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Abstract 

Mývatnssveit has been the focus of interdisciplinary research regarding the complex dynamics 

of human-environment interactions. This research considers utilisation of botanical resources 

from two farm sites; Hrísheimar, an iron production centre and farm, and Skútustaðir, a 

farmstead occupied from landnám to the 20th century. A total of 56 bulk samples from 

Hrísheimar and 81 from Skútustaðir were processed and analysed for their macrobotanical 

remains. The main research questions addressed were:  

• Was evidence of arable agriculture visible?  

• What wood procurement strategies were utilised, and was there evidence regarding the 

use and management of woodlands? 

• What other botanical resources were exploited from the local landscape? 

• Was there any evidence for trade in plant resources?  

Conclusions from the new dataset produced indicate that barley was grown at both locations, 

while oat may have been trialled at Hrísheimar in the landnám period. Wood remained the 

main fuel across sites, contexts and time. This appears to have been mainly sourced from the 

local birch woodland, but also included some evidence of driftwood, and in the case of 

Skútustaðir, imported species such as oak, yew and hazel. Selective harvesting techniques, 

apparent from landnám, suggest early attempts at conservation of local woodland. Macro-

floral suites reflected local habitats which demonstrated a richer diversity at Skútustaðir; 

however, possible wetland expansion following forest clearance appears to have occurred 

later at this site. A range of trees, shrubs, weeds and wild plants may have been gathered to 

satisfy various culinary, craft and medicinal needs. While trade is more evident at Skútustaðir, 

with the recovery of imported wood, fruit and grain, this activity was not widespread prior to 

the abandonment of Hrísheimar. It is significant that, while past research proposes severe 

arboreal depletion soon after landnám, current charcoal data demonstrates the presence of 

wood as fuel into the final phase for each site. 
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Norse utilisation of archaeobotanical resources within the Mývatnssveit locale, Northern Iceland 

Chapter 1: Introduction 

The Norse were both intrepid explorers and opportunists, their voyages spanning as far afield 

as Byzantium and Russia in the east (Andersen, 1971, 17), and North America in the west 

(Ebenesersdóttir et al, 2010). Colonisation of the Atlantic Islands began in Atlantic Scotland 

circa AD 800 (McGovern et al, 1988, 226) from whence they moved steadily north and west, 

settling in the Faroe Islands early in the 9th century (Edwards et al, 2005, 622; Arge et al, 

2005, 597), Iceland AD 871 (Dugmore et al, 2007a, 2), and Greenland circa AD 985 (Barlow 

et al, 1997, 489; Buckland et al, 1996, 88), finally reaching Vinland in around AD 1000 

(McGovern et al, 1988, 227). 

The establishment and survival of these Norse settlements was totally reliant on the successful 

adaptation of their new environments to provide sustainable food resources. As the North 

Atlantic Islands may have appeared largely similar to the Norwegian homelands, from which 

settlers largely originated (McGuire, 2006, 13; Smith, 1995, 320; Schach, 1984, 3), the Norse 

intended to utilise the familiar agricultural package of domesticates and cereal crops. They 

recognised many taxa and had experience of managing birch in terms of pollarding and 

harvesting for fodder and firewood (Hjelle et al, 2006, 155). Yet in the North Atlantic, biota 

were much closer to their biological limits with a greater likelihood that pressure would tip 

the balance (Dugmore et al, 2006, 341). Unaware of this, the colonists may have entertained 

unrealistic expectations regarding their new environs. 

Interdisciplinary research from North Atlantic island locations has been funded and facilitated 

by the North Atlantic Biocultural Organisation (NABO) formed in 1992, and further 

supported by the International Polar Year (IPY) which focuses on the circumpolar northern 

regions. Such investigations encompass all aspects of human-ecodynamics spanning the 

whole range of Norse habitation dates. This allows coordination and comparison of data sets 

from regional scale excavations, increasing understanding of complex human-environmental 

interactions (NABO, 2007). The current dissertation considers Norse utilisation of the 

Icelandic botanical environment from landnám to the 20th century, analysing the management 

of forests, sustainability of farming methods and collection of natural resources. Such 

archaeobotanical analysis is vital, as an understanding of the processes surrounding past 

vegetation and environmental change may have implications for future land management 

policies. This is particularly important in Iceland where loss of vegetative cover contributed to 
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wide-scale erosion which has rendered much of the island a veritable desert. The Norse were 

heavily dependent on the natural biota, yet their management of agrarian resources played a 

large part in subsequent land degradation (Zutter, 1992, 139). The ability of the Icelandic 

landscape to support the large number of domesticates both in terms of grazing and 

production of fodder for overwintering was a key factor in agrarian production, and hence 

sustainable food resources (Dugmore et al, 2005, 31; Simpson et al, 2004, 472). Pressure from 

human intervention and/or climate may have initiated the processes of deforestation leading to 

erosion and land degradation, thus reducing land available for farming (McGovern et al, 2007, 

29). Timing and variability of such events between regions may help provide evidence which 

refutes or supports the traditional view of rapid forest clearance post-landnám (Hallsdóttir & 

Caseldine, 2005). Spatial and temporal variations between two landnám farm sites in 

Mývatnssveit were accordingly selected for such comparison, and the following research 

questions formulated to explore these issues.  

• Can a generic taphonomic model be utilised to explain the incorporation of carbonised 

plant macrofossils into the Icelandic archaeological record, and if so, is it possible to 

apply this to both sites? 

• Is evidence of arable agriculture visible in the archaeological record? 

• Does the presence of certain taxa indicate the quality of arable land? 

• What taxa were purposefully gathered and what was their utility? 

• What may be deduced about the local ecology from the identified wild plant species? 

• What materials were used for fuel and did these differ between sites and over time? 

Was this linked to variations in the local ecology? 

• Does the composition of wood utilised for fuel differ between sites and over time? 

• Were different fuels utilised for industrial purposes? 

• Is there any evidence of woodland management strategies, and did these differ 

between sites and over time? 

• Are indications of trade evident in terms of the presence of non-indigenous species? 

• How do current results fit in with research from the wider North Atlantic context?  
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Chapter 2: Past Research in North Atlantic Environmental Archaeology 

The North Atlantic Islands have been the focus for research investigating human impact on 

pristine environments for over two decades (Vésteinsson et al, 2002, 98). While this 

continues, a more integrated approach has now emerged recognising the inter-relationship of 

both human and environmental factors (McGuire, 2006, 11). Consequently more recent 

studies have considered specific challenges encountered by settlers due to inherent qualities of 

the individual island environments, and focusing on management strategies and possible 

solutions, such as coppicing, irrigation and soil enrichment (Church et al, 2007a; Adderley & 

Simpson, 2005, 2006). The move from single to interdisciplinary studies has yielded data 

from many sources including: historical land use, climatology, sedimentology, 

geomorphology, zooarchaeology, plus micro- & macrobotanical remains. Over the past ten 

years, use of computer generated environmental simulation models have provided a new 

method for testing dominant/limiting factor hypotheses, and these have proved useful in 

consideration of both pastoral and arable farming methods, particularly in Iceland (Thomson 

& Simpson, 2007; Simpson et al, 2002). 

The Faroes constitute 18 habitable islands, Iceland; situated at the junction of two climatic 

zones (ie. Temporal zone – south, Arctic zone – north) (Helldén & Ólafstdóttir, 1999), 

produces regional differences, while Greenland consists of the Eastern & Western settlements. 

This provides the potential for comparison studies between two or more locations. 

North Atlantic Islands of Faroes & Greenland 

Although climatic conditions were generally warmer in the Viking Age (Adderley et al, 2008, 

504; Axford et al, 2009, 7) these became more marginal and arctic in nature as the polar fronts 

were crossed from east to west (Church et al, 2005, 180). Compared to the mild, wet and gale-

prone Faroe Islands (Hannon et al, 2001, 31), the more marginal conditions of Iceland 450km 

to the north-west, forced its natural biota closer to their biological limits, while Greenland 

350km further west and partially within the arctic circle (Figure 2.1), yielded the most limited 

variety of botanical resources (Dugmore et al, 2005, 27). Thus while the Norse agricultural 

package was similar across islands, the natural flora encountered by colonists differed 

(Dugmore et al, 2005, 21). This required adaption of the traditional Norse farming strategies, 

producing unique methods and requiring different management practices between islands. 

This is most marked in the utilisation of arboreal resources. 
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Figure 2.1 – Map demonstrating relative locations of the North Atlantic Islands (Altered from Edwards et al, 
2008, 3) 

 

Figure 2.2 – Major islands of the Faroes (Reproduced from Hannon et al, 2001, 131)  
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It is uncertain how much tree cover existed on the Faroe Islands (Figure 2.2) during the 

Holocene. Evidence suggests that birch (Betula sp.) was certainly growing between 2460 BC 

and AD 770 (Malmros, 1994). Small areas of downy birch (Betula pubescens Ehrh. ssp. 

tortuosa (Lebed.) Nyman) may have existed in sheltered locations with a thick shrub cover of 

juniper (Juniperus sp.), hazel (Corylus sp.), willow (Salix sp.), heather (Calluna sp.), and 

crowberry (Empetrum nigrum L.) prior to Viking landnám (Dugmore et al, 2005, 26; 

Malmros, 1994, 552). This absence of substantial woodland is confirmed post-landnám by the 

extensive utilisation of peat and turf for fuel (Church et al, 2005, 191). While charcoal 

sources, derived from local roundwood, coniferous driftwood and imported oak have been 

recovered; these were rare (Church et al, 2005, 194; Lawson et al, 2008, 1148). A lack of 

primary woodland however, meant soil erosion was extremely limited (Dugmore et al, 2005, 

31). Nonetheless the already deteriorating climate negatively impacted on tree cover, with 

landnám further exacerbating the decline (Hannon & Bradshaw, 2000, 242). 

In contrast to the towering cliffs of the Faroe Islands, Greenland attracted settlers with its 

wide open grassy spaces close to the coast (Edwards et al, 2004, 264). Remaining land 

deemed suitable for occupation was predominantly covered in dense shrub: birch and willow 

in the Eastern settlement, and with the addition of alder at the Western Settlement (McGovern 

et al, 1988, 230). Land clearance both manually and by burning was necessary to increase 

agricultural utility. The impact of such burning is notable by a thin black deposit underlying 

the occupational layers of the Western settlement (Dugmore et al, 2005, 30). In the long term, 

such practice may have led to soil erosion. Yet there was a considerable lag before this was 

apparent, and effects of settlement did not have the same devastating impact as witnessed on 

Iceland (Dugmore et al, 2005, 31).  

Although trees provided many basic necessities, pastureland was considered to be the main 

indicator of elite status (McGovern et al, 2007, 29). Surviving closer to the limits of their 

subsistence system than other North Atlantic colonies, Greenlanders relied on a mixed 

herding and hunting economy (Barlow et al, 1997, 491). Distribution of pasture plants largely 

influenced settlement decisions (Dugmore et al, 2007b, 15), hay supply being vital for 

overwintering in the harsh climate (Buckland et al, 1996, 89; Barlow et al, 1997, 491). Apart 

from wild fruit such as Crowberry (Empetrum nigrum L.) and Bilberry (Vaccinium 

uliginosum L.), no evidence exists that plants made a significant contribution to the human 

diet, yet full utilisation of natural biota was vital for the survival of domestic animals 

(Dugmore et al, 2007b, 20), with some evidence of seaweed being fed to stock (Buckland et 
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al, 1996, 94; Arneborg et al, 1999, 165). Due to the limited amount of pasture particularly in 

the south west (Buckland et al, 1996, 94), there was virtually no unused grazing within the 

area by the 12th century, and indeed the impact of domestic stock is claimed to be greatest 

during this time (Barlow et al, 1997, 492). Based on FARMPACT (McGovern, 1995), Barlow 

et al (1997, 495) aimed to determine farm viability with different levels of pasture 

productivity. A reduction of up to 30% was manageable if followed by favourable years, 

while repeated reductions of 60-80% heavily stressed the Norse economy. Even good quality 

pasture was difficult to maintain however, due to extremes of temperature. Grass crops in 

particular were sensitive to such fluctuations. Severe winters produced frozen ground for 

extensive periods while warmer winters increased the growing season. Both led to drought 

conditions requiring irrigation of the infields. Additionally, any erosional losses depleted 

depth and organic content of soil, further exacerbating the situation. While c.11% of years 

following landnám produced drought conditions this increased to c.16% by the 14th century 

(Adderley & Simpson, 2006, 1675).  

Conversely, the amount of land suitable for growing fodder and/or cereal crops was limited 

both by topography and drainage in the Faroes, and was largely concentrated in coastal areas 

(Arge et al, 2005, 597, Adderley & Simpson, 2005, 711) therefore requiring management 

strategies for production of maximum yields (Adderley & Simpson, 2005, 711). The most 

common pre-settlement plants were wet meadow varieties and ericaceous heathland 

communities, while evidence of tall herbs such as Angelica (Angelica sylvestris L.) and 

Meadowsweet (Filipendula ulmaria (L.) Maxim.) indicate land free from grazing (Lawson et 

al, 2005, 661). Following landnám, grasses and docks became more prevalent as selective 

feeding of sheep tended to suppress herb flora allowing the spread of grasses. Yet while the 

amount of biomass available may have decreased, major changes in constituent herbage 

would not have been extensive (Edwards, 2005, 592), as apart from decreases in the tall herbs 

and small populations of juniper and birch, vegetation cover was not structurally altered to 

any significant degree (Lawson et al, 2005, 678). While human activity did increase floristic 

diversity, this was offset by the above losses (Edwards et al, 2005, 646). The shift to drier 

conditions post settlement reflects drainage of land for establishment of hayfields and 

cultivation of cereals (Hannon & Bradshaw, 2000, 408-411).  

As only a small amount of the Faroese landscape was suitable for intensive exploitation, 

amendment to ecosystems was similarly muted. Yet stability may also have been maintained 

by such factors as low population density, few trees and coarse, thin soils less prone to 
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erosion (Lawson et al, 2008, 1149). Adderley & Simpson (2005, 733) reported widespread 

soil amendment across the Faroe islands which increased nutrient levels and thus yields. 

Edwards et al (2005, 647) postulate that as soil wetness was a major constraint on cereal 

production, however, amendment aimed to improve drainage and thus facilitate more 

sustainable cropping. While such inherent soil limitations may be partly overcome by 

manuring, this would not be sufficient for flax (Linum usitatissimum L.) or rye (Secale 

cereale L.) producing a near monoculture of barley (Hordeum sp.) (Church et al, 2005, 193). 

Palynological evidence records oat (Avena sp.) as being the first cereal-type pollen followed 

by barley during the landnám period (Jonhansen, 1979, 1985). As oat yield does not respond 

to soil enrichment (Bond, 2002, 177) it is unlikely to have been cultivated on the Faroes in the 

long term. In most cases, cereal production is accompanied by an increase in arable weeds, in 

particular docks (Rumex sp.) and plantains (Plantago sp.) (Dugmore et al, 2005, 31).  

In Greenland arable agriculture was far less viable with regular ripening of cereal crops 

virtually impossible (Dugmore et al, 2005, 27). Thus subsistence cereal growing could not 

exist long term (McGovern et al, 1988, 227). Documentary sources support this; The King’s 

Mirror relates that by the 13th century most Greenlanders had never seen bread (Larson, 1917, 

65). The few rotary querns found on Norse Greenlandic farms were probably used for milling 

grain imports or locally grown lyme grass (Leymus arenarius L.) (McGovern et al, 1988, 

227). Few weed species have been recorded, most notably Yarrow (Achillea millefolium L.), 

Autumn hawkbit (Leontodon autumnalis L.), Knotgrass (Polygonum aviculare L.), and 

Sheep’s sorrel (Rumex acetosa L.) (Dugmore et al, 2005, 31). 

Iceland 

While both the Faroes and Greenland had predominantly open landscapes at landnám, as 

much as 40% of Iceland’s land surface was covered with woodland concentrated on the 

coastal lowlands at landnám (Hallsdóttir, 1995; Ólafsdóttir et al, 2001; Lawson et al, 2009a). 

While this was predominately Downy Birch (Betula pubescens Ehrh. ssp. tortuosa (Lebed.) 

Nyman), the only woodland forming tree on the island (Caseldine, 2001, 139), Willow (Salix 

sp.), Juniper (Juniperus sp.), and Rowan (Sorbus sp.) were also represented in some areas. 

Extensive woodland ensured a supply of timber procured for fuel, construction and charcoal 

production as evidenced by the large number of charcoal production pits found throughout 

Iceland (Church et al, 2007a, 660; McGovern et al, 2007, 38). 
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Conversely such arboreal advantages also limited the amount of land available for agriculture. 

As present birch coverage does not exceed 1%, it is estimated that 90-95% of woodland cover 

was removed between landnám and the 20th century. While some evidence exists for burning 

of woodland on Iceland at landnám (Buckland et al, 1991, 252; Smith, 1995, 334), this 

practice of land clearance was more widespread in Greenland (Dugmore et al, 2005, 30). 

Yet there was huge variability in terms of settlement patterns and level of human impact. 

Initial settlements in southern Iceland favoured areas of open meadow and pasture requiring 

little modification and thus immediately available for grazing and hay making (Mairs et al, 

2006, 370). In Mývatnssveit in northern Iceland, early settlers tended to bypass the 

unattractive lowland wooded areas to occupy the rich highland pastures further inland 

(Dugmore et al, 2007b, 15). 

Deforestation was probably not immediate therefore, and tended to be local rather than 

universal (McGovern et al, 2007, 45). The open grassland of Dalur in the south of Iceland 

required little alteration and exploitation of a range of resources over a wide geographical area 

produced minimal environmental impact (Mairs et al, 2006, 370). Conversely the necessary 

woodland clearance at the adjacent farm at Mörk initiated soil erosion and land degradation 

(Mairs et al, 2006, 368) due to the highly friable nature of Icelandic andisols increasing 

susceptibility to wind and water transport following deforestation (McGovern et al, 2007, 29). 

This increased the need for land management practices.  

Yet such rapid and complete clearance is not typical. In the Markarfljót valley, two phases of 

woodland clearance have been demonstrated by Church et al (2007a, 670), the first occurring 

two hundred years after landnám and the other following a century later. At Reykholt in 

Western Iceland, despite evidence of some immediate forest clearance the first drastic 

reduction in woodland took place between AD 1150-1300 (Sveinbjarnsdóttir et al, 2008, 5). 

In Mývatnssveit too, birch populations remained stable from pre-landnám until the 11th 

century, indicating a more gradual decline over 400 years (Lawson et al, 2007, 8 & 11). 

Despite some heavily wooded areas and inherent soil weakness, around 40,000 sq km of land 

was available for agriculture at landnám (Friðriksson, 1972, 786) and this included woodland, 

heathland and wetland fen (Smith, 1995, 323). The much greater emphasis on dairy cattle in 

Iceland required more extensive sources for fodder and grazing. Unable to be grazed 

throughout winter, the herd required good quality fodder, especially for continued milk 

production (Vésteinsson et al, 2002, 12). In terms of pasture, grass and sedge were most 
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beneficial, with part of the land being used for hay making to feed the cattle, while the 

remainder provided natural grazing for sheep (Friðriksson, 1972, 790). As wet meadows 

produced superior fodder, they were targeted as initial settlement sites throughout Iceland. 

Indigenous herbaceous and heathland species colonised the land as forests decreased with 

grass, sedges and weed species following as pasture and cultivated fields became established 

(Smith, 1995, 334). A spread of such weeds plus those associated with pasture creation may 

be traced in pollen assemblages across Iceland (Smith, 1995, 333).  

Grazing of domesticates also caused widespread landscape modification which vastly reduced 

vegetation cover post landnám (65% to 25%), also reducing productivity of remaining biota 

rendering it more susceptible to soil erosion (Thomson & Simpson, 2007, 151). Modelling 

fodder production against vegetation degradation in various air temperatures (key climatic 

control on vegetation growth in Iceland) indicated that grazing activity did not necessarily 

result in land degradation however, provided management strategies (supplementary winter 

feed, shepherding, autumn cull) were adopted (Thomson & Simpson, 2007, 163). 

A similar methodology has been utilised to explore limiting factors of grain production which 

have been found to rarely exceed subsistence levels in Iceland. Poor yields were traditionally 

thought to be due to cool and deteriorating climatic conditions as barley will not germinate in 

temperatures below 1ºC (Simpson et al, 2002, 430). Soil amendment has now been postulated 

as the main limiting factor in profitable barley production. Investigating certain key soil 

nutrients in relation to potential barely yields, inherent soil quality was found to be crucial. 

Thus initial choice for arable field locations would have been critical (Simpson et al, 2002, 

437). Appropriate amendment strategies may have addressed poor soil quality, yet this 

practice does not appear to have been widely adopted. Lack of animal manure, containing the 

highest level of vital nutrients (N & P) and labour shortages, may account for the lack of 

enrichment which kept cereal production on a small scale.  

While archaeological, palynological and historical evidence of cereal growing exists, much of 

this is barley and from south and south-west Iceland (Erlendsson et al, 2009, 177). Zutter 

(1992, 144) argues this is due to unfavourable climatic conditions for grain production in the 

north and east. Water availability was not a limiting factor in hay/cereal production (Adderley 

et al, 2008, 520) and soils were less responsive to enrichment (McGovern et al, 2007, 30). 

Thus in spite of management strategy adopted, maximum yields provided little more than 

subsistence living (Adderley et al, 2008, 520). 
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Figure2.3 – Location of Lake Mývatn within Iceland (Reproduced from Tinsley, 2004) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 – Major archaeological farm sites within Mývatnssveit. Solid black lines indicate parish boundaries 
and red stars mark study sites and blue indicate comparison sites with the exception of Undir Sanmúla which is 
located c.30km further south (Altered from Friðriksson et al, 2004, 198).  

Helluvaðstjörn 
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Figure2.5 – Ariel view of the Hrísheimar site showing location of 
trenches and bog area 

Study Sites 

The Mývatnssveit region (Figures 2.3 & 2.4) has been the focus for extensive 

interdisciplinary research with support and funding from NABO (North Atlantic Biocultural 

Organisation) and IPY (International Polar Year). The Landscapes of Settlement project, 

initiated by Vésteinsson and Friðriksson (Hicks et al, 2011, 25), co-ordinates all 

investigations, and sites already excavated include Brenna, Hofstaðir, Hrísheimar, Oddastaðir, 

Selhagi, Skútustaðir, Steinbogi, Stong, Sveigakot and Undir Sandmúla (McGovern et al, 

2007, 33). Located in northern Iceland with Lake Mývatn, the third largest lake in Iceland 

(Lawson et al, 2006, 376), at its heart (65º36'N, 17º00'W), it is the only major settlement area 

so far inland (Thompson & Simpson, 2007, 152), providing comparative data for the process 

of settlement. 

More settled continental climatic conditions prevail within this area than in most other regions 

of Iceland providing a relatively dry climate (Ólafsdóttir & Júlíusson, 2000, 439; Thompson 

& Simpson, 2007, 153). Regional soils tend to be erosion sensitive (McGovern et al, 2007, 

29), with periods of increased erosional activity indicated by previous studies for both pre- 

and post-landnám time frames (Thompson & Simpson, 2007, 153). 

The two locations selected for this research are both found to the south of Lake Mývatn and 

are approximately 10km apart 

(Figure 2.4). The first site is 

Hrísheimar, an abandoned 

landnám farm located at the edge 

of an erosion front. Indeed severe 

erosion had already degraded the 

land in the south and south west 

to glacial gravel or prehistoric 

tephra (Edvardsson et al, 2003, 4; 

Edvardsson & McGovern, 2007, 

3), thus necessitating rescue 

archaeology.  

Situated within the curve of a ridge, a substantial bog area lies to the south east of the farm 

(Figure 2.5), while in the opposite direction the River Bjarnastaðalœkur merges with several 

smaller tributaries before eventually reaching Lake Mývatn (Edvardsson et al, 2003, 3).  
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Figure 2.7 – Site layout showing industrial and 
domestic areas (Edvardsson et al, 2003) 

Figure 2.6 – Location of Skútustaðir site in relation to present day farm 

The second site of Skútustaðir, 

less than 1km from Lake 

Mývatn (Figures 2.4 & 2.6), has 

been continuously occupied 

since landnám. As with 

Hrísheimar, the archaeological 

importance of the site was 

realised following erosional 

processes which exposed 

midden material (Edwald & 

McGovern, 2010, 4). 

Investigations have been 

ongoing since 2007 and have 

provided two preliminary site reports incorporating a finds register, initial zooarchaeological 

results and dating evidence. No archaeobotanical remains have previously been analysed and 

the present analysis seeks to provide the first data spanning landnám to the 20th century 

contexts. 

Hrísheimar 

Initial investigations including geophysical 

analysis, discovered a number of slag pits in the 

2002 season. Due to advancing erosion, the 

following season concentrated on two main 

areas, the first later identified as an iron ore 

processing and production site (areas A, B & C), 

and the other a domestic context including sheet 

middens (areas H & L) (Edvardsson et al, 2003, 

4). Despite the degradation of the site, a 

substantial number of buildings and features 

were discovered in surprisingly good 

preservation (Figure 2.7). Two structures were 

identified within areas H and L, one a pit house  

 

Modern farm 

Archaeological 
site 
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Figure 2.8 – Section drawing from the westerly portion of the north wall of Trench L indicating location of 
midden samples (Edvardsson et al, 2003, 31) 
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Figure 2.9 – Author constructed Harris Matrix displaying contexts of midden samples from Hrísheimar 
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Figure 2.10 – Site plan showing relative position of 
trenches (Edvardsson et al, 2003). 

with the other remaining unclassified. A closer inspection of these was undertaken in the 2004 

season, and possible associations between midden deposits and tephra were also explored 

with trench L expanded to connect with H & Q 

(Edvardsson et al, 2005, 8). 

Areas A-C yielded a smithy and a number of 

furnaces (Figure 2.10) (Edvardsson et al, 2003, 

4-8). Discovery of extensive industrial debris 

indicated large scale metal working requiring 

an abundance of charcoal, suggesting extensive 

woodland close by. Results of the bog survey 

2006 showed that the area was wetter and more 

productive at landnám, bog iron deposits being 

a major attraction to settlement. Later changes 

to drainage patterns may have adversely 

affected formation of iron ore (Edvardsson & 

McGovern, 2007, 17). Similarly, wood 

depletion from iron production may have led to 

deforestation. Either of these factors may have 

contributed to site abandonment in the 11th century.  

Animal husbandry practices would have placed additional pressure on the woodland. 

Zooarchaeological analysis of midden deposits indicates a reversed trend to the rest of 

Mývatnssveit with pig numbers increasing from landnám to the 10th century (McGovern et al, 

2007, 40). As with other sites in this area, bird bones and egg shells reflect a long term 

sustainable harvesting of eggs while the presence of marine fish bones indicates early coastal 

trade (Edvardsson & McGovern, 2006, 10). 

All samples analysed for the current research originate from midden deposits or ash spreads 

across areas A, B, C, H & L. The section drawing of the north face of area L indicates the 

location of seven of the analysed samples (Figure 2.8) Contextual information may be found 

in Appendix One, while the relationship between samples is demonstrated in an author 

constructed Harris Matrix based on all available evidence (Figure 2.9). 
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Figure 2.11 – Site plan of Skútustaðir showing layout of trenches (Edwald & McGovern, 
2010). 

Skútustaðir 

Coring and test 

trench surveys 

conducted in 

2007 were 

followed up by 

excavation of 

three test 

trenches in 2008 

(D, E1&2, F). 

These uncovered 

midden deposits 

with excellent 

preservation and 

multiple tephra 

(Hicks et al, 2011, 6). Trench F constituted a very rich, early modern midden, while midden 

material from E1 & 2 was located directly above the landnám tephra. Trench D was 

subsequently expanded (2009) into two larger interconnected units (G & H) which revealed a 

productive Viking Age midden deposit (Figure 2.11). Unit G contains the demolition debris 

of a turf house from the 18th – 19th centuries which overlaid multiple midden layers, becoming 

increasingly rich below the 1477 tephra back to landnám. Midden material from G and E1 

were utilised as infill for landscaping and extension of the infield areas as occurred at other 

sites in Iceland and Greenland (Edwald & McGovern, 2010, 16). 

Although structures were found in E3 (opened in 2010), these were outside the remit of the 

project but were dated to AD 940-1262. The trench did however provide midden material 

which spanned landnám through to post 1717. Area H yielded plentiful midden material 

interspersed with turf lenses which may have been laid to prevent its dispersal by the elements 

(Hicks et al, 2011, 19). These midden layers have been dated to the period 1477- 20th century. 

Excavation will continue in 2011 down to bedrock level. 

Most of the cultural layers produced a plethora of animal bones, yet like Hrísheimar trends 

were surprising, with an increase of caprines relative to cattle not becoming evident until the 

early modern period. This change also occurred at other Mývatnssveit sites yet at a much 
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earlier date. Skútustaðir is therefore unique in retaining a 5:1 caprine to cattle ratio rather than 

20:1 as found elsewhere (Edwald & McGovern, 2010, 6). While fish representations appear to 

have increased considerably into the early modern period (1550-1850), there is insufficient 

detail in the preliminary report to determine if this reflects an increase in coastal trading 

(Hicks et al, 2011, 34). Avian bones and egg shells, also from the midden samples, illustrate 

settlers once again utilising this sustainable resource. Midden samples for archaeobotanical 

analysis were obtained from a variety of units (D, E2, E3, F, G & H) and spanned the 

landnám to 20th century periods (Appendix One). Section drawings from H & E3 are 

reproduced in Figures 2.12 & 2.13 and related Harris Matrices are also displayed. 

Dating & Phasing 

As Iceland is a volcanic island, it is subject to frequent eruptions which produce widespread 

fallouts of tephra (volcanic ash). These layers form time-parallel isochronous marker horizons 

which can be identified, and thus used for dating archaeological sites through the study of 

tephrochronology (McGovern et al, 2007, 28; Dugmore et al, 2005, 23). This is particularly 

beneficial as Iceland, and Mývatnssveit specifically, are subject to marine and freshwater 

reservoir effects which makes radiocarbon dating difficult (Ascough et al, 2010). 

Fortunately, both study sites, but especially Skútustaðir (Hicks et al, 2011, 6), have clear 

tephrochronologies which were utilised during their phasing for this report. Subsequently a 

three phase model has been developed for Hrísheimar with the industrial material dated to 

870-1000, while domestic contexts have been split between 870-940, and 940-1000. 

Skútustaðir has similarly been assigned five phases; 870-1000, 1000-1477, 1477-1717, 1717-

1900 and C20th into which samples have been allocated. 

Information from such sites contributes to the overall regional data set. After establishing a 

chronology of events, the complex relationship between environment, resource utilisation and 

management strategies may be examined with reference to abandonment/survival decisions. 

Both study sites are unique. Hrísheimar offers a rare opportunity for detailed investigation of 

a metalworking site, allowing comparison with domestic contexts. While Skútustaðir offers 

the chance to address continuous occupation in the area. Site information may then be 

compared with the rest of Mývatnssveit, Iceland, and the North Atlantic Islands as a whole. 
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Figure 2.12 – Harris matrix and section drawing for trench H (Skútustaðir) (Hicks et al, 2011). 
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Figure 2.13 – Harris matrix and section drawing for trench E3 (Skútustaðir) (Hicks et al, 2011).  
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Chapter 3: Methodology 

Bulk environmental samples of the standard 10 litre volume were taken of relevant contexts 

from both sites. These were collected using a judgement sampling strategy in accordance with 

Jones (1991), whereby contexts are targeted according to the richness of organic matter 

contained within the sediment. Sampling is therefore at the discretion of the site supervisor. 

All samples were then initially processed using a Siraf-type flotation tank (Kenward et al, 

1980), with 1mm and 0.3mm mesh sieves being utilised for the flot, and a 1mm sieve net 

catching the residue (Guðmundsson, 2009, 322; Church et al, 2005, 183). Samples originating 

from the Skútustaðir site had received only minimal on-site preparation and required 

secondary flotation by hand. Any additional flot material recovered from this re-flotation was 

then added to the initial amounts. Flots and residues of all samples were air-dried. The 1mm 

flots from both study sites were analysed (4F, 2F, 1F) with the >4mm residue fraction from 

Skútustaðir also being examined. The selected material was subsequently sorted under ×3.5 

magnification using a low powered stereo/binocular microscope. Macrobotanical 

identifications were made from certain characteristics of the seeds and caryopses such as size, 

anatomy, morphology and surface cell patterning of the seedcoats. Such features were then 

compared to reference material including the reference collection at Durham University and 

the personal collection of Dr. Charlotte O’Brien. A range of seed atlases were also consulted 

to obtain digital images and detailed drawings which further aided identification (Cappers et 

al, 2006), and nomenclature follows Stace (1997). To ascertain the preservation level of 

assemblages, the condition of each cereal grain was recorded utilising the index devised by 

Hubbard and al Azm (1990), each grain also being measured. Van der Veen’s (1992) criteria 

were used to classify wild seeds, with grasses (Poaceae undiff.) only differentiated to 

large/medium/small, and sedges (Carex sp.) to biconvex/trigonous (Church et al, 2005, 183). 

The methodology of van der Veen was also followed for the counting of seeds with each seed 

being given a count of one, irrespective of condition. All other plant parts were given a 

fragment count due to possible multiple fragmentation (Dickson, 1994). 

Due to the difficulties in identification of charcoal <4mm (Pearsall, 2000, 130), only 

fragments sorted from the 4mm fraction were selected for further analysis. Fifty pieces (of 

charcoal) were removed from every sample at random using a riffle box (van der Veen & 

Fieller, 1982). Fragments were generally identified to genus, and subdivided into four 

categories: bark, timber, roundwood (pith-to-bark), and roundwood (not-pith-to-bark). 

Number of fragments and weight of each category were carefully recorded (Church et al, 
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2007a, 662). Measurements of diameter and radius were made for all roundwood pith-to-bark 

fragments while estimations were obtained for roundwood (not-pith-to-bark) by comparing 

curvature of the outer ring with a stencil. A ring count was recorded for all relevant fragments 

(Church et al, 2007a, 662). To increase size/age data, all >10mm fragments of roundwood 

from every context where size could be determined were examined (pith-to-bark, and not-

pith-to-bark with an outer ring). Additional information from the Skútustaðir contexts was 

minimal and thus the sample containing the highest charcoal content from each phase was 

selected. Roundwood from the 4F category was then chosen for analysis to obtain a total of 

100 fragments per phase. 

For all deciduous pieces, identifications were established from transverse cross sections, while 

for coniferous specimens, transverse, tangential and radial sections were examined under a 

high power reflected light microscope at ×50-500 magnification. Identifications were made 

with reference to the anatomical features and images provided by Schweingruber (1990) and 

Hather (2000).  

Following the sorting and identification of all samples, contexts were grouped by phase for 

each site thus allowing generic comparison (individual sample data is available, however, in 

the Appendices). For every category of recovered material, ubiquity counts were calculated 

per phase and as a total for each site to provide relative frequencies. Such information is 

obtained by ascertaining the number of samples which contain a specific species in a 

particular time phase. This number is then divided by the total number of samples in the phase 

and multiplied by one hundred. Such information is in tabular format in the following section.  
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Chapter 4: Results 

Data from Hrísheimar has been divided into two temporal phases (870-940 & 940-1000) for 

the domestic context, and an industrial context which spans the total AD 870-1000 period. 

Due to the extended activity at the Skútustaðir site however, results cover five domestic time 

periods. The initial phase for the site is 870-1000, and to aid direct comparison, the two 

domestic phases at Hrísheimar have been combined where appropriate. Where this has 

occurred, clear labelling has been used to avoid confusion with the industrial context. 

Recovered archaeobotanical material from each site is summarised in Tables 1 & 2 which lists 

every category of biota. Similarly cereal data is shown per site in Tables 3 & 4, while Table 5 

provides a comparison of weed/wild species between sites. 

The remaining data is presented in graphical format, the first seven bar charts relating to 

cereal cultivation. Graphs 4.1 & 4.2 depict preservation levels per site, and graph 4.3 provides 

visual comparison between sites for the 870-1000 period. Graphs 4.4 & 4.5 present 

percentage grain per litre for each site, while graphs 4.6 & 4.7 demonstrate chaff frequencies 

per farm. 

Wild/weed species are portrayed in graphs 4.8-4.10. The former showing the range of species 

at Hrísheimar, while graph 4.9 is a comparison between sites for the AD 870-1000 period. 

The much wider total range at Skútustaðir across all five phases is detailed in graph 4.10. 

Relative frequencies of fuel sources across phases at the Skútustaðir farm are available in 

graph 4.11 while the subsequent nine graphs highlight categories of charcoal at each farmsite; 

graphs 4.12-4.15 from Hrísheimar and graphs 4.16-4.20 at Skútustaðir. Generally these 

constitute one representation per time phase; however graph 4.15 is a combination of the two 

domestic phases at Hrísheimar to facilitate comparison with Skútustaðir. 

The next twelve graphs which provide roundwood measurement data are from Hrísheimar and 

have been combined (4 per figure) for the following categories: ringcount, diameter and xy-

scattergraphs. Information from the latter was utilised to produce lines of best fit and r values 

were added demonstrating the correlation coefficient which aims to relate productivity levels. 

A similar format has been adopted to display this information from the Skútustaðir site; 

however, here each figure displays five graphs. 
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 Phase 870-1000 
(Industrial) 

870-940 
(Domestic) 

940-1000 
(Domestic) 

Total 
Site 

 No. of Samples in Phase 13 37 6 56 

 Total volume (litres) 130 370 60 560 

      

Charcoal (g.)  535.95 
[100] 

697.34 
[97.30] 

98.1 [100] 1331.39 
[98.21] 

APM (g.)  52.93 
[38.46] 

0 0 52.93 
[8.93] 

Grain      

Avena sp. Oat grain 0 5 [8.11] 0 5 [5.36] 

Hordeum sp. Barley grain 0 3 [8.11] 0 3 [5.36] 

Hordeum sp. hulled Hulled barley grain 0 6 [8.11] 0 6 [5.36] 

H. hulled symmetric Hulled barley straight grain 0 3 [8.11] 0 3 [5.36] 

H. hulled asymmetric Hulled barley twisted grain 0 3 [8.11] 1 [16.67] 4 [7.14] 

Cereal indet. Cereal grain 1 [7.69] 1 [2.70] 2 [16.67] 4 [5.36] 

Chaff      

Cereal/monocotyledon (>2 mm.) culm node Cereal/monocotyledon culm 
node 

0 2 [5.41] 2 [33.33] 4 [7.14] 

Cereal/monocotyledon (>2 mm.) culm base Cereal/monocotyledon culm 
base 

0 0 0 0 

Wild plants      

Arctostaphylos uva-ursi (L.) Spreng Bearberry leaf 0 0 0 0 

Betula nana L. Dwarf Birch leaf 1F [7.69] 0 0 1F 
[1.79] 

Empetrum nigrum L. Crowberry leaf 342F 
[69.23] 

1F [2.70] 0 343F 
[17.86] 

Juniperus sp. Juniper leaf 21F [23.08] 0 0 21F 
[5.36] 

Indeterminate leaf Indeterminate leaf 4F [7.69] 0 0 4F 
[1.79] 

Betula sp. Birch fruit 1 [7.69] 0 0 1 [1.79] 

Salix sp. Willow fruit 2 [15.39] 1 [2.70] 0 3 [5.36] 

Arctostaphylos uva-ursi (L.) Spreng Bearberry seed 1 [7.69] 0 0 1 [1.79] 

Carex sp. (biconvex) Sedge seed 29 [38.46] 33 [29.73] 2 [33.33] 64 
[32.14] 

Carex sp. (trigonous) Sedge seed 10 [15.39] 6 [10.81] 3 [50.00] 19 
[16.07] 

Chenopodium album L. Fat Hen seed 0 1 [2.70] 0 1 [1.79] 

Empetrum nigrum L. Crowberry seed 34 [30.77] 10 [21.62] 1 [16.67] 45 
[23.21] 

Menyanthes trifoliata L. Bog Bean seed 1 [7.69] 0 0 1 [1.79] 

Montia fontana L. Blinks seed 1 [7.69] 0 0 1 [1.79] 

Poaceae undiff. (small)  Grass seed 2 [15.39] 4 [8.11] 0 6 [8.93] 

Polygonum aviculare L. Common knotgrass seed 1 [7.69] 1 [2.70] 0 2 [3.57] 

Stellaria media (L.) Villars Common chickweed seed 345 [30.77] 48 [35.14] 0 393 
[30.36] 

Stellaria media (L.) Villars Common chickweed seed pod 37 [7.69] 0 0 37 
[1.79] 

Vaccinium sp. Cranberry seed 0 1 [2.70] 0 1 [1.79] 

Vicia sp. Vetch seed 0 2 [5.41] 0 2 [3.57] 

Monocotyledon (<2 mm.) culm node Monocotyledon culm node 2 [7.69] 1 [2.70] 0 3 [3.57] 

Monocotyledon (<2 mm.) culm base Monocotyledon culm base 0 0 0 0 

Indeterminate (>2 mm.) rhizome Indeterminate rhizome 0 0 0 0 

Indeterminate (<2 mm.) rhizome Indeterminate rhizome 0 1 [2.70] 0 1 [1.79] 
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Indeterminate seed Indeterminate seed 32 [38.46] 21 [24.32] 2 [33.33] 55 
[28.57] 

Indeterminate seaweed Indeterminate seaweed 1 [7.69] 0 0 1 [1.79] 

Fungi      

Cenococcum undiff. Fungus 204F 
[84.62] 

1190F 
[100.00] 

178F 
[83.33] 

1572 
[94.64] 

Uncarbonised Seeds      

Arctostaphylos uva-ursi (L.) Spreng Bearberry seed 1 [7.69] 0 0 1 [1.79] 

Carex sp. (biconvex) Sedge seed 0 2 [2.70] 0 2 [3.57] 

Carex sp. (trigonous) Sedge seed 1 [7.69] 0 0 1 [1.79] 

Empetrum nigrum L. Crowberry seed 1 [7.69] 0 0 1 [1.79] 

      

 Total Wild 496 127 10 633 

 Total QC 497 150 15 662 

 Grain/litre 0.008 0.057 0.05 0.05 

 QC/litre 3.82 0.41 0.25 1.18 

Grain Preservation (Hubbard & Al Azm 
1990) 

Class 1 (best preservation  
%) 

0 5 0 5 

 Class 2 (%) 0 20 0 17 

 Class 3 (%) 0 20 33 22 

 Class 4 (%) 0 15 0 9 

 Class 5 (%) 100 30 0 30 

 Class 6 (worst preservation 
%) 

0 10 67 17 

Table 4.1 – Archaeobotanical remains from Hrísheimar showing domestic and industrial 
contexts 
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 Phase 870-1000 1000-1477 1477-1717 1717-1900 C20th Total 
Site 

 No. of Samples in Phase 14 18 29 17 3 81 

 Total volume (litres) 140 180 290 170 30 810 

        

Charcoal (g.)  105.39 
[100.00] 

39.59 
[100.00] 

184.4 
[100.00] 

17.4 
[100.00] 

4.76 
[100.00] 

351.54 
[100.00] 

APM (g.)  0.43 [35.71] 0.15 [22.22] 42.88 
[75.86] 

8.67 
[58.82] 

1.19 
[100.00] 

53.32 
[54.32] 

Uncarbonised wood fragments  1F [7.14] 0 25F [10.35] 5F [11.77] 0 31F 
[7.41] 

Carbonised ovicaprid coprolite  0 0 93F [24.14] 16F [23.53] 6F [66.67] 115F 
[16.05] 

Coal     4F [5.88]  4F 
[1.24] 

Grain        

Avena sp. Oat grain 0 0 0 1 [5.88] 0 1 [1.24] 

Hordeum sp. Barley grain 0 0 0 0 0 0 

Hordeum sp. hulled Hulled barley grain 1 [7.14] 0 0 2 [5.88] 1 [33.33] 4 [3.70] 

H. hulled symmetric Hulled barley straight grain 0 0 0 0 0 0 

H. hulled asymmetric Hulled barley twisted grain 0 0 0 0 1 [33.33] 1 [1.24] 

Cereal indet. Cereal grain 0 0 1 [3.45] 1 [5.88] 0 2 [2.47] 

Chaff        

Cereal/monocotyledon (>2 mm.) culm node Cereal/monocotyledon culm node   2 [6.90]  1 [33.33] 3 [3.70] 

Cereal/monocotyledon (>2 mm.) culm base Cereal/monocotyledon culm base 3 [14.29] 1 [5.56] 19 [20.69] 4 [11.77] 0 27 
[13.58] 

Wild plants        

Arctostaphylos uva-ursi (L.) Spreng Bearberry leaf 8F [14.29] 0 227F [44.83] 5F [17.65] 0 240 
[22.22] 

Betula nana L. Dwarf Birch leaf 0 0 10F [13.79] 0 0 10 
[4.94] 

Empetrum nigrum L. Crowberry leaf 0 1F [5.56] 19F [27.59] 7F [17.65] 0 27 
[14.82] 

Juniperus sp. Juniper leaf 0 0 1F [3.45] 0 0 1 [1.24] 

Indeterminate leaf Indeterminate leaf 1F [7.14] 2F [11.11] 5F [6.90] 3F [5.88] 0 11 
[7.41] 

Salix sp. Willow fruit 0 1F [5.56] 3F [10.35] 0 0 4 [4.94] 

Agrimonia eupatoria L. Common Agrimony seed 0 1 [5.56] 0 0 0 1 [1.24] 

Arctostaphylos uva-ursi (L.) Spreng Bearberry seed 0 0 2 [6.90] 0 0 2 [2.47] 

Brassica rapa L. Field Mustard seed 1 [7.14] 0 1 [3.45] 0 1 [33.33] 3 [3.70] 

Calluna vulgaris (L.) Hull Common Heather seed head 0 0 3 [10.35] 2 [11.77] 2 [33.33] 7 [7.41] 

Carex sp. (biconvex) Sedge seed 2 [14.29] 17 [22.22] 311 [86.21] 137 [88.24] 20 [100.00] 487 
[60.49] 

Carex sp. (trigonous) Sedge seed 5 [28.57] 4 [16.67] 81 [55.17] 43 [64.71] 13 [33.33] 146 
[43.21] 

Chenopodium album L. Fat Hen seed 0 0 0 1 [5.88] 0 1 [1.24] 

Cyperaceae/Polygonaceae Sedge/Knotweed seed 0 2 [5.56] 1 [3.45] 0 0 3 [2.47] 

Empetrum nigrum L. Crowberry seed 13 [21.43] 13 [33.33] 28 [31.04] 5 [23.53] 0 59 
[27.16] 

Ficus carica L. Common Fig seed 0 0 0 0 2 [33.33] 2 [1.24] 

cf. Hippuris vulgaris L. Marestail seed 1 [7.14] 0 2 [6.90] 5 [5.88] 1 [33.33] 9 [4.94] 

Juncus acutiflorus L. Sharp-flowered Rush seed 0 0 1 [3.45] 0 0 1 [1.24] 

Menyanthes trifoliata L. Bog Bean seed 0 0 1 [3.45] 0 0 1 [1.24] 

Montia fontana L. Blinks seed 0 0 0 2 [11.77] 0 2 [2.47] 

Plantago lanceolata L. Ribwort Plantain seed 1 [7.14] 0 0 0 0 1 [1.24] 

Poaceae undiff. (large)  Grass seed 0 0 0 1 [5.88] 0 1 [1.24] 

Poaceae undiff. (small)  Grass seed 1 [7.14] 1 [5.56] 2 [6.90] 10 [41.18] 0 14 
[13.58] 

Polygonum aviculare L. Common Knotgrass seed 1 [7.14] 11 [5.56] 5 [10.35] 10 [29.41] 3 [33.33] 30 
[13.58] 

Polygonum lapathifolia L. Pale Persicaria seed 0 0 2 [6.90] 0 0 2 [2.47] 

Prunus domestica L. Plum seed 0 0 0 0 2 [33.33] 2 [1.24] 

Ranunculus acris L. Meadow Buttercup seed 2 [14.29] 0 4 [13.79] 4 [11.77] 4 [66.67] 14 
[12.35] 



26 
 

Ranunculus bulbosus L. Bulbous Buttercup seed 2 [14.29] 4 [16.67] 8 [20.69] 2 [11.77] 3 [33.33] 19 
[17.28] 

Ranunculus polyanthemos L. Multiflowered Buttercup seed 0 0 0 0 1 [33.33] 1 [1.24] 

Ranunculus repens L. Creeping Buttercup seed 1 [7.14] 2 [11.11] 2 [6.90] 1 [5.88] 1 [33.33] 7 [8.64] 

Rumex crispus L. Curled Dock seed 0 0 3 [10.35] 4 [17.65] 1 [33.33] 8 [8.64] 

Spergula arvensis L. Corn Spurrey seed 0 0 2 [3.45] 0 0 2 [1.24] 

Stellaria media (L.) Villars Common chickweed seed 41 [28.57] 243 [50.00] 26 [44.83] 24 [41.18] 0 334 
[40.74] 

Vaccinium myrtillus L. Bilberry seed 0 0 1 [3.45] 1 [5.88] 0 2 [2.47] 

Vicia sp. Vetch seed 0 0 0 0 0 0 

Viola-type Violet seed 0 0 1 [3.45] 0 0 1 [1.24] 

Indeterminate seed Indeterminate seed 2 [14.29] 5 [16.67] 31 [55.17] 28 [52.94] 8 [66.67] 74 
[39.51] 

Monocotyledon (<2 mm.) culm node Monocotyledon culm node 2 [14.29] 0 28 [17.24] 14 [29.41] 1 [33.33] 45 
[16.05] 

Monocotyledon (<2 mm.) culm base Monocotyledon culm base 2 [7.14] 1 [5.56] 43 [27.59] 5 [23.53] 2 [66.67] 53 
[19.75] 

Indeterminate (>2 mm.) rhizome Indeterminate rhizome 1 [7.14] 0 5 [10.35] 1 [5.88] 0 7 [6.17] 

Indeterminate (<2 mm.) rhizome Indeterminate rhizome 3 [14.29] 1 [5.56] 12 [17.24] 20 [23.53] 9 [66.67] 45 
[17.28] 

Indeterminate root/tuber Indeterminate root/tuber 0 0 0 1 [5.88] 1 [33.33] 2 [2.47] 

Indeterminate seaweed Indeterminate seaweed 1F [7.14] 0 0 0 0 1F 
[1.24] 

Fungi        

Cenococcum undiff. Fungus 33F [50.00] 41F [44.44] 12F [24.14] 1F [5.88] 0 87F 
[28.40] 

Uncarbonised Seeds        

Arctostaphylos uva-ursi (L.) Spreng Bearberry seed 0 0 3 [3.45] 0 0 3 [1.24] 

Carex sp. (biconvex) Sedge seed 0 1 [5.56] 3 [10.35] 28 [17.65] 8 [33.33] 40 
[9.88] 

Carex sp. (trigonous) Sedge seed 0 0 3 [10.35] 8 [17.65] 2 [33.33] 13 
[8.64] 

Empetrum nigrum Crowberry seed 0 16 [11.11] 13 [10.35] 9 [17.65] 2 [33.33] 40 
[11.11] 

Menyanthes trifoliata L. Bog Bean seed 0 0 0 3 [5.88] 0 3 [1.24] 

Polygonum aviculare L. Common Knotgrass seed 0 0 0 5 [5.88] 0 5 [1.24] 

Potentilla intermedia L. Russian Cinquefoil seed 0 0 0 1 [5.88] 0 1 [1.24] 

Ranunculus acris L. Meadow Buttercup seed 0 0 3 [6.90] 1 [5.88] 0 4 [3.70] 

Ranunculus bulbosus L. Bulbous Buttercup seed 0 0 4 [6.90] 8 [11.77] 7 [33.33] 19 
[6.17] 

Ranunculus repens L. Creeping Buttercup seed 0 0 0 1 [5.88] 0 1 [1.24] 

Rumex crispus L. Curled Dock seed 0 0 0 2 [5.88] 0 2 [1.24] 

Stellaria media (L.) Villars Common chickweed seed 0 2 [11.11] 0 0 0 2 [2.47] 

Viola-type Violet seed 0 0 7 [6.90] 670 [23.53] 1 [33.33] 678 
[8.64] 

Cenococcum undiff. Fungus 0 4F [11.11] 0 0 0 4F 
[2.47] 

        

 Total Wild 90 305 606 321 75 1397 

 Total QC 94 306 628 329 78 1435 

 Grain/litre 0.007 0 0.004 0.024 0.067 0.0099 

 QC/litre 0.67 1.7 2.17 1.94 2.6 1.77 

Grain Preservation (Hubbard & Al Azm 1990) Class 1 (best preservation -%) 0 0 0 0 0 0 

 Class 2 (%) 0 0 0 0 50 12.5 

 Class 3 (%) 0 0 0 25 0 12.5 

 Class 4 (%) 0 0 0 25 50 25 

 Class 5 (%) 100 0 100 25 0 37.5 
 

Class 6 (worst preservation %) 0 0 0 25 0 12.5 

Table 4.2 – Archaeobotanical remains from Skútustaðir across phases 
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Sample Context Identification Preservation Count Dimensions (mm) 
s.03/5 c.129 Cereal indeterminate 5 3.5×2×1 
s.03/22 c.42 H. hulled asymmetric 3 4×3×2 
s.03/22 c.42 Cereal indeterminate 6 3×2×1.5 
s.03/22 c.42 Cereal indeterminate 6 2.5×1.5×1 
s.03/25 c.48 H. hulled 4 4.5×2×2 
s.03/25 c.48 H. hulled 5 4×3.5×2 
s.03/25 c.48 H. hulled 5 3.5×2×1.5 
s.03/25 c.48 Avena sp. 6 5×1.5×1.5 
s.03/27 c.53 H. hulled asymmetric 4 3.5×2×1.5 
s.03/31 c.61 Hordeum sp. 5 3×3×1.5 
s.04/5 c.47 Cereal indeterminate 6 4×2×2 
s.04/9 c.77 H. hulled asymmetric 2 5.5×3×2.5 
s.04/9 c.77 H. hulled symmetric 3 4.5×2.5×2 
s.04/9 c.77 H. hulled 4 4.5×3×2.5 
s.04/9 c.77 Hordeum sp. 5 5×3×2.5 
s.04/18 c.85 Hordeum sp. 5 3×2×2 
s.04/19 c.84 H. hulled symmetric 3 4×2.5×2 
s.04/19 c.84 H. hulled 5 5×2.5×1.5 
s.04/22 c.90 H. hulled symmetric 2 5×2.5×2 
s.04/24 c.52 H. hulled asymmetric 2 4.5×2×1.5 
s.04/29 c.91 Avena sp. 1 6.5×1.5×1.5 
s.04/29 c.91 Avena sp. 2 5×2×1.5 
s.04/29 c.91 Avena sp. 3 6.5×2×2 
Table 4.3 – Preservation and dimensions of cereal caryopses for Hrísheimar 

 

Table 4.4 – Preservation and dimensions of cereal caryopses for Skútustaðir 

 

  

Sample Context Identification Preservation Count Dimensions (mm) 
s.08/01 c.02 H. hulled asymmetric 2 5×2.5×2.5 
s.08/01 c.02 H. hulled 4 3.5×2×2 
s.09/01 c.104 H. hulled 3 5×2.5×2 
s.09/01 c.104 H. hulled 5  
s.09/02 c.105 Avena sp. 4 11.5×2.5×1.5 
s.09/05 c.110 Cereal indeterminate 6 3.5×2×2.5 
s.09/09 c.121 Cereal indeterminate 5  
s.09/48 c.156 H. hulled 5  
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 Site HRH SKU 
 Phase 870-1000 (Domestic) 870-1000 
 Volume (litres) 430 140 
    
Brassica rapa L. Field Mustard seed 0 1 [7.14] 
Chenopodium album L. Fat Hen seed 1 [2.33] 0 
Plantago lanceolata L. Ribwort plantain seed 0 1 [7.14] 
Polygonum aviculare L. Common knotgrass 

seed 
1 [2.33] 1 [7.14] 

Ranunculus acris L. Meadow buttercup seed 0 2 [14.29] 
Ranunculus repens L. Creeping buttercup 

seed 
0 1 [7.14] 

Stellaria media (L.) 
Villars 

Common chickweed 
seed 

48 [30.23] 41 [28.57] 

    
Carex sp. (biconvex) Sedge seed 13 [30.23] 2 [14.29] 
Carex sp. (trigonous) Sedge seed 9 [16.28] 5 [28.57] 
cf. Hippuris vulgaris L. Mare's tail seed 0 1 [7.14] 
Poaceae undiff. (small) Grass seed 4 [6.98] 1 [7.14] 
Ranunculus bulbosus L. Bulbous buttercup seed 0 2 [14.29] 
Vicia sp. Vetch seed 2 [4.65] 0 
    
Arctostaphylos uva-ursi 
(L.) Spreng 

Bearberry leaf 0 8F [14.29] 

Empetrum nigrum L. Crowberry leaf 1F [2.33] 0 
Empetrum nigrum L. Crowberry seed 11 [20.93] 13 [21.43] 
Salix sp. Willow fruit 1 [2.33] 0 

Table 4.5 – Comparative archeobotanical data for wild/weed species 870-1000. (Domestic 
contexts have been combined to provide the frequencies for Hrísheimar.) 
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Figure 4.1 – Frequency of preservation counts for Hrísheimar by phase 

 

Figure 4.2 – Frequency of preservation counts for Skútustaðir by phase 

 

0 

1 

2 

3 

4 

5 

6 

7 

1 2 3 4 5 6 

Fr
eq

ue
nc

y 

Preservation Count 

SKU 

870-1000 

1000-1477 

1477-1717 

1717-1900 

C20th 

0 

1 

2 

3 

4 

5 

6 

7 

1 2 3 4 5 6 

Fr
eq

ue
nc

y 

Preservation Count 

Comparison 870-1000 

HRH 

SKU 

Figure 4.3 – Comparison of preservation counts for each site (870-1000) (Domestic 
contexts have been combined to provide the frequencies for Hrísheimar.) 
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Figure 4.4 – Comparison of cereal categories across phases at Hrísheimar (% grain per litre) 

 

Figure 4.5 – Comparison of cereal categories across phases at Skútustaðir (% grain per litre) 
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Figure 4.6 – Frequency data for cereal chaff according to phase for Hrísheimar  

 

Figure 4.7 – Frequency data for cereal chaff according to phase for Skútustaðir  
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Figure 4.8 – Relative distributions of weed/wild species per phase at Hrísheimar 

 

Figure 4.9 – Comparison of relative distributions for wild/weed species between sites (870-
1000) (Domestic contexts have been combined to provide the frequencies for Hrísheimar.) 
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Figure 4.11 – Fuel constituents per litre across phases at Skútustaðir   
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Figure 4.12 – Categories of charcoal for the industrial phase (870-1000) at Hrísheimar 

 

Figure 4.13 – Categories of charcoal for domestic phase 1 (870-940) at Hrísheimar 
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Figure 4.14 – Categories of charcoal for domestic phase 2 (940-1000) at Hrísheimar 

 

Figure 4.15 – Categories of charcoal for combined domestic phases (870-1000) at Hrísheimar 
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Figure 4.16 – Categories of charcoal for phase 1 (870-1000) at Skútustaðir 

Figure 4.17 – Categories of charcoal for phase 2 (1000-1477) at Skútustaðir 
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Figure 4.18 – Categories of charcoal for phase 3 (1477-1717) at Skútustaðir 

Figure 4.19 – Categories of charcoal for phase 4 (1717-1900) at Skútustaðir 
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Figure 4.20 – Categories of charcoal for phase 5 (C20th) at Skútustaðir 
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Chapter 5: Discussion 

This section will focus on a discussion of all results obtained, following the order of research 

questions formulated in the introduction. Subheadings have been utilised for ease of 

identification, and relevant tabular and graphical support has been referenced where 

appropriate. 

Taphonomy 

Generic taphonomic models may be utilised to explain the incorporation of plant macrofossils 

into the archaeological record at both Hrísheimar and Skútustaðir, concentrating on origin and 

preservation of recovered material. While survival of ecofacts requires specific conditions 

such as desiccation, freezing, charring, waterlogging and mineralisation (van der Veen, 2006, 

1), taphonomic processes, occurring between deposition and recovery, determine continued 

survival and level of preservation. Presence or accumulation of macrofossil evidence may be 

indicative of human activity (Bohrer & Adams, 1977, 48; Zutter, 1999, 833). In order to be 

carbonised rather than burned, taxa need to drop quickly through the flame to be deposited in 

the ash residue, thus proximity to an ignition source is indicated (Hillman, 1981, 140; van der 

Veen, 2006, 11). This might reflect a domestic context such as the central hearth, or an 

industrial context such as a kiln or furnace. 

The sites under investigation represent both contexts. At Hrísheimar the midden from areas H 

and L was in the vicinity of the long house suggestive of a domestic context (Edvardsson et 

al, 2003, 9; Byock et al, 2005, 209), while samples recovered from areas A, B and C were 

proximal to the iron working production unit. This indicates the necessity for two separate 

models to explain macrofossil incorporation. At Skútustaðir however, all midden samples 

derived from a domestic origin (Hicks et al, 2011, 6), similarly reflecting the central hearth 

model. 

The domestic model incorporates three distinct stages; botanical materials were brought to the 

central hearth either purposefully to be cooked/dried, accidentally on feet, clothes or hair or as 

an accidental inclusion with food or fuel (van der Veen, 2006, 11; Church et al, 2007b, 750). 

Following accidental charring of the taxa, sweeping of the central hearth would facilitate their 

incorporation into the midden deposits where all domestic refuse was placed (Edvardsson et 

al, 2003, 23; Church & Peters, 2004, 99; Peters et al, 2004, 89). The industrial model 

however, relates to remains obtained from the purposeful burning of fuel for industrial 
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processes, such as smelting and metal-working. This includes both primary and secondary 

deposition. Primary deposition refers to in-situ deposits obtained from excavation of a 

furnace, while secondary depositions have been transported from the original site of burning. 

Such remains would include fuels utilised in the industrial process, dross (slag, hammerscale) 

plus accidental inclusions (from feet, clothes and hair), however, remains would tend not to 

include foodstuffs or materials accidentally harvested with them. Materials derived from both 

domestic and industrial sources may thus be explained by accepted taphonomic models 

(Church, 2000, 123). 

At Hrísheimar, site evidence supports the domestic model, as an abundance of fireplace 

cleaning debris is recorded in the Interim Site report 2003. Seasonality of archaeofaunal 

remains (neonatal cattle and sheep plus bird egg shells) and a “... few small basket-dump 

sized deposits ...” (Edvardsson et al, 2003, 24) strongly suggest that household cleaning was 

on the basis of a few major episodes rather than regular daily chores (Edvardsson et al, 2003, 

23-4). 

Reflecting purely cultural deposits, midden examination is particularly useful when 

considering human use of botanical resources (Zutter, 1992, 140). Only taxa specifically 

targeted by humans are represented, although accidental inclusions may occur (Church et al, 

2007b, 763). Species and plant parts are subject to differential collection, however, it is not 

always possible to determine the reasons behind such selection or whether alternatives were 

available (Zutter, 1999, 843). For example, an abundance of birch may signify its woodland 

dominance, or be due to specific qualities valued by humans. Midden deposits do not, 

therefore, reflect the full range of species in an area and only non-cultural or palynological 

evidence can provide a more realistic picture of environmental reconstruction (Zutter, 1999, 

843). 

A variety of domestic refuse including butchery waste and meal consumption debris would 

have been placed on the midden on a regular basis (Edvardsson et al, 2003, 23). Such 

deposition may have been utilised for fertilisation of the infields to improve hay and cereal 

yields. In the case of Hrísheimar, the build up of midden material suggests soil amendment 

was not practised on a regular basis (Edvardsson et al, 2003, 18). This may imply that cereal 

cultivation was minimal or had ceased after an initial phase. Conversely at Skútustaðir, infield 

soils had been repeatedly built up as a result of regular distribution of midden material by past 

inhabitants to enrich the soil with a view to increasing productivity (Hicks et al, 2011, 10). 
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Lack of soil amendment at Hrísheimar may have contributed to erosion which influenced the 

later decision for farm abandonment. In contrast Skútustaðir remains to the present day 

(although subject to limited erosion), and this allows temporal comparison. Depositional 

patterns change over time and some midden areas display intense usage followed by a period 

of abandonment (Hicks et al, 2011, 29). Low density deposits between the 1477 tephra and 

the Viking Age material, as seen in areas H, E3 and G suggest that High Medieval domestic 

refuse was deposited elsewhere. This may indicate that the inhabitants shifted their residence 

or that they regularly changed their midden site (Hicks et al, 2011, 19). The latter would 

support land enrichment as one midden may be in current usage, while an earlier one may 

contain material more suitable for spreading on the land. An interesting usage of midden 

material at Skútustaðir was for in-filling of what Edwald & McGovern (2010, 15) describe as 

‘pseudocraters’ in the landscape. This practice would have evened out the land in effect 

expanding the infield area and thus increasing production capacity (Edwald & McGovern, 

2010, 16). Such alterations accord with changes over time in settlement organisation and 

spatial allocation of domestic/work related areas. Yet the domestic taphonomic model remains 

constant until the mid 20th century. Introduction of electric ovens and central heating made the 

central hearth, and the model based on it, obsolete. This transformed household operations 

and both constituents of waste, and its disposal, were radically altered.  

In contrast, the industrial model provides more limited information being restricted to one site 

and a much reduced time frame. Additionally waste disposal itself is less precise. Within 

areas A-C, twenty-one features were discovered and represent the remains of two types of 

iron smelting furnace used to process iron ore (Edvardsson et al, 2003, 8 & 25). The structure 

in area B contains a fireplace, and due to producing lower temperatures, may have been 

utilised for cleaning bog iron or bloom after firing (Edvardsson et al, 2003, 8). Much metal 

working debris has been recovered from these contexts and while some remains are found in-

situ (eg. from the fireplace in B and several furnaces in A & C), many other deposits have 

been removed from the original site of burning (Please refer to Appendix One). Nonetheless 

there does not appear to be a common site for dumping industrial waste. Due to the number of 

furnaces and extensive debris however, iron production is thought to represent a major part of 

the economy at Hrísheimar (Edvardsson et al, 2005, 17). 

Unusually a single cereal grain was obtained from the industrial context (Table 4.3 & Figure 

4.1) but in a very poor state of preservation (P5) and this may indicate high temperature 

burning. Yet while quality of preservation is subject to chance to a limited degree, 
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preservation bias may account for the amount and range of archaeobotanical material, with 

certain species favoured by specific methods of preservation. Charring differentially preserves 

cereal grains, glumes of ancient wheat plus dense and woody seeds (Boardman & Jones, 

1990; Wilkinson & Stevens, 2003, 151-160; van der Veen, 2006, 13). 

At Hrísheimar preservation level of cereal grains from the first phase of the domestic context 

covered all 6 classes (Table 4.3 & Figure 4.1). While the majority of samples (30%) 

demonstrated a poor level of preservation (P5), high representations were also obtained in 

classes 2 and 3, with one oat (Avena sp.) grain showing excellent preservation (P1). The 870-

940 ubiquity count for indeterminate seeds is lower than for the later phase and industrial 

context (Table 4.1), implying a higher level of preservation as more seeds could be identified. 

Similarly, later grain preservation provided the highest representation at class 6. Although this 

may reverse expectations of increased preservation in later phases, proximity to the surface 

and site erosion/weathering may have played a significant part in archaeobotanical 

degradation. Exposure to high temperatures may have been an additional factor for the highest 

ubiquity count for indeterminate seeds in the industrial phase.  

Interestingly Skútustaðir provides conflicting results (Table 4.2, 4.4, Figure 4.2). A lower 

indeterminate seed ubiquity count was recorded for the 870-1000 phase when compared to the 

same time period at Hrísheimar, while grain preservation was also lower. Yet as the 

Skútustaðir phase contained only a single caryopsis, no conclusions can be drawn. This trend 

continues across phases however, for as grain preservation improves over time at Skútustaðir, 

indeterminate seed ubiquity counts also increase. This suggests improved preservation for 

cereal caryopses over time while seed preservation deteriorates. As a food source, their pre-

charring conditions may have been more carefully regulated than seeds which may be in a 

poor physical state prior to being burnt. Cereal caryopses are favoured by the charring process 

and their increased size may also be advantageous (Wilkinson & Stevens, 2003, 151-160). If 

placed on the fire with the fuel source, seeds would have been exposed to higher temperatures 

for a longer duration. Alternatively, caryopses may possess greater botanical refuse durability 

and, for example, may be more resistant to Icelandic freeze-thaw conditions (Zutter, 1999, 

833). Deteriorating preservation levels over time as occurred on both sites (Figure 4.3) (with 

Skútustaðir seeds and all material at Hrísheimar), may be generally explained by taphonomic 

conditions. Yet such factors cannot be used to explain divergence over time. 
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It is now widely accepted that use of plant materials as fuel are responsible for the majority of 

carbonised assemblages (Hillman, 1981; van der Veen, 2006, 11). Many fuels contain 

accidental inclusions; however even those without such additions may not be a targeted fuel 

source. Thus while wood is the most common, timber charcoal is more likely to originate 

from offcuts created by construction activities or via the purposeful disposal of wooden 

artefacts which have outlived their utility. Peat, turf and dung contain inclusions yet differ in 

one vital respect. Constituents of peat and turf naturally include seeds and plant parts of 

species growing in the vicinity, while inclusions in dung such as chaff, arable weeds and 

seeds of pasture vegetation, must first have been consumed by domesticates (van der Veen, 

2006, 14). In the above examples, incorporation into the archaeological record via the 

industrial or domestic models identified in this research would not have been intentional. 

Arable Agriculture 

Historical, archaeological and palynological evidence agree that barley (Hordeum sp.) was the 

primary cereal crop in Iceland. Yet while the Saga of Bishop Gudmund relates that barley is 

the sole arable crop (apart from hay), growing in only a few places in the south (Byock, 2001, 

vi), archaeobotanical evidence for both barley and oat (Avena sp.) has occurred throughout 

Iceland. Pollen grains have been recorded for both cereals from two sites in southern Iceland. 

Although identification criteria have been called into question at Stóra-Mörk (Vickers et al, 

2011), representations from Ketilsstaðir have been dated to AD 935-1075 for barley and AD 

1195 for oat (Erlendsson et al, 2009). At Skalholt barley pollen appears immediately post-

landnám (Einarsson, 1962), while at two sites (Vatnsýri & Mosfell) such pollen was 

recovered from beneath the landnám tephra (Hallsdóttir, 1987, 22 & 26). This may be 

indicative of a wild species, or signify an earlier settlement. Oat and barley pollen was also 

found at Reykholt in western Iceland, which dates from the later Middle Ages 

(Sveinbjarnardóttir et al, 2007). In the north too, Lake Helluvaðstjörn, in the midst of 

Mývatnssveit, yielded evidence of both oat and barley, although the Avena-type grains were 

below the landnám tephra and assumed to be from a wild species (Lawson et al, 2007, 13).  

Macrobotanical evidence is also found predominantly in the south of Iceland with Aðalstraeti 

and Gröf recording barley caryopses. While the former are dated to approximately landnám 

(Roberts et al, 2004), Gröf samples remain undated (Friðriksson, 1959). At Skalholt, 

macrobotanical remains support palynological evidence, however as they are undated and 

include barley, oat and rye, they may belong to a later period and thus constitute imports 
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(Archaeological Services, 2010). At Reykholt barley caryopses dated to the 10th-11th centuries 

confirm palynological evidence; however no oat specimens were recovered. In the north of 

the island, Reynistaður provided barley caryopses dated to 870-1000 (Trigg et al, 2009), 

however the barley and oat grains recovered from Hofstaðir, Mývatnssveit were interpreted as 

imports with oat being a weed contaminant (Guðmundsson, 2009). At all sites, barley was 

found to be the dominant cereal crop, and this was confirmed at the two research locations. 

The higher number of grains found at Hrísheimar covered a wider range of classifications, the 

relative frequencies of which can be seen in Tables 4.1 & 4.3. While only a proportion of 

barley grains could be further identified, the presence of asymmetrical grains indicates a six-

row hulled (Horduem vulgare var. vulgare L.) variety was being cultivated (Church, 2000, 

122). In two-row barley (Hordeum vulgare f. distichon L.) the central spikelets alone are 

fertile  and produce only straight grains, whereas in six-row, all three florets are fertile, and 

the grains that develop on the two outer flowers are twisted, although the central grains 

remain straight (Renfrew, 1973, 71; Guðmunsson, 2009, 329). As symmetrical grains can be 

produced by both types, straight and non-identifiable grains may indicate the simultaneous 

presence of a two-row hulled type. The charring process may distort grains however, and 

some grains which have been identified as twisted, may in fact be straight (Gudmundsson, 

2009, 329; McGinnes et al, 1974). While a 2:1 ratio normally exists between asymmetrical 

and symmetrical grains from six-row hulled barley (Renfrew, 1973, 71), the Hrísheimar 

results yielded a 4:3 ratio (Tables 4.1 & 4.3). This may reflect simultaneous presence of the 

two-row variety or result from small sample size. Hulled barley predominated on both sites, 

however only one grain could be further identified from Skútustaðir (Tables 4.2 & 4.4). Ratio 

analysis was thus impossible, yet presence of a six-row hulled type may be suggested 

providing distortion of the grain did not occur. The hulled varieties would have been the 

preferred barley crops as the glume clings to the grain offering increased protection from 

climate, fungi and pests, even though they require more post-harvest processing (Hillman, 

1981).  

The two sites may be compared by focusing on the 870-1000 period. Ubiquity counts for total 

barley grains over this phase are 20.93 and 7.14 for Hrísheimar and Skútustaðir respectively, 

demonstrating a much higher recovery of barley from the Hrísheimar site (Tables 4.1 &4.2). 

Several reasons may account for this. The inhabitants at Hrísheimar may have adhered more 

closely to the Norse model farm, attempting to mirror grain production in the homeland 

(Hjelle et al, 2006, 155; Dugmore et al, 2005, 27). A larger family unit necessary for farming 



52 
 

plus metal working and/or increases in consumption of porridge, bread and ale may also have 

contributed. Alternatively Skútustaðir residents may have been more focused on pastoral 

farming, especially considering their proximity to the lake and wet meadow areas (McGuire, 

2006, 6). While meal preparation accidents are most likely to account for the inclusion of 

cereal caryopses into the archaeological record, by-products of cereal harvesting are easily 

burnt off (van der Veen, 2006, 10). Yet both grains and chaff may be proximal to the fire 

during post-harvesting processes, and these may have differed between sites. In particular, the 

final crop processing stage of hulled barley involved drying the grain prior to the process of 

graddening, during which the hull was removed by grinding (Fenton, 1982). Requiring a heat 

source, the central hearth was often utilised to perform this function. This may have occurred 

at Hrísheimar while Skútustaðir employed off site processing.  

The small amount of chaff recovered from each site (Figures 4.6 & 4.7) and absence of other 

waste products associated with cereal processing, suggests off site operations. Differences 

were apparent however, as Hrísheimar produced 4 culm nodes, while at Skútustaðir, 3 culm 

bases were recovered. This suggests a different harvesting strategy with plant stems cut at 

Hrísheimar, but pulled up whole at Skútustaðir; and this may have had a significant effect on 

fodder biomass between sites. Cereals were considerably taller at this time due to the need for 

longer culms for straw fodder. Cutting rather than pulling would have reduced each stem by at 

least 2 inches, and taken over a whole infield area, would have yielded significantly less. This 

suggests that either Skútustaðir had a greater need for such fodder or that they made better use 

of their valuable resources. Allowing free grazing domesticates to feed on remaining stalks, as 

seems to have occurred at Hrísheimar would have allowed natural dunging, however, it 

appears likely from midden accumulation that this was the only period and form of 

enrichment at this site. Animal husbandry practises may also have required the inclusion of 

chaff as an on-site fodder source, which was then accidentally introduced to the central hearth 

(Church, 2000, 122). 

At Hrísheimar, the amount of grain recovered per phase remains fairly constant. Due to the 

increasingly poor preservation of the later samples however, it is not possible to distinguish 

between barley and oat. Thus while Figure 4.4 demonstrates a fall in barley and oat during the 

second phase, the large number of indeterminates suggests this is unlikely to be a true 

representation of events. 
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Temporal changes are more pronounced at Skútustaðir, with only barley grains obtained from 

the initial phase (Figure 4.5). The following period (1000-1477) yields no evidence of cereal 

grains and may be explained by midden relocation, however, adverse conditions may also 

account for this. Many periods of severe famine have been recorded in Iceland from the 10th 

century and indeed while the 14th century is reported to have suffered repeated shortages, the 

15th century is said to have been characterised by famine and disaster (Friðriksson, 1972, 

785). Deteriorating climatic conditions from 14th century due to the onset of the Little Ice Age 

(LIA) rendered cereal growing virtually impossible (Guðmundsson, 2009, 331), and this was 

accompanied by social and economic factors. Population decline resulted in insufficient 

labour to work the land while a shortage of manure decreased enrichment activities 

(Sveinbjarnardóttir et al, 2007, 203; Simpson, 2001, 440). Thus grain production is unlikely to 

have been significant. With an increase of sea ice blocking the harbours (Axford et al, 2007, 

3355; Simpson et al, 2002, 424; Smith, 1995, 324), imports would also have been extremely 

difficult to obtain, making every grain precious. Considerable reductions in the cost of 

imported barley in the Medieval period, however, ensured the decline in local cereal 

production (Erlendsson et al, 2009, 180). 

Many sources agree that barley production had virtually disappeared by 15th century (Simpson 

et al, 2002, 424), and indeed no distinguishable cereal was recovered for the subsequent phase 

(1477-1717), although a small number of indeterminates were recorded. A temporary respite 

in the 16th century was quickly reversed, yet this interim may have facilitated the growth of 

imports. Level of preservation was poor however, and may have been adversely affected by 

travel conditions or the freeze/thaw process. The increase in all grain categories for Phase 4 

(1717-1900) relates more and better preserved grain (Table 4.4 & Figure 4.2). Even as an 

import, barley remains the dominant species, yet oat (Avena sp.) appears for the first time. 

While it is claimed that rye (Secale cereale L.) had become the most important imported grain 

in the Icelandic diet by the Middle Ages (Rögnvaldardóttir, 2002), there is no evidence for its 

existence at the Skútustaðir site. By the final 20th century phase, the only representation is for 

barley. This reflects the good level of preservation in the uppermost midden layers, which had 

not been subject to erosional factors. 

While the discussion so far is based on the assumption of local cereal growing from landnám 

to the 14thcentury, evidence of cereal cultivation in Iceland is limited. Due to being on the 

margins of productive cereal cultivation only oat and barley would have been viable 

(Sveinbjarnardóttir et al, 2007, 202). Barley was a vital constituent of the Norse agricultural 
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package being a stable crop in Norway (Hjelle et al, 2006, 155), and thus a sustainable barley 

crop would have been anticipated by settlers (Erlendsson et al, 2009, 174). While few sites 

have produced macrobotanical remains, it is widely accepted that barley was grown on 

Iceland (McGovern et al, 2007, 29; McGuire, 2006, 19; Vésteinsson et al, 2002, 102; Smith, 

1995, 329), although this tends to be regional with the south and west considered most 

favourable (Erlendsson et al, 2009, 174; Zutter, 1992, 144). Cereal species are limited in their 

pollen production and as such are often underrepresented in pollen diagrams (Edwards, 1989). 

With the identification of Hordeum-type pollen, difficulties still exist in separating it from 

that of other wild grasses such as lyme grass (Leymus arenarius (L.) Hochst.) (Tweddle et al, 

2005; Erlendsson et al, 2009, 177). Indeed at some sites, such as Mýrdalur in southern 

Iceland, this species was utilised as a cereal substitute (Erlendsson et al, 2009, 184). Yet the 

Mývatnssveit locale, with its more continental climate, has yielded palynological evidence of 

barley cultivation (Lawson et al, 2007, 12). Originating from Lake Helluvaðstjörn, less than 

8km distant from Hrísheimar and approximately 5km from Skútustaðir, such practices were 

certainly feasible in this area. The limited locations for cereal growing also tended to be the 

higher status farms (Sveinbjarnardóttir et al, 2007, 203) which would apply to both 

Hrísheimar and Skútustaðir. 

Lack of chaff at the Hrísheimar site (Figure 4.6) would seem to suggest that cereal was 

imported, and failure of an experimental barley crop at Hofstaðir in 1992 may support this 

(Guðmundsson, 2009, 331). One method for determining whether a crop is imported or local, 

however, is to examine the composition of associated weeds. Any which are not indigenous to 

the local area, or Iceland generally, may indicate transportation from other areas of Iceland, or 

importation from abroad (Sveinbjarnardóttir et al, 2007, 202). No such taxa were recovered 

from the Hrísheimar samples (Table 4.1). It is further suggested that small barley grains may 

indicate harsh conditions as prevail in Iceland, thus allowing a distinction to be made between 

local and foreign origins (Sveinbjarnardóttir et al, 2007, 202). A variety of factors are 

ultimately responsible for dimensions of caryopses however, including temperature, rainfall, 

amendment strategies, position of grain within the ear and carbonisation conditions. The 

average size of grains at Hrísheimar and Skútustaðir (Figures 4.3 &4.4) were very similar 

(Hrísheimar, barley: 4.23×2.57×1.93mm, Skútustaðir, barley: 4.4×2.3×2.1mm) however a 

significant difference existed in oat grain dimensions between sites (Hrísheimar, oat: 

5.75×1.75×1.625mm, Skútustaðir, oat: 11.5×2.5×1.5mm). The sole Skútustaðir oat sample 

was from a later time period and so is likely to have been an import. Reduced dimensions of 
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the Hrísheimar oat grains may indicate that samples were a weed of the barley crop and 

therefore not intentionally cultivated. Combined evidence from macro-remains, pollen 

evidence (Lawson et al, 2007, 12), weed species and plough marks discovered at another site 

in Mývatnssveit (Ingiríðarstaðir) (Guðmundsson, 2009, 331), would seem to favour home 

grow barley production. Chaff may have been utilised as animal fodder without having the 

opportunity to become carbonised. The scenario is broadly similar at Skútustaðir during the 

initial phases, suggesting local cultivation. In Phase 3 however, chaff increases massively, 

which is confusing as barley production had ceased by this stage. This could be the result of 

the burning of turf, peat or dung however, as chaff may be attributable to large grasses.  

While cultivation of barley would have been at no more than subsistence level (Simpson et al, 

2002, 424), soil management may have been a limiting factor in early grain production. Yet 

the effectiveness of enrichment strategies may have been reduced by aeolian accumulations 

from eroding soils, resulting in a regional/localised spread of barley growth (Simpson et al, 

2002, 434). Evidence for oat growing tends to be palynological and extremely rare. Avena sp. 

may not have been included in the Scandinavian agricultural package, however many Viking 

settlers had colonised Iceland via the Scottish Isles (Sveinbjarnardóttir et al, 2008, 1) where 

oat was an important crop (Bond et al, 2004, 142; Church et al, 2005, 193). Thus immigrants 

probably brought this cereal with them. The Hrísheimar site produced 5 grains from the first 

domestic phase; however no evidence was recovered from Skútustaðir from this time period 

(Figures 4.4 & 4.5). A single grain has also been discovered at Hofstaðir and these 

occurrences indicate either very limited oat cultivation or the presence of wild oat as a weed 

of the barley crop (Guðmundsson, 2009, 331). The distinguishing characteristics of Avena sp. 

are located on the floret bases, and as these do not generally survive, it is impossible to 

determine if specimens are from the wild or a cultivated species (Bond et al, 2004, 141; 

Lawson et al, 2005, 668). Certainly oat cultivation was not commonly practiced despite its 

less specific habitat requirements. Oat yields do not substantially improve from land 

enrichment (Bond, 2002, 183; Bond et al, 2004, 142; Church et al, 2005, 193), however as 

Icelandic soils are less responsive to fertilisation (McGovern et al, 2007, 30), significant 

increases in cropping would probably not have been achieved. Nonetheless, as oat may yield a 

reasonable crop on poorer soils than barley would tolerate, it could have been cultivated on 

outfield areas without competing for prime infield locations. Extending the area of cereal 

cultivation in this way would have provided additional animal fodder. In turn nutrition of 

dairy cattle, and indeed numbers, may have been increased, thus producing additional manure 
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Figure 5.1 – Comparison of relative percentage distribution of cereals between 
Hrísheimar (HRH) and Atlantic Scotland sites (Data from Church et al, 2205, 193). 

from overwintered animals (Bond, 2002, 183; Bond et al, 2004, 142). Such factors would 

have been vital considering the Norse reliance on milk herds and the short growing season in 

Iceland. Yet the main advantage of barley was in its utility as both human and animal food 

and in the making of beer. 

Edvardsson et al (2003, 17) suggest that in the initial occupation at Hrísheimar, primary focus 

was on metal working however, this does not mean that agricultural activity was not 

important. Site results record both barley (Hordeum sp.) and oat (Avena sp.) in the first 

domestic phase, when settlers were most committed to reflecting homeland farming strategies 

and imports were more unlikely. Evidence is more indicative of initial trials to cultivate both 

familiar cereals. While 

constituent percentages at 

Hrísheimar are 

comparable to Atlantic 

Scotland however 

(Church et al, 2005, 192), 

the concentration in terms 

of grains per litre, is 

significantly lower 

(Figure 5.1). At 

Skútustaðir early 

cultivation may have 

been restricted to barley. The representation of oat occurs in the 1717-1900 period, and this 

minimal amount suggests rather that it was a weed of the imported barley crop.  

Nonetheless arable agriculture is evident from the archaeological record. At Hrísheimar 

following initial trials for barley and oat, the latter may have been judged to be unproductive 

and halted. Evidence supports continued cultivation of barley however up to farm 

abandonment in the 11th century. Conversely at Skútustaðir, while early barley cultivation 

may have occurred, absence of identified grain over the following two phases suggests this 

practice was extremely minimal or had been discarded. The reappearance of grain evidence 

from the 18th century is indicative of imports which includes both crops. 
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Quality of Cultivated Land 

The quality of land utilised for cultivation may be assessed by examination of the 

accompanying weed species to determine fertility and hydrological soil conditions. 

Comparison between sites for the landnám period illustrates around twice the diversity of 

weed species at Skútustaðir (Table 4.5, Figure 4.9), and this may be indicative of a wider 

range of original habitats. Nonetheless Chickweed (Stellaria media (L.) Villars) predominates 

on both sites and indeed demonstrates similar distributions (Hrísheimar 30.23, Skútustaðir 

28.57). This species is one of a group of apophytes that thrive in phosphate rich soil and in 

disturbed areas (Zutter, 1992, 143), and its presence also indicates nitrogenous conditions 

(Kristinsson, 2010, 124). As a common weed of the barley crop, it had the capacity to produce 

up to 80% yield losses if left unchecked (Davis et al, 2005). The high representation of 

Chickweed at both locations strongly suggests therefore soil amendment practices by field 

rotation, dung or midden.  

Knotgrass (Polygonum aviculare L.) is the only other weed taxon represented on both sites, 

yet only in minimal amounts (1 per site). This is a common weed of arable land, preferring 

homefields, waste ground, farmyards, trampled areas or ground indicative of manuring 

(Kristinsson, 2010, 130; Preston et al, 2002). 

The only other representation at Hrísheimar (Figure 4.8) is of Fat Hen (Chenopodium album 

L.). Yet again this taxon is widespread in nitrogen rich soils and is one of the more robust and 

competitive plants. Representative of weeds common on cultivated land at this time 

(Håkansson, 2003, 37), it colonises newly cut or disturbed ground before other species. 

Despite presence of only a single specimen, this may indicate initial land clearance for 

cultivation purposes. 

All weed representations at Hrísheimar have utility as starvation food. Chickweed is 

extremely nutritious and may have been eaten raw or cooked (Linford, 2007, 217), while 

Knotgrass may have been a constituent of soups and stews, and its seeds were also edible 

(PlantsforaFuture, 1996). The leaves and young shoots of Fat Hen would have been consumed 

in moderation (being poisonous in large amounts), providing a vegetable similar to spinach. 

Its seeds could also be ground to make bread (Grieve, 1995). Such additional resources may 

have proved useful at initial settlement while waiting for herds to become established, or 

during times of hardship (Vésteinsson et al, 2002, 108). 
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After Chickweed, the highest representations at Skútustaðir (Figure 4.10) were of Buttercups 

(Ranunculus sp.). Former species commonly colonise crop cultivation areas, yet Buttercups 

may be found in cultivated homefields, hayfields and pasture (Kristinsson, 2010, 166-8). Such 

families contain many species with widely differing ecological requirements (Buckland et al, 

2009, 110), for example, Creeping buttercup (R. repens L.) is very specific in habitat 

requiring moister, non-acidic soils and is spread via the transportation of hay (Grieve, 1995). 

Ribwort plantain (Plantago lanceolata L.) is also scarce on acidic soils, but prefers drier 

conditions (Edwards et al, 2005, 640). It is a common weed of cultivated land being indicative 

of any type of agricultural activity (Vickers et al, 2011, 14). It is worth noting that this plant is 

heat loving and is normally only found in the south of the island or on thermal soils in the 

north and this may support either a warmer climate at landnám (Axford et al, 2009, 20), or 

imports from the south. Finally Field mustard (Brassica rapa L.) has been widely cultivated 

in Europe over the past 4,000 years as a cool climate crop (Duke, 1983). Related to turnip, 

which is known to have been grown in Norway, this may have been cultivated as a leaf or root 

vegetable, as an alternative to mustard, or appeared as a weed. Similarly, the leaves of 

Creeping buttercup may have been eaten but required prior cooking (PlantsforaFuture, 1996), 

and it is likely this would only have occurred during extremely unfavourable conditions. 

While Hrísheimar taxa appear to show nutrient rich land subject to manuring, the 

representations at Skútustaðir are more diverse, confirming the idea of a wider variety of 

habitats. Certainly its closer proximity to Lake Mývatn is indicated by moisture loving plants 

and presence of acid intolerant species suggests soil pH levels were neutral to alkaline which 

are more productive for barley cultivation (ALA, 2010). 

At Hrísheimar, weed species occur only in the first domestic context (870-940). This may 

signal the abandonment of initial cereal cultivation or be due to the relatively small sample 

size in the later phase (Table 4.1 and Figure 4.8). It is intriguing that a large number of weed 

taxa were recovered from the industrial context; however, these can only be dated to the more 

general range of AD 870-1000 and therefore cannot be compared over time. Specimens 

derived from only two species (knotgrass & chickweed). It is possible that these may have 

been constituents of peat, turf or dung fuel sources (Church et al, 2007b, 750) and this will be 

discussed further, later in the discussion. 

At Skútustaðir comparison is be demonstrated across phases (Table 4.2 & Figure 4.10). 
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Phase 1  2 Three species disappear including Field mustard, Meadow buttercup           

870-1477  (Ranunculus acris L.) and Ribwort plantain, the latter on a permanent basis. 

Increase in Chickweed numbers are most marked with a rise of both 

representations (41 to 243) and ubiquity counts (28.57 to 50). This also occurs 

with Creeping buttercup but on a much smaller scale. Knotgrass increases in 

number yet ubiquity decreases reflecting its reduced incidence across samples. 

Small numbers of sedge/knotweed make an initial appearance. This suggests 

an increase in soil fertility and agricultural activity, and may denote increased 

moisture content. The Cyperaceae/Polygonaceae category represents two 

distinct families whose seeds are sufficiently homogeneous to make further 

identification difficult, especially in poor preservation conditions. Only the 

Polygonaceae family contain weed species, and four of these knotgrasses are 

native to Iceland (Kristinsson, 2010). Their preference for nutrient rich 

conditions is in accordance with the other taxa. It may be pertinent that 

increases in Chickweed, Creeping buttercup and Knotgrass occur during this 

time, as periods of famine and disaster are increasingly prevalent, particularly 

in the 14th and 15th centuries. The reserves of Icelandic fertility were soon 

exhausted after the age of settlement and climatic conditions also played a role. 

If arctic ice became anchored to the North coast, the impact on vegetation 

growth was devastating (Friðriksson, 1972, 791). 

Phase 2  3 No taxa disappeared from Phase 2, however, decreases in certain species are 

1000-1717  evident. The numbers and ubiquity of sedge/knotweed fall minimally, in 

contrast to a drastic reduction in the numbers of Chickweed, yet it is still well 

represented across samples. Common Knotgrass numbers are reduced although 

it becomes more widespread, while Creeping buttercup is found less frequently 

in samples. Both Field mustard and Meadow buttercup reappear, and this 

phase notes the appearance of three new species: Curled dock (Rumex crispus 

L.), Corn spurrey (Spergula arvensis L.) and Pale persucica (Polygonum 

laphalifolia L.). It is evident that overall species diversity increases and while 

overall fertility appears to remain fairly constant, a preference for increased 

ground water is indicated by the arrival of the new species, especially Pale 

persucica which prefers wet conditions being found in fields, waste ground, 

margins of lakes, ponds and streams. At up to 1m tall, this was one of the 
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tallest weeds but would still be hidden amongst cereal crops which would 

exceed this (Bond et al, 2007).  

Phase 3  4 This phase witnesses the disappearance of four species and the reduction of 

1477-1900 several others; Cyperaceae/Polygonaceae, Pale persucica and Corn spurrey 

are erased during this phase, however, Field mustard vanishes only 

temporarily. Creeping buttercup and chickweed both diminish minimally, 

while meadow buttercup is discovered in fewer samples. This indicates a 

possible change to drier and/or less fertile habitats. The simultaneous 

appearance of Fat Hen (Chenopodium album L.) and Blinks (Montia fontana 

L.) are accompanied by a significant expansion of Knotgrass and a greater 

frequency of Curled dock across samples. The presence of Fat Hen indicates 

sustained nitrogen content of the soil and may indicate the clearing of new 

land, while conversely it may have been an unintentional constituent of barley 

imports. The increase in Knotgrass and Curled dock points to increased 

cultivation, however as historical and archaeological sources relate a halt in 

cereal production by 1500, it is proposed that hay cultivation was expanded, 

unless they were contaminants of an imported barely crop. The appearance of 

Blinks (Montia fontana) which favours wet, even aquatic conditions, could 

occur due to the proximity to Lake Mývatn which would support wetland 

ecological niches. Nonetheless species diversity appears to have contracted in 

homefield areas. 

Phase 4  5 As Phase 5 contained only a small number of samples, ubiquity counts may 

1717-C20th  not be truly representative for this period. Apart from the reappearance of field 

mustard (one seed), and the stability of buttercup numbers, the 20th century 

produces an overall decrease for infield weed taxa. Number of docks and 

common knotgrass decrease significantly while chickweed, fat hen and blinks 

are eradicated. This is most likely to be due to a change in farming methods 

following the introduction of farm machinery or use of chemical pesticides. 

Initial increases in agricultural activity were accompanied by improved soil fertility, reflecting 

probable soil amendment. Appearance of starvation food in the archaeological record may 

relate to the frequent periods of famine during Phase 2. Nonetheless soil fertility remains 

fairly stable until 1717, with an increase in ground moisture. After this time fertility appears 

to decrease slightly while hydrological soil content decreases. Due to possible decreases in 
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hay yield, new areas may have been opened up for farming, while in the 20th century 

eradication of many weed species indicates substantial changes to farming techniques. 

Homefield hay production was a vital component in farm sustainability (Dugmore et al, 2005, 

31; Smith, 1995, 331). While climate and inherent soil differences may have influenced yields 

across sites in Mývatnssveit, these tended to remain at subsistence level (Adderley et al, 2008, 

524). Agroecosystem modelling indicated that even additional soil amendment practices could 

not increase yields beyond subsistence level, restricting management options. Yet changes in 

land management strategies were able to positively affect long term sustainability. Thus while 

evidence of enrichment exists at both sites, as indicated by the presence of certain habitat-

specific taxa, this practice would have required long term commitment which relied on 

availability of manure and labour. Such factors were periodically scarce (Simpson et al, 2002, 

440). 

Gathering of Wild Species 

In addition to weed assemblages from cultivated homefield locations, many other wild species 

were represented in Icelandic biota and these may have been indigenous or introduced by 

Norse settlers. To aid discussion regarding changes over time, these have been further divided 

into woody and plant species. While both Hrísheimar and Skútustaðir yielded 7 such species 

during the landnám period (870-1000), Hrísheimar had a higher representation of woody 

species and Skútustaðir also produced a single specimen of seaweed (Table 4.5, Figures 4.8-

4.10).  

Tree/shrub Species 

 Only one shrub species was located at both sites. The count and spread of Crowberry 

(Empetrum nigrum L.) is very similar between farms and is indeed a constituent of 

macrofloral remains on a majority of Icelandic sites (Zutter, 1992, 1999; Sveinbjarnardóttir et 

al, 2007; Vickers et al, 2011). Twigs and leaves would have been collected for animal fodder 

and bedding, while berries were utilised for human consumption, as a dye, or as a source for 

wine-making (Zutter, 1992, 143). Found only at Hrísheimar, the Vaccinium genus includes 

bilberry, blueberry, cranberry etc. and thus produces berries primarily as a food source, while 

Bilberry may also have had a secondary purpose as a dye. Both Vaccinium sp. and Willow 

(Salix sp.) yielded low representations. At Skútustaðir a large number of Bearberry 

(Arctostaphylos uvi-ursi (L.) Spreng.) leaf fragments were recovered. This woody shrub 
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produces edible red berries and was used as a dye in Scandinavian countries (Grieve, 1995). 

The leaves contain abundant tannin which was utilised in tanning leather in Sweden and 

Russia. Leaf samples may have been an accidental inclusion, remaining on twigs selected for 

kindling, or brought in with turfs for fuel.  

Wild Plants 

Three species including the two Carex-types and Poaceae (small) were common to both sites. 

Even with particularly high numerical values at Hrísheimar, the higher ubiquity count at 

Skútustaðir indicates a greater distribution of Carex spp. This taxon is often collected from 

wetland meadows for fodder, and may have been a possible floor covering (Buckland et al, 

1983) instead of rushes due to the pleasant odour of some species (Grieve, 1995). The stems 

were also utilised as a wick in lighting. The small representation and ubiquity count for 

Poaceae undiff. (small) at both sites may indicate increased abundance of sedges or 

preferential utilisation, being considered as superior to grass for fodder (Vésteinsson et al, 

2002, 109). Grass crops took two forms, purposeful cultivation for hay and natural grassland 

used for pasture (Friðriksson, 1972, 789). As the pastoral economy of Iceland was heavily 

reliant on grass, it appears to be under represented, however, it may be that grasses are less 

likely to be utilised for building or burning during their flowering stage. 

At Hrísheimar, only one plant species was specific to the site, during the comparison phases 

(Figure 4.9). The seeds of the legumous plant Vetch (Viccia sp.) provided a useful fodder 

source, while the straw also has high nutritional value for livestock, and may even be utilised 

for human consumption as a starvation food (Hanaka, 1976, 924; Hedrick, 1972, 686). 

Two additional categories were represented at Skútustaðir. Bulbous buttercup (Ranunculus 

bulbosus L.), has the familial trait of being poisonous, and while not consumed by cattle, its 

rhizomes are sought out by pigs. The single seed of Mare’s tail (Hippuris vulgaris L.) was a 

surprising find due to its natural aquatic habitat. This again is likely to be an accidental 

inclusion due to the proximity of the site to Lake Mývatn. A recovered seaweed frond could 

not be identified to species but will probably have been transported from the coast, either as 

packaging with goods such as fish, as a fodder source (McGovern et al, 1988, 242), as fuel 

(Sveinbjarnardóttir et al, 2007, 192), as a fertiliser (Krisljansson, 1980, 127), or during 

industrial processes such as salt extraction (McGovern et al, 2006, 199). 
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While the majority of species are present in the first domestic phase at Hrísheimar, only 

sedges and crowberry remain by AD 940 (Figure 4.8). These are the most represented and 

widespread of the Phase 1 taxa and an important source of human and animal food. 

Surprisingly the industrial phase (870-1000) comprises a wider diversity of wild species (9 

plus seaweed), 4 of which overlap with the domestic phases. Industrial samples primarily 

consist of trees and woody shrub species (Crowberry, Bearberry, Birch, Willow and Juniper) 

with a predominance of leaf fragments. These may have been purposefully utilised as fuel or 

have been an accidental addition to turfs as probably occurred with grass and sedge. The 

metal working process involved extracting iron pan from the nearby bog (Edvardsson & 

McGovern, 2007, 4) and the presence of bog bean seems to confirm use of the bog to obtain 

raw materials. As only one specimen was recovered, it is postulated that Norse settlers 

realised its value in the flavouring of beer (BTCV, 2004).  

Trees were also an excellent resource, although Icelandic specimens tended to be fairly short 

with narrow girths. Nonetheless as a food source, Dwarf birch (Betula nana L.) leaves and 

catkins could be eaten raw while Willow catkins were eaten as a mash during hard times 

(Hageneder, 2001, 172). Birch twigs and buds were utilised for flavouring stews, while 

Juniper berries were used for flavouring meat dishes and in sauces or stuffings. Juniper has a 

long association in flavouring alcoholic beverages and it was used to make traditional Finnish 

ale (Sysila, 1998), it is possible therefore that it was a constituent of Norse beer making. 

Willow was valued as a dye and dwarf birch created a better yellow dye than common birch. 

Willow bark may have been used in the tanning process, while its wood was also used to 

make furniture, mats, baskets and in boat construction (National History Museum, 2011). 

Both Willow and Juniper were used in rope making and indeed juniper was used extensively 

as a raw material, especially for producing utensils and containers in which to store dairy 

produce (Hageneder, 2001; Larsen, 1990). Used by almost every culture for purifying and 

ritual cleansing, this species was thought to ward off evil spirits and plague when burnt 

(Herbal Encyclopedia, 2011).  

Several interesting changes occur across phases at the Skútustaðir site (Figure 4.10). 

Phase 1  2 Only minor changes are evident. Agimony (Agrimonia eupatyoria L.) appears 

870-1477  in Phase 2 (1000-1477), however, while this taxon has been used for warding 

off witchcraft since the time of Pliny the Elder (Hawes, 2010, 88), Iceland had 

politically chosen Christianity by this date (Clark, 2003, 18). Alternative uses 
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as a tea, wine or dye may also explain its incorporation into the archaeological 

record (Grieve, 1995).  

Phase 2  3 A significantly wider range of culturally selected species is demonstrated, 

1000-1717 suggesting an expanded selection of resources were utilised. The appearance 

of Heather (Calluna vulgaris (L.) Hull) may have been a non-purposeful 

inclusion however, via the burning of peat/turf, or human transportation. This 

plant is widespread in upland areas and was an important food source for sheep 

in snowy/icy conditions (Sæbo et al, 2001, 823). It could also be used, to 

produce heather beer (especially in Scotland prior to the introduction of hops), 

as a dye, or as part of the tanning process (Vickery, 1995). The increase in 

utility is likely to have been for fodder however, as wetland meadow taxa 

(Sedges (Carex sp.), Sharp-flowered rush, (Juncus acutiflorus L.), Mare’s tail, 

Bog bean (Menyanthes trifoliate L.) are particularly evident. Yet the sharp 

flowered rush is also much favoured for flooring and inclusion may have 

originated from the house rather than the outfields (Grieve, 1995). A single 

specimen of Viola sp. appeared in this phase but could not be identified to 

species, making possible usage difficult. 

Phase 3  4 During this phase (1717-1900), large tree species seem to have disappeared, 

1477-1900  while large grasses make an initial appearance and small grasses increase 

considerably. 

Phase 4  5 Shrubs have also been eliminated by the final phase (C20th) and evidence of 

1717-C20th  imports appears in terms of fruits for human consumption such as fig (Ficus 

caraca L.) and plum (Prunus domestica L.). The multiflowered buttercup 

(Ranunculus polyanthemos L.) also appears at this juncture. As it travels with 

people, it is likely to have arrived with the imports (NatureGate, 2011).  

Apart from being consumed by livestock therefore, wild species had a variety of utilities, as 

human starvation foods, as dyes and in the production of domestic and household implements. 

Yet the vast majority had a much greater purpose in the everyday lives of the Icelanders. 

The Norse travelled widely and through settling and trading had contact with many cultures, 

providing ample opportunities for the exchange of knowledge and information. While the 

early Vikings were not scribes (Vésteinsson et al, 2002, 99), they absorbed information which 

was pertinent to their lives. At a time when premature death and battle wounds were common 

and diseases rife, plants would have provided primary health care. With no alternative 
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treatment available, Scandinavians would have had considerable knowledge regarding the 

healing power of plants. While the earliest herbal text produced in Scandinavia was the 

Urtebogen or Liber Herbarum ‘The Book of Herbs’ by Master Henrik Harpestreng in the 13th 

century. This contained translations from 11th century Latin texts (Macer’s De Viribus 

Herbarum c.1090 and Constantius Africanus’ De Gradibus Liber c.1050), indicating prior 

awareness of herbal remedies and applications. While over 70% of males originated from 

Scandinavia however, a significant proportion of females derived from Britain and/or Ireland 

(Ebenesersdóttir et al, 2010, 1; McGuire, 2006, 22; Helgason et al, 2000, 697) where herb lore 

was established and sometimes even documented. This is important, for it was women who 

took responsibility for health matters until the advent of Christianity, which initiated a role 

reversal (Foote & Wilson, 1970, 93). The majority of identified plants have medicinal utility 

and thus a table has been constructed to reflect the healing properties of biota from Tables 4.1 

& 4.2.  

At both sites wild plants, weeds, trees and shrubs appear to have been purposefully collected 

for a variety of functions. These included culinary, industrial, craft and medicinal usages, and 

demonstrate a desire on the part of the Vikings to fully benefit from the natural environment. 
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Plant Name Medical Importance 

Arctostaphylos uva-ursi Historically used for medicinal purposes with an early recorded use in 13th century 
Wales. Only leaves have medicinal properties treating urinary tract complaints. 
Grows across the Northern hemisphere including Scandinavia and Scotland. 

Agrimonia eupatoria One of the most famous vulnerary herbs and particularly popular with Anglo-
Saxons. In addition to treating wounds it is traditionally used to treat insomnia. 
Found in England and Scotland. 

Betula nana Known uses as an anti-rheumatic and sedative. Leaves are taken for problems 
related to digestion. Mainly found in arctic regions of Northern Europe. 

Carex sp. Rhizomes of some species have considerable medical value for treating digestive 
disorders. Found in all European countries, used in herbal medicine in England, 
Germany, Turkey, India, Malaysia, Ceylon and the Orient. 

Chenopodium album Makes a very wholesome medicine. The seeds are high in nutrients and used in 
African medicine. Grows in most countries. 

Hippuris vulgaris Has a number of medicinal uses including healing wounds, stopping bleeding and 
soothing inflammation. Confined to temperate, boreal and subarctic regions. 

Juniperus sp. Used by ancients as a sedative and listed by Dioscorides who states the berries are a 
female contraceptive. Falsely administered to cure typhoid, cholera, dysentery and 
tapeworms. 

Menyanthes trifoliate Historical medicinal uses of this plant include treatment of heart problems and TB. 
It was held to be of great value against scurvy and prescribed in cases of dropsy and 
gout. Later used as herb tobacco. Occurs throughout Europe, Asia and North 
America. 

Plantago lanceolata Leaves applied as a natural remedy for bites and stings as the juice has cooling, anti-
inflammatory, antibacterial and pain relieving properties. Found as a common weed 
in Norway and the British Isles. 

Polygonum aviculare Formerly employed as a vulnerary and styptic and recommended by Culpepper to 
cure the spitting of blood. A decoction with wine was administered to kill worms. 
Recognised as treating dysentery, jaundice, gall and kidney stones. 

Ranunculus acris Leaves used to remove warts and to cure headaches and gout. Appears almost 
worldwide. 

Ranunculus bulbosus As with R. acris, this species is used to treat headaches as well as shingles and 
sciatica. Common to Western Europe. 

Rumex crispus Roots are used to aid skin diseases, blood cleansing and treat hepatic disorders. 
Used historically as a gentle laxative. 

Salix sp. In past times, leaves were most commonly used medicinally, making a tea taken for 
pain relief and fever. Discorides recommended a willow leaf drink to relieve lower 
back pain. 

Stellaria media Very popular in folk medicine, chickweed water is a traditional remedy for weight 
loss. Treats skin disorders; including cuts, burns and bruises, rheumatic pain and 
scurvy. Especially popular as an ointment. Naturalised wherever man has settled. 

Vaccinium myrtillus Fruits used since ancient times in the treatment of diarrhoea and dysentery. Popular 
as a tea, it is found in Europe, northern Asia, Greenland, Canada and America. 

Table 5.1 – Medicinal utility of wild species recovered from Hrísheimar and Skútustaðir (Bremness, 2009; 
Culpepper, 2009; Grieve, 1995; Hawes, 2010; Linford, 2007) 

Local Ecological Landscape 

Post landnám, human impact had a major effect on local ecology as natural taxa were 

gradually converted to anthropogenic flora (Vickers et al, 2011, 6). Original species were 

dominated by woody and tall herb communities (Erlendsson et al, 2009, 180). As this 

research examines man-made midden deposits, pre-landnám floral composition could only be 

obtained from pollen analysis. Such data is available from the Lakes at Helluvaðstjörn (Figure 

5.2) and Vestmannsvatn, while more particularly pertinent to Hrísheimar is the bog within the 
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farm locale (Figure 5.3). Diagrams from Vestmannsvatn and the bog area are however 

skeletal, providing limited dating and evidence.  

Pollen assemblages indicate that both sites comprised a mixture of birch woodland and 

wetland pre-landnám, although Hrísheimar probably had more extensive woodland than 

Skútustaðir, consisting primarily of birch with an island of sedge (Lawson et al, 2009b, 34-5). 

Being in closer proximity to Lake Mývatn, Skútustaðir contained more wetland areas which 

do not support tree growth (Thomson & Simpson, 2007, 155). This is reflected in the 

comparison between sites for the period 870-1000 in which more woody species are 

represented at Hrísheimar and more wetland taxa at Skútustaðir (Table 4.5, Figure 4.9). Both 

sites appear to have available dry grassland for pasture, as indicated by the presence of 

species such as Poaceae sp., Vicia-type and R. bulbosus, and a cultivated homefield area as 

demonstrated previously. During this period, these farms are seen to have an equal diversity 

of resources, however there is some evidence that Skútustaðir was making better use of its 

assets, and this may explain its continued presence compared to Hrísheimar which was 

abandoned early in the 11th century. 

Effective management of resources may be indicated by considering changes to the range and 

composition of taxa over time. At Hrísheimar the assemblage from Phase 1 of the domestic 

context (Figure 4.8) relates a range of woody shrubs from heathland environments, wetland 

taxa and small grasses. By Phase 2, only three out of the eight categories are still represented, 

illustrating a decrease in diversity and with the only increase being for sedges. Results 

therefore suggest a decrease in heathland taxa and simultaneous increase in wetland sedges. 

An absence of macrobotanical birch may indicate a more restricted utilisation as a fuel source. 

The industrial context does, however, produce minimal evidence of birch, juniper and willow, 

and it is also evident from both pollen data and charcoal results, discussed later in this report, 

that tree species declined only gradually post landnám (Lawson et al, 2007, 11), thus 

producing contradictory evidence. Early forest clearance would have been necessary to 

increase the land available for cultivation and grazing (Vésteinsson et al, 2002, 100); however 

it may have had consequences for soil hydrology. With decreased interception of rainfall and 

increased moisture levels, soils may have become increasingly waterlogged (Lawson et al, 

2009b, 38), favouring expansion of sedges and creating unfavourable conditions for trees and 

woody species (Thomson & Simpson, 2007, 155). Such wetland habitats may have been   
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Figure 5.2 – Pollen data from Helluvaðstjörn in percentage terms. Presence of taxa of less 
than 0.5% is represented by the black dots. Percentages have been based on the sum of total 
land pollen (Reproduced from Lawson et al, 2007, 7). 

Figure 5.3 – Pollen data of selected taxa from Hrísheimar bog in 
percentage terms. Core HR6, location 150m SE of farm site 
(Reproduced from Lawson et al, 2009b, 35). 
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welcomed by settlers since they provided ideal fodder sources for the domestic stock, 

especially cattle, on which they were heavily reliant (McGovern et al, 2007, 29; Friðriksson, 

1972, 790). Sample size for Phase 2 is limited however, and it must be remembered that data 

obtained from culturally selected species are not representative of the complete range of biota 

present in the landscape (Zutter, 1999, 843).  

Pollen evidence from Lake Helluvaðstjörn and Vestmannsvatn would suggest that Skútustaðir 

also contained an area densely covered with Birch at landnám. Due to its proximity to Lake 

Mývatn however, this site would have had extensive wet meadow areas to the North of the 

farmsite (McGuire, 2006, 13). Thus a wider selection of wet meadow plants was represented 

pre-landnám (Figure 4.10). 

Phase 1  2 Apart from a minimal increase in Crowberry, the compositional balance of 

870-1477 woody and wet species remains stable. 

Phase 2  3 In Phase 3 there is a significant increase in diversity with a large increase in 

1000-1717 the number of woody species, while both Carex types expand considerably. 

As these appear in the archaeological record, the felling of trees and woody 

shrubs is indicated, the cleared land then being available for colonisation. 

Introduction of more fen species (Sharp-flowered rush, Bog bean) plus the 

increase of sedges indicates an expansion of wetland taxa. 

Phase 3  4 By the beginning of the 20th century, all tree species have disappeared,     

1477-1900 although some woody species remain (Crowberry, Bearberry, Bilberry 

(Vaccinium myrtillus L.)). The increase in Bilberry and Heather, plus 

accompanied decreases in mare’s tail and the disappearance of sharp flowered 

rush and bog bean, indicate a drying out of soil conditions. Human drainage 

may account for this, and may have encouraged the large increases in Poaceae 

sp. 

Phase 4  5 During the 20th century woody species have also disappeared, yet heathland 

1717-C20th  taxa such as heather expanded.  

It is pertinent that the period between 870 - 1477 remains fairly stable, as during this time 

many surrounding farms had been abandoned. Hrísheimar demonstrates a decrease in overall 

numbers and variety of taxa between its two domestic phases, while Skútustaðir appears to 

have retained its resource base. With the appearance of woody shrubs in Phase 3 (1477-1717), 

it may be that significant land clearance, causing a reduction in trees and woody species, did 
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not occur until after 1477 at Skútustaðir. Cleared land was colonised by wet species, 

indicating the continuation of wetland habitats and only from the 20th century is there an 

indication of drier soil conditions, which may have been natural or induced. In contrast, 

clearance seems to have occurred much earlier at Hrísheimar, the additional arboreal coverage 

increasing the necessity of this activity to create a productive infield area (Edvardsson et al, 

2003, 25). Taking the weed and wild species together, there was a dramatic decrease in 

diversity between the two phases (10 species to 3) and only Carex sp. increased in frequency. 

Grazing pressure may be suggested, with only the bog locale retaining its productivity. This 

may have been due to a complex interaction of many factors including ineffective 

management of resources. 

As the Icelandic landscape and many species of plant would have seemed familiar, settlers 

may have expected to utilise management techniques which had proved successful in the 

homelands. Yet as biota were closer to their ecological limits, they would have been more 

vulnerable to environmental pressure and change (Dugmore et al, 2006, 340). Such ‘false 

analogy’ may have blinded the Norse therefore to critical threshold differences (McGovern et 

al, 1988, 245). 

Viking farms operated on the infield-outfield system already widespread in Norway at 

landnám (Vickers et al, 2011, 13), of which they should have had experience. Summer 

grazing took place in outlying highland areas, while the infield, close to the farm, was utilised 

for haymaking and cereal cultivation (Vickers et al, 2011, 13), which required superior soils. 

Yet the soils within the Mývatnssveit area are erosion sensitive, particularly via aeolian 

deflation (Lawson et al, 2009b, 38). While deforestation is the major trigger for land 

degradation, overgrazing also removes the vegetation which helps bind together upper soil 

horizons thus also initiating erosion (Lawson et al, 2009b, 38). Yet recent studies have 

indicated that land degradation was not an inevitable conclusion (Thompson & Simpson, 

2007, 166). Even with proximal sites such as at Hrísheimar and Skútustaðir with similar 

climatic conditions, access to resources and management strategies may have varied 

significantly, producing different responses to negative environmental conditions. Such a 

difference was evident at Hofstaðir and Sveigakot also within the Mývatnssveit area. 

Hofstaðir, being a more elite site, had access to a wider range of resources and was therefore, 

more easily able to adapt its management strategies which enabled longer term sustainability 

(McGuire, 2006, 19).  
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In an attempt to mirror the cattle and pig rich farms of southern Norway, settlers were intent 

on establishing dairy farms, even if the land was unsuitable for sustaining such a practice. At 

the Mývatnssveit farms of Hofstaðir, Sveigakot and Undir Sandmúla (Figure 2.4), faunal 

results have shown a high (approx 25%) ratio of cattle bones, even though such locales are in 

upland locations and more suitable for keeping sheep (Vésteinsson et al, 2002, 109; 

McGovern, 2005, 11). Additionally dairy cattle and pigs afforded a coveted elite status. 

Substantial amounts of good quality fodder would be required for overwintering, placing 

great pressure on infield areas which were quite small (Friðriksson, 1972, 789). While failure 

to remove livestock from upland grazing has traditionally been thought to trigger land 

degradation processes, this view has now been challenged (Thomson & Simpson, 2007). 

Búmodel simulations suggest sufficient biomass was initially produced to support proposed 

livestock numbers, yet land degradation still occurred. Management strategies at Hofstaðir did 

not always prevent overgrazing, particularly in severe climatic conditions, although large 

scale land degradation was generally averted. At Sveigakot, however, management options 

were more limited due to a variety of factors including location and status. Erosion of over-

grazed shrub heath increased grazing pressure on remaining areas, yet even this did not 

produce immediate estate wide overgrazing (Thomson & Simpson, 2007, 166). 

Certainly erosion was more effectively managed at Hofstaðir which had an inherently more 

stable landscape, while at Sveigakot, occupation and exploitation of land which was 

inherently susceptible to erosion, probably triggered and increased land degradation (Simpson 

et al, 2004, 498-9). While cattle numbers could have been reduced as a management response, 

once initiated, the process was irreversible. At Hrísheimar, an increase in cattle numbers did 

occur after AD 950 (10 to 16% of domestic mammals) (Edvardsson & McGovern, 2006, 11) 

however, this may have been due to the establishment of the herd. At Skútustaðir, while no 

temporal trends are available, cattle numbers were consistently high, and a 5:1 caprine to 

cattle ratio was maintained into the early modern period, compared with the 20:1 usual on 

Mývatnssveit farms (Hicks et al, 2011, 6). Although there is no indication that numbers were 

being managed, at Skútustaðir, the commitment to enrichment and fodder maximisation plus 

increased wetland habitats, suggests they were able to absorb grazing pressure more easily. 

Alterations in both composition and numbers of wild species are able to provide therefore, 

valuable information regarding landscape changes, soil hydrology, human activity and 

pressure on the environment. While Hrísheimar was predominantly wooded at landnám, and 

Skútustaðir comprised more wetland habitats; both demonstrate a change to anthropogenic 
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species. Diminishing woodland resources and expansion of wetland may be evident at both 

sites, however an increase in fenland species may be due to changes to the taphonomic 

processes by which seeds were recovered. Whatever the reason, this alteration occurred at a 

later date at Skútustaðir. Although both processes are in operation at Hrísheimar by AD 940, 

wetland expansion does not occur at Skútustaðir until 1477, and trees decrease only after 

1717. By 20th century even the shrubs have disappeared from this site and drier conditions 

prevail, possibly due to drainage. Grazing pressure from domesticates is consistent across 

sites during the landnám phase, however, due to strategies adopted at Skútustaðir, this appears 

to have been more effectively managed. While modification of the land for farming 

negatively impacted on the environment in many ways, the most pronounced effect was on 

the woodlands which were exploited for timber, fuel and charcoal (Dugmore et al, 2005, 30). 

Fuel Sources in Mývatnssveit 

A range of fuel sources were recovered from domestic contexts across the two sites with 

wood being the predominant taxa in both cases (Tables 4.1 & 4.2). Samples yielded evidence 

of peat/turf, dung, coal and possibly seaweed. This order reflects importance according to the 

Land Register compiled between 1702 and 1714 (Simpson et al, 2003, 1403). It must be 

remembered that such fuels would have been utilised only on the central hearth, those used 

for industrial purposes will be discussed later in the section. Some fuel sources however, 

would not appear in the archaeological record at all. Oil, for example, derived from seal and 

shark, was utilised for lighting (Byock, 2001, 52). Yet at landnám, it was the hearth fire that 

provided light, warmth plus sufficient heat for cooking, thus giving it a vital function in early 

Viking communities (Simpson et al, 2003, 1402). While charcoal evidence indicates a wood 

fuel source, specific archaeological evidence is required to identify other fuels. Prior research 

has demonstrated that differential arrays of plant parts and species are indicative of specific 

types of fuel (Dickson, 1998; Church, 2000, 121). Turf burning produces small (<2mm) 

carbonised macrofossils comprising leaf fragments of moss and ling heather (Calluna 

vulgaris (L.) Hull), small rhizomes, small culm nodes and bases, and seeds of species found 

in heath and grassland environments (Dickson 1998; Church et al, 2007a, 663). Such 

macrofossils would have been incorporated within the turfs, and carbonised during the 

burning process. This occurs with peaty turf also, however culm nodes are absent and remains 

yield an abundance of small culm bases and rhizomes, fibrous burnt peat and seeds from 

heather, sedge and grass communities (Church, 2000, 121). While well-humified peat may 

also be utilised as fuel, remains comprise mainly large quantities of more amorphous burnt 
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peat. Fewer macrofossils are present and the majority of these are small rhizomes. Animal 

dung was occasionally used as fuel, especially in times of hardship and has distinguishing 

characteristics, for example, cow dung may be identified by black isotropic material in thin 

section analysis (Simpson et al, 2003, 1410). Plant seeds and chaff eaten by domesticates 

would become incorporated in the dung which entered the hearth as fuel and hence the 

archaeological record (van der Veen, 2006, 16). Indeed as wood supplies diminished, dung 

became a more important fuel source (van der Veen, 2006, 14), and was the preferred fuel for 

smoking both meat and fish throughout Iceland. This process preserves food and thus pre-

cooking may have reduced winter fuel requirements (Byock, 2001, 51). Seaweed was also a 

common fuel source being transported from the coast. It remained in use as late as the early 

20th century in Iceland (Sveinbjarnardóttir et al, 2007, 192). 

At Hrísheimar however, there is little evidence of any fuel source other than wood (Table 

4.1). This is not surprising as the farm was located in an area of dense forest (Evardsson et al, 

2003, 25). Reliance on a single source implies that either the source was extensive or that 

strategies were in place to conserve supplies. Very limited evidence does exist for the burning 

of turfs, in the form of one culm node, and one rhizome as well as wild plant evidence which 

could indicate incorporation with the fuel. Results do not support the burning of peat and 

dung in the domestic phase, while the site had been abandoned before the use of coal for fuel. 

In contrast the Skútustaðir site may have been utilising all possible fuel resources, although, 

like Hrísheimar, wood was most represented (Table 4.2). The presence of amorphous plant 

material (APM) is usually indicative of burnt peat, turf or dung, and at Skútustaðir, the range 

of macrofossil evidence implies the combustion of peaty turf. As the macrofossils indicative 

of the burning of peat and turf are similar, it is likely that turf was also utilised as fuel. This is 

supported by identified remains of heather. Coprolite and coal samples had retained their 

distinguishing characteristics aiding identification, while seaweed could not be further 

identified. It appears that Hrísheimar relied on a single fuel source while Skútustaðir seems to 

have utilised whatever was readily available. To investigate this further, comparison of sites 

during the landnám period is necessary. 

From AD 870-1000, wood was the primary fuel source at both sites, while definitive evidence 

for peaty turf utilisation occurs at Skútustaðir. Thus Skútustaðir farmers appear to have been 

increasing their options from first settlement. Turfs may have been restricted to construction 

usage, while limited dung availability prior to herd establishment, may have been used for 

enrichment of infield areas. Fertile land was necessary to cultivate cereal and hay, which 
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would have been particularly important at this time. Such factors may also have been 

considered at Hrísheimar. 

Yet wood remains the main, and maybe only, fuel source at Hrísheimar over the two domestic 

periods. If minimal turf burning had been practiced at this site, it had ceased by AD 940. 

There is no indication that wood utilisation was being scaled down and indeed charcoal was 

recovered from every sample across Phase 2. This would suggest that either management 

strategies were in place to conserve supplies, or that landowners were not aware of any future 

supply issues. 

Dominance of wood as a fuel was repeated at Skútustaðir, as it was recovered from every 

sample across all phases (Table 4.2).  

Phase 1  2 In spite of an increase in the number of samples in Phase 2, there is             

870-1477 significantly less charcoal by weight (Figure 4.11). This is accompanied by a 

decrease in APM suggestive of less burning activity overall. This reflects a 

general decrease in all archaeobotanical remains between AD 1000-1477. This 

might be due to temporary abandonment of the site, fewer inhabitants for a 

variety of reasons, or change in method of disposal for domestic waste (Hicks 

et al, 2011, 29). 

Phase 2  3 While the weight of the charcoal rises it does not return to proportionate   

1000-1717 landnám levels. Alternative fuel sources become apparent as ubiquity of APM 

increases and two new fuels are introduced. Turf burning is indicated by the 

presence of heather, and dung is represented in large amounts. The 

accompanying suite of macrofloral remains to both turf and peat burning have 

also increased accordingly. Utilisation of four fuel sources indicates a serious 

attempt to conserve wood supplies (Simpson et al, 2003, 1415). 

Phase 3  4 The weight of charcoal decreases disproportionately to the number of samples 

1477-1900 (in Phase 4). Ubiquity of APM also drops with a slight reduction of dung 

utilisation, although turf burning increases to a similar extent. Specimens of 

coal are now indicated although wood remains the dominant fuel. As Iceland is 

a young volcanic island, coal seams are unlikely to exist (Church, pers. comm.) 

and therefore this is more likely to have been an imported commodity. Such 

importation would suggest insufficient fuel supplies to meet present and future 

demand, implying a reduction in woodland. This is in accordance with other 
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macrobotanical evidence previously discussed which relates the disappearance 

of trees in this phase. 

Phase 4  5 Wood for fuel is still indicated as charcoal appears in all samples, yet this is 

1717-C20th  now matched by APM. Dung is also more prevalent, being found in two thirds 

of samples. While heather frequency also rises indicating increased use of 

turfs, coal disappears completely. This may indicate a rise in the cost of 

imports, or interruption of supply due to climate, wars, strikes etc.  

During the landnám period more wood was burned than in subsequent phases although even 

at this time, additional fuel sources were utilised. Combustion of fuel appears to have 

decreased significantly from AD 1000, and this concurs with archaeobotanical evidence 

suggesting a general fall in sample numbers and ubiquity counts at this time. This decline in 

archaeological material reflects the excavation findings which noted reduced bones and 

artefacts below the 1477 tephra until the Viking Age was reached (Hicks et al, 2011, 19). 

Several reasons have been postulated for this deficit, however it is most likely that residents 

moved their dwelling early in the High Medieval period, or relocated their midden site (Hicks 

et al, 2011, 19). Subsequent increases in the range of fuels may indicate the need to conserve 

wood resources, and this continued into the next phase with the introduction of coal, even 

though its utility was short lived. All other fuels survive into the 20th century and proportions 

of alternate fuels to wood increase, implying a continuing desire to conserve more limited 

resources (Figure 4.11). 

Certainly constituents of fuel at each site reflect resources available from the local 

environment at settlement. While turf may have had marginal usage at Hrísheimar, this is by 

no means certain. Thus the total reliance on wood for the central hearth indicates the vast 

expanse of forest surrounding the farmsite. Similarly the abundance of wet meadow 

environments to the south of Lake Mývatn enabled collection of peat to supplement wood 

supplies (Edwald & McGovern, 2010, 6). Although the Hrísheimar site possessed some wet 

meadow in the vicinity of the bog, the bog itself was required for alternative usage 

(Edvardsson et al, 2003, 25). With less wet meadow area available, pasture may have been 

much more valuable as a fodder source at Hrísheimar than as a fuel source. Changes to 

ubiquity counts in Phase 4 at Skútustaðir, mirror the ecological changes observed earlier, as 

turf is increasingly utilised as a fuel when drier conditions ensue.  
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While it is claimed that trees declined gradually in the 400 years post-landnám (Lawson et al, 

2007, 11) this is not reflected in the archaeobotanical and charcoal remains. The general lack 

of evidence for Phase 2 at Skútustaðir (1000-1477) renders any reduction effectively invisible, 

however Phase 3 does indicate a fall in weight of charcoal and evidence of alternative fuel 

sources. Yet despite archaeobotanical evidence that trees have practically disappeared by 

1717, wood utilisation as fuel is apparent into the final phase. Indeed some trees still exist on 

the lava fields of Mývatnssveit today. To fully address this issue the sourcing of wood from 

local, imported or driftwood supplies needs to be determined. 

Wood Species 

Wood utilised for fuel derives from three different sources: native, driftwood and imported. 

Only four tree species are native to the island, Birch, Willow, Juniper and Rowan (Sorbus sp.) 

(Dugmore et al, 2005, 26; McGovern et al, 1988, 230; Kristinsson, 2010). None of the latter 

was recovered in this study. The downy birch predominates across Iceland and while it may 

have been fairly tall at settlement, impact from felling, livestock browsing and acidification of 

the soil reduced stature to 1.5-3m (Smith, 1995, 336; McGovern et al, 1988, 229). This is 

because any regeneration occurs from basal buds, which transform the tree into a low shrub, 

further increasing vulnerability to grazing pressure (Smith, 1995, 336). Such timber with 

extremely narrow girth would have been unsuitable for house or ship construction, thus 

driftwood, common in Iceland at landnám, was a particularly valuable resource. Icelandic 

driftwood has been encased in sea ice which acts as a preservative and eventually reaches 

shore after a prolonged period of time (Eggertsson, 1993, 19). The reason such large timbers 

are recovered is that buoyancy decreases as volume decreases, resulting in the relatively fast 

sinking of smaller pieces. Most driftwood tended to originate from coniferous species such as 

Pine (Pinus sp.), Larch (Larix sp.), or Spruce (Picea sp.) which would probably have 

originated from Russia and Siberia (Eggertsson, 1993, 29). Most Larch driftwood has roots 

attached, indicating riverbank erosional processes, while Pine and Spruce are typically logs 

that became loose during timber floating. Extended transit provides inaccurate dating due to 

the old wood effect (Sveinbjörnsdóttir et al, 2004), yet this process does not appear to have 

affected the quality of the timber to any great extent. As driftwood was in high demand, 

access to coastal resources was much coveted. By the 12th century, birch coppices and 

driftwood beaches were economically important (Smith, 1995, 336). Yet there were 

insufficient large timbers to meet construction needs, and imports became more common. 

These tended to be of Oak (Quercus sp.) mainly from Norway. Size restrictions meant such 
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resources were utilised for house building, and ship construction subsequently diminished 

(Byock, 2001, 33).  

While all three sources are represented at Skútustaðir, imports are absent from Hrísheimar 

(Figures 4.13-4.20). This is not surprising however as the site was abandoned before imports 

became common. As has been shown with wild/weed resources, Skútustaðir employed a 

much wider variety of wood species to satisfy fuel requirements, 20 categories compared to 

the 8 utilised at Hrísheimar. This demonstrates the concentration of pressure on a reduced 

number of resources at Hrísheimar that occurred from initial settlement.  

As anticipated Hrísheimar utilised more birch than at Skútustaðir, yet this predominated at 

both sites. While birch timber percentages were identical, proportion of birch roundwood 

(pith-to-bark) and birch roundwood (not-pith-to-bark) are significantly different (Figures 4.15 

& 4.16). The larger distribution of pith-to-bark at Skútustaðir suggests that from the outset, 

more branches were harvested (rather than trunks) implying that farmers realised the 

importance of managing available woodland. While Hrísheimar utilised little other than birch, 

Skútustaðir utilised a larger selection of native trees and driftwood. This indicates that 

Skútustaðir had Juniper and Willow in the locale, while at Hrísheimar, Willow was extremely 

rare in the landscape and Juniper was absent. Driftwood represents a very small proportion of 

samples, yet while Hrísheimar yielded only one specimen of Pine, sources and numbers were 

much greater at Skútustaðir. Five specimens were obtained over four categories, which 

included twice the representation of pine. This may suggest that Skútustaðir farmers had 

better access to coastal resources and/or were a higher status site, that Hrísheimar did not burn 

its driftwood; fully utilising it for construction purposes, or that additional wood sources were 

not deemed necessary.  

When comparing the two domestic phases at Hrísheimar (Figure 4.13 & 4.14), even driftwood 

and any samples other than birch have disappeared by the second Phase (940-1000). Access to 

driftwood may have been controlled by an elite who managed the resource, however as only 

one specimen derives from the first Phase, it could be that it was not a requisite component 

for the site. Willow may have been utilised for non-fuel purposes and so not brought to the 

hearth, or may have been severely depleted within the locale. The constituents of Birch 

utilised for fuel change over time with a small drop in Birch timber which may suggest that 

fewer larger trees existed, or that they were not being targeted for felling. Birch roundwood 

(pith-to-bark) also decreases slightly, while Birch roundwood (not-pith-to-bark) increases by a 
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marginally higher amount. This may imply either collection of fewer branches, or harvesting 

of larger branches which fragment more in the fire accounting for the minor increases in bark 

representations. 

While only small scale changes appear at Hrísheimar over time, temporal deviations are more 

marked at Skútustaðir (Figures 4.16-4.20).  

Phase 1  2 The number of non-birch species are reduced mirroring the overall reduction 

870-1477 in categories from 14 to 9. Pine becomes the only form of driftwood, yet the 

total number for this category remains stable. A fall for all Willow categories 

is accompanied by a significant decrease in representations and may be due to 

different usage, stock depletion or may reflect the reduced archaeological 

remains recovered from Phase 2. Composition of Birch within the sample also 

changes. Substantial increases in roundwood (not-pith-to-bark), plus minimal 

rises in timber and bark percentages result in decreases in roundwood (pith-to-

bark). This implies the utilisation of a greater number of large trees including 

trunks, and reduced harvesting of smaller branches. As this stage may have 

reflected a shortage of hay, smaller branches and twigs may have been utilised 

as supplementary fodder, as livestock survival would have been a primary 

objective. 

Phase 2  3 Total number of categories increases to a peak (15), and this is reflected in the 

1000-1717 rise of non-birch categories. Driftwood now includes, pine timber, larch 

roundwood (not-pith-to-bark) and coniferous timber. This may reflect an 

increased need to conserve birch supplies. Alternatively, a fairly stable 

distribution would be indicated in relation to Phase 1 if Phase 2 results were 

due to residence or midden relocation and therefore under represented. Imports 

become evident with Hazel (Corylus sp.) and Yew (Taxus baccata L.) timbers, 

maybe demonstrating that at this juncture, imported wood had increased in 

popularity. Specimens could have been off-cuts from construction processes or 

an attempt to conserve natural woodland. Yet the latter may be disputed by the 

presence of rootwood which may imply the uprooting of whole trees, although 

this may be attributed to driftwood species. Reappearance of Juniper and 

increases in Willow are addressed by reductions in birch. This demonstrates a 

continued availability of non-birch in the surrounding forest. Willow and Birch 

roundwood (pith-to-bark) increase substantially, suggesting harvesting of twig 
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and branch parts, indicative of conservation. Decreases in Birch timber support 

this. 

Phase 3  4 Non-birch species contract and the total number of categories reduces slightly 

1477-1900 (15 to 13). Larch and Pine timber increase quite significantly and conifer 

timber is replaced by conifer roundwood, which is better represented. Hazel 

and Yew imports vanish and are replaced by Oak (Quercus sp.) with overall 

numbers slightly reduced. In terms of native species, all categories of willow 

decrease, while juniper remains fairly stable. Rootwood increases may imply 

additional uprooting, or may mirror increased driftwood levels. All categories 

of Birch reduce with the exception of roundwood (not-pith-to-bark), which 

suggests a return to the harvesting of whole trees or larger branches. 

Phase 4  5 While overall categories contract from 13 to 9, proportions of non-birch   

1717-C20th species expand considerably. Much of this is accounted for by species of 

driftwood with Larch and Pine timber increasing massively. This may be due 

to the relative lack of Birch forest and disappearance of wood imports, 

although alternatively, the need for imports may have been negated by large 

increases in driftwood. A decrease in Willow, results in equal representation 

with Juniper which remains stable and this signifies that they are still a 

component of the Icelandic flora, even though this may be in decreased 

numbers. Birch timber expands significantly (from 2 to 9%) suggesting 

continued harvesting of the larger trees. Bark and Birch roundwood (pith-to-

bark) are reduced indicating less twig and branch collection. Birch roundwood 

(not-pith-to-bark) also decreases to its lowest level, although it still comprises 

50% of the total sample which surprisingly indicates an ongoing supply of 

substantial Birch branches for fuel.  

Birch utilisation is dominant throughout all phases at Skútustaðir, although Phases 1 & 3 

demonstrate more small branch harvesting. The reduction in all archaeobotanical material 

despite additional samples for Phase 2 concurs with prior weed/wild species evidence. This 

probably signifies removal of the house or midden, although social and climatic factors may 

have reduced production, requiring the feeding of twigs and branches to valued livestock. 

Imports occur only from 1477 to 1900, and may reflect an additional need for larger timbers, 

as driftwood also increases significantly from 1717. Such a change in strategy may have been 

an attempt to take pressure off the native woodland. While Juniper remains fairly stable, 
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Willow gradually decreases across phases. Representations of rootwood between 1477-1717 

are not supported by increases in either Birch timber or Birch roundwood (not-pith-to-bark), 

and while a substantial increase in roundwood (not-pith-to-bark) from this date to the 20th 

century suggests whole trees were being harvested, this is not confirmed by increases of 

timber. Although driftwood percentages increase with rootwood in Phase 4, the lack of 

correlation in any other phases suggests these categories are not linked. Harvesting strategy 

switched to whole trees and larger branches from 1717. As use of driftwood increased 

simultaneously, this may indicate a change in usage to that of a fuel source due to the 

declining native species. 

Overall results provide conflicting evidence from both sites. Specimens of rootwood may be 

anticipated in the early stages at Hrísheimar and Skútustaðir due to the necessity to clear land 

for housing and agriculture, however there are no representations and burning horizons are 

also absent. This is puzzling as construction of infields and living accommodation cannot 

occur on land containing the remnants of trees. Results indicate that larger pieces of birch 

roundwood (not-pith-to-bark) were being utilised at Hrísheimar in the second domestic phase, 

which contradicts the earlier archaeobotanical evidence of tree reduction (Figure 4.8). This 

phase has only a sixty year duration due to the site being deserted in the early 11th century.  

Thus landowners may have vacated the site prior to total forest destruction, or enforced 

abandonment may have occurred to preserve remaining woodland, as happened at Ϸórsmörk 

(Dugmore et al, 2007a, 8). As data remains relatively stable over the two phases, it may be 

therefore, that resources were carefully controlled. This does not explain however, the 

complete lack of rootwood from both phases. Similarly at Skútustaðir, supplies of Birch are 

evident long after weed/wild evidence (Figure 4.10) and palynological sources suggest 

supplies had been depleted. This may suggest that gathering of wood occurred further from 

the farm as forests were reduced, or that wood supplies were being stored for longer which 

allowed time for bark, leaves and other attachments to drop off. This may be supported by the 

increase in Birch roundwood (not-pith-to-bark) from 1717. It is surprising therefore, that 

evidence for substantial Birch timbers is recorded in 20th century contexts.  

Industrial Fuels 

Industrial processes require higher temperature burning and thus fuels would have been 

selected to attain this. While domestic hearth fires did not exceed 400ºC, which resulted in 

incomplete combustion, industrial processes operated at twice this temperature (800ºC) 
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providing complete combustion (Simpson et al, 2003, 1403). In iron smelting, the furnace 

needed to be brought to a temperature of between 1,000 and 1,300ºC to remove impurities 

from the iron (Edvardsson et al, 2003, 25). Charcoal and peat are deemed capable of 

producing such temperatures and indeed, peat utilisation is most associated with higher 

temperature burning (McGovern et al, 2007, 39). There was therefore, high demand for peat 

and charcoal to fuel various industrial processes, yet metalworking was the primary 

consumer. Charcoal was utilised to extract iron from its ore and for working the metal 

(Church et al, 2007a, 660). The density and spread of charcoal production pits across Iceland 

is testimony to the intensive production taking place post landnám (McGovern et al, 2007, 

38). Such extensive activity required vast supplies of wood (Coles, 1973) and a local bog, as 

iron ore could only be obtained from this source during the Viking Age (Edvardsson et al, 

2003, 25). Pits tended to be located in or adjacent to local woodland, as charcoal has less mass 

than the raw material and was therefore easier to transport (Lawson et al, 2009a). 

Hundreds of charcoal production pits have been sighted in the Mývatnssveit area from aerial 

survey (Church et al, 2007a, 669), yet metalworking activity would have been restricted to a 

limited number of higher status farms with access to extensive areas of woodland and bog 

sources. Indeed experiments in processing bog iron in shaft furnaces, the type used by 

Vikings, has illustrated that around 4kg of charcoal was necessary to create 1kg of raw bloom 

(Edvardsson et al, 2003, 25). The impact of charcoal making, smelting and iron working on 

forests therefore, would have been immense (McGovern et al, 2007, 38). While the 

Hrísheimar site included a bog and extensive woodland resources, the Skútustaðir farm did 

not, and thus the review of industrial fuels is limited to one site. 

Site evidence from the group of smelters and smithy structures located on the ridge above the 

farm, illustrates that iron smelting and metal working were conducted on a large scale at 

Hrísheimar. Results show that this was fuelled by a mixture of charcoal and peat, the former 

being represented in 100% of samples, while the ubiquity count reduces to around 38% for 

APM (Table 4.1). Due to the lack of accompanying macrofossil evidence, the APM is more 

likely to represent the burning of well-humified peat (Church, 2000, 121). The only other 

sample constituent was a single frond of indeterminate seaweed species, which might have 

been accidentally burnt in an industrial process such as salt extraction, or reflect an attempt to 

utilise seaweed as a fuel (Hicks et al, 2011, 34; McGovern et al, 2006, 199; Simpson et al, 

2003, 1403) 
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Specific fuel sources appear to have been utilised for industrial processes, and these differ 

from those identified in the domestic context. While wood and turf were recovered from the 

central hearth, charcoal and peat were the chosen fuels for industrial activity. Data from the 

domestic phases indicates limited fuel sourcing; however this does not present the overall 

view. Indeed, it is apparent that landowners were retaining their most precious fuel assets for 

industrial usage. At Skútustaðir it was not necessary to set aside specific resources, resulting 

in a wider range within the domestic context. With no evidence of industrial activity at this 

site, no charcoal production was required.  

Comparison of wood species and categories between industrial and domestic phases at 

Hrísheimar, may highlight preferences for particular usage, however composition of charcoal 

remains fairly stable as Birch predominates in both contexts (Figures 4.12-4.15). An increase 

in Willow is evident for the industrial phase while driftwood species are not represented. 

Willow produces a particularly pure charcoal so may have improved overall quality giving it 

more value in this capacity. Conversely, driftwood would have been highly coveted for 

construction. Similarly as birch timber had wider utility; it is less likely to be well represented 

in the industrial situation. This is confirmed by increased frequency of roundwood (pith-to-

bark), demonstrating the selection of smaller branches and twigs for charcoal production. This 

practice may be responsible for the higher representation of bark, which also helps produce 

better quality charcoal. Birch bark detaches easily, and its greater prevalence suggests the 

wood had been stored for a short duration prior to its utilisation (Church et al, 2007a, 663). 

Wood may be stored more indefinitely for domestic contexts, providing ample opportunity for 

the bark to peel off prior to its journey to the hearth. An increase in indeterminate charcoal 

specimens may be due to the higher temperature burning. 

While it is not possible to conclude that sufficient local birch was available to support 

industrial processes in Phase 2, due to the inability to subdivide industrial samples, the 100% 

ubiquity count demonstrates higher levels of utilisation in the later phase for domestic 

purposes. As the industrial process was so important, wood sources for charcoal would have 

taken priority. Thus indications of birch wood shortages would have appeared as alternative 

domestic fuels. This did not occur, strongly suggesting continued availability of local 

woodland. 

As both domestic and industrial data has been discussed, it is now possible to compare 

patterns of fuel resource utilisation with other sites in the Mývatnssveit area, specifically 
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Hofstaðir and Sveigakot. Hofstaðir was a high status ritual site with access to a wide range of 

resources, while Sveigakot was a more marginal site, enclosed on all sides by bordering 

farms/features making access to resources much more limited (Simpson et al, 2004, 477). 

Following settlement however, both farms utilised turf as the staple fuel resource for low 

temperature domestic combustion. In contrast both Hrísheimar and Skútustaðir used a 

predominance of wood with supplementary additions. Hrísheimar may have burnt a marginal 

amount of turf, while peaty turf comprised over a third of samples at Skútustaðir. The single 

specimen of seaweed may also have indicated a fuel source (Sveinbjarnardóttir et al, 2007, 

192). At Sveigakot from AD 950 frequency of turf increased substantially demonstrating an 

increased reliance on this source as a low temperature fuel. At Hofstaðir however, there was a 

gradual shift towards peat and wood fuels which became the major constituents in later 

periods, and while Sveigakot also increased wood utilisation in later periods, this was not to 

the same extent, and peat was not used at all (Simpson et al, 2003, 1415). Instead animal 

manure became part of the fuel base, and this may suggest additional resources needed to be 

exploited to meet fuel requirements (Simpson et al, 2003, 1413). The Hofstaðir and 

Hrísheimar sites provide no evidence of such residues and it is postulated that sufficient fuel 

resources were deemed to exist. Skútustaðir did not utilise dung until after 1477 and this may 

coincide with a reduction in tree numbers. 

While no evidence of industrial activity was apparent at Skútustaðir, micromorphological 

analysis would be required to detect higher temperature combustion. At Hofstaðir and 

Hrísheimar, charcoal and peat were employed for industrial purposes. As stated earlier, these 

two fuels are most suitable for this task. Yet the composition appears to have differed with 

Hrísheimar using more wood and Hofstaðir more peat. This was unusual as there were no peat 

reserves located on the site and so supplies had to be transported to the farm (Simpson et al, 

2009, 359). Hrísheimar had substantial woodland close by and the bog from which peat could 

be extracted (Edvardsson et al, 2003, 25). Although peat resources were only 3km from 

Sveigakot, it does not appear to have had access to them, and it was forced to rely on turf for 

its high temperature burning, although this was an inferior fuel for high combustion tasks. It 

may have been that a social elite was regulating availability of the peat, and thus the lower 

status of Sveigakot seems to be confirmed (Simpson et al, 2003, 1415). 

Considering all evidence it is apparent that fuels were selected for purpose, with those capable 

of producing the highest temperatures utilised for industrial activity. Yet this was not always 

possible and may suggest that control of certain resources was an important factor in fuel 
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choice. Even though a wide range of fuels might be available, if access to superior fuels was 

restricted, less suitable alternatives would need to be utilised (Lawson et al, 2007, 11). This 

was probably the case at Sveigakot, which had to rely on turf, even for its high temperature 

combustion. Thus fuel utilisation may provide important information regarding status and 

power. 

Woodland Management Strategies 

In Norway, an agrarian society and animal husbandry practices had been established by the 

Late Neolithic (Hjelle et al, 2006, 147). This had involved some forest clearance, and 

evidence suggests pollarding and leaf collection for fodder was already being practiced in 

order to best utilise and conserve assets (Hjelle et al, 2006, 155). Thus the Viking settlers had 

experience of managing land and farm resources in a visually similar landscape. It would be 

expected therefore, that such techniques would be applied to their new environment. 

Management of woodland may be assessed by examination of specific categories. Only 

roundwood (pith-to-bark) and roundwood (not-pith-to-bark) with an outer ring provide 

diameter and ring count information, vital for determining whether particular ages or girths 

were being targeted for collection. A correlation between these factors may indicate 

productivity, an increase of which would suggest employment of management strategies. 

Larger pith-to-bark pieces tend to be underrepresented however, as wood fragmentation 

during burning does not favour their survival. Continued attachment of bark and buds may 

also be a sound indicator regarding time of harvesting, and how quickly the wood was utilised 

(Church et al, 2007a, 663). A lack of attachments may indicate a clearance event in the past, 

which resulted in long term storage, during which buds and bark would have dropped off 

before carbonisation.  

When comparing domestic phases for 870-1000 between sites, it is evident that only the 

Skútustaðir graph representation for ring counts is unimodal, although the overall pattern is 

quite similar (Figures 4.21 & 4.24). Both graphs show a peak at 6-10 years suggesting this is 

the preferred age for harvesting. While frequency decreases significantly to the next age 

group (11-15), this is not as apparent at Hrísheimar where harvesting remains relatively high. 

A minor representation of old trees (46-55 years) is evident at this site while the oldest 

specimens at Skútustaðir are in the 26-30 age bracket. Comparative data from diameter 

measurements demonstrates a noticeable divergence in pattern however, with Skútustaðir 

showing unimodality, but Hrísheimar displaying greater fluctuation (Figures 4.22 & 4.25). 
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Skútustaðir peaks at 5-6mm, while 3-4mm frequencies are highest at Hrísheimar, followed by 

5-6mm, but with 9-10mm close behind. While categories between 11 and 30mm demonstrate 

minimal frequencies or absence of data, no representations occur above 30mm. At Skútustaðir 

however, largest girths are in the 15-16mm category, yet representations over 12mm are 

minimal. Hrísheimar displays a larger variety of width categories. Limited evidence of older 

trees and wider girths suggests that such specimens may have been harvested for a specific 

purpose, or had ceased being productive, as Birch rarely attains more than 100 years 

(Atkinson, 1992, 848). Apart from this, only younger and smaller branchwood seems to have 

been collected, while mature trees appear to have been conserved. The harvesting of younger 

and slimmer appendages also occurs at Skútustaðir, denoting harvesting of branches rather 

than whole trees. Correlation xy-graphs indicate that rate of growth across populations at both 

Hrísheimar and Skútustaðir appears to follow a normal pattern of productivity implying 

similar growth conditions (Figures 4.23 & 4.26). Focusing on temporal changes at 

Hrísheimar, it can be seen that neither phase produces unimodal graphs (Figure 4.21), 

however, while the 6-10 yr group is most represented in both periods; it appears that tree 

younger than 15 years are being specifically targeted in Phase 1. This could indicate 

coppicing, as younger trees produce smaller branches which are being targeted. No older trees 

have been harvested in the later phase; this may be evidence of conservation, absence from 

the landscape, or selection for another purpose. Size graphs are not unimodal (Figure 4.22), 

and yet Phase 1 (870-940) specimens are mainly clustered from 1-10mm with either a small 

number of samples or no representations after 10mm up to 30mm which constitutes the 

largest girth. By AD 940 only 9 samples are represented and this may have produced the 

unusual results for Phase 2. While most of these occur in the lower values, a third of samples 

were in the 29-30mm category which may imply the targeting of larger branches, although 

these may have originated from the same host. Nonetheless, line of best fit for Phase 2 is 

steeper (Figure 4.23), indicative of increased productivity which is often an indicator of 

coppicing. The targeting of young, slender specimens, also suggests management strategies 

are in place. Comparison between domestic and industrial phases demonstrates remarkable 

similarity in distribution, with the 6-10 year categories being most represented, followed by 

11-15 years. Industrial activity seems to also favour younger trees with minimal 

representations of older (46-50 years) specimens. More data was obtained for diameter from 

the industrial phase, and this is surprising since wood tends to fragment more easily at higher 

temperatures. As with age, diameter does not follow a unimodal distribution. Highest 

representations are shared in the industrial phase covering 3-6mm widths, while a second 
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peak is apparent at 15-16mm. A single specimen with a girth of 39-40mm is not matched in 

the domestic phase, in which no wood exceeding 30mm was recovered. Conversely the 

industrial data also comprised a much greater number of very small 1-2mm specimens. While 

the 3-6mm categories are most frequent in domestic data, branches of 9-10mm are also well 

represented. Yet for both types of activity small twigs/branches of 1-10mm are most favoured. 

Correlation graphs are broadly similar, although industrial data is more clustered. As wood 

shrinkage during charcoal production may be around 45% (McGinnes et al, 1974), it may be 

anticipated that initial wood portions would need to be fairly substantial. Experimental 

charcoal production pits created at Mývatnssveit, aimed to determine the existence of 

preferential wood sizes for charcoal production. Smaller diameter pieces were found to 

pyrolise more easily than larger samples, and may explain the selection of smaller fragments 

for industrial activity (Lawson et al, 2009a). 

Overall it appears that trees were targeted on an age basis of less than 15 years. Composition 

is extremely similar between industrial and domestic phases, suggesting that the two types of 

combustion process required similar sizes of wood. This is suggestive of a management 

strategy, which aims to conserve older specimens, and improve productivity. Temporal 

changes at Skútustaðir will now be analysed to determine if similar techniques were in 

operation (Figures 4.24-4.26). 

Phase 12 Both ring count representations are unimodal and demonstrate a peak at 6-10 

870-1477 years, however this is much reduced by Phase 2. Trees over 20 years also 

decrease in frequency. Diameter data broadly reflects age in the initial phase 

showing a preference for younger, more slender branches, however by Phase 2 

the distribution is much flatter. This suggests that trees were being targeted by 

age rather than size. Correlation shows a much wider distribution in Phase 2, 

and may be due to the accelerated growth of several specimens, falsely 

implying an overall increase in production. 

Phase 23 Although Phase 3 ring count and diameter are not unimodal, they follow very 

1000-1717 similar patterns. Focus has switched from 6-10 year trees to even younger and 

thinner branches. Some older trees are still represented however, including one 

specimen at 41-45 years. Particularly large girths are demonstrated in two 

specimens (79-80mm and 93-94mm), which are not represented due to 

graphical distortion. Correlation suggests some increase in productivity and as 
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harvesting appears to focus on fewer categories; evidence of management 

intervention is suggested. 

Phase 34 By Phase 4, although the first three ring count categories remain central to 

1477-1900 harvesting strategy, focus has reverted to the 6-10 year specimens, and peak 

diameter has increased correspondingly. Yet frequency values are flatter across 

categories with the second largest being for 19-20mm. Nonetheless specimens 

continue to be targeted by age rather than size. Productivity seems to have 

increased, and two samples demonstrate unusually rapid growth, while one 

outlier at 49-50mm has been excluded. 

Phase 45 In these unimodal representations, age targets reflect phase 4, while older 

1717-C20th  specimens disappear. Diameter peak extends over two categories 3-6mm and 

productivity remains constant. 

Phases 1, 3 and 5 provide unimodal distributions, in which diameter broadly reflects age. Yet 

in all phases, selection appears to be by age, the main target being 6-10 years with the 

exception of Phase 3 which is for 1-5 year old saplings. The collection of younger branches 

which are usually smaller, may indicate a deficit in tree numbers or growth, and hence a 

management strategy to encourage woodland regeneration. Such results strongly indicate a 

managed resource which may include age specific areas of woodland, indicative of coppicing 

or pollarding. 

Indeed, age related selection is evident at both sites, for both industrial and domestic phases 

and over time. While Hrísheimar were targeting trees of <15 years, Skútustaðir specimens 

tended to be younger at <10 years which may suggest fewer woodland resources. Coppicing 

and/or pollarding may have been practiced to conserve valuable woodland reserves. Original 

base felling of the straight trunk at landnám would have encouraged basal growth in much the 

same way as coppicing, and this strategy utilised for land clearance, may have immediately 

increased the vulnerability of the trees (Smith, 1995, 336). This process renders new shoots 

vulnerable to grazing activity, whereas in pollarding trees are cut back about a metre from the 

base. This might have proved difficult with Icelandic birch however, as they rarely exceeded 

3 metres (Smith, 1995, 336). Coppicing would therefore have been the most likely strategy.  

Branch harvesting creates open wounds from which sap is able to leak. As birch sap rises in 

spring, harvesting at this time would have been most detrimental to the plants (Church et al, 

2007a, 669). Already close to their ecological limits, a tree weakened in this way would be 

more susceptible to adverse conditions such as climate deterioration and grazing, or human 
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intervention. Substantial amounts of birch roundwood from both sites were still endowed with 

pieces of bark, indicating harvesting from live trees. The excellent state of preservation 

implied that wood had been utilised shortly after harvesting. At Hrísheimar, the presence of 

well preserved buds in several samples, suggests that at least some of the harvesting activity 

occurred during spring (Church et al, 2007a, 667). This management strategy may have 

negatively impacted on the birch woodland therefore in the Hrísheimar locale.  

The Norse complex of cattle, caprines and pigs also had a major impact on the woodland. 

Occasional cattle grazing and browsing of saplings and seeds by caprines contributed to the 

decline of Birch as shoot production was depressed, preventing woodland regeneration (Miles 

& Kinnard, 1979; Pigott, 1983; Atkinson, 1992, 844). Pigs proved to be the major culprits 

however, as their grubbing around tree roots was particularly destructive (McGovern et al, 

2007, 40). While this species was relatively scarce at Skútustaðir (Hicks et al, 2011, 33), the 

numbers exceeded those of cattle at Hrísheimar in the 10th century. When most farmsites were 

decreasing their pig populations, Hrísheimar increased stocks. This also appears to have been 

a questionable management strategy especially considering the farm’s reliance on the 

woodland. As pigs and cows were high status domesticates (Dugmore et al, 2005, 27), social 

standing may have taken priority over environmental issues. Indeed, management strategies 

may have been affected by status, in terms of access to, and control over, a wider range of 

resources, and this will be considered with reference to the neighbouring sites of Hofstaðir, 

Sveigakot and Undir Sandmúla. 

While Hofstaðir shows the widest range of arboreal resources, Skútustaðir has the most tree 

species, including the highest representation of driftwood. This item signifies control over 

coastal access and resources, and is therefore an indicator of both status and wealth. Lack of 

driftwood at Undir Sandmúla would force reliance on local wood supplies. Regardless of 

status however, all sites relied primarily on birch assemblages, although constituents varied 

according to site. In the initial phase no local rootwood was recovered from Hrísheimar, 

Skútustaðir or Undir Sandmúla, implying a different management strategy to Hofstaðir and 

Sveigakot from the outset. Yet uprooting occurred more widely at Hofstaðir, which may have 

had implications for deforestation. Attachment of bark on many of the samples from this site 

demonstrated live harvesting with utilisation soon after, as was found at Hrísheimar and 

Skútustaðir. This process signals a form of branch harvesting indicative of woodland control. 

Rowan was recovered from only the Hofstaðir and Sveigakot sites, the former comprising 

three categories (timber, roundwood (pith-to-bark) and roundwood (not-pith-to-bark)), while  
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Figure 5.4 – Relative charcoal constituents from other Mývatnssveit sites (Data from Duarte, 2006 and 
Church, unpublished). 
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Figure 5.5 – Relative ring counts of Birch roundwood (pith-to-bark) from other Mývatnssveit sites 
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 Figure 5.6 – Relative diameters of Birch roundwood (pith-to-bark) from other Mývatnssveit sites 

Figure 5.7 – Relative correlation of ring count/diameter of Birch roundwood (pith-to-bark) from other 
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Figure 5.7 – Relative correlation of ring count/diameter of Birch roundwood (pith-to-bark) from other 
Mývatnssveit sites 
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the latter contained only timber. This suggests that Rowan was found within the Hofstaðir 

area, while it was obtained by trading at Sveigakot. This may suggest that Hofstaðir had 

control of this resource in the locale. While Hrísheimar and Undir Sandmúla display the 

narrowest range of arboreal resources, the status acquired through metal working and the 

sheer expanse of natural woodland surrounding Hrísheimar would afford sufficient status and 

wood resources to meet initial requirements.  

It may be seen from examination of Figures 4.21-4.26 & 5.4-5.7 that while Hrísheimar and 

Skútustaðir appear to have targeted by age, the three comparison sites all seem to have 

selected by size. Harvesting across all sites concentrates on the smaller, younger appendages, 

and while Hrísheimar, Undir Sandmúla and Sveigakot peak at 3-4mm, Hofstaðir and 

Skútustaðir demonstrate a preference for slightly larger branches (5-6mm). Hofstaðir has the 

oldest trees with the widest girths; however Skútustaðir has the youngest and most slender 

specimens. This shows that the forest at Hofstaðir was better established, and also that older 

trees were being felled, maybe with a specific purpose in mind. The oldest representation at 

Hofstaðir is 61-62 years while specimens do not exceed 55mm at the other sites. 

Representations are spread across a wider range of ages at the three comparison sites, 

however, while these have their own unique pattern of frequencies, younger trees tend to be 

favoured. Simpson et al (2003, 1415) suggest that a woodland management strategy such as 

coppicing results in different areas of woodland having different age structures and densities 

which would raise productivity for a time. It appears that such strategies were employed at all 

sites across the region, as appendages were targeted by age or width, favouring the lower 

categories. As suggested by Simpson et al, (2003) coppicing is most likely to have been 

adopted. While this may have proved effective at some sites, counter measures such as pig 

husbandry may have reversed any favourable outcomes. Some sites such as at Sveigakot 

drastically reduced pig stocks, while Hofstaðir numbers remained fairly stable (McGovern et 

al, 2007, 40). Only at Hrísheimar did numbers increase in the 10th century which must have 

significantly impacted on the woodland. Thus while evidence of management practices exist, 

not all of these could be claimed to be appropriate. 

Trading Links 

Non-indigenous species were recovered in several categories including grain, fruit and wood, 

yet trading activity cannot always be concluded from this evidence. Although barley and oat 

are non-indigenous to Iceland, they formed part of the Norse agricultural package and were 
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introduced to the island rather than being imported. Cereal growing is only claimed to be 

viable in specific areas of Iceland (Erlendsson et al, 2009, 174; Zutter, 1992, 144). Yet even if 

initial trialling of crops occurred, it is likely that barley, the more successful of the two, 

provided only subsistence yields (Simpson et al, 2002, 424). Thus Iceland was never self-

sufficient in grain production (Rögnvaldardóttir, 2002, 4). Cereal imports were necessary for 

making porridge, a substantial constituent of the daily diet, and for beer production. These 

probably derived from the homelands. Much of the limited early cereal production had ended 

during the 1400s, although lower lying regions may have continued into the next century 

(Simpson et al, 2002, 439; Rögnvaldardóttir, 2002, 4). While the cessation of grain production 

cannot be wholly attributed to the climatic downturn apparent at this time (Simpson et al, 

2002, 439), imports were certainly affected. In some years imports of grain were scarce, as 

severe weather and other factors, prevented ships completing the hazardous journey. In 1326, 

for example, no Norwegian ships were able to carry imports to Iceland, resulting in a real 

shortage of many basic commodities including grain (Rögnvaldardóttir, 2002, 5). The fairly 

substantial recovery of rye at Skalholt in south Iceland is wholly attributable to imports 

(Archaeological Services, 2010). No dating is yet available from this site, yet specimens will 

originate from the site habitation dates of 1056-1785. Certainly imports of rye steadily 

increased until it became the grain most utilised in human consumption (Rögnvaldardóttir, 

2002, 4). Evidence of flax cultivation is extremely limited (Smith, 1995, 329), a recent find at 

Skalholt providing the first archaeological evidence (Archaeological Services, 2010, 4). Yet 

flax requires good quality land and therefore would have been competing for the limited 

amount of infield required for barley production (Bond et al, 2004, 143). Thus such evidence 

is more likely to have signalled importation rather than cultivation. 

The Norse had enjoyed several varieties of fruit in their homelands. Plums, cherries, pears and 

small apples, plus hazelnuts, beech nuts and walnuts were grown in Scandinavia 

(Rögnvaldardóttir, 2002, 2). As no fruit bearing trees grew in Iceland, such fruits would have 

needed to be imported, and fruit available from shrubs such as the crowberry and bilberry 

would have had increased importance. While Skútustaðir provides evidence of two fruit 

categories, fig and plum (Figure 4.2), the medieval site of Skalholt in the south of the island, 

yielded, fig, plum, cherry, apricot, peach, grape, olive and hazelnut. This had been a 

particularly high status site (Lucas et al, 2002, 1) however, which would have had well 

established routes from the coast. Inclusion of fig and olive suggests imports from as far 
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afield as the Mediterranean and possibly the Middle East. In contrast, fruit remains at 

Skútustaðir appear only from the 20th century, reflecting a general increase in imports.  

Importation normally refers to goods (and services) intentionally brought into the country for 

sale or exchange, however the arrival of some commodities may be non-purposeful. Wood 

falls into both categories and it is often difficult to establish which route non-indigenous 

species have followed. While only Pine (Pinus sp.) was recovered from Hrísheimar, 

Skútustaðir yielded four additional species; Oak (Quercus sp.), Hazel (Corylus sp.), Larch 

(Larix sp.), and Yew (Taxus baccata L.). Of these, oak, yew and hazel are most likely to have 

been imported. Icelandic species provided insufficient girth for construction, and imported 

timbers may have been utilised primarily in house construction and ship building (Byock, 

2001, 33). Prior to the deforestation of Iceland the Laxdæla saga (Kunz, 2001, 286-288) 

relates that Hoskuld has to return to Norway to obtain timber for his farm buildings (Owen, 

2009, 232). As the Pine sample from Hrísheimar was recovered from the first domestic phase 

(870-940), it may have been utilised for the initial dwelling. It has been suggested that oak 

fragments may be the staves of barrels, which derived from English coopers for the purposes 

of tanning (Zutter, 2000, 81); however such fragments may have been constituents of other 

artefacts not imported for their wood. At Skútustaðir these imports, probably from Northern 

Europe (Rackham, 1980), occurred only after 1477; at a time when English merchants began 

to journey into Icelandic waters. The Norse were able to trade dried fish and homespun cloth 

in exchange for wood, grain, candlewax and luxuries such as honey (Rögnvaldardóttir, 2002, 

5). The switch from hazel and yew to oak may reflect a fashion trend for the production of 

more substantial construction work or furniture. Such imports would confirm the prestige of 

the site. Yet driftwood also conferred status, in some cases due to the implied control over 

coastal access (Simpson et al, 2003, 1403; Smith, 1995, 336). This was extremely important 

as it provided essential items for exchange and even survival (Zutter, 2000, 81). While 

presence of driftwood at both study sites reflects a high social position it may not infer control 

over access, but rather internal trade within Iceland. This is also demonstrated by the presence 

of marine fish at these sites which could not be obtained any other way (Hicks et al, 2011, 24; 

Edvardsson et al, 2005, 16). Nonetheless such timbers, probably originating from Siberia or 

Russia (Eggertsson, 1993, 15), would have dramatically increased in importance as wood 

supplies began to dwindle. 

Exotic species of wood, fruit and grain appear to have been widespread in Iceland from 1477, 

and indeed coal specimens are also indicative of trading activity. This commodity is likely to 
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have derived from Britain as trading links were already well established for a variety of items 

including luxury goods (Rögnvaldardóttir, 2002, 5). Level of imports, provide an indication of 

wealth as surplus would be required for trading to occur, and this was particularly pertinent in 

the case of luxury items. This indicates that Skútustaðir was profitable up to the 20th century.  

North Atlantic Context 

The success of landnámsmenn, who colonised the North Atlantic islands, was dependent upon 

many factors including climate, soil and sediments, availability of resources, and management 

strategies. Many of the tasks required to ensure the Greenlanders survival such as seal and 

walrus hunting, demanded co-operation, and this was true of the Faroes to some extent, where 

communal whale hunts are still in operation (Dugmore et al, 2007, 19). Yet, Faroese farms 

were also self sufficient therefore avoiding over interdependence. Due to inhabiting small 

islands, farmers would tend to live in close proximity and have access to coastal resources. 

Iceland was unique in that farms were often fairly isolated and landowners who vied for 

prestige, honour and access to resources, tended to be more competitive than co-operative 

(McGovern et al, 2007, 30). Power and status afforded additional opportunities on Iceland, 

especially when trying to replicate the Norse model farm. This may be seen in the limited 

number of farms that attempted cereal cultivation. Such activity required seeds, manure and 

labour which required wealth and authority. Even with such attributes however, past research 

and present results support the theory that this never attained more than subsistence level. 

While Greenland’s climate could not facilitate the ripening of cereals, it would probably have 

been cultivated as animal fodder, and lyme grass was often used as a cereal substitute, as 

occurred in parts of Iceland (Buckland et al, 2009, 111; Erlendsson et al, 2009, 184). With a 

milder climate, the Faroes were able to achieve more profitable levels of farming, despite 

field size limitations due to local topography (Adderley & Simpson, 2005, 711). While 

Hrísheimar and Skútustaðir produced limited representations of barley with a minimal amount 

of oat (the only crops which were viable on Iceland), these two crops also predominated in the 

Faroe Islands (Sveinbjarnardóttir et al, 2007, 202; Church et al, 2005, 192). Six row hulled 

barley was preferred at both North Atlantic locations, being resilient to adverse weather 

conditions and due to its importance in the brewing of beer. Palynological evidence of oat 

cultivation exists for both Iceland and the Faroes, although macrobotanical remains are rare. 

While oat may have been a minority crop, it may also have been a weed of barley cultivation. 

It is suggested however, that post harvesting processing of barley may have differed between 

these two locations. Results from Hrísheimar and Skútustaðir accord with other Icelandic 
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research suggesting that crops tended to be processed off site. In the Faroes however, on site 

processing is more likely, as more chaff tends to be recovered from farmsites, providing 

increased opportunities for carbonisation (Church et al, 2005, 186). 

Many taxa across several categories are common to all North Atlantic locations. These are 

often indicative of human activity and include: weeds of cultivated land such as Chickweed 

(Stellaria media (L.)Villars) and Polygonaecae, apophytes such as Docks (Rumex sp.), Blinks 

(Montia fontana L.) and Buttercups (Ranunculus sp.), which commonly appear across islands 

after settlement, and wild berries like Crowberry (Empetrum nigrum L.) and Vaccinium sp. 

(Church et al, 2005, 186; Lawson et al, 2005, 668, 2007, 8; Sveinbjarnardóttir et al, 2007, 

198; Edwards et al, 2008, 4; Buckland et al, 2009, 110). While all were represented at 

Skútustaðir, buttercups and docks were absent from Hrísheimar samples. Nonetheless, site 

results appear to accord with previous research, both throughout Iceland and the wider North 

Atlantic. Such biota is most often evident in the archaeological record due to its incorporation 

in peat/turf or dung brought into the central hearth as fuel (Church et al, 2007b, 763).  

Fuel utilisation tends to reflect the relative abundances of floral composition and, to some 

extent, status and power. Peat and turf have been identified as the main fuel sources in the 

Faroe Islands due to the high concentrations of their carbonised remains across islands 

(Church et al, 2005, 191). Peat was readily available from extensive areas of blanket bog, and 

its procurement was a vital part of the local economy. This activity required planning and 

equipment, which was reliant on communal organisation (Church et al, 2005, 192). Turf was 

also in plentiful supply in Iceland and Greenland, however in Greenland its utilisation was 

primarily for the construction of houses and byres (McGovern et al, 1988, 231). Although 

woodland/shrubland was not as extensive as in Iceland, wood was utilised for domestic 

purposes and the recovery of willow and alder charcoals suggest it was also used in metal 

working activity. While the Norse did extract and smelt bog iron in Greenland (McGovern et 

al, 1988, 230), this would have been on a smaller scale than in Iceland. Forests were absent in 

the Faroe Islands, however, limited supplies of wood were supplementary fuel sources. Dung 

from domesticates was utilised across islands for enrichment and also as a supplementary fuel 

source, although this was more prevalent on Greenland due to shortages of alternatives 

(Dugmore et al, 2005, 32). In other localities utilisation may have reflected a lower status 

and/or restricted access to resources, as at Sveigakot in Iceland.  
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Individual farms utilised specific suites of combustible materials, and indeed the two 

farmsites discussed in this report used a different range and composition of fuel resources. 

The predominance of wood as fuel at Hrísheimar reflects the local woodland environment and 

supplementary peat used in industrial processes may have been sourced from the proximal 

bog area. Turf as fuel may have been used minimally, yet despite being listed as an Icelandic 

fuel, there is no record of seaweed utilisation for this purpose on either Greenland or the 

Faroes, despite their access to coastal resources. At Skútustaðir a wide range of fuel sources 

were employed, yet the greater reliance on peat, mirrors local wet meadow areas, while dung 

usage in a later period may indicate hardship or conservation of valuable wood resources. 

This may be for a specific purpose. Hrísheimar utilised wood for both its domestic and 

industrial burning. The smaller scale metal working activity on Greenland would also have 

required a fuel which was suitable for high combustion burning, and this could not be attained 

by dung. It is possible therefore that limited wood resources were retained for industrial 

activity while dung may have predominated in the domestic setting. In the case of Sveigakot 

in Mývatnssveit, however, lack of access to more suitable fuels limited farmers to using turf 

for high temperature combustion, even though this would have been less effective (Simpson 

et al, 2003, 1413). The two study sites therefore reflect the factors involved in making fuel 

choices, across the North Atlantic islands.  

While wood was an important fuel source across the North Atlantic, the composition of native 

tree species differed. Iceland with its arboreal advantages also shared the widest diversity of 

species; birch, willow and juniper were native to all three locations (Hannon et al, 2005, 641), 

however rowan was indigenous to Iceland alone, while alder scrub was found only in 

Greenland (Dugmore et al, 2005, 29). This additional tree cover however, combined with the 

highly friable andisols and increased population compared to its neighbours, contributed to 

the more pronounced ecosystem responses in Iceland following deforestation. Yet this was 

vital for pasture creation, domestic hearth and industry (Lawson et al, 2008, 1148-9). 

Utilisation of local resources as fuel may be obtained from analysis of recovered charcoal. 

Although carbonised wood deposits are rare on the Faroes, they consist of local roundwood, 

coniferous driftwood and minor representations of imported species, such as the oak 

specimens found on Sandoy (Malmros, 1994; Church et al, 2005, 194). Similarly fragments of 

willow and alder are commonly found in hearth deposits in Greenland (McGovern et al, 1988, 

230), although driftwood was probably a supplementary source. 
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Composition of wood fuel at both Mývatnssveit sites also relies heavily on native species, 

predominantly birch although neither site shows the full range of species. This is 

supplemented by driftwood and minimal fragments of imported wood. Driftwood species of 

Larch, Spruce and Pine are common to all North Atlantic locations and originate from the 

same areas, namely Russia and Siberia (Eggertsson, 1993, 29) although some American 

driftwood is also found in Greenland (Eggertsson, 1993, 19). It is recorded that Greenlanders 

often made journeys to Labrador in order to procure timber, however this is not reflected in 

the charcoal record (McGhee, 2009; Trigger & Washburn, 1996, 333). Of the study sites, only 

Skútustaðir provided evidence of imported wood species which derived from the later phases 

(1477-1900), one of these being oak which, as mentioned above, has also been recorded on 

the Faroes (Church et al, 2005, 194).  

Data obtained from Hrísheimar and Skútustaðir accords with prior research from Icelandic 

locations, which allows consistent comparison with the other North Atlantic islands. In 

particular, the importance of status in respect of access to resources, appears to be particularly 

pertinent to Iceland. Such comparison helps to emphasise the importance of local conditions 

and individual management strategies in determining the sustainability of landnám 

settlements. 
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Conclusion 

As the two farm sites examined for this dissertation have different lifespans, it has not been 

possible to compare sites over the full time period. Similarly, the industrial phase at 

Hrísheimar could not be subdivided, and reduced evidence from Skútustaðir for the 1000-

1477 period, ascribed to midden relocation, renders temporal trends impossible and difficult 

respectively. Nonetheless, site results provide valuable insights into Norse utilisation of their 

botanical environment. 

The presence of both domestic (central hearth) and industrial contexts illustrates the necessity 

for two distinct taphonomic models to explain the incorporation of taxa into the 

archaeobotanical record. Evidence of cereal cultivation may have entered the hearth due to 

cooking accidents or from purposeful drying of grain, and includes caryopses, chaff and 

accompanying weeds. Both Skútustaðir and Hrísheimar demonstrate cultivation of six-row 

hulled barley in the initial phase, while Hrísheimar also has minor representations of oat. This 

suggests initial trials to ascertain viability. The presence of oat at Skútustaðir (1717-1900) 

however, indicates this was a weed of the imported barley crop, since cereal cultivation had 

ceased in Iceland by the 15th century as imports became more economically sound. 

After this time only hay cultivation continued, yet this was vital for the over wintering of 

domesticates. The remains of cereal crops provided a good source of fodder and harvesting 

strategy determined overall yield. Uprooting (Skútustaðir) rather than cutting the culm 

(Hrísheimar) increased total yield, which constituted a significant amount across the whole 

infield. Yet allowing domesticates to feed on the remaining stalks at Hrísheimar, produced 

natural enrichment of the soil. While enrichment was evident at both sites, the build up of 

midden material at Hrísheimar suggests additions were irregular and minimal. As there is 

evidence of landscaping at Skútustaðir, to improve topography and maximise the infield area 

however, it is likely that these landowners were committed to regular and consistent 

enrichment activities. Such requirements would have been necessary to act as a buffer against 

adverse weather conditions. While evidence of enrichment was supported by the presence of 

certain weed species at both sites, this had ceased at Hrísheimar by AD 940. Conversely 

evidence for this practice continued until the 20th century at Skútustaðir. 

Outfield areas were also productive, and a range of trees, shrubs, weeds and wild plants 

satisfied many culinary, craft and medicinal needs. Such flora has preferential requirements 

regarding habitat, and thus assemblages relate the local ecology, although this may not be 
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completely representative due to being culturally selected. Macrobotanical assemblages for 

both sites, reflect their immediate environment with a predominance of wetland species at 

Skútustaðir and more woody species at Hrísheimar. Expansion of wetland appears to occur in 

both locations but during different time periods. At Skútustaðir, tree species are not 

represented after 1717, while shrubs also disappear by the 20th century, after which drier 

conditions are indicated. Absence of woody species from later periods may signify 

conservation for fuel purposes. Although wood, peat, turf, dung, coal and possibly seaweed 

were recovered; most pressure was placed on the woodlands. Both sites utilised proximal 

sources. At Hrísheimar this was predominantly wood with minimal turf additions, while a 

larger inclusion of peat at Skútustaðir reflected its wet meadow resources. Fuel variety 

increased at Skútustaðir post 1477. Inclusion of turf and dung may indicate wood depletion or 

general hardship, while coal imports from 1717 may demonstrate an improving economy. 

Reflecting the distribution of other resources, Skútustaðir demonstrated a wider range of 

wood species, while Hrísheimar relied primarily on its birch woodland, minimal stands of 

willow and limited pine driftwood. Imports from 1477 further increased the range at 

Skútustaðir, and increasing use of driftwood in the 20th century probably indicates a 

significant reduction in local wood supplies. While there is no indication of industrial activity 

at Skútustaðir, Hrísheimar’s extensive metal working activities relied on charcoal and peat, 

(the former being predominantly birch), as these were superior for high temperature 

combustion. 

As Hrísheimar had fewer fuel sources, pressure was more focused on its woodland 

environment which was being heavily utilised for the dual purposes of agriculture and 

industry, whether they were simultaneous or not. The need to conserve such valuable assets 

must have been recognised, and indeed evidence of management strategies existed at both 

sites in the targeting of branches from younger trees. Yet this appeared to be more focused at 

Skútustaðir and continued until the 20th century. Unfortunately, at Hrísheimar this was offset 

both by the harvesting of some birch branches at spring sap rise; reducing resilience to other 

pressures, and by increasing numbers of pigs in the second phase and thus reversing the trend 

elsewhere in Mývatnssveit. This prevented regeneration of an already vulnerable woodland, 

contributing significantly to deforestation and subsequent erosion. Nonetheless while 

archaeobotanical results conflict with charcoal ubiquity counts for Phase 2, strong evidence 

exists to indicate that sufficient woodland remained to support continued domestic usage. 

Industrial activity may have continued up to the 11th century or have terminated at some 
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earlier point. The final management decision may have been to abandon the farm before it 

was completely denuded.  

While macrobotanical evidence suggests trees survived until at least the 18th century at 

Skútustaðir, charcoal supports continuation into the 20th century. This site appears to have 

suffered less erosion and this may be partly attributable to factors beyond the landowners 

control such as inherent soil quality. Early choice of land which reduced the necessity for 

clearance, however, and more appropriate, consistent and effective management strategies in 

all time periods, may have played more of a role. This is evidenced by trading links from 

1477, (although this may have occurred earlier). Trade requires wealth, attesting to the status 

and success of the Skútustaðir farm. While location, resources and activities also confirm the 

elite status of the Hrísheimar site, several questionable management strategies contributed 

significantly to its demise, prior to the expansion of trade. 

While current evidence accords largely with previous studies in the Mývatnssveit area, 

arboreal resources appear to have survived longer than anticipated, and their utility as a fuel 

into the 20th century suggests that sufficient trees still survived in the Skútustaðir locality. 

This research confirms the importance of local conditions, status and management of 

resources in the success or failure of landnám era farms.  

 

(24,742 words) 
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Appendix One 

Hrísheimar Contextual Information 

Sample No. Context No. Area Contextual Info Notes Phase 
s.03/1 c.103 A Charcoal deposit/eroded  870-1000 
s.03/2 c.105 A Dark brown/light turfish material on mound  870-1000 
s.03/3 c.111 A Woody deposit  870-1000 
s.03/4 c.115 A Charcoal ash  870-1000 
s.03/5 c.129 B Charcoal deposit in fireplace  870-1000 
s.03/6 c.136 A Dark brown deposit, inside a pit?  870-1000 
s.03/7 c.137 C Mixed deposit inside kiln  870-1000 
s.03/8 c.159 A Fill in a furnace  870-1000 
s.03/12 c.168 A Woodish deposit. Fill  870-1000 
s.03/13 c.161 A Iron working furnace  870-1000 
s.03/14 c.181 C Deposit beneath undefined deposit in furnace  870-1000 
s.03/15 c.186 B Charcoal/turf mix underneath possible floor layer  870-1000 
s.03/16 c.187 B Charcoal deposit  870-1000 
s.03/19 c.3 H Upper midden fill  940-1000 
s.03/20 c.4 H Upper midden fill  940-1000 
s.03/21 c.6 H Lower midden deposit  870-940 
s.03/22 c.42 L On my Harris Matrix and section  940-1000 
s.03/23 c.43 L In situ turf wall  870-940 
s.03/24 c.46  On DSR Harris Matrix same c. as s.04/2 870-940 
s.03/25 c.48 L On my Harris Matrix and section  870-940 
s.03/26 c.51 L On my Harris Matrix and section  870-940 
s.03/27 c.53 L On my Harris Matrix and section  870-940 
s.03/28 c.60 L Midden deposit inside structure in midden On DSR harris matrix 870-940 
s.03/29 c.50 L On my Harris Matrix and section  870-940 
s.03/30 c.54 L On my Harris Matrix and section  870-940 
s.03/31 c.61 L On my Harris Matrix and section  870-940 
s.04/1 c.36 L Midden deposit in western part. Med dark brown turfy dep/ w.grey green tephra 940-1000 
s.04/2 c.46 L Dark brown w/charcoal midden On DSR harris 

matrix 
870-940 

s.04/3 c.44 L Charcoal layer/orange brown  940-1000 
s.04/4 c.35 L Lens of beige peat ash/charcoal  940-1000 
s.04/5 c.47 L Light grey midden deposit  870-940 
s.04/8 c.76 L Midden material outside. N of structure  870-940 
s.04/9 c.77 L Midden material  870-940 
s.04/10 c.39 L Dark brown turfy deposit OR Turf collapse  870-940 
s.04/11 c.203 H Fill in a drain/east wall  870-940 
s.04/13 c.212 H Bottom part of fill in barrel pit  870-940 
s.04/16 c.205 H Fill in pit in north end 'barrel pit'  870-940 
s.04/17 c.82 L Big bone midden  870-940 
s.04/18 c.85 L Chunked, mixed turf walling  870-940 
s.04/19 c.84 L Midden dump with charcoal and ash  870-940 
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s.04/20 c.88 L Ashy midden deposit  870-940 
s.04/21 c.89 L Posthole  870-940 
s.04/22 c.90 L Midden deposit  870-940 
s.04/24 c.52 L Midden layer  870-940 
s.04/25 c.93 L Midden layer  870-940 
s.04/26 c.94 L  Midden layer  870-940 
s.04/29 c.91 L Midden deposit  870-940 
s.04/30 c.249 H Fill of the heath on the east side  870-940 
s.04/33 c.220 H Posthole/Stakehole  870-940 
s.04/34 c.221 H Postholefill. Structural post  870-940 
s.04/35 c.223 H Posthole fill in south end  870-940 
s.04/36 c.224 H Posthole fill in south end  870-940 
s.04/37 c.236 H Posthole fill. Divisional post of south side  870-940 
s.04/39 c.234 H Posthole fill. Structural on east side  870-940 
s.04/40 c.216 H Posthole fill  870-940 
s.04/85 c.229 H Stakehold fill  870-940 
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Appendix One 

Skútustaðir Contextual Information 

 

Sample No. Context No. Area Contextual Info Notes Phase 
s.08/1 c.002 D Grey ashy dump Appears on harris matrix C20th 
s.08/3 c.006 E2 Midden deposit  1000-1477 
s.08/4 c.005 D Windblown silty deposits Appears on harris matrix 1717-1900 
s.08/5 c.029 D Brown midden deposit Appears on harris matrix 1717-1900 
s.08/6 c.032 D Brown-grey midden dump Appears on harris matrix 1477-1717 
s.08/7 c.035 F Midden  1717-1900 
s.08/8 c.045 F Black and grey mottled midden deposit  1717-1900 
s.08/9 c.047 F Peat and midden layer some structural turf  1717-1900 
s.08/12 c.046 D  Appears on harris matrix 1477-1717 
s.08/13 c.052 D Mottled orange turf dump Appears on harris matrix 1477-1717 
s.08/15 c.055 D Mixed ash and turf dump with a bit of peat Appears on harris matrix 1477-1717 
s.08/16 c.058 E2 Midden layer  1000-1477 
s.08/17 c.057 D Mixed orange turf and green tephra Appears on harris matrix 1477-1717 
s.08/18 c.059 E2 Midden layer  1000-1477 
s.08/20 c.062 D  Appears on harris matrix 1477-1717 
s.08/21 c.063 E2  No contextual info 870-1000 
s.08/22 c.060 E2 Midden layer  1000-1477 
s.08/23 c.067   Appears on harris matrix 1000-1477 
s.08/24 c.071 D Turf dump Appears on harris matrix 1000-1477 
s.08/25 c.063 E2  No contextual info 870-1000 
s.08/26 c.069 F   1717-1900 
s.08/27 c.073 F Black and grey gravelly deposit  1717-1900 
s.08/28 c.074 F Turf deposit  1717-1900 
s.08/29 c.075 F Mixed turf and charcoal deposit  1717-1900 
s.09/01 c.104 G  Appears on section & harris matrix 1717-1900 
s.09/02 c.105 G  Appears on section & harris matrix 1717-1900 
s.09/05 c.110 G  Appears on section & harris matrix 1717-1900 
s.09/06 c.115 G  Appears on section & harris matrix 1717-1900 
s.09/07 c.119 G  Appears on harris matrix 1477-1717 
s.09/08 c.120 H  No contextual info C20th 
s.09/09 c.121 G  Appears on section & harris matrix 1477-1717 
s.09/10 c.123 G  Appears on section & harris matrix 1477-1717 
s.09/11 c.122 H  No contextual info C20th 
s.09/12 c.126 G  Appears on section & harris matrix 1477-1717 
s.09/14 c.127 H  No contextual info 1717-1900 
s.09/15 c.128 G  Appears on section & harris matrix 1477-1717 
s.09/16 c.129 H  No contextual info 1717-1900 
s.09/17 c.131 G  Appears on section & harris matrix 1477-1717 
s.09/18 c.130 H  No contextual info 1717-1900 
s.09/19 c.132   Appears on section & harris matrix 1477-1717 
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s.09/20 c.133 G  Appears on section & harris matrix 1477-1717 
s.09/21 c.135 G  Appears on section & harris matrix 1477-1717 
s.09/22 c.138 G  Appears on section & harris matrix 1000-1477 
s.09/23 c.139 G  Appears on section & harris matrix 1000-1477 
s.09/24 c.136 H  Appears on harris matrix 1477-1717 
s.09/25 c.140 G  Appears on harris matrix 1000-1477 
s.09/26 c.141 H  Appears on harris matrix 1477-1717 
s.09/27 c.142 G  Appears on harris matrix 1000-1477 
s.09/28 c.145 G  Appears on section & harris matrix 1000-1477 
s.09/29 c.146 H  Appears on harris matrix 1477-1717 
s.09/30 c.144 H  Appears on harris matrix 1477-1717 
s.09/31 c.147 G  Appears on section & harris matrix 870-1000 
s.09/41 c.149 G  Appears on harris matrix 870-1000 
s.09/42 c.148 G  Appears on section & harris matrix 870-1000 
s.09/45 c.152 G  Appears on section & harris matrix 870-1000 
s.09/46 c.154 G  Appears on harris matrix 870-1000 
s.09/47 c.155 H  Appears on harris matrix 1717-1900 
s.09/48 c.156 G  Appears on section & harris matrix 870-1000 
s.09/49 c.158 G  Appears on harris matrix 870-1000 
s.09/50 c.161 G  Appears on harris matrix 870-1000 
s.10/02 c.211 E3 Brown uniform deposit (soil amendment?)  1000-1477 
s.10/03 c.214 H Lensed midden deposit  1477-1717 
s.10/04 c.216 E3 Brown deposit with small amount of midden material 1000-1477 
s.10/05 c.217 E3 Medium brown midden deposit  1000-1477 
s.10/06 c.219 H Medium brown bone rich midden deposit  1477-1717 
s.10/07 c.221 H Brown grey mottled midden deposit  1477-1717 
s.10/08 c.222 E3 Med brown midden deposit with ash lumps  1000-1477 
s.10/09 c.224 H Dark grey brown fine mottled midden  1477-1717 
s.10/10 c.226 E3 Medium brown midden  1000-1477 
s.10/11 c.229 H Grey brown midden deposit with turf lenses  1477-1717 
s.10/13 c.231 H Mid-grey finely mottled midden deposit  1477-1717 
s.10/14 c.230 E3 Mottled tan deposit with pebbles  1000-1477 
s.10/17 c.234 H Mottled brown midden  1477-1717 
s.10/18 c.236 E3 Turf debris  1000-1477 
s.10/20 c.239 H Uniform brown deposit  1477-1717 
s.10/22 c.242 E3 Orange brown midden  870-1000 
s.10/23 c.243 E3 Turf debris with charcoal lenses and gravel  870-1000 
s.10/24 c.246 H Wood ash midden  1477-1717 
s.10/25 c.247 E3 Mixed midden in crevice  870-1000 
s.10/26 c.248 E3 Turf deposit in crevice  870-1000 
s.10/27 c.246 H Charcoal wood ash midden  1477-1717 
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