 

Figure  1.4: Demonstrating multiview display [5] 



Chapter1: Introduction 
 

10 
 

1.5.2 Application of IVR on 2D Systems 

Following the recent advance in media technologies, the ordinary TV is becoming an 

unsatisfactory device when compared to the devices generated by the media 

technological revolution. Therefore, Free-viewpoint TV (FTV) has been developed 

to allow the viewer to see different views by interactively changing their position 

[16]. Displaying this wide range of viewpoints require the generation of multiple 

views from a limited number of available views [16]. FTV can be displayed on many 

different types of interfaces including 2D and 3D displays. 

1.6 Our Contribution 

The generation of the intermediate image from stereoscopic images is not 

straightforward, due to the ambiguity of the occluded region and the need to preserve 

the discontinuity of the edges. Therefore, many studies have been conducted to try to 

generate the intermediate images with high quality. The contribution of this research 

will be to develop a new algorithm to find intermediate images with high quality. 

Detection and handling occlusion problems are among the challenges of  

intermediate view reconstruction [17]. Therefore, it is necessary to develop efficient 

algorithms for detection and handling occlusion areas. Therefore, this thesis will 

offer the following main contributions: 

1. Developing an efficient novel occlusion detection algorithm to detect the 

occluded/newly-exposed area based on the physical movements of the 

objects between the stereo images. Our algorithm has many advantages; for 

example, the occlusion area is detected without any fragmentation, the results 

are consistent under different types of images and matching algorithms, it 

needs few input parameters, and it is easy to implement. Qualitative and 

quantitative measures have confirmed that the proposed algorithm detects the 

occlusion areas with a high accuracy and lower error. 

2. Developing an accurate block-based disparity inpainting algorithm for 

occlusion area recovery. This novel technique has been specially developed 

for occlusion area-filling in disparity images. Our algorithm has many 

advantages; which are, the occluded area is filled without any blurriness, and 
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edge discontinuities are preserved with a continuation of curved edges. We 

performed different analyses and computer simulations which confirmed that 

the proposed technique inpaints the occlusion area with a high accuracy and 

lower error. 

3.  These proposed algorithms are employed in a novel occlusion-aware 

intermediate view reconstruction. This novel algorithm focuses on how to 

find an intermediate image with a given disparity between two input images. 

An improvement in the backward-projection of the intermediate view is 

proposed by adding occlusion awareness to the reconstruction algorithm and 

proposing three quality improvement techniques to reduce image artifices as 

follows:  

3.1. Filling the re-sampling holes: instead of using a median filter to fill 

cracks and holes produced by image re-sampling, we proposed an 

object-based filling technique that fills the hole located in a foreground 

object or around its edges by an object’s intensity. Subjective and 

objective evaluations confirmed that the proposed technique produces 

more accurate results around object boundaries.  

3.2. Removing ghost contours from the virtual view and restoring them to 

their correct place by extending the newly-exposed area three pixels in 

the direction where the ghost contour is located. 

3.3.  Handling the disocclusion area: the disocclusion areas are recovered 

from one of the inpainted disparities based on the calculated visibility 

map. 

After that, the texture of the intermediate image is reconstructed either from 

the left or right images based on a robust and efficient selective strategy. This 

selection is performed upon the visibility of each image point in the 

intermediate image which is determined by a novel approach. Specifically, 

this approach is developed to detect the occluded/ newly-exposed area. 

Depending on this information, the visibility of the image points in the 

intermediate image will be determined. 
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4. Conducting subjective human trials to assess the quality of the reconstructed 

intermediate image on a 3D display relative to the reference intermediate 

image based on the ITU-R 500 recommendation and comparing it to the 

reconstructed images by backward and forward algorithms.  

1.7 Thesis Outline 

Here is a brief description of the contents of this thesis: 

 Chapter 2 introduces the main concepts of a 3D system and explores the 

main characteristics of the human vision system and how it is simulated in 

computer vision. This chapter also describes in detail the depth perception 

concept in three forms, the development of 3D display technologies, the 

geometry of the stereo vision, and the disparity estimation problem. The 

stereo vision geometry describes image acquisition through a pinhole camera 

to illustrate the relationship between two stereo images through epipolar 

geometry. This is followed by a description of how this epipolar geometry is 

exploited in the disparity estimation problem. Classification of the disparity 

estimation techniques is presented at the end of this chapter. 

 Chapter 3 presents previous studies on the intermediate view reconstruction 

problems. This chapter describes the challenges of intermediate view 

reconstruction and some of their intended solutions. A comprehensive survey 

on intermediate view reconstruction is presented on the classification of other 

studies and on our classification, which depends on how the disparity is 

compensated into the intermediate image. Moreover, a review of all the 

previous studies on intermediate view reconstruction is presented in a 

summarized table. 

 Chapter 4 focuses on the proposed occlusion detection algorithm which is 

considered one of the major challenges for intermediate view reconstruction. 

A detailed background of the prior work on occlusion detection is given. In 

this chapter, the proposed occlusion algorithm is compared to three well-

known algorithms quantitatively and qualitatively. Analysis and computer 

simulation of the conducted comparison is presented in detail.  
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 Chapter 5 describes the details of design and analysis of the proposed 

inpainting algorithms for occlusion areas that were detected in the previous 

chapter. Previous works on this area are introduced in this chapter. A 

comparison to the four well-known inpainting techniques is conducted. 

Several examples of inpainting occlusion areas are given. 

 Chapter 6 describes our novel framework on the intermediate view 

reconstruction that employs the two previous proposed algorithms on it. In 

this chapter, details of the problematic areas in the reconstruction process and 

their existing solutions are discussed. After that, the proposed framework on 

intermediate view reconstruction is explained step by step in detail. 

Meanwhile, illustrative examples of the proposed improvement techniques 

are presented through these steps.  

 Chapter 7 describes in detail a subjective human trial that was conducted to 

evaluate the quality of the reconstructed image in 3D display. Comparisons 

between the proposed reconstruction algorithm and the standard backward 

and forward projection approaches are conducted quantitatively using PSNR 

and qualitatively by a human trial test on 3D display. Different analyses of 

these comparisons are given in detail. 

 Chapter 8 provides a general discussion on the main contribution of this 

research to summarize the conclusions, followed by a list of open directions 

for future research issues. 



 2  Main Concepts in 3D System 

This chapter gives a general background to the main concepts of a 3D system. It 

begins by exploring the main characteristics of the human vision system and how it 

is simulated in computer vision. This chapter also describes in detail the depth 

perception concept in its three forms, the development of 3D display technologies, 

and the geometry of the stereo vision. 

2.1 Human Visual System 

any efforts have been made in the field of computer vision to allow the 

computer to see the world as a human sees it, i.e. a three dimensional 

(3D) vision. Practically, the computer receives a two-dimensional (2D) 

image for a certain scene in the 3D world; in this image, most of the depth that exists 

in the scene is lost. This is because a human can see many viewpoints, whereas the 

computer receives just one viewpoint of the scene. When the computer captures one 

image of the world, the 3D scene of the real world is transformed to the 2D image 

and this transformation from 3D to 2D is called many-to-one [18]. On the other 

hand, if we want to reconstruct the 3D image from the 2D image, this transformation 

is very hard to accomplish because there are many possible ways of performing this 

transformation, which is called one-to-many [18]. This is related to the ‘ill-posed 

problem’ to which no unique solution exists.  

Therefore, researchers have studied the characteristics of the human visual system to 

simulate it [18]. This simulation starts by using the raw data that are used by 

humans, and trying to imitate the human retina and brain processing to employ them 

in the computer vision to permit the viewer to see in 3D. Firstly, we will introduce 

the characteristics of the human visual system and then show how the computer 
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vision exploits these characteristics to see in 3D like a human. The human visual 

system characteristics are as follows: 

 Humans have five senses, but vision is the most important as it provides us with 

much more information than the other senses. 

 The human visual system doesn’t require any effort to interpret a scene. The 

required interpretation is available within a tenth of a second [18]. 

 The human visual system uses a huge amount of databases relating to the real 

world. All of these data are stored by experience. 

 The human visual system has two eyes, which are separated horizontally by an 

average of 65 mm [14]; in this way, the human sees two different views in each 

eye. Then the brain returns them as one view with the perception of depth. Thus, 

the human visual system is called “Stereopsis” or “Binocular Vision”, which is 

mainly responsible for perceiving depth. 

2.2 Depth Perception  

 Depth is defined as a relative distance from the viewer to a certain object in the real 

world, and depth perception is the ability to perceive this distance. This perception is 

performed by the human visual system, which consists of two eyes and the brain. 

Each eye receives a different view, which is projected onto the retina in 2D form; 

these views are in turn sent to the brain which processes them and returns them as 

one view with the desired depth. This depth lets us see the world in 3D.  

But from where does the brain extract the depth? In fact, there are many forms of 

depth cues presented to the human visual system, including the following: binocular 

depth cues, which depend on the input from two eyes; monocular depth cues, which 

depend on the input from one eye; and oculomotor depth cues, which depend on the 

reaction of our eye muscles to the viewing object distance [19] [20]. 

2.2.1 Monocular Depth Cues 

Monocular cues give us the ability to perceive depth with just one eye, which will be 

a pictorial image. The depth is extracted from the characteristics that exist in the 2D 

image, such as light and shadow, interposition of several objects, blurriness of some 
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objects, relative size of the same objects, and others. These cues are often used by 

artists to provide their works with a depth perception.   

 Interposition.  

When an object is overlapped with another object they give us the ordering of 

depth or the relative distance to each other. The occluded object is considered a 

distant object, as illustrated in the Figure 2.1. 

 
Figure  2.1: Interposition Depth Cue 

 Light and shade 

This is considered a powerful cue to represent a depth in the 2D image, where the 

reflected light and their shadow give us information about the shapes of objects 

and their depth relationships, as illustrated in Figure 2.2.  

 

Figure  2.2: Light and shade depth cue 

 Relative size 

Different sizes of the same object in the 2D image provide us with a cue to a 

depth existence, where the smaller object is considered further away than the 

larger one, as in Figure 2.3. 
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Figure  2.3: Relative size depth cue 

 Aerial perspective  

Due to the existence of atmospheric phenomena, such as dust and fog, a distant 

object appears more blurred. Also, scattering light through the atmosphere affects 

the colour saturation of the distant object. This is illustrated in Figure 2.4. 

 

Figure  2.4: Aerial perspective depth cue 

 Textual gradient  

A texture with uniform objects, such as a gravel road, gives us a depth cue in that 

the nearer objects are clear in shape and size but the distant ones become smaller, 

less detailed, and denser, as shown in Figure 2.5. 

 

Figure  2.5: Texture gradient depth cue 
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 Linear perspective  

In fact, parallel lines appear to converge at the horizon line when they get further 

away from the viewer, and they thus provide us with a depth cue, as shown in 

Figure 2.6. 

 

Figure  2.6: Linear perspective depth cue 

 Motion parallax  

This cue is presented when either the object or the viewer’s head moves. The 

object movements give us a depth cue as the distant objects appear to move more 

slowly than the nearer objects. This can be clearly seen when travelling by car. 

2.2.2 Binocular Depth Cues 

This depth cue is generated when each eye sees a separate 2D image of the same 

scene, and the brain then extracts the differences between these images to generate 

the perceived depth by combining the two images into one 3D image. This difference 

is called retinal disparity. If the object is far away the disparity will be small, while 

the disparity and the perceived depth will be large if the object is close. So, this 

binocular disparity provides us with information about the depth relationships 

between objects.  

In the natural world, the human accommodates his/her eyes to focus on a certain 

point called a fixation point F. This point is projected into the same position in the 

retina, i.e. the retinal disparity is zero. Any other points in the scene that have a zero 

disparity as a fixation point F will lie on the same surface to form a horopter and are 

perceived as having the same depth of the fixation point F. The circular shape of the 

horopter is illustrated in Figure 2.7. On the other hand, any other points located in 



Chapter 2: Main Concepts in 3D System 
 

19 
 

front of or behind the fixation point are projected to different positions in the left and 

right retinas, forming retinal disparities that provide the viewer with a binocular 

depth cue.  

Figure 2.7 demonstrates two examples of a retinal disparity; point A is located 

behind the fixation point F, so the difference between A and F will result in a 

positive disparity d’’ in the retina and be perceived as a far point. Meanwhile, point 

B is located in front of the fixation point F and forms a negative disparity d’ on the 

retina from the difference between F and B. Under natural viewing, the human can 

perceive a good depth within a restricted area around the horopter; this area is called 

Panum’s Fusion. All objects located in this area are fused as a single image, while a 

double vision is perceived outside this area.  

 

Figure  2.7: Natural binocular vision geometry 

2.2.3 Oculomotor Depth Cues 

This depth comes from the movement of our eye lens’s muscle. If the object is far 

away from the viewer, the lenses become thinner according to their focus on it; this 

is called the Accommodation of our eyes. Another Oculomotor depth cue is the 
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Convergence of our eyes which depends on the location of the focused object, where 

the angle of convergences will be smaller if the fixating point is far away from the 

viewer. 

Monocular, binocular, and oculomotor depth cues work together to give more 

accurate depth cues than when each one works alone.   

2.3 Stereopsis in Computer Vision 

In computer vision, the human eyes are replaced by two cameras separated by the 

same distance between the human eyes and then acquire two different images; these 

two images are called stereo images and this system is called the stereoscopic 

system. Figure 2.8 (a) shows two different images (left and right stereo images) of a 

scene provided by different cameras. If we test these two images, we will see the 

differences between them which represent the “disparity”, as illustrated in the 

Figure 2.8 (b). This disparity can be defined as the distance between the same 

reference points of the two images. When these two images are seen by the viewer’s 

eyes, each eye receives a corresponding image, and the viewer will perceive depth  

 

 
 

)a(  )b(  

Figure  2.8: (a) Left and right stereo images (b) Difference between the left and right 
images (Disparity). 
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by analyzing them to generate a disparity that is similar to the retinal disparity of the 

real world. This can be achieved by using a stereoscopic display which directs the 

left and right images to the viewer’s eyes to perceive depth. While the viewer’s eyes 

are focusing on the display, any image points that have a depth will be displayed in 

front of or behind the display depending on the disparity between the corresponding 

points in the left and right images. Figure 2.9 illustrates the geometry of the 

perceived depth for two objects, one in front of the stereoscopic display and the other 

behind the display. 

 

 
Figure  2.9: The geometry of the perceived depth for two objects in front of and 
behind the display 

2.4 3D Display Technologies 

Many types of electronic displays have been developed to simulate human binocular 

disparity which results from seeing two different images of one scene. Thus, the 

most important characteristic of the 3D electronic displays is the ability to give the 

correct image to each of the user’s eyes to generate the perceived depth. These 

displays are categorized according to whether the viewer is wearing some kind of 

special device or not. Stereoscopic displays require the viewer to wear certain 

devices to direct the correct image to each eye; those devices may be eyewear or 

headsets. Autostereoscopic displays do not require the viewer to wear any devices to 

provide 3D perception, as the display directly provides the viewer’s eyes with the 
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correct images. Specifically, a complete taxonomy of the 3D display is illustrated in 

the Figure 2.10.  

As a point of fact, the left and right eye images cannot always be separated one 

hundred per cent by displaying them on a 3D display, but a percentage of one eye 

view will be visible in the other eye, generating “crosstalk”, which is considered 

uncomfortable for the viewer to experience. Most 3D displays suffer from this 

problem but the visibility degree of the crosstalk is different according to the 

technology that is used. Many studies have been conducted to determine the factors 

that affect the visibility of crosstalk, Pastoor [21] found that increasing the contrast 

and the disparity will increase the visibility of the crosstalk. Hence, the developer 

can alleviate the crosstalk visibility by avoiding these factors. 

 

Figure  2.10: Taxonomy of the 3D displays 

2.4.1 Stereoscopic Displays 

Stereoscopic displays need to present the left image and the right image in the same 

display, where the viewer needs to wear special devices to separate the left and right 

images to the correct eyes. This type of display is considered a suitable system for 

multiple viewers such as in cinema, where providing each viewer with special 

glasses is easier than directing the left and right images to each person. These glasses 

are categorized according to the type of filters used, which are as follows: 

a. Anaglyph glasses 
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These glasses have coloured lenses: red and blue for the left and right eyes 

respectively, which are considered filters. At the same time the anaglyph images 

are produced by superimposing the red component of the left image over the blue 

component of the right image. Because the glasses have the same colours, the red 

lens filters out the blue component and the blue lens filters out the red 

component. Since these glasses provide one image for each eye, the viewer 

perceives depth when wearing them. This method has its drawbacks, as it 

produces a high crosstalk and the colour that needs to be filtered out cannot be 

eliminated completely; thus, one of the eyes will see parts of the other eye’s 

image, but the system is still used due to its simplicity and lower cost. 

b. Polarized glasses 

These glasses have polarized lenses which allow the rotated light with specific 

angle of polarization to pass through. So, the left and right images must be 

polarized at the same angles. This polarization is achieved either by using two 

projectors or by using polarizing micro optics. The former is done by using two 

projectors to display the left and right images, each of which must be sent to a 

certain filter to polarize each image with a specific angle and overlaid on top of 

each other. Polarized glasses allow only one image to pass to each eye. 

When using polarizing micro-optics [22], there is no need to use projectors. The 

two images are spatially multiplexed on the same display, and the micro optics 

split it into two different polarized views which are directed to the correct eye 

when the viewer wears polarized glasses. This method is considered better than 

anaglyph glasses when comparing the crosstalk effect.  

c. Shutter glasses 

The left and right image are displayed alternately on the display; the lenses of 

these glasses are designated to be alternately closed and open in a synchronized 

manner with the suitable image on the display - when the right lens is closed the 

left image will be displayed and vice versa. This system is controlled by an 

infrared signal that is placed near to the monitor. The viewer does not notice 

these operations, which occur at very high speed. 

d. Headset or head-mounted displays 
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Here, the viewer needs to wear a special device but not eyewear. The device 

consists of two small displays mounted on the head of the viewer with each 

display directed immediately to the viewer’s eyes. Since the viewer sees two 

different images, the 3D image will be perceived. Recent technology has made 

these headsets light, but it is still not easy to isolate the viewer from the 

surrounding environment [23].     

2.4.2 Autostereoscopic Displays 

This type of display does not require the viewer to wear any device to see the 3D 

image, as it automatically separates the left and right images and provides them 

directly to the correct eyes [5]. Thus, the 3D display will appear a more natural kind 

of viewing because the viewer perceives the depth without needing to wear any 

device. This is accomplished by combining LCD display with micro-optic 

components which can be parallax barrier or lenticular sheet. This combination 

enables the display designer to develop various alternative technologies to 

autostereoscopic displays that can provide two-view displays, head-tracked displays, 

and multiview displays. For each of these technologies, there are many kinds of 

displays which are available theoretically and commercially. In the following 

sections we will mention briefly some of these display technologies and introduce 

their advantages and disadvantages, but we will concentrate mainly on multiview 

displays, which are related to our research area. 

1) Two-view display 

The functionality of this display is to provide the viewer with two views, one for 

the left eye and the other for the right eye. This can be accomplished either by 

using two LCD displays, one for the left and the other for the right eye, or using 

a single LCD with two multiplexing images on it.   

Various technologies have been used to develop two-view twin-LCD displays 

[24, 25]. One of these technologies uses two LCD displays with a single light 

source [24]. Two mirrors are used to direct the light to each LCD display, each of 

which represents a different view, one for each eye, which are combined using a 

beam combiner. Since there are two displays for the viewer’s eyes, he/she sees a 

full resolution of these displays. Another approach has been developed by Sharp 
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[25] using micro-optic twin-LCD displays with two light sources; behind each 

LCD display there are two arrays of optical elements that let the light pass to the 

LCDs in such a way that one LCD forms one view and the other one forms 

another view. This technology involving two LCD components is considered 

costly, especially for personal use, but it may be an acceptable cost for a big 

company.  

Therefore, many technologies have been developed using different approaches to 

provide two-view display using a single LCD. The left and right images are 

spatially multiplexed on the same display where different kinds of optical 

components are used to direct each image to the correct eye. These optical 

components can be parallax barrier or lenticular sheet. 

a. Parallax Barrier  

This was invented by F. Ives in 1903 [26]; it consists of strips of black mask 

placed on the front of the pixels to stop the light from passing to certain 

pixels. This allows the pixels to direct the light to two different views, half of 

them to the left view and the other half to the right view. Since the left and 

right images are interlaced on columns’ pixels on the display, the viewer sees 

different columns in each eye. This technology provides the viewer with 

parallax in the horizontal direction only. Parallax barrier has drawbacks that 

affect the quality of the 3D image so many modifications of the LCD 

displays have been developed to overcome these drawbacks. 

Many detailed design questions about the parallax barrier have been analyzed 

in the literature [27, 28], such as using wider or narrower apertures, and 

whether it is better to place the parallax barrier behind or in front of the LCD 

element. Thus, using the correct design approach is very important since it 

provides a 3D image with a high quality and less crosstalk.  

b. Lenticular Sheet design  

This was devised by a group of researchers in the 1930s [10, 12]; it consists 

of cylindrical lenses arranged vertically in front of pixels and is used to direct 

the light from every adjacent pixel to different views as the pixels are 

interlaced into columns on the display. Consequently, the viewer’s eyes see 



Chapter 2: Main Concepts in 3D System 
 

26 
 

two different images in each eye. Also, the lenticular sheet technology 

provides the viewer with horizontal parallax. 

Ocuity Ltd. developed a new design for LCD display using a switchable 

lenticular sheet [29]. This design comes from a novel architecture of 

Polarisation Activated Microlenses and consists of a combination of a 

passive birefringent material attached to a lenticular sheet and isotropic 

material. These Polarisation Activated Mirolenses are attached by a thin layer 

of switchable polarizer in front of them to allow the TFT-LCD display to 

work in 2D and 3D modes. In this way, a full resolution can be achieved in 

2D mode, while a half resolution can be achieved in 3D mode. In addition, 

the 3D mode is characterized by the perception of lower crosstalk than when 

using an ordinary design of lenticular sheet, where it is <1.0% for a central 

viewing position. 

Using two-view displays, the left and right images are visible in many viewing 

zones in the surrounding space; this means that the left and right views are 

repeated in the space many times. The viewing zone is defined as the correct 

place from which the viewer can see 3D image. These viewing zones are 

illustrated in Figure 2.11; they take the shape of diamonds where the viewer’s 

eyes must remain within two viewing zones of them [5], and multiple viewers 

can hence see 3D images at the same time from different viewing zones. 

 

Figure  2.11: Correct and incorrect viewing zones 

From the Figure 2.11 we can observe different viewing zones and each set of two 

viewing zones is represented by a letter. Each viewer’s eyes must remain within the 
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correct viewing zones, with the left eye in the left eye viewing zone and the right eye 

within the right eye viewing zone. Thus, the correct viewing zones in the Figure 2.11 

are A, C, E and G while B, D and F are the incorrect positions for the viewer’s eyes. 

If the viewer’s eyes are in the correct position, he/she will see the orthoscopic image 

(i.e. the left image is seen by the left eye and the right image is seen by the right 

eye), but if they are in the incorrect position, they will perceive a false depth effect 

and see an psuedoscopic image (the left image is seen by the right eye and the right 

image is seen by the left eye); consequently 50% of the psuedoscopic image will be 

seen. So, other technologies are required to solve this problem. One suggestion in 

regard to the two-view displays is to use Viewing Position Indicator (VPI) by [27, 

30]; this Indicator helps the viewer to determine whether they are in the correct 

position or not. Although using VPI is helpful, it has some drawbacks. Therefore, the 

designers have sought another solution using other display technologies. In the 

following section we will introduce head-tracking displays and multiview displays 

which can solve this problem. 

2) Head-tracked display 

This is the same as two-view display technologies with the addition of a head-

tracking feature which follows the viewer’s head movement to display the 

correct images to the appropriate viewing zone. In Figure 2.11, if the viewer’s 

eyes move from viewing zone A to B, without the head-tracking feature, the left 

image will be seen by the right eye’s viewing zone and vice versa; but, using the 

head-tracking feature, the display will follow the viewer’s eye and swap the 

viewing zone to the correct position. Other technologies have been developed to 

provide only two viewing zones and allowing them to be moved when the 

viewer’s head moves. For example, Xenotech [31] use two-projector technology 

to present two-views to the viewer’s eyes, and the two projectors are moved to 

follow the viewer’s head movement.  

We mentioned in the previous section that Sharp cooperation developed a two-

view twin-LCD display using a single light source to give two viewing zones. 

This is enhanced by moving the light source to follow the viewer’s head position 

and consequently moving the viewing zone. Sharp also developed a micro-optic 
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twin-LCD display which uses two light sources and two optical arrays for each 

display to follow the viewer’s head movement by moving the two optical arrays 

simultaneously.  

Although head-tracking technology is considered a good solution to the problem 

of the viewer seeing psuedoscopic images, there are many difficulties with 

tracking systems. The head-tracking operation must be fast and accurate without 

any noticeable delay. Moreover, the head-tracking system is only useful for a 

single viewer and, if the viewer’s head moves, he/she will still see the same 

scene from the same viewing point, which does not occur in the real world. 

Therefore, new technologies are being adopted to provide more natural viewing 

by multiple viewers; these are introduced in the next section.     

3) Multiview display  

Multiview displays have been developed to overcome the problems of limited 

viewing freedom, which is a major problem in two-view and head-tracked 

displays. Since the multiview display provides multiple views at one time from 

different viewpoints, the viewer can see the 3D image from any viewing zone in 

the surrounding space, as well as seeing different images if he/she moves his/her 

head. Also, multiple viewers can see 3D images at the same time, with each one 

seeing different images from different positions. 

Many technologies are being used to develop multiview displays; one of them, 

which divides the display resolution between multiple views, is called spatial 

multiplexing. There are other approaches such as using many projectors, each 

one for a single view, using a single very fast display to present multiple views 

sequentially, or a hybrid system which consists of a combination of two 

technologies. In the following section we will describe some of the work that has 

been done on these approaches. 

a. Spatial multiplexing design 

This principle is similar to the two-view displays using parallax barriers or 

lenticular sheets but, rather than being split into two views, it is divided into 

more views. The number of views depends on the pixel size and the resolution of 

the display [23], and also depends on the way in which the optical elements are 
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arranged. Consequently, just four views are visible on the LCD display due to the 

constraints on the pixel size and the resolution. To display four views for the 

viewers, four images have to be multiplexed horizontally in an appropriate way. 

It is considered impractical to use parallax barrier in a multiview display because 

it blocks the light more than would be the case in two-views and, also, the 

barriers will be more visible as the number of views is increased [23]; it is more 

practical to use a lenticular sheet with LCD display to establish a multiview 

display. With a lenticular sheet, if the viewer’s eyes move from one view to 

another, they will notice a dark line at the boundary because the lenticular 

elements enlarge the LCD pixels, producing a black mask between them [23]. 

Also, the resolution will decrease as the number of views increases. Philips [32] 

developed a new approach to overcome these problems by changing the 

arrangement of the lenticular elements and placing them at an angle to the LCD 

pixel array rather than arranging them vertically. With this new design, the 

images can be multiplexed horizontally and vertically, allowing seven views to 

be displayed with more reasonable resolution. Thus, these views will be crossed 

with one another, causing the reduction of the black line to be visible between 

views. With this solution, Stereographics [33] developed a display using the 

same technology with nine views. 

b. Integral Imaging design 

This technology was invented early in 1908 by Lippmann and proposed in [34]. 

Since the parallax barrier and the lenticular sheets give only the horizontal 

parallax, the integral imaging provides the viewer with full parallax (i.e. 

horizontal and vertical parallax). Lippmann discovered this by using an array of 

spherical convex lenses that are arranged horizontally and vertically; under each 

lens there is a complete 2D elemental image for the object from different 

perspectives. Hence, the viewer’s eyes will see a 3D image when they move 

horizontally and vertically. This technology used the term “integral” due to the 

reconstruction of 3D image from the integration of all elemental images through 

the lens array. The integral lens sheet is placed in front of the LCD as in [35], 

and this LCD must be a high-resolution display because under each lens there is 

a complete image. Actually, using the current highest-resolution LCD displays 
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will not give a good-quality 3D image; for example, Okano et al. [36] used the 

integral lens sheet and a high-resolution LCD of (1280×1024), with resulting 

elemental images of (62×55) pixel due to the available LCD resolution. Thus far, 

no commercial display has been designed, as the required high-resolution display 

does not exist.  

c. Multiprojector design 

To generate a multiview display with a good resolution, multiple projectors are 

used, with one projector for each view and a single reflective screen to display all 

the projected views. The multiprojector approach must be accompanied by 

optical components which are joined to the display to direct the multiple views 

(i.e. projected images) automatically. The first multiprojector display using a 

lenticular screen was invented by H. Ives in 1931; he used 39 projectors and a 

single reflective screen, which was a lenticular sheet coated with a diffuser 

surface from the back to project all the views on it [37].  

Many approaches have been developed in the literature on multiprojectors using 

a lenticular sheet [10]. One of the more recent approaches to a multiprojector 

lenticular display was developed by MERL [12]; they used two different 

arrangements for the multiprojector array and the lenticular sheet: a rear-

projection and a front-projection display. In a rear projection approach, a double 

lenticular screen is used (i.e. two lenticular sheets are attached back-to-back with 

a diffuser surface between them), and the projectors and the viewers are placed 

on different sides of the screen. On the other hand, the front-projection approach 

uses only a single lenticular sheet with retro-reflective screen on the back, and 

the viewers and the projectors array are both in front of the screen. Figure 2.12 

illustrates both approaches.  

Multiprojectors display is considered costly as it uses a separate projector for 

each view and it is also very hard to align all of the projected images accurately 

above each other; however, when a good resolution is demanded, it is considered 

a good approach. 
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Figure  2.12: MERL multiprojector Display (rear- and front-projection display) [12]. 

d. Time-sequential design (Temporal multiplexing) 

Time-sequential design is similar to the principle of shutter glasses in which the 

images are displayed sequentially on a single display at a high frame rate. 

Theoretically, the time-sequential multiview display is illustrated by using 

illumination bars; one of these bars is turned on to illuminate the high-speed 

screen which displays the images through the lens that is used to direct the 

displayed image to a certain viewing zone in the space [23]. In this way, the eye 

sees just one image at a time in the lit zone while the other zones are unlit (i.e. 

dark zones). So, multiview displays are generated each time one of the 

illumination bars is turned on; different images are displayed on the screen and 

this must be done at a high speed. 

This remained theoretical until Cambridge University developed a practical 

display using this approach [38, 39]. Due to the requirement for a high-speed 

screen to effect rapid changes for images and the fact that LCD’s speed is not 

sufficient for that, Cambridge used a high-speed CRT  

e. Hybrid design 

A combination of two techniques is used to increase the number of viewing 

zones, which was applied practically. One of them, combining the spatial 

multiplexing with multiprojector techniques to increase the number of views was 

used in [40] and [41] to produce 40 views and 72 views respectively. Also, a 

combination of time-sequential and multiprojector techniques was used by 



Chapter 2: Main Concepts in 3D System 
 

32 
 

Cambridge to produce 28 views with 25-inch display [38], and 15 views with 50-

inch display [39]. 

f. Viewer-tracking multiview display based on LED scanning back-light 

Since LCD display uses a full-luminance backlight to illuminate the monitor 

without taking into consideration the displayed image, unnecessary power 

consumption and low contrast ratio is gained. LED technology is developed to 

overcome LCD deficiencies by controlling the brightness of each individual 

block of pixels [], consequently, the power consumption is reduced and a high 

contrast ratio is achieved. A view-tracking multiview display with 8 views is 

developed using synchro-signal Light-emitting Diode (LED) backlight 

technology. This display sends different stereo image pairs depending on the 

viewer’s position, in addition that can be watched by multiple viewers. The 

intelligent design of the dynamic backlight system had a low crosstalk and the 

displayed 3D image has a full resolution, thus a high image qualitatively is 

achieved. 

2.5 Geometry of Stereo Vision 

Stereo vision consists of two views, which are acquired either simultaneously via 

two cameras or sequentially by one camera moved slightly in relation to the same 

scene; although the former is more accurate, geometrically there is no difference 

between them. The use of a single camera transforms the 3D scene in the physical 

world to a 2D image on its imager, and this transformation is called “projective 

transformation”. Because both of the cameras project 2D images of the same 3D 

scene on their projection planes, the image points of the two images are related to 

each other geometrically. This relationship is derived from the basic concepts model 

of each camera which is known as a pinhole camera model. So, it is worth 

introducing the simple camera model and then illustrating the geometrical 

relationship between the stereo cameras. 

2.5.1 Pinhole Camera Model 

This is a simple and useful model to illustrate how the scene in the physical world is 

projected onto the image plane of the camera through a pinhole. A pinhole can be 
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defined as a tiny hole in the centre of the imaginary wall which allows the ray to pass 

just through this tiny hole [42]. Unfortunately, the pinhole alone is not able to collect 

enough light; therefore our eyes and cameras use the lens to collect more light, even 

though using a lens causes a small amount of distortion on the projected image due 

to either the shape of the lens itself or to inaccurate alignment. The former distortion 

is called Radial distortion and the latter is called Tangential distortion. Thus, the 

calibrated images need to undergo an undistortion process. 

The projective transformation of a 3D scene of the world to a 2D image can be 

described by a pinhole camera model. Each ray reflected from the object in the real 

world and passed through a camera’s pinhole represents a single point in the 2D 

projected image. The geometry of a pinhole camera consists of a camera plane with 

a pinhole aperture to allow the rays to pass through it, and an image plane (also 

known as a projective plane) which projects the rays as 2D points forming a 2D 

image on it. The distance from the pinhole aperture to the image plane is known as a 

focal length and that from a pinhole aperture to the object is referred as Z, as 

illustrated in the Figure 2.13. The point on the camera plane is called the centre of 

projection or the focal point O, the point on the image plane is called the principal 

point C, and the ray that passes through the centre of projection O to the principal 

point C is called the principal ray or the optical axis. The relationship between the 

point in the physical world and the point in the image plane is derived from the 

similar triangle in Figure 2.13 as following: 

                                              Z
X

f
x



                                                                  ( 2.1) 

                                             Z
Xfx                                                                 ( 2.2)
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Figure  2.13: Pinhole Camera Model 

The minus sign indicates that the projected image on the projective plane has been 

rotated; this occurs in real cameras due to the placing of the image plane behind the 

camera plane. To simplify this model geometrically, the image plane is placed 

virtually in front of the camera plane, as illustrated in Figure 2.14. Thus, the 

relationship becomes: 

                                                  Z
Xfx 

                                                        ( 2.3) 

 

Figure  2.14: Simplified pinhole camera model 

In fact, one can hardly align the image plane with the lens of a pinhole, so the 

principal point C(0, 0) is rarely aligned with the centre of the image. Therefore, new 

parameters for the principal points are introduced, C(cx,cy), which refer to the 

displacement of the centre of the projection C(0,0) from the centre of the image 

plane. According to this displacement, the relationship above in equation (2.3) is 

changed to become that of equation (2.4), and the y coordinate will also be changed 

as in equation (2.5). This displacement is illustrated in Figure 2.15. On the other 

hand, because the individual image unit in the image plane is rectangular instead of 

Projection Plane Camera Plane 

Center of 
projection Optical axis 

(x ,y) 
(X ,Y, Z) 

f 

(0,0) 

Pinhole Plane Image Plane 

x 

X 

F Z 

C O 



Chapter 2: Main Concepts in 3D System 
 

35 
 

being square, the focal length will be expressed by two parameters, fx and fy. These 

parameters represent the result of multiplying the actual focal length F by the size of 

the individual image unit (sx,sy) as illustrated in Figure 2.15. Practically, fx and fy are 

not calculated; they are given.   
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Figure  2.15: Misalignment of the image plane with the centre of the projection 

Since the point in the physical world is represented by three coordinates (X, Y, Z) and 

its projective transformation on the projective plane is represented by two 

coordinates (x, y), it is convenient to convert these coordinates to homogenous 

coordinates1[43]. For example, we can convert the image point (x, y) to a 

homogenous coordinate by adding a third dimension to the point to become (x, y, w). 

Because all the proportional points are equivalent, we can recover the original image 

point by dividing it over w. This allows the camera’s parameters ( fx, fy, , cx, and cy) 

to be arranged on a single (3×3) matrix. Thus, the transformation process becomes a 

multiplication process of a physical 3D point with a camera matrix to obtain the 2D 

image point, as shown below: 

                                                
1 The homogenous coordinate is the convenient way to express the coordinate while working in the 
projective transformation of 3D scene into a 2D image plane. Specifically, any point in the projective 
space with a dimension n in the homogenous coordinate is expressed with a dimension (n+1) vector. 
Also, when using those coordinates, any two proportional vectors are considered equivalent. 
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Obviously, from the result of multiplication process, the value of w will be equal to 

the value of Z and, since the image point is a homogenous coordinate, the original 

image point is a homogenous coordinate, and the original image point can be 

recovered by dividing by w or Z  since (w=Z). 

Having introduced the basic model of a single camera (pinhole camera model), we 

now introduce the basic geometry of two cameras for a stereo imaging, explaining 

how they are related to each other geometrically. This relationship is known as 

epipolar geometry and will be illustrated in the next section. 

2.5.2 Epipolar Geometry 

This is the basic geometrical relationship of stereo images which are produced by 

two cameras projecting the same 3D scene in the physical world onto their imaging 

planes from different viewpoints. Since these two projected images represent the 

same 3D scene, their image points correspond to each other and the recovery process 

for these corresponding image points is called the stereo matching problem or 

disparity estimation. The question is: how can we recover the corresponding points 

from the two images? The answer to this question can be found through the epipolar 

geometry relationship of two images. 

Firstly, we will mention the basic geometrical concepts about the cameras and the 

corresponding new epipolar geometrical terms, as illustrated in Figure 2.16. Each 

camera has its own focal point (i.e. centre of projection), Ol for the left camera and 

Or for the right one. Further, each camera has its own projective plane (image plane) 

on which to project its image. The focal points of each camera, Ol and Or , are 

projected onto each other’s projective plane forming a new point on it; these are 

denoted as epipoles, El for the left projective plane and Er for the right one. The point 

in the physical world is referred to as X and the corresponding image points are xl 

and xr.   The back-projected rays from xl and xr  intersect at X, and are thus lying on 

the same plane. Therefore, the points Ol, X, and Or are forming a new plane referred 
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to as an epipolar plane π, and the intersection of this plane with the projective plane 

are forming lines called epipolar lines Ll (El-xl) and Lr (Er-xr). 

 

Figure  2.16: Epipolar Geometry 

Accordingly, how can the epipolar geometry help us with the search for 

corresponding points on the stereo images? Since the point xr is located on the 

epipolar line Lr and xr lies on the epipolar plane π, so the epipolar line Lr is the image 

of the line (Ol-X) where xl is located. Thus, the relationship of two corresponding 

points via epipolar geometry is concluded as follows: all possible locations for one 

point in a projective plane are restricted to a certain line in another projective 

plane. Consequently, epipolar geometry limits the range of the search for the 

corresponding image points between the stereo images, thus simplifying the stereo 

matching problem and increasing the reliability. The epipolar geometry is defined 

through a 3×3 matrix known as Fundamental matrix (F) that joins two points 

through this relationship: (xl F xr =0). The fundamental matrix is constructed from 

the camera matrices Ml and Mr which are introduced via a pinhole camera model. 

2.5.3 Image Rectification 

To further simplify the search process for corresponding points of a pair of stereo 

images, the imaging planes must be aligned exactly. Since, in reality, it is hard to 

align two cameras so that there are two exactly aligned image planes, an Image 

Rectification process is required to transfer the image planes of the two cameras to 
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the same common plane [44, 45]. So, after the rectification process, the epipolar 

lines will be parallel horizontally and parallel to the base line (Ol-Or), and each 

image point and its corresponding point in the other image will be aligned 

horizontally via one row. Figure 2.17 shows a stereo camera setup after rectification 

process. Subsequently, the disparity between stereo images will occur only in the 

direction of the x-axis: (d=xl - xr). Subsequently, the depth can be extracted easily 

from the Figure 2.17 by triangle similarity: 

                                             Z
B

fZ
xxB rl 


 )(

                                                 ( 2.7)
 

                                               rl xx
fBZ


                                                          ( 2.8) 

Substituting (d=xl – xr) the equation becomes: 

                                             d
fBZ 

                                                            ( 2.9) 

From the equation (2.9) we notice that, if the disparity is increased, the depth is 

decreased and vice versa. So, the depth is affected by the distance of the object; an 

object near to the camera will have a good depth. 

 

Figure  2.17: Rectified Image Planes 
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In conclusion, we will summarize the stereo imaging into the following steps [46], 

which are illustrated in Figure 2.18: 

1. Remove the radial and tangential lens distortion from the acquired stereo images. 

This is achieved by rescaling and displacing the image points in the image plane 

using distortion coefficient to fix this distortion [47]. Consequently, an 

undistorted or corrected image is produced. 

2. Rectify the stereo images to appear on the same common plane using epipolar 

geometry by aligning the epipolar lines horizontally and allowing the centre of 

the projection of the two stereo images to become parallel to each other [44]. By 

this, a row-aligned (having the same y-coordinate) or a rectified image is 

produced. 

3. Match the corresponding points on the stereo image that refer to the same 3D 

points of the physical world to produce the disparity map, which represents the 

difference between the corresponding points in the x-axis coordinates as (d=xl – 

xr), since there is no difference in the y-axis. 

4. Re-project the stereo image points to obtain the perceived depth by converting 

the disparity map to distances to produce a depth map. 

 

Figure  2.18: Stereo imaging steps 

2.6 Disparity Estimation Problem 

The stereo images result from projecting the same 3D scene in the physical world to 

two different image planes of two cameras. So, the 2D image points in the projective 
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planes are corresponding but in different places, because they are the result of the 

projection of the same 3D points. The problem is how to find the corresponding 

points in the stereo image pair. This problem is called the correspondence estimation 

problem or stereo matching problem. After the corresponding points are found, the 

distance between these points can be calculated; the distance calculation is called 

disparity estimation process.  

There are some constraints that help in the recovery process of the corresponding 

points in the stereo image pair. The first one is the Constant Image Brightness2 (CIB) 

assumption [48], which assumes that the brightness of the image point does not 

change if it is shifted to a different place. So, the corresponding points have the same 

luminance. Although this appears a good constraint, it is not enough to solve the 

correspondence problems because, if there is an area (a group of pixels) in both 

images with the same brightness value, such as a contour, what is the corresponding 

point of each pixel in the other image?[49]. To solve this, the existence of other 

constraints is required.  

The epipolar geometry relationship of the stereo image pair is considered the most 

important constraint as it limits the search process for the corresponding points just 

to one dimension where a point in one image lies on the epipolar line of the other 

image. Also, to further simplify the problem, the correspondence estimation problem 

is applied to the rectified images. Because these rectified images are on the same 

planes and aligned exactly, row-by-row, the correspondence search will occur only 

in the x-axis. So, when the corresponding points are found, the disparity can be 

calculated easily by calculating the horizontal separation between these points.   

One of the factors that make the disparity estimation an ill-posed problem is the 

occlusion area, which means an area that is visible in one image but not in the other; 

for example, in the Figure 2.19, the world “3D” is half occluded in both left and right 

images due to the existence of a block in the foreground. In the left image the second 

                                                
2 Constant Image Brightness (CIB) assumption assumes that the corresponding image points between 
the stereo images have the same luminance value. In fact, this assumption is not always true since an 
object’s surface has reflection surfaces and this reflection value might be changed when acquired 
from a different position. Due to the difficulty of this situation, we will use this assumption and 
recommend work on the surface reflectance problem as a future research task. 
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letter “D” is occluded, whereas in the right image the first letter “3” is occluded. In 

this case, finding an accurate or exact disparity map is very difficult, thus making the 

correspondence estimation problem an ill-posed problem. 

  
(a) (b) 

Figure  2.19: Occlusion areas problem: (a) Placing the foreground object in different 
positions in left and right images; (b) Ordering the foreground object and the 
background in two layers to demonstrate the occlusion areas; “W” letter refer to the 
white background. 

2.6.1 Disparity Estimation Techniques 

Different techniques have been proposed in the literature to find an accurate disparity 

map using various approaches. In the following sections, we will discuss the main 

techniques used in disparity estimation. 

2.6.1.1 Block-based techniques 

In this technique, the stereo image pair is divided into rectangular blocks of pixels to 

match them up [50, 51]. The similarity between blocks is measured using one of the 

cost functions such as Sum of Absolute Difference (SAD). When the matching 

blocks are found, the disparity value is assigned to the all pixels in a block. This 

technique is desirable because it is simple, although it is computationally expensive. 

Block-matching techniques give good disparity estimation results in high-textured 

areas [49], but it is hard to estimate the disparity in low-textured areas and an 

additional interpolation step is required to estimate them.  

Left camera Right camera 

Background 

Foreground 
object 

Invisible area W 3 D W    3GT 
 

Left Camera 

  CGD 
 

Right Camera 

Left Image Right Image 



Chapter 2: Main Concepts in 3D System 
 

42 
 

Since the depth is changed abruptly at object boundaries and the block-matching 

technique assigns the same depth value for all pixels in the block, the result will have 

an incorrect value. Therefore, a block-matching algorithm with different block size is 

applied to overcome these problems [52]. Hence, the size of the block can be chosen 

adaptively depending on the applied area to strengthen the algorithm for low-

textured areas and at object boundaries.   

2.6.1.2 Features-based Techniques 

In this technique, the matching process is carried out between certain features that 

are extracted from a pair of images [53, 54]. These features can be corners, edges, 

lines, or any feature that can be distinguished uniquely in one image and easily 

detected in the other image. Since the extracted features are unique, the feature-

matching method gives accurate and reliable results but produces a sparse map. This 

means the disparity is computed only for the feature points and no disparity 

information is available for the other points. Although this technique needs less 

computation, it is considered inadequate for certain applications. For example, in 

intermediate view reconstruction algorithms, the disparity value is required for every 

pixel in the image to reconstruct all the pixels. In this case, the feature-based 

technique alone is insufficient but can be combined with another approach to provide 

a dense disparity map with more accurate results. In [55] a hybrid approach between 

a feature-based technique and a block-based technique is used to generate an 

accurate and dense disparity map. This hybrid method fails if the disparity values for 

two or more features are different and located in the same block. 

2.6.1.3 Optical Flow Techniques 

There is much similarity between the disparity estimation and motion estimation 

problems in computer vision applications. Both of them need to measure the 

displacement of pixels between two images. In both problems, the input is that two 

images have a correspondence between them, while the essential difference is in the 

time of acquiring images. In the stereo vision problem, the image pair is acquired at 

the same time but from different positions, while in the optical flow problem these 

images are acquired at different times. Therefore, motion estimation techniques can 

be exploited in the disparity estimation problem [48, 56].  
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There are some issues that must be taken into account when using the optical flow 

techniques in the disparity problem. In the disparity problem, the estimation is 

carried out on the rectified images, so the displacement distance will be in one 

dimension (x-axis); meanwhile the motion estimation problem has two components: 

horizontal and vertical. The difference between two images in motion estimation is 

very small and approximated numerically by computing a derivative of the intensity 

with respect to time, while the disparity range is larger. The displacement of a pixel 

can be measured and associated for every pixel in the image; this is called a dense 

optical flow or dense correspondence. As mentioned earlier, a dense map is required 

for certain applications, such as generating an intermediate image. Since the change 

in optical flow is very small, the optical flow algorithms apply an additional 

smoothness constraint to the whole image; therefore, the object boundaries will also 

be smoothed. In the real world, the object’s surface appears to vary in smoothness 

with motion and preserves the discontinuity at the boundary, while optical flow 

techniques apply a smoothness constraint to the whole image, including the object 

boundaries. Many optical flow algorithms have been proposed in the literature [57, 

58] that use an additional restriction in the optical flow equation to avoid smoothing 

across the object boundaries. The object boundaries can be determined explicitly or 

implicitly within the optical flow equation. Unfortunately, optical flow algorithms 

cannot detect a large motion (i.e. motion with more than one or two pixels) due to 

the numerical approximation of the derivative of the intensity with respect to time. 

2.6.1.4 Phase-based Techniques 

In this technique, the disparity estimation is extracted from the phase of Fourier 

Transform [59, 60]. The stereo vision exploits the fact that the spatial shift between 

the left and right view is linearly proportional to the local phase difference3 between 

them, so the correspondence estimation is computed from that difference. The 

general idea of the phase-based method is to convolve the left and right images with 

a certain filter, such as a Gabor Filter, and then extract the local phase to compute the 

phase difference as well as the disparity.  

                                                
3 Local phase difference is defined as the difference between the band pass signals that extracted from 
the left and right images in the Fourier domain.  
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Since the difference can be computed for the all phase values, a dense disparity map 

will be generated. Moreover, the disparity map will be in sub-pixel accuracy without 

any explicit sub-pixel measurements. Also, the phase-based output is robust due to 

its stability even when the lighting and shading are variants. A comparative study 

between phase-based techniques for disparity estimation is found in [61].    

2.6.1.5 Bayesian-based techniques 

Since the correspondence problem does not have an exact match between all the 

image points in the left and right views (i.e. the ill-posed problem), a correspondence 

estimation based on a probabilistic approach has been developed [62, 63]. The 

Bayesian method is one of the probabilistic approaches that are used to find a 

simultaneous dense correspondence estimation. In the correspondence estimation 

problem, each point in the left image has many possible solutions in the right image. 

So, instead of selecting one of these solutions depending on a certain constraint, the 

Bayesian method assigns each possible solution a probability of being a solution or 

not, which are handled simultaneously. This assigned probability is extracted from 

two sources: the first one is the image content itself, and the second one is the prior 

knowledge about the image. 

2.6.1.6 Energy-based techniques 

In this technique, the disparity estimation problem is solved by a set of minimization 

and regularization formulations. These formulations are based either on statistical 

and discrete mathematical models or on variational and continuous models. The 

main objective here is to minimize the energy function cost which consists of the 

data and smoothness assumptions. Depending on the two mathematical models, the 

energy-based functions are divided into two types: statistical and variational 

approaches. 

1. Statistical and discrete approach: in this type, the images are represented by one 

of the statistical energy functions, such as Markov Random Field (MRF), where 

the disparity is found by choosing the most probable match between the images. 

After regularizing the discrete energy function, the problem is to work out how to 

minimize this energy function. The minimization is often done by one of the 
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following algorithms: Dynamic Programming [64], Graph-cut [65], or Belief 

Propagation [66]. This statistical approach gives a good result with images that 

contain areas with a constant depth (i.e. by applying a depth constancy 

assumption); however, this approach may fail if the depth is varying smoothly 

such as in the presence of a curvature structure in the images. Moreover, the 

discrete presentation only allows integer values to be used in the disparity 

estimation process. 

2. Variational and continuous approach: in this approach, the images are 

represented by a continuous energy function, and the disparity is found by 

minimizing this energy function. This minimization in variational approach is 

performed via a set of Partial Differential Equations (PDE) and there is a great 

deal of literature on this [67, 68]. PDE-based methods allow the representation of 

the images in a continuous surfaces, and that results in a grid-independence and 

isotropy [69]. As the continuous variational PDE-based methods represent the 

important geometric features of the images apparently, such as the gradient and 

curvature, this allows us to directly handle them [70]. It also allows us to 

simulate the dynamic processes easily, such as linear and non-linear diffusion 

[70]. Moreover, the PDE-based method can benefit from the huge amount of 

literature on the numerical analysis of PDE [70], which helps to yield an accurate 

disparity. 

2.7 Summary 

In this chapter, we introduced three main concepts about 3D systems: human depth 

perception and its simulation in computer vision; 3D display technologies; and the 

geometry of stereo vision. Firstly, we described the main characteristics of the 

human visual system and illustrated three forms of depth cues. Then we described 

how these characteristics are simulated in computer vision to develop 3D displays. 

We also demonstrated many of the 3D display technologies that have emerged since 

the first stereoscopic device was invented. Since the main goal of this thesis is to 

generate the contents of multiview displays, we presented more details on multiview 

3D display technologies. After that, we described the geometry of stereo vision to 
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understand the relationship between the acquired stereo images from a pinhole 

camera through epipolar geometry.  

At the end of this chapter, we illustrated how the epipolar geometry is exploited in 

the disparity estimation, and then described the main techniques used for disparity 

estimation from the simplest technique (block-matching) to the more complicated 

one (energy-based technique). We concluded that a sparse disparity map is not 

applicable for intermediate view reconstruction algorithms that need a disparity 

value for each image point in the image, i.e. dense disparity map. The feature-based 

technique is an example of a sparse disparity generator. Since the object surface in 

the real world is smooth, smoothness constraints are applied through disparity 

estimation. However, an extra awareness is required when applying such constraints 

on the image boundaries through intermediate view reconstruction. 

Finally, we will not investigate the disparity estimation any further in this thesis 

since a substantial amount of work has already been done and is available in the 

literature. We will focus on the intermediate view reconstruction problem, which is 

reviewed in the next chapter.  



 3 Challenges and Literature Review of Intermediate 
View Reconstruction 

This chapter presents previous studies on the intermediate view reconstruction 

problems, describing the challenges of intermediate view reconstruction and some of 

the possible solutions. A comprehensive survey of intermediate view reconstruction 

is presented in regard to other studies’ categories and to our category depending on 

how the disparity is compensated for in the intermediate image. Moreover, a review 

of all the previous studies on intermediate view reconstruction is presented in a 

summarized table. 

3.1 Introduction  

he process of generating intermediate images from stereoscopic images is 

not straightforward due to the ambiguity of the occluded regions and the 

need to preserve the discontinuity.  Therefore, many studies have been 

conducted to try to generate the intermediate image with high quality. Thus, more 

detailed study of interpolation methods is required.  

This chapter reviews other researchers’ work on the intermediate view 

reconstruction. Other researchers’ classification of the intermediate view 

reconstruction will also be presented. We will focus on algorithms designed to find 

and handle the occlusion areas, and those that are trying to reduce image artifices 

generated through formation of the intermediate view, all of which are considered 

difficult challenges. 

T
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3.2 Intermediate View Reconstruction Problem 

There are three essential aspects that must be available in a stereoscopic system to 

achieve a sense of reality: depth perception, natural look-around feeling, and 

comfortable viewing. Unfortunately, the availability of just two images in a 

stereoscopic system provides us only with the perception of depth, which is not 

enough for real 3D viewing. Therefore, extending the stereoscopic system to a 

multiview system will solve this problem; this involves converting the available 

stereo image pair to multiple images. In a multiview system, a comfortable viewing 

sense is achieved by selecting a suitable image pair separated by the exact distance 

between the viewer’s eyes; it also requires the natural look-around feeling that is 

provided when presenting a different pair of views to the viewer as the viewer’s head 

moves. 

State-of-the-art display technologies for multiple images of a multiview system 

already exist, but the process of generating these images is a hard task and still 

presents problems. The generation process is carried out either by using multiple 

cameras equal to the number of required images or by using a few cameras and 

positioning virtual cameras to create virtual views at that position. The former 

system is considered expensive while the latter is an efficient one and is called 

intermediate view reconstruction.  

Intermediate view reconstruction is considered the main step to generating the 

content of a multiview display and is defined as generating additional virtual images 

from the available stereo images that are produced by a minimum number of real 

cameras. This is achieved by supposing that there are virtual cameras (V1, V2, ....) 

located anywhere between the real cameras or in the surrounding area to capture 

these virtual images, as shown in Figure 1.3. Intermediate view reconstruction is 

used to avoid the disadvantages of having to use many cameras, and to give a natural 

free viewpoint without any discomfort. Using many cameras cannot produce 

continuous viewpoints and also produces a huge amount of data that are not effective 

for transmission; however, using intermediate view reconstruction produces 

continuous viewpoints that provide us with a capability of “motion parallax”.  
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Although intermediate view reconstruction is considered a good approach to 

generate multiple images, it is considered a difficult task due to the problems posed 

by the reconstruction process. These reconstruction problems include finding the 

disparity map, finding the location of the occluded areas, recovering the correct 

disparity in those occluded areas, preserving the discontinuity at edges, and forming 

the intermediate view texture without image artifices. Thus, solving these problems 

is considered a significant challenge for researchers.  

In the subsequent sections we will explore the challenges of the intermediate view 

reconstruction process in more detail and review other researchers’ solutions to these 

challenges. After that, we will classify the previous work on intermediate view 

reconstruction and mention the classification of other researchers. 

3.2.1 Challenges of the Intermediate View Reconstruction 

In the following section we will explain the most important challenges that will 

confront us in the reconstruction process. By solving these challenges, we may be 

able to generate an intermediate image of high quality. 

The main challenges of intermediate view reconstruction are as follows: 

1. Disparity Estimation 

Disparity estimation is considered one of the challenges that must be solved 

before finding the intermediate images because it determines the structure of the 

view. Since the disparity estimation is considered a matching process between 

corresponding pixels of two images, finding an accurate disparity is a difficult 

task due to the occluded areas between these images. Therefore, the disparity 

estimation is an ill-posed problem and many studies have been conducted to 

solve it. Previous solutions to the disparity estimation problem are summarized 

in chapter 2, section 6.  

2. Detection and handling of the occlusion areas 

Occlusion areas have an impact on two problems: disparity estimation and 

intermediate view reconstruction. Since occluded areas are defined as the 

visibility of the image points in one image but not in the other one, and the 
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disparity estimation depends on the intensity matching, the correct disparity 

value will not be calculated in these areas. Consequently, an erroneous matching 

will be generated because the disparity estimation methods cause a disparity to 

be calculated, even in the occlusion areas, by choosing the best estimate between 

the stereo pair in the occluded areas. Finding where these occlusion areas are 

located is considered the first part of this challenge and this is known as detection 

of the occlusion areas. After finding the occlusion area, how will the correct 

disparity be calculated there? This is the second challenge that must also be 

solved and it is called occlusion handling or disparity extrapolation or 

inpainting. 

Intermediate view reconstruction and occlusion area detection are related to each 

other in two areas. Firstly, since the quality of the intermediate image depends on 

the accuracy of the disparity estimation, and the occlusion areas struggle finding 

an accurate disparity map, the occlusion areas will affect the reconstruction 

process. The second issue is related to the visibility of image points in the 

intermediate image, where some points are visible in one of the images. 

Therefore, the reconstruction process must be aware of the visibility of points in 

order to reconstruct the correct information from the correct source. How to 

determine the visibility of points in the intermediate image is considered another 

challenge.   

3. Formation of the intermediate view texture 

After finding an accurate disparity and collecting information about the location 

of the occlusion areas, determining the intermediate view texture is the next step. 

Accordingly, how can the intermediate image texture be computed through the 

disparity map? Let us assume the distance between the left and right images is 

normalized to become the left image at position 0 and the right image at position 

1, with the intermediate image at position α where α lies between 0 and 1. Under 

the CIB assumption [48], any intensity value x in the left image will be equal to 

the intensity value of the right image at x - dL(x), where dL(x) is the disparity 

value for x, summarized as follows: IL(x) = IR (x - d(x)). Therefore, the 

intermediate image intensities might be computed using the above relationship as 

follows:  
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Unfortunately, the αd(x) distance may not yield an integer value and 

consequently will not belong to the sampling grid of the intermediate view, so 

irregular points will be generated. Converting these irregular points to regular 

points to form the texture of the intermediate image is considered a challenge 

[71]. In addition, there are a number of image artifices generated through 

formation of the intermediate view that must be solved, such as the generation of 

holes and cracks due to image resampling, generation of ghost contours due to 

the disparity’s sharp edges, and the appearance of disoccluded areas due to the 

cameras changing position [72]. 

4. Preserving the discontinuity of the edges in the intermediate image 

Depending on the fact that the object has a smooth surface appearance in the real 

world, in estimating the texture of the scene (disparity map) one needs to apply a 

smoothness constraint to the objects in the scene. This smoothness constraint can 

be applied, for example, in the block-based matching method [50, 51] when 

assigning all the block points the same disparity value. Thus, if there is a 

boundary area within a block, this boundary will have to have a disparity similar 

to the non-boundary area, resulting in smooth edges. In energy-based methods 

[64-67], which are used frequently to estimate the disparity, each energy function 

has a smoothness term to be minimized and the neighbouring points in a small 

area will have to have the same disparity values. This constraint is applied to the 

whole image even in the boundary areas; consequently, the discontinuity will not 

be preserved. 

In addition, as a result of the reconstruction of the intermediate image, smooth 

edges will be generated since the intermediate image texture results from the 

interpolation of more than one view. Therefore, it is necessary to preserve the 

discontinuity in the reconstructed intermediate image and this is considered a 

challenge to the reconstruction process.  
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After summarizing the most important challenges confronting the reconstruction 

process, we will start to explain each one in more detail and review other 

researchers’ solutions to these challenges. 

3.3 Formation of the Intermediate View Texture 

Since the intermediate view reconstruction generates additional images from the 

available few images, the unknown intermediate images will be derived from the 

available known images via their disparities. Initially, depending on the assumption 

of CIB [48], the left and the right images are related to each other via their 

disparities, as in the following relationships:                                                        

(ݔ)௅ܫ = ݔோ൫ܫ − ݀௅(ݔ)൯        ∀ݔ ∈ ܵ௅                                                                       ( 3.2) 

(ݔ)ோܫ = ݔ௅൫ܫ + ݀ோ(ݔ)൯        ∀ݔ ∈ ܵோ                                                                       ( 3.3) 

Where IL is the left image and IR is the right image that defined on the sampling grid 

SL and SR, respectively. dL(x) is the disparity map that is defined on the sampling grid 

of IL toward IR, while dR(x) is defined on IR toward IL. Now, let us introduce the two 

approaches which can be used to reconstruct the texture of the intermediate view 

depending on how the disparity values are calculated [71]. 

3.3.1 Backward Disparity Compensation 

In this approach, the disparity values are defined on the sampling grid of the 

intermediate image Iint, which will be reconstructed, toward both directions of IL and 

IR. Thus, the disparity map dint(x) will be defined on the sampling grid of the 

unknown images (i.e. the reconstructed images) to the known images (i.e. the left 

and right images). Therefore, each image point of the intermediate image will have a 

value using the intensities from IL and/or IR. Illustratively, let us assume the distance 

between the IL and the IR is a normalized distance, where IL is located at 0 and IR at 1 

while the intermediate image is located at position α which must be within [0,1] (i.e. 

if α = 0 then IInt=IL while if α =1 then IInt=IR), as shown in Figure 3.1. 
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dI 

Figure  3.1: Shows backward-disparity estimation (disparity compensation from 
intermediate disparity to the left and right disparity) 

Under the CIB assumption, the relationship between the IL and IR will be: 

IntIntRIntL SxxdxIxdxI  ))()1(())((                          ( 3.4) 

Where x + α dInt (x) and x - (1 – α) dInt (x) may not necessarily belong to the 

sampling grid of SL and SR, respectively. However, this problem can be solved easily 

by using spatial interpolation. Then, the intensities of the intermediate image will be 

calculated using the linear interpolation (i.e. weighted averaging ) of the intensities 

of the left and right images as in (3.5) [73, 74]. 

IntIntRIntLInt SxxdxIxdxIxI  ))()1(())(()1()(       ( 3.5) 

There are other methods of reconstructing the intermediate image either from the left 

image or from the right image as in [75]. During the reconstruction method, the 

interpolation is applied twice, one when letting x + α dInt (x) and x - (1 – α) dInt (x) 

belong to SL and SR (spatial interpolation), respectively, and the other when 

computing the final intensities of the interpolated images. This will produce a 

blurred image which is considered a drawback of this approach.  

Although the pivoting-based method produces a blurred image, Ince et al. [17] 

detected the edges in the intermediate image and found that the edge maps are very 

similar to the original intermediate image. Therefore, they used this reconstructed 

intermediate image as an input to the edge-preserved disparity regularization (i.e. 



Chapter 3: Challenges and Literature Review of Intermediate View Reconstruction 
 

54 
 

anisotropic regularization) to reconstruct a more accurate intermediate image without 

blurring at the edges.  

3.3.2 Forward Disparity Compensation 

In contrast to the backward disparity compensation, the forward disparity 

compensation approach computes the structure of the intermediate image via a 

disparity map that is defined on the sampling grid of one or both of the available 

images (left and right images), as shown in the Figure 3.2. Depending on the CIB 

assumption [48], the intermediate image intensity values are computed using the 

following relationships: 

LLLInt SxxIxdxI  )())((                                         ( 3.6)

RRRInt SxxIxdxI  )())()1((                                           ( 3.7)
 

Unfortunately, x - α dL (x) and x + (1 – α) dR (x) locations will not belong to the 

sampling grid of the intermediate image SInt (they are not integer values), resulting in 

irregular samples. Some researchers solve this problem by applying an additional 

step to force these irregular samples to belong to S , such as rounding these point 

locations to the nearest integer (i.e. round(x - α dL (x))) or applying a constraint 

where α dL(x) and (1 – α) dR (x) must belong to the SL and SR, respectively [76, 77].  

Unfortunately, these solutions are not effective since some points in the intermediate 

image are not assigned intensity values (undefined points) or are assigned multiple 

intensities (overdefined points) as illustrated in Figure 3.3. For these areas, a texture 

synthesis can be used to handle the undefined points or a depth ordering can be used 

to choose a suitable intensity for the overdefined points [77]. Even though each point 

in the resulting image will have one intensity value, the image will be distorted. 

Thus, a method for converting the irregular samples to regularly-spaced intensities is 

required. 

Recently, a spline-based reconstruction has been proposed to solve the problem of 

regularly-spaced samples in the reconstruction process [71]. This method is based on 

the minimization of the energy function which consists of a data-matching term for 



Chapter 3: Challenges and Literature Review of Intermediate View Reconstruction 
 

55 
 

 
(a) dL 

 
(b) dR 

Figure  3.2: Shows forward disparity estimation: (a) disparity compensation from 
left-to-right; (b) disparity compensation from right-to-left. 

B-spline model of the irregular image samples and a B-spline smoothness term. 

Although this minimization gives a continuous function that recovers the regular 

sample space for the intensities, it needs a lot of computation, which is considered a 

drawback of this method.  

The comparison between the spline-based reconstruction method and backward-

projection methods is performed in the presence of image noise in one experiment 

and in the presence of error in the disparity estimation in the other one [71]. The 

former is more reliable for image noise, while, in case of an error in the disparity 

estimation, the latter one is more reliable.  
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Figure  3.3: Example of the generated undefined and overdefined points through 
forward projection of image points from left image IL to intermediate image Iint. 

3.4 Detection and Handling of the Occlusion Areas 

Since the stereo image pairs are acquired from different positions, they will have a 

different scene structure that results in the occluded area or newly-exposed area 

(uncovered). The occluded area is defined as the visibility of such an area in one 

image and its disappearance in the other one, whereas if the disappearing area 

becomes visible,  this area will be called the newly-exposed area or uncovered area 

[17]. Figure 3.4 shows the original stereo pair IL and IR and the reconstructed 

intermediate image Iint. As we note, from left-to-right, the letter “C” is considered an 

occluded area because it is visible in IL and has disappeared in IR, while the area “T” 

is a newly-exposed area. 

 
Figure  3.4: Occlusion problem through the reconstruction process 

The occlusion problem is considered the major challenge in the reconstruction 

process. In order to reconstruct a correct and accurate intermediate image, there are 
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three sub-problems related to the occlusion area that must be solved. Firstly, it is 

necessary to discover where the occlusion area is, because the disparity estimation 

methods force the disparity to be calculated in the whole image, even in the occluded 

area. The second sub-problem is how to estimate the correct disparity in the occluded 

area that was detected. Finally, it is necessary to determine the visibility of the image 

points in the intermediate image to reconstruct the correct information from the 

correct source. As we can see in Figure 3.4, some image points Iint are visible only in 

IL such as “C” and other points are visible only in IR such as “T”. Therefore, it is 

necessary to find a method to determine the visibility of image point in the 

intermediate image. 

Here, a brief review of how previous work has detected and handled the occlusion 

areas will be discussed, as a detailed description of previous work on occlusion 

detection and handling are presented in the next chapter.  

3.4.1 Methods and Constraints of the Occlusion Detection 

Due to the importance of occlusion in many areas, many algorithms and constraints 

have been proposed to detect and handle those areas. Occlusion detection based on 

multiple images (more than 3 images) has been proposed in the literature [78], but 

this involves an extra computational effort. The simplest approach to detecting the 

occlusion area is the Left-Right Checking (LRC) approach [79-81], which uses the 

intensity matching between stereo pairs as an indicator of occlusion area. Ordering 

constraint (ORD) [82, 83] assumes that the order of pixels in the corresponding rows 

between the stereo images is not changed, unless an occlusion area is found. This 

constraint fails when there are thin foreground objects or narrow holes in the image. 

LRC and ORD constraints use intensity matching, which is not robust in the 

presence of image noise, resulting in an erroneous occlusion area in the occlusion 

map. Occlusion constraint (OCC) [83, 84] detects the occlusion areas more 

accurately since it does not depend on the intensity matching but is based on the 

principle that the occlusion areas leave unmatched points in the other image, leaving 

an uncovered area near the boundary. Unfortunately, since this constraint is totally 

dependent on the disparity map, it fails with images that have a varying depth. 
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Another constraint is the uniqueness constraint [85], which checks one-to-one 

correspondence between stereo image pair. Because the disparity estimation methods 

apply boundary-preserving smoothness constraint [85], the gradient at the object 

boundaries is high; otherwise it is small [86]. Thus, the occlusion areas have a high 

gradient since they are located near to the boundaries; this constraint is called 

smoothness and gradient constraint. The visibility constraint [87] ensures that the 

visible pixels have at least one match on the other image, while the occluded area has 

no matches. This algorithm is flexible since it allows many-to-one matching but, 

sometimes, this is considered a weakness of this constraint.  

Related to the visibility constraint, a geometric approach [88] is proposed to detect 

the occlusion/newly-exposed areas. This approach detects an empty area from 

projection in the target image after forward projecting the disparity map from 

reference to the target image. Recently, Phillips [89] have exploited the smoothness 

and gradient constraint of the occlusion area to detect it. They apply an adaptive 

boundary-preserving filter to highlight the occlusion area at the discontinuity of the 

calculated smoothed matching map. A comparison between five well-known 

algorithms is conducted in [90].  

3.4.2 Methods and Constraints of the Occlusion Handling 

After detecting the location of the occlusion areas, a robust recovering procedure for 

those areas is required. By considering the occluded areas as corrupted regions in the 

image, which need to be repaired, we can apply digital inpainting techniques to 

restore those areas which were originally implemented to remove unwanted objects 

from the image or to repair a corrupted image, i.e. image restoration. The simplest 

approach to filling the occluded area is horizontal interpolation using depth 

information (depth consistency assumption) that assumes the depth will be the same 

within small neighbouring areas [58, 76, 91]. A more complicated approach is to use 

Bertalmio et al’s inpainting approach, which fills the gap by continuing the structure 

of the surrounding areas [92]. This approach is exploited in [93] to inpaint the 

occlusion areas in the disparity maps, where the filling procedure in the disparity is 

guided by stereo image gradient. In due course, several studies were conducted to 

improve Bertalmio et al’s inpainting approach, as it produces a blurred filled region. 
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Therefore, exemplar-based inpainting techniques are proposed [94-96] to overcome 

this drawback; this method fills the gap by diffusing the structure of the surrounding 

areas, taking into consideration the texture replication to solve the blurriness 

problem. Modifying Criminisi et al., a exemplar-based inpainting technique [94] is 

proposed in [97] to cope with occlusion filling.  

A Laplacian filling technique (i.e ROIFILL MATLAB function) is used to fill the 

occlusion in [98]; this diffuses the surrounding area smoothly in the gap by solving 

the Laplacian equation. Unfortunately, an excessive smoothness is generated in the 

filled region, and unfilled holes remain. A more complicated technique uses the Field 

of Experts model [99] which consists of a group of learned filters; this draws on a 

database of real images with diversity to inpaint the occluded areas. This technique 

produces considerable results in combating blurriness but it is time-consuming. 

Other studies apply a smoothness filter such as averaging filter [100], symmetric 

Gaussian filter [100], and asymmetric Gaussian filter [101] to fill the occluded areas 

in the depth map. Unfortunately, this smoothness causes a geometrical disruption in 

a different direction depending on the filter used. A modified inpainting approach is 

used to fill the occluded area where it is filled from the background side, discarding 

the foreground side [102]. Comparisons of the inpainting techniques of occlusion 

areas are presented in [103, 104].        

3.5 Intermediate View Reconstruction Algorithms 

The generation of the intermediate image from stereoscopic images is not 

straightforward, due to the ambiguity of the occluded region and the need to preserve 

the discontinuity of the edges. Therefore, many studies have tried to generate 

intermediate images of high quality. These studies were classified in the literature 

based on different criteria, such as their need for a 3D model representation [105], 

their need for geometric information [106], and the number of the input images that 

are used in addition to the availability of geometric information [17]. In the 

following section we will illustrate briefly the underlying categories of each study. 
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3.5.1 Classification of the Reconstruction Methods 

The first study[105] is classified into two main categories: 3D model-based methods; 

and 2D model-based methods. 

 3D model-based methods: the virtual view is established through a complete 

representation of the 3D model. These methods only give a good result when a 

scene is simple; they don’t work well in a complex scene. Moreover, the 

execution time is dependent on the scene complexity. A significant effort is 

required to produce an acceptable result; therefore, these methods are considered 

costly and time-consuming. 

 2D model-based methods: these methods use a 2D model of the image, and do 

not need any 3D representation of the scene. In contrast to 3D model-based 

methods, the time required to generate new views using interpolation is 

independent of the scene complexity. These methods reconstruct the intermediate 

images based on the estimated disparity between the available known images. 

Since the other two studies [17, 106] are based on similar criteria with little 

difference, we will combine their underlying categories:  

 Many input images with known geometry 

Light-field rendering [107] and lumigraph [108] are two examples of this 

category. Since these methods do not need any geometric information, many 

input images are required to compensate for this unknown information. The 

intermediate images are produced by interpolating the existing sample of the 

images. Methods of this underlying category will suffer if the number of input 

images is few. The occlusion areas between the images are not a problem 

because the distances between the cameras are very small; therefore, the structure 

of the scene is visible in some of the existing images. Using many input images 

requires a lot of effort in performing the process; additionally, a large amount of 

storage space is required for the huge amount of redundant data.  

 Few input images with known geometry  

Since the geometric information about the images is given, such as a depth map 

or 3D representation of the scene, the number of input images is reduced as in 
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[109, 110]. Using the available geometric information about the scene, the new 

virtual view is reconstructed. Under this category, the structure of occlusion area 

is a problem since few input images are available, although the location of such 

area is known due to the availability of the geometric information. 

 Few input images with unknown geometry 

The reconstruction under this category is considered the hardest one, since no 

geometry information is available and few input images are available. 

Fortunately, the geometric information can be computed from the available 

images, which is called the disparity map. All the methods that estimate the 

disparity map in the reconstruction process are categorized under this category.    

3.5.2 Classification of Intermediate View Reconstruction Methods Based on 
the Projection Direction 

We will categorize the reconstruction methods based on how the disparity that 

compensated into the intermediate image is calculated; these are backward-disparity 

compensation methods and forward disparity-compensation methods. 

3.5.2.1 Methods that use backward-disparity compensation: 

1. Backward projection intermediate view reconstruction algorithms 

In backward-disparity compensation methods, the disparity values are defined on the 

sampling grid of the intermediate image (unknown images). Because the 

intermediate image will point to the irregular sampling grid of the known images, 

spatial interpolation is used. These backward-projection algorithms use two different 

ways to reconstruct the intermediate-view points from different known images; these 

are linear interpolation [73], and non-linear interpolation [75].  

Using linear interpolation, the intensities of the intermediate image will be calculated 

by weighted averaging of the intensities of the left and right images, as in equation 

(3.5), while the methods that use non-linear interpolation reconstruct the 

intermediate image either from the left or right image. 

Mancini and Konrad [73] proposed a reconstruction algorithm based on the quadtree 

disparity estimation which uses the linear-interpolation to reconstruct the 
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intermediate view. However, the main purpose of this paper is to enhance the block-

based disparity method by changing the block size at object boundary to the smaller 

one; after that the intermediate image is found. Since this method uses linear 

interpolation, a blurred image will be produced for the reasons mentioned in section 

3.3.1. Thus, the blurriness and occlusion problems are not addressed in this paper. 

Therefore, a reconstruction algorithm based on a winner-take-all strategy is proposed 

[75] to address the blurriness problem of the linear interpolation. This algorithm is 

based on a fixed-block size disparity estimation algorithm, where the intermediate 

image is reconstructed by compensating appropriate blocks either from the left or 

right image. Consequently, a patchy effect will be produced. In addition, the 

disparity values, the intensities of the intermediate image, and the decision field are 

calculated jointly by a Bayesian formulation and solved by Maximum A posteriori 

Probability (MAP) estimation, which makes this method computationally expensive. 

In addition, this algorithm is not aware of the occlusion area. 

Later on, the Philips research group developed a motion compensation interpolation 

to create intermediate views in real time [74]. This algorithm is a backward-disparity 

compensation that uses linear interpolation by averaging the intensities of both the 

left and right images. A disparity map is estimated using a 3D Recursive Search 

(3DRS) algorithm, which is an efficient motion estimation algorithm developed 

specially for the motion compensation interpolation. Since the 3DRS algorithm is a 

block-based technique that assigns one motion vector for all pixels in the block, a 

block erosion approach is used to find a specific motion vector for each pixel in the 

block. Thus, the 3DRS algorithm becomes a pixel-based approach rather than a 

block-based approach. As the 3DRS algorithm uses a temporal candidate vector 

when computing the motion vector, which comes from a previous frame, a temporal 

consistency is ensured. Hence, any flickering artifices will be reduced to generate a 

smoother disparity map. Also, the occlusion problem is not addressed.  

Recently, an improvement to the backward-projection algorithm was proposed [17] 

by preserving the discontinuity at the edges to overcome the blurring effect of the 

linear interpolation. In addition, the occluded area is handled since no backward-

projection algorithm in the literature take into consideration the occlusion problem. 
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Ince et al. [17] implement two algorithms, one to reduce the blurriness effect and the 

other one to handle the occlusion problem. In the first one, they use two stereo 

images to reconstruct the intermediate image by the standard backward-projection 

algorithm, and they use this reconstructed image as an input to the edge-preserved 

disparity regularization (i.e. anisotropic regularization) to reconstruct a more 

accurate intermediate image without blurriness at the edges. This is because they 

detected the edges in the intermediate image and found the edge maps to be very 

similar to the original intermediate image.  

The second algorithm uses four input images instead of two images to handle the 

occlusion problem in addition to applying the first algorithm to preserve the 

discontinuity at the edges. Since they use four input images, the structure of the 

occlusion area is visible in at least two different images. They use a variational 

formulation to calculate the disparity from multiple images. The occluded area is 

detected using the improved geometric approach [88]. Moreover, it can be used to 

determine from where each image point in the intermediate image can be 

compensated, which is formulated in a variational formulation. The necessity of 

using many input images and the cost of the computation are considered major 

drawbacks of this algorithm. Therefore, a robust and efficient backward-projection 

algorithm is required.      

2. Backward projection Depth Image-Based Rendering (DIBR) algorithms     

Another way to find an intermediate image using backward projection is Depth 

Image-Based Rendering (DIBR), which warps the coordinates of the reference 

images onto the virtual image using a depth map. Most of these algorithms generate 

two virtual images from the available reference images and their depth maps to blend 

them into one final image, [72, 111], while others use a single reference image with 

its depth map to generate a virtual image [112]. With the former algorithms, the 

disocclusion areas are handled more accurately than when using the latter 

algorithms; this is because there is more chance of recovering the disoccluded area 

from both reference images. The well-known framework for the DIBR algorithms 

that use two reference images is depicted in Figure 3.5.  
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Figure  3.5: The general framework for DIBR algorithms 

Most of the DIBR algorithms consist of four main steps: warping, filling holes, 

blending, and disocclusion inpainting. DIBR algorithms differ in their ordering of 

the interpolation steps, as some algorithms warp the depth map and the texture 

simultaneously as one step, and other algorithms warp the depth map first to employ 

it in warping the texture of the reference image to the virtual one. Unfortunately, 

generating two virtual images that blend finally into one image is considered a 

redundant operation that adds extra computation to the whole process of rendering 

algorithms. Specifically, if we need to calculate ten virtual images in a stereoscopic 

system for a multiview display, in the rendering process it will be performed twenty 

times: twice for each image.     

The MPEG group developed a DIBR algorithm that finds a virtual intermediate 

image between two reference images using their depth maps [111]. Firstly, they 

calculate homography matrices that specify the image relationship coordinate 

between the reference and virtual view using the available geometry information in 

the projection matrix (position, rotation …). Then, the depth map of the virtual view 

is calculated depending on the calculated homography matrix; after that, the texture 

of the virtual view is created from the available information of the reference view 

and the inverse of the homography matrix. Ghost contours are removed by dilating 

the uncovered unknown areas 1-pixel width to be recovered from the other virtual 

image generated by the other reference image. These two generated virtual images 

are blended into one virtual image by using bilinear interpolation that contains holes 

and cracks. These holes are filled from neighbouring pixels. The general framework 

of this method is depicted in Figure 3.6. 
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Figure  3.6: The proposed DIBR framework by MPEG group[111] 

Unfortunately, calculating the homography matrix adds extra complexity to the 

DIBR algorithm; in addition, these parameters are not always available. Also, the 

general holes and cracks on the virtual depth map are not filled before the virtual 

view generation as it may be filled incorrect information. Moreover, the post-

processing hole-filling procedure does not recover the information accurately since it 

does not take into consideration the object boundaries. 

Mori et al. proposed a DIBR algorithm that recovers the drawbacks of the MPEG 

DIBR algorithm [113] as they do not use any geometric information in calculating 

the virtual depth map. After warping the depth maps of the nearest reference images, 

the holes and cracks are filled by using a median filter. After that, a bilateral 

smoothing filter is applied to reduce depth map noise while preserving the edges. 

Then, a virtual image is generated from each reference image by backward-

projecting the intensities of the reference images where these virtual images blend 

into one virtual image. The resulting ghost contours that appear in the blended image 

are removed by boundary-matting, which requires the extension of the occlusion 

areas from the background direction to be copied from one reference image. 

Disocclusion areas are filled by applying an inpainting algorithm proposed by Telea 

[114]. The general framework for this DIBR algorithm is depicted in Figure 3.7. 
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Figure  3.7: The proposed DIBR framework by Mori et al. [113]. 

Unfortunately, the inpainting algorithm adds an extra computation complexity since 

image-inpainting techniques are computationally expensive. In addition, this 

inpainting technique is not sufficiently specialized to fill the disoccluded areas. So, 

the filled areas are not accurate.      

Later on, another DIBR algorithm was developed by Jeong et al. [112] which 

generates a virtual view from one reference image and its estimated depth map. The 

generation process concentrates mainly on depth map-filtering and determining how 

to recover the disocclusion areas as shown in Figure 3.8. A discontinuity-preserving 

smoothing filter is used to reduce the depth map noise by smoothing the object area 

itself while preserving object boundaries. The disocclusion area is estimated by using 

geometrical information on the views, where it is filled from the neighbouring 

frames (temporal information) by matching image blocks. In this algorithm, the 

ghost contours are not handled, which has a noisy effect on the virtual image.  

 

Figure  3.8: The main steps of Jeong et al. DIBR algorithm [112] 

At the same time, Do et al. changed the order of the warping steps to reduce depth 

map errors [115]; they warped the texture and the depth map simultaneously in the 

same step instead of using the warped depth map of the virtual view to warp the 

texture of the reference image. The generated holes and cracks on the virtual depth 

map are filled using a median filter, and the coordinates of the ghost contours are 
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removed from the virtual depth map after 3D-warping the discontinuities’ 

coordinates. Then, the two generated images are blended into one image by weighted 

averaging of the two nearest reference images. The general framework of this 

method is depicted in Figure 3.9. 

Figure  3.9: The proposed DIBR framework by Do et al. [115] 

As a post-process, the disoccluded areas are filled from the nearest background 

intensities; this results in blurring in the inpainted area as well as inaccuracy in the 

filled information. Consequently, Do et al. improved the inpainting technique 

described above by considering the depth information while filling the disoccluded 

areas [72]. For each pixel, a weighted averaging for the nearest eight background 

pixels is calculated. Unfortunately, this technique is not sufficiently robust to fill 

large occlusion areas; also, it does not preserve the discontinuities of the object’s 

edges during the filling procedure. In this DIBR method, the pixels that cause ghost 

contours are labelled in the reference image to be omitted from the warping step. 

After that, the depth map and the texture values are warped into a virtual view in the 

same step. The generated holes and cracks in the depth map are filled by a median 

filter and, at the same time, the indexes of the filled holes are copied to inversely 

warp the holes from the virtual image to the reference image. A blending step is 

required to generate one virtual image with a disocclusion area which is inpainted by 

the improved inpainting technique described above. The general framework for this 

DIBR algorithm is depicted in Figure 3.10. 
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Figure  3.10: The general framework of the proposed improvement techniques on the 
DIBR algorithm by Do et al. [72] 

for these errors were found. The first one is generated from rounding errors in the 

sampling grid of the virtual image which are suppose to be integers; the second 

source is insufficient depth quantization. In [117], the rounding is solved by 

proposing a supersampling warping approach, and the authors apply a supersampling 

with a factor of two to warp the image points. Although the supersampling reduces 

the holes generated in the virtual image and the number of rounding errors, it is 

considered computationally expensive as each pixel in the reference image will be 

warped four times. Moreover, the virtual image needs to be downsampled to its 

original size, and some errors will still remain in the image.      

Meanwhile, an asymmetric DIBR algorithm has been proposed; this reduces the 

image artifices depending on the assumption that was proposed in [118]. This 

assumption assumes that, when one of the stereo pair is the original or close to the 

quality of the original image and the other one is a slightly corrupted image, the 

perceived quality of the stereoscopic image will not be affected by the corruption 

that exists in one of the images. They assume in their algorithm that the left image is 

always the original image and the right image is the interpolated one. The texture of 

the virtual image is calculated by backward projection into the available reference 

images. Subsequently, image artifices are detected by applying a Laplacian filter to 

generate a confidence map; then the anisotropic diffusion filter based on the Perona-

Malik equation [119] is applied to smooth out these artifices from the virtual image. 

This method is effective for small artifices but is not reliable for large areas of 

artifices. Moreover, this algorithm allows us to generate just one image between 

every two reference images, which is not a practical technique in reality.    
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3.5.2.2 Methods that use forward-disparity compensation 

In contrast to the backward-disparity compensation, the structure of the intermediate 

image using the forward-disparity compensation approach is defined on the sampling 

grid of one or all of the available images. The problem occurs when the available 

images are pointing to the irregular samples of the intermediate image. Simple and 

complicated solutions are suggested in the literature to solve the problem. 

McVeigh et al. [76] proposed a block-based reconstruction algorithm that estimates 

the disparity values using a block-matching approach of fixed-size blocks. After that, 

the intermediate image is reconstructed using forward-disparity compensation. The 

irregular-point problem is avoided by using a full-pixel precision. The occlusion area 

is detected and handled using a depth constancy assumption that assumes the depth 

will be the same within a small area of neighbours, although this assumption is not 

always valid.  

Scharstein [77] used the forward-disparity compensation to reconstruct two 

intermediate images, one pivoted from the left image and the other one from the 

right. The final intermediate image is a result of blending these two intermediate 

images. The problem of the irregular sampling intensities is solved by rounding them 

to the nearest integer, which of course distorts the quality of the intermediate image. 

This method depends on the rectification process of the stereo images which helps 

the disparity estimation and intermediate view reconstruction processes. The 

disparity map is estimated using an extension to the intensity gradient method [120], 

which explicitly handles the occlusion problem. The occluded area is detected based 

on the mismatch between the left-to-right and right-to-left disparity map. Scharstein 

refers to the handling of the occlusion area and the newly-exposed area problems as 

the visibility and filling holes problems, respectively. The visibility problems occur 

when two or more image points are mapped to the same location in the intermediate 

image; this is resolved by remapping the image points in their correct order to their 

new location. The holes problem occurs when some points in the reconstructed 

image are not assigned any intensity. Some of these holes are filled automatically 

when blending the two intermediate images, and the other non-filled holes are 

handled using the texture synthesis, which is a problematic solution in detailed areas.  
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Since the intermediate image is always reconstructed in between two images, Redert 

et al. [121] proposed an algorithm to find the intermediate image at non-intermediate 

positions. This is performed by generating an intermediate image once at the central 

position between the two images. After that, any new virtual image can be 

extrapolated using this central interpolated intermediate image and a single right-to-

centre or centre-to-left disparity field. The block-based dynamic programming 

method is used to estimate the disparity map. The occlusion and newly-exposed 

areas are called overdefined and undefined points, respectively, in this paper. The 

overdefined points occur when two or more image points in the centre are assigned 

to the same location in the new reconstructed image, whereas the image points that 

do not have any intensity values are called undefined points. The former are solved 

by choosing the closest point to the new virtual image, while the latter are filled by 

linear interpolation of the neighbouring image points.  

Generating an arbitrary view using more than two images is proposed in the 

literature [91]. Park and Inoue used a five-camera system, where one of them is 

located in the centre location and the others are located to the left, right, above, and 

below the centre one. A hierarchical disparity-matching algorithm [122] is used to 

estimate the disparity values. After that, the depth map is estimated for the centre 

image and then forward-mapped to the new virtual image. Overdefined and 

undefined points are found in the virtual image due to the forward-mapping. The 

overdefined point problem is solved by choosing the smallest depth value (i.e. depth 

constancy assumption), while the undefined points, which the authors call ‘the 

uncovered area’, are filled by the Observable Viewpoints (OVP) concept. The OVP 

fills the undefined points based on the direction of the mapping where they are 

located; in this way, they are filled by the maximum depth values. If all of these 

assumptions  fail, the texture synthesis algorithm is used to fill these areas. 

Recently, a spline-based reconstruction algorithm has been proposed to solve the 

problem of irregular-sample space through the reconstruction process [71]. A spline-

based algorithm assigns a unique intensity to each image point in the virtual image; 

consequently, the overdefined and undefined points will not arise again in the virtual 

image. This method is based on the minimization of the energy function which 
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consists of a data-matching term for a B-spline model of the irregular image samples 

and a B-spline smoothness term. Although this minimization gives up a continuous 

function that recovers the regular sample space for the intensities, it is 

computationally expensive, which is considered a drawback for this method. This 

algorithm jointly performs the optical flow disparity estimation, the occlusion 

detection, and the extrapolation of the occlusion area in one formulation [93]. The 

extrapolation is performed by the anisotropic diffusion which is guided by image 

gradient. The interaction between the disparity estimation and occlusion detection is 

advantageous in this approach. Unfortunately, the computation cost is very 

expensive and it is more sensitive to disparity estimation errors than the backward-

projection algorithm. 

Finally, we will summarize all of the above algorithms in Table 3.1 and the essential 

steps for generating an intermediate view with high quality in Figure 3.11.   

Table  3.1: Summary of the prior works on the intermediate view reconstruction 
Method Name Disparity 

Method 
Name 

Reconstruction 
Method Name 

Occlusion 
Detection / 
Handling/ 

Characteristics 
 
 

Quadtree block-
matching Mancini 
& Konrad (1998) 
[73] 

 Block-based 
matching 
(variable-size 
block) 

 Backward disparity 
compensation 
(linear 
interpolation) 

 Not addressed 
(N/A) 

 Adaptive window 

 Large blocknon-
boundary 

 Small block  
boundary  

 Blurriness  

Winner-take-all 
approach 
Mansouri & 
Konrad (2000) [75] 

 Block-based 
matching 
(Fixed-size 
block) 

 Backward disparity 
compensation (non-
linear interpolation) 

 Not addressed 
(N/A) 

 Decrease the 
blurriness problem of 
pivoting 

 Generate patchiness 
effect   

Philips research 
group (2006) [74] 

 3D Recursive 
Search (3DRS) 
method 
(Motion 
estimation) 

 Backward disparity 
compensation 
(Motion 
Compensation 
interpolation) 

 Not addressed 
(N/A) 

 Since 3DRS 
algorithm use 
temporal candidate, 
the temporal 
consistency is 
ensuredsmoother 
disparity map 

2-images isotropic 
backward 

 Variational 
formulation 

 Backward disparity 
compensation using 

 Not handled   Reduce the blurriness 
effect, by this the 
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projection 
Ince & Konrad 
(2008) [17] 

using 
anisotropic 
regularization(c
oarse-
intermediate 
image) 

variational 
formulation 

 

edges are preserved 

4-images 
Occlusion- Aware 
Backward 
projection 
Ince & Konrad 
(2008) [17] 

 Variational 
formulation 
using 
anisotropy 
regularization 
(coarse-
intermediate 
image) 

 Backward disparity 
compensation via 
variational 
formulation 

  

 Using 4 images 
provides sufficient 
information about 
the occlusion area 
which is detected 
using an improved 
geometric 
approach and 
handled using 
anisotropic 
diffusion ( via 
variation 
formulation) 

 Reduce the blurriness 
effect, by this the 
edges are preserved 

 Because every step is 
performed via a 
variational 
formulation, this 
improvement to the 
backward projection 
is considered very 
expensive. 

MPEG Group 
Gotfryd et al. 
DIBR method 
(2008) [111] 

 Estimated 
depth map 

 Backward disparity 
compensation 
(using homography 
matrix) 

 Blending the 
generated two 
virtual images using 
bilinear 
interpolation 

 The generated 
holes and cracks in 
the final image is 
filled from the 
neighbouring 
pixels  

 The rendering is 
done twice; one for 
each reference image. 

 Calculating 
homography matrix 
adding an extra 
complexity  

 Inaccurate filling 
procedure. 

Mori et al. DIBR 
method (2008) 
[113] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 Blending the 
generated two 
virtual images using 
alpha blending. 

 

 The disocclusion 
area is inpainted 
by Telea 
inpainting 
algorithm [114] 

 The holes and cracks 
in the virtual depth 
map are filled by 
median filter 

 The bilateral filter is 
applied to reduce the 
noise in the depth 
map. 

 The ghost contours 
are removed by 
boundary matting. 

 Telea inpainting 
technique is 
computationally 
expensive and it does 
not take into 
consideration depth 
information. 

Jeong et al. DIBR 
method (2009) 
[112] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 The disocclusion 
area is estimated 
using the 

 Discontinuity 
preserving smoothing 
filter is used to 
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geometrical 
information of the 
views. 

 It is filled from the 
neighbouring 
frame (temporal 
information). 

reduce depth map 
noise by                        

 smoothing objects   
preserve 
boundaries  

 The ghost contours 
are not handled  

  

Quality improving 
techniques in 
DIBR Do et al. 
(2009) [115] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 They warp the 
depth map and the 
texture 
simultaneously  

 Blending the 
generated two 
virtual images using 
weighted averaging. 

 The disoccluded 
area is filled as a 
post-process from 
the nearest 
background 
intensities 

 The holes and cracks 
in the virtual depth 
map are filled by 
median filter 

 The ghost contours 
are removed 

 Blurriness in the 
inpainted area in 
addition to the 
inaccuracy. 

Quality improving 
techniques in 
DIBR Do et al. 
(2010) [72] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 Blending the 
generated two 
virtual images using 
alpha blending. 

 

 The disocclusion 
inpainting 
technique takes 
into consideration 
depth information. 

 They are filled by 
weighted 
averaging the 
nearest eight 
background pixels. 

 

 The holes and cracks 
in the virtual depth 
map are filled by 
median filter 

 The ghost contours 
are omitted from 
warping. 

 Noisy cut-off effect 
at object boundaries 
from omitting the 
ghost contour 
warping. 

 The inpainting 
technique is not 
robust for large 
occluded areas, also 
it does not take into 
consideration the 
continuation of 
edges. 

Supersampling 
warping method 
Do et al. (2011) 
[117] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 They apply the 
same method of Do 
et al. (2010) [72] 

 They apply 
supersampling of a 
factor two to warp 

 Same of the 
inpainting method 
of Do et al. (2010) 
[72] 

 Analysing the 
warping step is 
performed. 

 Most of the errors in 
the warping step are 
generated from 
rounding the 
sampling grid. 
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the image points.  Although 
supersampling 
reduces rounding 
errors it is 
computationally 
expensive.  

 Each pixel with 
supersampling is 
warped four times 
than without 
supersampling. 

 Extra efforts are 
performed to 
downsample the 
virtual image to the 
original size. 

Asymmetric DIBR 
method Devernay 
et al (2011) [118] 

 Estimated 
depth map 

 Backward disparity 
compensation 

 They assume that if 
one of the stereo 
images is original 
image and the other 
one is slightly 
corrupted, the 
perceived quality 
will not be affected. 

 It is considered an 
image artifice and 
it is detected by 
Laplacian filter 
then the 
anisotropic 
diffusion filter is 
applied to smooth 
out these artifices 
from the virtual 
image. 

 They assume that the 
left image is always 
the original image 
and the right image is 
the interpolated one. 

 They can 
interpolate few 
images between two 
reference images. 

 Image artifices are 
detected by 
Laplacian filter, and 
smoothed out by 
anisotropic diffusion 
not effective for 
large areas like 
occlusion area 

  

Mc Veigh et al. 
(1996) Method [76] 

 Block-based 
matching 
(fixed-size 
block) 

 Forward disparity 
compensation 

 Handling the 
occlusion using 
depth constancy 
assumption 

 Use full-pixel to 
avoid the irregularly 
spaced intensities  

Scharstein (1996) 
Method [77] 

 Intensity 
gradient 
method [120] 

 Forward disparity 
compensation. Two 
intermediate images 
are forward mapped 
from left and right 
images, then they 
are combined by 
using weighted 
averaging 

 Rectification and 
disparity 
estimation are used 
to handle 
occlusions  

 Overdefined points 
solved by 
remapping the 
points in their 
correct order 

 Simple 

 Rounding the pixel 
position to the  
nearest integer (result 
which degrade the 
quality of images ) 

 Newly exposed area 
(holes) is filled by 
using texture 
syntheses algorithm 
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 Holes filled by 
texture synthesis 

which causes 
problems in detailed 
areas. 

Redent et al. 
(1997) Method 
[121] 

 Dynamic 
programming 

 Forward disparity 
compensation. 
Compute the 
intermediate view 
at the centre 
position between 
two cameras, then  
use this centre view 
and single disparity 
map to map any 
virtual view  

 Occlusion is 
handled by 
choosing the 
closest point to the 
virtual image. 

 Newly exposed 
area are filled by 
linear interpolation 
of neighbouring 
intensities 

 Can reconstruct 
views at non-
intermediate 
positions 

 It is successful in the 
simple scenes  
structure 

  

Multi-camera 
methods Park & 
Inous (1997) [91] 

 Hierarchical-
disparity 
estimation 
[122] 

 Forward disparity 
compensation. 
Arbitrary view 
generation using 
five cameras 
(centre, above, 
below, right, left) 

 forward mapping 
the depth map of 
central camera to 
that of virtual 
camera  

 Using many 
cameras may 
better define the 
occluded areas  

 They used the 
depth consistency 
and other 
assumptions to fill 
the uncovered area 

 If all of them fail 
they use the 
texture synthesis   

 Overdefined and 
undefined points are 
found due to the 
forward mapping  

 For undefined points: 
they use the 
observable 
viewpoints (OVP) 
concept for to fill the 
holes based on the 
direction of mapping  

 For over defined 
points choose the 
smallest value among 
multiple depth value  

 In case of all 
assumption failing, 
they use the texture 
synthesis which  fails 
in detailed areas. 

Spline-based 
intermediate view-
reconstruction 
Ince & konrad 
(2007) [71] 

 Optical flow 
[93] 

 Forward disparity 
compensation.  

 B-Spline 
reconstruction 
method 

 

 Detecting & 
handling jointly 
with the disparity 
estimation in one 
formulation 
(detected using the 
gradient of the 
underling images 
and the occluded 
area are 
extrapolated using 
anisotropic 
diffusion) 

 Solve the irregular-
sample space that 
occurs in the 
reconstruction 
process.  

 The overdefined and 
undefined points will 
not arise again in the 
virtual image. 

 Spline-based 
reconstruction 
algorithm needs a lot 
of computation  
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Figure  3.11: The essential steps for generating an intermediate view of high quality 

3.6 Summary 

In this chapter, we explored the challenges of intermediate view reconstruction in 

detail. Then, previous solutions to these challenges were presented. Prior 

classifications of the intermediate view reconstruction algorithms were presented; 

these differ from our classification. We classified the prior work on intermediate 

view reconstructions based on the projection direction, which might be backward 

projection or forward projection. Our work is classified under the backward 

projection category. Depth Image-Based Rendering (DIBR) is one of the approaches 

that are used for the reconstruction process; instead of using disparity to calculate the 

virtual image, this uses the depth map, which needs more geometric information on 

it.  

To conclude, the existing work by other researchers on generating the intermediate 

views are still generating image artifices due to the difficulty of occlusion area 

restoration, inaccuracies of disparity maps, and projection errors. Therefore, there is 

still room for further improvement by finding a new reconstruction algorithm that 
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will find intermediate images of high quality by handling the occlusion area and 

preserving the discontinuity at the edges. In this chapter we explored intermediate 

view challenges; in the next chapters we will propose novel algorithms that handle 

most of these challenges, and we will employ them in highly robust intermediate 

view reconstruction. 



 4 Newly-Exposed/Occlusion Detection (NEOD) 
Algorithm 

Placing objects in different positions in 3D scenes leads to the visibility of some 

regions in one view and their disappearance in the other; such regions are known as 

occluded areas. Computer simulation and experimental results confirm the 

importance of occluded areas in depth perception, disparity estimation and 

intermediate view reconstruction, so finding an accurate occlusion detection 

algorithm is highly desirable. Many algorithms have been proposed to detect the 

occlusion areas but not to the level required for robust detection; furthermore, they 

are computationally too expensive. Therefore, in this chapter, we propose a Newly-

Exposed/Occlusion Detection (NEOD) Algorithm that detects the newly-exposed and 

occlusion areas accurately without noise.  

This algorithm is simple and efficient and gives accurate results; it is based on the 

physical displacement of the objects between the stereo images without taking into 

consideration image intensities. A comparison with three well-known region-based 

occlusion detection algorithms is performed under accurate and inaccurate disparity 

quantitatively and qualitatively.   

4.1 Introduction 

n the physical world, when objects are placed at different distances, some 

regions will be visible in one eye but occluded from the other [123]; such a 

region is called a monocular zone. Many studies have been conducted to obtain 

evidence that a monocular zone provides a good source of depth [123], and others 

have proved that such areas improve the depth perception itself [124]. Therefore, it is 

very important to consider these zones in stereoscopic displays. With stereo images 

I 
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the monocular zones are called occlusion and newly exposed areas that arise from 

the capturing of images from different positions.   

The occluded area is defined as the visibility of such an area in one image and its 

disappearance in the other, depending on the direction or ordering of the camera. On 

the other hand, if the disappearing area becomes the visible area, this area will be 

called the newly-exposed or uncovered area. Figure 4.1 shows the original stereo 

pair of left image IL and right image IR. As we can see, the area “A” in IL is 

disappearing in IR, known as the occluded area, and “B” in IL is appearing in IR, 

known as the newly-exposed area. These definitions are also illustrated in Figure 4.2 

(c); this synthetic scene is found to highlight the occluded and newly-exposed areas, 

which are marked in black and grey, respectively, if they are ordered from left-to-

right as depicted in the Figure 4.2. 

Since the stereo images result from projecting the same 3D scene in the physical 

world from different positions, the 2D image points in the stereo images are 

corresponding but in different places. The recovery process for these corresponding 

points in the stereo image pair is called disparity estimation. Generating additional 
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(a) (b) 

Figure  4.1: Monocular regions, from left-to-right: “A” is occluded area and “B” is 
newly-exposed area 
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Left image Right image Black: occlusion area 

Grey: newly exposed area 

Figure  4.2: Monocular region, from left-to-right: black area is occluded area and 
grey area is newly-exposed area 

views between the stereo image pair by positioning virtual cameras to create virtual 

views at that position is called intermediate view reconstruction. Occluded areas 

have an impact on these two problems, disparity estimation and intermediate view 

reconstruction. Because the disparity estimation depends on the intensity matching, 

and the occluded areas are defined as visibility of the image points in one image but 

not in the other one, the correct disparity value will not be calculated in these areas. 

On the other hand, the quality of the intermediate image depends on the accuracy of 

disparity and it is difficult to calculate an accurate disparity map due to occlusion 

areas; thus the occlusion area will affect the reconstruction process. 

In the next section, we demonstrate some of the existing works on the occlusion 

detection, and give more details of a number of selected algorithms for comparison 

purposes. Then, in section 3, the proposed algorithm is presented. The experimental 

results are analyzed in section 4, with the conclusion set out in section 5.  

4.2 Background 

Since the occlusion area is considered problematic in many applications, several 

studies have been carried out to detect this area. Detecting an occlusion area using 

more than two images has been proposed in the literature [78], but it needs an extra 

computational effort and a larger amount of data. Some approaches and constraints 

have been proposed in the literature to detect the occlusion area itself or the 

occlusion border, but most of them fail to give a reliable result or/and are 

computationally expensive. An empirical comparison between five well-known 
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occlusion detection approaches has been conducted under two disparity matching 

algorithms [90]. Bimodality (BMD) [125] and Match Goodness Jumps (MGJ) [126] 

detect the occlusion borders, i.e. where they begin and end, and the other three, Left-

Right Checking algorithm LRC [79-81], Ordering constraint ORD [82, 83], and 

Occlusion constraint OCC [83, 84], find the whole occlusion region. LRC algorithm 

uses the intensity matching between stereo pairs as an indicator of the occlusion area 

as they are referring to the same scene, while ORD constraint assumes that any 

disordering of the corresponding image points of the stereo pair is considered an 

occlusion area. Furthermore, the occlusion area is detected using the OCC constraint 

based on the principle that such an area leaves unmatched points in the other image; 

consequently it will make a jump near to the boundary. This comparison finds that 

each method works in a different way depending on the image textures (simple or 

complex) and the accuracy of the disparity matching algorithm.  

Another constraint is the uniqueness constraint which checks whether each image 

point in the first image has at most one corresponding match in the second image 

[85]. Matching between left-to-right and right-to-left disparity maps can be used to 

check one-to-one matching points. The disparity estimation methods apply a 

smoothness constraint to the object’s surface in the image except at the object 

boundaries [85]. Thus, the object surface has a small gradient while the object 

boundary has a high gradient [86]. Since the occlusion areas are located near to the 

object boundaries, they will have a high gradient. Therefore, the smoothness and 

gradient constraints can be used as indicators of occlusion areas.  

The visibility constraint [87] is another technique used to detect the occlusion area; 

the idea of this constraint is obtained from the occlusion concept which ensures that 

the visible pixels have at least one match on the other image while the occluded 

pixels have no matches. Consequently, this constraint finds the newly-exposed area 

that has no matches in the other image. Thus, the visibility constraint needs to find 

the occlusion area in one image from the disparity of the other image to ensure that 

they are consistent. Since the visibility constraint allows many-to-one matching as 

shown in Figure 4.3, this gives it more flexibility, although this is sometimes 

considered the weakness of this constraint. Related to this concept, a geometric-
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based approach [88] has been developed to detect the newly-exposed area by 

measuring the spatial density of projections in the target image after forward 

projection of the disparity of the reference image into the target image. The area that 

is highly referenced is considered an occlusion area, as in Figure 4.3, whereas an 

empty area that does not have a relationship with the reference image is a newly-

exposed area. This approach detects the empty area from projections, which is a 

much easier process. 
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Figure  4.3: Forward-projection from reference image (left image) to the target 
image (right image) that forms occluded and newly exposed area: solid and black 
lines are the foreground object, solid and grey lines are the static background, dotted 
lines are occluded area, and the empty area is newly-exposed area. 

Recently, Phillips [89] have exploited the fact that the occlusion areas are 

characterised as predominantly located near to the image boundaries; thus, the 

quality of the matching metric at these boundaries will decrease suddenly. Since they 

use the absolute difference of the corresponding image points of the stereo pair as a 

matching metric which is considered a noisy map, they apply a median filter as a 

post-processing step to reduce this noise. Then they apply an adaptive boundary-

preserving filter to highlight the occlusion area at the discontinuity of the smoothed 

matching metric.  

Most of the occlusion detection methods that depend on calculating matching errors 

need to select a certain threshold for comparison purposes to decide whether it is an 

occlusion area or not. Unfortunately, this selection process is very sensitive and it is 

difficult to make choices since each image might need a different threshold 
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depending on the amount of texture details. Moreover, with the presence of varying 

texture complexity per image, applying one threshold per image will not allow all the 

occlusion areas to be detected; alternatively, they will be falsely labelled as 

occlusion areas. Since state-of-the-art methods that use thresholds to detect occlusion 

areas are very sensitive to the image nature (i.e. simple or complex), and methods 

that use intensity matching do not give reliable results in the presence of image 

noise, a more reliable occlusion detection method is required.  

In this chapter, we propose a novel occlusion detection algorithm which does not 

depend on the intensity matching and can detect the occlusion area without using any 

threshold. This novel algorithm is based on a physical displacement of the objects 

between the stereo pair, so the detection process is performed upon the recovery 

process for the displaced object position, i.e. by checking whether the place of the 

displaced object is covered or still uncovered. In addition, we compare the proposed 

algorithm to the three well-known region-based occlusion detection algorithms, 

LRC, ORD and OCC, which are empirically compared in the  literature [90]; this is 

because they detect the whole occlusion region as the proposed one. As the quality 

of the disparity matching algorithm depends on the occlusion results, we test all 

algorithms on a ground truth disparity to show the accuracy of each algorithm 

because, if the result is not accurate under ground truth, what will it be when using 

inaccurate disparity? Moreover, the proposed algorithm is tested using disparity 

calculated by the cooperative optimization for region-based matching algorithm 

[127] to show what it will be under non-ground truth disparity. We will provide 

more details in the following subsections on three well-known occlusion algorithms 

in the literature (LRC, ORD, and OCC) for comparison purposes. 

4.2.1 Left-Right Checking Failures Algorithm (LRC)  

This approach uses intensity matching error as an indicator for the occlusion area. If 

a certain pixel intensity in the first image does not match the corresponding pixel in 

the second one, it is because it does not exist in the second image; consequently it is 

labelled as occluded. This intensity matching error is measured by the following: 

)),(()()( xdxIxIxE LRLLR                                                                      ( 4.1)  
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)),(()()( xdxIxIxE RLRRL                                                                    ( 4.2)     

where IL and IR are image intensities in left and right images, respectively, dR is the 

disparity from right to left, while dL is the disparity from left to right, ELR is the 

resulting matching error from left to right image, and ERL is the resulting matching 

error from right to left image. 

The resulting error values for each pixel’s intensity are compared with a certain 

threshold, which has been chosen empirically, to determine whether a pixel is 

labelled as an occluded or visible pixel. Unfortunately, the intensity matching error 

may result if there is a noise in the image or the illumination of the specular surface 

is changed; in this case the photometric approach will become inaccurate. 

4.2.2 Ordering Constraint (ORD) 

The ORD constraint assumes that the order of the pixels in the same row is not 

changed between stereo image pairs, unless an occlusion area is found [82]. The 

Figure 4.4 below illustrates how the order of objects is different when captured from 

the left and right cameras. The foreground object C blocks some part of the 

background visibility. In particular, the foreground object C blocks the visibility of 

D area in the left camera and B in the right camera.  

 

Figure  4.4: Ordering the foreground object and the background in two layers to 
demonstrate the visible and the invisible areas in both left and right cameras.                                       

Left camera Right camera 

Foreground 
object 

Background 

Invisible area A B 

C 

D E F 
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Table 4.1 shows two examples derived from Figure 4.4 to demonstrate how the 

ordering constraint works. In the first row, the order of pixels is different between 

left and right images; B is occluded in the right and D is a newly-exposed area in the 

left, while the order of pixels EF in the left image is preserved in the right image. 

This difference in order refers to the occluded area. The detection process of order is 

achieved by computing the intensity matching errors for each group of pixels in the 

same line. As in row1 in the Table 4.1, the order is detected for each of the three 

pixels by calculating three matching errors for each pixel as in equations (4.3), (4.4) 

and (4.5), where x, x+1, x+2 are the indices of A, B, and C respectively. After that, 

the resulting errors are compared with a certain threshold, which has been chosen 

empirically, to determine whether it is occluded or not. 

)),(()()(1 xdxIxIxE LRLLR                                                                     ( 4.3) 

)),1()1(()1()1(2  xdxIxIxE LRLLR                                        ( 4.4)                                              

)),2()2(()2()2(3  xdxIxIxE LRLLR                                     ( 4.5)   

Table  4.1: Demonstrates the order of objects in the left and right images projected 
from the left and right cameras as in Figure 4.4 and illustrates their ordering and 
occlusion.  

Left Image Right image Ordering Occlusion 

ABC ACD Not ordered B is occluded in the right, D is 
occluded in the left 

EF EF Ordered  Not occluded 

Unfortunately, this constraint fails in the presence of thin objects, where the order is 

not preserved even it is not an occluded area; this is illustrated in Figure 4.5. Figure 

4.5 (a) shows that the left image has two dots (refer to the dot A) located to the left 

of the two thin bars (refer to the bar B) where the order is (ABAB). This order is  
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Figure  4.5: (a) Left image, (b) Right image. Erroneous ordering constraint in 
presence of thin foreground object (thin bar B): the order of object B and the dot A is 
not preserved in left and right images.   

changed in the right image to become (BABA), as the dots appear to the right of the 

thin bars, as shown in Figure 4.5 (b). 

4.2.3 Occlusion Constraint (OCC) 

Since the occluded points are visible in one image and not in the other, one of the 

stereo pair will skip over a certain point during the matching process leaving 

unmatched points in the other image, which is labelled the occlusion area. As this 

jump will be near to the boundaries, the occlusion boundary is determined by 

equation (4.6) or (4.7). This constraint is unlike the LRC and ORD since it does not 

depend on the intensity matching, where the occlusion boundaries are calculated 

using the disparity map as shown in equations (4.6) and (4.7). 

)()1()( xdxdxE LLLR                                                                                ( 4.6) 

)1()()(  xdxdxE RRRL                                                                               ( 4.7) 

The resulting error values ELR and ERL are compared with a certain threshold, which 

has been chosen empirically, to determine whether they are occlusion boundaries or 

not as a first step in the left and right images, respectively. As the occlusion 

boundaries are detected, it is necessary to fill the occlusion region itself. The width 

of the occlusion regions that need filling is determined from the difference in the 

disparities at the occlusion border. OCC constraint detects the occlusion areas more 

accurately (less noise) than the LRC and ORD approaches, since OCC does not 

depend on the intensity matching. In particular, the detection process of the 

(a) (b) 

A 

B 
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occlusion boundaries is accurate but the filling process in the occlusion regions is 

erroneous, especially in detailed areas. Unfortunately, OCC fails on images that have 

varying depths in detailed areas (for example, a scene of leaves of a tree) since the 

detection process is totally dependent on the disparity map. 

4.3 Newly-Exposed/Occlusion Detection Algorithm 

We propose a novel method for occlusion/newly-exposed area detection. 

Geometrically, the stereo images result from projecting the same 3D scene in the 

physical world from a different position. Therefore, the image objects appear to be 

displaced between the stereo pair, leaving a covered/uncovered area that forms an 

occlusion/newly-exposed area. Depending on this fact, we implement a novel 

algorithm to detect the occlusion/newly exposed area based on the physical 

displacement of the objects between the stereo pair after forward-projecting the 

sampling space of one image into the other. A block diagram for our proposed 

algorithm is depicted in Figure 4.6. The detection algorithm is applied on rectified 

images, so the displacement will be tested just in the horizontal coordinate. 

Figure  4.6: A block diagram that illustrate the steps which are needed to detect the 
newly-exposed area 

 Practically, the proposed algorithm detects the newly-exposed area in the source 

image by forward-projecting the sampling space of the source image to the sampling 

space of the target image by disparity compensation. As a result, a new space is built 

which contains the new projected points (PP). The projected points matrix give us 

the destination of each pixel in the source image that is physically displaced either 
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from left to right PPLR or from right to left PPRL , as illustrated in equations (4.8) and 

(4.9), respectively. 

RRRL SxxdxxPP  ,)()(                                        ( 4.8)           

LLLR SxxdxxPP  ,)()(                                                             ( 4.9)           

where x is the spatial position in either left or right image, dR is the disparity from 

right to left,  dL is the disparity from left to right, and SL and SR  are the sampling grid 

space of the left and right image, respectively.  

Because some points in the PP matrix reserve the same position for the same object 

in both the source and target images, we have to check whether the image points are 

physically displaced from the source image to another position in the target image. 

Practically, if it is in the same position (i.e. disparity is zero), there is no possibility 

of it being a newly-exposed/occluded area and it is considered as background. On the 

other hand, if it is physically displaced, there is a possibility of it being occluded. 

This is defined in equation (4.10), 

  








xxPP
xxPP

xDP
)(,1
)(,0

)(                                                                               ( 4.10) 

where the PP matrix is refer either to the PPLR or PPRL and the DP matrix is defined 

as the displaced points matrix. The DP matrix contains either 1 or 0, where 0 means 

that the value of x position in the PP matrix is equal to its position, and 1 means it is 

not equal and physically displaced. In the former case, it does not need further 

processing and it is considered as a background pixel (not occluded). In the latter 

case, its position will either be covered by another image point or it will be left 

uncovered. If it is covered, this position will be not considered a newly-exposed area, 

while if it is uncovered, this is a strong clue to it being a newly-exposed area in the 

source image (and occluded area in the target image). We will check the original 

position of the displaced pixel x to see whether it is evacuated by another pixel or not 

by carrying out a search around it, as in equation (4.11) and (4.12). This search 
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process is carried out from both sides of the displaced pixel x with distance z that is 

equal to the maximum disparity in each row y, as illustrated in Figure 4.7.      

RLi
i

i
i Sxzzw

xwxPP
xwxPP

xNE /,],[
)(,0
)(,1

)( 







                          ( 4.11)    

 RLRL Syydz // )),(max(                                                                          ( 4.12) 

 

Figure  4.7: Search process around the displaced pixel x 

Where wi is the ith value from x in the same row, and dL/R refers either to the left 

disparity or to the right. As a result, the newly-exposed areas are stored in a new 

binary image NE, where the newly-exposed areas are 1 and the non-newly-exposed 

areas are 0. If the NE is 1, this means that this position in the sampling grid will not 

be covered by another pixel and can be considered a newly-exposed area, while if 

NE is 0, this means there is another pixel that will cover this place and it can be 

considered a background area. Visibly, this newly-exposed area in the source image 

is considered an occluded area in the target image.  

4.4 Results and Analysis 

An evaluation of our proposed occlusion algorithm is presented in this section. 

Based on the used material and performed experiments, we will discuss the results, 

performed measurements and a comparison of the results of our proposed algorithm 

with three well-known algorithms in this field in the subsequent sections. 

4.4.1 Material 

To demonstrate the performance of the proposed algorithm, different types of images 

are tested; these have different levels of occlusion from the simplest (synthetic) to 

the more complicated (real images). According to the synthetic datasets, one of them 
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is generated by graphics software and the other is downloaded from Alberta 

University. On the other hand, two of the real datasets (Teddy and Map) are 

downloaded from the Middlebury site whereas the Tsukuba dataset belongs to 

Tsukuba University. 

4.4.2 Hardware and Software 

The proposed NEOD algorithm is implemented using MATLAB version 7.8, and all 

the experiments are tested on Intel Core 2 Duo CPU 2.00 GHz 2.00 GHz, 3.00 MB 

of RAM laptop running under Windows Vista, Home Premium.  

4.4.3  Procedure 

The proposed algorithm is compared to three well-known algorithms, LRC 

algorithm, ORD constraint and OCC constraint, under four datasets to demonstrate 

its performance. All of these approaches are implemented and evaluated against the 

ground truth data. The availability of ground truth data gives us a good opportunity 

to compare the proposed occlusion detection results to the ground truth occlusion 

area qualitatively and quantitatively. 

4.4.4  Quantitative Metric 

The quantitative comparison with the other detection techniques is accomplished by 

calculating the number of corresponding matched pixels in the ground truth and the 

algorithm’s detected areas. Hence, four metrics are calculated for each detection 

technique and the ground truth area. Firstly, true positive tp metric represents the 

number of pixels that are truly classified as occluded areas. The second metric is 

false negative fn which represents the number of background pixels (non-occluded 

pixels) that are falsely classified as pixels. Thirdly, false positive fp is the number of 

pixels that failed to be classified as occluded area. Fourthly, true negative tn is the 

number of pixels that are truly classified as background pixels. 

Depending on these four metrics, sensitivity and specificity terms are computed to 

find the probability of each detection algorithm correctly detecting the occlusion area 

and correctly detecting the background area, respectively.  
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fntp
tpysensitivit


                                                           ( 4.13)     

fptn
tnyspecificit


                                                                             ( 4.14)     

The frequently used Accuracy metric combines the sensitivity and specificity metrics 

into one single metric, which is better for comparison. 

tnfpfntp
tntpAccuracy




                                                              ( 4.15)     

Unfortunately, the large ratio between the background and the occlusion area does 

not give a reasonable comparison with just these metrics. To clarify this, let us 

assume the ground truth occluded area is A1, the tested occluded area is A2, and that 

this area is contained in the image size 100 × 100. Consider the number of pixels in 

A1 to be 200; if the test area A2 detects only 40 of these pixels then the accuracy 

metric for A2 is 0.98, as illustrated in equation (4.16). This level of accuracy is due 

to the large number of true negative background pixels, which are considered less 

informative and to be affected by the size of the image 

984.0
9800016040

980040
2 




AAccuracy                                         ( 4.16)     

Alternatively, the Error metric is used to measure the distortion precision in the 

occluded result. As the false positive and the false negative gauge the pixel deviation 

from the occluded area, the Error metric, which measures the probability of false 

positive and false negative classification, is expressed as in equation (4.17). 

tnfpfntp
fnfpError



                                                                              ( 4.17)     
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4.4.5 Experimental Results 

4.4.5.1 Synthetic datasets 

The first synthetic dataset is chosen to be simple, and it has interleaved blocks with 

variant depths and static background as shown in Figure 4.8 (a-d). If we use the left 

image and the disparity from left to right as an input to our algorithm, the obtained 

result will be the newly exposed area in the left image that is considered as occlusion 

area in the right image; this area is shown in Figure 4.8 (f) in grey. On the other 

hand, Figure 4.8 (f) shows the resulting area if the right image and the disparity from 

right to left are used as an input; this area is coloured black. As we show, the results 

of the proposed algorithm are accurate and consistent under these synthetic images 

and they are identical to the ground truth.  

The results of LRC, ORD, and OCC constraints are also depicted in Figure 4.8 (g), 

(h) and (i), respectively. As we note, the results of OCC constraint are close to the 

proposed algorithm as well as to the ground truth, while the LRC and ORD give a 

fragmented (not fully detected) occlusion area. However, the ORD constraint detects 

occluded pixels more than LRC. As we note, a few pixels from the grey rectangle 

that appear in the ground truth area in Figure 4.8 (e) are detected by LRC and ORD 

constraints, as shown in Figure8 (g) and (h). This is because the LRC and ORD use 

the intensity matching for the occlusion detection, and this occluded area is 

surrounded by three different intensities, which are the two blocks and the 

background. Also, they fail to detect this area due to its small size.  

The demonstration of the shape of the occlusion and the newly exposed areas is 

depicted in Figure 4.9, where the resulting opposite L shape is due to the presence of 

two different disparities under the foreground block. As the underlying block (i.e. 

distant block) is shifted 10 pixels and the foreground block is shifted 20 pixels while 

the background is static with 0 disparity, a different size for the occlusion area will 

be obtained. From the side of the underlying block the occlusion area will be 10 

pixels in width while it will be 20 pixels in width from the background side.       
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(a) Left image (b) Right image (c) Left disparity 

   
Right disparity (e) Ground truth occlusion area (f) NEOD 

   
(g) LRC (h) ORD (i) OCC 

Figure  4.8: Occlusion (black) and newly-exposed areas (grey) on the Two-
interleaved synthetic data. (a-d) the original images and their ground truth disparity 
(e) ground truth occlusion and newly-exposed areas (f) NEOD results (g) LRC 
results (h) ORD results (i) OCC results  

 

Figure  4.9: Occlusion and newly-exposed area demonstration of the Figure 4.8 

The quantitative results obtained from comparing the ground truth of the interleaved-

block dataset to the detected occlusion area from LRC, ORD and OCC algorithms 

and the proposed algorithm are depicted in Table 4.2. As we note, the area detected 

by the proposed algorithm is identical to the ground truth data, so the sensitivity, 

specificity and accuracy are 1 while the error is 0. According to the LRC, all the 

background pixels are truly classified as a non-occluded area; consequently the fn 
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will be 0 and tn will be large, generating a sensitivity of 14, which is a consequence 

of using static background. 

Table  4.2: Shows the sensitivity, specificity, accuracy, and error values of the two-
interleaved synthetic dataset under different four algorithms 
Selected 

threshold 
 LRC ORD OCC NEOD 

1 

Sensitivity 1 0.9134 0.9711 1 
Specificity 0.9016 0.9278 0.9946 1 
Accuracy 0.9081 0.9263 0.9909 1 

Error 0.0919 0.0737 0.0091 0 

5 

Sensitivity 1 0.9128 0.9711 1 
Specificity 0.8948 0.9211 0.9946 1 
Accuracy 0.9010 0.9203 0.9909 1 

Error 0.0990 0.0797 0.0091 0 

10 

Sensitivity 1 0.9121 0.9711 1 
Specificity 0.8880 0.9117 0.9946 1 
Accuracy 0.8938 0.9117 0.9909 1 

Error 0.1062 0.0883 0.0091 0 

15 

Sensitivity 1 0.9115 0.9711 1 
Specificity 0.8817 0.9033 0.9946 1 
Accuracy 0.8870 0.9039 0.9909 1 

Error 0.1130 0.0961 0.0091 0 

20 

Sensitivity 1 0.9092 0.9711 1 
Specificity 0.8768 0.8955 0.9946 1 
Accuracy 0.8817 0.8964 0.9909 1 

Error 0.1183 0.1036 0.0091 0 

According to the ORD and OCC, all the background pixels seem truly classified as 

non-occluded, but it is clearly shown in Figure 4.8 (h) and (i) that the occlusion area 

is wider than the ground truth, so a few pixels are classified as fn. However, the 

number of fn pixels using OCC constraint is fewer than those using ORD constraint. 

As we note from the results of LRC and ORD algorithms, the smaller threshold 

increases the number of tp and decreases the fp, which in turn gives a higher 

specificity and accuracy with fewer errors. According to the OCC constraint, the 

results are very close to the ground truth due to independency in the intensity 

matching; the small difference between them can be traced to the difference in the 

widths of the occlusion areas, as we mentioned above. Using this dataset, the 

                                                
4 This is because the sensitivity is determined by dividing the tp by the summation of tp and fn; if the 
fn is 0 then the sensitivity will be the division of tp by tp which will result in 1 regardless of  the value 
of tp. 
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occlusion results are steady under different thresholds, where the range of the 

threshold values of OCC constraint is smaller than LRC and ORD; they are located 

between 1 and 5.     

The second synthetic dataset is chosen from the Alberta University datasets and it is 

chosen because it is more complicated than the two interleaved datasets. The original 

image and its disparity map are shown in Figure 4.10 (a) and (b), respectively. The 

results of the proposed algorithm and LRC, ORD and OCC algorithms are depicted 

in Figure 4.10 (d), (f), (g), and (h), respectively. As we note, the proposed algorithm 

and the OCC constraint are very close to the ground truth results, as shown in Figure 

4.10 (c), while the LRC and ORD detect the occlusion area but with a very noisy 

background.  

   
(a) Right Image (b) Right disparity (c) Ground truth occlusion 

   
(d) NEOD algorithm (e)Diff between (c) and (d) (f) LRC algorithm 

   
(g) ORD algorithm (h) OCC algorithm (i) diff between (c) and (h) 

Figure  4.10: Occlusion areas on one of the Alberta University synthetic datasets 
under different algorithms. 
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The quantitative results generated from comparing the ground truth data to the 

resulting occlusion areas with four different algorithms is depicted in Table 4.3. As 

we note, under small threshold values for LRC, ORD and OCC algorithms, many 

pixels are classified falsely as occluded; consequently the number of fn pixels is 

large and the number of fp pixels is small, thus generating low sensitivity and high 

specificity values respectively. In this case, a larger threshold is chosen to decrease 

the fn which in turn increases the tn. The range of the threshold values for OCC 

constraint is smaller than for ORD and LRC; they are between 2 and 12 with step 2. 

Table  4.3: Shows the sensitivity, specificity, accuracy, and error values of the 
Alberta University synthetic dataset under four different algorithms 
Selected 

threshold  LRC ORD OCC NEOD 

5 

Sensitivity 0.2118 0.1032 0.6494 0.9249 
Specificity 0.9973 0.9973 0.9854 0.9981 
Accuracy 0.9313 0.8410 0.9824 0.9967 

Error 0.0687 0.1590 0.0176 0.0033 

8 

Sensitivity 0.3662 0.1766 0.6657 0.9249 
Specificity 0.9964 0.9964 0.9882 0.9981 
Accuracy 0.9675 0.9174 0.9840 0.9967 

Error 0.0326 0.0826 0.0160 0.0033 

12 

Sensitivity 0.5593 0.2917 0.6970 0.9249 
Specificity 0.9954 0.9956 0.9928 0.9981 
Accuracy 0.9831 0.9568 0.9872 0.9967 

Error 0.0169 0.0432 0.0128 0.0033 

15 

Sensitivity 0.7291 0.4263 0.7001 0.9249 
Specificity 0.9946 0.9948 0.9931 0.9981 
Accuracy 0.9892 0.9745 0.9875 0.9967 

Error 0.0108 0.0255 0.0125 0.0033 

18 

Sensitivity 0.8171 0.5147 0.7001 0.9249 
Specificity 0.9936 0.9939 0.9931 0.9981 
Accuracy 0.9906 0.9806 0.9875 0.9967 

Error 0.0094 0.0194 0.0125 0.0033 

As we note, the ORD produces a higher number of fn pixels that consequently give a 

lower sensitivity and accuracy. The OCC results seems to be free from the 

background noise but, in reality, not all the occlusion area is located in the true 

position, so the number of tp and fn is relatively high, consequently giving a low 

sensitivity. This is proved in Figure 4.10 (i) which shows a high difference between 

the ground truth data and the OCC results at the occlusion border. A high specificity 

value is returned to the high number of tn pixels. According to the proposed 
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algorithm results, it is clear from the occlusion results in Figure 4.10 (d) and the 

difference from the ground truth data in Figure 4.10 (e) that a small error is 

generated using our proposed algorithm due to the sub-pixel disparity. In addition, 

the proposed algorithm gives a high sensitivity, specificity, and accuracy with fewer 

errors than the other algorithms.   

4.4.5.2 Real datasets 

The first real dataset analysis is performed on the University of Tsukuba dataset 

which contains the image sequence and ground truth for disparity and occlusion area 

shown in Figure 4.11.(a), (b), and (c), respectively.  

   
(a) Left Image (b)Ground Truth Left disparity (c)Ground Truth OccLR 

   
(d)NEOD (OccLR) (e)Difference between (c) and 

(d) (f) NEOD (OccRL) 

   
(g)LRC (h)ORD (i)OCC 

Figure  4.11: Novel algorithm (NEOD) results on the real images (Tsukuba) from 
both directions where the ground truth of occlusion is available and they are 
compared to the LRC, ORD and OCC algorithms 

The sensitivity, specificity, accuracy and error values for each algorithm are shown 

in Table 4.4 under different thresholds. The reason for generating a low sensitivity 
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and high specificity for LRC and ORD algorithms is the same as that illustrated in 

the previous example of the Alberta dataset. However, the sensitivity of Tsukuba is 

much lower than the sensitivity of Alberta due to the high number of fn pixels in the 

background, even with a large threshold. The range of the threshold values for OCC 

constraint is smaller than ORD and LRC where they are divided by 10 to give 

threshold values between 1 and 5. However, sensitivity, specificity, accuracy and 

error values for the novel algorithm are steady under different thresholds because it 

does not use any threshold. 

As we show in Figure 4.11, the proposed algorithm detects all of the occlusion area 

as in the ground truth image for the Tsukuba image, but some edges appear to be 

thinner due to the sub-pixel accuracy, as shown in Figure 4.11 (d). The occlusion 

area from the other direction is shown in Figure 4.11 (e). 

Table  4.4: Shows the sensitivity, specificity, accuracy and error values of the 
Tsukuba dataset under different four algorithms 
Selected 

threshold  LRC ORD OCC NEOD 

10 

Sensitivity 0.0718 0.0898 --- 0.9813 
Specificity 0.9866 0.9841 0.9743 0.9941 
Accuracy 0.7938 0.8652 0.9743 0.9939 

Error 0.2062 0.1348 0.0257 0.0061 

20 

Sensitivity 0.0862 0.1077 0.7162 0.9813 
Specificity 0.9849 0.9823 0.9775 0.9941 
Accuracy 0.8509 0.9043 0.9763 0.9939 

Error 0.1491 0.0957 0.0237 0.0061 

30 

Sensitivity 0.0823 0.0914 0.7161 0.9813 
Specificity 0.9816 0.9789 0.9783 0.9941 
Accuracy 0.8792 0.9207 0.9768 0.9939 

Error 0.1208 0.0793 0.0232 0.0061 

40 

Sensitivity 0.0810 0.0798 0.8722 0.9813 
Specificity 0.9798 0.9772 0.9856 0.9941 
Accuracy 0.8986 0.9310 0.9841 0.9939 

Error 0.1014 0.0690 0.0159 0.0061 

50 

Sensitivity 0.0783 0.0692 0.8930 0.9813 
Specificity 0.9784 0.9762 0.9881 0.9941 
Accuracy 0.9124 0.9386 0.9866 0.9939 

Error 0.0876 0.0614 0.0134 0.0061 

The other two datasets, Map and Teddy, are downloaded from the Middlebury site. 

They are chosen because they vary in their texture complexity; the former is a very 

simple real image example as shown in Figure 4.13 (a), while the latter is very 
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complicated as in Figure 4.12 (a). Comparison of the four algorithms is performed 

on the Teddy dataset as shown in Table 4.5. Generally, the occlusion results of LRC 

and ORD are similar in their detection accuracy, in that they correctly detect the 

occlusion area but are fragmented. In addition, LRC and ORD are both sensitive to 

the noise, since they depend on the intensity matching error as an indicator of the 

occlusion area. Numerically, there is a variation in the accuracy metric between LRC 

and ORD on the Teddy image and Tsukuba, where the accuracy for the ORD is 

higher since it produces fewer errors than LRC on the Tsukuba image, and vice versa 

on the Teddy image. Under the Map image, LRC gives similar accuracy to the 

Tsukuba image. This is clearly shown on the Tsukuba, Teddy, and Map images in 

Figure 4.11 (g, h), Figure 4.12 (d, e), and Figure 4.13 (d, e), respectively.  

   
(a) Left Image (IL) (b) Disparity Left (dL) (c) NEOD 

   
(d) LRC (e) ORD (f) OCC 

Figure  4.12: Occlusion detection results of the three well-known algorithms and the 
proposed one on the Teddy image. 

On the other hand, the OCC constraint gives different detection results under 

different types of image textures where, in the case of a simple texture image, it 

gives accurate results as shown in Figure 4.8 (i), Figure 4.10 (h), Figure 4.11 (i) and 

Figure 4.13 (f), while a corrupted result is obtained in the case of complex texture 

images, as shown in Figure 4.12 (f). In particular, the occlusion detection result in 

the Teddy image is accurate in some places in the image and is corrupted in other 
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places that contain a detailed and fine texture (varying depths), especially close to 

the leaves. This is because the OCC constraint detects the occlusion boundary as the 

first step, as such an area makes a jump close to the boundary, then fills from this 

boundary by the difference in disparity at this jump. Since the OCC constraint 

depends only on the disparity map to find the occlusion area, the result is less 

sensitive to the noise. 

   
(a) Left Image (IL) (b) Disparity Left (dL) (c) NEOD 

   
(d) LRC (e) ORD (f) OCC 

Figure  4.13: Occlusion detection results of the three well-known algorithms and of 
the proposed one on the Map image. 

The detection results of the proposed algorithm are superior to the LRC, ORD, and 

OCC algorithms under different types of image textures since it yields a higher 

accuracy and lower error precision at the same time. Under the Tsukuba dataset, the 

accuracy of 0.9939 is considered a good detection rate comparing to the other 

algorithms, which fall between 0.7938 and 0.9124 under different threshold values. 

In experiments under a simple texture image, OCC constraint gives results 

comparable to those of the proposed algorithm, but fails under the complicated one, 

as mentioned above. 

Since LRC, ORD, and OCC depend on computing matching error, they need to 

select a threshold for comparison in the detection process. Unfortunately, this 

selection process is very sensitive and frustrating since, under the same algorithm, 
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different thresholds are selected for different images. In this chapter, the threshold 

values for each algorithm (LRC, ORC, and OCC) are determined empirically for 

different images. On the other hand, the proposed algorithm detects the occlusion 

area without using any threshold, because it does not depend on any intensity 

matching errors with which to compare a threshold. According to the input 

parameters, LRC and ORD need the left image, right image and the disparity map as 

inputs to detect the occlusion area from one direction, while OCC and the proposed 

algorithm just need the disparity map from one direction to detect the occlusion area. 

Table  4.5: Shows the sensitivity, specificity, accuracy, and error values of the Teddy 
dataset under four different algorithms 
Selected 

threshold  LRC ORD OCC NEOD 

10 

Sensitivity 0.5825 0.3921 0.5105 0.9799 
Specificity 0.9886 0.9933 0.9641 0.9826 
Accuracy 0.9078 0.8087 0.8789 0.9823 

Error 0.0922 0.1913 0.1211 0.0177 

15 

Sensitivity 0.7539 0.5837 0.5117 0.9799 
Specificity 0.9845 0.9896 0.9642 0.9826 
Accuracy 0.9503 0.9084 0.8794 0.9823 

Error 0.0497 0.0916 0.1206 0.0177 

20 

Sensitivity 0.8369 0.6868 0.5138 0.9799 
Specificity 0.9807 0.9859 0.9642 0.9826 
Accuracy 0.9621 0.9366 0.8801 0.9823 

Error 0.0379 0.0634 0.1199 0.0177 

25 

Sensitivity 0.8835 0.7495 0.5167 0.9799 
Specificity 0.9764 0.9820 0.9642 0.9826 
Accuracy 0.9655 0.9480 0.8812 0.9823 

Error 0.0345 0.0520 0.1188 0.0177 

30 

Sensitivity 0.9108 0.7893 0.5190 0.9799 
Specificity 0.9719 0.9776 0.9641 0.9826 
Accuracy 0.9652 0.9524 0.8820 0.9823 

Error 0.0348 0.0476 0.1180 0.0177 

Another experiment is performed on the Teddy dataset under inaccurate disparity, 

i.e. non-ground truth disparity, to show the accuracy of the proposed algorithm. The 

estimated disparity is calculated using a region-based stereo matching algorithm 

using cooperative optimization [127]. As we note in Figure 4.14 (b), the estimated 

disparity does not have black areas which represent areas of unknown disparity; 

consequently the occlusion results do not include those areas in the occlusion 
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detection result with the ground truth disparity, as shown in Figure 4.14 (c). Thus, 

the unknown disparity areas are marked and added to the occlusion result under 

estimated disparity in order to obtain the differences between the occlusion detection 

results under accurate disparity. As shown in Figure 4.12 (d) and (e), a slight 

difference is noticed between those images. 

  
(a) Left Image (IL) (b) Disparity Left (dL) 

   
(c)Inaccurate disparity without 

unknown areas (in black colour) (d) Accurate disparity (e) Results Inaccurate disparity 

Figure  4.14: Occlusion detection results under accurate and inaccurate disparity on 
the Teddy image. 

4.5 Summary  

In this chapter, a novel occlusion detection algorithm has been proposed to overcome 

the deficiencies of the previous occlusion detection algorithms. The performance of 

the proposed algorithm is tested under 2 synthetic datasets and 3 real datasets. We 

have compared our algorithm results with three well-known occlusion detection 

algorithms (LRC, ORD, and OCC) qualitatively and quantitatively, and showed that 

the proposed algorithm results outperform these algorithms under both types of 

dataset. Our algorithm has many advantages; for example, the occlusion area is 

detected without any fragmentation, the results are consistent under different types of 

images and matching algorithms, it needs few input parameters, and it is easy to 

implement. We performed various analyses and computer simulations which 
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confirmed that the proposed algorithm detects the occlusion areas with a high 

accuracy (0.9939 and .9823) and a low number of errors (0.0061 and 0.0177) for 

well-known datasets, Tsukuba and Teddy. This computer simulation also confirmed 

that the proposed algorithm detects the occlusion for two synthetic datasets with a 

high accuracy (1, 0.9967) and low number of errors (0, 0.0033). 



 5 Block-based Inpainting Technique for Occlusion 
Area (BITO) 

Since the structure of the occluded area is very important for the reconstruction 

process, a reliable inpainting technique (disparity extrapolation) is required to 

recover the occluded area. Therefore, in this chapter we propose a novel disparity 

inpainting algorithm for the occlusion areas, after detecting their location using the 

proposed algorithm explained in chapter 4. 

A Block-based Inpainting technique is proposed in this chapter for occlusion areas 

with continuation of the edge discontinuities; hereafter, we will call it BITO. This 

algorithm uses a variable block size to inpaint the occlusion area; the block size 

depends on the existing texture within each block. Our technique inpaints the 

occluded area accurately while preserving the object edges determined from one of 

the stereo images, since occluded area intensities are known in one of them. This 

idea is inspired by the image-driven disparity inpainting technique [93] that inpaints 

the disparity holes using Bertalmio et al’s inpainting approach  [92], although it 

differs in the diffusion process into the occlusion area where it is guided by one of 

the stereo image gradients. 

We compare the proposed inpainting technique to the state-of-of-the-art occlusion-

filling and inpainting techniques qualitatively and quantitatively. 

 

CHAPTER 

5 
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5.1 Introduction 

eometrically, the stereo images result from projecting the same 3D scene 

in the physical world from different positions. So, the image objects 

appear to be displaced between the stereo pair leaving a 

covered/uncovered area that forms an occlusion/newly-exposed area. Occluded areas 

have an impact on two problems: disparity estimation and intermediate view 

reconstruction. The intensities of those areas are very useful in intermediate view 

reconstruction, practically; if there is no information about the structure of the 

occluded area, the reconstruction process cannot reconstruct these areas. Therefore, 

inpainting the disparity in the occlusion area is necessary; this is also called 

occlusion handling or disparity extrapolation. 

Originally, image inpainting was used to remove a certain object from the image or 

to repair a corrupted image, i.e. image restoration. This is accomplished by applying 

a mask on a certain object or the corrupted area on the image that needs inpainting. 

In occlusion filling, since the occluded area can be considered as the applied mask 

on a disparity image, the inpainting techniques are considered a suitable solution to 

fill the occluded area. In [92], the first digital image inpainting technique was 

introduced. In due course, several studies were carried out to improve Bertalmio et 

al’s inpainting approach [94, 95, 128]. Recently, several researchers have developed 

inpainting approaches to inpaint the occlusion areas in the disparity images [93, 102] 

that require special filling techniques. In general, inpainting techniques give good-

quality results but are computationally expensive. 

In the following sections, we will review the state-of-the-art inpainting techniques, 

starting with the simplest and moving on to the more complicated techniques.  

5.1.1 Horizontal Extrapolation using Depth Information HEDI (Depth 
Constancy Assumption) 

This technique is used to calculate the disparity in the occluded area based on the 

depth information, and is considered the simplest approach.  This technique assumes 

the depth will be the same within a small area of neighbours and that the holes 

belong to the background, avoiding the foreground objects since they have been 

G 
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displaced, leaving a gap behind. This assumption is based on the fact that the closer 

objects will have a large disparity, while the distant objects, which include the 

occluded area, will have small disparities [58, 76, 91]. Thus, if there is an occluded 

point located between two non-occluded points, the occluded point is filled using the 

smallest non-occluded point, and this is illustrated in the following equation. 


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hd                                                                           ( 5.1) 

Where d refers to disparity image, h is the hole to be inpainted, and hl and hr are the 

first image points to the left and right of the hole. This assumption is not always 

valid; it fails if there is a lot of change in the depth of the image. Specifically, it does 

not take the continuation of the edges into consideration in the region to be filled.   

5.1.2 Bertalmio et al’ s Inpainting Approach 

Using this approach, a gap in the image is filled or inpainted by continuing the 

structure of the surrounding area of the gap [92]. This is done in two steps: the first 

one continuing the gradient of the surrounded area into the gap; the second one 

diffusing the available intensities into the gap using anisotropic diffusion, which 

diffuses the intensities taking into consideration the underlying image gradient. This 

is done several times until the whole region is inpainted. Specifically, we can 

consider Ω as the area to be inpainted and ∂Ω as the border of this area, as shown in 

Figure 5.1. In the first step of inpainting, the gradient at ∂Ω is continued into Ω, 

preserving its direction. Then, the structure of ∂Ω is diffused into the gap Ω. The 

inpainting process can be represented by the following equation: 

 ),(),,(),(),(1 jijiItjiIjiI n
t

nn                                                ( 5.2)  

where n is the nth inpainting iteration, ∆t is the enhancement rate, (i, j) represent the 

coordinates of the inpainted pixel, and ),( jiI n
t refers to the enhancement that needs 

to be added to the image I n(i, j) to produce I n+1(i, j), as represented in equation (5.3). 

The inpainting process is continued until I n(i, j) is equal to I n+1(i, j), or the 

enhancement rate becomes lower than a certain threshold.   
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,݅)௧௡ܫ ݆) ௡ሬሬሬሬሬሬሬ⃗ܮߜ = (݅, ݆).ܰ௡ሬሬሬሬሬ⃗ (݅, ݆),                                                                                 ( 5.3) 

where Ln(i, j) is the available information that will be diffused,  ܮߜ௡ሬሬሬሬሬሬሬ⃗ (݅, ݆) quantify 

how much the information differs from Ln(i, j), and  ܰ௡ሬሬሬሬሬ⃗ (݅, ݆) determine the diffusion 

direction. Since the diffusion process should be smooth, Ln(i, j) is expressed by 

Laplacian equation as in the following: 

,݅)௡ܮ ݆) = ௫௫௡ܫ (݅, ݆) + ௬௬௡ܫ (݅, ݆),                                                                                 ( 5.4) 

Where ܫ௫௫௡  and ܫ௬௬௡  represent the horizontal and vertical second derivatives, 

respectively. For more details about these equations, please see the original paper 

[92]. Since this inpainting technique diffuses the structure of the available intensities 

smoothly without texture replication, a blurred inpainted area is unfortunately 

produced. This algorithm is considered more complicated than the depth constancy 

algorithm and it needs more time to inpaint a certain hole as it depends on the 

iterative filling.  

 

Figure  5.1: Illustrates the diffusion process of Bertalmio et al’s inpainting approach 

5.1.3 Image-Driven Disparity Inpainting 

This algorithm is similar to the Bertalmio et al’s inpainting algorithm but here the 

inpainting process is used to inpaint the occlusion areas in the disparity map [93]. 

Since the underlying images that are used to estimate the disparity map are available, 

the image and disparity gradient will coincide. Thus, the first step of the Bertalmio et 

al’s inpainting algorithm is ignored. In general, this algorithm extrapolates the 

disparity value in the occluded area by using anisotropic diffusion which is guided 

by image gradient.  

∂Ω 

Ω 

Ω refers to the hole to be 
inpainted  
∂Ω refers to the boundary 
of the hole 
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5.1.4 Exemplar-based Inpainting 

All the methods described above diffuse the structure of the surrounding area 

smoothly into the hole without texture replication, which consequently produces a 

blurred inpainted region. Therefore, many studies have been conducted to combine 

texture synthesis and inpainting [94-96]. In [95], they processed the image twice: one 

is processed by texture synthesis and the other by inpainting. Subsequently, the 

resulting images are blended into one combined output image, but this method still 

produces blurriness in the inpainted region. Harrison [96] was the first to use the 

exemplar-based synthesis, where the holes are inpainted based on the level of the 

texturedness of the surrounding pixels. Although this appears to be a good method, it 

can be strongly affected by an image noise.  

Meanwhile, Criminisi et al. [94] combine the advantages of texture synthesis and 

structure inpainting into one technique. The synthesized pixel value is diffused from 

the surrounding area in a similar way to the diffusion of pixels in the inpainting 

process, which results in inpainting both texture and structure. In detail, this 

technique divides the boundary regions into patches; each patch is centred on the 

edge of the hole to be assigned a calculated priority, and the patch with highest 

priority is the first one to be filled. This prioritization takes into consideration the 

strong edges and the amount of reliable pixels that can help in the filling procedure 

in each patch. After selecting a certain patch, this technique searches the surrounding 

area for a similar patch to copy its texture to the target region, as shown in Figure 

5.2.    

 

Figure  5.2: Shows exemplar-based filling procedure. 

Many studies were subsequently developed to improve the performance of Criminisi 

et al’s inpainting technique [97, 129]. In [129], local consistency in the inpainted 

(a) (b) 
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region is preserved by studying the relationship between the selected patches in the 

boundary area and the similar patches in the neighbourhood. Consequently, image 

details and sharpness are preserved in the inpainted area. Very recently, another 

modification was proposed in [97] to fill the occlusion area. These modifications 

yield a more efficient search process to find similar patches in the neighbourhood, 

improving the quality of the filled region by modifying the priority assignment 

procedure to cope with the nature of the occlusion hole. Instead of choosing one 

similar patch from the candidate patch, they use a weighted non-local mean of k 

patches to inpaint the disocclusion hole.   

5.1.5 Laplacian Filling  

The derived kernels from the Laplacian equation in (5.4) can be used as smoothness 

filters which represent the second derivative of the image in both directions. These 

filters can be used to fill a certain hole in the image by applying them on the 

surrounding areas and diffusing them smoothly into the hole. The implementation of 

this technique is available in ROIFILL MATLAB function which is employed in 

[98] to inpaint a certain hole in the image. 

5.1.6 Fields of Experts (FOE) Inpainting 

This technique is based on the fields of experts model which consists of a group of 

filters  learned from a standard database of real images with high diversity [99]. This 

FOE is a modelling of the extension of the Markov Random Field that can capture 

the statistics of the real images. The FOE is employed in two areas: image de-noising 

and image inpainting. According to the image inpainting procedure, the masked area, 

i.e. hole, is inpainted by exploiting prior FOE. Specifically, a straightforward 

gradient tracking procedure is used, extracting the local structure characteristics from 

the response of the pre-trained filters, without using image gradient direction 

explicitly.  

This method preserves the continuation of the edges better than Bertalmio et al’s 

method. Unfortunately, the filling procedure is based on intensities diffusion without 

taking into consideration texture reproduction that in turn generates a blurred area, 
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which is considered a disadvantage of this method in addition to the computational 

complexity.  

5.1.7 Smoothing of Depth Maps to Avoid Holes 

Pre-processing the depth map by smoothing filters has been addressed in the 

literature to reduce the size of the occluded area or remove it completely due to the 

vertical design of the occlusion holes. An average filter is employed to inpaint the 

occluded area in [100], but this generates image artifices which yield a low perceived 

quality. Pre-processing with a symmetric Gaussian filter is proposed in the same 

paper to fill the occluded area. Using this filter, the strength of smoothing in vertical 

and horizontal directions is the same which producing a geometric distortion in the 

vertical lines that become curved. Therefore, the asymmetric Gaussian filter [101] is 

proposed to solve this problem by increasing the smoothness in the vertical direction 

and decreasing it in the horizontal direction. Unfortunately, the distortion in the 

horizontal direction might still exist. Therefore, another technique is proposed in the 

literature [130] that smoothes the edges with different filters depending on the 

strength of the gradient, as a higher gradient in a horizontal direction needs a 

stronger smoothness.   

5.1.8 A Modified-Inpainting Technique for Occlusion Filling 

This technique modifies one of the inpainting techniques in the literature to cope 

with the occlusion filling problem [102]. This is because the digital inpainting 

techniques fill the holes from all the surrounding areas. On the other hand, the 

occluded area should be filled from the background information based on the depth 

constancy assumption described in section 5.1.1. Therefore, all the surrounding areas 

of the hole are modified to be just from the background, as shown in Figure 5.3. 

Then, the hole is filled by Telea’s inpainting technique [114]. This method is 

considered computationally expensive. 
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(a) (b) 

Figure  5.3: Illustrating the general idea of the modified-inpainting technique for 
occlusion filling   

5.1.9 Comparative Studies on Occlusion Filling 

A comparative study analysis of six different techniques for filling the disocclusion 

area is presented in [103]. This study shows that the HEDI technique gives the best 

results in real time followed by ROIFILL and the variational inpainting  [131] 

techniques, which are computationally expensive.  

Recently, another comparative analysis study of three different occlusion filling 

techniques has been conducted in [104]. The exemplar-based inpainting technique of 

Criminisi et al. [94] is compared to the pre-processed depth map with a specified 

filter [132] and the computationally efficient inpainting algorithm of Oliveira et 

al.[128]. The study shows that Criminisi et al’s technique outperforms the other two 

techniques in terms of the image quality while, in terms of computational 

complexity, it is considered the most expensive. Consequently, this comparative 

study encourages the researcher to seek further improvements to the exemplar-based 

technique.    

5.2  Block-based Inpainting Technique for Occlusion Area (BITO) 

The proposed Block-based Inpainting Technique for Occlusion area (BITO) is a 

novel technique for inpainting the occlusion/newly-exposed area based on block-

filling with continuation of edge discontinuities. It uses a variable block size that is 

determined by the existing texture within each block. By assuming that the occluded 
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Replace the boundary of 
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area intensities are known in one of the stereo images5, our technique diffuses object 

edges in the occluded area by exploiting the available stereo images. This is shown 

in Figure 5.4, and we notice that the image intensities of the occluded area that 

appear in Figure 5.4 (b) are available in the stereo image in Figure 5.4 (a). So, we 

exploit the edge map of the stereo images to employ it in the inpainting algorithm.    

The framework of the proposed algorithm is depicted in Figure 5.5, illustrating the 

pipeline of the inpainting algorithm. The input to the proposed algorithm consists of 

two images: the reference image and its disparity. The reference image is used to 

extract the edge map from it, while the occluded areas that need filling exist in the 

disparity map. The output from inpainting steps will be inpainted disparity without 

occluded areas.  

Practically, our inpainting technique divides the disparity into two parts. The first 

part is filling the occlusion area in the extreme left- and right-hand sides of the image 

as shown in Figure 5.6 (a) and Figure 5.6 (b), which will be filled from the 

foreground object while continuing the edges. 

(a) (b) 

Figure  5.4: Shows how the intensities of the occluded area are available in the stereo 
image: (a) the original stereo image (b) Its disparity with occluded area masked in 
black. 

 

                                                
5 This assumption fails when the image points are occluded in both of the stereo images. 
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Figure  5.5: Shows the framework of the proposed inpainting algorithm 
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The filling of the left-most area of the disparity is shown in Figure 5.7 (a), where it 

clearly needs to be filled from the foreground object. This issue has been ignored in 

some of the previous works on filling the occlusion area, such as the HEDI technique 

which fills the occlusion area by assuming that it always belongs to the background. 

The second part of our technique is to fill the gap behind the object, which is filled 

from the background while also continuing the edges, as shown in Figure 5.7 (b). 

 

Figure  5.6: Shows the two types of occlusion area (a) and (b) the left- and right-
most areas, respectively (c) and (d)  the gap behind the object area. 

  

(a) (b) 

Figure  5.7: Shows the diffusion direction for the two types of occlusion area. (a)The 
diffusion direction of the left-most and right-most areas is from the foreground 
object. (b)The diffusion direction for the gap behind the object is from the 
background area. 

In the following section we will explain how the proposed inpainting algorithm fills 

the occluded area with a disparity step by step: 

Step #1: Detect edge map for the reference image, which is detected by Canny edge 

detection operator as shown in Figure 5.8 (b). As a result a new matrix (ref_edges) is 

(a) (b) 

(c) (d) 
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built that contains either 1 or 0, where 1 represents an edge pixel in the reference 

image and 0 represents non-edge pixel. See equation (5.5). 

ref_edges = edge_detection_operator(ref_img)                                                  ( 5.5) 

(a) (b) 

Figure  5.8: Shows the reference image in (a) and its edge map in (b). 

Step #2: Divide the disparity image into blocks starting with large blocks, then start 

decreasing the block size based on the number of edges within the block until it falls 

below a predetermined threshold. A large block size could have many different 

details for different objects. Therefore, we change the size of the block in order to 

find the appropriate block size that has relatively similar details within it, which 

helps to inpaint those areas accurately based on objects’ texture. The following 

equations illustrate how each block is divided into smaller blocks. 


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where x and y coordinates refer to any pixel inside the block Bi, ܥ஻೔ is the indicator 

function that indicates whether the current pixel is an edge or not, no_of_edges is the 

accumulative counter of ܥ஻೔ that counts the number of edges in each block Bi, BS 

refers to the block size, and edge_threshold is a predetermined threshold to 

determine the minimum number of thresholds that are supposed to be in the block. 

According to initial size of the block, we take into consideration the size of the 

occlusion areas that need filling; if the occlusion areas are large, the initial value for 

BS is 50, while if they are relatively small, the BS will start by 20. After that, the BS 

is start decreasing until they have a smallest number of details on it. 

Step #3: After determining an appropriate block size in the previous step, we have to 

find the minimum and maximum disparity in this block depending on the type of 

occlusion areas that need filling. The maximum disparity in the block is found for 

the occlusion area located in the extreme left- and right-hand sides of the image, 

while the minimum disparity is found for areas located behind the objects. 

݉݅݊஻೔ =  (5.9 )                                                                                                  (௜ܤ) ݊݅݉

஻೔ݔܽ݉ =  (4.7)                                                                                                 (௜ܤ) ݔܽ݉

Step #4: Assign the corresponding pixels of the edge map in the disparity block by 

min/max values found in the previous step depending on which type of occluded 

area in the disparity map we need to fill, as shown in Figure 5.9 (b).  

(ݔ)݀ = ൜
݉݅݊஻೔/݉ܽݔ஻೔     ,      ݏ݁݃݀݁_݂݁ݎ = 1
ݏ݁݃݀݁_݂݁ݎ      ,                   0          = 0 

                                                    ( 5.10) 

Step #5: Diffuse the correct disparity inside the occlusion areas based on the type of 

occluded area: the left-most and right-most areas and the gaps behind the objects. 

The occluded areas are filled based on the closest guided edges that were filled in the 

previous step. Specifically, the left-most and right-most areas are filled from right-

to-left and from left-to-right, respectively, depending on the direction of the 
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available intensities. On the other hand, the occlusion areas behind the objects are 

filled from the direction of the background. 

  
(a) (b) 

Figure  5.9: Illustrating step# 4. (a) shows the disparity map with the occluded areas 
(b) shows filled occluded area with the edge map depending on the type of occluded 
areas. 

5.3 Results and Analysis 

An evaluation of our proposed inpainting algorithm is presented in this section. 

Based on the used material and performed experiments, we will discuss the result 

analysis, the performed measurements and a comparison of the results for our 

proposed algorithm with four well-known algorithms in this field in the subsequent 

sections. 

5.3.1  Datasets 

The proposed algorithm is tested on four datasets; Teddy, Barn2, and Reindeer 

datasets are used to illustrate the occlusion filling technique, and the Rocks dataset 

demonstrates the performance of the unknown area filling. All of these datasets are 

downloaded from the Middlebury site.  

5.3.2  Procedure 

The proposed algorithm is compared to four well-known inpainting algorithms, 

HEDI, RIOFILL, Exemplar-based, and FOE under four datasets to demonstrate its 

performance. All of these approaches are implemented and evaluated against the 
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ground truth data. The availability of ground truth data gives us a good opportunity 

to compare the proposed inpainting technique results to the ground truth data 

qualitatively and quantitatively. The implementation of the Exemplar-based and FOE 

are downloaded from the following references [133, 134], respectively, while the 

ROIFILL is a built-in MATLAB function. Regarding to the HEDI and BITO 

algorithms, they are our implementation.  

5.3.3  Quantitative metric 

Peak Signal to Noise Ratio (PSNR) is a metric used to gauge the ratio of the 

maximum power of a signal to the power of a noise that distorts the quality of the 

signal. The PSNR is calculated by comparing the inpainted disparity map with the 

ground truth one to compute the Mean Square Error (MSE) which results from the 

corrupted noise. The MSE and PSNR are calculated as follows:   


 


N

x

M

y
yxIyxI

MN
MSE

1 1

2)],('),([1

                                                          ( 5.11) 

)
max

(log.20 10 MSE
PSNR p

                                                                          ( 5.12) 

Where I(x, y) is the ground truth disparity map, Iᇱ(x, y) is the inpainted disparity 

map, M and N are the dimensions of the images and maxp is the maximum pixel 

value in the image. Higher PSNR refers to higher image quality due to reduced error 

noise. Unfortunately, the ground truth data contain unknown areas that make the 

ground truth image different from the inpainted image and are counted as errors in 

the inpainted image. Therefore, these unknown areas are not taken into consideration 

through MSE calculation.   

5.3.4  Experimental Results 

The performance of our proposed inpainting algorithm is tested to fill the occluded 

and unknown areas in the disparity image. The occluded area by its nature is large 

while the unknown area consists of small holes that cannot be calculated through 

disparity estimation. The size of the occlusion area plays an important role in the 

choosing of the edge_threshold parameter in addition to the amount of detail on that 
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area. If there are a lot of details (i.e. a lot of edges) or the occluded areas are large, a 

larger threshold is needed. This is because this threshold determines the filling-block 

size; a larger threshold consequently generates a larger block size that will speed up 

the inpainting process.     

 The proposed algorithm is compared to four well-known inpainting algorithms: 

HEDI, RIOFILL, Exemplar-based and FOE. Figure 5.10 shows the results of filling 

the occlusion area in the Teddy image using four previous inpainting algorithms 

(Figure 5.10 (d-g)) and they are compared to the proposed algorithm in Figure 5.10 

(h). As we can see in Figure 5.10 (d), the occlusion areas are filled properly using the 

HEDI method even though their assumption is not applied in the case of filling the 

left- and right-most areas of disparity. Fortunately, such areas are filled from the 

foreground object, since there is no background, but without preserving edge 

discontinuities. The HEDI technique does not take into consideration the 

continuation of the edges, especially if there is a continuation for a curved object, as 

shown in Figure 5.11 (d) which is a close-up of Figure 5.10 (d). 

According to the ROIFILL method, the occlusion area is considered too large for this 

technique. As we notice in Figure 5.10 (e), the occlusion area is not completely filled 

using the ROIFILL method; additionally, there is a high level of blurriness due to the 

smooth diffusion of the second derivative of the Laplacian equation. The FOE 

method is not specialized to inpaint large holes such as occlusion areas; thus, a high 

level of blurriness in the filled area in the far left of the disparity is generated, with a 

considerable level in the filled area in the gap behind the object. This blurriness is 

the cost of the intensity diffusion that does not take into consideration the texture. 

As the Exemplar-based technique [94] is specialized to inpaint large areas, taking 

into consideration in the filling procedure the texture and the structure, the occluded 

area is completely filled, as shown in Figure 5.10 (g). Unfortunately, this technique 

is not specialized to fill the occluded area, so it fills the holes from both the 

background and the foreground object. Thus, the left-most filled area is inpainted 

properly since it is located from the side of the foreground object, while the filled 

gap behind the object is corrupted because it is a mixture of background and 

foreground. 
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(a) Original disparity (b) Occlusion area 

  
(c) Disparity with occluded area (d) HEDI 

  
(e) ROIFill (f) FOE 

  
(g) Exemplar (h) BITO 

Figure  5.10: Shows the result of filling the occlusion area in the Teddy image by 
four previous inpainting algorithms (d-g) and they are compared to the proposed one 
in (h). (a) The ground truth disparity. (b) Results of the proposed occlusion detection 
algorithm. (c) The disparity map with occlusion areas.  
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(a) original (b) Exemplar (c) FOE 

   
(d) HEDI (e) ROIFILL (f) BITO 

Figure  5.11: Shows a close-up of the left-top of the inpainted disparity in Figure 
5.10 (d-h) to clarify the accuracy of each technique. 

We believe that the improved quality of the Exemplar-based technique [97] works 

better than Criminisi et al’s technique since it is specialized for occlusion areas; 

however, it is still computationally expensive. The edges are continued very well but 

without taking care of the curved line, as noticed in Figure 5.11 (b), in contrast to our 

proposed method that preserves the line curvature, as shown in Figure 5.11 (f). 

Moreover, the proposed technique fills the two types of occluded area properly 

without any blurriness effect and preserving edge discontinuity. Figure 5.14 and 

Figure 5.16 and their close-ups in Figure 5.15 and Figure 5.17 are other examples of 

the occlusion inpainting in the Barn2 and Reindeer images. The Reindeer image is an 

example of a complicated occlusion area that shows the effectiveness of the 

proposed algorithm in recovering the occlusion area when compared to the other 

existing algorithms. The example presents a challenge to recover a hidden part of the 

curved line in the left side of the image that is difficult to reconstruct. As we note, 

HEDI cannot recover this area and it is filled from the background, while ROIFILL 

fails to inpaint most of the occluded areas. The Exemplar-inpainting technique fails 

to recover the correct shape of the curved line; moreover, it diffuses the intensities of 
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the false foreground object. The FOE technique inpaints these areas better than the 

previous algorithms but with a blurriness effect that mixes the foreground intensities 

with a background.    

5.3.4.1 PSNR Results 

For each different algorithm, the PSNR is calculated for the Teddy, Barn2, and 

Reindeer images shown in Table 5.1 and drawn in Figure 5.12 As we can see, the 

proposed BITO algorithm gained on average a higher PSNR of ~6, ~12, and ~17 db 

than the Exemplar, FOE and ROIFILL inpainting techniques, respectively. On the 

other hand, the average of PSNR results of the BITO technique is comparable to the 

HEDI, as BITO gained a higher PSNR of ~0.16 db than HEDI, which is considered a 

small difference. As we mentioned above, the unknown areas are excluded from the 

MSE calculation to produce a fair PSNR.  

Table  5.1: Shows the PSNR for the Barn2, Reindeer and Teddy images under five 
different algorithms.  

Technique 
name 

Barn2 Teddy Reindeer Image 
size 

BITO 34.8094 40.0404 32.6193 671 × 555 
Exemplar 31.5956 31.3803 26.6126 447 × 370 
FOE 28.6293 31.7672 10.2707 447 × 370 
HEDI  35.8079 38.8843 32.2780 671 × 555 
ROIFill 24.0081 18.5127 12.9065 671 × 555 

 

Figure  5.12: Shows the PSNR for Barn2, Reindeer and Teddy images under five 
different inpainting techniques. 
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5.3.4.2 Runtime comparison 

Inpainting runtime is considered an important issue in occlusion filling applications, 

such as multiview image interpolation for multiscopic 3D display. In Table 5.2, the 

runtime is calculated for five inpainting techniques that inpaint the occlusion areas in 

the Teddy image. The HEDI and ROIFILL methods are considered to have the 

lowest time complexity since they depend on a simple assumption, while the 

Exemplar-based and FOE techniques are time-expensive methods. Inpainting using 

the proposed technique takes a considerable time when compared to the Exemplar-

based and FOE techniques. We used a 450 × 375 image size for the Teddy dataset 

because, were we to use a larger image, the occlusion area would be extended and 

we could not calculate the time duration for the Exemplar-based and FOE techniques 

for out-of-memory reasons. Table 5.3 depicts another runtime comparison for five 

inpainting techniques that inpaint the occlusion areas in the Reindeer image. 

Table  5.2: Shows the runtime required to fill the occlusion areas in the Teddy image 
of size 450 × 375 for each technique in seconds using a laptop Intel Core 2 Duo CPU 
@ 2.00GHz 2.00GHz,  and 3.00 GB RAM.  

Technique name Required Time 
HEDI 0.236050 
ROIFill 0.206879 
Exemplar 433.114688 
FOE 436.692172 
BITO 5.196117 

 

Table  5.3: Shows the runtime required to fill the occlusion areas in the Reindeer 
image for each technique in seconds using a laptop Intel Core 2 Duo CPU @ 
2.00GHz 2.00GHz,  and 3.00 GB RAM.  

Technique name Required Time Image size 
HEDI 0.413368 671 × 555 
ROIFill 1.380815 671 × 555 
Exemplar 304.611208 447 × 370 
FOE 434.515383 447 × 370 
BITO 19.448148 671 × 555 
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(a) Original Left  Disparity (b) HEDI 

(c) ROIFILL (d) FOE 

(e) Exemplar (f) BITO 

Figure  5.13: Shows the result of filling the unknown areas in the Rocks image by 
four previous inpainting algorithms (b-e) and they are compared to the proposed one 
in (f). (a) The ground truth disparity that comes with unknown areas.  
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5.3.4.3 Inpainting unknown areas 

Inpainting an unknown area is considered a simpler issue than inpainting an 

occluded area since it is smaller. In general, when we compare the result of our 

inpainting technique with the other methods, as in Figure 5.13, we can see that the 

proposed algorithm inpaints the unknown area accurately. However, other 

techniques work much better in filling the unknown area due to the small size of the 

holes when compared to filling the occlusion areas. PSNR metric cannot be 

calculated for inpainting unknown areas due to unavailability of a ground truth of 

such areas. In Table 5.4, the runtime is calculated for five inpainting techniques that 

inpaint the unknown areas in the Rocks image. 

Table  5.4: Shows the runtime required to fill the unknown areas for each technique 
in seconds using a laptop Intel Core 2 Duo CPU @ 2.00GHz 2.00GHz,  and 3.00 GB 
RAM and image size of 638 × 555. 

Technique name Required Time 
HEDI 0.191961 
ROIFill 0.130977 
Exemplar 474.460757 
FOE 913.400221 
BITO 1.712 
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(a) Original disparity (b) Disparity with occlusion area 

  
(c) HEDI (d) ROIFill 

  
(e) FOE (f) Exemplar 

 
(g) BITO 

Figure  5.14: Shows the result of filling the occlusion area in the Barn2 image by 
four previous inpainting algorithms (c-f); they are compared to the proposed one in 
(g). (a) The ground truth disparity. (b) The disparity map with occlusion areas.  
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(a) original (b) Exemplar (c) FOE 

   
(d) HEDI (e) ROIFILL (f) BITO 

Figure  5.15: Shows the close-up of the left-most area of the inpainted disparity in 
Figure 5.12 (c-g) to clarify the accuracy of each technique. 
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(a) Original right disparity (b) Disparity with occlusion areas 

  
(c) HEDI (d) ROIFILL 

  
(e) FOE (f) Exemplar 

 
(g) BITO 

Figure  5.16: Shows the result of filling the occlusion area in the Reindeer image by 
four previous inpainting algorithms (c-f); they are compared to the proposed one in 
(g). (a) The ground truth disparity. (b) The disparity map with occlusion areas. 
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(a) original (b) Original with occlusion (c) HEDI  

   
(d) ROIFILL (e) FOE (f) Exemplar 

 

  

(g) BITO   

Figure  5.17: Shows the close-up of a complicated area in the inpainted disparity in 
Figure 5.14 (c-g) to clarify the accuracy of each technique. 

5.4 Summary 

In this chapter, a novel inpainting technique has been proposed to overcome the 

deficiencies of previous inpainting techniques. This novel technique is specialized 

for occlusion area filling in disparity images. We have compared our algorithm 

results with four well-known inpainting algorithms qualitatively and quantitatively 

using PSNR; the proposed algorithm results outperform these algorithms. One of 

them is specialized for occlusion filling and the other three are for general image 

inpainting, specifically for object removal or image restoration. Our algorithm has 

many advantages; For example, the occluded area is filled without any blurriness 

since it does not depend on any smoothness diffusion. By exploiting the edge map of 

the underlying stereo image, edge discontinuities are diffused in the occlusion area in 

the disparity map, and the line curvature is continued. We performed various 
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analyses and computer simulations which confirmed that the proposed technique 

inpaints the occlusion area with high accuracy. This is shown using PSNR 

calculation, where the proposed BITO algorithm gained on average a higher PSNR 

of ~0.16, ~6, ~12, and ~17 db than Exemplar, HEDI, FOE, and ROIFILL inpainting 

techniques, respectively. 

 

 

 

 

 



 6 Occlusion-Aware Intermediate View 
Reconstruction 

In Chapter 4, we proposed a novel occlusion detection algorithm, and in Chapter 5 

we proposed another novel algorithm to Inpaint those areas. In this chapter, we will 

employ these proposed algorithms in a novel occlusion-aware intermediate view 

reconstruction. This novel algorithm focuses on how to find an intermediate image 

with a given disparity between two input images.  

An improvement in the backward-projection of the intermediate view is proposed by 

adding occlusion awareness to the reconstruction algorithm and applying three 

quality improvement techniques to reduce image artifices. First, we remove holes in 

the virtual disparity produced by image re-sampling. Second, we remove ghost 

contours from the virtual view and restore them to their correct place. Third, since 

the novel reconstruction algorithm detects and inpaints the occlusion areas in the 

two input disparity maps, the disocclusion areas are recovered from one of the input 

images. 

We compare the proposed reconstruction algorithm to the standard backward- and 

forward-projection approaches quantitatively using PSNR, and qualitatively by 

conducting a human-trial experiment on a 3D display. 

 

CHAPTER 

6 
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6.1 Introduction 

ntermediate view reconstruction is a widely-used technique to generate 

intermediate images from a few existing views and their corresponding 

disparities. This is accomplished as if we have positioned virtual cameras 

between a few real cameras to create virtual views at those positions. The disparity 

map is used to displace image pixels from the existing views to a new location in a 

virtual view. Unfortunately, when the object occupies a new place, it will leave 

behind a gap called a disocclusion area or newly-exposed area.  

The generation of the intermediate image from stereoscopic images is not 

straightforward, due to the ambiguity of the occluded region and the need to preserve 

the discontinuity of the edges. Therefore, many studies have been conducted in 

attempts to generate the intermediate images with high quality. These studies can be 

classified into two main categories based on how the disparity that compensated into 

the intermediate images is calculated: backwards-disparity compensation [73, 75] 

and forward-disparity compensation [76].  

In backward-disparity compensation, the disparity values are defined on the 

sampling grid of the intermediate image (unknown image) in the direction of both 

left and right images (known images). These backward-projection algorithms use 

different ways to reconstruct the intermediate view points from different known 

images; some of them use linear interpolation [135, 136], which produces a blurred 

image, while one of them uses non-linear interpolation [137], which generates a 

patchy effect on the intermediate image.  

In contrast, the structure of the intermediate image using the forward disparity 

compensation approach is defined on the sampling grid of one or all of the available 

images. A problem occurs when the available images are pointing to the irregular 

samples of the intermediate image. In this case, simple methods are used to solve the 

problem, such as rounding, which is not effective [76]. Recently, a spline-based 

reconstruction has been proposed; this is an effective model for this problem but it is 

computationally expensive [71]. 

I 
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In this chapter, an improvement to the backward-projection of the intermediate view 

is proposed by adding occlusion awareness to the reconstruction algorithm. In 

addition, we apply three quality improvement techniques to reduce image artifices 

generated through formation of the intermediate view. The reasons for generating 

these image artifices and the state-of-the-art solutions to reduce them are discussed 

in the next section. 

6.2 The Problematic Areas of Reconstruction Process and Their 
Existing Solution 

A number of image artifices are generated through formation of the intermediate 

view and they must be removed; they include the generation of holes and cracks due 

to image resampling, generation of ghost contours due to disparity’s sharp edges, 

and the appearance of disoccluded areas due to cameras changing position [72]. 

6.2.1 Image Holes and Cracks through Re-sampling Process 

Building a disparity map for the intermediate image from one of the known images 

will result in small holes and cracks in the disparity map. It is necessary to fill these 

holes to generate an error-free intermediate image. These holes are generated from 

rounding image coordinates to the nearest position in the sampling grid, whereas the 

sampling grid for any image is defined in positive integers; the majority of the 

transformed disparity coordinates are not integers and require rounding to the nearest 

integer, leaving an empty pixel. For example, as pixel 24 is filled, and the following 

coordinate is 25.7, then rounding this coordinate to the nearest coordinate in the 

sampling grid will result in filling pixel 26 and leaving 25 empty. These cracks and 

holes are clearly shown in Figure 6.8 (c).  

A majority of researchers fill these holes by applying a median filter to the disparity 

area [72, 111, 113, 115]. A median filter does not work well when filling a hole in a 

detailed area. Moreover, by using a median filter (3 × 3) which is the suitable size to 

fill the holes in the disparity map [72], a hole of size larger than 2 × 2 will not be 

filled and will be left empty. 
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6.2.2 Ghost Contours Due to Disparity’s Sharp Edges 

Generally, since texture images have a high resolution, an object’s edges cover two 

to three pixels in the image while, in the disparity map, an object’s edges are very 

sharp and are covered by one pixel resolution. Consequently, pixels from foreground 

objects will interpolate falsely in the background, appearing as a ghost in the virtual 

image, as shown in Figure 6.5 (c) and its close-up in (d). Figure 6.1 demonstrates 

how these contours  appear in the interpolated image.  

 

Figure  6.1: Demonstrating ghost contours problem 

Some researchers have labelled these edges in the texture image to avoid 

interpolating these pixels to a virtual image [72]; this solution successfully removes 

ghost contours but leaves the interpolated edges sharp with low resolution. Another 

solution is to use disocclusion dilation [113], which extends the disocclusion region 

one pixel; this is not accurate because most of the ghost contours’ widths are two to 
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three pixels, leading to ghost contours being left in the interpolated image. 

Moreover, dilation from both sides of the disocclusion region will corrupt the image 

since the ghost contour occurs from one side of the object; this leads to the 

interpolation of incorrect pixels in a virtual image from the reference image.     

6.2.3 Disocclusion Area Due to Camera Changing Position 

Due to changing camera position, image objects will shift a number of pixels 

depending on how close they are to the camera; the closer they are, the larger the 

shift. This pixel shifting leaves an uncovered area in the virtual image called 

disocclusion or newly-exposed area. Recovering those areas is considered an 

important challenge in reconstructing the intermediate image. The size of 

disocclusion areas depends on the camera baseline; filling a larger region is 

considered a harder task. 

Many filling techniques have been proposed in the literature [72, 102, 103], and a 

comprehensive comparison for disocclusion filling techniques has been conducted 

[103] to show which one is the best for those areas. The comparisons confirm that 

using an inpainting technique to fill those areas is very expensive, as it sometimes 

takes a few hours and is not accurate enough, especially as it is not designed to fill 

the disparity map. In particular, filling disocclusion regions with horizontal 

interpolation using depth map technique provides the best intermediate image 

quality. This technique fills the disocclusion area only from the background by 

assuming that the area belongs to the background. To summarize, this technique 

works well only when the foreground object is superimposed on a background, while 

it fails when another object and part of the background lie underneath the foreground 

object. Therefore, continuing the edges of the underlying object is necessary to 

undistort the virtual image. Moreover, it fails when a disocclusion area is located in 

the far left/right side of the image and it is necessary to recover those parts of the 

object and background.    

6.3 The Proposed Intermediate View Reconstruction Algorithm 

The backward-projection approach is considered advantageous when compared to 

the forward-projection approach as the backward-projection approach assigns an 
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intensity value for each image point in the intermediate image, and the resulting 

image does not have any black cracks on it. In the forward-projection approach, 

some image points are assigned to the same location in the virtual view and the other 

points do not have intensity values, producing black cracks in the image. Moreover, 

a  study [71] confirmed that the backward-projection approach is considered more 

reliable, if there are errors in the disparity estimation, than the forward-projection 

approach. Therefore, we propose a novel reconstruction algorithm that exploits the 

advantages of backward projection and reduces its drawbacks by adding occlusion 

awareness and reducing image artifices.  

The framework of the proposed algorithm is depicted in Figure 6.2, illustrating the 

pipeline of the interpolation algorithm; the framework consists of input images, 

interpolation steps, output image, and post-processing step. The input to the 

proposed algorithm consists of four images: two reference images and their 

disparities. The reference images are a stereoscopic pair (left image IL and right 

image IR) captured by real cameras. In regard to the disparity maps, we used a given 

disparity downloaded from different datasets, since this study focuses on a high-

performance reconstruction process. The output from the interpolation steps will be 

the intermediate image at a certain position between the reference images (IL and IR).  

In the following section we will explain how the proposed reconstruction algorithm 

generates an intermediate image of high quality step by step: 

Step #1: Detect the occlusion area 

We use our proposed occlusion/newly-exposed detection algorithm, which was 

explained in detail in Chapter 4 since it detects the occluded areas with high 

accuracy and fewer errors. Moreover, it is consistent under different types of images  
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Figure  6.2: Showing the general framework for the proposed intermediate view 
reconstruction algorithm 

and matching algorithms due to a high diversity of input images to the interpolation 

algorithm. We detect the occlusion areas in two directions from left-to-right and 

from right-to-left to inpaint those in the following step. This is illustrated in the 

following equations: 

),( LleftRtoL dODNE                                                                               ( 6.1)                                        

),( RRightLtoR dODNE                                                                            (5.7) 

where dL and dR are the disparity from left-to-right and from right-to-left, 

respectively. ODLeft and ODRight refer to the occlusion detection algorithm which 

computes the newly-exposed areas NEL-to-R and NER-to-L, respectively. 

Step #2: Inpaint the occlusion and unknown area in the disparity map 

The disparity estimation methods force a disparity to be calculated even in the 

occlusion area by choosing the best estimate. Therefore, if the disparity is estimated, 
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it is necessary to re-inpaint those areas while, if it is computed by a computer 

program, the occluded areas are filled from the other disparity. In addition, this kind 

of disparity leaves an empty area without disparity, which is called an unknown area. 

For reconstruction purposes, filling those areas is necessary to interpolate an accurate 

intermediate image. The occluded and unknown areas are filled with our proposed 

disparity inpainting algorithm, explained in Chapter 5 since it recovers the empty 

area by preserving the object edges inherited from the underling stereo image. 

Id LR = Inpaint d L  ( I L , d L , NE R-to-L )                                                               (  6.2) 

Id RL = Inpaint d R  ( I R , d R , NE L-to-R )                                                                ( 6.3) 

IdLR and IdRL are the inpainted left and right disparities, respectively. InpaintdLR and 

InpaintdRL refer to the inpainting operations applied to the dL and dR, respectively. 

NEL-to-R and NER-to-L are the newly-exposed areas resulting from the previous step. 

These areas are added to the disparity map as zero intensity to refill them with a 

more accurate disparity map. The input for the inpainting algorithm to inpaint the 

unknown area will be without the newly-exposed area: Inpaint d L  ( I L , d L  ) and  

Inpaint d R  ( I R , d R ). This is because the unknown areas are zero pixels in the 

original disparity map that need inpainting in different places, as shown Figure 6.3. 

Specifically, the black pixels that appear in the left and right disparities in Figure 6.3 

(a) and (b), respectively, are the unknown areas which need inpainting. 

Inpainting those areas using the Exemplar-based algorithm and the proposed 

algorithm is demonstrated in the second and third rows of Figure 6.3, respectively. 

As we can see in this figure, the proposed algorithm fills those areas more accurately 

than the Exemplar-based algorithm even though the inpainting time of the latter 

algorithm is 474.5 seconds, while the proposed one takes 1.7 seconds to inpaint 

those areas. Thus, the proposed inpainting algorithm is more accurate and faster than 

the Exemplar-based one. A comparison with three other techniques of inpainting the 

unknown and occlusion areas was conducted in the previous chapter. 
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(a) Original Left  Disparity (b) Original Right Disparity 

  
(c) Exemplar-based inpainting [138] (d) Exemplar-based inpainting [138] 

  
(e) proposed inpainting algorithm (f) proposed inpainting algorithm 

Figure  6.3: Showing results of inpainting unknown areas by the Exemplar-based 
algorithm in the second row and the proposed algorithm in the third row. 
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Step #3: Determine the visibility of image points in intermediate image 

Capturing different images from different positions leads to the visibility of some 

regions in one view and their disappearance in the other view. Consequently, the 

intermediate image will have some regions that are visible in just one of the 

surrounding images, as in Figure 6.4. Therefore, it is necessary to determine the 

visibility of image points of the intermediate image to reconstruct the correct 

information from the correct source. Fortunately, we can use the proposed occlusion 

algorithm for this task. Since the full occlusion area is detected between IL and IR 

using their disparities, we can find the partial occlusion area by multiplying the 

disparity maps by α and (1 – α), if the intermediate image is located between IL and 

IR at position α. This is illustrated in the following equations: 

)( LleftInttoL dODNE                                                                        ( 6.4) 

))1(( RRightRtoInt dODNE                                                          ( 6.5) 

Practically, we will give an example to illustrate how the proposed occlusion 

algorithm detects the large and partial occlusion areas between the images, as shown 

in Figure 6.4. Using dL as input to the equation (6.4) yields areas C and D as newly-

exposed areas in IR, while using dL multiplied by α as input gives us area D as a 

newly-exposed area from left-to-intermediate; this means area D is a newly-exposed 

area in the intermediate image and is not visible in IL. Consequently, we have to 

reconstruct it from IR. Correspondingly, using dR as input to equation (6.5) results in 

areas A and B as newly-exposed in IL, while a partial newly-exposed area in IInt will 

be A; in this area A is not visible in IR and we should use IL to recover this area. 

Finally, we will construct a visibility matrix VM that contains the visibility label for 

each image point in the intermediate image, whether they are visible in IL, IR, both or 

neither, and label them as 1, -1, 0 and 2, respectively. The values of the VM matrix 

are created based on NEL-to-Int and NEInt-to-R matrices as shown in equation (6.6), 

where the sampling grid of VM is defined on the same sampling grid of the NE 

matrices. 
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Figure  6.4: Showing newly-exposed area principle 

Step #4: Removing ghost contours 

In regard to the ghost contour artifices that appear in the intermediate image in 

Figure 6.5 (c) and its close-up in (d), we sort them out simultaneously with a 

calculation of the intermediate image visibility at an early stage. As the visibility 

matrix labels the source of each image point in the intermediate image, pixels that 

cause ghost contours are labelled by adding three pixels to the newly-exposed area 

that will be covered from the surrounded images. This extension will be from one 

side of the newly-exposed area in the direction where the ghost contour is located. 

Specifically, if the ghost contour is located to the right of the foreground object, the 

newly-exposed area will extended by three pixels from the right while, if it is located 

to the left of the foreground object, the newly-exposed area will extended from the 

left three pixels.  

Because the foreground object edges cover two to three pixels in the texture images, 

extending the newly-exposed area by one pixel leaves some ghost contours in the 

interpolated image. Therefore, we extend the newly-exposed area by three pixels 

since this extension is from the side of the background and it is visible in both 
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(a) original (b) Enlarge 

  
(c) With ghost (d) Enlarge 

  
(e) With solving ghost (f) Enlarge 

  
(g) With solving edge resolution (h) Enlarge 

Figure  6.5: Showing results of the proposed ghost removal technique 
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(a) original (b) Enlarge 

  
(c) With ghost (d) Enlarge 

  
(e) Solving ghost (f) Enlarge 

  
(g) Solving edge resolution (h) Enlarge 

Figure  6.6: Showing results of the proposed ghost removal technique 
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(a) Qriginal (b) Enlarge 

  
(c) With ghost (d) Enlarge 

  
(e) Solving ghost (f) Enlarge 

  
(g) Solving edge resolution (h) Enlarge 

Figure  6.7: Showing results of the proposed ghost removal technique 
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 images; consequently all the ghost contours disappear from the interpolated image 

without leaving any corruption. Noticeably, omitting these edges from the 

interpolated image will generate an annoying cut-off for the foreground objects, as 

shown in Figure 6.5 (f), thus yielding a low resolution image. Therefore, it is 

necessary to recover the edge resolution in the interpolated image; this will be 

addressed at a later stage.     

Figure 6.5 and Figure 6.6 are examples of ghost contours on real images while 

Figure 6.7 is another example on a synthetic image. These figures compare the 

original virtual image edges in (a) and its close-up in (b) with the reconstructed 

virtual image edges after removing ghost contours and enhancing edge resolution in 

(e) and (g) and its close-up in (f) and (h), respectively. Enhancing the edge resolution 

process is illustrated in the subsequent steps. 

Step #5: Build a disparity map for the intermediate image 

Simply, we can create an intermediate image disparity map (dInt) based on the 

surrounding reference disparity maps dL and dR. This is done by transferring the 

coordinates of dL or dR into dInt coordinates. Specifically, in our proposed 

reconstruction algorithm, we use dL to build dInt by defining dL, dR, and dInt on the 

sampling grid SL, SR, and SInt, respectively; then the dInt is calculated as in equation 

(6.7) and (6.8):  

LLLInt Sxxdxdxd  )())((                                                  ( 6.7) 

RRRInt Sxxdxdxd  )())()1((                                          ( 6.8) 

Unfortunately, x – α dL(x) and x + (1 – α) dR(x) may not belong to the sampling grid 

SL or SR, respectively. Therefore, we use a round operation to let x – α dL(x) and x + 

(1 – α) dR(x) belong to SL or SR, respectively. Using a round operation leaves small 

black holes and cracks in the dInt in addition to the holes in the disocclusion area 

generated by changing virtual camera position; this will handled in the subsequent 

stages. These holes and cracks are clearly shown in Figure 6.8 (c). 
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Step #6: Filling re-sampling holes 

Accurate filling of the holes and cracks produced by the transfer of disparity maps 

from a known to a virtual one is required in order to generate an error-free 

intermediate image. As we described in section 6.2, a median filter is one of the 

solutions applied in the literature to fill these holes and cracks, but we proved in this 

study that a median filter gives inaccurate results in detailed areas of the image. 

Moreover, the median filter leaves holes of size greater than 2 × 2 pixels unfilled. 

Therefore, we propose a new filling technique that overcomes the median filter 

disadvantages.  

Our proposed technique is an object-based filling that considers the holes located in 

a foreground object or around its edges as belonging to the object and filled by its 

intensity while, if it is located in the background, it will be filled by the background 

intensity. Having omitted, in the previous step, two to three pixels from the object’s 

edges in the interpolated image, considering any hole located around an object’s 

edges as belonging to the object will fix some of these omissions. In addition, we 
have to complete this process by adding two pixels around all the foreground objects 

from the disparity value of the object itself. By this, we gain edges with high 

resolution that affect the resolution of the image, as shown in Figure 6.10 and Figure 

6.11 (e) and its close-up (f). 









)1()1(),1(
)1()1(),1(

)(
xdxdifxd
xdxdifxd

xd
IntIntInt

IntIntInt
holeInt             ( 6.9) 

Clearly, omitting pixels that cause ghost contours in the step #4 leaves a clear 

corruption of these edges, making them appear like step-edges, as shown in Figure 

6.4 (f); however, in this step, this corruption is enhanced by the proposed technique 

after extending the size of the foreground object from left and right sides.  

edgeisxdifxdxdxd IntIntIntInt )(),()2()1(                        ( 6.10) 

The effectiveness of the proposed filling technique is demonstrated in Figure 6.8. As 

the original disparity sometimes has an unknown area (black pixels) in it, as shown  
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(a) Original left disparity (b) Inpainted disparity with proposed 
algorithm 

(c) Resulting holes and cracks in the 
intermediated disparity after compensating 
from left disparity 

(d) After proposed hole filling techniques 

 
(e) After filling disocclusion area 

Figure  6.8: Depicting transferring the inpainted left disparity to the intermediate 
image process and the generated cracks and holes in it. Also depicting filling these 
holes by the proposed techniques. 
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(a) After filling holes with median filter (b) After filling disocclusion area 

Figure  6.9: After filling the re-sampling holes with median filter and its effect after 
filling disocclusion area. 

in Figure 6.8 (a), inpainting those areas is necessary before transferring their 

coordinates into the intermediate coordinates, as illustrated in Figure 6.8 (b). Now, 

the inpainting disparity has no holes in it, and we can clearly see the holes and cracks 

that were generated by mapping the coordinates of the inpainted original disparity 

onto the intermediate disparity, as shown in Figure 6.8 (c). Filling these holes and 

cracks by the proposed technique is demonstrated in Figure 6.8 (d), with the final 

disparity depicted in Figure 6.8 (e) after filling the disocclusion area. Hole-filling by 

median filter is demonstrated in Figure 6.9 (a), and we can see that the holes are not 

completely filled due to their size even though it is not a disocclusion area; this is 

proved in Figure 6.9 (b), where they are still unfilled.  

The comparison between the reconstructed image that is generated after filling the 

holes and cracks by median filter and by the proposed filling technique is shown in 

Figure 6.10, with the original intermediate image shown in Figure 6.10 (a). As we 

can see, edges are corrupted if the holes are filled by median filter, as shown in 

Figure 6.10 (d) which is an enlargement of a small chunk containing edges.  The 

edges in Figure 6.10 (f) which were generated after filling by the proposed technique 

are identical to the edges of the original image in Figure 6.10 (b). Figure 6.11 is the 

same example of Figure 6.10 but using a different image. 
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(a) original (b) Enlarge 

(c) With median filter (d) Enlarge 

(e) With proposed technique (f) Enlarge 

Figure  6.10: Comparing the reconstructed image using our proposed framework if 
we used the median filter to fill the re-sampling holes and the proposed techniques. 
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(a) Original (b) Enlarge 

  

(c) With median filter (d) Enlarge 

  
(e) With proposed technique (f) Enlarge 

Figure  6.11: Comparing the reconstructed image using our proposed framework if 
we used the median filter to fill the re-sampling holes and the proposed techniques. 
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Step #7: Disocclusion handling 

Since all occluded and newly-exposed areas are inpainted in the dL and dR, we can 

recover the newly-exposed area in the dInt from one of the known disparities (dL and 

dR). This is because the newly-exposed area in the dInt is considered part of the 

newly-exposed area of the known disparities. Since, in our proposed reconstruction 

algorithm, the dInt is built from dL, the newly-exposed area in dInt will be recovered 

from dR accurately using the following equation:   

IntLRInt SxxVMifxdxdxd  1)())()1(()(                 ( 6.11) 

Step #8: Estimate the texture of the intermediate image 

After generating an error-free disparity map for the intermediate image, we can 

reconstruct the texture of the intermediate image from surrounding known images. 

The reconstruction process depends on the visibility of each image point in the 

intermediate image, so we will use the visibility matrix built in step #3. Image points 

that are visible in one of the surrounding images will be reconstructed from this 

image, while we use the weighted-average for the image points that are visible in 

both images, as illustrated in equation (6.12). Also, using one image to reconstruct 

those points is another suggested solution that can be used. 
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x belongs to sampling grid SInt, but x + α dInt (x) and x - (1 – α) dInt (x) may not 

belong to SL and SR. However, this can be solved easily using spatial interpolation as 

follows: 

)( xdxL Intpos                                                                                                ( 6.13) 

௣௢௦൯ܮ௅൫ܫ = ൫ඃܮ௣௢௦ඇ − ௣௢௦൯ܮ ∗ ௣௢௦ඏ൯ܮ௅൫උܫ − ௣௢௦ܮ) − උܮ௣௢௦ඏ) ∗  (6.14 )          (௣௢௦ඇܮඃ)௅ܫ
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Equation (6.14) is also applied on Rpos of x - (1 – α) * dInt(x). Thus, we generate an 

intermediate image with filled holes, recovered disocclusion regions, removed ghost 

contours, and high resolution for edges. 

Step #9: Inpaint double-occlusion area in the intermediate image   

The visibility matrix contains four labels (1,-1, 0, and 2), and we have handled the 

first three labels while the last one, which refers to double occlusion, has not yet 

been handled. In particular, these areas in dInt are not visible in any of the 

surrounding images. Double occlusion areas do not often occur and, should one be 

found, it will be small in relation to the image size. Inpainting a double occluded 

area in dInt leads to false reconstruction of those areas in the interpolated image due 

to the absence of these pixels from the reference images. Therefore, separating 

inpainting as a post-processing for the interpolated image is a suitable solution to 

recover those areas from the neighbouring pixels.  

  
(a) Left image (b) Right image 

  
(c) Interpolated image with double 

occlusion area (d) After inpainting double occlusion area 

Figure  6.12: Showing the double-occlusion area problem before and after inpainting 
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As the inpainting will be applied to remove a small object from the texture images, 

many algorithms have been proposed for this purpose. So, we inpaint the double 

occluded area in our reconstruction algorithm by using the Exemplar-based 

inpainting algorithm [138], which combines the advantages of texture synthesis 

algorithms and inpainting techniques. Synthesized pixel values are diffused in a 

similar way to the diffusion of pixels in inpainting, which results in inpainting both 

texture and structure. Figure 5.12 shows an example of how a double occlusion area 

appears in a reconstructed image and demonstrates how the Exemplar-based 

inpainting technique inpaints those areas accurately. 

6.4 Summary 

In this chapter, a novel intermediate view reconstruction algorithm has been 

proposed to overcome the deficiencies of the previous reconstruction algorithms. 

This novel algorithm focuses on how to find an intermediate image with a given 

disparity between two input images. As the detection and handling occlusion 

problem are considered from the challenges of the intermediate view reconstruction, 

we employed the algorithms proposed in Chapters 4 and 5 in a novel occlusion- 

aware intermediate view reconstruction. We proposed three quality improvement 

techniques to reduce image artifices. First, instead of using a median filter to fill 

cracks and holes produced by image re-sampling, we proposed an object-based 

filling technique that fills, by the object’s intensity, the holes located in a foreground 

object or around its edges. Subjective and objective evaluations proved that the 

proposed technique produces more accurate results around object boundaries. 

Second, we removed the ghost contours from the virtual view and restored them to 

their correct place by extending the newly-exposed area three pixels in the direction 

where the ghost contour is located. Third, since the novel reconstruction algorithm 

detects and inpaints the occlusion areas in the two input disparity maps, the 

disocclusion areas are recovered from one of the input images. Inpainting a double-

occlusion area as a post-processing step is considered a reasonable solution to this 

problem since it is not visible in both reference images, so inpainting in the disparity 

maps is not a viable solution. 



 7 Occlusion-Aware Intermediate View 
Reconstruction Algorithm Results 

An evaluation of our proposed reconstruction algorithm is presented in this chapter. 

We compare the proposed reconstruction algorithm to the standard backward- and 

forward-projection approaches quantitatively using PSNR, and qualitatively by 

conducting a human-trial experiment on a 3D display. 

7.1 Experiment 

7.1.1 Objective 

n order to evaluate the proposed reconstruction algorithm qualitatively on a 3D 

display, a subjective human trial is performed to assess the quality of the 

reconstructed intermediate image on 3D display relative to the reference 

intermediate image based on the ITU-R 500 recommendation and comparing it to the 

reconstructed images by backward and forward algorithms. ITU-R 500 

recommendation is a methodology that followed to assess the quality of television 

pictures by number of participants [139]. In section 7.1.3, we will explain in details 

the followed methodology of this recommendation. 

7.1.2 Hypothesis 

Our expectation is that the perceived image quality of the proposed reconstructed 

algorithm from the subjective human-based trial will be better than the reconstructed 

images by backward and forward algorithms. Thus, the difference between the 

reference image and the reconstructed image obtained by the proposed algorithm 

will be smaller than the difference between the reference image and the one 

reconstructed by the existing algorithms. 

I 

CHAPTER 

7 
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7.1.3 Method 

In this experiment, we followed the double-stimulus continuous quality scale 

(DSCQS) method for stereoscopic image based on the ITU-R 500 recommendation 

[139]. Using the DSCQS method, the participants view a pair of stereoscopic images 

of the same image; one is the reconstructed (degraded) image and the other one is the 

reference image. The participants are asked to evaluate the quality of both images. 

Based on the ITU-R 500 recommendation, each participant has a session of no 

longer than 30 minutes’ duration. A sequence of stereoscopic image pairs of 

different types is presented to the observers in random order. At the end of the 

experiment, the mean of difference scores of all participants for each algorithm per 

image are computed.  

7.1.4 Equipment and Viewing Conditions 

A full-resolution True 3Di stereoscopic display is used for displaying 3D 

experimental test images. This display consists of a twin-LCD display, one for the 

left eye and the other for the right eye; each one is a 24-inch with 1920 × 1200 

resolution. Thus, a full-resolution view is delivered to each of the viewer’s eyes. The 

participants are required to wear polarized glasses to combine the left and right 

images on a virtual 3D image. The grading scores are run separately on a 15.4-inch 

Toshiba LCD monitor with 1280 × 800 resolution. In this experiment a Dell 

Precision PWS670 computer with NVIDIA Quadro FX5600 graphics card is used. 

The experiment is carried out in a lit room with organized equipment as shown in 

Figure 7.1. 

 

 

Figure  7.1: The equipments used in the experiment 
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7.1.5 Test Images 

The experiment is performed on two types of images - real and synthetic - and there 

are thirteen for each type. The real images are downloaded from the Middlebury site, 

while 8 of the synthetic images are computer-generated and 5 are downloaded from 

the Alberta University dataset. Each is assessed with three different algorithms to 

show the participant 39 real images and 39 synthetic images. In each used dataset, 

we select two images as reference images and from those we reconstruct two virtual 

images in between them to be tested in the subjective assessment. Thus, the 

participant will see an interpolated image in each eye so the stereoscopic image will 

be fully interpolated; therefore, our reconstruction algorithm will be scored 

accurately, as demonstrated in Figure 7.2. This is in contrast to the performed 

experiments in the literature [101, 103], which show the participants the reference 

image in one eye and the interpolated image in the other; these will be evaluated 

inaccurately. 

7.1.6 Participants: 

In total, 21 subjects (13 male, 8 female) participated in this experiment. Their ages 

range from 22 to 38, with a mean of 28 years. Subjects who meet minimum criteria 

in three vision tests are selected as assessors. Following ITU-R 500 

recommendations, all participants are non-experts in assessing image quality in their 

normal work. In addition, they are not aware that one of the images is a reference 

image.    

7.1.7 Protocol: 

7.1.7.1 Procedure 

The experiment is divided into three phases: vision test phase, training phase and 

trial phase. Firstly, in a vision test phase three quick tests are conducted on the 

participants; only those participants who meet the minimum criteria for vision acuity 

with 20:30, stereo-acuity at 40 sec-arc, and who passed an Ishihara colour vision test 

will participate in the experiment. After that, the selected assessors are trained on 

five pairs of stereoscopic images in a training phase. They are asked to assess the 

quality of the trial images as part of the assessment procedure, although the results of  
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Figure  7.2: Depicts the overall system of the experiment 

the training phase will not be included in the trial results analysis. Then, the 

participant is ready to start the experiment trial to assess 84 experimental images in 

two sessions with a short break in between. At the beginning of each session, three 

images are added to stabilize the participant’s opinion although they are not included 

in the results analysis as they are repeated randomly in each session.  

Each participant views these images in a different order from the other participants. 

Each time, the participants see two images and are advised to switch between them 

up to 4 times even though no restrictions are enforced. Scoring the quality of these 

two images is performed in a different 2D display where the participants are asked to 
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adjust the slider bar to indicate the assessed quality of the images. Once the 

participants have submitted their results, the next pair of stereoscopic images is 

displayed in a 3D display and they cannot go back to the previous images. 

In total, the experiment takes half an hour, as the three vision tests and the training 

session take about 15 minutes, while the trial session takes another 15 minutes 

including a short break in the middle. All participants are aware that they can 

withdraw from the trial at any time and they are given the chance to ask questions at 

any time during the experiment.      

7.1.7.2 Grading Scales 

As the participants view two stereo images simultaneously, two sliding bars, one for 

each image, are displayed on the 2D display, as shown in Figure 7.3. For each pair of 

stereo images, the participants are asked to assess the quality of each stereo image by 

choosing the appropriate scale from the following five scales: Excellent, Good, Fair, 

Poor, and Bad. Based on the normal ITU-R five-point quality scale, these scales 

provide a continuous rating system although they are divided for guidance purposes. 

Once the participant has moved the sliding bar to the desired scale and pressed 

submit, the assessment is converted to a normalized score between 0 and 100 and 

recorded on the scoring sheet.    

 

Figure  7.3 Grading score of a pair of images 
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7.2 Results and Analysis 

An evaluation of our proposed reconstruction algorithm is presented in this section. 

Based on the materials used and the experiments conducted, we will discuss the 

result analysis, the measurements and a comparison of the results for our proposed 

algorithm with the standard techniques of this field in the subsequent sections. 

7.2.1 Materials 

The performance of our proposed reconstruction algorithm is tested on various 

datasets. The real images are downloaded from the Middlebury site and selected 

from different datasets; these images are depicted in Figure A.1 in Appendix A. 

Some of the datasets contain nine images while the others contain seven images. 

Specifically, from the nine-image dataset, we choose image 2 and image 6 as a 

reference images due to the availability of disparity maps for them, while image 3 

and image 5 are considered as original virtual images. From the seven-image dataset, 

image 1 and image 5 are chosen as reference images and image 2 and image 4 as 

original virtual images. The Middlebury datasets are rectified images obtained from 

cameras arranged in parallel setup geometry. They are associated with high-quality 

disparity maps but they contain unknown areas that need inpainting. 

 As for the synthetic datasets, eight of them are generated by graphics software and 

five are downloaded from Alberta University that are shown in Figure A.2 and 

Figure A.3, respectively, in Appendix A. For each generated dataset we assumed the 

distance between the reference images is a normalized distance, so the IL is located at 

α = 0, and the IR at α = 1. Thus, the reconstructed images should be at 0 < α < 1, so 

we generate two original images for the reconstructed images at α = 0.25 and α = 

0.75 to be in the same position as the real images. The disparity maps are generated 

accurately by giving a depth for the object while leaving the background static. 

The Alberta University dataset consists of three different datasets, each one 

containing four different images (left image and right image with three different 

baseline separations) with ten different textures and three different amounts of noise. 

We select the leftmost and the rightmost (at 45 pixel baseline) images as reference 
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images; the right images at a baseline of 15 and 30 pixels are considered original 

virtual images. 

7.2.2 Experimental Results 

The reconstructed images from our proposed reconstruction algorithm are evaluated 

quantitatively using PSNR metric and qualitatively by human trial experiment. 

Although the PSNR is a good metric to compare images, it does not indicate how 

high the quality of the reconstructed images will be in the 3D display. Therefore, we 

conduct a human trial test empirically to measure whether the reconstructed image is 

of good quality in the 3D display or not. 

7.2.3 PSNR 

Peak Signal to Noise Ratio (PSNR) is calculated by comparing the interpolated 

image with the original one to compute the Mean Square Error (MSE) which results 

from the corrupted noise. The MSE and PSNR equations are calculated as in 

equation (5.21) and (5.22) in Chapter 5, where I(x, y) is the original interpolated 

image, Iᇱ(x, y) is the interpolated image, M and N are the dimensions of the images 

and maxp is the maximum pixel value in the image. Higher PSNR refers to higher 

image quality due to less error noise. To calculate the PSNR for the coloured (RGB) 

images, it is converted to the YCbCr space first. Then, the PSNR is calculated for the 

Y (luma) component since it contains a weighted average for the R, G, and B 

components, giving the G the highest weight.  

7.2.3.1 PSNR results 

For each different algorithm, the PSNR is calculated for the real and synthetic image 

type as shown in Tables 7.1 and 7.2 and drawn in Figure 7.4 and Figure 7.5, 

respectively. Also, the average of PSNR for 13 images of each algorithm under two 

image types is depicted in Table 7.3. As we can see, the proposed algorithm gained 

on average a higher PSNR of ~9 db than a standard backward algorithm and ~14 db 

than a standard forward algorithm. However, the following results from ANOVA 

illustrate these results.  

 



Chapter 7: Occlusion-Aware Intermediate View Reconstruction Algorithm Results 
 

161 
 

Table  7.1: The PSNR of 13 real images for three different algorithms 

Image Name Backward Forward Novel 
R1 28.42 17.87 37.02 
R2 22.81 20.43 36.05 
R3 26.73 20.42 35.38 
R4 27.78 21.31 35.96 
R5 27.25 23.31 36.11 
R6 23.97 20.61 41.52 
R7 28.02 24.73 33.98 
R8 33.05 27.19 40.26 
R9 26.18 20.22 39.82 
R10 27.11 22.48 38.80 
R11 31.91 25.02 38.26 
R12 30.24 25.86 33.63 
R13 28.66 25.52 31.77 

Table  7.2: The PSNR of 13 synthetic images for three different algorithms 

Image Number Backward Forward Novel 
S1 30.42 40.17 49.79 
S2 24.26 27.06 38.29 
S3 27.09 29.56 39.90 
S4 26.13 29.46 37.74 
S5 27.99 30.92 47.28 
S6 25.67 29.76 35.89 
S7 22.36 24.00 43.24 
S8 24.96 24.03 43.26 
S9 29.94 24.27 39.67 
S10 28.30 22.23 40.03 
S11 29.01 21.70 40.23 
S12 29.01 23.67 40.62 
S13 27.91 22.25 38.60 
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7.2.3.2 ANOVA analysis for PSNR results 

Two-way ANOVA is conducted to see whether there is a significant difference 

between the three different reconstruction algorithms, the two types of image, and 

their interaction in the mean of difference scores. To investigate which of these 

algorithms are significantly different, each pair of means is compared by Tukey 

Multiple Comparison Test.  

The results from two-way ANOVA indicated that the three different algorithms are 

statistically significant, (p value = 0.000), with a 0% probability of them being the 

same. Also, there is a significance difference between the two types of images (real 

and synthetic), (p value = 0.001) < 0.05. Moreover, the interaction between these 

two variables (Image type * Algorithm) is statistically significant  (p value = 0.002.) 

The result from the Tukey multiple comparison test showed that there is no 

significance difference between Backward and Forward algorithms as p value is 

0.426, while the Novel algorithm is 100% significantly different from the other 

algorithms. This is clearly shown in Figure 7.4 and Figure 7.5. 

Table  7.3: The mean and standard deviation of PSNR for three different algorithms 
under two type of images. (N refers to the number of images) 

Image Type Algorithm Mean Std. Deviation N 

Real Backward 27.8562 2.82337 13 

Forward 22.6900 2.80106 13 

Novel 36.8123 2.83742 13 

Synthetic Backward 27.1570 2.36924 13 

Forward 26.8521 5.15252 13 

Novel 41.1187 3.88443 13 
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Figure  7.4: PSNR of the 13 real images for three different algorithms 

 

Figure  7.5: The PSNR of 13 synthetic images for three different algorithms 

7.2.3.3 Effectiveness of the proposed hole-filling technique vs. median filter: 

Instead of using the proposed hole-filling technique, a median filter of size 3 × 3 is 

used to fill the holes and cracks in the virtual disparity to reconstruct a virtual image. 

Then, a PSNR is calculated for 16 images which are then compared to the PSNR of 

our reconstructed images by using the proposed hole-filling technique. These PSNR 

are depicted in Table 7.4. The quantitative measures show the effectiveness of the 

proposed hole-filling technique, which gained 1.22 db over a median filter.    
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Table  7.4: The PSNR of 16 images (13 real, 3 synthetic) which show the 
effectiveness of the proposed hole-filling technique over a median filter. 

Image 
Name 

With median filter With proposed object-
based technique 

R1  36.17 37.02 
R2  34.20 36.05 
R3  34.17 35.38 
R4  35.70 35.96 
R5  35.37 36.11 
R6  40.65 41.52 
R7  40.20 40.26 
R8 33.01 33.98 
R9  37.72 39.82 
R10 37.38 38.80 
R11  37.05 38.26 
R12  33.42 33.63 
R13  30.80 31.77 
S11 38.09 40.03 
S12 37.37 40.62 
S13 36.98 38.60 

 

7.2.3.4 Effectiveness of the linear interpolation vs. nonlinear interpolation 

The texture of the intermediate image can be reconstructed based on the visibility of 

each image point in the intermediate image. So image points that are visible in one of 

the surrounding images will be reconstructed from this image. On the other hand, 

linear and non-linear interpolation can be used to reconstruct image points that are 

visible in all the reference images. In a linear interpolation, a weighted-averaging of 

all the available reference images is used to estimate the texture of the image points 

that suffer from a blurring effect while, in non-linear interpolation, one of the 

reference images that suffer from a patchiness effect is used. Therefore, the PSNR is 

calculated for 20 images (15 real, 5 synthetic) to demonstrate which of the above 

methods gives a result close to the original intermediate image. These PSNR are 

depicted in Table 7.5. The quantitative measures show the effectiveness of the linear 

interpolation, which gained 1.21 db over a non-linear interpolation.    
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Table  7.5: The PSNR of 20 images (15 real, 5 synthetic) showing the effectiveness 
of the linear interpolation vs. non-linear interpolation for estimating the texture of 
intermediate image points that are visible in all the reference images. 

Image Number PSNR with linear 
interpolation 

PSNR with  nonlinear  
interpolation 

Difference 

Barn2 (R11) 38.26 37.37 0.89 
Bull (R7) 40.26 39.82 0.44 
Poster (R13) 31.77 30.80 0.97 
Sawtooth (R8) 33.98 33.00 0.98 
Venus (R12) 33.63 32.98 0.65 
Book (R2) 36.05 35.04 1.01 
Bowling (R5) 36.11 35.58 0.53 
Doll (R3) 35.38 34.75 0.63 
Lampshade (R1) 37.02 36.23 0.79 
Midd1 (R4) 35.96 35.35 0.61 
Plastic (R6) 41.52 40.38 1.14 
Reindeer  32.61 32.18 0.43 
Rock (R10) 38.80 37.50 1.30 
Teddy 33.22 32.80 0.42 
Wood (R9) 39.82 39.38 0.44 
S11 40.62 38.92 1.70 
S12 41.04 38.27 2.77 
S13 40.11 36.90 3.21 
S14 41.52 39.18 2.34 
S15 39.22 36.26 2.96 

 

7.2.3.5 Effectiveness of the proposed inpainting technique vs. other methods: 

Due to the availability of ground truth disparity, the occlusion areas do not need 

inpainting; therefore the disocclusion areas in the virtual disparity are recovered 

from one of the available disparities. The above PSNR is calculated for this 

disocclusion recovery. Thus, the occluded areas are detected and added to the 

disparity for inpainting by the proposed inpainting technique and then an 

intermediate image is reconstructed by the proposed reconstruction algorithm. The 

PSNR for these reconstructed images is calculated to compare it to the PSNR of 

reconstructed images using ground truth disparity. This comparison is depicted in 

Table 7.6. As we can see, the PSNR values are very close to one another; even the 

occlusion areas are very large and inpainting them is considered a hard task.    
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Table  7.6: Comparing the PSNR of the reconstructed images using ground truth 
disparity vs. the reconstructed images using the inpainted disparity by the proposed 
inpainting technique. 

Image Number PSNR With occlusion 
inpainting 

barn2 (R11) 38.2560 38.2401 
Bull (R7) 40.2638 40.2299 
Plastic (R6) 41.5169 40.9369 
Poster (R13) 31.7716 31.7311 
Sawtooth (R8) 33.9812 33.8752 
Venus (R12) 33.6314 33.6277 
Wood (R9) 39.8229 38.8951 
Teddy 33.2245 33.1645 
Reindeer 32.6078 32.0756 

 

As we have compared, in chapter 5 the proposed inpainting technique to the other 

four techniques (HEDI, ROIFILL, FOE, and Exemplar-based), it is necessary to 

compare the effectiveness of these inpainting techniques on the reconstructed 

images. Therefore, in Table 7.7 we have compared the PSNR of the reconstructed 

image using inpainted disparity by the proposed inpainting technique with the 

reconstructed images using the inpainted disparity by other inpainting techniques. 

We conclude that the PSNR using the proposed inpainting technique is relatively 

close to the original disparity even though this disparity has unknown areas that are 

also inpainted explicitly by the proposed inpainting technique. Moreover, the 

occluded area of the Reindeer disparity image that is shown in Figure 5.14 is 

considered a complicated area where a large part of the arc has disappeared, and 

inpainting it is considered a hard task. Therefore, this close PSNR is a positive 

evaluation of our proposed inpainting technique.  

Noticeably, the PSNR using the proposed inpainting technique is higher than the 

other four techniques. ROIFILL technique has the lowest PSNR due to 

incompleteness of the filling process for the occlusion areas. As we can see, the 

image size for FOE and Exemplar-based inpainting techniques is (447 × 370) which 

is smaller than that used for other inpainting techniques (671 × 555), because a larger 

image cannot be completely inpainted due to the out-of-memory problem. 
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Table  7.7: Compares the PSNR of four different inpainting techniques with the 
PSNR of the proposed inpainting technique.  

Inpainting 
Technique 

PSNR Image size Inpainting time 

Original6 32.6078 671 × 555 - 
proposed 32.0756 671 × 555 19.448148 
HEDI 31.4672 671 × 555 0.413368 
ROIFILL 24.4828 671 × 555 1.380815 
FOE 29.2865 447 × 370 304.611208 
Exemplar 28.6536 447 × 370 434.515383 

7.2.3.6 Step-by-step quality improvement  

To measure the quality improvement for each step in the intermediate view 

reconstruction algorithm, the PSNR is calculated after each quality improvement 

step and the values are drawn in one figure as shown in Figure 7.6. The PSNR for 

each improvement step is depicted in Table 7.8. Noticeably, each quality 

improvement step affects the improvement procedure. Specifically, the disocclusion 

handling step shows a major improvement due to the large size of the disocclusion 

area relative to the other area processed by other improvement steps. 

Table  7.8: Step-by-step PSNR for the proposed improvement techniques in the 
proposed reconstruction algorithm. 

Processing Steps PSNR 
Basic backward   25.7648 
With inpainting unknown areas 26.3270 
Handling visibility problem 27.8303 
Solving ghost contours 28.1642 
Hole and cracks Filling  29.3914 
Disocclusion handling 33.2245 

 

                                                
6 Original refers to the original disparity with unknown area that inpainted by the proposed inpainting 
algorithm also. 
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Figure  7.6: Showing step-by-step quantitative measures for the proposed 
improvement techniques  

7.2.3.7 Examples on reconstructed images  

Examples of reconstructed images by three different algorithms are demonstrated in 

Figure 7.7, Figure 7.8, and Figure 7.9. In each figure, a different image type is used. 

Figure 7.7 is an example of a synthetic image generated by computer graphics 

software and is considered a very simple image. Figure 7.8 is another example of a 

synthetic image but it is downloaded from Alberta University and is more 

complicated than the former. Figure 7.9 is an example of a real image downloaded 

from the Middlebury site.  

These figures clearly show that our proposed algorithm reconstructs an intermediate 

image which is very close to the original virtual image. On the other hand, the 

reconstructed images using backward and forward algorithms have many corruption 

areas. With the backward algorithm, the main corruption areas are located in the 

occlusion area because it is not handled, while the reconstructed image by forward 

algorithm has many cracks on it due to the generation of undefined points in the final 

image, in addition to the corruption of the occlusion areas. 
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(a) original (b) Backward 

  
(c) Forward (d) Novel 

(e) Enlarge of (a) (f) Enlarge of (b) (g) Enlarge of (c) (i) Enlarge of (d) 

Figure  7.7: showing the reconstructed image from the three different algorithms and 
comparing them to the original 
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(a) original (b) Backward 

  
(c) Forward (d) Novel 

  
(e) Enlarge of (a) (f) Enlarge of (b) 

  
(g) Enlarge of (c) (i) Enlarge of (d) 

Figure  7.8: showing the reconstructed image from the three different algorithms and 
comparing them to the original 
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(a) original (b) Backward 

  
(c) Forward (d) Novel 

  
(e) Enlarge of (a) (f) Enlarge of (b) 

  
(g) Enlarge of (c) (i) Enlarge of (d) 

Figure  7.9: showing the reconstructed image from the three different algorithms and 
comparing them to the original 
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7.2.4 Subjective Human Trial  

Data collected from the subjective human trial are subjected to two-way Analysis of 

Variance (ANOVA), where the reconstruction algorithm and image type are 

considered as independent variables and scores as dependent variables. The 

confidence interval is assumed to be 95%. Two-way ANOVA is conducted to see 

whether there is a significant difference between the three different reconstruction 

algorithms, the two types of image, and their interaction in the mean of the 

difference scores. To investigate which of these algorithms are significantly 

different, each pair of means is compared by Tukey Multiple Comparison Test.  

As the assessment scores will be normalized scores in the range [0,100], the 

difference between the assessment of the reference and the reconstructed image 

sequences will be calculated for each image. Greater difference indicates worse 

perceived image quality. Figure 7.10 and Figure 7.11 show the box plots of the 

results for all participants for algorithm and image type independent variables, 

respectively. The distribution of the mean of difference score for the three different 

algorithms is depicted in Figure 7.12.  

The box plot in Figure 7.10 and the distribution in Figure 7.12 indicate that the 

proposed algorithm has smaller differences i.e. smaller mean scores, than the 

backward and forward algorithms. Specifically, it is very clear from Figure 7.12 (c) 

that the mean of difference score for the proposed algorithm is located between 3 and 

30, which yields a small difference between the reconstructed image and the original 

one. On the other hand, the mean of difference scores for the generated image using 

backward and forward algorithms are distributed between 29 and 54, and 30 and 61, 

respectively, which yield a greater difference between the reconstructed images and 

the original one. Therefore, the quality of the reconstructed image using the proposed 

algorithm is closer to the original image than the reconstructed images by backward 

and forward algorithms. In addition, the mean of difference scores and standard 

deviation for each algorithm under two types of image is shown in Table 7.9. As we 

notice in this table, there is a big gap between the overall mean of difference scores 

of the proposed algorithm and the backward and forward algorithms under two types 
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of images. The following ANOVA analysis determines whether the proposed 

algorithm is statistically different from the other algorithms or not.    

Table  7.9: The mean of difference scores and standard deviation for each algorithm 
under two type of images 

Image Type Algorithm Mean Std. Deviation N 
Real Backward 41.7875 6.39614 13 

Forward 51.8168 6.01227 13 
Novel 15.8352 9.80443 13 

Synthetic Backward 45.9670 4.97455 13 
Forward 46.9817 7.96595 13 
Novel 10.8242 5.94318 13 

 

The results from two-way ANOVA indicated that the three different algorithms are 

statistically significant, (p value = 0.000), with a 0% probability of them being the 

same. There is no significant difference between the two types of images (real and 

synthetic), (p value = 0.239) > 0.05. At the same time, the interaction between these 

two variables (Image type * Algorithm) is statistically significant  (p value = 0.031.) 

 

 

Figure  7.10: Box Plot results for three different algorithms 
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Figure  7.11: Box Plot results for two types of images 

Backward Forward 

 
proposed 

Figure  7.12: Showing the distribution of the mean of difference scores of the three 
different algorithms 
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The result from Tukey multiple comparison test showed that there is a significant 

difference between Backward and Forward algorithms as p value is 0.016, while the 

Novel algorithm is 100% significantly different from the other algorithms. This is 

clearly shown in Table 7.10. The mean and standard deviation of the difference score 

are depicted  in Table 7.11, Figure 7.13 and Figure 7.14. 

Table 7.12 shows that the mean of difference scores for the two image types are 

close to each other and this is evidence that there is no significant difference in the 

mean of difference scores. However, the interaction between image type and 

algorithm is statistically significant. This means that, under real image type as well 

as under synthetic image type, the mean of difference scores of the three different 

algorithms are statistically different. This is shown in Table 7.13. On the other hand, 

to verify whether the mean of difference score of each algorithm under two types of 

image (i.e. interaction between algorithms and image type) is statistically different or 

not, a t-test is conducted to investigate. Indeed, there is no significant difference 

between the mean of difference score of the novel algorithm when applied to the real 

and synthetic images (p value = 0.128). In addition, there is no significant difference 

using backward and forward algorithms with p values = 0.075 and 0.093, 

respectively. Table 7.14 clearly shows the overall mean scores of the interaction 

between algorithms and image types (algorithms * image type). Figure 7.15, Figure 

7.16, and Figure 7.17 show the mean scores of each image type for novel, backward, 

and forward algorithms, where the real and the synthetic mean scores are very close 

to each other. 

Table  7.10: Tukey multiple comparison test results 

(I) 
Algorithms 

(J) 
Algorithms 

Mean Difference 
(I-J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Backward Forward -5.5220* 1.95037 .016 -10.1895 -.8545 

Novel 30.5476* 1.95037 .000 25.8801 35.2151 

Forward Backward 5.5220* 1.95037 .016 .8545 10.1895 

Novel 36.0696* 1.95037 .000 31.4021 40.7371 

Novel Backward -30.5476* 1.95037 .000 -35.2151 -25.8801 

Forward -36.0696* 1.95037 .000 -40.7371 -31.4021 
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Figure  7.13: Mean of difference scores for three different algorithms for the real 
image type 

 

Figure  7.14: Mean of difference scores for three different algorithms for synthetic 
image type 

Table  7.11: The mean of difference scores and standard deviation for each algorithm 

Algorithm Mean Std. Deviation N 
Backward 43.8773 6.00475 26 
Forward 49.3993 7.34086 26 
Novel 13.3297 8.34408 26 
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Table  7.12: The mean of difference scores and standard deviation for two types of 
images 

Image Type Mean Std. Deviation N 
Real 36.4799 17.04714 39 
Synthetic 34.5910 18.13963 39 

 

Table  7.13: The mean of difference scores for the interaction of image type and 
algorithms (Image_type*Algorithms). 

Image Type Algorithms Mean Score 
Real Backward 41.788 
 Forward 51.817 
 Novel 15.835 
Synthetic Backward 45.967 
 Forward 46.982 
 Novel 10.824 

Table  7.14: The mean of difference scores for the interaction of image type and 
algorithms (Algorithms* Image_type). 

Image Type Algorithms Mean Score 
Backward Real 41.788 
 Synthetic 45.967 
Forward Real 51.817 
 Synthetic 46.982 
Novel Real 15.835 
 Synthetic 10.824 

 

 

Figure  7.15: Mean of difference scores for the novel algorithm under different types 
of images 
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Figure  7.16: Mean of difference scores for the backward algorithm under different 
types of images 

 

Figure  7.17: Mean of difference scores for the forward algorithm under different 
types of images 

7.3 Conclusion 

We have compared our algorithm results with two well-known interpolation 

algorithms (backward- and forward-disparity compensation) qualitatively using 

PSNR and quantitatively using human-trial test; we have shown that the proposed 

algorithm results outperform these other algorithms. Also, we conducted other 

quantitative comparisons to show the following: Firstly, the effectiveness of the 

proposed hole-filling technique compared to using a median filter to fill the holes 

and cracks that are generated in the virtual disparity; secondly, the effectiveness of 

linear interpolation compared to non-linear interpolation to estimate the texture of 

the intermediate image; thirdly, the effectiveness of the proposed inpainting 

technique compared to using other existing methods to inpaint the occlusion areas; 
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fourthly, the step-by-step quality improvement in the proposed IVR algorithm. The 

performance of the proposed algorithm is tested under 13 real images and 13 

synthetic images. The proposed algorithm gains a higher PSNR under both types of 

images. Moreover, analysis of experimental results obtained from 21 participants 

confirmed that the reconstructed images from our proposed algorithm have very high 

quality comparing with the reconstructed images from the backward and forward 

projection algorithms. 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
 

 
 

 



Chapter 7: Occlusion-Aware Intermediate View Reconstruction Algorithm Results 
 

180 
 

Table  7.15: Depicts PSNR at two positions, mean of difference scores, Standard 
Deviation, and the minimum and maximum score from 21 participants for the real 
Images. 

Image Type 
Image 

Number 
Image 
Name 

PSNR Mean 
Score Std 

0.25 0.75 
R

e
a

l
 i

m
a

g
e

s
 

B
a

c
k

w
a

r
d

 
1 RB1 28.42 26.00 52.62 16.30 
2 RB2 22.81 20.90 39.05 21.28 
3 RB3 26.73 22.82 42.52 23.71 
4 RB4 27.78 25.48 46.57 15.35 
5 RB5 27.25 25.79 47.52 16.61 
6 RB6 23.97 20.57 47.10 19.70 
7 RB7 28.02 26.17 40.24 17.02 
8 RB8 33.05 29.41 35.52 15.36 
9 RB9 26.18 23.02 45.95 16.23 

10 RB10 27.11 25.40 44.00 13.49 
11 RB11 31.91 29.51 37.62 17.74 
12 RB12 30.24 28.91 35.33 14.64 
13 RB13 28.66 27.20 29.19 17.65 

F
o

r
w

a
r

d
 

1 RF14 17.87 18.67 54.43 20.32 
2 RF15 20.43 19.23 50.57 19.11 
3 RF16 20.42 22.11 60.86 23.19 
4 RF17 21.31 22.92 59.57 17.62 
5 RF18 23.31 23.67 60.29 17.79 
6 RF19 20.61 20.09 56.19 22.25 
7 RF20 24.73 25.19 43.29 18.06 
8 RF21 27.19 27.14 44.43 20.61 
9 RF22 20.22 20.49 45.86 25.99 

10 RF23 22.48 23.76 49.33 18.71 
11 RF24 25.02 24.70 49.29 15.53 
12 RF25 25.86 27.26 51.86 16.52 
13 RF26 25.52 25.40 47.67 17.87 

N
o

v
e

l
 

1 RN27 37.02 38.56 29.86 14.47 
2 RN28 36.05 36.57 21.57 16.51 
3 RN29 35.38 36.03 24.62 18.66 
4 RN30 35.96 37.08 25.81 15.46 
5 RN31 36.11 36.97 26.71 15.21 
6 RN32 41.52 40.86 3.05 5.21 
7 RN33 33.98 34.51 20.86 6.66 
8 RN34 40.26 37.71 3.76 15.59 
9 RN35 39.82 40.99 6.62 8.18 

10 RN36 38.80 40.30 11.10 12.14 
11 RN37 38.26 37.60 7.52 8.87 
12 RN38 33.63 36.77 5.43 6.82 
13 RN39 31.77 34.00 18.95 15.74 
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Table  7.16: Depicts PSNR at two positions, mean of difference scores, Standard 
Deviation, and the minimum and maximum score from 21 participants for the 
synthetic Images. 

Image 
Type 

Image 
Number 

Image 
Name 

PSNR Mean 
Score Std 

0.25 0.75 
S

y
n

t
h

e
t

ic
 I

m
a

g
e

s
 

B
a

c
k

w
a

r
d

 
1 SB1 30.42 32.75 49.57 14.23 
2 SB2 24.26 25.07 50.14 19.10 
3 SB3 27.09 28.30 49.67 17.89 
4 SB4 26.13 27.35 47.14 17.54 
5 SB5 27.99 28.72 54.14 15.97 
6 SB6 25.67 26.95 46.67 21.50 
7 SB7 22.36 22.73 47.62 22.04 
8 SB8 24.96 24.22 48.48 18.34 
9 SB9 29.94 28.06 40.43 17.70 

10 SB10 28.30 25.84 42.81 14.00 
11 SB11 29.01 26.73 36.29 20.52 
12 SB12 29.01 27.31 44.95 17.41 
13 SB13 27.91 25.63 39.67 16.23 

F
o

r
w

a
r

d
 

1 SF14 40.17 36.06 30.86 15.48 
2 SF15 27.06 31.17 46.71 21.38 
3 SF16 29.56 31.21 44.57 23.12 
4 SF17 29.46 32.72 43.00 23.24 
5 SF18 30.92 36.16 43.81 20.09 
6 SF19 29.76 34.41 43.86 19.62 
7 SF20 24.00 26.07 45.00 14.28 
8 SF21 24.03 27.22 38.14 20.83 
9 SF22 24.27 24.27 50.62 18.50 

10 SF23 22.23 22.28 57.24 20.40 
11 SF24 21.70 22.05 58.33 17.21 
12 SF25 23.67 23.84 50.90 19.72 
13 SF26 22.25 22.28 57.71 20.25 

N
o

v
e

l
 

1 SN27 49.79 49.79 5.29 8.01 
2 SN28 38.29 33.50 4.90 8.48 
3 SN29 39.90 39.93 11.76 11.06 
4 SN30 37.74 37.76 5.52 12.68 
5 SN31 47.28 43.34 5.05 6.63 
6 SN32 35.89 38.05 7.38 10.00 
7 SN33 43.24 43.24 4.10 7.85 
8 SN34 43.26 43.26 9.33 8.97 
9 SN35 39.67 40.62 20.10 13.85 

10 SN36 40.03 41.04 14.81 12.34 
11 SN37 40.23 40.11 17.19 13.85 
12 SN38 40.62 41.52 16.90 14.19 
13 SN39 38.60 39.22 18.38 14.67 

 



 8 Conclusions and Future Work 

This chapter offers a general discussion on the main contribution of this research, 

followed by a list of open directions for future research issues. 

8.1  Conclusions 

he main goal of the research presented in this thesis is to generate 

additional images from the available reference images. Intermediate view 

reconstruction (IVR) is considered an effective solution for the generation 

process instead of using a multi-camera system. Specifically, this approach, which is 

considered the main goal of this thesis, produces continuous viewpoints from the 

available stereo image pair to provide a natural look-around feeling with comfortable 

viewing. IVR can be used to generate the content of the multiscopic 3D displays that 

have emerged recently, and to generate the different viewpoints to Free-viewpoint 

TV (FTV). Actually, the content of the multiscopic 3D displays are rarely available 

and their generation is considered a hard task since they need high-quality images. 

Although the IVR is considered a good approach to find additional images, there are 

problems with the generation process and they are considered difficult challenges for 

researchers to solve. Therefore, in this thesis we explored intermediate view 

challenges and subsequently proposed several novel algorithms to handle these 

challenges; these novel algorithms were then employed in a highly robust 

intermediate view reconstruction algorithm. In addition, we focused on generating 

high-quality images since these are a requirement of 3D displays where these images 

are tested. 

T

CHAPTER 

8 
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8.1.1 Thesis contribution 

The contribution of this research is the development of a new algorithm to find 

intermediate images with high quality. Detection and handling occlusion problems 

are considered the main challenges of intermediate view reconstruction [17]. In 

addition, a number of image artifices are generated through formation of the 

intermediate view and these must be resolved; they include generation of holes and 

cracks due to image resampling, generation of ghost contours due to the disparity’s 

sharp edges, and appearance of disoccluded area due to cameras changing position. 

Moreover, because the intermediate image is generated from interpolation of more 

than one view, it is necessary to preserve the discontinuities in the reconstructed 

image, and this is considered a challenge for the reconstruction process. 

 Therefore, several novel algorithms have been specifically designed to overcome 

these challenges, and they are employed in a highly robust intermediate view 

reconstruction. So, this thesis offers the following main contributions: 

1. Developing an efficient novel occlusion detection algorithm to detect the 

occluded/newly-exposed area based on the physical movements of the objects 

between the stereo images. Our algorithm has many advantages; for example, 

the occlusion area is detected without any fragmentation, the results are 

consistent under different types of images and matching algorithms, it needs 

few input parameters, and it is easy to implement. Qualitative and 

quantitative measures confirmed that the proposed algorithm detects the 

occlusion areas with high accuracy and a lower error rate. 

2. Developing an accurate block-based disparity inpainting algorithm for 

occlusion area recovery. This novel technique is specialized for occlusion 

areas, filling in disparity images. Our algorithm has many advantages; for 

example, the occluded area is filled without any blurriness, edge 

discontinuities are preserved, and the line curvature is continued. We 

performed different analyses and computer simulations which confirmed that 

the proposed technique inpaints the occlusion area with high accuracy and a 

lower error rate. 
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3.  These proposed algorithms are employed in a novel occlusion-aware 

intermediate view reconstruction. This novel algorithm focuses on how to 

find an intermediate image with a given disparity between two input images. 

An improvement on the backward-projection of the intermediate view is 

proposed by adding occlusion awareness to the reconstruction algorithm and 

proposing three quality improvement techniques to reduce image artifices, as 

follows:  

3.1. Filling the re-sampling holes: instead of using a median filter to fill 

cracks and holes produced by image re-sampling, we proposed an object-

based filling technique that fills the hole  located in a foreground object 

or around its edges by the object’s intensity. Subjective and objective 

evaluations proved that the proposed technique produces more accurate 

results around object boundaries  

3.2. Removing ghost contours from the virtual view and restoring them to 

their correct place by extending the newly-exposed area three pixels in 

the direction where the ghost contour is located. 

3.3. Handling the disocclusion areas: the disocclusion areas are recovered 

from one of the inpainted disparities upon the calculated visibility map. 

After that, the texture of the intermediate image is reconstructed either from 

left or right images based on a robust and efficient selective strategy. This 

selection is performed upon the visibility of each image point in the 

intermediate image, which is determined by a novel approach. Specifically, 

this approach is developed to detect the occluded/ newly-exposed area. 

Depending on this information, the visibility of the image points in the 

intermediate image will be determined. 

4. Conducting a subjective human trial to assess the quality of the reconstructed 

intermediate image on 3D display relative to the reference intermediate 

image based on the ITU-R 500 recommendation and comparing it to the 

reconstructed images by backward and forward algorithms.  
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8.2 Results and discussion on the individual chapters 
 Chapter 4: Newly-Exposed/Occlusion Detection (NEOD) Algorithm 

In this chapter, a novel occlusion detection algorithm has been proposed to 

overcome the deficiencies of the previous occlusion detection algorithms. The 

performance of the proposed algorithm is tested under 2 synthetic datasets and 3 

real datasets. We have compared our algorithm results with three well-known 

occlusion detection algorithms (LRC, ORD, and OCC) qualitatively and 

quantitatively, and have shown that the proposed algorithm results outperform 

these algorithms under both types of dataset. We performed different analyses 

and computer simulations which confirmed that the proposed algorithm detects 

the occlusion areas with a high accuracy (0.9939 and .9823) and low error rate 

(0.0061 and 0.0177) for the well-known datasets Tsukuba and Teddy. This 

computer simulation also confirmed that the proposed algorithm detects the 

occlusion for two synthetic datasets with high accuracy (1, 0.9967) and low 

error rate (0, 0.0033). 

 Chapter 5: Block-based Inpainting Technique for Occlusion Area (BITO) 

In this chapter, a novel inpainting technique has been proposed to overcome the 

deficiencies of the previous inpainting techniques. We have compared our 

algorithm results with four well-known inpainting algorithms (HEDI, Exemplar-

based, FOE, and ROIFILL) qualitatively and quantitatively using PSNR; we 

have shown that the proposed algorithm results outperform these algorithms. 

HEDI is specialized for occlusion filling and the other three are for general 

image inpainting, specifically for object removal or image restoration. Our 

algorithm has many advantages; for example, the occluded area is filled without 

any blurriness since it does not depend on any smoothness diffusion. By 

exploiting the edge map of the underlying stereo image, edge discontinuities are 

diffused in the occlusion area in the disparity map, and the line curvature is 

continued.  We performed different analyses and computer simulations which 

confirmed that the proposed technique inpaints the occlusion area with high 

accuracy. This is shown using PSNR calculation, where the proposed BITO 

algorithm gained on average a higher PSNR of ~0.16, ~6, ~12, and ~17 db than 



Chapter 8: Conclusions and Future Work 
 

186 
 

the Exemplar-based, HEDI, FOE and ROIFILL inpainting techniques, 

respectively 

 Chapter 6: Occlusion-Aware Intermediate View Reconstruction 

In this chapter, a novel intermediate view reconstruction algorithm has been 

proposed to overcome the deficiencies of the previous reconstruction algorithms. 

This novel algorithm focuses on how to find an intermediate image with a given 

disparity between two input images. As the detection and handling occlusion 

problems are considered among the challenges of the intermediate view 

reconstruction, we employed the algorithms proposed in chapters 4 and 5 in a 

novel occlusion-aware intermediate view reconstruction. We proposed three 

quality improvement techniques to reduce image artifices. First, instead of using 

a median filter to fill cracks and holes produced by image re-sampling, we 

proposed an object-based filling technique that fills the hole located in a 

foreground object or around its edges by the object’s intensity. Subjective and 

objective evaluations proved that the proposed technique produces more 

accurate results around object boundaries. Second, we removed the ghost 

contours from the virtual view and restored them to their correct place by 

extending the newly-exposed area three pixels in the direction where the ghost 

contour is located. Third, since the novel reconstruction algorithm detects and 

inpaints the occlusion areas in the two input disparity maps, the disocclusion 

areas are recovered from one of the input images. Inpainting the double-

occlusion area as a post-processing step is considered a reasonable solution to 

this problem since it is not visible in both reference images, so inpainting in the 

disparity maps is not an applicable solution. 

 Chapter 7: Occlusion-Aware Intermediate View Reconstruction Results 

We have compared our algorithm results with two well-known interpolation 

algorithms (backward- and forward-disparity compensation) qualitatively using 

PSNR and quantitatively using a human-trial test; we have shown that the 

proposed algorithm results outperform these algorithms. Also, we conducted 

other quantitative comparisons to show the following: Firstly, the effectiveness 

of the proposed hole-filling technique compared to using a median filter to fill 
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the holes and cracks that are generated in the virtual disparity; secondly, the 

effectiveness of linear interpolation compared to non-linear interpolation to 

estimate the texture of the intermediate image; thirdly, the effectiveness of the 

proposed inpainting technique compared to using other existing methods to 

inpaint the occlusion areas; fourthly, the step-by-step quality improvement in the 

proposed IVR algorithm.  

The performance of the proposed algorithm is tested under 13 real images and 

13 synthetic images. The proposed algorithm gains a higher PSNR under both 

types of images. Moreover, analysis of experimental results obtained from 21 

participants confirmed that the reconstructed images from our proposed 

algorithm have very high quality comparing with the reconstructed images from 

the backward and forward projection algorithms. 

8.3  Future Works 

In regard to future work, we recommend the following improvement issues. 

8.3.1 FTV Application 

FTV has been developed to provide the viewer with different viewpoints as he/she 

moves. This is achieved by displaying multiple views and the viewer selecting the 

preferred viewpoint by changing his/her position. IVR is considered a good approach 

for generating the content of FTV. Since the proposed IVR algorithm generates high-

quality images on a 3D display, we expect that those generated images will be good 

enough for use on an FTV. Therefore, we recommend testing our reconstructed 

images from the proposed reconstruction algorithm on an FTV as a future project. 

8.3.2 Assumption Validation 

In this thesis, we determined the relationship between the image points in the left and 

right image using the Constant Image Brightness (CIB) assumption. This assumption 

assumes that the corresponding image points between the stereo images have the 

same luminance value. In fact, CIB assumption is not always true since an object has 

reflecting surfaces and this reflection value might be changed when viewed from a 

different position. Due to the difficulty of this situation, we made this assumption in 
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this thesis. Further research would be desirable to take into consideration the surface 

reflectance problem in the stereo matching problem. 

8.3.3 Improving Forward-projection approach 

The reconstructed image by forward algorithm suffers from many corrupted areas 

such as generation of many holes and cracks, and corruption at the occlusion areas. 

The holes and cracks are generated in the reconstructed image because some points 

in the intermediate image are not assigned intensity values (undefined points); a 

texture synthesis can be used to cover these cracks but the image will be distorted. 

Unawareness of this approach for the occlusion areas causes a corruption in such 

areas. 

The proposed improvement techniques for the backward-projection approach can be 

exploited to improve the forward-projection approach. This could be done by adding 

occlusion awareness to the reconstruction algorithm, and employing the proposed 

object-based hole filling technique to fill the generated holes and cracks in the final 

reconstructed image. Although this technique fills the holes and cracks generated in 

the disparity map, it can be exploited by labelling these holes and cracks in the 

disparity map, and then inversely reconstructing them based on their positions.     

8.3.4 Implementation Issues  

In this thesis, we used MATLAB as a software environment to implement the 

proposed algorithms due to the availability of some built-in functions. Because some 

applications need to generate multiple images in real time and the MATLAB 

environment by its nature is slow, implementing the proposed algorithm in C will 

speed up the generation process. The OpenCV library can be used, as this is 

considered a suitable software environment to manipulate the images. Inpainting the 

occlusion areas is the most time-consuming step even though it is faster than the 

other accurate algorithms; re-implementing this step in C might speed up the 

generation process. 
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Appendix A 
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Figure A.1: Showing the 13 real images that used in the experiment 
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Figure A.2: Showing the 8 Synthetic images that used in the experiment; these 
images are created by graphics software. 
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Figure A.3: Showing the 5 Synthetic images that used in the experiment; these 
images are downloaded from Alberta University. 


