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Abstract

In this thesis we are going to investigate the behaviour of geodesics in a metric with a

singularity known as the “Mixmaster Universe”. This was motivated from previous

work done, where the now well-known AdS/CFT correspondence was used to extract

information about an AdS Schwarzschild black hole singularity beyond the horizon

by studying correlators on the boundary that correspond to spacelike geodesics

which bounce off the singularity. It was then shown that when the singularity was

a cosmological one (in this case a Friedmann Robertson Walker cosmology with a

Big Crunch), this was no longer possible as it is impossible for spacelike geodesics

to bounce off this kind of singularity. This raises the question of whether, when an

example of a more general singularity (the “Mixmaster Universe”) is considered, it

is possible for the spacelike geodesics to bounce away from this kind of singularity.

This would enable us to potentially extract information about the singularity from

the boundary correlators. Unfortunately, it will be shown that bouncing of such

geodesics is extremely unlikely (if not impossible) and thus we would be unable to

extract information about the singularity in the mixmaster universe using such a

technique. We also discuss another aspect of the evolution of the mixmaster universe

which shows that it does indeed have a very complicated evolution.
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Chapter 1

Introduction

Einstein’s General Theory of Relativity [1] is the most widely accepted theory of the

gravitational force. The fundamental principle of general relativity (GR) is that the

gravitational force is caused by curvature in space-time itself and that this curvature

is in turn caused by the matter within the space-time. This is represented simply

and elegantly through Einsteins’ equations:

Gµν = 8πGNTµν (1.1)

where Gµν is called the Einstein tensor and encodes the curvature (i.e. the metric)

of space-time and Tµν is the stress energy tensor and contains information about

matter in the space-time (GN is Newton’s constant). This view of gravity is not

only extremely elegant but its results have been verified through many experimental

observations and lead us to accept that it is the correct view of gravity. Nevertheless,

there are many solutions of Einstein’s equations which contain singularities, such

as those of black holes or a big bang scenarios. Singularities are areas of space-

time where the theory of general relativity breaks down. But we would still like

to be able to study such singularities in theoretical. Specifically in this thesis, we

are aiming to study a metric known as the “mixmaster universe” which exhibits

extremely complex behaviour near its singularity (this will be explained in greater

detail in chapter 2). However, this is impossible to do in the classical formulation

of general relativity. Instead we are going to use the more recently developed string

theory and the associated AdS/CFT correspondence to examine singularities. Both

1
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string theory and the AdS/CFT correspondence are large subjects with a somewhat

daunting amount of literature available on both but we are going to have to discuss

them a little further to motivate our study of the mixmaster universe. We will briefly

discuss the development of string theory using [2–4] as our principle sources then we

will give an overview of the AdS/CFT correspondence. In the second section of this

chapter, we will discuss precisely how we can use the AdS/CFT correspondence to

study singularities in a gravitational theory.

1.1 A Short Introduction to String Theory and

the AdS/CFT Correspondence

One of the goals of theoretical physics in recent times has been to unify all the forces

of nature into one theory, a so-called “theory of everything”. Currently there are

two well-tested theories, the aforementioned general theory of relativity for grav-

ity (which is a classical theory) and the quantum field theories used to describe

the electroweak and strong interactions of fundamental particles in the Standard

Model. Both of these theories have been extremely successful in their respective

regimes. General relativity can be used to describe “large scale” problems where

quantum effects are minimal and quantum theories describe “small scale” problems

in which gravity is negligible. But it remains that they are inconsistent. One could

ask why (if these theories are so successful) should we expect them to be unified

into one? There are two reasons in my opinion. Firstly, from the historical perspec-

tive that over time we have successfully united the other forces initially believed

to be different, such as Maxwell’s unification of electricity and magnetism and the

Weinberg-Salam model of the 1960s which unified electromagnetism and the weak

nuclear force (into the electro-weak force), as well as the intuitive notion that leads

one to expect our universe to have one theory governing its behaviour and interac-

tions. Secondly, and a stronger argument, is the fact that there are some situations

such as times near the Big Bang and black holes where both gravity and quantum

effects are heavily present and thus we require a quantum theory of gravity to study

these. Indeed, as mentioned above, it is the study of such situations which is the



1.1. A Short Introduction to String Theory and the AdS/CFT
Correspondence 3

main motivation for the work in this thesis.

Attempts to unite these theories have been many but so far the (arguably) most

promising candidate is string theory.

1.1.1 String Theory

String theory, famously, is a completely new way of thinking about the fundamental

particles of nature. Particles in Quantum Field Theories (QFTs) are treated as zero-

dimensional points. In string theory however, the fundamental objects are extended

(i.e. one-dimensional strings) and the different particles correspond to different vi-

brational modes of the string. One of these vibrational modes is a spin-2 particle,

the graviton, and thus the theory contains gravity. Strings in string theory can be

open (have end points) or closed (no endpoints). This theory, not only elegantly

unites all four fundamental forces but does so while providing a theory of quantum

gravity which is UV finite in perturbation theory. Another advantage is the massive

reduction of arbitrary dimensionless parameters. The Standard Model has about

twenty parameters whereas string theory reduces this to just one.

However, as a theory of our physical world, it is not without its difficulties. While

we have been referring to “string theory”, there are actually many different string

theories that have been found and studied. The first string theory describing only

bosonic strings, required 26 space-time dimensions and predicted a particle with

negative mass squared (a tachyon) which is clearly a problem in a four dimensional

world full of fermions (and no tachyons).

Fermions were introduced by formulating “superstring” theory, a supersymmet-

ric string theory which had fermionic strings as well as bosonic ones (supersymmetry

being a symmetry which connects bosons to fermions). Supersymmetry also helped

get rid of the tachyon in the theory. This led to five consistent superstring theories

with 10 space-time dimensions: types I, IIA, IIB and the heterotic string theories
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known via their gauge groups SO(32) and E8×E8. These still have more dimensions

than required but these extra dimensions can be dealt with by compactifying them

and it is interesting to note that, while there are too many dimensions, the number of

dimensions in string theory emerges from the theory whereas in the Standard Model

the fact that there are four space-time dimensions has to be inserted in the theory

a priori. Further studies of of these string theories in the 1990s uncovered dualities

between them suggesting they were all different manifestations of one unique theory

known as “M-theory”. Further work led to the discovery of D-branes, most simply

described as extended objects on which the ends of open strings are constrained to

move. This in turn opened a path leading to the formulation of the AdS/CFT cor-

respondence. The AdS/CFT correspondence conjectures that there exists a duality

between a gauge (i.e. field) theory and a string theory living in one dimension higher.

1.1.2 The AdS/CFT Correspondence

Considering the excitations of D3-branes led to the following statement of the

AdS/CFT conjecture in [5] as:

“N = 4 SU(N) Super-Yang-Mills (SYM) theory in 3+1 dimensions is the same as

(or dual to) type IIB superstring theory on AdS5 × S5”

So what does this statement mean? On one side of the correspondence we have

N = 4 Super-Yang-Mills theory which is a non-abelian supersymmetric gauge the-

ory in 4 dimensions (with gauge group SU(N)). It is a conformal field theory which

means it is invariant under scale transformations xµ → λxµ. On the other side of

the correspondence we have a gravitational theory in AdS (Anti de Sitter) space.

AdS space is a maximally symmetric solution of Einstein’s equations with constant

negative curvature. So we have a relation between a four dimensional field the-

ory and a five dimensional gravitational theory. While the original derivation of

this correspondence was formulated via the study of excitations of D-branes, it was

demonstrated by Horowitz and Polchinski in [7] that it can also be motivated with-
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out the need for string theory and can be justified using only knowledge about gauge

theories and gravity. Their assertion was as follows:

“Hidden within every non-Abelian gauge theory [...] is a theory of quantum gravity”

This was demonstrated as follows. The “holographic principle” of ’t Hooft [8]

and Susskind [9] suggests that any gravitational theory should be related to a non-

gravitational theory in one fewer dimensions. So, if we want to find a gravitational

theory in our gauge theory, we are going to have to find both a graviton and an extra

dimension encoded in it. The gauge theory being considered will be a Yang-Mills

gauge theory and so have gauge group SU(N)). Suppose (with some foresight) we

take this extra dimension to be the energy scale of the gauge theory. In addition we

are going to require that

1. N is large to account for the larger number of degrees of freedom in the higher

dimensional theory.

2. The coupling of the theory is strong so that the theory is strongly quantum

mechanical as classical general relativity nothing like classical Yang-Mills the-

ory.

3. Supersymmetry without which the second requirement will cause the theory

to be highly unstable.

With this in mind, we consider the most supersymmetric theory N = 4 SYM gauge

theory. This theory benefits from the fact that the N = 4 supersymmetry makes the

coupling strong and constant for a large range of energies. So as we are considering

our energy range as the fifth dimension we are seeking, this allows us to have a

large fifth dimension. It also means that the theory is conformal (invariant under

scale transformations). Under the scale transformation xµ → λxµ for the spatial

coordinates, the energy scale r say, should transform inversely i.e. r → r/λ. So if

we seek a five dimensional metric which is invariant in these scale transformations

and also under the usual Poincaré symmetries, then we find the most general metric
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is given by:

ds2 =
r2

l2
ηµνdx

µdxν +
l2

r2
dr2 (1.2)

where l is a constant and ηµν = is the Minkowski metric tensor. This is in fact the

metric of AdS5. So we have found what we wanted at the start. While this is a

fairly rough argument, it does seem to strongly imply that the gauge theory does

seem to be equivalent to a gravitational theory with one more dimension.

So now that we appear to have a duality between a field theory and a gravita-

tional theory, it makes sense to consider the field theory as living on the boundary

of the gravitational theory. This is where the notion of holography comes from.

Through this correspondence we can study the bulk space-time by studying a field

theory in a smaller number of dimensions on the boundary (which is analogous to

an optical hologram where a three dimensional image is produced from a two di-

mensional one).

Conversely, it can also be used the other way - studying the gravitational theory

can yield results about the field theory. For example, the discovery in [10] that

a thermal state in N = 4 SYM is equivalent to a large mass AdS-Schwarzschild

black hole has led to many new applications of the AdS/CFT correspondence in the

studies of superconductivity and superfluidity (for details see [11, 12]). Features of

superconductors for example, can be derived through the correspondence from the

thermodynamic properties of the black hole.

Nevertheless, despite having a considerable amount of evidence in its favour, it

is important to note that the correspondence is, at this time, still a conjecture and

a full proof has yet to be found.
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1.2 Probing Singularities

We are now going to review the work of [13] and [14] in more detail to motivate our

study of the mixmaster universe by firstly looking at other singularities. Singular-

ities are places in a metric where the theory of general relativity breaks down and

we need a quantum theory of gravity to study these regions of spacetimes. Because,

according to the holographic principle, the full theory of the bulk spacetime must

be encoded in the field theory on the boundary then this means that the singularity

must be encoded in the field theory as well. It may then be possible to use the

aforementioned AdS/CFT correspondence between string theory in asymptotically

AdS5 × S5 spacetimes and four dimension N = 4 SYM theory to have a closer look

at such singularities. Often such singularities are hidden behind event horizons.

These are hypersurfaces where any timelike curve beyond the event horizon has the

singularity in its future and cannot escape to infinity. This means that there is no

way in classical GR to look inside event horizons. Much work has been done on

finding ways to extract information from behind an event horizon via the boundary

correlators [15–18]. It was shown in [18] that by using the AdS/CFT correspon-

dence and studying the correlators on the boundary, one can probe inside the event

horizon of a three dimensional BTZ black hole.

The set-up is such that we have two operators, one on each of the asymptotic

boundaries so these are operators in the conformal field theory side of the correspon-

dence. Each of these is dual to a large mass scalar field in the bulk (the AdS side).

We can then want to calculate the 2 point correlation function in the field theory

which can be done by calculating the propagator in the bulk. This is done by sum-

ming over the paths between these two points where each path gives a contribution

of e−mL to the propagator and L is the proper length of such a path suitably regu-

lated. If we take the limit in which m is large, then this this sum will be dominated

by path contributing the smallest L i.e. the shortest geodesic connecting the two

points. So we can approximate the propagator in the bulk by:

e−mL (1.3)
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where L is the proper length of the spacelike geodesic joining the two points on

the boundary where we have placed the operators. This propagator in the bulk is

then dual to correlation function in the CFT on the boundary. As it is possible for

the geodesic to pass through parts of the metric inside the event horizon, this im-

plies that aspects of the geometry from beyond the event horizon must be encoded

in the correlators on the boundary. This implies that in terms of the AdS/CFT

correspondence, a singularity in the spacetime leaves a signature in the dual field

theory. So turning this problem around, it should be possible to study singularities

via studying appropriate field theory correlators in the CFT.

In [13], a higher dimensional AdS black hole was considered. It was found that in

a five dimensional AdS black hole there are radial spacelike geodesics which bounce

off the singularity. Although there were some subtleties that required the correlators

to be analytically continued, it was possible to study this singularity by studying

the correlators corresponding to these bouncing geodesics. This raises the question

of whether it is possible to probe other singularities using this technique.

An attempt was made to apply such a technique to a cosmological singularity

with a “Big Crunch” in [14] as it is possible to embed cosmological singularities

into an AdS/CFT set-up. This could enable us to use the CFT correlators to probe

this cosmological singularity. Unfortunately, this is shown not to be the case as

spacelike geodesics cannot bounce off this kind of singularity. As this is shown via

similar analysis to what we will use in later chapters to study other metrics we will

discuss this example in a little more detail here. To see this we consider a spherically

symmetric metric and consider the geodesic equations within this metric. The radial

part of the metric is given by:

ds2 = −dt2 + a2(t)dr2 (1.4)

To find the geodesic equations (following standard techniques from say [24,25]), we

recast this as a Lagrangian

L =
1

2
(−ṫ2 + a2(t)ṙ2) (1.5)
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where ˙ means differentiating with respect to τ , the affine parameter of the geodesic.

We obtain the t geodesic equation by the Euler Lagrange equations

d

dτ

(
∂L
∂ṫ

)
− ∂L
∂t

= 0 (1.6)

to get

ẗ+ a(t)a′(t)ṙ2 = 0 (1.7)

where ′ means d
dt

. For a geodesic to bounce off the singularity which is in the future,

we require a point along the geodesic where ṫ = 0 and ẗ < 0. The first condition

can be satisfied for a spacelike geodesic but the second is more problematic. As ṙ2

and a(t) are positive, that means that the satisfaction of this condition is purely

dependent on the sign of a′(t). If a′(t) is positive then ẗ is negative and vice versa.

If we consider a Friedmann Robertson Walker metric, a(t) is the scale factor of this

metric. In this scenario of a future singularity, this means that near the singularity,

the space is contracting and hence a′(t) < 0. So the spacelike geodesics all have

ẗ > 0 and hence cannot bounce off the singularity. This means that these geodesics

hit the singularity. Note that the same analysis means that neither can spacelike

geodesics bounce off a past singularity (Big Bang) in this metric. The reasoning is

the same but with opposite signs in the bouncing condition on ẗ and a′(t).

We can also use this analysis for a Schwarzschild black hole. We can do a co-

ordinate transformation that will produce a metric of the same type as in (1.4).

This transformation requires us to change the sense of the r and t coordinates. So

t will be the radial coordinate and r the time coordinate in the Schwarzschild case.

This gives a function a(t) such that near to the singularity a(t) ∼ −1
t

which makes

a′(t) ∼ 1
t2

so a′(t) > 0. This means that we can have geodesics satisfying the con-

ditions that ẗ < 0 and ṫ = 0. As t is the radial coordinate here this shows quickly

that we do indeed have radial spacelike geodesics which bounce off the singularity

in the black hole scenario.

This means that a cosmological singularity is fundamentally different from the

AdS Schwarzschild black hole. We cannot have spacelike geodesics bouncing off a



1.3. Summary 10

cosmological singularity of the FRW type and so cannot use the associated correla-

tors in the field theory to investigate the singularity in this way. The main subject

of this thesis is to consider a more general type of cosmological singularity (the

mixmaster universe) and see if this kind of singularity, with its much more com-

plex behaviour near to the singularity, allows spacelike geodesics to bounce thus

giving us the chance to probe this singularity via the field theory in the AdS/CFT

correspondence.

1.3 Summary

In this chapter we have attempted to motivate the study of geodesics which bounce

off a singularity. We introduced string theory and the AdS/CFT correspondence

which allow us to infer information about spacelike geodesics in the bulk via the

correlators on the boundary. This has allowed us to probe beyond the event horizon

of a black hole using geodesics which bounce off the singularity. We attempted to

apply this technique to a cosmological (FRW) singularity and found that in this

scenario, there are no bouncing spacelike geodesics. Now we are going to consider

a more general cosmological singularity and see if we can find spacelike geodesics

which bounce of this singularity thus giving us the opportunity to determine more

about this singularity using the AdS/CFT correspondence. In the next chapter

we will introduce the mixmaster universe and explain its connection to the Kas-

ner metric. In chapter three, we will then study spacelike geodesics in this Kasner

metric to provide us with some tools for modelling the mixmaster universe and its

geodesics. Chapters four and five will use some different techniques (both numerical

and analytic) to see if it is indeed possible for geodesics to bounce off the singular-

ity. Chapter four will definitively show that in some situations we can show that

geodesic bouncing close to the singularity is impossible and chapter five will at-

tempt to determine whether under certain modifications of our model it is possible

to rescue the bouncing. In chapter six we then tangentially discuss an interesting

feature about the mixmaster universe which was discovered while investigating this

geodesic problem. This demonstrates some other interesting and complex features
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of the mixmaster universe and demonstrated that this cosmology has very intricate

behaviour making its study problematic.



Chapter 2

Background

In this chapter we are going to introduce the main subject of interest in this thesis,

the mixmaster universe. In order to properly discuss the mixmaster universe, it is

going to be useful to first introduce some facts about the Kasner metric, a description

of which is found in [19] among many other places.

2.1 The Kasner Metric

The Kasner metric is homogeneous and anisotropic and is given by

ds2 = −dt2 + t2p1dx2
1 + t2p2dx2

2 + t2p3dx2
3 (2.1)

where the {pi} are constants. It can be shown that in order for this metric to satisfy

Einstein’s equations in a vacuum given by:

Rµν = 0 (2.2)

where Rµν is the Ricci curvature tensor, we must have that:

p1 + p2 + p3 = p2
1 + p2

2 + p2
3 = 1 (2.3)

Firstly note there is the “obvious” solution set of {1, 0, 0} and its permutations but

it can be shown that this is simply Minkowski space under a change of coordinates

and therefore doesn’t have a singularity at t = 0. The other solutions do have a

singularity at t = 0. Secondly, note that the first condition describes a plane and

12
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the second describes a sphere. So the set of constants satisfying these conditions is

the circle where these intersect (illustrated in figure 2.1).

-1

0

1

p1

-1

0

1

p2

-1

0

1

p3

Figure 2.1: A plot of the circle of parameters {p1, p2, p3} which satisfy the conditions

for the Kasner metric.

We can also see that these conditions require one of the constants to be negative.

Without loss of generality, we will take this to be p1 and from equation (2.3), we

can see that this gives us:

−1

3
≤ p1 ≤ 0 (2.4)

while p2 and p3 then lie between 0 and 2
3
. The negative value of p1 means that the

metric is contracting in this direction (and expanding in the other two) although

the volume element
√
−g = tp1+p2+p3 = t (2.5)

is constantly increasing so this is an expanding universe.

It should also be noted, however, that three parameter with two constraints

means that only one of them is independent. Thus these constants can therefore be

written in terms of one parameter. A useful parametrisation which we will use for
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the remainder of this thesis is that of the Khalatnikov-Lifschitz parameter u, where

the set {pi} are given by:

p1 =
−u

1 + u+ u2

p2 =
1 + u

1 + u+ u2

p3 =
u(1 + u)

1 + u+ u2
(2.6)

It is also useful to observe at this stage from [20], the following identities of the

parametrisation (2.6), namely that:

p1

(
1

u

)
= p1(u)

p2

(
1

u

)
= p3(u)

p3

(
1

u

)
= p2(u) (2.7)

so we can always take u > 1.

This gives us some useful facts about Kasner metrics which will be required when

we are discussing the mixmaster universe in the next section.

2.2 The Mixmaster Universe

The mixmaster universe arose from work done by Belinsky, Khalatnikov and Lifs-

chitz, to find a general solution to Einstein’s equations with a singularity [20–22].

Here we summarise the main results of that work which are required for our model.

Their investigations led to a class of solutions representing generalisations of the ho-

mogeneous Kasner metric discussed in the previous section. The general solutions

found had the form:

ds2 = −dt2 + (a2lαlβ + b2mαmβ + c2nαnβ)dxαdxβ (2.8)

Einsteins’ equations in a vacuum (Rµν = 0) for this metric give us the following set

of equations for a, b and c,
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R0
0 =

a′′

a
+
b′′

b
+
c′′

c
= 0

Rl
l =

(a′bc)′

abc
+
λ2a2

2b2c2
= 0

Rm
m =

(ab′c)′

abc
− λ2a2

2b2c2
= 0

Rn
n =

(abc′)′

abc
− λ2a2

2b2c2
= 0 (2.9)

(where ′ denotes differentiation with respect to t). Here the quantity λ is defined

by:

λ :=
l · ∇ × l

l ·m× n
(2.10)

with similar quantities µ and ν defined by µ := m·∇×m
l·m×n

and ν := n·∇×n
l·m×n

. Taking only

the leading order terms of these equations gives us a, b, c as

a = tp1

b = tp2

c = tp3 (2.11)

where the pi satisfy the same relations as those in the Kasner metric (2.3) but here

the p1, p2, p3 are, in fact, functions of the space coordinates. However, we also get

higher order terms (i.e. higher powers of 1/t) in these equations as well. We can get

rid of these terms if we impose the condition that λ = 0.

Perturbations around this condition (so if we allow λ to be non zero and not nec-

essarily small) can then be shown to cause the metric to evolve (if we look towards

the t = 0 singularity) from its original Kasner-like metric (2.8, 2.11) to another

Kasner-like metric with a different set of {p̃i}.

This is done via a substitution: a = eα, b = eβ, c = eγ, dt = abcdτ . The

equations (2.9) then become:

αττ = −1

2
λ2e4α

βττ = γττ =
1

2
λ2e4α (2.12)
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with the initial conditions that at τ →∞, ατ = p1, βτ = p2, γτ = p3. The solution

then shows that eventually the perturbation in λ is damped and the metric becomes

another Kasner-like metric with

(p̃1, p̃2, p̃3) =
1

1 + 2p1

(−p1, p2 + 2p1, p3 + 2p1) (2.13)

Or, in terms of the Khalatnikov-Lifschitz parameter u, the perturbation in λ

causes the metric to evolve from that of a Kasner-like metric with parameter u, to

one with the parameter u− 1 with an appropriate relabelling of axes. In fact, using

(2.6), the new parameters p̃i are given by:

p̃1 = p2(u− 1)

p̃2 = p1(u− 1)

p̃3 = p3(u− 1) (2.14)

So the contracting direction has swapped from the first direction to the second

direction. If we looked further back in time, we would reach another Kasner-like

metric with parameter u− 2 and the contracting direction would swap back again.

This would continue u−3, u−4 . . . with the contracting direction swapping between

the first two coordinates until we reach the point where our parameter reaches u−buc

and drops below 1. Then we can use the relations (2.7) to return to a value of u

larger than one. So for this kind of transition, we would have (if u is initially between

1 and 2) u→ 1
u−1

and the {pi} would evolve as:

p1(u) → p3

(
1

u− 1

)
p2(u) → p1

(
1

u− 1

)
p3(u) → p2

(
1

u− 1

)
(2.15)

At this point we can see that this will cause another two directions to begin swap-

ping the contracting direction between them. We are going to call each Kasner-like

metric a “Kasner epoch” (or simply an “epoch”) and each set of epochs where two

directions swap between expanding and contracting an “era” (so a new era begins

when u drops to a value less than one). The metric evolves through a succession of
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these “epochs” and “eras” which condense towards the singularity.

If we make our initial value of u be irrational, then this evolution will continue

indefinitely. Conversely, if we started with a rational value of u, this would eventually

evolve to a Kasner-like metric where u = 0. This corresponds to the set {pi} in that

metric being some permutation of {0, 1, 0} and hence we have lost our singularity

completely. As a short aside, in my opinion the previous statement is not completely

obvious but is relatively straightforward to prove and so a brief proof is provided.

Proposition 1 Such a sequence with an initially rational u will terminate with

u = 0.

Proof 1 Suppose u is rational and hence can be written:

u = M +
m

n

where M,m, n ∈ N, m < n. Then after N steps:

u =
m

n

which is reset to:

u =
n

m
= K +

k

m

where K, k ∈ N and k < m. This eventually evolves to m
k

. So we are creating

a sequence of denominators n > m > k which is a decreasing sequence of natural

numbers, which will eventually give us a rational value of u with denominator 1, and

so u will then evolve to 0.

So as we look back towards the singularity at t = 0, we have an infinite number

of these epochs and eras, each with a Kasner-like metric which condense towards

the singularity. It is explained in [20] that a large proportion of these epochs will

have a large value of u and so the majority of the sets {p1, p2, p3} will be very close

to {0, 0, 1} but will never actually reach these values. This would imply that most

of the eras will be very long so two of the axes will be swapping the contracting

direction between them for many epochs before another two begin swapping. The
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evolution shows some interesting features. Namely that the evolution of the param-

eter u can be shown to be chaotic, in the sense that small perturbations in its value

lead to extremely different evolutions of the constants. The evolution was demon-

strated to be truly chaotic by Cornish and Levin in [26] in which they studied the

dynamics of this evolution in depth as a chaotic system.

The name “mixmaster universe” came from work done by Misner [23] on one

particular kind of these metrics. His analysis was carried out in a different way

to that of BKL but was equivalent [20] to studying the case where λ = µ = ν =

constant. The metric considered by Misner is given by

ds2 = −dt2 +
∑
k

(lk)
2σ2

k (2.16)

where

σ1 = sinψdθ − cosψ sin θdφ

σ2 = cosψdθ + sinψ sin θdφ

σ3 = −(dψ + cos θdφ) (2.17)

and 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. In order to describe the evolution

of the parameters, lk in this metric, they were rewritten in terms of another set of

parameters βk given by

lk = Reβk (2.18)

where R = (l1l2l3)
1
3 . This gives the condition that

∑
k βk = 0, so we can choose two

independent parameters β+ and β− as

β+ = β1 + β2

β− =
1√
3

(β1 − β2) (2.19)

The evolution of the metric can then be described in terms of the evolution of these

parameters β±, which determine shape of the universe, in terms of the volume Ω

where Ω is defined by the identity R := e−Ω. Considering Einstein’s equations near

to the singularity (which corresponds to Ω→∞) gives the differential equation for
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β± as

4 =

(
dβ+

dΩ

)2

+

(
dβ−
dΩ

)2

+ 4Λ−1e−4ΩV (β+, β−) (2.20)

and the equation
d(log(Λ)

dΩ
= −4Λ−1e−4ΩV (β) (2.21)

where Λ is defined via these equations. The potential V (β+, β−) can be shown to

be given by

V (β+, β−) =
1

3
e−4β+ − 4

3
e−β+ cosh(

√
3β−) +

2

3
e2β+(cosh 2(

√
3β−)− 1) + 1 (2.22)

In this potential, the equipotential lines in the (β+, β−)-plane are that of an equi-

lateral triangle. A contour plot of this potential is shown in figure 2.2 where this

triangular symmetry can be seen along with the fact that the potential rises steeply

as we move away from the origin. We can view our parameters (β+, β−) as a point

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

Beta Plus

B
et

a
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in
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Figure 2.2: A contour plot showing the equipotential lines of the potential V (β+, β−)

demonstrating the triangular symmetry of this potential.

moving in this potential. Much of the time, this potential remains small, and so

the differential equation (2.20) describes free motion of (β+, β−) and when this is
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the case, the metric appears to be that of a Kasner metric where the Kasner metric

parameters (p1, p2, p3) are given by the relations

dβ+

dΩ
= 3p3 − 1

dβ−
dΩ

=
√

3(p2 − p1) (2.23)

However, periodically the point (β+, β−) hits one of the walls of the triangular po-

tential and when this happens, the metric shifts from one Kasner model to another

at each bounce. Indeed it could be further shown that the amount of time spent

in which the point (β+, β−) spent bouncing against the potential wall is small com-

pared to the amount of time in free motion. So we can view the shift between two

Kasner metrics as occurring comparatively quickly. In [23], the Kasner parameters

(2.23) are written in terms of a parameter s, where

3p3 − 1 = 2
(3− s2)

s2 + 3
√

3(p2 − p1) = 4
(
√

3s)

s2 + 3
(2.24)

and this bouncing can then be written in terms of this parameter as 1
3
s→ 3

s
. This

is then shown to be equivalent to the evolution of the different parameter u→ u−1

under some permutations of the Kasner parameters pi.

So we have found this metric to exhibit the same qualitative behaviour as in the

BKL analysis. The metric evolves as a sequence of Kasner-like metrics in which the

transition between the metrics occurs comparatively quickly compared to the time

spent in each epoch. This motivates us to construct a model which encapsulates

this behaviour by matching together a sequence of Kasner metrics whose parameters

pi(u) evolve in the way prescribed by the rule that u→ u− 1.

Misner thought that because this singularity could be shown not to have particle

horizons, then it could be a candidate for the “Big Bang” singularity and thus ex-

plain the “horizon problem” where areas of the cosmic microwave background which

are not causally linked appear to have the same temperature although now this can

be explained via inflationary theory. Khalatnikov and Lifschitz also suggested it
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could be this kind of singularity in the final stages of gravitational collapse of a

non-spherical body.

2.3 Summary

In this chapter, we have discussed some features of the Kasner metric with a view

to then introducing the mixmaster universe. The important point being that in the

Kasner metric, one of the directions is contracting and the other two are expand-

ing. We have shown that the mixmaster universe is a cosmology with a singularity

which displays very complicated behaviour as we get close to the singularity. We

investigated this two ways. First via the analysis by Belinsky, Khalatnikov, Lifs-

chitz analysis and secondly via that done by Misner (who studied a more specific

case). Both showed that this particular kind of metric showed similar qualitative

behaviour. The metric can be viewed as behaving as a sequence of Kasner metrics

in which the contracting directions changes as we pass from one metric to the next.

This will allow us to model the mixmaster universe by sticking together a such se-

quence of Kasner metrics. As our goal is to study spacelike geodesics in this model

of the mixmaster universe, we are first of all going to study geodesics in the Kasner

metric. Again, doing this will introduce a lot of the notation and equations that we

will require when we go on to study the mixmaster universe’s geodesics. We will

demonstrate that in the Kasner metric, it is possible to get geodesics which bounce

arbitrarily close to the singularity. We will return to the mixmaster universe in

chapter four.



Chapter 3

Bouncing Geodesics in the Kasner

Metric

The aim of this thesis is to study whether or not geodesics can bounce in the

mixmaster universe. In order to study geodesics in the mixmaster universe, we

are first of all going to look at geodesics in a Kasner metric. Recall that the Kasner

metric is given by:

ds2 = −dt2 + t2p1dx2
1 + t2p2dx2

2 + t2p3dx2
3 (3.1)

where the set {pi : i = 1, 2, 3} satisfies the relations:

3∑
i=1

pi =
3∑
i=1

p2
i = 1 (3.2)

Recall also that this metric has a singularity at t = 0. We are interested in whether

it is possible for spacelike geodesics heading towards the singularity to turn around

before they reach it and so “bounce” away from the singularity. So what are the

geodesics for the Kasner metric? Using the Euler Lagrange equations:

d

ds

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0 (3.3)

where

L =
1

2
(−ṫ2 + t2p1ẋ2

1 + t2p2ẋ2
2 + t2p3ẋ2

3) (3.4)

22
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(so take x0 to be t) gives us the four geodesic equations of the Kasner metric:

ẗ+
3∑
i=1

pit
2pi−1ẋ2

i = 0 (3.5)

t2piẋi = Ki (3.6)

where Ki are constants for i = 1 . . . 3. We want to consider space-like geodesics

which have tangent vector P a = (ṫ, ẋ1, ẋ2, ẋ3) satisfying P aPa = 1. This gives the

equation

P aPa = −ṫ2 + t2p1ẋ2
1 + t2p2ẋ2

2 + t2p3ẋ2
3 = 1

and substituting in

ẋi =
Ki

t2pi

gives the equation

ṫ2 +

(
1−

3∑
i=1

K2
i

t2pi

)
= 0 (3.7)

for spacelike geodesics. We consider this as ṫ2 + V = 0 where V is an effective

potential given by

V (t, pi, Ki) = 1−
3∑
i=1

K2
i

t2pi
(3.8)

In order for a spacelike geodesic to exhibit “bouncing” it must have a time tb where

ṫ = 0 i.e. when V (tb, pi, Ki) = 0. From the potential (3.8), one can see that as

t→ 0 then V → −∞ and as t→∞, V → −∞. Plotting this potential for different

values of pi and Ki shows that this potential increases from −∞ to a maximum then

decreases back to −∞. This means that in order for a geodesic with a given set of

constants in a given Kasner metric to “bounce”, we require that:

Vmax ≥ 0 (3.9)

So we can consider two equivalent ways of finding out whether or not a given geodesic

bounces. We can either look for a solution to V (t, pi, Ki) = 0 or we can find the

maximum of the potential and see whether of not it is greater than 0. Both of these

methods will require numerical calculations as neither can be done analytically with

the potential of the form (3.8), but there are some simplified cases we can look at

first.
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Suppose we look at a spacelike geodesic in a given Kasner metric which only

has one non-zero value of Ki. First, let’s consider the case where the non-zero Ki

corresponds to the direction with the negative parameter. We are taking this by

convention to be p1 so the geodesic has constants {K1, 0, 0}. This geodesic has the

potential:

V (t) = 1− K2
1

t2p1
(3.10)

This potential decreases from 1 to −∞. The equation

V (t) = 0 (3.11)

has the solution

tb = (K1)
1

p1 (3.12)

Plotting this potential one can see that this corresponds to a geodesic coming from

infinity and bouncing at t = tb. The potential between t = 0 and t = tb is positive

which contradicts the geodesic equation (3.7) so this geodesic doesn’t exist in that

region. The larger the value of K1 the smaller the value of tb (as p1 < 0) and hence

the closer to the singularity the geodesic bounces. So we can have what we are going

to call “purely K1” geodesics bouncing as close to the singularity as we like. The

larger we make K1 the closer they bounce.

Now let’s suppose that instead our geodesic has one of its other constants non-

zero. Suppose it has a non-zero K2 and so has potential:

V (t) = 1− K2
2

t2p2
(3.13)

This time, plotting the potential shows that it increases from −∞ and asymptotes

to 1 as t goes to∞. This means again that there must be a solution to the equation

V = 0 which is similar to the K1-case. It is solved by:

tb = (K2)
1

p2 (3.14)

but this time only the potential between 0 and tb can correspond to the geodesic

as we must still have V < 0 in the geodesic equation. This is the potential of a

geodesic which comes out of the singularity then falls back in. (We can see this
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through the geodesic equation for ẗ, in these geodesics ẗ will always be negative).

This time the “bounce” occurs closer to the singularity the smaller the value of K2

which also makes sense intuitively speaking. In fact this interpretation extends to

any geodesic which has K1 = 0 (i.e. one that has both K2 and K3 non-zero) as this

potential exhibits the same behaviour as the pure K2 case. The whole plane K1 = 0

only corresponds to geodesics which come out of the singularity then fall back in.

For the spacelike geodesics which have more than one of the Ki non-zero then

we are going to have to use numerical calculations to determine whether or not they

bounce. But first we are going to see if we can get any intuition about what to

expect by investigating what happens to the potential when we start making other

constants in pure K1, K2, or K3 geodesics non-zero. It is easiest to demonstrate this

by choosing a specific example of a Kasner metric.

3.1 A Specific Example

As an example, let’s choose the parameters in the Kasner metric to be:

p1 =
−2

7

p2 =
3

7

p3 =
6

7
(3.15)

(This corresponds to taking the parameter u to be 2.) First we will plot the potential

for some geodesics which are purely K2 so these have the potential:

V (t) = 1− K2
2

t
6
7

(3.16)

The potential with K2 = 1 the only non zero constant is plotted in fig (3.1).

We have already shown that if we add in a K3 term to this potential it doesn’t

change the overall behaviour of the potential. But what happens if we add in a K1?

This is shown in figure (3.2) with plots of the potentials with K2 = 1 and K1 = 0.01,

0.02, 0.03, 0.04, 0.05.
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Figure 3.1: A plot of the potential of a geodesic in a Kasner metric (u = 2) with

K2 = 1, K1 = K3 = 0.

From this plot we can see that if a small K1 term is added to this potential, it

only affects the potential for large values of t. Its effect is to cause the potential

which asymptotes to 1, to “bend around” and fall off back to −∞. This means that

the potential will recross the V = 0 axis and the part of the potential beyond this

point will correspond to a bouncing geodesic of the kind we desire. So a pure K2

potential with a bit of K1 added will give us a bouncing geodesic which bounces

comparatively far from the singularity (as the K1 doesn’t come into effect until

larger values of t are reached). We can also see from figure 3.2 that as we increase

the amount of K1 added, the bounce gets closer to the singularity. However, we

can also see that at the same time, the whole potential is lowering so that when

K1 gets large enough, the whole potential will drop below the t-axis and hence the

geodesic for that potential will no longer bounce. In this example, this happens

around K1 ≈ 0.58. For larger values of K2, the bouncing ceases for smaller values

of added K1 some of which are shown in table 3.1.

Now suppose we start with a potential which is purely K1. Then we have a

geodesic which bounces as close to the singularity as we like. But what happens if
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Figure 3.2: A plot of the potentials of a geodesic in a Kasner metric (u = 2) with

K2 = 1, K3 = 0 and small values of K1 ranging from 0.01 to 0.05.

K2 1 2 3 4 5

K1 0.58 0.36 0.28 0.23 0.20

Table 3.1: A table showing the smallest values of K1 at which the potential with

K2 stops bouncing.

we add some of another constant into this potential? Let’s consider the geodesic

with K1 = 1, and K2 = K3 = 0. This potential bounces at t = 1 and is plotted in

figure 3.3:

So now we add in a small K2 term. Plotting the potential in figure 3.4 with

K1 = 1 and K2 = 0.01, 0.02, 0.03, 0.04, 0.05 shows that the K2 affects the potential

near t = 0 and bends down this side of the potential to −∞.

Zooming in (figure 3.5) around the point where the pure K1 geodesic bounces

(t = 1), we can see that adding in a small amount of K2 slightly shifts the bouncing

time of the geodesic towards the singularity. Again, however, as we increase the size

of K2, it lowers the whole potential so that eventually, the whole potential will lie

below the t-axis and the geodesic won’t bounce. In this specific example this occurs

when K2 ≈ 0.44.
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Figure 3.3: A plot of the potential of a geodesic in a Kasner metric (u = 2) with

K1 = 1, K2 = K3 = 0.

K1 1 2 3 4 5

K2 0.44 0.15 0.085 0.055 0.04

Table 3.2: A table showing the smallest values of K2 at which the potential with

K1 stops bouncing.

Further investigating shows that the larger we take K1, then the bouncing ceases

at smaller and smaller values of K2. Some other values are shown in table 3.2 below.

Adding in a K3 term shows similar behaviour but with different numerical values

due to the different power of t in the potential.

We are seeking to discover the full region ofKi-space where the bouncing geodesics

are found. To summarize the results so far we have:

• All geodesics on the K1 axis (except the origin), correspond to bouncing

geodesics. The further along the axis we go, the closer to the singularity

the geodesic bounces.

• The geodesics on the K1 = 0 plane bounce but don’t come from infinity.
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Figure 3.4: A plot of the potentials of a geodesic in a Kasner metric (u = 2) with

K1 = 1, K3 = 0 and small values of K2 ranging from 0.01 to 0.05.

• If we move a small distance from the K1 axis, the corresponding geodesic

continues to bounce closer to the singularity but only for a short distance

away from the axis.

• If we move a small distance from the other axes, the corresponding geodesic

bounces, initially far from the singularity but the bounce gets closer as we

move further from the {K1-K2}-plane. Again, however this only lasts a short

distance until the geodesic stops bouncing.

This gives us a näıve sketch of what region ofK-space gives us bouncing geodesics.

It will be a sort of funnel shape around the K1 axis sketched in figure 3.6.

3.2 Numerical Results

We are going to try and plot this region more accurately by numerically calculating

which geodesics in K-space bounce. The maximum of the potential of a geodesic

can be found numerically in Mathematica, and the region where the maximum is

positive, which corresponds to a bouncing geodesic, can be plotted in Ki-space. This

was done for a number of values of u and the plots generated are shown in figure
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Figure 3.5: A plot of the potentials of a geodesic in a Kasner metric (u = 2) with

K1 = 1, K3 = 0 and small values of K2 ranging from 0.01 to 0.05 plotted near the

bounce time.

3.7. The values of u chosen were (a)u = 2, (b)u = 3, (c)u = 10, (d)u = 15. We can

see that the general shape of the bouncing region in Ki-space is what we expected

from our analysis above.

In order to understand how the amount of bouncing geodesics varies with u, we

would like some way to measure the volume of this region. Presently, as all the

constants can range from −∞ to ∞, the volume will always be infinite. In order to

get a finite volume we are going to compactify the constants Ki.

3.2.1 Compactifying the Constants

We are going to have compactify the geodesic’s constants. There are two reasons

for doing this. As they stand each constant can range from negative infinity to

infinity. However, as all the constants appear as squared terms in the geodesic

equations, we actually only need to consider them between 0 and ∞. But this is

still an infinite range giving us an infinite volume of bouncing geodesics. We would

like to compactify them so that we can test values of compactified constants in a

finite range, corresponding to actual values between 0 and ∞. Then we will have a
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Figure 3.6: A sketch of the region of Ki-space which will give bouncing geodesics in

a Kasner metric.

finite space corresponding to bouncing geodesics and so we can measure the volume

of this region and see how it changes as we vary the parameter u. There are many

functions we can use to do this. The most obvious on to use is:

Ki = tan(ki) (3.17)

where 0 ≤ ki ≤ π
2
. But there is also a whole family of compactification functions we

could use, namely

Ki =
−ki

k2n
i − 1

(3.18)

where n is any natural number and here 0 ≤ ki ≤ 1. Some of these are shown

for various values of n in figure 3.8. These were found to be more suitable for the

numerical calculations and generally the compactification (3.18) with n = 1 was

used as for larger values of n, the larger Ki are compactified into a smaller region.

As the geodesics which bounce closest to the singularity seem to mostly be found in

the regions where K1 is large, we want these regions to be larger so we can look at

the differences here as these are the geodesics we are likely to be most interested in.
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Figure 3.7: Plots of the region of Ki space for geodesics corresponding to bouncing

geodesics in a Kasner metric with parameter u where (a)u = 2, (b)u = 3, (c)u = 10,

(d)u = 15.
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Figure 3.8: A plot of various compactification functions of the form Ki = −ki

k2n
i −1

for

the geodesics’ constants with different values of n.

3.2.2 Volume of Bouncing Geodesics in Kasner Universe

Varying u

We are going to use the compactification of the constants Ki to measure and com-

pare the volume of bouncing geodesics as we vary the parameter u in the metric. To

estimate the volume we are going to use a lattice of points in the ki-space which is

now the unit cube. Whether or not these test geodesics bounce will be determined

numerically and the number of those that do can be counted to obtain an estimate

of the volume of the region of bouncing geodesics.

We are going to look at 1000 points k1-space. Because taking any of the con-

stants to be either zero or one causes problems with the numerical calculation of

the maximum of the potential, we are going to allow the constants to range between
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0.01 and 0.91, with an interval of 0.1 between them. We are also going to take

the compactification function described in the previous section (3.18) where n = 1.

The geodesics which bounced were found by numerically calculating the maximum

of the potential and testing whether or not it was great than zero. This was done

for a range of values u between 1 and 55. Those geodesics which did bounce were

counted and the proportion of the total volume of geodesics which bounce against

the parameter u is plotted in figure 3.9. This plot shows that the proportion of

geodesics which bounce doesn’t appear to change very much with the parameter u

and always seems to be around about half of the geodesics bouncing.
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Figure 3.9: A plot of the proportion of ki-space corresponding to bouncing geodesics

for varying u.

This analysis was then repeated varying the parameter n in the compactification.

It seemed that as the value of n was increased in the compactification function, the

small differences in the proportion of bouncing geodesics are reduced even further

because these compactifications suppress large values of the constants so we lose

a lot of the bouncing geodesics this way. This is why we have taken the n = 1

compactification from now on.
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It also may have been possible to amplify the differences in the proportion of

bouncing geodesics for varying u by using a finer lattice of test points. Unfortu-

nately, when this was attempted, it was found it made the numerical calculations

prohibitively long this making it extremely time consuming to test a large range of

values of u.

3.3 Spacelike Geodesics Which Are Nearly Null

We have found a way to measure the proportion of geodesics in Ki-space which

bounce, and we have found that we have geodesics which can bounce as close to the

singularity as we like along the K1-axis. We are now interested in how close to null

these geodesics are. In order to determine this we are going to have to calculate the

proper length of the geodesics. Recall the geodesics were given by the equation:

ṫ2 + V (t,Ki, pi) = 0 (3.19)

where V (t,Ki, pi) is the potential we have been investigating. In other words:(
dt

dτ

)
=
√
−V (t,Ki) (3.20)

where τ is proper time along the geodesic. So the path length is given by:∫
dτ =

∫
dt√

−V (t,Ki)
(3.21)

For the geodesics to be near null, we want this integral to be as small as possible,

so that the proper length of the geodesic is close to zero. Unfortunately, the form of

the potential makes this integral impossible to do analytically. We are going to have

to use numerical calculations again to work out the integral for all sets Ki. First

however, we can look at one simpler situation. Suppose we consider the geodesics

which only have K1 non zero. We have shown these all bounce and can bounce as

close to the singularity as we like. So which of this set can we consider to be nearly

null? Here the integral (3.21) simplifies considerably and we have the proper length

given by: ∫
dt√

K2
1 t
−2p1 − 1

(3.22)



3.4. Summary 36

Suppose we want to find the path length of the geodesic far away from the

singularity i.e. at large t. Then for large t, because the parameter p1 is negative,

the K2
1 t
−2p1 term is much larger than 1. So the above integral is approximately:

∼
∫

dt√
K2

1 t
−2p1

=
1

K1

∫
dt√
t−2p1

(3.23)

So it seems that the path length goes like 1
K1

and so would be shorter for larger

values of K1. This implies that the larger the value of K1, the closer to being null

our geodesics are.

When we look at the full Ki-space, we are going to have to use numerical inte-

gration to calculate the path length. We numerically integrate the integral (3.21)

using Mathematica at a large time and plot the points in ki-space (so we have com-

pactified the constants again using our usual compactification), colouring the points

according to their relative path length (figure 3.10). So in figure 3.10, the points

coloured towards the blue end of the spectrum have shorter path length and are

closer to null geodesics than those coloured towards the red end (where the black

points are the closest to being null of all). From this picture we can see that it is

the size of k1 which has the biggest effect on how close to null the geodesics are,

where larger values of k1 are closer to null than smaller ones. Although increasing

the size of the other two constants also makes the geodesics more null, this has a

much smaller effect and we need to increase these constants substantially more to

get an equivalent reduction in path length.

3.4 Summary

We have shown that in a Kasner metric, you can have spacelike geodesics which

bounce as close to the singularity as you like. Moreover, this behaviour is dominated

by the size of the constant K1 in the potential of the geodesic which corresponds

to the direction in the metric which is contracting (when looking forwards in time

away from the singularity). We then found the full region of bouncing geodesics
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and using a compactification for the constants of the geodesics, we showed that the

volume of this region does not change much with the parameter u. This means that,

in some sense, the “amount” of bouncing in a Kasner metric is not very sensitive to

the values of the constants in the metric.

We have also shown that the larger the value of K1, the smaller the path length

of the geodesic and hence these geodesics are the ones that are closer to being null.

So it seems that the more null-like a bouncing geodesic is, the closer it bounces to

the singularity. The behaviour of geodesics in the Kasner metric is most concisely

summarised in the sketch in figure 3.11.

So now we can ask the question as to whether we can get something similar

happening in the mixmaster universe introduced in chapter 2, which can be viewed

as a sequence of Kasner-like metrics. Can we get spacelike geodesics that bounce

close to the singularity?
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Figure 3.10: A plot of ki-space with each point coloured by the relative path length

of the corresponding geodesic. Those with the shortest path lengths are coloured

black and those with longest are coloured red.



3.4. Summary 39

Figure 3.11: A sketch summarising the behaviour of geodesics in a Kasner metric

with respect to bouncing and “nullness”.



Chapter 4

Geodesics in the Mixmaster

Universe

4.1 Modelling the Mixmaster Universe

As introduced in chapter 2, the mixmaster universe evolves as a series of Kasner-like

metrics which condense near to the singularity so we are going to construct a model

of the mixmaster universe by matching together a sequence of Kasner metrics at

transitions times ti as shown in figure 4.1. We know that in the mixmaster universe,

a Kasner metric with parameter u evolves to a Kasner metric with parameter u− 1

with the appropriate rearrangement of axes (2.14). We are still interested in the

spacelike geodesics in this model. A spacelike geodesic in one of these epochs is

going to match up to another spacelike geodesic in the next epoch. As discussed,

the mixmaster universe has an infinite number of such epochs but we are going to

start by considering a finite number of epochs N and try and get an understanding

of what happens as N increases.

We are going to look at whether or not, it is possible for geodesics to demonstrate

the same kind of bouncing as they did in the pure Kasner universe in this model

of the mixmaster universe as illustrated in figure 4.2. First we are going to have

to investigate the form of the potential of the spacelike geodesics in the mixmaster

universe and derive a condition on these geodesics bouncing as was done for the

40
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spacelike geodesics in a purely Kasner metric.

Figure 4.1: An illustration of the model of the mixmaster universe made by matching

together a set of Kasner metrics at transition times ti.

4.1.1 Matching Up the Geodesic Constants

As we are modelling the mixmaster universe by pasting together a series of Kasner

metrics, the spacelike geodesics in this model are going to be made by sticking

together pieces of spacelike geodesics from each Kasner metric. So in our initial

Kasner metric, we will have spacelike geodesics labelled by their constants {Ki}

and as we cross the transition, the geodesic will become a geodesic in the next

Kasner metric with constants {K̃i}. We would like to know how these constants

are related. We do this by requiring that at the transition between two epochs, the

proper distance between two points remains the same. If we have a transition from

one Kasner epoch (with parameters pi and to another with parameters p̃i at time
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Figure 4.2: A picture of a bouncing geodesic in the mixmaster Universe

t = t0, then the coordinates in the second metric are related to the coordinates in

the first via the relation:

x̃i = tpi−p̃i
0 xi (4.1)

Now by (3.6), the constants Ki at t = t0 are given by:

Ki = t2pi
0 ẋi|t=t0 (4.2)

and the constants in the second metric are given by:

K̃i = t2p̃i
0

˙̃xi|t=t0 (4.3)

Using these and the above rescaling for ˙̃xi gives us that:

K̃i = t
(p̃i−pi)
0 Ki (4.4)

So a geodesic with constant set {Ki} will become the geodesic with constants

{K̃i} as it crosses the transition into the next Kasner epoch. This geodesic will have

the geodesic equation:

ṫ2 + V = 0 (4.5)
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where V is a piecewise potential made up of the potentials corresponding to the

constants of the geodesic in each Kasner epoch. Again we want this geodesic to

come from infinity (so the potential has to be negative for suitably large time t)

which means that it cannot be purely K2 or K3 in the first epoch. And for the

geodesic to bounce, we again require that there is at least one point at which the

now piecewise potential V is zero. Essentially what we are looking for are geodesics

which match up in such a way that they reach an epoch where their constants are

such that, in that Kasner metric, they bounce in the right time period.

We would like to investigate further how the Ki evolve through the Kasner epochs

as similarly to the pure Kasner case, once we have found geodesics which bounce,

we would like to determine how close to being null, these bouncing geodesics are.

We can see from the relations (4.4) above that the evolution of the Ki depends upon

both the transition time and the constants pi, p̃i in the Kasner metrics involved. The

relation above tells us that each time a geodesic crosses a transition ti, its constants

get multiplied by a factor

t
(p̃i−pi)
0 (4.6)

If we write the pi in terms of the parameter u, and take p1 to be negative and such

that u > 1. Then we have:

p1(u) =
−u

1 + u+ u2

p2(u) =
u+ 1

1 + u+ u2

p3(u) =
u(u+ 1)

1 + u+ u2
(4.7)

then this means that the p̃i become (via the evolution rule of these parameters):

p̃1 =
u

1− u+ u2

p̃2 =
1− u

1− u+ u2

p̃1 =
u(u− 1)

1− u+ u2
(4.8)

So in terms of t0 and u, the three exponents in the multiplication factors for the Ki
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are:

p̃1 − p1 =
2(u+ u3)

1 + u2 + u4

p̃2 − p2 =
−2u3

1 + u+ u4

p̃3 − p3 =
−2u

1 + u+ u4
(4.9)

As we have prescribed u to be larger than 1, this means that two of these exponents

are negative and the other is positive. If t0 < 1 this means that two of the constants

will get larger and the other will get smaller. The opposite would be true for t0 > 1

but we are generally going to be taking our first transition to occur at t0 = 1 as

explained in the next section so the rest of the transitions will occur at t < 1.

Observing this evolution over time, showed that the size of the constants for a

given geodesic could fluctuate by quite large amounts. So while we could start off

with a geodesic with say a very large value of K1 compared with the other con-

stants, this constant can fluctuate between being very large and very small as it

evolves through the Kasner epochs. This means looking back to the picture we had

(figure 3.10), it is not clear which geodesics can be considered nearly null. We can

think about the constants evolving and moving around this picture, and so how

close to being null they are can change quite drastically as the epochs evolve de-

pending on how the parameters of the metric evolve. Nevertheless, once we have

found bouncing geodesics, it might be possible to say something about how close to

null they are either in the first epoch or in subsequent epochs as we now know how

their constants evolve through the epochs.

The other ingredient we need in our model of the mixmaster universe is a set of

times ti at which the transitions occur.

4.1.2 Transition Time Schemes

We are considering a model of the mixmaster universe where we have a sequence of

Kasner epochs matched together at a set of transition times {ti}. We are going to

investigate these transition times a little further.
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First we are going to demonstrate that, without loss of generality, we can set

the first transition to occur at t = 1 by rescaling t. Suppose we have two Kasner

metrics matched together and the first transition occurs at t1 = α. The geodesics

in this model then have the piecewise potential:

V (t) =

 1−
∑3

i=1
K2

i

t2pi
t > α

1−
∑3

i=1
K̃2

i

t2p̃i
t < α

(4.10)

Then let t = ασ and rewrite the piecewise potential in terms of σ. For t > α,

i.e. σ > 1

V = V1 = 1−K2
1α
−2p1σ−2p1 −K2

2α
−2p2σ−2p2 −K2

3α
−2p3σ−2p3

= 1−M2
1σ
−2p1 −M2

2σ
−2p2 −M2

3σ
−2p3 (4.11)

where Mi = α−piKi.

For t < α i.e. s < 1, we have

V = V2 = 1− K̃2
1α
−2p̃1σ−2p̃1 − K̃2

2α
−2p̃2σ−2p̃2 − K̃2

3α
−2p̃3σ−2p̃3 (4.12)

Now K̃i = Kiα
p̃i−pi . So substituting this into the equation above we get

V2 = 1−K2
1α
−2p1σ−2p̃1 −K2

2α
−2p2σ−2p̃2 −K2

3α
−2p3σ−2p̃3

= 1−M2
1σ
−2p̃1 −M2

2σ
−2p̃2 −M2

3σ
−2p̃3 (4.13)

We can see that this is the same as a potential (3.8) where the transition occurs

at t = 1 with a rescaled set of constants. If we have more than two epochs in the

model then the other bits of the potential will also be similarly rescaled and so from

now on we will generally assume that t1 = 1 (i.e. the first transition). There may

be some cases later, however where it is useful to assume that the first transition

occurs at different, larger times.
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4.2 Bouncing Geodesics in a “Regular” Time Tran-

sition Scheme

We would now like to find the bouncing geodesics in a mixmaster universe, according

to the model we set up in the previous section. This will be done in a similar way

to the calculations for the pure Kasner metric but there will be some complications.

The model for the Mixmaster Universe requires several parameters. It requires

an initial u from which the expansion and contraction parameters in all the subse-

quent Kasner epochs are determined and it also requires a set of transition times.

In this chapter, we will only consider the simplest set of transition times. We want

the epochs to condense and get closer and closer together as we get towards the

singularity so we will take our set of transition times to be of the form ti = 1
mi−1 ,

where m is a natural number, so this is some geometric series. Note that if we recon-

sider the potential in terms of log t these would become regularly spaced transition

times and for this reason we shall refer to them as “regular” transition time schemes.

In order to gain insight into what happens for infinitely many epochs, we are go-

ing to consider a set of N Kasner epochs matched together as in the previous chapter

and observe what happens to the region of bouncing geodesics as N increases. The

full mixmaster universe would have an infinite number of such epochs so we want

to know what happens as N →∞.

This means each geodesic, with an initial set of compactified constants ki, will

have a potential made up of N pieces of various Kasner geodesics’ potentials. All

we need to do to see if any given geodesic bounces is to determine whether or not

its potential is ever positive. Due to the complexity of the potential’s equations, we

are going to have to do this numerically. As in the Kasner case, there are two ways

we can approach it. We can either try to solve the equation V = 0 numerically and

directly find the time at which the geodesic bounces or as we did for the Kasner uni-

verse, we can numerically find the global maximum of the potential. If it is positive
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then we know the geodesic bounces. But now the piecewise nature of the potential

causes a some trouble.

One difficulty in finding the roots of the potential is that they can occur at any

time between 0 and ∞. Also, whereas in the pure Kasner case there are only ever

a maximum of two roots, if we increase the number of Kasner epochs then it is

possible for the potential to have more than one root. At some level, this is not

an issue if one is only interested in whether or not geodesics bounce, as only the

geodesics with no roots don’t bounce. However, it does cause problems when we are

trying to determine in which epoch the bouncing has occurred. The geodesic we are

interested in bounce at the largest root and it can be difficult to be sure that the

largest root has been found when evaluating them numerically.

We have a similar problem when trying to determine the maximum of the po-

tential. In the pure Kasner case, there could only ever be one global maximum but

as we match together potentials we can have potentials that have more than one

local maximum. Again it can be difficult to ensure that the maximum found nu-

merically is the global maximum when we are dealing with an infinite range of times.

These problems can be dealt with in a similar way as was done for the constants

ki, by introducing a compactification of the time so that we can search for either the

global maximum, or the roots of the potential in a finite range only. We are going

to take

t = tan(s) (4.14)

where s ∈ [0, π
2
). So now we only need to seek roots or global maxima in a finite

region. However, due to the slow speed at which Mathematica calculates maxima of

piecewise functions, it was found to be more efficient to mount a two-stage attack.

First, the value of the potential at 10 regularly spaced test times is evaluated. If

any of these is positive then we know that at some stage prior to that time (i.e. at a

larger value of t), the geodesic has bounced. This means that many of the bouncing

geodesics are found very quickly. Then, only if this condition fails and all these test
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points along the potential are negative, is the global maximum found numerically

(which takes longer).

4.3 Numerical Results

To determine the proportion of the geodesics which bounce, we use 1000 test points

in ki-space (where again we are compactifying the constants using (3.18) with n = 1)

and see how the number of those that bounce changes as we increase N , the number

of Kasner epochs. So when there is only one epoch we have a Kasner metric as

discussed in the previous chapter. We then splice in more epochs according to the

rules for the evolution of the metric. So each time we add an epoch, the potential

for each geodesic gains another piecewise component. We are going to take the first

transition to occur at t = 1 and use the transition time scheme

ti =
1

mi−1
(4.15)

with m = 2.

This was done for many initial values of u and similar behaviour was observed

for all cases, an example of which is shown in figure 4.3 where u =
√

7. It was also

repeated for different transition time schemes with different values of m. Again,

these showed very similar behaviour to that seen in figure 4.3. When N = 1, we have

the pure Kasner metric case which we have already studied. For two Kasner epochs,

the proportion of bouncing geodesics drops significantly. This is because splicing in

the second epoch would “cut off” the tail of the bouncing region for the pure Kasner

case which were the geodesics which would have bounced after the transition when

looking back in time towards the singularity (i.e. those that bounced between t = 0

and t = 1). Going from 2 to 3 epochs tended to show a slight increase (we will

discuss this further later) in the proportion of bouncing geodesics but after that, as

N increased, the proportion of bouncing geodesics remained constant. In fact, on

closer inspection, it was discovered that for larger values of N , it was always the

same set of geodesics that bounced and that they were doing so in the first Kasner

epoch and that the same was happening in all the transition schemes of this type
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and all the values of u that were tried. The only effect of adding further Kasner

epochs at these “regular” transition times was to cut off all those geodesics that

would have bounced between t = 0 and t = 1 in the pure Kasner metric. This led to

an analytic proof, that it was impossible for a geodesic that did not bounce in the

first Kasner epoch to bounce in any subsequent epoch in a “regular” time transition

scheme.
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Figure 4.3: A plot of the proportion of ki space which corresponds to bouncing

geodesics for increasing numbers of epochs with initial u =
√

7

4.4 Impossibility of Bouncing After the First Epoch

in Regular Time Transitions

We are now going to show analytically that if a geodesic does not bounce in the first

epoch, then it will not bounce in the second epoch either. Suppose we just consider

two Kasner epochs matched together at a transition time of t1 = 1. Then a geodesic

has a potential

V (t, u,Ki) =

 V1(t, u,Ki) t > 1

V2(t, u,Ki) t < 1
(4.16)
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So suppose the geodesic does not bounce in the first epoch. This means the potential

must remain below 0 for t > 1 i.e..

V1 = 1−K2
1 t
−2p1(u) −K2

2 t
−2p2(u) −K2

3 t
−2p3(u) < 0 (4.17)

or

K2
1 t
−2p1(u) + K2

2 t
−2p2(u) +K2

3 t
−2p3(u)

= K2
1 t

“
2u

1+u+u2

”
+ K2

2 t

“
−2(u+1)

1+u+u2

”
+K2

3 t

“
−2u(u+1)

1+u+u2

”
> 1 (4.18)

Now for t < 1,

V2 = 1−K2
1 t
−2p2(u−1) −K2

2 t
−2p1(u−1) −K2

3 t
−2p3(u−1) (4.19)

We want to show that this is always negative for t < 1. So consider

K2
1 t
−2p2(u−1) +K2

2 t
−2p1(u−1) +K2

3 t
−2p3(u−1) (4.20)

Let’s rewrite this in terms of s = 1
t
. So we have

K2
1s

2p2(u−1) + K2
2s

2p1(u−1) +K2
3s

2p3(u−1)

= K2
1s

“
2u

1−u+u2

”
+ K2

2s

“
−2(u−1)

1−u+u2

”
+K2

3s

“
−2u(1−u)

1−u+u2

”
(4.21)

where s > 1

Now note

s
2u

1−u+u2 = s
2u

1+u+u2 s
4u2

1+u2+u4

s
−2(u−1)

1−u+u2 = s
−2(u+1)

1+u+u2 s
4

1+u2+u4

s
−2u(1−u)

1−u+u2 = s
−2u(u+1)

1+u+u2 s
4u4

1+u2+u4 (4.22)

This means that as s > 1, every term in the expression in (4.20) is larger than the

equivalent term on the left hand side of the inequality (4.17). Therefore (4.20) is

always greater than (4.17) i.e.. larger than 1. So the potential in the second epoch

is always negative too and hence the geodesic doesn’t bounce.

We have basically shown that across a transition, V2(1
t
) < V1(t) (i.e. the potential

on the side closer to the singularity will always be lower than an equivalent point on
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the other side of the transition). This leads to the conclusion that if the transitions

occur within a time scheme of the form 1
tn0

for n = 0, 1, 2, . . ., which we have been

calling “regular” transitions, then if a geodesic doesn’t bounce in the first epoch, it

will not bounce in any of the subsequent epochs.

4.5 A Caveat

We noted above that as we increased the number of epochs from 2 to 3, the propor-

tion of bouncing geodesics did show a slight increase. This would seem to be counter

to the reasoning above, but on closer inspection of the times at which the bouncing

occurs, it can be seen that this is not a problem. The proof in the previous section

basically shows that if we have 2 epochs then the geodesics which don’t bounce in

the first cannot bounce in the second. But when we increase to 3 epochs something

a little different happens.

We are going to consider three Kasner epochs and we are going to set the tran-

sition times to be at t = 1 and t = t0 where t0 > 1. A geodesic has potential V1 for

t > t0 (epoch 1), V2 for 1 < t < t0 (epoch 2) and V3 for t < 1 (epoch 3). Suppose

the geodesic doesn’t bounce in epoch 1. Then we know the proof above prevents

the geodesic from bouncing in epoch 2. Now consider the transition from epoch 2

to epoch 3. The work above tells us that V3(1
t
) < V2(t) but as we know V2 is only

negative between 1 and t0, then we can only deduce that V3 is negative between 1
t0

and 1. It is possible for V3 to be positive between 0 and 1
t0

. This is what accounts

for the slight rise in the numerical results. Some extra geodesics are allowed to

bounce by virtue of the third epoch being longer than it should be. When we add

another epoch, the geodesics which bounce here are cut off again. This would also

cause variations for higher numbers of epochs as whenever we have a finite number

of epochs, the last epoch before the singularity is always longer than it should be.

While slight variations were seen in the numerical results, it is not clear whether

this is the cause as opposed to slight errors. Also, the variations may be so small

that the lattice spacing of the test points might not be small enough to catch these
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small areas of bouncing geodesics. If we have an infinite number of epochs, however,

none of the geodesics can get through in this way and hence all the geodesics which

do so, bounce in the first Kasner epoch. This leads to an interesting subsequent

question. What if we perturb this scheme of “regular” time transitions? If we make

one of the epochs somewhere in the evolution a little longer than it would be in a

regular scheme, does this give some geodesics the opportunity to bounce in later

epochs. This is the question that is investigated in the next chapter.

4.6 Summary

In this chapter we have set up a model of the mixmaster universe by matching

together a sequence of Kasner metrics. We have discussed the ingredients required

for this model, namely a scheme of transition times and the form of the potential for

a spacelike geodesic as a piecewise potential made up from parts of Kasner spacelike

geodesics. We have also discussed how to determine whether or not geodesics bounce

away from the singularity in this model.

We have then shown that if we have a logarithmically regular set of time transi-

tions (which we are calling “regular”), then we cannot have any geodesics bouncing

after the first Kasner epoch. Numerical results motivated the search for an analytic

proof which showed that this was indeed the case. In such a mixmaster universe

with these kinds of time transitions, regardless of the starting u, spacelike geodesics

either bounce away in the first epoch or fall into the singularity. This means that

there is no way to study the singularity using bouncing geodesics. However, we

noticed a slight caveat in our argument means there are some geodesics which could

bounce if one of the epochs is a little longer. So it appears that if we have a more ir-

regular time transition scheme, then there are some geodesics which could be given

the opportunity to bounce beyond the first epoch. This is what we are going to

consider in the next chapter.



Chapter 5

Moving Away From “Regular”

Time Transitions

We have proven in the previous chapter that if the transition times between Kasner

epochs occur within a geometric series, then we cannot have any geodesic bouncing

after the first Kasner epoch. This is because the piecewise potential of the geodesic is

such that as we go across a transition (towards the singularity), the potential in the

new epoch remains below an equivalent point in the previous Kasner epoch. So now

we are going to look at what happens when we perturb the transition times around

these geometric sequences. This is because it was also observed that if we consider

a more irregular time scheme, it might be possible that by making later epochs a

little longer than they would be under “regular” transitions, then that could give

some geodesics which didn’t bounce in the first epoch the chance to bounce in a

longer epoch.

5.1 An Example

To show that this is a reasonable way to proceed, we can show some explicit examples

where it would be possible for such bouncing to occur. Suppose, as an example, we

take a set of three epochs. We are going to take the transitions between these

epochs to occur at t = 2 and t = 1. We are going to take u =
√

7 again. Plotting

the potential for various values of k1, k2 and k3, we can find examples such the one

53
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illustrated in figure 5.1. Here we have k1 = 0.71, k2 = 0.08, k3 = 0.1 and we take

the transitions to occur at t = 2 and t = 1.

1 2 3 4
t

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.2
VHtL

Figure 5.1: A plot of the potential of a geodesic with constants {0.71, 0.08, 0.1} in

a mixmaster universe with 3 epochs, with initial u =
√

7.

In this plot, we can see that if the next transition were to occur at t = 1
2

as per the

“regular” time scheme, then this would cut off the potential before it reaches zero.

However, if we were to delay that transition by a suitable amount then this geodesic,

which hasn’t bounced in the first epoch, would have the opportunity to bounce. In

fact there is a little region of ki-space around this point where this continues to hap-

pen. Roughly it seems that k1 can be between 0.71 and 0.74, k2 between 0 and 0.12

and k3 between 0 and 0.21, that this behaviour still occurs and we can find simi-

lar behaviour and similar albeit small regions of bouncing for many other values of u.

We are now going to analytically derive some inequalities that are required for

such a region of bouncing to exist.
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5.2 Some Inequalities

We have seen via examples that it is indeed possible in a 3 epoch scenario to have

geodesics bouncing in the third epoch which did not bounce in the previous two

because the third epoch is longer than the previous two and that it seems that there

is a small region of ki space where this is possible. Now we are going to derive some

inequalities on the geodesics’ constants will have to satisfy in order for this bouncing

to occur.

Suppose we have the same set-up as in the previous discussion where we have

three epochs, the first transition at t = t0 > 1 and the second at t = 1. For

ease of notation (namely because the constants don’t change as the cross the t = 1

transition) we are going to write the potential of a geodesic in terms of its constants

in this middle epoch. We will call these constants {Mi} in order to distinguish them

from the constants {Ki} in the first epoch. We also have a set of parameters for

each of the Kasner metrics. They are {p1, p2, p3}, {p′1, p′2, p′3} and {p′′1, p′′2, p′′3}. So

the potential for a geodesic in this set-up is:

V (t, u,Mi) =


1−

∑
t
2(pi−p′i)
0

M2
i

t2pi
= V1(t) t > t0

1−
∑ M2

i

t2p′
i

= V2(t) 1 < t < t0

1−
∑ M2

i

t2p′′
i

= V3(t) t < 1

(5.1)

Note that the factor t
(pi−p′i)
0 is what rescales the constants Mi to the constants Ki.

We can write all the constants pi, p
′
i and p′′i in terms of the parameter u. So

if we write p1, p2 and p3 as p1(u), p2(u), p3(u) according to (2.14), then the other

constants become:

p′1(u) = p2(u− 1)

p′2(u) = p1(u− 1)

p′3(u) = p3(u− 1)
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and also:

p′′1(u) = p1(u− 2)

p′′2(u) = p2(u− 2)

p′′3(u) = p3(u− 2)

Note that we have made no assumption about the size of u and thus do not know

which constants are positive and negative beyond the first set where we have chosen

p1(u) to be negative.

5.2.1 Upper Bounds on Two Constants

We are aiming to find conditions on the Mi (and hence on the Ki) for the geodesic to

bounce in the third epoch. We assume it has not bounced in the first and therefore

know it does not bounce in the second. We also know that if it does bounce it will

have to be at a time tb <
1
t0

. So let’s consider V3(t) when t < 1
t0

.

V3(t) = 1− M2
1

t2p1(u−2)
− M2

2

t2p2(u−2)
− M2

3

t2p3(u−2)
(5.2)

For the geodesic to bounce, we require the potential to be positive at some point

i.e. that there exists a time T < 1
t0

for which V3(T ) > 0. This gives that:

M2
1

T 2p1(u−2)
+

M2
2

T 2p2(u−2)
+

M2
3

T 2p3(u−2)
< 1 (5.3)

As the sum of the three terms is less than one, and all the terms are squares, this

means that each individual term must also be less than one. So we have that there

exists a time T such that:

M2
1

T 2p1(u−2)
< 1 (5.4)

M2
2

T 2p2(u−2)
< 1 (5.5)

M2
3

T 2p3(u−2)
< 1 (5.6)

Or more generally:

Mi < T pi(u−2) (5.7)
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Now we have to worry about the signs of the pi. As we know that T < 1
t0

, then these

two facts will only give us inequalities for the Mi for those where the corresponding

pi are positive. So if we have p1 < 0 (which means u > 2), the inequalities we get

are

M2 <

(
1

t0

)p2(u−2)

(5.8)

M3 <

(
1

t0

)p3(u−2)

(5.9)

Note that there are two other cases. If 1 < u < 2 or u < 1 then we get similar in-

equalities for M1,M2 or M1,M3 respectively. So we have derives some upper bounds

on the value of two of the constants Mi in order for the geodesic to bounce at some

point in the third epoch.

5.2.2 A Crude Lower Bound

In the previous section we only managed to derive upper bounds for two of the three

geodesic constants. We would like a bound on the third. We can introduce a very

crude bound quite easily. Recall that we require that the geodesic does not bounce

before the third epoch and that this means the potential of the geodesic must be

negative for all values of t > 1
t0

. Specifically, we must have that the potential is

negative at t = 1. Looking at the potential (5.1), this means that the constants

must satisfy the relation:

M2
1 +M2

2 +M2
3 > 1 (5.10)

So if, for example we have (as above) upper bounds for M2 and M3 (i.e. u > 2),

this relation will give us a lower bound for M1. Namely that:

M1 >

√
1−

(
1

t0

)p2(u−2)

−
(

1

t0

)p3(u−2)

(5.11)

There would be similar relations for M2 and M3 for the cases where u < 2. We

would like to also find an upper bound on this third constant and this can be done

by slightly altering the situation we are looking out.



5.3. Epsilon Perturbations in Transition Times 58

It is important to note at this stage that a geodesic which bounces will satisfy

all the conditions found so far but that satisfaction of the inequalities does not

guarantee that the corresponding geodesic DOES bounce. It merely introduces the

possibility of bouncing to a region of geodesics.

5.3 Epsilon Perturbations in Transition Times

We are going to look at a slightly different situation. Suppose we have a similar

set-up as before. We have three Kasner epochs with transitions at t0, and 1 so

the potential is of the form (5.1). But now we are going to require that the next

transition happens within ε of the next log regular transition so the third transition

will occur at t = 1
t0
− ε. We want to find out the conditions for a geodesic to bounce

in the region 1
t0
− ε < t < 1

t0
. Again we know it cannot bounce for t > 1

t0
and we

want it to bounce before it gets cut off by the next Kasner epoch at t = 1
t0
− ε. This

is what gives us an upper bound for the geodesic’s constant corresponding to the

negative value of pi. Let’s suppose that p1 < 0 (the analysis for the other cases would

again be similar). Again we want there to be some T in the range 1
t0
− ε < T < 1

t0

such that:
M2

1

T 2p1(u−2)
+

M2
2

T 2p2(u−2)
+

M2
3

T 2p3(u−2)
< 1 (5.12)

And this again gives us that:
M1

T 2p1(u−2)
< 1 (5.13)

If we take S = 1
T

then we have that:

M1 < S(−p1(u−2)) (5.14)

and as T > 1
t0
− ε, then:

S <
t0

1− εt0
(5.15)

So combining these inequalities we get that:

M1 <

(
t0

1− εt0

)(−p1(u−2))

(5.16)

However, like the previous inequalities, this is required to be satisfied for a geodesic

to bounce but satisfying the inequalities doesn’t guarantee that the geodesic will

bounce.
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5.4 Plotting the Bouncing Region

To summarise the previous sections, we have derived four inequalities that are are

needed for a geodesic to bounce when a transition occurs ε away from the regular

transition time. Namely:

M2 <

(
1

t0

)p2(u−2)

(5.17)

M3 <

(
1

t0

)p3(u−2)

(5.18)

M1 <

(
t0

1− εt0

)(−p1(u−2))

(5.19)

1 < M2
1 +M2

2 +M2
3 (5.20)

It is possible to have a geodesic which satisfies these inequalities. This region can

be plotted but we can see from the equations that it basically gives us a square of

Mi-space with the unit sphere cut out producing plots like figure 5.2. This is the

region of Mi-space satisfying those inequalities with u =
√

7, t0 = 2 and ε = 0.1. We

can see that it is a comparatively very small region of the space (as for simplicity

we have not compactified the Mi in the preceding analysis) in which it is possible

for such geodesics exist.

However, we must be careful to emphasise that what we have shown, is that if

there are any bouncing geodesics, they must lie in this region but the converse is

not necessarily true. Not all points in this region are going to give geodesics which

exhibit bouncing.

So it appears that if we have three Kasner epochs, all is not totally lost for

geodesics to bounce after the first epoch. But if we add more and more epochs,

the sheer number of parameters in our model make the analysis (both numerical

and analytical) more and more difficult. So we are going to simplify the situation

by reducing the number of parameters and considering geodesics which we will call

“initially purely K1”. By this, we mean that in the first epoch, these geodesics have

only one non-zero constant and that is in the spatial direction which has a negative

power.
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Figure 5.2: An example of the region in Mi-space in which it may be possible to

find bouncing geodesics.

5.5 Initially Purely K1 Geodesics

We are going to study geodesics which are initially purely K1 in a little more detail

now. These geodesics start with a potential of the form

V (t) = 1−K2
1 t

(−2p1) (5.21)

As a pure K1 geodesic evolves through the Kasner epochs towards t = 0, the value

and (more importantly) the sign of p1 changes and so the geodesic changes between

being effectively purely K1, K2 or K3 depending on the evolution of p1. Recall from

chapter 3 that geodesics with only one non zero constant correspond to potentials

which are either increasing (pure K1) or decreasing (pure K2 or K3), if we are looking

backwards in time towards t = 0. This means that the potential of this geodesic

will be a piecewise construction of these increasing and decreasing potentials. So a

geodesic which starts as purely K1 can only bounce in epochs where the potential is

increasing i.e. when its non-zero constant corresponds to the contracting direction

and it is effectively what we are calling purely K1. Looking at purely K1 geodesics
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massively simplifies the conditions for geodesics bouncing because as the potential

is always either strictly increasing or strictly decreasing, we only need to evaluate

the potential at the transition times ti. As soon as one of V (ti) becomes positive

we know that the geodesic has bounced in the preceding epoch. So in order to

determine whether or not a geodesic bounces we only need to evaluate the sequence

V (ti) and see if it ever becomes positive. We also know from (3.12) that in a Kasner

metric with parameter p1, the pure K1 geodesic bounces at time (K1)
1

p1

5.5.1 One Situation

Lets look at one example of a situation where we could get geodesic bouncing oc-

curring. Suppose we have the following set-up (illustrated in figure 5.3). We take a

set of n Kasner epochs within the Mixmaster Universe and give it a scheme of time

transitions where all transitions occur in log regular time except for the last (i.e. the

one closest to the singularity). We will call the potential in the last epoch V1 and

the potentials in the preceding epochs will be V2, V3 etc. (so the potential of the

geodesic is a piecewise combination of these potentials). We will scale the transition

time scheme so that if it were regular, this last transition would occur at t = 1. So

the later transitions will be {ti0 : i = 1, 2, 3 . . . n− 1} where t0 is greater than 1. The

epoch where the geodesic potential is Vi will occur between the transition times ti−1
0

and ti0. However, we are going to make the epoch closest to the singularity a little

bit longer than it would be. So the last transition will actually occur at t = 1 − ε.

We assume that the geodesic has not bounced previously and so by our theorem,

the first interval in which it can bounce is 1− ε < t < 1. As we are still considering

geodesics which have only one non-zero constant then any geodesic which bounces

in this region must be pure K1 in this epoch.

The pure K1 geodesics which bounce in this region are the ones in the range:

1 < K1 <

(
1

1− ε

)(−p1)

(5.22)

by (3.12). (Here K1 is the value of the constant in the epoch in which the bouncing

occurs.) So for pure K1 geodesics, a range of times in which it is possible for them

to bounce corresponds to an interval on the K1 axis. Now we also want this geodesic
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Figure 5.3: A sketch of a potential in a mixmaster universe with nearly regular

transition times demonstrating how it may be possible for a geodesic in such a setup

to bounce.

not to have bounced in any of the previous epochs. So we are going to have to evolve

this constant through the previous epochs. In order to do that we are going to label

the constant for this geodesic in the ith epoch to be K1[i] and the parameter in the

Kasner metric in the ith epoch to be p1[i] (noting that this may be either positive

or negative - here we are using the subscript 1 to show that it is the parameter in

the same direction as K1). So K1[1] = K1 in the range above. Now we know from

(4.4), that

K1[n] =
(
t
(n−1)
0

)(p1[n]−p1[n−1])

K1[n−1] (5.23)

Applying this repeatedly gives us that in terms of K1[1], K1[n] is given by:

K1[n] = t
(np1[n]−

Pn
i=1 p1[i])

0 K1[1] (5.24)
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Now all that we require for a geodesic not to bounce in any of the previous epochs,

is for the potential to be negative at all previous transition times. But this only

requires that it be negative for the first transition as then by our theorem it remains

negative for all others. So we need:

Vn(K1[n], t
n−1
0 ) < 0 (5.25)

1−
K2
n[1]

(tn−1
0 )(2p1[n])

< 0 (5.26)

K1[n] > t
(n−1)p1[n]

0 (5.27)

So these are the geodesics which don’t bounce in the first epoch. So we have a set of

geodesics which don’t bounce in the first epoch and an interval of geodesics which

DO bounce in the last epoch (which is ε longer than expected). So in terms of K1[1],

the above inequality is:

t
(np1[n]−

Pn
i=1 p1[i])

0 K1[1] > t
(n−1)p1[n]

0 (5.28)

which simplifies to

K1[1] > t
Pn−1

i=1 p1[i]
0 (5.29)

So this is the condition on K1[1] for the geodesics not to have bounced before the

last epoch. So to have some geodesics bouncing in this last epoch which have not

bounced previously, then we require that there be some K1[1] in the region:

t
(
Pn−1

i=1 p1[i])
0 < K1[1] <

(
1

1− ε

)(−p1)

(5.30)

i.e. we certainly need that all the relevant parameters satisfy:

t
(
Pn−1

i=1 p1[i])
0 <

(
1

1− ε

)(−p1)

(5.31)

Let’s look at this inequality in a little more detail as it is only based on the

parameters of the model. Firstly we have chosen p1[1] to be negative and we must

have ε < 1 (as otherwise the last transition would occur at t < 0 which we can’t

have). So the right hand side of the inequality must be greater than 1. We also have

that t0 > 1, so whether or not this inequality is satisfied depends entirely on the set

of parameters p1[i]. In order to make this region is large as possible, it means that
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we want the sum of the p1[i] to be as small as possible. This implies that we would

like as many of the p1[i] to be negative as possible to maximise the length of the

region of bouncing geodesics. This intuitively makes sense as in these regions, the

potential is increasing (towards the singularity) so the more time it is increasing,

the more likely it is to hit zero and thus the geodesic bounces.

So in this (somewhat contrived) situation, it is certainly possible to have some

bouncing geodesics and it seems to lead us to conjecture that whether or not we can

have initially purely K1 geodesics bouncing very much depends on how often the

geodesic’s constant is in the same direction as the negative power in the metric.

As it seems that it is possible for geodesics to bounce in a model with more

irregular time transitions, it means we want to do some kind of probabilistic analysis

for on average how much bouncing occurs in a mixmaster universe with a set of

irregular time transitions. In the next section we will look at what happens when all

our transitions are shifted outside the regular time scheme and we try to determine

the average amount of bouncing which occurs in this scenario.

5.6 Average Length of Bouncing Region in Pure

K1 Geodesics

We have shown that it is possible for geodesics which are pure K1 to bounce in some

scenarios where we have irregular time transitions but not necessarily in all of them.

So we would like to measure how the bouncing region depends on the set of ε’s away

from the regular transitions. To do that we are going to recast the transitions as:

si = i log
1

m
+ εri (5.32)

where t = es so we are working in logarithmic time. The set {ri} will be a set of

random numbers between -1 and 1 with a uniform distribution. The reason we are

doing these calculations in logarithmic time is because we are randomly generating

values of {ri}. If we kept the transition times in terms of a geometric series, then
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the randomly produced perturbations are likely to cause the transition times close

to the singularity to overlap, which will cause difficulties in generating the piecewise

potential for the computer. Starting out with regularly spaced transitions makes

this much less likely to happen. So with this set of transitions, we then can vary

ε and by finding the bouncing region for many sets {ri}, we can get an average

bouncing length depending on ε. As we are again looking at pure K1 geodesics, all

that we need to do to find the value of the potential at each of the transition times

(recall that for these geodesics the potential is either monotonically increasing or

decreasing in each epoch). Then we know that the first time the potential is positive

at a transition, the geodesic has bounced in the preceding epoch.

We are again going to have to pick a particular initial u for the mixmaster uni-

verse and for this we have chosen u to be
√

101 initially and we are using 10 epochs

in this particular example. This means that the value of u remains above 1 through-

out the evolution which in turn means that the potential is increasing in half of the

epochs and decreasing in the other half.

If there are any geodesics bouncing after the first epoch, we know that for each

epoch, there will be an interval in k1-space (we are compactifying the Ki using the

same compactification as before 3.18) corresponding to these geodesics. Again this

will be done using a Mathematica although we are not actually solving anything

numerically. Mathematica is needed to generate the sets {ri} and do a large num-

ber of tests. We use a series of test points from k1 = 0.01 to k1 = 0.99 at intervals

of 0.0001 and use these to measure the length of each interval in each epoch by

finding at which of the transition times the potential first becomes positive (as then

we know that the geodesic has bounced in the preceding epoch). We can then add

up these intervals to get a length for the region where geodesics bounce after the

first epoch. This takes a reasonable amount of time for each run as we are sampling

quite a lot of points but this is necessary as some of the intervals of bouncing are

very small and this separation of test points was found to be the best compromise

between running time and finding very small regions of bouncing.
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ε Mean Standard Deviation

0.01 0.00023 0.00037

0.02 0.00068 0.00097

0.03 0.0013 0.0017

0.05 0.0030 0.0035

0.07 0.0042 0.0051

0.1 0.007 0.0085

0.15 0.011 0.013

0.2 0.015 0.017

0.3 0.022 0.023

0.4 0.031 0.030

0.5 0.039 0.041

0.6 0.048 0.047

Table 5.1: The mean length of the region of the k1-axis corresponding to geodesics

which bounce after the first epoch for varying parameter ε.

This was done for a range of ε from 0.01 to 0.6, and the mean bounce length and

standard deviation for each ε was calculated. The results are shown in the table 5.1

below and these were then plotted figure 5.4. They appear to show a clear linear

dependence between ε and the length of the bouncing region. The line has been fit

to the results, it has equation:

y = −0.000848008 + 0.0799846x (5.33)

We can also ask for each ε, what proportion of sets of {ri} give a region of

bouncing after the first epoch? For each ε we look at the proportion of sets {ri}

which have a region of bouncing beyond the first epoch in k1 space. This is shown

in the second table 5.2.

From this table it seems that as we increase ε, the proportion of sets of pertur-

bations which show bouncing after the first epoch increases. It also seems that the

proportion of random sets showing later bouncing is quite high so it appears that
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Figure 5.4: A plot of the average length of the region of bouncing geodesics versus

ε with u =
√

101.

with random perturbations away from a regular transition scheme (regulated by ε),

the chances of seeing bouncing geodesics in later epochs is quite likely but the set

of such geodesics will be relatively small.

5.6.1 Different Initial Values of u

In the previous section we saw that it was possible to have geodesics bouncing after

the first transition in the first ten epochs where the value of u never drops below 1

(so we were only looking at one era in the mixmaster universe). But what happens

if we change the initial value of u such that it does drop below 1? This means that

the potential is decreasing in more than half the epochs and increasing in less than

half so intuitively we might expect there to be less bouncing in this situation.

Indeed this turns out to be the case. We are going to investigate a few different

situations. First we are going to set u =
√

101− 3 initially. This means that going

from the seventh to the eighth epoch, the value of u drops below 1 and we enter a

different era. The pi evolve such that for the last three epochs, p1 is positive and
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ε Proportion of ri sets with late bouncing

0.01 0.54

0.02 0.65

0.03 0.63

0.05 0.79

0.07 0.72

0.1 0.70

0.15 0.75

0.2 0.72

0.3 0.81

0.4 0.78

0.5 0.78

0.6 0.80

Table 5.2: This table shows the proportion of sets of random perturbations in the

transition times which show bouncing after the first epoch

hence it is impossible for pure K1 geodesics to bounce in any of these epochs. As

expected then, when we work out the average bouncing length for different ε, we

find that it is smaller. The results for the mean bouncing length with varying ε are

plotted in figure 5.5. The line of best for this value of u was given by:

y = −0.00097819 + 0.0731634x (5.34)

So the gradient is lower but not by much. This is what we would expect at some

level because we are cutting off any opportunity for the geodesics to bounce in the

last three epochs as here an initially pure K1 geodesic is effectively pure K3 so

cannot bounce in any of these epochs. Also the fact that the difference between

this example and that when u =
√

101 is quite small is also not surprising as the

length of the bouncing region contributed by these later epochs in the u =
√

101 is

comparatively small.

But what happens if we have an initial value of u which goes through three
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Figure 5.5: A plot of the average length of the regions of bouncing geodesics versus

ε with u =
√

101− 3.

eras so that the contracting direction comes back to coinciding with the direction

of K1. This would mean that it would be theoretically possible for an initially pure

K1 geodesic to bounce in this third era. A contrived example was found that by

setting u =
√

10 + 0.16, then the sign of p1 goes through the following evolution

−,+,−,+,+,+,+,−,+,−. In this scenario, it would be theoretically possible for

pure K1 geodesics to bounce in epochs 1, 3, 8 and 10. So the average length of

bouncing after the first epoch for varying ε was found with this value of u and the

results plotted in figure (5.6). This showed an even lower average bouncing length.

The line of best fit for this graph is y = −0.00113759 + 0.0376241x so this has

a much shallower gradient. In fact, it was noticed in these results, that the only

epochs in which bouncing occurs are the first and the third. Once the relevant p1 has

been positive for the next four epochs, it seems that it is impossible for any of the

geodesics to bounce in the epochs after this. This is again consistent with our con-

jecture that whether geodesics bounce depends strongly on how often their constant

is in the same direction as the negative power in the metric. If there are a sequence

of epochs where the corresponding power in the metric is always positive, the poten-
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tial gets “knocked down” too low for the subsequent period of increasing to rescue it.
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Figure 5.6: A plot of the average length of the region of bouncing geodesics versus

ε, u =
√

10 + 0.16.

The other value of u tried was to set u = ϕ = 1+
√

5
2

. Noting that this value

of u remains constant throughout the evolution and is such that the contracting

direction permutes between all three axes (a point which will be mentioned again in

chapter 6), it essentially corresponds to each era being of length 1. It means that K1

is in the contracting direction for 1
3

of the epochs. It was found that when this was

taken as the initial u, it seems that no bouncing occurred for any value of ε ≤< 0.5.

The results seem to suggest that introducing random perturbations in the time

transitions give some purely K1 geodesics the opportunity to bounce in the first era

but that when the next era is entered so that the direction corresponding to K1 is

always expanding for some set of epochs, this knocks the potential too far down for

the later perturbations to compensate enough to bring the potential back to zero

when it is increasing again and so the geodesics can no longer bounce after this point.
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This means that in some sense, the integer part of the initial value of u gives us

a measure of how close to the singularity we can get bouncing geodesics.

5.7 Summary

We have shown in this chapter that if the set of transition times in our model of

the mixmaster universe is perturbed around the regular transition times, then this

can allow spacelike geodesics to bounce after the first epoch in certain situations.

But even in these contrived scenarios, the proportion of bouncing geodesics is fairly

small. It also seems possible to have initially purely K1 geodesics bouncing after

the first epoch but that these appear to be prohibited from bouncing after the end

of an “era”. This seems to imply that it is extremely difficult if not impossible

to get geodesics bouncing in the full mixmaster universe where we have an infinite

number of epochs and eras. Indeed, according to [20], stochastic analysis of the

long-term replacements of the epochs and eras implies that the majority of the u

values are very large. This suggests that the eras will correspondingly be very long.

This is calamitous for our pure K1 bouncing geodesics as it means there will be

long eras where the potential will be decreasing thus making it near impossible for

the potential to increase to zero even when the potential is increasing. Any given

geodesic would have to be extraordinary lucky for the time transitions and parameter

evolution to work out in such a way that it bounces back close to the singularity.



Chapter 6

The Puzzle of a Periodic

Parameter

There now follows a digression away from the discussion of geodesics to investi-

gate a curious aspect of the evolution of the Mixmaster Universe. This was noticed

through looking at many initial values of the parameter u by which to run the nu-

merical calculations for the geodesics. In fact, the requirement that the initial u be

irrational for the mixmaster evolution to continue infinitely meant that it seemed

sensible to take square roots of integers as initial values of u. Observing the evo-

lution of these through the Kasner epochs showed that taking this parameter to

initially be a square root led to it becoming periodic through the evolution of the

metric. The potential for such periodic values to exist is mentioned in [23] and it

was discovered while writing this thesis that some extensive work on this subject

had also been done by Cornish and Levin in [26] but was done differently to how we

will discuss it here. We are going to use some comparatively simple mathematics to

demonstrate that the mixmaster universe exhibits some very complicated behaviour.

Recall from chapter 2 that the parameters {pi} in the metric of the mixmaster

universe could be written in terms of a parameter u (2.6). The evolution through

the various Kasner epochs of the mixmaster universe was given by the evolution of

72
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n 2 3 5 6 7 8 10 11 12 13

Period 2 3 4 6 7 5 6 9 8 10

Table 6.1: A table of length of the periods of u with initial u =
√
n

this parameter as follows: if we start with an initial value u0, then:

ui+1 =

 ui − 1 ui − 1 > 1

1
ui−1

ui − 1 < 1
(6.1)

6.1 Square Roots

It was noticed that if one takes the initial value of the parameter u to be the square

root of a natural number (while keeping the constraint that this be irrational) and

observe the evolution of u through the rule prescribed above then eventually it seems

that u will return to this initial value. For example, if we take u0 =
√

6 then the u

evolves through the following values:

u0 = 2.44949→ 1.44949→ 2.22474→ 1.22474→ 4.44949→ 3.44949→ 2.44949

So if u is initially
√

6 then u is periodic with period 6. The natural question to arise

from this is: can we prove that all (irrational) square roots lead to periodic values

of u?

It might be illuminating to see if there is any obvious relation between the value of

u0 and the period of u given that initial value. Let u0 =
√
n and let’s look at the

value n against the period of u (table 6.1).

Unfortunately, this does not seem to yield any obvious relation so some more

investigation is required. So we look at how the parameter u evolves in a little more

detail.
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6.1.1 The Simplest Scenario

Suppose we start with u0 =
√
n where n ∈ N and we follow the evolution scheme

(6.1), then u drops below 1 after b
√
nc steps in the evolution. So

ub√nc =
1√

n− b
√
nc

=

√
n+ b

√
nc

n− b
√
nc2

(6.2)

where n − b
√
nc2 ∈ N. Now the simplest case to consider is if n − b

√
nc2 = 1 for

then

ub√nc =
√
n+ b

√
nc (6.3)

and so u2b
√
nc =

√
n. So this value of u would be periodic with period 2b

√
nc. The

condition is satisfied when n = k2 + 1 for some k ∈ Z. So we have found one class

of periodic values of u, those of the form
√
k2 + 1.

However, if n − b
√
nc2 6= 1, further analysis this way becomes leads to very com-

plicated equations very quickly. So a different method is needed to investigate the

periodic values.

6.2 The Golden Ratio

At this stage another point of interest, and slight further complication, is introduced.

If u is either initially, or at some stage evolves to, the value of the “golden ratio”

(ϕ = 1+
√

5
2

= 1.618 . . .) then it remains constant at this value for all subsequent

Kasner epochs. This is because u satisfies the equation:

u =
1

u− 1
(6.4)

which is the identity by which the golden ratio ϕ is defined. This is another periodic

value of u (which has period 1) which is not just a square root of an integer. This

raises another question. Are there more periodic values of u which are not just

simple square roots?
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6.3 How to Generate Some Periodic Values

We are going to attempt to generate some periodic values of u by using the equations

for its evolution, to find the equation that such a value would satisfy. So we define

two functions

f1(u) = u− 1 (6.5)

f2(u) =
1

u− 1
(6.6)

As u evolves from one Kasner epoch to the next, we have either u → f1(u) or

u→ f2(u) depending on whether u is larger than 2 or not. So if we begin with some

general value of u we can generate all the possible evolutions of u by composing these

functions in all possible combinations. A periodic value of u is obtained when the

composition of these functions returns the initial value of u. This way we can classify

the periodic values by their periods. So the u with period 1 solves the equation

f2(u) = u, those with period 2 satisfy the equations f2 ◦ f1(u) = u, f2 ◦ f2(u) = u,

f1 ◦ f2(u) = u and so on. This means for period n, we get 2n − 1 equations (as

clearly the equation f1 ◦ f1 ◦ . . . ◦ f1(u) = u − n = u has no solution). These

were generated on a computer up to n = 20 and are shown that when simplified

they become quadratic equations with integer coefficients. We can plot the periodic

values of u such quadratics generate by their period (figure 6.1).

6.3.1 Largest and Smallest Periodic Values

Generating the periodic values (again up to period 20) by computer, and the quadratic

equations which seem to generate them shows that the largest periodic value of pe-

riod n is given by the positive solution to the equation:

1 + nu− u2 = 0 (6.7)

This gives the largest periodic value with period n as:

u =
n+
√
n2 + 4

2
(6.8)

The smallest periodic value is the positive solution to the equation:

n− (n− 2)u− u2 = 0 (6.9)
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Figure 6.1: A plot of the periodic values of u plotted by period

which gives the smallest value of u with period n as:

u =
(2− n) +

√
n2 + 4

2
(6.10)

From these we can see that the largest periodic value goes like n as n gets large and

the smallest value goes to 1 as n gets large. This confirms what is seen in the graph

(figure 6.1) and shows that we can have periodic values as large as we like.

6.3.2 Generating Quadratics

Indeed it can further be shown that all possible u’s which are periodic solve a

quadratic equation. First we prove the following result:

Proposition 2 Any length composition of f1 and f2 gives a function of the form:

fi1 ◦ fi2 . . . fin(u) =
au+ b

cu+ d
(6.11)

with ad− bc = ±1 where i1, . . . in ∈ {1, 2} and a, b, c, d ∈ Z.

Proof 2 The argument is by induction. Suppose H(u) = fi1 ◦ fi2 . . . fin(u) = au+b
cu+d

,

then the two functions formed from this are f1 ◦H(u) and f2 ◦H(u).
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First consider f1 ◦H(u):

f1 ◦H(u) =
au+ b

cu+ d
− 1

=
a+ bu− (c+ du)

c+ du

=
(a− c) + (b− d)u

c+ du
(6.12)

which is of the required form and (a− c)d− (b− d)c = ad− bc = ±1.

Similarly:

f2 ◦H(u) =
1

au+b
cu+d
− 1

=
c+ du

(a− c) + (b− d)u
(6.13)

which is again the correct form and c(b− d)− d(a− c) = bc− ad = ∓1.

As we have:

u =
1.u+ 0

0.u+ 1
(6.14)

This is of the correct form so by induction, all subsequent functions of u formed

from f1 and f2 have this form.

This then leads to the following result.

Proposition 3 If u is periodic then u satisfies a quadratic equation with integer

coefficients.

Proof 3 If u is periodic then we must have that H(u) = u (where H is composed

of the functions f1 and f2 as in the previous proposition). As this means

H(u) =
au+ b

cu+ d
= u (6.15)

with a, b, c, d ∈ Z. Simplifying this gives cu2 + (d− a)u− b = 0 as required.

It has been shown that periodic values of u are given by solutions to the equation

cu2 + (d − a)u − b = 0 with the condition that ad − bc = ±1. The questions this

naturally raises are:

• Do all such quadratics lead to a periodic value of u?

• If not, what subset of these quadratics are being generated by f1 and f2?
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6.3.3 Some Observations

It is important to note that the values of u generated do evolve the same way as their

generation scheme. So the periodic value generated by the equation f1◦f1◦f2(u) = u

say, does indeed follow the evolution u → f2(u) → f1(f2(u)) → f1(f1(f2(u))) = u.

Also note that each of the values u evolves through are themselves other periodic

values of u. Indeed they correspond to the equations that are cyclic permutations

of the one for the original u. So in the example, they would be the solutions to

equations f2 ◦ f1 ◦ f1(u) = u and f1 ◦ f2 ◦ f1(u) = u. Also note that the equations

formed from n applications of f1 and f2 do not necessarily all give values of u with

period n but are only required to have a period m which divides n.

6.4 Further Investigation of the Quadratics

We have shown that the periodic values of u are found through solutions of quadratic

equations and we would like to investigate these equations in a little more detail.

As mentioned before, we can use Mathematica to generate these quadratics in the

form c+ bu+ au2 = 0. (Note that the coefficients a, b, c are different from previous

sections). We can then plot these in {a, b, c}-space. This is shown in figure 6.2 where

the different coloured points correspond to the size of the period of that equation’s

solution.

But this picture doesn’t give much insight. It is much more interesting to divide

the quadratics by the coefficient of u2 so they have the form u2 + bu + c = 0 and

plot them in 2 dimensional {b, c}-space (figure 6.3). This plots the coefficients of

the quadratics corresponding to values of u with period up to 13.

Here we can see a much more interesting structure emerging. By zooming in on

a region, we can see that the plot appears to have a fractal nature (figure 6.4) in

the sense that the plot appears to exhibit a self similar structure.

We can look at how the fractal evolves by plotting the coefficients for different

maximum periods. In figure 6.5, we plot the evolving fractal for period 5 (i), 7 (ii),

9 (iii) and 11 (iv).
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Figure 6.2: A three dimensional plot of coefficients of quadratics whose solutions

give periodic values of u.

6.5 Generation Via Matrices

Another way to look at the quadratics generated by the functions f1 and f2 is to

translate them into matrices. It was hoped that doing this might give insight as to

what set of quadratics we are producing in the fractal pictures. We have shown that

any composition of these functions can be written au+b
cu+d

where a,b,c,d are integers

satisfying the relation ad− bc = ±1. We can write this as the matrix a b

c d

 (6.16)
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Figure 6.3: A two dimensional plot of coefficients of quadratics whose solutions give

periodic values of u.

which has determinant ±1. We can then translate the functions f1 and f2 into

matrices. They become:

f1 =

 1 −1

0 1

 (6.17)

f2 =

 0 1

1 −1

 (6.18)

and composing the functions is equivalent to matrix multiplication (on the left). In

this set-up the initial u is just the identity matrix. Now, in order to find out which

quadratics we are generating, we want to find which matrices are generated by f1

and f2. In particular, is it possible to generate any matrix with determinant ±1

with these two matrices?

A general matrix M generated by f1 and f2 has the form

M = f i11 f
i2
2 f

i3
1 . . . f ik2 (6.19)

where i1, i2 . . . ik ∈ N ∪ {0}.
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First we are going to look at the powers of f1.

Proposition 4

fn1 =

 1 −n

0 1

 (6.20)

Proof 4 By induction. Clearly the proposition is true for n = 1. Assume it is true

for n. Then:

fn+1
1 = f1.f

n
1

=

 1 −1

0 1

 1 −n

0 1


=

 1 −(n+ 1)

0 1


So the proposition is true.

Similarly for powers of f2.

Proposition 5

fn2 =

 (−1)nFn−1 (−1)n+1Fn

(−1)n+1Fn (−1)nFn+1

 (6.21)

where Fn is the nth Fibonacci number.

Proof 5 Again by induction. It is clearly true for n = 1. Now

fn+1
2 = f2.f

n
2

=

 0 1

1 −1

 (−1)nFn−1 (−1)n+1Fn

(−1)n+1Fn (−1)nFn+1


=

 (−1)n+1Fn (−1)nFn+1

(−1)nFn−1 + (−1)n+2Fn (−1)n+1 + (−1)n+1Fn+1


=

 (−1)n+1Fn (−1)nFn+1

(−1)n+2Fn+1 (−1)n+1Fn+2


as Fn−1 + Fn = Fn+1. And so the proposition is proven.
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Note that both these propositions hold for n = 0 if we take F−1 = 1.

Now we want to start looking at what happens when we multiply powers of f1

and f2 together.

Proposition 6

fn1 f
m
2 =

 (−1)m(Fm−1 + nFm) (−1)m+1(Fm + nFm+1)

(−1)m+1Fm (−1)mFm+1

 (6.22)

Proof 6 Trivial matrix multiplication.

The first thing we can show with this result is that it is definitely not possible

to generate any matrix using these two generators. From Proposition 5 we can see

that

fn1 f
m
2 =

 (−1)mA (−1)m+1B

(−1)m+1C (−1)mD

 (6.23)

where A,B,C,D are positive integers. Or equivalently:

fn1 f
m
2 = (−1)m

 A −B

−C D

 (6.24)

So the entries on one diagonal have the same sign which is opposite to the sign

of the entries on the other. Now, one can show that multiplying two matrices of this

type together, one gets:

fn1
1 fm1

2 fn2
1 fm2

2 = (−1)m1+m2

 A1A2 +B1C2 −(A1B2 +B1D2)

−(C1A2 +D1C2) C1B2 +D1D2

 (6.25)

which is of the same form. Therefore any matrix generated by f1 and f2 must have

the property that entries on the two opposite diagonals have opposite signs. More

specifically this prevents us from generating inverses. For a concrete example one

can see that:

f−1
1 =

 1 1

0 1

 (6.26)
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As all the entries have positive sign, then it will be impossible to generate this matrix

using f1 and f2. This makes sense as if one did have:

f−1
1 = f i11 f

i2
2 f

i3
1 . . . f ik2 (6.27)

then relating it back to finding the periodic values of u, it would mean that the

equation

f1(f i11 f
i2
2 f

i3
1 . . . f ik2 )(u) = u (6.28)

would be satisfied for any value of u which doesn’t really make sense as this is how

we are finding periodic values. So these two matrices don’t generate a group and

the set of quadratics we are generating remain unclear.

6.6 Back to the Square Roots

It would be nice to be able to use these matrices to at least prove the initial obser-

vation that taking a square root as the initial value of u gives a periodic evolution.

It would seem reasonable that the quadratics whose solutions are exact square roots

might be generated in some particular way and hence we could prove that this

particular set of quadratics is generated by our matrices and always give periodic

solutions. However, this is not quite as straightforward as was hoped. Näıvely one

might hope that the periodic value u =
√
n comes from the quadratic

u2 − n = 0 (6.29)

Comparing this with

cu2 + (d− a)u− b = 0 (6.30)

would give c = 1,b = n and d− a = 0. which would seem not to necessarily satisfy

the requirement that ad− bc = ±1 as this implies a =
√
n± 1 which may not be an

integer. However this is not quite correct. Really, we have that u satisfies the more

general equation:

k(u2 − n) = 0 (6.31)

so that c = k and b = nk (and a = d as before) requiring us to find an a and k such

that

a2 − nk2 = ±1 (6.32)
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n Generating formula

2 f1f2

3 f1f2f2

5 f1f1f2f1

6 f1f1f2f1f2f1

7 f1f1f2f2f2f2f1

8 f1f1f2f2f1

10 f1f1f1f2f1f1

11 f1f1f1f2f1f1f2f1f1

12 f1f1f1f2f1f2f1f1

Table 6.2: A table showing the generating matrices for square root periodic values

of u

It seems perfectly reasonable that we should be able to find such integers but even

if this is possible, we still haven’t shown that our functions f1 and f2 will generate

these polynomials even if they fit all the constraints (as we have only shown that

quadratics that generate the square roots satisfy this constraint, the converse is not

necessarily true). So instead, let’s see if we can find any patterns in the way the

quadratics for square roots are generated from f1 and f2 as then it may be possible

to work out a general pattern for generating these quadratics from f1 and f2. We

have shown these in table 6.2.

Unfortunately from this table it does not look like there is any particular way in

which these quadratics are generated by f1 and f2. So although we can find lots of

quadratic equations which we can solve to give periodic values of u, we have yet to

determine exactly what subset of the quadratics give us these values.

6.7 Near Periodic Values

It is also interesting to note that each periodic value we can find, comes with an

associate infinite class of “nearly periodic” values by which we mean an initial value

of u which later evolves into one of the periodic values. So the obvious example
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would be a periodic value plus any integer (where the integer is larger than any of

the values through which the periodic value evolves in its normal evolution). But

there are many more ways for these near periodic values to arise as we can devolve a

period value through any of combination of the inverses of the functions f1 and f2.

It means that there are many initial values of u which while not initially periodic

will settle down after a time to a periodic value.

6.8 Summary

We have found that there are certain initial values of u which make it periodic and

that these periodic values are solutions of quadratic equations which can be shown

to generate fractals when plotted by their coefficients. We tried several different

techniques but were unable to find exactly what set of quadratics yielded these

polynomials, but we have found a way to generate them via matrices which are

quite elegantly associated with the Fibonacci numbers. While there are an infinite

number of these periodic and near periodic values of u, it would appear that there

are infinitely more non-periodic values. While the periodicity of the parameter u

does not mean that the parameters pi are periodic as although the set will have the

same values when u returns to its initial value, they may correspond to different

directions depending on how the pi have evolved in the meantime, I think it does

demonstrate that the evolution of the mixmaster universe is very complicated. This

complexity has been one of the major problems it has been difficult to overcome in

studying the geodesics.
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Figure 6.4: Zooming in on the two dimensional plot of quadratic coefficients demon-

strates that this pattern seems to show self similarity.
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Figure 6.5: A two dimensional plot of quadratic coefficients (whose solutions give

periodic values) increasing the maximum period sought as we go from (i) to (iv)

showing how the fractal grows as the period increases.



Chapter 7

Discussion

In the final chapter we are going to review what has been discussed in this thesis and

attempt to draw some conclusions from it. We have looked at a model of a general

cosmological singularity called the mixmaster universe as a series of epochs where

in each epoch the metric is that of a Kasner metric. The evolution of the mixmaster

universe as a sequence of these metrics is well-described and so we constructed our

mixmaster universe by pasting together Kasner metrics at a set of transition times.

The main question we have attempted to answer is whether or not it is possible

in this universe to have spacelike geodesics which bounce off the singularity. This

was done in the context that if it were possible, then we may be able to extract

information about such a singularity via the boundary correlators in the AdS/CFT

correspondence. The answer to the question proved to be more complicated than

initially expected. In fact I would summarise the evolution of the answer to this

question through this thesis as “yes, no, maybe yes, probably no”. Näıvely from

the initial study of geodesics in a pure Kasner metric in chapter 3, it seemed plau-

sible that there was a whole region of the space of geodesics which would bounce.

However, in the next chapter we demonstrated that under a certain set of transi-

tion times (logarithmically regular or shorter), then the geodesics which bounced

did so very early and that it was actually impossible for them to bounce closer to

the singularity than the first epoch. But on closer examination, it seemed possible

for there to be a “get out clause” if the time transitions were suitably irregular.

88
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We found in chapter five that in certain contrived situations we could get geodesics

which bounced after the first Kasner epoch. However restricting our considerations

to geodesics moving in one direction, it was found that even when we could have

bouncing geodesics the number was pretty low. Moreover, numerical results implied

that when we have more than one Kasner era, that would be catastrophic for the

purely K1 geodesics. The conclusion I would draw from all these results is that it

is extremely unlikely that we have spacelike geodesics bouncing very close to the

singularity. However, I am not convinced that it can be entirely ruled out although

for any given geodesic in the mixmaster universe, it would have to be extremely

lucky in terms of having all the epochs just the right length such that its potential

manages to climb back up to zero.

One of the major difficulties to overcome in this model of the mixmaster universe

is the sheer number of parameters involved in the equations being solved. Although

the Kasner constants pi evolve in a fairly straightforward way, there are still an

infinite number of initial u’s to choose from. Because the evolution of the pi is very

sensitive to small changes in the initial value of u, it makes drawing any definite

conclusions from a small sample of such u’s very difficult. When you add in the

transition times and the fact that each geodesic is defined via three constants this

only amplifies the problem and makes making general conclusions from finite sets

of examples quite difficult. It seems that whenever a statement is made about one

situation, it is possible under a different set of parameters to avoid that situation

occurring.

Another problem is that because none of the equations are solvable analytically,

this means we have to look to numerics to either find the maximum of the geodesic’s

piecewise potential or find the roots. The numerical calculations in this thesis were

all done using Mathematica. Most of the problems that arose were basically a result

of the potential for the geodesic being a piecewise function. Ideally to determine if a

geodesic bounces, we wanted to find either the largest root or the global maximum

of the potential. The problem was that these could potentially occur anywhere
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along the t-axis. Guaranteeing that it had found a geodesic that bounced where

it claimed it did was non-trivial. Indeed the early indication was that even in the

regular time schemes geodesics could be found which bounce in later epochs (closer

to the singularity), but this was later discovered to be an erroneous result caused

by finding only a local maximum in the potential and that in fact, such a geodesic

would have already bounced in the first Kasner epoch. Doing numerical calculations

also requires that we pick numerical values for the parameters in our model and as

mentioned before when this is done, it always then seems difficult to make too many

generalisations about the long term behaviour.

However, it seems that the conclusions we can draw are as follows. If the time

transitions occur within a geometric series 1
rn (“regular”), it is impossible to have

geodesics bouncing close to the singularity. If we try and get around this by per-

turbing the time transitions away from regular, it is possible to have geodesics that

bounce inside the first Kasner era of our evolution but seems that when we hit the

next era, we lose this bouncing. So we can only probe inside the singularity as far

as the end of this first Kasner era which is determined by the integral part of initial

u. This gives us a cut-off as to how close to the singularity we can get.

Chapter six is at some level completely separate to the earlier work on bouncing

geodesics. In it we showed that we could find periodic values of the parameter u

and that these could produce interesting pictures when visualised in the right way.

Although it is difficult to see the connection to the previous work, it was included be-

cause it demonstrates in a different way that fundamentally the mixmaster universe

is complicated by nature and it is this complexity which has caused the problems for

the analysis of the geodesics. Another way in which it can be seen to be connected

to the work on geodesics is that, many of the equations we studied in the process

of understanding these geodesics, from the evolution of their constants Ki to the

inequalities required for a geodesic to potentially bounce, quite heavily depended

on the evolution of these parameters pi. So the fact that chapter six shows that

the evolution can be easily seen to be extremely complicated means that it is un-
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derstandable that we struggled to derive many general results. It seems that in the

mixmaster universe, the evolution of the parameters in the Kasner epochs massively

affects many aspects of the universe including the geodesics and thus the chaotic

nature of this evolution causes many difficulties in studying other aspects of the

cosmology of the mixmaster universe.

It is also important to discuss the model of the mixmaster universe which was

used in this research, as it was a fairly simplified model of the full mixmaster uni-

verse. Firstly, by sticking together the Kasner epochs in the way we have was

justified by the fact that the transition from one epoch to the next in the mixmaster

universe occurs very quickly. We have modelled this as happening instantaneously

which is something of a simplification. The full picture of how a spacelike geodesic

crosses from one epoch to the next could be far more complicated. Secondly, we

have been using Kasner epochs within which, each t =constant hypersurface is a flat

space, whereas these hypersurfaces in the mixmaster universe are not flat and this

could cause even further complications in the geodesic behaviour. However, as our

simplified model proved very difficult to study in much generality, it seems unlikely

that introducing these further complications would simplify the calculations in any

way. As we have been unable to completely rule out the bouncing of geodesics off

the singularity, studying a more complex model of this cosmology could be an in-

teresting future area of research.

To summarise, we have tried to determine whether it was possible for spacelike

geodesics in the mixmaster universe to bounce off the singularity with a view to

using the AdS/CFT correspondence to extract information about the singularity

via these geodesics. We have shown that the behaviour of the mixmaster universe is

extremely complicated and makes the answer to this question uncertain. However,

after many different ways of tackling this question, all the analysis seems to point

to the conclusion that while potentially not impossible, such bouncing is extremely

unlikely to occur.
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