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Abstract

Policy makers increasingly rely on computer models to aid policy judgements for

complex systems. The climate system, for example, is extremely complicated and

its reaction to changes in radiative forcing through CO2 emissions can only be ex-

plored using models. Bayesian methods for making inferences about physical sys-

tems that combine information from computer simulators and system observations

have become increasingly well studied. We apply some of these methods to the

policy problem where the decisions to be made are inputs to the computer model.

Particular features of our methodologies include: the provision of Bayesian decision

support for the policy problem when it is known that policy may be adapted in

reaction to future observations of the complex system; and careful integration of the

knowledge that our computer simulators will evolve and improve over time, which

may affect downstream strategies and, hence, current policy.

Our methods also allow research investment questions to be explored in the

context of the wider policy problem. For example, the question of whether or not

an improved version of a computer simulator should be built and how much it should

be run can be addressed as part of the policy problem.
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Chapter 1

Introduction

Computer models are now used in many areas of science to investigate the behaviour

of complex physical systems. There are many different applications for the study

of complex systems using computer models, and in this thesis we focus on one in

particular. We consider the case where policy decisions must be made in order

to influence future states of complex physical systems and look at how computer

models for those systems may be used in order to learn about the possible behaviour

of the system under a given policy. There are many examples of such problems

arising from the issues surrounding climate change. Many difficult policy decisions

regarding CO2 abatement and investment into alternative energies must be taken in

response to climate change, and the principle method for studying climate is through

the use of large-scale computer models.

Managing uncertainty in computer models and using them to make inference

regarding complex systems is a relatively new field of study. In this thesis we shall

look at applying some of the recent and sophisticated Bayesian methods in this area

in order to provide decision support for complex policy problems. Our methods move

away from Integrated Assessment and carefully handle the discrepancy between the

model and the system. We allow future observations of the system to be made and

downstream strategy to be adapted accordingly. We also provide a treatment for

the policy problem where our computer models are allowed to evolve and improve

over time.

As part of our study of this problem, we aim to generalize some of the current

1
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Bayes Linear technologies for forecasting future states of complex systems using

computer models, to the case where the model output and system state depend on

decision variables.

1.1 Thesis outline

In chapter 2 we provide a review of some of the current statistical technologies

for making inference about complex physical systems using computer models. We

also generalize the Bayes Linear forecasting methods of Craig et al. [17] in order

to define Bayes Linear decision-dependent forecasts. We discuss the computational

issues that arise in the case where each forecast depends on decision variables and

present a number of techniques designed to tackle these issues.

In chapter 3 we define the policy problem in which we are interested and provide a

review of some of the current decision support methods available for these problems.

We then show how current methods in forecasting future states of complex systems

using computer models can be used in order to derive the probabilities on an infinite

decision tree. We develop a technique that we call Sequential Emulation, designed

to mimic the backwards induction process and give insight into our expected loss

surface for this problem. We present a number of ideas for using the results of

a Sequential Emulation to provide decision support for policy makers in section

3.7, and discuss the feasibility of the methodology in section 3.8. In chapter 4 we

illustrate the implementation of our methods using a simplified version of a real-

world policy problem related to climate change.

In chapter 5 we extend the policy problem that we consider to the case where our

computer models improve and where we may have information from, as yet unbuilt,

future models when we come to make policy interventions. We apply the structural

reification ideas of Goldstein and Rougier [40] in order to provide a belief framework

for considering future models in the context of our current model. We introduce a

pragmatic approach to quantifying observable information on future models and use

this approach to define forecasts that are appropriately influenced by this observed

information where it is available. We generalize our Sequential Emulation approach
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in order to give insight into the expected loss surface for this decision tree, and

describe the ways in which our methods may also be applied to research investment

decisions. In particular, the question of whether or not a specific improved version

of a simulator should be built and how much that simulator should be run is given

formal treatment. In section 5.8 we illustrate some of these methods by extending

the example we introduced in chapter 4.

In chapter 6 we return to the case where we have only one model to consider, and

look to generalize the Bayes Linear calibrated forecasting methodology of Goldstein

and Rougier [39] to the case where we have decisions that affect future states of a

complex system as inputs to our model. We describe how historical observations

of the physical system define a hat function and argue that, for models with a

spin up property, the hat function could be a useful tool for resolving local model

uncertainty around the best input. We describe Bayes Linear calibrated decision-

dependent forecasts and offer an in-depth discussion regarding the practicalities of

computing them. Finally, we discuss the use of Bayes Linear calibrated decision-

dependent forecasts as part of a Sequential Emulation for the policy problem.

Chapter 7 offers concluding remarks and highlights a number of potential areas

for further work. Appendices to this thesis present some of the computer code used

in implementing our methods in R. Appendix A describes the notational conventions

used in this thesis and also contains a detailed glossary of the notation.
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Chapter 2

Learning about complex systems

using computer models

In this chapter we give a detailed review of the theory and practice involved in using

computer models to learn about complex physical systems. In section 2.1 we present

a number of ways in which computer models are used in modern science, and describe

the basic properties of computer simulators and how they may be linked to reality. In

section 2.2 we introduce the concept of an emulator for a computer model and review

the main concepts and practices involved when emulating computer code. Section

2.3 presents some of the ways in which emulators may be used to study complex

physical systems. The principle focus of this section will be using an emulator

to forecast future behaviour of the system. In sections 2.3.3 and 2.3.4 we present

a number of ideas and techniques designed to simplify and expidite Bayes Linear

forecasting calculations for the case where decisions to be taken that will influence

the behaviour of the system are also inputs to our model. We conclude the chapter

in section 2.4 with a discussion of some other topics in the computer experiment

literature, including design and emulator diagnostics.

Throughout this chapter, and indeed throughout this thesis, we treat uncertainty

as a subjective property of one’s beliefs unless otherwise stated. Probabilities and

other measures of uncertainty are to be treated as subjective statements of belief

and not inherent and measurable properties of the systems, models and concepts we

shall introduce. For a detailed development of subjective probability theory, see, for

4
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example, De Finetti [32].

2.1 On the use of computer models describing

physical systems

Technological advances with respect to the memory capacity and speed of modern

computers, have revolutionized the way we learn about complex systems. Physical

processes that are difficult to measure or even impossible to experiment with, can

now be investigated using computer models. These models represent physical pro-

cesses through a series of mathematical equations, which are then solved using some

complex numerical method.

Computer models are used in engineering to aid the design of mechanical systems

such as liquid rocket injectors [92], automobile pistons [104], electrical circuits [8],

and fusion capsules for spacecraft [35]. Simulators of much larger physical processes

are also studied to help scientists better understand the world. Examples include

aspects of climate such as the meridional overturning current [4], the thermosphere-

ionosphere [97], and even the formation of galaxies in the beginning of the Universe

[41].

The increasing importance of the computer model for scientific study led to the

birth of a new subject, the Design and Analysis of Computer Experiments (DACE),

popularised in the landmark paper by Sacks et al. [101]. Over the last 20 years

the subject has gained increasing importance and interest from the wider scientific

community, as scientists seek to better understand their models and the complex

systems they represent [106].

Broadly speaking, there are three goals a scientist may have when using a com-

puter model to learn about a complex system. These are

1. Improved knowledge about the physical processes.

2. Optimizing a particular set of design variables.

3. Decision support for policy makers.
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In the Galaxy formation experiments, for example, the scientists wish to use the

Galaxy simulator GALFORM [12] to better understand the Big Bang and the way

the Universe was formed. This is an example of a goal of the first type. An example

of the second is the automobile piston. A model of the piston is built, and the goal

is to find the optimal shape with respect to certain constraints on wear and motion.

As an example of a policy support problem, we might consider how best to reduce

carbon emissions and how much to invest in appropriate technologies in order to

“most favourably influence” the rate of the meridional overturning current.

Although policy problems may seem similar to optimization problems, we make

them distinct here for a number of reasons. A policy problem involves attempting

to influence the evolution of a complex system in time. An optimization problem

however, seeks to minimize current output of a system with respect to some loss

function. As such, it is often possible to obtain real-world observations of a system at

particular settings to aid a decision maker in an optimization problem. One cannot

test policy effects in the same way because there can only ever be one realisation

of the future of the system. In that sense, policy decisions permanently change

systems and their potential effects can only be explored using computer simulators.

This makes our treatment of such problems more akin to that for type 1 goals than

those of type 2.

Policy problems are the focus of this thesis. However we present methodologies

traditionally used in addressing the other goals here. Application of these methods

in order to provide policy support, as well as an overview of current methods in that

area, will be presented in chapter 3.

2.1.1 Inputs and outputs of the computer code

Throughout this thesis, we refer to the output of a computer simulator as the

vector-valued function f(·). There are three types of input to a computer simu-

lator described in detail in chapter 2 of “The Design and Analysis of Computer

Experiments” by Santner et al. [103]. These are control variables, environmental

variables and model variables.

Control variables, henceforth to be referred to as decision parameters, we define
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as those variables that we can change in order to affect the complex system and

hence the model. These represent the policies that can be made and whose effect

on the physical system we intend to investigate through the computer model. In

the example for designing a liquid rocket injector, the decision parameters included

areas for the tubes carrying oxygen and hydrogen, as well as the angle of hydrogen

flow. The computer model and, if built, the fuel injector would behave differently

for any choice of these variables. Decision parameters are denoted by the vector θ

throughout this thesis.

Model variables, or model parameters, represent the inputs to the computer

model that drive the physics and the boundary conditions in order to produce a

solution. For example, Craig et al. [19] describe a simulator for an oil reservoir with

40 model inputs. Each are “multipliers” designed to fix permeability of rock in a

particular region of the reservoir, or to describe the rate at which oil is allowed to

flow through a particular fault. It is usually hoped that a certain setting of the

model inputs makes the model behave like the physical system it represents (e.g.

like the real oil reservoir described in the example). We discuss this assumption in

further detail later. Model inputs are denoted by the vector x.

The third kind of input are what Santner et al. describe as “environmental

variables.” These inputs affect the output for a specific user. The example in the

book is one of a model for a hip prosthesis, where stress on the implant is specific to

the patient and their activity. We do not treat environmental variables in this thesis

specifically and as such refer to all simulators of interest henceforth as functions

with model inputs and decision parameters only. We denote the computer model

with model inputs and decision inputs, f(x, θ).

2.1.2 Relating models and systems

Our interest in a particular computer model lies in how we may use it to learn

about the complex physical system it aims to mimic. The general approach to this

learning is to express our uncertainties about the system through the computer

model, and then use computer experiments to update those uncertainties. Here,

and throughout this thesis, we refer to the state vector of the complex system of
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interest under decision θ as y(θ).

Define X to be the space of possible model inputs. If we believe that there is

some input, x∗ ∈ X say, for which our simulator is “correct” and perfectly describes

the system, we may write

y(θ) = f(x∗, θ), (2.1)

and concentrate our energies on finding x∗. Unless the physical system is completely

understood and the model absolutely perfect, this scenario is unlikely. For any

application of sufficient complexity (complex enough to be interesting), the old adage

“all models are wrong” will apply.

Computer models are often imperfect because they either do not contain all

of the appropriate physics, or perhaps the physics are not completely understood.

Mathematical expressions with simplifying assumptions may be used, and numerical

solvers often approximate intractible analytical expressions. That said, a computer

model still represents a serious attempt at describing the complex system and will

generally be informative for it.

We extend (2.1) then, via the best input approach (c.f. Kennedy and O’Hagan

[58], Higdon et al. [44], Bayarri et al. [9], Craig et al. [17]), i.e.

y(θ) = f(x∗, θ) + η(θ), (2.2)

where we define η(θ) to be the model discrepancy at θ. We specify that η(θ) is a

stochastic process and is independent of the best input x∗, and of f(x, θ) for any x

and θ. The model discrepancy (also known as the model inadequacy or bias function)

represents physics that the model does not capture, as well as any features of the

system we do not understand or have not anticipated. This assumption states that

f(x∗, θ) is sufficient for the computer simulator, i.e. if we were to run the model at

x∗, we could learn nothing more about the system from the model.

Interpretation and implications of the best input approach

The best input x∗ does not necessarily correspond to a true, real-world, physical

quantity. Model inputs representing known physical constants (e.g. acceleration

due to gravity) may not have their “best” value matching their real-world value.
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It may be helpful to think of relating the model and the system as an exercise

in statistical fitting based on physical considerations, rather than a matching of

physical and model quantities. In this respect, f(x∗, θ) represents the ‘best fit’ to

the system, and x∗ is the location in X that provides this. A detailed discussion of

these ideas is presented in Kennedy and O’Hagan [58].

Assumption (2.2) defines f(x, θ) to be what Goldstein and Rougier 2004 [38] call

a direct simulator. Specifying that f(x, θ) is a direct simulator represents a very

strong belief statement. It implies a belief structure on similar models of the same

system, and on any future improved versions of the model that may, or may not yet,

be conceived of by the modellers. For example, suppose there exists, or will exist

in the future, an improved version of the model with the same inputs, f
′
(x, θ). As

f
′

represents an improvement on f , there must be some input, x∗0 say, at which we

can evaluate f
′

to resolve part of the discrepancy. We could then decompose the

discrepancy as

η(θ) = f
′
(x∗0, θ)− f(x∗, θ) + η

′
(θ), (2.3)

where η
′
(θ) is a process in θ. Therefore, (2.2) implies that f

′
(x∗0, θ)− f(x∗, θ) repre-

sents further structural modelling of η(θ).

The best input assumption specifies x∗ ⊥ η(θ) for all θ, which because of (2.3)

may now look counter-intuitive. It is therefore dangerous to apply the best input

assumption to a model when it is known that a better model exists, will be built or

even can be conceived of, without considering its implications on our beliefs regard-

ing improved models. We discuss these issues in much greater depth in Chapter 5,

where we present a framework for providing policy support using models that are

continually improving. For now it is enough to present an analysis using the best

input assumption with the implication that f(x, θ) is our best simulator and that

we won’t have access to any other at any time in the future.

Whilst the best input approach may appear to be controversial, it is a very

common treatment (perhaps more common is not to consider a discrepancy between

the model and the system at all), and can be seen as analogous to traditional

statistical models where the response is modelled via a regression plus error.

Equation (2.2) implies that learning about the location of x∗ and about the
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model’s behaviour there, is our ultimate goal when using a computer simulator to

learn about a physical system. In this section we describe methods for learning

about the computer model’s behaviour globally. We postpone formal treatment of

x∗ and of learning about the system to section 2.3.2.

2.2 Emulators

2.2.1 Justifying a stochastic approach

The computer models we describe are deterministic functions of their inputs. This

means that running the model twice, at the same input values, will produce identical

outputs.

For any real-world application involving a computer model, understanding local

and global behaviour in the simulator is vital. For example, consider a model with

only decision inputs f(θ), and suppose the ‘best’ decision, θ∗, was that which min-

imised f(θ). In order to locate θ∗ using some numerical minimization routine, f(θ)

must be evaluated many times. For the problems we are interested in, either very

long run-times or high dimensional input spaces make this infeasible.

An emulator, often called a surrogate or meta-model, is a simple model that

mimics the behaviour of the computer model. One idea in building an emulator

(a process called emulation), is to use the computer model to construct a good fit

to the simulator, and then use the emulator (which should be cheap to evaluate)

in place of the model. For example, a sensible way to find the minimum θ∗ we

described earlier may be to build a good emulator and find the minimum of that.

Another popular goal in emulation is to use the emulator as a description of our

beliefs about the output of a computer model for some choice of inputs before the

model has been run there.

Forrester and Keane [33] describe a number of emulation techniques based on

the principles of numerical model fitting. Techniques mentioned include the fitting

of polynomials, fitting of radial basis function, moving least squares and others. As

computer models are deterministic, it may seem intuitive to consider emulation as a

numerical analysis problem where the object is to fit a model that minimizes global
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numerical error. Another popular approach however, is to model the emulator as a

stochastic process or uncertain function.

The concept behind this derives from the idea that we want to be able to pre-

dict the output of the computer code for some x0, θ0. Without running the code we

cannot be sure what the value of f(x0, θ0) will be, and this uncertainty is modelled

stochastically. Referring back to (2.2), our goal is to provide a description of uncer-

tainty in f(x, θ), combined with uncertainty about x∗ and the discrepancy, in order

to make inference about the complex system. This description of uncertainty will

be most naturally served through the stochastic modelling of f(x, θ).

2.2.2 A general form of emulator

Whilst there are many different approaches to emulation, fit for many different

purposes, the general form of the model remains consistent throughout much of the

computer experiment literature. The emulator has general form

f(x, θ) =
m∑
j=1

βjgj(x, θ) + u(x, θ), (2.4)

where the gj(x, θ) are (generally known) basis functions in x and θ, the βj are

unknown coefficients, and u(x, θ) is a mean-zero stationary process. Behaviour of

this process is driven by its covariance function which, because of the stationarity,

is a function of the distance between any two points. Normally this takes the form

Cov [f(x1, θ1), f(x2, θ2)] = ΣR(|(x1, θ1)− (x2, θ2)|,Ψ) (2.5)

where Σ is a variance matrix for the model outputs and R(|(x1, θ1)− (x2, θ2)|,Ψ) is

a function of the distance between inputs and a vector of correlation parameters Ψ.

For example, if we specified a Gaussian covariance function, then

R(|(x1, θ1)− (x2, θ2)|,Ψ) = exp{−((x1, θ1)− (x2, θ2))Ψ((x1, θ1)− (x2, θ2))T}.

Other correlation functions, including a more general exponential function and the

Màtern, are described in Koehler and Owen [60]. A wider discussion of correlation

functions for spatial processes in the area of Geostatistics is available in Diggle and

Ribeiro Jr. [27].
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Starting from this general form, we devote the rest of this section to presenting a

number of the most popular methods of emulation. Each of these methods aims to

use model runs (or training data) F = (f(x1, θ1), . . . , f(xn, θn)), to obtain a version

of (2.4) fit for its intended purpose.

2.2.3 Kriging

In what follows we drop the distinction between input types to simplify the notation,

because the methods we describe do not require it. We therefore write the simulator

as f(z) and further simplify the description by considering f(z) as a scalar valued

function for this section only. Note that this implies a scalar variance on the model

outputs, which we denote σ, replacing the variance matrix Σ.

Sacks et al. [101] presented the frequentist approach to emulation known as

kriging, in the case where the parameters Ψ, of the correlation function R(|z1 −

z2|,Ψ) are known. Kriging is an approach already used in other areas of statistics,

particularly spatial statistics (see, for example, Cressie [20]), and we present here a

few of the kriging methods as applied to computer experiments.

Generally speaking, the process of kriging involves finding the Best Linear Un-

biased Predictor (BLUP) for data F. Assuming the form of the emulator as in (2.4),

a linear predictor of f(z) using data F is

f̂(z) = c(z)F,

which is random in F. The BLUP is obtained by choosing c(z) to minimise mean

squared error

E [c(z)F − f(z)]2 ,

subject to the unbiassedness constraint

E [c(z)f(z)] = E [f(z)] .

Letting V denote the covariance matrix for (u(z1), . . . , u(zn)), v(z) the covariance

between u(z) and (u(z1), . . . , u(zn)), and G the matrix (g(z1), . . . , g(zn)), then it can

be shown that the BLUP is

f̂(z) = β̂g(z) + v(z)V −1(F − β̂G),
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where β̂ is the usual least squares estimate (GTV −1G)−1GTV −1F. This form of

kriging, with known non-trivial basis functions in vector g(z), is now known as

universal kriging.

Modelling the computer code via a stochastic process in this way is seen, by the

kriging community, as so powerful that the regression terms are usually replaced by

a single mean [51]. Denoting this mean µ, equation (2.4) becomes

f(z) = µ+ u(z), (2.6)

and using the BLUP to fit this emulator is called Ordinary Kriging.

Fitting the correlation parameters

One of the princple difficulties in kriging is estimating the values of Ψ, σ and µ

(or β) (see, for example, Sacks, Schiller and Welch 1989 [100]). The goal within

this methodology is to find good estimates to these values, and then use the BLUP

and its standard error as the emulator for the model. There are two main ways

these estimates are obtained; these are maximum likelihood estimation and cross-

validation.

Maximum likelihood methods within the emulation literature require the as-

sumption that u(x) is Gaussian (e.g. Welch et al. [109]), so that F is multivariate

normal. Using (2.6) and maximising the log-likelihood gives the expressions

µ̂(Ψ) =
IV −1F

IV −1I
(2.7)

and

σ̂2(Ψ) =
(F − Iµ̂(Ψ))TV −1(F − Iµ̂(Ψ))

n
, (2.8)

where I is an n-vector of 1’s. Equations (2.7) and (2.8) are then substituted back

into the likelihood, and the resulting “concentrated log-likelihood” is a function of Ψ

and the data only. This is then maximised to find Ψ̂, and then µ̂(Ψ̂) and σ̂2(Ψ̂) are

computed from (2.7) and (2.8). Further details of these calculations can be found

in Jones 2001 [50] and elsewhere.

Cross validation, often seen as an attractive method because it does not require

further assumptions, involves iteratively leaving each data point out in turn and
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re-fitting the emulator using the remaining n− 1 points. Each new emulator is then

used to predict the left out data, and the errors are computed and summed over

all n data points. The required parameters can then be estimated by choosing the

set that minimises this error. How simple this is in practice will depend on the

magnitude of n and the number of individual correlation parameters in Ψ. More

details of these methods can be found in Martin and Simpson [72].

Blind Kriging

The method of Blind Kriging (Joseph et al. [53]) takes the opposite stance on the

power of ordinary kriging, seeking to use the unviersal kriging model with unknown

basis functions g(z). The general idea behind the approach is first to fit the basis

functions using some well established statistical fitting method, and then proceed

with kriging as normal. In the paper by Joseph et al. a Bayesian forward selection

method was used to determine the basis functions. More details of the implemen-

tation of blind kriging, as well as a performance comparison with other kriging

methods can be found in [53].

Application of kriging technology

Emulators built using kriging methods are very popular in engineering. Generally,

these applications seek to find the optimum of the computer code by building a

good emulator and finding its minimum. The building of the emulator may require

an iterative approach using model evaluations at and around the minimum of the

emulator to improve the fit. The standard errors for each prediction may often be

used to aid design (see section 2.4.1) yet, in most respects, the emulator is treated

as a function rather than a belief statement.

We now present the more natural Bayesian approach to emulation that allows

us to express beliefs about the output of the computer model at any given location

of its inputs.
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2.2.4 Bayesian emulation

The frequentist philosophy is that there exists an underlying process from which

the computer model is a draw. Runs of the model are then used to fit statistical

models which we have called emulators, whose function in a classical setting is to

be informative for the underlying process. This philosophy is clearly invalid when

the code itself is deterministic, which calls into question what the emulator actually

represents. In contrast, the Bayesian philosophy regards the emulator as a belief

statement expressing our uncertainty regarding the code output for any value of

the inputs. Runs on the simulator update these prior assessments, and this ‘tuned’

model combines all available data and any expert knowledge to form our current

state of uncertainty regarding the computer model.

Learning about the computer model within this natural framework was first

outlined by Currin et al. [24]. In their paper, the prior process was Gaussian with

constant mean, and the parameters were determined via the maximum likelihood

methods we met in section 2.2.3. Haylock and O’Hagan [43] give a more formal

treatment to the Bayesian problem by including parameter uncertainty on β and

σ2. Following a Bayesian update of

f(x)|β, σ2 ∼ N(βg(x), σ2R(·,Ψ))

by runs F, and given the prior form p(β, σ2) ∝ σ−2, the parameters are integrated out

of the joint posterior for f(x), β, σ2|F, yielding a student t-distribution for f(x)|F.

An alternative prior form for p(β, σ2) is the normal inverse gamma, and this

again yields a t-distibution in the posterior. This has been applied in the computer

experiment literature (see, for example, Oakley and O’Hagan [82] or Rougier et

al. [99]), and full details of the Normal Inverse Gamma update can be found in

O’Hagan [84]. Note that these methods retain the assumption that correlation

parameters Ψ are known.

A more formal treatment, considering uncertainty on the parameters Ψ in the

context of a Gaussian process prior, is given in Kennedy and O’Hagan [58] where it

is concluded that, regardless of any prior assumptions on these parameters, the full

Bayes analysis handling this uncertainty will generally be infeasible. Their solution
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is to fit Ψ = Ψ̂ using code output, and to condition the posterior analysis on this

estimate.

The Gaussian process emulation techniques we have described are relatively sim-

ple in their implementation because the posterior emulator has a closed form. The

difficulty, as with most emulation techniques, lies in estimating or fitting Ψ and

cross validation may be used to determine this. An issue with the use of the GP

model is that strong prior judgements are required in order to obtain the closed form

posteriors. This would be OK if we truly believed those judgements, or in certain

cases if a very large amount of model data were available. Typically, relative to the

dimension of the input space, our available data will be sparse anyway and hence

our prior judgements may influence any posterior inferences quite heavily. In that

sense then, if the GP prior assumptions are not truly believed, one must question

the interpretability of the posterior.

There are two ways around this if we wish to adopt an approach that propagates

our true uncertainties through the analysis. The first involves carefully stating or

eliciting our prior beliefs in the form of probability distributions and then performing

a large scale MCMC calculation. The second involves a partial prior specification

and adopting the Bayes Linear approach we describe here.

2.2.5 Bayes Linear Emulation

Introduction to Bayes Linear Methods

It is traditional to consider uncertainties measured by probability. The Bayesian

emulation methods we have so far described represent an attempt to express our

uncertainty about the output of the computer code at a given point via a probability

distribution. However, subjective uncertainty is a measure of our own state of

knowledge and need not always be expressed or thought of in terms of probabilities.

Bayes Linear methods aim to express and manage uncertainty using expectation,

and not probability, as a primitive quantity. Expectation is defined in the same way

as De Finetti [32] defines prevision, namely as a ‘fair price.’ For example, suppose X

is a random quantity and consider a ticket that pays X, then E [X] is the fair price
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you would be willing to pay for the ticket. Note that probabilities may be derived as

the expectations of indictor functions. In using expectation as the primitive quantity,

prior judgements such as prior expectation for a quantity may be considered directly,

without first considering all possible probabilities for that quantity.

A full development of Bayes Linear methods, including philosophies regarding

the use of expectation as primitive can be found in the book by Goldstein and

Wooff [42]. We present here a few of the definitions that will be most useful to us

and refer interested readers to the book for more details and a wider development.

Bayes Linear methods require, at the minimum, prior specification of expec-

tations, variances and covariances across a collection of quantities of interest. To

borrow the notation of Goldstein and Wooff [42] for a moment, suppose this col-

lection is C. If we will observe D = {D1, . . . , Dk} ∈ C then our beliefs about all

of the other quantities in C will change. We model this learning through linear

fitting. Consider our beliefs about B = {B1, . . . , Br} ∈ C given the values of D.

Our adjusted expectation for B given D, written ED [B] is defined to be the linear

combination that minimises

E

(B − k∑
i=0

hiDi

)2


over all collections (h0, h1, . . . , hk) where D0 = 1.

Definition 2.2.1 The adjusted expectation of collection B, given observation of

collection D is

ED [B] = E [B] + Cov [B,D]V ar [D]−1 (D − E [D]), (2.9)

where we use the Moore-Penrose generalised inverse if V ar [D] is singular.

Definition 2.2.2 The adjusted variance of B given D, written V arD [B] is de-

fined as

V arD [B] = E
[
(B − ED [B])2

]
= V ar [B]− Cov [B,D]V ar [D]−1Cov [D,B] . (2.10)

Definition 2.2.3 The variance of B resolved by D, RV arD [B] is defined as

RV arD [B] = V ar [ED [B]] = Cov [B,D]V ar [D]−1Cov [D,B] . (2.11)
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Definition 2.2.4 The adjusted covariance between quantities B1 and B2 is

CovD [B1, B2] = E [(B1 − ED [B1]) (B2 − ED [B2])]

= Cov [B1, B2]− Cov [B1, D]V ar [D]−1Cov [D,B2] . (2.12)

Interpretation of adjusted beliefs

Bayes Linear adjusted expectations can be viewed in one of three ways:

1. An approximation to the full Bayes posterior expectation; useful if the full

calculation is too expensive or time consuming. The approximation is exact

in certain cases, for example when C is multivariate normal.

2. An estimator for B obtained in an intuitive manner from reasoned prior judge-

ments and real-world observations.

3. A natural generalization of conditional expectation, where the usual restriction

that we must condition on indicator functions for a partition is dropped (see

page 59 of Goldstein and Wooff for details).

Whilst it is the belief of this author that 3 is the correct interpretation, particularly

in the case where a partial prior specification is all that can reasonably be expected,

it may often be useful to keep the first interpretation in our minds. Problems

concerning multivariate emulators for computer models are notoriously computer

intensive and even without subscribing to the idea of adjusted expectation as a

generalised conditional expectation, the methods we outline will still be important

for policy problems where pragmatic approximations to difficult calculations will be

required.

The adjusted variance does not depend on the data and is therefore not a true

conditional variance (generalized or otherwise). It can be interpreted as a primitive

prior measure of the residual variance in B once variance accounted for by D has

been removed. For information concerning use of D to learn about the variance of

B directly, see chapter 8 of Goldstein and Wooff.
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Second Order Emulators

Bayes Linear methods allow us to make a partial prior specification for our emulator

and to use model runs to update these judgements. Being able to make and use a

partial prior specification will be important whenever making a fully probabilistic

prior is particularly difficult or inappropriate. For example, if the computer model

has high dimensional input and output spaces.

A second order emulator for a computer model uses the same form of stochastic

process model (shown in (2.4)) as other emulators we have described. Instead of

probability distributions being placed on the parameters β and Σ as they would be

in a fully Bayesian emulation; means, variances and covariances are specified for

each of the random quantities in the model. More precisely, we specify a mean and

variance for the coefficient matrix β, and we specify the prior variance matrix Σ and

form of the correlation function for u(x, θ). Values for the correlation parameters

Ψ are fixed at some best choice Ψ̂ as they would be if using the GP methods we

described in section 2.2.4. We specify that the prior covariance between elements of

β and of u(x, θ) is 0.

We now show how Bayes Linear methods are used to update a second order

emulator with data obtained through running the model.

Updating the emulator: Notation

Suppose we obtain n runs of the model at (x1, θ1), . . . , (xn, θn). Let F be the matrix

whose columns contain these runs. Let G = (g(x1, θ1), . . . , g(xn, θn)) and U =

(u(x1, θ1), . . . , u(xn, θn)) so that

F = βG+ U

and Fij is the ith output value of f(xj, θj).

The quantity β is a matrix and so V ar [β] is treated as an array with four

dimensions. We write

V ar [β]ijkl = Cov [βij, βkl] ,

and similarly for the variance of any other matrix quantity. Other types of quantity

we shall have to deal with involve computing the covariance between a vector and
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a matrix, e.g. Cov [u(x, θ), U ] . In these cases we treat the object as an array with

three subscripts. For the example we would write

Cov [ui(x, θ), Ujk] = Cov [u(x, θ), U ]ijk .

Throughout this thesis, unless otherwise specified, we use Einstein’s summation

convention for repeated subscripts. For array objects A,B we write AijklBklmn to

mean ∑
k

∑
l

AijklBklmn.

The resulting object in this case would be (AB)ijmn. Note that this convention only

applies to repeated subscripts on different arrays that are multiplied together. In

particular then

AijklBklmm =
∑
k

∑
l

AijklBklmm,

and repeated subscripts either side of addition signs are treated as normal. For

the reader it may be useful to consider subscripts on array objects as dimension

labels. A repeated subscript on adjacent arrays under this interpretation leads to

the collapsing of this dimension in the resulting expression.

Updating the emulator: Calculations

The Bayes Linear adjustment of the second order emulator requires calculation of

the expectation and variance of the simulator adjusted by the model runs F. We

start by computing EF [f(x, θ)] for some (x, θ), which by (2.9) is

EF [f(x, θ)] = E [f(x, θ)] + Cov [f(x, θ), F ]V ar [F ]−1 (F − E [F ]).

Let ∆ = F − E [F ], then

∆ij = Fij − E [F ]ij = Fij − E [βG+ U ]ij

= Fij − E [β]imGmj.

We have

V ar [F ]ijkl = V ar [βG]ijkl + V ar [U ]ijkl

= Cov [(βG)ij, (βG)kl] + V ar [U ]ijkl

= Cov [βimGmj, βknGnl] + V ar [U ]ijkl

= V ar [β]imknGmjGnl + V ar [U ]ijkl , (2.13)
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where V ar [U ]ijkl = Cov [ui((xj, θj)), uk((xl, θl))] is computed using (2.5).

By the linearity of adjusted expectations we have

EF [f(x, θ)] = EF [βg(x, θ)] + EF [u(x, θ)] , (2.14)

where

EF [βg(x, θ)]i = E [βimgm(x, θ)] + Cov [βg(x, θ), βG]ikl V ar [F ]−1
klop ∆op

= E [β]im gm(x, θ) + Cov [β, βG]imkl V ar [F ]−1
klop ∆opgm(x, θ)

= EF [β]im gm(x, θ),

and

EF [u(x, θ)]i = Cov [u(x, θ), U ]ikl V ar [F ]−1
klmn ∆mn.

Note that to update the regression surface we need only update the coefficient matrix

which does not depend on (x, θ).

Using (2.10), the adjusted variance of the simulator at (x, θ) is

V arF [f(x, θ)] = V ar [f(x, θ)]− Cov [f(x, θ), F ]V ar [F ]−1Cov [F, f(x, θ)]

= V ar [βg(x, θ)]− Cov [βg(x, θ), F ]V ar [F ]−1Cov [F, βg(x, θ)]

+ V ar [u(x, θ)]− Cov [u(x, θ), F ]V ar [F ]−1Cov [F, u(x, θ)]

− Cov [βg(x, θ), F ]V ar [F ]−1Cov [F, u(x, θ)]

− Cov [u(x, θ), F ]V ar [F ]−1Cov [F, βg(x, θ)]

= V arF [βg(x, θ)] + V arF [u(x, θ)]

+ CovF [βg(x, θ), u(x, θ)] + CovF [u(x, θ), βg(x, θ)] .

(2.15)

We write

V ar [βg(x, θ)]ij = Cov [(βg(x, θ))i, (βg(x, θ))j]

= V ar [β]imjn gm(x, θ)gn(x, θ),

so that the adjusted variance of the regression surface is then

V arF [βg(x, θ)]ij = V ar [β]iqjp gq(x, θ)gp(x, θ)

− Cov [βg(x, θ), βG]ikl V ar [F ]−1
klmnCov [βG, βg(x, θ)]mnj

= V arF [β]iqjp gq(x, θ)gp(x, θ).
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For completeness, the remaining elements of (2.15) are

V arF [u(x, θ)]ij = V ar [u(x, θ)]ij − Cov [u(x, θ), U ]ikl V ar [F ]−1
klmnCov [U, u(x, θ)]mnj

CovF [βg(x, θ), u(x, θ)]ij = −V ar [β]iqkrGrlgq(x, θ)V ar [F ]−1
klmnCov [U, u(x, θ)]mnj

CovF [u(x, θ), βg(x, θ)]ij = −Cov [u(x, θ), U ]ikl V ar [F ]−1
klmn V ar [β]msjpGsngp(x, θ).

Note that these last two covariances are the transpose of one another.

2.2.6 Practical emulation for large-scale models

The kind of models used for studying complex physical systems to aid policy judge-

ments pose particular challenges. Large numbers of different model inputs combined

with a number of decisions can lead to high dimensional model input spaces. The

model output too may be very complex, containing multiple types of quantity rep-

resented at many locations in time and space.

Building an accurate emulator in the form of (2.4) in such a high dimensional

setting may be infeasible given limited access to model runs and expert judgements.

Even if this is not the case, the number of inputs and outputs may still cause compu-

tational problems, so that updating via model runs or even evaluating the emulator

becomes almost as time consuming as running the model. A number of methods

have been suggested in the computer experiment literature to help circumnavigate

these issues and we discuss some of them here.

Screening

The aim of screening is to use model runs to identify output variables that appear

insensitive to changes in the model inputs. Another way to consider screening is the

attempt to identify a manageable subset of model outputs that tell most (if not all)

of the important features of the story. Examples of useful screening methods can be

found in Cumming and Wooff [23] and in Saltelli [102].

Active variables

Often it will be the case that only a small subset of the model inputs drive most

of the variability in the output. By emulating the model as a function of its active
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inputs plus a residual in its inactive inputs, the scale of the emulation problem can

be dramatically reduced. Let xA ∈ x be the subset of active model inputs, then we

re-write (2.4) as

f(x, θ) =
m∑
j=1

βjgj(x
A, θ) + ξ(xA, θ) + δ(x, θ), (2.16)

where the residual u(x, θ) has been decomposed into a stationary process ξ(xA, θ) in

the active variables, and a ‘nugget’ residual δ(x, θ) in the remaining variables. This

practical form of emulator seen, for example, in Cumming and Goldstein [21] and

Craig et al. [19], requires substantial expert judgement or many model runs to help

identify the active variables.

Other dimension reduction techniques in emulation include principal component

methods and application of neural networks. A review of these is available from

Maniyar et al. [69].

The effect of decision variables

For many complex physical systems, policies considered could dramatically effect

the evolution of the system. If the computer model is a good one, these effects will

be present in the model and hence should be captured by our emulator.

Consider, for example, a climate model that outputs both annual mean UK

temperature, and the flow of the meridionnal overturning current. In addition to

a collection of model inputs, suppose the simulator includes CO2 emissions as a

decision input. If we wish to emulate the UK temperature, the stochastic model

we have described may be impractical. This is because evolution of temperature

as a function of emissions may be very different depending on whether or not the

model MOC collapses. If a particular choice of emissions induces MOC collapse, the

model becomes fundamentally different (as does the system it mimics). There may

be new active variables, the regression surface we would fit may be different and the

residual surface may have different properties.

A more flexible version of (2.4), with the ability to capture large scale behaviour
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changes in the model is

f(x, θ) =
m∑
j=1

βj(θ)gj(x
A(θ), θ) + uθ(x, θ), (2.17)

where the coefficient matrix β, the active variables xA, and the form of the residual

process all depend on θ.

How one would fit such an emulator must be highly model specific. Generally

though it will be infeasible to model β(θ), xA(θ) and the form of the covariance

function for uθ(x, θ) as continuously changing variables in θ. A practical approach

would be to identify areas of the decision space in which the model behaves con-

sistently and fit the usual model (2.4) within each of these areas. In the example

discussed above, we may identify areas of the decision space that induce MOC col-

lapse and effectively fit 2 emulators. One for UK temperatures under θ when MOC

has collapsed, and one for when it has not. The model emulator in that case would

become a mixture of emulators.

Although building emulators of complex models for policy problems is a difficult

and important subject, it remains an unsolved problem that is beyond the focus of

this thesis. The policy support methods we outline later will presume an emulator in

the usual form is built for the computer model. However we believe that the methods

will be easily adapted to more complex emulators if the application requires it.

Practical fitting

In a Bayesian or Bayes Linear emulation, updating our prior via model runs is

computationally demanding. In fact if we have q outputs and n model runs, the

update is an O((nq)3) calculation. This means that as either the number of outputs

grows, or as we obtain more model runs, the cost of emulation quickly spirals out of

control. Alternative emulation techniques have been suggested by An and Owen [3]

and Rougier [95], in order to overcome these problems. Rougier [96] shows how, in

a Bayesian setting, one can exploit separability in the emulator to make the update

an O(nq) calculation.

Whichever method of emulation we decide to use, choosing the basis functions,

correlation function, and making prior judgements is hard. A popular way to fit
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the emulator is to use existing model runs to help build a picture of the model.

Often however, the computer model is so expensive that very few of these runs

are available. One technique for emulator fitting, often available in these cases, is

multi-level emulation. The idea being that a cheap, fast version of the model is

run many times to inform us about our expensive simulator. Multi-level emulation

methods are central to our methods of policy support and we devote a whole section

to reviewing and explaining them in chapter 3.

We now turn our attention away from the construction of emulators and focus

on how we may use them to learn about the physical systems we’re interested in.

Throughout this next section, our emulators are treated as a model of our uncer-

tainty regarding the output of the simulator at unobserved inputs. Usually our

emulators will be second order, but we refer to the fully probabilistic versions when

appropriate.

2.3 Using emulators to study physical systems

In section 2.1.2 we introduced the best input assumption (2.2) linking the output

of the computer simulator to reality. By expressing our uncertainties for the dis-

crepancy η(θ) and the best input x∗, a model emulator completes our uncertainty

specification for the complex system y(θ). In this section we show how to combine

the emulator with observations of the physical system in order to learn about x∗

and y(θ).

2.3.1 History Matching

The best input assumption (2.2) states that we can obtain all information about the

complex system contained in the model by evaluating it at x∗. Attempting to locate

x∗ then, is a naturally popular goal when performing computer experiments.

Having built an emulator for the computer model, the general approach is to use

observations of the real-world system combined with the emulator to locate possible

matches. We denote the real-world data zt0 observed with error via

zt0 = yt0 + et0 , (2.18)
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where et0 is observational error and the subscript t0 indicates ‘historical’ system

values. Note that under this interpretation zt0 does not depend on θ. This will be

true in cases where y is seen as a constantly evolving system (such as climate), and

θ is a decision or policy that has not been made yet. For other kinds of system

we may be able to obtain decision-dependent data. For example, if considering

safety features of a car, we might be able to build a car with a particular safety

configuration and test it. As we are mainly interested in computer models for policy

problems, we assume that our data represents historical system values and hence

does not depend on θ.

History matching is an important methodology in the computer experiment lit-

erature with a number of different applications. The general idea behind the method

is to identify areas of the model input space that contain possible values of x∗ and

a Bayes Linear approach to the method was introduced in the important paper by

Craig et al. [18]. Using an emulator for the model, the technique locates those areas

of the input space which might, if we were to evaluate the model there, replicate

the real-world data (modulo the error structure imposed by the variance of the

observation error and the discrepancy).

History matching can inform model builders as to whether or not their model is

able to replicate the system at all. For example, it is possible that careful history

matching reveals no areas of the input space containing a plausible x∗. Understand-

ing whether or not a model is informative for the system it was built to mimic is a

key goal when performing computer experiments.

A history match will often lead to our ruling out areas of the model input space

as containing no plausible matches. This is extremely useful if we are able to obtain

further runs of the model, as it allows us to re-focus our emulators. By re-sampling

the model and emulating only on those areas of the input space thought to contain

possible matches, we can build emulators that are more informative for the complex

system. History matching and re-focussing can be done many times until we are

satisfied that our emulator is as accurate around the best input as we can make it.

This last application is a convincing argument for history matching to be performed

as a first step, whatever the method of emulation used and regardless of the ultimate
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goal of the analysis.

History matching uses the model emulator, the observed system data and a

measure of implausibility to determine whether or not a particular choice of model

inputs x could be a value of x∗. The standard implausibility measure I(x), based on

the malhalanobis distance between ft0(x) and zt0 , is

I(x) = (E [ft0(x)]− zt0)TV ar [E [ft0(x)]− zt0 ]−1 (E [ft0(x)]− zt0).

Writing

E [ft0(x)]− zt0 = E [ft0(x)]− ft0(x) + ft0(x)− yt0 + yt0 − zt0 ,

we arrive at the more intuitive form

I(x) = (E [ft0(x)]− zt0)T (V ar [ft0(x)] + V ar [ηt0 ] + V ar [et0 ])−1 (E [ft0(x)]− zt0),

(2.19)

if x = x∗.

The expectations and variances in (2.19) indicate our current beliefs about the

model and so if we have observed a set of runs, these are our adjusted moments.

Large values of the implausibility measure indicate poor matches. To define ‘large’

in this case, a tolerance level may be selected by the experimenter so that values

larger than the tolerance are rejected as plausible matches. Discussion regarding

how this tolerance might be chosen and how implausibility may be visualised, as

well as alternative measures of implausibility can be see in Craig et al. 1996 [18],

Craig et al 1997 [19] and Cumming and Goldstein [21].

2.3.2 Forecasting

Of principle interest to policy makers, is predicting the future behaviour of a complex

system under a given strategy. By specifying beliefs about x∗, the model emulator

in combination with judgements regarding the discrepancy completely determines

our beliefs about y(θ) for any θ through (2.2).

Depending on our approach to emulation, forecasting methodology may be quite

varied. In a Gaussian Process setting, for example, forecasting follows naturally from
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calibration, which involves formally learning about x∗ from zt0 . Assuming a Gaus-

sian process discrepancy and a Gaussian process emulator as described in section

2.2.4, closed form expressions may be obtained for p(x∗|F, zt0) and moments of the

posterior Gaussian process y(θ)|x∗, F, zt0 . Moments of y(θ)|F, zt0 may be obtained

by integrating moments of y(θ)|x∗, F, zt0 with respect to p(x∗|F, zt0) numerically.

Values of the distribution function for y(θ)|F, zt0 may be obtained in a similar way.

A fully Bayesian MCMC forecasting calculation would be extremely challenging,

both numerically and in the prior specification. Handling the relationship between

F , Ψ, x∗ and zt0 for any θ, for example, will be particularly difficult.

If we have made the philosophical or pragmatic choice to use Bayes Linear meth-

ods and to construct a second order emulator, the forecast method is not as intu-

itively straightforward. Assuming a prior probability distribution on the best input,

p(x∗), it is unclear how the system data zt0 should inform us about x∗.

From (2.2) and (2.18) we have

zt0 = ft0(x∗) + ηt0 + et0 ,

so zt0 must contain some information about x∗. However, to update our distribu-

tion for x∗ using zt0 we require p(zt0|x∗) which is undefined by our second order

specification.

There is also a philosophical question to be addressed here. Learning, within the

Bayes Linear paradigm, is facilitated by linear fitting. There is limited information

contained in zt0 , and our principle interest when forecasting is in the value of y(θ).

Therefore it could be argued that it is more appropriate to adjust beliefs about

y(θ) by zt0 , rather than waste time and resources extracting the potentially limited

information regarding x∗ contained in zt0 first. Whether or not this argument is

valid will depend on the model, the application and the beliefs of the analyst.

We stated previously that a history match should be performed regardless of

the ultimate goal of the analysis. Assuming we have used zt0 already to perform a

history match, our model emulators should be accurate around plausible locations

of x∗. We may then consider that we have extracted and handled the information

about x∗ contained in zt0 in an appropriate way. If we accepted this, we would be

left free to adjust y(θ) by zt0 directly. Our approach to forecasting then is to perform
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two, separate, Bayes Linear fits. The first adjusts the emulator by the model runs

and allows us to construct a covariance between past and future values of the system.

The second adjusts these system beliefs by real-world data.

Before moving on to describe the method of forecasting in detail, we note that in

the case where we still have access to further runs of the computer model, inserting

a calibration step and obtaining model runs at the expected values of x∗ can yield

powerful forecasts. These ideas and a methodology applying to policy problems are

developed in Chapter 6. The forecasting we describe here assumes that we have

exhausted our access to the computer model and must combine our emulators with

real-world observations to express beliefs about future states of the complex system

under different policy strategies.

Deriving system beliefs

We outline here the Bayes Linear forecasting methodology introduced by Craig et

al. in [17] and apply it to models with decision inputs. We then introduce a number

of novel approaches and techniques designed to make the calculations manageable.

As we are using Bayes Linear methods to learn about the complex system, the

ultimate goal is to obtain a mean and variance for y(θ) using our emulator. Once

second order beliefs about the complex system have been derived, we may adjust

them using the data zt0 to obtain a forecast. Using (2.2) we write

E [y(θ)] = E [E [f(x∗, θ)|x∗]] + E [η(θ)]

=

∫
X

E [f(x∗, θ)|x∗] p(x∗)dx∗, (2.20)

so that the decision-dependent expectation of the complex system is obtained by

integrating the expected emulator over the prior distribution for x∗. As we stated

above, we are assuming that our emulators have already been tuned via model runs

so that E [f(x∗, θ)|x∗] is actually the expectation of the emulator given x∗, adjusted

by runs F through equation (2.14).
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We may express the variance of the system for given θ as

V ar [y(θ)] = V ar [f(x∗, θ)] + V ar [η(θ)]

= V ar [E [f(x∗, θ)|x∗]] + E [V ar [f(x∗, θ)|x∗]] + V ar [η(θ)] ,

=

∫
X

V ar [f(x∗, θ)] p(x∗)dx∗ + V ar [η(θ)]

+

∫
X

E [f(x∗, θ)]E [f(x∗, θ)]T p(x∗)dx∗ − E [y(θ)]E [y(θ)]T , (2.21)

where again the moments of the emulator are adjusted by runs F. We now show,

using index notation, how each of these integrals are computed as functions of

the components of the emulator and the model runs. The derived expressions will

then be used to illustrate the principle computational difficulty encountered when

forecasting, and to develop forecasting approaches that exploit certain structures

within the emulator that exist or that we are willing to impose. For notational

convenience we consider the moments of the emulator within the integrands of the

following expressions to be implicitly conditioned on x∗.

Combining (2.20) and (2.14) we have

E [y(θ)] =

∫
X

EF [βg(x∗, θ)] p(x∗)dx∗ +

∫
X

EF [u(x∗, θ)] p(x∗)dx∗, (2.22)

where [∫
X

EF [βg(x∗, θ)] p(x∗)dx∗
]
i

=

∫
X

EF [β]im gm(x∗, θ)p(x∗)dx∗

= EF [β]im

[∫
X

g(x∗, θ)p(x∗)dx∗
]
m

,

and[∫
X

EF [u(x∗, θ)] p(x∗)dx∗
]
i

=

[∫
X

Cov [u(x∗, θ), U ] p(x∗)dx∗
]
ikl

V ar [F ]−1
klmn ∆mn.

Define

W (x, θ)ijk = Cov [u(x, θ), U ]ijk
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then using (2.15), we have∫
X

V arF [f(x∗, θ)] p(x∗)dx∗ =

∫
X

V arF [βg(x∗, θ)] p(x∗)dx∗

+

∫
X

V arF [u(x∗, θ)] p(x∗)dx∗

+

∫
X

CovF [βg(x∗, θ), u(x∗, θ)] p(x∗)dx∗

+

∫
X

CovF [u(x∗, θ), βg(x∗, θ)] p(x∗)dx∗, (2.23)

where∫
X

V arF [βg(x∗, θ)]ij p(x
∗)dx∗ = V arF [β]iqjp

∫
X

gq(x
∗, θ)gp(x

∗, θ)p(x∗)dx∗

= V arF [β]iqjp

[∫
X

g(x∗, θ)g(x∗, θ)Tp(x∗)dx∗
]
qp

,

and∫
X

V arF [u(x∗, θ)]ij p(x
∗)dx∗ = V ar [u(x∗, θ)]ij

−
∫
X

W (x∗, θ)iklV ar [F ]−1
klmnW (x∗, θ)jmnp(x

∗)dx∗

= V ar [u(x∗, θ)]ij

− V ar [F ]−1
klmn

[∫
X

W (x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ikljmn

.

The ijth element of the final two integrals in (2.23) is

V ar [β]imknGnlV ar [F ]−1
klop

[∫
X

g(x∗, θ)Cov [u(x∗, θ), U ] p(x∗)dx∗
]
mjop

and [∫
X

g(x∗, θ)Cov [u(x, θ), U ] p(x∗)dx∗
]
nikl

V ar [F ]−1
klop V ar [β]omjnGmp

respectively. To complete the variance calculation we require∫
X

EF [f(x∗, θ)]EF [f(x∗, θ)]T p(x∗)dx∗,

whose ijth element is

EF [β]imEF [β]jn

[∫
X

g(x∗, θ)g(x∗, θ)Tp(x∗)dx∗
]
mn

+

EF [β]im

[∫
X

g(x∗, θ)W (x∗, θ)p(x∗)dx∗
]
mjkl

V ar [F ]−1
klnp ∆np+

EF [β]jm

[∫
X

g(x∗, θ)W (x∗, θ)p(x∗)dx∗
]
mikl

V ar [F ]−1
klnp ∆np+

V ar [F ]−1
klmn ∆mn

[∫
X

W (x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ikljpq

V ar [F ]−1
pqrs ∆rs. (2.24)
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Having obtained E [y(θ)] and V ar [y(θ)] by computing (2.20) and (2.21) through

(2.22), (2.23) and (2.24), we complete the Bayes Linear forecast by adjusting these

moments by zt0 . From (2.9) and (2.10) these adjustments are

Ezt0 [y(θ)] = E [y(θ)] + Cov [y(θ), zt0 ]V ar [zt0 ]−1 (zt0 − E [zt0 ]) (2.25)

and

V arzt0 [y(θ)] = V ar [y(θ)]− Cov [y(θ), zt0 ]V ar [zt0 ]−1Cov [zt0 , y(θ)] , (2.26)

where from (2.18) we see that

V ar [zt0 ] = V ar [et0 ] + V ar [yt0(θ)] .

The required covariances in (2.25) and (2.26) are obtained from V ar [y(θ)] in a

similar fashion.

The Computational Burden

We have shown that integrating out the best input to obtain judgements about y(θ)

requires computation of 5 integrals. We must integrate g(x∗, θ), Cov [u(x∗, θ), U ],

and the outer products of these 2 quantities with each other and with themselves,

with respect to p(x∗). Generally, these integrals may not be obtained analytically

and must be evaluated numerically. In appendix B we present a special case where

uniform p(x∗) combined with specific regressors and a Gaussian correlation function

lead to closed form expressions for each integral.

Integrating functions of the regressors only is relatively straight forward nu-

merically. This is because regressors are usually simple functions like monomials.

Integrals containing Cov [u(x, θ), U ], however, will take significantly longer. This

is because for every numerical integration point x, the covariance array must be

constructed by calculating covariances between u(x, θ) and the residuals from the

model runs. If x (or the subset of x chosen as active variables) is high dimensional,

or we have a large collection of runs, or even a complicated and expensive correla-

tion function, constructing and storing the array may be time consuming. That it

must be rebuilt at every numerical integration point provides the most significant

challenge when obtaining a forecast.
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Although we have established that integrating out the best input to obtain a

forecast is challenging, its difficultly should be judged relative to the cost of build-

ing and running the simulator. Using powerful state of the art computers, as we

would when running the simulator, we should expect to be able to perform these

integrations. This argument is convincing when the goal is simply to predict a one-

off future: for example, if there were no decision inputs and we only wanted to

understand how a system is likely to evolve as in Craig et al. [17], or if a policy had

been chosen already and we wanted to explore its likely impact on the system. Our

application, on the other hand, is providing decision support for policy makers. To

aid decision making, the very least we must be able to do is produce forecasts for a

large number of different policies so that the decision maker can compare their per-

formance. The techniques we outline in chapter 3 require many forecasts to provide

powerful decision support tools.

We are motivated then, by a need to make many forecasts, to develop methods

of forecasting quickly. Our focus will not be on the numerical integration rule itself,

but on exploiting potential structural features of the emulator.

2.3.3 Separability

As discussed, the major issue in integrating out the best input will be that the

expensive calculations must be performed for any θ we require a forecast for, and

that in providing decision support we will require many of these forecasts. There

are structures that may exist, or that we may choose to impose upon g(x, θ) and

R(|(x, θ)− (x′, θ′)|,Ψ), that remove the dependence of θ from the numerical integra-

tions altogether. Should they be naturally present in our emulators or should we be

willing to impose them, the issue we describe is completely resolved.

In what follows we use the operator ‘∗’ to indicate elementwise multiplication of

two objects in the appropriately labelled dimension; i.e. for matrix objects M,N,

the operation Mij ∗Nij returns the product of the ijth element of M and the ijth

element of N. This is distinguished from MijNij which we have defined already to
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be ∑
i

∑
j

[Mij ∗Nij] .

We first consider separability in g(x, θ). Suppose we may write

g(x, θ) = k(θ) ∗ h(x),

where h(x) and k(θ) are vectors of the same length as g(x, θ). Then[∫
X

g(x∗, θ)p(x∗)dx∗
]
m

= km(θ) ∗
[∫

X

h(x∗)p(x∗)dx∗
]
m

(2.27)

and∫
X

gq(x
∗, θ)gp(x

∗, θ)p(x∗)dx∗ =

∫
X

(kq(θ) ∗ hq(x∗))(kp(θ) ∗ hp(x∗))p(x∗)dx∗

= kq(θ)kp(θ) ∗
∫
X

hq(x
∗)hp(x

∗)p(x∗)dx∗

=
[
k(θ)k(θ)T

]
qp
∗
[∫

X

h(x∗)h(x∗)p(x∗)dx∗
]
qp

. (2.28)

The integrals in (2.27) and (2.28) have no dependence on decision θ and may be

computed once and stored. In stipulating separability in g(x, θ) then, we allow cheap

evaluations of ∫
X

g(x∗, θ)p(x∗)dx∗ &

∫
X

g(x∗, θ)g(x∗, θ)Tp(x∗)dx∗,

following a one-time evaluation of∫
X

h(x∗)p(x∗)dx∗ &

∫
X

h(x∗)h(x∗)Tp(x∗)dx∗,

for any chosen θ. We now consider separability in the residual process.

Suppose we specify that the residual process u(x, θ) had a covariance function

that was separable in x and θ, so that

Cov [ui(x, θ), uj(x
′, θ′)] = Σijr

x(|x− x′|)rθ(|θ − θ′|).

Let Ω be the matrix whose columns contain the design in the model inputs used to

compute F and similarly let Θ be the design in the decision inputs. Denoting the

ith design point (Ωi, Θi), then[∫ ∞
−∞

W (x∗, θ)p(x∗)dx∗
]
ikl

= Σikr
θ(|θ −Θl|) ∗

[∫
X

rx(|x∗ − Ωl|)p(x∗)dx∗
]

(2.29)
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and[∫
X

W (x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ikljmn

=ΣikΣmjr
θ(|θ −Θl|)rθ(|θ −Θn|)

∗
∫
X

rx(|x∗ − Ωl|)rx(|x∗ − Ωn|)p(x∗)dx∗.

(2.30)

We can therefore compute the integrals∫
X

rx(|x∗ − Ω|)p(x∗)dx∗ &

∫
X

rx(|x∗ − Ω|)rx(|x∗ − Ω|)Tp(x∗)dx∗

once and then find (2.29) and (2.30) for any θ via a relatively cheap calculation.

If we have both separability in g(x, θ) and in the residual process, we may make

similar simplifications to the final numerical integral required,[∫
X

g(x∗, θ)W (x∗, θ)p(x∗)dx∗
]
mjop

.

This can be written as∫
X

(km(θ) ∗ hm(x∗))Σjo(r
θ(|θ −Θp|) ∗ rx(|x∗ − Ωp|))p(x∗)dx∗

= Σjokm(θ)rθ(|θ −Θp|) ∗
∫
X

hm(x∗)rx(|x∗ − Ωp|)p(x∗)dx∗

= Σjokm(θ)rθ(|θ −Θp|) ∗
[∫

X

h(x∗)rx(|x∗ − Ω|)p(x∗)dx∗
]
mp

. (2.31)

If imposed, these two mathematical structures make obtaining decision-dependent

forecasts cheap, provided initial integration of the required x−dependent quantities

has been done.

It may be that one or both of these separability assumptions does not represent

our true beliefs about the computer model. If our emulators are not separable

everywhere in the ways we have demonstrated above, the element-wise nature of

the calculation of the integrals means that we may still use separability locally.

For example, our vector of regressors may contain terms such as sin(xiθj), making

g(x, θ) inseparable. However, there may be elements of g(x, θ) that can be separated

and whenever possible these should be identified and used to reduce the number of

θ-dependent numerical integrations in a forecast.

Having located and exploited local separability in emulators that are not fully

separable, we may still be left with very expensive θ-dependent numerical integra-

tions which are infeasible to obtain more than a handful of times. In that case, we
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may be forced into looking for other ways in which the forecasting calculations can

be simplified. The different ideas we describe now are all variations on a theme we

call fast forecasting.

2.3.4 Fast Forecasting

We define a fast forecast to be a forecast that approximates the careful forecast we

might make, given enough time and computer power, in a fraction of the time it

would normally take. We view fast forecasts as being informative for our careful,

expensive forecasts. The ability to provide quick and reasonable approximations to

careful forecasts is central to the methods of decision support we describe in chapter

3.

The most obvious fast forecasting technique we may consider is to use a less accu-

rate but faster numerical integration method. How we choose to handle numerical

integration, both for careful and fast forecasting, will be an important, problem-

specific, consideration. The fast forecasting ideas we present in this section aim to

exploit the structure of our emulators and assume that the numerical methods of

integration have been decided.

Having exploited any element-wise separability in g(x, θ), we should have only a

handful of decision-dependent integrations involving just the regressors. Generally,

regressors are simple, cheap functions to evaluate and, relative to constructing and

storing functions of Cov [u(x, θ), U ], they are trivial to integrate. Our focus when

developing fast forecasts then, is on how the integrals involving Cov [u(x, θ), U ] may

be simplified.

If, in building our emulator, a lot of effort was spent on finding a good global

regression so that the variance of the residual process is small, the contribution

of any integrals involving u(x, θ) may also be considered small or even negligible.

Additional weight may be added to this argument if the points used to evaluate U

are spread out and if the correlation lengths in our emulator are small. In these
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cases a good fast approximation to the forecast may be obtained by setting[∫
X

W (x∗, θ)p(x∗)dx∗
]
ijk

= 0,[∫
X

W (x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ijklmn

= 0,

and [∫
X

g(x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ijkl

= 0.

This type of fast forecast is so attractive because it removes all of the difficulty

in constructing and storing the large covariance arrays. Essentially, we reduce the

decision-dependent forecasting problem to one of evaluating a handful of insepara-

ble, yet easy to compute, functions across our numerical integration scheme. It is

perhaps, though, a little drastic to have gone to all the effort of carefully building

the emulator and accounting for all of our uncertainties in the residual process, only

to ignore their collective impact on our beliefs about the system.

There are two main applications where we would advocate using this type of

forecast. The first is one in which a large number of very approximate forecasts are

sufficient to give us an initial picture of how the forecast behaves in different areas

of the decision space. Our intention would not be to use these forecasts directly in

decision support, but to help build more sophisticated models that focus our search

for ‘good’ forecasts. The second, and perhaps the more interesting application, is

when θ is sufficiently far away from any of the design points that it alone takes

Cov [u(x, θ), U ] approximately to zero for any x ∈ X. If our design Θ is relatively

sparse, this may be true for a substantial proportion of the decision space.

For norms that are monotonic in each of the elements of the vectors they measure,

the distance of a given point (x, θ) from design point (Ωi, Θi) is greater than the

distance between (Ωi, θ) and (Ωi, Θi). Hence

Cov [u(x, θ), u(Ωi, Θi)] < Cov [u(Ωi, θ), u(Ωi, Θi)]

for i = 1, . . . , n and for all θ. For a given θ we can test if Cov [u(x, θ), U ] is approx-

imately zero for any x ∈ X by fixing x = Ωi (for some i), so that the contribution

from x is at its maximum. We then compute max{Cov [u(Ωi, θ), U ]}. If this value
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is very close to zero, we may consider this type of fast forecast to be a good approx-

imation to the careful forecast for the chosen θ.

If θ is close enough to any of the design points and we would prefer a more

accurate fast forecast, there are other methods we may explore. One idea is to

partition the decision space by considering the distance of any θ from its nearest

design point. For one θ within each partition, we compute a careful forecast including

each of the integrals involving Cov [u(x, θ), U ]. We then make the approximation

that the contribution from these integrals is the same throughout each partition.

Given a handful of initially expensive forecasts, then, under this scheme we would

be able to compute decision-dependent forecasts almost as quickly as if we made the

assumption that all contributions from the emulator residual were zero.

These fast forecasts may be useful when we expect most or all of the points in

U to contribute to the covariance. If our data is sparse relative to the volume of the

decision space or even if we have a short correlation length, it may be that only a

handful of the points in U have any covariance with u(x, θ) for a given θ.

Suppose, as with a previous method, we fix x = Ωi for some i. Instead of now

focusing on the closest design point to θ, we now look for the smallest distance any

point a can be from θ, such that we judge the residual correlation to be zero between

points at θ and points at equivalent and greater distances. For any Θj further from θ

than this distance, we may approximate the covariance between u(x, θ) and u(Ωj, Θj)

by zero for all x.

More formally, let

d = {min(||θ − a||) : Cov [u(Ωi, θ), u(Ωi, a)] ≈ 0} ,

then for j = 1, . . . , n, if ||θ −Θj|| ≥ d we set

Cov [u(x, θ), u(Ωj, Θj)] = 0

for all x.

This fast forecasting method serves to reduce the computation of Cov [u(x, θ), U ]

to the evaluation of a handful of non-zero covariances. Although perhaps requiring

more initial effort to set up than other fast forecasting techniques we have proposed,
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this particular method should lead to substantial computational savings and very

close approximations to our careful forecasts.

If we have a relatively small number of decisions to make, our design in the

decision space may not be very sparse. This may lead us to conclude, based on any

of the tests described so far, that we need to integrate most of Cov [u(x, θ), U ] and

the outer products involving it quite carefully. Often though, in such cases, X may

by high dimensional so that our design points Ω are sparse in X.

For the norms we described earlier, we also have

Cov [u(x, θ), u(Ωi, Θi)] < Cov [u(x,Θi), u(Ωi, Θi)]

for i = 1, . . . , n and for all x.

For each design point we may construct a neighbourhood so that for any x not

contained in one of these n neighbourhoods, the covariance between u(x, θ) and U

is approximately zero. In doing this we reduce the size of the numerical integration

by limiting it to those neighbourhoods we have selected. For i = 1, . . . , n, let

τi = {min(||x− Ωi||) : Cov [u(x,Θi), u(Ωi, Θi)] ≈ 0} .

Our required integrals then become[∫
Γ

W (x∗, θ)p(x∗)dx∗
]
ijk

,[∫
Γ

W (x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ijklmn

,

and [∫
Γ

g(x∗, θ)W (x∗, θ)p(x∗)dx∗
]
ijkl

,

where

Γ =
n⋃
i=1

{x : ||x− Ωi|| < τi}.

Let

Γi = {x : ||x− Ωi|| < τi},

then if
⋃n−1
i=1

⋃
j>i{Γi ∩ Γj} = ∅ we only require

n∑
p=1

[∫
Γp

W (x∗, θ)p(x∗)dx∗

]
ijk

,

n∑
p=1

[∫
Γp

W (x∗, θ)W (x∗, θ)p(x∗)dx∗

]
ijklmn

,
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and
n∑
p=1

[∫
Γp

g(x∗, θ)W (x∗, θ)p(x∗)dx∗

]
ijkl

.

The condition that none of the neighbourhoods intersect will often be satisfied if Ω

is sparse in X and so seems a reasonable assumption.

By constructing these neighbourhoods, we simplify all numerical integrations

involving the residual to the sum of n integrations over small neighbourhoods of

the design points. The hope will then be that far fewer covariance arrays will be

required in the numerical integrations so that the forecast calculation is significantly

cheaper for any θ.

How much of the accuracy of a forecast we are willing to trade in for speed of the

approximation will depend on the application. In chapter 3 we show how to combine

fast forecasting and careful forecasting to aid decision support. We conclude the

current chapter by mentioning other topics in the computer experiment literature,

particularly design. Whilst our decision support methods have not exploited any of

these additional topics, we feel it is important to include them for completeness and

because they suggest interesting areas for further work.

2.4 Design and other topics

2.4.1 Design of computer experiments

A substantial proportion of research into using computer models to learn about

complex systems is concerned with design. The issue of which values of x and θ to

evaluate f(x, θ) for when only a limited number of runs are available is called the

design problem.

There are two principle philosophies behind choosing a design. One is that the

design points should cover as much of the input space as possible so that we can

understand the global model behaviour, as well as we could hope to, across the entire

input space. These designs are known as space filling designs. The other school of

thought is that designs should be made for purpose and should depend on the way

we wish to use the model. For example, our goal may be to build the most accurate
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emulator possible and we would aim to choose our runs to minimise some property

of the emulator variance, such as its trace. These designs are known as criteria based

designs. We give a brief overview of the main techniques for both design types here,

and point interested readers to chapters 5 and 6 of Santner et al [103] for a more

detailed introduction.

Space filling designs

Perhaps the most popular class of space filling design is the Latin Hypercube. The

aim of Latin Hypercube sampling is to ensure that each area of the input space

is represented in the design. Suppose we wish to perform n runs of the computer

model and that there are d dimensions in the input space. A Latin Hypercube design

would divide the domain of each of these d inputs into n parts and produce an n

point design that represents each of these parts exactly once.

If we have a distribution across our inputs, the division of each input dimension

is done so that each of the n parts has equal probability. Dividing the input space

in this way leads to a partition of nd cells. Once a cell is selected as being in our

sample, the design point within that cell is obtained by uniform sampling. One way

of choosing cells to ensure that the design is a Latin Hypercube is to create an n×d

matrix whose columns are randomly chosen permutations of {1, . . . , n}. The ith

row in this case represents the cell in which the ith design point is to be located.

A desirable property of space filling designs is that the points should not be too

close together. Whilst Latin Hypercubes ensure that many different areas of the

input space are covered by our design, they do not necessarily have this property.

There are other space filling design methods that use criteria to ensure that the

points are sufficiently far away from each other. For example, maximin designs

choose points to maximise the minimum distance between any two points in the

design.

By restricting the class of possible designs to Latin Hypercubes and applying

some distance criterion, space filling designers appear to be able to get the best

of both worlds. Designs of this type, including the maximin Latin Hypercube, are

explored, for example by Morris and Mitchell [77] and Liefvendahl and Stocki [67].
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An alternative space filling design method is the use of Sobol sequences (see the

MUCM toolkit [2]). Sobol sequences are deterministic sequences that have ‘quasi-

random’ properties and are computed using binary fractions. Sobol sequences have

been used to evaluate integrals more accurately and efficiently than Monte Carlo

methods (see, for example, Blatman et al. [11]), but their application to the design

of computer experiments is relatively recent. For details on how the sequences are

constructed see Press et al. [89]. An attractive feature of the Sobol sequence as a

design method compared with Latin Hypercubes, is that Sobol sequences may be

added to, so that we may contruct sequential space filling designs.

Criteria based designs

Space filling designs may often be adopted to provide an initial set of runs used

to build or train emulators. If we already have an emulator, or are implementing

a Bayesian emulation strategy with informative priors, then selecting the location

of new runs via a space filling design may not be an optimal strategy. We may

have some experimental goal to consider, such as locating an optimal θ or providing

decision support. It may be that we have a limited budget and want our emulator

to be as accurate as possible throughout the design space. We may be looking for

plausible history matches or require the best possible forecast for a one-off θ. In each

of these cases, different designs will lead to different results.

For each of the examples we have given we may ‘cook up’ a criterion that forms

the basis of a good design for our purpose. For example, Craig et al. [17] suggest a

design criterion so that our experiment gives us the most accurate forecasts we can

expect. The idea is to choose the design that minimises the trace of the forecast

variance, V ar [y(θ)], which implicitly depends on the design through the model runs

and the forecasting equations in section 2.3.2.

In the optimization literature, criteria based designs are particularly important.

The goal of the experiment is to locate the θ that minimises the computer model.

Sequential criteria based design, where the model is evaluated at each step and

the emulators re-fitted, is an often used approach. A popular criterion is that of

expected improvement. The design is chosen so that the expected distance between
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the function at our current best θ and the new point is maximised. Details of these

algorithms may be found in, for example, Williams et al. [111] or Huang et al. [47].

For a policy problem where only a limited number of runs can be obtained from

the computer model, the location of these runs is very important. We discuss these

issues in more depth at the end of Chapter 3.

2.4.2 Emulator Diagnostics

The methods we propose in chapter 3 will assume we have a good emulator of the

computer model. Having built a model emulator, assessing how accurately it mimics

the computer model and whether or not our prior beliefs were consistent with the

observed runs is very important. Whilst emulator diagnostics are important, we

limit ourselves to a brief discussion of them here as they are not the focus of this

thesis.

One popular diagnostic is the ‘leave one out’ method. One run is left out of the

collection of runs used to update a Bayesian emulator, and the left out point is pre-

dicted using this new, adjusted statistical model. We then measure the standardized

distance from the observed to the predicted point. If our prediction is more than 2

or 3 standard deviations away from the observed value, our prior beliefs may not be

reasonable and we may decide to re-examine them. This method is similar to the

cross validation techniques we described earlier, although the parameters themselves

are not re-fitted.

Bayes linear methods provide a suite of diagnostic tools that can be applied to

second order emulators. These are presented in detail in Chapter 4 of Goldstein and

Wooff [42]. Emulator diagnostics for Gaussian process emulators are discussed in

Bastos and O’Hagan [7].
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Chapter 3

Model aided decision support for

policy problems with intervention

In this chapter we apply the theory for managing uncertainty in computer models

and using them to learn about physical systems to complex policy problems. In

section 3.1 we describe the types of policy problem in which we are interested.

In section 3.2 we review some of the current practices used to provide decision

support in these problems using Integrated Assessment. In section 3.3 we describe

an idealized approach to solving policy problems with our most powerful computer

models and the technologies described in chapter 2. We conclude that it is not

possible to solve these problems exactly and propose a method of decision support

that combines fast forecasting techniques introduced in 2.3.4 with more careful and

expensive forecasts. In section 3.4 we review multi-level emulation techniques and

discuss multi-level emulation of expected losses. In section 3.5 we describe our

method of Sequential Emulation for gaining insight into the properties of the large

decision trees defined by policy problems. In section 3.6 we present our Sequential

Emulation algorithm. Section 3.7 presents some ideas for using Sequential Emulation

to provide policy support. We offer a discussion in section 3.8.

Throughout this thesis the standard results in Bayesian decision theory are as-

sumed known. For a detailed introduction and development of this theory, see, for

example, DeGroot [26].
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3.1 The policy problem with intervention

3.1.1 Loss models

Policy makers increasingly rely on computer models to aid policy judgements influ-

encing complex systems (see, for example, Linkov and Burmistrov [68]). Not only

must policy makers use computer models to understand the complex system and its

reaction to different decisions, they must also use them to understand that system’s

impact on the world’s population and economy, as well as the cost of executing a

given policy. To motivate our discussion throughout this chapter it will be useful to

have a real-world example in our minds. We use an example of a real-world policy

problem in addressing climate change.

Governments throughout the world must make policy regarding carbon emissions

and investment to tackle climate change. This is in order to avoid what the UN-

FCC defined as “dangerous anthropogenic interference with the climate system” [1].

Whilst most industrialised countries have committed themselves to reducing emis-

sions to specific targets [59] by signing the Kyoto agreement [85], the policy makers

must decide how these targets are to be achieved. To do this they must not only

use models to learn how different emissions scenarios and investment programs may

affect climate, but they must also use models to understand how different climate

states and cuts to emissions will affect their economies and populations.

This second model we refer to as the loss model. A loss model’s inputs will include

the policies to be made, the state of the complex system under those policies, and a

number of parameters designed to describe how populations and the economy evolve

and the damage suffered due to different future states of the system, as well as any

preferences of society and the decision makers. The output of a loss model should

be in units of utility. This may involve computing loss as a monetary value and

applying a social welfare function (we see an example of such a model in chapter

4). As the loss model involves mimicking the evolution of the economy over time, it

may be as complex and expensive as the model for the system.
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3.1.2 Optimal policy and intervention

The goal of the policy maker, if he believes his loss function truly expresses his

preferences in units of utility, is to find the policy that minimizes his expected loss

with respect to plausible future states of the system, where loss is negative utility.

Often though, the loss model may be so complicated that the policy maker may not

be certain that any parametrization gives a true reflection of his preferences in utility

units. Therefore, policy makers will also be interested in policies that have relatively

“safe” risk profiles and that appear robust to various plausible parametrizations of

the loss model.

Once a policy is chosen and implemented, it will influence future states of the

complex system. As the system evolves under a given policy, it may be observed and

policy makers may wish to adapt their strategy. We call these adaptations policy

interventions when they follow observation of the system. As an example, consider

a policy made today in which we decide to do nothing to abate climate change. In

a number of years, if the climatic impacts of global warming are steadily worsening,

one would hope that policy makers would decide to intervene and cut emissions,

rather than adhere to their original policy. A natural approach would be to make

a number of periodic observations and interventions. A policy maker will usually

intend their long term strategy to be like this before he makes any decision today.

The theory of sequential decision making (for a thorough development see De-

Groot [26]) states that knowledge of future observations and opportunities to make

decisions in the future should be accounted for when making decisions today. There-

fore, the potential for future observation-based policy revision must be carefully ac-

counted for in any decision support we may provide. We now formalize the policy

problem we intend to study in this chapter.

3.1.3 Formalizing the policy problem

A policy maker must make a decision today, parametrised by θt0 , in order to favourably

influence future states of a complex system. To aid him, he has observations of the

system zt0 (defined on page 25). At m different points in the future, t1, . . . , tm,
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the decision maker may observe the system under his current policy, and make new

policy θti , for i = 1, . . . ,m. Let θ = (θt0 , θt1 , . . . , θtm), then the complex system is

denoted y(θ). Observations of the system made from one policy intervention to the

next at time ti are

zti(θt0 , θt1 , . . . , θti−1
) = yti(θt0 , θt1 , . . . , θti−1

) + eti .

We assume a finite number of interventions is made and write ytf (θ) to denote the

future state of the system after all observations and interventions have been made.

For clarity, tf represents all future times, for which we have system information and

well defined preferences over outcomes, after the final intervention has been made.

In order to inform him about the complex system, the policy maker may make

runs on a computer model f(x, θ), whose outputs are linked to the system via the

best input assumption (2.2). For now we consider that this model is fixed, however

in Chapter 5 we will allow the model to be improved and updated by the time

we wish to make interventions. The impact of any policy and system realization

on the economy and the policy maker’s preferences over different economic states is

measured by the loss model L(xL, y(θ), θ), where xL is a set of loss model parameters

and the output of L(·) is in units of utility. We present an example of the influence

diagram defined by this problem for m = 2 in figure 3.1.

Before we address the problem with a view to providing decision support, we give

a brief review of some of the current methods used in policy making with computer

models. Our experience of attempts to address these issues in the literature involves

a particular class of simulators known as Integrated Assessment Models.

3.2 Integrated Assessment

Attempts to explore optimal policy often involve Integrated Assessment (IA) models

(see, for example, van Asselt and Rotmans [107], Keller et al. [55]). These models

couple an often simplified model of the complex system with a loss model that reacts

and interacts with it to make one model. The IA model will have a policy as well as

a number of model parameters as inputs and will output a utility. Changes in the
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F

f(x, θ)

x∗

θt0 θt1 θt2

ft0(x∗) ft1(x∗, θt0) ft2(x∗, θt0 , θt1) ft3(x∗, θt0 , θt1 , θt2)

zt0 yt0 yt1 zt1 yt2 zt2 yt3

ηt0 ηt1 ηt2 ηt3

L(yt0 , yt1 , yt2 , yt3 , θt0 , θt1 , θt2)

Figure 3.1: Our statement of the decision problem and the modelling statements

made in chapter 2 define an influence diagram. This figure presents an example of

this influence diagram for the case where we have 2 downstream intervention points

at times t1 and t2.
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model economy and the complex system interact at each time step, providing feed-

backs and allowing adaptive policies to be considered and evaluated in the context

of the model.

IA models are often seen as able to provide useful insight for policy makers that

stand-alone, expert models (such as a powerful climate model) cannot [94]. Potential

interactions between socio-economic output and the complex system are modelled

explicitly (although simply), allowing the potential for policy makers to judge which

interactions may be important. For example, some IA models for climate change use

a simple climate model to compute temperature at each time step which is then fed

into a ‘damage function’ describing the effects of that temperature on populations

and the world economy at that time step. Due to the model temperatures and dam-

ages, there may be some required investment or migration that might, for example,

alter the amount of land covered by vegetation. This would then feed back into the

climate model and affect temperature at the next time step.

3.2.1 Locating optimal policy

One potential treatment of IA models is to consider them as a single model for

utility of a policy for some complex system; for example, a model of utility for an

emissions policy. Although this utility depends on a submodel for climate change,

the entire function is treated as a ‘black box’ reflection of preferences. In such a

case we can find the optimal policy, perhaps with respect to certain constraints.

For example, McInerney and Keller [73] use a simple IA model to find an optimal

emissions strategy subject to the constraint that the model MOC does not collapse.

Rather than search over all potential policies for the optimum, IA models are

often used to compare the performance of a finite number of policies (see, for ex-

ample, Budescu et al. [14]). In such cases, the ‘optimal’ policy may be regarded

as being the best of the considered policies. Good policy support should explore a

wide range of potential decisions and their impacts (Izrael and Semenov [49] give a

discussion of this referring to emission strategies).

The ‘optimal’ policy, that being the decision that minimizes the loss output by

the IA model, is only optimal with respect to a given parametrization of the model.

June 28, 2010



3.2. Integrated Assessment 50

A useful method of policy support is known as scenario analysis, and aims to outline

the different policy consequences of alternative views of the world. If using an IA

model to find optimal policy, one may wish to find that optimum under different

parameterizations of the policy maker’s preferences. Keller et al. [56], for example,

consider optimal CO2 sequestration for a range of different costs per ton of carbon

removal.

3.2.2 Investigating adaptive strategies

Policy strategies that are capable of adapting to changes in the real world are seen

as better than one-off optimizations (see, for example, Lempert et al 2000 [66]).

The idea is to write down a set of potential actions to take today, together with a

list of potential actions one might take given different observations of the system in

the future, and use the IA model to explore the quality of each potential strategy.

Examples of such exploration can be found in Lempert et al. 1996 [65] and Bankes

[5].

Note that the study of adaptive strategies does not (directly, at least) address the

intervention problem outlined in section 3.1.3. Whilst potential future observations

are considered, they are only ever treated inside the IA model. That is to say

that observations of the real world do not drive the utility of an adaptive strategy.

Instead it is driven by system related sub-model outcomes, treated as if they were

observations of the real world.

3.2.3 Handling and reporting uncertainty

The IA approach aims to treat many sources of uncertainty in providing policy

support. We have already discussed the use of scenario analysis in the context

of seeing its effect on optimal policy. Scenario analysis can be a useful tool in

decision support, particularly for policy problems. Experts often disagree on the

subject of potential long-term behaviour of the system, the damage it may cause,

or the preferences of society for different outcomes (see, for example, Morgan and

Keith [75], Morgan et al. [76]). The goal in these cases is to find policies that are
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robust to these different scenarios.

Uncertainty regarding the choice of model (with reference to particular equa-

tions for subcomponents rather than a completely different model) and what the IA

modellers call ‘parameter uncertainty’ is often addressed (see, for example, Casman

et al. [15]). Exploratory modelling (also known as computer assisted reasoning) al-

lows the policy maker to explore an ensemble of models (or parametrizations of the

model) over a number of adaptive strategies, in order to assist decision making (see

Lempert [64]).

Kann and Weyant [54] describe a number of methods of uncertainty analysis

in IA modelling, including a formal treatment of the sequential decision problem

for interventions (although future “observations” are still model-based). They also

discuss sensitivity analysis, and how parameter uncertainty may propagate through

the model to give a distribution of potential losses. Appropriate methods of policy

support advocated by Kann and Weyant, and others cited here, include providing

a ‘portfolio of actions’ that perform well for a variety of different scenarios, and for

any well studied policy, a measure of risk dispersion (a risk profile) for outcomes.

3.2.4 Drawbacks to the IA approach

The policy support techniques in IA modelling that we have described, such as

computer assisted reasoning, rely on relatively fast run times. The simplifications

made to the physics of the complex system, micro and macro economies, and the

preferences of policy makers within IA models are therefore often substantial. As

far as we have been able to see, however, the differences between the model or the

individual sub-models, and the systems they represent, are hardly addressed.

The sub-model of the complex system is occasionally calibrated to real-world

data (see, for example, Nordhaus and Boyer [80]), however, neither observation error

nor model discrepancy is considered. It remains unclear whether a calibrated sub-

model is of any more use in a policy setting than an un-calibrated one, if uncertainty

regarding the model discrepancy is not formally treated. For example, consider an

IA model for the emissions problem. The simplified climate model used to compute

temperature may be calibrated to the temperature record. However, when testing
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a policy where CO2 emissions lead to concentrations never before observed in the

real-world, is the calibrated climate model still informative for climate in this state?

This question is very important if we are to use the model to advise policy makers

regarding climate change.

Policy makers are often mistrustful of computer models and are concerned with

the difference between model prediction and reality (see Brugnach et al. [13]). It

seems a reasonable requirement, then, that any genuine policy support should care-

fully handle the difference between the model and the system. The problem with

this, however, may be that having used a very simple submodel in an IA model, the

additional uncertainty would dominate any analysis.

The IA community has begun to work on methods of using more powerful, ex-

pensive and accurate sub-models to build their simulators. Leimbach and Jaeger [63]

suggest a framework for using powerful sub-models in IA called modules. They cre-

ate extra models designed solely to enable the different modules to talk to each

other (potentially translating different programming languages) and to run quickly

and simultaneously. Application of the approach, known as Community Integrated

Assessment Modelling (CIAM), can be seen in, for example, Leimbach et al. [62].

Although CIAM aims to use the most powerful expert models from each research

community, it is difficult to see how this will ever scale up to the most powerful ex-

pert models whilst retaining the useful, relatively quick to evaluate, policy support

properties desired by the practitioners of integrated assessment. As an example,

consider the climate model at the Hadley Centre currently takes around a month to

run on a super computer.

In the rest of this chapter we describe our approach to policy support. This

approach allows the use of our most powerful models from each discipline, carefully

addresses the difference between the model and the real world, and allows the po-

tential for actual future observations and interventions to influence the support we

offer. In chapter 5 we extend this approach to allow future updates to the model. We

believe this approach is suitable and appropriate for the most challenging real-world

policy problems. The methods are based on the statistical machinery we described

in chapter 2 for managing uncertainty using computer models
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3.3 The expected loss surface

Our approach to policy support is to combine state of the art models for complex

systems with loss models and Bayesian emulation technology, in order to provide a

visualisation of the policy maker’s expected loss surface as a function of policy made

today. Once obtained, this map of the loss surface can be used to provide many

different types of decision support. We discuss decision support using the expected

loss surface in section 3.7.

In what follows we treat the loss model as a known function L(θ, y(θ)). Doing

this assumes that an xL has been chosen that accurately reflects the policy maker’s

preferences and the behaviour of the economic system in response to the complex

system. In reality we may be as uncertain regarding the ‘true’ parametrization of the

loss model as we are regarding the location of x∗ for our computer model. In spite of

our primitive treatment of the loss function, we believe that our methodology is novel

in that it shows how powerful expert models of the complex system may be used to

provide policy support. We carefully handle the issue of system observations and

policy intervention and have hopefully paved the way for extensions to be developed

that treat the loss model more formally. In section 3.7, we discuss our own forms of

scenario analysis that aim to address some of our uncertainties about the proper form

of the loss model and in section 3.8, offer discussion regarding treating L(xL, y(θ), θ)

as a computer model.

3.3.1 The ideal solution

In what follows it will be useful to develop some new notation to handle collections of

decisions and observations. Firstly, we simplify our current notation by suppressing

the dependence of zti and y on the policies θti for i = 0, . . . ,m. We define

zk = zt0 , zt1 , . . . , ztk

θk = θt0 , θt1 , . . . , θtk

for k = 1, . . . ,m.

The policy problem defined in section 3.1.3 defines a decision tree. We present

a snapshot of this decision tree for one observation and intervention (m = 1) in
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L(y, θ1)
y

A(θ1, z1)

θ t1

B1(θt0 , z
1)

z t1
C1(θt0 , zt0)

θ t0

Figure 3.2: A snapshot of the decision tree defined by the intervention problem

when m = 1. The node labels correspond to the quantities defined by (3.1), (3.2)

and (3.3). The dotted lines represent the infinite number of alternative paths defined

by the different decisions and observations we may make.

figure 3.2. The decision tree describes how policy is made in time. We choose θt0 ,

observe zt1 and use the new information to choose θt1 . This pattern continues until

the final observation ztm and intervention θtm have been made, at which point we

experience ytf and realize associated loss L(y, θ). In order to solve this decision tree

we must recursively compute expectations at each of the circular chance nodes, and

choose the decision to minimise these expectations at each of the adjacent square

decision nodes. This method of rolling back the decision tree, known as backwards

induction, we now describe mathematically for this particular problem.

Define

A(θm, zm) =

∫ ∞
−∞

L(y, θm)p(y|zm, θm)dy, (3.1)

where p(y|zm, θm) is a probability distribution for the state of the system given

decisions θm and observations zm. If this distribution accurately reflects our beliefs

about the system under these conditions, then A(θm, zm) is our expectation on the

right-most chance node of the full decision tree for the branch defined by θm, zm.
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Figure 3.3: This image shows the decision tree for the full intervention problem after

the expected losses as defined by (3.1) have been computed for each branch defined

by θm and zm. The dashed line between the two solid chance nodes represents the

m− 1 decisions and observations that are taken before we observe ztm .

The information at each of the right-most chance nodes, labelled A(θm, zm) for

any θm, zm is now sufficient for all information contained in the loss function to the

right of it. We may therefore focus our energies on the rolled back tree, a snapshot

of which is depicted in figure 3.3.

We now choose θtm to minimise A(θm, zm) for each θm−1, zm. Define

Bm(θm−1, zm) = min
θtm
{A(θm, zm)}, (3.2)

then Bm(θm−1, zm) is the expected loss, located at the right-most decision node for

any branch θm−1, zm, and is sufficient for all information to the right of it on the

tree. So Bm(θm−1, zm) is our expected loss having made decisions θm−1 and having

observed zm, assuming that we intend to make the time tm decision that minimises

expected loss. We can now draw the new rolled back decision tree in figure 3.4 and

continue our backwards induction.

Define

Cm(θm−1, zm−1) =

∫ ∞
−∞

Bm(θm−1, zm)p(ztm|zm−1, θm−1)dztm , (3.3)

where p(ztm|zm−1, θm−1) is our conditional probability distribution for observing

ztm , given decisions θm−1 and observations zm−1. Cm(θm−1, zm−1) is therefore our
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Figure 3.4: This image shows the decision tree from figure 3.3 having been rolled

back one step by choosing the θtm that minimizes A(θm, zm) for each θm−1, zm.

Cm(θm−1, zm−1)

θ tm
−
1

z tm
−
1

z
m
−2 ,

θ
m
−2

θt0

Figure 3.5: This image shows the decision tree from figure 3.4 rolled back a further

step, by taking expectations of Bm(θm−1, zm) over the conditional distribution of

ztm given all other decisions and observations, as defined by (3.3).

expected loss having made decisions θm−1 and having observed zm−1. This expected

loss is now sufficient for everything to the right of the appropriate chance node on

the tree. This is shown on figure 3.5

We continue to compute expectations at each node in this way, working from the

right to the left of the tree until we reach the final chance node. For 0 < k < m let

Bk(θk−1, zk) be our expected loss having made decisions θk−1 and having observed
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zk, and let Ck(θk−1, zk−1) be our expected loss having made decisions θk−1 and

having observed zk−1. Then

Bk(θk−1, zk) = min
θtk

{Ck+1(θk, zk)}, (3.4)

with

Ck(θk−1, zk−1) =

∫ ∞
−∞

Bk(θk−1, zk)p(ztk |zk−1, θk−1)dztk , (3.5)

and C1(θt0 , zt0) is our expected loss of making today’s policy θt0 , having seen history

zt0 . Therefore, C1(θt0 , zt0) is the expected loss surface we wish to be able to visualise.

In order to solve our decision problem we require the probability distributions

p(y|zm, θm) and p(ztk |zk−1, θk−1) for k = 1, . . . ,m. At the beginning of section 2.3.2

we discuss ways to obtain features of these posteriors using the computer model and

a Bayesian emulation technique.

The only method we may use to sample directly from the posterior generated

from our beliefs and the data is the full Bayes method. The large-scale MCMC cal-

culation required to produce a forecast distribution is certainly feasible as a one-off.

However, as we have stated, it will pose particularly difficult numerical challenges

and will take a long time. For any given branch of the decision tree θm, zm we

require a large sample from p(y|zm, θm), meaning a separate MCMC calculation, to

be able able to evaluate A(θm, zm). To evaluate Bm(θm−1, zm) and Cm(θm−1, zm−1)

requires A(θm, zm) to be computed a large number of times (assuming we obtain

results numerically). This means that a prohibitively large number of separate and

challenging MCMC calculations are required simply to roll back the tree one time

step. This process, if it were ever achievable, must be repeated over m time steps.

Hence the full Bayes solution to the policy problem is infeasible, and we cannot

obtain p(y|zm, θm) and p(ztk |zk−1, θk−1) for k = 1, . . . ,m using MCMC forecasting

methods in general.

3.3.2 Obtaining estimates to the required distributions

We outlined the method of forecasting assuming a Gaussian process emulator and

gave detailed calculations and discussion for Bayes Linear forecasting methods. Both

approaches enable a mean and variance forecast to be obtained. In the GP case, that
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mean and variance can be close to the actual mean and variance of the distribution

in which we are interested (assuming we genuinely believe all of the assumptions we

have used to generate the conjugate analysis). For example, if we require p(y|zm, θm),

the GP forecast can obtain a mean and variance for p(y|zm, θm,Ψ = Ψ̂). The Bayes

Linear adjusted mean and variance in a forecast may be seen as pragmatic estimates

for the moments of our required distribution, obtained in a sensible fashion. For

example, we may see Ezm−1 [ztm ; θm−1] and V arzm−1 [ztm ; θm−1] (we add the normally

suppressed θm−1 to these expressions for clarity) as an approximation to the mean

and variance of p(ztm|zm−1, θm−1). Alternatively, if a partial prior specification was

the only reasonable representation of our beliefs, we might use those adjusted beliefs

to help characterise a probability distribution that might be seen as a useful tool to

aid decision making, based on a handful of well thought out measures of belief.

In either case, suppose that we use a forecast as an estimate for the moments

of our required distribution. How might we then sample from that distribution?

The answer is that, without further assumptions, we cannot. However, we may use

expert judgements (from experts in the field of the complex system) to elicit features

of the distribution that allow our forecasts to characterise it. For example, many

distributions are completely characterised by their mean and variance (the Normal

and Gamma distributions are two of these). By making such an assumption, we can

use our forecasts to generate pragmatic approximations to our required probability

distributions.

We saw in section 2.3.4 that, with Bayes Linear methods, we can achieve very

quick estimates as our forecasts. Combined with the elicitation mentioned above,

we have a way of obtaining an estimate for the required distributions quickly which

will prove invaluable for our approach to solving the policy problem.

Justification

We are not limited to distributions completely characterised by their second order

moments. If our expert feels that higher order moments are required to fix the

distributions or if certain features of the tail of the distribution merit exploration,

then we can add these to our forecast. For Bayes Linear methods, we may emulate
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many features of the distribution we desire and might theoretically be able to make

forecasts that include such features.

Finding the shape of these distributions, assessing how forecast moments char-

acterise them, and even whether the form should be distinct for different θm is a

difficult elicitation problem. However, we are still asking system experts to comment

directly on their specialist field. Thinking about issues such as model discrepancy

(a concept which might appear quite abstract) will often be more difficult than

thinking about how the system might respond if it has already behaved in a certain

way. In the context of building and running the expert model, as well as the costs

involved in making policy (and getting it wrong), it is perhaps a problem that is

worth the effort.

Lastly, it is important to add that we aim to offer decision support. An integral

part of this will be to examine the effects of the distributional assumption on the

expected loss surface we present to the policy maker. If the loss surface is sensitive

to particular features of the elicitation, these may be re-examined or studied more

carefully.

3.3.3 Evaluating expectations

The functions A(θm, zm) and Ck(θk−1, zk−1) for k = 1, . . . ,m are expectations with

respect to the probability distributions discussed in section 3.3.2. Unless the loss

function is an extremely simple expression, as opposed to the series of complex

partial differential equations solved numerically that we expect of most computer

models (in which case we might be able to compute A(θm, zm) analytically depending

on the form of p(y|zm, θm)), each of these integrals must be evaluated numerically

for any θm, zm. Each time we evaluate any of these for a given choice of their inputs,

we must compute a forecast (which may take a long time depending on the method).

Even with fast methods of forecasting and very efficient numerical integration tech-

niques, we can only evaluate any of the functions A(θm, zm) or Ck(θk−1, zk−1) for

k = 1, . . . ,m a finite number of times.

The functions Bk(θk−1, zk) for k = 1, . . . ,m pose a further problem. We cannot

evaluate the minimum we desire analytically for any k and for any θk−1, zk. Esti-
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mating the minimum numerically would require a very large number of evaluations

of Ck+1(θk, zk) (or A(θm, zm)) at different values of θtk .

We cannot solve this decision problem analytically, and numerical estimates of

each function require expensive forecasts and numerical integration. For just one θt0

then, even estimating C1(θt0 , zt0) by brute force seems infeasible. However, a policy

must still be made, and the question of how our best expert simulators and data

from the real world can guide these policy choices must still be addressed.

As has been described, the functions A(θm, zm), Bk(θk−1, zk) and Ck(θk−1, zk−1)

for k = 1, . . . ,m are complex expensive functions that we may only evaluate at a

limited number of points, but whose behaviour we would like to understand through-

out their respective domains. A natural approach to dealing with them would be to

treat them as we treat computer models and emulate them. We would then use the

emulators in some way to aid the backwards induction of the decision problem. We

show in section 3.5 how we may combine emulators for each of the required func-

tions to offer a sensible upper bound on C1(θt0 , zt0). Before describing our algorithm

in detail however, we discuss how we might emulate any of our required functions

individually.

3.3.4 Combining forecasts

As we are dealing with complex, forecast-dependent expectations, it is difficult to

write down a prior emulator for any of the functions in which we are interested.

We do, however, have a ‘way in’ for this problem. For each of the expectations we

require, we must solve an integral numerically and compute a forecast. Not only can

our numerical integration be either very slow and accurate or fast and approximate,

but our forecasting method may be the same. For example, if we have a Bayes

Linear second order emulator, we can make really careful, expensive forecasts or use

fast forecasts as a cheap approximation.

If we judge that a ‘fast’ estimate to any of our expectations (using, say, a cheap

approximate numerical integration rule and a fast forecast), is informative for an

expensive evaluation involving a careful forecast and powerful numerical method, we

can use these fast estimates to help us build an emulator. Using fast approximations
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to our functions in the way is similar to multi-level emulation, a method from the

computer experiment literature. Multi-level methods use cheap, less accurate models

to learn about expensive and accurate ones.

Before we present multi-level emulation in detail, we discuss the different speeds

of forecast. Bayes Linear forecasting methods are generally quicker than those ob-

tained through integrating out x∗ from a Gaussian process emulator and certainly

quicker than the full Bayes calculation. If we have decided that the most appropri-

ate description of our computer model requires a Gaussian process or fully Bayesian

emulation, we may still value a Bayes Linear version to provide fast and informa-

tive estimates of A(θm, zm) and Ck(θk−1, zk−1) for k = 1, . . . ,m. These estimates

can then be tuned using our “heavyweight” probabilistic methods. Whatever our

beliefs about the model and the system, then, the Bayes Linear forecasting methods

outlined in section 2.3.2 will still form an integral part of our method of decision

support.

3.4 Multi-level emulation

3.4.1 Multi-level emulation of computer models

Multi-level emulation, also known as Multifidelity modelling, is a method for build-

ing emulators for computer models that exploits faster, cheaper versions of the full

simulator. Suppose we wish to emulate an expensive, powerful and ‘accurate’ sim-

ulator denoted fa(ζ), where ζ is a vector of inputs of any type. To help build our

emulator for fa(ζ) we may make many runs on a cheaper ‘coarse’ version of the

simulator that shares much of the physics modelled by fa(ζ). We denote this coarse

simulator f c(ζ). The general idea is to model f c(ζ) very well and use that model,

combined with a handful of expensive runs of fa(ζ), to emulate the accurate model.

The idea of having faster, coarser approximations to a computer model is quite

natural. Most computer models (at least the ones we have encountered) consist

of a set of mathematical differential equations that must be solved. Whether the

solvers use finite element methods or otherwise, they usually involve evaluating the

equations at a finite set of points over a user-defined mesh. A coarser model, if one
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did not already exist, may often be obtained by ‘coarsening’ this mesh.

There are different approaches to multi-level emulation, each suitable for the

different types of emulator one may wish to build. Leary et al. [61] present two ways

of incorporating coarse model runs to model an accurate simulator by kriging. The

first is to build an emulator for the difference or the ratio between the accurate and

coarse using ordinary kriging methods. The emulator of the differences, denoted

d̂(ζ), interpolates the difference between the models at design points. The authors

then write their emulator for the accurate as either

f̂a(ζ) = d̂(ζ) + f c(ζ)

or

f̂a(ζ) = d̂(ζ)f c(ζ),

depending on whether differences or ratios were fitted. Note that the emulator for

the accurate model requires a run on the coarse simulator for any evaluation. This

may prove problematic if our coarse simulator is not as fast to run as a typical

emulator. The second kriging based approach to multi-level emulation discussed by

Leary et al. involves using the coarse data as “prior knowledge” and incorporating

this knowledge into the kriging model.

The kriging model of the differences (or ratios) between the simulators is estab-

lished as described in section 2.2.3. A “knowledge layer” is then written

κ(ζ) = f c(Wζ + w),

where W is a diagonal matrix and w is a vector. Using the same set of inputs for

both submodels, each element of W and w, along with the usual parameters required

to fit the kriging model for the differences d(ζ), are fitted using maximum likelihood

estimation. The emulator is then either

f̂a(ζ) = d̂(ζ) + κ̂(ζ)

or

f̂a(ζ) = d̂(ζ)κ̂(ζ).
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Bayesian multi-level emulation

The Bayesian approach to multi-level emulation is to write the accurate model as

a stochastic process that involves the coarse model and a number of parameters.

Given prior judgements about these parameters, runs on both models can be used

to update beliefs about the accurate simulator. Kennedy and O’Hagan [57] write

their accurate model (assumed to have scalar output) as the sum of the coarse model

multiplied by a scalar quantity, ρ, and a stochastic process.

They write

fa(ζ) = ρf c(ζ) + εa(ζ) (3.6)

where εa(ζ) is a Gaussian process and is independent of f c(ζ). The model is ‘trained’

using runs from both the accurate and the coarse at the same locations. Kennedy

and O’Hagan show how certain assumptions on ρ, f c(ζ) and the parameters of εa(ζ)

can lead to a conjugate analysis.

This approach to Bayesian multi-level emulation is extended by Qian and Wu [91]

who model their accurate simulator as

fa(ζ) = ρ(ζ)f c(ζ) + εa(ζ), (3.7)

where, in addition to εa(ζ), ρ(ζ) is also a Gaussian process in the inputs ζ. They

use MCMC methods to sample a posterior density for the accurate model.

Cumming and Goldstein [22] suggest a multi-level emulation method exploiting

the structure of an emulator built for the coarse. Suppose our emulator for the

coarse has the standard form of (2.4) and is written

f c(ζ) = βigi(ζ) + εc(ζ).

Cumming and Goldstein then suggest a form for the accurate emulator that allows

us to learn about each of the coefficients for the regression surface of the accurate

emulator. Their model is

fa(ζ) = ρiβigi(ζ) + γεc(ζ) + εa(ζ) (3.8)

(again with εa(ζ) independent of the coarse), which allows for a greater level of flex-

ibility than, say, the model of Kennedy and O’Hagan in (3.6). Such flexibility may
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be appropriate when the different terms in gi(ζ) represent features of the physical

system that may change differently with the refinement of the model for it. Once

the coarse emulator is built, the idea is to use the difference between the coarse and

accurate models at a small set of points to learn about the ρi’s, γ and εa(ζ).

3.4.2 Emulation of expected losses

Each of the techniques of multi-level emulation we have described is aimed at mod-

elling the output of complex deterministic computer code. An emulator for the

complex system model, combined with our beliefs about the loss model and the dis-

tributional assumptions we have made, are enough to completely determine any of

our required expected losses. However, we can only ever use numerical methods to

evaluate these expectations. This means that an evaluation of any of our expecta-

tions cannot be treated as a realisation of a deterministic function. We present here

a method of multi-level emulation for integrals that we must evaluate numerically.

Suppose we wish to emulate a scalar-valued function

π(ζ) =

∫
η(ζ, τ)dτ, (3.9)

where η(ζ, τ) is such that we must evaluate the integral numerically and τ is a

vector of arbitrary length. The function η(ζ, τ) itself may be difficult or expensive

to evaluate and may require estimation. For example, consider A(θm, zm) defined in

(3.1), the first integral required for solving the policy problem. Here ζ is (θm, zm),

τ is y and η(·, ·) is L(y, θm)p(y|zm, θm).

Suppose we have a ‘coarse’ method of estimating π(ζ). For example, we may use

Monte Carlo methods with a handful of samples. We may also use an approximate

evaluation of η(ζ, τ). When solving the expected loss integrals, for example, we

may use a Bayes Linear fast forecast to characterise p(y|zm, θm). We denote this

‘coarse’ function πc(ζ). At the same time, we have a careful or ‘accurate’ method of

estimating the integral, denoted πa(ζ), such as using Quadrature or perhaps a very

large Monte Carlo sample. We may also use a careful method of evaluating η(ζ, τ):

for example, when applying this to A(θm, zm) we may use a careful Bayes Linear

forecast or even a fully probabilistic method to characterise p(y|zm, θm).
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Both versions approximate π(ζ) with some numerical error that we wish to

‘smooth out’. Final inference about π(ζ) will be obtained through inference about

πa(ζ). The approach is to build a good emulator for the coarse and link only the

interesting parts to the accurate in our multi-level emulation. We suppose that πc(ζ)

contains a signal informative for the value of π(ζ) and a mean zero ‘numerical error’

δc(ζ), and we judge, for simplicity, that

πa(ζ) = π(ζ) + δa(ζ), (3.10)

where δa(ζ) represents pure numerical error from the accurate integration, with

E [δa(ζ)] = 0 and Corr [δa(ζ), δa(ζ ′)] = 0 for ζ 6= ζ ′. We note that this relationship

is different to that given in, for example, (3.6), because δa(ζ) will be part of our

model for πa(ζ) and we intend to obtain expectations of π(ζ) by smoothing the

uncorrelated error in our accurate emulator. We view πa(ζ) as an observation of

π(ζ) made with error. Note that this judgement depends on our choice of method

for evaluating η(ζ, τ). For example, if we chose a Bayes Linear ‘careful’ forecast

to characterize p(y|zm, θm) in our accurate evaluations of (3.1), our emulator for

A(θm, zm) would depend on this approach to forecasting and, more subtly, on the

design we used to build the emulator for the complex system model. We discuss this

fully in section 3.7.

3.4.3 Bayes Linear calculations for multi-level emulation

We present a Bayes Linear approach to this multi-level emulation. The approach is

similar to that of Cumming and Goldstein [22], although we simplify the calculations

by only allowing the regression surface from the coarse emulator to vary by a multiple

ρ on the accurate. We do this only to simplify the calculations; if the problem

required it, this assumption could be relaxed.

Suppose our coarse emulator is

πc(ζ) = βjgj(ζ) + εc(ζ) + δc(ζ), (3.11)

where g(ζ) is a known vector of basis functions in ζ, β is a vector of coefficients to

be obtained through linear fitting, εc(ζ) is a correlated residual process representing
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behaviour not captured by the global regression and δc(ζ) is uncorrelated error.

This uncorrelated error will be related to the accuracy of our numerical integration

technique, but may also be partly comprised of a residual in any ‘non active’ elements

of ζ. If our integration is over many dimensions, we may decide to use the method

of active variables (see section 2.2.6 and equation (2.16)) to reduce the dimensions

over which we must integrate. In this case δc(ζ) would represent our uncertainty as

to the effect of the non-active elements of ζ as well as numerical integration error.

We write the accurate model as

πa(ζ) = ρβjgj(ζ) + γεc(ζ) + εa(ζ) + δa(ζ), (3.12)

where ρ and γ are scalar multipliers, εa(ζ) is a weakly stationary process capturing

effects only present in the accurate model, and δa(ζ) is the uncorrelated error from

the accurate calculation. The variance of δa(ζ) should be smaller the variance of

δc(ζ) as we are using a better numerical integration technique.

We assume that we may obtain enough coarse evaluations to choose g(ζ) and to

determine the values of β. We therefore treat these as known quantities once fitted.

By observing the residuals from this regression and by estimating the variance of

δc(ζ) through replicate sampling or otherwise, we may write down correlation lengths

and a variance for εc(ζ) (we could use variogram fitting (see Cressie [20]) to obtain

these if preferred). We assume

Cov [δc(ζ), δc(ζ ′)] = Cov [δa(ζ), δa(ζ ′)] = 0. (3.13)

We take an n-point design and compute πc(ζ[i]) and πa(ζ[i]) for i = 1, . . . , n, where

ζ[i] denotes the value of ζ at the ith design point. Let

Ec
i = εc(ζ[i]), i = 1, . . . , n.

If we have Ec
i , then, at design points

πa(ζ[i]) = ρβjgj(ζ[i]) + γEc
i + εa(ζ[i]) + δa(ζ[i])

is a linear model with coefficients ρ, γ and residual εa(ζ[i]) + δa(ζ[i]). Given prior

judgements on ρ and γ as well as variance and correlation parameters for the residual,

we can adjust πa(ζ) by the difference between accurate and coarse runs.
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At design points ζ[i] for i = 1, . . . , n, assuming we have each of the Ec
i ,

ED
[
πa(ζ[i])

]
= ED [ρ] βjgj(ζ[i]) + ED [γ]Ec

i + ED
[
εa(ζ[i])

]
+ ED

[
δa(ζ[i])

]
, (3.14)

where

Dj = πa(ζ[j])− πc(ζ[j])

= (ρ− 1)βigi(ζ[j]) + (γ − 1)Ec
j + εa(ζ[j]) + δa(ζ[j]),

E [Dj] = (E [ρ]− 1)βigi(ζ[j]) + (E [γ]− 1)Ec
j + E

[
εa(ζ[j])

]
+ E

[
δa(ζ[j])

]
,

V ar [Dj] = V ar [ρ] (βigi(ζ[j]))
2 + V ar [γ] (Ec

j )
2 + V ar

[
εa(ζ[j])

]
+ V ar

[
δa(ζ[j])

]
+ 2Cov [ρ, γ] (βigi(ζ[j]))E

c
j .

Let H = V ar [D]−1 (D − E [D]) and Gij = gi(ζ[j]) then

ED [ρ] = E [ρ] + V ar [ρ] (βiGij)Hj + Cov [ρ, γ]Ec
jHj,

and similarly

ED [γ] = E [γ] + Cov [γ, ρ] (βiGij)Hj + V ar [γ]Ec
jHj.

We adjust ρ and γ in this way using the design points, and then we may calculate

the expectation of πa(ζ) away from design points via

ED [πa(ζ)] = ED [ρ] βjgj(ζ) + ED [γ]E [εc(ζ)] + ED [εa(ζ)] , (3.15)

where E [εc(ζ)] is obtained having adjusted beliefs about the coarse correlated resid-

uals by all observed coarse runs. Note that there is no ED [δa(ζ)] term in (3.15)

because we specified that δa(ζ) have mean zero and be uncorrelated in ζ. Through

assumption (3.13) we can write the adjusted variance away from the design points

as

V arD [πa(ζ)] = (βigi(ζ))2V arD [ρ] +
[
V ar [γ] + E [γ]2

]
V ar [εa(ζ)]

+ E [εc(ζ)]2 V arD [γ] + 2(βigi(ζ))E [εc(ζ)]CovD [ρ, γ]

+ V arD [εa(ζ)] + V ar [δa(ζ)] .

From (3.10) our adjusted expectation for π(ζ) is

ED [π(ζ)] = ED [πa(ζ)]− ED [δa(ζ)]

at design points and ED [πa(ζ)] everywhere else.
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Obtaining the coarse correlated residuals at design points

Let Rc
j = πc(ζ[j])−βkgk(ζ[j]) be the residuals from the coarse runs, then the function

ERc [εc(ζ) + δc(ζ)] = ERc [εc(ζ)] + ERc [δc(ζ)]

interpolates the coarse residuals. Therefore the adjusted expectation of the cor-

related residual surface ERc [εc(ζ)], whilst not interpolating the coarse correlated

residuals exactly at design points, is the natural choice of surrogate. We compute

ERc [Ec] and assume Ec ≈ ERc [Ec] . Note that the strength of this relationship is

measured by the size of V arRc [Ec] . If V arRc [Ec] is quite small, we can be quite

confident in using ERc [Ec] as a surrogate for Ec. Due to the nature of multi-level

fitting V arRc [Ec] will almost always be very small because the number of points

making up Rc, can be very large. In practice, we have found stating Ec = ERc [Ec]

to be a weaker assumption than stating V ar [β] = 0, which we have already done.

3.5 Sequential Emulation

In this section we propose a method for emulating an upper bound on C1(θt0 , zt0),

our expected loss of making policy today. Our approach is to emulate expectations

at each of the chance nodes in sequence using the multi-level methods we described

in section 3.4.2. Emulators are used to choose an intervention strategy at each ti

and expected losses are re-emulated under that strategy.

The algorithm we propose uses emulators to remove each of the m decision nodes

representing the policy interventions one by one, from right to left on the decision

tree. We present the algorithm in full detail in section 3.6. Before writing the

algorithm out in detail, we discuss the rationale and detail the key steps, as well as

offering an overview of the methodology.

3.5.1 Strategy at tm

Our first objective in a Sequential Emulation of a decision tree is to choose an

intervention strategy for the mth intervention point. This strategy is a function

of θm−1 and zm so that, whatever decisions we have made up until that point and
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whatever we have observed of the system, we can compute the optimal strategy

going forward. We label the time tm intervention strategy λtm(θm−1, zm). Ideally

we require

λtm(θm−1, zm) = argmin
θtm

A(θm, zm),

or written another way

Bm(θm−1, zm) = A((θm−1, λtm(θm−1, zm)), zm).

As it is not possible to compute A(θm, zm) exactly (and even our good approxi-

mations take a long time), we cannot ensure that this condition is satisfied. Our

method is to emulate A(θm, zm) as a function of θm, zm and use the emulator to

locate the minimum. In essence, this approach is optimization with emulators which

was discussed in section 2.2.3.

Using the multi-level methods we described in section 3.4.2 we construct an emu-

lator for A(θm, zm) where our two versions of the calculation use different numerical

integration techniques, as well as fast and careful forecasting, to provide a coarse and

an accurate estimation. Using our accurate emulator we may compute E [A(θm, zm)]

relatively quickly. This expected loss, calculated directly from our emulator, may

be treated as a loss because we specified that L(y, θm) was in utility units.

Having emulated A(θm, zm) then, we define

λtm(θm−1, zm) = arg min
θtm
{E [A(θm, zm)]}. (3.16)

Note that A((θm−1, λtm), zm) is an upper bound on Bm(θm−1, zm). We write this

upper bound

Bm
λm(θm−1, zm) = A((θm−1, λtm), zm). (3.17)

Our tm strategy is now viewed as fixed for all θm−1, zm by λtm so that we may

remove the decision node at tm from our decision tree. We show this in figure

3.6. We now emulate our upper bound for Bm(θm−1, zm), namely Bm
λm(θm−1, zm),

by repeating the process used to emulate A(θm, zm), fixing θtm = λtm . This is

an expected loss conditioned on λtm . We could simply use our first emulator for

A(θm, zm), evaluated at θtm = λtm , as an emulator for the required upper bound.

However, we feel that the quality of our emulator for the upper bound is better
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Figure 3.6: This image shows our decision tree after we have fixed λtm(θm−1, zm).

The right-most node is now replaced by the upper bound Bm
λm(θm−1, zm) as defined

in (3.17).

served by evaluating expected losses at θtm = λtm and re-emulating to capture

any local behaviour around our chosen strategy as carefully as possible. The loss

Bm
λm(θm−1, zm) is in utility units so we may treat E [Bm

λm(θm−1, zm)], as calculated

from our new emulator for Bm
λm(θm−1, zm), as an expected loss.

3.5.2 Removing the next decision node

In order to remove the decision node at tm−1, we require Cm(θm−1, zm−1), the ex-

pected loss at the chance node adjacent to it on the right. The approach is to use the

emulator for Bm
λm(θm−1, zm) to emulate an upper bound on Cm(θm−1, zm−1). Once

we have this emulator, we define a strategy as before by using the emulator to locate

it.

Define the operator Ẽ [Γ] to mean an expectation obtained by emulating the func-

tion Γ and computing the expectation of the emulator. We define Cm
λm(θm−1, zm−1)

as

Cm
λm(θm−1, zm−1) =

∫
Ẽ
[
Bm
λm(θm−1, zm)

]
p(ztm|zm−1, θm−1)dztm , (3.18)

which is an expected loss because L is measured in utility units. Cm
λm(θm−1, zm−1)
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is an emulator for an upper bound on our expected loss for having made decisions

θm−1 and having observed zm−1, conditioned on time tm strategy λtm(θm−1, zm).

Our goal is now to choose λtm−1(θm−2, zm−1) to select the θtm−1 that minimizes

Cm
λm(θm−1, zm−1). Even if the form of our emulator for Bm

λm(θm−1, zm) and our distri-

butional assumption for p(ztm|θm−1, zm−1) are such that for any θm−1 and zm−1 we

could compute Cm
λm(θm−1, zm−1) analytically, the requirement of a forecast in order

to characterize (or sample from) p(ztm|θm−1, zm−1) still renders Cm
λm(θm−1, zm−1) a

very expensive function. We therefore emulate this and define

λtm−1(θm−2, zm−1) = arg min
θtm−1

{Ẽ
[
Cm
λm(θm−1, zm−1)

]
}.

By fixing strategy at time tm−1 via λtm−1 we remove another decision node from the

decision tree.

3.5.3 Determining time tk intervention strategy

Suppose we have determined strategies

λk+1 = λtk+1
, . . . , λtm ,

so that our decision tree is as shown in figure 3.7 and we define

Bm
λk+1(θk, zm) =

∫
L(y, (θk, λk+1))p(y|zm, θk, λk+1)dy. (3.19)

Define

Cm
λk+1(θk, zm−1) =

∫
Ẽ
[
Bm
λk+1(θk, zm)

]
p(ztm|zm−1, θk, λk+1)dztm (3.20)

and

Cj
λk+1(θk, zj−1) =

∫
Ẽ
[
Cj+1
λk+1(θk, zj)

]
p(ztj |zj−1, θk, λk+1)dztj , (3.21)

for j = k + 1, . . . ,m− 1. We then define

λtk(θ
k−1, zk) = arg min

θtk

{Ẽ
[
Ck+1
λk+1(θk, zk)

]
}. (3.22)

Any function we compute involving an emulator is technically also an emulator, so

that simply evaluating the function could qualify as emulation. When referring to

this methodology, we reserve the term emulator to mean either the computer model
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Bm
λk+1(θk, zm)

ztk+1

θtk

Figure 3.7: This image shows a sub tree of our decision tree, starting from the kth

decision, after we have fixed our first m − k intervention strategies, thus removing

the corresponding decision nodes. The dashed line connecting the two right-most

chance nodes represents observations ztk+2
, . . . , ztm

emulator or an emulator built using multi-level methods on an expectation integral.

Objects derived from these emulators, such as expectation functions, we assume

to be easily computable once the main emulator is built and so when counting the

number of emulators required, these objects are not included. Note, then, that given

λk+1 we require (m− k + 1) emulators to obtain λtk(θ
k−1, zk).

3.5.4 The upper bound on our expected loss surface

Our aim is to provide an upper bound on C1(θt0 , zt0). Supposing we have used the

above methods to determine all of our intervention strategies; λ1 = λt1 , . . . , λtm .

Then, in constructing C1
λ1(θt0 , zt0) defined as in (3.21), we have an emulator for an

upper bound for this expected loss surface. Having established our first intervention

strategy, λt1(θt0 , zt1), we must emulate Bm
λ1(θt0 , z

m), Cm
λ1(θt0 , z

m−1),. . .,C1
λ1(θt0 , zt0),

meaning that (m + 1) emulators are to be constructed using multi-level methods.

We require, in total, 1
2
(m+ 1)(m+ 2) multi-level emulations to provide the desired

emulator for our upper bound on our expected loss surface.
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3.6 The Sequential Emulation Algorithm

We now present a detailed version of the Sequential Emulation algorithm. We begin

by outlining the preliminary steps required before using our methods to address the

decision tree. We will then state the sequential emulation algorithm.

3.6.1 Preliminaries

We begin with a computer simulator for the complex system, f(x, θ) and a loss

function L(y, θ). We assume that our methods of emulation will be Bayesian and

that we have already addressed the design question, obtained runs F , and exhausted

our ability to run the computer model.

P1

Build an emulator for f(x, θ). The emulator should adequately reflect our beliefs

about the model and should be as accurate as we can make it, particularly around

plausible values of x∗. We require a second order form for our emulator so that we

may exploit the speed of Bayes Linear forecasting later. This does not restrict us

in our choice of emulator for the computer model; it simply means that if a second

order emulator is not an adequate reflection of all of our beliefs, we are able to

derive one from our full (or enlarged) specification. For Gaussian process methods

this should be straight forward. A fully probabilistic emulator may not have a

simple, easy to evaluate second order form because there will be distributions on

the correlation parameters. A second order emulator may be constructed using a

fully probabilistic emulator by, for example, using expectations (and variances where

appropriate) of each of the required parameters, gained by examining the updated

marginal distributions.

If the problem and our beliefs have warranted construction of a GP or fully

probabilistic emulator, this will be the one used directly for learning about our

expected losses and optimal intervention strategies. The second order form will be

required only to provide relatively fast forecasts that are informative for our true

beliefs about the system.
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P2

Specify or elicit beliefs about x∗, η(θ) and e. If our specification is fully

probabilistic, these beliefs must be linked to the priors for our emulator before it

is updated by the model runs. If we intend only to use Bayes Linear methods for

forecasting, then we require a prior probability distribution for x∗ and only a second

order specification for the remaining quantities.

P3

Select both ‘accurate’ and ‘fast’ forecasting methods. When performing

the Sequential Emulation algorithm we will require 1
2
(m + 1)(m + 2) multi-level

emulations. Each of these is an expectation with respect to a probability distribution

for future states or observations of the complex system. We will be using Bayes

Linear fast forecasts (see section 2.3.4) for all coarse versions of the expectations

in our emulations. This will allow us to obtain estimates more cheaply and quickly

than if using any other forecasting method. Which method of fast forecasting we use

should be decided here. Our careful forecasting method will depend on our emulator

and the amount of computing power we have available. It must also be specified in

advance of performing the Sequential Emulation.

P4

Decide how forecasts will be used to sample from the required distribu-

tions. If our careful forecasting method is a fully Bayesian MCMC calculation, this

sampling is part of the forecast. Otherwise, as discussed in section 3.3.2, we have

either only a mean and a variance estimate, or a few chosen moments and quantiles.

For our fast forecasts and coarse approximations, at least, we must use the ideas

from section 3.3.2 to decide how the forecasts will characterize each distribution.

P5

Specify numerical integration methods. We must decide on ‘coarse’ and

‘accurate’ numerical integration methods for each expectation in our Sequential
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Emulation. Although each expectation is univariate, the integral may be many-

dimensional, leaving Monte Carlo or MCMC as the only realistic choices.

3.6.2 Sequential Emulation

Having completed the above preliminary steps we are ready to begin our Sequential

Emulation of the decision tree.

S1

Construct a multi-level emulator for A(θm, zm). To construct this emulator we

require a large sample of coarse runs (the term ‘coarse’ is given meaning through

P3, P4, P5). We must design these runs and use linear fitting, residual diagnostics,

our own judgements and perhaps other methods to construct (3.11). We must then

obtain a number of coarse and accurate evaluations at the same locations. We

then use these, along with some of our own judgements, to construct the accurate

emulator through (3.12), (3.14) and (3.15). We may use emulator diagnostics to test

the performance of our fit and obtain further runs to ‘fine tune’ if neccessary.

We provide a detailed example of this kind of Bayes Linear multi-level emulation

within a Sequential Emulation setting in Chapter 4.

S2

Define λtm(θm−1, zm) as in (3.16).

S3

Construct a multi-level emulator for Bm
λm(θm−1, zm). This follows the same

process as for S1, except we set

θm = (θm−1, λtm(θm−1, zm)).

We are therefore emulating a function of θm−1 and zm where the first step for each

evaluation of either coarse or accurate version is to compute λtm(θm−1, zm).
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S4

Construct a multi-level emulator for Cm
λm(θm−1, zm−1). We are evaluating∫

Ẽ
[
Bm
λm(θm−1, zm)

]
p(ztm|zm−1, θm−1)dztm

and obtain coarse and accurate estimates to the required conditional distribution

through the decisions made at P3 and P4. The multi-level emulation procedure

is the same as with S1 and S3, but requires us to emulate a function of fewer

parameters.

S5

If m = 1 proceed to S11. Else set k = m− 1 and go to S6

S6

Define λtk(θ
k−1, zk) using the emulator for Ck+1

λk+1(θk, zk) and (3.22).

S7

Construct a multi-level emulator for Bm
λk

(θk−1, zm) as defined in (3.19).

S8

Construct a multi-level emulator for Cm
λk

(θk−1, zm−1) as defined in (3.20).

Set j = m− 1

S9

Construct a multi-level emulator for Cj
λk

(θk−1, zj−1). Let j = j − 1

S10

If j ≥ k go back to S9. Else if k = 1 proceed to S11. Else set k = k− 1 and

go back to S6.
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S11

Stop

The last emulator constructed for C1
λ1(θt0 , zt0) is an emulator for our upper bound

on the expected loss surface for policies made today.

3.7 Policy Support

Once obtained, we may use Ẽ
[
C1
λ1(θt0 , zt0)

]
to provide decision support for policy

makers. Ẽ
[
C1
λ1(θt0 , zt0)

]
is a function of our policy today that is relatively cheap

to evaluate, hence we may plot it. The ability to visualize an upper bound for the

policy maker’s expected loss surface is very useful. The policy maker may observe

which parameters of θt0 have most effect on the expected loss, as well as seeing which

areas of the decision space drive most of the variability.

If our resources are spent or our time has run out completely, we may use our

upper bound to locate our ‘optimal’ policy for today by choosing θt0 to minimize

Ẽ
[
C1
λ1(θt0 , zt0)

]
. This choice of policy (note this is λt0 as defined in (3.22)) is

our estimate of the true minimum of C1(θt0 , zt0). It takes future observations and

policy interventions into consideration, as well as giving a serious treatment to the

discrepancy between the system and our computer model for it. Whilst using our

upper bound to locate optimal policy directly may seem to be the most obvious and

natural thing to do, if we have sufficient time/resources we can use the surface and

the methodology to provide considerably more. We describe some of our methods

of policy support using Sequential Emulation here.

3.7.1 Pruning

We begin with a decision space containing (m+1) decisions, θt0 , . . . , θtm , each poten-

tially being vectors of multiple parameters. The emulators for the computer model

and for A(θm, zm) have been built using designs over the entire space as we seek to

provide a good global fit for any feasible policy. Each of the subsequent emulators

built during our Sequential Emulation of the decision tree must also fit their ‘target

functions’ well over the whole range of feasible decisions.

June 28, 2010



3.7. Policy Support 78

Complete Preliminary Steps P1 to P5 Emulate A(θm, zm)

Define λtm(θm−1, zm)Emulate Bm
λm(θm−1, zm)

Emulate Cm
λm(θm−1, zm−1) Is m = 1? STOP

Set k = m− 1Define λtk(θ
k−1, zk)

Emulate Bm
λk

(θk−1, zm) Emulate Cm
λk

(θk−1, zm−1)
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yes

no
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no
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Figure 3.8: A flow chart describing the steps of the Sequential Emulation algorithm.

The labels P1-P5 refer to the preliminary steps of the algorithm. The labels S1-S10

refer to the main steps of the algorithm.
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Inevitably, the larger the input space of a function we wish to emulate, the more

difficult it is to build an emulator that performs well globally. Ideally, we would

like to reduce the size of the decision space to provide more accurate emulators

for the types of policy we are prepared to consider. This idea is similar to History

Matching (described in section 2.3.1) for computer models. We use History Matching

in computer model emulation to reduce the size of the input space and refocus our

emulators to improve our analysis.

Refocusing is an important idea in many applications that involve the analysis

of computer models. For example, some of the Galaxy simulation studies performed

at Durham University (see, for example, Vernon and Goldstein [108]) involve an

iterative search for settings of the model inputs that make the model behave consis-

tently with the real world via History Matching. Having removed areas of the input

space that are deemed implausible matches to real-world observations of Galaxy

formation, the emulators for GALFORM are refocussed on the reduced input space.

This means that the model is run once again over a new design on the reduced input

space and the emulators are rebuilt. The current analysis of GALFORM has been

refocused four times.

Another important use of refocusing techniques is in the optimization literature,

where the goal is to look for a setting of the control inputs to a simulator that

optimizes the output. Optimization algorithms will often use emulators to refocus

the search for the minimum of the simulator around the minimum of the emulator,

whilst also sampling the function in areas of high uncertainty to insure against

returning a local minimum.

Using emulators created during a Sequential Emulation we may reduce the size

of the decision space and refocus our analysis to improve our emulators via pruning.

Pruning involves looking at plots for our final expected loss surface and at what we

call strategy plots, to locate areas of the decision space that lead to intolerably high

expected losses or that are not present in any of our strategies. Our time k strategy

is λtk(θ
k−1, zk). A strategy plot is a plot of λtk against any of its inputs or against

expected loss for fixed values of its inputs. By looking at strategy plots we may

notice that there are entire areas in the domain of θtk that are never visited by λk.
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We may also notice that for a range of key decisions we are interested in, there are

areas of the domain of θtk in which we find it highly implausible that the minimum

expected loss could be located. As these areas are not involved in our Sequential

Emulation, we may consider removing them from the domain of θtk altogether.

In looking at our final expected loss surface we may observe expected losses that

are intolerably high for certain values of θt0 . If their performance in relation to other

potential policies is particularly poor (or if their loss is above a certain tolerance)

we may consider removing these areas of the domain of θt0 from our feasible set of

decisions. We may also consider elements of the risk profile (see section 3.7.3) in

areas of the decision space that are candidates for removal. If the risk profile for

a given policy is ‘less favourable’ than that for a set of θt0 with smaller expected

losses, we may be happy to remove that policy (and others similar to it) from the

tree.

Each time we reduce the domain for any given policy or intervention we are, in

effect, ‘pruning’ the decision tree. By beginning at θt0 , pruning the decision tree,

then moving through the tree and pruning the remaining subtrees using strategy

plots, we may dramatically reduce the size of the decision space.

The surface Ẽ
[
C1
λ1(θt0 , zt0)

]
and each of the intervention strategies offer a way of

showing policy makers what their beliefs and the functions they have given us imply

about the expected loss of their decisions and the way they should act in the future.

Which areas of the decision space to remove will be a decision that should rest with

the policy maker. They may set tolerances or criteria that make pruning automatic,

or they may choose to combine some of the other methods of support offered, such

as risk profiling or sensitivity analysis, to choose suitable areas for pruning.

As was noted in section 3.4.2, the results of our Sequential Emulation depend

implicitly on the design (Ω, Θ) used to select runs on our computer model. The

more our design tells us about f(x∗, θ) for the θ in which we are interested, the

better our policy support will be. If our Sequential Emulation was not the last word

on the policy problem, we may use a pruned tree to refocus our analysis. Ideally we

may still make runs on our computer model f(x, θ). If this is the case then we may

make further runs on the reduced space to refocus our emulator for the computer
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model. The refocussed emulator would be more accurate for the decisions we still

consider feasible and so our forecasts will be more accurate. Simply facilitating a

reduction of the size of the decision space and a refocussing of the computer model

emulator provides a convincing argument for performing a Sequential Emulation of

the decision tree and certainly qualifies as policy support. Even just one pruning

exercise may be enough to refocus wider studies of the system, the economic impacts

and the social welfare functions within the policy problem.

If our policy support is required to go further, we may now perform a Sequential

Emulation on the pruned tree (using the refocussed computer model emulator if

available). By evaluating each of the expectations on the tree over a reduced domain,

our Sequential Emulation will be more accurate and could offer further insight into

the impacts of the policies within that domain. The Sequential Emulation may also

be be faster depending on how much of the space has been pruned.

If we intend to prune and refocus many times to offer policy support, it may

be wise to use more approximate methods in each of our multi-level emulations for

the first few Sequential Emulations. If our beliefs demand fully Bayesian MCMC

sampling when forecasting, for example, it might be prudent not to use those meth-

ods until we have pruned the tree first. We may use Bayes Linear methods, even in

our careful forecasts, while pruning and save the very expensive calculations for the

pruned tree.

Related to pruning is dimension reduction, which may be possible using the

Sequential Emulation. If, for some strategy λtk , the strategy plots indicated that

optimal strategy was (approximately) invariant over previous decisions and obser-

vations, we may consider removing that intervention point altogether and taking

a default action at time tk. The observations made between the last intervention

point and the one removed, ztk , would be absorbed into ztk+1
. It may be that fewer

interventions than we have attempted to include are appropriate because a mean-

ingful intervention can only be made if ‘enough’ observations have been made to

inform us of any system trends. For example, consider the climate CO2 decision

problem discussed at the beginning of this chapter and suppose we planned to make

an intervention every year based on observed temperatures. Climate temperature
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may be increasing as part of some emissions-driven trend, or as the result of natural

variability in the climate system. After only one year’s observations, it would be

unreasonable to expect to have observed any trend at all, hence an intervention

would be inappropriate. Not only would such dimension reduction make emulation

of the computer model and Sequential Emulation easier, but it represents very use-

ful policy support. If it can be demonstrated that a particular intervention is not

required, this will save significant amounts of time and money for policy makers.

We have been deliberately vague regarding exactly how one chooses which parts

of the decision tree to prune (or indeed when it is acceptable to consider an in-

tervention point redundant). If every emulation of the loss function was an actual

expected loss, then perhaps a given criterion here would be meaningful. However,

as discussed previously, the loss function may be only one plausible parametriza-

tion of a loss model. We must also investigate the impact of using other plausible

parametrizations, as well as investigating the sensitivity of our methods to our belief

specification. Any decision taken regarding pruning the decision tree must also take

these issues into account.

3.7.2 Sensitivity and scenario analysis

Throughout the analysis of the decision problem, potentially aided by experts, we

make a number of statistical judgements. For example, a variance for the model

discrepancy is a judgement or statement of belief regarding how informative the

model is for the system. Decision makers themselves (or economic modellers) have

also made judgements when constructing their social welfare function. These judge-

ments often come in the form of parametrizations and expressions designed to cap-

ture their true preferences over the set of feasible consequences of their decisions.

It is important, if possible, to offer advice to policy maker regarding which of these

judgements may have significant effects on the expected loss surface, particularly

around its minimum.

Sequential Emulation offers a way of obtaining a visualization of the loss surface

for different values of key judgements. By observing which quantities alter the loss

surface when changed, the decision maker will be able to focus his resources on
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providing the best possible expert judgement for those quantities. Furthermore, if

the surface remains relatively unchanged despite extreme values of a given quantity,

he can focus his energy elsewhere. These ideas also apply to strategy plots, whose

reaction to different judgements may not only indicate which judgements are impor-

tant, but also which intervention points are the most crucial in determining today’s

expected loss for a given policy.

The methodology also allows the decision maker to view a number of conse-

quences of his choice or parametrization of the loss function. For complicated prob-

lems, this loss function will often be an economic model and will therefore be subject

to similar kinds of uncertainty as our model for the system. A fully probabilistic sen-

sitivity analysis for policy problems with intervention is unrealistic (see Oakley [81]).

However, observing Ẽ
[
C1
λ1(θt0 , zt0)

]
for parametrizations of the loss function could

be very useful. Indeed, where scientists or policy makers differ in their beliefs about

the reaction of the economy to (say) climate change, this visual aid may point to

judgements that hardly affect the loss surface and to those key judgements where

more agreement is needed.

Scenario analysis involves setting the parameters of the loss function to mimic a

given scenario (such as a population explosion; see Kann and Weyant [54] for more

details). The methodology we have described seems particularly suited to scenario

analysis, in that a picture of the loss surface for each considered scenario can be

compared, and any decisions that appear robust under many different scenarios can

be considered more carefully.

As mentioned previously, robust decisions are often particularly important to

policy makers when their preferences are not certain and when scientists disagree

about the economic impact of future scenarios. Finding robust decisions, or even

discovering that there are no decisions robust to all plausible beliefs regarding the

interaction of the system with the economy and our preferences, is a key part of

decision support. Any criteria for pruning may be subject to certain conditions on

robustness, or it may be that Sequential Emulation is used solely to locate the key

judgements that require further investment, study and agreement. If this is the

nature of the required policy support, it may be foolish to consider any methods of
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emulation and of forecasting other than the Bayes Linear methods. This is because a

purely Bayes Linear Sequential Emulation is far faster than one that uses alternative

(albeit more powerful if our beliefs are genuinely probabilistic in nature) methods

of forecasting. A sensitivity (or scenario) analysis such as the one described would

require many separate Sequential Emulations, which would likely be infeasible if our

forecasting methods were slow. We believe that the use of a (perhaps more pragmatic

and approximate) Bayes Linear Sequential Emulation is appropriate when searching

for sensitive parameters and robust policies, as opposed to choosing optimal policy

directly, which should use all of our prior knowledge. Note that if we are unprepared

or unable to give a fully probabilistic specification of our beliefs about the simulator

and the discrepancy, but we are able to specify second order beliefs, the a Bayes

Linear Sequential Emulation is appropriate in any case.

3.7.3 Risk profiling

Having performed a Sequential Emulation, we have fixed a strategy at each of the m

intervention points (written λ1). For a given policy, θt0 , we may construct the risk

profile, conditioned on λ1, by forward sampling. The risk profile is the distribution

of L(y, (θt0 , λ
1))|zt0 , θt0 , λ1, and we sample from it by using each of the distributional

assumptions used in our Sequential Emulation.

We first sample from p(zt1|zt0 , θt0) and call this sample ẑt1 . Using our set of

strategies we compute

λ̂t1 = λt1(θt0 , (zt0 , ẑt1)).

We then obtain a ẑt2 by sampling from p(zt2|ẑt1 , zt0 , θt0 , λ̂t1) and use it to compute λ̂t2 .

Continuing in this manner and sampling each of the m observations and computing

the m strategies in turn, we finally sample a ŷ from p(y|ẑm, θt0 , λ̂1) and compute

L(ŷ, (θt0 , λ̂
1)).

This process gives one draw from the distribution from which we are sampling.

We repeat the process many times to obtain a risk profile for a given policy. As this

is an expensive calculation, we may only perform it for a handful of chosen policies.

Which policies merit further investigation may be decided by observing the expected

loss surface. In addition, the policy maker may have a number of “default” decisions
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for which he wishes to obtain such a risk profile.

The expectation of our risk profile can be used as a diagnostic tool to see how

well our Sequential Emulation is doing. For a given policy, if we are doing well, the

expectation of its risk profile should lie near the surface Ẽ
[
C1
λ1(θt0 , zt0)

]
. If it is far

away for given decisions, we may wish to re-emulate around those decisions. We

discuss and illustrate this idea further in section 4.7.2.

3.8 Discussion

3.8.1 Feasibility of Sequential Emulation

Sequential Emulation is designed to be a practical means to providing policy sup-

port. We are required, however, to construct 1
2
(m + 1)(m + 2) emulators in ad-

dition to building an emulator for the computer model. Each of these emulations

becomes more challenging as m and the dimension of both observations and deci-

sions increases. Feasibility of the methodology for large problems will (as with all

methodologies concerning computer experiments) depend on computing power and

resources. We consider here how the number of interventions, the dimension of each

decision and the dimension of yti for any i, affect feasibility. We may also consider

how the length of the sequence of observations of y before each intervention affects

the calculations, although this may be thought of as increasing the dimension of

each yti .

A large number of intervention points means that the Sequential Emulation

algorithm requires many more individual emulations. We consider this problem more

carefully later and restrict ourselves here to considering how increased dimensionality

affects each individual emulation. Suppose we have m intervention points, and the

decision at intervention point i is θi, an mθ−vector of values. We suppose, for the

sake of this illustrative argument, that each decision is a vector of the same length,

mθ. Then the vector θ of all decisions to be taken is a vector of (m+1)mθ quantities.

Let mx be the number of model inputs to the simulator. Therefore our emulator

for the computer model is an emulator over mx + (m + 1)mθ variables. Further,

we suppose for argument’s sake, that each system value at intervention point i is a
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vector with my quantities, then our emulator is a projection from mx + (m+ 1)mθ

dimensional space into (m+ 2)my dimensional space.

Building the computer model emulator is our first difficulty in tackling a problem

with large my,m or mθ, although it is not our primary concern as the Sequential

Emulation methodology assumes an emulator for the computer model can, and will,

be built. Whilst a number of techniques, such as careful choice of active variables,

may be used to reduce the effective size of mx, we must emulate the simulator as

a function of all of our decisions if we wish to provide policy support. Note that if

a particular decision is not ‘active’, in that it has little or no effect on any of the

model’s outputs, we would question whether or not an intervention at that point was

necessary at all. The curse of dimensionality, then, means that m,mθ and my must

be sufficiently small to enable us to obtain enough runs on our complex simulator

in order to build a useful emulator for it. This problem is common to all computer

experiment methodology.

Suppose then that m,mθ and my are small enough so that we can build an

informative emulator for f(x, θ). We now consider other impacts that the size of

m,mθ and my may have on our methodology. Sequential Emulation requires us to

be able to emulate 1
2
(m+ 1)(m+ 2) complex integrals that are functions of subsets

of system observations and decisions. The function we must emulate with the fewest

number of inputs is a function of mθ variables. This is our final expected loss surface

for making a decision today given that all m downstream intervention strategies are

fixed. The function with the largest number of inputs is that representing the right-

most node on the decision tree and is a function of m(my +mθ) +mθ variables.

To perform such an emulation would require a number of evaluations of our

expected loss much greater than m(my +mθ) +mθ, and this loss itself is an integral

over my(m+2) dimensions. This task may seem arduous for large my,m,mθ, but we

must first consider the context. We have already emulated a very complex function

(our computer model), projecting mx + (m + 1)mθ dimensions onto (m + 2)my

dimensions, and we also expect to be able to integrate this emulator numerically over

mx dimensions. Furthermore, we can assume that there will have been a significant

amount of resources and man hours directed at building the computer model in the

June 28, 2010



3.8. Discussion 87

first place. If the model was built in order to assist policy makers in important

decision problems, then we should not baulk at spending a large amount of time

and resources addressing the actual policy problem.

If it is indeed possible to emulate our computer model effectively and to integrate

out the best input, then we should be able to emulate a one-dimensional expected

loss as a function of many variables if we can obtain reasonable estimates for the

desired integrals in a reasonable amount of time. The concept of what is deemed a

‘reasonable’ amount of time must depend on the total time and resources available

to us and the importance of the problem. The best methodologies for numerical

integration break down quickly as the dimension of the problem increases. Quadra-

ture, for example, is exceptionally accurate for low dimension problems, but requires

too many points in high dimensional space to be feasible. However, Monte Carlo

methods are always available and their accuracy (measured by the variance of the

estimator, at least) is independent of dimension. Using less accurate methods of

numerical integration may be unavoidable for many real-world problems anyway,

and as long as we are able to account for any error properly in our emulation, the

size of (2 + m)my or my (the dimension of the integrals) is not our main cause for

concern. Our principle issue lies in performing the integration enough times to be

able to fit a meaningful regression on a maximum of m(my +mθ) +mθ variables.

For large problems, it is unlikely that we will be able to obtain ‘sufficiently

informative’ Monte Carlo estimates fast enough. There might, however, be sufficient

structure in our emulators to allow parts of the integration to be done analytically.

We may consider emulating the loss function and integrating each of the regression

terms independently. A regression surface in any of the emulators we might build is

likely to be a function of monomials and other small subcollections of the variables

we are integrating out. Therefore, we might break the coarse integration down into a

series of much faster integrations and save any large and difficult integrations (such as

that for the residual process) for the handful of accurate evaluations we must make.

Whilst this could further ‘coarsen’ our coarse emulators, our multi-level emulation

would still reflect our uncertainties as long as we carefully considered how the coarse

and accurate evaluations related to each other. How one computes these expectation
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integrals, when the integrands themselves are functions of emulators with respect to

certain distributions, is a difficult and open research question, whose answer will be

heavily problem dependent.

When taken in the context of emulating our computer simulator (which could

take days or weeks to run just once), these types of calculation should be possible.

To speed up the process, we may make our ‘fast’ forecasting very quick using the

separability assumptions that allow us to provide decision-dependent forecasts across

the decision space, having integrated out x∗ just once. Separability, though a strong

assumption, may be a worthwhile tool for fast forecasting, even if we do not judge

the assumption appropriate for the careful calculation. As mθ,m,my increase, each

emulation becomes more difficult and, because more runs are required for building

emulators, the process becomes slower.

We have assumed m,mθ and my are small enough so that we are able to build a

meaningful emulator for f(x, θ). We have argued that, if this is the case, we should be

able to build our Sequential Emulators through particular choices of fast forecasting

methods and/or breaking down each integrand into integrable, lower dimensional

components. The time this takes per emulator will only be increased due to the

number of runs required. In a serious analysis, parallel computing should be able to

help relieve this concern.

A remaining concern is; how will the size of m,mθ and my affect accurate cal-

culations? The answer to this depends on the method used to produce accurate

calculations in each of our multi-level emulations. It is likely that full Bayes meth-

ods quickly become infeasible as the dimensions increase, and if we are performing

careful Bayes Linear calculations, the computation time will depend on whether or

not we can assume separability (in full or in part) and what degree of numerical

accuracy is deemed appropriate. It is worth noting that although each multi-level

emulation is problem-dependent, once a particular method is working well for these

loss integrals, it should work well for the rest of the Sequential Emulation. This is

because the functions all rely on forecasts of similar quantities evolving in time. It

is also likely that a certain degree of automation may be applied to the problem.
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3.8.2 Treatment of the loss model

Our Sequential Emulation treats the loss model as a function by fixing its input

parameters xL at some value. In fact, the loss model L(xL, y, θ) has much in common

with our computer model f(x, θ) and may even be expensive to run. Aside from

the decision and system outcome parameters, θ and y, the loss model contains

two kinds of inputs; parametrized by xL. The first subcollection of inputs within

xL define the preferences of the policy makers and populations by using a social

welfare function for economic output and any other quantifiable damage to the real

world. Sensitivity and scenario analysis should provide adequate treatment of these

preference parameters when policy makers do not fully understand their preferences.

The second subcollection drives the behaviour of the economy and the growth of

populations as well as describing how outcomes of the complex system ‘damage’ the

economy.

This second group has a lot in common with the model parameters of our com-

puter simulator. They represent the parameters for an attempt by the modellers to

describe a complex system (the economy) and its interaction with the system mod-

elled by f(x, θ). In effect, the loss model is then two submodels. We have a model

that uses physics and economics to describe the state of the economy under different

policies and outcomes, and a social welfare function whose input is the state of the

economy (and maybe some aspects of y) and whose output is a utility. We have not

handled our uncertainty for this first submodel appropriately in our analysis. Fur-

ther extension of our methodology and the Sequential Emulation algorithm should

consider how well this submodel represents the economy.

One idea is to disaggregate the two submodels and to treat the economic part

as another computer model. The best input approach could be applied and we may

properly handle our uncertainties regarding this model through careful considera-

tion of a model discrepancy and through emulation. We might even have access to

real world data regarding economic growth under different outcomes from the com-

plex system. For example, we are continually gathering data regarding how global

warming is affecting the planet and the monetary costs involved in damages and

abatement. This data may be used to adjust our beliefs about the real economy.
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Under this approach, an expectation for future values of the economy under

different decisions and outcomes may be calculated, and this expectation may then

be passed into our social welfare function to give an expected loss. Careful treatment

of the loss model is an interesting area of further work to be explored. We believe

such a treatment is possible and that it would fit into our Sequential Emulation

framework, enabling more powerful policy support.
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Chapter 4

Sequential Emulation for a

simplified climate policy problem

In this chapter we apply Sequential Emulation to a simplified version of a real

world climate policy problem. Using an intermediate complexity climate model and

a loss function derived from an Integrated Assessment model, we illustrate how

Sequential Emulation may be used to provide policy support for a CO2 emissions

problem. The example allows the expected loss of different CO2 abatement strategies

to be explored under the assumption that at one fixed point in the future, global

temperature may be observed and policy may be revised.

In giving this example, we aim to illustrate how our Sequential Emulation meth-

ods work in practice, as well as giving insight into the types of questions that must

be answered and the types of problems that must be overcome in order to perform

such an analysis. We also give examples of the types of policy support that the

results of the analysis may provide.

It should be noted that, whilst the material in this chapter provides a useful

illustration of our approach, it does not constitute a serious attempt at providing

support for a real world climate policy problem. Such support would require a

careful emulation of a powerful climate model, a large amount of climate data on

many different variables, significant input from climate and economic experts as well

as state of the art economic models and social welfare functions.

In section 4.1 we describe the policy problem under consideration. Section 4.2

91



4.1. The CO2 emissions problem 92

describes the computer models that we will use to learn about climate and its impact

on the economy. In section 4.3 we build an emulator for the climate model we are

using. Section 4.4 describes our treatment of the economic loss model we have. In

sections 4.5 and 4.6 we present the preliminary and main steps of our Sequential

Emulation of the decision tree defined by our example. In section 4.7 we give

examples of some of the policy support ideas introduced in section 3.7, as applied

to the example.

4.1 The CO2 emissions problem

Our illustration concerns the topical issue of how to abate CO2 emissions optimally

in order to manage the effects of global warming properly, whilst taking into ac-

count abatement costs and our utility for emissions-related consumption. We show

how our methods may be used to provide decision support for this type of policy

problem given a simple climate model, climate data, a model for the economy (that

incorporates the economic impact of climate change), and a social welfare function.

We consider only one climate variable; the global mean surface air temperature

anomaly. This is defined as the temperature increase as measured from the beginning

of the 20th Century. In order to be compatible with our available data and our

computer models, we consider policy to be made as if the year were 1995. Our

example then, is a demonstration of decision support for a policy maker in 1995 and

not a policy maker today.

We imagine that the policy maker wishes to set a global CO2 emissions strategy

in 1995 and call this θt0 . In 40 years the policy maker plans to observe the surface

air temperature anomaly and to set a new emissions strategy θt1 . He can then no

longer intervene with the climate system and the population must live with the

consequences of future temperatures. To simplify our calculations, we only consider

temperature anomalies at 1995, 2035 and 2095, labelling these yt0 , yt1 and yt2 re-

spectively. The last of these, yt2 , is taken as representative of future temperatures

while yt0 represents the historical temperature anomaly, whose observation is zt0 . If

we were providing policy support for a real-world policy maker we would use a large
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series of temperatures to represent both historical and future values. For example,

yt2 may be a vector of annual temperatures from 2036 until some distant future

date, whose economic state we no longer hold any preferences over. A heavyweight

analysis may also include many more intervention points, with each observation

consisting of temperature over a number of years.

The CO2 emission strategies we must choose are controlled via two decision

parameters; θt0 and θt1 . The first, θt0 , specifies a ten yearly reduction to ‘business as

usual’ (BAU) emissions from 1995 in the form of a damping coefficient. This can be

thought of as one minus a reduction rate; so, for example, θt0 = 0.7 corresponds to a

ten yearly emissions cut of 30% from BAU. This determines an emissions curve from

1995 to 2095. The second parameter, θt1 , indicates a further ten yearly reduction to

this curve beginning in 2035. This reduction is parametrized in the same way as θt0 .

The BAU curve represents global expected emissions increases (if left unchecked)

and was fitted using yearly emissions data from 1950 and the A1F1 SRES future

emissions scenario freely available from [48]. Our decisions are parametrized in this

way in order to be compatible with our models; introduced in section 4.2. Again,

in an important analysis, this parametrization would be approached differently to

ensure that uncertainty in the subjective BAU scenario was properly handled so that

an emissions policy would lead to a distribution of potential real-world emissions.

Our climate data, zt0 , along with the observation of yt1 that we intend to make

in 2035, is a single temperature anomaly. Our observed zt0 is 0.45o and is taken from

the second report from the Intergovernmental Panel on Climate Change (IPCC) [46].

This observation was taken in 1994, but for convenience we treat this as observed

in 1995. We set the variance of the mean zero observation error, et0 , so that an

observation more than 0.22o away from the true increase is a 3 standard deviation

event. This is in approximate agreement with the third IPPC report [45], whose

improved methods of data processing still give an anomaly for the year 2000 quoted

as “0.6o ± 0.2”. We make the variance of et1 the same.

Our goal is to use Sequential Emulation with the computer models we introduce

in section 4.2 to provide decision support for the problem of choosing θt0 . To ensure

our example clearly illustrates the practical application of our methodology, we shall
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follow the algorithm of section 3.6 precisely. Prior to this, we introduce the computer

models.

4.2 The Computer Models

A Sequential Emulation for this policy problem requires a climate model, f(x, θ),

and a loss function, L(y, θ), modelling the economic reaction to CO2 abatement as

well as the damage caused by different future temperatures. The last function must

include a social welfare function for economic states that outputs a utility.

Our climate model is C-GOLDSTEIN; described by its authors as an “efficient

3-D ocean-climate model” [29]. For our loss function we use the computer model

DICE-99. The models DICE and C-GOLDSTEIN have been combined before as

part of a Community Integrated Assessment Model called GOLDICE (see Drouet

et al. [28]). Although Sequential Emulation uses both models to provide decision

support, our methods leave the models completely separate so that only real-world

temperature judgements are ever inputted into the loss function. We now introduce

these models in further detail.

4.2.1 C-GOLDSTEIN

C-GOLDSTEIN is an efficient, intermediate complexity climate model with highly

simplified physics, but with 3-D ocean dynamics. A detailed description of the

encapsulated physics and the numerical solvers used can be found in Edwards and

Marsh [29]. We treat C-GOLDSTEIN as a ‘black box’ climate computer model that

is informative for the real climate. It has 27 model input parameters and requires

a decadal CO2 emissions series from 1995 to 2095 as a decision input. We calculate

this emissions series using θt0 , θt1 and our BAU curve so that we treat θt0 and θt1 as

decision inputs to the model.

For one choice of the model inputs, C-GOLDSTEIN is run to equilibrium for a

model time of 4000 years. This process is called ‘spin up’ and is common to many

climate models. Historical global CO2 concentrations from the year 1850, combined

with our future emissions scenario, are then added to the model as it is run to 2100.
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C-GOLDSTEIN takes around an hour to run on a desktop computer, although most

of that time is required for spin up. Once the model is spun up, it can be run into the

future for many different emissions scenarios at little extra cost (under two minutes

per run).

C-GOLDSTEIN’s outputs include the yearly rate of the meridionnal overturning

current in Sv and the yearly global mean air temperature. In order to have model

data corresponding to the climate variables we are studying, we focus only on air

temperature. We compute the differences between output at 1995, 2035 and 2095,

from output at 1900 for any run to give a model temperature anomaly at each time

point. These are labelled ft0(x), ft1(x, θt0) and ft2(x, θt0 , θt1) respectively.

To simplify emulation of the computer model, we treat it as a function with only

3 model inputs and fix the remaining 24 at default settings. In a case study, or

even an example designed to illustrate computer model emulation, we would not

make such a simplification. We may consider only 3 variables active, but would

handle uncertainty in the other 24 in a way such as that discussed in section 2.2.6.

The illustration of our methods is focussed on Sequential Emulation following an

emulation of the computer model. Therefore, simplifying the computer model and

our treatment of it prevents us becoming bogged down in what is a very hard problem

in itself. The inputs we choose to vary are Climate Sensitivity (x1), Ocean Vertical

Diffusivity (x2) and Atmospheric Moisture Diffusivity (x3). These were suggested

to us by our model experts as being influential for global mean temperature. We

do not concern ourselves with any physical meaning of these variables and treat

C-GOLDSTEIN as a ‘black box’ function of inputs x1, x2, x3, θt0 and θt1 .

4.2.2 DICE

DICE is an integrated assessment model by Nordhaus and Boyer [80] that has been

used in a number of the integrated assessment examples cited in section 3.2. A given

CO2 emissions strategy is inputted to the model and DICE uses this to compute

a global mean surface air temperature anomaly for each decade-sized time step

using a simple climate model. Each calculated temperature is used to compute a

‘damage value’, which is used along with cost functions for CO2 abatement and
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a Douglas-Cobbs formula, to compute the output of the world economy for each

decade. Output per capita is converted to consumption, which is then passed to a

social welfare function in order to give a utility for a particular policy.

The version of DICE we use is DICE-99 (as opposed to the more modern and

arguably better DICE-07 [78]) in order to be compatible with our version of C-

GOLDSTEIN. For DICE-99 the climate damage is

D(t) = d1T (t) + d2T (t)2,

where t indicates the time step, T (t) is the temperature at time step t and d1 and

d2 are model parameters. The output of the world economy at time t is

Q(t) = Ω(t)(1− b1(t)µ(t)b2)A(t)K(t)γP (t)1−γ,

where

Ω(t) =
1

1 +D(t)
.

A(t), K(t) and P (t) represent productivity, capital stock and population respec-

tively, each governed by their own submodels. µ(t) is the time t emission control

rate given as 1 minus the ratio of emitted CO2 to BAU emissions at a given time

step. The function b1(t) represents an evolving cost on abatement and has its own

submodel.

Global consumption C(t) is

C(t) = Q(t)− I(t)

where I(t) represents investment. Utility for a particular strategy is given as

W =
∑
t

P (t) log

(
C(t)

P (t)

)
R(t),

where

R(t) = Πt
v=0(1 + ρ(v))−10

is a rate of discounting, controlled by the parameters of ρ(v) and designed to reflect

our preferences for high consumption today, as opposed to in the future.

As DICE is an integrated assessment model, T (t) is calculated at each time step

from the emissions strategy using a simple climate model. We remove this aspect of
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DICE to allow real-world temperatures and our judgements regarding them to drive

our decision support. We require a temperature at each decade and for the years

1995−2095 we linearly interpolate between the three input temperature values, yt0 ,

yt1 , and yt2 , that are part of our analysis. Our temperature series will therefore

cease in 2095, yet DICE can be run much further into the future until the temporal

discounting rate, R(t), damps any utility contribution to zero. To account for our

utility for leaving the climate in state yt2 we calculate our utility, Ut2 for the 2095

model economy and write

∑
t

P (t) log

(
C(t)

P (t)

)
R(t) +

∞∑
n=0

Ut2
(1 + r)n

. (4.1)

The quantity r is a rate parameter representing a discounting for our utility for the

wealth of future generations. We felt this was an intuitive, flexible and pragmatic

way of accounting for the wealth of future generations. We can ensure the second

term in (4.1) decays quickly by choosing large r to reflect a social preference for

consumption today to the detriment of future generations. We can ensure the oppo-

site social preference by choosing small r and allowing the second term to dominate

(4.1).

A full list of all of the equations for quantities we have not given can be found in

Appendix B of Nordhaus and Boyer [80]. Our decoupled version of DICE-99, coded

in R, is given in full in Appendix C. Although DICE is a loss model as opposed to

a function of only y and θ, we fix each of its parameters at default values in order

to make it compatible with the Sequential Emulation methods present in chapter 3.

This is discussed further in section 4.5.1.

4.3 Emulation of C-GOLDSTEIN

We begin our handling of the preliminaries to the Sequential Emulation algorithm at

P1 and describe construction of an emulator for the computer model C-GOLDSTEIN.
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4.3.1 Model runs and the form of the emulator

Our treatment of C-GOLDSTEIN will be a Bayes Linear one and we therefore

require a second order emulator of the form

fi(x, θ) = βijgj(x, θ) + ui(x, θ), (4.2)

i = 1, . . . , 3. In order to construct such an emulator, we first require an appropriate

vector of regressors g(x, θ). We then require E [β] and V ar [β], as well as a set of

parameters defining the residual process u(x, θ), designed to encapsulate our beliefs

about the model.

To help us make these judgements and to construct the required objects we

had access to a very limited bank of runs. A Latin Hypercube of size 48 in the

model input variables and a 1050 Hypercube in the decision variables (split into

38 blocks of 25 and 10 blocks of 10) was used to obtain 1050 runs of the model

based on 48 different spin ups. We break our design down in this way in order to

exploit the relatively fast times involved in running the model for a given abatement

strategy once it has been spun up. This was discussed in section 4.2. These runs

were completed by Gemma Stephenson at the University of Southampton and were

to be our only source of information for model emulation. As a substitute for the

expert judgements we would hope to obtain in a case study, we use the 38 spin ups

with 25 runs each to build a prior emulator for the model. We then adjust this

emulator using the remaining 10. We choose to use the majority of our data to

construct a prior that we then adjust by a smaller amount of data, in order to allow

an illustration of the basic forecasting methodology described in chapter 2. Whether

or not our emulator would be more accurate or fit for purpose if we had used all of

the runs to construct the emulator without performing any adjustment, or if we had

made an ‘ignorant’ prior specification and adjusted by everything, is not a question

we address. The implications of this choice for our final emulator are discussed in

section 4.3.5.
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4.3.2 Choosing the regressors

Our first task is to choose the basis functions g(x, θ) using our 38 spin ups. We

achieve this by using a combination of graphical judgements and ordinary least-

squares fitting. We attempt to fit independent linear models to each output and to

use the collection of monomial terms fitted across all outputs as our vector g(x, θ).

These linear models will not have the same interpretability as the standard regression

model because the residuals cannot be assumed to be independent draws from the

same Normal distribution. Indeed, the residuals will be part of u(x, θ) which we shall

define as a correlated residual process in x and θ. We use ordinary least squares

here only as a tool for model selection and to obtain priors for quantities that will

be updated.

We begin by fitting a model to f1(x). Figure 4.1 shows a scatter plot matrix of

the output data F1 against each of the three model inputs. By eye there seem to

be linear effects in each of the 3 variables. As we only have 38 data points, we felt

it inappropriate to fit any higher order terms without risk of over fitting. Our goal

is to choose a regression surface that fits well to the majority of our output and to

use the correlated residual process to capture any effects that remain. We therefore

choose

f1(x) = β11 + β12x1 + β13x2 + β14x3 + u1(x), (4.3)

but base our fits on only 37 of the points. We remove the influential point, seen in

the panels for x2 against F1 and x3 against F1 in figure (4.1), from the data used

to train this model so that our regression line captures the linear trends evident in

the plot as well as possible. We do not ignore this point entirely, but use it later to

make a judgement regarding the magnitude of the variance on our residual process.

Figure 4.2 shows the data corresponding to 950 evaluations of f2(x, θt0) on 38

distinct x values for different θt0 . From these plots we see quadratic effects in θt0

along with evidence of the same linear relationship between the model output and

the x variables. We therefore decide to fit

f2(x, θt0) = β20 + β21x1 + β22x2 + β23x3 + β24θt0 + β25θ
2
t0

+ u2(x, θt0). (4.4)

Figure 4.3 shows a scatter plot matrix of the output f3(x, θ) as a function of all
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of the inputs for the model. We explored fitting linear models with quadratic terms

in θt0 and θt1 and found that with terms θ2
t0

, θ2
t1

and θt0θt1 , a separate linear term in

θt1 did not change the quality of our fit. We therefore fit the model

f3(x, θ) = β31 + β32x1 + β33x2 + β34x3 + β35θt0 + β36θ
2
t0

+ β37θ
2
t1

+ β38θt0θt1 + u2(x, θ).

(4.5)

In a standard regression we should not leave out the linear term in θt1 because, by

fitting a quadratic term, we implicitly fit a linear term. When we did include a linear

term in θt1 we found that it’s contribution was very small and that other coefficients

did not change by very much. It was felt that the computational benefit received

by not including it, outweighed any concern about it’s impact, for the purposes of

our illustration.

Our vector of monomials g(x, θ) is therefore

g(x, θ) = (1, x1, x2, x3, θt0 , θ
2
t0
, θ2
t1
, θt0θt1)T . (4.6)

The adjusted R2 values for each of these fits was 0.926, 0.7975 and 0.7535 respec-

tively. Whilst the adjusted R2 does not carry the same interpretation here as it

would in a standard regression, it is a useful diagnostic tool that we may use to see

if our fits are reasonable. It also gives an indication of how important our specifi-

cation of the emulator residual will be to the accuracy of our final emulator. The

R2 values we have here indicate that our fitting has explained a large portion of the

variation in our data.

4.3.3 Constructing a second-order prior for β

Each of the independent linear models (4.3), (4.4) and (4.5) give estimates for E [β]ij

and V ar [β]ijik for i = 1, . . . , 3 and j, k = 1, . . . , 8, via the usual regression output.

As discussed previously, we must be careful when using output from these linear

models as the usual assumptions on the residuals are not valid. We use the regression

output here as part of our second order prior for β. As we have no expert knowledge

to draw from, this represents a useful way of obtaining early beliefs about our

computer model. We have reserved 10 spin ups (corresponding to 100 runs) in order
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to adjust these beliefs, hence our final emulator will be based on a Bayes Linear fit

on these.

To insure against over confidence in our prior variance for the βijs, we used leave

one out diagnostics. This involved removing each data point in turn, refitting the

linear model, and recording any estimate for the βijs that had changed by more

than 2 standard deviations according to the values in table (4.2). We found that

no estimate for the βijs changed significantly. This could suggest that we have

not been confident enough in our specification. However, we wish to account for

our uncertainty in unsampled areas of the design space. Therefore, having prior

variances that are cautious reflects a judgement that our regression may be changed

by new runs and gives our emulator flexibility.

k=1 k=2 k=3

E [βk1] 0.45 0.84 0.91

E [βk2] 0.073 0.19 0.34

E [βk3] -0.044 -0.13 -0.28

E [βk4] 0.0092 -0.053 -0.15

E [βk5] 0 0.32 0.20

E [βk6] 0 0.12 0.15

E [βk7] 0 0 1.1

E [βk8] 0 0 0.44

Table 4.1: Prior expectations for the regression coefficients in our emulator for C-

Goldstein, rounded to 2 significant figures.

We present our prior expectation and our prior standard deviation for each βij

in tables (4.1) and (4.2) respectively. Note that we have included a number of zero

variances. This is because certain regressors in g(x, θ) are not present in each of

the three models for the outputs. For example, terms involving θt0 or θt1 are never

involved in the model for f1(x), because we are modelling historical temperatures

which cannot be functions of future policies. To allow us to work with matrices in

our model updating, we include these parameters but give them expectation and

variance equal to zero.
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k=1 k=2 k=3

SD(βk1) 0.0082 0.012 0.045

SD(βk2) 0.015 0.015 0.041

SD(βk3) 0.015 0.015 0.043

SD(βk4) 0.015 0.016 0.045

SD(βk5) 0 0.015 0.095

SD(βk6) 0 0.028 0.079

SD(βk7) 0 0 0.081

SD(βk8) 0 0 0.16

Table 4.2: Prior standard deviations for the regression coefficients in our emulator

for C-Goldstein, rounded to 2 significant figures.

The expected values of the coefficients of the decision variables in table (4.1)

appear to be intuitive. We would expect these coefficients to be positive so that the

more we abate (corresponding to θ decreasing) the lower the temperature becomes.

We also note that the absolute value of the expectation of our model input coeffi-

cients increases with time, so that as the model is run into the future, their influence

on the output becomes more pronounced. Our standard deviations for many of the

coefficients, shown in table (4.2), may appear very small. However, relative to the

domain of each of the inputs, the values of our expectations and the scale of the

output, their size is roughly what we expect. The small variance we have on the

coefficients is an indication that our residual may contain most of our uncertainty

about the model output.

We note that the standard deviation of β14 is such that we have no reason to

believe that β14 is non-zero. This might suggest that the variable x3 is not active,

particularly for the output corresponding to 1995. We fit on this variable and include

a non-zero expectation for two reasons. Firstly, the runs that we shall be adjusting

our prior emulator on may indicate that this variable is more active than it at first

appears. By including this term in our emulator for 1995 temperature, we allow the

runs to indicate whether or not it has a significant presence. Secondly, the means

and standard deviations of the coefficients on x3 for the outputs corresponding to
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2035 and 2095 indicate that this input does have a linear relationship with the

output.

In order to relate each of the three independently fitted models, we specify a

correlation structure for our regression coefficients across different model outputs.

We let

Corr [βij, βkl] = exp{τj(ti − tk)2} j = l

= 0 j 6= l,

where ti represents the actual year at index i. With this specification the amount

of correlation is controlled by the τj’s, which are chosen to be log(0.9997). This

choice has the desirable property that if we were fitting a regression for each year

of the model output, the coefficient would not change by much year on year. The

correlation between coefficients in any two adjacent years is large enough with this

choice so that correlation between the coefficients of our emulator is not negligible.

4.3.4 The residual process u(x, θ)

We stipulate that the form of the residual process will be the same across the decision

space and that it will be uncorrelated with β. For ease of computation, we consider

u(x, θ) to be a mean zero Gaussian process, separable in x and θ. We define its

correlation function through

Cov
[
ui(ξ[i]), uk(ξ

′
[k])
]

= Vik ∗ σiσk ∗ exp{−(ξ[m] − ξ′[m])Λ[m](ξ[m] − ξ′[m])
T}, (4.7)

where ξ[1] = (x1, x2, x3), ξ[2] = (x1, x2, x3, θ1), ξ[3] = (x1, x2, x3, θ1, θ2), i and k index

the output of the simulator, m = min(i, k) and Λ is a diagonal matrix containing

the inverse squares of the correlation lengths. Λ[m] indicates a submatrix of Λ,

appropriate to m so that Λ[m] contains only those correlation lengths for variables

in ξ[m]. The matrix V controls correlation between the output residuals and the

vector σ indicates the magnitude of residual standard deviation on each output. We

define ξ[m] in this way so that only the distance between inputs that influence the

value of both ui(x, θ) and uk(x, θ), contribute to their covariance. So, for example,

if considering the covariance between u1(x, θ) and u3(x, θ), we do not want the value
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of θ, which does not affect u1(x, θ), to contribute to the covariance between it and

another quantity depending on θ. This notation, therefore, indicates that there is

only correlation in the residual induced by shared inputs of each function.

If fitting an emulator using data alone, one way to fix the parameters of the

residual process is via variogram fitting. In our case, this would be inappropriate

as we only have 38 distinct points in our design for the model input space, and yet

we have 11 parameters to fit (although some of these, depending only on θ, may be

more attainable). Instead of using variograms, we use a combination of the standard

deviation of the residuals from our least-squares fitting, leave one out and graphical

diagnostics, as well as our own judgements.

To simplify our formulation, we judged that temporal correlation would be ade-

quately handled by the covariance on the regression coefficients and hence set V to

be the 3× 3 identity matrix. In a more serious analysis we would have to consider

this choice more carefully, either using expert judgement or a correlation structure

similar to that we imposed on the regression coefficients.

In order to choose the elements of σ, we relied heavily on leave one out diagnos-

tics. We may have been tempted to set σ1, σ2 and σ3 to be the residual standard

errors from our three fits. The leave one out plots of figures 4.4, 4.5, 4.6, 4.7 and

4.8 show why this would be a mistake. In each of these pictures, the red dotted

lines represent 2 standard deviations of the residuals, either side of zero, according

to our original regression fits. The plots show some points 5 or more standard de-

viations away from where our model predicts. With such small values of σ1, σ2 and

σ3, our model would struggle to cope with surprising observations and would not

even be suitable for those we have made now. We therefore choose σ1, σ2 and σ3

in accordance with these plots so that the extreme observations are consistent with

our variance specification. We set

σ = (0.05, 0.25, 0.7)T

so that the variance on the residual also reflects our beliefs about how far new

observations might deviate from our regression surface.
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Figure 4.4: Leave one out diagnostic graph used to fix σ1. The dotted red lines

represent ±2 standard deviations with respect to the original linear model. Each of

the points represents the difference between the data point left out and the prediction

for it using a linear model fitted to the rest of the data.

Fixing the correlation lengths

To choose the correlation lengths on each variable we use an heuristic designed to

give values with sensible properties. Whilst we do not have enough data to attempt

variogram fitting, even if we did, using an heuristic argument to choose Λ may be

more appropriate. Variogram fitting assumes we have a sample from a Gaussian

process and is a technique from Geostatistics used to estimate the parameters. It is

important, firstly, to note that we are not sampling from a Gaussian process and that

the computer model is, in fact, deterministic. Secondly, if using variogram methods

as a computational tool in order to estimate values of the parameters, we must be

wary of the fact that the mean, variance and correlation length in our statistical

model are confounded.

Variogram fitting involves using numerical optimization to fit the ‘best’ mean,

variance and correlation parameters for a Gaussian process assuming the data is a

sample from that process. Figure 4.9 shows the way in which the confounding of
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Figure 4.5: Leave one out diagnostic graph used to fix σ2. The dotted red lines

represent ±2 standard deviations with respect to the original linear model.
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Figure 4.6: Leave one spin up out diagnostic graph used to fix σ2. The dotted red

lines represent ±2 standard deviations with respect to the original linear model.
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Figure 4.7: Leave one out diagnostic graph used to fix σ3. The dotted red lines

represent ±2 standard deviations with respect to the original linear model.

these three things can manifest itself in an emulator. Our goal is to build an emulator

that fits a smooth curve through all of the points in the picture. To do this, we

fit a mean function, a variance and some correlation parameters. Two possible

mean functions are shown in in the picture. The one going through the points

is an accurate reflection of the sort of global regression we would like to fit. We

then use a Gaussian process with an appropriate correlation length and a relatively

small variance, and our emulator would be a smooth curve going through all of the

points. To obtain exactly the same curve we could start with the mean function

represented by the blue line, choose a large variance and choose long correlation

lengths. Away from any observed points, our emulator reverts back to the mean

at a rate determined by the correlation length. Therefore, in this illustration the

second example, whilst giving the same quality of fit to the points, would be much

worse globally. By using an optimization technique such as variogram fitting to

fit the parameters to our data, we are in danger of accidentally ending up in this

second situation. Whilst this example may be extreme, it shows the way that each
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Figure 4.8: Leave one spin up out diagnostic graph used to fix σ3. The dotted red

lines represent ±2 standard deviations with respect to the original linear model.

of the parameters we are attempting to fit is confounded. Therefore, it may be

better to use an heuristic to choose the correlation lengths even with large amounts

of data. That way we can be sure that our choice of correlation length is not simply

an artifact of the modelling we have already performed, which does not reflect our

beliefs about how much correlation may be in the residual.

We imagine a Taylor expansion of the complex computer model function in each

of its inputs that we have varied. As we have fitted a polynomial regression to the

function, then if we consider that polynomial to capture behaviour of its order well

we can assume that the residual demonstrates behaviour one order higher than the

fitted regression components. For example, we have fitted linear terms in each of the

three model input variables and, by assuming that we have captured this behaviour

well, the residual should have quadratic and higher order behaviour in all three of

these inputs.

Having decided what order effects we wish to capture via the residual, we then

address the problem of correlation length by considering the number of local maxima
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Figure 4.9: This picture shows two potential fits (represented by the lines) to a set

of points. We argue in the text that with certain fitted variances and correlation

parameters we could build two emulators that both go through the points in exactly

the same way.

or minima a general polynomial of that order would have. We then conduct a

thought experiment to decide how informative we wish a point at one of these

extreme values to be for a point at its nearest neighbouring extreme value. We

illustrate this using the example. Choosing the variable x1, we decide that the order

of the residual variation should be quadratic.

Figure 4.10 shows a quadratic shaped curve that
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Figure 4.10: Typical quadratic curve

we will use to help visualise the thought experiment.

We are considering how two points might be corre-

lated, so we assume they both have the same values

of x2 and x3 and that we would like a point at one

of the end points to be “informative” for a point

half way to the turning point (the intersection of

the curve with one of the red lines), but not infor-

mative for the location of the turning point. Here we decide that “informative”
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equates to having a correlation of e−1, and so we set the correlation length for x1 to

be 0.5. Although this choice may seem somewhat arbitrary, it obtains the desired

sensible properties referred to whilst not putting in too much correlation. A similar

heuristic to the one described in which the low order excluded effects are used to

choose a correlation length, was used by Goldstein and Rougier in [39] and by Craig

et al in [19]. Using this heuristic we set the diagonal of Λ to be (4, 4, 4, 9, 9)T

4.3.5 Completing our emulation

Our emulator is completed by adjusting our prior judgements for β and u(x, θ) by

the 100 runs we set aside in the beginning. We present the R code used to perform

this adjustment in sections D.1.1 and D.1.2 of the appendices. At this stage in our

analysis we compute the adjusted expectation and variance of β using the Bayes

Linear equations (2.9) and (2.10). The rest of the adjustment happens as part of

the forecasting calculation and the R code for this is presented in sections D.1.3 and

D.1.4 of appendix D. It is appropriate at this point to comment on the performance

and interpretability of our emulator for C-GOLDSTEIN.

We check the performance of our emulator using leave one out diagnostics. To

produce leave one out diagnostics for our emulator, we remove each point in our

data then adjust the prior emulator by the remaining 99 data values. We use

the adjusted mean and variance of this emulator to calculate a prediction for the

missing data point and compute the standardized distance between the data and the

prediction. We perform this test for each of the three outputs individually (although

our adjustments are multivariate) and plot the results in figure 4.11, figure 4.12 and

figure 4.13. Note that we remove each spin up and adjust on the remaining 9 spin

ups when testing the validity of our emulator for f1(x).

The diagnostic plot in figure 4.11 may worry us a little in that we have one

observation almost 3 standard deviations away from where it was predicted to be.

As a rule of thumb, anything more than 3 standard deviations away may cause us

to re-evaluate our emulation. In practice we would want to extend the range of x

values used to evaluate the model and adjust our emulators, as ten is very few and

it is difficult to interpret whether or not our emulator is performing well or poorly
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Figure 4.11: Leave one out diagnostic graph used to check the performance of our

adjusted emulator for f1(x).

from only ten runs. We may also be concerned by the apparent linearity in the leave

one out plot in figure 4.11. There is no reason that the index of the points we are

removing should be a factor in the quality of our fits, however, it may be that our

designs had some ordering that we were not aware of. In a more careful study of

this model we could explore this.

The other leave one out plots in figure 4.12 and figure 4.13 show that each of our

predictions are doing very well (almost better than expected) for the ten spin ups

we have. This is possibly because each prediction, for any removed point, is made

with its value of f1(x) known and, through our correlation structure on the β, we

learn something about the missing point from its spin up value. It is important to

note that we have no information about how well we are doing away from the ten

spin ups we have. We can, however, be reasonably confident that we have captured

the important features of the simulator with our emulator, because for each spin

up that we have seen, the relationship between future temperatures and (θt0 , θt1)

appears roughly the same. We provide an example of this in figure 4.14. This
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Figure 4.12: Leave one out diagnostic graph used to check the performance of our

adjusted emulator for f2(x, θ).

picture shows the relationship between our model output for 2035 and θt0 with each

spin up highlighted. We see that each spin up appears to define a quadratic curve

in θt0 with approximately the same shape each time.

The three leave one out plots do not contain anything overly alarming and, for

the purpose of this illustrative example, we can be fairly confident that our emulator

will be fit for purpose. In a case study, we would consider many more diagnostics

and explore alternative correlation lengths as well as perhaps the sensitivity of other

aspects of our prior specification. We might consider using cross validation and,

perhaps more importantly, would consider more carefully how the first 38 spin ups

were used.

It is important to note that our emulator only interpolates the 100 runs we

adjusted on. Our emulator therefore does not interpolate the function at every point

at which we have observed it, although we know that our prior model was consistent

with those observations. We may easily obtain an interpolator by adjusting our

emulator by the 950 runs we used to build the prior. Double counting of the data
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Figure 4.13: Leave one out diagnostic graph used to check the performance of our

adjusted emulator for f3(x, θ).

in this way, however, would lead to over confidence in the performance of our model

away from the data points. We therefore view the option of having an emulator

built using knowledge gleaned from an initial 950 runs and interpolating a further

hundred, as being the more favourable choice. The ideal scenario would involve

using expert knowledge to build our priors and to adjust by all of the runs.

We provide further details about our final emulator for C-GOLDSTEIN in ap-

pendix E.1.

4.4 DICE as a loss function

Although DICE is a complex loss model, in order to illustrate our methods, we

intend to treat it as a function of y and θ only. We must therefore fix each of

DICE’s input parameters. We set most of these at their default values, specified

in the downloadable spreadsheet version of DICE-99 available from [79]. A number

of parameters were changed to values that gave an ‘interesting’ setting of DICE,
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Figure 4.14: A plot of the model data for 2035 against θt0 . We colour each spin

up black, red, and blue alternately. This plot demonstrates that the relationship

between the model output and θt0 is roughly the same for each spin up.

as initial exploration of the default setting showed that we should always make no

reduction to CO2 emissions today, whatever the consequences for the future were.

The evolution of abatement cost in DICE is controlled by the function

b1(t) =
b1(t− 1)

1 + gb(0)exp(−δbt)
.

We change the default values of b1(0) and gb(0) from 0.03 and −0.08 to 0.005 and

0.25 respectively. The new value of gb(0) provides a larger initial damping of b1(t)

and makes abatement cheaper today. The smaller b1(0) values has the effect of

making overall abatement cheaper. We do this so that the cost of abatement does

not prohibit ever choosing to manage CO2 emissions and to provide an interesting

example that illustrates our methods. We also fix our preferences for the wealth of

future generations by setting r = 0.1 in equation (4.1).

Figure 4.15 and figure 4.16 represent a visualization of DICE output for different

inputs. From figure 4.15 we see that future temperature has a dominating effect

on the consequences we face for any particular policy. However, we know that the

policies will themselves drive future temperature and from figure 4.16 we can see
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that for given future temperatures we would like to have made as little reduction to

emissions today as possible. We explore the sensitivity of our methods to the choice

of r in section 4.7.4.

4.5 Completing the preliminaries

Before we begin our Sequential Emulation of the decision tree we must complete

preliminary steps P2, P3, P4 and P5.

4.5.1 Obtaining forecasts

We begin at P2 by writing down our beliefs about x∗, η(θ), and e. We choose

independent uniform prior distributions for x∗1, x∗2, and x∗3, to reflect ignorance and to

facilitate easier numerical integration. Whilst this serves the purpose of illustrating

our methods, a more careful description of p(x∗), such as that undertaken by Rougier

and Kern [98], would usually be required.

We specified the variance of mean-zero observation error e in section 4.1 on page

93. We gave the discrepancy mean zero and decided to make it independent of

θt0 and θt1 . To construct its variance matrix we consulted Peter Challenor from

the National Oceanography Centre in Southampton, who has experience with C-

GOLDSTEIN (see Challenor and Marsh [16]). Peter gave standard deviations on

ηt0 , ηt1 , and ηt2 as 0.1, 0.5 and 1 respectively. He also specified correlations

Corr [η1, η2] =
√

0.5, Corr [η1, η3] =
√

0.1, Corr [η2, η3] =
√

0.25.

To obtain a decision-dependent forecast, we must compute the integrals (2.22),

(2.23) and (2.24) for any given decision. Let

h(x) = (1, x1, x2, x3, 1, 1, 1, 1)T , k(θ) = (1, 1, 1, 1, θt0 , θ
2
t0
, θ2
t1
, θt0θt1)T

and

rx(|x− x′|) = exp{−(x− x′)Λx(x− x′)T}

rθik(|θ − θ′|) = exp{−(θ[m] − θ′[m])Λθ(θ[m] − θ′[m])
T} m > 1
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with

Λ =

 Λx 0

0 Λθ

 ,

m = min(i, k), θ[2] = θt0 , θ[3] = (θt0 , θt1), and rθik(|θ − θ′|) = 1 if m = 1. Then

gi(x, θ) = hi(x) ∗ ki(θ)

and

Cov
[
ui(ξ[i]), uk(ξ[k])

′] = Vik ∗ σiσk ∗ rθik(|θ − θ′|)rx(|x− x′|)

(where ξ[j] is defined on page 106 for j = 1, . . . , 3). Hence we have separability

in both g(x, θ) and in our residual covariance function. We therefore only have

to integrate any x−dependent quantities once, before using (2.27), (2.28), (2.29),

(2.30), and (2.31) to compute E [y(θ)] and V ar [y(θ)] for any θ, without integrating

again.

The only integrals we must solve in order to produce decision-dependent forecasts

then, are∫ 1

−1

h(x∗)p(x∗)dx∗,

∫ 1

−1

h(x∗)h(x∗)Tp(x∗)dx∗,∫ 1

−1

rx(|x∗ − Ω|)p(x∗)dx∗,
∫ 1

−1

rx(|x∗ − Ω|)rx(|x∗ − Ω|)Tp(x∗)dx∗,∫ 1

−1

h(x∗)rx(|x∗ − Ω|)p(x∗)dx∗.

We can solve each of these analytically; using Normal distribution theory to obtain

the integrals involving rx(|x∗ − Ω|). We detail these calculations in Appendix B.

Once we have performed the necessary integrations, our decision-dependent forecasts

require no further numerical integration. Our ‘coarse’ and ‘accurate’ methods of

forecasting, as required in step P3, are the same because exact forecasts are obtained

that are appropriate to our method of emulation.

4.5.2 Characterizing the required distributions

Preliminary step P4 requires us to specify how forecasts, such as the pair Ezm [y; θm]

and V arzm [y; θm], will characterize the various distributions required to compute

the different expected losses on our decision tree. In a case study, this step would
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be critically important and would receive a lot more attention. Indeed, the idea

of using partial beliefs to characterize probability distributions; the interpretations

of any probability statements implied by those distributions; and the sensitivity

of any drawn conclusions to the particular characterization (or any perturbations

in the chosen distribution); would form an interesting and worthy area of research

in its own right. We do not address these questions in this thesis and choose our

characterization for convenience only.

We must determine how our forecasts will characterize p(y|zt1 , zt0 , θt0 , θt1) and

p(zt1|zt0 , θt0). We let both of these distributions have a log-normal form with mean

and variance determined by the appropriate forecast. We make this choice because

the multivariate log-normal distribution is easily sampled from, and because its

support is strictly positive. This amounts to a judgement that the global mean

temperature will not decrease below the 1900 temperature within this century. An

undesirable feature of this choice is the unrealistically high probability given to

extremely large temperature increases. Under these distributions we often sample

temperature increases of 6o or 7o this century! In a serious attempt to provide

decision support to policy makers this would be unacceptable, however, our illustra-

tion of the key features of the methodology is well served by using easily sampled

quantities.

We therefore fix p(y|zt1 , zt0 , θt0 , θt1) to be multivariate log-normal with mean

Ezt1,zt0
[y; θt0 , θt1 ] and variance V arzt1,zt0

[y; θt0 , θt1 ] for any θt0 , θt1 , and zt1 . We also

let p(zt1 |zt0 , θt0) have a log-normal distribution with mean Ezt0 [zt1 ; θt0 ] and variance

V arzt0 [zt1 ; θt0 ] for any θt0 .

4.5.3 Coarse and accurate evaluations

When integrating with respect to y, as we must when emulating A(θm, zm) and

B1
λ1(θt0 , z

m), we use Monte Carlo methods for both coarse and accurate numerical

integrations. Our coarse evaluations use 1000 samples from the appropriate distri-

bution and evaluate the mean of the loss function over those samples. Our accurate

evaluations compute this mean over 100, 000 samples. When integrating with respect

to zt1 , as we must when evaluating C1
λ1(θt0 , zt0), we use 1000 and 10, 000 samples
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for coarse and accurate integrations respectively. We feel we are able to make fewer

samples for the accurate calculation as we are integrating a one-dimensional function

as opposed to a three-dimensional one.

It is worth commenting that numerical Quadrature (see, for example, Davis and

Rabinowitz [25] or Evans [30]) would allow us to obtain more accurate evaluations

of each integral. It was felt, however, that in a serious attempt at the problem the

dimensions of each integration would be such that Quadrature would be infeasible.

Illustration of the method would therefore not benefit from the extra pain involved

in deriving a Quadrature rule for integrating with respect to the log-normal weight

function over three dimensions.

This final judgement completes the preliminary steps required before beginning

our Sequential Emulation of the decision tree. We now follow the Sequential Emu-

lation algorithm, beginning at step S1.

4.6 Sequential Emulation

4.6.1 Designs

To build each of our emulators, we require a large set of coarse evaluations and a

number of accurate evaluations made at locations where we also have coarse data.

For each of the three emulators required, we use Latin Hypercube designs to choose

the location of our evaluations. Our emulator for A(θm, zm) will be based on coarse

evaluations at each point of a 1000 point Latin Hypercube in θt0 , θt1 and zt1 , with

the accurate data collected over a similar 200 point Latin Hypercube. Note that

we obtain the coarse evaluation at each of these 200 points. Our emulator for

B1
λ1(θt0 , z

m) will be based on a 1000 point Latin Hypercube in θt0 and zt1 for the

coarse data, and a 200 point Latin Hypercube for the accurate. Finally, our emulator

for C1
λ1(θt0 , zt0) is based on a 1000 point Latin Hypercube in θt0 for the coarse data,

and a 100 point Latin Hypercube for the accurate.

The lognormal form for p(zt1|zt0 , θt0) means that when sampling from this distri-

bution we can get large values of zt1 . We must then evaluate Ẽ
[
B1
λ1(θt0 , z

m)
]

using

our emulator for B1
λ1(θt0 , z

m). Therefore, our emulators must be accurate for these
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values of zt1 , indicating that our designs should contain appropriately large values

of this quantity. Based on generating samples from p(zt1|zt0 , θt0) for typical forecast

values, we generate design points for zt1 on the range (0, 8).

4.6.2 Building the coarse models

The loss values we obtain from DICE for any θt0 , θt1 , and zt1 are order 105 values.

As utility is invariant to positive linear transformations, we rescale our coarse and

accurate evaluations to the range [0, 10]. Each of our coarse emulators will be built

using saturated linear models in the relevant inputs. We use the term ‘saturated

linear model’ to refer to a model containing all feasible terms of any order less than

or equal to the order of the fitted model. For example, suppose we are fitting a

model in variables a, b and c, then the saturated linear model of order two must

contain all of the terms a, b, c, ab, ac, bc, a2, b2, and c2. We use saturated models

so that the expectations of our accurate emulators can be linearly transformed back

onto the DICE scale if need be.

We fit linear models to the coarse data as part of an emulation tool. The idea is

to use linear fitting to choose the order of the regression surface and to fix our choices

of the g(·) and β in (3.11). We then make judgements for each of the remaining

quantities required for multi-level emulation of the accurate model and adjust by

the accurate evaluations. Although we are fitting linear models to the coarse data

at each step, and although we use some of the output from these regressions, it is

important to note that we do not believe all of the usual regression assumptions

and as such do not trust all of the diagnostic output from any regression. We treat

the linear models as least squares fits and use residual plots to make judgements

about the most appropriate model form and about the correlated and uncorrelated

components of the coarse model residual. The output we take forward is used as

part of a prior model for our accurate evaluations of the required integrals. This

prior is then updated by accurate evaluations and our emulator for the integral is

based on this update.

Before addressing S1, it is necessary to discuss how we treat the coarse residuals.

Each emulator that we shall build when performing the algorithm is a function of a
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subset of the variables (θt0 , zt1 , θt1). Denote an appropriate subset of these variables

ζ, so that, for example, if we are addressing S1, ζ = (θt0 , zt1 , θt1). From (3.11), we

have

πc(ζ) = βjgj(ζ) + εc(ζ) + δc(ζ),

where πc(ζ) represents the coarse evaluation of the integral we are emulating (so at

step S1 this is A(θ1, z1)), the first term represents the regression surface we shall fit

using the coarse data, εc(ζ) is a correlated residual process representing behaviour

not captured by the global regression, and δc(ζ) is uncorrelated error. We let εc(ζ)

have a Gaussian correlation function so that, for any ζ,

Cov [εc(ζ), εc(ζ ′)] = σ2
εcexp{(ζ − ζ ′)Λεc(ζ − ζ ′)T},

where Λεc is the diagonal matrix of correlation parameters appropriate to the coarse

calculation and σεc is the standard deviation of the correlated residual. The correla-

tion lengths are chosen using the same heuristic as discussed in section 4.3.4. How-

ever, we multiply the correlation lengths by
√

10 to allow more correlation into this

component of the residual. This choice was based on early tests of the methodology

and leave one out diagnostics. Leave one out diagnostics are very computationally

expensive here so that our choice of correlation length was based on a comparison

of only a handful of different candidates. Multiplying the correlation lengths de-

rived from our heuristic by
√

10 gave a better fit than the original values. We do

not explore the issue of correlation length further here as we do not feel it will be

crucial to the performance of our emulators. We feel that the correlated component

of the residual contributes only a small amount to the emulators we have built. We

specify σεc and σδc = SD [δc] by analysing the residuals from individual fits. We

shall discuss this in more detail in the context of our example in section 4.6.3.

From equation (3.12) we have

πa(ζ) = ρβjgj(ζ) + γεc(ζ) + εa(ζ) + δa(ζ)

where πa(ζ) represents the accurate evaluation of the integral we are emulating, ρ

and γ are scalar quantities we must specify beliefs about, εa(ζ) is the correlated

component of the accurate residual, and δa(ζ) is uncorrelated error. Our residual
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process for any of the accurate models, εa(ζ), will have the same form of covariance

function as that for the coarse, and will have the same correlation lengths. We choose

σεa and σδa , the standard deviations of the correlated and uncorrelated components

of the accurate residual respectively, based on residuals calculated from the coarse

model and on our judgement regarding the relative accuracy of the Monte Carlo

methods for both coarse and accurate evaluations. We will describe these ideas in

more detail in the context of the example in section 4.6.3.

4.6.3 Emulating A(θ1, z1)

Beginning with S1, we must emulate A(θ1, z1) as a function of θt0 , θt1 , and zt1 .

Figure 4.17 shows the coarse evaluations that we will use to fit the coarse emulator.

Although we see that the main effects seem to be roughly quadratic in zt1 , we

expect interactions between zt1 and the decisions θt0 and θt1 to be important. We

also expect individual effects from each of the decisions, reflecting our preference for

abating as little as possible if it will not affect the temperature.

By fitting a saturated linear model of order two in θt0 , θt1 , and zt1 , we achieved

an adjusted R2 of 0.9982 on 991 degrees of freedom. This might be an indicator of

an excellent fit. Upon looking at figure 4.17, we notice that there is a very clear and

dominating signal in zt1 . This means that the large value of R2 is an artifact of the

fact that most of the variation in the data is due to this quadratic behaviour in zt1 .

This itself is an artifact of the large values of zt1 that we include in our designs only

because they arise occasionally when sampling from the lognormal distributions we

shall use at step S4. We must be careful to ensure that, for the majority of values

of zt1 that we shall sample at step S4, our fit is still reasonable and that there is no

hidden behaviour that is masked by the large signal in zt1 . In order to explore this,

we fit the same models to the subset of the data with zt1 < 3. We found that the

key features of our fits were the same in both cases, giving us confidence that our

fits do not miss important information as a result of fitting on a large range of zt1 .

We report the details of each of these fits in appendix E.2.

On examining the residual plots in figure (4.18), we can see that the usual re-

gression assumptions, particularly homoscedasticity in the residuals, are not valid.

June 28, 2010



4.6. Sequential Emulation 127

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0−0.50.00.51.0

θ t
0

−1.0−0.50.00.51.0

θ t
1

02468

z t
1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0246810

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0
2

4
6

8
0

2
4

6
8

10

0246810

E
xp

ec
te

d 
Lo

ss

A
 r

ep
re

se
n

ta
ti

o
n

 o
f 

th
e 

co
ar

se
 d

at
a 

re
q

u
ir

ed
 in

 S
1

F
ig

u
re

4.
17

:
S
ca

tt
er

p
lo

ts
of

ou
r

co
ar

se
ev

al
u
at

io
n
s

of
A

(θ
1
,z

1
).

June 28, 2010



4.6. Sequential Emulation 128

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−0.4−0.20.00.20.40.6

θ t
0

Residuals

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−0.4−0.20.00.20.40.6

θ t
1

Residuals

0
2

4
6

8

−0.4−0.20.00.20.40.6

z t
1

Residuals

0
2

4
6

8
10

−0.4−0.20.00.20.40.6

F
itt

ed
 V

al
ue

s

Residuals

F
ig

u
re

4.
18

:
R

es
id

u
al

p
lo

ts
fr

om
fi
tt

in
g

a
sa

tu
ra

te
d

li
n
ea

r
m

o
d
el

of
or

d
er

tw
o

to
th

e
co

ar
se

d
at

a
fo

r
A

(θ
1
,z

1
).

June 28, 2010



4.6. Sequential Emulation 129

Although we might often be very happy to have captured over 99% of the variation

in the data, as we have noted, this large R2 is an artifact of the strong signal in zt1

and we wish to ensure that we capture any smaller signals that may be a feature of

the data, particularly for low values of zt1 , as these will represent the majority of

values of zt1 that are sampled at step S4. The residuals appear to suggest a signal in

zt1 and θt1 in particular that our model is not detecting. As we have a large number

of degrees of freedom, we take the view that it is worth adding cubic effects to our

model in order to reduce the importance of the correlated residual process we are

to model.

We fit a saturated linear model of order three and plot the residuals in figure 4.19.

By observing these plots we can see that we have captured most of the available

signal, although we still have a little remaining hetroscedasticity in zt1 that will have

to be modelled by our correlated process εc(θt0 , θt1 , zt1). We fix the coefficients β

at the estimates given from the regression. To capture the hetroscedasticity seen

in the residual plot for zt1 , we measure the residual variance in each of the subsets

zt1 ∈ [0, 2], zt1 ∈ [2, 4], zt1 ∈ [4, 6], zt1 ∈ [6, 7], and zt1 ∈ [7, 8]. Our intention is to

let σ2
εc be a function of zt1 , calculated by interpolating these variances once we have

removed σ2
δc .

We note that the residual variance is very small relative to the size of the losses

we are interested in. This means that we do not need to worry too much about very

careful modelling of the residual. Therefore, we choose the value of σδc based on

the amount of residual variation that looks like white noise in figure 4.19 and based

on the amount of variation we feel is due to numerical error. For this emulator we

chose σ2
δc = 5 × 10−4, because we felt that the majority of the residual variation

represented the numerical error we desire to smooth out. This left σ2
εc(zt1) ∈ [1 ×

10−4, 3 × 10−3]. The inverse squares of the correlation lengths, as given by our

heuristic, were (1.6, 1.6, 0.1).

Our emulator for the accurate calculation and, therefore, of A(θ1, z1), is given

by equation (3.12). In order to obtain this emulator through adjusting by the

difference between coarse and accurate evaluations, we must specify E [ρ], V ar [ρ],

E [γ], V ar [γ], σ2
εa , and σ2

δa . We begin by calculating the predicted values for the
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accurate design based on the coarse regression surface and examining the difference

between these and the accurate evaluations. By measuring the variance in each of

the subsets examined for the coarse, we can specify the variance of the correlated

residual on the accurate given σ2
δa , in the same way as we did for the coarse. We base

our choice of σ2
δa solely on our choice of σ2

δc and on the following heuristic. We know

that the accuracy of a Monte Carlo integration improves with order
√
n as the size

of the samples, n, increases. Our accurate evaluations are based on 100 times more

samples than our coarse, so we fix σ2
δa by dividing σ2

δc by 10, giving σ2
δa = 5× 10−5.

This gave σ2
εa ∈ [2.8× 10−4, 2.7× 10−3].

We choose E [ρ] = E [γ] = 1 and gave each quantity a variance of 0.01. We then

adjust the prior emulator for the accurate by the difference between our accurate

evaluations and coarse evaluations made at the same locations, using the Bayes

Linear update equations and equation (3.15). The R code used to perform this

adjustment is given in appendix D.2.2. The result is our emulator for A(θ1, z1),

which we evaluate in R for any θ1 and zt1 via the function AFine in appendix D.2.4.

The adjusted expectations of ρ and γ were 1.00162 and 1.053047 respectively. We

calculated the Bayes Linear diagnostic called the adjustment discrepancy for both

of these quantities.

If we have beliefs about quantity B and observe data D then the adjustment

discrepancy is defined to be

DisD(B) =
|ED [B]− E [B] |2

RV arD [B]
. (4.8)

The adjustment discrepancies we observed for ρ and γ were 0.000263 and 0.4095.

Both of these values do not flag up any serious concerns, although the very small

value for the discrepancy of ρ may indicate that we put too much prior variance

on ρ. However, it could also indicate that we modelled the global behaviour of the

integral very well in the first place.

4.6.4 Defining time t1 strategy, λt1

We now follow S2 by using the function ‘optimize’ in R, on the expectation of our

emulator for A(θ1, z1) to locate λt1(θt0 , z
1) for any θt0 , zt1 . We first calculate the
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Figure 4.20: A Strategy plot for θt1 , where the surface λt1(θt0 , θ
1) is plotted as a

function of θt0 and zt1 .

minimum on the whole range of possible θt1 and then on half intervals of that range

to insure against landing in a local optimum with our algorithm. Figure 4.20 shows

the first of our strategy plots for λt1 . We discuss the information conveyed by this

plot when presenting our policy support ideas in section 4.7.

4.6.5 Emulating B1
λ1(θt0, z

1)

We proceed to S3 and re-emulate A(θ1, z1) as a function of θt0 and zt1 only, substi-

tuting θt1 with λt1(θt0 , z
1). We obtain coarse and accurate evaluations of B1

λ1(θt0 , z
1)

using the design mentioned in section 4.6.1. The data for the coarse is shown in

figure 4.21.

We fit a saturated linear model of order two and obtain an adjusted R2 of 0.9998.

This very large value of R2 comes from the fact that the data in figure 4.21 appear
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to be a quadratic curve in zt1 . We check that the global fit over the entire range of

zt1 does not hide a different type of signal for those values of zt1 < 3 that will be

most sampled from the log-normal distribution at step S4, by fitting the model over

the subset of the data with zt1 < 3. The summaries for both fits are in appendix

E.2. The coefficients for both fits were the same sign and order of magnitude, giving

us confidence that the large R2 observed here is not misleading and that we do

capture the behaviour of the data very well. The residuals for this fit are shown in

figure 4.22. These residuals display some hetroscedasticity as well as suggesting that

there is a higher order signal there. Although adding the order three terms seems

to capture some of this signal, as shown in figure 4.23, the residual variance is only

reduced very slightly. We present the summary for this cubic fit in appendix E.2

and argue there that it may not be worth adding the extra terms. We choose the

quadratic model and allow the correlated residual to capture any remaining signal,

as the size of this signal is very small.

We fit the new σ2
εc and σ2

εa in the same way as our previous multi-level emulation,

allowing the variance to grow with zti . We again choose σ2
δc = 5 × 10−4 and σ2

δa =

5 × 10−5. We do this based on the knowledge that our numerical integration here

is of the same loss function with respect to the same types of 3-dimensional log-

normal distributions in y, and using the same sample sizes for both coarse and

accurate evaluations as our numerical integration used to generate evaluations of

A(θ1, z1). We also choose the same mean and variance for ρ and γ as with our

previous emulation. Our heuristic for choosing correlation length sets the inverse

square correlation lengths on both coarse and accurate correlated processes to be

0.9 and 0.05625 for θt0 and zt1 respectively.

We now adjust our prior model for the accurate calculation by the difference

between accurate and coarse runs made at the locations of our 200 point Latin Hy-

percube design. The adjusted expectations of ρ and γ were 1.008151 and 0.9082235

respectively. The discrepancies, calculated as in section 4.6.3, were 0.006646 and

0.8425 for ρ and γ respectively. Again, we may consider that our prior variance for

ρ was too large, or that we captured the global behaviour of the expected loss very

well using the coarse evaluations.
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Figure 4.24: A scatter plot of our coarse evaluations of C1
λ1(θt0 , zt0).

4.6.6 Emulating C1
λ1(θt0, zt0)

At step S4 we must emulate the function

C1
λ1(θt0 , zt0) =

∫
Ẽ
[
B1
λ1(θt0 , z

1)
]
p(zt1|zt0 , θt0)dzt1 (4.9)

which, as zt0 is fixed, is a function of θt0 only. For each point in our coarse and

accurate designs we obtain evaluations of (4.9) by sampling the required number

of future temperatures from p(zt1|zt0 , θt0) in the manner discussed in section 4.5.3

and evaluating the expectation of our emulator for B1
λ1(θt0 , z

1) for each sample. The

mean of these evaluations is our estimate.

We present the coarse evaluations in figure 4.24. We can see from this dia-

gram that there is a clear quadratic signal in θt0 , and that the minimum expected

loss will be located somewhere between θt0 = 0 and θt0 = 0.6 We try fitting a

quadratic polynomial in θt0 via least squares and obtained an adjusted R2 of 0.8768.

The residuals from this fit are shown in figure
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4.25. The residuals display evidence of higher order signal and, in fitting a cubic

polynomial, we were able to obtain an adjusted R2 of 0.9166. The residuals from

this fit are shown in figure 4.26. They seem reasonably homoscedastic and have no

obvious patterns remaining, suggesting that any residual variation may be uncor-

related white noise. The variance of the residuals for both the coarse and accurate

evaluations is 4.03 × 10−5 and 8.23 × 10−6 respectively. We reflect our judgements

regarding the amount of uncorrelated variation contained in the residual by choosing

σ2
δc = 4× 10−5 and σ2

δa = 4× 10−6.

Our correlation parameter, as fixed using the same heuristic we have used through-

out, is 1.6 and we fix the same prior beliefs on ρ and γ as with our previous emulators.

We now adjust our prior model for the accurate calculation by the difference between

accurate and coarse evaluations, as usual, to obtain our emulator for C1
λ1(θt0 , zt0).

The adjusted expectation of ρ and γ was 0.99198 and 1.01723 respectively. The

discrepancies for these quantities were 0.00645 and 0.61855. The expectation of this

emulator provides us with our visualization of the loss surface, shown in figure 4.27.

This image, along with the strategy plot in figure 4.20, represents our first decision

support tool. Moving to S5 in the algorithm, we see that m = 1 and so we proceed

to S11 and stop. Having completed the Sequential Emulation algorithm, we may

now focus on providing decision support.

4.7 Policy support

In this section we present some of the methods of policy support we can offer using

the emulators obtained during a Sequential Emulation and some of the methods

discussed in section 3.7.

4.7.1 Forward sampling

Having fixed all downstream strategies, λt1 , . . . , λtm (in this case only λt1 was re-

quired) we may forward sample in the way described in section 3.7.3 to obtain the

risk profile for a given θt0 . In order to simulate the future behaviour of the temper-

ature anomaly in response to a particular policy θt0 and downstream strategy λt1 ,
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Figure 4.27: A plot of Ẽ
[
C1
λ1(θt0 , zt0)

]
with error bars obtained through the forward

sampling methods described in section 4.7.1.

we take the following steps. We first sample a value from p(zt1|zt0 , θt0) and call this

sample ẑt1 . Using our downstream strategy λt1 we compute

λ̂t1 = λt1(θt0 , (zt0 , ẑt1)).

We then sample a value ŷ from p(y|ẑt1 , θt0 , λ̂1), characterized using a Bayes Linear

forecast based on the sampled observations and our policy strategy, and compute

L(ŷ, (θt0 , λ̂
1)) using DICE. This gives us one sample loss value for a given θt0 . By

repeating these steps a large number of times, we obtain a picture of the loss distri-

bution under our downstream intervention strategy for a given θt0 and we may use

the results as a guide to how well our Sequential Emulation captures our expected

loss for the strategy and to what extent that strategy might be improved.

The points and error bars in figure 4.27 show the simplest use of this sampling.

For given θt0 we can obtain the risk profile and use the sample mean and its standard
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error to plot actual, achievable, expected losses under strategy λt1 . Using these, we

may assess how well our Sequential Emulation captures the loss surface under λt1 .

For each of the values θt0 = 0.2, 0.4, 0.703 and 0.95 we conducted a sampling

experiment based on 60000 simulations. The red crosses and error bars on figure

4.27 were then obtained by placing a cross at the mean of each sample, and putting

the error bars at a distance of ± 2 standard errors of the sample mean. We can see

from figure 4.27 that our Sequential Emulation has captured expected loss under

λt1 near the minimum of the curve well, but under-estimates expected loss for the

‘sub-optimal’ decisions that we have explored. We could tweak our emulators by

obtaining more evaluations in the areas in which we are under-performing if we so

wished. However, our intention is to prune the tree and, as will be argued in the

next section, our Sequential Emulation is adequate for that purpose.

One of the principle concerns when performing a Sequential Emulation must

be with how close our strategies λt1 , . . . , λtm (in our case, just λt1) are to optimal.

Put another way, we would like to know by how much our intervention strategies

might be improved. Forward sampling can give us insight into these problems. For

a chosen θt0 , we may sample a zt1 as usual and compute λt1(θt0 , z
1). We can then

sample y(θt0 , λt1) and L(y, (θt0 , λt1)) as normal, but we may also take a handful of

alternative downstream strategies forward and sample losses for these. By taking a

large sample of losses for each alternative strategy, we may compare performance of

λt1 to alternative schemes. This provides a simple diagnostic for our emulator for

A(θ1, z1), but, more importantly, will be a useful tool to aid pruning.

4.7.2 Pruning

Our goal in pruning, as discussed in section 3.7, is to remove areas of the decision

space that we do not believe contain optimal decisions. We may then refocus the

analysis and provide improved downstream intervention strategies and more insight

into our expected loss surface for policy today.

We may be tempted, having observed figure 4.27, to remove all θt0 that result in

an expected upper bound larger than, say, 0.18. This would mean reducing the range

of θt0 under consideration to roughly [0.4, 0.95]. However, we are not certain whether
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alternative strategies may result in some θt0 outside of that range becoming optimal.

Another problem with this is that under λt1 our curve is merely an emulator for an

upper bound on expected loss. The real upper bound may be lower in areas of the

decision space we are considering throwing away than it is at decisions that appear

to be better according to our emulator. We may be comforted by the location of

the actual expected losses we have plotted.

Prior to performing this detailed analysis, we explored the behaviour of the loss

function for many different parametrizations and for the types of temperature values

we would expect to come from our forecasting calculations. We did this primarily

in order to choose values for the loss function parameters that might provide an in-

teresting story. However, this initial exploration, combined with a number of early

tests of the Sequential Emulation methodology lead us to be reasonably confident

that our expected loss surface is a smooth convex function. We, therefore, do not

expect lower expected losses under λt1 for θt0 outside, say, [0.4, 0.95] than for θt0 in-

side that range. We cannot, however, ignore the potential for improved downstream

strategies to move the minimum of our function to significantly different areas of

the decision space. We therefore turn to strategy plots and consider learning about

the possible impact of alternative strategies and addressing the problem of pruning

the space of θt1 .

We first look at strategy plots for θt0 = argminθt0{Ẽ
[
C1
λ1(θt0 , zt0)

]
}. Figure 4.28

is such a plot representing expected losses for one sampled zt1 under this policy,

with the corresponding λt1 and a number of alternative strategies explored. Each

expected loss and associated standard error is based on 10, 000 samples of y given θt0 ,

the sampled zt1 , and the appropriate downstream strategy. The point highlighted

in blue corresponds to expected loss under λt1 . The strategy plot in figure 4.28

shows that λt1 performed better than the other strategies tested for the sampled

zt1 . What we also observe from this plot is that we have higher expected losses for

θt1 /∈ [−0.5, 0.5] than for those strategies inside that interval. Note that on these

plots θt1 has been mapped to [−1, 1] to make Sequential Emulation easier. Final

reporting of plausible strategies would be done with θt1 mapped back to [0.1, 1].

If we were to see this pattern for a large number of zt1 and for multiple θt0 , we
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Figure 4.28: Strategy plot for θt0 = argminθt0{Ẽ
[
C1
λ1(θt0 , zt0)

]
}.

could refocus our Sequential Emulation by pruning the tree so that θt1 ∈ [−0.5, 0.5].

Figure 4.29 and figures E.1, E.2, E.3 presented in appendix E.3 show a number of

these strategy plots for different sampled zt1 and for four different choices of θt0 .

The red dotted lines indicate where we intend to prune the space of possible θt1

for given θt0 . What we are hoping to see in each of these plots is that no strategy

sampled outside the interval defined by these dotted lines does better than all of

those sampled within the interval. If we do find such strategies, we must consider

being more conservative in our efforts to prune the space and perhaps obtain further

samples.

Figure 4.29 seems to indicate that as θt0 has decreased (corresponding to more

abatement today), optimal θt1 seems to have increased. Looking at figure 4.20, we

may expect this, however, the panels suggest that if choosing to abate significantly

today, there may be optimal strategies outside of the areas of the decision space we

intend to keep (although strictly we do not observe any). The strategies, θt1 , that

we may prune from our decision tree then, are greatly influenced by those areas of

the space of possible θt0 that we allow.
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Figure 4.30: The image of Ẽ
[
C1
λ1(θt0 , zt0)

]
with the blue points indicating where

our expected loss would be if we chose an intervention strategy that obtained the

highest maximum observed potential improvement observed from all of our samples.

Forward sampling under alternative strategies can also give us an idea of how

much improvement we might make with a ‘better’ downstream strategy than λt1 in

place. For a chosen θt0 and sampled zt1 , we define the maximum observed potential

improvement to be the maximum difference between the top of our error bar on the

expected loss under λt1 and the bottom error bar for any other sampled strategy.

The maximum of this quantity over all sampled zt1 gives an order of magnitude

idea for how much our expected loss could be reduced by finding the true optimal

downstream intervention strategy for a given θt0 .

We can use this rough statistic to plot points on the diagram of our emulated

upper bound for the loss surface; this will give an idea as to how much improvement

to our current expected loss we might make by following better strategies. We plot
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Figure 4.31: The image of Ẽ
[
C1
λ1(θt0 , zt0)

]
with the blue points indicating where

our expected loss would be if we chose an intervention strategy that obtained the

highest maximum observed potential improvement observed from all of our samples.

Yellow dotted lines indicate the area we intend to focus our sampling, whilst the

other lines are aids for pruning.

these points for our example in figure 4.30. Note that the points in red are expected

losses that are achievable under λt1 . The blue points represent an order of magnitude

idea for how much expected loss at sampled points may decrease if a better strategy

than λt1 could be found. We use this plot to aid pruning. As we still believe our loss

surface to be a parabola and because we can achieve expected loss under λt1 that is

lower than our beliefs about potential improvement at θt0 = 0.2, it is reasonable to

reject any θt0 ≤ 0.2 as potential candidates for optimal policies.

In fact we go further than this. Figure 4.31 shows a vertical line at θt0 = 0.3.

Our pruning decisions are based on a notion that under optimal time t1 strategy
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our loss surface would be a parabola going through the blue points. In truth, this

is unlikely as the maximum of the maximum observed potential improvement is

designed to overestimate potential improvement and is only an order of magnitude

guide. However, this does provide us with a decision support tool that advocates

pruning conservatively. We can achieve the expected loss indicated by the horizontal

blue line by following λt1 and by choosing θt0 = argminθt0{Ẽ
[
C1
λ1(θt0 , zt0)

]
}. By

imagining a line connecting the blue dots at θt0 = 0.2 and θt0 = 0.4, we can imagine

that this line intersects with our minimum observed expected loss under λt1 at θt0 =

0.3. We therefore prune the decision tree by restricting θt0 ∈ [0.3, 1]. We also restrict

θt1 ∈ [0.2575, 0.8425] ([−0.65, 0.65] if mapped to [−1, 1]), as having removed the very

large abatement scenarios from our set of possible actions today, our strategy plots

give us confidence that we are not removing any potentially optimal strategy options.

Note that our pruning in this example has simply reduced the size of of the

decision space by removing entire regions of the domain of each of the individual

decisions. There is no reason why this should happen in general. Pruning may often

involve removing areas of the decision space that leave a complicated subspace. For

example, we might still see all of the possible values of each individual decision in a

given pruned subspace, but certain combinations of decisions are removed from our

feasible set of decisions.

The actions we have taken and the tools used to inform these actions are just

some of the things we might have looked at in order to prune the decision tree.

Having performed a Sequential Emulation of the decision tree, forward sampling and

strategy plots can be used to gain valuable insight into the quality of our emulation,

the performance of our intervention strategies, and the nature of the expected loss

surface. The way in which one may use these tools to prune the tree or provide any

other type of decision support is not restricted to the examples we have given or,

indeed, on any of those ideas mentioned in section 3.7, but is just an illustration of

the potential uses of Sequential Emulation as a decision support tool.

Having pruned the decision space, we perform another Sequential Emulation of

the decision tree. Ideally, as part of a case study, we would like to obtain further

runs from C-GOLDSTEIN and re-emulate it on the reduced space first. However,
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Figure 4.32: A plot of Ẽ
[
C1
λ1(θt0 , zt0)

]
for the Sequential Emulation performed on

the pruned decision tree.

without direct access to the model this was infeasible. We therefore return directly

to S1 and proceed as before using new designs on the pruned decision space. We

add a collection of extra points to our design within the region where we suspect

the optimal policy to lie. This region is highlighted between the two dashed yellow

lines in figure 4.31. The resulting emulator for the expected upper bound on the

loss surface is shown in figure 4.32. We present selected details from this Sequential

Emulation in appendix E.3.2. We note that our emulator for the expected loss

surface on the pruned decision space is very similar to our original expected loss

surface and both have roughly the same minimum. This could be an indication that

our original Sequential Emulation was good, particularly around the minimum. In

a real-world analysis we may well prune again, refocussing our emulators until we

are happy to make policy.
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4.7.3 Risk profiling

Pruning is only one important avenue of decision support we might offer. Another

important one is showing the risk profile for any policies of interest. If the output

from DICE really was utility and, moreover, if we could solve the decision problem

exactly, there would be no need to look at the risk profile as all risk issues would

have been fully accounted for. However, as we have discussed, the output of DICE

is not really a utility and we are emulating it anyway. Therefore, having used our

methods to identify decisions with low expected loss, it is important to look at the

distribution of the risk associated with any strategy we are considering pursuing.

We obtain the risk profile, as discussed in section 3.7.3, by forward sampling in the

way described at the beginning of this section. Having done this we may simply

draw the risk profile as a histogram.

We give an example of the risk profile for θt0 = argminθt0{Ẽ
[
C1
λ1(θt0 , zt0)

]
} un-

der our pre-pruned strategy λt1 in figure 4.33. The figure shows the loss distribution

with various ranges in focus. A noteworthy feature of this risk profile is that the

expected loss, which is 0.149, is within the tail of the distribution and that most of

the mass is located at more favourable outcomes. The length of the tail may also be

particularly worrying or surprising to a decision maker. The shape of our risk profile

is probably most heavily influenced by our choice of the log-normal distribution for

future temperatures and observations. This may not always be the case and could

be the result of the relative monotonicity of λt1 in zt1 , combined with similar features

in the loss function and the forecasts.

Comparing risk profiles for decisions suggested by our Sequential Emulation as

being optimal with risk profiles for decisions that a policy maker may already be

considering seriously will be a very important decision support tool. We show the

risk profile for θt0 = 1 (corresponding to not abating BAU emissions today at all)

under λt1 in figure 4.34. A curious feature of the two risk profiles we have provided

here is that the classically optimal decision (that which minimizes expected loss)

has a longer tail than the option of not acting at all. That is, if we do act in the way

suggested by expected loss, we risk much larger losses than if we do not act at all.

Whilst this is balanced by the thickness of the respective tails so that the expected
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loss for not acting is higher, being able to show a policy maker the risk involved in

choosing the optimal decision is very useful decision support.

4.7.4 Sensitivity analysis

We perform a limited sensitivity analysis for our example by exploring the effects of

our discrepancy beliefs and our particular parametrization of DICE on the results

of our Sequential Emulation. Figure 4.35 shows the emulator for the upper bound

on expected loss under three different parametrizations of DICE. The central plot is

the parametrization we have been working with. The upper-most plot represents a

parametrization in which the social welfare function is such that we care more for the

wealth of future generations than previously; this is achieved by setting r = 0.005

where r is defined as on page 97. The plot at the bottom shows a parametrization

where abatement is more expensive initially; achieved by setting gb(0) = 0.35, where

the effect of this parameter on abatement cost is presented on page 117. We see that,

for our example, the results of Sequential Emulation and therefore the nature of the

decision support offered is completely different depending on the parametrization of

the loss model DICE. Without any trouble we have found reasonable parametriza-

tions that lead to results recommending totally opposite optimal policies today. This

illustrates how important it is to have a very good loss model and for policy makers

to think very carefully about their social welfare functions.

Using Sequential Emulation to illustrate the various types of loss surface we

obtain under different parametrizations of the loss model will be valuable decision

support for policy makers. If the surfaces change dramatically, as they have in our

example, they may have to re-visit the models or at least spend further time and

resources on encouraging agreement between scientists and their opinions regarding

plausible parametrizations. On the other hand, if the surface hardly changes under

different parametrizations, we may accept the decision support as robust or, at least,

direct resources to other areas, such as research on data collection for the complex

system and the computer model for it.

Inclusion of the discrepancy, η, between the computer model and the real-world

system must be seen as a key differentiating feature of our methodology. We explore
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Figure 4.35: Results of Sequential Emulation under three different parametrizations

of DICE. The central plot represents our original Sequential Emulations. The first

plot has r = 0.005 and the final plot has gb(0) = 0.35.

June 28, 2010



4.7. Policy support 155

the effect of alternative judgements regarding the size of its variance here. For each

of the explored parametrizations of DICE, we performed an alternative Sequential

Emulation with very small discrepancy, where standard deviations were divided by

10, and one with larger discrepancy with standard deviations doubled. Inflating

them much further would result in impossible future temperatures seen as ‘perfectly

reasonable’ by our statements of uncertainty about y.

We present the results of these Sequential Emulations alongside the results for

the unaltered discrepancy in figures 4.36, 4.37 and 4.38. What is striking from

these plots is that the curves hardly change, irrespective of how useful we believe

C-GOLDSTEIN is for describing the complex system. For the large discrepancy,

we would expect a greater difference as the emulator for C-GOLDSTEIN should

have less bearing on the image of the loss surface. There are two reasons why this

does not happen. Firstly, we do not observe enough data, either now or before

adapting our strategy, to greatly change our expectations on future discrepancy.

Secondly, our historical climate data is very close to E [ft0(x∗)], which means that

our expectation for temperature yt1(θt0) will be very close to E [ft1(x∗, θt0)]. These

two facts combined mean that even surprising observations, zt1 , will not adjust

E [ηt2(θt0 , θt1)] by a large amount, meaning our expectation for the system reverts

to our expectation for the simulator at the best input.

In a case study, when addressing this problem for real, this mean-reversion is

unlikely to occur. As we have mentioned before, to make a climate intervention based

on only one observation from one year would be foolish; we would expect to have

many observations over many years. These combined would appropriately adjust

our expectations on the discrepancy so that expectation on future temperatures

would divert from those predicted by the model if we had observed an unexpected

trend in temperature changes. If, however, it turned out that our loss surfaces

remained relatively unchanged for larger or smaller discrepancy variances, and it

turned out that this was not an artifact of the mean-reversion we have discussed,

but of the loss function itself, then we might judge that the current model for

the system was adequate and that no further improved models were required. On

the other hand, vastly different curves under different discrepancy variances could
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Figure 4.36: Results of Sequential Emulation with three different discrepancy vari-

ances for our original parametrization of DICE.
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Figure 4.37: Results of Sequential Emulation with three different discrepancy vari-

ances for our parametrization of DICE with higher utility for the wealth of future

generations.
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Figure 4.38: Results of Sequential Emulation with three different discrepancy vari-

ances for our parametrization of DICE with large immediate abatement costs.
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indicate that either more careful research into the discrepancy for our current model

was required, or that we needed to resolve as much of the discrepancy variance as

possible by building a better computer model.

4.7.5 Relating expected loss to cost

A particularly valuable form of policy support gives the policy maker a rough idea

of the relation between his expected losses, which have no scale, and monetary

cost, which is well understood. If it turned out, for example, that the difference

in monetary cost between the policies that maximised and minimised expected loss

was only a few dollars, then the policy maker would be unlikely to be interested

in investing in any further exploration of the decision tree and would make his

decision. If, on the other hand, our methods predict an expected loss of, say, 0.15

for a particular decision, but that we have a standard deviation of 0.005 for where

that expectation is and, moreover, the difference in monetary cost between a loss of

0.15 and 0.16 is trillions of dollars, the policy maker would be very keen to resolve

this uncertainty.

The nature of our loss function makes such direct comparison very difficult in

this example. A monetary cost is never calculated directly and then converted into

a utility. What actually happens is that a per capita consumption is worked out for

each decade under a particular abatement scenario with given future temperatures.

The logs of these are then combined in a weighted sum designed to reflect society’s

preference for consumption today as opposed to in the future. We then compute a

utility for the wealth of future generations using (4.1), and add this.

To provide an order of magnitude monetary comparison of expected losses, we

can look at the difference in global consumption at each decade for two outcomes

with different expected losses. The idea is to choose a particular value of θt0 and

perform a forward sampling experiment where, for each sample, we record the time

series of global consumptions. Following such an experiment, we can compare the

consumption series for different sampled losses. Figure 4.39 shows such a compar-

ison. We conducted a forward sampling experiment at the ‘optimal’ value of θt0

(according to our emulator), and recorded the consumption series. We compare two
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Figure 4.39: A plot of the annual differences in global consumption for two forward

samples taken from θt0 ≈ 0.7. The first has expected loss of 0.145 and the second

has expected loss 0.155.

consumption series for expected losses that were roughly 0.01 utility units apart.

The graph shows that, given this abatement strategy, the decadal difference in con-

sumption for an expected loss 0.01 utility units higher was up to $20 billion.

This may seem like a small figure on the global scale, but may be significant

if a small handful of countries (for example, in Africa) had to endure most of the

loss. Although this is only an order of magnitude diagnostic, it does show that a

difference in expected loss of 0.01 is worth worrying about and may, therefore, lead

to further pruning and fine tuning of our emulators.
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Chapter 5

Policy support with evolving

computer models

In this chapter we consider a more general form of the policy problem than the

one considered so far. In this version of the problem, we consider making policy

today when we know that our reaction to future observations of the complex system

may be influenced by improved versions of our current computer model. Section 5.1

provides an introduction to the concept of evolving models. Section 5.2 describes

the current technology for relating a collection of models to each other and to the

complex system via reification. We define the more general policy problem in section

5.3 and provide an example for how one might relate a number of similar computer

models using structural reification in section 5.4.

In section 5.5 we describe the issues involved in considering runs on future mod-

els as part of our decision making process, and introduce an alternative approach to

quantifying observable information on future models. In section 5.6 we use this ap-

proach to define forecasts that are appropriately influenced by observed information

regarding improved models. In section 5.7 we present a version of the Sequential

Emulation algorithm that appropriately handles potential future information from

improved models. We provide an illustration of these methods in section 5.8 using

the same models as seen in chapter 4. Section 5.9 offers a discussion of these ideas.
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5.1 Evolving computer models

One of the principle features of our Sequential Emulation methodology is that our

policy support is offered with consideration to the way our strategies will adapt when

faced with future observations of the system. Underpinning this is the idea that we

know how we should react given any particular observation. If the assumption that

we made in section 2.1.2, namely that our current simulator, f(x, θ), is our ‘best’

simulator and that we will not have access to any other at any time in the future, is

true, then the probabilities obtained through our decision-dependent forecasts will

always represent our beliefs in the future. This means that we know how we should

react to any future observations because our beliefs combined with the loss function

determine an expected utility. For a real-world policy problem, this assumption is

unlikely to be true because computer models evolve.

There are many reasons that computer models for a complex system evolve. As

computer technology improves, the code may be solved at higher resolutions. This

would allow smaller scale effects that perhaps were not captured by the current

solver to influence the output. It may be that certain aspects of the model were not

constructed in as much detail as the scientists would have liked due to budget or tech-

nological constraints. The atmosphere and sea ice components of C-GOLDSTEIN

are an example of this. The ocean modelling in C-GOLDSTEIN is very detailed.

However, simplified physics is used to describe sea ice and the atmosphere so that

the model can be run more quickly on the machines for which it was built. Improved

technology, including faster computers, would allow knowledge of the physics to be

modelled more accurately whilst maintaining reasonable run times. As scientific

understanding of the behaviour of the system improves, the models will evolve to

reflect that knowledge. It is, therefore, unrealistic to expect our downstream inter-

vention strategies to be made using our current model when we know that we shall

be able to use improved models, as well as the system observations, to help adapt

policy.

Knowing that the computer model we have now will have been replaced by an

improved version when we consider adapting our strategy has important implications

for the Sequential Emulation methodology. Not only must our beliefs change in the

June 28, 2010



5.2. Reification 163

future when we observe the system, but they will change when observing runs on

improved models. The way in which these beliefs will change depends on how we

believe any improved model relates to our current model and how all of these models

relate to the complex system y(θ).

5.2 Reification

5.2.1 The best input re-visited

In section 2.1.2 we introduced the best input assumption for our current simulator

f(x, θ). This stated that there exists x∗ such that

y(θ) = f(x∗, θ) + η(θ) (5.1)

with η(θ) independent of x∗ and of f(x, θ) for any x and θ. Suppose now that at

time t1, not only will we observe aspects of yt1(θt0), but we will have access to runs

on an improved version of f , denoted f
′
. We must now relate f

′
to the system in

order to know how we might react to our system observations in the future. We

suppose, without loss of generality, that the improved model has model inputs x and

decision inputs θ. If the improved model has processes with required model input

parameters that are not present on our original simulator, we may simply extend x

on both simulators.

The most natural way to link f
′

to y is via another best input assumption,

namely that there is an x∗0, such that

y(θ) = f
′
(x∗0, θ) + η

′
(θ), (5.2)

with η
′
(θ) independent of x∗0 and of f

′
(x, θ) for any x or θ. After all, if we accept

that our current model has such a relationship with the system, we would normally

expect an improved version of the model to have such a property, albeit with a

smaller discrepancy. The two models, f and f
′
, would normally be closely related.

Often f
′
will have evolved directly from f and might contain some identical elements

of code. It would be strange to consider that f had an x∗ such that f(x∗, θ) was
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sufficient for any information about the system contained in the model, but that an

improved, but closely related, model did not.

By stating that f
′

is an improvement on f and making assumptions (5.1) and

(5.2), we are stating that if we knew x∗0 and f
′
, the values of x∗ and f(x∗, θ) would

not reveal anything new about y(θ). This sufficiency statement may be written

y(θ) ⊥⊥ {x∗, f}|{x∗0, f
′}. (5.3)

From (5.1) and (5.2) we can write

η(θ) = f
′
(x∗0, θ)− f(x∗, θ) + η

′
(θ) (5.4)

so that the difference between the two simulators at their respective best inputs

represents modelling of the discrepancy for our current model. From (5.2) we know

that η
′
(θ) ⊥⊥ {x∗, f} and, because η(θ) ⊥⊥ {x∗, f}, we deduce from (5.4) that

f
′
(x∗0, θ)− f(x∗, θ) ⊥⊥ {x∗, f}.

If we consider improved models built by the same scientists that built our current

model or, indeed, any model evolving directly from our current model, this relation-

ship seems counter intuitive. Unless the models are completely different, one would

expect that knowing the location of x∗ would be informative for the location of x∗0.

We would also expect that knowing the value of f(x̂, θ̂) for some x̂, θ̂, would tell us

something about f
′
(x̂, θ̂). Hence we expect that knowing x∗ and f(x∗, θ) would be

informative for f
′
(x∗0, θ) and so for f

′
(x∗0, θ)− f(x∗, θ).

Unless we genuinely believe that x∗0 is not related to x∗ and that f
′

is not related

to f then, we cannot use a best input assumption for both models unless we are

prepared to adopt a very restrictive form of our beliefs. We must, therefore, either

specify a joint distribution over {η(θ), f, x∗} or over {η′(θ), f ′ , x∗0}. To ignore this

issue would mean providing policy support that was based on beliefs that we knew

we would not hold when adapting strategies downstream.

In order to avoid these problems we must have, at most, one model satisfy-

ing a best input assumption. We must, therefore, specify a joint distribution over

{η(θ), f, x∗} or {η′(θ), f ′ , x∗0}, or else reject the notion of a best input entirely. We
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are reluctant to abandon the best input approach completely, because without the

assumption it would be very difficult to relate any runs made on our models to the

system. Specifying a joint distribution over either {η(θ), f, x∗} or {η′(θ), f ′ , x∗0} is

not only very difficult, but is laden with implications for the wider methodology. To

perform Sequential Emulation we must be able to sample from distributions such as

p(y|zm, θm) and p(ztj |zj−1, θj−1) for 1 < j ≤ m. These must rely on the relationship

between the system and the improved model and any potential runs made on it.

Furthermore, we may have access to even better models at later time points. It is

conceivable that we have a new improved model at every one of our m intervention

points!

In order to present a general methodology for providing policy support for these

types of problems, then, we require a general framework for handling improved

models and relating them to the system. It is worth commenting that even in other

applications, where we may not be considering building future models, consideration

of the potential changes arising from improved versions of models is one of the

most useful ways to elicit beliefs about model discrepancy. Therefore, we require

a coherent and consistent structure for handling the system and it’s relation to

our current model and potential improvements to it. We turn to the concept of

reification, introduced by Goldstein and Rougier in [40].

5.2.2 The Reified Simulator

The idea introduced by Goldstein and Rougier [40] is to think about an idealized

simulator, the reified simulator, that satisfies a best input assumption and is such

that we cannot at present conceive of any way in which the reified simulator may be

improved. In other words, we imagine a simulator that includes the careful modelling

of any feasible improvements to our current simulator that we can think of today.

For example, our current simulator may ignore or approximate certain processes

that we imagine could be included on a future simulator. We may also know that

our mathematical description of the system models processes that our solver cannot

capture, but that a better solver would. The reified simulator must be such that if

we were told of an even better simulator, we could not think of any way in which it
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would differ from the reified simulator. Put another way, if we were to consider the

difference between the reified simulator and a supposedly more accurate simulator

at their best inputs, we would consider this difference to be a mean zero random

process.

Suppose that the reified simulator is f ∗(x, θ), where x is a vector containing the

model inputs for our current simulator, all model inputs from any of the possible

improved simulators we are currently considering and, perhaps, other inputs only

found on the reified simulator. We then judge that there exists an x∗ such that

y(θ) = f ∗(x∗, θ) + η∗(θ), (5.5)

with η∗(θ) independent of f , f ∗, x∗ and runs on any improved version of f , for all θ.

Note that we now do not have a best input assumption for any of the other models

under consideration, including our current simulator. This means that x∗ does not

have the same meaning it had in earlier chapters, namely as a best input for our

current model; it is simply the best input for the reified simulator.

The reified simulator is judged to separate the system from all current and future

versions of the model that we can imagine. This means that runs on any model for

the system are informative for the system precisely because they are informative for

the reified simulator and for no other reason. A pragmatic way of considering the

reified form, is to think of it as an ‘upper bound’ for all models achievable in the

time frame of our analysis. A detailed discussion regarding the the practicalities

and foundational implications of introducing the reified simulator can be found on

page 9 of [40] and in the discussion and rejoinder of that same paper. We do not

repeat any of that discussion here. However it is worth adding to that discussion in

the context of the policy problem.

In many applications of the analysis of computer experiments, the possibility

that there will be better simulators in the future may not deter the analyst from

using a best input assumption on his current simulator. Even if he knows that

such an assumption restricts his belief specification in the future, or if he intends

to ignore temporal coherence, he may still view the best input assumption as a

pragmatic ‘way in’ to a very hard problem. There may be other, more pressing,

concerns in certain problems than considering what one might do in the future with
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a better simulator. In the policy problem we have no such luxury. To offer decision

support for policy that must be made today, we have to use all of our knowledge

regarding how we shall behave in the future. This means considering how improved

models and observations of the real world that we know we will be able to see affect

our decisions today.

Consider, for example, the CO2 abatement problem. Suppose we ignore the

possibility that we shall have improved models in the future. This may lead us to

consider an analysis such as that given in chapter 4, leading to abatement of, say,

20% per decade. If we knew that in ten years we would be able to see runs of the

most powerful climate model ever, one that resolves almost all of the uncertainty in

the current discrepancy, would we not be more inclined to abate less now and wait

for the results of the analysis of that model? Furthermore, if an analysis showed

that our ideal policy was completely insensitive to any observations on a new and

better model, that would tell us that we need not build the new one at all!

As was discussed in section 3.2, policy makers are wary of using computer mod-

els to aid decision making and one of the reasons for this is that the models are

always changing (see, for instance, Brugnach et al [13]). Each improved version of

a computer model may help a policy maker, but he does not know whether to trust

his current one and make a very proactive policy or to wait for a better simulator

and make a safer (at least politically or in terms of initial cost) policy today. By

introducing a coherent belief framework across all improved models that we can

think of today, such as that provided through the reified structure described here,

we formalize this aspect of the policy problem. Therefore, the decision support we

can offer will be based on the knowledge of having access to potential improved

models in the future and may even help aid research investment decisions. We will

show, for example, that, if required, the decision of whether or not to invest in the

building of a particular improved model and how much to invest in running such a

model if built, can be included as part of a policy decision for today. We see this

application as potentially being particularly valuable in areas like climate change.

The building of new climate models, for example, is enormously expensive and any

insight into the value of potential gains that can be made by building the model,
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before it is actually constructed, could be very valuable.

Having introduced the concept of the reified model, we now restate the policy

problem so that the possibility of evolving simulators for the system is handled. We

go on to describe how we can use the reified form to provide policy support within

this framework.

5.3 The policy problem with evolving simulators

A policy maker must make a decision today, parametrized by θt0 , in order to influence

future states of a complex system. To aid him, he may make runs on a computer

simulator f 0(x, θ) and has observations of the system zt0 . At m different points in

the future, t1, . . . , tm, the decision maker may observe the system under his current

policy and adapt his strategy by making new policy θti , for i = 1, . . . ,m. Before

making each policy revision the decision maker will have access to a version of the

computer model, denoted f i(x, θ), that is seen as an improvement to f i−1(x, θ) for

i = 1, . . . ,m. Here, x is the vector of all of the inputs that we can possibly conceive

of introducing on any version of the simulator, including an idealized version that

is better, even, than fm(x, θ).

We have a loss model, L(xL, y(θ), θ), as defined on page 47, and define zk and

θk for k = 1, . . . ,m, as on page 53. Our loss model should incorporate the cost of

constructing and running new models. We define

f [k](x, θ) = f 0(x, θ), f 1(x, θ), . . . , fk(x, θ)

for k = 1, . . . ,m. We assume that each simulator has a vector valued output that

corresponds to the system, y(θ), at all time points under consideration. Therefore,

the subvector fktf (x, θ) of the simulator we will have at time tk has the same units

and components of ytf (θ).

In order to provide policy support for this problem, we must specify how each of

the simulators are related to each other and how they are related to the system. We

use reification to provide the link to the system and, therefore, introduce a reified

simulator, f ∗(x, θ), such that there exists x∗ with

y(θ) = f ∗(x∗, θ) + η∗(θ), (5.6)
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and η∗(θ) independent of x∗, f ∗(x, θ) and f [m](x, θ) for all x and θ. Each of the

models is informative for y(θ) because it is informative for the reified simulator. We

illustrate the different relationships for the problem we have described using the

example influence diagram in figure 5.1.

We now link each of the simulators to each other and to the reified simulator.

5.4 Relating simulators

There may be many ways of specifying our beliefs across the collection of simulators

that we have introduced. The one we consider in this thesis, and arguably the

most natural method of belief specification for this problem, involves constructing

emulators for each of the models and linking the processes and coefficients in the

emulators. This method is what Goldstein and Rougier [40] call structural reification.

Suppose that we have already used the methods of chapter 2 to build an emulator

for f 0(x, θ) so that we have

f 0
i (x, θ) = β0

ijgj(x, θ) + u0
i (x, θ), (5.7)

as usual. We now consider the improved simulator, f 1(x, θ) to be

f 1
i (x, θ) = β1

ijgj(x, θ) + α1
ijh

1
j(x, θ) + u1

i (x, θ)

where β1
ij are related to β0

ij in some way, and the h1
j(x, θ) represent new regression

terms only present on the emulator for the new model. The residual process u1
i (x, θ)

has some covariance with u0
i (x, θ). We might often judge u1

i (x, θ), α
1
ij and β1

ij to be

independent of each other.

This is a natural and flexible specification, allowing us to write down our beliefs

about the behaviour of any new processes captured only on the new model through

h1
j(x, θ) and u1

i (x, θ), whilst also allowing us to describe similarities in the models

through Cov [β0, β1] and Cov [u0
i (x, θ), u

1
i (x, θ)]. If we were to consider an emulator

for each of our m + 2 models in this way; that is, as an emulator with some extra

regression terms and covariances across the coefficients of shared terms and pro-

cesses, the notation that we have introduced above may become quite cumbersome.

Instead, we allow g(x, θ) to be a vector containing all of the regression terms that
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F 0

R1

F 1

R2

F 2

f 0(x, θ) f 1(x, θ) f 2(x, θ)

f ∗(x, θ)

x∗

θt0 θt1 θt2

f ∗t0(x∗) f ∗t1(x∗, θt0) f ∗t2(x∗, θt0 , θt1) f ∗t3(x∗, θt0 , θt1 , θt2)

zt0 yt0 yt1 zt1 yt2 zt2 yt3

ηt0 ηt1 ηt2 ηt3

L(yt0 , yt1 , yt2 , yt3 , θt0 , θt1 , θt2 , R1, R2)

Figure 5.1: Our statement of the decision problem and the modelling statements

we have made define an influence diagram. This figure presents an example of this

influence diagram for the case where we have 2 downstream intervention points at

times t1 and t2, and the option to build and run an improved version of our current

model at each of these times. To make the research investment decisions clear on the

diagram, we give them separate nodes and label them R1 and R2. These represent

the decisions of whether or not to build and how much to run each new model.

June 28, 2010



5.4. Relating simulators 171

we are considering for inclusion in any of the emulators, for any of our models. We

then specify that

fki (x, θ) = βkijgj(x, θ) + uki (x, θ), (5.8)

with each coefficient matrix βk extended so that it is compatible with the enlarged

g(x, θ). Any coefficients for regression terms that are not present on a particular

emulator are given expectation and variance equal to zero on that emulator. We

also specify that

f ∗i (x, θ) = β∗ijgj(x, θ) + u∗i (x, θ). (5.9)

To link each of our models to the system we must specify beliefs over the collections

{β0, β1, . . . , βm, β∗} and over {u0(x, θ), . . . , um(x, θ), u∗(x, θ)} for any x and θ.

Assuming that we have specified beliefs over the collections {β0,β1,. . .,βm,β∗}

and {u0(x, θ), . . . , um(x, θ), u∗(x, θ)}, we may obtain decision-dependent forecasts

in precisely the same way as we described in section 2.3.2, where β and u(x, θ)

are replaced with β∗ and u∗(x, θ). Runs observed on any of our models update

β∗, the random field u∗(x, θ), and the covariance between the two, through the

structure imposed on {β0, β1, . . . , βm, β∗} and {u0(x, θ), . . . , um(x, θ), u∗(x, θ)}. The

best input, x∗, is then integrated out of our expression for y(θ), giving an expectation

and covariance structure on y(θ). This is then adjusted by any system observations

as normal.

Provided that we can link the coefficients and residual processes across model

emulators, then we have a way of assimilating collections of runs on any of our models

and calculating decision-dependent forecasts for subsets of y(θ). Before addressing

the decision problem directly, we introduce a natural and flexible way of linking

coefficients and emulator residuals across models. The method described is not the

only possible way of linking these quantities probabilistically, but it will be useful

to have a specified framework in mind in order to illustrate some of our methods of

decision support.
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5.4.1 Relating emulators

We suggest the following framework for producing covariances across the coefficients

of each emulator. We let

βkij = βk−1
ij + bkij (5.10)

with bkij independent of βk−1
ij for all i, j and k = 1, . . . ,m. Similarly, we let

β∗ij = βmij + b∗ij (5.11)

with b∗ij independent of βmij . We also assume that b∗ and bk are independent of

all br (for all k 6= r and k = 1, . . . ,m). To compute Cov
[
βk, βj

]
for any k, j ∈

{0, 1, . . . ,m} we need only means and variances for the matrices bi for i = 1, . . . ,max(k, j),

as well as V ar [β0], which we have already from our emulator for the current model.

For example,

Cov
[
β1
ij, β

3
kl

]
= Cov

[
β1
ij, β

2
kl + b3

kl

]
= Cov

[
β1
ij, β

1
kl

]
= Cov

[
β0
ij + b1

ij, β
0
kl + b1

kl

]
= V ar

[
β0
]
ijkl

+ V ar
[
b1
]
ijkl

.

In order to link the emulator residuals we may consider a relation such as

uk(x, θ) = ckuk−1(x, θ) + δk(x, θ) (5.12)

for k = 1, . . . ,m and

u∗(x, θ) = c∗um(x, θ) + δ∗(x, θ), (5.13)

where δ1(x, θ), . . . , δm(x, θ), δ∗(x, θ) are independent stochastic processes that are

also independent of the residual processes on previous simulators. So, for example,

δk(x, θ) would be assumed to be independent of uj(x, θ) for j < k. The coefficients

c1, . . . , cm, c∗ may be known quantities that we specify, or we may also express

uncertainties on them. If we were to treat c1, . . . , cm, c∗ as unknown quantities,

we might specify that they were independent of δ1(x, θ), . . . , δm(x, θ), δ∗(x, θ).

This specification has the general effect of enlarging our uncertainties on co-

efficients and residuals as the model improves. However, we are not increasing
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the overall discrepancy. The discrepancy for our current model is effectively being

structured into parts explained by the better models, in addition to an independent

remainder η∗(θ). We may resolve much of our uncertainty regarding y(θ) through

building and running the better models, and can resolve uncertainty about η∗(θ)

only by observing the system directly.

5.5 Model-related observations

5.5.1 Future model runs

In addition to the system observations, ztk , that we see at each time point, tk, we

will observe nk runs on the new model, fk(x, θ), available to us at that time. These

runs will be performed according to some design, (Ωk, Θk). Let

F k =
(
fk(Ωk

1, Θ
k
1), . . . , fk(Ωk

nk
, Θk

nk
)
)

for k = 1, . . .m. At each time point we observe ztk and F k. Our beliefs about the

system, adjusted by ztk and F k, would be obtained by adjusting {β∗, u∗(x, θ)} by

F k, integrating out x∗, and then adjusting the derived moments of y(θ) by ztk as

usual. This is feasible, in principle, given a belief structure on {β∗, u∗(x, θ)} such as

that defined by (5.10), (5.11), (5.12) and (5.13). However, to include the knowledge

that this is the way we intend to behave in the future as part of our decision making

process today is, in practice, not feasible.

The issue lies in the updating of {β∗, u∗(x, θ)} by the random field induced by

uk(Ωk
1, Θ

k
1), . . . , uk(Ωk

nk
, Θk

nk
). At this point in time, we do not even know nk, and

although we could fix nk or make it a decision variable, we do not know what design,

(Ωk, Θk), we might use in the future. We could, theoretically, add the design problem

to the decision tree. However, the vast difficulty of solving the decision problem for

just one design makes this approach totally infeasible. We could decide to use the

same design as we had used to make runs on our current simulator. However, this

is unlikely to be a good design and considerably restricts what we are able to learn

about the reified model from our new simulator.

To consider observations of uk(x, θ) as part of our decision making process today
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seems impractical, if not impossible. During the reification process we constructed

the enlarged vector of regressors g(x, θ) and our beliefs about βk so that our beliefs

about the surface βkijgj(x, θ) represented all of the possible structure that we could

think of modelling as part of fk(x, θ). By the nature of this description, we have

no idea today what uk(x, θ) may be like. If uk(x, θ) may take any form (within

the bounds set by our covariance structure on the process), it would be impractical

to consider the implications of its possible observed future forms for our expected

loss and then integrate over everything. If we have beliefs about what the surface

will look like in the future, as we do with βkijgj(x, θ), it makes sense to see how our

decisions today are altered by changes to those beliefs. Knowing that we will no

longer be ignorant about the surface uk(x, θ) at time tk does not affect our decision

making today without having beliefs about how our ignorance regarding uk(x, θ)

might change.

One way we might describe how our ignorance about uk(x, θ) may change would

be to consider that it’s variance will be reduced. To simplify our exposition we

do not consider this case and leave it as an interesting area of further work. We

therefore consider only those model-related observations in the future about which

we have structural beliefs today.

5.5.2 An alternative treatment of future model observations

Observing F k will change our beliefs about the regression surface on the future model

by updating our beliefs about βk. In addition to this, we know that V arFk
[
βk
]

does not depend on F k, but on the design used to generate F k. This means that

the amount of uncertainty we leave unresolved on βk having observed runs on the

new model is a decision that can be made today (or at time tk−1).

Let

F [k] = F 0, . . . , F k.

Then what is observed regarding the regression surface on the new model at time tk

is actually the random quantity EF [k]

[
βk
]
. Therefore, future, model-related, obser-

vations can be broken down into the observation of EF [k]

[
βk
]

and some information

on the residual surface. Note that if we actually observed data F k at time tk, we
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would want to adjust our prior beliefs about βk by all runs that we have seen on

all previous models. By ignoring the potential for future observation of the resid-

ual surface, we can replace the observation of F k at time tk with the observation

EF [k]

[
βk
]

on our decision tree, as we will now explain. This leaves us with a decision

tree that we may give insight into via a modified Sequential Emulation approach.

Define

Hk = EF [k]

[
βk
]
,

then at time tk, by ignoring the residual surface for fk(x, θ), we consider the obser-

vation of {Hk, ztk} as a useful surrogate to {F k, ztk}. At each time point, tk, we have

the decision θtk to make as usual. In addition to this, we must also choose how much

uncertainty will be left in the coefficients of the simulator we will have at time tk+1.

In effect, this means choosing how much to run the model. Our loss function must

be modified to include the cost of building and running new simulators at each of

the intervention points. Without loss of generality, we let θtk be the parametrization

of both our system intervention policy at time tk and the amount of variance to be

resolved on βk+1 at time tk+1, for k = 0, . . . ,m − 1. The decision θtm is defined as

before. To simplify our description we do not consider resolving any of the variance

of the residual surface by making model runs. An extension of our methods may

consider how we might handle and resolve this variance more carefully.

The decision tree for this problem is given in figure 5.2. Note that each observa-

tion for time t1, . . . , tm is now the pair {Hk, ztk}. In order to perform a Sequential

Emulation of this decision tree, we must be able to sample from the distributions

p(y|zm, θm, H [m]) and p(ztk , H
k|zk−1, θk−1, H [k−1]), where

H [k] = H1, . . . , Hk

for k = 1, . . . ,m. To enable sampling from these distributions, we introduce some

further statistical machinery.

Let

βk = Hk + ωk (5.14)

for k = 1, . . . ,m, where ωk and Hk are uncorrelated. Note that E
[
ωk
]
≡ 0. From
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A(θm, zm, H [m])

θ tm

z tm
, H

m

z
m−

1 , H
[m−

1] , θ
m−

1

θ t0

Figure 5.2: This image shows the decision tree for the case where we may build and

run new models at each of the m intervention points. Observations of new models

are characterized by observed adjusted coefficients, Hk, for the regression surfaces

of our m model emulators, for k = 1, . . . ,m. The function A(θm, zm, H [m]), defined

formally below by equation (5.32), is our expected loss for having taken decisions

θm and having observed {zm, H [m]}.

(5.14) we have V ar
[
ωk
]
∈ θtk−1

, because

V ar
[
βk
]

= V ar
[
Hk
]

+ V ar
[
ωk
]

and

V ar
[
Hk
]

= RV arF [k]

[
βk
]

from definition (2.11). Hence, definition (2.10) gives

V ar
[
ωk
]

= V arF [k]

[
βk
]
,

which is part of θtk−1
under our new notation for this chapter. Note that choosing

V ar
[
ωk
]

= V arF [k−1]

[
βk
]

corresponds to the decision not to build fk(x, θ) at all.

Strictly speaking, this could mean building the model and not running it. However,

we do not consider such highly improbable behaviour and assume that if the model is

built, at least some uncertainty on the coefficients must be resolved through running

the model.
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5.6 Reified decision-dependent forecasts

Our approach to sampling from the required distributions is to characterize them

via Bayes Linear decision-dependent forecasts, as seen in chapter 3. We begin by

showing how we use Bayes Linear methods to obtain an appropriate mean and

variance for the distribution of y given {zm, θm, H [m]}. As with all of the Bayes

Linear methods of forecasting used so far, we treat information about the model

separately from any information about the system. Similarly to the way in which

we treated runs F in chapter 2, we use H [m] to update our beliefs about β∗ and then

integrate x∗ out of our expression for f ∗. We then adjust the derived beliefs about

y by the data zm. The first quantities required for this calculation are, therefore,

EH[m] [β∗] and V arH[m] [β∗].

5.6.1 Adjusting the reified coefficients

We know that

EH[m] [β∗] = E [β∗] + Cov
[
β∗, H [m]

]
V ar

[
H [m]

]−1
(H [m] − E

[
H [m]

]
)

and

V arH[m] [β∗] = V ar [β∗]− Cov
[
β∗, H [m]

]
V ar

[
H [m]

]−1
Cov

[
H [m], β∗

]
.

The object H [m] represents the collection of m different matrices, H1, . . . , Hm, each

having the same dimensions. For the purposes of these calculations, then, we may

treat H [m] as an array with three dimensions so that

H
[m]
ijk = Hk

ij.

Therefore, we have

EH[m] [β∗]ij = E [β∗]ij + Cov
[
β∗, H [m]

]
ijklp

V ar
[
H [m]

]−1

klpqrs
(H [m] − E

[
H [m]

]
)qrs

and

V arH[m] [β∗]ijkl = V ar [β∗]ijkl−Cov
[
β∗, H [m]

]
ijpqr

V ar
[
H [m]

]−1

pqrstv
Cov

[
H [m], β∗

]
stvkl

.
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Having specified E [β∗] and V ar [β∗], the objects we require in order to complete

this adjustment are E
[
H [m]

]
, V ar

[
H [m]

]
and Cov

[
β∗, H [m]

]
. We compute these

quantities here assuming relations (5.10) and (5.11). Our aim is to show how one

may obtain the desired adjusted moments above, given a sensible form of structural

reification used to link the coefficients of evolving models described by (5.10) and

(5.11).

The first quantity, E
[
H [m]

]
, is trivially derived from the expectations we express

for bkij, ∀i, j and for k ∈ {1, . . . ,m, ∗}. In order to establish the remaining quantities,

V ar
[
H [m]

]
and Cov

[
β∗, H [m]

]
, we shall require further theory from the field of Bayes

Linear statistics.

Suppose we have beliefs B that have already been adjusted by data D1. The

partial adjustment of B by data D2 given D1 is written E[D2|D1] [B] and is defined

via

E[D2|D1] [B] = ED2∪D1 [B]− ED1 [B] . (5.15)

Let

AD1(D2) = D2 − ED1 [D2] ,

then it can be shown that

E[D2|D1] [B] = EAD1
(D2) [B − E [B]] , (5.16)

and that

V arD2∪D1 [B] = V arD1 [B]− V ar
[
E[D2|D1] [B]

]
. (5.17)

For any vectors D and B, we have the relation

Cov [D,AD(B)] = 0. (5.18)

For further detail regarding partial Bayes Linear analysis see chapter 5 of Goldstein

and Wooff [42].

For any integer r such that k + r ≤ m, we write

βk+r = βk + αr,

where

αr =
k+r∑
s=k+1

bs.

June 28, 2010



5.6. Reified decision-dependent forecasts 179

We know that βk and αr are uncorrelated, by definition. The quantity αr represents

information about the coefficients βk+r that can only be learned by observing runs

on any of the models that we might build after time tk. To ensure this property is

true we impose the condition that αr is also uncorrelated with the residual surface

of any emulator for models f 0(x, θ), . . . , fk(x, θ). Hence we assume that F [k] is

uncorrelated with αr.

Proposition 5.6.1

V ar
[
H [m]

]
ijklpq

=

 V ar
[
Hk
]
ijlp

q ≥ k

V ar [Hq]ijlp q < k
(5.19)

Proof : In order to establish this relation, we begin by writing

V ar
[
H [m]

]
ijklpq

= Cov
[
Hk
ij, H

q
lp

]
.

Suppose, without loss of generality, that q > k and that r = q − k. Then

V ar
[
H [m]

]
ijklpq

= Cov
[
Hk
ij, H

k+r
lp

]
.

Now, by definition we have

Cov
[
Hk
ij, H

k+r
lp

]
= Cov

[
EF [k]

[
βkij
]
, EF [k+r]

[
βk+r
lp

]]
,

and because

EF [k+r]

[
βk+r

]
= EF [k+r]

[
βk
]

+ EF [k+r] [αr] ,

we have that

Cov
[
Hk
ij, H

k+r
lp

]
= Cov

[
EF [k]

[
βkij
]
, EF [k+r]

[
βklp
]]

+ Cov
[
EF [k]

[
βkij
]
, EF [k+r]

[
αrlp
]]
.

Define

Dr =
k+r⋃
s=k+1

F s.

Then, by (5.15)

EF [k+r]

[
βk
]

= EF [k]

[
βk
]

+ E[Dr|F [k]]

[
βk
]

= EF [k]

[
βk
]

+ EA
F [k] (D

r)

[
βk − E

[
βk
]]
,

June 28, 2010



5.6. Reified decision-dependent forecasts 180

so that

Cov
[
EF [k]

[
βkij
]
, EF [k+r]

[
βklp
]]

=V ar
[
Hk
]
ijlp

+ Cov
[
EF [k]

[
βkij
]
, EA

F [k] (D
r)

[
βklp − E

[
βklp
]]]

.

Now EF [k]

[
βk
]

is a linear combination of F [k] and EA
F [k] (D

r)

[
βk − E

[
βk
]]

is a linear

combination of AF [k](Dr). As F [k] and AF [k](Dr) are uncorrelated, we have that

Cov
[
EF [k]

[
βkij
]
, EA

F [k] (D
r)

[
βklp − E

[
βklp
]]]

= 0.

Hence

Cov
[
EF [k]

[
βkij
]
, EF [k+r]

[
βklp
]]

= V ar
[
Hk
]
ijlp

.

We can write

Cov
[
EF [k]

[
βkij
]
, EF [k+r]

[
αrlp
]]

= Cov
[
EF [k]

[
βkij
]
, EA

F [k] (D
r)

[
αrlp
]]

+ Cov
[
EF [k]

[
βkij
]
, EF [k]

[
αrlp
]]

= Cov
[
EF [k]

[
βkij
]
, EF [k]

[
αrlp
]]
,

because EF [k]

[
βk
]

is a linear combination of F [k], EA
F [k] (D

r) [αr] is a linear com-

bination of AF [k](Dr), and Cov
[
F [k],AF [k](Dr)

]
= 0. Also, because we have that

Cov
[
F [k], αr

]
= 0, then EF [k] [αr] ≡ E [αr] and

Cov
[
EF [k]

[
βkij
]
, EF [k+r]

[
αrlp
]]

= 0.

Therefore,

V ar
[
H [m]

]
ijklpq

=

 V ar
[
Hk
]
ijlp

q ≥ k

V ar [Hq]ijlp q < k

as required. 2

For any βq, define αq such that

αq =
m∑

s=q+1

bs + b∗.

By definition Cov [αq, βq] = 0 and suppose we specify that αq and F [q] are uncorre-

lated, as we did with αr in the previous argument.

Proposition 5.6.2

Cov
[
β∗, H [m]

]
ijlpq

= V ar [Hq]ijlp , (5.20)
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Proof : We can write

Cov
[
β∗, H [m]

]
ijlpq

= Cov
[
βmij + b∗ij, H

q
lp

]
= Cov

[
βqij + αqij, β

q
lp − ω

q
lp

]
.

Then

Cov
[
β∗, H [m]

]
ijlpq

= V ar [βq]ijlp − Cov
[
βqij, ω

q
lp

]
− Cov

[
αqij, ω

q
lp

]
= V ar [βq]ijlp − V ar [ωq]ijlp − Cov

[
αqij, ω

q
lp

]
= V ar [Hq]ijlp + Cov

[
αqij, H

q
lp

]
.

Writing

Cov
[
αqij, H

q
lp

]
= Cov

[
αqij, EF [q]

[
βqlp
]]
,

we deduce that

Cov
[
β∗, H [m]

]
ijlpq

= V ar [Hq]ijlp ,

because EF [q]

[
βqlp
]

is a linear combination of F [q] and is, therefore, uncorrelated with

αq. 2

5.6.2 An alternative model

We have presented one particular way of linking m different improved models that

leads to a tractible covariance structure. This can be adjusted by observation of

the adjusted coefficients of any of our improved models simply. There are many

other ways we might consider specifying our beliefs about future models through

structural reification. A particularly simple specification may be employed for cases

where we only have one improved model that we are considering building in the

future. If we let

β1
ij = ρ

′

ij ∗ β0
ij

and

β∗ij = ρ∗ij ∗ β1
ij,

then if we consider that ρ
′

and ρ∗ are uncorrelated and that higher powers of these

two variables are also uncorrelated, the Bayes Linear update of β∗ by H1 is tractible

and easy to perform under certain conditions. We consider one such special case

below.
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Suppose that we can treat the matrix β0 as known. Such an assumption may

often be valid if we have run our model extensively so that we are confident that

we have modelled the global behaviour well. We may have a negligible variance

on the coefficients having resolved almost all of our initial uncertainty using model

runs. In order to simplify the following account we also assume that ρ
′

and ρ∗

are scaler random quantities. The following calculations are still valid in the more

general case, however, the additional subscripts on each of the quantities appear

quite cumbersome. The example we present in section 5.8 will use the case where

ρ
′

and ρ∗ are both scalars and so we feel it is more useful to present the calculations

for this case here.

Firstly, we have that

E
[
β1
]
ij

= E
[
ρ
′
]
β0
ij (5.21)

and

E [β∗]ij = E [ρ∗]E
[
ρ
′
]
β0
ij. (5.22)

We also have

V ar
[
β1
]
ijkl

= V ar
[
ρ
′
]
β0
ijβ

0
kl, (5.23)

and that

V ar [β∗]ijkl =

[
V ar [ρ∗] (V ar

[
ρ
′
]

+ E
[
ρ
′
]2

) + E [ρ∗]2 V ar
[
ρ
′
]]
β0
ijβ

0
kl. (5.24)

We then define

H
′
= EF 1

[
ρ
′
]
, (5.25)

representing the adjusted coefficients of the new model. We use relation (5.14) to

link the observed adjustment with ρ
′
. That is, we write

ρ
′
= H

′
+ ω

′
(5.26)

with H
′ ⊥⊥ ω

′
and V ar

[
ω
′]

= V arF ′
[
ρ
′]

, the amount of uncertainty left in ρ
′

after

building and running the model at time t1.
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With these definitions we have

EH′ [β
∗]ij = E [β∗]ij + Cov

[
β∗ij, H

′
]
V ar

[
H
′
]−1

(H
′ − E

[
H
′
]
)

= E [ρ∗]E
[
ρ
′
]
β0
ij + E [ρ∗] β0

ijCov
[
ρ
′
, ρ
′ − ω′

]
V ar

[
H
′
]−1

(H
′ − E

[
ρ
′
]
)

= E [ρ∗] β0
ij

[
E
[
ρ
′
]

+

[(
V ar

[
ρ
′
]
− V ar

[
ω
′
])
V ar

[
H
′
]−1

(H
′ − E

[
ρ
′
]
)

]]
= E [ρ∗] β0

ijH
′
,

(5.27)

and

V arH′ [β
∗]ijkl = Cov

[
ρ∗ρ

′
β0
ij, ρ

∗ρ
′
β0
kl

]
− Cov

[
ρ∗ρ

′
β0
ij, H

′
]
V ar

[
H
′
]−1

Cov
[
H
′
, ρ∗ρ

′
β0
kl

]
= β0

ijβ
0
kl

[
Cov

[
ρ∗ρ

′
, ρ∗ρ

′
]
− E [ρ∗]2 V ar

[
H
′
]]

= β0
ijβ

0
kl

[
E
[
ρ∗2
]
E
[
ρ
′2
]
− E [ρ∗]2 (E

[
ρ
′
]2

− V ar
[
H
′
]
)

]
= β0

ijβ
0
kl

[
V ar [ρ∗]V ar

[
ρ
′
]

+ V ar [ρ∗]E
[
ρ
′
]2

+ E [ρ∗]2 V ar
[
ω
′
]]
.

(5.28)

The assumption that ρ
′

and ρ∗ are uncorrelated may be quite strong in general.

For certain types of analysis, however, it may be appropriate. For example, suppose

the improved model that we are considering building at time t1 is an improvement on

our current model because it adds certain physics that were not previously modelled.

Suppose, further, that we believe that this modelling will be thorough and that

we cannot think how the reified simulator might improve upon the modelling of

these new physical properties. We, instead, believe that the reified simulator would

improve our modelling of the system in some other way, perhaps through careful

modelling of another physical process left out of both previous models. In such cases

we could assume ρ
′
and ρ∗ were uncorrelated and would be able to use H

′
as a useful

surrogate to F 1 for learning about f ∗(x, θ). The example of structural reification

and Sequential Emulation with improved models that we give in section 5.8 will use

this type of relation between model coefficients.
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5.6.3 Reified forecasting calculations

Having used the above objects to adjust our beliefs about β∗ by H [m], we may use

these adjusted beliefs to produce E [y] and V ar [y] under our new beliefs about

the reified simulator. We make this calculation explicit here, assuming that we are

not required to adjust {β∗, u∗(x, θ)} by runs F 0. If we have runs, F 0, on f 0(x, θ),

then we must update {β∗, u∗(x, θ)} by the random field induced by the collection

{u0(Ω0
1, Θ

0
1), . . . , u0(Ω0

n0
, Θ0

n0
)}. Given relationships such as (5.12) and (5.13), this is

certainly feasible. However, the extra effort involved in carrying this information up

to the reified simulator only serves to complicate our exposition. To allow us to focus

on the wider methodological approach for handling evolving simulators, we assume

here that we have exhausted our potential for running the current model and have

used all of the runs to construct an emulator with β0 independent of u0(x, θ), and

with u0(x, θ) being a stochastic process with known mean and variance. If we wished

to include pre-updating of {β∗, u∗(x, θ)} by the random field induced by observation

of F 0, the calculations would be similar in spirit to those given in section 2.3.2.

The data H [m], and any subsets of that array are informative for β∗. Our ap-

proach to forecasting will be to learn about the reified coefficients by adjusting our

beliefs about β∗ by our observations of the adjusted coefficients. We will then re-

place any of the moments of β∗ in the forecast equations below by our adjusted

moments for these quantities.

We have

E [y(θ)]i = E [E [f ∗(x∗, θ)|x∗]]i + η∗(θ)i

= E [β∗]ij

[∫
g(x∗, θ)p(x∗)dx∗

]
j

+

∫
u∗i (x

∗, θ)p(x∗)dx∗, (5.29)

and

V ar [y(θ)]ij = V ar [E [f ∗(x∗, θ)|x∗]]ij + E [V ar [f ∗(x, θ)|x∗]]ij + V ar [η∗(θ)]ij

=

∫
V ar [f ∗(x∗, θ)]ij p(x

∗)dx∗ +

∫
E [f ∗(x∗, θ)]iE [f ∗(x∗, θ)]j p(x

∗)dx∗

− E [y(θ)]iE [y(θ)]j + V ar [η∗(θ)]ij .
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This last equation may be written as

V ar [y(θ)]ij = V ar [β∗]ikjp

∫
gk(x

∗, θ)gp(x
∗, θ)p(x∗)dx∗ +

∫
V ar [u∗(x∗, θ)]ij p(x

∗)dx∗

+ E [β∗]ik E [β∗]jp

∫
gk(x

∗, θ)gp(x
∗, θ)p(x∗)dx∗ + V ar [η∗(θ)]

+ E [β∗]ik

∫
gk(x

∗, θ)E [u∗(x∗, θ)]j p(x
∗)dx∗

+ E [β∗]jp

∫
gp(x

∗, θ)E [u∗(x∗, θ)]i p(x
∗)dx∗ − E [y(θ)]iE [y(θ)]j .

(5.30)

By replacing E [β∗] and V ar [β∗] with EH[m] [β∗] and V arH[m] [β∗] respectively, we

are able to calculate second order moments for y(θ) under our adjusted beliefs

about the reified simulator, having observed the adjusted coefficients on each of

the m improved versions of the model. We write these beliefs as E
[
y; θm, H [m]

]
and V ar

[
y; θm, H [m]

]
, so that Ezm

[
y; θm, H [m]

]
and V arzm

[
y; θm, H [m]

]
constitutes

a reified decision-dependent forecast for y that has been updated by all of the obser-

vations of the system and all of the observed adjusted coefficients for each improved

model, up to and including those observed at time tm. We use Ezm
[
y; θm, H [m]

]
and V arzm

[
y; θm, H [m]

]
as estimates to the mean and variance of p(y|zm, θm, H [m]),

and use these to characterize that distribution in the same way as demonstrated

previously.

5.6.4 Decision-dependent observation forecasts

In order to use Sequential Emulation to emulate the decision tree shown in figure

5.2, our approach requires us to be able to sample from a distribution for y given

everything we have observed, and from the distribution of everything we might ob-

serve at time tk given anything observed up to that point for k = 1, . . . ,m. The last

calculation we must describe before presenting our modified Sequential Emulation al-

gorithm is, therefore, how we sample from distributions p(ztk , H
k|zk−1, θk−1, H [k−1]),

for k = 1, . . . ,m. We present here how one obtains an appropriate second order

belief structure on {ztk , Hk} that is updated by observations zk−1 and H [k−1] in a

reasonable manner.

It may be that there is a natural form for the joint distribution of ztk and Hk
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that can be characterized, with the aid of some expert judgements, using the second

order moments that we calculate here. It is likely, however, that the objects ztk and

Hk may be sufficiently dissimilar that their joint distribution is very complicated.

If this is the case, a way into the problem of sampling from this distribution could

involve computing the adjusted fourth order moments via the Bayes Linear variance

learning methods of Chapter 8 in Goldstein and Wooff [42]. Alternatively, we may

be able to marginalize the distribution into parts that may be easily sampled from.

The most simple example of this would be if we were confident of the distributional

form of both p(ztk |Hk, zk−1, θk−1) and p(Hk|H [k−1]), we would then be able to use

our methods to sample from p(Hk|H [k−1]), and use that sample to produce a draw

from p(ztk |Hk, zk−1, θk−1).

For reasons of time we must leave this particular problem open and we instead

focus on obtaining an appropriate second order belief structure for the collection

{ztk , Hk} that is updated by zk−1 and H [k−1], for k = 1, . . . ,m. For the rest of this

chapter we assume that, given the second order moments of {ztk , Hk}, we are able

to characterize a joint distribution for these objects that we may easily sample from.

We treat the problem of establishing the required second order beliefs in a similar

spirit to the way in which we have separated model and system data previously. This

time, however, we must use H [k−1] to learn about the joint covariance of Hk and

y before we adjust our beliefs about these quantities using zk−1. Once we obtain

the adjusted joint mean and variance of {Hk, y} we are able to derive the adjusted

moments of {Hk, ztk} easily. Our first task then is to compute E
[
{Hk, y}

]
and

V ar
[
{Hk, y}

]
having updated our beliefs about {Hk, y} by H [k−1].

We showed in section 5.6.3 how to obtain E
[
y; θm, H [m]

]
and V ar

[
y; θm, H [m]

]
,

and we may obtain E
[
y; θk−1, H [k−1]

]
and V ar

[
y; θk−1, H [k−1]

]
in precisely the same

manner. Note that these last two quantities must also depend on the choice of

θtk , . . . , θtm , however, we are free to choose any values of these as we will only be

interested in the subset {Hk, yt0 , . . . , ytk} of {Hk, yt0 , . . . , ytm} when calculating the

moments of {ztk , Hk}, which does not depend on decisions made after time tk−1.

We also require EH[k−1]

[
Hk
]
, V arH[k−1]

[
Hk
]

and an adjusted covariance between y

and Hk.
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Let

Wijrsv = Cov
[
Hk, H [k−1]

]
ijlpq

V ar
[
H [k−1]

]−1

lpqrsv
,

then we know that

EH[k−1]

[
Hk
]
ij

= E
[
Hk
]
ij

+Wijrsv(H
[k−1] − E

[
H [k−1]

]
)rsv

and

V arH[k−1]

[
Hk
]
ijlp

= V ar
[
Hk
]
ijlp

+WijuvwCov
[
H [k−1], Hk

]
uvwlp

.

Each of the quantities required in order to perform these adjustments is acquired

trivially from E
[
H [m]

]
and V ar

[
H [m]

]
, as calculated, for example, using (5.10) and

(5.19). All that remains, therefore, is to establish a covariance between y and Hk

and adjust that quantity by H [k−1].

Cov
[
Hk, y

]
ijl

= Cov
[
Hk
ij, β

∗
lpgp(x

∗, θ) + u∗l (x
∗, θ) + η∗(θ)

]
= Cov

[
Hk
ij, β

∗
lp

]
E [gp(x

∗, θ)]

= Cov
[
H [m], β∗

]
ijklp

E [gp(x
∗, θ)] , (5.31)

which can be calculated, for example, via (5.20) and
∫
g(x∗, θ)p(x∗)dx∗.

We know that

ztk = ytk + etk ,

where etk is independent observation error, therefore Cov
[
Hk, ztk

]
is a subarray of

Cov
[
Hk, y

]
. This is also true of Cov

[
Hk, zk−1

]
, which implies that we can compute

Ezk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
and V arzk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
from Cov

[
Hk, y

]
,

the observed system data, and the usual Bayes Linear update equations. We call the

pair Ezk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
and V arzk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
a decision-

dependent forecast for time tk observations ztk and Hk. More generally, adjusted

moments of these types will be referred to as decision-dependent observation fore-

casts. If we suppose that it is possible to characterize each of our required prob-

ability distributions using decision-dependent observation forecasts, we may now

sample from p({Hk, ztk}|zk−1, θk−1, H [k−1]), for k = 1, . . . ,m. We now write down

our modified Sequential Emulation algorithm.
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5.7 Sequential Emulation with evolving models

The modified Sequential Emulation algorithm that we present here follows that of

section 3.6 with two key differences. Firstly, each downstream observation at time tk,

for k = 1, . . . ,m, is an observation of the pair {Hk, ztk}. Secondly, the distributions

we must sample from in order to evaluate our expected losses are characterized by

the reified decision-dependent forecasts and decision-dependent observation forecasts

that were described in section 5.6. We now re-define the functions A(·), λtk(·), B
j
λk

(·)

and Cj
λk

(·) for k, j = 1, . . . ,m, in order to account for observations of new models.

Define

A(θm, zm, H [m]) =

∫ ∞
−∞

L(y, θm)p(y|zm, H [m], θm)dy. (5.32)

Given a second order emulator for A(θm, zm, H [m]), we define

λtm(θm−1, zm, H [m]) = arg min
θtm
{Ẽ
[
A(θm, zm, H [m])

]
}. (5.33)

Let

Bm
λm(θm−1, zm, H [m]) = A((θm−1, λtm), zm, H [m]) (5.34)

and define

Cm
λm(θm−1, zm−1, H [m−1]) = E

[
Ẽ
[
Bm
λm(θm−1, zm, H [m])

]]
, (5.35)

where the outer expectation is taken with respect to the distribution

p(ztm , H
m|zm−1, θm−1, H [m−1]).

Cm
λm(θm−1, zm−1, H [m−1]) is an emulator for an upper bound on our expected loss for

having made decisions θm−1 and having observed zm−1 and H [m−1], conditioned on

time tm strategy λtm(θm−1, zm, H [m]). Now, suppose we have determined strategies

λk+1 = λtk+1
, . . . , λtm .

Let

Bm
λk+1(θk, zm, H [m]) =

∫
L(y, (θk, λk+1))p(y|zm, H [m], θk, λk+1)dy (5.36)

and define

Cm
λk+1(θk, zm−1, H [m−1]) = E

[
Ẽ
[
Bm
λk+1(θk, zm, H [m])

]]
(5.37)
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and

Cj
λk+1(θk, zj−1, H [j−1]) = E

[
Ẽ
[
Cj+1
λk+1(θk, zj, H [j])

]]
, (5.38)

where the first outer expectation is taken with respect to the distribution

p(ztm , H
m|zm−1, H [m−1], θk, λk+1)

and the second is taken with respect to

p(ztj , H
j|zj−1, H [j−1], θk, λk+1)

for j = k + 1, . . . ,m− 1. Then, we can define

λtk(θ
k−1, zk, H [k]) = arg min

θtk

{Ẽ
[
Ck+1
λk+1(θk, zk, H [k])

]
} (5.39)

for k = 1, . . . ,m − 1. These definitions are the same, in essence, to those given in

section 3.5. This is because we simply treat each observation at time tk as the pair

{Hk, ztk}, instead of just a ztk as we had before. The only reason for not re-defining

ztk to be both system and model observations made at time tk is because of the way

each observation is used to characterize the relevant distribution via the two-stage

update presented in section 5.6.

5.7.1 Reified Sequential Emulation algorithm

We now present the Reified Sequential Emulation algorithm. As with the Sequential

Emulation algorithm presented in section 3.6, we begin the algorithm with a set of

preliminary steps designed to determine our current beliefs about the models and

system, and to determine how those beliefs will be used to characterize the various

distributions required for Sequential Emulation. One of the key differences between

the two algorithms is that we make no provision here for the use of fully probabilistic

model and system beliefs. The methods of forecasting via the reified form that we

have presented in this chapter use Bayes Linear methods to update second order

beliefs about the quantities of interest. Extending the methods of reified forecasting

to include fully probabilistic descriptions of our models and the relationships between

them is beyond the scope of this thesis.
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Preliminaries

We begin with a computer simulator for the complex system, f 0(x, θ), and know

that at each of our intervention points, t1, . . . , tm, we have the option of building and

making runs on an improved version of the simulator fk(x, θ), where the decision

of whether or not to build each simulator and how much we are to run it if built is

part of θ. We assume that we have exhausted our ability to run f 0(x, θ) and that

we have used the runs we have already to build an emulator for f 0(x, θ) in the form

of equation (5.7), with β0
ij and u0

i (x, θ) independent and with E
[
{β0

ij, u
0
i (x, θ)}

]
and

V ar
[
{β0

ij, u
0
i (x, θ)}

]
specified for all i and j. For discussion of this assumption refer

back to section 5.6.3.

We assume that our emulator for any simulator is of the form given in equation

(5.8).

RP1

Specify a second order belief structure over each of the m+ 1 simulators

and the reified simulator. As we have established a form for any emulator for

each of the models through (5.8), this structure should be specified in terms of the co-

efficient matrices {β0, . . . , βm, β∗} and the residual processes {u0(x, θ), . . . , u∗(x, θ)}.

We provided an example of such a structure with (5.10), (5.11), (5.12), and (5.13).

RP2

Specify beliefs about x∗, η∗(θ) and e. We require a prior probability distribution

for x∗ and second order moments for both η∗(θ) and e.

RP3

Select both ‘accurate’ and ‘fast’ forecasting methods. This is the same as

for P3 in the original Sequential Emulation algorithm, with the exception that the

forecast integrals are those presented in section 5.6.3 and involve components of the

reified model emulator.
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RP4

Decide how forecasts will be used to sample from the required distribu-

tions. We must decide here how the reified decision-dependent forecasts

Ezm
[
y; θm, H [m]

]
, V arzm

[
y; θm, H [m]

]
,

and the decision-dependent observation forecasts

Ezk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
, V arzk−1

[
{Hk, ztk}; θk−1, H [k−1]

]
for k = 1, . . . ,m, are to be used to characterize the probability distributions on our

decision tree.

RP5

Specify numerical integration methods. This is the same as in step P5 in the

original Sequential Emulation algorithm.

The preliminary steps RP1 to RP5 allow us to obtain ‘coarse’ and ‘accurate’

samples from our required distributions. We now use this ability in the Reified

Sequential Emulation algorithm.

RS1

Construct a multi-level emulator for A(θm, zm, H [m]).

RS2

Define λtm(θm−1, zm, H [m]) as in (5.33).

RS3

Construct a multi-level emulator for Bm
λm(θm−1, zm, H [m]). This follows the

same process as for RS1, except we set

θm = (θm−1, λtm(θm−1, zm, H [m])).

RS4

Construct a multi-level emulator for Cm
λm(θm−1, zm−1, H [m−1]).
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RS5

If m = 1 proceed to RS11. Else set k = m− 1 and go to RS6.

RS6

Define λtk(θ
k−1, zk, H [k]) using the emulator for Ck+1

λk+1(θk, zk, H [k]) and (5.39).

RS7

Construct a multi-level emulator for Bm
λk

(θk−1, zm, H [m]) as defined in (5.36).

RS8

Construct a multi-level emulator for Cm
λk

(θk−1, zm−1, H [m−1]) as defined in

(5.37). Set j = m− 1.

RS9

Construct a multi-level emulator for Cj
λk

(θk−1, zj−1, H [j−1]). Let j = j − 1.

RS10

If j ≥ k go back to RS9. Else if k = 1 proceed to RS11. Else set k = k − 1

and go back to RS6.

RS11

Stop.

5.8 Illustrative example

We present here a relatively short example that applies the methods introduced in

this chapter to the CO2 abatement problem of chapter 4. We intend to give a simpli-

fied structural reification of C-GOLDSTEIN and use Reified Sequential Emulation

to plot an emulator of an expected upper bound on our expected loss for making

policy today. Although all of the decision support tools we discussed in chapter 4,
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such as pruning and risk profiling, are available to use once the Reified Sequential

Emulation has been performed, we do not apply these tools in this example. Our

goal is to provide a concrete example to reinforce the theory we have presented and

to show some of the extra problems that may be explored within this framework.

The main new area of decision support we are able to offer involves the question of

whether or not to build, and how much to run, an improved simulator. As has been

discussed, and as we will show in our example, these decisions are directly included in

the Reified Sequential Emulation. The framework that we have established allows us

to provide decision support for these questions. So, for example, we can explore how

the amount of perceived improvement of our model can affect our choices regarding

the building and running of the improved simulator as well as the way in which it

affects our abatement policy strategy.

Although this example is a useful illustration of how our methodology works

in practice, we must give the same caveats as we did in chapter 4. Namely, that a

number of the simplifications we will make in order to perform the Reified Sequential

Emulation quickly would not be acceptable in a case study or a genuine attempt at

providing decision support. We discuss this further below.

5.8.1 Structural reification of C-GOLDSTEIN

We have the model C-GOLDSTEIN, described fully in section 4.2, which we label

f 0(x, θ). The CO2 abatement problem is set up as before, where we imagine that

we must make an abatement policy for 1995 that may be altered in 2035, following

an observation of the global mean temperature anomaly. We also imagine that in

2035 we may have access to an improved version of C-GOLDSTEIN that has the

same five inputs we fixed in chapter 4 and which we label f
′
(x, θ).

In order to link these two models to each other and to the system, we introduce

the reified simulator, f ∗(x, θ), that links to the global temperature anomaly, y, via

(5.6), and that also has the same five inputs we worked with previously. In order to

perform Reified Sequential Emulation for this problem we begin at RP1 by linking

our three simulators via a second order belief structure.

We assume that each model satisfies (5.8) with g(x, θ) as on page 103. To simplify
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our description we use the alternative model introduced in section 5.6.2 and let

β
′

ij = ρ
′
βij

and

β∗ij = ρ∗β
′

ij

with ρ
′

and ρ∗, and ρ
′2 and ρ∗2, treated as uncorrelated scalar random quantities.

As we discussed at the end of section 5.6.2, this might imply that our improved

simulator models a physical process not included on C-GOLDSTEIN, and that we

expect this modelling to be thorough enough so that we cannot think of any way

in which the reified model might improve upon the modelling of this particular new

process, but would improve our model in other ways. We link the residual processes

via

u
′
(x, θ) = u(x, θ) + δ

′
(x, θ)

and

u∗(x, θ) = u
′
(x, θ) + δ∗(x, θ),

with u(x, θ) ⊥⊥ δ
′
(x, θ), u

′
(x, θ) ⊥⊥ δ∗(x, θ), and δ

′
(x, θ) ⊥⊥ δ∗(x, θ). We assume that

both δ
′

and δ∗ are mean-zero random processes.

To simplify the problem further still, we assume that the βijs are known and that

u(x, θ) has given mean and variance. This means that the second order moments of

β
′

and β∗ are calculated via (5.21), (5.22), (5.23), and (5.24). Our beliefs about the

residual processes across models are

E [u∗(x, θ)] = E
[
u
′
(x, θ)

]
= E [u(x, θ)]

and

V ar
[
u
′
(x, θ)

]
= V ar [u(x, θ)] + V ar

[
δ
′
(x, θ)

]
V ar [u∗(x, θ)] = V ar

[
u
′
(x, θ)

]
+ V ar [δ∗(x, θ)] .

All that remains in order to link the models and complete RP1, then, is to specify

βij for i = 1, 2, 3, j = 1, . . . , 8 and the beliefs E
[
ρ
′]

, E [ρ∗], V ar
[
ρ
′]

, V ar [ρ∗],

E [u(x, θ)], V ar [u(x, θ)], V ar
[
δ
′
(x, θ)

]
and V ar [δ∗(x, θ)]. First we set

E
[
ρ
′
]

= E [ρ∗] = 1.
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We have chosen to treat the matrix β as known in order to simplify our calculations,

therefore, a natural choice for this matrix is EF [β], calculated using the 100 runs

we adjusted on in chapter 4. We set βij = EF [β]ij, and allow the emulator we use

for C-GOLDSTEIN in this chapter to have the same expectation as our original

emulator by setting u(x, θ) to be the random field generated by adjusting the prior

beliefs given in chapter 4 by F . This specification is equivalent to allowing our

beliefs about the random field u(x, θ) to be the same as with our adjusted emulator

of chapter 4, but ignoring the covariance between β and u(x, θ) induced by F to

simplify the calculations.

This alternative specification of an emulator for C-GOLDSTEIN has less variance

than in our example of chapter 4 as both the contribution of V ar
[
β0
ijgj(x, θ)

]
and

Cov
[
β0
ij, u

0
k(x, θ)

]
are ignored. The results of both analyses will, therefore, not be

strictly compatible. However, as our goal is to illustrate the methods and not to

solve the CO2 abatement policy problem for real, we feel that these simplifications

are beneficial.

The remaining values that we must specify, namely V ar
[
ρ
′]

, V ar [ρ∗], V ar
[
δ
′
(x, θ)

]
and V ar [δ∗(x, θ)], will define how much uncertainty about the temperature anomaly

we feel we can resolve by building better models, the proportion of that uncertainty

that can be resolved by the model we might build in 2035, and the amount of un-

certainty we may resolve by observing emulator coefficients only. Given the values

of the other quantities that we have specified, we determine the distance between

f
′
(x, θ) and f(x, θ) through V ar

[
ρ
′]

and V ar
[
δ
′
(x, θ)

]
, and the distance between

f ∗(x, θ) and f
′
(x, θ) through V ar [ρ∗] and V ar [δ∗(x, θ)]. The nature of our methods

mean that we only learn about V ar [ρ∗] by choosing to build and run the new model.

Therefore, if the majority of our variance on f
′
(x, θ) is located in V ar

[
δ
′
(x, θ)

]
, we

cannot hope to change our beliefs today about the system much by building f
′
(x, θ).

Another thing to consider when specifying these quantities is that, in some sense,

we are bounded in our choices by the overall variance for y. In fact, were it our

desire for this example to be compatible with the analysis of chapter 4, we would

require that V ar [y(θ)], as calculated when producing forecasts in chapter 4, was

exactly equal to V ar [f ∗(x, θ)] + V ar [η∗(θ)]. Although we are not aiming for this
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compatibility, we would like our example to be sensible and must choose the required

variances and the variance on discrepancy V ar [η∗(θ)] so that the values of V ar [y(θ)]

computed in both examples are not totally dissimilar. It is worth commenting

that this type analysis might cause us to revise our overall judgements about the

discrepancy of C-GOLDSTEIN, and therefore revisit the analysis in chapter 4.

Both V ar
[
δ
′
(x, θ)

]
and V ar [δ∗(x, θ)] are prior variances for a process that we

will not observe. We treat both as having components that are independent across

time so that we must specify a 3 × 3 diagonal matrix for each. We choose both so

that they are each one tenth the standard deviation specified for u(x, θ) in chapter

4. Relative to the variance of the coefficients, this has the effect of maintaining only

a small contribution of these unseen processes. Hence we specify that there can be

a significant change in our uncertainty about the system brought about by building

and running f
′
(x, θ).

We choose V ar [η∗] directly by keeping its correlation matrix the same as that

for η in chapter 4, but dividing the standard deviations by 10. This means that

we believe there is very little discrepancy between the reified model and actual

climate. The key choice, in the context of this example, is in V ar
[
ρ
′]

and V ar [ρ∗]

but, more specifically, in the difference between the two. Our intention is to choose

combinations of these two quantities that lead to roughly the same prior variance

for y(θ), but that determine different relative distances between the simulators. Our

first choice is V ar
[
ρ
′]

= 0.25 and V ar [ρ∗] = 0.1. This means that V ar [f ∗(x, θ)]

is much closer to V ar
[
f
′
(x, θ)

]
than V ar

[
f
′
(x, θ)

]
is to V ar [f(x, θ)]. This implies

that resolving all of the uncertainty on the coefficients for f
′
(x, θ) will tell us a

lot about f ∗(x, θ) and, therefore, about y(θ). We shall discuss this choice and

compare results with an alternative parametrization after demonstrating the rest of

the analysis.

5.8.2 Decisions regarding the improved model

In 2035 we observe H
′

= EF ′
[
ρ
′]

, the adjusted coefficients of the new model. We

use relation (5.14) to link the observed adjustment with ρ
′
. That is, we write

ρ
′
= H

′
+ ω

′
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with H
′ ⊥⊥ ω

′
and V ar

[
ω
′]

= V arF ′
[
ρ
′]

, the amount of uncertainty left in ρ
′

after

building and running the model. V ar
[
ω
′]

, hereafter κ, is a decision parameter and

is part of θt0 . Having chosen V ar
[
ρ
′]

= 0.25, we know that κ ∈ [0, 0.25], where

κ = 0.25 corresponds to not building f
′
(x, θ) at all.

In order to treat this decision properly, there must be a cost associated with

building the model and one associated with performing runs and resolving uncer-

tainty on the coefficients once the model is built. Furthermore, these costs must be

added to our loss function DICE in a way that is intuitive. The most natural way of

incorporating model building and running costs in DICE is to add to the investment

function I(t) at 2035 (for full details regarding the investment function and how it

is incorporated into DICE see appendix C).

For t = 2035 we can compute I(t) as a function of global output in the usual

way and then add a separate model investment. This will be in the form of a one-off

building cost, B, and a run cost that is a function of the proportion of uncertainty

resolved. Let

α =
κ

V ar [ρ′ ]
, α̂ = max(α,Mα)

where Mα is chosen so that log(Mα) is large, but not infinite as it would be at 0.

Then at t = 2035, having computed the normal I(t), we let

I(t) = I(t) +B1Iα̂<1 −K log(α̂),

where 1Iα̂<1 is the indicator function that is equal to 1 if α̂ < 1 and 0 otherwise.

Here K logMα is set to be the cost of running the model at every location.

We choose B to be $100 million and K such that the cost of running the model

everywhere was approximately $100 million again. The build cost of $100 million

would be made up of the cost of performing the research as well as the coding

and building of any new facilities required in order to run the model. These costs

may seem large, however on DICE’s scale they are tiny. To put these costs into

perspective, total consumption over the ten decade period is of the order of $470

trillion.
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5.8.3 Completing the preliminaries

Before beginning our Reified Sequential Emulation we must complete steps RP2-

RP5. Beginning at RP2, we have already specified our discrepancy η∗ and keep our

distribution on x∗ and our beliefs about e the same as the example in chapter 4.

Step RP3 requires us to determine our methods of coarse and accurate forecasting

and, because we use the same vector of regressors, the same correlation function

for u(x, θ), and the same uniform distribution on x∗, all of the forecast integrals in

(5.29) and (5.30) can be computed analytically as we did for the forecast integrals

in chapter 4.

Step RP4 requires us to choose a way of characterizing and sampling from the re-

quired distributions using our reified decision-dependent forecasts and our decision-

dependent observation forecasts. Addressing the former first, we may use the same

multivariate log-normal distributional assumption for y as was used in chapter 4.

The latter types of forecast give joint second order beliefs on {zt1 , H
′}. The ob-

servation H
′

is an indicator of the value of ρ
′
, which is a scalar multiplier of our

regression surface for C-GOLDSTEIN. If ρ
′

were negative, that would correspond

to a model that had the opposite behaviour to C-GOLDSTEIN. One implication of

this is that the new model would determine that global temperature will decrease

as the amount of CO2 emitted is increased. We may, therefore, consider H
′

to be

strictly positive and use a joint log-normal distributional assumption on {zt1 , H
′}

for convenience.

This particular choice, whilst computationally convenient, does leave a problem.

Some exploratory analysis showed that high values of H
′
were occasionally sampled,

which made the forecasts non-physical. For example, a sampled value ofH
′
of 5 could

mean that we expect future temperature to be 15o higher than today according to

our forecast. To actually expect such a value seems ludicrous, therefore, our solution

is to restrict the range of possible H
′

to be

H
′ ∈
[
0, 1 + max

(
4 ∗ SDzt0

[H
′
]
)]

which, for this example, gives H
′ ∈ [0, 2.28]. Testing of this assumption showed that

the largest amount of probability ignored by choosing H
′

in this way was 0.003. We
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felt that for the purposes of providing an illustration that was computationally

efficient, this choice was pragmatic and would not affect our conclusions.

The numerical integration methods we are required to specify in RP5 will be the

same as those used in our previous example.

5.8.4 Calculations

We must be able to derive the moments of y(θ), both before and after seeing a

given value of H1, in order to be able to compute the two types of forecast that

we require. To do this we use equations (5.29), (5.30) and (5.31), each of which is

a function involving E [β∗] and V ar [β∗]. In order to update our beliefs about the

system using the observed expected coefficients, H
′
, we adjust the moments of β∗

by this quantity using equations (5.27) and (5.28), before computing the moments

of y(θ) in the normal way.

We now perform the Reified Sequential Emulation algorithm by building the em-

ulators of A(θ1, z1, H
′
), B1

λ1(θt0 , z
1, H

′
) and C1

λ1(θt0 , zt0) in sequence. The methods

and calculations undertaken were almost exactly the same as those in section 4.6

and, as such, we do not describe the method for building each emulator exactly here.

Instead, we comment on the differences between our approaches and comment on

some of the features we identified whilst building emulators in this example.

The first minor difference is that we used Sobol sequences (introduced in sec-

tion 2.4.1) instead of Latin Hypercubes to generate designs for coarse and accurate

evaluations of both emulators to enable us to obtain the higher dimensional designs

required for each set of runs more quickly. Another difference between the two

examples is that we had to decide how the maximum of κ would be handled.

Recall that if κ ∈ [a, b], then κ = b corresponded to the decision not to build

the new model at all. However, when designing runs and building emulators it is

possible that we may try evaluating one of our emulators at κ = b with H
′ 6= 1 by

mistake. This is not feasible since, if we do not build the new model, we cannot

observe its coefficients. Therefore, when writing the computer code to perform this

Sequential Emulation we provide a number of safety nets to ensure that this does

not happen. Firstly, if we wish to compute a reified decision-dependent forecast with
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κ = b, then we always use the prior, unadjusted, moments of β∗ in our calculations.

Secondly, we restrict our designs so that those to be used for building emulators for

A(θ1, z1, H
′
) and B1

λ1(θt0 , z
1, H

′
) always have a small subset with H

′
= 1, κ = b and

a Sobol sequence in the remaining inputs. Always including this subset means that

we are able to specifically explore our utility for not paying B and not building the

new model.

We use precisely the same methods for building our multi-level emulators as we

used in section 4.6. We use the same heuristics and techniques for choosing the

required parameters and, indeed, the only difference between the modelling in the

two examples is the two extra inputs we must deal with. We introduce no special

treatment for the 5-dimensional and 4-dimensional multi-level emulations required

for emulating A(θ1, z1, H
′
) and B1

λ1(θt0 , z
1, H

′
), other than having to fit extra re-

gression terms in our saturated linear models, choose extra correlation parameters

using our heuristic, and observe more residual plots in order to aid model selection.

We do not present a detailed account of our step by step Sequential Emulation

in this example as we would essentially be repeating ourselves. In chapter 4, we

fully demonstrated the techniques of building multi-level emulators in sequence and

to do so again here seems unnecessary. We do, however, present selected details of

the built emulators in appendix E.4. For the same reason, we do not perform the

detailed diagnostics, analysis of strategy plots, risk profiling and pruning that we

performed in chapter 4. This is because, in spirit at least, these would be the same

in this example. If we were actually providing decision support for this problem and

accounting for the possibility of building and running f
′
(x, θ), then we would spend a

large proportion of our time using the policy support techniques described in section

3.7 and demonstrated in section 4.7, as this kind of policy support is our ultimate

goal. The goal achieved by this example is to illustrate the new ideas presented in

this chapter, specific to the introduction of observations of new, improved, simulators

in the future. Our other goal in presenting this example is to show some of the new

areas of decision support that are open to us when considering the impact of future

simulators; this we consider now.
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Figure 5.3: A plot of our emulated upper bound Ẽ
[
C1
λ1(θt0 , zt0)

]
where V ar

[
ρ
′]

=

0.25 and V ar [ρ∗] = 0.1.

5.8.5 Additional policy support

We present our emulator for the emulated upper bound Ẽ
[
C1
λ1(θt0 , zt0)

]
in this

example in figure 5.3. This surface is both a function of θt0 and κ and shows some

interesting behaviour. The first thing to notice is that the value of θt0 , our level of

CO2 abatement, is still the dominating influence on our expected loss. What is more,

the shape of this curve and, indeed, the location of the ‘optimal’ decision, is very

similar to that of our original example. This causes us to suspect immediately that

some kind of action against rising CO2 emissions should be taken now, regardless

of the fact that our understanding of climate behaviour may be more advanced in

the future. This is not surprising as the original parametrzation of DICE had been

chosen so as to penalize deferred abatement.

We also notice that we do better, from an expected loss perspective, by building

the model and resolving some of the uncertainty in the coefficients, than by not
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Figure 5.4: A plot of our emulated upper bound Ẽ
[
C1
λ1(θt0 , zt0)

]
where V ar

[
ρ
′]

=

0.1 and V ar [ρ∗] = 0.25.

building the model at all for any value of θt0 . If we were to use this emulator as a

surrogate for our expected loss surface, then the optimal decision is to set κ = 0 and

to choose θt0 ≈ 0.68, which corresponds to an abatement of 32% of BAU emissions

per decade, and to building the model and resolving all of the uncertainty in the

coefficients.

We now repeat our analysis with an alternative distribution of the total variance

in the system. By letting V ar
[
ρ
′]

= 0.1 and V ar [ρ∗] = 0.25 we keep the same

overall variance for y, but are stating that the model we might build in the future

will not resolve as much of our uncertainty about y as our previous parametrization

allowed. We keep all costs for building and resolving uncertainty in the model

the same and perform a new Reified Sequential Emulation with this alternative

configuration of the variances of the improved and reified simulators.

The results from this Sequential Emulation are plotted in figure 5.4. What we
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see from this diagram, as well as the qualitative behaviour of our loss surface being

similar in θt0 , is that not building the model at all is better than building it and

not resolving most of the uncertainty. For instance, if there were insufficient time to

run the model everywhere between now and 2035 then it may be better not to build

the improved simulator at all. It also suggests that there may be some threshold

for V ar
[
ρ
′]

below which we should not build the simulator. This, in turn, suggests

that these methods may be used to give insight into the important question “how

good does my simulator have to be to be worth building?” We discuss this idea

further in section 5.9.

We are also interested in the comparison between these two analyses. The ‘op-

timal’ decision for this parametrization was θt0 ≈ 0.76 and κ = 0, suggesting again

that we should build the new model and resolve all of our uncertainty about the

coefficients. We found the minimum expected loss for both of our parametrizations

and computed the difference between them. The analysis for V ar
[
ρ
′]

= 0.25 had

minimum expected loss around 0.01 higher than that for the alternative parametriza-

tion. As we argued at the end of chapter 4, this corresponds to roughly $20 billion

dollars saved per decade if the model we might build resolves most of the variance

in the system, as it does in this example, compared with the case where it does not.

It is worth highlighting that these conclusions are only valid if we are confident in

our Sequential Emulation of the loss surface. In a case study, or more careful analysis

it would be essential that pruning exercises and diagnostic testing of our emulators,

such as via the forward sampling methods discussed in chapter 4, take place before

we draw any conclusions for the shape of our loss surface. These diagrams and

conclusions are given as examples of the kinds of decision support we may be able

to provide with a careful application of this new version of the methodology.

5.9 Discussion

5.9.1 Feasibility of Reified Sequential Emulation

There are two main issues regarding the feasibility of the methods described in

this chapter. The first is the issue of specifying beliefs jointly across all future
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simulators, including the imaginary reified simulator. Whilst this specification will

be very challenging, the issue of feasibility of the reifying technology is discussed in

detail elsewhere (see, for example, Goldstein and Rougier [40], particularly in the

rejoinder of the following discussion) and is beyond the scope of this thesis. We view

the reification technology here as a pragmatic way of linking a collection of models

in order to facilitate the types of decision support we have described. The second

issue concerns the feasibility of the Reified Sequential Emulation itself, once our

prior beliefs have been written down. In section 3.8 we discussed the feasibility of

performing the Sequential Emulation algorithm that did not account for observations

on improved models.

The extra difficulty in performing the Reified Sequential Emulation algorithm,

once the preliminary steps have been completed, corresponds to an increase in di-

mensionality caused by observing coefficients on future models as well as data from

the complex system at each time step. Suppose, for example, that each βk is a matrix

with Mβ elements. Due to the way we have defined g(x, θ), many of these elements

will be identically equal to zero. However, when sampling from some distribution

p(ztk , H
k|zk−1, θk−1, H [k−1]), we are sampling from a distribution with maximum di-

mension dim(ztk) +Mβ. Even if many of the elements of βk are identically zero, we

may still be sampling from a high dimensional distribution.

The arguments for the feasibility of generating enough samples from our distri-

butions in order to be able to build coarse and accurate emulators at each stage of

the algorithm do not differ from those given in section 3.8. Namely, that feasibility

depends on the availability of resources, computing power, and, in extreme cases,

may require additional techniques to be developed. The examples we gave included

exploiting the structure of our emulators to make parts of our loss integrals ana-

lytic. Another idea, specific to the integrals we must solve in a Reified Sequential

Emulation, would involve dimension reduction, at least for the coarse evaluations.

We could achieve this by only allowing a smaller subset of the model coefficients,

one that we judge to be the most influential for our expected loss, to differ when

sampling from p(ztk , H
k|zk−1, θk−1, H [k−1]).

Another computational challenge particular to this adaptation of our method-
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ology will be the large increase in the number of variables we must emulate on.

Consider, for example, our emulator for A(θm, zm, H [m]). This is a function with up

to mMβ additional variables compared with the function A(θm, zm) that we defined

in our previous version of the algorithm. The methods of active variables, discussed

in section 2.2.6, will play an important role in reducing the number of runs required

to build these emulators and making the problem feasible.

Although the computational challenges that a real-world application of this

methodology would present may seem arduous, it would be worth overcoming them

if only to learn the value of building an improved model. Taken in the context of the

costs involved in the policy decisions that must be made and the amount of money

invested in computer models, the challenges presented by large problems should be

addressed rather than shied away from.

5.9.2 Further policy support

The idea, presented in our example, of comparing our optimal policies when faced

with two different improved simulators, each potentially resolving different amounts

of uncertainty about the system, can be generalized and used to provide insight

into other questions. We could, for example, compare our results for a number of

different potential levels of improvement to give insight into the question of how

good an improved simulator must be in order for it to be worth building.

We could, in theory, go further and, for example, emulate the optimal policy as a

function of the uncertainty in the coefficients on the improved model. Another idea

we might consider is to introduce a formal uncertainty on the quantity V ar
[
βk
]

for

k = 1, . . . ,m, and to investigate the optimal policy and the decision of whether or

not to build and how much to run each model in the case when the quality of each

model that we might build is not known for certain. These are both potential areas

for further work.

Another question we might provide insight into within this framework is: “how

much would the new model have to cost before building it became non-optimal?”.

This is similar, in spirit, to the ideas discussed in section 3.8 regarding treating the

loss function as a computer model about whose inputs and outputs we are uncertain.
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Although we may not have to introduce an uncertainty on build cost in order to

answer this particular question, we may attempt to emulate our decision regarding

the building and running of the new simulator as a function of the build cost. We

might then treat the search for a threshold cost as an optimization problem. These

ideas are possible areas for further work.
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Chapter 6

Bayes Linear calibrated

decision-dependent forecasts

In this chapter we return to the case where we have the same model now and in the

future, in order to add a calibration step to our Bayes Linear decision-dependent

forecasts. In section 6.1 we discuss current methods of Bayes Linear calibrated

forecasting for models without decision inputs, and describe a method of obtaining

the required quantities for this technique via a large-scale sampling experiment. In

section 6.2 we generalize these methods to models with decision inputs and describe

how we may exploit the spin up property that many of these models have. We

define a quantity called the hat function and describe how this quantity may be

used to provide Bayes Linear calibrated decision-dependent forecasts. We argue

that the sampling methods that are appropriate when we only have a single hat-

run, will often be inappropriate when working with a hat function. We describe how

a computer algebra package may be employed, together with sampling, to emulate

the hat function moments in an appropriate manner.

In section 6.3 we illustrate how our Sequential Emulation algorithm may be

adapted to include Bayes Linear calibrated forecasts based on system observations

we have now, if required. We conclude the chapter by offering some early ideas

regarding how the algorithm might be adapted if we allowed future system observa-

tions to define new hat functions. This last problem is left open.
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6.1 The Hat run

In section 2.3.2, we made a case for ignoring the information contained in obser-

vations zt0 about the best input x∗ when computing Bayes Linear forecasts. By

first integrating x∗ out of (2.2) to derive moments for y(θ) and then adjusting these

moments by zt0 , we effectively ignored this information. We argued that this may

often be appropriate, stating that the effort involved in its proper handling may

be a waste of time and resources, particularly in the case where we have already

performed a history match for the computer model using zt0 , and when we have

obtained good global fits to our model data via βg(x, θ). We also stated that if

further runs of the computer model were available to us, inserting a calibration step

and obtaining model runs at the expected value of x∗ could yield more powerful

forecasts. We shall describe these techniques here.

We suppress any dependence of the model f on decisions θ for the moment, and

consider the simulator with only model inputs, f(x). The paper by Goldstein and

Rougier [39] describes a method of Bayes Linear calibrated forecasting via a quantity

they call the hat run. In order to put the information contained in zt0 regarding x∗

into the tractible Bayes Linear forecasting methods, they adjust beliefs about x∗ by

the system data zt0 , and then run the computer model at the adjusted expectation

of x∗. Beliefs about y may then be adjusted by both zt0 and this new model run.

They define

x̂ = Ezt0 [x∗] = E [x∗] + Cov [x∗, zt0 ]V ar [zt0 ]−1 (zt0 − E [zt0 ]), (6.1)

and then the hat run is defined to be

f̂ = f(x̂).

The Bayes Linear calibrated forecast is then

Ezt0 ,f̂
[y] = E [y] + Cov

[
y, (zt0 , f̂)

]
V ar

[
zt0 , f̂

]−1 (
(zt0 , f̂)− E

[
(zt0 , f̂)

])
(6.2)

and

V arzt0 ,f̂
[y] = V ar [y]− Cov

[
y, (zt0 , f̂)

]
V ar

[
zt0 , f̂

]−1

Cov
[
(zt0 , f̂), y

]
. (6.3)
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In principle then, we can include the information about x∗ contained in zt0 as part of

a forecast that retains the tractibility of the Bayes Linear forecasting methodology.

The rationale for the hat run method is as follows. The model runs, F , inform

us about the global behaviour of our models and help us to fix the surface βg(x)

and many of the global characteristics of the surface u(x). We use these features

to derive our beliefs about y, and then observations zt0 adjust these global beliefs.

Suppose, for example, that we have two time points t0 and t1. The observation

zt0 is informative for yt1 through the link between the discrepancies and between

ft0(x∗) and ft1(x∗). If we imagine that we have captured the global behaviour in the

model well, then observing the global behaviour in ft0(x∗) will be informative for the

global behaviour in ft1(x∗). However, suppose that there is very little correlation

between ut0(x) and ut1(x). Then adjusting our beliefs by zt0 alone will not help us

to learn about the local behaviour of ut1(x) around x∗. The information that zt0

carries regarding x∗,may be exploited by adjusting beliefs about x∗ directly by the

system observation and then running the model at x̂, thus learning about the local

behaviour of ut1(x) around x∗. The hat run method, therefore, allows us to use both

global and local information regarding our computer model as part of a tractible

forecast methodology.

Before computing a Bayes Linear calibrated forecast, there are a number of

computational issues to overcome. In order to compute x̂, the quantities V ar [zt0 ]

and E [zt0 ] must be obtained by integrating out x∗ and computing the usual moments

of y via (2.20) and (2.21). The other quantity required in order to compute x̂,

Cov [x∗, zt0 ], would be obtained in the following way.

Cov [x∗, zt0 ]ki = Cov [x∗k, fi(x
∗)] = Cov [x∗k, βijgj(x

∗) + ui(x
∗)] ,

if we assume that our emulator for f(x) has the usual form (2.4). This means that

Cov [x∗, zt0 ]ki = E [βij]Cov [x∗k, gj(x
∗)] + Cov [x∗, ui(x

∗)]

and so in order to calculate this quantity, we require further numerical integration.

The first half of this calculation may be readily calculated from the distribution

p(x∗), although the numerical integrations involved may be difficult. However, the

June 28, 2010



6.1. The Hat run 210

object Cov [x∗k, ui(x
∗)] is more complicated. By definition

Cov [x∗, u(x∗)] = E [x∗u(x∗)]− E [x∗]E [u(x∗)]

= E [E [x∗u(x∗)|x∗]]− E [x∗]E [E [u(x∗)|x∗]]

= E [x∗E [u(x∗)|x∗]]− E [x∗]E [E [u(x∗)|x∗]]

and in order to proceed further we must integrate x∗E [u(x∗)|x∗] numerically, where

E [u(x∗)|x∗] will usually be a random field conditioned on the runs we have on f .

This is feasible, in princple, and may be computed using the same order of magnitude

computing power as is required in order to compute V ar [y].

The Bayes Linear calibrated forecast, (6.2) and (6.3), requires that we calculate

the joint moments of y, zt0 and f̂ . Consider, first, the computation of E
[
f̂
]
. Suppose

we write

x̂ = v +Wzt0

where v and W are readily derived from (6.1). Then

f̂ = f(v +Wzt0) = f(v +W (ft0(x∗) + ηt0 + et0)),

which, assuming the usual form for our emulator for f , may be written as

f̂ = βg(v +W (βt0jgj(x
∗) + ut0(x∗) + ηt0 + et0)) + u(x̂). (6.4)

Now,

E
[
f̂
]
i

= E [β]ij E [E [gj(v +W (βt0jgj(x
∗) + ut0(x∗) + ηt0 + et0))|x∗]]+E [E [u(x̂)|x∗]] .

In order to evaluate this expression analytically, we would require specification of

the moments of a number of complicated quantities as functions of the elements of β,

ηt0 , et0 and ut0(x), along with specification of the quantity E [u(x̂)|x∗]. In addition,

and in order to know what the quantities that we must specify are, we must be

able to expand the formula g(v + W (βg(x∗) + ut0(x∗) + ηt0 + et0)) into a function

of x∗, β, ηt0 , et0 , and ut0(x). If we could do that, take expectations of the derived

expression, specify the values of any moments required that we do not already have,

and then integrate out x∗, we can compute E
[
f̂
]
. The analytic expressions for

V ar
[
f̂
]

and Cov
[
(f̂ , zt0), y

]
are even more complicated functions of the random
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quantities x∗, β, ηt0 , et0 , ut0(x), and u(x̂). Unless the form of each of the functions

in g(x) was very simple, this would probably require the use of a computer algebra

package. Goldstein and Rougier argue in [39] that the time involved in deriving the

required moments using such a package and then making the required higher order

specifications must be taken in the context of developing and running the computer

simulator.

For important problems where our uncertainty about the model behaviour near

x∗ is significant, the information provided by a hat run may be too substantial to

ignore, and the computational effort involved in producing an analytic calibrated

forecast may be deemed worthwhile.

6.1.1 The hat run moments via sampling

A more attractive way to produce Bayes Linear calibrated forecasts is to compute

the moments of f̂ and the covariance between x∗ and zt0 directly using sampling

methods. As an alternative to using an algebra package to find out the form of

each of the quantities for which we require expectations and then specifying each

of these individually, we could make distributional assumptions regarding η, e, x∗,

β and u(x∗), and then sample the required distributions directly. We now describe

this sampling procedure in detail.

In the following discussion, we suppose that we have already observed runs F =

f(x1), . . . , f(xn) so that our beliefs about the quantities in our emulator for the

computer model have been adjusted by these runs. We know that

x̂ = v +Wzt0 ,

where v and W are functions of the moments of zt0 and the matrix Cov [x∗, zt0 ].

Suppose we use our second order beliefs to characterize probability distributions for

η, e, {β, u(x)}|F . Added to p(x∗) this gives us distributions on each of the random

quantities required to sample from the distribution of {f̂ , y, zt0}.

Our first goal will be to obtain v and W . We do this by sampling an x∗, a β,

and a u(x∗) in order to obtain a sample from f(x∗). We then sample a value of η

and a value of et0 in order to obtain a sampled value of zt0 . Repeating this process
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a large number of times we obtain a sample from the joint distribution of x∗ and

zt0 . We may estimate E [zt0 ], V ar [zt0 ] and Cov [x∗, zt0 ] directly from this sample

and use these to fix v and W .

In theory, we could now condition each of our distributions on these samples and

then begin a new sampling experiment designed to sample from the joint distribution

of f̂ , y and zt0 . However, this may prove to be computationally demanding and we

may prefer to assume v and W are now known and to ignore all previous samples

and begin a new experiment.

We have that

f̂ = βg(x̂) + u(x̂)

= βg(v +W (βt0jgj(x
∗) + ut0(x∗) + ηt0 + et0)) + u(x̂),

and we require a sample from {f̂ , y, zt0}. We may begin by sampling a value of x∗

and values of β and u(x∗). This allows us to compute a sample value of f(x∗), which

we shall denote f̃(x̃∗). We may now sample values of η and et0 to obtain sample

values of y and zt0 . As we have already sampled a value of β, the only random

quantity we have not sampled from in (6.4) is u(x̂). Having observed a value of

β and of u(x∗), we have new information about u(x̂). Effectively, u(x̂) is now the

random field conditioned on {F, f̃(x̃∗)}. In order to sample an appropriate value of

u(x̂), then, we must re-condition the random field u(x) on {F, f̃(x̃∗)}.

As we have used second order beliefs about u(x) to characterize a probability

distribution, it is perhaps appropriate to perform a Bayes Linear update of these

beliefs and then to use the new moments to characterize our probability distribu-

tion. Rather than adding f̃(x̃∗) to the collection comprising F and adjusting the

prior moments of u(x) by this new, enlarged, collection in order to recondition the

random field, it would be computationally efficient to perform a partial Bayes Linear

adjustment.

We can use the partial Bayes Linear update equations (5.15), (5.16) and (5.17)

to reduce the computational burden of the updating of the random field u(x̂)|F by

the extra point f̃(x̃∗). That is, we can compute

Ef̃(x̃∗)∪F [u(x)] = E[f̃(x̃∗)|F ] [u(x)] + EF [u(x)]
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and

V arf̃(x̃∗)∪F [u(x)] = V arF [u(x)]− V ar
[
E[f̃(x̃∗)|F ] [u(x)]

]
,

where

E[f̃(x̃∗)|F ] [u(x)] = EAF (f̃(x̃∗)) [u(x)− E [u(x)]]

and

AF (f̃(x̃∗)) = f̃(x̃∗)− EF
[
f̃(x̃∗)

]
.

All of the adjustments to be made by the potentially large collection of data F are

performed before the sampling experiment begins. This is so that adjustment by

the extra run f̃(x̃∗) does not require additional large matrix inversions. This will

be important as, when obtaining a large sample, this calculation will turn out to be

the most time consuming.

Having conducted a partial updating of the random field u(x̂) by f̃(x̃∗) given

F , we may then re-characterize our distribution for u(x̂) so that it has the correct

covariance structure, draw a sample from the distribution, and compute f̂ . In

summary, in order to produce one sample from the joint distribution of {f̂ , y, zt0},

given that we have already calculated and fixed v and W , we must do the following:

1. Draw samples from p(x∗), p(η), p(et0), p(β, u(x∗)|x∗, F ) to obtain f̃(x̃∗) and

sample values of x̂, y and zt0 ;

2. Perform a partial Bayes Linear update of the random field u(x̂)|F by f̃(x̃∗) in

order to characterize a new distribution for u(x̂);

3. Draw a sample value for u(x̂) in order to compute f̂ using the already sampled

values of β and x̂.

Note that when generating multiple samples from {f̂ , y, zt0}, we do not remember

the values of f̃(x̃∗) from previous samples when performing the partial Bayes Linear

update step. At the beginning of each sample, we presume that u(x) is a random

field conditioned on F only and that β is correlated with this random field.

We note that many of the decisions we might make in specifying expectations of

functions of the random quantities {x∗, η, e, β, u(x∗), u(x̂)}, having used a computer

algebra package to derive the form of the required functions, would probably be
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based on distributional assumptions. Goldstein and Rougier show in [39] that if,

for example, g(x) = x then in order to compute an expression for V ar
[
f̂
]
, we

must specify third and fourth order moments of β. A natural way of specifying

these is to imagine a distributional form for β (in the paper they choose a normal

distribution) and derive higher order moments from that. In this case, the large

sampling experiment will not only be faster to perform than the more laborious

use of a computer algebra package and individual specification of a large number of

expectations, but will be at least as accurate. Furthermore, the sampling scheme

avoids the sticky problem of specifying quantities such as E [u(x̂)|x∗], which is a

very difficult quantity to think about. We shall discuss this last issue in detail in

section 6.2.5.

Our argument, then, is that in order to perform a Bayes Linear calibrated forecast

via a hat-run, calculating the required moments for the adjustment is most efficiently

done via a large sampling experiment such as the one we have described. We now

turn to the case that we are interested in, namely where the computer model is a

function of both model inputs x and decisions θ, and look at how we may arrive at

decision-dependent calibrated forecasts and how they may be used to provide policy

support within our Sequential Emulation framework.

6.2 The Hat function

We return to the case that we have described for the majority of this thesis, where

the computer model f is a function of model inputs x and decision variables θ. If our

system data zt0 contains significant information regarding x∗ then, for any possible

θ, our decision-dependent forecasts may not be as accurate as they could be. This

will be the case if we have captured the global effects of the model well, but where

we still have a lot of uncertainty regarding local behaviour of the model. If the

information in zt0 regarding x∗ is substantial, then that information could point us

to an area of the domain of the model that we could explore in order to resolve

relevant local uncertainty.

In order to ensure that this information is included, we desire to make calibrated
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forecasts. However, as we have discussed in previous chapters, when the ultimate

goal is to provide decision support for policy makers, these forecasts must be rela-

tively quick as we will be required to compute a large number of them. The current,

fully probabilistic, methods of calibrated prediction are, as we discussed in chapter 2,

too computationally expensive to perform a large number of times in big problems.

Whilst we may use the fully probabilistic methods as part of a multi-level emulation

of the decision tree, we also require tractible methods to make this technology work.

This was discussed in section 3.3.4. We are motivated then, to explore ways that

the Bayes Linear calibrated prediction methodology can be applied to models with

decision inputs.

The hat run methodology allows us, in principle, to learn about local behaviour

of the model around x∗. This learning is achieved by running the model at our ‘best

guess’ for the location of x∗, namely x̂. Even for very expensive computer models

with long run times, the requirement of one further evaluation of the model in order

to significantly improve our forecasts does not seem unreasonable. If we were to

extend the hat run methodology to obtain decision-dependent calibrated forecasts,

we would require a different model run for each forecast. This limits the speed of

our forecasting methodology by the speed of running the computer model. This

means that, for models with very long run times, Bayes Linear calibrated decision-

dependent forecasting would be infeasible because we would not be able to generate

enough forecasts in order to capture our beliefs across the decision space.

6.2.1 The Hat spin

An exception to the above case occurs within the class of models that require spin

up. We described the process of spin up as it applied to C-GOLDSTEIN in section

4.2. Most climate simulators that we have encountered, including the large ones at

the Hadley centre HadCM3 and HadGEM, require spinning up for a model time

consisting of thousands of years before a particular policy may be explored. In the

case where, for a particular choice of model inputs x, the model must be spun up

before the decisions are added, and when the spin up time accounts for the major-

ity of the model run-time, the extension of the hat run methodology to computer
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simulators with decision variables may be a useful tool.

The idea is to locate x̂ in the usual way and then to perform a hat spin by

spinning the model up at x̂. We then define the hat funtion, f̂(θ), to be

f̂(θ) = f(x̂, θ). (6.5)

When spin up is time consuming relative to running the model into the future for a

particular value of θ, we may obtain many evaluations of the hat function relatively

cheaply. Although the time taken to compute a decision-dependent forecast will

still be at least as long as it takes to run the model from its spun up state into the

future, this may be fast enough to allow us to provide useful decision support.

If the computer model takes a very long time to run, then, even if we perform the

hat spin, the hat function may take a long time to evaluate. For example, suppose

that we have a computer model that takes one month to run for one choice of its

inputs. Further, suppose that the ratio of time taken to spin up, compared with the

time taken to run the model into the future for given θ after spin up is the same as

it is for C-GOLDSTEIN, about 40 : 1. Then, having performed the hat spin, each

evaluation of the hat function would still take approximately 18 hours (based on a 30

day month). In these cases, we may try simultaneous computing to obtain enough

evaluations to emulate the hat function. If we could build an accurate emulator for

the hat function, the time taken to compute a decision-dependent forecast could be

very fast indeed.

6.2.2 Forecasting via the hat function

Future states of the complex system y will depend on our choice of θ, hence our

model is f(x, θ). However, the historical system observations to which we have

access have no dependence on θ. Hence,

x̂ = v +Wzt0

does not depend on θ. Therefore, the hat spin, which defines a hat function f̂(θ),

does not depend on θ and is only required once. This means that the calculations

required to obtain v and W are needed only once. Having obtained x̂ and performed
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the hat spin up, however, many of the quantities required for the forecast must be

computed for each individual θ, including the hat function itself.

A Bayes Linear calibrated decision-dependent forecast of y(θ) given data zt0 and

the hat function f̂(θ) is the pair

Ezt0 ,f̂(θ) [y] = E [y]+Cov
[
y, (zt0 , f̂(θ))

]
V ar

[
zt0 , f̂(θ)

]−1 (
(zt0 , f̂(θ))− E

[
zt0 , f̂(θ)

])
,

(6.6)

and

V arzt0 ,f̂(θ) [y] = V ar [y]− Cov
[
y, (zt0 , f̂(θ))

]
V ar

[
zt0 , f̂(θ)

]−1

Cov
[
(zt0 , f̂(θ)), y

]
.

(6.7)

In order to compute the forecast, we require an evaluation of the hat function as

well as second order moments of the collection {y, zt0 , f̂(θ)} for any θ. We have

f̂(θ) = βg(v +W (ft0(x∗) + ηt0 + et0), θ) + u(x̂, θ)

= βg(v +W (βt0jgj(x
∗, θ) + ut0(x∗) + ηt0 + et0), θ) + u(x̂, θ). (6.8)

However, note that the term βt0jgj(x
∗, θ) does not depend on θ because ft0(x∗, θ) ≡

ft0(x∗). This is because historical values of the system do not depend on policies we

make today in order to affect future states. We allow g(x, θ) to contain all of the

regression terms required to describe any output of the simulator in order to provide

structure for our calculations. However, the matrix β is such that the submatrix

containing the rows of β corresponding to time t0 has column i fixed at 0 if gi(x, θ)

is an expression involving θ. Therefore, if g(x, θ) is separable in x and θ, then we

may write

f̂i(θ) = βip (hp(v +W (βt0jgj(x
∗, 0) + ut0(x∗) + ηt0 + et0)) ∗ kp(θ)) + ui(x̂, θ).

We now present the integrals that must be evaluated numerically in order to obtain

the moments of f̂(θ) and the covariance between f̂(θ) and {y, zt0}. We write these

integrals down as expectations, variances and covariances of quantities conditioned

on x∗. From this point on then, any expectation, variance, or covariance involving

only quantities that are specifically conditioned on x∗ imply moments taken with

respect to the distribution p(x∗) via numerical integration or otherwise. For example,
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we regard the quantity E [u(x̂, θ)|x∗] as a quantity specifically conditioned on x∗ so

that

E [E [u(x̂, θ)|x∗]] ≡
∫
E [u(x̂, θ)|x∗] p(x∗)dx∗.

We use this convention to simplify the expressions that arise from these calculations,

and because it will be useful to think of the required moments as complicated func-

tions of x∗ that must first be evaluated before numerically integrating with respect

to p(x∗).

We know that

E
[
f̂(θ)

]
=E [E [βg(v +W (βt0jgj(x

∗, θ) + ut0(x∗) + ηt0 + et0), θ)|x∗]]

+ E [E [u(x̂, θ)|x∗]] (6.9)

and

V ar
[
f̂(θ)

]
= V ar

[
E
[
f̂(θ)|x∗

]]
+ E

[
V ar

[
f̂(θ)|x∗

]]
. (6.10)

We also have

Cov
[
f̂(θ), zt0

]
= Cov

[
f̂(θ), yt0

]
+ Cov

[
f̂(θ), et0

]
,

so that we can obtain Cov
[
f̂(θ), zt0

]
directly from Cov

[
f̂(θ), y

]
if we can compute

Cov
[
f̂(θ), et0

]
.

Cov
[
f̂(θ), y

]
= Cov

[
f̂(θ), f(x∗, θ) + η

]
= Cov

[
f̂(θ), f(x∗, θ)

]
+ Cov

[
f̂(θ), η

]
= E

[
f̂(θ)f(x∗, θ)

]
− E

[
f̂(θ)

]
E [f(x∗, θ)] + E

[
f̂(θ)η

]
− E

[
f̂(θ)

]
E [η]

= E
[
E
[
f̂(θ)f(x∗, θ)|x∗

]]
− E

[
E
[
f̂(θ)|x∗

]]
E [E [f(x∗, θ)|x∗]]

+ E
[
E
[
f̂(θ)η|x∗

]]
− E

[
E
[
f̂(θ)|x∗

]]
E [η]

= E
[
Cov

[
f̂(θ), f(x∗, θ)|x∗

]]
+ E

[
E
[
f̂(θ)|x∗

]
E [f(x∗, θ)|x∗]

]
− E

[
E
[
f̂(θ)|x∗

]]
E [E [f(x∗, θ)|x∗]] + E

[
Cov

[
f̂(θ), η|x∗

]]
+ E

[
E
[
f̂(θ)|x∗

]
E [η|x∗]

]
− E [η]E

[
E
[
f̂(θ)|x∗

]]
= E

[
Cov

[
f̂(θ), f(x∗, θ)|x∗

]]
+ Cov

[
E
[
f̂(θ)|x∗

]
, E [f(x∗, θ)|x∗]

]
+ E

[
Cov

[
f̂(θ), η|x∗

]]
.

(6.11)

June 28, 2010



6.2. The Hat function 219

The two ways of evaluating means, variances and covariances on the collection

{f̂(θ), y, zt0} are the same as for the hat run. We may either use a computer al-

gebra package to expand each of the conditional means, variances and covariances

above into a linear combination of expectations that are functions of θ, β, x∗, η, e,

u(x∗, θ), and u(x̂, θ), specify the expectations of any quantities for which we have

not yet stated beliefs and then integrate with respect to x∗; or we can specify distri-

butions on x∗, η, e, u(x∗, θ), and β and perform a large scale sampling experiment

as we would for a normal hat run.

6.2.3 Sampling the hat function moments

To obtain the moments of the hat function via a large scale sampling experiment

for given θ, we proceed in precisely the same fashion as we would for a single hat

run. Having fixed the matrices v and W (which do not depend on θ) via an initial

sampling experiment, we sample values of x∗, β, u(x∗, θ), η, and e to obtain values

of x̂, y(θ) and zt0 . We then perform a partial Bayes Linear adjustment of u(x, θ)

by the sampled f(x∗, θ) given F , in order to characterize a new distribution for the

random field u(x̂, θ) from which we may then sample to obtain a f̂(θ).

This sampling experiment must be repeated a very large number of times in

order to accurately estimate the required quantities. The time taken to perform

each sample will not be negligible because, even if the distributions we have specified

for each of our quantities is easily sampled from, we must recondition the random

field u(x, θ) at each step.

If we had only a single hat run for which to obtain the required moments, the time

taken to perform the sampling experiment would probably not concern us. Taken

within the context of running the simulator at x̂ and if the problem were serious

enough to require calibrated forecasting, the time taken to obtain the moments of f̂

by sampling would be worthwhile. This argument, however, is very unlikely to hold

when forecasting via a hat function.

We stated earlier that the hat function will be particularly useful for obtaining

calibrated forecasts with simulators that require spin up. For such models, the most

expensive part of the calculation, as far as the simulator is involved, is spinning
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the model up. Having spun the model up, evaluations of the hat function f̂(θ)

are relatively cheap and, as they contain valuable information regarding the local

behaviour of the simulator around x∗ for any θ, our methods of forecasting should

be able to compete with the speed of an evaluation of the hat function. If this is

not the case, we would potentially be wasting evaluations of the hat function that

we can make, or that have been made, because our methods are not fast enough to

deal with them.

Unless, having spun the model up, the simulator still takes a considerable amount

of time to complete a run, directly sampling from the distribution of {f̂(θ), y(θ), zt0}

in order to obtain the required forecasting moments is likely to take too long. If it

does take a very long time to evaluate the hat function, we may have to emulate

it anyway in order to perform a Sequential Emulation. We discuss this further in

section 6.2.6.

If running the model into the future after spin up is significantly quicker than

performing the sampling experiment to calculate the hat function moments, then we

must either emulate E
[
f̂(θ)

]
, V ar

[
f̂(θ)

]
, Cov

[
f̂(θ), y

]
and Cov

[
f̂(θ), zt0

]
, or else

abandon the sampling method altogether. Our ultimate goal is to add calibrated

forecasting via the hat function to our Sequential Emulation methodology. The idea

of using an emulator to calculate the required moments fits into this framework

naturally, as a particular type of fast forecast used in coarse calculations of our

expected loss. The conceptual simplicity of this method also increases its appeal.

Emulating the hat function moments as a function of θ is a daunting task. Sup-

pose our computer model has three outputs and that one of these corresponds to

historical system values. Then the number of individual scalar emulators required

is

3 + 32 + 32 + 3 = 24.

Suppose, for argument’s sake, that we treat this as one large 24-output function to

be emulated at once. Not only would we require a vast number of separate sampling

experiments in order to build such an emulator, but we would inevitably introduce

a lot of new uncertainty into our forecasts. This new uncertainty would be in the

form of uncertainty regarding the new emulator coefficients and processes. The goal
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of this type of calibrated forecasting is to resolve local uncertainty around x∗ for

any θ. We should, therefore, be wary of any method that adds to our uncertainty,

particularly if this can be avoided.

6.2.4 Using a computer algebra package

By using a computer algebra package, much of the calculation required to compute

the moments of the hat function can be done exactly. In contrast to the direct

sampling method, where a large collection of {f̂(θ), y, zt0} are generated and the re-

quired moments are computed directly for the sample, calculations with a computer

algebra package involve computing all of the quantities that are conditioned on x∗ in

the expressions for E
[
f̂(θ)

]
, V ar

[
f̂(θ)

]
and Cov

[
f̂(θ), y

]
, given by (6.9), (6.10),

and (6.11), exactly. We use the algebra package to evaluate the required expressions

and then integrate x∗ out numerically as with all of our forecasting methods so far.

Therefore, if we are able to use a computer algebra package to derive easy to eval-

uate expressions in x∗, u(x∗, θ) and θ, we turn the calibrated forecasting problem

into the familiar forecasting problem, where the main task is integrating out x∗ from

given expressions involving those quantities for any θ. We may then use the methods

discussed in section 2.3.2 to obtain forecasts at whatever level of accuracy we deem

suitable.

The conditional moments that the algebra package must handle are E
[
f̂(θ)|x∗

]
,

V ar
[
f̂(θ)|x∗

]
, Cov

[
f̂(θ), f(x∗, θ)|x∗

]
, Cov

[
f̂(θ), η|x∗

]
, and Cov

[
f̂(θ), et0|x∗

]
.

E
[
f̂(θ)|x∗

]
=E [βg(v +W (βt0jgj(x

∗, 0) + ut0(x∗) + ηt0 + et0), θ)|x∗]

+ E [u(x̂, θ)|x∗] .

We require a computer algebra package so that we may evaluate the vector of ex-

pressions

v +W (βt0jgj(x
∗, 0) + ut0(x∗) + ηt0 + et0),

which is a vector of the same length as x, and then apply g(·, ·) to this vector in

order to compute the vector of expressions

βg(v +W (βt0jgj(x
∗, 0) + ut0(x∗) + ηt0 + et0), θ).
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This is a vector of expressions, each element of which is a linear combination of

known functions of the random quantities βij (for all ij appropriate to the di-

mension of β), ut0(x∗), ηt0 , et0 and x∗, and the known quantities v, W and θ.

E
[
f̂(θ)|x∗

]
is now a linear combination of expectations of each of these functions

plus E [u(x̂, θ)|x∗].

By using the same distributional assumptions as we were prepared to use to

conduct a large sampling experiment, or otherwise, we can either compute or write

down each of these expectations as functions of x∗ and E [ζ(ut0(x∗))|x∗], where ζ(·)

is any function of the random field ut0(x∗), for example, β12ut0(x∗). The algebra

package would be used to compute the expressions, and then the user must provide

a set of rules for evaluating and simplifying the expressions. For example, we might

decide that E [a(ηt0)b(β)|x∗] ≡ 0 for any non-constant functions a(·) and b(·). Note

that we still have not specified how to deal with E [u(x̂, θ)|x∗].

The use of the computer algebra package to obtain the other moments of f̂(θ)|x∗

is similar. Each variance or covariance would first be written in terms of expecta-

tions. For example,

V ar
[
f̂(θ)|x∗

]
= E

[
f̂(θ)2|x∗

]
− E

[
f̂(θ)|x∗

]2

.

Then the expression for f̂(θ)2 is computed by expanding out

(βg(v +W (βt0jgj(x
∗, 0) + ut0(x∗) + ηt0 + et0), θ) + u(x̂, θ))2

and breaking it down into a matrix, each of whose elements is a sum of expecta-

tions that are then computed as functions of x∗, E [ζ(ut0(x∗))|x∗], θ and quantities

involving u(x̂, θ) using a set of rules specified by the user.

Ignoring expressions involving u(x̂, θ) for the moment, this method would not

involve as much work as it may first appear. The cost and difficulty in developing

the code for an algebra package to expand these expressions into the required linear

combination of expectations must only be undertaken once. Specifying a set of

rules for evaluating most of these expectations to leave just functions of x∗, θ and

the expectation of any function of ut0(x∗) will only be required once. Furthermore,

these rules may be derived from the distributional assumptions we would have made

for the conceptually simpler sampling experiment method. Once we have achieved
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these things, and assuming we can handle any functions involving u(x̂, θ) in some

way, we are left with an expression that can be evaluated for any x∗, θ and some

assumptions regarding the functions of ut0(x∗), relatively cheaply. We could, for

example, choose a distribution for ut0(x∗)|x∗, so that each of the expectations of the

functions of ut0(x∗) given x∗ could be derived from this distribution.

Having expended this initial, one-off, effort, we can compute the hat function

moments for any θ by integrating x∗ out of these expressions numerically. Although

this may be challenging, it is no more so than providing a normal forecast by in-

tegrating out x∗ once the algebra package has done its work. Therefore, if we can

specify a way of handling moments of u(x̂, θ), we can use a computer algebra package

to obtain the required moments of f̂(θ) more quickly and more accurately than via

direct sampling, after an initial set up cost. This claim is justified because, having

used the algebra package, we are essentially left with a sampling experiment that

involves sampling from p(x∗) as opposed to the larger scale experiment described

in the previous section. We, therefore, reduce sampling error and require far fewer

individual random number generations to compute a forecast.

6.2.5 Dealing with u(x̂, θ)

Expectations involving functions of u(x̂, θ) conditioned on x∗ pose particular chal-

lenges for the computer algebra package method of calibrated forecasting. The issue

lies in the fact that x̂ depends on the random field ut0(x∗)|F and the value of β

conditioned on this field. This means that the random field u(x̂, θ)|x∗ is implicitly

conditioned on a, potentially, very complicated function of another random field.

Therefore, for a given x∗, we cannot say a great deal about the moments of u(x̂, θ)

without further information.

In the paper by Goldstein and Rougier [39], where they explicitly attempt to

write down the expressions for the hat run moments for the case g(x) = x, they

handle functions of u(x̂) by making the following assumption, which we shall gen-

eralize to functions of u(x̂, θ). Let ζ(·) be some function of u(x̂, θ) required for

computing the hat function moments, then

E [ζ(u(x̂, θ))|x∗] ≈ E [ζ(u(x̂∗, θ))|x∗] , (6.12)
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where

x̂∗ = E [x̂|x∗] .

For any x∗, x̂∗ can be computed directly from (6.1) and, therefore, we can compute

all of the expectations involving u(x̂, θ) by integrating out x∗ in the usual way, as

long as we believe this assumption.

The problem is that there is no reason to believe this assumption, or even to

know whether it is reasonable or badly wrong. We know that x̂ is a point in X,

whose location depends on x∗. The nature of this dependence is complicated and

uncertain, however we do have beliefs about it and we do have an expectation for

its location, namely x̂∗. However, u(x̂, θ) is a complicated random field, our beliefs

about which may be very different at x̂∗ from other plausible values of x̂, depending

on the locations of the runs comprising F in X and x∗.

Suppose, for example, that one of our runs is at, or very close to, x̂∗ and suppose

our covariance function for u(x, θ) has very short correlation lengths. If we have no

other points close to x̂∗ and the observation of the residual surface made at x̂∗ was

very large compared to the prior expectation for the residual, which here we assume

to be 0 for all x, then we would have a sharp spike in the random field for u(x, θ).

Now suppose that given x∗, we believed that x̂ was equally likely to be anywhere

in a large neighbourhood of x̂∗. Then our true expectation of u(x̂, θ)|x∗ would be

close to zero and only slightly influenced by the large spike at x̂∗, and E [u(x̂∗, θ)|x∗]

would be much larger than our true expectation.

In order to be more precise, we might consider the relation

E [ζ(u(x̂, θ))|x∗] = E [E [ζ(u(x̂, θ))|x̂, ut0(x∗), x∗]] ,

with the outer expectation taken with respect to p(x̂, ut0(x∗)|x∗). Theoretically this

might be solved using

E [ζ(u(x̂, θ))|x∗] =

∫ ∫
E [ζ(u(x̂, θ))|x̂, ut0(x∗), x∗] p(x̂|ut0(x∗), x∗)dx̂p(ut0(x∗)|x∗)dut0(x∗),

if suitable distributions p(x̂|ut0(x∗), x∗) and p(ut0(x∗)|x∗) may be specified. Each

ut0(x∗) is informative for the random field u(x, θ)|F and for β|F . To solve this

integral numerically for a given x∗, we would sample a value of ut0(x∗) and partially
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adjust beliefs about u(x, θ) and β by this quantity given F . If we had distributions

on each of ηt0 and et0 in addition, we could then draw samples from p(x̂|ut0(x∗), x∗)

and compute E [ζ(u(x̂, θ))|x̂, ut0(x∗), x∗] for each sample. To compute the required

moments of the hat function using these ideas would involve the same kind of large

scale sampling experiment we have been trying to avoid through using the algebra

package.

Our original idea for computing the hat function moments involved generating a

very large sample of {f̂(θ), y, zt0}, computing the required moments from the sample,

and repeating the process for enough values of θ to allow us to build an emulator

for them. One of the principal issues with this was the amount of uncertainty being

introduced to a calculation that was designed to resolve local uncertainty. By using a

combination of this original idea along with the ideas involving exact computations

with a computer algebra package, we can build an emulator for the hat function

moments whilst introducing a minimal amount of uncertainty through emulation.

Suppose we complete the steps of section 6.2.4 to obtain all of the elements of

the required expectations conditioned on x∗ that do not involve u(x̂, θ), as easy to

evaluate expressions in θ and x∗. Suppose then, that for each of these integrals

we exploit any separability in x∗ and θ, and we solve analytically any parts of

the calculation that we can. Let M(θ) be the collection of all of the hat function

moments that we require. The steps taken so far leave us with

M(θ) = a(θ) + b(x∗, θ) + c(u(x̂, θ)),

where a(θ) is a cheap function of θ derived from our calculations with the computer

algebra package and any analytic integrations with respect to p(x∗) we have been

able to perform; b(x∗, θ) is a function that is computed by integrating cheap functions

of x∗, ut0(x∗) and θ numerically with respect to p(x∗); and c(u(x̂, θ)) is a function of

expectations of functions of u(x̂, θ) derived from work done with the algebra package.

To evaluate M(θ) for given θ, computing a(θ) is trivial; computing b(x∗, θ) will

involve either a large sample of x∗ or another numerical integration technique; and

computing c(u(x̂, θ)) will involve sampling a large number of u(x̂, θ) by generating

a sample from the collection {x∗, ut0(x∗), β, ηt0 , et0} each time, conditioning u(x, θ)

on the sampled ut0(x∗) and β, and then generating a u(x̂, θ). If we assume that any
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time we require a calibrated forecast, we are prepared to evaluate b(x∗, θ) directly

(as we have in our other forecasting methodologies), then instead of emulating all

of M(θ), we could emulate c(u(x̂, θ)) as a function of θ and, compared with the full

sampling method described in section 6.2.3, provide a more accurate emulator for

M(θ) that introduces much less uncertainty into our forecasting calculations.

6.2.6 The practicalities of using a computer algebra package

In order to use a computer algebra package to provide a more accurate emulator

of the hat function moments, there is an initial set up cost and a number of prob-

lem dependent issues to overcome. However, the method is certainly feasible. We

demonstrate this in Appendix F by providing example code for the computer alge-

bra package Maple [70]. Alongside describing the steps that must be taken with an

algebra package and describing what our Maple code does, we provide an illustra-

tion of our method using a simple example of an emulator for a computer model to

derive the required expression for E
[
f̂(θ)

]
only.

Suppose we have a computer model with two outputs, x and θ are univariate,

and that only the second output depends on θ. Our emulator for this model is

f1(x) = x+ u1(x)

f2(x, θ) = 3x+ θ + u2(x, θ),

so that g(x, θ) = (x, θ)T and we assume, for simplicity, that the coefficients are

known. The first task for a computer algebra package would be to expand the

expression for f̂(θ) into a linear combination of the different quantities that we

have. Our Maple code does this via the function Fhat described in appendix F on

page 350. We do this by hand for our example here.

f̂1(θ) = v +Wx∗ +Wu1(x∗) +Wη1 +We1 + u1(x̂)

f̂2(θ) = 3v + 3Wx∗ + 3Wu1(x∗) + 3Wη1 + 3We1 + θ + u2(x̂, θ).

The next step for the computer algebra package is to compute all required functions

of these two expressions and expand them into a linear combination of quantities.

For example, if we required V ar
[
f̂(θ)

]
, we would require the algebra package to

evaluate and expand each element of the matrix f̂(θ)f̂(θ)T . In our Maple code this
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step is automated by defining rules for expressing variances and covariances in terms

of expectations. We describe this automation in appendix F on page 348

Next the algebra package must express each of the required hat function mo-

ments conditioned on x∗ as the sum of expectations of unknown quantities condi-

tioned on x∗. Our Maple code generates expressions for E
[
f̂(θ)|x∗

]
, V ar

[
f̂(θ)|x∗

]
,

Cov
[
f̂(θ), y|x∗

]
and Cov

[
f̂(θ), et0|x∗

]
in terms of expectations of functions of x∗,

θ, ut0(x∗), β, η, et0 and u(x̂, θ), for any form of g(·, ·). This is done via the functions

ExpectFhat, VarFhat, CovFhatY and CovFhate in appendix F on page 351. In our

example this step leaves us with

E
[
f̂1(θ)|x∗

]
= v +Wx∗ +WE [u1(x∗)|x∗] +WE [η1] +WE [e1] + E [u1(x̂)|x∗] ,

and

E
[
f̂2(θ)|x∗

]
= 3v+3Wx∗+3WE [u1(x∗)|x∗]+3WE [η1]+3WE [e1]+θ+E [u2(x̂, θ)|x∗] .

Having completed this initial step, the next job would be to assign a number of

rules in order to evaluate many of these expectations, leaving only quantities that

depend on x∗, ut0(x∗), θ and u(x̂, θ). In appendix F we give some example code

for this. We present a piece of code that sets all expectations containing at least

one element of each of the two distinct sets {β, ut0(x∗), u(x̂, θ)} and {η, et0} to be

zero, and expectations of functions of both η and et0 to be zero as well. This is

on page 353. In addition to this, we demonstrate a piece of code that fixes all

moments involving β alone, if g(·, ·) contains only monomials in x, by assuming that

β has a normal distribution and using a characteristic function argument. This is

demonstrated on page 354. To illustrate this step in our example, suppose that our

discrepancy and observational error had zero mean, then we would have

E
[
f̂1(θ)|x∗

]
= v +Wx∗ +WE [u1(x∗)|x∗] + E [u1(x̂)|x∗] ,

and

E
[
f̂2(θ)|x∗

]
= 3v + 3Wx∗ + 3WE [u1(x∗)|x∗] + θ + E [u2(x̂, θ)|x∗] .

Having used the algebra package and provided rules for evaluating as many expecta-

tions as possible, the output would then be written out to a file. This file would then
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be read by the program with which we intend to perform numerical integration with

respect to x∗ and in whose environment we intend to compute calibrated forecasts

by emulating those features of the hat function moments still depending on u(x̂, θ).

The next task would be to integrate out x∗ in order to remove the conditioning

and to obtain the hat function moments. Using the notation of the previous section,

we have

E
[
f̂i(θ)

]
= ai(θ) + bi(x

∗, θ) + ci(u(x̂, θ))

where a(θ) is a cheap function of θ derived from our calculations with the computer

algebra package and any analytic integrations with respect to p(x∗) we have been

able to perform; b(x∗, θ) is a function that is computed by integrating cheap functions

of x∗, ut0(x∗) and θ numerically with respect to p(x∗); and c(u(x̂, θ)) is a function of

expectations of functions of u(x̂, θ) derived from work done with the algebra package.

Assuming that we have E [x∗] as it was required in order to compute x̂, then in our

example

a(θ) =

 v +WE [x∗]

3v + 3WE [x∗] + θ

 ,

b(x∗, θ) =

 WE [E [u1(x∗)|x∗]]

3WE [E [u1(x∗)|x∗]]

 ,

and

c(x̂, θ) =

 E [E [u1(x̂)|x∗]]

E [E [u2(x̂, θ)|x∗]]

 .

We would use the normal numerical integration methods of chapter 2 to compute

b(x∗, θ), and would use the sampling experiment described in section 6.2.5 in order

to emulate c(x̂, θ).

Although there may be a deal of extra work involved in using a computer algebra

package to help emulate the hat function moments in this way, this work may be

undertaken during the time it takes to spin up the computer model. Having per-

formed the emulation, we can then exploit spin up by evaluating the hat function

anywhere and being able to to compute a Bayes Linear calibrated forecast in roughly

the same amount of time it would take to provide an ordinary forecast. Note that

this is limited by the time it takes us to integrate out x∗.
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Certain, very powerful, computer models may have run times that are dominated

by spin up time, but with such a long run time that the hat function takes a very

long time to evaluate. In this case, the hat function itself may have to be emulated.

A more interesting solution may involve an emulator for the forecast for y(θ), or

some function of a forecast such as the expectation integrals required in Sequential

Emulation, being built using ordinary forecasts as coarse evaluations, and a handful

of calibrated forecasts as careful evaluations. Even in this case, the substantial

amount of time required to spin the model up should provide enough time to use

an algebra package in order to maximise what is learned from the few hat function

evaluations for which we have time.

6.3 Sequential Emulation with the hat function

We consider the policy problem of section 3.1.3, where we must make policy today

and have the option of making m interventions to that strategy at m distinct time

points, each following an observation of the system. There are, essentially, two

ways of introducing calibrated forecasting by amending the Sequential Emulation

algorithm. We may choose to define x̂ = v +Wzt0 , perform the hat spin, and allow

our forecasts for y and for zt1 , . . . , ztm to be calibrated via the hat function, f̂(θ),

which may be evaluated now for any θ. At each step in the Sequential Emulation

algorithm, our forecasts only differ from those used in the original version of section

3.6 in that local information around x∗ provided by zt0 is accounted for.

The rather more abstract alternative to this method is to consider that each

observation, ztk , will define its own x̂tk = vk +W kzk. Therefore, we might consider

the joint observation of ztk and f̂k(θ) ≡ f(x̂tk , θ) at each time point and attempt to

solve the decision tree defined by the policy problem that contains both observations

at each chance node. We address this last idea later; here we explore the arguably

more natural situation where only one hat function is considered at this point.
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6.3.1 Just one hat function

We describe the Sequential Emulation algorithm in the case where zt0 is to be used to

define a hat function, no other hat functions are being considered, and we must solve

the policy problem of section 3.1.3. In the original Sequential Emulation algorithm

we must sample from distributions p(y|zm, θm) and p(ztk |zk−1, θk−1) for k = 1, . . . ,m.

If using Bayes Linear forecasting to characterize these distributions, then we com-

pute either Ezm [y; θm] and V arzm [y; θm], or Ezk−1

[
ztk ; θ

k−1
]

and V arzk−1

[
ztk ; θ

k−1
]

using the forecasting methods of section 2.3.2, and then make some distributional

assumption that uses the appropriate adjusted mean and variance to characterize a

probability distribution.

The original Sequential Emulation algorithm requires multi-level emulation of

expectations taken with respect to each of these distributions. For both coarse

and accurate methods of calculating these expectations, we are required, as part of

preliminary steps to be performed, to decide what our forecasting methods will be.

For any method that we choose to be Bayes Linear, we may now use a calibrated

forecast based on f̂(θ). There may be situations where we do not use Bayes Linear

calibrated forecasts, even though we have performed a hat spin based on zt0 and can

compute f̂(θ). A particular example would be when, even after spin up, f̂(θ) takes

a long time to compute. We may then choose to allow coarse forecasting methods

to be the same as in section 2.3.2, and only use calibrated forecasts for accurate

calculations.

Supposing that we can compute calibrated forecasts for each of the quantities

required to characterize p(y|zm, θm) and p(ztk |zk−1) for k = 1, . . . ,m, then, the

Sequential Emulation algorithm that includes the possibility of using a hat function

differs from the original Sequential Emulation algorithm only at step P3. Step P3

requires that we select both accurate and fast forecasting calculations, where ‘fast’

forecasting calculations will be Bayes Linear forecasts. P3 changes here by allowing

us to choose Bayes Linear calibrated forecasts for either fast or accurate forecasting

methods or both. If Bayes Linear calibrated forecasts are chosen, we must compute

x̂, spin the model up, and emulate the required moments of f̂(θ) using the methods

described in the previous section. Once this is done, we characterize the required
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distributions for Sequential Emulation using Bayes Linear calibrated forecasts in the

following way.

Firstly, the distribution for p(y|zm, θm, f̂(θ)) is characterized using Ezm,f̂ [y; θm]

and V arzm,f̂ [y; θm] with

Ezm,f̂ [y; θm] = E [y]+Cov
[
y, (zm, f̂(θ))

]
V ar

[
zm, f̂(θ)

]−1 (
(zm, f̂(θ))− E

[
zm, f̂(θ)

])
and

V arzm,f̂ [y; θm] = V ar [y]−Cov
[
y, (zm, f̂(θ))

]
V ar

[
zm, f̂(θ)

]−1

Cov
[
(zm, f̂(θ)), y

]
.

The moments on the collection {f̂(θ), zm, y} are emulated beforehand as part of

P3. For k = 1, . . . ,m, the distributions p(ztk |zk−1, θk−1, f̂(θk−1)) are characterized

similarly using Ezk−1,f̂

[
ztk ; θ

k−1
]

and V arzk−1,f̂

[
ztk ; θ

k−1
]
.

To be absolutely clear: if we are able to use Bayes Linear calibrated forecasts

based on the hat function defined by zt0 in our Sequential Emulation of the decision

tree, then the Sequential Emulation algorithm changes only at step P3, where we

replace P3 with P̂3.

P̂3

Select both ’accurate’ and ’fast’ forecasting methods When performing the

Sequential Emulation algorithm we will require 1
2
(m+ 1)(m+ 2) multi-level emula-

tions. Each of these is an expectation with respect to a probability distribution for

future states or observations of the complex system. These distributions are either

derived exactly from our forecasting methods, or we use Bayes Linear forecasts to

characterize these distributions. The observation zt0 defines a hat function that we

may use to provide calibrated forecasts for either fast or accurate methods. We first

decide whether or not Bayes Linear calibrated decision-dependent forecasts will be

used for coarse versions, accurate versions or both. We then perform the hat spin

and emulate the hat function moments in the way described in section 6.2. How

accurate our emulation of the hat function moments is and how carefully we per-

form the required numerical integrations with respect to x∗ is a decision that must

be taken at this point, and will depend on whether we are using the forecasts in
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coarse or accurate evaluations of our expectations, and at what stage our analysis

is. For example, if we have pruned our tree and refocussed many times, we may

be prepared to use all of our remaining time to obtain the most accurate calibrated

forecasts we can. On the other hand, if this is our first Sequential Emulation of the

decision tree and we intend to prune and refocus many times, we may choose not to

use calibrated forecasting at all on the first sweep.

6.3.2 Future hat functions

It is natural to include the hat function that we may evaluate now for any θ into our

Sequential Emulation framework because we have already computed x̂ and spun the

model up. As discussed in section 6.3.1, the Sequential Emulation algorithm barely

changes and Bayes Linear calibrated forecasts are used as part of either coarse or

accurate calculations, or both, as the user sees fit.

If Bayes Linear calibrated forecasting will be our future method of choice when

assessing the impact of new system observations, however, by following this version

of the algorithm we are not emulating our future behaviour. At some future time

point, tk, we observe data from the complex system ztk . We could then, in theory,

define

x̂k = vk +W kzk

= Ezk [x∗]

and

f̂k(θ) ≡ f(x̂k, θ),

so that f̂k(θ) is the hat function that, if we spun the model up at x̂k having observed

ztk , we would be able to evaluate at time tk. Knowing that each observation of the

system that we may make in the future defines a new hat function alters our decision

tree in the following way: after each observation ztk , we must decide whether or not

to spin the model up at x̂k, and if we do we may observe f̂k(θ) for any θ before

making our next decision.

An example of this decision tree where we only have one intervention point is

shown in figure 6.1. Providing policy support for such a decision tree, including the
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Figure 6.1: An example of the decision tree defined by the policy problem with one

intervention point that includes the option of performing the hat spin and evaluating

the hat function defined by any zt1 . Although the tree marks the observation of f̂ 1

if we choose to perform the hat spin, we argue in the main text that this observation

is a surface in θt1 . This surface is not observed in its entirety having performed the

hat spin, but we are able to evaluate it for many θt1 by evaluating the hat function.

most general case where we have m potential hat functions, is beyond the scope

of this thesis. However, we include some ideas for approaching the problem via an

adapted Sequential Emulation here, for the case where m = 1.

In order to emulate the decision tree in figure 6.1, we must be able to sample from

the distribution p(y|f̂ 0, f̂ 1, θ1, z1), where f̂ 0 is defined to be the hat function we can

evaluate now. We would do this by computing Ez1,f̂1,f̂0 [y; θ1] and V arz1,f̂1,f̂0 [y; θ1]

and characterizing a distribution for y using its adjusted moments in the same way as

June 28, 2010



6.3. Sequential Emulation with the hat function 234

seen before. In order to compute these forecasts we would require the joint moments

of the collection {f̂ 0(θ), f̂ 1(θ), y, z1}, which would be obtained using the computer

algebra package methods to build an emulator for them in the same way that we

did for one hat function.

This emulator could be built before addressing the decision problem and, if it

is feasible to emulate the moments of one hat function, there is no reason that

emulating the joint moments of two or more hat functions would not be feasible.

What would make this decision tree difficult to emulate is the way in which f̂ 1(θt1)

informs our choice of θt1 . If we assume that, having spun the model up at x̂1, we can

evaluate f̂ 1(θt1) for any θt1 cheaply to inform our downstream decision making, it is

difficult to see how f̂ 1(θt1) is ‘observed’ before we take our downstream decision. Put

another way, each branch of the decision tree leading up to θt1 contains a random

function of θt1 . Hence, having observed zt1 and chosen to perform the new hat spin,

the ‘observation’ of f̂ 1(θt1) is a realisation of a stochastic function of θt1 that may

now be evaluated. We, in fact, observe a surface in θt1 before choosing a downstream

decision.

The difficulties that must be overcome if we are to apply our Sequential Emula-

tion techniques to this decision tree are, then: how to sample random functions of

θt1 from a distribution p(f̂ 1(θt1)|f̂ 0(θ1), θt0 , z
1) so that, once sampled, we can then

evaluate the sampled function for many different θt1 ; and how to describe ‘observed’

functions of θt1 in a way that allows us to determine downstream strategy λt1 as a

function of these observations.

To make this clearer, suppose we have chosen a θt0 , observed zt1 and observed the

surface f̂ 1(θt1). Our downstream strategy, if we were using Sequential Emulation,

would be defined by

λt1(θt0 , z
1, f̂ 1(θt1)) = argmin

θt1

{Ẽ
[∫

L(y, θ)p(y|f̂ 0, f̂ 1, θ1, z1)dy

]
}. (6.13)

Irrespective of how we might build such an emulator, we must have a way of

parametrizing observations of f̂ 1 that define a function of θt1 that we are able to

evaluate quickly. Without this we could not see how optimal strategy changed with

the inclusion of a second hat function when compared to the case where we do not

spin the model up again. If we cannot find a way of parametrizing f̂ 1(θt1) so that
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an observation of f̂ 1(θt1) defines a curve in θt1 , the Sequential Emulation methods,

which rely on defining downstream strategies as functions of quantities already ob-

served and decisions already made, must either be radically changed or abandoned

altogether. To be clear, if we wish to employ Sequential Emulation methods for

this decision problem, an observation of f̂ 1(θt1) must fix a curve in θt1 that has no

stochastic properties and can be readily evaluated for any θt1 .

For any given branch of the decision tree, θt0 and zt1 are fixed. Therefore, x̂1 is

fixed and we have

f̂ 1(θt1) = βijgj(v
1 +W 1z1, (θt0 , θt1)) + ui(x̂

1, (θt0 , θt1)).

Using a computer algebra package or otherwise, we may write this as

f̂ 1(θt1) = αij(θt0 , z
1, β)ζj(θt0 , z

1, θt1) + ui(x̂
1, (θt0 , θt1)), (6.14)

where αij(θt0 , z
1, β) is a matrix whose entries are known functions of θt0 , z1 and β,

and ζj(θt0 , z
1, θt1) is a vector of functions that are either 1 or contain θt1 .

If we ignored u(x̂1, (θt0 , θt1)) for a moment, then observing β fixes α and, without

u(x̂1, (θt0 , θt1)), would determine a curve in θt1 that could be readily evaluated. As

u(·, ·) is a random process, however, it is difficult to determine a way in which an

observation of f̂ 1(θt1) defines a deterministic curve in θt1 . One idea is to expand

u(x̂1, (θt0,θt1 )) as a Taylor series in θt1 and approximate u(x̂1, (θt0 , θt1)) by a higher

order polynomial derived using the expansion. For example, suppose we let

ui(x̂
1, (θt0 , θt1)) ≈ γi0 + γi1θt1 + γi2θ

2
t1

+ . . .+ γinθ
n
t1
. (6.15)

Then an observation of a curve f̂ 1(θt1) is defined by observation of α and γ. Our

time t1 strategy λt1 would then be a function of θt0 , z1, α and γ. Given any α,

γ and θt1 we could compute f̂ 1(θt1) using (6.14) and (6.15) and, therefore, sample

from p(y|f̂ 0, f̂ 1, θ1, z1) and compute expected loss. In order to be able to perform

a Sequential Emulation within this framework, we would need, now, to specify how

to sample from p(α, γ|f̂ 0, z1, θt0). Whilst there may be many ways of doing this,

we suggest the following approach. If we can use f̂ 0(θt0) and zt1 to appropriately

condition {β, u(·)}, then we could sample a value of β to obtain a sample value for
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α, condition u(·)|f̂ 0(θt0), zt1 by this sampled value of β, and then sample a very large

number of values of this random field over some design in θt1 . This large sample (as

long as it was bigger than the order of the polynomial approximation in (6.15)) could

be used to fit values of γ, thus generating a sample from p(α, γ|f̂ 0, z1, θt0). One way

in which we might achieve the required conditioning of β and u(·) by f̂ 0(θt0) and zt1

is to use approximate Bayes computing.

We can evaluate f̂ 0(θt0), for any θt1 , using the hat spin that has already been

performed. Suppose we have conditioned β and u(x, θ) on runs F already. Then

we may use approximate Bayes computing in the following way. We generate an x∗,

β, u(x∗, θt0), η and et1 from the appropriate distributions to compute a candidate

value of zt1 . We do this in the same way as for the large sampling experiments we

advocated in section 6.1.1. If the candidate is within a certain pre-chosen neigh-

bourhood of our zt1 , then we use the sampled values of β and u(x∗, θt0) to define a

model run f̃(x∗, θ). We then adjust {β, u(·)} by f̂ 0(θt0) and f̃(x∗, θ), and judge that

these new beliefs on that random field are appropriately conditioned on our values

of zt1 and f̂ 0(θt0). If the candidate is outside that neighbourhood, we generate a

new candidate.

The types of problems we must overcome if we were to adopt a Sequential Emu-

lation approach for providing insight into the decision tree are discussed above. If,

however, we are prepared to take a more pragmatic but, perhaps, less accurate ap-

proach in order assess the impact of future hat functions on our expected losses, then

we may use certain simplifications to help us. One idea is to first assess an order of

magnitude reduction in our variance for y attributable to future hat functions. This

might be achieved, for example, using some form of sampling experiment. Having

performed this assessment, we could then explore the impact on the decision tree of

reducing the forecast variance by the amounts given. Such an approach is similar,

in spirit, to the approach we adopted for handling future model observations on as

yet unbuilt models in chapter 5. In that case we found it impossible to deal with

the full decision tree that contained all possible designs of future model runs, and

replaced the observation of runs by the observation of the adjusted coefficients on

our emulator and an overall reduction in forecast uncertainty experienced having
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built and performed runs on a new model.

We have presented a number of ideas regarding how our Sequential Emulation

methodology might be adapted to help provide policy support for problems where

we know we may wish to define a new hat function or several new hat functions in

the future. It is unclear whether or not Sequential Emulation would be appropriate

in such decision problems. The goal in evaluating a new hat function is to resolve

more of our local uncertainty around x∗, having already evaluated the hat function

defined by observations of the system obtained before choosing θt0 . When building

emulators for deterministic functions, we introduce uncertainty into our description

of the function. If a new, future, hat function is only there to reduce an already

small amount of uncertainty, will any benefits of that reduction in uncertainty show

up in our analysis or will they be lost in the new emulator uncertainty that we would

be introducing? If the ideas we have discussed or others were to be used to provide

an emulation of this decision problem, this question must be seriously addressed. It

may be that there is a better way to provide insight into this decision problem and

we leave this as an open research question.
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Concluding remarks

In this thesis we set out to investigate how some of the sophisticated methods

available for making inference regarding future states of complex systems using

computer models, might be used in order to provide decision support in large scale

policy problems. As part of this investigation, it was our aim to generalize some of

the Bayes Linear forecasting technologies in the computer experiment literature to

the case where we could make decisions in order to affect future states of a complex

system, and where these decisions are inputs to our model.

We began our investigation in chapter 2 by reviewing the current methods for

emulating computer models in order to make inference about complex systems. We

described current Bayes Linear forecasting methods within the computer experiment

literature and generalized them by defining Bayes Linear decision-dependent fore-

casts. We remarked that the amount of numerical integration required to provide

just one forecast may render the idea of exploring how our beliefs change as we move

through the decision space infeasible. In section 2.3.3 we demonstrated how separa-

bility, where it exists in our emulator, may remove any dependence on θ from our

forecast integrals. In section 2.3.4 we defined fast forecasts and presented a number

of different ideas that exploit various potential features of the correlation function of

our emulator residual, in order to produce computationally efficient approximations

to our forecasts.

Depending on the nature of the problem, the speed at which decision-dependent

forecasts may be obtained could be crucial. Whilst we believe that the fast forecast-
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ing methods we have proposed are useful, we have left plenty of scope for further

work. In particular, the question of how much of the accuracy of the forecast we

are prepared to trade off for computational efficiency, and how one quantifies those

two ideas in the context of the decision problem, is an area which remains to be

explored.

In chapter 3 we described the policy problem where future system observations

could be made and policy strategies adapted accordingly. We discussed how cur-

rent methods in Integrated Assessment modelling provide decision support for these

problems and identified a number of drawbacks within that approach. The princi-

ple limitations were that there is no formal treatment of the uncertainty regarding

the discrepancy between the real world and the computer model, and that in order

to retain tractibility the most powerful computer models available for a particular

complex system could not be used. We presented an alternative approach that used

current methods for making inference about complex systems with computer mod-

els in order to combine information from the most powerful simulator available and

real-world observations of the complex system in our analysis of the decision prob-

lem. The decision tree that we defined could not be solved exactly. We, therefore,

developed a method which we called Sequential Emulation, designed to emulate

our decision tree in order to provide decision support. The method relied heavily

on Bayes Linear multi-level emulation of expected losses, with coarse evaluations

derived using Bayes Linear decision-dependent fast forecasts.

In performing a Sequential Emulation of a decision tree, we obtain an emulator

for an upper bound on our expected loss for making policy today. We also obtain

policy adaptation strategies for each of the times at which we intend to observe the

system and revise policy. These strategies are in the form of emulators that are

functions of the decisions already made and the observations of the system that we

have. In section 3.7 we described some of the many ways in which these results can be

used to provide policy support. These included pruning and refocussing, sensitivity

analysis and risk profiling. We provided examples of these policy support ideas in

practice in chapter 4. The policy support ideas we presented did not constitute an

exhaustive list of the possible applications of the results of a Sequential Emulation.
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We also did not provide any concrete methodology for deciding how and where to

prune our decision space based on the output of a Sequential Emulation.

There are many possible avenues for further work opened up by our Sequential

Emulation methodology. How one visualizes each of the downstream strategies and

assesses their performance; how one decides where to prune the decision space,

and when to stop pruning and refocussing and make the final decision; and how one

assesses the quality of the emulator for the upper bound are all examples of potential

future directions. Our methods were developed under the assumption that the loss

function is known. The extension of our methods to the case where we have a loss

model with many uncertain parameters, and whose relation to our true preferences is

uncertain, is a natural area for further work. We provided early discussion regarding

this in section 3.8.

Sequential Emulation assumes that we would like to do a full backwards induction

on our decision problem, and then aims to emulate this process. There may be more

advanced decision theoretic methods for solving infinite decision trees, such as those

generated by the policy problems we have discussed, in the literature. It is likely

that, because we must use expensive forecasting methods to derive the probabilities

on our tree, these methods would still be computationally challenging. In this case,

the idea of emulating the process of solving the decision tree, in the same way

that our Sequential Emulation mimics backwards induction, may be a way forward.

Further work in this area may consider different methods for solving decision trees

and applying the Sequential Emulation ideas within these frameworks in order to

provide decision support for policy problems.

In chapter 5 we addressed the important issue of evolving computer models and

how we may use our current model to provide decision support when it is known that

we may be able to observe runs on improved models in the future. We generalized

some of the reification techniques for computer models introduced by Goldstein and

Rougier in [40] to the case where we have decisions as inputs to our model and where

those decisions affected future states of the complex system.

We used structural reification to develop a treatment of observations of out-

put from future models that was tractible and that allowed us to derive decision-
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dependent forecasts that were appropriately conditioned on these observations. We

called these reified decision-dependent forecasts and decision-dependent observation

forecasts. We showed how, within the framework that we had established, we were

able to use Reified Sequential Emulation to provide policy support for problems

where the computer models are continually evolving and how we are able to con-

sider certain research investment decisions concurrently. In particular, the decision

of whether or not to invest in a certain improved model and how much to run that

model, can be included as part of the policy problem. We demonstrated this using

an extension to the example we presented in chapter 4.

There are a number of potential avenues for further work in this area. Our

methods treat future model observations as observations of the adjusted expectation

of the emulator coefficients for that model. If our uncertainty on the residuals

for future models is large, further modelling may be required in order to perform

meaningful policy support.

There may be a significant number of potential policy support tools that could

be derived from the results of a Reified Sequential Emulation, particularly related to

visualization of downstream policy and model build strategies, as well as methods

specifically focussed on the research investment questions posed by the ability to

build and run improved simulators. We gave a short discussion of this matter in

section 5.9.2. Another extension to this methodology could involve providing policy

support when not only the computer models for the complex system are evolving,

but when we have a loss model which is continually being improved upon as well.

In chapter 6 we moved away from the case where the models are improving,

and focussed on generalizing the Bayes Linear calibrated forecasting methodology

of Goldstein and Rougier [39] to the case where our computer model had decision

inputs, and where those decisions affected future states of the complex system.

We showed how observations of the complex system defined a hat function, and

described how, for models with a spin up property, this hat function could provide

very useful information around the best input. We argued that the hat function

moments would need to be emulated if we were to effectively exploit the spin up

property, and showed how a computer algebra package might be employed to limit
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the amount of emulator uncertainty introduced into our forecasts.

In section 6.3 we showed how the Sequential Emulation algorithm could be

adapted to allow the use of Bayes Linear calibrated forecasts when evaluating ex-

pected losses. We did this for the case where only the hat function, defined by zt0 ,

was considered. Finally, we pointed out the issues involved in considering the more

general case where future observations of the system are allowed to define new hat

functions, and we may decide whether or not to perform the new hat spin. We

offered insight into how Sequential Emulation methods might be adapted to cater

for these problems. It may be, however, that future work in this area would have to

move away from Sequential Emulation, as was discussed at the end of the chapter.

The Bayesian analysis of computer experiments and how they may be used to

make inference regarding complex systems, is a subject in its infancy. One of the

key reasons for building a computer model of a complex system is to inform policy

judgements. The work we have done has generalized some of the modern methods

of forecasting future states of complex systems using computer models, to the case

where decisions, parametrized as inputs to the model, can be taken in order to

influence those future states. We showed how formal treatment of the model and

the system defined an infinite decision tree, and our Sequential Emulation technology

represents a useful method for providing policy support in many different contexts.

We believe that these methods represent first steps towards the goal of being able to

choose the optimal course of action in real world policy problems, when computer

models are used to inform scientific judgements regarding complex systems.

June 28, 2010



Bibliography

[1] United nations framework convention on climate change. http://unfccc.

int/2860.php.

[2] Mucm toolkit. http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?

page=AltCoreDesign.html, 2009.

[3] Jian An and Art Owen. Quasi-regression. Journal of Computing, 17:588–607,

2001.

[4] J. Baehr, K. Keller, and J. Marotzke. Detecting potential changes in the

meridional overturning circulation at 26on in the atlantic. Climatic Change,

91(1-2):11–27, 2008.

[5] S. C. Bankes. Tools and techniques for developing policies for complex and

uncertain systems. PNAS, 99, May 2002. Colloquium Paper.

[6] M. S. Bartlett. An Introduction to Stochastic Processes, with special reference

to methods and applications. Cambridge University Press, Cambridge, London,

New York, Melbourne, 1978.

[7] L. S. Bastos and A. O’Hagan. Diagnostics for gaussian process emulators.

Technical report, University of Sheffield, 2008.

[8] R. A. Bates, R. J. Buck, E. Riccomagno, and H. P. Wynn. Experimental

design and observation for large systems. Journal of the Royal Statistical

Society, Series B, 58(1):77–94, 1996.

243



Bibliography 244

[9] M. J. Bayarri, J. O. Berger, D. Higdon, M. C. Kennedy, A. Kottas, R. Paulo,

J. Sacks, J. A. Cafeo, J. Cavendish, C. H. Lin, and J. Tu. A framework for

validation of computer models. Technometrics, 49(2):138–154, 2007.

[10] J. Berger. The case for objective bayesian analysis. Bayesian Analysis,

1(3):385–402, 2006. Including comments and rejoindre.

[11] G. Blatman, B. Sudret, and M. Berveiller. Quasi-random numbers in stochas-
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Appendix A

Notation

A.1 Use of subscripts and the manipulation of ar-

rays

Throughout this thesis we use subscripts to denote particular elements of vector,

matrix or array type objects. An object with a single subscript is a vector with the

subscript labelling the element, for example, aj is the jth element of vector a. An

object with a double subscript is a matrix with a particular entry labelled by the

subscript, for example, Aij represents the ijth element of matrix A. The meaning

of objects with 3 or 4 subscripts is given on page 19, as is the convention we use for

repeated subscripts in array computations. The meaning of the ‘∗’ operator within

array computations is given on page 34.

There are instances where subscripts are used in a way that deviates from gen-

eral description above. These are clearly defined in the text and also appear in the

nomenclature below. One common deviation is to use subscripts that are not com-

binations of simple letters like ijk, but have further subscripts. For example, the

subscript ti, which appears throughout our policy making methodology, indicates

the vector value of a decision or system observation (depending to which object it

is added as a subscript) at a particular time in the future. This is defined on page

46 and in the nomenclature.

We define the inverse variance of an array A, V ar [A]−1, using the following
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convention. Let P = V ar [A]−1, then if A is a matrix, we define P so that

PijklCov [Akl, Aqr] =

 1 if i = q and j = r

0 otherwise

Similarly, if A is a three dimensional array, then we define P so that

PijklqrCov [Alqr, Asvw] =

 1 if i = s, j = v and k = w

0 otherwise

A.2 Nomenclature

A(θm, zm) An expected loss as a function of all m+1 observations and decisions. Defined

formally by (3.1) on page 54.

A(θm, zm, H [m]) An expected loss written as a function of all m+1 system observations, the m+

1 decisions, and the m observed adjusted expectations of the model emulator

coefficients for the m improved models. This definition appears in chapter 5

on page 188 and applies to the decision problem where we know we can build

improved versions of our current simulator in the future.

Bm(θm−1, zm) The minimum of A(θm, zm) taken over the last decision θtm . Defined formally

by (3.2) on page 55.

Bk(θk−1, zk) The minimum of Ck+1(θk, zk) taken over the kth policy intervention θtk for

k = 1, . . . ,m. Defined formally by (3.4) on page 57.

Bm
λm(θm−1, zm) An upper bound on Bm(θm−1, zm) obtained by fixing θtm = λtm . This is

defined by (3.17) on page 69.

Bm
λm(θm−1, zm, H [m]) The equivalent of Bm

λm(θm−1, zm) in chapter 5 for the case where we may ob-

serve the adjusted coefficients of m improved models in the future. This is

defined on page 188.

Bm
λk+1(θk, zm) is defined to be A((θk, λk+1), zm), by (3.19) on page 71.

Bm
λk+1(θk, zm, H [m]) is defined to be A((θk, λk+1), zm, H [m]), by (5.36) on page 188.
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Cm(θm−1, zm−1) The expectation of Bm(θm−1, zm) with respect to ztm given all other decisions

and observations. Defined formally by (3.3) on page 55.

Cm
λm(θm−1, zm−1) An emulator for an upper bound on Cm(θm−1, zm−1) conditioned on time tm

strategy λtm . This is defined by (3.18) on page 70

Cm
λm(θm−1, zm−1, H [m−1]) The equivalent of Cm

λm(θm−1, zm−1) in chapter 5 for the case where we may

observe the adjusted coefficients of m improved models in the future. This is

defined on page 188.

Ck(θk−1, zk−1) The expectation of Bk(θk−1, zk) with respect to ztk given all previously taken

decisions and observations for k = 1, . . . ,m. Defined formally by (3.5) on page

57.

Cm
λk+1(θk, zm−1) An emulator for an upper bound on Cm(θm−1, zm−1) conditioned on strategies

from time tk+1 to time tm of λtk+1
, . . . , λm. This is defined by (3.20) on page

71.

Cm
λk+1(θk, zm−1, H [m−1]) The equivalent of Cm

λk+1(θk, zm−1) in chapter 5 for the case where we may

observe the adjusted coefficients of m improved models in the future. This is

defined on page 188.

Cj
λk+1(θk, zj−1) An emulator for an upper bound on Cj(θj−1, zj−1) for j = k + 1, . . . ,m − 1,

conditioned on strategies from time tk+1 to time tm of λtk+1
, . . . , λm. This is

defined by (3.21) on page 71.

Cj
λk+1(θk, zj−1, H [j−1]) The equivalent of Cj

λk+1(θk, zj−1) in chapter 5 for the case where we may ob-

serve the adjusted coefficients of m improved models in the future. This is

defined on page 189.

C1(θt0 , zt0) The expected loss surface as a function of today’s policy θt0 and historical

system observations zt0 .

C1
λ1(θt0 , zt0) is an emulator for our upper bound on the expetced loss surface for policies

made today.
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et0 Is the measurement error encountered when observing real-world system data

zt0 , introduced on page 26.

Ẽ [·] is an operator that indicates an expectation to be obtained by emulating the

argument function and evaluating the expectation on the emulator. Introduced

on page 70.

f(·) Denotes the vector valued output for a computer simulator, first introduced

on page 6.

f ∗(·) Denotes the vector valued output of the reified simulator which is defined on

page 166.

f 0(·) Denotes the vector valued output of our current computer model in the case

where we consider the potential for improved models in chapter 5. This de-

scription is first introduced on page 168.

fk(·) Dentoes the vector valued output of the improved version of our computer

model that we will have access to at time tk for k = 1, . . . ,m. This is defined

on page 168.

f̂ Denotes the hat run f̂ = f(x̂) for a computer model that does not have any

decision inputs. This is defined on page 208.

f̂(θ) Denotes the hat function f̂(θ) = f(x̂, θ), defined on page 216.

F Denotes a matrix whose columns are n computer model runs at locations

(x1, θ1), . . . , (xn, θn), first seen on page 12 and defined formally on page 19.

F k Denotes a matrix whose columns are n runs of model fk(x, θ) at locations

(x1, θ1), . . . , (xn, θn). Defined on page 173.

g(x, θ) Denotes vector of basis functions in an emulator, introduced on page 11. In

chapter 5 this is generalized to be the vector of all basis functions included

on any one of our emulators in a structural reification of a current computer

model. This notation only applies to chapter 5 and is presented on page 169.

June 28, 2010



A.2. Nomenclature 258

G Denotes the model matrix with columns g(x1, θ1), . . . , g(xn, θn), defined on

page 19.

Hk Is defined to be the expectation of coefficients βk, adjusted by runs F k. It is

treated as a random quantity that may be observed in place of F k. This is

defined and explained on page 175.

H [k] = H1, . . . , Hk, defined on page 175.

L(xL, y, θ) The loss model, evaluated at parameters xL, with policy θ and complex system

state y. This was defined on page 47. Throughout most of the thesis we

suppress xL as the loss model is often treated as a function of just y and θ.

m The number of intervention points for the policy support problem, defined on

page 46.

t0 when written as a subscript, indicates the subset of the labeled object that

refers to historical values. For example, yt0 indicates the historical state vector

for the complex system y. Defined on page 26.

ti The ith intervention point. Defined on page 46

tf A subscript representing the labelled quantity at all future time points follow-

ing a final intervention. Defined on page 47.

u(x, θ) Denotes the mean zero residual process in an emulator, introduced on page

11.

uk(x, θ) Denotes the mean zero residual process in our emulator for the kth improved

version of the simulator we are considering in chapter 5 for k = 1, . . . ,m. It

appears first on page 171.

u∗(x, θ) Denotes the mean zero residual process in our emulator for the reified simula-

tor. It appears first on page 171.

U Denotes the residual matrix with columns u(x1, θ1), . . . , u(xn, θn), defined on

page 19.
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v From chapter 6 only, is part of the expression x̂ = v +Wzt0 , where the values

of v and W are derived from (6.1) on page 208.

W From chapter 6 only, is part of the expression x̂ = v +Wzt0 , where the values

of v and W are derived from (6.1) on page 208. Prior to chpater 6, W may

appear as a locally defined variable and it’s meaning is to be taken in the

context of the passage in which it appears.

x Denotes model inputs for a computer simulator unless otherwise stated, first

seen on page 7. In chapter 5, when considering the potential for improved

models, we extend x to be the vector of all of the model inputs that we can

possibly conceive of including on any version of the simulator. This is described

in detail on page 168.

x∗ Denotes the best input for a computer model, defined on page 8. The meaning

of x∗ is changed in chapter 5 where it is defined to be the best input for the

reified simulator only. This change in definition, occurring on page 166, only

applies to the situation where we have improved models in chapter 5.

xL The set of non-decision or system parameters for a loss model, defined on page

47.

x̂ The expectation of x∗ adjusted by observations of the complex system zt0 .

This is defined by (6.1) on page 208.

X Denotes the space of possible model inputs, first seen on page 8.

y Denotes the state vector of the complex system and is first seen on page 8.

zt0 Represents observations of the complex system y, introduced on page 25.

zti The system observation made at the ith intevention point, defined on page 47.

zk The collection of observations of the complex system made, including historical

observations and up to the kth intervention point. Defined on page 53.

β Denotes the matrix of coefficients to the regression surface in an emulator,

introduced on page 11.
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β0 Denotes the matrix of coefficients to the regression surface of our current

emulator in chapter 5 when we consider the potential for observation of runs

on improved models. This is introduced on page 169.

βk Denotes the matrix of coefficients to the regression surface of our emulator

for the kth improved version of the simulator we are considering in chapter

5 for k = 1, . . . ,m. It is extended to be compatible with the vector of basis

functions, g(x, θ), common to the emulators of all of the improved models.

This is defined and described on page 171.

β∗ Denotes the matrix of coefficients to the regression surface of our emulator

for the reified model. It is extended to be compatible with the vector of

basis functions, g(x, θ), common to the emulators of all of the models under

consideration. The first appears on page 171.

∆ = F − E [F ] introduced on page 20.

η(θ) Represents the discrepancy of our current model from the complex system y.

It is defined formally on page 8 in chapter 2.

η∗(θ) Represents the discrepancy of the reified model and is defined on page 166 in

chapter 5.

θ Denotes the vector of decision parameters as inputs to a computer simulator,

first introduced on page 7.

θt0 The policy that is to be made today, defined on page 46.

θti The decision to be made at the ith intervention point, defined on page 47.

θk The collection of decisions taken from now, up to and including intervention

k. Defined on page 53.

Θ The design matrix for the decision inputs, defined on page 34.

Θi The ith column of the design matrix for the decision inputs. This is a deviation

from the usual convention on subscripts and is introduced on page 34.
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λti(θ
i−1, zi) The time ti strategy we fix during Sequential Emulation. It is written as a

function of previous decisions and observations of the system and represents

the emulator driven time ti strategy. Defined on page 69, and again in a Se-

quential Emulation setting on page 69 and 71 for i = m and i < m respectively.

After its introduction, this latter definition applies for the rest of the thesis.

We often use λti as shorthand for this function. Note that in chapter 5, this

shorthand notation implies λti(θ
i−1, zi, H [i]), which is defined below.

λk is defined as the collection of all interventions from the kth intervention until

the final one. That is λk = λtk , . . . , λtm which is defined on page 71.

λti(θ
i−1, zi, H [i]) The time ti strategy we fix during Sequential Emulation for the case where

we know we may observe runs on improved models in the future. It is written

as a function of previous decisions, observations of the system, and observed

adjusted coefficients on improved models. It represents the emulator driven

time ti strategy in chapter 5 and is defined by (5.33) on page 188 and (5.39)

on page 189 for i = m and i < m respectively. We use λti as shorthand for

this function within chapter 5. Aside from within chapter 5, the notation λti

refers to the time ti strategy for the decision problem where we only consider

our current simulator.

Σ Denotes the variance matrix of u(x, θ) at one value of x and θ, first seen on

page 11.

Ψ Denotes the vector of correlation parameters within the correlation function

for a emulator Gaussian process, described on page 11.

Ω The design matrix for the model inputs, defined on page 34.

Ωi The ith column of the design matrix for the model inputs. This is a deviation

from the usual convention on subscripts and is introduced on page 34.

ωk This is defined to be βk −Hk and to be independent of Hk. This is explained

on page 175. The variance of this quantity turns out to be a decision variable

in the Sequential Emulation algorithm of chapter 5.
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Appendix B

Integrating out the best input of

C-GOLDSTEIN analytically

In section 4.5.1, we demonstrated the separability of our emulator for C-GOLDSTEIN

and stated that we could solve the required x−dependent integrals,∫ 1

−1

h(x∗)p(x∗)dx∗,

∫ 1

−1

h(x∗)h(x∗)Tp(x∗)dx∗,∫ 1

−1

rx(|x∗ − Ω|)p(x∗)dx∗,
∫ 1

−1

rx(|x∗ − Ω|)rx(|x∗ − Ω|)Tp(x∗)dx∗,∫ 1

−1

h(x∗)rx(|x∗ − Ω|)p(x∗)dx∗,

where

h(x) = (1, x1, x2, x3, 1, 1, 1, 1)T ,

and

rx(|x− x′|) = exp{(x− x′)Λx(x− x′)T},

analytically. We illustrate these calculations here.

We have p(x∗) such that

x∗i ∼ U(−1, 1)

for i = 1, 2, 3, and the pdf of our distribution for x∗ is 1
8
. We begin be computing∫ 1

−1
h(x∗)p(x∗)dx∗. In order to do this we need to integrate 1 and xi for i = 1, 2, 3,
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with respect to our pdf for x∗. Firstly,∫
p(x∗)dx∗ =

∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
dx∗1dx

∗
2dx

∗
3

= 1.

For i = 1, 2, 3 we have ∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
x∗i dx

∗
1dx

∗
2dx

∗
3 = 0,

therefore ∫ 1

−1

h(x∗)p(x∗)dx∗ = (1, 0, 0, 0, 1, 1, 1, 1)T .

Moving on to the second of the five integrals we have to compute, we can write down

h(x)h(x)T =



1 x1 x2 x3 1 1 1 1

x1 x2
1 x1x2 x1x3 x1 x1 x1 x1

x2 x2x1 x2
2 x2x3 x2 x2 x2 x2

x3 x3x1 x3x2 x2
3 x3 x3 x3 x3

1 x1 x2 x3 1 1 1 1

1 x1 x2 x3 1 1 1 1

1 x1 x2 x3 1 1 1 1

1 x1 x2 x3 1 1 1 1



.

In order to evaluate the required integral then, in addition to the calculations that we

have already performed, we integrate terms such as x∗2i and x∗ix
∗
j for i, j ∈ {1, 2, 3}

and i 6= j. Performing these calculations we obtain

∫ 1

−1

h(x∗)h(x∗)Tp(x∗)dx∗ =



1 0 0 0 1 1 1 1

0 1
3

0 0 0 0 0 0

0 0 1
3

0 0 0 0 0

0 0 0 1
3

0 0 0 0

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1

1 0 0 0 1 1 1 1



.
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The integral
∫ 1

−1
rx(|x∗−Ω|)p(x∗)dx∗ is a vector whose length is equal to the number

of columns in Ω. The kth element of this vector is[∫
rx(|x∗ − Ω|)p(x∗)dx∗

]
k

=

∫
rx(|x∗ − Ωk|)p(x∗)dx∗.

In order to compute this we must evaluate∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
e−(x∗−Ωk)Λx(x∗−Ωk)T dx∗1dx

∗
2dx

∗
3.

Let

Λx =


Λ1 0 0

0 Λ2 0

0 0 Λ3

 ,

then the required integral becomes

1

8

∫ 1

−1

e−Λ1(x∗1−Ω1k)2

dx∗1

∫ 1

−1

e−Λ2(x∗2−Ω2k)2

dx∗2

∫ 1

−1

e−Λ3(x∗3−Ω3k)2

dx∗3,

which is the product of 3 integrals. Now, for i = 1, 2, 3 let

Ψi =
1√
2Λi

.

We can then write the ith integral in the product above as∫ 1

−1

e
−(x∗i−Ωik)2

2Ψ2
i dx∗i =

∫ 1

−∞
e
−(x∗i−Ωik)2

2Ψ2
i dx∗i −

∫ −1

−∞
e
−(x∗i−Ωik)2

2Ψ2
i dx∗i

=
√

2πΨi

(
1√

2πΨi

∫ 1

−∞
e
−(x∗i−Ωik)2

2Ψ2
i dx∗i −

1√
2πΨi

∫ −1

−∞
e
−(x∗i−Ωik)2

2Ψ2
i dx∗i

)

=
√

2πΨi

(
Φ

(
1− Ωik

Ψi

)
− Φ

(
−1− Ωik

Ψi

))
,

where Φ(·) is the cdf of the standard normal distribution. Therefore[∫
rx(|x∗ − Ω|)p(x∗)dx∗

]
k

=
π

3
2

2
√

2

3∏
i=1

Ψi

(
Φ

(
1− Ωik

Ψi

)
− Φ

(
−1− Ωik

Ψi

))
.

The integral
∫ 1

−1
rx(|x∗ − Ω|)rx(|x∗ − Ω|)Tp(x∗)dx∗ is a square matrix whose size in

each dimension is the same as the number of columns in Ω. We can write the lkth

element of this as∫ 1

−1

∫ 1

−1

∫ 1

−1

1

8
e−(x−Ωl)Λx(x−Ωl)

T

e−(x−Ωk)Λx(x−Ωk)T dx∗1dx
∗
2dx

∗
3

=
1

8

3∏
i=1

∫ 1

−1

e−Λi((x
∗
i−Ωil)

2+(x∗i−Ωik)2)dx∗i .
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We solve this by first completeing the square on (x∗i−Ωil)
2+(x∗i−Ωik)

2, for i = 1, 2, 3.

(x∗i − Ωil)
2 + (x∗i − Ωik)

2 = x∗i − 2x∗iΩil + Ω2
il + x∗i − 2x∗iΩik + Ω2

ik

= 2(x∗i −
(Ωil + Ωik)

2
)2 +

1

2
(Ωil − Ωik)

2.

We have written our required integral as the product of three integrals. Having

completed the square on the exponent of each integrand, we can express the ith

integral as

e−
Λi
2

(Ωil−Ωik)2

∫ 1

−1

e−2Λi(x
∗
i−(

Ωil+Ωik
2

))2

dx∗i = e−
Λi
2

(Ωil−Ωik)2

∫ 1

−1

e
−(x∗i−(

Ωil+Ωik
2 ))2

2τ2
i dx∗i

which can be written as

e−
Λi
2

(Ωil−Ωik)2√
2πτi

(
Φ

(
1− (Ωil+Ωik

2
)

τi

)
− Φ

(
−1− (Ωil+Ωik

2
)

τi

))
,

where τi =
√

1
4Λi

for i = 1, 2, 3. Therefore, letting

Wlk =

∫
rx(|x∗ − Ωl|)rx(|x∗ − Ωk|)Tp(x∗)dx∗,

we have

Wlk =
π

3
2

2
√

2

3∏
i=1

τie
−Λi

2
(Ωil−Ωik)2

(
Φ

(
1− (Ωil+Ωik

2
)

τi

)
− Φ

(
−1− (Ωil+Ωik

2
)

τi

))
.

The final integral we have to solve is
∫ 1

−1
h(x∗)rx(|x∗ − Ω|)p(x∗)dx∗, which is a

matrix with 8 rows and the same number of columns as Ω. We construct this

matrix one row at a time. The first row and the last four correspond to the vector∫ 1

−1
rx(|x∗−Ω|)p(x∗)dx∗, whose value was derived above. The remaining three rows

are
∫ 1

−1
x∗i r

x(|x∗ − Ω|)p(x∗)dx∗ for i = 1, 2, 3. The kth element of this vector when

i = 2, for example, is

1

8

∫ 1

−1

e−Λ1(x∗1−Ω1k)2

dx∗1

∫ 1

−1

x∗2e
−Λ2(x∗2−Ω2k)2

dx∗2

∫ 1

−1

e−Λ3(x∗3−Ω3k)2

dx∗3.

In order to complete our integrations then, we must be able to solve the integral∫ 1

−1
x∗i e
−Λi(x

∗
i−Ωik)2

dx∗i , for i = 1, 2, 3.

Writing the integrand as

x∗i e
−Λix

∗2
i e2ΛiΩikx

∗
i e−ΛiΩ

2
ik ,
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we can integrate by parts to obtain∫ 1

−1

x∗i e
−Λi(x

∗
i−Ωik)2

dx∗i =

[
− 1

2Λi

e−Λi(x
∗
i−Ωik)2

]1

−1

+ Ωik

∫ 1

−1

e−Λi(x
∗
i−Ωik)2

dx∗i ,

which we write as

Γik =
e−Λi(−1−Ωik)2 − e−Λi(1−Ωik)2

2Λi

+ Ωik

√
2πΨi

(
Φ

(
1− Ωik

Ψi

)
− Φ

(
−1− Ωik

Ψi

))
.

Therefore, the row of
∫ 1

−1
h(x∗)rx(|x∗ −Ω|)p(x∗)dx∗ corresponding to h(x∗)i = x∗2 is

π

4
Ψ1Ψ3

(
Φ

(
1− Ω1k

Ψ1

)
− Φ

(
−1− Ω1k

Ψ1

))(
Φ

(
1− Ω3k

Ψ3

)
− Φ

(
−1− Ω3k

Ψ3

))
Γ2k.

The rows corresponding to h(x∗)i = x∗1 and h(x∗)i = x∗3 are obtained similarly.
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The DICE model

We present here the R code for the decoupled DICE model used in the examples of

Chapter 4 and Chapter 5. We begin by introducing the function EmissionSeries(),

which was used to generate designs for C-GOLDSTEIN as well as being a required

component of the DICE model. The purpose of the function is to take values of

our decisions θt0 (RateNow) and θt (RateInt), and use the BAU emissions curve we

described in section 4.2 to calculate an emissions curve corresponding to our decision.

This curve is then used as an input to C-GOLDSTEIN and is used within the DICE

function to calculate the cost of abatement. The input called IntTime, which we

had once considered might be used as another decision variable, represents the time

t1 at which we observe climate and make our intervention. In all of the examples

we have looked at the value of the variable was 4, corresponding to t1 = 2035.

EmissionSeries <- function(IntTime,RateNow,RateInt){

load("10yearBAU.RData")

BAU <- TenBAU

time <- 0 #Year 1995

Emission <- rep(0,length(BAU$Total))

Emission[1] <- RateNow*BAU$Total[1]

time <- 1

while(time<IntTime){

Emission[time+1]=RateNow*(BAU$Total[time+1]-(BAU$Total[time]-Emission[time]))

time = time +1

}

for(time in IntTime:(length(Emission)-1)){
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Emission[time+1]=RateInt*(BAU$Total[time+1]-(BAU$Total[time]-Emission[time]))

}

return(Emission)

}

Here is the decoupled DICE model coded in R. Annotations follow the # symbol.

Most of the inputs to the DICE model are parameters controlling the evolution of

various parts of the model. L0 and delpop for example control the evolution of the

global population. The default values we have given for each of these variables was

obtained via the excel version of the full DICE-99 model, freely available from [79].

We describe the functionality of the inputs that we have added to our own version

of DICE only.

MODEL INPUTS:

Yh: Global temperature in 1995

Yt: Global temperature in 2035

Yp: Global temperature in 2095

TempSeries: A time series of global temperatures from 1995 to 2095.

If NULL a series is constructed by interpolating Yh, Yt and Yp.

IntTime: See the function EmissionSeries() above.

RateNow: See the function EmissionSeries() above.

RateInt: See the function EmissionSeries() above.

Consumption: Logical variable. If TRUE, in addition to a utility,

we return a time series of global consumption.

DICE <- function(Yh,Yt,Yp,TempSeries=NULL,IntTime,RateNow,RateInt,rho0=0.03,

gp=0.00257,gpop0=0.157,decades=10,L0=5632.7,delpop=0.222, futureRate=0.1,

sRates=c(25.3,24.02,23.27,22.81,22.52,22.35,22.25,22.21,22.20,22.23,22.29),

theta1 = -0.004500,theta2=0.003500,b10=0.03,gb0=-0.08,delb=0.005,b2=2.150,

A0=0.017,gA0=0.038,delA=0,K0=47,delk=0.1,gamma=0.3,Consumption=FALSE){

if(is.null(TempSeries)){

TempSeries <- rep(0,11)

TimeIndex <- 0

mt <- (Yt - Yh)/4

mp <- (Yp - Yt)/6

while(TimeIndex < 11){
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if(TimeIndex < 5){

TempSeries[TimeIndex + 1] <- Yh + (mt*TimeIndex)

}

else{

TempSeries[TimeIndex + 1] <- Yt + (mp * (TimeIndex-4))

}

TimeIndex <- TimeIndex + 1

}

}

Emitted <- EmissionSeries(IntTime=IntTime,RateNow=RateNow,RateInt)

load("10yearBAU.RData")

BAU <- TenBAU$Total

model <- function(time,lastRate,lastStock,lastInvest,lastAbateCoeff){

#Time t discount rate

rhot <- rho0*exp(-10*gp*time)

Rt <- lastRate/((1+rhot)^10)

if(time==0){

Rt=lastRate

}

#Time t population

Lt <- L0*exp((gpop0/delpop)*(1-exp(-delpop*time)))

#Time t Damage

Temp <- TempSeries[time+1] #time starts from 0.

Dt <- (theta1*Temp)+(theta2*(Temp^2))

#Time t damage factor on output

Omegat <- 1/(1+Dt)

#Time t Total factor productivity

if(delA==0){

At <- A0*exp(gA0*time)

}

else{

At <- A0*exp((gA0/delA)*(1-exp(-delA*time)))
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}

#Time t Capital stocks

Kt <- (lastStock*((1-delk)^10)) + (10*lastInvest) #check units of K0

if(time==0){

Kt = lastStock

}

#Time t emission control rate

ut <- 1 - (Emitted[1 + time]/BAU[1 + time])

#Time t abatement cost

gbt <- gb0*exp(-delb*time)

b1t <- lastAbateCoeff/(1+gbt)

if(time==0){

b1t = b10

}

abate <- 1 - (b1t*(ut)^b2)

#Time t Global Economic Output

Qt <- Omegat*abate*At*(Kt^gamma)*(Lt^(1-gamma))

#Time t Investment

It <- Qt*sRates[time+1]/100

#Time t consumption

Ct <- Qt-It

#Time t consumption per capita

ct <- Ct/Lt

#Time t utility

utilt <- Lt*log(ct)

return(list(Ct=Ct,Rt=Rt,tUtility=utilt,NewInvest=It,NewStock=Kt,NewAbate=b1t))

}
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#We’re going to start the model at time 0, so here we create the time -1 values

#lastRate=lR,lastStock=lS,lastAbateCoeff=lA,lastInvest=lI

lR <- 1

lI <- 0

#LastStock and lastAbateCoeff are already model parameters

lS <- K0

lA <- b10

Time <- 0

W <- 0

utilitySeries <- c()

if(Consumption)

Con <- c()

#Here we run DICE from 1995 to 2095 in decade sized steps

while(Time<=decades){

M <- model(time=Time,lastRate=lR,lastStock=lS,lastInvest=lI,lastAbateCoeff=lA)

utilitySeries <- c(utilitySeries,M$tUtility)

if(Consumption)

Con <- c(Con,M$Ct)

W <- W+(M$tUtility * M$Rt)

lR <- M$Rt

lS <- M$NewStock

lI <- M$NewInvest

lA <- M$NewAbate

Time <- Time+1

}

fR <- futureRate

if(Consumption)

return(list(loss=-(W+(lR*utilitySeries[decades+1]*(1+fR)/(fR))),Con=Con))

else

return(W+(lR*utilitySeries[decades+1]*(1+fR)/(fR)))

}

The DICE model was altered slightly for the example in chapter 5. We included

a build cost function and a run cost function. The additional inputs were VRho-

Prime= V ar
[
ρ
′]

as defined on page 192, Vw= V ar [ω1], and two values BuildCost

and RunCost. The following lines were inserted into the code before the model

function.
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#Compute alpha, the percentage of Vrho unresolved

alpha <- Vw/VRhoPrime

#Run cost will tends to infinity as alpha tends to 0.

#Bound alpha from below in order to bound the run cost.

if(alpha < 0.00005)

alpha <- 0.00005

The investment section of the model was then augmented in the following way:

#Time t Investment

It <- Qt*savingsRates[time+1]/100

if(time==IntTime){

if(alpha < 1)

It <- It + BuildCost - RunCost*log(alpha)

}
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Selected annotated code for

forecasting and Sequential

Emulation

In this appendix we present some selected R-code developed for the implementation

of our methodology. Whilst much of the code is written in full generality, some pieces

were designed solely to work for the examples we have presented in this thesis.

D.1 Decision-dependent forecasting

In this section we present the code used to obtain forecasts in the case where the

emulator is fully separable. This code is in six parts. The first part establishes

the prior emulator and enables us to compute the quantities that are required for

adjusting the emulator, such as V ar [F ]. The second part contains code used to

perform the Bayes Linear adjustment of our emulator by the model runs F . The

third uses separability to compute the integrals necessary for forecasting. In the

fourth part we use the integrals we have calculated in order to derive beliefs about

the complex system. The fifth part takes our beliefs about the system and any

observations and computes the decision-dependent forecast. In the sixth part we

include wrapper functions drawing all of the forecasting code together in order to

compute a forecast for a particular value of θ.
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D.1.1 The prior emulator

We require known design matrices, a known form of g(x, θ), E [β] ,V ar [β], and all

of the properties of the autocovariance of the residual.

#g is a known vector of monomials in x and theta. This is specified by the user.

#Here we use the vector of monomials defined in chapter $4$.

g <- function(x,theta){

c(1,x[1],x[2],x[3],theta[1],theta[1]^2,theta[2]^2,theta[1]*theta[2])

}

#G will be the model matrix for the chosen design in x and theta

G <- function(X,Theta){

#X is mxn

#Theta is pxn

#n is the number of points taken from each space,

#m is the length of x, p is the length of theta.

if(!(length(X[1,])==length(Theta[1,]))){

stop("Incompatible design matrices")}

n <- length(X[1,])

sapply(1:n,function(i) g(X[,i],Theta[,i]))

}

We now compute the prior variance of the model runs, V ar [F ]. This calculation

comes in two parts. We have the variance of the regression surface, which is cal-

culated using the function VBG, and the variance matrix for the residuals V ar [U ].

In order to calculate the latter we use equation 4.7. A feature of this equation,

discussed in the main text of chapter 4, is the separability of the covariance function

in x and θ. We use separate correlation functions for x and θ, coded using the

functions ModcorrFun and DeccorrFun respectively. The two correlation functions

we used were the Gaussian correlation functions, and as input they both take two

points in the input space and a vector of correlation parameters. The function VarU

calculates the prior variance of the residuals for the model runs, and the function

VarF calls this function in order to calculate the prior variance of the model runs.

VBG <- function(G,VarBeta){

library(tensor)
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tmp <- tensor(VarBeta,G,4,1)

vbg <- tensor(tmp,G,2,1)

aperm(vbg,c(1,4,2,3))

}

ModcorrFun <- function(x1,x2,CLx){

#CLx is the vector of correlation parameters

n <- length(CLx)

if(!(length(x1)==length(x2)))

stop("Incompatible input vectors")

if(!(length(x1)==n))

stop("Wrong number of correlation lengths provided")

diff <- abs(x1-x2)

C <- diag(CLx,nrow=n,ncol=n)

exponent <- t(diff)%*%C%*%diff

exp(-exponent)

}

DeccorrFun <- function(theta1,theta2,CLdec){

#CLdec is vector of correlation parameters

n <- length(CLdec)

if(!(length(theta1)==length(theta2)))

stop("Incompatible input vectors")

if(!(length(theta1)==n))

stop("Wrong number of correlation lengths provided")

diff <- abs(theta1-theta2)

C <- diag(CLdec,nrow=n,ncol=n)

exponent <- t(diff)%*%C%*%diff

exp(-exponent)

}

VarU <- function(X,Theta,Rx,Rdec,CLx,CLdec,SIGu,V,DecisionVector){

#The input DecisionVector controls how correlation on each output is

#calculated by describing which outputs depend on which decisions.

#The vector is the same length as the number of outputs.

#It’s last element should be the total number of decisions.

#When 0 the corresponding model output doesn’t depend on decisions.
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#When 1 the corresponding output has dependence on decision 1.

#When 2 the corresponding output has dependence on decision 1 AND 2

#And so on up to the number of decisions

stopifnot(is.function(Rx))

stopifnot(is.function(Rdec))

m <- length(SIGu)

n <- length(X[1,])

if(!(length(Theta[1,])==n))

stop("Incompatible Design Matrices")

numDecs <- length(Theta[,1])

if(!(length(DecisionVector)==m))

stop("DecisionVector must be the same length as the output")

if((DecisionVector[m]>numDecs))

stop("Decision Vector specifies more decisions than required")

if(DecisionVector[m]<numDecs)

stop("We have decisions we are not using")

VU <- array(0,c(m,n,m,n))

for(i in 1:m){

for(j in 1:n){

for(k in 1:m){

for(l in 1:n){

minOutput <- min(i,k)

if(DecisionVector[minOutput]<1)

VU[i,j,k,l] <- V[i,k]*SIGu[i]*SIGu[k]*Rx(x1=X[,j],x2=X[,l],CLx=CLx)

else

VU[i,j,k,l] <- V[i,k]*SIGu[i]*SIGu[k]*Rx(x1=X[,j],x2=X[,l],CLx=CLx)

*Rdec(theta1=Theta[1:DecisionVector[minOutput],j],

theta2=Theta[1:DecisionVector[minOutput],l],

CLdec=CLdec[1:DecisionVector[minOutput]])

}

}

}

}

return(VU)

}

VarF <- function(X,Theta,VarBeta,Rx,Rdec,CLx,CLdec,SIGu,V,DecisionVector){
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ourG <- G(X,Theta)

vbg <- VBG(ourG,VarBeta)

vu <- VarU(X,Theta,Rx,Rdec,CLx,CLdec,SIGu,V,DecisionVector)

vbg + vu

}

D.1.2 Adjusting the prior emulator

In order to compute the Bayes Linear adjustment to the emulator we must invert

the array V ar [F ], and perform a number of array manipulations. In order to in-

vert arrays we convert them into appropriate matrices and use one of the standard

methods of matrix inversion, before converting the answer back into an array. A

particularly robust form of matrix inversion in R involves computing the Cholesky

factors and then performing the matrix multiplication with these. So for example, if

we require the product xV −1y, then we find upper triangular Q such that V = QTQ

and we compute xV −1y = ATB, where AT = xQ−1 and B = Q−Ty. Most of the

array manipulations that involve a matrix inversion throughout this code attempt

to handle the inverse in this way. Often, some of the eigenvalues are very small and

the Cholesky factors of the matrix we wish to invert cannot be found. If the attempt

to perform this particular type of robust matrix inversion fails, we use a generalized

inverse in R called ginv() to perform the inversion.

We calculate the quantity F − E [F ] via the function Fdiff. The function Hal-

fUpdate computes Q−T (F − E [F ]), where V ar [F ] = QTQ.

Fdiff <- function(EBeta,X,Theta,Data){

ourG <- G(X,Theta)

library(tensor)

EF <- tensor(EBeta,ourG,2,1)

if(!(length(Data[1,])==length(EF[1,])))

stop("Data and its expectation are incompatible arrays")

if(!(length(Data[,1])==length(EF[,1])))

stop("Data and its expectation are incompatible arrays")

Data - EF

}
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tCholFactors <- function(VarData,tChol){

Vdim = dim(VarData)

dim(VarData) <- c(Vdim[1]*Vdim[2],Vdim[3]*Vdim[4])

Q <- chol(VarData)

dim(Q) <- c(Vdim[1:4])

return(Q)

}

HalfUpdate <- function(Q,FminusEF){

Qdim <- dim(Q)

Diffdim <- dim(FminusEF)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

dim(FminusEF) <- Diffdim[1]*Diffdim[2]

ans <- backsolve(Q,FminusEF,transpose=TRUE)

dim(ans) <- c(Qdim[1],Qdim[2],1,1)

return(ans)

}

The functions AdjEBetas and AdjVarBetas compute the adjusted expectation and

the adjusted variance of β.

AdjEBetas <- function(EBeta,Q,X,Theta,HalfUp,VarBeta,InvVDat,FminusEF){

#check that either Q and HalfUp or InvVDat is not NULL

if((is.null(Q) || is.null(HalfUp)) && is.null(InvVDat))

stop("Q and InvVDat NULL. Require information about the Data Variance")

if(!(is.null(Q)==is.null(HalfUp)))

stop("Q or HalfUp are non-trivial but not both")

ourG <- G(X,Theta)

library(tensor)

varBG <- tensor(VarBeta,ourG,4,1)

vbgdim <- dim(varBG)

if(is.null(InvVDat)){

dim(varBG) <- c(vbgdim[1]*vbgdim[2],vbgdim[3]*vbgdim[4])

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

y <- backsolve(Q,t(varBG),transpose=TRUE)

x <- HalfUp

xdim <- dim(x)
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dim(x) <- c(xdim[1]*xdim[2],xdim[3]*xdim[4])

adjustment <- crossprod(y,x)

dim(adjustment) <- c(vbgdim[1],vbgdim[2])

return(EBeta+adjustment)

}

else{

RHSofAdjustment <- tensor(InvVDat,FminusEF,c(3,4),c(1,2))

stopifnot(all(dim(RHSofAdjustment)==c(vbgdim[3],vbgdim[4])))

Adjustment <- tensor(varBG,RHSofAdjustment,c(3,4),c(1,2))

stopifnot(all(dim(Adjustment)==c(vbgdim[1],vbgdim[2])))

return(EBeta+Adjustment)

}

}

AdjVarBetas <- function(VarBeta,Q,X,Theta,InvVDat){

if(is.null(Q) && is.null(InvVDat))

stop("Q and InvVDat NULL at the same time")

ourG <- G(X,Theta)

library(tensor)

A <- tensor(VarBeta,ourG,4,1)

B <- tensor(VarBeta,ourG,2,1)

B <- aperm(B,c(1,4,2,3))

if(is.null(InvVDat)){

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

#looking for AQ^-1Q^-TB

Adim <- dim(A)

dim(A) <- c(Adim[1]*Adim[2],Adim[3]*Adim[4])

Bdim <- dim(B)

dim(B) <- c(Bdim[1]*Bdim[2],Bdim[3]*Bdim[4])

y <- backsolve(Q,t(A),transpose=TRUE)

x <- backsolve(Q,B,transpose=TRUE)

ans <- crossprod(y,x)

dim(ans) <- c(Adim[1],Adim[2],Bdim[3],Bdim[4])

ans <- VarBeta-ans

return(ans)

}
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else{

#looking for AV(D)^{-1}B

RHSofAdjustment <- tensor(InvVDat,B,c(3,4),c(1,2))

stopifnot(all(dim(RHSofAdjustment)==

c(dim(InvVDat)[1],dim(InvVDat)[2],dim(B)[3],dim(B)[4])))

Adjustment <- tensor(A,RHSofAdjustment,c(3,4),c(1,2))

stopifnot(all(dim(Adjustment)==

c(dim(A)[1],dim(A)[2],dim(B)[3],dim(B)[4])))

return(VarBeta - Adjustment)

}

}

To complete this section we provide a function, CovuxU, that computes Cov [u(x, θ), U ],

for any x and θ. This is required in order to compute the full Bayes Linear adjust-

ment of f(x, θ) by F .

CovuxU <- function(x,theta,X,Theta,V,SIGu,Rx,Rdec,CLx,CLdec,DecisionVector){

stopifnot(is.function(Rx))

stopifnot(is.function(Rdec))

m <- length(SIGu)

n <- length(X[1,])

if(!(length(Theta[1,])==n))

stop("Incompatible Design Matrices")

numDecs <- length(Theta[,1])

if(!(length(DecisionVector)==m))

stop("The Decision Vector is not the same length as number of outputs")

if((DecisionVector[m]>numDecs))

stop("Decision Vector specifies more decisions than we have in Theta")

if(DecisionVector[m]<numDecs)

stop("We have decisions we are not using")

CUx <- array(0,dim=c(m,m,n))

for(i in 1:m){

for(j in 1:m){

for(k in 1:n){

minOutput <- min(i,j)

if(DecisionVector[minOutput]<1)

CUx[i,j,k] <- V[i,j]*SIGu[i]*SIGu[j]*Rx(x1=x,x2=X[,k],CLx=CLx)

else
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CUx[i,j,k] = V[i,j]*SIGu[i]*SIGu[j]*Rx(x1=x,x2=X[,k],CLx=CLx)*

Rdec(theta1=theta[1:DecisionVector[minOutput]],

theta2=Theta[1:DecisionVector[minOutput],k],

CLdec=CLdec[1:DecisionVector[minOutput]])

}

}

}

return(CUx)

}

D.1.3 Integrating out x∗

We present code for the case where our emulator is completely separable. This

function assumes that all of the integrals involving x∗ only have been computed.

The inputs, hxInt,hxhxtInt,rxInt,rxrxtInt, and hxrxtInt, represent the five integrals∫ 1

−1

h(x∗)p(x∗)dx∗,

∫ 1

−1

h(x∗)h(x∗)Tp(x∗)dx∗,∫ 1

−1

rx(|x∗ − Ω|)p(x∗)dx∗,
∫ 1

−1

rx(|x∗ − Ω|)rx(|x∗ − Ω|)Tp(x∗)dx∗,∫ 1

−1

h(x∗)rx(|x∗ − Ω|)p(x∗)dx∗,

required in the separable case and were derived in Appendix B for our example.

RequiredIntegrals <- function(theta,Theta,CLdec,DecisionVector,Rdec,V,SIGu,

hxInt,hxhxtInt,rxInt,rxrxtInt,hxrxtInt){

kdec <- g(x=c(1,1,1),theta=theta)

kdeckdect <- outer(kdec,kdec)

gxInt <- kdec*hxInt

gxgxTInt <- kdeckdect * hxhxtInt

rlen <- length(rxInt)

#rdec is 3 dimensional dim(rdec) = c(dim(V)[1],dim(V)[2],rlen)

#If DecisionVector[min(i,j)]=0 then rdec[i,j,k] = 1 for all k

#DecisionVector is strictly increasing in it’s indices (it represents

#temporal ordering of decisions)

rdec <- array(1,dim=c(dim(V)[1],dim(V)[2],rlen))

FirstDec <- NULL

ind <- 1
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while(is.null(FirstDec)){

if(DecisionVector[ind]>0)

FirstDec <- ind

ind <- ind+1

}

for(i in FirstDec:dim(V)[1]){

for(j in FirstDec:dim(V)[2]){

for(k in 1:rlen){

minOutput <- min(i,j)

rdec[i,j,k] <- Rdec(theta1=theta[1:DecisionVector[minOutput]],

theta2=Theta[1:DecisionVector[minOutput],k],

CLdec=CLdec[1:DecisionVector[minOutput]])

}

}

}

covuUInt <- array(0,dim=dim(rdec))

covuUcovUuInt <- array(0,dim=c(dim(rdec),length(SIGu),rlen,length(SIGu)))

covugIntegral <- array(0,dim=c(length(kdec),dim(rdec)))

for(i in 1:length(SIGu)){

for(k in 1:length(SIGu)){

for(l in 1:rlen){

covuUInt[i,k,l] <- V[i,k]*SIGu[i]*SIGu[k]*rdec[i,k,l]*rxInt[l]

for(p in 1:length(kdec)){

covugIntegral[p,i,k,l] <- V[i,k]*SIGu[i]*SIGu[k]*kdec[p]*

rdec[i,k,l]*hxrxtInt[p,l]

}

for(m in 1:length(SIGu)){

for(n in 1:rlen){

for(j in 1:length(SIGu)){

covuUcovUuInt[i,k,l,m,n,j] <- V[i,k]*SIGu[i]*SIGu[k]*

V[m,j]*SIGu[m]*SIGu[j]*rdec[i,k,l]

*rdec[m,j,n]*rxrxtInt[l,n]

}

}

}

}

}
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}

return(list(gxInt=gxInt,gxgxTInt=gxgxTInt,covuUInt=covuUInt,

covuUcovUuInt=covuUcovUuInt,covugIntegral=covugIntegral))

}

D.1.4 Obtaining the beliefs about y

We have the five integrals required for calculating beliefs of the complex system.

We need to now perform the correct array manipulations to obtain those beliefs.

We do this for both the case where we may obtain robust inversion of V ar [F ] using

the cholesky decomposition, and for the case where we must resort to computing

V ar [F ]−1 directly using a generalized inverse.

ExpectRegression <- function(AdjEBetas,gxInt){

#gxInt is an m vector, AdjEBetas is an nm matrix. Result is n vector

m <- length(gxInt)

library(tensor)

tensor(AdjEBetas,gxInt,2,1)

}

ExpectResid <- function(Q,HalfUp,covuUInt,InvVDat,FminusEF){

if(is.null(InvVDat)&&is.null(Q)){

stop("Both InvVDat and Q are NULL")

}

if(is.null(InvVDat)){

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

intDim <- dim(covuUInt)

dim(covuUInt) <- c(intDim[1],intDim[2]*intDim[3])

y <- backsolve(Q,t(covuUInt),transpose=TRUE)

x <- HalfUp

xdim <- dim(x)

dim(x) <- c(xdim[1]*xdim[2],xdim[3]*xdim[4])

EResid <- crossprod(y,x)

dim(EResid) <- c(intDim[1])

return(EResid)
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}

else{

library(tensor)

RHSEResid <- tensor(InvVDat,FminusEF,c(3,4),c(1,2))

stopifnot(all(dim(RHSEResid) == c(dim(InvVDat)[1],dim(InvVDat)[2])))

intDim <- dim(covuUInt)

EResid <- tensor(covuUInt,RHSEResid,c(2,3),c(1,2))

stopifnot(dim(EResid) == intDim[1])

return(EResid)

}

}

#Now the four parts of the integral of the adjusted variance

IntAdjVBG <- function(AdjvarBetas,gxgxTInt){

library(tensor)

i <- dim(AdjvarBetas)[1]

j <- dim(AdjvarBetas)[3]

Ans <- tensor(AdjvarBetas,gxgxTInt,c(2,4),c(1,2))

stopifnot(all(dim(Ans)==c(i,j)))

Ans

}

IntAdjux <- function(Q,V,SIGu,covuUcovUuInt,InvVDat){

if(is.null(Q)&&is.null(InvVDat))

stop("Both Q and InvVDat NULL")

library(tensor)

A <- array(0,dim(V))

for(i in 1:length(V[,1])){

for(j in 1:length(V[1,])){

A[i,j] <- V[i,j]*SIGu[i]*SIGu[j]

}

}

if(is.null(InvVDat)){

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

InvDat <- chol2inv(Q)
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dim(InvDat) <- Qdim

B <- tensor(InvDat,covuUcovUuInt,c(1,2,3,4),c(2,3,4,5))

return(A - B)

}

else{

B <- tensor(InvVDat,covuUcovUuInt,c(1,2,3,4),c(2,3,4,5))

return(A - B)

}

}

IntCovsBthenU <- function(covugIntegral,VarBeta,Q,G,InvVDat){

#dim(covugIntegral) is c(length(g),dim(cov(u(x,theta),U))

if(is.null(Q) && is.null(InvVDat)){

stop("Both Q and InvVDat are NULL")

}

library(tensor)

VarBG <- tensor(VarBeta,G,4,1)

if(is.null(InvVDat)){

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

VBdim <- dim(VarBG)

dim(VarBG) <- c(VBdim[1]*VBdim[2],VBdim[3]*VBdim[4])

y <- backsolve(Q,t(VarBG),transpose=TRUE)

covugIntegral <- aperm(covugIntegral,c(3,4,1,2))

covdim <- dim(covugIntegral)

dim(covugIntegral) <- c(covdim[1]*covdim[2],covdim[3]*covdim[4])

x <- backsolve(Q,covugIntegral,transpose=TRUE)

dim(y) <- c(Qdim[3]*Qdim[4],VBdim[1],VBdim[2])

dim(x) <- c(Qdim[1]*Qdim[2],covdim[3],covdim[4])

ans <- tensor(y,x,c(1,3),c(1,2))

stopifnot(all(dim(ans)==c(VBdim[1],covdim[4])))

return(ans)

}

else{

covugIntegral <- aperm(covugIntegral,c(3,4,1,2))

covdim <- dim(covugIntegral)

VBdim <- dim(VarBG)

June 28, 2010



D.1. Decision-dependent forecasting 286

RHSofManipulation <- tensor(InvVDat,covugIntegral,c(3,4),c(1,2))

answer <- tensor(VarBG,RHSofManipulation,c(2,3,4),c(3,1,2))

stopifnot(all(dim(answer)==c(VBdim[1],covdim[4])))

return(answer)

}

}

IntCovsUthenB <- function(covugIntegral,VarBeta,Q,G,InvVDat){

if(is.null(Q) && is.null(InvVDat))

stop("Q and InvVDat are both NULL")

library(tensor)

VarBG <- tensor(VarBeta,G,2,1)

VarBG <- aperm(VarBG,c(1,4,2,3))

VBdim <- dim(VarBG)

covdim <- dim(covugIntegral)

if(is.null(InvVDat)){

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

dim(VarBG) <- c(VBdim[1]*VBdim[2],VBdim[3]*VBdim[4])

dim(covugIntegral) <- c(covdim[1]*covdim[2],covdim[3]*covdim[4])

y <- backsolve(Q,t(covugIntegral),transpose=TRUE)

x <- backsolve(Q,VarBG,transpose=TRUE)

dim(y) <- c(Qdim[3]*Qdim[4],covdim[1],covdim[2])

dim(x) <- c(Qdim[1]*Qdim[2],VBdim[3],VBdim[4])

ans <- tensor(y,x,c(1,2),c(1,3))

stopifnot(all(dim(ans)==c(covdim[2],VBdim[3])))

return(ans)

}

else{

RHSofManipulation <- tensor(InvVDat,VarBG,c(3,4),c(1,2))

answer <- tensor(covugIntegral,RHSofManipulation,c(1,3,4),c(4,1,2))

stopifnot(all(dim(answer)==c(covdim[2],VBdim[3])))

return(answer)

}

}

#Now the four integrals of Int[E_F[f(x*,theta)]E_F[f(x*,theta)]^Tp(x*)dx*]
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IntEbgEbg <- function(gxgxTInt,AdjEBetas){

library(tensor)

temp <- tensor(AdjEBetas,gxgxTInt,2,1)

tensor(AdjEBetas,temp,2,2)

}

IntEbgEux <- function(covugIntegral,AdjEBetas,HalfUp,Q,InvVDat,FminusEF){

if(is.null(Q)&&is.null(InvVDat))

stop("Q and InvVDat both NULL")

if(is.null(InvVDat)){

x <- HalfUp

library(tensor)

LHS <- tensor(AdjEBetas,covugIntegral,2,1)

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

LHSdim <- dim(LHS)

dim(LHS) <- c(LHSdim[1]*LHSdim[2],LHSdim[3]*LHSdim[4])

y <- backsolve(Q,t(LHS),transpose=TRUE)

ans <- crossprod(y,x)

dim(ans) <- c(LHSdim[1],LHSdim[2])

return(ans)

}

else{

library(tensor)

LHS <- tensor(AdjEBetas,covugIntegral,2,1)

LHSdim <- dim(LHS)

RHS <- tensor(InvVDat,FminusEF,c(3,4),c(1,2))

ans <- tensor(LHS,RHS,c(3,4),c(1,2))

stopifnot(all(dim(ans)==c(LHSdim[1],LHSdim[2])))

return(ans)

}

}

IntEuxEux <- function(covuUcovUuInt,HalfUp,Q,InvVDat,FminusEF){

if(is.null(Q)&&is.null(InvVDat))

stop("Q and InvVDat both NULL")

June 28, 2010



D.1. Decision-dependent forecasting 288

if(is.null(InvVDat)){

library(tensor)

Qdim <- dim(Q)

dim(Q) <- c(Qdim[1]*Qdim[2],Qdim[3]*Qdim[4])

x <- HalfUp

covuUcovuUInt <- aperm(covuUcovUuInt,c(1,2,3,6,4,5))

Idim <- dim(covuUcovuUInt)

dim(covuUcovuUInt) <- c(Idim[1]*Idim[2]*Idim[3]*Idim[4],Idim[5]*Idim[6])

y <- backsolve(Q,t(covuUcovuUInt),transpose=TRUE)

Ans <- crossprod(y,x)

dim(Ans) <- c(Idim[1:4])

Ans <- aperm(Ans,c(1,4,2,3))

ansdim <- dim(Ans)

dim(Ans) <- c(ansdim[1]*ansdim[2],ansdim[3]*ansdim[4])

y2 <- backsolve(Q,t(Ans),transpose=TRUE)

final <- crossprod(y2,x)

dim(final) <- c(ansdim[1],ansdim[2])

return(final)

}

else{

library(tensor)

Left <- tensor(InvVDat,FminusEF,c(3,4),c(1,2))

Right <- Left

covuUcovuUInt <- aperm(covuUcovUuInt,c(1,2,3,6,4,5))

RHSofManipulation <- tensor(covuUcovuUInt,Right,c(5,6),c(1,2))

Answer <- tensor(Left,RHSofManipulation,c(1,2),c(2,3))

stopifnot(all(dim(Answer)==c(dim(covuUcovuUInt)[1],dim(covuUcovuUInt)[4])))

return(Answer)

}

}

ExpectY <- function(ERegress,EResid){

ERegress+EResid

}

VarY <- function(EY,SIGdis,intadjvbg,intadjux,intcovsbthenu,intcovsuthenb,

intebgebg,intebgeux,inteuxeux){
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muSquared <- outer(EY,EY)

EVarfx <- intadjvbg + intadjux - intcovsbthenu - intcovsuthenb

VarEfx <- intebgebg + inteuxeux + intebgeux + t(intebgeux) - muSquared

VarEfx+EVarfx+SIGdis

}

D.1.5 Decision-dependent forecast

Based on the system beliefs and observations, we present code to adjust our beliefs

about the system in order to obtain decision dependent forecasts for the case where

we only have one intervention point.

Forecast <- function(Ey,Vy,SIGe,hist,intervention,future,Zh,Zt=NULL,

is.intervention=FALSE){

#hist,intervention and future are integers describing the number of

#quantities measured at the three different time points.

#hist+intervention+future=length(Ey)

#e_h and e_t are assumed uncorrelated and to have the same variance.

#Thereofre we have SIGe=Var[e_h]=Var[e_t]

#This would need altering if we had an error matrix

if(!(length(Ey)==hist+intervention+future))

stop("Number of elements specified does not match number in state vector")

if(!(length(Zh)==hist))

stop("Number historical observations is not as specified")

if(!is.null(Zt)){

if(!(length(Zt)==intervention))

stop("Number of time t points observed is not as specified")

}

#Forecasting future observations at the intervention point

if(is.intervention){

EZt <- Ey[(hist+1):(hist+intervention)]

#Assume e_h and e_t are uncorrelated

CovZtZh <- Vy[(hist+1):(hist+intervention),1:hist]

if(hist >1){

ObsErr <- diag(SIGe^2,nrow=hist,ncol=hist)

VZh <- ObsErr + Vy[1:hist,1:hist]

}

else
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VZh <- SIGe^2 + Vy[1:hist,1:hist]

EZh <- Ey[1:hist]

diff <- Zh - EZh

Qz <- chol(VZh)

x <- backsolve(Qz,diff,transpose=TRUE)

y <- backsolve(Qz,t(CovZtZh),transpose=TRUE)

addition <- crossprod(y,x)

dim(addition) <- dim(EZt)

ExpectFor <- EZt + addition

Vyt <- Vy[(hist+1):(hist+intervention),(hist+1):(hist+intervention)]

if(intervention>1){

ObsErrt <- diag(SIGe^2,nrow=intervention,ncol=intervention)

VZt <- ObsErrt + Vyt

}

else

VZt <- SIGe^2 + Vyt

VarFor <- VZt - crossprod(y)

return(list(Expectation=ExpectFor,Variance=VarFor))

}

#Forecasting the state of the system given observations at both

#time points.

else{

Ezhzt <- Ey[1:(hist+intervention)]

Eyhytyf <- Ey

data <- c(Zh,Zt)

diff <- data-Ezhzt

obsErr <- diag(SIGe^2,nrow=(hist+intervention),ncol=(hist+intervention))

Vzhzt <- obsErr + Vy[1:(hist+intervention),1:(hist+intervention)]

Covyhytyf.zhzt <- Vy[,1:(hist+intervention)]

Qz <- chol(Vzhzt)

x <- backsolve(Qz,diff,transpose=TRUE)

y <- backsolve(Qz,t(Covyhytyf.zhzt),transpose=TRUE)

dim(Eyhytyf) <- c(length(Ey),1)

ExpectFor <- Eyhytyf + crossprod(y,x)

VarFor <- Vy - crossprod(y)

return(list(Expectation=ExpectFor, Variance=VarFor))

}
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}

D.1.6 Wrappers

Here are the required wrappers needed in order to compute a forecast using our

prior beliefs about the emulator quantities, runs on the model, and observations of

the complex system.

#First we update the regression coefficients and calculate other non

#decision-dependent quantities that we’ll need to recycle many times.

OneOffs <- function(X,Theta,EBetas,VarBetas,Runs,CLx,CLdec,SIGu,V,Rx,Rdec,

CholWorks=TRUE,DecisionVector){

VarRuns <- VarF(X=X,Theta=Theta,VarBeta=VarBetas,Rx=Rx,Rdec=Rdec,CLx=CLx,

CLdec=CLdec,SIGu=SIGu,V=V,DecisionVector)

FminusEF <- Fdiff(EBeta=EBetas,X=X,Theta=Theta,Data=Runs)

#Here we try to compute the choelsky factors. If we can do this all of our

#forecast calculations will be made using robust inversion of the data

#array. If not, we compute the generalized inverse and use the tensor

#function.

Q <- try(tCholFactors(VarRuns),silent=TRUE)

if(inherits(Q,"try-error"))

CholWorks <- FALSE

if(CholWorks){

HalfUp <- HalfUpdate(Q=Q,FminusEF=FminusEF)

AEBetas <- AdjEBetas(EBeta=EBetas,Q=Q,X=X,Theta=Theta,HalfUp=HalfUp,

VarBeta=VarBetas,InvVDat=NULL,FminusEF=FminusEF)

AVBetas <- AdjVarBetas(VarBeta=VarBetas,Q=Q,X=X,Theta=Theta,InvVDat=NULL)

return(list(VarRuns=VarRuns,Q=Q,HalfUp=HalfUp,AEBetas=AEBetas,

AVBetas=AVBetas,InvVDat=NULL,FminusEF=FminusEF))

}

else{

library(MASS)

Vdim = dim(VarRuns)

dim(VarRuns) <- c(Vdim[1]*Vdim[2],Vdim[3]*Vdim[4])

InvVar <- ginv(VarRuns)

dim(InvVar) <- c(Vdim[1],Vdim[2],Vdim[3],Vdim[4])

Q <- NULL

HalfUp <- NULL
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AEBetas <- AdjEBetas(EBeta=EBetas,Q=Q,X=X,Theta=Theta,HalfUp=HalfUp,

VarBeta=VarBetas,InvVDat=InvVar,FminusEF=FminusEF)

AVBetas <- AdjVarBetas(VarBeta=VarBetas,Q=Q,X=X,Theta=Theta,InvVDat=InvVar)

return(list(VarRuns=VarRuns,Q=Q,HalfUp=HalfUp,AEBetas=AEBetas,

AVBetas=AVBetas,InvVDat=InvVar,FminusEF=FminusEF))

}

}

SeparableForecast <- function(theta,VarRuns,Q,HalfUp,AEBetas,AVBetas,X,Theta,

EBetas,VarBetas,Runs,Zh,Zt=NULL,SIGdis,SIGe,SIGu,V,CLx,CLdec,Rx,Rdec,hist,

future,intervention,is.intervention=FALSE,InvVDat,FminusEF,DecisionVector,

hxInt,hxhxtInt,rxInt,rxrxtInt,hxrxtInt){

reqs <- RequiredIntegrals(theta=theta,Theta=Theta,CLdec=CLdec,

DecisionVector=DecisionVector,Rdec=Rdec,V=V,SIGu=SIGu,hxInt=hxInt,

hxhxtInt=hxhxtInt,rxInt=rxInt,rxrxtInt=rxrxtInt,hxrxtInt=hxrxtInt)

gInts <- list(gxInt=reqs$gxInt,gxgxTInt=reqs$gxgxTInt)

covInts <- list(covuUInt=reqs$covuUInt,covuUcovUuInt=reqs$covuUcovUuInt)

gcovsInt <- reqs$covugIntegral

ourG <- G(X,Theta)

Beliefs <- Job3(gInts=gInts,covInts=covInts,gcovsInt=gcovsInt,AEBetas=AEBetas,

Q=Q,HalfUp=HalfUp,SIGdis=SIGdis,AVBetas=AVBetas,V=V,SIGu=SIGu,VarBeta=VarBetas,

ourG=ourG,InvVDat=InvVDat,FminusEF=FminusEF)

For <- Forecast(Ey=Beliefs$Ey,Vy=Beliefs$Vy,SIGe=SIGe,hist=hist, Zh=Zh,

intervention=intervention,future=future,Zt=Zt,is.intervention=is.intervention)

return(list(Expectation=For$Expectation,Variance=For$Variance))

}

#This function is used to combine all of the array manipulations in order

#to obtain beliefs about the complex system.

Job3 <- function(gInts,covInts,gcovsInt,AEBetas,Q,HalfUp,SIGdis,AVBetas,V,

SIGu,VarBeta,ourG,InvVDat,FminusEF){

ERegress <- ExpectRegression(AdjEBetas=AEBetas,gxInt=gInts$gxInt)

EResid <- ExpectResid(Q=Q,HalfUp=HalfUp,covuUInt=covInts$covuUInt,

InvVDat=InvVDat,FminusEF=FminusEF)

intadjvbg <- IntAdjVBG(AdjvarBetas=AVBetas,gxgxTInt=gInts$gxgxTInt)

intadjux <- IntAdjux(Q=Q,V=V,SIGu=SIGu,covuUcovUuInt=covInts$covuUcovUuInt,

InvVDat=InvVDat)
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intcovsbthenu <- IntCovsBthenU(covugIntegral=gcovsInt,VarBeta=VarBeta,Q=Q,

G=ourG,InvVDat=InvVDat)

intcovsuthenb <- IntCovsUthenB(covugIntegral=gcovsInt,VarBeta=VarBeta,Q=Q,

G=ourG,InvVDat=InvVDat)

intebgebg <- IntEbgEbg(gxgxTInt=gInts$gxgxTInt,AdjEBetas=AEBetas)

intebgeux <- IntEbgEux(covugIntegral=gcovsInt,AdjEBetas=AEBetas,Q=Q

HalfUp=HalfUp,InvVDat=InvVDat,FminusEF=FminusEF)

inteuxeux <- IntEuxEux(covuUcovUuInt=covInts$covuUcovUuInt,Q=Q,

HalfUp=HalfUp,InvVDat=InvVDat,FminusEF=FminusEF)

EY <- ExpectY(ERegress=ERegress,EResid=EResid)

VY <- VarY(EY=EY,SIGdis=SIGdis,intadjvbg=intadjvbg,intadjux=intadjux,

intcovsbthenu=intcovsbthenu,intcovsuthenb=intcovsuthenb,

intebgebg=intebgebg,intebgeux=intebgeux,inteuxeux=inteuxeux)

return(list(Ey=EY,Vy=VY))

}

D.2 Sequential Emulation

D.2.1 Sampling from log-normal distributions

Here we provide code for performing the Sequential Emulation algorithm using C-

GOLDSTEIN and DICE in the way that we did for the example of chapter 4. First

we provide code for evaluating our expected loss given a decision dependent forecast.

This is done with respect to a lognormal distribution, and we provide functions for

both the univariate and multivariate log-normal distributions here. Our approach

is to first calculate the mean and variance of the Normal distribution corresponding

to the log-normal distribution with mean and variance given by our forecast. We

can use these quantities to sample from the log-normal distributions using standard

functions in R.

The function GetMuandSigma converts a mean and variance from a log-normal

distribution into the mean and variance of the corresponding normal distribution.

The function UniLogSamples draws samples from a univariate log-normal distribu-

tion. The function MultiLogSamples draws samples from a multivariate log-normal

distribution. The remaining functions in this section are used for calculating losses
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from DICE for each value of the sample.

GetMuandSigma <- function(Ey,Vy){

if(length(Ey)==1){

SigSq <- log(1 + (Vy/(Ey^2)))

Mu <- log(Ey) - (0.5*SigSq)

Sigma <- SigSq

}

else{

n <- length(Ey)

stopifnot(all(dim(Vy)==c(n,n)))

Mu <- rep(0,n)

Sigma <- matrix(0,n,n)

for(i in 1:n){

Sigma[i,i] <- log(1+(Vy[i,i]/Ey[i]^2))

Mu[i] <- log(Ey[i]) - 0.5*Sigma[i,i]

}

for(i in 1:n){

for(j in 1:n){

if(i != j)

Sigma[i,j] <- log(1 + (Vy[i,j]*

exp((-1)*(Mu[i]+Mu[j]+Sigma[i,i]/2 + Sigma[j,j]/2))))

}

}

}

return(list(Mu=Mu,Sigma=Sigma))

}

UniLogSamples <- function(n,mean,variance){

NormalMoments <- GetMuandSigma(Ey=mean,Vy=variance)

rlnorm(n=n,meanlog=NormalMoments$Mu,sdlog=sqrt(NormalMoments$Sigma))

}

MultiLogSamples <- function(n,mean,variance){

NormalMoments <- GetMuandSigma(Ey=mean,Vy=variance)

xis <- rmvnorm(n=n,mean=NormalMoments$Mu,sigma=NormalMoments$Sigma)

exp(xis)

}
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MonteMLoss <- function(mean,variance,LossFun,numSamples,Thetas,rho0,gp,b10,

gb0,futureRate){

samples <- MultiLogSamples(n=numSamples,mean=mean,variance=variance)

Losses <- sapply(1:numSamples,function(i) LossFun(yh=samples[i,1],

yt=samples[i,2],yf=samples[i,3],theta=c(Thetas[1,1],

Thetas[1,2]),rho0=rho0,gp=gp,b10=b10,gb0=gb0,

futureRate=futureRate))

return(sum(Losses)/numSamples)

}

thisDICE <- function(yh,yt,yf,theta,rho0,gp,gb0,b10,futureRate){

stopifnot(length(theta)==2)

#Put thetas onto [0.1,1] (from [-1,1])

theta1 <- (theta[1]+1)/2

theta1 <- (theta1*0.9) + 0.1

theta2 <- (theta[2]+1)/2

theta2 <- (theta2*0.9) +0.1

(-1)*DICE(Yh=yh,Zt=yt, Yp= yf, IntTime=4,RateNow=theta1, RateInt=theta2,

rho0=rho0,gp=gp,gb0=gb0,b10=b10,delb=delb,futureRate=futureRate)

}

D.2.2 Multi-level adjustment

Here we provide the key functions used for the multi-level update of our beliefs about

expected loss. The code here represents the Bayes Linear adjustment presented in

section 3.4. The function BuildFine() performs all of the one-off elements of the

adjustment of the fine emulator that do not depend on the input of the emulator.

Here, the coarse correlated residual is adjusted by all runs we have on the coarse, and

the coefficients ρ and γ are updated by the difference between coarse and fine funs.

The inputs are Coarse, which is a list containing the linear model we fitted to the

coarse data; Priors, which is a list of the prior means and variances of the multi-level

model coefficients, the variance functions for both the coarse and accurate correlated

residuals, the variance of the uncorrelated error for both models, and the correlation

parameters for both the coarse and accurate residual processes; D, which is a list
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containing the design matrix of our coarse and accurate runs as well as matrices for

both the coarse and accurate runs evaluated at those points; CoarseData, which is

the design matrix for the coarse runs used to build the linear model contained in

Coarse. The output of the function is a list containing the adjusted moments of

each of the quantities mentioned as well as the matrices required for Bayes Linear

adjustment of any quantities that depend on the inputs to the model. Having a

function that does all of these jobs one time allows the emulators that we build to

be evaluated as quickly as possible after this initial adjustment.

BuildFine <- function(Coarse,Priors,D,CoarseData){

#We begin by updating the coarse residual at each design point.

if(length(CoarseData[1,])>(length(D$X[1,])+1))

stop("CoarseData must only have columns for the design and Eloss")

m <- length(CoarseData$Eloss) + length(D$Fo)

m1 <- length(CoarseData$Eloss)

sumBg <- predict.lm(object=Coarse$model,newdata=as.data.frame(D$X))

#Now we calculate E^c, which with random error we substitute in E_R^C[e^c(X)]

#where X is the coarse/fine design and e^c(x) is the correlated part of

#the coarse residual.

BigResids <- resid(Coarse$model)

JointRunCResids <- D$F1 - sumBg

tData <- c(BigResids,JointRunCResids)

CoarseData <- as.matrix(CoarseData)

if(dim(D$X)[2]<2)

totalXs <- as.matrix(data.frame(t1=c(CoarseData[,1],D$X[,1])))

else

totalXs <- rbind(CoarseData[,-(length(CoarseData[1,]))],D$X)

#totalXs is the design matrix for all of the runs we have on the coarse.

EtData <- sapply(1:m,function(i) Priors$Eec(totalXs[i,]))

CoarseDiff <- tData - EtData

VCoarse <- matrix(0,nrow=m,ncol=m)

if(!length(Priors$CCorrLength)==length(D$X[1,])){

if(length(Priors$CCorrLength)<2)

Priors$CCorrLength <- rep(Priors$CCorrLength,length(D$X[1,]))

else

stop("Incorrectly specified vector of correlation parameters")

}
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CLengths <- diag(Priors$CCorrLength,nrow=length(D$X[1,]),ncol=length(D$X[1,]))

for(i in 1:m){

for(j in 1:m){

if(i > m1)

a <- D$X[(i-m1),]

else

a <- CoarseData[i,-(length(CoarseData[1,]))]

if(j > m1)

b <- D$X[(j-m1),]

else

b <- CoarseData[j,-(length(CoarseData[1,]))]

exponent <- t(a-b)%*%CLengths%*%(a-b)

VCoarse[i,j] <- exp(-exponent)*sqrt(Priors$Vec(totalXs[i,]))

*sqrt(Priors$Vec(totalXs[j,]))

}

}

#Now we add the coarse uncorrelated variance to the variance matrix

VdeltaCoarse <- diag(rep(Priors$vdc,m),nrow=m,ncol=m)

VCoarse <- VCoarse+VdeltaCoarse

#Try robust inversion via cholesky decomposition and use a generalized

#inverse if the eigenvalues are too small.

CQ <- try(chol(VCoarse),TRUE)

if(inherits(CQ,"try-error")){

library(MASS)

VCinv <- ginv(VCoarse)

CQ <- NULL

CHalfUp <- NULL

}

else{

CHalfUp <- backsolve(CQ,CoarseDiff,transpose=TRUE)

VCinv <- NULL

CDiff <- NULL

}

#We call the function AdjustCoarseResids() below to adjust the coarse

#residuals, using the matrices we have constructed above.

Ec <- sapply(1:length(D$Fo), function(i) AdjustCoarseResids(x=D$X[i,],

PriorResid=list(CLength=Priors$CCorrLength,Eec=Priors$Eec,
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Vec=Priors$Vec),CResidData=totalXs,Q=CQ,HalfUp=CHalfUp,

VDinv=VCinv,Diff=CoarseDiff)$Eec)

###############################################

#We now adjust the parameters of the accurate model.

#We first construct the matrices and vectors required for the adjustment

#Difference between the data and it’s expectation:

n <- length(D$Fo)

Ef <- sapply(1:n,function(i) Priors$Eef(x=D$X[i,]))

ED <- (Priors$ERho - 1)*sumBg + (Priors$EGamma - 1)*Ec + Ef

DelD <- D$F1 -D$Fo - ED

BgEc <- outer(sumBg,Ec)

EcBg <- t(BgEc)

#Variance of the data

VEf <- matrix(0,nrow=n,ncol=n)

if(!length(Priors$FCorrLength)==length(D$X[1,])){

if(length(Priors$FCorrLength)<2)

Priors$FCorrLength <- rep(Priors$FCorrLength,length(D$X[1,]))

else

stop("Incorrectly specified vector of correlation parameters")

}

FLengths <- diag(Priors$FCorrLength,nrow=length(D$X[1,]),ncol=length(D$X[1,]))

for(i in 1:n){

for(j in 1:n){

exponent <- t(D$X[i,]-D$X[j,])%*%FLengths%*%(D$X[i,]-D$X[j,])

VEf[i,j] <- exp(-exponent)*sqrt(Priors$Vef(D$X[i,]))

*sqrt(Priors$Vef(D$X[j,]))

}

}

VDels <- diag(rep(Priors$vdf,n),nrow=n,ncol=n)

VD <- Priors$VRho*outer(sumBg,sumBg) + Priors$VGamma*outer(Ec,Ec)

+ Priors$CRhoGamma*(BgEc+EcBg) + VEf + VDels

CovRhoD <- Priors$VRho*sumBg + Priors$CRhoGamma*Ec

CovGammaD <- Priors$CRhoGamma*sumBg + Priors$VGamma*Ec

#Try inverting the variance using the cholesky decomposition. Use

#A generalized inverse if the eigenvalues are too small.

Q <- try(chol(VD),TRUE)

if(inherits(Q,"try-error")){
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library(MASS)

VDinv <- ginv(VD)

EDRho <- Priors$ERho + CovRhoD%*%VDinv%*%DelD

VDRho <- Priors$VRho - CovRhoD%*%VDinv%*%CovRhoD

EDGamma <- Priors$EGamma + CovGammaD%*%VDinv%*%DelD

VDGamma <- Priors$VGamma - CovGammaD%*%VDinv%*%CovGammaD

CovDRhoGamma <- Priors$CRhoGamma - CovRhoD%*%VDinv%*%CovGammaD

return(list(EDRho=EDRho,EDGamma=EDGamma,VDRho=VDRho,VDGamma=VDGamma,

CDRhoGamma=CovDRhoGamma,CovRhoD=CovRhoD,CovGammaD=CovGammaD,

Q=NULL,HalfUp=NULL,VDinv=VDinv,DelD=DelD,CQ=CQ,CHalfUp=CHalfUp,

VCinv=VCoarseinv,CDiff=CoarseDiff,CoarseLocs=totalXs,Ec=Ec))

}

else{

HalfUp <- backsolve(Q,DelD,transpose=TRUE)

yrho <- backsolve(Q,CovRhoD,transpose=TRUE)

EDRho <- Priors$ERho + crossprod(yrho, HalfUp)

VDRho <- Priors$VRho - crossprod(yrho)

ygam <- backsolve(Q,CovGammaD,transpose=TRUE)

EDGamma <- Priors$EGamma + crossprod(ygam,HalfUp)

VDGamma <- Priors$VGamma - crossprod(ygam)

CovDRhoGamma <- Priors$CRhoGamma - crossprod(yrho,ygam)

return(list(EDRho=EDRho,EDGamma=EDGamma,VDRho=VDRho,VDGamma=VDGamma,

CDRhoGamma=CovDRhoGamma,CovRhoD=CovRhoD,CovGammaD=CovGammaD,

Q=Q,HalfUp=HalfUp,VDinv=NULL,DelD=NULL,CQ=CQ,CHalfUp=CHalfUp,

VCinv=VCoarseinv,CDiff=CoarseDiff,CoarseLocs=totalXs,Ec=Ec))

}

}

AdjustCoarseResids <- function(x,PriorResid,CResidData,Q,VDinv,HalfUp,Diff){

#CResidData is a matrix of locations of the observed coarse.

#Only require E_D(e(x)), Var_D(e(x))

if(length(x)!= length(CResidData[1,]))

stop("x has different dimensions to the Design")

#Step1 (the expensive bit). Create covariance

if(!length(PriorResid$CLength)==length(x)){

if(length(PriorResid$CLength)<2)

PriorResid$CLength <- rep(PriorResid$CLength,length(x))
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else

stop("Incorrectly specified vector of correlation parameters")

}

CLengths <- diag(PriorResid$CLength,nrow=length(x),ncol=length(x))

n <- length(CResidData[,1])

tcov <- sapply(1:n, function(i) (sqrt(PriorResid$Vec(x)))*

(sqrt(PriorResid$Vec(CResidData[i,])))*(exp((-1)*

((x-CResidData[i,])%*%CLengths%*%(x-CResidData[i,])))))

if(is.null(Q)){

EDec <- PriorResid$Eec(x) + (tcov%*%VDinv%*%Diff)

VDec <- PriorResid$Vec(x) - (tcov%*%VDinv%*%tcov)

}

else{

yc <- backsolve(Q,tcov,transpose=TRUE)

EDec <- PriorResid$Eec(x) + crossprod(yc,HalfUp)

VDec <- PriorResid$Vec(x) - crossprod(yc)

}

return(list(Eec=EDec,Vec=VDec))

}

D.2.3 Obtaining coarse and accurate runs

The following functions obtain fast and accurate runs for each of the three emulators

we wish to construct. The object ComputerModelStuff is a list containing all of

the quantities required for forecasting as well as the elements from the output of

OneOffs. In order to obtain the runs for emulating A(θ1, z1) we present the code for

obtaining the coarse runs and the code used for obtaining the runs of both coarse and

accurate models at the same locations through AFast and AFull. These functions

are designed specifically to work for the example in chapter 4 and would need to be

altered for a different problem.

AFast <- function(fastPoints,forecastgridpoints=NULL,ComputerModelStuff,

Separable=TRUE,numSamples,rho0,gp,b10,gb0,futureRate){

cms <- ComputerModelStuff

#Create a data frame with theta1, theta2, zt, Eloss and use it to emulate.

Eloss <- rep(0,length(fastPoints[,1]))

for(i in 1:length(Eloss)){
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temp <- SeparableForecast(theta=c(fastPoints[i,1],fastPoints[i,2]),

VarRuns=cms$VarRuns,Q=cms$Q,HalfUp=cms$HalfUp,AEBetas=cms$AEBetas,

AVBetas=cms$AVBetas,X=cms$X,Theta=cms$Theta,EBetas=cms$EBetas,

VarBetas=cms$VarBetas,Runs=cms$Runs,Zh=cms$Zh,Zt=fastPoints[i,3],

SIGdis=cms$SIGdis,SIGe=cms$SIGe,SIGu=cms$SIGu,V=cms$V,CLx=cms$CLx,

CLdec=cms$CLdec,Rx=cms$Rx,Rdec=cms$Rdec,hist=cms$hist,

future=cms$future,intervention=cms$intervention,InvVDat=cms$InvVDat,

FminusEF=cms$FminusEF,DecisionVector=cms$DecisionVector,

hxhxtInt=cms$hxhxtInt,rxInt=cms$rxInt,rxrxtInt=cms$rxrxtInt,

hxInt=cms$hxInt,hxrxtInt=cms$hxrxtInt)

Eloss[i] <- MonteMLoss(mean=temp$Expectation,variance=temp$Variance,

LossFun=thisDICE,numSamples=numSamples,Thetas=fastPoints[i,-3],

rho0=rho0,gp=gp,b10=b10,gb0=gb0,futureRate=futureRate)

}

data.frame(t1=fastPoints[,1],t2=fastPoints[,2],zt=fastPoints[,3],Eloss)

}

AFull <- function(FineDesign,ComputerModelStuff,numsamples,nfsamples=NULL,

rho0=0.03,gp=0.00257,gb0=-0.08,b10=0.03,futureRate=0.05){

cms <- ComputerModelStuff

ExpectCLoss <- c()

ExpectFLoss <- c()

for(i in 1:length(FineDesign[,1])){

forc <- SeparableForecast(theta=c(FineDesign[i,1],FineDesign[i,2]),

VarRuns=cms$VarRuns,Q=cms$Q,HalfUp=cms$HalfUp,AEBetas=cms$AEBetas,

AVBetas=cms$AVBetas,X=cms$X,Theta=cms$Theta,EBetas=cms$EBetas,

VarBetas=cms$VarBetas,Runs=cms$Runs,Zh=cms$Zh,Zt=FineDesign[i,3],

SIGdis=cms$SIGdis,SIGe=cms$SIGe,SIGu=cms$SIGu,V=cms$V,CLx=cms$CLx,

CLdec=cms$CLdec,Rx=cms$Rx,Rdec=cms$Rdec,hist=cms$hist,

future=cms$future,intervention=cms$intervention,InvVDat=cms$InvVDat,

FminusEF=cms$FminusEF,DecisionVector=cms$DecisionVector,

hxInt=cms$hxInt,hxhxtInt=cms$hxhxtInt,rxInt=cms$rxInt,

rxrxtInt=cms$rxrxtInt,hxrxtInt=cms$hxrxtInt)

Elosses <- MonteMLoss(mean=forc$Expectation,variance=forc$Variance,

LossFun=thisDICE,numSamples=numsamples,Thetas=FineDesign[i,-3],

rho0=rho0,gp=gp,b10=b10,gb0=gb0,futureRate=futureRate)

ExpectCLoss <- c(ExpectCLoss,Elosses)
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Elosses <- MonteMLoss(mean=forc$Expectation,variance=forc$Variance,

LossFun=thisDICE,numSamples=nfsamples,Thetas=FineDesign[i,-3],

rho0=rho0,gp=gp,b10=b10,gb0=gb0,futureRate=futureRate)

ExpectFLoss <- c(ExpectFLoss,Elosses)

}

data.frame(t1=FineDesign[,1],t2=FineDesign[,2],zt=FineDesign[,3],

ECLoss=ExpectCLoss,EFLoss=ExpectFLoss)

}

As the code for generating the coarse runs is very similar to that used for generating

the coarse and accurate runs at the same locations, we only include code of the

latter type here for the remaining two emulators. In order to emulate B1
λ1(θt0 , z

1)

we must find the minimum of our emulator for A(θ1, z1). This is done using the

function t2Strategy which appears below and is called by BFull here.

BFull <- function(FDesign,AEmulator,ComputerModelStuff,numsamples,

nfsamples,rho0,gp,gb0,b10,futureRate){

cms <- ComputerModelStuff

ExpectedCLoss <- c()

ExpectedFLoss <- c()

t2 <- c()

for(i in 1:length(FineDesign[,1])){

temp <- t2Strategy(t1=FDesign$t1[i],zt=FDesign$zt[i],AEmulator=AEmulator)

if(temp$t2 < -1)

stop("min t2 should be greater than -1")

if(temp$t2 >1)

stop("min t2 should be less than 1")

t2 <- c(t2,temp$t2)

t1Coarse <- SeparableForecast(theta=c(FDesign$t1[i],temp$t2),

VarRuns=cms$VarRuns,Q=cms$Q,HalfUp=cms$HalfUp,AEBetas=cms$AEBetas,

AVBetas=cms$AVBetas,X=cms$X,Theta=cms$Theta,EBetas=cms$EBetas,

VarBetas=cms$VarBetas,Runs=cms$Runs,Zh=cms$Zh,Zt=FDesign$zt[i],

SIGdis=cms$SIGdis,SIGe=cms$SIGe,SIGu=cms$SIGu,V=cms$V,CLx=cms$CLx,

CLdec=cms$CLdec,Rx=cms$Rx,Rdec=cms$Rdec,hist=cms$hist,

future=cms$future,intervention=cms$intervention,InvVDat=cms$InvVDat,

FminusEF=cms$FminusEF,DecisionVector=cms$DecisionVector,

hxInt=cms$hxInt,hxhxtInt=cms$hxhxtInt,rxInt=cms$rxInt,

rxrxtInt=cms$rxrxtInt,hxrxtInt=cms$hxrxtInt)
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ts <- as.matrix(c(FDesign$t1[i],temp$t2))

dim(ts) <- c(1,2)

Elosses <- MonteMLoss(mean=t1Coarse$Expectation,variance=t1Coarse$Variance,

LossFun=thisDICE,numSamples=numsamples,Thetas=ts,rho0=rho0,gp=gp,

b10=b10,gb0=gb0,futureRate=futureRate)

ExpectCLoss <- c(ExpectCLoss,Elosses)

Elosses <- MonteMLoss(mean=t1Coarse$Expectation,variance=t1Coarse$Variance,

LossFun=thisDICE,numSamples=nfsamples,Thetas=ts,rho0=rho0,gp=gp,

b10=b10,gb0=gb0,futureRate=futureRate)

ExpectFLoss <- c(ExpectFLoss,Elosses)

}

data.frame(t1=FDesign$t1,zt=FDesign$zt,t2=t2,ECLoss=ExpectCLoss,

EFLoss=ExpectFLoss)

}

The emulator for C1
λ1(θt0 , zt0) is constructed using runs obtained by running the

functions CFast and CFull, the latter of which is below. Each expected loss is an

evaluation of our emulator for B1
λ1(θt0 , z

1), which is called via the function BFine,

below.

CFull <- function(Design,ComputerModelStuff,numSamples,nfsamples,BEmulator){

cms <- ComputerModelStuff

ExpectCLoss <- c()

ExpectFLoss <- c()

for(i in 1:length(Design$t1)){

t1Coarse <- SeparableForecast(theta=c(Design$t1[i],0),VarRuns=cms$VarRuns,

Q=cms$Q,HalfUp=cms$HalfUp,AEBetas=cms$AEBetas,AVBetas=cms$AVBetas,

X=cms$X,Theta=cms$Theta,EBetas=cms$EBetas,VarBetas=cms$VarBetas,

Runs=cms$Runs,Zh=cms$Zh,Zt=NULL,SIGdis=cms$SIGdis,SIGe=cms$SIGe,

SIGu=cms$SIGu,V=cms$V,CLx=cms$CLx,CLdec=cms$CLdec,Rx=cms$Rx,

Rdec=cms$Rdec,hist=cms$hist,future=cms$future,hxInt=cms$hxInt,

intervention=cms$intervention,is.intervention=TRUE,rxInt=cms$rxInt,

InvVDat=cms$InvVDat,FminusEF=cms$FminusEF,hxhxtInt=cms$hxhxtInt,

DecisionVector=cms$DecisionVector,rxrxtInt=cms$rxrxtInt,

hxrxtInt=cms$hxrxtInt)

samples <- UniLogSamples(n=numSamples,mean=t1Coarse$Expectation,

variance=t1Coarse$Variance)

Elosses <- sapply(1:length(samples),function(j) BFine(Design$t1[i],
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samples[j],Coarse=BEmulator$Coarse,BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors,D=BEmulator$D)$Ef1)

ExpectCLoss <- c(ExpectCLoss,mean(Elosses))

samples <- UniLogSamples(n=nfsamples,mean=t1Coarse$Expectation,

variance=t1Coarse$Variance)

Elosses <- sapply(1:nfsamples,function(j) BFine(Design$t1[i],samples[j],

Coarse=BEmulator$Coarse,BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors,D=BEmulator$D)$Ef1)

ExpectFLoss <- c(ExpectFLoss,mean(Elosses))

}

data.frame(t1=Design$t1,ECloss=ExpectCLoss,EFloss=ExpectFLoss)

}

D.2.4 The Final Emulators

The following functions represent the emulators for each of the expected losses on our

decision tree. We also include the function t2Strategy, which locates the minimum

of our emulator for A(θ1, z1).

AFine <- function(t2,t1,zt,Coarse,BuiltFine,Priors,D){

n <- length(D$X[,1])

FLengths <- diag(Priors$FCorrLength,nrow=length(D$X[1,]),ncol=length(D$X[1,]))

covefEF <- sapply(1:n,function(i) (sqrt(Priors$Vef(c(t1,t2,zt))))*

(sqrt(Priors$Vef(D$X[i,])))*(exp((-1)*(t(c(t1,t2,zt)-D$X[i,])

%*%FLengths%*%(c(t1,t2,zt)-D$X[i,])))))

CResidUp <- AdjustCoarseResids(x=c(t1,t2,zt),PriorResid=list(

CLength=Priors$CCorrLength,Eec=Priors$Eec,Vec=Priors$Vec),

CResidData=BuiltFine$CoarseLocs,Q=BuiltFine$CQ,

HalfUp=BuiltFine$CHalfUp,VDinv=BuiltFine$VCinv,

Diff=BuiltFine$CDiff)

sumBgx <- predict.lm(object=Coarse$model,newdata=data.frame(t1=t1,

t2=t2,zt=zt))

if(is.null(BuiltFine$Q)){

VDinv <- BuiltFine$VDinv

DelD <- BuiltFine$DelD

EDefx <- Priors$Eef(x=c(t1,t2,zt)) + (covefEF%*%VDinv%*%DelD)

VDefx <- Priors$Vef(x=c(t1,t2,zt)) - (covefEF%*%VDinv%*%covefEF)

CDefxRho <- Priors$CefRho(x=c(t1,t2,zt)) -
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(covefEF%*%VDinv%*%(BuiltFine$CovRhoD))

CDefxGamma <- Priors$CefGamma(x=c(t1,t2,zt)) -

(covefEF%*%VDinv%*%(BuiltFine$CovGammaD))

}

else{

Q <- BuiltFine$Q

yef <- backsolve(Q,covefEF,transpose=TRUE)

yRho <- backsolve(Q,BuiltFine$CovRhoD,transpose=TRUE)

yGam <- backsolve(Q,BuiltFine$CovGammaD,transpose=TRUE)

EDefx <- Priors$Eef(x=c(t1,t2,zt)) + crossprod(yef,BuiltFine$HalfUp)

VDefx <- Priors$Vef(x=c(t1,t2,zt)) - crossprod(yef)

CDefxRho <- Priors$CefRho(x=c(t1,t2,zt)) - crossprod(yef,yRho)

CDefxGamma <- Priors$CefGamma(x=c(t1,t2,zt)) - crossprod(yef,yGam)

}

Ef1 <- (sumBgx*BuiltFine$EDRho)+((CResidUp$Eec)*(BuiltFine$EDGamma))+EDefx

Vf1 <- BuiltFine$VDRho*(sumBgx^2))+(BuiltFine$VDGamma*(CResidUp$Eec^2))+

(VDefx)+(2*BuiltFine$CDRhoGamma*sumBgx*CResidUp$Eec)+ Priors$vdf +

(2*CDefxGamma*CResidUp$Eec)+(2*CDefxRho*sumBgx)+

(CResidUp$Vec*(Priors$VGamma + (Priors$EGamma^2)))

return(list(Ef1=Ef1,Vf1=Vf1))

}

#The next function is necessary only to run an optimiser over t2

#This is because of the way optimiser works in R

ExpectAFine <- function(t2,t1,zt,AEmulator){

F <- AFine(t2=t2,t1=t1,zt=zt,Coarse=AEmulator$Coarse,D=AEmulator$D,

BuiltFine=AEmulator$BuiltFine,Priors=AEmulator$Priors)

F$Ef1

}

t2Strategy <- function(t1,zt,AEmulator){

tAEmulator=AEmulator

optimizer <- optimize(f=ExpectAFine,interval=c(-1,1),t1=t1,zt=zt,

AEmulator=tAEmulator)

optimizer1 <- optimize(f=ExpectAFine,interval=c(-1,0),t1=t1,zt=zt,

AEmulator=tAEmulator)

if(optimizer1$objective < optimizer$objective)
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optimizer <- optimizer1

optimizer2 <- optimize(f=ExpectAFine,interval=c(0,1),t1=t1,zt=zt,

AEmulator=tAEmulator)

if(optimizer2$objective < optimizer$objective)

optimizer <- optimizer2

t2=optimizer$minimum

ELoss=optimizer$objective

return(list(ELoss=ELoss,t2=t2))

}

BFine <- function(t1,zt,Coarse,BuiltFine,Priors,D){

n <- length(D$X[,1])

FLengths <- diag(Priors$FCorrLength,nrow=length(D$X[1,]),

ncol=length(D$X[1,]))

covefEF <- sapply(1:n,function(i) (sqrt(Priors$Vef(c(t1,zt))))*

(sqrt(Priors$Vef(D$X[i,])))*(exp((-1)*(t(c(t1,zt)-D$X[i,])

%*%FLengths%*%(c(t1,zt)-D$X[i,])))))

CResidUp <- AdjustCoarseResids(x=c(t1,zt),PriorResid=list(

CLength=Priors$CCorrLength,Eec=Priors$Eec,Vec=Priors$Vec),

CResidData=BuiltFine$CoarseLocs,Q=BuiltFine$CQ,

HalfUp=BuiltFine$CHalfUp,VDinv=BuiltFine$VCinv,

Diff=BuiltFine$CDiff)

sumBgx <- predict.lm(object=Coarse$model,newdata=data.frame(t1=t1,zt=zt))

if(is.null(BuiltFine$Q)){

VDinv <- BuiltFine$VDinv

DelD <- BuiltFine$DelD

EDefx <- Priors$Eef(x=c(t1,zt)) + (covefEF%*%VDinv%*%DelD)

VDefx <- Priors$Vef(x=c(t1,zt)) - (covefEF%*%VDinv%*%covefEF)

CDefxRho <- Priors$CefRho(x=c(t1,zt)) -

(covefEF%*%VDinv%*%(BuiltFine$CovRhoD))

CDefxGamma <- Priors$CefGamma(x=c(t1,zt)) -

(covefEF%*%VDinv%*%(BuiltFine$CovGammaD))

}

else{

Q <- BuiltFine$Q

yef <- backsolve(Q,covefEF,transpose=TRUE)

yRho <- backsolve(Q,BuiltFine$CovRhoD,transpose=TRUE)
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yGam <- backsolve(Q,BuiltFine$CovGammaD,transpose=TRUE)

EDefx <- Priors$Eef(x=c(t1,zt)) + crossprod(yef,BuiltFine$HalfUp)

VDefx <- Priors$Vef(x=c(t1,zt)) - crossprod(yef)

CDefxRho <- Priors$CefRho(x=c(t1,zt)) - crossprod(yef,yRho)

CDefxGamma <- Priors$CefGamma(x=c(t1,zt)) - crossprod(yef,yGam)

}

Ef1 <- (sumBgx*BuiltFine$EDRho) + ((CResidUp$Eec)*(BuiltFine$EDGamma)) + EDefx

Vf1 <- (BuiltFine$VDRho*(sumBgx^2))+(BuiltFine$VDGamma*(CResidUp$Eec^2))+

(VDefx)+(2*BuiltFine$CDRhoGamma*sumBgx*CResidUp$Eec)+ Priors$vdf

(2*CDefxGamma*CResidUp$Eec)+(2*CDefxRho*sumBgx)+

(CResidUp$Vec*(Priors$VGamma + (Priors$EGamma^2)))

return(list(Ef1=Ef1,Vf1=Vf1))

}

CFine <- function(t1,Coarse,BuiltFine,Priors,D){

n <- length(D$X[,1])

FLengths <- diag(Priors$FCorrLength,nrow=length(D$X[1,]),

ncol=length(D$X[1,]))

covefEF <- sapply(1:n,function(i) (sqrt(Priors$Vef(t1)))*

(sqrt(Priors$Vef(D$X[i,])))*(exp((-1)*(t(c(t1)-D$X[i,])

%*%FLengths%*%(c(t1)-D$X[i,])))))

covefEF <- covefEF*Priors$Vef(1)

CResidUp <- AdjustCoarseResids(x=c(t1),PriorResid=list(

CLength=Priors$CCorrLength,Eec=Priors$Eec,Vec=Priors$Vec),

CResidData=BuiltFine$CoarseLocs,Q=BuiltFine$CQ,

HalfUp=BuiltFine$CHalfUp,VDinv=BuiltFine$VCinv,

Diff=BuiltFine$CDiff)

sumBgx <- predict.lm(object=Coarse$model,newdata=data.frame(t1=t1))

if(is.null(BuiltFine$Q)){

VDinv <- BuiltFine$VDinv

DelD <- BuiltFine$DelD

EDefx <- Priors$Eef(x=c(t1)) + (covefEF%*%VDinv%*%DelD)

VDefx <- Priors$Vef(x=c(t1)) - (covefEF%*%VDinv%*%covefEF)

CDefxRho <- Priors$CefRho(x=c(t1)) - (covefEF%*%VDinv%*%(BuiltFine$CovRhoD))

CDefxGamma <- Priors$CefGamma(x=c(t1)) -

(covefEF%*%VDinv%*%(BuiltFine$CovGammaD))

}
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else{

Q <- BuiltFine$Q

yef <- backsolve(Q,covefEF,transpose=TRUE)

yRho <- backsolve(Q,BuiltFine$CovRhoD,transpose=TRUE)

yGam <- backsolve(Q,BuiltFine$CovGammaD,transpose=TRUE)

EDefx <- Priors$Eef(x=c(t1)) + crossprod(yef,BuiltFine$HalfUp)

VDefx <- Priors$Vef(x=c(t1)) - crossprod(yef)

CDefxRho <- Priors$CefRho(x=c(t1)) - crossprod(yef,yRho)

CDefxGamma <- Priors$CefGamma(x=c(t1)) - crossprod(yef,yGam)

}

Ef1 <- (sumBgx*BuiltFine$EDRho) + ((CResidUp$Eec)*(BuiltFine$EDGamma)) + EDefx

Vf1 <- BuiltFine$VDRho*(sumBgx^2))+(BuiltFine$VDGamma*(CResidUp$Eec^2))+

(VDefx)+(2*BuiltFine$CDRhoGamma*sumBgx*CResidUp$Eec)+

(2*CDefxGamma*CResidUp$Eec)+(2*CDefxRho*sumBgx)+

(CResidUp$Vec*(Priors$VGamma + (Priors$EGamma^2))) + Priors$vdf

return(list(Ef1=Ef1,Vf1=Vf1))

}

D.3 Reified decision-dependent forecasting

Here we present some of the code used to generate the example in Chapter 5. Much

of the code used to generate this example was the same as the code above. We do

not include these functions here. The code in this section uses C to refer to H1.

Firstly we have the functions that generate and adjust our beliefs about β∗

BStars <- function(ERhoPrime, ERhoStar, Betas, VRhoPrime, VRhoStar){

EBetaStar <- ERhoStar*ERhoPrime*Betas

VBetaStar <- outer(Betas,Betas)*(VRhoStar*(VRhoPrime+(ERhoPrime^2))+

(ERhoStar^2)*VRhoPrime)

return(list(EBetaStar=EBetaStar,VBetaStar=VBetaStar))

}

AdjBStars <- function(C,ERhoStar,ERhoPrime,VRhoStar,VRhoPrime,Betas,VarOmega){

AEBetaStar <- ERhoStar*C*Betas

AVBetaStar <- outer(Betas,Betas)*(VRhoStar*(VRhoPrime+(ERhoPrime^2))+

((ERhoStar^2)*VarOmega))

return(list(EBetaStar=AEBetaStar,VBetaStar=AVBetaStar))
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}

The object ReifiedModelStuff is a list containing all of our beliefs regarding the

emulators for the different models and other things required in order to produce

forecasts. This is the equivalent of the list ComputerModelStuff in the code for the

other example. The following two functions compute our beliefs about y having

adjusted β∗ by H1, and our joint beliefs about y and H1, respectively.

YmomentsGivenC <- function(theta,EBetaStar,VBetaStar,ReifiedModelStuff){

rms <- ReifiedModelStuff

reqInts <- RequiredIntegrals(theta=theta,Theta=rms$Theta,CLdec=rms$CLdec,

DecisionVector=rms$DecisionVector,Rdec=rms$Rdec,V=rms$V,

SIGu=rms$SIGu,hxInt=rms$hxInt,hxhxtInt=rms$hxhxtInt,rxInt=rms$rxInt,

rxrxtInt=rms$rxrxtInt,hxrxtInt=rms$hxrxtInt)

ERegress <- ExpectRegression(EBetaStar,gxInt=reqInts$gxInt)

EResid <- ExpectResid(Q=rms$Q,HalfUp=rms$HalfUp,covuUInt=reqInts$covuUInt,

InvVDat=rms$InvVDat,FminusEF=rms$FminusEF)

Ey <- ERegress + EResid

VBgInt <- VarBg(VBetaStar=VBetaStar,gxgxTInt=reqInts$gxgxTInt)

EbgEbg <- IntEbgEbg(gxgxTInt=reqInts$gxgxTInt, EBetaStar=EBetaStar)

AVux <- IntAdjux(Q=rms$Q,V=rms$V,SIGu=rms$SIGu,

covuUcovUuInt=reqInts$covuUcovUuInt,InvVDat=rms$InvVDat)+

diag((rms$SIGDeltaPrime)^2)+diag((rms$SIGDeltaStar)^2)

AEuxAEux <- IntEuxEux(covuUcovUuInt=reqInts$covuUcovUuInt,HalfUp=rms$HalfUp,

Q=rms$Q,InvVDat=rms$InvVDat,FminusEF=rms$FminusEF)

muSquared <- outer(Ey,Ey)

EbgEux <- IntEbgEux(covugIntegral=reqInts$covugIntegral,EBetaStar=EBetaStar,

HalfUp=rms$HalfUp,Q=rms$Q,InvVDat=rms$InvVDat,FminusEF=rms$FminusEF)

Vy <- VBgInt + AVux + EbgEbg + AEuxAEux + EbgEux + t(EbgEux)

+ rms$SIGdisStar - muSquared

return(list(Ey=Ey,Vy=Vy,gxInt=reqInts$gxInt))

}

YJointwithC <- function(theta,EBetaStar,VBetaStar,ReifiedModelStuff,ERhoPrime,

ERhoStar,VRhoPrime,VarOmega,Betas){

#We havn’t adjusted B* by C here.

rms <- ReifiedModelStuff

Ymoms <- YmomentsGivenC(theta=theta,EBetaStar=EBetaStar,VBetaStar=VBetaStar,
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ReifiedModelStuff=rms)

EyC <- c(Ymoms$Ey,ERhoPrime)

VC <- VRhoPrime-VarOmega

m <- length(Ymoms$gxInt)

temp <- VC*ERhoStar*Betas

covyC <- tensor(temp,Ymoms$gxInt,2,1)

VyC <- matrix(0,nrow=length(EyC),ncol=length(EyC))

n <- length(EyC)

VyC[1:(n-1),1:(n-1)] <- Ymoms$Vy

VyC[n,n] <- VC

VyC[1:(n-1),n] <- covyC

VyC[n,1:(n-1)] <- covyC

return(list(EyC=EyC,VyC=VyC))

}

We compute the reified decision-dependent forecast or decision-dependent observa-

tion forecast as required. The code below is for the example only and deals with

scalar observations at each time point. It would need generalizing in order to handle

vectors of observations at each time point.

ReifiedForecast <- function(Expectation,Variance,Zh,Zt=NULL,

is.intervention=FALSE,SIGe){

#Expectation is E[y] or E[y,C] depending on is.intervention

#Variance is Var[y] or Var[y,C] depending on is.intervention.

if(is.intervention){

EztC <- Expectation[c(2,4)]

VztC <- Variance[c(2,4),c(2,4)]

VztC <- VztC + rbind(c(SIGe^2,0),c(0,0))

Ezh <- Expectation[1]

Vzh <- Variance[1,1] + SIGe^2

covztCzh <- Variance[c(2,4),1]

diff <- Zh - Ezh

Qz <- chol(Vzh)

x <- backsolve(Qz,diff,transpose=TRUE)

y <- backsolve(Qz,t(covztCzh),transpose=TRUE)

addition <- crossprod(y,x)

dim(addition) <- dim(EztC)

ExpectFor <- EztC + addition
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VarFor <- VztC - crossprod(y)

return(list(Expectation=ExpectFor,Variance=VarFor))

}

else{

Ezhzt <- Expectation[c(1,2)]

Eyhytyf <- Expectation[1:3]

data <- c(Zh,Zt)

diff <- data-Ezhzt

Vzhzt <- Variance[c(1,2),c(1,2)] + rbind(c(SIGe^2,0),c(0,SIGe^2))

Covyhytyf.zhzt <- Variance[1:3,1:2]

Qz <- chol(Vzhzt)

x <- backsolve(Qz,diff,transpose=TRUE)

y <- backsolve(Qz,t(Covyhytyf.zhzt),transpose=TRUE)

dim(Eyhytyf) <- c(3,1)

ExpectFor <- Eyhytyf + crossprod(y,x)

VarFor <- Variance - crossprod(y)

return(list(Expectation=ExpectFor,Variance=VarFor))

}

}

ForecastY <- function(theta, Vw, C, Zt, ReifiedModelStuff, VRhoPrime, VRhoStar){

rms <- ReifiedModelStuff

VarOmega=Vw

if(!((VRhoStar-Vw)>0))

ABStar <- BStars(ERhoPrime=rms$ERhoPrime,ERhoStar=rms$ERhoStar,

Betas=rms$Betas,VRhoPrime=VRhoPrime,VRhoStar=VRhoStar)

else

ABStar <- AdjBStars(C=C,ERhoStar=rms$ERhoStar,ERhoPrime=rms$ERhoPrime,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar,Betas=rms$Betas,

VarOmega=VarOmega)

Ymoms <- YmomentsGivenC(theta=theta,EBetaStar=ABStar$EBetaStar,

VBetaStar=ABStar$VBetaStar,ReifiedModelStuff=rms)

ReifiedForecast(Expectation=Ymoms$Ey,Variance=Ymoms$Vy,Zh=rms$Zh,Zt=Zt,

SIGe=rms$SIGe)

}

ForecastZtC <- function(theta0,Vw,ReifiedModelStuff,VRhoPrime,VRhoStar){
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rms <- ReifiedModelStuff

VarOmega <- Vw

BStar <- BStars(ERhoPrime=rms$ERhoPrime,ERhoStar=rms$ERhoStar,Betas=rms$Betas,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar)

YCmoms <- YJointwithC(theta=c(theta0,0),EBetaStar=BStar$EBetaStar,

VBetaStar=BStar$VBetaStar,ReifiedModelStuff=rms,ERhoPrime=rms$ERhoPrime,

ERhoStar=rms$ERhoStar,VRhoPrime=VRhoPrime,VarOmega=VarOmega,

Betas=rms$Betas)

ReifiedForecast(Expectation=YCmoms$EyC,Variance=YCmoms$VyC,Zh=rms$Zh,

is.intervention=TRUE,SIGe=rms$SIGe)

}

Below we present the code used for generating samples from the expected losses

A(θ1, z1, H1), B1
λ1(θt0 , z

1, H1), and C1
λ1(θt0 , zt0 , H

1). Certain functions, such as the

function t2Strategy are the same in spirit to their counterparts above, but have more

inputs. We do not include these, nor do we include the emulator functions RAFine,

RBFine and RCFine for the same reason.

ASampleFun <- function(theta,Vw,C,Zt,ReifiedModelStuff,VRhoPrime,VRhoStar,

numSamples,diceParams,is.full=FALSE,nfSamples=NULL){

Ymoms <- ForecastY(theta=theta,Vw=Vw,C=C,Zt=Zt,VRhoPrime=VRhoPrime,

ReifiedModelStuff=ReifiedModelStuff,VRhoStar=VRhoStar)

Csamples <- MultiLogSamples(numSamples,Ymoms$Expectation,Ymoms$Variance)

CLosses <- sapply(1:numSamples,function(i) thisreifiedDICE(yh=Csamples[i,1],

yt=Csamples[i,2],yf=Csamples[i,3],theta=theta,rho0=diceParams$rho0,

gp=diceParams$gp,b10=diceParams$b10,gb0=diceParams$gb0,

futureRate=diceParams$futureRate,Vw=Vw,VRhoPrime=VRhoPrime))

ECloss <- sum(CLosses)/numSamples

if(is.full){

Fsamples <- MultiLogSamples(nfSamples,Ymoms$Expectation,Ymoms$Variance)

FLosses <- sapply(1:nfSamples,function(i) thisreifiedDICE(yh=Fsamples[i,1],

yt=Fsamples[i,2],yf=Fsamples[i,3],theta=theta,rho0=diceParams$rho0,

gp=diceParams$gp,b10=diceParams$b10,gb0=diceParams$gb0,

futureRate=diceParams$futureRate,Vw=Vw,VRhoPrime=VRhoPrime))

return(cbind(ECloss,sum(FLosses)/nfSamples))

}

else

return(ECloss)
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}

ASamples <- function(Adesign,ReifiedModelStuff,VRhoPrime,VRhoStar,numSamples,

nfSamples=NULL,is.full=FALSE,diceParams){

if(is.full & is.null(nfSamples))

stop("Require a number for nfSamples or that is.full==FALSE")

if(is.full){

Losses <- sapply(1:length(Adesign[,1]),function(i) ASampleFun(

theta=c(Adesign$t1[i],Adesign$t2[i]),Vw=Adesign$Vw[i],C=Adesign$C[i],

Zt=Adesign$zt[i],ReifiedModelStuff=ReifiedModelStuff,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar,numSamples=numSamples,

is.full=TRUE,nfSamples=nfSamples,diceParams=diceParams))

return(cbind(Adesign,ECloss=Losses[1,],EFloss=Losses[2,]))

}

else{

Eloss <- sapply(1:length(Adesign[,1]),function(i) ASampleFun(

theta=c(Adesign$t1[i],Adesign$t2[i]),Vw=Adesign$Vw[i],C=Adesign$C[i],

Zt=Adesign$zt[i],ReifiedModelStuff=ReifiedModelStuff,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar,numSamples=numSamples,

diceParams=diceParams))

return(cbind(Adesign,Eloss))

}

}

BSampleFun <- function(theta1,Vw,C,Zt,ReifiedModelStuff,VRhoPrime,VRhoStar,

numSamples,diceParams,is.full=FALSE,nfSamples=NULL,AEmulator){

t2 <- t2Strategy(t1=theta1,Vw=Vw,C=C,zt=Zt,AEmulator=AEmulator)

theta=c(theta1,t2)

Ymoms <- ForecastY(theta=c(theta1,t2),Vw=Vw,C=C,Zt=Zt,

ReifiedModelStuff=ReifiedModelStuff,VRhoPrime=VRhoPrime,

VRhoStar=VRhoStar)

Csamples <- MultiLogSamples(numSamples,Ymoms$Expectation,Ymoms$Variance)

CLosses <- sapply(1:numSamples,function(i) thisreifiedDICE(yh=Csamples[i,1],

yt=Csamples[i,2],yf=Csamples[i,3],theta=theta,Vw=Vw,VRhoPrime=VRhoPrime,

rho0=diceParams$rho0,gp=diceParams$gp,b10=diceParams$b10,

gb0=diceParams$gb0,futureRate=diceParams$futureRate))

ECloss <- sum(CLosses)/numSamples
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if(is.full){

Fsamples <- MultiLogSamples(nfSamples,Ymoms$Expectation,Ymoms$Variance)

FLosses <- sapply(1:nfSamples,function(i) thisreifiedDICE(yh=

Fsamples[i,1],yt=Fsamples[i,2],yf=Fsamples[i,3],theta=theta,

Vw=Vw,VRhoPrime=VRhoPrime,rho0=diceParams$rho0,gp=diceParams$gp,

b10=diceParams$b10,gb0=diceParams$gb0,

futureRate=diceParams$futureRate))

return(cbind(ECloss,sum(FLosses)/nfSamples))

}

else

return(ECloss)

}

BSamples <- function(Bdesign,ReifiedModelStuff,VRhoPrime,VRhoStar,numSamples,

nfSamples=NULL,is.full=FALSE,diceParams,AEmulator){

if(is.full & is.null(nfSamples))

stop("Require a number for nfSamples or that is.full==FALSE")

if(is.full){

Losses <- sapply(1:length(Bdesign[,1]),function(i) BSampleFun(theta1=

Bdesign$t1[i],Vw=Bdesign$Vw[i],C=Bdesign$C[i],Zt=Bdesign$zt[i],

ReifiedModelStuff=ReifiedModelStuff,VRhoPrime=VRhoPrime,

numSamples=numSamples,nfSamples=nfSamples,VRhoStar=VRhoStar,

diceParams=diceParams,AEmulator=AEmulator,is.full=TRUE))

return(cbind(Bdesign,ECloss=Losses[1,],EFloss=Losses[2,]))

}

else{

Eloss <- sapply(1:length(Bdesign[,1]),function(i) BSampleFun(theta1=

Bdesign$t1[i],Vw=Bdesign$Vw[i],C=Bdesign$C[i],Zt=Bdesign$zt[i],

ReifiedModelStuff=ReifiedModelStuff,VRhoPrime=VRhoPrime,

VRhoStar=VRhoStar,numSamples=numSamples,diceParams=diceParams,

AEmulator=AEmulator))

return(cbind(Bdesign,Eloss))

}

}

CSampleFun <- function(theta1,Vw,ReifiedModelStuff,VRhoPrime,VRhoStar,numSamples,

BEmulator,is.full=FALSE,nfSamples=NULL,Cmax){
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rms <- ReifiedModelStuff

ZtCMoms <- ForecastZtC(theta0=theta1,Vw=Vw,ReifiedModelStuff=rms,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar)

if(!((VRhoPrime-Vw)>0)){

Csamples <- UniLogSamples(numSamples,ZtCMoms$Expectation[1],

ZtCMoms$Variance[1,1])

CLosses <- sapply(1:numSamples,function(i) RBFine(t1=theta1,Vw=Vw,C=1,

zt=Csamples[i],Coarse=BEmulator$Coarse,BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors,D=BEmulator$D)$Ef1)

}

else{

Csamples <- MultiLogSamples(numSamples,ZtCMoms$Expectation,ZtCMoms$Variance)

RejectAndComplete <- function(samples,numRequired,maxSam){

Csams <- samples[,2]

numWrong <- sum(Csams>maxSam)

if((numRequired-numWrong)<numRequired){

samples <- samples[samples[,2]<=maxSam,]

newSams <- MultiLogSamples(numWrong,ZtCMoms$Expectation,ZtCMoms$Variance)

newsamples <- rbind(samples,newSams)

samples <- RejectAndComplete(newsamples,numRequired,maxSam)

}

else{

return(samples)

}

}

Csamples <- RejectAndComplete(Csamples,numSamples,maxSam=Cmax)

CLosses <- sapply(1:numSamples,function(i) RBFine(t1=theta1,

Vw=Vw,C=Csamples[i,2],zt=Csamples[i,1],Coarse=BEmulator$Coarse,

BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors,D=BEmulator$D)$Ef1)

}

ECloss <- sum(CLosses)/numSamples

if(is.full){

if(!((VRhoPrime-Vw)>0)){

Fsamples <- UniLogSamples(nfSamples,ZtCMoms$Expectation[1],

ZtCMoms$Variance[1,1])

FLosses <- sapply(1:nfSamples,function(i) RBFine(t1=theta1,Vw=Vw,C=1,
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zt=Fsamples[i],Coarse=BEmulator$Coarse,

BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors,D=BEmulator$D)$Ef1)

}

else{

Fsamples <- MultiLogSamples(nfSamples,ZtCMoms$Expectation,ZtCMoms$Variance)

FLosses <- sapply(1:nfSamples,function(i) RBFine(t1=theta1,Vw=Vw,

C=Fsamples[i,2],zt=Fsamples[i,1],Coarse=BEmulator$Coarse,

D=BEmulator$D,BuiltFine=BEmulator$BuiltFine,

Priors=BEmulator$Priors)$Ef1)

}

return(cbind(ECloss,sum(FLosses)/nfSamples))

}

else{

return(ECloss)

}

}

CSamples <- function(Cdesign,ReifiedModelStuff,VRhoPrime,VRhoStar,is.full=FALSE,

numSamples,nfSamples=NULL,BEmulator,Cmax){

if(is.full & is.null(nfSamples))

stop("Require a number for nfSamples or that is.full==FALSE")

if(is.full){

Losses <- sapply(1:length(Cdesign[,1]),function(i) CSampleFun(theta1=

Cdesign$t1[i],Vw=Cdesign$Vw[i],ReifiedModelStuff=ReifiedModelStuff,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar,numSamples=numSamples,

is.full=TRUE,nfSamples=nfSamples,Cmax=Cmax,BEmulator=BEmulator))

return(cbind(Cdesign,ECloss=Losses[1,],EFloss=Losses[2,]))

}

else{

Eloss <- sapply(1:length(Cdesign[,1]),function(i) CSampleFun(theta1=

Cdesign$t1[i],Vw=Cdesign$Vw[i],ReifiedModelStuff=ReifiedModelStuff,

VRhoPrime=VRhoPrime,VRhoStar=VRhoStar,numSamples=numSamples,

Cmax=Cmax,BEmulator=BEmulator))

return(cbind(Cdesign,Eloss))

}

}
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Appendix E

Miscellaneous details of built

emulators

E.1 The Emulator for C-GOLDSTEIN

We present here a table of adjusted expectations for the regression coefficients in

our emulator for C-GOLDSTEIN. We now compute the adjustment discrepancy,

k=1 k=2 k=3

EF [βk1] 0.454125 0.8351274 0.9356258

EF [βk2] 0.04512565 0.16365801 0.28487865

EF [βk3] -0.01630596 -0.10221798 -0.20931688

EF [βk4] 0.01506409 -0.04864731 -0.12295281

EF [βk5] 0 0.3309102 0.4178705

EF [βk6] 0 0.1201084 0.1415842

EF [βk7] 0 0 1.050493

EF [βk8] 0 0 0.1070709

Table E.1: Adjusted expectations for the regression coefficients in our emulator for

C-Goldstein.

DisF (·), as defined by equation (4.8), for each of the regression coefficients. High

values of the adjustment discrepancy often indicate surprising adjusted values and
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k=1 k=2 k=3

DisF (βk1) 0.02867263 0.005783111 3.2086682

DisF (βk2) 18.75178 29.87757 21.40507

DisF (βk3) 17.08221 36.18681 22.88085

DisF (βk4) 0.6638616 0.5088078 4.041319

DisF (βk5) 0 7.463643 10.40727

DisF (βk6) 0 0.0655515 0.1554626

DisF (βk7) 0 0 4.646366

DisF (βk8) 0 0 8.609593

Table E.2: Adjustment discrepancy for the regression coefficients in our emulator

for C-Goldstein.

can be a symptom of a problem with our prior specification. There are a number

of discrepancies in table E.2 that are particularly large. A more detailed look at

the calculation of these numbers revealed that the resolved variances were mostly of

order 10−5, and that these small numbers were the cause of the large discrepancies

we were observing. This suggests that we may have been over confident in our prior

specification of the regression coefficients. We also noticed that our update resolved

only a very small proportion of the variance we had on the coefficients. This perhaps

suggests that we have not made enough runs on our simulator. Further investigation

showed that even if we had resolved all of our prior variance, these discrepancies

would be unusually high, indicating an over confidence in our prior specification.

In order to explore whether or not this over confidence in our prior specification

needs to be addressed, we explored the impact that increasing the variances would

have on our analysis. We multiplied all variances on the regression coefficients by

ten and calculated the adjustment discrepancies under this new prior specification.

These alternative discrepancies were small enough not to flag up anything unusual

in our specification. As the variance of the regression coefficients was already small,

the real question was how much would increasing these variances by a factor of ten

change the variance of our forecasts for y.

We computed forecasts using our original emulator for C-GOLDSTEIN and using
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an emulator built having multiplied our variance on the regression coefficients by

ten. The forecast variance is a matrix of numbers of order 10−1 under either variance

specification. We computed the difference between the forecast variances for a wide

range of θ and found no value larger than 5 × 10−3 in any difference matrix. A

typical value of this difference matrix is shown below:
0.0001351782 0.00003117255 0.0003007227

0.00003117255 0.000002726135 0.00007550926

0.0003.007227 0.00007550926 0.004739902

 .

We concluded that our over confidence in our specification of the regression coef-

ficients had a negligible effect on our analysis and therefore decided not to revisit

our prior specification. A more careful analysis for a real-world decision problem

may go further than we have here and either decide to revisit the prior specification

anyway, or consider further Bayes Linear diagnostics and look at how slight changes

in our forecast variance propagate through to our expected loss surface. It was our

feeling, however, that other simplifications we have made, such as the choice of a

log-normal distribution for future climate, have such an impact on our analysis that

these very small changes in variance are not worth worrying about.

E.2 Sequential Emulation in Chapter 4

E.2.1 The emulator of section 4.6.3

Here we present the linear models we looked at when deciding which regression

surface to use when fitting the emulator for A(θ1, z1). We also present some of

the linear models we looked at as part of diagnostic checks. When performing the

Sequential Emulation in R, we use the notation t1 = θt0 , t2 = θt1 , zt = zt1 . This is

for programming convenience only, however it does mean that the output we present

here has a different notation to the rest of the thesis.

Here is the saturated linear model of order 2 fitted to all of the data.

Call:

lm(formula = Eloss ~ I(zt) + I(t2) + I(t1) + I(zt^2) + I(t2 *
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zt) + I(t2^2) + I(t1 * zt) + I(t1 * t2) + I(t1^2), data = fasta)

Residuals:

Min 1Q Median 3Q Max

-0.39749 -0.05878 -0.01022 0.05639 0.58463

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0948712 0.0111765 -8.488 < 2e-16 ***

I(zt) -0.0558147 0.0060116 -9.285 < 2e-16 ***

I(t2) -0.0068202 0.0113707 -0.600 0.5488

I(t1) -0.0649673 0.0112548 -5.772 1.04e-08 ***

I(zt^2) 0.1558204 0.0007547 206.455 < 2e-16 ***

I(t2 * zt) 0.0281378 0.0028026 10.040 < 2e-16 ***

I(t2^2) 0.5381425 0.0119672 44.968 < 2e-16 ***

I(t1 * zt) 0.0258177 0.0027630 9.344 < 2e-16 ***

I(t1 * t2) 0.0659274 0.0107951 6.107 1.45e-09 ***

I(t1^2) 0.0287022 0.0119402 2.404 0.0164 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1125 on 990 degrees of freedom

Multiple R-squared: 0.9982,Adjusted R-squared: 0.9982

F-statistic: 6.176e+04 on 9 and 990 DF, p-value: < 2.2e-16

We expected that most of the signal was due to zt1 , having seen figure 4.17. The

coefficients indicate that this is the case, with the largest contribution coming from

the coefficient of z2
t1

. However, there is an important signal due to θ2
t1

indicated by

the relatively large value of that coefficient in the above model.

Here is the saturated model of order 3 fitted to all of the data.

Call:

lm(formula = Eloss ~ I(zt) + I(t2) + I(t1) + I(zt^2) + I(t2 *
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zt) + I(t2^2) + I(t1 * zt) + I(t1 * t2) + I(t1^2) + I(zt^3) +

I(t2 * zt^2) + I(t2^2 * zt) + I(t2^3) + I(t1 * zt^2) + I(t1 *

t2 * zt) + I(t1 * t2^2) + I(t1^2 * zt) + I(t1^2 * t2) + I(t1^3),

data = fasta)

Residuals:

Min 1Q Median 3Q Max

-0.1784679 -0.0216735 -0.0009968 0.0199730 0.1842016

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1344386 0.0054203 24.803 < 2e-16 ***

I(zt) -0.2042197 0.0048498 -42.109 < 2e-16 ***

I(t2) 0.0106723 0.0075956 1.405 0.160316

I(t1) -0.1025650 0.0074901 -13.693 < 2e-16 ***

I(zt^2) 0.1881912 0.0014642 128.524 < 2e-16 ***

I(t2 * zt) 0.0343961 0.0034604 9.940 < 2e-16 ***

I(t2^2) 0.0406021 0.0072355 5.612 2.61e-08 ***

I(t1 * zt) 0.0359073 0.0034159 10.512 < 2e-16 ***

I(t1 * t2) -0.0150607 0.0066053 -2.280 0.022816 *

I(t1^2) 0.0247299 0.0071865 3.441 0.000604 ***

I(zt^3) -0.0027570 0.0001249 -22.072 < 2e-16 ***

I(t2 * zt^2) -0.0004794 0.0004348 -1.102 0.270554

I(t2^2 * zt) 0.1475210 0.0017815 82.807 < 2e-16 ***

I(t2^3) -0.0756858 0.0077718 -9.739 < 2e-16 ***

I(t1 * zt^2) -0.0011894 0.0004306 -2.762 0.005850 **

I(t1 * t2 * zt) 0.0278729 0.0016137 17.273 < 2e-16 ***

I(t1 * t2^2) 0.0710246 0.0068513 10.367 < 2e-16 ***

I(t1^2 * zt) 0.0006436 0.0017801 0.362 0.717770

I(t1^2 * t2) 0.0308151 0.0068677 4.487 8.08e-06 ***

I(t1^3) -0.0149046 0.0077445 -1.925 0.054575 .
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.03691 on 980 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9998

F-statistic: 2.721e+05 on 19 and 980 DF, p-value: < 2.2e-16

The quadratic term in zt1 here is still important as we might have expected. What

we also notice is that the interaction between θ2
t1

and zt1 is important. The signal

that we saw in the residual plots of figure 4.18 can be attributed to this relationship

and by fitting these extra terms we have reduced the residual variance by roughly

two thirds. We also notice that the main effects in θt0 appear to be linear.

Here is the saturated model of order 2 fitted to the subset of the data with

zt1 < 3.

Call:

lm(formula = Eloss ~ I(zt) + I(t2) + I(t1) + I(zt^2) + I(t2 *

zt) + I(t2^2) + I(t1 * zt) + I(t1 * t2) + I(t1^2), data = fasta1)

Residuals:

Min 1Q Median 3Q Max

-0.170368 -0.033395 -0.007918 0.028277 0.205347

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.045680 0.007925 5.764 1.47e-08 ***

I(zt) -0.108843 0.010730 -10.144 < 2e-16 ***

I(t2) -0.013281 0.008224 -1.615 0.10698

I(t1) -0.068646 0.008009 -8.571 < 2e-16 ***

I(zt^2) 0.165953 0.003459 47.973 < 2e-16 ***

I(t2 * zt) 0.031658 0.004713 6.716 5.30e-11 ***

I(t2^2) 0.255036 0.007865 32.426 < 2e-16 ***

I(t1 * zt) 0.021441 0.004677 4.584 5.82e-06 ***
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I(t1 * t2) 0.023180 0.007208 3.216 0.00139 **

I(t1^2) 0.018100 0.007858 2.303 0.02169 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.05114 on 478 degrees of freedom

Multiple R-squared: 0.9814,Adjusted R-squared: 0.9811

F-statistic: 2806 on 9 and 478 DF, p-value: < 2.2e-16

Here is the saturated model of order 3 fitted to the subset of the data with

zt1 < 3.

Call:

lm(formula = Eloss ~ I(zt) + I(t2) + I(t1) + I(zt^2) + I(t2 *

zt) + I(t2^2) + I(t1 * zt) + I(t1 * t2) + I(t1^2) + I(zt^3) +

I(t2 * zt^2) + I(t2^2 * zt) + I(t2^3) + I(t1 * zt^2) + I(t1 *

t2 * zt) + I(t1 * t2^2) + I(t1^2 * zt) + I(t1^2 * t2) + I(t1^3),

data = fasta1)

Residuals:

Min 1Q Median 3Q Max

-0.067111 -0.017155 -0.001546 0.015925 0.081667

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1259704 0.0058393 21.573 < 2e-16 ***

I(zt) -0.1681915 0.0130753 -12.863 < 2e-16 ***

I(t2) -0.0018350 0.0075664 -0.243 0.808483

I(t1) -0.1168496 0.0076535 -15.267 < 2e-16 ***

I(zt^2) 0.1664698 0.0099405 16.747 < 2e-16 ***

I(t2 * zt) 0.0190264 0.0089794 2.119 0.034627 *

I(t2^2) 0.0193445 0.0077080 2.510 0.012422 *

I(t1 * zt) 0.0347162 0.0089152 3.894 0.000113 ***

June 28, 2010



E.2. Sequential Emulation in Chapter 4 324

I(t1 * t2) -0.0067133 0.0070934 -0.946 0.344423

I(t1^2) 0.0261069 0.0073857 3.535 0.000449 ***

I(zt^3) 0.0005508 0.0021771 0.253 0.800397

I(t2 * zt^2) 0.0048160 0.0029122 1.654 0.098849 .

I(t2^2 * zt) 0.1599944 0.0044595 35.877 < 2e-16 ***

I(t2^3) -0.0302164 0.0073767 -4.096 4.95e-05 ***

I(t1 * zt^2) -0.0009645 0.0028918 -0.334 0.738878

I(t1 * t2 * zt) 0.0231088 0.0041050 5.629 3.12e-08 ***

I(t1 * t2^2) 0.0685646 0.0067767 10.118 < 2e-16 ***

I(t1^2 * zt) -0.0015632 0.0043018 -0.363 0.716474

I(t1^2 * t2) 0.0057702 0.0066483 0.868 0.385879

I(t1^3) 0.0100555 0.0074849 1.343 0.179783

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0243 on 468 degrees of freedom

Multiple R-squared: 0.9959,Adjusted R-squared: 0.9957

F-statistic: 5974 on 19 and 468 DF, p-value: < 2.2e-16

We notice from this output that the same model terms are important even on the

reduced space of zt1 . We also notice that these coefficients are roughly the same size

as with the model fitted to the full data. This is a good indication that the large

R2 values, which are an artifact of the very strong signal in zt1 and the fact that we

are forced to fit artificially large values of zt1 , do not hide a different type of signal

for low values of zt1 .

E.2.2 The emulator of section 4.6.5

Here is the saturated linear model of order 2 fitted to all of the coarse evaluations

we made of B1
λ1(θt0 , z

1).

Call:

lm(formula = Eloss ~ I(zt) + I(t1) + I(zt^2) + I(t1 * zt) + I(t1^2),
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data = fastb)

Residuals:

Min 1Q Median 3Q Max

-0.172964 -0.023741 -0.001372 0.024253 0.144069

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.094098 0.003793 24.81 < 2e-16 ***

I(zt) -0.128482 0.002166 -59.33 < 2e-16 ***

I(t1) -0.098721 0.004035 -24.46 < 2e-16 ***

I(zt^2) 0.172407 0.000272 633.89 < 2e-16 ***

I(t1 * zt) 0.019664 0.001002 19.63 < 2e-16 ***

I(t1^2) 0.022957 0.004299 5.34 1.15e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.04047 on 994 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9998

F-statistic: 9.484e+05 on 5 and 994 DF, p-value: < 2.2e-16

We notice that the large effects are in zt1 and that the influence of θt1 is minimal in

this model. We expect this from the picture of the data shown in figure 4.21, and

from our emulator for A(θ1, z1).

Here is the saturated linear model of order 3 fitted to all of the coarse evaluations

that we made of B1
λ1(θt0 , z

1).

Call:

lm(formula = Eloss ~ I(zt) + I(t1) + I(zt^2) + I(t1 * zt) + I(t1^2) +

I(zt^3) + I(t1 * zt^2) + I(t1^2 * zt) + I(t1^3), data = fastb)

Residuals:

Min 1Q Median 3Q Max
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-0.142083 -0.019463 -0.001263 0.019408 0.130748

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1505061 0.0042888 35.093 < 2e-16 ***

I(zt) -0.2182649 0.0042151 -51.781 < 2e-16 ***

I(t1) -0.1021594 0.0062232 -16.416 < 2e-16 ***

I(zt^2) 0.2022714 0.0012777 158.310 < 2e-16 ***

I(t1 * zt) 0.0252363 0.0029647 8.512 < 2e-16 ***

I(t1^2) 0.0225635 0.0062893 3.588 0.00035 ***

I(zt^3) -0.0025865 0.0001090 -23.722 < 2e-16 ***

I(t1 * zt^2) -0.0007666 0.0003753 -2.043 0.04135 *

I(t1^2 * zt) -0.0005389 0.0015504 -0.348 0.72822

I(t1^3) -0.0033545 0.0067609 -0.496 0.61989

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0322 on 990 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 8.325e+05 on 9 and 990 DF, p-value: < 2.2e-16

We notice that the cubic order terms hardly seem to have any impact and that the

size of the coefficients on the quadratic terms is roughly the same. We also notice

that the residual variation has hardly reduced even though we have fitted higher

order terms.

Here is the saturated model of order 2 fitted to the subset of the data with

zt1 < 3.

Call:

lm(formula = Eloss ~ I(zt) + I(t1) + I(zt^2) + I(t1 * zt) + I(t1^2),

data = fastb1)

Residuals:
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Min 1Q Median 3Q Max

-0.054360 -0.016011 -0.001363 0.014159 0.097887

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.134839 0.003428 39.331 < 2e-16 ***

I(zt) -0.178118 0.004868 -36.590 < 2e-16 ***

I(t1) -0.106030 0.003593 -29.507 < 2e-16 ***

I(zt^2) 0.182085 0.001567 116.173 < 2e-16 ***

I(t1 * zt) 0.024487 0.002097 11.679 < 2e-16 ***

I(t1^2) 0.020852 0.003562 5.853 8.91e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.0232 on 482 degrees of freedom

Multiple R-squared: 0.9955,Adjusted R-squared: 0.9955

F-statistic: 2.149e+04 on 5 and 482 DF, p-value: < 2.2e-16

Having checked that our high R2 is not merely a result of fitting over a large range

of zt1 in the same way we did for the previous emulator, we see that the coefficients

do not greatly differ from those in the quadratic fit to all of the data. This gives

us confidence that the fit does not look so good solely because we fit over a large

range of zt1 and that over the range of zt1 that we will obtain most samples from,

our emulator is still good.

E.2.3 The emulator of section 4.6.6

Here is the regression summary of the quadratic fit to the data presented in figure

4.24.

Call:

lm(formula = Eloss ~ I(t1) + I(t1^2), data = fastc)
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Residuals:

Min 1Q Median 3Q Max

-0.0198875 -0.0054529 -0.0004409 0.0047047 0.0285465

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1551933 0.0003662 423.77 <2e-16 ***

I(t1) -0.0227086 0.0004229 -53.70 <2e-16 ***

I(t1^2) 0.0532471 0.0008188 65.03 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.007721 on 997 degrees of freedom

Multiple R-squared: 0.8771,Adjusted R-squared: 0.8768

F-statistic: 3557 on 2 and 997 DF, p-value: < 2.2e-16

Here is the regression summary of the cubic fit to the data presented in figure 4.24.

Call:

lm(formula = Eloss ~ I(t1) + I(t1^2) + I(t1^3), data = fastc)

Residuals:

Min 1Q Median 3Q Max

-0.0171705 -0.0043670 -0.0004053 0.0039921 0.0246317

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1551932 0.0003013 515.08 <2e-16 ***

I(t1) -0.0401153 0.0008697 -46.12 <2e-16 ***

I(t1^2) 0.0532494 0.0006737 79.05 <2e-16 ***

I(t1^3) 0.0290074 0.0013283 21.84 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 0.006352 on 996 degrees of freedom

Multiple R-squared: 0.9169,Adjusted R-squared: 0.9166

F-statistic: 3662 on 3 and 996 DF, p-value: < 2.2e-16

E.3 Policy Support in Chapter 4

E.3.1 More strategy plots

Figures E.1, E.2 and E.3 are further examples of the panels of strategy plots we pre-

sented in figure 4.29. We include these for interested readers.

E.3.2 Details of the Sequential Emulation on the pruned

space

Here is the regression surface we fit to the new coarse data for A(θ1, z1)

Call:

lm(formula = Eloss ~ t1 * t2 * zt + I(t1^2) + I(t2^2) + I(zt^2) +

I(t1^3) + I(t2^3) + I(zt^3) + I(t1 * t2^2) + I(t1 * zt^2) +

I(t2 * t1^2) + I(t2 * zt^2) + I(zt * t1^2) + I(zt * t2^2),

data = pcsepa)

Residuals:

Min 1Q Median 3Q Max

-0.1370837 -0.0190038 -0.0002835 0.0185715 0.1398779

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.505e-01 4.409e-03 34.125 < 2e-16 ***

t1 -1.331e-01 8.165e-03 -16.300 < 2e-16 ***

t2 -6.261e-03 9.359e-03 -0.669 0.503615
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zt -2.108e-01 3.822e-03 -55.149 < 2e-16 ***

I(t1^2) 7.247e-02 1.295e-02 5.594 2.63e-08 ***

I(t2^2) -3.672e-02 1.400e-02 -2.622 0.008832 **

I(zt^2) 1.927e-01 1.090e-03 176.840 < 2e-16 ***

I(t1^3) -3.183e-02 1.271e-02 -2.504 0.012402 *

I(t2^3) -1.081e-01 2.134e-02 -5.067 4.56e-07 ***

I(zt^3) -2.681e-03 8.999e-05 -29.796 < 2e-16 ***

I(t1 * t2^2) 1.607e-01 1.651e-02 9.734 < 2e-16 ***

I(t1 * zt^2) -3.682e-04 4.318e-04 -0.853 0.393946

I(t2 * t1^2) 6.813e-02 1.373e-02 4.962 7.76e-07 ***

I(t2 * zt^2) -3.157e-04 5.121e-04 -0.616 0.537673

I(zt * t1^2) -7.874e-03 2.134e-03 -3.690 0.000233 ***

I(zt * t2^2) 1.465e-01 3.046e-03 48.105 < 2e-16 ***

t1:t2 -5.874e-02 1.219e-02 -4.819 1.59e-06 ***

t1:zt 3.702e-02 3.672e-03 10.081 < 2e-16 ***

t2:zt 4.309e-02 4.194e-03 10.276 < 2e-16 ***

t1:t2:zt 3.741e-02 2.389e-03 15.658 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.03375 on 1489 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 5.604e+05 on 19 and 1489 DF, p-value: < 2.2e-16

One thing to notice is the more substantial effect of θt0 in this model compared to

the regression fit on the whole space. We now have a relatively large linear effect

in θt0 , as well as an non negligible effect from the interaction of all three variables.

One reason for this could be that our design on the pruned space sampled areas

of the decision space that were important, but that had not been captured by our

original designs. Another reason could be that, because our design concentrates the

points in the pruned region, we are capturing smaller scale effects that our previous

design did not capture. Here is the regression surface we fit to the new coarse data
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Figure E.4: Time t1 strategy plot for θt1 , where the surface λt1(θt0 , θ
1), as calculated

via our emulator for A(θ1, z1) on the pruned decision space, is plotted as a function

of θt0 and zt1 .

for B1
λ1(θt0 , z

1).

Call:

lm(formula = Eloss ~ I(zt) + I(t1) + I(zt^2) + I(t1 * zt) + I(t1^2),

data = fastb)

Residuals:

Min 1Q Median 3Q Max

-0.201512 -0.028580 -0.003775 0.028411 0.143516

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1134677 0.0036176 31.365 <2e-16 ***

I(zt) -0.1353137 0.0020907 -64.720 <2e-16 ***
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I(t1) -0.1020596 0.0058376 -17.483 <2e-16 ***

I(zt^2) 0.1732613 0.0002606 664.740 <2e-16 ***

I(t1 * zt) 0.0219657 0.0011982 18.332 <2e-16 ***

I(t1^2) -0.0030731 0.0069434 -0.443 0.658

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.04276 on 1194 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9998

F-statistic: 1.168e+06 on 5 and 1194 DF, p-value: < 2.2e-16

Here is the regression surface we fit to the new coarse data for C1
λ1(θt0 , zt0).

Call:

lm(formula = Eloss ~ I(t1) + I(t1^2) + I(t1^3), data = fastc)

Residuals:

Min 1Q Median 3Q Max

-0.0154068 -0.0041001 -0.0003876 0.0035783 0.0267277

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1598085 0.0003196 500.062 < 2e-16 ***

I(t1) -0.0614532 0.0008400 -73.160 < 2e-16 ***

I(t1^2) 0.0813708 0.0020371 39.944 < 2e-16 ***

I(t1^3) 0.0206123 0.0026302 7.837 1.18e-14 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.005917 on 996 degrees of freedom

Multiple R-squared: 0.9071,Adjusted R-squared: 0.9068

F-statistic: 3241 on 3 and 996 DF, p-value: < 2.2e-16
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E.4 The Reified Sequential Emulation example

Here we present selected details of the emulators built during the Reified Sequential

Emulation for our example in section 5.8.

Here is the linear model fitted to the coarse runs used for building the emulator

for A(θ1, z1, H1). The data used for fitting this model is presented in figure E.5 The

variables t1, t2 and zt are the same as they were for the example of chapter 4. The

variable C represents H1, and the variable Vw represents our parametrization of the

decision of whether or not to build and how much to run the model, labelled in the

text via κ. We fit a saturated cubic model, having noticed that the corresponding

quadratic fit left a significant pattern in the residual plots.

Call:

lm(formula = Eloss ~ I(zt) + I(C) + I(Vw) + I(t2) + I(t1) + I(zt^2) +

I(C * zt) + I(C^2) + I(Vw * zt) + I(Vw * C) + I(Vw^2) + I(t2 *

zt) + I(t2 * C) + I(t2 * Vw) + I(t2^2) + I(t1 * zt) + I(t1 *

C) + I(t1 * Vw) + I(t1 * t2) + I(t1^2) + I(zt^3) + I(C *

zt^2) + I(C^2 * zt) + I(C^3) + I(Vw * zt^2) + I(Vw * C *

zt) + I(Vw * C^2) + I(Vw^2 * zt) + I(Vw^2 * C) + I(Vw^3) +

I(t2 * zt^2) + I(t2 * C * zt) + I(t2 * C^2) + I(t2 * Vw *

zt) + I(t2 * Vw * C) + I(t2 * Vw^2) + I(t2^2 * zt) + I(t2^2 *

C) + I(t2^2 * Vw) + I(t2^3) + I(t1 * zt^2) + I(t1 * C * zt) +

I(t1 * C^2) + I(t1 * Vw * zt) + I(t1 * Vw * C) + I(t1 * Vw^2) +

I(t1 * t2 * zt) + I(t1 * t2 * C) + I(t1 * t2 * Vw) + I(t1 *

t2^2) + I(t1^2 * zt) + I(t1^2 * C) + I(t1^2 * Vw) + I(t1^2 *

t2) + I(t1^3), data = fasta)

Residuals:

Min 1Q Median 3Q Max

-1.173006 -0.054148 -0.001522 0.052593 1.497908

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.296e-01 5.516e-02 5.975 3.07e-09 ***

I(zt) -3.879e-01 2.528e-02 -15.342 < 2e-16 ***

I(C) -1.351e-01 9.035e-02 -1.495 0.135113

I(Vw) 1.496e+00 8.134e-01 1.839 0.066139 .

I(t2) -7.117e-02 5.204e-02 -1.368 0.171702

I(t1) -1.206e-01 5.061e-02 -2.384 0.017306 *

I(zt^2) 1.283e-01 5.515e-03 23.266 < 2e-16 ***

I(C * zt) 6.912e-02 1.643e-02 4.206 2.80e-05 ***

I(C^2) -6.696e-03 7.155e-02 -0.094 0.925465

I(Vw * zt) 1.571e+00 1.438e-01 10.930 < 2e-16 ***

I(Vw * C) 2.781e-01 5.272e-01 0.528 0.597906

I(Vw^2) -2.043e+01 5.619e+00 -3.637 0.000289 ***

I(t2 * zt) 3.867e-02 1.448e-02 2.671 0.007679 **

I(t2 * C) 9.855e-02 5.119e-02 1.925 0.054486 .

I(t2 * Vw) 3.499e-01 4.540e-01 0.771 0.441063

I(t2^2) -3.524e-01 4.107e-02 -8.579 < 2e-16 ***

I(t1 * zt) 3.984e-02 1.451e-02 2.746 0.006127 **

I(t1 * C) -1.906e-02 5.141e-02 -0.371 0.710965

I(t1 * Vw) -3.447e-01 4.528e-01 -0.761 0.446696

I(t1 * t2) -5.444e-02 3.705e-02 -1.469 0.142012

I(t1^2) -4.253e-02 4.168e-02 -1.020 0.307841

I(zt^3) -1.349e-03 4.418e-04 -3.053 0.002317 **

I(C * zt^2) 1.351e-02 1.487e-03 9.082 < 2e-16 ***

I(C^2 * zt) 3.291e-02 5.018e-03 6.559 8.21e-11 ***

I(C^3) 2.752e-02 1.991e-02 1.382 0.167098

I(Vw * zt^2) -1.317e-02 1.223e-02 -1.077 0.281764

I(Vw * C * zt) -1.239e+00 4.242e-02 -29.200 < 2e-16 ***

I(Vw * C^2) -9.821e-01 1.572e-01 -6.247 5.90e-10 ***

I(Vw^2 * zt) -6.606e-01 3.778e-01 -1.749 0.080599 .

I(Vw^2 * C) 1.294e+01 1.512e+00 8.558 < 2e-16 ***
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I(Vw^3) 1.942e+01 1.343e+01 1.446 0.148509

I(t2 * zt^2) -1.239e-03 1.592e-03 -0.778 0.436459

I(t2 * C * zt) -1.762e-06 5.322e-03 -0.000331 0.999736

I(t2 * C^2) -2.875e-02 2.005e-02 -1.434 0.151913

I(t2 * Vw * zt) 2.889e-03 4.331e-02 0.067 0.946819

I(t2 * Vw * C) -1.803e-01 1.676e-01 -1.076 0.282285

I(t2 * Vw^2) -8.415e-01 1.490e+00 -0.565 0.572229

I(t2^2 * zt) 3.605e-01 6.382e-03 56.485 < 2e-16 ***

I(t2^2 * C) 5.719e-02 2.348e-02 2.436 0.015005 *

I(t2^2 * Vw) 2.890e-01 1.916e-01 1.508 0.131741

I(t2^3) -4.083e-02 2.808e-02 -1.454 0.146252

I(t1 * zt^2) 1.484e-02 1.587e-03 9.354 < 2e-16 ***

I(t1 * C * zt) -8.343e-03 5.191e-03 -1.607 0.108306

I(t1 * C^2) -1.009e-02 2.005e-02 -0.503 0.614764

I(t1 * Vw * zt) 1.527e-01 4.357e-02 3.506 0.000473 ***

I(t1 * Vw * C) 4.266e-01 1.689e-01 2.526 0.011686 *

I(t1 * Vw^2) -1.232e+00 1.478e+00 -0.834 0.404683

I(t1 * t2 * zt) 7.502e-02 5.632e-03 13.320 < 2e-16 ***

I(t1 * t2 * C) -7.752e-03 2.091e-02 -0.371 0.710912

I(t1 * t2 * Vw) -4.915e-02 1.704e-01 -0.288 0.773137

I(t1 * t2^2) 2.444e-01 2.477e-02 9.868 < 2e-16 ***

I(t1^2 * zt) 6.234e-02 6.269e-03 9.943 < 2e-16 ***

I(t1^2 * C) -2.131e-02 2.341e-02 -0.911 0.362745

I(t1^2 * Vw) 4.230e-02 1.881e-01 0.225 0.822125

I(t1^2 * t2) 7.886e-03 2.453e-02 0.322 0.747847

I(t1^3) -3.434e-02 2.810e-02 -1.222 0.222001

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.146 on 1144 degrees of freedom

Multiple R-squared: 0.9958,Adjusted R-squared: 0.9956
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F-statistic: 4951 on 55 and 1144 DF, p-value: < 2.2e-16

The first thing we notice is that the main effects are in zt1 , which is the same thing

we noticed in the main example from chapter 4 and was expected having seen the

data in figure E.5. The new variables also appear to have some effect on the analysis.

For example, the interaction between zt1 , H1 and κ appears to have a significant

impact on our expected loss, particularly if zt1 is large and we have not run the new

model very much. We checked that the large R2 values were merely an artifact of

having had to emulate our expected loss over an artificially large range of zt1 in the

same way as we did in section E.2.

We noted from the residual plots in figure E.6 that there may have been some

heteroscedasticity in the residuals against zt1 . We handled this in the same way as

in previous Sequential Emulations and modelled the prior variance of the correlated

residual on both the coarse and accurate models as an increasing function of zt1 . We

chose the same values for the variances of the uncorrelated errors on both coarse and

accurate models, for all three emulators, as we did for the example in Chapter 4.

For the current emulator this meant a coarse uncorrelated component of the residual

with variance 0.005, and a variance of 0.0005 for the uncorrelated component of the

accurate residual. We used the same heuristic for fixing correlation length as we used

throughout the Sequential Emulation performed in Chapter 4, giving correlation

parameters with values 1.6,1.6,102.4,1.231148, and 0.1 for θt0 , θt1 , κ, H1, and zt1

respectively.

Here is the saturated cubic fit to the coarse runs used for building the emulator

for B1
λ1(θt0 , z

1, H1). We fitted a cubic model after noticing that the residuals from

a quadratic fit contained a definite signal.

Call:

lm(formula = Eloss ~ I(zt) + I(C) + I(Vw) + I(t1) + I(zt^2) +

I(C * zt) + I(C^2) + I(Vw * zt) + I(Vw * C) + I(Vw^2) + I(t1 *

zt) + I(t1 * C) + I(t1 * Vw) + I(t1^2) + I(zt^3) + I(C *

zt^2) + I(C^2 * zt) + I(C^3) + I(Vw * zt^2) + I(Vw * C *

zt) + I(Vw * C^2) + I(Vw^2 * zt) + I(Vw^2 * C) + I(Vw^3) +

I(t1 * zt^2) + I(t1 * C * zt) + I(t1 * C^2) + I(t1 * Vw *
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zt) + I(t1 * Vw * C) + I(t1 * Vw^2) + I(t1^2 * zt) + I(t1^2 *

C) + I(t1^2 * Vw) + I(t1^3), data = fastb)

Residuals:

Min 1Q Median 3Q Max

-1.0010905 -0.0485048 -0.0005665 0.0523429 1.5060290

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.333e-01 5.388e-02 6.186 8.52e-10 ***

I(zt) -3.674e-01 2.572e-02 -14.286 < 2e-16 ***

I(C) -3.073e-01 9.078e-02 -3.386 0.000734 ***

I(Vw) 2.018e+00 8.127e-01 2.483 0.013150 *

I(t1) -1.600e-01 5.073e-02 -3.155 0.001647 **

I(zt^2) 1.477e-01 5.621e-03 26.281 < 2e-16 ***

I(C * zt) 7.311e-02 1.683e-02 4.344 1.52e-05 ***

I(C^2) 1.382e-01 7.236e-02 1.909 0.056493 .

I(Vw * zt) 1.510e+00 1.466e-01 10.299 < 2e-16 ***

I(Vw * C) 8.006e-01 5.281e-01 1.516 0.129793

I(Vw^2) -2.762e+01 5.673e+00 -4.869 1.28e-06 ***

I(t1 * zt) 5.667e-02 1.483e-02 3.820 0.000140 ***

I(t1 * C) 1.657e-03 5.153e-02 0.032 0.974357

I(t1 * Vw) -3.688e-02 4.528e-01 -0.081 0.935098

I(t1^2) 3.724e-02 4.208e-02 0.885 0.376305

I(zt^3) -1.757e-03 4.497e-04 -3.908 9.86e-05 ***

I(C * zt^2) 1.423e-02 1.526e-03 9.327 < 2e-16 ***

I(C^2 * zt) 4.504e-02 5.135e-03 8.772 < 2e-16 ***

I(C^3) -1.891e-02 2.021e-02 -0.936 0.349680

I(Vw * zt^2) -2.498e-02 1.247e-02 -2.003 0.045385 *

I(Vw * C * zt) -1.438e+00 4.283e-02 -33.566 < 2e-16 ***

I(Vw * C^2) -1.008e+00 1.599e-01 -6.305 4.08e-10 ***

June 28, 2010



E.4. The Reified Sequential Emulation example 344

I(Vw^2 * zt) 4.276e-01 3.842e-01 1.113 0.265979

I(Vw^2 * C) 1.280e+01 1.536e+00 8.328 2.29e-16 ***

I(Vw^3) 3.569e+01 1.356e+01 2.631 0.008622 **

I(t1 * zt^2) 1.465e-02 1.622e-03 9.037 < 2e-16 ***

I(t1 * C * zt) -2.564e-02 5.374e-03 -4.772 2.05e-06 ***

I(t1 * C^2) -1.245e-02 2.037e-02 -0.611 0.541240

I(t1 * Vw * zt) 1.335e-01 4.370e-02 3.054 0.002312 **

I(t1 * Vw * C) 5.498e-01 1.704e-01 3.227 0.001285 **

I(t1 * Vw^2) -2.855e+00 1.491e+00 -1.915 0.055713 .

I(t1^2 * zt) 2.024e-02 6.352e-03 3.187 0.001475 **

I(t1^2 * C) -3.983e-02 2.368e-02 -1.682 0.092903 .

I(t1^2 * Vw) 7.927e-02 1.895e-01 0.418 0.675829

I(t1^3) 6.776e-03 2.849e-02 0.238 0.812035

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1487 on 1165 degrees of freedom

Multiple R-squared: 0.9957,Adjusted R-squared: 0.9956

F-statistic: 7914 on 34 and 1165 DF, p-value: < 2.2e-16

Again, we notice that the main effects are in zt1 , but there are non-negligible effects

in the other variables. We also checked that the large value of R2, which is an

artifact of the strong signal in zt1 , did not mask different behaviour in the other

variables in the same way as we have earlier in this appendix. We used the same

methods of fixing the parameters required for the Bayes Linear multi-level update

in the same way as we did for the emulator of A(θ1, z1, H1) described above.

The linear model used to help build our emulator for C1
λ1(θt0 , zt0 , H

1) is shown

below.

Call:

lm(formula = Eloss ~ I(Vw) + I(t1) + I(Vw^2) + I(t1 * Vw) + I(t1^2) +

I(Vw^3) + I(t1 * Vw^2) + I(t1^2 * Vw) + I(t1^3), data = fastc)
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Residuals:

Min 1Q Median 3Q Max

-0.0196273 -0.0049774 -0.0001106 0.0051463 0.0233583

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.112895 0.000942 119.850 < 2e-16 ***

I(Vw) 0.125694 0.027974 4.493 7.70e-06 ***

I(t1) -0.141022 0.001340 -105.202 < 2e-16 ***

I(Vw^2) -1.052742 0.251115 -4.192 2.97e-05 ***

I(t1 * Vw) 0.369318 0.019056 19.381 < 2e-16 ***

I(t1^2) 0.115528 0.001371 84.248 < 2e-16 ***

I(Vw^3) 4.014156 0.640269 6.269 5.06e-10 ***

I(t1 * Vw^2) -1.385099 0.071178 -19.460 < 2e-16 ***

I(t1^2 * Vw) -0.209628 0.009106 -23.020 < 2e-16 ***

I(t1^3) 0.059153 0.001349 43.847 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.007074 on 1190 degrees of freedom

Multiple R-squared: 0.9858,Adjusted R-squared: 0.9857

F-statistic: 9171 on 9 and 1190 DF, p-value: < 2.2e-16

By observing the data used to fit this model, shown in figure E.8, we would expect

terms involving θt0 to be responsible for a large proportion of the variation and we

can see this in our model and in the picture of the final emulator presented in figure

5.3. We used the same methods as we have for our previous multi-level emulations

to fix the required parameters.

June 28, 2010



E.4. The Reified Sequential Emulation example 346

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

−1.0−0.50.00.51.0

θ t
0

0.000.050.100.150.200.25

κ

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

0.100.150.200.250.30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
10

0.
15

0.
20

0.
25

0.
30

0.100.150.200.250.30

E
xp

ec
te

d 
Lo

ss

F
ig

u
re

E
.8

:
T

h
e

co
ar

se
d
at

a
u
se

d
fo

r
b
u
il
d
in

g
an

em
u
la

to
r

fo
r
C

1 λ
1
(θ
t 0
,z
t 0
,H

1
).

June 28, 2010



Appendix F

Computing the hat function

moments with a computer algebra

package

Here we present some of the code developed for using the computer algebra package

Maple [70] to express the hat function moments in terms of expectations depending

only on functions of x∗, θ, ut0(x∗), β, η, et0 and u(x̂, θ), conditioned on x∗, for any

form of g(·, ·).

There are a number of tasks that must be completed by the computer alge-

bra package before we can emulate the hat function moments accurately. Our

goal is to generate expressions for E
[
f̂(θ)|x∗

]
, V ar

[
f̂(θ)|x∗

]
, Cov

[
f̂(θ), y|x∗

]
and

Cov
[
f̂(θ), et0|x∗

]
, each of which will be the sum of expectations of the variables

above. Some of these expectations may be evaluated immediately using our prior

specification and will leave simple functions of θ. Others can be expressed as expec-

tations of functions of x∗, conditioned on x∗, that we can then pass back to another

program in order to evaluate them numerically by integrating out x∗. Expectations

of functions of u(x̂, θ) would also be passed into another program so that they could

be emulated.

The first task handled by the computer algebra package is to define the rules

that govern the expectation operator, and to define the covariance function in terms

of expectations. To do this we define function variables which are functions about
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which we are uncertain and therefore have a non-constant expectation. We define

the expectation operator so that the expectation of a function variable b is returned

as E(b), and so that the operator is linear.

‘type/function_variable‘:=proc(t)

member(t,function_variables) end:

‘type/function_expr‘:=proc(t)

type(t, algebraic) and hastype(t, function_variable) end:

‘type/scalar_expr‘ := proc(t)

type(t,algebraic) and not hastype(t, function_variable) end:

E:=’E’: define(E,E(a::nonunit(algebraic) + b::nonunit(algebraic))=E(a)+E(b),

E(a::nonunit(scalar_expr)*b::function_expr)=a*E(b),

E(a::nonunit(scalar_expr))=a,

E(b::function_expr*a::nonunit(scalar_expr))=a*E(b),

E(a::nonunit(scalar_expr)*E(b::nonunit(function_expr)))=a*E(E(b)));

The covariance of two expressions is defined via Cov [a, b] = E [ab]− E [a]E [b].

cov:= proc(left,right,function_variables)

local expr, first, second;

expr:= left*right;

expr:=expand(expr);

first:=E(expr);

second:=E(left)*E(right);

first - second;

end:

We now establish the quantities that appear in the calculation. v and W are the

vector v and matrix W that are part of the definition of x̂; u is the vector of model

emulator residuals; B is the matrix of emulator coefficients, β; eta is the vector of

discrepancies, η; e is the system observation error, e; mu is x̂; and fhat is f̂(θ).

The function trivArrays takes as inputs the dimensions of x and θ; the length of

g(x, θ); the number of simulator outputs, h, corresponding to historical values of

the system for which we have observations; and the number of simulator outputs,

f, corresponding to future values of the system. The function defines each of the

quantities mentioned above as vectors and matrices of the correct dimension, and

establishes the fact that u will be a vector of functions each having two inputs.
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function_variables:=[]:

v:=NULL:

W:=NULL:

eta:=NULL:

e:=NULL:

B:=NULL:

u:=NULL:

mu:=NULL:

fhat:=NULL:

trivArrays := proc(v,W,B,eta,e,u,h,f,glength,xlength,declength)

local i;

v:=array(1..xlength,1..1);

W:=array(1..xlength,1..h);

B:=array(1..(f+h),1..glength);

eta:=array(1..h,1..1);

e:=array(1..h,1..1);

u:=array(1..(f+h),1..1);

for i from 1 by 1 to (f+h) do

define(u[i,1]);

od:

end:

In order to perform the hat function calculations we need a function that establishes

the form of g(x, θ). Our code accepts any function that returns a vector of the correct

length, and is usually given as the input gfun. An example of the format that is

required for the function gfun is given by the function below.

g := proc(x,dec,n,m,row:=true)

local L1,L2,L3,i,j,transg;

with(linalg);

L1:=[1];

L2:=[NULL];

for i from 1 by 1 to n do

L2:= [op(L2),x[i,1]];

od:

L3:=[NULL];

for j from 1 by 1 to m do
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L3:=[op(L3),dec[j,1]];

od:

transg:=array(1..1,1..(1+n+m),[[op(L1),op(L2),op(L3)]]);

if row

then RETURN(array(1..1,1..(1+n+m),[[op(L1),op(L2),op(L3)]]));

else RETURN(transpose(transg));

fi;

end:

We now compute x̂. This involves constructing the correct expression for zt0 out of

the other variables and then performing the vector calculation v +Wzt0 .

xhat := proc(dec,gfun,glength,x,xlength,declength,h,v,W,eta,e,B,u,mu,

function_variables)

local Bh, Bhg, k, l,uh,uhx,z;

with(linalg):

Bh := array(1..h,1..glength);

for k from 1 by 1 to h do

for l from 1 by 1 to glength do

Bh[k,l] := B[k,l];

od:

od:

uh := proc(t)

array(1..h,1..1,[seq([u[j,1](t)],j=1..h)]);

end:

uhx:=uh(x);

function_variables:=seq(uhx[j,1],j=1..h);

Bhg:=evalm(Bh&*gfun(x,dec,xlength,declength,false));

z:=evalm(Bhg+uhx+eta+e);

mu:=evalm(v+evalm(W&*z)):

end:

Having computed the expression for x̂, we compute f̂(θ) directly by plugging x̂

(mu) in the place of x in our expression for the model emulator. A subtle point

to note about this function and the last is that we are building the vector of func-

tion variables as we go. This means that the order of these computations is crucial.

Fhat := proc(dec,gfun,glength,x,xlength,declength,h,f,v,W,eta,e,B,u,mu,

function_variables)
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local uf, ufxhat,trend;

with(linalg);

uf := proc(t,s)

array(1..(f+h),1..1,[seq([u[j,1](t)],j=1..h),seq([u[k,1](t,s)],k=(h+1)..(f+h))]);

end:

ufxhat := uf(mu,dec);

function_variables:=[op(function_variables),seq(ufxhat[j,1],j=1..(f+h))];

function_variables:=op(function_variables);

trend:=evalm(B&*gfun(mu,dec,xlength,declength,false));

RETURN(evalm(trend+ufxhat));

end:

The function Fhat expands the expression

βg(v +W (βt0jgj(x
∗, 0) + ut0(x∗) + ηt0 + et0), θ) + u(x̂, θ)

into a linear combination of functions of each of the variables and correctly defines

which variables, when conditioned on x∗, remain uncertain. We now take expecta-

tions in order to obtain E
[
f̂(θ)|x∗

]
.

ExpectFhat := proc(h,f,gfun,glength,xlength,declength,x,dec,function_variables,

v,W,B,eta,e,u,mu,fhat)

local i,tBs,fvs;

tBs:=[NULL];

for i from 1 by 1 to glength do

tBs := [op(tBs),seq(B[j,i],j=1..(f+h))];

od;

fhat:=Fhat(dec,gfun,glength,x,xlength,declength,h,f,’v’,’W’,’eta’,’e’,’B’,’u’,

’mu’,’function_variables’);

for i from 1 by 1 to (f+h) do

fhat[i,1]:=expand(fhat[i,1]);

od;

fvs:=op(function_variables);

function_variables:=[op(fvs),op(tBs),seq(eta[j,1],j=1..h),seq(e[j,1],j=1..h)];

RETURN(array(1..(f+h),1..1,[seq([E(fhat[j,1])],j=1..(f+h))]));

end:

We can then use the covariance function to obtain V ar
[
f̂(θ)|x∗

]
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#Only to be done after ExpectFhat so that function_variables is correct

VarFhat:= proc(h,f,gfun,glength,xlength,declength,x,dec,function_variables,v,W,

B,eta,e,u,mu,fhat)

array(1..(f+h),1..(f+h),[seq([seq(cov(fhat[j,1],fhat[k,1],

function_variables),k=1..(f+h))],j=1..(f+h))]);

end:

Here we construct the vector y as a linear combination of functions of x∗, θ, u(x∗, θ),

β, η. We do this in order to calculate Cov
[
f̂(θ), y

]
conditioned on x∗.

thisY:=proc(h,f,gfun,glength,xlength,declength,x,dec,function_variables,v,W,B,

eta,e,u)

local uf,ufx,trend;

uf := proc(t,s)

array(1..(f+h),1..1,[seq([u[j,1](t)],j=1..h),

seq([u[k,1](t,s)],k=(h+1)..(f+h))]);

end:

ufx := uf(x,dec);

function_variables := [op(function_variables),seq(ufx[j,1],j=1..(f+h))];

function_variables := op(function_variables);

trend := evalm(B&*gfun(x,dec,xlength,declength,false));

RETURN(evalm(trend+ufx+eta));

end:

We may now express Cov
[
f̂(θ), y|x∗

]
as a linear combination of expectations of

functions of our uncertain variables.

CovFhatY:=proc(h,f,gfun,glength,xlength,declength,x,dec,function_variables,v,W,

B,eta,e,u,mu,fhat)

local tY;

tY := thisY(h,f,gfun,glength,xlength,declength,x,dec,’function_variables’,’v’,

’W’,’eta’,’e’,’u’);

for i from 1 by 1 to (f+h) do

tY[i,1]:=expand(tY[i,1]);

od;

RETURN(array(1..(f+h),1..(f+h),[seq([seq(cov(fhat[j,1],tY[k,1],

function_variables),k=1..(f+h))],j=1..(f+h))]));

end:

We do the same for Cov
[
f̂(θ), et0|x∗

]
here.
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CovFhate:=proc(h,f,e,fhat,function_variables,x,dec,v,W,B,eta,u,mu)

array(1..(f+h),1..h,[seq([seq(cov(fhat[j,1],e[k,1],function_variables),

k=1..h)],j=1..(f+h))]);

end:

The following is an example of how we might execute the code for a particular size

of model and length of g(x, θ).

h:=2;

f:=1;

x:=array(1..2,1..1);

theta:=array(1..1,1..1);

glength:=4;

xlength:=2;

declength:=1;

trivArrays(’v’,’W’,’B’,’eta’,’e’,’u’,h,f,glength,xlength,declength):

xhat(theta,g,glength,x,xlength,declength,h,’v’,’W’,’eta’,’e’,’B’,’u’,’mu’,

’function_variables’):

EFhat:=ExpectFhat(h,f,g,glength,xlength,declength,x,theta,’function_variables’,

’v’,’W’,’B’,’eta’,’e’,’u’,’mu’,’fhat’):

VFhat:=VarFhat(h,f,g,glength,xlength,declength,x,theta,’function_variables’,’v’,

’W’,’B’,’eta’,’e’,’u’,’mu’,’fhat’):

CFhatY:=CovFhatY(h,f,gfun,glength,xlength,declength,x,theta,’function_variables’,

’v’,’W’,’B’,’eta’,’e’,’u’,’mu’,’fhat’):

CFhate:=CovFhate(h,f,’e’,’fhat’,’function_variables’,x,theta,’v’,’W’,’B’,’eta’,

’u’,’mu’):

The rest of our code assumes that g(x, θ) contains only products of monomials in

x and θ. Here we use the package combinat to set all expectations of products

containing at least one element of each of the two distinct sets {β, ut0(x∗), u(x̂, θ)}

and {η, et0} to be zero, and expectations of functions of both η and et0 to be zero

as well. We need to specify the variable gOrder, which is the highest power of x in

any monomial in g(x, θ).

with(combinat):

ForCombs:=[]:

for i from 1 by 1 to ((4*gOrder)-2) do

temp:=op(ForCombs):
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ForCombs:=[temp,op(function_variables)]:

od:

for i from 1 by 1 to ((2*h)+f+(glength*(f+h))) do

for j from (1+(2*h)+f+(glength*(f+h))) by 1 to ((4*h)+f+(glength*(f+h))) do

E(function_variables[i]*function_variables[j]):=0:

startSeq:=[function_variables[i],function_variables[j]]:

for k from 1 by 1 to ((4*gOrder)-2) do

combs:=choose(ForCombs,k):

for l from 1 by 1 to nops(combs) do

newSeq:=[op(startSeq),op(combs[l])]:

E(mul(newSeq[i],i=1..(2+k))):=0:

od:

od:

od:

od:

We now assume that β has a multivariate normal distribution and determine all

of its higher order moments as functions of it’s mean and variance, by using the

characteristic function for the Normal distribution. We first define the characteristic

function then establish the mean and variance of β as the arrays tMu and tSig. The

rest of the code changes the expectations of all functions of the elements of β alone

into functions of tMu and tSig. We could then input the correct numbers for these

matrices here or in another program to simplify our expressions for the hat function

moments.

CharFun := proc(t,tMu,tSig)

local first, second;

with(linalg);

first := evalm(transpose(t)&*tMu):

second := evalm(transpose(t)&*tSig&*t):

exp((I*(expand(evalm(transpose(t)&*tMu)))[1,1]) -

(0.5*(expand(evalm(transpose(t)&*tSig&*t)))[1,1])):

end:

t:=array(1..(glength*(f+h)),1..1):

tMu:=array(1..(glength*(f+h)),1..1):

tSig:=array(1..(glength*(f+h)),1..(glength*(f+h))):
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BetaSet:=[seq(function_variables[j],j=(h+h+f+1)..(h+h+f+(glength*(h+f))))]:

ForMoments:=[];

for i from 1 by 1 to (4*gOrder) do

temp := op(ForMoments):

ForMoments := [temp, op(BetaSet)]:

od:

BCombs := [];

for i from 1 by 1 to (4*gOrder) do

temp := op(BCombs):

temps := choose(ForMoments,i):

BCombs := [temp,op(temps)]:

od:

print(nops(BCombs));

CFun := CharFun(t,tMu,tSig):

DiffSet:=array(1..nops(BCombs));

for i from 1 by 1 to nops(BCombs) do

tSet:=[]:

for j from 1 by 1 to nops(BCombs[i]) do

for k from 1 by 1 to (h+f) do

for l from 1 by 1 to glength do

temp:=op(tSet):

if

is(B[k,l] in BCombs[i][j])

then

tSet := [temp,t[k+((h+f)*(l-1)),1]]:

fi;

od;

od;

od;

DiffSet[i] := diff(CFun,op(tSet)):

od:

for i from 1 by 1 to (glength*(h+f)) do

t[i,1]:=0:

od:

for i from 1 by 1 to nops(BCombs) do

E(mul(BCombs[i][j],j=1..nops(BCombs[i]))) := (1/(I^(nops(BCombs[i]))))*DiffSet[i]:

od:
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At this point we would then write the output out to a file and use R, say, to read the

output in and perform the numerical integrations with respect to x∗ and to emulate

those functions that depend on u(x̂, θ).
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