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Abstract

Ecotoxicological risk assessment must be undertaken before a chemical can be deemed

safe for application. The assessment is based on three components: hazard assess-

ment, exposure assessment and risk characterisation. The latter is a combination of

the former two. One standard approach is based on the deterministic comparison of

exposure concentration estimates to the concentration of the toxicant below which

adverse effects are unlikely to occur to the potentially exposed ecological assemblage.

This concentration is known as the ‘predicted no effect concentration’ (PNEC).

At the level of hazard assessment we are concerned with, there is a requirement

that procedures be straightforward and efficient, as well as being transparent. The

PNEC is in general currently determined using either a fixed assessment factor

applied to a summary statistic of observed laboratory derived toxicity data, or as

a percentile of a distribution over the ecological community sensitivity. Often it is

the situation that a hazard assessment will be based on substantially small samples

of data.

In this thesis we evaluate proposals for determining a PNEC according to reg-

ulatory guidance and scientific literature. In particular, we explore these methods

under the context of alternative probabilistic models. We also focus on the deter-

mination of conservative probabilistic estimators, which may be appropriate for this

level of risk assessment. Additionally, we also discuss the detection of species non-

exchangeability, a concept which is recognised by scientists and risk assessors, yet

typically discounted in practice. A proposal on incorporating knowledge of a non-
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exchangeable species for probabilistic estimators is discussed and evaluated. The

final topic of research examines a generalised deterministic estimator proposed in

a recent European Food Safety Agency report. In particular, we analyse the ro-

bustness and analytical properties of some cases of this estimator which (at least)

maintains the expected level of protection currently attributed.

Proposals made within this thesis, many of which extend upon what is currently

scientifically accepted, satisfy the requirements of being tractably straightforward

to apply and are scientifically defensible. This will appeal to end users and increase

the chances of gaining regulatory acceptance. All developments are fully illustrated

with real-life examples.
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Chapter 1

Introduction

In this chapter, the motivation behind the need for greater research into probabilistic

ecotoxicological risk assessment for the purposes of chemical safety assessment is

discussed. In addition, an outline of the focus of subsequent chapters is provided,

including a description of ancillary chapters.

1.1 Motivation

Chemical substances are widely embedded in modern society. They are used as:

pesticides on our crops; hydraulic fluids in our cars; and detergents in our cleaners

— these are just a few examples. It is the role of the governments to ensure that

the chemicals presented for application by manufacturers are safe for use, whilst

maintaining their use for advantage. Therefore, legislation exists across the broad

chemical market to enforce that adequate risk assessments are performed. As an

example, the new REACH regulation which was introduced on July 1st 2007 deals

with the “Registration, Evaluation, Authorisation and Restriction of CHemical sub-

stances” within the European Union (EU) (EC, 2006). Different legislation governs

other major categories of chemicals, for example pesticides are regulated within the

EU under Council Directive 91/414/EEC (EC, 1991).

Under the REACH guidance, for chemicals manufactured or imported in quan-

tities of greater than 10 metric tonnes per year it is required that a chemical safety

report is produced. The report will contain a large volume of information, includ-

1
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ing a chemical safety assessment which is comprised of many different aspects such

as: human risk; exposure assessments; environmental impact assessment; etc. The

latter component of the chemical safety assessment is referred to as ecotoxicological

risk assessment from here on. The compiled report is then reviewed by a risk man-

ager who will evaluate it, as well as other aspects such as socio-economic evidence;

similar safety report requirements are required for pesticides also.

The risk assessment itself is a tiered approach, with the lowest tier being inex-

pensive, simple to implement and highly conservative. The level of conservatism is

a reflection of the degree to which uncertainty is quantitatively described. As one

climbs the tiers, expense and complexity increases while conservatism is lowered in

exchange for more refined assessment. It is the failure to pass a preceding tier risk

assessment, or the identification of unacceptable uncertainty levels, that triggers a

higher one. At the very lowest tier, it may be possible to base the entire risk assess-

ment on qualitative reasoning where evidence is sufficient. At the highest tier, risk

assessment will be substantially detailed and focused on specific aspects of concern;

subsequently being reviewed by scientific experts.

Our research focuses on a single safety issue of the ecotoxicological risk as-

sessment, what the relevant REACH guidance document (ECHA, 2008a) entitles:

‘characterisation of dose [concentration]-response for environment’. Essentially, this

problem entails attempting to predict the concentration of a toxicant below which

adverse effects are unlikely to happen to ecological communities — collections of dif-

ferent interacting biological species [populations]. In the literature, the sought-after

value is called the ‘predicted no effect concentration’ (PNEC). In fact, EC (2003, p.

99) state, in the context of industrial substance risk assessment (of which REACH

replaces):

‘It is not intended to be a level below which the substance is considered

safe. However, again, it is likely that an unacceptable effect will not

occur.’

Therefore, we refrain from using the term ‘safe concentration’, as used by Emans

et al. (1993) and others. Additionally, we acknowledge the existence of a ‘true’

ecological community level fixed point PNEC is sketchy. Although the aim is to
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protect the structure of ecological communities, PNECs are derived based on pro-

tecting individuals; this is subsequently used as a proxy for protecting all ecological

communities in all ecosystems — the wider interaction of biological and physical

components of an environment.

The PNEC, in addition to the corresponding degree of uncertainty, falls under

the umbrella of hazard assessment (ECHA, 2008b). The hazard assessment in some

cases is sufficient for the purposes of risk assessment, e.g. when the substance is

classed as non-dangerous. In other cases it is evaluated in conjunction with cor-

responding exposure assessments to evaluate safety; this process is known as risk

characterisation. For all intents and purposes, the associated technical guidance

documentation — which stipulates the accepted scientific methodology for applica-

tion — for hazard assessment of general chemicals and pesticides is very similar for

the scope of this research.

At the lowest tier of quantitative risk assessment, the PNEC is deterministically

arrived at by little more than dividing the lowest measured tolerance of a sample

of species from the potentially exposed assemblage by a large number with limited

attributable meaning. This is based primarily on the precautionary principle, which

Forbes and Calow (2002a) describe as:

‘applying controls to chemicals in advance of scientific understanding if

there is a presumption that harm will be caused.’

However, the premise of such extrapolation methodology is highly criticised as it

introduces unquantifiable levels of conservatism. The inverse of the PNEC deter-

mination problem is the estimation of impact (sometimes erroneously referred to

as ‘risk’) to an ecological community conditional upon an environmental exposure

concentration. This is highly motivated for prioritisation of environmental clean-up

operations with limited resources, and is important for higher tier risk assessments

where one needs to characterise the overall risk by jointly treating all components

as stochastic (ECHA, 2008b).

It is important to recognise that ecological communities which are intended to be

protected are typically comprised of many species belonging to different taxonomic

groups, i.e. the classification of biological species. There are multiple sources of
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uncertainty in the hazard assessment component of a risk assessment; the variability

across species tolerance to the toxicant is considered to be one of the most influential.

Refinement of this aspect of uncertainty leads to an intermediate tier of quantitative

risk assessment for determining the PNEC.

Underpinning the aforementioned tier of ecotoxicological risk assessment, as well

as our research, is the fundamental assumption that there is a statistical model

that adequately represents the interspecies variability in tolerance for a given toxi-

cant. These models are known as species sensitivity distributions (SSDs), on which

a great volume of research exists, as for example Posthuma et al. (2002a) and ref-

erences therein. Application of SSDs at such tiers of risk assessments is restricted

by the resource costs needed to satisfy current regulatory requirements; one such

requirement is an adequate sample size n of data pertaining to the tolerance of

non-target species, yet currently there is little gain for chemical manufacturers to

implement this. In addition, there is still debate about many of the underlying

assumptions that proponents of SSDs must subscribe to; the most prominent are

described in Forbes and Calow (2002b). This has led to a degree of hesitation in

their application by stakeholders and regulators.

We explore current methodology, both deterministic and probabilistic, for cal-

culation of PNECs which account for this aspect of uncertainty in accordance with

the lower and intermediate quantitative tiers of risk assessment. In particular, we

substantially build on the developments of a recent European Food Safety Author-

ity (EFSA) report (EFSA, 2005); however the remit of the former report differs

from the scope of this research. Currently the handling and quantification of un-

certainty within the regulatory setting of ecotoxicological risk assessment is lacking

defensibility, thus underpinning the research presented here. In addition, a notice-

able element of this research is the mathematical tractability of PNEC estimators.

There is a definite requirement that risk assessments at the tiers we focus upon

both pragmatically and transparently balance robustness, protection and tractabil-

ity if they are to be adopted by current risk managers. This is contrary to the

growing increase in complexity of statistical modelling found in other areas of risk

assessment.



1.2. Outline of Thesis 5

1.2 Outline of Thesis

We begin by exploring the background of key concepts in ecotoxicological risk assess-

ment, focusing on the PNEC estimation problem in greater depth, during Chapter 2.

In particular, we give emphasis to procedures which are currently recommended, or

perceivably valid, in regulatory guidance documents subject to the lower and in-

termediate quantitative tiers of hazard assessment which we are concerned with.

Additionally, we describe and critique recent developments within associated scien-

tific literature which might be introduced to strengthen or replace the status quo.

During this chapter, we construct necessary definitions, notation and model descrip-

tions which are paramount throughout the entire research report.

The remaining four chapters are ordered so that they cover three distinct strands

of improvement to the way current ecotoxicological risk assessment is understood

and performed. Although these topics of research are considered independently

in order to aide transparency in understanding to regulators, there is potential for

overlap which may facilitate more refined hazard assessment. Here we briefly outline

the key research topics and chapters.

In Chapter 3 we examine in detail the probabilistically determined PNEC es-

timators. Particular focus is given to the concept of conservative estimation by

reconsidering the estimator derivation from a decision theoretic loss function per-

spective. Suggestions of possible improvements across the spectrum of quantitative

tier hazard assessment are provided. A key conclusion is that there is a need for risk

managers to articulate what conservatism is required for PNEC estimators beyond

what is currently provided. A number of coincidences between estimators based

on statistical inference yielded by different behavioural models and decision theory

based estimators are found and discussed; including a relation between a versatile

class of estimators which have become a well established practice and gained signif-

icant scientific acceptance (the Aldenberg and Jaworska 2000 estimators) and the

utility of asymmetric log-linear estimation error.

One of the main contributions of this thesis is the concept of species non-

exchangeability, as described in Chapter 4. The concept has been discussed by a

number of authoritative authors (Forbes and Calow, 2002b; Dwyer et al., 2005), yet
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the statistical implications — required in order to defensibly refine the uncertainty of

the hazard assessment — remained unaddressed until the EFSA instigated research

into the problem (EFSA, 2005). The idea is that if one identifies the species whose

tolerance values have been measured, then this provides the assessor with additional

information. Relevance of species non-exchangeability is enhanced by the regula-

tory use of standard dossier species; for example, in the context of plant protection

products under Directive 91/414/EEC (EC, 1991) it is required that the rainbow

trout (Oncorhynchus mykiss) — a species belonging to the salmonid family — is

assessed with the toxicant. In addition, the sample size of additional fish species

tested is typically very small, as low as one in some cases.

A number of different methods of detecting this property are discussed in this

chapter for this standard test species. Whilst it is plausible that a statistical modeller

would want to fit some sort of model where each species and chemical has an effect,

thus to a degree circumventing the issue of non-exchangeability, such methods are

unlikely to have sufficient potential for adoption within the current regulatory arena

to be of practical use. In Chapter 5 we explore a probabilistic model proposal, which

is effectively an adaptation of current scientifically accepted probabilistic ecotoxico-

logical methodology, in order to take account of species non-exchangeability. Issues

related to performance and uncertainty of the derived decision rules are subjected

to extensive scrutiny and the results discussed in order to defend any contentious

assumptions made.

The final topic, which is presented in Chapter 6, explores the strictly determinis-

tic decision rules from a probabilistic perspective. The purposes of our findings are

not to influence the precautionary factors to which a risk assessor appeals in order

to construct an initial PNEC estimate, but rather the way one utilises the limited

laboratory data to which the assessor applies the factors. The former requires a

prerequisite expertise tailored to the assessment, whereas the latter can be fully

reasoned for by means of probabilistic consideration. This naturally leads to a gen-

eralised class of ‘decision rules’, briefly introduced in EFSA (2005) but limited to the

Gaussian context, that maintain straightforward application and level of protection.

The latter is a difficult concept to define as it remains unspecified in associated tech-
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nical guidance documentation. We extend the viewpoint, and show a high degree of

robustness to alternative distributional models which we use to support the stance

that going between the strictly deterministic risk assessments (usually with n ≤ 3)

and the probabilistic SSD derived PNECs (usually with n ≥ 10 − 15), i.e. where

sample sizes are deemed intermediate (4 ≤ n ≤ 11), can be handled with mutual

benefits to the chemical manufacturer and risk manager.

We evaluate and summarise the research discussed above in Chapter 7. The

conclusions drawn indicate that the methods proposed in this thesis have, in our

opinion, potential for adoption within the regulatory arena. Notwithstanding this

point, there are branches of this risk assessment field that require further research

in order to validate aspects of our proposals and lead to more refined intermediate

tiers of hazard assessment.

Six appendices are provided at the end of the thesis. Appendix A provides in-

struction on the Bayesian calculations used for Chapters 2 and 3, as well as an

alternative derivation of a class of indirectly proposed PNEC estimators described

in EFSA (2005). Appendix B is central to Chapters 2–5 by providing details regard-

ing the hyper-parameter estimation required for probabilistically derived estimators

derived under different behavioural and data models proposed here. In addition, we

also give details of two hyper-parameter estimation procedures pertinent to mod-

els proposed in EFSA (2005) to which we compare ours. Appendix C sketches the

derivation of decision rules we derive and discuss in Chapter 3 from the loss func-

tion perspective. In exploring the consequences of restricting decision rules which

account for species non-exchangeability to be tractable, Appendix D supports the

arguments made in Chapter 5. Appendix E displays equations relevant to the ana-

lytical analysis of the robustness of a generalised deterministic PNEC estimator to

various distributional assumptions. Appendix F gives details on how to increase the

precision of numerical quadrature for calculating a mean level of protection evalu-

ated at a generalised decision rule which accounts for species non-exchangeability.

Finally, a glossary of acronyms is provided at the end of the thesis.



Chapter 2

Background

When assessing the safety of a new or existing chemical substance to the environ-

ment, it is impractical and unethical to determine its impact on every species present

in the potentially exposed ecological community. Moreover, it is legally implausi-

ble due to endangered species protection legislation existing in many industrialised

nations. Therefore, one must appeal to risk assessment, i.e. assessing the potential

— under uncertainty — for harm to be caused to the environment. Risk assessors

should consider the aforementioned uncertainty, but the degree to which this is done

varies according to the tier of assessment undertaken. The following sections discuss

the relevant background of ecotoxicological risk assessment, with particular focus on

the tier of assessment which uses PNECs as a decision making tool. We will also

introduce some notation and definitions that will be used throughout this thesis.

2.1 The Risk Assessment Procedure

An ecotoxicological risk assessment (ERA) for a chemical substance which is to be

used in considerable quantity or classed as dangerous can be reduced to consideration

of, or rather characterised by, the risk characterisation ratio 1 (RCR), defined as:

RCR =
PEC

PNEC
,

1Alternatively, the toxicity exposure ratio (TER) is calculated (EFSA, 2005). This is equivalent
to RCR = AF / TER where AF is a constant defined in Section 2.3.

8
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whereby PNEC is the predicted no effect concentration — the concentration of

the toxicant below which adverse effects are unlikely to occur; and the PEC is

the predicted environmental concentration — the concentration of the toxicant that

might be expected to be found in an ecosystem. The former falls under the umbrella

of hazard assessment, whilst the latter falls under that of exposure assessment.

There are basically three ways of considering the RCR: (1) qualitatively; (2) de-

terministically; (3) probabilistically. These three perspectives effectively define the

three tiers [levels] of uncertainty assessment within the current REACH guidelines

(ECHA, 2008b), although our discussion is with respect to a wider context than just

REACH. However, the tiers are in no way exclusive; ERA is often based on over-

lapping perspectives. Typically, a risk assessor would start at (1), and progressively

utilise (2) and (3) where evidence of refinement is indicated. Inherent in this view-

point is a continuum of conservatism; one would expect (1) to be conservative in the

sense that assumptions made are protective, and this would be gradually relaxed as

the assessment is refined. In this thesis we are particularly interested in (2) and (3);

(1) will be pertinent to situations where scientific experts have relevant knowledge

to indicate whether safety is very likely, or where one might need to refine a specific

aspect of an ERA.

The deterministic procedure (listed (2) above) is to calculate a pointwise value of

the RCR. If the RCR is less than unity, then this indicates that the chemical is likely

to be safe. On the other hand, if the RCR is greater than unity, then the assessed

substance may not be authorised for use unless a more appropriate higher tier risk

assessment shows that it will cause no unacceptable impact (EC, 2002). The RCR

exceeding unity does not automatically suggest the chemical is unsafe, but rather

that a more refined assessment is required in order to better establish the risk. ECHA

(2008b) also remarks that if the RCR is less than but still close to unity, then a more

refined assessment should also be considered. There are different ways in which the

PNEC and PEC might individually be calculated in order to yield a RCR: again,

deterministically or probabilistically; which highlights why perspectives (1)-(3) are

overlapping, since for example, the RCR might be deterministically calculated based

on a probabilistically estimated and evaluated PNEC and PEC. In the context of
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PNEC estimation, we refer to the respective methods as the lower and intermediate

quantitative tiers; and it is together this general tier of assessment we focus upon in

this thesis.

In any given ERA there may be multiple exposure paths that need to be consid-

ered. In estimating PECs for these exposure scenarios, a conservative estimate, or

multiple estimates each with differing degrees of conservatism might be determined

(recalling that the risk assessment is a proxy for many ecosystems). For example,

assuming exposure has been probabilistically modelled for a relevant scenario (e.g.

the rate of spray drift), then EUFRAM (2006) reports that a high (typically 90-th)

percentile of this distribution is advocated. Consideration of exposure distributions

and PEC estimation are beyond the remit of this thesis; for further information,

consult Aldenberg et al. (2002), EUFRAM (2006) and references therein.

Evaluation of the RCR from a completely probabilistic viewpoint is a relatively

recent tool; for a review consult EUFRAM (2006). Strictly speaking, this is the

definition of Level 3 in ECHA (2008b), although as indicated above, probabilistic

risk assessment is not limited to this viewpoint. By treating the hazard and exposure

components of the assessment as probabilistic, one can subsequently characterise the

risk. One such field of research (Aldenberg et al., 2002; Warren-Hicks et al., 2002;

Verdonck et al., 2003) has been the use of joint probability curves: parametric

plots of the exposure exceedance distribution and a distribution for the PNEC.

The area under this curve is often used as a summary statistic, called the expected

ecological risk. More recently, Aldenberg (2007, A.2) and Aldenberg et al. (2009) has

researched the relation between joint probability curves and the RCR (distribution),

highlighting the insufficiency of the former as a tool to make adequate risk assessment

decisions and suggesting appropriate improvements.

2.1.1 A General Perspective on ERA

The definitions of ‘risk’ and ‘uncertainty’ are ambiguous, and the former is highly

contentious in different fields of research. For example, the International Programme

on Chemical Safety (IPCS, 2004) define uncertainty to be:
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‘imperfect knowledge concerning the present or future state of an organ-

ism, system, or (sub)population under consideration.’

Additionally, IPCS (2004) defines risk as:

‘The probability of an adverse effect in an organism, system, or (sub)population

caused under specified circumstances by exposure to an agent.’

In the context of ERA, the latter is equivalent to the probability that the RCR

breaches unity. We will hesitantly use the definitions in IPCS (2004) for generic risk

assessment terminology unless redefined elsewhere in this thesis.

A misleading heuristic, which often features in chemical risk assessment is: ‘Risk

= Toxicity × Exposure’. This principle should not be directly interpreted, but the

definition does implicitly suggest the need to incorporate the degree of effect along

with the corresponding probability in order to adequately define risk. By consid-

ering the fully probabilistic tier of ERA, the degree to which the RCR is greater

than (or less than) unity can be interpreted as a measure of the aforementioned

degree of impact. However, the probability of adverse affects is complicated by the

fundamental uncertainty in both the exposure distribution and PNEC distribution.

Within the deterministic procedure, the impact might be interpreted as simply ‘all

or nothing’.

2.2 Toxicity Data

In order to quantitatively estimate the PNEC, whether deterministically or proba-

bilistically, for a chemical to non-target species — those which we wish to protect —

in potentially exposed ecosystems, a risk assessor uses an experimentally determined

sample of species tolerance values. The set of distinct species tolerance values deter-

mined for an ERA are collectively referred to as toxicity data. A point of contention

among scientists is that the species assessed are non-randomly selected, and are

often non-representative of ecological communities they are supposed to represent;

we discuss this point further in the context of probabilistic PNEC estimation within

Section 2.4.
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A tolerance value, or more precisely, laboratory effect value, for a species is

the concentration of a substance yielding an observable and measurable effect to a

population (i.e. of a single type) of species. This is often estimated by means of

laboratory experimentation to individual species, i.e., without interaction of other

species which may be present in the ecosystem. Tolerance values are also referred to

as a ‘sensitivity values’ — although this is a misnomer. For aquatic compartments,

concentration is usually defined in terms of milligrams (mg/L) or micrograms (µg/L)

per litre of water; in terrestrial (‘land’) compartments the corresponding measure is

a dosage in milligrams per kilogram of body weight (mg/kg). One can also determine

data from scientific studies known as meso- or micro-cosm experiments which aim

to recreate, or at least partially mimic the ecosystem; such experiments are rarely

performed due to intensive resource costs.

2.2.1 Classification

Single species tolerance values can be loosely categorised into two groups: acute

[short-term] and chronic [long-term]. In particular, we discuss two standard reported

tolerance values: the ECx and NOEC.

An ECx is defined as the concentration that affects x% of the tested species

population over a stated period of time. It is a statistically estimated summary

value, in this case the x-th percentile of a modelled concentration-response curve;

experimental data is generally not incorporated into the risk assessment. It is im-

portant to note that species can be affected in different ways to toxicant exposure,

for example common measured effects include growth and mortality. The latter is

often of particular concern and is specially denoted as the lethal concentration to

x% of the tested species (LCx). The standard choice of x for short-term studies is

x = 50, i.e. defining the median effect concentration. Common time periods for such

studies are: 48–96 hours for fish (in denominations of 12 hours) and 24 hours for

algae and plant species. It is generally required for all toxicity data collectively used

in the risk assessment to be of the same endpoint, or some collection of endpoints

with a firm biological justification made by scientific experts and agreed upon by

regulators; it is not the role of the statistician to select endpoints. Long-term studies
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(e.g. for reproduction) frequently report the EC10 value.

A NOEC (no observed effect concentration) is defined by ECHA (2008a, Table

R.10-1) to be the maximal test concentration at which the substance is observed

to have no statistically significant effect (P < 0.05) when compared with the con-

trol [group], within a stated exposure period. NOECs are generally derived for

long-term studies and are subsequently preferred, as well as EC10 values by ERA

technical guidelines. This is because they can be used to estimate PNECs which

are protective of the ecological community over entire life cycles (ECHA, 2008a).

NOECs are highly sensitive to experimental design (Chapman et al., 1996); Emans

et al. (1993) briefly discusses some common NOEC estimation procedures. Conse-

quently, the endpoint has been subject to much criticism, and a proposed ‘no effect

concentration’ advocated by some instead. To elucidate, a statistically estimated

threshold parameter could be obtained from a suitably fitted model; see Pires et

al. (2002) and references therein. Similarly to the case of ECxs, NOECs are in ref-

erence to a collection of specific effects (e.g. reproduction, growth). It is usually

the most sensitive NOEC for each species that is used in an ERA unless there is

scientific reasoning not to include certain endpoints, for example, if deemed not to

be ecologically relevant.

Long-term studies are generally much more expensive to conduct relative to

short-term studies, consequently there is much less available historical chronic tox-

icity data available. Where only short-term data is available, it will be required

that any extrapolations made in determining a PNEC accounts for this. There has

been research which attempts to determine the required extrapolation — separate

from all others that need be considered — which estimates chronic tolerance values

from acute tolerance values. The simplest of these proposals is the acute-to-chronic

ratio (ACR) factor which is a fixed multiplicative factor (cf. assessment factors in

Section 2.3) applied to acute tolerance values yielding chronic counterparts; see for

example Duboudin et al. (2004a). EFSA (2005) reports that current EU guidance

(EC, 2002) has implicitly set this at 10; something which Roex et al. (2000) sug-

gests is in good agreement, on average, with empirical data. However, Roex et al.

(2000); Forbes and Calow (2002a) and Forbes et al. (2008) report that the range
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of empirically derived ACRs is very large, weakening the defensibility of the cur-

rent used value of 10. Alternative statistical extrapolation methods are proposed by

Duboudin et al. (2004b); Craig (2006) and Raimondo et al. (2007). It is not always

the case that chronic toxicity data is relevant for chemical risk assessment; some

pesticides might only have short term impacts; e.g. if they biodegrade rapidly, or

disperse in a fast flowing stream — acute data would probably serve as appropriate

in these situations.

The current technical guidance documents for ERA within the EU instruct risk

assessors on how to deterministically calculate PNECs based on very small sample

sizes of toxicity data; in some cases using only a single long-term tolerance value. A

result of this has been that very low amounts of toxicity data are publicly available

for existing substances.

2.2.2 Harmonisation

Individual tolerances values reported in risk assessment dossiers and elsewhere are

not precise; they are recorded with measurement error. The reasons for this can

be to do with the different laboratories used, different sources of test species, nat-

ural intra-species variation and experimental error. Standard so-called ‘harmoni-

sation’ techniques are routinely applied in ERA to simplify assessment, however

this has been criticised by Duboudin et al. (2004a) because information regarding

intra-species variation and measurement error is discarded. Nonetheless, prepared

databases used in scientific research have usually already been harmonised in this

way.

Where toxicity data originates from multiple (historical) sources, for existing sub-

stances (i.e. retrospective ERA) there may be species which have multiple recorded

tolerance values. As stated earlier, preference is often given to long-term studies.

Beyond this, qualitative evidence is used to assess which out of the toxicological end-

points has the most weight regarding reliability and relevance; this often involves

reviewing the experiment reports (where possible). In certain cases the historical

data may be decades old where technology was less advanced for conducting scien-

tific experiments. If multiple differing endpoints still remain after this data quality
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review, then the industry and regulatory standard rule-of-thumb is to take the geo-

metric mean; see De Zwart (2002) and ECHA (2008a) for further guidance. Where

a tolerance value is reported as a censored value, it is generally not acceptable to be

included in the currently accepted PNEC extrapolation methods; although ECHA

(2008a) list certain cases where harmonisation is allowable. Notwithstanding this

restriction in general, techniques for inclusion of censored values have been discussed

by Kefford et al. (2005) using non-parametric methods, O’Hagan et al. (2005) and

Hickey et al. (2008) using Bayesian methods.

Other factors which can affect whether data is permitted include: whether the

species experimentally assessed represent different habitats (e.g. for aquatic com-

partments species habitats are freshwater or marine [saltwater]); and geographic

locations (e.g. temperate or tropical). Maltby et al. (2005) found that these two

factors did not have a statistically significant effect on the HC5 estimates (which was

defined as the measure for assessment of hazard) in the case of insecticides, however

differences between the SSDs as a whole were not compared. These issues and others

are discussed further in De Zwart (2002) and Solomon and Takacs (2002).

2.3 Assessment Factors

Deterministic calculation of PNEC values is based on the application of assessment

factors (AF). For a standard class of ecosystem, e.g. a freshwater compartment,

which is to act as a proxy for all ecosystems belonging to this class. The procedure

is to divide the lowest observed tolerance value by a fixed positive scalar — called an

assessment factor — considered large enough that when applied it will extrapolate

to the PNEC. Assessment factors are typically 10- or 5-fold ranging from 10,000

to 5 for strictly deterministic procedures. The application of assessment factors is

justifiable based on the ‘precautionary principle’ (Forbes and Calow, 2002a) which

is expected to extrapolate to a conservative estimate of the PNEC.

The prescription of an assessment factor depends on a number considerations,

for example, a non-exhaustive list includes: the compartment for which the ERA

is representative (e.g. marine, freshwater, soil, birds, etc.); the quantity of toxicity
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data; and whether the toxicity data is acute or chronic. Assessment factors are

listed in a number of official documents for use in pesticide and chemical safety

assessment. For examples, see the EU technical guidance documentation EC (2002,

2003); ECHA (2008a); and the United States Environment Protection Agency Office

of Pollution Prevention and Toxics (Zeeman, 1995). Note that assessment factors

are also referred to by a number of other titles in the ERA literature and official

documentation, for example: safety factor, extrapolation factor, application factor,

uncertainty factor.

EFSA (2005) notes that assessment factors are intended to account for:

• intra- and inter-laboratory variation of toxicity data;

• intra- and inter-species variation (biological variance);

• laboratory data to field impact extrapolation;

• short-term to long-term toxicity extrapolation.

It is envisaged, although without a firm scientific basis, that each assessment factor

is a multiplicative product of smaller assessment factors each representing these

components of uncertainty (EFSA, 2005, p. 10). However, there is no firm scientific

understanding to their individual or overall magnitudes. Thus assessment factors

are more-or-less arbitrary, with Forbes et al. (2008) describing them as ‘rough, order-

of-magnitude guesstimates’. If it can be assumed that the overall assessment factor

is the multiplicative product of individual smaller assessment factors representing

the aforementioned uncertainties, then one can immediately deduce that the final

article (above) corresponds to the ACR described in Section 2.2.1. In conclusion, the

degree of uncertainty and conservatism in the PNEC estimate is unknown, meaning

that they are not scientifically defensible.

The summary statistic which one divides by an assessment factor is currently

defined as the lowest tolerance value. It has recently been suggested (EFSA, 2005,

2008) that the geometric mean of the available toxicity data may be an adequate

summary statistic with application of the current prescribed assessment factors. In

fact, where regulations only require a single species to be tested (e.g. for risk assess-

ment to birds), the geometric mean provides at least the same level of protection —
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although officially undefined — for all sample sizes, as offered by application of the

same assessment factor to the minimum tolerance value (EFSA, 2005, Appendix A).

ECHA (2008a) states that assessment factors are in fact only general guidance

values, and may be lowered if sufficient justifications are presented; e.g. increased

sample sizes, evidence from ‘similar’ substances, etc. One approach is to apply

variable assessment factors which are a function of the geometric standard deviation

of the toxicity data. For example: µ̂(Y)/σ̂(Y)κ, where µ̂(Y) and σ̂(Y) are the

geometric sample mean and standard deviation of the toxicity data Y; and κ is some

constant value independent of the data which can be tabulated for risk managers.

The parameter κ later transpires to be a key component of tractable probabilistic

PNEC estimators. Confusingly, within the probabilistic literature, κ is occasionally

referred to as an assessment factor (e.g. Aldenberg and Jaworska 2000), whereas

technically the assessment factor in this case is σ̃(Y)κ — a function of the dispersion

of the toxicity data. We later redefine this parameter from within the probabilistic

framework.

2.4 Species Sensitivity Distributions

Recently, considerable attention has been given to probabilistic techniques in order

to derive PNECs (EUFRAM, 2006), which falls within the realm of intermediate

tier quantitative ERA due to their more stringent requirements. The fundamen-

tal concept underlying this viewpoint is the ‘species sensitivity distribution’ (SSD;

Posthuma et al. 2002a), which for a specific chemical, is a distribution modelling the

interspecies variability of tolerance [sensitivity] in an assemblage of different biolog-

ical species with respect to certain observable toxicological endpoints. SSDs thus

provide a way, separate from any use of assessment factors for other purposes, to

formally relate the tolerances of tested species to those of other untested species.

The SSD concept is now scientifically accepted within the regulatory arena for

intermediate and higher tier probabilistic ERA. A seminal paper by Kooijman (1987)

led to adoption of SSDs by Dutch regulators; now they are in use for regulatory ERA

of: new and existing chemicals (US EPA, 1998; ECHA, 2008a); setting water quality
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guidelines (Stephan et al., 1985; ANZECC and ARMCANZ, 2000); and pesticide

assessment (US EPA, 2004) — this list is by no way exhaustive. Consult Suter

(2002) and Van Straalen and Van Leeuwen (2002) for a history of SSDs.

The data requirements of utilising the SSD laid out in modern ERA technical

guidance documents are much stricter than those for strictly deterministic PNEC

derivation. For example, the current REACH guidance (ECHA, 2008a) stipulates

that long-term study NOECs must be determined for a minimum of 10 species

(preferably 15) spanning 8 taxonomic groups. A guidance document by the Society

of Environmental Toxicology and Chemistry (Campbell et al., 1999) suggested in the

context of acute pesticide exposure to aquatic systems that this minimum sample

size may be 8 species; 5 species for fish-only assessment. Such sample sizes might

still be deemed insufficient by mainstream statisticians; nonetheless, such samples

are likely to be considered impractical for many substances by scientists in the

ecotoxicology arena. In fact, Aldenberg et al. (2002) report that sample sizes much

lower than 10 are not exceptional. A further criticism of the SSD concept in ERA is

the sample of species used to fit the distributions being selected non-randomly due

to financial, practical and socio-ethical restraints. This is potentially introducing

bias into the model fitting of SSDs (Forbes and Calow, 2002c). In fact, most SSDs

are populated with some standard test species — typically those easily cultivated

and manageable laboratory species with well understood life cycles.

The application of SSDs in the research literature is usually subjected to less

stringent conditions; see for example Posthuma et al. (2002a). Additional uncer-

tainties, some of which were described in Section 2.3, would need to be accounted

for using either alternative statistical constructs or deterministic assessment fac-

tors before one can appropriately determine a PNEC; ECHA (2008a) require an

assessment factor between 5 and 1 to be applied post hoc.

In the following sections we provide details on the SSD as a predictive tool

and the physical relevance of SSDs. A fuller description of SSDs is presented in

Posthuma et al. (2002a); and a detailed critique of SSDs is presented in Forbes and

Calow (2002b) in which the most significant assumptions made in SSD-theory are

reported and appraised.
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2.4.1 SSDs for Prediction

An SSD, of which we denote the cumulative distribution function (CDF) by FSSD :

x ∈ R+ 7→ [0, 1], may be directly2 used as a predictive tool in one of two ways (see

Figure 2.1): the forward and the inverse method (Van Straalen, 2002). It is the

inverse method which is pertinent to estimation of the PNEC, however the forward

method complements this. Direct application does not preclude fully probabilistic

tiers of uncertainty analysis as foreseen under Tier [Level] 3 of ECHA (2008b).

Forward Method

In the forward method one specifies an environmental concentration x ≥ 0 and

uses the SSD to estimate the fraction of species px
∆
= FSSD(x) ∈ [0, 1] within the

assemblage that will have their toxicological endpoints exceeded at or below this

concentration; blue arrows in Figure 2.1. This may also be viewed from a statistical

perspective as the probability that a species randomly selected from the assemblage

has its unknown tolerance value (measured with respect to some toxicological end-

point) lie below this exposure concentration. We will describe this proportion of

species in the assemblage as the potentially affected fraction (PAF) (Traas et al.,

2002) since it best matches the correct intended physical interpretation; other ter-

minology used includes: fraction affected (Aldenberg and Jaworska, 2000) and frac-

tion exceeded (EFSA, 2005). It would be the case that one might use the forward

method in situations such as an unexpected toxic discharge so that the immediate

and/or long term impacts can be evaluated. This might then be used, for exam-

ple, to decide on the prioritisation of clean-up operations between competing sites

with limited available resources. Such a principle has been adopted by the United

Nations Flash Environmental Assessment Tool (UN, 2009) which is applicable for

safety assessment in hazardous substance facilities which are severely compromised

by natural hazards, e.g. earthquakes.

2We take the term ‘directly’ to mean that the SSD is used alone, without joint probabilistic
consideration of other risk assessment components such as exposure.
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A theoretical SSD CDF
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Figure 2.1: A hypothetical SSD with arrows indicating the use in the forward and
inverse usage. The red arrow indicates the inverse method which yields the HCp

for given p ∈ (0, 100); the blue arrow indicates the forward method which yields an
estimate of the PAF (denoted px; a percentage) for environmental concentration x
µg/L.

Inverse Method

In the inverse method one uses the SSD in order to estimate a concentration below

which greater than (100 − p)% of the community are likely to be protected from

adverse effects, whereby the risk manager selects the maximally permissible or some

conservative substitute, PAF level in advance; red arrows in Figure 2.1. By defini-

tion, a PAF threshold of p% applied to a chronic effects SSD leads to a threshold

concentration referred to as the hazardous concentration to p% of species (HCp).

The standard choice of p is p = 5 based on historical usage, but does not preclude

the choice of other values, e.g. p = 1, 10, for examples see Alexander and Fairbridge

(1999, p. 235), Van Straalen and Van Leeuwen (2002), and references therein. We

will also use this definition and notation in the context of SSDs fitted with only acute

data, something which has become standard practice due to the limited availability

of reliable chronic toxicity data. Statistically, estimation of the HCp is analogous
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to estimating a percentile of a probability distribution, i.e. FSSD(HCp) = p. The

inverse method is of use when one wants to set environmental safety limits (e.g. wa-

ter quality guidelines); decide whether to register a new chemical substance before

allowing it onto the open market; or perhaps as a trigger for a higher tier chemical

safety risk assessment. Current guidance allows for the PNEC to be set as the HC5

value estimated using long-term NOECs, subject to conditions on: sample size; tax-

onomic representativeness; and an additional deterministically applied assessment

factor (as discussed above). We will survey current proposals of HCp estimation

based on the inverse method later on in this chapter.

Borrowing Strength

It has been suggested that SSDs might borrow strength from additional information

to lend weight to prediction (Luttik and Aldenberg, 1997; Aldenberg and Luttik,

2002; EFSA, 2005; Grist et al., 2006; Hickey et al., 2008). The additional information

is usually a collection of toxicity data from other substances considered either similar

to the one being assessed, or having corresponding assessed species. Alternatively, it

might refer to the inclusion of expert judgements. Defining the term similar is not

easy nor has it ever been properly defined before. We might assume the definition

to mean that substances within a group are known, or subjectively believed, to be of

the same chemical class, i.e. acting on species in similar ways. However, we would

remark that we are not qualified to make a firm statement about what it means for

a substance to be similar. Furthermore, it is beyond the scope of this thesis. It is

perhaps also useful to consider the context of the definition to be in reference to

similar taxonomic groups. For example, if we have information on a range of similar

substances which only relates to invertebrates, then an assessment which features fish

may be distorted by incorporating the aforementioned additional information. There

is currently no consensus in the ERA arena regarding the inclusion of additional

information.
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2.4.2 Distributional Assumptions & Interpretation

To maintain tractability which reflects the degree of parsimony in the risk assess-

ment required, a simple continuously semi-infinite parametric distribution is often

employed as the SSD; this is criticised by Forbes and Calow (2002b). Choice of such

a distribution is a much researched area with many accepting that it is reasonable

to fit a log-normal or log-logistic distribution when communities are suitably parti-

tioned into taxonomic groups; e.g. see Aldenberg et al. (2002); Solomon and Takacs

(2002) and Maltby et al. (2005). This is logically appropriate for many chemical risk

assessments since receptors to the toxicant will likely be reasonably similar within

taxonomic groups. In the context of ANZECC and ARMCANZ (2000), the Burr

Type III distribution is regularly used to represent the SSD and although it of-

fers flexibility, it relies on computationally intensive methods for estimation (Shao,

2000).

Fitting individual SSDs per taxonomic group is typically not practical due to the

data constraints discussed. Therefore, as recommended in the REACH guidance

(ECHA, 2008a), data from different taxonomic groups are amalgamated. While

this might lead to a more ‘realistic’ community-representative SSD, Duboudin et al.

(2004a) describes this situation as inappropriate and suggests that a more practical

risk assessment strategy would be to estimate individual PNEC values separately for

each taxonomic group; similar conclusions were drawn by Kefford et al. (2005). For

example, in simplistic aquatic risk assessments one typically considers a vertebrate,

an invertebrate, and algae species so that all trophic levels are assessed: a predator,

a herbivore, and a primary producer, respectively. Taking the minimum of the three

estimated PNECs would, subject to additional uncertainties being discounted, be

the only way to ensure that at least the minimum level of protection (e.g. 95% of

species) is maintained for the entire ecosystem. This is generally not done in ERA,

and is a key criticism made by Forbes and Calow (2002b,c) who note that certain

taxonomic groups are over- and under-represented in SSD model fitting, in some

cases quite seriously; a point echoed also in Baird and Van den Brink (2007).

Duboudin et al. (2004a) reported that taxonomic grouping plays a substantial

role in SSD based prediction and suggested that data should be weighted accord-
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ing to ‘true’ taxonomic weights. O’Hagan et al. (2005); Grist et al. (2006) and

Hickey et al. (2008) extend this by suggesting mixture distributions constructed us-

ing weighted per-taxon SSDs be applied. Notwithstanding the general widespread

application of simple parametric SSDs, such as the log-normal distribution, objec-

tions have been raised regarding the usage by Newman et al. (2000, 2002); Grist et al.

(2002) and Duboudin et al. (2004a), with the authors advocating non-parametric

methods such as bootstrapping. Aldenberg and Luttik (2002) note that the log-

normality assumption offers greatest mathematical tractability in risk calculations.

Furthermore, they showed that the majority of substances in a toxicity database held

by The Dutch National Institute for Public Health and the Environment (RIVM)

with sufficiently large sample sizes did not reject the assumption of log-normality

based on the Anderson-Darling test (Stephens, 1974; Aldenberg et al., 2002) at the

5% critical significance level.

There is currently debate about whether SSD based inferences have any direct

ecological interpretation (e.g. see Forbes and Calow 2002b, Van den Brink et al. 2006

and references therein), since it fails to incorporate other factors, e.g. food-chains,

species interactions and physiological resilience. In other words, SSDs commonly do

not reflect the ecological community they are designed to represent. The definition

of this community is described by Aldenberg et al. (2002) as being ‘the Achilles

heel of the SSDeology ’. However, the estimated risks from certain methods have

been shown to be well calibrated to reality in the form of field-studies and (semi-)

mesocosm studies, by acting as good, yet typically protective, indicators of risk from

chemical stressors; see for example Emans et al. (1993); Hose et al. (2004); Schroer

et al. (2004); Maltby et al. (2005); and references therein. A more recent use of

SSDs has been in the field of radiation risk assessment whereby one determines

the biological endpoint as a fixed measure of irradiation and proceeds in a similar

manner; see Garnier-Laplace et al. (2006) for a discussion.
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2.5 Notation, Definitions & Assumptions

We assume that for a particular substance S under current risk assessment a limited

set of toxicity data is available. The log-tolerance values (base 10) obtained for S are

denoted yj for j ∈ JS , where JS is the collection of species experimentally tested to

determine (distinct) tolerance values with S. Logarithms are used for many reasons,

including: (i) toxicity data is then close to normal; (ii) variation is stabilised; and

(iii) it is established as conventional in ecotoxicology. For notational convenience,

we define Y = (yj; j ∈ JS) and |JS | = n, i.e. so that the sample size of toxicity data

is n. Also, we denote ȳ and s2 to be the unbiased sample mean and variation of the

log-tolerance values for S, given by

ȳ =
1

n

∑
j∈JS

yj; and

s2 =
1

n− 1

∑
j∈JS

(yj − ȳ)2. (2.1)

Unless stated otherwise, we will utilise the common assumption (see Section 2.4)

that the toxicity data can be envisaged as being independent realisations from a log-

normal distribution. Using a straightforward property of the log-normal distribution,

the logarithmic transformed toxicity data is normally distributed:

yj |µ, σ2 i.i.d.∼ N(µ, σ2) for j ∈ JS , (2.2)

where µ and σ2 are the (unknown) location and scale parameters of the SSD over

log-transformed concentration respectively. Note that if θ = (µ, σ2) were known

precisely, then the log-hazardous concentration to p% of the non-target species would

be ψp(θ)
∆
= µ−Kpσ, where ψp : R×R+ 7→ R; and Kp is the (100− p)-th percentile

of the standard normal distribution, e.g. K5 = 1.6449. It is by convention in the

relevant SSD literature that Kp is defined in this way.

In accordance with EFSA (2005), we assume assessment factors are applied di-

visibly to some summary statistic of the toxicity data; with the minimum order

tolerance value being the normal choice for strictly deterministic calculations. Ten-
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tatively assuming that assessment factors for separate sources of uncertainty combine

multiplicatively, we define the adjusted toxicity statistic (ATS) as:

ATS =
Toxicity Statistic

AFspec

,

where AFspec is the part of the overall assessment factor (AF) which extrapolates for

interspecies variation in tolerance and sampling variation; such that AF = AFspec×

AFother, where AFother is the assessment factor which accounts for the additional

uncertainties, some of which were listed in Section 2.3. In this sense, the ATS is

related to the PNEC via PNEC = ATS/AFother. In certain probabilistically derived

HCp values, it may be the case that AFother is discounted at the discretion of the

risk manager based on qualitative judgements regarding additional uncertainties.

On the log-scale the role of the log-assessment factor is additive, i.e.:

log10 (ATS) = log10(Toxicity Statistic)− AS,

where AS is denoted as the assessment shift. From the probabilistic perspective

under a number of different modelling and risk quantification perspectives, the AS

is often assumed (see for example Aldenberg and Jaworska 2000) to be variable —

dependent on the toxicity data via the standard deviation s of the log-transformed

toxicity data — such that AS = κps. We denote κp to be the assessment shift-factor,

chosen to provide a pre-determined average level of risk p/100 subject to a particular

risk measure and modelling assumptions. For convenience we denote δp(Y) to refer

to an estimator of ψp(θ) — the log10(HCp) under the log-normal SSD model.

Where a toxicity database G of N additional substances is available, and is used

to lend support in estimating ψp(θ) for S, we will refer to this data by denoting

yij to be a log-tolerance value; where j indicates the species which was tested with

substance i ∈ G. Collectively this toxicity data is denoted by YG. We also define Ji

to be the collection of species experimentally assessed with substance i and denote

|Ji| by ni. In addition, ȳi and si denote the usual sample mean and standard

deviation of the log-transformed toxicity data for substance i.



2.6. The State of the Science 26

2.6 The State of the Science

Recently there have been many suggestions put forward regarding the estimation of

the HCp using single species tolerance values when it is required that the level of pro-

tection be specified. This level is debatably implied by the choice of p, and remains

undefined for fully deterministic PNEC estimation methods. Methods vary based on

summary quantification and behavioural model selection. Despite this issue, a few of

these methodologies have become widely accepted and commonly practiced. Some

of the proposals we discuss are limited in their practical applicability. Nonetheless,

we present an overview of them here, along with any assumptions made. Since this

research is driven by current (EU regulatory) risk assessment guidance, we limit dis-

cussion to the most prominent estimators which do not substantially diverge from

the current requirements. Unless stated otherwise, we will focus on estimating ψp(θ)

due to the added clarity offered from the additive assessment-shift viewpoint.

Although all estimators in this thesis, unless stated otherwise, are derived under

the assumption of a log-normal SSD, all methods can be extended to other tractable

distributions (e.g. the log-logistic distribution) with only minor additional effort.

More complicated distributions will require sophisticated numerical approaches (e.g.

Hickey et al. 2008).

2.6.1 Moment Estimator

A simple but slightly crude estimator of ψp(θ) is obtained by the method-of-moments

[M]. This method fits the SSD to the data by plugging in ȳ and s2 for the unknown

location and scale parameters θ = (µ, σ2) respectively, yielding an estimator by

directly reading off the p-th percentile of the model fit, i.e.

δp(Y)[M] = ȳ −Kps,

where Kp was defined earlier. The estimator is defined in general for n ≥ 2. This

method completely ignores uncertainty in the parameter estimates which is quali-

tatively expected to be high for small sample sizes and/or small p. Furthermore,

it is not difficult to show that this estimator overestimates ψp(θ) for p < 50, which
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might be unsatisfactory to a conservative risk manager. Aldenberg et al. (2002) dis-

cuss this estimator in-depth. This is a plausible estimator for admission into a risk

assessment dossier (see ECHA 2008a for example), even though guidance requires

that a confidence interval should be determined so that uncertainty can be assessed.

2.6.2 Luttik and Aldenberg Estimator

Luttik and Aldenberg (1997) proposed a class of estimators which were similar to

the [M] estimator with two noticeable differences: (i) uncertainty in ȳ is accounted

for, and (ii) the sample standard deviation s is replaced by the pooled standard

deviation sp, calculated from a database of toxicity data for other similar substances

G. The estimator was explicitly constructed to estimate hazardous concentrations

for very small sample sizes, defined to be those satisfying n ≤ 3. Therefore, the

authors advocate the inclusion of additional toxicity datasets for similar substances

only when ni ≥ 4 is satisfied; in Chapter 3 we will relax this restriction. Under

the assumption that σ is known precisely and fixed as σ = sp, thus discounting

a potentially large source of uncertainty, the [LA] estimator which underestimates

ψp(θ) in 50% of samples is

δ(0.50)
p (Y,YG)[LA] = ȳ −Kpsp,

where

s2
p =

∑
i∈G(ni − 1)s2

i∑
i∈G(ni − 1)

. (2.3)

Notice that s2
p does not utilise the toxicity data for S; this is because it is assumed

|JS | ≤ 3 — the rationale for the estimator — which violates the requirement of

inclusion, i.e. ni ≥ 4.

Luttik and Aldenberg (1997) also derived the 90% confidence interval for ψp(θ)

under the same assumptions:

[
ȳ −

(
Kp +

K5√
n

)
sp, ȳ −

(
Kp −

K5√
n

)
sp

]
. (2.4)
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The derivation is immediate from reasoning that the sampling distribution of ȳ

conditional on σ known (in this case equal to sp) is normal with mean µ and variance

σ/
√
n. We should note that the underlying hypothesis of homogeneity was never

examined.

The work was followed up in Aldenberg and Luttik (2002), except that in this

case the authors assumed σ to be fixed by any means; not necessarily as the pooled

standard deviation. They suggested methods such as expert opinion or worst-case

scenario options might be applied, as well as ‘conservative’ estimates of the pooled

standard deviation; consequently we distinguish these estimators as [AL] estima-

tors. It was suggested by Aldenberg and Luttik (2002) that the [AL] estimator

be constructed using the lower bound of the confidence interval, as described by

Equation 2.4, instead of δ
(0.50)
p (Y,YG)[LA]. A further trivial distinction between the

original [LA] and [AL] estimators is that the former assumed a log-logistic SSD,

whereas the latter assumed a log-normal SSD; we restrict discussion to the latter

assumption.

2.6.3 Aldenberg and Jaworska Estimator

An estimator (class) was proposed by Aldenberg and Jaworska (2000), and is now

one of the most scientifically accepted estimators of ψp(θ) in use. In fact, appli-

cation of the [AJ] estimator is permitted under REACH guidance (ECHA, 2008a),

and is a frequently used tool of many scientists. The estimator derives from earlier

research by Wagner and Løkke (1991) and Aldenberg and Slob (1993), contingent on

log-logistic and log-normal SSD assumptions respectively. Although current guid-

ance does not explicitly stipulate how to calculate the HCp, the requirement of a

confidence interval is straightforwardly met by the [AJ] estimator class.

From the frequentist perspective, the [AJ] method selects δ
(γ)
p (Y)[AJ] such that

P
[
PAF

(
δ(γ)
p (Y)[AJ]

)
≤ p
]
≡ P

[
δ(γ)
p (Y)[AJ] ≤ ψp(θ)

]
(2.5)

= γ.

We write PAF
(
δ

(γ)
p (Y)[AJ]

)
to emphasise that the PAF is dependent upon δ

(γ)
p (Y)[AJ],
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such that

PAF(δ) = Φ

(
δ − µ
σ

)
,

where Φ(·) is the standard normal CDF function.

Thus one is estimating the probability that our estimator δ
(γ)
p (Y)[AJ] is less than

the actual p-th percentile of the SSD, which turns out to be via rearrangement,

equivalent to

P
([

ȳ − µ
σ/
√
n

+Kp

√
n

]/
[s/σ] ≤

(
ȳ − δ(γ)

p (Y)[AJ]

) √n
s

)
= γ. (2.6)

Since ȳ and s are independent, the pivotal quantity in the left hand side of Equa-

tion 2.6 is by definition a non-central t-distributed random variable Tn−1,η with

n−1 degrees of freedom and non-centrality parameter η = Kp

√
n. The general [AJ]

estimator is then defined as

δ(γ)
p (Y)[AJ] = ȳ − κp(n, γ)s, (2.7)

where

κp(n, γ) =
1√
n
F−1
Tn−1,η

(γ)

and F−1
Tn−1,η

is the quantile function of Tn−1,η. Hence, the [AJ] estimator is defined

in general for n ≥ 2. Note that κp(n, γ) is what we earlier coined as an assessment

shift-factor (Section 2.3) used to provide an average level of impact of p% to the

ecological community; moreover it does not depend on the toxicity data for S, thus

allowing for look-up tables to be produced which is highly appealing to risk man-

agers. Aldenberg and Jaworska (2000) described assessment shift-factors satisfying

this property as universal. The value γ can be interpreted as setting the choice

of the one-sided underestimate confidence limit; but it is sometimes referred to as

an ‘uncertainty parameter’. Hence, setting γ = 0.50 admits a median estimator of

ψp(θ); the estimates obtained by setting γ = 0.95 and 0.05 would together constitute

a 90% confidence interval.

The [AJ] estimator was also the first to be analysed from within the Bayesian
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paradigm. Aldenberg and Jaworska (2000) showed that under the prior distribution

p(µ, σ2) ∝ σ−2 for µ ∈ R, σ2 ∈ R+, (2.8)

the Bayesian estimator, which is the 100(1−γ)-th percentile of the posterior distribu-

tion of ψp(θ), coincided with its frequentist counterpart. The prior distribution ap-

plied in this case is recognised as being the product of independent non-informative

Jeffreys’ priors for µ and σ2. This is the ‘practical’ Jeffreys prior for (µ, σ2) and is

reported as being the recommended choice by Berger (1985, p. 89) in comparison

to the standard Jeffreys prior for (µ, σ2): p(µ, σ2) ∝ σ−3. For a discussion of the

Jeffreys prior consult Berger (1985, pp. 87–90). From the Bayesian perspective, the

role of γ is that of choosing the credible limit as opposed to the confidence limit.

Aldenberg et al. (2002) note that the Bayesian calculations substantially simplify

the mathematical interpretation when used in the SSD forward manner as opposed

to the inverse manner, i.e. estimating the PAF conditional upon an exposure con-

centration; see Section 2.4.

The choice of p and γ remain a separate issue here. The choice of p, as discussed

earlier, is generally decided in advance through policy decision making, with p = 5

the standard elective; however the choice of γ remains arbitrary. Maltby et al. (2005)

suggested that setting γ = 0.95 is acceptable based on a comparison to mesocosm

studies, whereas Emans et al. (1993) and Versteeg et al. (1999) empirically validate

the choice of γ = 0.50 for a limited number of long-term studies. ECHA (2008a)

currently requires that γ = 0.50, but also that a 50% confidence interval is calculated

as a measure of uncertainty. We review this estimator, and the choice of γ, in greater

detail in the following chapter.

2.6.4 The EFSA Estimator

EFSA (2005) described an approach to define a decision rule to adjust the current

guidance for ERA which allowed for a specified acceptable level of protection to

be achieved. The aforementioned decision rule is, for all intents and purposes,

comparable to an elective for unknown ψp(θ) with which to evaluate the RCR; we
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refer to the [EFSA] decision rule as an estimator from here onwards. In addition

to the risk control approach, three behavioural models were proposed which can

be used in conjunction with the methodology, each yielding a different estimator.

Two estimators that did not allow the level of protection to be controlled were also

discussed; one of these estimators is discussed further in Chapter 6 and the other

in EFSA (2008). We limit discussion here to estimators which allow for p to be

specified.

The proposal made is to choose an estimator δp(Y) such that one controls the

expected PAF to be near some suitable value p. Then one chooses the [EFSA]

estimator δp(Y)[EFSA] such that

E
[
PAF

(
δp(Y)[EFSA]

)]
= p, (2.9)

where the expectation is taken with respect to either: the sampling distribution of

the toxicity data for S from a frequentist perspective, or the posterior distribution

of θ |Y from the Bayesian perspective. The quantity in Equation 2.9 was denoted as

the mean fraction exceeded (MFE) by EFSA (2005). For all intents and purposes,

the risk manager would control the MFE by setting it to be p, as per the other

estimators.

The frequentist calculation can be made by noting that Equation 2.9 can also

be written as

EY | θ [PAF
(
δp(Y)[EFSA]

)]
= EY | θ [P (Y < δp(Y)[EFSA] | δp(Y)[EFSA]

)]
= P

(
Y < δp(Y)[EFSA]

)
,

where Y is a random variable drawn from the SSD independent of the data used

to calculate δp(Y)[EFSA]; and expectation is taken with respect to Y | θ. One can

loosely appeal to the Markov inequality which implies that if the risk is made small,

which is often the case, then the probability of exceedance is small.

The Bayesian calculation can be made by noting that Equation 2.9 is equivalent
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to

Eθ |Y
[
PAF

(
δp(Y)[EFSA]

)
|Y
]

= Eθ |Y
[

Φ

(
δp(Y)[EFSA] − µ

σ

) ∣∣∣∣ Y

]
, (2.10)

where the expectation is taken with respect to the posterior distribution of θ,

p(µ, σ2 |Y). This is equivalent to

∫ ∞
0

∫ ∞
−∞

Φ

(
δp(Y)[EFSA] − µ

σ

)
p(µ, σ2 |Y) dµ dσ2.

In order to achieve coverage matching properties with the frequentist [EFSA] es-

timators, one can use non-informative prior distributions to reflect the hierarchy

in the suggested behavioural model; for example, the independent product Jeffreys

prior as used in the derivation of the [AJ] estimator (see Equation 2.8). From here

onwards, we work solely within the Bayesian paradigm; frequentist analogies are

discussed briefly later on.

We next describe the three [EFSA] estimators and the corresponding behavioural

model for each, denoted as M1, M2 and M3. For a derivation of these three es-

timators from a frequentist perspective, consult EFSA (2005, Appendix A.2). For

an outline of the Bayesian derivation (unavailable in EFSA 2005), please consult

Appendix A.2. The prior distributions considered are listed below, with the corre-

sponding posterior distribution derivations shown in Appendix A.1.

EFSA M1

Following the standard model described by Equation 2.2, and the independent prod-

uct Jeffreys prior for θ; solving Equation 2.9 for δp yields

δp(Y)[EFSA] = ȳ − tn−1,pξs, (2.11)

where tn−1,p is the (100 − p)-th percentile of a Student-t distribution with n − 1

degrees of freedom, and ξ =
√

1 + 1/n. This estimator is defined in general for

n ≥ 2.
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EFSA M2

If toxicity data for other substances considered similar is made available, then there

may be considerable benefit in exploiting this information to stabilise the estimate

of σ for S by incorporating the evidence about variation in values of σ from the

database. It is assumed that σ is a priori sampled from a hyper-population dis-

tributed with an inverse-gamma distribution with shape and scale hyper-parameters

α and β respectively, i.e.

σ2 |α, β ∼ IG(α, β) for α, β > 0, (2.12)

such that (α, β) have been estimated from the available toxicity database. If the

hyper-parameters are specified, then it may not be necessary to have full public ac-

cess to the database used to estimate them. An outline of a frequentist method for

calculating suitable values of α and β from the database, as well as addressing issues

of uncertainty, is reproduced in Appendix B.2 from EFSA (2005, Appendix A.4.1).

We also maintain the independent standard non-informative prior distribution for

µ: p(µ) ∝ 1, because a population of means would likely be unfathomable to reg-

ulators. This is because a distribution of mean ecological community log-tolerance

for multiple substances — reducible perhaps to a distribution over unknown rela-

tive potency factors — would be uninformative and need to span several orders of

magnitude. The independent Jeffreys prior in this case is the practical choice. The

prior distribution is therefore defined as

p(µ, σ2 |α, β) ∝ (1/σ2)α+1 exp(−β/σ2)

for µ ∈ R and σ2 ∈ R+. As per the prior distribution used for M1, this prior

distribution is chosen because it leads to mathematical tractability when combined

with normal distributions, which is highly advantageous, and satisfies the remit of

this thesis.

Solving Equation 2.9 for δp with respect to this prior distribution yields

δp(Y |α, β)[EFSA] = ȳ − t[2α+n−1],pξsadj, (2.13)
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where s2
adj — the adjusted variance estimate — is defined as

s2
adj =

2β + (n− 1)s2

2α + n− 1
, (2.14)

and ξ is defined as per [EFSA]M1. Setting α = β = 0 retrieves the same estimator

derived for M1 as expected. For α > 0, this estimator is defined in general for

n ≥ 1.

EFSA M3

Assume that within an additional database of toxicity data available for similar

substances G, the variances within these substances are homogeneous, yet unknown,

perhaps due to the small data samples for each substance. This database can be

exploited to better inform our estimate of σ, much the same as was assumed in the

derivation of the [LA] estimator. The model is then

yj |µ, σ2 ∼ N(µ, σ2) for j ∈ JS ;

yij |µi, σ2 ∼ N(µi, σ
2) for i ∈ G and j ∈ Ji.

(2.15)

Based on this model assumption, a natural non-informative prior distribution which

generalises the independent product Jeffreys prior described in Section 2.6.3 for all

N + 2 parameters is

p(µ, σ2, µi : i ∈ G) ∝ σ−2

for σ2 ∈ R+; µ ∈ R; and µi ∈ R ∀i ∈ G.

Solving Equation 2.9 for δp with respect to this prior distribution yields

δp(Y,YG)[EFSA] = ȳ − t(n−1)+ς,pξs
∗
p, (2.16)

where ξ is defined as per [EFSA] M1;

s∗p
2 =

(n− 1)s2 + ςs2
p

n− 1 + ς
; (2.17)

s2
p was defined by Equation 2.3, and ς =

∑
i∈G(ni − 1). Unlike the [LA] estimators,
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[EFSA] estimators utilise the available toxicity data for S in the pooled standard

deviation estimate because no overriding restrictions are placed, per se, on the ad-

equacy of datasets for sample sizes with n < 4. Assuming there exists at least one

substance satisfying ni ≥ 2, then the estimator is defined in general for n ≥ 1.

EFSA Overview

The three estimators, each based on a different behavioural model, have various

pros and cons, many of which are described in EFSA (2005). M1 requires a lot

less subjectivism from risk managers, and is appropriate for substances having non-

standard modes of action, or where limited toxicity data exists in the public domain

for substances considered similar. M2 andM3 make further assumptions, reflected

through the prior, which while most likely ensuring smaller assessment shift-factors,

require more debate than M1 from a risk management perspective. EFSA (2005)

reports that the behavioural models were used to ensure tractability; furthermore,

no actual recommendation is made that the estimators be considered for application;

this was beyond the scope and authority of the report. We discuss the behavioural

models in more depth in Section 2.7 and Chapter 3.

2.6.5 A Further Note on the Frequentist Perspective

The Bayesian decision rule for M1 (Equation 2.12) coincides with its frequentist

counterpart when one updates the non-informative prior distribution as described

by Equation 2.8. However, the frequentist versions of the other two approaches are

subject to interpretation — something we elaborate further on in this section.

Let us begin by reconsidering the [EFSA] decision rule under M2. Under this

behavioural model we assume that σ2 is a priori distributed with an inverse-gamma

distribution parameterised by shape and scale parameters α and β. The frequen-

tist calculations presented in EFSA (2005) which led to the same decision rule as

described by Equation 2.13, are valid from the frequentist viewpoint when one does

not condition the calculations on σ, as one might do in stating the coincidence for

M1. Thus, they are valid when we repeatedly sample, for given sample size n, across

a sufficiently large population of substances, since in this scenario we do not condi-
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tion on known σ. However, we have now inadvertently introduced a population of

substances. If we condition on σ, i.e. where σ is known and we repeatedly sample

within the population of a single substance, then the calculations no longer hold

true. However, it is arguable that the former interpretation is more useful to a risk

manager than the latter. This is because the risk manager will not be in a situation

of having more than one sample within the population of the single substance for

obvious reasons. On the other hand, they are in the situation to benefit from the

offered coverage properties across a population of substances since they will make

many risk assessments over long periods of time. Wasserman (2004) states this is

in fact the correct interpretation for envisagement of repeated sampling properties.

It is a risk management decision as to whether it is acceptable to have an average

level of risk p over many risk assessments.

Under M3, i.e. where σ is unknown, but believed homogeneous among a pop-

ulation of substances, the decision rule remains valid under both interpretations.

This is so because the decision rule is made in reference to a well defined population

of substances a priori ; conditioning on σ allows for inter- and intra- per-substance

coverage matching (within the σ-homogeneous substance population). From the

Bayesian perspective, the decision rules (Equations 2.12, 2.13 and 2.16) don’t re-

quire as careful an interpretation as their frequentist counterparts.

2.6.6 Other Proposals

Estimators discussed thus far derive from probabilistic arguments which lead to

tractable estimators for ψp(θ). There are additional estimators and assessment

methods, which while intractable, are nonetheless relevant and viable for modern

intermediate quantitative tier ERA; we discuss a few here.

Jagoe and Newman (1997) and Newman et al. (2000, 2002) proposed a number of

bootstrap procedures. This was described as being more applicable as it was believed

to handle the biased and non-random species selection procedure, as well as remove

the need for over-simplified modelling of the SSD which the authors strongly criticise.

Newman et al. (2000) reported that one would require a sample size between 15 and

55 in order to accurately estimate the HC5; yet it is well recognised that this is not
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achievable in practice except for a minority of high volume produced substances.

Bootstrapping was also considered further by Grist et al. (2002) and Duboudin et

al. (2004a,b).

O’Hagan et al. (2005) and Grist et al. (2006) have proposed a Bayesian hier-

archical mixture model for the SSD made up of per-taxonomic family sensitivity

distributions weighted by a (relevant) species richness index. This was exemplified

for different English river environments and allowed for the inclusion of expert judge-

ments on the sensitivity of naturally present species for which data was limited. The

method is time consuming and procedurally involved. Therefore while not precluded

from the intermediate quantitative tier of assessment we are concerned with, it is

likely to be an inefficient use of an assessors resources. Notwithstanding this issue,

the more realistic modelling of toxic stress within and between taxa would likely be

a valuable tool for refined higher tier risk assessment, which otherwise may inappro-

priately over- and under-represent the taxa present. Hickey et al. (2008) adapted

this model, in conjunction with a non-standard experimental technique of obtain-

ing tolerance values for species naturally present in the species community (Kefford

et al., 2005), to analyse the potential risk of rising salinity in eastern Australia to

aquatic macroinvertebrates.

Staples et al. (2008) summarises two approaches used by the United States En-

vironmental Protection Agency (US EPA) and one used by Environment Canada.

The Environment Canada method and one of the US EPA’s methods are based

on quantile regression of log-transformed toxicity data; a technique also used by

Wheeler et al. (2002). The second US EPA method is a deterministic-probabilistic

hybrid which assumes a triangular distribution over the 4 most sensitive species’

modified3 tolerance values. We can find no justification for this procedure; consult

Staples et al. (2008) for further elaboration.

A much more recent approach has been to circumvent the issue of large uncer-

tainty from small sample sizes by using predicted data of many species as proxies

for the unmeasured values. In the US, this has been developed under the name

3The modification made is based upon the averaging of different long-term study toxicological
endpoints.
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interspecies correlation estimation (ICE), see for example Dyer et al. (2006, 2008)

and references therein. Each ICE model is a type II linear regression model between

the log-tolerance values of two species across a range of substances which they have

been assessed with. The models are then used to predict acute tolerance values for

untested species based on the measured tolerance value for a surrogate species. This

surrogate species can be used to estimate tolerance values for many other species;

subsequently one can apply the standard decision rules listed earlier. This semi- in

silico method appears advantageous as it limits the need for in vivo and in vitro

testing. It has been shown (Gosling, 2009) that there are many defects to the cur-

rent application of ICE methods and therefore we do not discuss this concept any

further.

2.7 Assessment Modelling

Inherent in the different estimators discussed in Sections 2.6.1–2.6.4 are different

overlapping behavioural models for probabilistically modelling interspecies toler-

ance. The differences in behavioural models arise predominantly due to the lack

of uniform agreement on the inclusion and relevance of additional information, in-

cluding toxicity databases and expert judgements, especially when sample sizes are

small. This is in addition to differences arising because of the different decision rule

procedures.

Although improper non-informative prior distributions are used to derive the

[AJ] and [EFSA] estimators, there is no requirement that one must use such prior

distributions in general. However, the fact that estimators coincide between fre-

quentist and Bayesian viewpoints under the prior distributions discussed might be

seen as an advantage from a regulators perspective. Using expert judgements to

construct the necessary prior distributions is unlikely in practice, at least at the

current time because this may place the risk manager under pressure from commer-

cial organisations, in addition to potential exposure to judicial review; each of which

is clearly a conflict of interest. Moreover, the subjectivism may be conceived to be a

reduction in transparency to stakeholders. A discussion on jurisprudence regarding
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subjective Bayesianism is considered beyond the scope of this research.

The different behavioural models used in the risk assessment proposals can be

classified into four groups; the first three of which were discussed in the context of

[EFSA] estimators. The models are:

M1: µ and σ unknown and varying between substances; database not used to pro-

vide prior information about µ and σ.

M2: µ and σ unknown and varying between substances; σ assumed sampled from

an inverse-gamma distribution with hyper-parameters α and β; database for

relevant other substances available to provide information about α and β.

M3: µ unknown and varying between substances, σ unknown and homogeneous

between substances; database for relevant other substances available to provide

prior information about σ.

M4: µ unknown and varying between substances; σ known.

M1 is the basis of Wagner and Løkke (1991); Aldenberg and Slob (1993); Alden-

berg and Jaworska (2000); Aldenberg et al. (2002) and EFSA (2005, Method 3),

whereby each substance risk assessment is essentially independent of one another,

and therefore satisfies those who are concerned of influencing the assessment via

the inclusion of additional information. Moreover, M1 is the default model within

current technical guidance documents pertaining to the registration of general chem-

icals (ECHA, 2008a). M2 is the basis of EFSA (2005, Method 4), and is clearly

motivated by the frequently observed small sample sizes, thus borrows strength

from the available database in an attempt to stabilise the variance. Stabilising the

variance should in principle lead to decision rules, such as [EFSA], having better

performance properties, especially for small sample sizes. It was shown in the con-

text of the [EFSA] estimators, M2 led to an additional 2α degrees of freedom in

the estimate of σ compared to the corresponding estimate under M1. Even for

small α, where n is small this can lead to substantial improvements. Moreover,

the assumption of heterogeneity among the presumed population of substances is

tenable.
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M3 and M4 are in some respects very similar, except in one case σ is un-

known and in the other case known. M3 is the basis of EFSA (2005, Method 3),

whereas M4 is the basis of Aldenberg and Luttik (2002). The proposal in Lut-

tik and Aldenberg (1997) fits within M3 and M4, primarily overlapping M4 but

partially overlapping M3 in the sense that σ is unknown and homogeneous, yet

treated as known upon estimation, thus neglecting all corresponding uncertainty.

Note thatM4 might have access to additional toxicity data if required, although it

is not necessarily required since one can specify σ via other methods, for example

using expert opinion. It should be noted that M3 and M4 are insupportable from

wholly realistic considerations; this is not to preclude them from the outset, since

their more pragmatic formulations might lead to tools for efficiently conservative

assessment.

No model assumption here proposes a hyper-population of means since, as dis-

cussed in the description of [EFSA] M2, it is likely to be very weakly informative

even for strict definitions of toxic mode of action, and more contentious due to a

lack of understanding within the ERA arena. Although M2, M3 and M4 have

additional assumptions which are not commonplace in regulatory guidance docu-

mentation, and in some case not discussed in the associated scientific literature, we

would note that current guidance documentation indicates that alternative adjust-

ments to the default method is acceptable where warranted subject to defensibility.

We will keep the behavioural models listed above independent from assumptions

regarding the data generating mechanism, which is currently consistent among all

of the estimators described thus far as being a log-normal distribution. The latter

is examined in later chapters with respect to one narrowly focused and contended

issue.

There are shortcomings in all of the behavioural models described here from the

modelling viewpoint of statisticians, ecologists and ecotoxicologists. However, at the

intermediate tier of quantitative risk assessment, the decision process must not be

overly complicated, whilst being robust. Additionally, it is not apparent whether

M1, M2 and M3, conditional on the underlying assumptions of each being true,

are on a par with M4; by which we mean that the degree to which the uncertainty
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is handled for the latter model will see its level of assessment refinement heuris-

tically ranked in between the former three models and the strictly deterministic

approach. We will explore this perspective further in Chapter 3, alongside a more

comprehensive analysis and discussion of the behavioural models in actual practice.

Finally, it is useful to understand that although the role of risk managers and

risk assessors is complicated, and might appear to be reasonably distinct, we must

acknowledge that at some point an overlap must be accepted with regards to choos-

ing a model; this is in lieu of structural model uncertainty handling which is usually

loosely based on goodness-of-fit tests.



Chapter 3

HCp Estimation Revisited

3.1 Introduction & Motivation

Uncertainty is a crucial element of chemical risk assessment, and is inherent in both

the hazard and exposure components of the overall risk assessment, as was discussed

in Section 2.1. Not only is it required that uncertainty be assessed — whether

deterministically or probabilistically — in order to be incorporated by the decision

maker to lower the likelihood of adverse ecological effects occurring, it is also required

that there be meaningful transparency in the handling process for the different

stakeholders. Just as the ‘precautionary principle’ is used as a tool for conservatism

in the strictly deterministic lower quantitative tier risk assessments, additional tools

are commonly advocated for probabilistic assessments, such as arbitrarily reported

one-sided confidence limits which are used as conservative estimators.

At the tier of assessment we are concerned with, the role of the risk assessor is or

at least ideally should be, to calculate an estimate of the HCp (namely with p = 5

by current requirements) under uncertainty due to not testing all species, whilst

facilitating the risk managers request for a certain level of conservatism (whether

protective or otherwise). Such problems can be setup quite naturally within a sta-

tistical decision theoretic framework; this allows for the concept of loss and prior

information to be included in the decision making process. The former is naturally

helpful for purposes of incorporating the required conservatism in a transparent

manner. While consideration of the subjective Bayesian perspective is abstained

42
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from based on our earlier brief discussion, the issue of loss functions is considered

further.

Chen (2003) raised an important criticism with regards to the US EPA’s current

risk assessment procedural strategy, although not limited to this agency exclusively,

who advocate using confidence tail-limits when estimating hazardous concentrations

or other threshold impacts of risky scenarios in order to err on the side of caution.

ECHA (2008a, p. 20) refers to such arbitrariness as one of the ‘common drawbacks’

of using statistical extrapolation. Recommendations to use the lower 95% one-

sided underestimate confidence limit (equivalently the 5-th percentile of the HCp

distribution) are supported in one form or another by Van Straalen and Denneman

(1989); Wagner and Løkke (1991); Jagoe and Newman (1997); Newman et al. (2000),

as well as indirectly by the findings of Maltby et al. (2005). This can result in formal

procedures such as chemical or pesticide registration being delayed and more costly,

or even false alarm clean-up decisions being taken, if approved methodology becomes

too conservative in estimation. This is a strong motivation for attempting to find an

estimator which remains scientifically defensible, yet exercises an appropriate degree

of conservatism which is transparent, a priori. This call is reflected in a statement

by the highly authoritative pair Forbes and Calow (2002b), who stated:

‘[Risk assessment] needs to be robust enough to be applied routinely

and conservative enough to ensure that the process is not stopped pre-

maturely.’

In this chapter we examine the HCp (conservative-) estimation problem within

an intuitive statistical decision theoretic framework. Conservatism is introduced in

a straightforward manner by unifying physical impact with the concept of utility,

or rather, negative utility — a more pessimistic description referred to as loss.

Different specifications of such loss functions are introduced for application within

the appropriate framework of risk assessment; in addition we demonstrate such a

specification which risk managers and stakeholders alike might see as advantageous

from the protectionist vantage point. A simple method of characterising the loss

and impact in order to extract an ‘optimal’ decision rule, known as a Bayes rule, is

used. The relation between such estimators for a well known class of loss functions
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is used to highlight the relationship to the [AJ] estimator (Section 2.6.3) — the most

scientifically applied estimator.

With so many estimators available to risk managers and future users, we conclude

that better understanding of the problem of conservative estimation is required,

rather than the usual appeal to ad hoc reporting of statistical inference.

3.2 Decision Theory Primer

In this section we introduce the two pivotal elements which we use to estimate HCp

values: loss functions and Bayes rules.

3.2.1 Loss Functions

Loss functions are a common tool in modern statistical decision theory and risk

analysis under both statistical paradigms — frequentist and Bayesian (Berger, 1985;

Bernardo and Smith, 1994). A loss function L assigns a measure of cost to different

actions for each possible outcome, or states of nature. Following the notation of

Berger (1985), Bernardo and Smith (1994), and Section 2.5, we will define A to be

an action space and a ∈ A to be an action. The hazard assessment problem is to

estimate the log10(HCp), which we denoted as ψp(θ), so that ψp : R × R+ 7→ R,

hence Ψp = A = R. Therefore, the loss function L(ψp(θ), a) will be such that

L : Ψp ×A 7→ R.

The specification of loss/cost needn’t be monetary, for example ‘moral’ cost is

not unfathomable, although likely difficult to appraise. However, specification of a

well defined loss function is not always straightforward for a given problem. The

rationale for using loss functions in ecological risk assessment is loosely determined

by the context of this diverse field. For example, one such application would be to

use them as a decision making tool for the purpose of prioritising remediation or

further mitigation at different sites of exposure, each presenting different features

of degradation. However, incorporating loss on the functional level to this problem

in order to adequately make sensible decisions would be a highly challenging task.

It is much more likely that decision procedures such as the United Nations Flash
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Environmental Assessment Tool (FEAT) (UN, 2009) would be used; we discuss this

further in Section 3.2.2. With the exception of the latter, this chapter demonstrates

the application of loss functions in the statistical context of estimation; here the

focus being the unknown HC5 quantity.

Chen (2003) proposed a non-parametric estimator of the HCp based on minimis-

ing the frequentist risk function — defined as the statistically expected loss for a

decision rule with respect to the data (we more formally define this later on) —

for a loss function which assigned loss as one of three constant values depending

on whether the decision rule lied below, within, or above an interval function of

the HCp prescribed by the risk manager; this estimator is, in our opinion, more

politically motivated rather than intent on recognising the severity of over- and

under-estimation. Separate from whether we regard this loss function as practi-

cal or not, the aforementioned decision rule required a toxicity data sample size of

n ≥ 19 when p = 5; a situation unlikely for any realistic intermediate quantitative

tier of hazard assessment, thus having limited practical applicability. Incorporation

of parametric assumptions encased within SSD theory can remove demand for such

quantities of data, however such choice as noted earlier, requires the sharp subjective

selection of a model.

3.2.2 Making Decisions

The action, as a function of the observable toxicity data Y, is known as a decision

rule, denoted δp(Y). Letting Y be a sample from a probability distribution which is

parameterised by θ, the frequentist risk function is defined to be the average of the

loss function over the global data model evaluated at θ, denoted as R(ψp(θ), δp)
∆
=

EY | θL(ψp(θ), δp(Y)). The reasonably acceptable condition of admissibility for a

decision rule — defined to be where no other decision rule exists such that its risk

function is dominated by the one being considered — can lead to large sets of decision

rules. Consequently, an additional criterion is often advocated to prescribe a specific

rule, such as the following: let D be the complete collection of measurable decision

rules, and define π(θ) to be a prior distribution of θ with support on θ ∈ Θ, then

one can obtain the Bayes risk r(π, δp)
∆
= EθR(ψp(θ), δp(Y)), where the expectation
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is taken with respect to π(θ) (denoted with a superscript θ). A Bayes rule is then

defined to be a decision which minimises the Bayes risk, i.e. δ∗p = arg min
δp∈D

r(π, δp).

An alternative (frequentist) decision rule is the minimax rule; defined to be the

decision rule which minimises sup
ψp(θ)∈Ψp

R(ψp(θ), δp) among all decision rules. It is un-

likely that a risk manager would accept minimax for at the intermediate quantitative

tier of hazard assessment considered here with the purpose of estimating ψp(θ), since

it only protects against extreme events which typically have a very small probability

of occurrence; focus should be on protecting against scenarios with more appreciable

probabilities. In the context of FEAT, which has a different purpose in the field of

ERA than what we primarily focus upon in this thesis, assessment is based on the

fundamental concept of impact — defined to be a function of exposure (including

quantity) and hazard — for many different pathways and scenarios of (possibly mul-

tiple) chemical release. By restricting consideration to only those hazard-exposure

pairs with appreciable probabilities of occurring, the tool can basically be inter-

preted as basing risk management decisions on the minimisation of the maximum

loss, which is measurable in different ways for different pathways and receptors (e.g.

adverse effects to human life or ecosystems). Consequently, this is a form of minimax

decision making. This demonstrates that different principles of setting preference

over the space of decisions are relevant, perhaps to different contexts of ecological

risk assessment; notwithstanding this, we do not consider minimax decision rules

beyond this point.

From the strictly Bayesian perspective, we can define the Bayesian expected loss

as ρ(π, a) = Eθ |YL(ψp(θ), a) and similarly define the Bayes action (also referred

to as the Bayes estimator; see Wasserman 2004, Chapter 12) as a∗ that minimises

ρ(π, a), i.e. a∗ = arg min
a∈A

ρ(π, a). By reversing the order of integration in the

definition of the Bayes risk, it can be shown that r(π, δp) = EYρ(π, a(Y)) for any

proper prior distribution π(θ), where the expectation is taken with respect to the

marginalised distribution of the data Y; see Wasserman (2004, pp. 197–198) for a

straightforward proof. Consequently, any decision rule a∗(Y) which minimises the

posterior expected loss will also minimise the expectation on the right-hand side of

the equality; hence the Bayes rule is equal to the Bayes action.
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Prior distributions for the behavioural models described in Section 2.7 are pro-

vided in Sections 2.6.3 and 2.6.4; the subsequent posterior distributions are derived

in Appendix A.1. It is acknowledged that the prior distributions applied here are im-

proper, although the corresponding posterior distributions are in fact proper. Con-

sequently, the Bayesian expected loss is also well defined, even though the Bayes risk

will not be in general. A distinction is sometimes made (Berger, 1985; Wasserman,

2004) via the inclusion of the modifier ‘generalised’ to the title; like French and Ŕıos

Insua (2000), we omit this differentiation because whilst our decisions are based on

non-informative priors, the theory is straightforwardly extendable to include expert

judgements.

Operationally, throughout this thesis we will proceed by minimising the posterior

risk ρ(π, a), i.e. determining the Bayes action. However, in the interest of simplicity,

we opt to follow the convention of Berger (1985) and Bernardo and Smith (1994)

by referring to the result as a Bayes rule δ∗p(Y); although it is understood that the

result is interpretable as a Bayes action a∗(Y). Hence, all Bayes rules discussed in

this thesis will be defined as

δ∗p(Y) = arg min
δp(Y)

Eθ |Y [L(ψp(θ), δp(Y))] . (3.1)

Note that scaling any loss function by a positive constant C will not change the

Bayes rule. Hence, without loss of generality, we will set C = 1.

Working within the Bayesian paradigm for decision theory problems is judged

to be sensible, based on the considerable arguments in Berger (1985); Bernardo and

Smith (1994) and references therein. The intuitiveness of minimising the posterior

expected loss is immediate upon this declaration. This is how the risk manager

(assessor) should make a decision; Berger (1985) describes the former procedure as

the ‘correct way to view the situation’. This standpoint is argued for by noting that

one should condition upon what is known, in this case Y, and subsequently average

the loss over what is unknown, i.e. θ. Moreover, we note that under this viewpoint, a

priori, no other decision rule will perform better over multiple risk assessments (each

for different substances) other than the one we would admit as the optimal procedure
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conditional on the observed toxicity data, a posteriori. Although the minimisation

of the Bayes risk is precluded by the improperness of the non-informative prior

distributions, in situations where a proper prior distribution is available, Berger

(1985) still describes the procedure [of direct Bayes rule calculation] as ‘bizarre’

under the aforementioned standpoint because the frequentist averages over the entire

model for the data, not what is unknown.

For the discussion in this chapter, we begin by first analysing behavioural models

M1 and M2; M3 and M4 are deferred until Section 3.8. An additional element of

discussion pertaining to the applicability of behavioural models is also a recurrent

theme of discourse.

3.3 Squared Error Loss

We begin by introducing a simple and frequently applied loss function for estimation

problems: the standard squared error loss (SEL) function (also known as quadratic

loss); see for example Berger (1985, pp. 60–62). The SEL function, in the context

of our problem, can be defined as

L(ψp(θ), δp(Y)) = [ψp(θ)− δp(Y)]2 . (3.2)

SEL is symmetric around the point ∆ ≡ δp(Y) − ψp(θ) = 0, hence punishing over-

estimation equally as it punishes under-estimation at a rate which is proportionally

quadratic. Zellner (1986) reports that symmetric loss functions, like SEL, are usually

not suitable for real life problems; a point also made by Berger (1985).

Solving Equation 3.1 yields the Bayes rule to be defined as the posterior expec-

tation of ψp(θ), i.e.

δ∗p(Y) = Eθ |Yψp(θ),

which when substituted with the posterior distributions forM1 andM2, we obtain

the following Bayes rule [SEL] estimators

δ∗p(Y |α, β)[SEL] = ȳ − κ∗p(n, α)σ̂, (3.3)
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where

κ∗p(n, α) = Kp

√
2α + n− 1

2

Γ(2α+n−2
2

)

Γ(2α+n−1
2

)
(3.4)

and σ̂ = sadj as defined by Equation 2.14; see Appendix C.1 for the derivation of

these estimators. It is clear that by setting α = β = 0 one retrieves the estimator for

M1; setting (α, β) to their estimates based on the additional toxicity data retrieves

the estimator for M2. We will drop the (α, β) arguments from the estimator to

indicate an estimator for M1 only. The estimators are defined in general for n ≥ 3

for M1; and for n ≥ 2 if α > 0 for M2.

It is evident from Equation 3.3 that the Bayes rules are of the same canonical

form for each behavioural model. Moreover, the assessment shift-factor κ∗p(n, α)

is independent of the toxicity data for S, as was the situation for the [AJ] and

[EFSA] estimators. It is important to emphasise that the assessment shift-factors

are strictly non-comparable under the two behavioural models because they each

multiply a different estimate of σ: σ̂ = s (M1) and σ̂ = sadj (M2).

By noting that the [SEL] and [AJ] estimators are of the same form for M1,

analysis reveals that δ∗p(Y)[SEL] < δ
(0.50)
p (Y)[AJ] (see Equation 2.7, Section 2.6.3) for

finite n ≥ 3 and relevant ranges of p, i.e. [SEL] is a more conservative estimator than

that of the median [AJ] estimator. Figure 3.1 (left panel) indicates this by plotting

the assessment shift-factors for p = 5 and a wide range of n. This is because ψp(θ)

has a relocated and rescaled non-central t-distribution which is negatively skewed

for p < 50, meaning that, in general the mean of the distribution is less than the

median. When considering the [AJ] 95% one-sided underestimate confidence limit,

conservatism is reversed against the [SEL] estimator such that the former is the

most conservative. For p = 5, we also display the [EFSA] estimators which indicate

conservatism relative to [SEL] and median [AJ] estimators. Similar conclusions are

made when considering M2 where we opted to fix (α, β) = (1.05, 0.088) — the

values reported in EFSA (2005) for a toxicity database of fish exposed to pesticides;

see Appendix B.2 for instruction on hyper-parameter estimation applied here. A

similar graph as before is displayed in Figure 3.1 (right panel).

In order to present Figure 3.1 (right panel), it was required that we derive the

[AJ] estimator class forM2 because Aldenberg and Jaworska (2000) only considered
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Figure 3.1: Interpolated plots of κ5 against n forM1 (left) andM2 (right). [AJ] =
solid; [SEL] = dotted; [EFSA] = dashed; (α, β) = (1.05, 0.088) (M2).

M1. This is equivalent to determining the 100(1− γ)-th percentile of the posterior

distribution of µ−Kpσ |Y, α, β, which is simply

δ(γ)
p (Y |α, β)[AJ] = ȳ − κp(n, α, γ)sadj, (3.5)

where

κp(n, α, γ) =
1√
n
F−1
T2α+n−1,η

(γ)

and η = Kp

√
n was defined earlier. We present the full derivation of this estimator

in Appendix C.2.

Increasing p from p = 5, it is observed that conservatism between [SEL] and

[EFSA] estimators is not consistent for all n. For example, with p = 10, a situation

which might have ecological relevance for long-term exposure regimes (Hickey et

al., 2008), the relative conservatism changes between n = 3 and n = 4 such that

for n = 3 δ∗10(Y)[SEL] < δ10(Y)[EFSA] (see Equation 2.11, Section 2.6.4); although,

difference is negligible. The [AJ] median estimator still remains less conservative

than the others for all ‘sensible’ n; see Figure 3.2.

In general, SEL may not be an appropriate loss function for risk managers be-

cause of its symmetry property, which is unattractive from a protectionist viewpoint.
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Figure 3.2: Interpolated plots of κ10 against n forM1. [AJ] = solid; [SEL] = dotted;
[EFSA] = dashed. δ∗10(Y)[SEL] = δ10(Y)[EFSA] when n ≈ 3.55.

However, this is not to say that the loss function wouldn’t be useful for certain risk

assessment scenarios.

3.4 Generalised Absolute Loss

Generalised absolute loss (GAL) is a class of loss functions which features absolute

loss as a special case. GAL is parameterised by two parameters: C1 and C2, which

are used to fix the risk managers loss-specification. The GAL function class, in the

context of our problem, can be defined as

L (ψp(θ), δp(Y)) =

 C1[ψp(θ)− δp(Y)] if ψp(θ) ≥ δp(Y)

C2[δp(Y)− ψp(θ)] if ψp(θ) < δp(Y)
(3.6)

For C1 = C2 the loss function reduces to absolute loss which is symmetric about the

point ∆ = 0. The parameters (C1, C2) can be interpreted as the unit cost of under-

and over-estimation of the HCp by one order of magnitude respectively. This is
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because the cost increases linearly for both under- and over-estimation. Moreover,

for C1 6= C2 the loss function is asymmetric such that as C2 > C1, then over-

estimation by one order of magnitude is punished more than underestimation of the

same order by a factor of C2/C1.

By solving Equation 3.1, it can be shown that the Bayes rule [GAL] estimator

is the 100C1/(C1 + C2)-th percentile of the posterior distribution of ψp(θ); see Ap-

pendix C.3 for the proof. Substituting the posterior distributions for M1 and M2,

we determine these decision rules to be equal to

δ∗p(Y |α, β, C1, C2)[GAL] = ȳ − κ∗p(n, α, C1, C2)σ̂, (3.7)

where

κ∗p(n, α, C1, C2) =
1√
n
F−1
T2α+n−1,Kp

√
n

(
C2

C1 + C2

)
(3.8)

and σ̂ = sadj. Additional details regarding the derivation of the [GAL] rule here is

presented in Appendix C.3. The estimator forM1 is retrieved by setting α = β = 0,

for M2 the estimator is retrieved by setting (α, β) to their estimates based on a

suitable toxicity database.

If we compare δ∗p(Y |α, β, C1, C2)[GAL] to δ
(γ)
p (Y |α, β)[AJ] (Equation 3.5), we no-

tice that the estimators are identical for bothM1 andM2 if we let γ = C2/(C1+C2).

Hence [AJ] estimators are identical to [GAL] Bayes rules, qua identical prior distri-

butions. We therefore advocate the use of [AJ] to denote such estimators; although

it is understood that the [AJ] estimators were strictly proposed under the context

of behavioural model M1.

This relation implies that the two popular [AJ] estimators, i.e. the median

(γ = 0.50) and one-sided 95% underestimate credible limit (γ = 0.95), correspond

to [GAL] Bayes rules when C1 = C2 and C2 = 19C1 respectively. Also, the one-

sided 5% underestimate credible limit (γ = 0.05) corresponds to the [GAL] Bayes

rule with C1 = 19C2. However, we are less concerned with this case since we are

primarily working from a protectionist viewpoint. It is clear that it is only necessary

to consider the relative cost of overestimation to underestimation, i.e. C2/C1, since

γ = (1 +C2/C1)−1. This is because without loss of generality, we can scale any loss



3.4. Generalised Absolute Loss 53

−4 −2 0 2 4

0
10

20
30

40
50

60

∆∆

L(
∆∆)

δδ=0.95δδ=0.50

Figure 3.3: A GAL function: C2 = 19C1 (solid); C1 = C2 (symmetric union of
dashed and solid). C2 = 19 (without loss of generality).

function by a positive constant without altering the Bayes rule. Figure 3.3 describes

the GAL loss function for the two common [AJ] point estimators of ψp(θ).

The revealing insight of the [AJ] estimators from a decision theoretic perspec-

tive allows one to consider the conservatism of the estimators further. Van Straalen

and Denneman (1989); Wagner and Løkke (1991); Jagoe and Newman (1997) and

Newman et al. (2000) suggest using δ
(0.95)
5 (Y)[AJ] in order to err ‘sufficiently’ on the

side of caution. However, it is acknowledged that this estimator is over conservative

(Emans et al., 1993; Chen, 2003). Moreover, there is no explanation in current lit-

erature why a risk manager would not consider, say, δ
(0.50)
1 (Y)[AJ] over δ

(0.95)
5 (Y)[AJ];

clearly both are conservative relative to δ
(0.50)
5 (Y)[AJ].

So, assuming a risk manager can specify the maximum permissible PAF p and

that they subscribe to the GAL function class, it would perhaps be more transparent

for them to specify γ from considerations of C2/C1 on a case-by-case basis which is

reflective of the assessment portfolio.

The median [AJ] estimator may be an adequate summary estimator, especially if
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used with an additional deterministic assessment factor; currently this is set between

1–5. It would be a policy decision as to whether a symmetrical loss function would be

appropriate. The former is currently acceptable for use in chemical safety assessment

under REACH guidance (ECHA, 2008a) with an assessment factor as low as 1, i.e.

where the HC5 estimate would serve as the PNEC; Versteeg et al. (1999) tentatively

supported this choice when using chronic NOEC toxicity data. However, there

is little information in the technical guidance documents which specifies how the

required 50% confidence interval of the HC5 is to be used in assessing the uncertainty

about the estimator in the decision making process, nor how the risk manager will

select the additional assessment factor to be applied to HC5.

Unlike SEL, GAL is a linearly increasing loss function for increasing |∆|; the

appropriateness of which would need ratification by risk managers. However, on

recalling that an increase in estimation error of ∆ = 1 would overestimate the HCp

by a factor of 10, and a further increase of ∆ = 1 (i.e. overall ∆ = 2) would increase

this by a further factor of 10, one would need to consider whether the cost between

these two levels of error should remain constant. A key advantage to the linearity is

that a risk manger needs to only specify a single parameter in order to specify the

degree of conservatism in the loss function for any level of under- or over-estimation;

this is shown later to not be a property of all ‘useful’ loss functions.

3.5 LINEX Loss

It would appear sensible that an estimator which should be a priori conservative

within the scope of this estimation problem would derive from an asymmetric loss

function, because overestimation of the HCp would potentially lead to greater than

p% of species in the assemblage being affected by exposure. Zellner (1986) notes

that asymmetrical loss is a practical perspective for many problems. Hence, for risk

managers who wanted to ensure conservatism, such loss functions would be highly

attractive, especially when uncertainty is large due to small toxicity data sample

sizes. For many substances where risk characterisation is required, the relevant loss,

whether financial or otherwise, would most likely although not always, outweigh the
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loss of restricting the substance for use, whether permanently or until a higher tier

assessment is performed.

Should an estimator be desired which reflects an average-based measure of risk

then a symmetric loss function would be appropriate; this is the standard statistical

prediction approach, cf. the mean, median and mode. The choice of which will

be dependent on how the risk manager envisages the long-term properties of risk

assessment behaving. This raises a policy based dilemma which requires addressing

regarding how risk is handled when the aim is to predict the concentration of a

substance which will be unlikely to have adverse effects.

For asymmetric loss functions which are non-linear there is a need to reconsider

the error metric ∆. A simple thought experiment demonstrates this requirement. A

risk manager is asked to consider two risk assessments for two separate substances

S1 and S2. The potential target environments are identical, and joint-toxic effects

are discounted. Then the specification of the same loss function based upon the

error metric ∆ means that identical loss is placed on all estimators δ. However,

if the unknown interspecies variance parameters satisfy σ1 > σ2, then loss will be

‘relatively’ more conservative for S2. It is therefore desirable to incorporate this; a

standardised measurement error would be one way for a risk manager to specify loss

function irrespective of the SSD. We revisit this issue pending a discussion on the

following loss function.

The LINear-EXponential (LINEX) loss function, first proposed and utilised by

Varian (1975), conveys loss as approximately increasing linearly on one side and

exponentially on the other side; hence non-linearly asymmetric. However, applica-

tion of such a loss function requires thought towards its applicability since Zellner

(1986) has shown that in common estimation problems, such as the estimation of

the mean of a normal distribution with known variance, the traditional estimators

are not always admissible under LINEX.

We use a modified LINEX loss function proposed by Zieliński (2005), which

we refer to as scaled LINEX loss. The ‘scaled’ term refers to the scaling of ∆ =

δp(Y) − ψp(θ) by σ which transfers the assignment of loss onto a ‘standardised’

scale. This scaling which we discuss further later on, is intuitively appealing as loss
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Figure 3.4: The standard LINEX loss function: λ = 0 (dashed); λ = 0.5 (dotted);
λ = 1 (solid); λ = 2 (dot-dash).

is now placed on percentiles. The standard LINEX loss function does not feature

the scaling of ∆ by σ. Within the context of our problem scaled LINEX is defined

as

L(ψp(θ), δp(Y);σ) = exp

{
−λδp(Y)− ψp(θ)

σ

}
− λ

{
δp(Y)− ψp(θ)

σ

}
− 1. (3.9)

To understand the role of the free parameter λ we have plotted the standard

LINEX loss function in Figure 3.4 for different specifications of λ > 0. For λ < 0,

the loss function is reflected about the point ∆ = 0. It is understood therefore that

λ controls the asymmetry of the loss function, such that as λ > 0 increases, the

conservatism increases, i.e. overestimation is punished more severely than underes-

timation, and vice versa. This feature of flexibility might increase the appeal to a

risk manager, as was the case indirectly with [GAL]. In particular for λ > 0, when

|∆| → ∞, L(·) approximately increases exponentially when ∆ > 0, and approxi-

mately linearly when ∆ < 0. Finally, via a Taylor expansion it can be seen that for

small λ|∆|/σ, L(·) ≈ (λ∆)2/2σ2. Consequently, as λ→ 0 scaled LINEX tends to a
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scaled SEL function; unlike standard SEL (Equation 3.3), this also has the metric

∆ scaled (see Section 3.7). Thus, scaled LINEX loss functions will not, in general,

lead to identical decision rules as the standard SEL function for small λ.

Solving Equation 3.1 with the posterior distributions forM1 andM2 we obtain

the Bayes rule [LINEX] estimator to be of the form

δ∗p(Y |α, β, λ)[LINEX] = ȳ − κ∗p(n, α, λ)σ̂, (3.10)

where κ∗p(n, α, λ) is the unique solution to

∫ ∞
0

t(2α+n−2)/2 exp

{
−λκ∗p

√
t−
(

2α + n− 1

2

)
t

}
dt =

Γ

(
2α + n

2

)[
2α + n− 1

2

]− 2α+n
2

exp

{
−λ
[
Kp +

λ

2n

]}
(3.11)

for κ∗p; and σ̂ = sadj as defined by Equation 2.14. See Appendix C.4 for details of

the full derivation. As per the previous Bayes rules, setting α = β = 0 retrieves

the estimator for M1; setting (α, β) to their estimates based on a relevant toxicity

database retrieves the estimator forM2. Additionally, the estimators are defined in

general for n ≥ 3 for M1; and for n ≥ 2 if α > 0 for M2. The [LINEX] estimators

are similar to those of Zieliński (2005) who derived a frequentist decision rule as

opposed to the Bayes rule.

We cannot explicitly write down a formula to calculate κ∗p in this instance. How-

ever, manipulation shows that the left-hand side of Equation 3.11 is a parabolic

cylinder function from which look-up tables (Abramowitz and Stegun, 1972) and

mathematical software can be used. Alternatively, one can adopt numerical integra-

tion and solve for the singular root, usually with high precision. The fact that tables

can be produced of assessment shift-factors, even for this more complex loss func-

tion, increases the interest and applicability of this estimator within the regulatory

arena for the intermediate quantitative tier of hazard assessment where parsimony

is often desirable.

In Figure 3.5 we show three interpolated plots (corresponding to λ = 1, 2 and 3)

of [LINEX] assessment shift-factors for p = 5 against sample size n under the model
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M1. In addition, we plot the assessment shift-factors κ5 for [SEL], [EFSA] and [AJ]

(γ = 0.05, 0.50 and 0.95). The left panel shows the behaviour of the assortment of

assessment shift-factors for n ≤ 100; the right panel shows this behaviour over more

likely obtainable sample sizes, namely n ≤ 15.

3.6 Fixing λ

The [LINEX] estimators derive from a novel loss function which fits in neatly with

current requirements of an intermediate quantitative tier of hazard assessment. How-

ever, guidance on fixing the asymmetrical control parameter is required. In this

section we propose a single strategy to fix λ; however other methods could be pro-

duced.

It is not immediately apparent whether the risk manager should, or would adjust

their value for λ whilst adjusting their choice for p. Consider the following (unlikely)

thought experiment: a risk manager sets p = 5 and fixes λ = λ1; later p is re-

evaluated and set to p = 10. Should the risk manager change their value for λ to

λ2 > λ1? Increasing p will increase the PAF of species — a decision which a risk

manager would only be expected to make based on scientific reasoning. Therefore,

a reduction in the level of minimum protection required — the arbitrarily defined

threshold of the ecological community — is perceivable as a redefinition of the PNEC

for substance, albeit a counterintuitive one. However, estimation error viewed as

varying the quantity ∆/σ may still be viewed as having different specifications of loss

at different definitions of the PNEC when considered in a probabilistic framework.

Due to regulatory standards being determined by p = 5 (through the inclusion of

a median HC5 for EU REACH guidance) this issue is non-pertinent at the current

time. Nevertheless, where recommendations have been made to use conservative

HCp estimates in scientific literature, consideration has never been raised regarding

whether the degree of conservatism should be dependent on p. This is a point for

discussion with risk managers, however it is not considered further here.

Recall now that we used scaled LINEX as opposed to standard LINEX. This

was the modified LINEX loss function whereby loss was assigned to a standardised
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estimation error, in this problem ∆/σ. This allows for the loss function to be

disentangled from knowledge of the SSD; thus allowing a suitable value of λ to be

adopted, a priori. Essentially the specification of loss over log-toxicity — a property

of the chemical — is replaced with the specification of loss over percentiles which

as well as being more intuitive, is transferable and comparable in different chemical

hazard assessments. This feature is likely to be influential for gaining acceptance

within regulatory arena.

In accordance with Zieliński (2005), we define a measure of discrepancy between

δp(Y) and ψp(θ) to be t = (δp(Y)−ψp(θ))/σ, which implies that ĤCp = HCp×10tσ,

where σ > 0. Our proposal to fix λ is to first fix the discrepancy at some value

which warrants sufficient attention; t = 2 is one possible candidate, corresponding

to the case where we overestimate the HCp by 100 on the standardised scale. Now

suppose we set this decision to have cost $100, arbitrarily chosen to be that of cost-

benefit for applying the substance. Then the following question could be posed to

the risk manager: if t = −2, i.e. you underestimate by two standardised orders of

magnitude, what relative cost, or equivalently percentage, would you associate with

this situation? This is also approachable from the opposite direction by stating a

base line for the case t = −2 and asking the risk manager how much ‘worse’ would

the overestimation case be.

3.6.1 Example

Consider the classical cadmium toxicity dataset analysed in Van Straalen and Denne-

man (1989); Aldenberg and Jaworska (2000) and Hickey et al. (2009). The toxicity

data is the NOEC tolerance values of 7 terrestrial soil species to cadmium, mea-

sured in micrograms of cadmium per milligram of soil (µg Cd/mg). This substance

is common in rechargeable batteries and in plastic formulas. Table 3.1 summarises

the data.

Following the procedure described above, the risk manager specifies a cost of

underestimating by 100 units (on the standardised scale) to be $100m (m ∈ [0, 1]).
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Species NOEC log10(NOEC)
(µg Cd/mg)

1 0.97 -0.01323
2 3.33 0.52244
3 3.63 0.55991
4 13.50 1.13033
5 13.80 1.13988
6 18.70 1.27184
7 154.00 2.18752

ȳ 0.97124
s 0.70276

Table 3.1: NOEC values for toxicity of cadmium (µg Cd/mg) of seven soil organisms.

Then we propose fixing λ to be the solution of

m =
e−tλ

′
+ tλ′ − 1

etλ′ − tλ′ − 1
, (3.12)

by solving for λ′ with t = 2. Note that Equation 3.12 is equivalent to L(−t)/L(t),

which is a function of t. For SEL and GAL, L(−t)/L(t) is conveniently constant. It

is interesting to note that scaling SEL or GAL by σ leads to different decision rules

in comparison to their standard counterparts; a possible motivating argument that

they should be standardised (consult Section 3.7).

Consider the situation that three risk managers specify a value of λ. Risk man-

ager A believes m = 0.05 so that the loss is consistent with the conservative indirect

GAL prescription within scientific literature (e.g. Van Straalen and Denneman

1989; Wagner and Løkke 1991; Jagoe and Newman 1997; Newman et al. 2000) with

C1/C2 = 0.05 (at t = 2 only); this corresponds to λ = 2.13. Risk manager B sets

m = 0.10 in order to be less conservative; this corresponds to λ = 1.67. Risk man-

ager C cautiously sets m = 0.001, corresponding to λ = 4.49. The loss function

specification of each risk manager can then be used to derive [LINEX] estimators,

as displayed in Table 3.2 for M1.

No estimates were derived forM2 because no database of toxicity data for addi-

tional substances tested with similarly related species was available. This is consis-
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Risk Man. κ∗5 δ5(Y)[LINEX]

A 2.02 0.3562
B 1.91 0.4256
C 2.89 0.0871

Table 3.2: HC5 estimates and κ∗5 values for cadmium toxicity data.

tent with the statement we made earlier thatM2 is not always an available model,

especially for per-taxon risk assessments.

The starting point of t = 2 was a suggested point, however t = 1, 3 or any

other t may be more suitable for elicitation; it is a policy based decision that a risk

manager should take in collaboration with the risk assessor. It is important for the

risk manager to remember that the loss function is constrained by its non-linear

structure. As a result, setting λ at t = t1 may not adequately reflect loss at t = t2.

Therefore, other specifications of loss might be considered to better inform the risk

manager. Figure 3.6 describes the relation between m, λ and the discrepancy factor

t through Equation 3.12. By virtue of the linear-exponential duality, at t = 1, risk

managers A, B and C have assigned relative (to $100) costs of $8.06, $11.06 and

$1.05 respectively; this is intuitively correct since this situation is of lower concern

than the case t = 2. The relative fraction of costs at t = −1 to t = 1 are 0.24,

0.32 and 0.04 for risk manager A, B, and C’s specification respectively. It may be

prudent to assign an interval for λ by considering different starting values of t.

3.7 Scaled SEL & GAL

In Equations 3.2 and 3.6 we defined the SEL and GAL functions such that loss in

each instance was placed on absolute difference: ψp(θ) − δp(Y). The Bayes rule

derived from the latter loss function was shown to be equivalent to the widely

accepted [AJ] estimator.

LINEX loss was directly proposed based on placing loss on a discrepancy, (ψp(θ)−

δp(Y))/σ, which is arguably more intuitive. The scaled LINEX loss function was

shown in Section 3.5 to approach a scaled SEL function as the non-linear asymmetry
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Figure 3.6: Contour plot relating λ (x-axis), t (y-axis) and m (contours). The
example specifications are emphasised: m = 0.001 (C), m = 0.05 (A) and m = 0.10
(B).
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control parameter λ→ 0. Here we provide details of the Bayes rules derived under

scaled SEL and scaled GAL. To illustrate, we confine discussion to the context of

behavioural model M1; extension to other models is straightforward. The relevant

posterior distribution is described in Appendix A.1. Bayes rules for SEL and GAL

with a star superscript indicate those based on scaled loss functions; those based on

non-scaled loss functions were defined earlier using an asterisk superscript.

3.7.1 Scaled SEL

Scaled SEL is defined by a slight modification of standard SEL (Equation 3.2) to be

L(ψp(θ), δp(Y);σ) =

[
ψp(θ)− δp(Y)

σ

]2

. (3.13)

The Bayes rule for this non-standard loss function is determined as

δ?p(Y)[SEL] = ȳ − κ?p(n)s, (3.14)

where

κ?p(n) = Kp

√
n− 1

2

Γ(n
2
)

Γ(n+1
2

)
.

A full derivation of this estimator is given in Appendix C.5. The Bayes rule follows

the same canonical form as for all other estimators discussed thus far. The ratio of

the assessment shift-factor for the standard [SEL] Bayes rule (Equation 3.4) to the

assessment-shift factor above is (n − 1)/(n − 2). For n = 3 (the minimum sample

size that both estimators are defined for) the ratio is maximised at 2; decreasing

uniformly with limit 1 (as n → ∞). Hence, the (standard) [SEL] Bayes rule leads

to a relatively more conservative decision that the (scaled) [SEL] Bayes rule.

The most startling observation is that κ?p(n) increases as n increases when p < 50,

with a numerically identified limit of Kp (see Figure 3.7). The assessment shift-factor

for the standard [SEL] Bayes rule increases as n decreases (when p < 50) with the

same limit. However, this was not unexpected. Numerically evaluating the [LINEX]

Bayes rule for λ close to zero (recalling that the scaled [SEL] estimator is retrieved

for λ→ 0) also confirms this property.
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Figure 3.7: Assessment shift-factors κ5 plotted against n for standard (solid) and
scaled (dashed) [SEL] (black) and [GAL] (red) Bayes rules. Grey dashed line corre-
sponds to K5.

3.7.2 Scaled GAL

Scaled GAL is also a straightforward extension of standard GAL (Equation 3.6),

defined as

L (ψp(θ), δp(Y);σ) =

 C1

[
ψp(θ)−δp(Y)

σ

]
if ψp(θ) ≥ δp(Y)

C2

[
δp(Y)−ψp(θ)

σ

]
if ψp(θ) < δp(Y)

(3.15)

Notice that the indicators remain unaffected since σ > 0. The Bayes rule for this

non-standard loss function is

δ?p(Y |C1, C2)[GAL] = ȳ − κ?p(n,C1, C2)s, (3.16)
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where

κ?p(n,C1, C2) =

√
n− 1

n
F−1
Tn,Kp

√
n

(
C2

C1 + C2

)
.

A full derivation of this estimator is given in Appendix C.6. As for the scaled

[SEL] Bayes rule, the scaled [GAL] Bayes rule maintains the standard canonical

structure. Moreover, the estimator is similar to the standard [GAL] Bayes rule

(Equation 3.7) and hence the [AJ] estimator. The original multiplier decreases from

n−1/2 to
√
n− 1/n, which is in addition to the gain of one degree of freedom for the

non-central t-distribution quantile function.

For all intents and purposes it is sufficient for us to define γ = C2/(C1 + C2);

this was earlier chosen so that the [AJ] estimator and [GAL] Bayes rule coincide.

Comparing the assessment shift-factors of standard and scaled [GAL] Bayes rules for

γ = 0.50 implied the same disparity as determined for the comparison of the stan-

dard and scaled [SEL] Bayes rule. For p = 5 and γ = 0.05 (0.95) the scaled [GAL]

assessment shift-factors increases (decreases) as n increases (although at different

rates) which is consistent with the standard [GAL] estimators.

In Figure 3.7 we plot the assessment shift-factors for p = 5 against sample size.

This is done for: (a) the [SEL] (standard and scaled) and (b) the [GAL] (standard

and scaled) with γ = 0.50. The absolute magnitude of the rate of change as n

increases is noticeably larger for the Bayes rules derived from the standard loss

functions compared to those derived for the scaled loss functions.

Strong objection to the use of δ?p(Y)[SEL] and δ?p(Y |C1, C1)[GAL] (where C2 = C1

implies γ = 0.50) is anticipated because of the monotonic property. This is despite

the standard [AJ] estimator (with γ = 0.50) being acceptable under REACH guid-

ance (ECHA, 2008a), which was shown to coincide with δ∗p(Y |C1, C1)[GAL] (subject

to prior distribution). We would hypothesise that regulators in this instance would

advocate γ > 0.50 such that dκ?5(n)/dn < 0. However, there is no reason, a priori,

why a symmetric loss function would lead to a decision rule where κ?p > Kp. This

highlights clearly that if a risk manager is interested in conservativeness, then they

should specify their loss function as accordingly. Although we can provide no intu-

itive explanation as to why, say, κ?p(n, γ = 0.50)↗ Kp as n→∞, it is clear that out-

comes depend on different loss functions which indicate the need for risk managers
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to carefully consider their choices. If risk managers considered δ?p(Y | γ = 0.50)[GAL]

as appropriate, then it may support the application of the [M] estimator (see Sec-

tion 2.6.1), i.e. fixing κp(n) = Kp which leads to a more conservative decision rule

relative to the former.

We do not pursue this further in light of the [AJ] estimator, for intents and

purposes, being the default estimator for risk assessment.

3.8 Known Variance & Homogeneity

In this section we consider the problem of HCp estimation in the context of be-

havioural modelsM3 andM4. These two models overlap to a certain degree and for

this reason we present discussions on them together. Each model can be succinctly

described as the scenario where µ is unknown and varies between substances, except

either σ is unknown but homogeneous among a population of substances (M3), or

σ is known for each substance (M4). The premise of M3 and M4 was introduced

in Sections 2.6.2, 2.6.4 and 2.7. Like M2, the models have been motivated by the

desire to be able to perform probabilistically refined ERA when the cardinality of

data available is insufficient to proceed using accepted models, e.g. M1, due to

unacceptable levels of uncertainty. As noted by Luttik and Aldenberg (1997) and

Aldenberg and Luttik (2002), it is often the case that strictly deterministic methods

are applied in favour of probabilistic methods when sample sizes are deemed small.

3.8.1 M3

The basis ofM3 was first proposed in EFSA (2005) and is arguably a generalisation

of the model Luttik and Aldenberg (1997) proposed in deriving the [LA] estimators.

Basically, the model is that σ is unknown for S, but believed to be homogeneous

among a population of additional substance SSDs, of which we have an available

toxicity database for some. This allows for the variance to be estimated with higher

precision when the toxicity data sample size for S is small, as per M2. A major

distinction of M3 over that of M4 is with respect to the inclusion of sampling

uncertainty in estimating σ. EFSA (2005) describe the foundations ofM3 to be an
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improvement over the latter practice, subject to the assumption of homogeneity; we

provide details of M4 in Section 3.8.2.

We describe the estimators of ψp(θ) below for the collection of decision rule bases

considered thus far; the [EFSA] estimator is already given by Equation 2.13, Sec-

tion 2.6.4. A further exploratory based quantification of the difference in uncertainty

between the [GAL] estimator and the [LA] estimator in the context of M3 is made

towards the end of this section.

Following the discussion earlier, the standard model and natural non-informative

prior distribution for M3 is discussed in Section 2.6.4, and the corresponding pos-

terior distribution is described in Appendix A.1.

[SEL] Estimators

The [SEL] Bayes rule estimator was shown earlier to be the posterior expectation

of ψp(θ). Hence, the Bayes rule is straightforwardly calculated in a similar manner

to the derivation for M2 (consult Appendix C.1) to be

δ∗p(Y,YG)[SEL] = ȳ − κ∗p(n, ς∗)s∗p,

where

κ∗p(n, ς
∗) = Kp

√
ς∗

2

Γ( ς
∗−1
2

)

Γ( ς
∗

2
)
,

s∗p is defined by Equation 2.17, ς∗ = ς + (n− 1) and ς =
∑

i∈G(ni − 1).

This estimator is defined, in general, when ς∗ ≥ 2; consequently, the estimator

is valid for n = 1 subject to the condition ς ≥ 2.

[GAL] Estimators

In Appendix C.3, we showed that the [GAL] Bayes rule — the decision rule which

minimises the posterior expected loss of Equation 3.6 — is equal to the 100C1/(C1 +

C2)-th percentile of the posterior distribution of ψp(θ); the loss parameters (C1, C2)

are described in Section 3.4. Hence, based on the posterior distribution described
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in Appendix A.1, one obtains the Bayes rule as

δ∗p(Y,YG |C1, C2)[GAL] = ȳ − κ∗p(n, ς∗, C1, C2)s∗p,

where

κ∗p(n, ς
∗, C1, C2) =

1√
n
F−1
Tς∗,Kp

√
n

(
C2

C1 + C2

)
.

For all intents and purposes we will remove the dependence of this estimator on the

arguments (C1, C2) by substituting a control parameter γ which, as per previous

behavioural models, is analogous to the role of the [AJ] uncertainty parameter. In

light of the earlier connection between the [AJ] and [GAL] estimators, we denote this

estimator as δ
(γ)
p (Y,YG)[AJ] also from here onwards whilst working in the context

of M3. This estimator is in general defined for n ≥ 1 subject to the proviso that

ς ≥ 1, i.e. where at least one substance toxicity dataset in the database satisfies

ni ≥ 2.

[LINEX] Estimators

The scaled [LINEX] Bayes rule estimator can be determined in a similar fashion to

that discussed in Section 3.5. Hence, the solution of Equation 3.1 for λ 6= 0 is

δ∗p(Y,YG |λ)[GAL] = ȳ − κ∗p(n, ς∗, λ)s∗p,

where κ∗p(n, ς
∗, λ) is the unique solution to

∫ ∞
0

t(ς
∗−1)/2 exp

{
−λκ∗p

√
t−
(
ς∗

2

)
t

}
dt =

Γ

(
ς∗ + 1

2

)[
ς∗

2

]− ς∗+1
2

exp

{
−λ
[
Kp +

λ

2n

]}

for κ∗p. A very brief outline on how to extend the earlier Bayes rule derivation

of M1 and M2 for the model M3 is provided in Appendix C.4. Additionally, this

estimator is well defined on the same set of sample sizes for which the [SEL] estimator

is defined.
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Comparing Estimators

The reliability of the homogeneity assumption is highly suspect and we have yet to

explore this. However, it is likely that basis ofM3 — which is arguably an extension

of M4 — is to provide practical probabilistic estimators for hazard assessments

where the sample of toxicity data is substantially small. We consider these estimators

over a similar range of n as was explored by Luttik and Aldenberg (1997): n ≤ 4.

The decision rules are all of canonical form δ∗p(Y,YG) = ȳ − κ∗ps
∗
p. Thus it is

sufficient to compare the assessment shift-factors κ∗p only in order to analyse relative

conservativeness. Figure 3.8 plots κ∗5(n, ς∗, 5) for n = 1, . . . , 4 against the total

sum of additional degrees of freedom ς. In the interest of clarity the plots have

been cropped which precludes the inclusion of the [AJ] upper 95% credible limit

(γ = 0.05) estimators. The separation of ς∗ into ς and n is a requirement of analysis

due to the latter being independently influential in the estimation of µ.

It is observed that the median [AJ], [LINEX] (λ = 1) and to a lesser degree,

the [EFSA] assessment shift-factors behave like a constant as ς increases for small

n. The more conservative estimators, i.e. [LINEX] (λ = 5, 3) and [AJ] (γ = 0.95),

change relative conservativeness as a function of n as well ς. Although deducible

from the algebraic structure of the estimators, the estimators converge faster in n

than ς, especially for conservative choices. Consequently, benefits in testing addi-

tional species for S will likely outweigh the benefits of using a toxicity database;

however this suggestion discounts the clinical and ethical cost involved for conduct-

ing additional laboratory tests. On the other hand, available toxicity databases will

likely either be free or relatively less expensive to obtain. This should be clearly

communicated to all risk managers if such estimators were ever to be considered in

a regulatory context.

3.8.2 M4

The behavioural model M4 was initially proposed by Aldenberg and Luttik (2002)

(cf. the [AL] estimator; Section 2.6.2) and is also the foundation of the (log-normal

SSD) [LA] estimator proposed by Luttik and Aldenberg (1997). The model states
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3.8. Known Variance & Homogeneity 72

that the log-SSD variance σ for a substance S is known, or alternatively one esti-

mates σ independently and neglects the uncertainty. In particular, the [LA] estima-

tor by definition is a special case of the [AL] estimator obtained by fixing σ = sp

(Equation 2.3) — estimated using a toxicity database for a collection of similar sub-

stances G presumed reasonably large as to warrant neglecting uncertainty. In fact

the original formulation of the [LA] estimator assumed that the database used to

estimate sp satisfied ni ≥ 4 for each substance dataset; this restriction is lifted for

the remainder of this research. Furthermore, estimators from here onwards will be

interpreted as [AL] estimators, unless we apply the plug-in value of σ = sp.

The concept of conservative HCp estimation using the lower 5% credible limit

is still valid. However, the defensibility of these estimators relative to those based

on M1–M3, is unfathomable. Nonetheless, we explore these estimators by deriv-

ing them from the different risk perspectives described and attempt to determine

whether they might constitute a pragmatic tool for quantitative tier hazard assess-

ment.

In order to study the [AL] estimators in a similar manner to the [AJ] estimators,

we begin by generalising their definition to be

δ(q)
p (Y |σ)[AL] = ȳ −

(
Kp +

1√
n
K100(1−q)

)
σ,

where it is assumed that σ is known. This structure is consistent with the previous

estimators discussed, such that setting q = 0.95, 0.50, 0.05 admits the 100q-th one-

sided underestimate confidence limit (when derived in the frequentist framework

originally employed). Hence, q is analogous to the parameter γ in the [AJ] estima-

tor with recommendations to set q = 0.95 (Luttik and Aldenberg, 1997). There are

multiple options for direct specification of σ, some of which use a database of addi-

tional toxicity data for similar substances G, for example: (i) σ = sp; (ii) σ = s; (iii)

σ = s∗p. Notice that cases (i) and (ii) imply that δ
(q)
p (Y)[AL] = δ

(q)
p (Y,YG)[LA] and

δ
(0.50)
p (Y)[AL] = δp(Y)[M] respectively. Case (iii) would be counterintuitive in hind-

sight of its derivation; this is because the small sample size would be accounted for

in the confidence interval for µ, but not σ — which we now invoke is only dependent
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on the toxicity data for S.

Estimation of the HCp has already been argued for as a natural problem from

within the Bayesian decision theoretic framework. Since our operational procedural

stance remains the same, we propose the following prior distribution: p(µ) ∝ 1 for

µ ∈ R. The prior distribution is found to be the Jeffreys prior for the unknown

mean of a Gaussian quantity with known variance (Berger, 1985, p. 88), which is

therefore consistent with the specifications for behavioural modelsM1–M3 where it

was assumed the prior distribution was in fact the product of independent Jeffreys’

priors for µ and σ. The posterior distribution is straightforwardly determined to

be µ |Y, σ2 ∼ N(ȳ, σ2/n) for µ ∈ R. Hence, the posterior distribution is proper

unlike the associated prior distribution, thus enabling one to minimise the posterior

expected loss. The following is a description of the estimators based on foundations

discussed thus far.

[GAL] and [SEL] Estimators

From the posterior distribution described above it is simple to deduce that ψp(θ) |Y, σ ∼

N(ȳ−Kpσ, σ
2/n) which means that the [GAL] Bayes rule estimator is equivalent to

δ∗p(Y |σ,C1, C2)[GAL] = ȳ −
(
Kp +

1√
n

Φ−1

(
C2

C1 + C2

))
σ.

Similarly to before setting q = C2/(C1 + C2) demonstrates that the [AL] estima-

tor is a [GAL] Bayes rule conditional upon the non-informative prior distribution

suggested. Consequently, the frequentist and Bayesian estimators have coverage

matching properties. Unlike the earlier connection between the [GAL] and [AJ] es-

timator, the [AL] estimator was not originally discussed by Aldenberg and Luttik

(2002) within the Bayesian paradigm. Moreover, the Bayes rule derived under ab-

solute loss (i.e. C1 = C2) is identical to the [SEL] Bayes rule, since the latter is just

Eθ |Y,σ2
[ψp(θ)] = ȳ −Kpσ by definition.
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[LINEX] Estimators

Minimisation of the posterior expected loss is relatively straightforward compared

to the former estimators. In fact, one can show that the Bayes rule derivation

effectively reduces to consideration of the moment generating function for a normal

random quantity (Zellner, 1986). This is because since σ is known one can appeal

to the standard LINEX function via a re-parameterisation of the loss function by

scaling λ accordingly. Hence, the scaled [LINEX] Bayes rule is determined as

δ∗p(Y |σ, λ)[LINEX] = ȳ −
(
Kp +

λ

2n

)
σ.

We provide some brief details on how to derive the Bayes rule which extends from

the derivation of M1 and M2 in Appendix C.4.

[EFSA] Estimators

Recalling from Section 2.6.4 that the [EFSA] decision rules defined by Equation 2.9

are effectively posterior predictive estimators, it is straightforward to confirm that

the estimators are given by

δp(Y |σ)[EFSA] = ȳ −Kpξσ.

Derivation is trivial upon replacement of the probability density function for σ2 in

Appendix A.2 by the known value with point mass.

Comparing Estimators

It is interesting to consider how the [GAL] ([AL]) Bayes rules (upon substituting

the parameters (C1, C2) by q accordingly) — a simplification of a scientifically es-

tablished estimator — relate to the scaled [LINEX] Bayes rules — those advocated

here. We begin by defining

k′p(n, q) = Kp +
1√
n
K100(1−q);

k′′p(n, λ) = Kp +
λ

2n
,
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such that an estimator will take the form of δ∗p(Y |σ) = ȳ − kp(·)σ; with k′ yielding

[LINEX] and k′′ yielding [AL]. We conclude that k′p = k′′p , i.e. [LINEX] and [AL]

decision rules coincide under M4, when

λ = 2
√
nK100(1−q). (3.17)

Although we focus our discussion to the Bayesian perspective it can be shown via

the manipulation of results provided by Zellner (1986), that Equation 3.17 is piv-

otal in determining the admissibility of decision rules, such that replacement of

equality by a greater-than comparative (>) in Equation 3.17 implies that [LINEX]

dominates [GAL]. A consequence of this which is useful even from the Bayesian

perspective, is that [LINEX] will always dominate the median [GAL] estimate when

λ > 0. This was observed also in the context of M1 and M2. No simple relation

like Equation 3.17 can be determined for the latter two behavioural models due

to the intractability of κ∗p for [LINEX] estimators (cf. Equation 3.11) and for the

non-central t-distribution quantile function, thus precluding an analogous analytical

interpretation.

Although (scaled-) LINEX loss functions are not well defined at λ = 0, by

considering limλ→0 k
′′
p(n, λ), one can show that the [LINEX] estimators coincide with

the [AL] and [SEL] estimators when q = 0.50. This is intuitively correct since the

LINEX loss function approaches the SEL function in the limit, up to a positive

scaling constant dependent on σ, which is known by virtue of M4.

Consider the value λ must take if [LINEX] and [AL] rules should coincide; as

either n or q increases, λ must increase. The relation given by Equation 3.17 is

intuitively correct since as q increases and λ increases, both the GAL and LINEX

loss functions become more asymmetrically conservative. The former relation derives

from the posterior distribution of µ; as the precision increases, k′′p is down-weighted

at a rate which is faster by a factor of n−1/2.

A final noteworthy comment is that if we had derived the standard [LINEX]

(i.e. placing the loss on difference in log-toxicity) Bayes rule, parameterised by

asymmetry parameter λ′ (independent of σ), then this would coincide with [AL] (as
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derived above) if and only if λ′/σ = 2
√
nK100(1−q). Thus indicating that the form

of the decision rule is identical to above with λ′ scaled accordingly.

3.8.3 M4 in Practice

In this example we re-examine a general risk assessment methodology for chemical

risk assessment to birds (and mammals) proposed by Aldenberg and Luttik (2002)

for small sample sizes (n ≤ 5). The methodology was fundamentally based on M4,

but yielded fixed assessment factors for general application rather than assessment

shift-factors.

The estimator for σ is based on two large toxicity databases for pesticides (sat-

isfying ni ≥ 4): (1) for birds only (N = 55); and (2) for mammals only (N = 69);

a description of the databases in provided in Luttik and Aldenberg (1997) and ref-

erences therein. Pooled standard deviations of the log-toxicity values (measured in

log10 mg/Kg) were reported as well as 5-th and 95-th percentile estimates (in paren-

thesis) as: sp = 0.465 (0.197, 0.752) for birds; sp = 0.36 (0.095, 0.768) for mammals.

The percentile estimates are determined from the empirical cumulative distribution

function of the standard deviation estimates; the upper 95-th percentile estimate

might act as a substitute for a ‘worse-case’ estimate of σ.

The authors recommended that the [AL] estimators be based on σ = 0.760 for

conservative estimation. This decision was arrived at by taking the mean of the

upper 95-th percentile estimates for birds and mammals. The [LA] estimators, ac-

cording to our definition, require σ = sp. Since homogeneity for birds and mammals

is not scientifically justifiable, a priori, we restrict the [LA] estimator discussion to

bird risk assessment only; it is straightforward to modify the assessment for mam-

mals.

In Table 3.3 we provide the fixed assessment factors (on the standard scale) that

would be applied divisibly to the geometric mean, 10ȳ, of the toxicity data for the

current substance S under assessment. This is done for q = 0.95, 0.50, 0.05, to yield

an acute HC5 estimate, and are listed for both [AL] (birds and mammals) and [LA]

estimators (birds). In addition, we also determine the [LINEX] parameter λ∗ that

would be required to identically estimate the lower [AL] HC5 based on the Bayes
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σ = 0.760 [AL] σ = 0.465 [LA]
n q = 0.95 q = 0.50 q = 0.05 q = 0.95 q = 0.50 q = 0.05 λ∗

1 316.4 17.8 1.0 33.9 5.8 1.0 3.29
2 136.2 17.8 2.3 20.2 5.8 1.7 4.65
3 93.7 17.8 3.4 16.1 5.8 2.1 5.70
4 75.0 17.8 4.3 14.0 5.8 2.4 6.58
5 64.4 17.8 4.9 12.8 5.8 2.5 7.36

Table 3.3: Fixed AFs for bird and mammal HC5 (mg/kg) extrapolation; left: [AL]
conservative σ value; right: [LA] sp for bird database. [LINEX] λ∗ estimators coin-
cide with lower [AL] estimators.

rule determined under scaled LINEX loss (described above).

Exploring the assessment factors in Table 3.3 we notice that for n = 1, the

median (q = 0.50) and lower (confidence limit) estimate (q = 0.95) are: 17.8 and

316.4 respectively for σ = 0.760, and 5.8 and 33.9 for σ = sp (birds). The current

guidelines in ECHA (2008a, pp. 44–46) stipulate that the assessment factor be

AF = 3000 (Section 2.5) for a single (i.e. n = 1) acute bird toxicity value. Moreover,

they implicitly suggest that included in this factor is an acute-to-chronic ratio of

ACR = 100. By assuming that AF = AFspec×AFACR, it suggests that the estimates

here of the required AFspec are larger than current guidelines by factors of: 4.8

and 10.5 (σ = 0.760) and 1.1 and 0.2 respectively. Hence, the [AL] conservative

estimators are currently more conservative than current guidelines, but the lower

[LA] estimate is very close to guidelines. Therefore, this might provide empirical

support for the use of lower [LA] estimators (at least in the case of birds) when the

sample size is small for S, which includes the option of assessment factor reduction

for increasing sample sizes as not to be overly conservative. Additionally, from a

protectionist standpoint, the [AL] estimators may be tenable.

The relatively large values of λ∗ which lead to the lower [AL] and [LINEX]

estimators coinciding are not particularly surprising in respect of the results in

Section 3.6.1, since the ‘worst-case’ σ choice is arbitrarily conservative. Figure 3.9

displays the associated scaled LINEX loss functions corresponding to the λ∗ values.
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Figure 3.9: Scaled LINEX loss function with: λ∗ = 3.29 (black/solid); λ∗ = 4.65
(red/dashed); λ∗ = 5.70 (green/dotted); λ∗ = 6.58 (blue/dot-dash); λ∗ = 7.36 (light-

blue/long-dash). Results in δ∗5(Y |σ, λ∗)[LINEX] = δ
(0.95)
5 (Y |σ)[AL] for n = 1, . . . , 5

under M4.
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3.8.4 Full vs. Partial Uncertainty

In order to assess the absolute consequence of accounting for uncertainty in σ, we

compare the [AJ] estimator under M3 with the [LA] estimator under M4. In par-

ticular, we consider this for the contentious analysis of n = 1, which has application

in bird and mammalian ecotoxicological risk assessment. When n = 1, s∗p = sp (and

ς∗ = ς), consequently the assessment shift-factors are directly comparable.

Define the difference in estimators d(p, γ, ς), evaluated at a common percentile

of the respective posterior distribution for ψp(θ), to be

d(p, γ, ς)
∆
= κp(1, q)[LA]

∣∣
q=γ
− κp(1, ς, γ)[AJ]

=
[
Kp +K100(1−γ) − F−1

Tς,Kp
(γ)
]
.

It is straightforward to confirm that limς→∞ d(p, γ, ς) = 0. When p = 5, d(5, γ, ς)

is negative for most of the γ domain implying that incorporation of uncertainty

about sp leads to the [AJ] estimator being relatively more conservative. However,

the difference is likely to be negligible; for ς = 100, d(5, 0.50, 100) = −0.004 and

d(5, 0.95, 100) = −0.05 which means an additional extrapolation (on the original

toxicity scale) of assessment factors 1.01sp and 1.13sp , respectively is required to

translate the [LA] estimator to the [AJ] estimator.

This comparison is subject to the modelling assumption governingM3 and acces-

sibility to a relevant and sufficiently large toxicity database; for ς small the difference

is substantially greater.

3.8.5 Distinguishing M3 & M4 for Application

In this section, we have discussed two competing behavioural models for application

in hazard assessment, in particular that of PNEC estimation. Moreover, similarities

between the decision rules derived under these models were highlighted. However,

from a risk managers perspective, the array of models and intent for application

might be confusing, particularly between M3 and M4.

The assumptions governingM3 are contentious and little scientific research exists

in exploring or defending them. Where homogeneity between substance variation is
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appropriate, then the approach is sensible and tantamount to the level of uncertainty

refinement offered by use of M1 or M2 over lower tier quantitative methods. This

is despite EFSA (2005) even suggesting, although likely erroneously, that when

N is small the estimators will be better reliable than those based on M2, even

when the assumption of homogeneity is violated. A risk assessment based on M3

would undoubtedly require that the assumptions are assessed prior to acceptance

for application. Moreover, scientific and regulatory agreement would be required for

the adoption of M3 for reusable decision rules.

Exploring the key assumption of homogeneity closer (which also has an overlap-

ping bearing on the validity of the [LA] estimator) we note is perhaps an unlikely

property to be satisfied in reference to predicting multi-taxonomic protection, as is

currently required for aquatic communities. For birds and mammals, which were the

focus of Luttik and Aldenberg (1997), the classifications of communities are more

closely taxonomically defined. This may lead to the assumption being valid. In

addition, the assumption of homogeneity is made in reference to some suitable pop-

ulation of substances, possibly requiring refinement by some suitable property, e.g.

chemical class, before application ofM3. We assessed the assumption of homogene-

ity based on a toxicity database for the fish taxon exposed to pesticide stressors; this

database is described in-depth in Section 4.1. Standard hypothesis tests (Levene’s

and Bartlett’s) for the null hypothesis of homogeneity were rejected at critical levels

of 5% and 10%. To explore this further an analysis of the posterior distributions of

σ2 from the perspective of M1 and M3 was conducted in accordance with Alden-

berg (2005). This was performed by considering only the largest twenty datasets

contained in the available database with 14 ≤ ni ≤ 47.

UnderM3 the posterior distribution of σ2 is an inverse-gamma distribution with

shape and scale parameters:
∑

(ni − 1)/2 and
∑

(ni − 1)s2
i /2 respectively. Under

M1 each independent σ2
i has an inverse-gamma posterior distribution with shape

and scale parameters: (ni − 1)/2 and (ni − 1)s2
i /2 respectively. Figure 3.10 (left

panel) plots the independent posterior distributions (underM1). Figure 3.10 (right

panel) sequentially plots the posterior distribution of σ2 (underM3), starting from

the dataset corresponding to the largest sample size (red curve) to the smallest
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Figure 3.10: Posterior distributions of: σ2
i |Yi (left); σ2

i |Y1, . . . ,Yi (right); for
i = 1, . . . , 20 and n1 (red) > · · · ≥ n20 (blue) .

sample size (blue curve). Examination of Figure 3.10 indicates that the assump-

tion of homogeneity is not supported in this instance. This analysis is limited to a

database which contains many substances, with potentially varying modes of action

(of which are unknown to us). However, we know of no evidence supporting the as-

sumption that chemicals with similar modes of action will in fact have homogeneous

interspecies variation parameters.

Under M4 the direct HCp estimates are unlikely to be permitted by regula-

tory standards due to the lack of uncertainty refinement about σ. However, the

demonstration of their use in Section 3.8.3 indicated that they may have validity

at lower tier quantitative PNEC estimation. The current lower tier procedure is

to apply predetermined assessment factors which are very ambiguous with regards

to the level of protection they offer. The current REACH guidance for uncertainty

analysis (ECHA, 2008b) indicates that reasonable worst-case assumptions are valid

for low tier risk assessment, henceM4 is not precluded from application within the

regulatory arena. As a consequence, we would not consider estimators derived un-

derM4 as being applicable for the intermediate quantitative tier of assessment that

M1–M3 apply to, but rather the lower tier where a robust yet defensible — at least

from the protectionist viewpoint — estimator that is easily derivable is essential.
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This is despite that there is ‘higher tier’ (ECHA, 2008b) probabilistic considera-

tions involved. However, this assertion is entirely subject to a suitably conservative

and permissible proposal value of σ.

The premise ofM4 may also be used by scientists under the auspices of regulators

to review the magnitude of currently recommended assessment factor values which

have not changed in recent times; see EFSA (2005) for a summary of historical

proposals. For example, it was shown that for some taxonomic groups there was

reasonable alignment with current regulatory guidance.

3.9 Discussion

In this chapter we have calculated a number of decision rules which are readily ap-

plicable and tractable for incoming risk assessments. The approach of this chapter

was about estimation based on the principle of decision making which transpar-

ently allows for incorporation of conservatism via the adaptation of loss and expert

judgements. The former allows for conservatism (whether protectionist or other-

wise) to be incorporated in a meaningful manner, which replaces the need for ad

hoc conservatism, a posteriori.

Arguments were made for working within a Bayesian decision theoretic frame-

work, from which we advocated the Bayes rule — a decision rule based on minimi-

sation of the posterior expected loss. In addition, decision rules were juxtaposed to

the Bayesian statistical inferential estimators — the [EFSA] estimators. The scien-

tifically accepted [AJ] estimator — de facto in many applications — was interpreted

under this framework, allowing for consideration regarding recent recommendations

on levels of conservatism. The framework was straightforward enough that an al-

ternative estimator was proposed based on a loss function reflective of the nature of

ecotoxicological impact from a protectionist viewpoint.

WhilstM1 is the common regulatory and scientific model used for deriving HCp

values at the intermediate quantitative tier of hazard assessment, other behavioural

models were introduced which feature in scientific and executive literature. How-

ever, it is likely that the risk management arena will view these model proposals
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cautiously with respect to their applicability. In particular, the premise of M1–

M3 was established as not being on par with M4. For very small sample sizes

where assessment factors are required, then in fact M4 would probably serve as

the only potentially viable model from a regulatory risk management perspective

since full probabilistic hazard assessments are restricted to minimum sample sizes

(≈ 10, ECHA 2008a). Nevertheless, M2 and M3 serve to counter the reluctance

of stakeholders in using smaller sample sizes in probabilistic hazard assessments.

We would note, however, that the primary assumption of M3 were determined as

inappropriate for the example database we explore in this thesis. Furthermore, the

primary assumption ofM2 has not been explored and is non-trivial to do so because

the estimates of σ2 combine different sampling uncertainties. One might consider

exploring other two parameter models to model heterogeneity, however overall de-

cision rules would likely be intractable. A wide variety of the estimators discussed

in this chapter lowered the assessment shift-factor for increased samples of distinct

species tested. Despite this observation, it is likely to be a conflict of interest with

current regulatory aspirations regarding the reduction of in vivo testing.

Current guidelines on how to utilise probabilistic tools for purposes of PNEC

estimation are not entirely strict, at least within the current REACH guidance

(ECHA, 2008a,b), thus arguments for alternative estimators are conceivable. We

could not endorse one estimator or one behavioural model over another, since a single

black-box function yielding a conservative HCp value is an unattainable aspiration,

even by the standards of assessment factors. It is with this point that we would

recommend estimators be based on reconciled choices between risk assessors and

risk managers.



Chapter 4

On Non-Exchangeability

Our discussion up until now has been restricted to the foundations of probabilisti-

cally derived toxicant concentrations of concern. Underpinning this research is the

SSD concept, with the inherent assumption of species exchangeability, i.e. informa-

tion about relative positions of species in SSDs for other chemicals is uninformative

about their relative positions for the chemical being assessed S. As the following

is an exploratory (and later on in Chapter 5 a modelling) based exercise we do not

present a strict mathematical definition of exchangeability, instead we direct readers

to Bernardo and Smith (1994, Section 4.2). An important statistical consequence

of species exchangeability is that any measurements made for the new chemical un-

der assessment may be considered to be a random sample from its uncertain SSD

regardless of which species are to be measured. Failure of this assumption is what

we refer to here as non-exchangeability. ECHA (2008a) states that for statistical

extrapolation methods to be used, one must assume that:

‘the group of species tested in the laboratory is a random sample of this

distribution.’

The current guidance for quantitative levels of chemical safety assessment re-

quires the experimental assessment of certain species; from here onwards we refer to

such species as ‘standard dossier test species’. For example, when assessing aquatic

invertebrates, Daphnia magna is the usually required test species under Directive

91/414/EEC (EC, 1991, 2002) and REACH (EC, 2006; ECHA, 2008a) guidelines.

84
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The former directive also requires that the rainbow trout (Oncorhynchus mykiss)

— a species of salmonid (i.e. belongs to the taxonomic family Salmonidae) — is

assessed when addressing the acute risk assessment for fish exposed to plant protec-

tion products. For the latter guidance document the rainbow trout is also commonly

assessed for a multitude of reasons, some of which are discussed later.

The requirement or allowance without penalty of standard test species may be

of practical consequence in ERA, especially if the standard test species is non-

exchangeable. It is recognisable that certain species, for example, the rainbow trout

are ‘typically sensitive species’ relative to other species in the broad taxon of fish for

a wide range of chemicals (Dwyer et al., 2005). It has also been recommended that

an assessment factor of three be applied to the rainbow trout’s tolerance value as

opposed to the usual value in recognition of this sensitivity (Ibid). Raimondo et al.

(2008) reported that this leads to a relatively under-protective decision rule relative

to the use of a HC5 based on empirical evidence of 59 chemicals. Raimondo et al.

(2008) also issues caution about conducting ERAs based on the surrogacy of non-

salmonid species due to the apparent demonstration of relative lower sensitivity. We

shall later discuss formal methods to identify such a phenomenon. Whilst this might

be valuable knowledge for the strictly deterministic assessment factor based proce-

dures, it is neglected when considering probabilistic intermediate tier approaches

which aim to refine the hazard assessment and uncertainty. Non-exchangeability

may be accounted for using alternative methods such as bootstrapping (for ex-

ample, consult Jagoe and Newman 1997; Newman et al. 2000, 2002; Grist et al.

2002 and Duboudin et al. 2004a) since no distributional assumptions are made, per

se. Luttik and Aldenberg (1997) did report that one might use the median [LA]

estimator when estimated using a ‘sensitive species’, and the 95% one-sided under-

estimate confidence limit otherwise, although the justification was qualitative only.

One might consider adopting the ‘precautionary principle’ and proceed as usual.

However if one actually wants to refine hazard assessment, then better modelling is

required. This point is ratified by the authoritative pair Forbes and Calow (2002a),

who state:
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‘. . . extrapolation may mislead and thereby hinder environmental pro-

tection. Because the tiered approach allows the risk assessment to stop

when and if risk is deemed to be negligible it is essential that [assessment]

factors applied at each tier lead to neither over- nor under-conservative

estimates of risk.’

An intuitive model from a statistical viewpoint point would be to abandon the

concept of ‘non-exchangeability’ and use a fully hierarchical model. Such ideas have

been discussed recently using properties of chemicals and a measure of species vul-

nerability (Jager et al., 2007), or perhaps even functional models using species traits

(Baird and Van den Brink, 2007; Rubach et al., 2009). However, such models require

much more research, in particular more data, before having predictive utility. Fur-

thermore, the point which motivates our modelling rationale is that risk managers

are less likely to adopt methodology which is complicated and requires advanced

statistical software. This stems from a lack of experience with relatively sophisti-

cated quantitative techniques. The focus of this chapter is the detection and possible

quantification of non-exchangeability. In later chapters we look at tractable ways to

adapt current risk assessment methodology to allow for pragmatic and parsimonious

risk assessment. In particular, we focus on the case of a single non-exchangeable

species because our goal is tractable decision rules rather than modelling.

4.1 RIVM Fish Database

RIVM is a recognised leading centre of expertise in the field of environmental protec-

tion. For the purposes of this thesis, they have granted permission to use a toxicity

database which they have compiled. However, due to proprietary rights, species

and chemical names are coded and are not available for dissemination without per-

mission from the RIVM. The actual database we use is a subset of much larger

database held by the RIVM which was fully described in De Zwart (2002). We will

analyse data on acute fish toxicity (EC50 values) to a range of pesticides. For a

general discussion on toxicity data, consult Section 2.2. The full database has been

amalgamated from a wide range of sources, including: the freely available US EPA
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ECOTOX database (US EPA, 2007); academic literature; and internal reports. In

addition, the database has been prepared in the following way:

• If more than one toxicity value was available for a species-substance combina-

tion, then a geometric mean value was calculated.

• If more than one toxicity value was available for a species-substance combina-

tion, and for a certain species a censored value was present, then this value

was removed unless it exceeded the concentration interval of observed point

tolerance values, in which case the limit of the value was applied.

• If in a set of available toxicity values for a species-substance combination only

a censored value was present, then this value was only used if it exceeded the

concentration interval of observed point tolerance values.

Further information on data pre-processing is provided in De Zwart (2002); the

preparation techniques applied here are common among the applied SSD literature.

Although the database contains tolerance values for 172 species across N = 379

pesticide substances G, many values are missing. The sparsity is such that the

EC50 has only been measured for 1903 of the possible 65188 species-substance pairs.

Figure 4.1 summarises the structure of the database graphically. The left panel of

Figure 4.1 displays a line plot for the number of chemicals which have ni (1 ≤ ni ≤

47) toxicity records. For example, there are 143 chemicals for which ni = 2, but only

7 with ni ranging from 21 to 47. By letting mj be the number of substances species

j is assessed with, the right panel of Figure 4.1 displays a line plot for the number of

species which have been distinctly assessed with mj (1 ≤ mj ≤ 344) chemicals. For

example, there are 74 species with mj = 1, and only a single species with mj = 344

— the rainbow trout.

Plotting the sample means against the sample standard deviations on the orig-

inal scale for the EC50 data indicates a strong linear correlation (Figure 4.2, left

panel). Whereas plotting the sample means of the log-transformed data ȳi against

the sample standard deviations of the log-transformed data si stabilises the vari-

ances (Figure 4.2, right panel). This supports the log-transformation applied to the

toxicity data.
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Figure 4.1: Left: line plot of ni vs. substance count for (i ∈ G); right: line plot of
mj vs. species count (j ∈ ∪i∈GJi). Red line indicates rainbow trout.
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Figure 4.2: Scatterplot of the sample mean versus sample standard deviation for
substances in the RIVM fish database. Left: original scale; right: log (base 10)
transformed data.
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It is necessary to explore the suitability of parametric distribution fits to toxicity

data. ECHA (2008a) stipulates that although the log-normal is the most pragmatic

choice, it should be evaluated with: (i) the Anderson-Darling [AD] goodness-of-

fit test and (ii) the Kolmogorov-Smirnov [KS] goodness-of-fit-test. Each of the

respective tests are based on a comparison of the reference cumulative distribution

to the empirical distribution function (Stephens, 1974). The results of these tests

can influence the magnitude of the post hoc assessment factor placed on the HC5

estimate (see Section 2.4). The [AD] test is suggested by ECHA (2008a) because

it gives more weight to the tails of the SSD, which is the region of typical interest.

The [KS] test is implemented through an adaptation known as Lilliefors’ goodness-

of-fit test which corrects the null distribution for being estimated with the unbiased

sample estimates of the data; this has less power in general. For a discussion of these

goodness-of-fit tests and many others, consult D’Agostino and Stephens (1986).

Alternatively, within the context of SSDs, consult Aldenberg et al. (2002). The

latter paper suggests that an ideal approach would be to seek a goodness-of-fit test

localised to the lower tail region. Notwithstanding the availability of such goodness-

of-fit tests, Farrell and Rogers-Stewart (2006) note that no omnibus test for detecting

departures from normality appears to exist. The Shapiro-Wilk goodness-of-test fit

was, however, noted as being particularly noteworthy in performance over a wide

range of alternative distributions for small sample sizes. This test, which is not

based on the empirical cumulative distribution function, is noted by Aldenberg et

al. (2002) as being comparable in performance to the [AD] test.

In accordance with current recommendations the [AD] and [KS] goodness-of-

fit tests were applied to the RIVM fish toxicity database using the ad.test and

lillie.test functions contained in the R (2006) nortest package respectively. It

is required that ni > 7 and ni > 4 respectively for the two tests. For the [AD] test

applied to 63 datasets: 55 had a P -value greater than 0.01; 42 had a P -value greater

than 0.05; and 39 had a P -value greater than 0.10. For the [KS] test applied to 128

datasets: 115 had a P -value greater than 0.01; 103 had a P -value greater than 0.05;

and 99 had a P -value greater than 0.10. A P -value of 0.05 is the typically assigned

critical value (Newman et al., 2000; Newman, 2008); a P -value below this critical
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value would lead to one rejecting the null hypothesis of normality. The latter pro-

portions are consistent with Luttik and Aldenberg (1997); the former with Newman

et al. (2000) who applied the Shapiro-Wilk goodness-of-fit test. We acknowledge

the on-going debate regarding the validity of the log-normal assumption; however,

working with large datasets is an exceptional situation. Therefore non-parametric

methods are typically not effective, nor are more sophisticated probabilistic models.

Note that any SSDs we describe in this chapter are representative of fish assem-

blages. However, in many situations regulatory guidance requests a multi-taxa SSD

be determined unless one taxon is identified as being particularly sensitive (e.g. a

herbicide will likely be a priori more sensitive to plants than fish), in which case it

is sufficient to look at the per-taxon SSD. This was discussed in Section 2.4.

4.2 The Rainbow Trout

The rainbow trout (Oncorhynchus mykiss, coded as S119 in the RIVM fish database)

is a species of salmonid used frequently in laboratory ecotoxicological experimen-

tation (Alexander and Fairbridge, 1999). There are a multitude of reasons for

this: (i) ease of cultivation; (ii) extensive scientific knowledge of its life history

(www.FishBase.org; accessed 24/06/2009); (iii) it is an approved indicator species

(US EPA, 2002). Raimondo et al. (2008, p. 2601) report that a subspecies of rain-

bow trout (as well as other common test species) is federally listed in the United

States.

Rainbow trout was acknowledged by EFSA (2005) to be a particularly sensitive

species to chemical stressors, and this was demonstrated using a non-parametric

plot, similar to that of Figure 4.3. In this figure, each point on the plot represents a

different substance from the RIVM fish database. The geometric mean of the EC50

values for all fish (other than the rainbow trout) is divided by the EC50 for rainbow

trout. There are 344 substances in the RIVM fish database that has a measured

tolerance value for the rainbow trout. If the plotted points for these substances lies

above 1 much more than 50% of the time, which they appear to do, then this crudely

implies sensitivity of the rainbow trout. The EFSA (2005) figure only considered
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the 220 substances satisfying ni ≥ 3; we demonstrate it for all substances where

the rainbow trout was tested. However, the highly unbalanced incomplete factorial

structure of the database means this figure can only be vaguely interpreted. In

Figure 4.4 a histogram is shown which summarises the aforementioned EC50 ratios

plotted in Figure 4.3.

An alternative exploratory demonstration is to consider the estimated PAFs

evaluated at environmental concentrations equal to the rainbow trouts’ EC50 using

estimated [log-normal] SSDs. To do this, we parametrically forward estimate (see

Section 2.4.1) the fraction of species potentially affected using: (i) a moment estima-

tor; and (ii) the median [AJ] forward estimator (see Aldenberg and Jaworska 2000).

The former is basically a normal cumulative distribution function evaluated at the

tolerance value of the rainbow trout and the latter is straightforwardly determinable

through considerations of Equation 2.5. Each SSD is estimated independently of the

tolerance value of the rainbow trout in order to remove bias. Furthermore, for com-

putational reasons, analysis is restricted to datasets satisfying ni ≥ 3 (N = 220). In

Figure 4.5, we display histograms of the substances analysed; the left panel shows

the moment estimators and the right panel shows the median [AJ] forward esti-

mates. There is not a substantial difference between the two histograms, with both

suggesting that the estimated PAF evaluated at the rainbow trouts’ EC50 would be

less than 50% on average. As per the previous demonstration, Figure 4.5 can only

be vaguely interpreted, but may be a useful diagnostic tool for the purposes of risk

communication.

4.3 Hypotheses Tests

In this section we test the null hypothesis that species tolerance values are a pri-

ori exchangeable within the fish taxon for each new chemical assessed. Two non-

parametric hypothesis tests are proposed based on the ranks of species tolerance

values available within the RIVM fish database. We denote rij to be the rank of

species j ∈ Ji with rij = 0 ∀j /∈ Ji. The first test is motivated by the familiar

sign-test which is less powerful than the second test — a rank-sum test — but more
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Figure 4.5: Histograms of the estimated PAF evaluated at the rainbow trouts’ EC50

for 220 pesticides. Left: moment based estimator; right: median [AJ] estimator.

robust because the second test is sensitive to outcomes for individual chemicals.

4.3.1 Hypothesis Test 1: Sign Test

Under the null hypothesis, a species should be equally likely to appear in the left-half

or the right-half of the data for each compound. We therefore apply the binomial

distribution to determine whether a species occurs too often on one side or the other.

For every species j, we calculate the following quantities:

m+
j =

∑
i∈G

1
{
rij >

1
2
(ni + 1)

}
;

m±j =
∑
i∈G

1
{
rij 6= 1

2
(ni + 1)

}
,

where 1 {A} is an indicator function for a Boolean response A taking value 1 if A

is true, and 0 if A is false. Therefore m+
j records how many times species j was in

the right half of the data and m±j records how many species j was in the right or

left half; central positions receive a score of zero.

Under the null hypothesis, for each species j we have

n+
j |m±j ∼ Bin

(
m±j ,

1
2

)
,
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Species Code m m± m+ m+/m± P -value

Oncorhynchus mykiss S119 344 301 83 0.28 3.9× 10−15

Carassius auratus S023 76 69 56 0.81 1.7× 10−07

Cyprinus carpio S051 166 150 103 0.69 5.6× 10−06

Heteropneustes fossilis S071 36 36 31 0.86 1.3× 10−05

Oncorhynchus clarki S118 42 41 10 0.24 1.5× 10−03

Pimephales promelas S132 160 147 93 0.63 1.6× 10−03

Carassius carassius S024 25 23 19 0.83 2.6× 10−03

Channa punctatus S034 17 16 14 0.88 4.2× 10−03

Clarias batrachus S040 17 16 14 0.88 4.2× 10−03

Salvelinus namaycush S153 35 33 8 0.24 4.6× 10−03

Table 4.1: Species with the smallest P -values based on hypothesis test 1.

allowing us to perform a two-sided Binomial test to derive a P -value based on the

associated hypothesis test. Results from the application of this hypothesis test to the

RIVM fish database are displayed in Table 4.1 for the ten species with the smallest

P -values.

Interpretation beyond the first row is not recommended because it is theoreti-

cally possible that the significant values are simply an artefact of the possible non-

exchangeability of the rainbow trout. However, according to Rand (1995, p. 78),

four of the species listed are standard test species, including: rainbow trout (O.

mykiss), goldfish (C. auratus), common carp (C. carpio) and fathead minnow (P.

promelas). The latter three species are all members of the Cyprinidae taxonomic

family. Whilst there is strong evidence against exchangeability, this test is not suf-

ficient to say whether it is only the rainbow trout which exhibits this phenomenon,

and whether it presents the largest, for want of a better word, ‘bias’. However, the

results do indicate that the rainbow trout tends to be present in the lower half of

the data, which based on discussion thus far was not unexpected.

It is interesting to consider the results of this hypothesis when tolerance values

for the rainbow trout are excluded. Removing such a standard test species has strong

consequences for the RIVM fish database; it reduces the number of database entries

by 18%, as well as removing a significant number of chemicals currently of order

ni = 2 from having influence on the test statistic. It is for this reason that we do

not perform the rank-sum test (Section 4.3.2) on this reduced database. Applying
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Species Code m m± m+ m+/m± P -value

Heteropneustes fossilis S071 36 33 28 0.85 6.6× 10−05

Salvelinus namaycush S153 35 32 5 0.16 1.1× 10−04

Carassius auratus S023 76 68 50 0.74 1.3× 10−04

Oncorhynchus clarki S118 42 40 9 0.23 6.8× 10−04

Channa punctatus S034 17 16 14 0.88 4.2× 10−03

Clarias batrachus S040 17 16 14 0.88 4.2× 10−03

Esox lucius S054 18 17 3 0.18 1.3× 10−02

Pimephales promelas S132 160 129 79 0.61 1.3× 10−02

Carassius carassius S024 25 22 17 0.77 1.7× 10−02

Ctenopharyngodon idella S049 15 15 12 0.80 3.5× 10−02

Table 4.2: Species with the smallest P -values based on hypothesis test 1 excluding
rainbow trout.

the hypothesis test to the RIVM fish database which excludes the rainbow trout as

a test species yields analogous results to Table 4.1, as displayed in Table 4.2.

Thus it would appear that there is evidence of non-exchangeability among the

remaining species even when one has discounted the rainbow trout. It is particularly

interesting to note that the ranking of species by P -values in Table 4.2 has not been

simply shunted up by one place. This reinforces the point that we do not have

sufficient evidence to state how many species might be non-exchangeable, and to

what degree.

4.3.2 Hypothesis Test 2: Rank Sum Test

A non-parametric rank sum test, which directly uses the rank scores as opposed to

indicator functions of them should be more powerful. For each species j we calculate

the test statistic

R̂j =
∑
i∈G

rij.

Under the null hypothesis, for each species j we have

P[rij = x |ni] =
1

ni
for x ∈ {1, 2, . . . , ni}

and rij is independent for different values of i.
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Species Code m r̃ P -value

Oncorhynchus mykiss S119 344 −0·42 8.6×10−12

Heteropneustes fossilis S071 36 0·83 1.9×10−7

Carassius auratus S023 76 0·68 3.1×10−5

Salvelinus fontinalis S152 33 −0·58 1.3×10−4

Carassius carassius S118 25 0·85 1.6×10−4

Oncorhynchus clarki S040 42 −0·61 3.6×10−4

Clarias batrachus S024 17 0·91 4.0×10−4

Salvelinus namaycush S153 35 −0·59 2.4×10−3

Channa striata S035 10 0·73 3.9×10−3

Perca flavescens S127 29 −0·38 6.5×10−3

Table 4.3: Species with the smallest P -values based on hypothesis test 2.

The exact null sampling distribution of R̂j is mathematically intractable, how-

ever the distribution for each species j can be approximated using either Monte

Carlo sampling or a central limit theorem based normal distribution approximation

using the theoretical expectation and variance. These are respectively determined

to be
∑

i:j∈Ji
1
2
(ni + 1) and

∑
i:j∈Ji

1
12

(n2
i − 1). The former method is particularly

difficult because the small P -values would require a very large amount of Monte

Carlo simulations; the latter method requires mj to be sufficiently large in order to

be an effective approximation. As a consequence of the discretised nature of R̂j,

we apply the standard continuity correction of 1/2 before we apply the normal ap-

proximation. The species with the 10 smallest P -values are listed in Table 4.3. In

addition we show a standardised measure of ‘bias’, denoted as r̃j, which we calculate

as the average standardised rank for each species j, given by

r̃j =
1

mj

∑
i:j∈Ji

rij − 1
2
(ni + 1)√

1
12

(n2
i − 1)

.

One might argue that the test statistic should be determined via a weighted sum

of statistics. However, in effect this is already the case. To place rij on the scale

(0, 1] for all i, one might consider rij/ni. The test statistic would then be obtained

for each species j as some weighted sum over all i. Selecting the weight to be ni, so

that more influence is achieved from datasets with large sample sizes, would result in

the original test statistic R̂j. We do not consider alternative weights in this research.
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In addition to the central limit normal approximation used to calculate the P -

values in Table 4.3, we also calculated the P -values using Monte Carlo simulation

with 10, 000 samples. For the 10 species listed in Table 4.3 there was no measurable

difference in P -values, nor was there any change in the rankings. However, the

Monte Carlo output did allow us to check the validity of the normal approximation.

In Figure 4.6 we show the Q-Q plots of 10 species highlighted in Table 4.3 which

confirm approximate convergence to normality.

Interpretation of Table 4.3 is subject to the same difficulties as Table 4.1. How-

ever, it has provided further evidence against exchangeability.

4.4 Sensitivity of Data Points

A result from Aldenberg et al. (2002) implicitly suggests that we should be more

concerned with the potential non-exchangeability of a ‘sensitive’ species, say the

rainbow trout, rather than a more ‘tolerant’ species, say the goldfish. This is because

it is the lower ranked tolerance values which have the strongest influence when

estimating the HCp for small p, say p = 5 — the usual value of interest.

Let σ̂ be a measure of the standard deviation estimated from the log-toxicity data

for substance S based onM1,M2 orM3 (or an alternative behavioural model) with

λ0 corresponding degrees of freedom. For example, for M1, σ̂ = s with λ0 = n− 1.

Now let us consider a decision rule under the context of exchangeability, which was

shown to have general form δp(Y) = ȳ−κpσ̂. We define the dimensionless sensitivity

quotient Qj for j ∈ JS to be the rate of change of the estimator with respect to a

tolerance value yj, which is straightforwardly shown to be equivalent to

Qj
∆
=
∂δp(Y)

∂yj
=

1

n
− κp
λ0

(
yj − ȳ
σ̂

)
. (4.1)

For small p and κp > 0, any standardised data point (yj − ȳ)/σ̂ < λ0/(nκp) has

positive influence on the estimator δp(Y). Moreover, the magnitude of influence in-

creases asymmetrically as one moves towards the lower order statistics. For realistic

sample sizes under M1, the threshold increases steadily from 0 to approximately

0.4 for [AJ] with p = 5 and γ = 0.95 and for [EFSA] with p = 1. Under M2 the
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threshold slightly exceeds 0.4 for the same two estimators based on an estimate of

α = 1.51, which we obtain later by reconsidering the HCp estimator in the context

of a single non-exchangeable species.

As for the deterministic approach of calculating a PNEC by dividing the lowest

observed tolerance value by a fixed assessment factor, the probabilistically derived

estimators are also most influenced by the lower tolerance values. The implication

for risk assessment is that systematic ‘bias’ which leads to a species typically lying

in the lower half of an SSD will more strongly influence the estimator. Adjusting

for such effects is more likely to have an effect on the resulting PNEC estimate than

adjustments for ‘bias’ which lead to a species typically lying in the upper half of an

SSD. This will be especially the case if as highlighted above, the size of the ‘bias’ is

approximately half a standard deviation.

4.5 Initial Modelling: Species Effects

It is quite plausible that the concept of exchangeability is untenable from a statisti-

cal modelling viewpoint, and that all species are in fact non-exchangeable. In fact,

if all the rainbow trout toxicity data from the analysis is eliminated, one still finds

evidence of non-exchangeability for the remaining species. A statistician would

naturally fit some model incorporating both chemical and species effects, ideally

with careful consideration of distributional assumptions. However, the non-factorial

nature of the database means that estimates would be highly confounded. More-

over, the constraints on tractability from the regulatory sector would likely not be

achieved. Notwithstanding this point, we explore this modelling perspective further

so that we gain vital insight into the measure of ‘bias’ on the log-concentration scale,

for the rainbow trout and other species.

The basic model for the response variable (log-tolerance value) for substance i

and species j ∈ Ji can be succinctly written as

yij = µi + εij,

where µi is the unknown mean of the SSD over log-concentration for substance i
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(measured in log10 mg/L), and εij is the error in the model. For the behavioural

models proposed earlier alongside the normality assumption, we have

M1: εij |σ2
i
iid∼ N(0, σ2

i ) such that (σ2
i ∀i ∈ G) are unknown;

M2: εij |σ2
i
iid∼ N(0, σ2

i ) and σ2
i |α, β ∼ IG(α, β) where α, β are known;

M3: εij |σ2 iid∼ N(0, σ2) such that σ2 is unknown;

M4: εij |σ2
i
iid∼ N(0, σ2

i ) such that σ2
i is known ∀i.

We now augment the model by including species effects, i.e.

yij = µi + ζj + εij,

where ζj is the species effect for species j, measured on the log-concentration scale.

Our additive model is consistent with Jager et al. (2007) who also explored models

such that response variables were additive sums of chemical ‘potency’ (measured as

a functional relation to the octanol-water partition coefficient and molecular weight)

and species ‘vulnerability’ and extends research by Craig (2005).

4.5.1 Homogeneity

Although the premise of M3 was criticised earlier in Section 3.8, it is a sensible

starting point because the fitting of such models is reasonably straightforward using

conventional two-way fixed effects ANOVA (without interactions) (Stuart et al.,

1999).

Setting all species effects to zero, i.e. ζj = 0 ∀j, leads to the usual minimum

variance unbiased estimators: µ̂i = ȳi and σ̂2
i = s2

p. A histogram of the substance

effects for this case is displayed in Figure 4.7.

It would not be sensible to estimate species effects for all species in the RIVM

database due its sparsity; recall there are 172 species and 379 substances, but only

1903 available tolerance values. Moreover, the ‘design’ is such that the database

is substantially unbalanced. Stuart et al. (1999, pp. 632–634) refer to this as an

‘unbalanced two-way incomplete block design’. A logical compromise is to include
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Figure 4.7: Histogram of compound effects for zero species effects.

only some species effects subject to suitable criteria. Since our model is only for

exploratory analysis and not intended to act as a full predictive model, which is

usually a motivating factor of such research, the rationale of not fitting all species

appears satisfactory.

In order to decide which species effects to include in the model, we apply a

forward model selection routine, starting from the baseline of no species effects,

using the Bayesian information criterion (BIC) as our model selection criteria. The

BIC is defined to be

2 log `
(
µ̂, ζ̂, σ̂

)
− p log d,

where ` is the likelihood function for the full data model; µ̂, ζ̂, and σ̂ are the

maximum likelihood estimates of µ = (µi, ∀i ∈ G)T , ζ (the vector of species effects

included in the model), and σ respectively. The number of parameters in the model

is denoted as p, in this case p = N + |ζ|+1; and d is the total number of data points

used to derive the maximum likelihood estimates, in this case d = ς +N ≡
∑

i∈G ni.

The algorithm for this selection routine assuming εij are conditionally indepen-
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dently identically distributed normal with mean 0 and variance σ2
i , is as follows:

1. Fit the current model yij = µi+ εij using least squares, and calculate the BIC.

2. (a) For each species j′ ∈ ∪i∈GJi fit the model yij = µi + ζj′1{j=j′} + εij using

least squares.

(b) If the lowest BIC from the fitted models in (a) is less than the current

BIC, then corresponding model is set as the updated current model.

3. Repeat step (2) for the remaining species effects until no further reduction in

BIC is achieved. Return this model.

The stepwise selection procedure added 24 species effects in total; these are listed

in the order of which they were included in Table 4.4. In addition we also display

the maximum likelihood species effect estimates; standard error and corresponding

P -value from the standard t-test under the hypothesis that the species effect is zero.

Notice that there is a strong correlation of species added in Table 4.4 to species

listed in Tables 4.1 and 4.3. However, some species effects added were species which

were tested with only one or two substances. Typically these species account for

the more appreciable species effects estimates. The standard unbiased estimate of

σ was σ̂ = 0.59, and no significant change in substance effects was observed from

the model with no species effects.

Another frequently used model selection (Burnham and Anderson, 2002) is Akaike’s

information criteria (AIC) defined as

2 log `
(
µ̂, ζ̂, σ̂

)
− 2p.

The forward selected model using this criterion added 48 species effects; these are

listed in Table 4.5 in the order the species were included in the model. Interestingly,

the first 24 added chronologically match those added using the BIC. However, the

species effect estimates have altered marginally, and whilst not significantly, an

observable pattern is that they have all decreased. The estimate of σ̂ = 0.57 remains

close to the BIC selected model and no significant change was observed for the

substance effect estimates. We will later briefly discuss model selection criteria.
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Species ζ̂ S.E. P -value m

S119 −0·20 0.042 1.0×10−06 34
S071 0·67 0.104 1.8×10−10 36
S023 0·42 0.076 3.8×10−08 76
S118 −0·46 0.099 2.9×10−06 42
S105 −1·92 0.436 1.2×10−05 2
S015 −1·34 0.345 1.1×10−04 3
S040 0·70 0.153 4.6×10−06 17
S011 1·86 0.460 5.5×10−05 2
S049 0·65 0.165 8.5×10−05 15
S024 0·50 0.133 1.5×10−04 25
S153 −0·34 0.107 1.4×10−03 35
S152 −0·34 0.110 2.3×10−03 33
S145 −1·42 0.433 1.1×10−03 2
S085 0·95 0.274 5.1×10−04 5
S160 −0·51 0.171 2.9×10−03 14
S054 −0·40 0.148 6.9×10−03 18
S034 0·49 0.150 1.2×10−03 17
S035 0·61 0.194 1.6×10−03 10
S139 1·82 0.610 2.9×10−03 1
S132 0·18 0.056 1.1×10−03 160
S051 0·17 0.056 2.7×10−03 166
S041 1·03 0.357 4.0×10−03 3
S062 −1·58 0.610 9.6×10−03 1
S016 0·77 0.312 1.4×10−02 4

Table 4.4: Summary of final model selected by BIC.

S119 S071 S023 S118 S105 S015 S040 S011
−0.28 0.59 0.34 −0.57 −2.04 −1.43 0.64 1.81

S049 S024 S153 S152 S145 S085 S160 S054
0.57 0.44 −0.44 −0.44 −1.48 0.90 −0.62 −0.49

S034 S035 S139 S132 S051 S041 S062 S016
0.40 0.53 1.74 0.10 0.11 0.94 −1.77 0.69

S009 S122 S127 S155 S148 S088 S161 S055
−0.81 −0.75 −0.35 −1.45 −0.6 −1.38 −0.87 −1.51

S048 S138 S102 S168 S046 S135 S101 S052
−1.29 −1.36 −0.21 −0.60 −1.28 −0.65 −0.40 0.92

S110 S060 S039 S001 S151 S014 S124 S121
−0.95 −0.49 1.11 1.14 −0.42 −0.55 −0.43 −0.41

Table 4.5: Species effects estimates based on the AIC selected model.
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Consider the following model

yij = µi + ζ1191{j=119} + εij, (4.2)

where ζ119 denotes the species effect for the rainbow trout. This model is proposed to

include only a single species effect for the rainbow trout, which is a sensible approach

because of its prevalence in chemical safety assessment. The standard estimators for

ζ119 and σ are ζ̂119 = −0.29 and σ̂ = 0.64 respectively. This model is only a slight

deviation from what is currently accepted by practitioners within the scope of M3,

yet it offers flexibility to account for the evidential effect the rainbow trout yields on

the tolerance response variable, and subsequently the HCp for small p. We explore

this parsimonious model again from other behavioural modelling perspectives later.

EFSA (2005) proposed a model for incorporating a single non-exchangeable

species in the context of M1 although, it was restricted to the viewpoint of de-

riving decision rules with non-specified levels of protection; we discuss this in detail

in Sections 5.1 and 5.7. Basically, the model was that conditional upon µ and σ, the

log-tolerance value for a single non-exchangeable species may be envisaged as being

a realisation from a normal distribution with mean µ− k′σ and standard deviation

φ′σ, where (k′, φ′) are the ‘non-exchangeability parameters’. We describe modelling

in the following chapter. The expectation of the log-tolerance value for this special

species is shifted from the exchangeable model mean by −k′σ, with EFSA (2005)

providing a maximum likelihood based estimate of k′ (see Appendix B.3 for addi-

tional information) as k̂′ = 0.45. Substituting k′ by this estimate and σ by sp, we

obtain a crude approximation to the shift: −0.45× 0.65 = −0.29 — similar to ζ̂119.

4.5.2 Heterogeneity

The introduction of species effects into the model when eitherM1 orM2 is adopted

makes calculations more difficult. However, the latter model can offer additional

insights. Thus, in this section we explore the premise of the fixed effects model

primarily from the perspective of the behavioural model M2; conditional hetero-

geneity such that we assume (σ2
i ∀i ∈ G) is a random sample from an inverse-gamma
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Figure 4.8: 100x% confidence regions for (α, β).

distribution parameterised by shape and scale parameters α and β respectively.

A method of estimating α and β by maximum likelihood methods is provided in

Appendix B.2. For the RIVM fish database, it was determined that the maxi-

mum profile marginalised likelihood estimates of α and β are (α̂, β̂) = (1.05, 0.088).

Furthermore, a method of calculating a 100x% joint confidence region is shown in

Appendix B.2.1, which we use to produce those displayed in Figure 4.8.

To introduce species effects in the heterogeneous model we proceed as per the

homogeneous model selection by first assuming all species effects to be zero, i.e.

ζj = 0 ∀j. We then employ a forward stepwise BIC model selection procedure to

add species effects into the model until there is no further gain. In order to be able

to calculate the BIC for each sub-model, we need to obtain the likelihood function.

For any given model, define P be a set of indices for species effects to be included

in the model. Then the full data likelihood function is

`(µ,σ2, ζ) =
∏
i∈G

∏
j∈Ji

1√
2π

1

σi
exp

{
− 1

2σ2
i

[
yij − µi − ζj1{j∈P}

]2}
,
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S119 S023 S071 S055 S015 S024 S118 S153 S151
−0.22 0.29 0.45 −1.39 −2.04 0.28 −0.42 −0.33 −0.51

S145 S105 S054 S040 S035 S049 S160 S148 S152
−1.82 −3.41 −0.50 0.70 0.49 0.33 −0.54 −0.50 −0.31

S122 S041 S124 S127 S101 S139 S060 S102 S012
−0.66 1.04 −0.55 −0.22 −0.31 1.76 −0.36 −0.16 1.25

Table 4.6: Species effects estimates based on the BIC selected model.

where µ = (µi : i ∈ G)T ; σ2 = (σ2
i ∀i ∈ G)T ; ζ is an |P| × 1 vector of species effects

as indexed by P .

Augmentation of the model, such that (σ2
i ∀i ∈ G) is an unobserved random

sample from an inverse-gamma distribution parameterised by shape α and scale β,

requires us to work with the marginal likelihood, given by

`(µ, ζ, α, β) =

∫
Σ

`(µ,σ2, ζ)
∏
i∈G

f(σ2
i |α, β)dσ2

∝
∏
i∈G

βαΓ(α + ni/2)

Γ(α)[β + 1
2

∑
j∈Ji(yij − µi − ζj1{j∈P})

2](α+ni/2)
, (4.3)

where Σ = (R+)
N

. Maximisation of this marginal likelihood is achieved by taking

logarithms and usage of suitable software. Note that the maximum likelihood esti-

mate of µ is clearly a function of ζ implying an underlying profile likelihood function.

The high dimensionality of the maximisation problem requires careful handling of

the maximisation routines for convergence to take place. A highly efficient strategy

is to use initial starting values of ζ derived from the corresponding homogeneous

model for P which is very fast to calculate using standard statistical software.

Based on this stepwise model selection routine, 27 species effects were added to

the model. Of the 27 species, 16 featured in the list of 24 species effects added in

the homogeneous model version of the algorithm. Yet again S119 was added first

to the model followed by S23 and S71; see Table 4.6 for species effect estimates and

the order in which they were included into the model.

As was the situation previously, the substance effects were not greatly different

from the homogeneous model analyses earlier. In addition, with the exception of
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S119 S071 S023 S118 S105 S015 S040 S011
−0.15 0.51 0.37 −0.28 −3.40 −1.76 0.76 2.22

S049 S024 S153 S152 S145 S085 S160 S054
0.40 0.31 −0.22 −0.24 −1.46 1.06 −0.43 −0.37

S034 S035 S139 S132 S051 S041 S062 S016
0.33 0.55 1.84 0.13 0.09 1.08 −1.59 0.42

Table 4.7: Species effects estimates based on the homogeneous BIC selected model.

S105 and possibly S049, the species effects estimates are also reasonably similar

to the homogeneous model estimates. The reason for S105 differing significantly

between behavioural modelsM3 andM2 is likely because this species only features

in two substance datasets. The maximum likelihood estimates of α and β for the

final model are α̂ = 1.01 and β̂ = 0.066, which are similar to those estimated for

the exchangeable species model.

It is useful to consider that by considering σ2 to be distributed with an inverse-

gamma distribution with shape and scale parameters set to their estimates, then a

heuristic estimate for the average of σ for the population of substances would be
√
βΓ(α− 1

2
)/Γ(α), obtained by considering the expectation of the square root of an

inverse-gamma random variable. This yields 0.45 which is marginally lower than

the expected value of 0.49 yielded under the species exchangeable model.

In Section 4.5.1 we identified a model in the context ofM3 selected via a stepwise

BIC model selection procedure which admitted 24 species effects into the model. If

we naively assume these species effects to be present, but analyse the model from

the heterogeneousM2 perspective, we retrieve species effects estimates as presented

in Table 4.7. The compound effects have not greatly changed from the homogeneous

estimates. Additionally we notice that the species effects appear to be on average

reduced in absolute value, again with the noticeable difference of S105.

In this case, we retrieve α̂ = 1.02 and β̂ = 0.071 with corresponding standard

errors 0.11 and 0.013 respectively. Estimation and future predictive capabilities with

respect to species effects are clearly sensitive to behavioural model choice.

Finally, consider the parsimonious model given by Equation 4.2 which allowed

for the rainbow trout to be the only species effect in the model. Then the maximum
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likelihood estimates of ζ119, α and β are ζ̂119 = −0.21, α̂ = 1.00 and β̂ = 0.075

respectively. Whilst the estimates of α and β have not changed significantly from

the default model of zero species effects, the estimate of ζ119 has increased slightly

from the estimate yielded under the context of M3 (Section 4.5.1). Considering

each of the 24 stepwise models (ranging from the model including only the species

effect for the rainbow trout up to the model including all 24 species effects as listed

in Table 4.7), it was found that the estimate of ζ119 remained robust, with all

estimates within the limits (−0.15,−0.21). Repeating the earlier calculation of a

heuristic average estimate of σ for the population of substances, we obtain σ̂ = 0.49

which is the same as for the species exchangeable model. Additionally, repeating

the crude approximation of the average shift of the exchangeable model mean, i.e.

−k′σ, with k′ = 0.45 for the rainbow trout as described earlier, then we obtain

−0.45× 0.485 = −0.22 — consistent with the value obtained here.

4.5.3 On the Choice of Model Selection Criteria

The aim of this section has been to exploratively analyse a statistical approach

which can incorporate the presence of species effects which may drive the hazard

assessment; this is useful for (re-) modelling in the following chapter. In particular,

the approach of including all species in any proposed model is not considered sensible

due to sparsity in the available database. Hence we sought a more simplified model

which included only a subset of the species effects; not deviating substantially from

the current scientifically accepted model. Model selection criteria are often used to

choose among models by balancing adequacy of fit and model complexity. Clearly

it would have been preferred to have explored all models, however this is often

computationally intensive. It took us many hours to analyse approximately 4000

out of a possible 2172 (taking account of species effects only; substance effects are a

prerequisite in the model). Moreover, databases such as the one used here are being

continually updated as scientists attempt to better utilise computational power (cf.

Dyer et al. 2006, 2008), hence this task will be non-trivial in future years.

We take the view of Spiegelhalter et al. (2002) who state that ‘an overformal

approach to model ‘selection’ is inappropriate’. Nonetheless stepwise model selection
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routines are now commonplace tools for problems of this sort (Draper and Smith,

1998), with AIC or BIC as the typically invoked selection criterion. Spiegelhalter et

al. (2002) discusses (hierarchical) model selection from the perspective of a ‘focus’;

the parameters of which ‘should ideally depend on the purpose of the investigation’

(Ibid., p. 613). Basically, we want to refine the level of hazard assessment for

a future assessment of substance S not contained in the database. For example,

within the context ofM2 it is (α, β, ζ) which is the focus. Upon defining the focus,

the likelihood can be defined (Equation 4.3). As no hierarchy for µ is provided, we

included these parameters in the likelihood. Although a profile marginal likelihood

approach allows us to circumvent the need for the restructuring of the likelihood.

If the future assessment is to be based on (α, β, ζ) fixed as we envisage, in order to

retain tractability and reusability the application of AIC seems appropriate. From

the Bayesian perspective with negligible prior knowledge, AIC has been shown to

be comparable to the Deviance information criterion (Spiegelhalter et al., 2002).

BIC — an approximation of the log marginalised likelihood with an uninforma-

tive prior distribution — was the criterion applied in this section, and is implicitly

criticised by Burnham and Anderson (2002) because it is reported that only where

we expect a few large effects will BIC perform better than AIC in finding models

‘closest to the truth’. There is debate about the choice of AIC or BIC as a model

selection criterion based on the condition of consistency, which the latter satisfies

but not necessarily the former. Burnham and Anderson (2004) state that the target

model of AIC and BIC differs, and that BIC attains this only for asymptotic sample

size. Nonetheless, it is deemed more appropriate in our opinion because a sensible

degree of parsimony is required if risk managers are to adopt any proposals for re-

finement of the current risk assessment methodology. The inclusion of many species

effects would undoubtedly lead to the ‘SSDeology’ becoming degenerative (discussed

in Section 5.9), which would be an unacceptable scenario from the current regula-

tory state of the science. Note that had we been concerned with predicting within

the database itself — thus changing the ‘focus’ — then other model selection cri-

teria may have in fact been more appropriate. Furthermore, had we actually been

concerned with seeking the (in some sense of the word) ‘best’ predictive model, then
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AIC (or a small correction version) may be preferable. We would emphasise that

our justification for BIC is informal and heuristic; for an extensive discussion of

AIC and BIC we direct the reader to Burnham and Anderson (2002, 2004). We also

acknowledge that other model selection criteria exist beyond AIC and BIC, some

of these are discussed in Burnham and Anderson (2004), although their use is not

commonplace.

4.6 Conclusions

Exploration of an RIVM fish toxicity database for pesticides has provided evidence

based on two non-parametric hypothesis tests that certain fish species may be non-

exchangeable with respect to others registered in the database. It is not clear how

many species may be ‘non-exchangeable’, or to what degree. In particular, evidence

was most observable for the rainbow trout possibly being non-exchangeable, which

is in accordance with EFSA (2005) who also report that this is a species of particular

interest because it is a frequently tested dossier species which influences many risk

assessment decisions. Moreover, correction for the typical ‘bias’ demonstrated by

the rainbow trout was shown to have a stronger influence on the estimation of HC5

values than other less sensitive species.

Fixed effect modelling gave an indication that there may be sufficient reason to

include multiple species effects within a model with even the most parsimonious

model including 24 species effects terms. However, extending the current scientifi-

cally accepted models to yield more pragmatic, yet still parsimonious decision rules

is a difficult task with respect to the current regulatory risk assessment process.

Given the current data shortage, it seems sensible that any model which incorpo-

rates non-exchangeability — based on valid evidence — should only be driven by

one or two species; most sensibly the rainbow trout for fish assessments. Whilst the

modelling framework discussed in Section 4.5 forms a natural procedural tool for

statistical modellers, it may only be of limited practical benefit to end users due to

the requirements of more sophisticated statistical knowledge and continual review as

databases are updated. More tenable approaches which do not substantially deviate
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from the scientifically accepted methods would clearly be required to account for

non-exchangeability.

The exploratory analysis in this chapter is for the fish taxon only. Analysis of

other major taxa, e.g. birds, insects and macroinvertebrates, may also provide evi-

dence for other non-exchangeable species. In particular, when other taxa have typ-

ical test species, e.g. Daphnia magna for macroinvertebrates; the Bobwhite Quail

(Colinus virginianus) and mallard duck (Anas platyrhynchos) for birds, it is im-

portant that this be assessed. EFSA (2005) found no evidence of the presence of

non-exchangeable species for other taxa based on the analysis of graphs similar to

that of Figure 4.7. However, even the presence of just a single non-exchangeable

fish species warrants further research into how one can incorporate such evidence

into a risk assessment. This is especially the case as risk assessment to fish is one of

the key regulatory requirements of modern chemical safety assessment. Stephan et

al. (2002) recommends that one might purposefully populate estimated SSDs with

recognisably sensitive species to ensure conservatism. This ad hoc procedure vio-

lates the statistical assumptions of the SSD definition and so we seek an alternative

approach in the following chapter.



Chapter 5

Modelling Non-Exchangeability

Current probabilistic risk assessment proposals for a chemical safety assessment

generally adhere to the assumption that species represented by the underlying SSD

are a priori exchangeable. Yet, this is inconsistent with an informally recognised

observation that certain species assessed are typically more sensitive than others,

for example the rainbow trout (Dwyer et al., 2005; EFSA, 2005). This observation

is consistent with the findings in our earlier exploratory analysis.

EFSA (2005) coined the term ‘non-exchangeability’ within the context of this

field, although, discussion within the report was only made with respect to the

adaptation of deterministic estimators and not practically discussed for methods

requiring specification of the maximally permissible PAF. The focus of this chapter

is therefore to describe a method for estimating the HCp, which on the log scale

we denoted ψp, that accounts for interspecies variability in addition to the presence

of a non-exchangeable species. Since we require additional assumptions to be in-

voked, inclusive of those currently advocated by SSD practitioners, we explore their

acceptability to end users. Emphasis is given to models which offer tractability for

future risk assessments and details provided for how to separately calculate input

parameters, thus allowing for reusability of decision rules.

For any model proposed that allows for the inclusion of species non-exchangeability,

it is important that its complexity does not deviate excessively from the current sci-

entifically accepted ERA modelling principles. That is why we focus on a single

non-exchangeable species and exemplify our discussion using the rainbow trout.

112
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This species has already been shown to be a special species in the regulatory arena,

and is likely to be continually tested for future risk assessments. We discuss the

plausibility of relaxing this restriction on a single non-exchangeable species later on.

5.1 Re-modelling

In this section we develop changes to the standard SSD concept and application

by including knowledge of a single identified non-exchangeable species. We refer to

such a species as a special species from here onwards. The title of special species is

to bring attention to the possibility to adopt a slightly modified version of this work

as to account for another problem of SSDs — the inability to adequately protect

endangered/desirable species. However, we will not consider the extension here.

The notation used in earlier chapters is modified such that a log-transformed

(base 10) tolerance value for species j ∈ J∗S assessed with substance S is denoted

yj, where J∗S is the collection of non-special species tested. We denote y† to be the

single log-tolerance value for the special species; in our example the rainbow trout.

In addition, we suppose |J∗S |
∆
= n∗ = n − 1, so that decision rules developed are

comparative to their exchangeable counterparts for fixed sample sizes.

We begin by first describing the model initially proposed by EFSA (2005). The

model is that for the n∗ species in J∗S , yj is conditionally independently distributed

normal with mean µ and variance σ2, which is consistent with the current SSD model

in the context of species exchangeability. For the special species, y† is conditionally

independent normal with mean µ−k′σ and standard deviation φ′σ. Thus when k′ =

0 and φ′ = 1 we retrieve the completely exchangeable model among all tested species.

In situations other than this we say that the special species is non-exchangeable with

respect to the other exchangeable species.

The predictive distribution of the special species’ tolerance value is such that

the usual log-SSD mean has been shifted by −k′σ and the usual log-SSD standard

deviation multiplied by φ′. The parameters k′ and φ′ need to be defined with

reference to some suitable population of substances. By allowing k′ to be the same

across substances, the shift of −k′σ maintains that the expected position of the
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special species in the log-SSD is to be unaffected by the variability of σ across the

population of substances. The application of this model for estimating the HCp by

EFSA (2005) assumed the parameters k′ and φ′ are known.

Although the predictive distribution for the single special species is appealing,

when incorporated into the methods of risk measure/control discussed within this

research, tractability is lost. This is unsatisfactory and so we modify the predic-

tive distribution of the special species so that it has expectation µ − k over log-

concentration. The expected position of the special species in the SSD is now affected

by the variability of σ across the population of substances. However we later show

that evidence does not overwhelmingly support the hypothesis that the shift should

be proportional to σ. It should be noted that the amount of data available for testing

this assumption maybe potentially masking any distinction. The standard deviation

of the special species’ predictive (log-)distribution is φσ, although taking the same

form, φ is now different from φ′ by virtue of the change in model. One should view

k as representing the ‘bias’ of the special species (on the log-concentration scale),

and φ as the allowance for a different variance (dimensionless).

It is interesting to note that this model is very similar to the model described by

Equation 4.2, such that only one species effect (the rainbow trout’s) was included

in the model and φ = 1. A generalisation of this model is

yj = µ+ ζ1191{j=S119} + εj,

εj |σ, φ ∼

 N(0, σ2) for j 6= 119

N(0, [φσ]2) for j = 119

where ζ119 ≡ −k.

For the remainder of this chapter we will restrict our discussion to the behavioural

models: M1 — which has scientific and regulatory acceptance — andM2, the rea-

son for this is two-fold. First, the basis of M3 has not been established and its

assumption remains unvalidated for application, at least in the context of aquatic

ERA of fish. Second, as discussed in Sections 2.7 and 3.8.2, it is not clear whether

M4 is equivalent to the other behavioural models with regards to the level of un-

certainty refinement. Accounting for non-exchangeability under these perspectives
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might therefore be inappropriate. However, we note that it is relatively straightfor-

ward to extend the concepts here to the perspective ofM3 andM4 if so warranted.

5.2 Posterior Distributions

In this section we give details of the posterior distribution for the log-SSD mean and

variance parameters based on observing some toxicity data for a substance S under

assessment. The current approach thus far has been to update non-informative prior

distributions in order to obtain a posterior distribution. It seems logical to maintain

the same prior distributions, since the role of subjectively elicited prior distributions

for probabilistic risk assessment of chemical safety has yet to explored for its merit

except for in a few reports, for example Grist et al. (2006), O’Hagan et al. (2005)

and Hickey et al. (2008). Furthermore, there would likely be hesitation or resistance

regarding the introduction of prior knowledge at the lower-intermediate quantitative

tier of risk assessment we are concerned with; this does not preclude its use, nor

limit potential acceptance at higher tiers.

For now we shall assume that all hyper-parameters k, φ, α and β are precisely

known or specified for the computation of calculating the posterior distributions.

The assumption of non-exchangeability ideally would not change a risk managers

beliefs should they have specified any on the prior distributions. Therefore for M1

and M2, we assume precisely the same non-informative prior distributions we used

in the species exchangeable context since these parameters hold the same operational

interpretation in both exchangeable and non-exchangeable models. Hence, for M1

we assume, a priori, that p(µ, σ2) ∝ σ−2 for µ ∈ R, σ2 ∈ R+. For M2, the

prior distribution of σ2 ∈ R+ is given by the hierarchical model, i.e. an inverse-

gamma distribution with shape α and scale β, and for µ we assume p(µ) ∝ 1 for

µ ∈ R. We now describe the posterior distributions of these parameters for the

SSD of substance S under both behavioural models; derivation is a straightforward

extension of the posterior distributions described in Appendix A.1 for the species

exchangeable modelling context.
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5.2.1 M1

µ |σ2, k, φ; Y ∼ NOWN

(
µ̂,

σ2

φ−2 + n− 1

)
for µ ∈ R;

σ2 | k, φ; Y ∼ IG
(
n− 1

2
,
n− 1

2
σ̂2

)
for σ2 > 0, (5.1)

where

µ̂ =
φ−2(y† + k) +

∑
j∈J∗S

yj

φ−2 + n∗

=
φ−2(y† + k) + n∗ȳ∗

φ−2 + n∗
; (5.2)

σ̂2 =
1

n− 1

φ−2(y† + k − µ̂)2 +
∑
j∈J∗S

(yj − µ̂)2


=

1

n− 1

[
φ−2(y† + k − µ̂)2 + n∗(µ̂− ȳ∗)2 + (n∗ − 1)s∗2

]
(5.3)

and ȳ∗ and s∗ are the usual mean and standard deviation of the n∗ tolerance values

for the tested species in J∗S .

Note that µ̂ and σ̂2 are the usual weighted least squares estimators from the

frequentist perspective. Hence, sampling distributions can easily be determined and

frequentist based decision rules derived; we focus solely on the Bayesian viewpoint.

5.2.2 M2

µ |σ2, k, φ; Y ∼ N

(
µ̂,

σ2

φ−2 + n− 1

)
for µ ∈ R;

σ2 | k, φ, α, β; Y ∼ IG
(

2α + n− 1

2
,
2α + n− 1

2
σ̃2

)
for σ2 > 0, (5.4)

where

σ̃2 =
2β + (n− 1)σ̂2

2α + n− 1
. (5.5)

It can be determined that from the frequentist viewpoint, if one incorporates sam-

pling σ2 from an inverse-gamma population then E[σ̃2/σ2] = 1; see for example

Section 2.6.5.
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5.3 Estimators

In this section we describe some of the estimators which derive from the proposed

model for non-exchangeability. It is important to emphasise that it is only the

assumptions surrounding the data generating mechanism which have changed; the

behavioural models and methods for measuring or controlling risk remain consistent

with earlier chapters. Another important observation is that estimators are all of

canonical form. In the exchangeable context, δp(Y) was a linear combination of the

mean of the toxicity data and a multiple of the standard deviation, i.e. ȳ − κpσ̃.

The situation under non-exchangeability here remains the same except adjustments

have been made to each part; ȳ is replaced by µ̂, σ̃ is modified accordingly for M1

and M2 separately and κp is adjusted to reflect the uncertainty in the SSD. In all

cases, κp maintains its property of being independent of the toxicity data for S. For

the remainder or this chapter, unless specified otherwise, notations such as δp, κp

and σ̂ will all be made with reference to the non-exchangeable model.

5.3.1 [EFSA] Estimators

The theory behind [EFSA] estimators was discussed in Section 2.6.4. As per the

exchangeable context, we consider the posterior predictive distribution of (Y −

µ̂)/(σ̃
√

1 + ψ−2), where ψ2 = φ−2 + n∗ (recalling that setting α = β = 0 results in

σ̃ = σ̂, i.e. M1; otherwiseM2), which is determined to be a Student t-distribution,

with π = 2α + n − 1 degrees of freedom. Hence, the general [EFSA] decision rule

for M2 is

δp(Y | k, φ, α, β)[EFSA] = µ̂− κp(n, α)σ̃,

where

κp(n, α) =
√

1 + ψ−2tπ,p.

To obtain the decision rule for M1, set α = β = 0. Additionally, as before, values

of κp for fixed n and p are non-comparable between behavioural models M1 and

M2 because the actual assessment shift-factors are obtained by multiplying each

by different standard deviation estimates. Setting k = 0 and φ = 1 yields the
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estimators derived in the exchangeable context.

An interesting observation can be made by considering the ratio of κp for the

exchangeable and non-exchangeable models for fixed n and p. For φ < 1 we have

that (φ−2 +n− 1) > n, so one can argue that φ decreasing represents an increase of

φ−2 − 1 additional species. Since the degrees of freedom in the Student t-percentile

are uninfluenced by φ this interpretation is limited.

5.3.2 [AJ] Estimators

The [AJ] estimators have been extensively discussed throughout this report and

have been shown to be important for many reasons; see Sections 2.6.3 and 3.4

for example. Essentially the class of estimators is defined to be the 100(1 − γ)-th

percentile of the posterior distribution of ψp(θ). Since ψp(θ) is defined in reference

to the exchangeable species SSD, it is required that we be specific about what we are

protecting; to aid in the flow of this section we delay this discussion until Section 5.4.

The [AJ] decision rule for M2 is defined to be

δ(γ)
p (Y | k, φ, α, β)[AJ] = µ̂− κp(n, α, φ, γ)σ̃.

By observing that the pivotal random quantity[
µ̂− µ

σ/
√
φ−2 + n∗

+Kp

√
φ−2 + n∗

]/
[σ̃/σ]

has a non-central t-distribution with π = 2α + n − 1 degrees of freedom and non-

centrality parameter η = Kpψ, it is straightforward to deduce that κp
√
φ−2 + n∗ is

equal to the 100γ-th percentile of this distribution. Hence,

κp(n, α, φ, γ) = ψ−1F−1
Tπ,η

(γ). (5.6)

Again, setting α = β = 0 yields the decision rule for M1. As was the case under

the exchangeable model description, the decision rule is valid subject to the same

interpretation as before under the frequentist viewpoint. Moreover, as k = 0 and

φ = 1, the decision rules coincide with their frequentist counterparts.
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5.3.3 [LINEX] Estimators

Although we do not wish to detract from the key theme of this chapter, we addition-

ally present the [LINEX] Bayes rule estimator deriving from the scaled LINEX loss

function described in Section 3.5. This has many appealing properties, and although

superfluous relative to current requirements, it is easily adapted as the other forms

of risk measurement and control (above) have been. The [LINEX] estimator forM2

is

δ∗p(Y | k, φ, α, β, λ) = µ̂− κ∗p(n, α, φ, λ)σ̃,

where κ∗p(n, α, φ, λ) is the unique solution to

∫ ∞
0

tα+(n∗−1)/2 exp

{
−λκ∗p

√
t−
(
α +

n− 1

2

)
t

}
dt =

Γ
(
α +

n

2

)[
α +

n− 1

2

]−α+n
2

exp

{
−λ
[
Kp +

λ

2[φ−2 + n− 1]

]}

for κ∗p. Again, setting α = β = 0 yields the decision rule for M1. Derivation of this

estimator follows the same method as in the species exchangeable context (consult

Appendix C.4) in conjunction with the revised posterior distributions defined by

Equations 5.1–5.4.

Note that the specified value of λ which fixes the loss function as some level

of preference for the risk manager will not change between the exchangeable and

non-exchangeable contexts.

5.3.4 Discussion

Given values for k and φ in addition to any other necessary parameters, then it

is a simple exercise to tabulate assessment shift-factors for a range of sample sizes

n and maximum permissible PAF levels p. These can then be used by risk asses-

sors alongside estimates of µ̂ and σ̃, which are straightforwardly calculated using

Equations 5.2 and 5.5 respectively to yield an estimate of the HCp. Otherwise, it

is simple to produce simple software applications, or perhaps modify current soft-

ware applications such as the RIVM’s ETX (Van Vlaardingen et al., 2004) program,
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which risk assessors and managers can use. It is beyond the remit of this research

to provide such tables for risk managers, however we acknowledge the appeal and

use of them which strengthens the potential for adoption of these decision rules for

use in regulatory risk assessment.

Since [AJ] and [EFSA] estimators are of canonical form, a comparison of them

can be made by considering the assessment shift-factors κp for fixed n. In Figure 5.1

we plot interpolated κ5 values corresponding to the [EFSA] (dashed curves) and

(median, γ = 0.50) [AJ] (solid curves) estimators forM1 and a sample size range of

3 ≤ n ≤ 20. We speculate that sample sizes above n = 20 are unlikely to be achiev-

able in practice for risk assessment especially for individual taxon SSDs. Although

both estimators are valid for n = 2, we could not achieve adequate accuracy in the

calculation of κ5, hence they are not included in the comparison. It is concluded

from Figure 5.1 that the estimators exhibit the same properties as those derived

within an exchangeable context, i.e. for fixed sample size the [EFSA] estimator is

more conservative than the median [AJ] estimator.

The effect of the non-exchangeability parameter φ (corresponding to different

coloured curves in Figure 5.1) on assessment shift-factors is far more pronounced for

[EFSA] than for median [AJ], even at a sample size of n = 20. The effect of φ on

conservative [AJ] estimators (γ = 0.95) — which yield more conservative estimators

relative to [EFSA] — was still observable even at larger values of n, although at

small values the differences were within the order of the effects observed for [EFSA].

In the interest of visual clarity, corresponding curves for γ = 0.95 are not overlaid

in Figure 5.1.

A particularly interesting observation is that for fixed n, as φ increases, so does

the [EFSA] rule for κ5, yet the [AJ] rule for κ5 decreases minutely. This is better

visualised in Figure 5.2 (left panel) which plots κ5 against φ (0.1 ≤ φ ≤ 2.1) for a

range of different sample sizes. The magnitude of the rate of change with respect

to φ is greater for [EFSA] values than for the median [AJ] values, again reflecting

the relative insensitivity of the latter on changes in φ. The right panel of Figure 5.2

shows a magnified region of the left panel indicating this point.

This phenomenon of the [AJ] κp values is perplexing and might appear paradox-
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Figure 5.1: Plot of κ5 values extrapolating to [EFSA] and median [AJ] estimators
against n for varying φ (M1).
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Figure 5.2: Plot of κ5 values extrapolating to [EFSA] and median [AJ] estimators
against φ for varying n (M1). Right panel: magnified region of κ5.



5.3. Estimators 122

ical. Whilst this property is observable for all p, it only occurs for certain ranges

of γ. For γ = 0.95 — which has been suggested for application — the κ5 values

increase as φ increases for both the [EFSA] and [AJ] estimators. This is immediate

by plotting Equation 5.6 against γ for different values of φ with fixed n and p; for

example see Figure 5.3 for the case of n = 8, p = 5. These scaled non-central

t-quantile functions intersect each other at different points (although not apparent

from the figure), such that the numerical ordering changes as γ does. In particular,

at γ = 0.50 (middle grey dashed line) — yielding κ5 which extrapolates to the me-

dian [AJ] estimator — the ordering is counterintuitive. We can additionally deduce

from this figure that the effects on κp by φ are much larger for the tail ends of γ in

comparison to γ = 0.50, including γ = 0.95.

Rather than setting κp
√
n∗ + φ−2 to be the 100γ-th percentile of a non-central t-

distribution with n−1 degrees of freedom and non-centrality parameterKp

√
n∗ + φ−2,

we could fix κp
√
n∗ + φ−2 to be the expectation of a random variable with this dis-

tribution. This would correspond to the [SEL] Bayes rule estimator; κp(n) is then

defined, independently of φ, according to Equation 3.4 with α = 0. In the example

provided by Figure 5.3, this assessment shift-factor is indicated as a pink dashed

line. It is observed that for any value of γ exceeding the corresponding value where

κp(n, φ, γ) and the [SEL] assessment shift-factor intersects, the ordering is consis-

tent with the [EFSA] assessment shift-factors. For a wider range of choices of n and

p < 50, we have numerically confirmed this re-ordering holds true. Thus we would

conjecture that it is true for all n > 3 and p < 50, or equivalently, that FTν,η(E[Tν,η])

is monotonically increasing for η where Tν,η is a random variable that follows a

non-central t-distribution with ν degrees of freedom and non-centrality parameter

η > 0.

We note, however, that that since the HCp estimators derived here depend on φ

through µ̂ and σ̂, as well as κp, then overall interpretation of φ is somewhat limited.
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5.4 Interpretation Under Non-Exchangeability

When we allow for non-exchangeability, clarity is required about what exactly we

mean by the ‘SSD’ and ‘HCp’. In the strictest sense, the SSD is the empirical cumu-

lative distribution function of sensitivity (tolerance) for a well-defined population of

species. The inability to observe the toxicological endpoint for every species in this

population calls for the use of statistical constructs, namely the probabilistic SSD.

In this framework the HCp is interpreted as the concentration of the given tox-

icant which will affect a randomly selected species from the assemblage with prob-

ability p% (Posthuma et al., 2002b). In the context of species exchangeability, the

interpretation of the SSD is contentious since the statistical population (species

community) it represents is poorly defined; Aldenberg et al. (2002) referred to this

as ‘the Achilles heel of SSDeology’. Moreover, the standard statistical assumptions

neglect that the population is finite. Despite this, the non-exchangeable species

perspective requires additional consideration.

From the modelling of a single non-exchangeable species, not every species is

identically distributed. Hence, the ‘true’ SSD which we assume to be a priori normal

with mean µ and variance σ2 under species exchangeability differs under the non-

exchangeability model since it only represents those species considered exchangeable.

Thus, the SSD in this case is the empirical cumulative distribution function of

tolerance for a re-defined population of species. The quantity we have sought to

estimate through this research is ψp(θ) = µ−Kpσ — the p-th percentile of a normal

distribution of tolerance over log-concentration — and we still attempt to estimate

this quantity within this chapter. One viewpoint would be that we are utilising

the information from the special species tolerance value to increase accuracy in the

estimation of the SSD for the ordinary species, in which sense the estimator δp would

represent the ordinary species. Alternatively, one may take the viewpoint that we

are correcting the special species’ tolerance value based on historical evidence so

that on average it is exchangeable, and thus accounted for in the estimator δp. The

two viewpoints are effectively the same in the context of this research.

Returning to the issue of population definition, we have already discussed (cf.

Section 2.4) that the SSD concept is at least in the regulatory context intended
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to represent multi-taxa communities. From the exchangeable species viewpoint, the

adequacy of the unimodal log-normal SSD for representing such species communities

is contentious. Forbes and Calow (2002b) and Duboudin et al. (2004a) report that

there are significant over- and under-representations of taxonomic groups used in

ERA. Even when considering a relatively broad single species group, e.g. macroin-

vertebrates, Hickey et al. (2008) found that weighting according to taxonomic order

can noticeably influence the HCp estimate. This issue is pertinent to the non-

exchangeable viewpoint also. For practical reasons we define non-exchangeability in

reference to a well defined population; in this research, namely the exposition of fish

to pesticide stressors.

5.5 Hyper-parameter Specification

In this section we give details of the estimation of the hyper-parameters used in the

models described: k and φ forM1; k, φ, α and β forM2. As discussed, we assume

these parameters are fixed precisely in advance, so that they can be used as plug-in

values for the estimators described in Section 5.3. We have not treated these hyper-

parameters as uncertain because this will cause tractability to be lost, however we

will later revisit whether this has any important effects on the estimators.

EFSA (2005) provided a method for: (a) estimating (α, β) for estimators of

ψp(θ) derived under the model M2 within a species exchangeable context; and (b)

estimating (k′, φ′) for a model used to account for a single non-exchangeable species

which we described in Section 5.1. Although φ′ bears resemblance to φ, the EFSA

plug-in value is not valid in the model we propose here. Details of the methods used

by EFSA (2005) for calculating (α, β) and (k′, φ′) are described in Appendices B.2

and B.3 respectively.

We assume we can represent a toxicity database G, such as the RIVM fish toxicity

database used throughout this research, as G = G1∪G2. G1 is the group of substances

deemed to be relevant to the substance under current assessment S, which have all

been assessed with the special species. G2 is the group of substances which are

relevant for the estimation of α and β, hence relevant to S. In EFSA (2005), G2
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is effectively defined to be all pesticides tested for each distinct taxonomic group,

e.g. fish, birds, etc. Decisions and agreement regarding the relevance of additional

substances to that of S falls under the remit of the risk managers role and scientific

experts. Note that when working in the context of M2 it will be necessary to

estimate all hyper-parameters (k, φ, α, β) simultaneously as they are linked in the

likelihood function, which we describe later.

We will make the assumption that G1 ⊆ G2, i.e. the group of substances used to

estimate the non-exchangeability parameters are a subset of those used to estimate

the heterogeneity parameters. We believe this to be a reasonable assumption, espe-

cially when the single special species is a frequently assessed dossier species of which

a relatively large amount of data is available. Whilst it might be possible that

one would want to estimate the non-exchangeability parameters using substance

datasets not relevant to the heterogeneity behavioural model, it seems unlikely.

For our illustrative example we define G2 to be the RIVM fish toxicity database,

which is in keeping with EFSA (2005). We define G1 to be the collection of substances

within the RIVM fish toxicity database which have been tested on the special species

subject to the condition that n∗i ≥ 2 for each i ∈ G1, i.e. at least two ordinary

species have been assessed with each chemical in addition to the special species. The

latter condition was adopted by EFSA (2005) and so in the interests of comparison

we maintain the restriction. Furthermore, the condition removed computational

issues encountered when n∗i = 1 regarding the maximisation routines applied to the

posterior distributions. By defining vi to be the number of substances contained in

Gi, we have v1 ≤ v2 ≤ N substances used in estimation procedure overall.

For each substance i ∈ G1, we denote yij as the log-tolerance value for species

j ∈ J∗i , with |J∗i | = n∗. Each yij is assumed to be a realisation from a normal

distribution with mean µi and standard deviation σi. In addition, we denote y†i as

the log-tolerance value of the special species tested with substance i, and assume it

is a realisation from a normal distribution with mean µi− k and standard deviation

φσi. For each substance i ∈ G2\G1, we denote the log-tolerance value of species

j ∈ Ji as yij, which we assume is a realisation from a normal distribution with mean

µi and standard deviation σi. Additionally, |Ji| = ni.
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In the interests of clarity we only provide background details of the estima-

tion procedures in the following sections. Technical details are provided in Appen-

dices B.4 and B.6.

5.5.1 M1

The method for estimation of k and φ is to calculate the joint posterior mode of

the marginalised posterior distribution of unknown parameters; such an estimator is

known as the maximum a posteriori (MAP) estimator. To do this we first construct

the likelihood function for all data in G1 and then multiply this by the product of

independent prior distributions for (µi, σ
2
i ) ∀i ∈ G1, namely p(µi, σ

2
i ) ∝ σ−2

i for

µi ∈ R and σ2
i ∈ R+. In addition, we multiply by the prior distribution of k and φ.

We will assume a priori, p(k, φ) ∝ 1 for k ∈ R and φ > 0. The anticipated hesitation

of regulators and stakeholders in adopting subjective prior distributions has already

been noted earlier on. Nevertheless, one might argue that expert knowledge is useful

for the specification of prior distributions for the non-exchangeability parameters.

Practical suggestions on this which might overcome such hesitation would likely only

yield very wide uniform distributions. We do not consider this case any further.

The un-normalised posterior distribution is then obtained, upon which integra-

tion with respect to the nuisance parameters (µi, σ
2
i ) ∀i ∈ G1 leaves one with the

marginalised posterior distribution for k and φ. Maximisation of this distribution

yields theMAP estimator which is what we use as our fixed plug-in values. In addi-

tion, joint modal estimators allow us to calculate the Hessian and subsequently ap-

proximate the joint posterior distribution using a Laplace approximation (Schervish,

1995, pp. 446–448) which we describe later on.

5.5.2 M2

The assumption that G1 ⊆ G2 makes the specification of prior distributions simpler

under the behavioural model of M2 (since the specification of a prior for SSD pa-

rameters of substances in the latter set will account for those in the former set).

The prior distribution for each µi remains as per before, i.e. p(µi) ∝ 1 for µi ∈ R
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∀i ∈ G2. The same applies for each σ2
i , i.e. distributed with an inverse-gamma

distribution with shape α and scale β for σ2
i ∈ R+ ∀i ∈ G2. If we had not assumed

G1 ⊆ G2, then this might complicate the estimation procedure since different prior

distributions would need to be specified for substances in G1 and not in G2. In ad-

dition to the priors for each µi and σ2
i , we also apply the same prior distribution for

k and φ as per M1, and apply p(α, β) ∝ 1 for α > 0, β > 0. Hence, deriving the

marginalised posterior distribution for the hyper-parameters, as described for M1

and maximising will yield the joint MAP estimator.

5.5.3 On the Reusability of Hyper-parameter Estimates

It is reasonable based upon the structure of estimation procedures described above,

that a risk manager would not need to be in possession of the databases used to

estimate the hyper-parameters. Subject to the identification of the single special

species and class of relevant substances, it should be sufficient to simply specify

the hyper-parameters. EFSA (2005) published values of α and β for five different

taxonomic groups; they also published values of k′ and φ′ for the rainbow trout.

However, conditional on the hyper-parameters for the given behavioural model, the

prior distribution for each substance is independent by construction, and so the pos-

terior distribution is a sufficient summary for the assessment of S. This sufficiency

allows for the posterior distribution to be published without the need for access to

the raw data within the database. This would be attractive to risk managers who

might otherwise be unsure of the practicality of the methodology here.

The disclosure of databases is an issue of concern in modern day risk assessment.

This has motivated many researchers to propose methods for estimating tolerance

values of untested species based on the tolerance value of a surrogate species (Dyer

et al., 2006, 2008; Jager et al., 2007), or even based on knowledge of the chemical

structure (Cronin et al., 2003). However it is vital that true observations be used to

estimate parameters in our models especially the non-exchangeability parameters,

otherwise unidentified systematic errors may compound. Large databases are cur-

rently publicly available such as the US EPA ECOTOX database (US EPA, 2007),

however the process of cleaning such data is time consuming and has led to organi-
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k φ α β

M1 0.195 0.702 – –
M2 0.205 0.656 1.523 0.315

Table 5.1: Posterior hyper-parameter MAP estimates.

sations protecting their investment. As an example, the RIVM have kindly given us

permission to use their database, but subject to agreement that it is not disclosed

publicly. Hence the sufficiency of the posterior distribution discussed above would

also be attractive to those with proprietary rights.

Making the posterior distributions publicly available is permitted. Moreover,

posterior distributions can be used to assess whether fixed plug-in hyper-parameter

estimates are plausible. Of course, the latter requires additional analysis, which

we discuss later on in this chapter. In addition, the posterior distributions can

be updated as more data is made available; this in principal would be the ideal

situation. However, lack of formal cooperation and impartial resources between

competing chemical companies means this is unlikely to be achievable in practice.

It is also important to realise that if the substance S being assessed cannot be

described as similar to others held in the database, for example due to a highly

specific or unknown mode of action, then it may not be possible to utilise this

methodology.

5.5.4 Example: RIVM Fish Database

In this section we apply the methodology to the species identified in Chapter 4 as

presenting strong evidence of non-exchangeability — the rainbow trout. Joint modal

estimates for each behavioural model are given in Table 5.1.

Initial interpretation of the parameter estimates indicates that the estimates for

M1 and M2 of k and φ are similar. The estimate of φ′ which was determined

in EFSA (2005) using frequentist methods was φ′ = 0.62, and although it isn’t

comparable, per se, to the φ estimates presented here, it is reasonably close. In

addition, the incorporation of non-exchangeability into our model also limits the

validity of juxtaposition of the heterogeneity parameter estimates for M2 to their
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species-exchangeable counterparts. However, one does notice quite a large differ-

ence between those in Table 5.1 and those displayed in EFSA (2005) (derived in

Appendix B.2). Yet this is unlikely to be a consequence of the change in modelling,

but rather the method of estimation; here we have a posterior modal estimate, where

as in EFSA (2005) a frequentist maximum likelihood estimate was sought. Ignoring

non-exchangeability, the Bayesian posterior distribution differs by a shift of −1/2 to

some of the shape and scale parameters in the function to be maximised when com-

pared to the structure of the marginalised profile likelihood function (Equation B.2);

support regions for the heterogeneity parameters are shown in Figure 4.8. This is a

result of gaining an additional factor of σi after integrating out µi conditional upon

σi.

Comparing the estimate of k forM2 to the estimate of the species effect estimate

−ζ̂119 = 0.206 given in Section 4.5.2, we realise that the estimates coincide. However,

the model in Section 4.5.2 assumed φ = 1, whereas here it has been estimated to be

0.656.

5.6 Hyper-parameter Uncertainty

It is necessary to report uncertainty in a risk assessment. If a risk manager is to

consider adopting adjusted estimators, it is required that the uncertainty in the

hyper-parameters is formally evaluated, as well as the consequences for treating

them fixed in respect to the estimation of the HCp. In this section we explore

how to assess these uncertainties with our running example of the rainbow trout

representing the special species.

Although EFSA (2005) separately considered the estimation of: (i) (α, β) in

a species exchangeable context of M2; and (ii) (k′, φ′) for a different version of

modelling a single non-exchangeable species forM1; no evaluation of the uncertainty

was made in the case of (ii). Quantification of such uncertainty and its consequences

for decision making needs to be communicated effectively to stakeholders if such

procedures are to be adopted, such an exercise requires a considerable increase in

resources.
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5.6.1 Posterior Distribution Summaries

In Section 5.5 we described the method of hyper-parameter ‘specification’. The

values suggested were the joint modes of the marginalised posterior distributions;

referred to asMAP estimators. Given a multivariate posterior probability distribu-

tion, it is relatively easy to determine modal estimates than expectations. However,

MAP estimators also allow us to easily simulate from the joint posterior distribu-

tions. We will illustrate how for both models below. The procedure involves two

steps: (1) approximating the joint posterior with a more easily simulated-from distri-

bution; (2) use an appropriate method to efficiently simulate from the approximated

distribution until the sample has converged to the true posterior distribution.

We begin by deriving the Laplace approximation to the posterior distribution.

In Section 5.2 we described the posterior distribution of the hyper-parameters ϑ =

(k, φ) [M1] or ϑ = (k, φ, α, β) [M2], denoted p(ϑ |Y). If we Taylor-expand the

logarithm of p(ϑ |Y) around the MAP estimate ϑ̂, we get

ln p(ϑ |Y) ≈ ln p(ϑ̂ |Y) + 1
2
(ϑ− ϑ̂)TB(ϑ̂)(ϑ− ϑ̂) + · · · ,

where B(ϑ̂) is the Hessian matrix of ln p(ϑ |Y), evaluated at ϑ = ϑ̂, defined as

Bij =
∂2

∂ϑi∂ϑj
ln p(ϑ |Y)

∣∣∣∣
ϑ=ϑ̂

The linear term in the expansion is zero because the vector of first order partial

derivatives evaluated at theMAP estimator ϑ̂ is zero by definition of a maximum.

Ignoring terms higher than second order and transforming back to the standard

scale, we obtain

p(ϑ |Y) ≈ p(ϑ̂ |Y) exp
{
−1

2
(ϑ− ϑ̂)T

[
−B(ϑ̂)

]
(ϑ− ϑ̂)

}
.

This is proportional to a multivariate normal distribution with mean ϑ̂ and covari-

ance matrix
[
−B(ϑ̂)

]−1
.

We can use this approximation as a proposal distribution for simulating values

from the posterior distribution using a standard Metropolis-Hastings random walk
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Markov chain Monte Carlo (MCMC) procedure. The procedure for generating T

samples is as follows

Step 0: Choose a valid initial starting vector of ϑ̂; denote it ϑ̂0.

...

Step j: To obtain the j-th sample ϑ̂j,

1. sample a new value of ϑ̂new as ϑ̂new = ϑ̂j−1 + Zj where Zj ∼

N
(
0, t
[
−B(ϑ̂)

]−1)
and t is a ‘tuning’ parameter;

2. set

ϑ̂j =

 ϑ̂j-1 if Uj <
p(ϑ̂new |Y)

p(ϑ̂j−1 |Y)
;

ϑ̂new otherwise

where Uj ∼ Unif(0, 1).

...

Step T + 1: Stop when a sample ϑ̂1, ϑ̂2, . . . , ϑ̂T is obtained.

The ‘tuning’ parameter t is selected to improve the rate of acceptance of ϑ̂new at

each iteration. Setting it as t = 1 would imply the proposal distribution is identical

to the Laplace approximation; we set t = 2 which resulted in an acceptance rate

of 34% and 12% for M1 and M2 respectively. Acceptance rates were too high for

t = 1 which resulted in slow mixing of the Markov Chain.

In order to improve the quality of the MCMC sample, we used two standard

techniques. The first is to discard the first few samples — called a ‘burn-in’ period

— to ensure that we have reached convergence to the posterior distribution. The

second is to only accept every i-th sample — called ‘thinning’ — to remove the

effects of autocorrelation from the chain. In each model we obtained a total of

10, 000 samples after having first applied a burn-in of 5, 000 samples and a thinning

rate of 20 forM1 and 40 forM2. No diagnostic evidence of convergence failure was

observed.

In Figures 5.4 and 5.6 we plot the posterior distributions of each hyper-parameter

for M1 and M2 respectively. We also plot the joint posterior distribution of (α, β)
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Figure 5.4: Histograms of MCMC sample for hyper-parameters (M1).
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Figure 5.5: Joint distribution of hyper-parameters (α, β) (M2).
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Mean S.D. Median 95% Cred. Int.

k 0.195 0.0195 0.195 (0.154, 0.234)
φ 0.714 0.0732 0.713 (0.579, 0.866)

Table 5.2: Summary statistics of hyper-parameter posterior distribution (M1).

Mean S.D. Median 95% Cred. Int.

k 0.209 0.0296 0.207 (0.148, 0.265)
φ 0.664 0.0654 0.662 (0.543, 0.799)
α 1.611 0.2292 1.591 (1.215, 2.112)
β 0.343 0.0717 0.336 (0.224, 0.504)

Table 5.3: Summary statistics of hyper-parameter posterior distribution (M2).

in Figure 5.5. Analysing these distributions shows that posterior distributions for

k and φ are symmetric and unimodal. There is a small amount of evidence that

the posterior distributions of α and β might be weakly asymmetric. This is also

suggested in Figure 5.5 which additionally indicates that a posterior, α and β are

strongly positively correlated. In Tables 5.2 and 5.3 we display relevant summary

statistics which might be used to address the issues of uncertainty handling.

It is observable from the tables that in each model, the mean and median estimate

of k and φ are very close to the MAP estimates which we advocated using earlier

on, supporting the comment earlier regarding the symmetry of the distribution. The

MAP estimates of α and β are less than the median estimates, which are less than

the mean estimates also, giving support to the a slight positive skewness in the

posterior distribution of α and β.

It is a risk management decision as to whether our choice of ϑ̂ is sufficient and

whether the uncertainty is sufficiently small as to be neglected. It is unlikely a risk

manager would be able to interpret the information in Figures 5.4–5.5 directly, nor

Tables 5.2–5.3 appropriately in order to make a recommendation. Therefore, it is

necessary that we explore the consequences of uncertainty for the decision rules.
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5.6.2 Fixed versus Stochastic

The information in the preceding section is limited in ascertaining the adequacy of

using a fixed estimator for ϑ̂ as applied to a stochastic one. Our decision rules are

of the form δp(Y | ϑ̂) in order to preserve tractability which is lost when allowing for

uncertainty in ϑ; we explore this further here.

To assess how δp(Y | ϑ̂) differs from the decision rule obtained when hyper-

parameter uncertainty is accounted for, we conduct a ‘sensitivity analysis’. First

define the following performance measures :

P1(δp |ϑ) =
1

1− γ
P [ψp(θ) ≤ δp | ϑ; Y]− 1;

P2(δp |ϑ) =
100

p
E
[

Φ

(
δp − µ
σ

) ∣∣∣∣ ϑ; Y

]
− 1.

P1(δp |ϑ) is a scaled posterior distribution function of ψp(θ), conditional on ϑ, eval-

uated at δp (independent of ϑ), and subsequently shifted by 1. The [AJ] estimator,

conditional on ϑ would be obtained by equating this measure to 0 and solving for δp.

Similarly, P2(δp |ϑ) is a scaled posterior expectation of the PAF (which was denoted

the MFE in Section 2.6.4) at δp, again, shifted by 1. Equating this measure to 0 and

solving for δp would yield the conditional [EFSA] estimator. Since each measure is

centred about zero, Pl(δp |ϑ) (l = 1, 2) can be envisaged as being a standardised

comparable measure of performance for decision rule δp.

If we fix δ̂p = δp(Y | ϑ̂), we can evaluate the performance discrepancy Pl(δ̂p |ϑ)

for an individual value of ϑ. By considering the expectation of this quantity —

denoted as the marginal performance discrepancy for decision rule δ̂p: Pl(δ̂p) — with

respect to the posterior distribution of ϑ, we can assess the consequence of hyper-

parameter uncertainty. We therefore re-use the MCMC samples of ϑ for each model

and calculate Pl(δ̂p |ϑi) individually for each sample ϑ1, ϑ2, . . . , ϑ10,000. Averaging

this sample then yields an estimate of the marginal performance discrepancy Pl(δ̂p).

In Figure 5.7 we show boxplots of the marginal performance discrepancy Pl(δ̂p)

across all substances in the RIVM fish toxicity database for which the special species

was present. This is done forM1 andM2, p = 1 and p = 5, and for lower (γ = 0.95)

and median (γ = 0.50) [AJ] estimators (l = 1), and [EFSA] estimators (l = 2).
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When Pl(δ̂p) is greater than zero, it implies that the maximum permissible level of

(average) risk is exceeded.

In Figure 5.8 we show the corresponding boxplots of the relative variation in

conditional performance discrepancy of each substance assessed with the special

species in the RIVM fish toxicity database. For each substance, this is calculated

as the variation of the sample Pl(δ̂p |ϑi) for i = 1, . . . , 10, 000, for each performance

measure l.

There is a clear outlying substance observed in both figures; this is substance

170 in the RIVM database. The summary statistics of toxicity data for this sub-

stance are: n∗ = 2, y† + k̂M1 = 0.098, y† + k̂M2 = 0.108, ȳ∗ = 0.097, s∗ = 0.025.

Consequently, varying k in either direction from k̂, most noticeably for M1 which

satisfies y† + k̂M1 ≈ ȳ∗ and s∗ � k̂M1 , will increase σ̃ and lead to an increase in

Pl(δ̂p). Apart from this exceptional substance, the relative marginal performance

discrepancy is less than 25% for the remaining substances, which is unlikely to be

significant to a risk manager. However, the corresponding variation in the per-

formance discrepancy is more substantial. A possible explanation for this is that

the conditional performance measure is approximately linear for ϑ and also that

ϑ̂ ≈ Eϑ, so that the marginal performance discrepancy is approximately equal to

the conditional performance evaluated at ϑ̂.

In addition to this measure of discrepancy, we also explore the error in the

[AJ] estimators by comparing them to those which account for hyper-parameter

uncertainty. Using MCMC output, a posterior sample of ψp(θ) is obtained, and the

[AJ] estimator is determined as the 100(1−γ)-th percentile of this sample; we denote

this as δ̃p. An evaluation of the consequences of discounting the uncertainty about

ϑ̂ in the estimator is made by considering the relative error for each HCp estimator

on the original concentration scale in order to avoid ambiguity. The error is thus

defined as

Relative error =

∣∣∣10δ̂p − 10δ̃p
∣∣∣∣∣10δ̃p

∣∣ .

In order to gain sufficient accuracy it was required that more MCMC samples were

taken than the 10, 000 obtained for the hyper-parameters earlier. For this exercise we



5.6. Hyper-parameter Uncertainty 138
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Figure 5.7: Boxplots of per-substance marginal performance discrepancies. For each
of the four panels, the [AJ] and [EFSA] discrepancies are evaluated using P1(δ̂p) and

P2(δ̂p) respectively.

Performance discrepancy standard deviation

%
 r

el
at

iv
e 

di
sc

re
pa

nc
y

0

20

40

60

80

100

A
J 0

.5

A
J 0

.9
5

E
F

S
A

−−
−
−

−

−

−
−−−

−

−
−

−

−

−−

−

−

−

−

−

−

−

−

−

−
−−

−
−
−

−

−

−

−

−

−

−

−

−

−−

−

−
−

−

p=1
M1

A
J 0

.5

A
J 0

.9
5

E
F

S
A

−−
−
−

−

−

−
−−−

−

−
−

−

−

−

−−

−

−

−

−

−

−

−

−

−

−

−
−

−
−−

−

−−

−

−

−

−
−−
−

−

−

−

−

p=5
M1

A
J 0

.5

A
J 0

.9
5

E
F

S
A

−
−

−

−

−

−

−

−
−

−
−

−

−

−

−

−
−

−

−−
−

−

−
−−−
−−

p=1
M2

A
J 0

.5

A
J 0

.9
5

E
F

S
A

−
−

−

−

−

−
−

−

−

−

−
−
−

−
−

−

p=5
M2

Figure 5.8: Boxplots of per-substance performance discrepancy variation. For each
of the four panels, the [AJ] and [EFSA] discrepancies are evaluated using P1(δ̂p) and

P2(δ̂p) respectively.
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Figure 5.9: Boxplots of relative errors of ĤCp = 10δ̂p for [AJ] estimators. Error axis
is on log (base 10) scale.

took a sample of 45, 000 for each model, which was achieved after applying the same

burn-in and thinning rates as before. The requirement of a larger sample stems from

the posterior uncertainty around σi for certain substances in the database where the

corresponding sample size of toxicity data ni is very small.

In Figure 5.9 we show the boxplots of the relative errors in estimators for p = 1, 5,

γ = 0.50, 0.95, andM1 andM2, for substances in the RIVM fish toxicity database

assessed with the special species.

Figure 5.9 indicates that the relative error is never more than 100%; a case as-

sociated with the conservative [AJ] estimator with p = 5 under M1. The median

estimators’ relative error is bounded by 10% for both choices of p and both be-

havioural models. It would be a regulatory decision as to whether this constitutes

robustness, but there is no overwhelming evidence of sensitivity. As was the case in

the performance analysis (see Figures 5.7 and 5.8), relative error seems to be worse

overall for behavioural model M2.
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5.7 Comparing Non-Exchangeability Models

5.7.1 The Modelling Problem

As discussed in Section 5.1, EFSA (2005) proposed an adaptation of the current SSD

model to handle a single non-exchangeable species for a substance S being assessed.

This model is given by

yj |µ, σ2 ∼ N(µ, σ2) for j ∈ J∗S ;

y† |µ, σ2, k′, φ′ ∼ N
(
µ− k′σ, [φ′σ]

2
)
. (5.7)

However, when utilised it leads to non-tractable decision rules based on the methods

listed in this thesis where one seeks to control the PAF in some particular manner;

this is not ideal for gaining acceptance in ERA.

An alternative model was proposed in Section 5.1 by making the bias shift fixed

rather than proportional to σ. This model is given by

yj |µ, σ2 ∼ N(µ, σ2) for j ∈ J∗S ;

y† |µ, σ2, k, φ ∼ N
(
µ− k, [φσ]2

)
. (5.8)

Unlike the EFSA (2005) model, this version does lead to tractable decision rules.

In Section 5.1, we extensively discussed these two models. In particular we

described how the EFSA (2005) model (Equations 5.7) has the property that the

expected position of the special species in the SSD is unaffected by the variability

of σ across the (presumed) population of substances whilst allowing k′ to be the

same across substances; this is not so when considering the latter model proposal

(Equations 5.8).

In this section we attempt to assess the support of each of the models proposed

for non-exchangeability. We do not, however, consider one model as being the ‘best’,

if such a notion is even justifiable. From here onwards, we refer to the model for the

tolerance data which includes a single special species proposed by EFSA (2005) as

D1 (Equations 5.7) and the model proposed in this research D2 (Equations 5.8).
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5.7.2 Bayes Factors

Model selection is a widely discussed topic in both Bayesian and frequentist statistics

(cf. Section 4.5.3). Here we give information about the model selection criteria used

in this section for comparing models D1 and D2.

Model selection is sometimes complicated by the assumption that there exists

a true model ; what Aitkin (1999) describes as ‘oxymoronic’. A discussion on this

topic is well beyond the scope of our research; for an in-depth discussion consult

Bernardo and Smith (1994) and references therein. We will work in what Bernardo

and Smith (1994) call an M-closed framework whereby one model is assumed to

be true without knowing which. This is difficult to accept in a literal manner,

nonetheless it can be neatly exploited for setting model selection criteria.

In Section 4.5 we made use of two commonly applied model selection tools —

AIC and BIC — for an exploratory analysis of the RIVM fish toxicity database.

However, in the context of comparing models for individual substances which are

usually based on very small sample sizes, the applicability of AIC and BIC comes

under doubt since we cannot appeal to asymptotics. Moreover, the models are non-

nested which additionally restricts other options for model comparison and selection.

The aim here is with regards to making a comparison of the models rather than

actually selecting one; a Bayes factor (BF) approach is convenient for this problem.

Bayes factors are central to Bayesian hypothesis testing, and are dominantly used as

a model selection criteria. Under certain conditions, it can be shown (e.g. Kass and

Raftery 1995) that comparison by BIC is asymptotically equivalent to comparison

by Bayes factors; we typically have small n, so this result is not applicable here.

For the remainder of this section we will describe the calculation of Bayes factors

for the purposes of comparing the two competing models for non-exchangeability

and discuss their intrinsic features which add justification to their use. Our review

and application is based on reviews by Bernardo and Smith (1994) and Kass and

Raftery (1995).

Bayes factors are effectively the Bayesian extension of the frequentist likelihood

ratio test, but are applicable in a wider sense. Given two opposing scientific hy-

potheses H1 and H2, corresponding to alternate models D1 and D2 with data Y,
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log10(Bij) Bij Evidence against Hj

< 0 < 1 (Negative) In favour of Hj

0 to 1/2 1 to 3.2 Not worth more than a
bare mention

1/2 to 1 3.2 to 10 Substantial
1 to 2 10 to 100 Strong
> 2 > 100 Decisive

Table 5.4: Jeffreys’ guide to interpretation of Bayes factors.

then the Bayes factor in favour of H1 (against H2) is simply

B12(Y) =
P(Y | D1)

P(Y | D2)
=

{
P(D1 |Y)

P(D2 |Y)

}
/

{
P(D1)

P(D2)

}
. (5.9)

The right hand side of Equation 5.9 is the ratio of posterior odds to prior odds, so

that if the evidence provided has increased the odds a posteriori, then the Bayes

factor will be greater than unity. The Bayes factor makes no requirements that the

models need be nested. Moreover, the structure of the Bayes factor is such that

for the composite-versus-composite hypothesis test (with respect to D1 and D2) we

average the likelihood over the parameter space as opposed to maximising it which

is the basis of the frequentist likelihood ratio test. A Bayes factor therefore only

measures the evidence in the data, thus it must be interpreted relative to the prior

evidence (Kass and Raftery, 1995). We opt to set P(D1) = P(D2) = 1
2
, which

would mean the Bayes factor reduces to the posterior odds in favour of H1. For

completeness, given model D, one calculates P(D |Y) as

P(D |Y) =

∫
`(Y | θD ;D)p(θD | D)dθD , (5.10)

where θD is the parameter vector for model D with prior distribution p(θD | D), and

`(Y | θD ;D) is the likelihood function given the model for the data.

By considering the logarithm of a Bayes factor, it is found that the prior weight of

evidence and the Bayes factor combine additively. Kass and Raftery (1995) present

values as shown in Table 5.4 as a commonly used approximate interpretation of

Bayes factors on the logarithmic (base 10) scale.
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In order to calculate the Bayes factor for a substance S, we fix the hyper-

parameters ϑ as the MAP estimates because in the future risk assessment the

decision rules proposed also treat these parameters as fixed, and so it is the perfor-

mance of these rules that we ultimately wish to determine. The hyper-parameters

(k′, φ′) and (k, φ) were defined earlier as the non-exchangeability parameters for D1

and D2 respectively. The fixed estimates of the hyper-parameters will differ between

the two different behavioural modelsM1 andM2; it is required that one apply the

correct values for each context. In addition, we define (α′, β′) as the correspond-

ing variance heterogeneity hyper-parameters for D1; in D2 they remain denoted as

(α, β).

For both behavioural models discussed in this section decision rules developed for

the assessment of a substance S are derived using independent non-informative prior

distributions for the SSD parameters µ and σ2; the reasoning for this has already

been discussed. Since these prior distributions are improper, i.e. do not integrate

to a finite value, the normalising constant is undefined. However, as observed in

the structure of Equation 5.10, this is required for the calculation of Bayes factor,

implying that in general the Bayes factor is defined on an arbitrary scale with no

reference for comparison. This can lead to paradoxical results, as discussed in Kass

and Raftery (1995). There are a number of recent proposals for remediation of this,

most of which involve using additional data as a device to update the improper

prior to a proper one, and apply this as the prior distribution in the Bayes factor

calculation.

We argue that the Bayes factors we define for comparison of D1 and D2 are

indeed well defined. This is because the SSD parameters µ and σ are identically op-

erationally defined for both non-exchangeability models upon fixing the behavioural

model perspective with respect to a hypothetically infinite population of exchange-

able species in the SSD. In such contexts, Bernardo and Smith (1994, p. 422) argue

that one can envisage the undefined normalising constants in the numerator and

denominator as the ratio of proper (and equal) constants obtained in the limit of

prior distributions tending to the improper versions.
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The Bayes factor in favour of D1 over D2 for M1 is given by

B12 =
φ
√
φ−2 + n∗

φ′
√
φ′−2 + n∗

β̂α̂

Γ (α̂)

∫ ∞
0

τ α̂−1 exp
{
−τ

2
[(n− 1)σ̂2(τ)]

}
dτ, (5.11)

where

σ̂2(τ) =
1

n− 1

[
φ′
−2(

y† + k′τ−1/2 − µ̂(τ)
)2

+ n∗
(
µ̂(τ)− ȳ∗

)2
+ (n∗ − 1)s∗2

]
;

µ̂(τ) =
φ′−2(y† + k′τ−1/2) + n∗ȳ∗

φ′−2 + n∗
;

α̂ = 1
2
(n− 1) and β̂ = α̂σ̂2.

Similarly, the Bayes factor in favour of D1 over D2 for M2 is given by

B12 =
β′α

′

βα
Γ(α)

Γ(α′)

φ
√
φ−2 + n∗

φ′
√
φ′−2 + n∗

β̃α̃

Γ(α̃)

×
∫ ∞

0

τ α̃
′−1 exp

{
−τ

2
[2β′ + (n− 1)σ̂2(τ)]

}
dτ, (5.12)

where α̃ = α + α̂; β̃ = β + β̂; and α̃′ = α′ + α̂. A sketch of the derivation of both

Bayes factors is provided in Appendix D.

5.7.3 Analysis

For D2, the hyper-parameter MAP estimates are provided in Table 5.1. EFSA

(2005) provided estimates forD1 andM1, but they were frequentist profile-marginalised

maximum likelihood estimates notMAP estimates, thus inconsistent with those de-

rived here. Moreover, there was no consideration of the joint modelling of D1 and

M2. Therefore, we deriveMAP estimates based on identical prior distributions as

used to calculate hyper-parameter estimates for D2, which we provide in Table 5.5;

see Appendices B.5 and B.7 for further details on the hyper-parameter estimation

procedures.

The values for (α′, β′) are identical to those for D2 to the first 3 decimal places,

but differ substantially from the EFSA profile marginalised maximum likelihood es-

timates. The estimates of φ′ are much more different to the corresponding estimates
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k′ φ′ α′ β′

M1 0.458 0.642 – –
M2 0.452 0.604 1.523 0.315

Table 5.5: Posterior hyper-parameter MAP estimates (D1).

of φ for D2, emphasising our comment that these parameters have different roles;

the M1 estimate is reasonably close to the EFSA frequentist maximum likelihood

estimate of 0.625. The estimates of k′ differ from the EFSA estimate by 0.009 and

0.003 respectively.

In order to compare the models we first examine the relative support for indi-

vidual substances in the set G1 of the RIVM fish toxicity database, each of which

has been assessed with the special species — the rainbow trout — and at least two

additional ordinary species. In order words, we individually treat each substance in

G1 as S. This allowed us to calculate 220 per-substance Bayes factors. There is a

slight issue of independence because for each per-substance Bayes factor calculated,

the data was also used in the calculation of the hyper-parameters. We do not be-

lieve this to be contentious since the hyper-parameter estimates would be unlikely

to differ much if the single dataset used to calculate the respective Bayes factor

was omitted from the procedure described earlier because the database is reason-

ably large. Moreover, it is the value we report here that a risk manager would most

likely apply in a future intermediate quantitative tier risk assessment, and it is these

decision rules we wish to evaluate.

Figures 5.10 and 5.11 show plots of the Bayes factors for the individual substances

contained in G1 of the RIVM fish toxicity database forM1 andM2 respectively. The

horizontal axis represents an arbitrary indexing by the RIVM of the 220 substances

tested, and the vertical axis represents the logarithm (base 10) of the Bayes factor

which is in favour of D1 against D2 for the substances. Dashed lines indicate critical

regions of determination as laid out in Table 5.4.

The Bayes factors for M1 indicate that for the majority of substances, neither

D1 or D2 are more strongly favoured than the other. Only 15 of the per-substance

Bayes factors present evidence which Kass and Raftery (1995) would describe as
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Figure 5.10: Bayes factors for D1 versus D2 for substances in G1 (M1).
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Figure 5.11: Bayes factors for D1 versus D2 for substances in G1 (M2).
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‘at least substantial’ for either D1 or D2; see Table 5.4. Otherwise the rest were

within a region which the former authors suggest is ‘not worth more than a bare

mention’. Note that of the two Bayes factors which are classified as ‘decisive’ by Kass

and Raftery (1995), the one in favour of D2 (consider log10(B12) = − log10(B21))

corresponds to substance 170 in the RIVM fish toxicity database; this substance

was already shown to be exceptional in the performance of its decision rule(s) (see

Section 5.6.2).

The situation for M2 is slightly different such that all Bayes factors lie in the

region declared as ‘not worth more than a bare mention’ according to Table 5.4.

However, 141 Bayes factors were positive, compared to 131 forM1 indicating some

support for D1 over D2. In all cases, the Bayes factors are made relative to null prior

knowledge, i.e. we naively set P(D1) = P(D2) = 1
2

for each substance. However, we

don’t have reason to necessarily believe one model is a priori more likely than the

other.

In addition to analysis of the per-substance Bayes factors, we also calculated

the overall Bayes factor of evidence for D1 against D2. For any given behavioural

model, this is simply the product of the Bayes factors since the per-substance SSDs

are independent conditioned upon the fixed hyper-parameters. Under M1, this is

2.5, and under M2 it is 425. The former is classed as ‘not worth more than a bare

mention’ by Table 5.4, whilst the latter is classed as ‘decisive’. Whilst forM2 there

is strong support for D1, the Bayes factor is severely undermined by the fact that

we have used fixed hyper-parameter values estimated from the same data used to

evaluate it. If we fully defined the Bayes factor by incorporating the uncertainty in

the hyper-parameters using the prior distributions which subsequently yielded the

MAP estimates, then we could no longer argue that the Bayes factor is suitably

defined. The reason for this is that the operational role of k′ and k is inherently

different for D1 and D2 respectively, so that the undefined normalising constants will

essentially be of different representation. One could arguably specify proper prior

distributions, however the Bayes factor would most likely be sensitive to choice of

prior specification and any such priors would be non-comparable because of the

different operational meaning of k′ and k.
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Species log10 EC50 Rank

S025 0.462398 1
S051 1.316967 8
S061 1.240549 6
S087 1.301030 7
S119 0.939519 3
S144 1.204120 5
S151 0.973128 4
S169 0.919078 2

ȳ 1.044599
s 0.286518

Table 5.6: Toxicity data for substance 6 of the RIVM fish toxicity database.

In conclusion, individual substances do not show overwhelming evidence of pref-

erence between the two models D1 and D2. There is indication of an overall support

for D1, which has the advantage of maintaining the expected position of the special

species in the future risk assessment for S, but application of this model is at the

expense of tractable decision rules. Hence, the modest support for D2 in conjunction

with the tractability is most likely the pragmatic choice for a risk manager.

5.8 Example Assessment

In the interest of risk communication, it is perhaps helpful for a risk manager to

see an example hazard assessment using the newly proposed methodology. For

this example we consider an analysis of substance 6 from the RIVM fish toxicity

database, essentially treating it as the substance S. However, one must recall that

hyper-parameter estimates were also constructed from datasets including the former.

Although this introduces a minor degree of duplicity in the use of the toxicity data,

it is unlikely to be significant since the database used for hyper-parameter estimation

is relatively large. Table 5.6 shows the n = 8 log-tolerances values for this substance,

in addition to the standard mean and standard deviation (on log-concentration).

The rainbow trout is observed to lie in lower half of the SSD according to both

non-parametric rank and empirical position in the method-of-moment fitted SSD.

The assumption of normality is not rejected by an Anderson-Darling goodness-of-fit
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test at the 5% or 10% critical value with a P -value of 0.1557.

Current guidance suggests estimating the HCp based on a maximum permissible

PAF of p = 5%, however we will concentrate on the trio p = 1, 5 and 10. Within

the standard species exchangeable context, we display estimators δp(Y) forM1 (the

standard approach) andM2. ForM2 it is required we specify fixed estimates of the

hyper-parameters ϑ = (α, β). Although EFSA (2005) provide these values for fish

based upon the joint maximum profile marginalised likelihood estimate, we consider

it more appropriate to apply the MAP estimates for estimation purposes so that

the exchangeable model HCp estimates can be meaningfully compared to the non-

exchangeable model HCp estimates. These values are obtained by first setting k = 0

and φ = 1 in Equation B.7 (see Appendix B.6) and then maximising with respect

to its remaining arguments; in this case G1 is taken to be all substances which have

been tested with the rainbow trout (regardless of sample size) so that G is effectively

the entire RIVM fish database. The values retrieved are: ϑ̂ = (1.528, 0.267) which

yields sadj = 0.332100. [EFSA] and [AJ] (γ = 0.95, 0.50, 0.05) estimates of ψp(θ)

underM1 andM2 are respectively shown in Tables 5.7 and 5.8 for p = 1, 5 and 10.

In addition to the estimators displayed for the species exchangeable model, we

also display the [EFSA] and median [AJ] (γ = 0.50) estimators, with 90% credible in-

terval, which were derived in this thesis and take account of the non-exchangeability

of the rainbow trout. These estimates are given in Tables 5.9 and 5.10 for M1 and

M2 respectively. It was found that µ̂ = 1.076 and σ̂ = 0.2856 for M1; µ̂ = 1.080

and σ̃ = 0.3463 for M2. These estimators are based on the MAP estimates of the

hyper-parameters as defined in Table 5.1.

Examining the estimates from the usual exchangeable model indicates that the

[EFSA] estimators are relatively more conservative than the median [AJ] estima-

tors, which is consistent with findings in Chapter 3. Moreover, the relative level

of conservatism decreases as p increases. Interestingly, the estimators based on the

behavioural model ofM2 lead to relatively more conservative estimators than their

counterparts underM1. For p = 5 the absolute difference in median [AJ] HC5 esti-

mates between M1 and M2 is 100.5522 − 100.4821 = 0.5316 mg/L, equivalent to the

M1 estimate being 18% larger than M2. For the lower credible limit [AJ] estimate
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p δp(Y)

1 [EFSA] 0.1335
[AJ] 0.3467

(−0.2029, 0.6168)

5 [EFSA] 0.4688
[AJ] 0.5522

(0.1314, 0.7701)

10 [EFSA] 0.6146
[AJ] 0.6616

(0.3048, 0.8569)

Table 5.7: [EFSA] and [AJ] estimators for
the species exchangeable model (M1).

p δp(Y)

1 [EFSA] 0.0723
[AJ] 0.2478

(−0.2492, 0.5312)

5 [EFSA] 0.4067
[AJ] 0.4821

(0.0904, 0.7181)

10 [EFSA] 0.5615
[AJ] 0.6068

(0.2666, 0.8232)

Table 5.8: [EFSA] and [AJ] estimators for
the species exchangeable model (M2).

p δp(Y)

1 [EFSA] 0.1742
[A&J] 0.3807

(−0.1616, 0.6454)

5 [EFSA] 0.5063
[A&J] 0.5855

(0.1731, 0.7967)

10 [EFSA] 0.6506
[A&J] 0.6945

(0.3470, 0.8820)

Table 5.9: [EFSA] and [AJ] estimators
for the species non-exchangeable model
(M1).

p δp(Y)

1 [EFSA] 0.0746
[A&J] 0.2495

(−0.2600, 0.5373)

5 [EFSA] 0.4206
[A&J] 0.4939

(0.0965, 0.7299)

10 [EFSA] 0.5809
[A&J] 0.6240

(0.2817, 0.8379)

Table 5.10: [EFSA] and [AJ] estimators
for the species non-exchangeable model
(M2).
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(γ = 0.95) the difference is only 0.1219 mg/L, or 10% larger; and for the [EFSA]

estimators the increase is 0.3921 mg/L, or 15% larger.

We notice from comparing the non-exchangeable model estimates to the ex-

changeable model estimates that there has been a decrease in the level of relative

conservatism. Moreover, the level of increase in the estimates is down weighted when

the species non-exchangeable model is incorporated with the behavioural modelM2.

ForM1, the increase in the median HC5 estimates from the non-exchangeable model

in comparison to the exchangeable model estimates is 0.2842 mg/L, equivalent to

an increase of 8%. Similar differences were found for the other estimators. ForM2,

the corresponding increase was 0.0835 mg/L — an increase of only 3%.

The overall ranges of HCp estimates was: (0.5495, 4.4198) mg/L for p = 1;

(1.2314, 6.2618) mg/L for p = 5; and (1.8476, 7.6208) mg/L for p = 10. Whether

either of the differences described above is significant would be a risk management

decision.

From an exploratory perspective it is interesting to consider what the general

consequence of accounting for non-exchangeability through the model we propose

might realistically be. In order to assess this, we repeated the analysis described

above for the single substance on all substances in G1. Although 124 additional

substances assessed with the rainbow trout are available, but not contained in G1

because of the requirement we imposed that n∗i ≥ 2, we do not consider them here

either. The reasoning for this is two-fold: (i) the estimators have a tendency to

heavily distort a general overview of the consequences; (ii) it is highly unlikely that

regulatory procedures would ever allow for probabilistically derived estimators based

upon n = 2 to be entered into a risk assessment dossier. The latter point is based

on the fact that current recommendations and regulatory requirements are much

higher, with Campbell et al. (1999) (the ‘HARAP’ guidelines) recommending n ≥ 5

in the context of acute pesticide exposure to fish, which is highly pertinent to the

RIVM fish database we analyse here. Since this is only an exploratory exercise, we

deem it appropriate to limit the review to the 220 substances in G1.

In Figure 5.12 we plot the log10(HC5) estimators based on the species exchange-

able model against the difference in the log10(HC5) estimators based on the species
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non-exchangeable and species exchangeable models. The ordinate is displayed in

this way for two reasons: (i) it increases clarity of the overall plot; and (ii) it can be

interpreted as the logarithm of the relative HC5 estimators for non-exchangeability

/ exchangeability. For each behavioural model, M1 and M2, there is a strong in-

dication of log-linearity. However, the difference between species exchangeable and

non-exchangeable model estimators based onM1 vary more widely than those based

on M2.

The maximum ratio of a HC5 estimate derived under the non-exchangeable model

relative to a HC5 estimate derived under a species exchangeable model was slightly

over 0.5 orders of magnitude (6.3) which was seen for the [AJ] (γ = 0.95) estimator.

The corresponding minimum ratio corresponded to nearly 1.5 orders of magnitude.

With the exception of these cases, relative differences in HC5 estimators between

the two models were reasonably small for the majority of substances.

Figure 5.13 shows a set of similar plots for the case p = 1. In this case, conclusions

do not substantially differ. However, the maximum and minimum ratios suggest

differences of greater than 1 and 2 orders of magnitude respectively. Whilst this

is likely to be significant to risk assessors and managers alike, the most noticeable

differences arose from substances where sample sizes were very small. Consider

the ‘HARAP guidelines’ (Campbell et al., 1999) which suggest within the context

of data we analyse here, that n should be ≥ 5. In this case, the ratio of the

[AJ] (γ = 0.95) HCp estimates under the species non-exchangeable model to their

exchangeable model counterparts lied between (0.1, 1.6) and (0.05, 1.8) for p = 5

and p = 1 respectively, for all substances. These maximum relative ratios decreased

further as n increased; for n = 10, the corresponding factors approximately halved

in comparison to n = 5.

Nonetheless, without large-scale field or perhaps mesocosm data there is no way

of exploring the consistency of either the standard exchangeable model estimators

or the species non-exchangeable model estimators.
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5.9 Beyond a Single Special Species

If we accept that there is a species which is non-exchangeable with others, then

we must accept the possibility of additional such species. The sources of evidence

in Chapter 4 appear to support this viewpoint. For example, Table 4.2 shows the

results of a hypothesis test performed on the RIVM fish toxicity database with the

rainbow trout’s tolerance values completely removed; there was still a large num-

ber of significant species remaining. The argument iteratively implies that perhaps

the modelling of non-exchangeability would be better replaced by some kind of hi-

erarchical model which incorporates both species and chemical effects. However,

the incomplete factorial nature and high degree of sparsity of the database would

require a robust method of fitting. Moreover, there is a requirement of an aug-

mented database, otherwise the uncertainty in hyper-parameter estimation would

make unsound the assumptions of treating them as fixed.

Including additional species into the non-exchangeability models described in

Section 5.1 may lead to serious criticism by different stakeholders. We have no

overriding reason to extend the assumption to other species, especially since inter-

mediate quantitative tier risk assessments should encompass a degree of parsimony.

Nevertheless, we give very brief coverage to having multiple ‘biased’ species.

Consider the situation of observing log-tolerance data for a substance S such

that

yj |µ, σ2, kj, φj ∼ N
(
µ− kj, [φjσ]2

)
,

where (kj, φj) represent the species non-exchangeability parameters for species j ∈

JS , such that |JS | = n. As before, we assume they are in reference to some suitable

population of substances, say pesticides or, specific modes of action.

Mathematically, it is straightforward to extend the calculations made for a single

biased species to the situation here of n ‘biased’ species. We condition on the

non-exchangeability parameters being fixed and known, as was done previously,

and apply the same non-informative prior distributions for µ and σ under both

behavioural modelsM1 andM2. This leads to the posterior distributions for µ and
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σ2 under M2 being defined as

µ |σ2,k,φ; Y ∼ N

(
µ̂n,

σ2∑
j∈JS φ

−2
j

)
;

σ2 |k,φ; Y ∼ IG
(

2α + n− 1

2
,
2α + n− 1

2
σ̃2
n

)
,

where k = (kj; j ∈ JS); φ = (φj; j ∈ JS);

µ̂n =

∑
j∈JS φ

−2
j (yj + kj)∑

j∈JS φ
−2
j

;

σ̃2
n =

2β + (n− 1)σ̂2
n

2α + n− 1
;

σ̂2
n =

1

n− 1

∑
j∈JS

φ−2
j (yj + kj − µ̂n)2.

The subscript n denotes that the estimator is based on n-pairs of non-exchangeability

parameters. Setting α = β = 0 yields the posterior distribution for M1.

The specification of the decision rules follows on naturally from the posterior

distribution. Moreover, the highly appealing tractability of the decision rules is

maintained. For example, the [EFSA] and [GAL] decision rules for estimating ψp(θ)

are both of canonical form

δp(Y |k,φ, α, β) = µ̂n − κp(n, α,φ)σ̃n,

where

κp(n, α,φ)[EFSA] =
√

1 + ψ−2tπ,p;

κp(n, α,φ, γ)[AJ] = ψ−1F−1
Tπ,η

(γ);

ψ2 =
∑

j∈JS φ
−2
j ; η = Kpψ and π = 2α + n − 1. Setting α = β = 0 yields the

decision rules for M1, otherwise setting (α, β) according to their estimates yields

the decision rule for M2.

Estimation of the hyper-parameters is slightly more complicated. As an exam-

ple, consider two special species. In order to allow for integration with respect to
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k1 k2 φ1 φ2 α β

M1 0.1779 -0.3420 0.7111 1.0245 – –
M2 0.1821 -0.3438 0.6464 0.9623 1.5044 0.3040

Table 5.11: Posterior hyper-parameters MAP estimates for two non-exchangeable
species.

the nuisance parameters to be straightforward, we must now consider groups of sub-

stances pertaining to the estimation of (k1, φ1), (k2, φ2), (k1, k2, φ1, φ2). ForM2, we

must also consider all other substances which are to be included in the estimation of

the heterogeneity parameters. We have estimated the hyper-parameters under the

inclusion of the rainbow trout and the goldfish in the non-exchangeable assumption.

The inclusion of the rainbow trout has already been justified; the goldfish is included

purely for illustrative purposes, however it featured highly in hypotheses tests con-

ducted in Chapter 4 (see for example Tables 4.1–4.3). Moreover, the goldfish has

been assessed with a relatively large number of substances within the database. So

as not to detract from the illustrative nature of this example, details of the calcu-

lations are not presented here. However, they are determinable in a similar manner

to those described earlier in the context of a single non-exchangeable species. The

MAP estimates are presented in Table 5.11 with (k1, φ1) and (k2, φ2) corresponding

to the rainbow trout and the goldfish respectively.

We have briefly explored uncertainty around theMAP estimates and found no

significant difference from the single species model, except slightly wider bounds

around the parameters pertaining to the goldfish. The hyper-parameter estimates

for the rainbow trout have not changed significantly, however the ‘bias’ parameter

estimate has decreased for both behavioural models. The bias parameters for the

goldfish (k2) are observed to be negative, implying that the species is typically

tolerant relative to the expected (log-) SSD median. If the goldfish is a standard

dossier species, this might undermine the level of protection offered by the HC5 when

species exchangeability is assumed. In particular the shift is larger in magnitude

compared to the rainbow trout’s; the allowance for a different variance is effectively

discounted. Using these hyper-parameter estimates in the decision rules listed above,
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setting (kj, φj) = (0, 1) where appropriate, would yield an estimate of ψp(θ).

A conceptual problem which we introduced earlier in Section 5.4 is exacerbated

when including additional species into the non-exchangeable assumption. This is

regarding the presupposition that the SSD is a surrogate for all ecosystems of broad

similar types, e.g. aquatic systems. In the proposal made here, the SSD does not

describe any of the special species, per se. However, protection is prescribed strictly

in terms of the SSD, though the special species does contribute to the estimation.

As the number of special species increases, aside from the issues of estimating the

increasing number of hyper-parameters, it would be required that at some stage a

procedure would need to be developed which allows for better interpretation of the

SSD in reflection of multiple non-exchangeable species.

5.10 Conclusions

A proposal on how to incorporate non-exchangeability of a single species in the reg-

ulatory accepted procedure of setting PNECs based on an extrapolation of the HCp

has been described. The setting is most likely inconsistent with the viewpoint of

statistical modellers, however it is pragmatic for the level of risk assessment it is in-

tended for, namely intermediate quantitative tier hazard assessment. Moreover, the

inclusion of just a single species into the assumption allows for parsimony which is

effectively only a slight deviation from the currently accepted methodology. Letting

this single species be the rainbow trout has been argued here and in the previous

chapter, due to its prevalence in current ecological chemical safety assessment par-

ticularly in the field of pesticides. Should there exist evidence for typically biased

species belonging to alternative taxa, then this proposal would also be appropriate.

A possibly contentious point which a risk manager might raise would be the fail-

ure to incorporate hyper-parameter uncertainty into the decision rules. However we

have demonstrated for a wide range of pesticides and the rainbow trout as the spe-

cial species, that the hyper-parameter uncertainty does not significantly influence

the overall performance of the estimators, especially when viewed in light of the

additional neglected uncertainties.



Chapter 6

Revised Deterministic PNEC

Estimators

Focus thus far has been limited to investigating methods and techniques to derive

estimators of the HCp such that setting p = 5 will yield a proxy for the PNEC,

defined up to a further arbitrary fixed assessment factor. Such estimators fall pri-

marily under the scope of intermediate quantitative tier risk (hazard) assessment.

This level of assessment can be considered a refinement of lower quantitative tier risk

assessment, i.e. using fixed assessment factors. Nonetheless, use of fixed assessment

factors is an efficient and established practice in ERA.

In this chapter we revisit the procedures of calculating PNECs based on fixed

assessment factors. In particular, we assess research in EFSA (2005) by evalu-

ating a generalised deterministic decision rule through a probabilistic lens; such

procedures have the added benefit of being comparatively straightforward to that

of current recommendations. We extend this research by demonstrating robustness

to assumptions, both empirically and analytically.

6.1 Introduction

As introduced in Section 2.3, the current strictly deterministic method for deter-

mining a PNEC is, to keep it in its most basic framework, based on dividing a

summary statistic of the available toxicity data by an assessment factor (AF). The

159
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regulatory accepted summary statistic is the lowest tolerance value of the dataset

which typically has extremely low cardinality. EFSA (2005, 2008) have recently pro-

posed the geometric mean as the summary statistic. The argument in favour of this

would be that it takes full account of all the toxicity data, not just rank information.

An argument against and conversely an argument for applying the minimum order

statistic, is that it is less conservative than the minimum tolerance value. An addi-

tional potential hindrance is that application of the geometric mean may be open

to misuse. This is because manufacturers may scientifically test additional species

from those required which are a priori believed to demonstrate larger tolerances to

the chemical in order to increase the derived PNEC. However, such misuse could

also potentially be exploited in the strictly deterministic methods.

The value of the required assessment factor applied to the summary statistic

depends on a number of criteria, such as: taxonomic diversity of the data sample;

acute or chronic endpoint assessment; sample size and contextual interpretation.

Typical values are usually powers of 10 (and intermediate 5-fold values), varying

between 1 to 5 orders of magnitude. Assessment factors for regulatory application

are provided in: EC (2002, 2003) and ECHA (2008a) pertaining to the EU and

Zeeman (1995) pertaining to the US. In addition, Forbes and Calow (2002a) and

EFSA (2005) overview different international sources of assessment factors. An

example of a typical prescription of assessment factors as found in ECHA (2008a)

for application with marine ecological compartments is shown in Table 6.1; similar

tables are listed for other compartments (e.g. freshwater, sewage treatment plants,

mammals, etc.).

The assessment factors reported in the former sources are described as accounting

for a number of identified uncertainties; this list was described in Section 2.3, and

includes: inter- and intra-species variation; inter- and intra-laboratory variation;

temporal toxicity extrapolation and laboratory data to field impact extrapolation.

Assessment factors are usually considered as multiplicative combinations of smaller

assessment factors pertaining to different sources of uncertainty (EFSA, 2005). If

so, then it is not explicitly clear what proportion of the identified uncertainties each

assessment factor is accounting for. However, it may be inappropriate to consider



6.1. Introduction 161

Assessment criteria AF

Lowest short-term L(E)C50 from FW or SW representa-
tives of three taxonomic groups (algae, crustaceans and
fish) of three trophic levels

10,000

Lowest short-term L(E)C50 from FW or SW representa-
tives of three taxonomic groups (algae, crustaceans and
fish) of three trophic levels, + two additional marine
taxonomic groups (e.g. echinoderms, molluscs)

1,000

One long-term result (e.g. EC10 or NOEC) (from FW
or SW crustacean reproduction or fish growth studies)

1,000

Two long-term results (e.g. EC10 or NOEC) from FW or
SW species representing two trophic levels (algae and/or
crustaceans and/or fish)

500

Lowest long-term results (e.g. EC10 or NOEC) from
three FW or SW species (normally algae and/or crus-
taceans and/or fish) representing three trophic levels

100

Two long-term results (e.g. EC10 or NOEC) from FW or
SW species representing two trophic levels (algae and/or
crustaceans and/or fish) + one long-term result from an
additional marine taxonomic group (e.g. echinoderms,
molluscs)

50

Lowest long-term results (e.g. EC10 or NOEC) from
three FW or SW species (normally algae and/or crus-
taceans and/or fish) representing three trophic levels +
two long-term results from additional marine taxonomic
groups (e.g. echinoderms, molluscs)

10

SSD method 5 – 1

Table 6.1: Assessment factors for deriving a PNEC for aquatic compartments. FW
= freshwater, SW = saltwater. Reproduced and extended from ECHA (2008a, Table
R.10-5).
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assessment factors in this manner since uncertainties will likely overlap.

Although the prescribed assessment factors remain fixed, ECHA (2008a) state

that for certain (aquatic) compartments:

‘The assessment factors presented [in ECHA 2008a] should be considered

as general factors that under certain circumstances may be changed.’

Consequently, there is motivation for analysis of this tier of hazard assessment.

6.2 Comparing Deterministic and Probabilistic Es-

timators

Quantitative determination of a PNEC is permitted using either: (i) assessment fac-

tors applied to the minimum tolerance value; or (ii) a probabilistically derived HC5

(with an applied assessment factor of between 1 and 5). Since these two methods

are very different, it is of interest to consider the relative differences and similarities;

we do this empirically in this section.

Procedure (ii) might be considered as a refinement of (i), hence the regulatory

requirements for implementation are more stringent. For example, in the context

of REACH (ECHA, 2008a), the minimum sample size for determining a HC5 esti-

mate is n = 10, whereas the minimum sample size for using strictly deterministic

assessment factors can be as low as n = 1. Further conditions such as endpoint

type and taxonomic classification also determine whether probabilistic methods are

admittable in the chemical safety assessment dossier.

Whilst the majority of substances in the RIVM fish database (see Section 4.1) are

unlikely to satisfy technical requirements for probabilistic analysis, we nonetheless

compare probabilistic HC5 values to deterministic values. It should be noted that in

each case, the values are pertinent to risk assessment of fish populations, and do not

constitute a community level PNEC. To perform this evaluation, we first considered

setting the aforementioned summary statistic to be one of the following:

1. the minimum tolerance value;
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2. the tolerance value of the rainbow trout.

The first summary statistic is explored for obvious reasons concerning the current

format of EU decision rules. The second summary statistic is explored because of its

prominence in pesticide ERA. Raimondo et al. (2008) also compared this summary

statistic to HC5 values because it has been suggested that the rainbow trout may

be a suitable surrogate species for ERA of endangered species (Dwyer et al., 2005).

Probabilistic estimators discussed in this research only account for uncertainty

about interspecies variability. Therefore, any determined estimate of the HC5 is only

comparable to the (deterministic) adjusted toxicity statistic (ATS; see Section 2.5).

For all intents and purposes, deterministic assessment factors will only be considered

in the context of those accounting for this aspect of uncertainty; this factor was

denoted AFspec in Section 2.5. A caveat of comparison is that the deterministic and

probabilistic estimators shown will be subject to additional and most likely different,

fixed assessment factor extrapolations before being listed as PNEC estimators.

In Figure 6.1 (top row) we plot the log10(ATS) (based on AFspec = 10 being

applied to the lowest observed tolerance value) against the [AJ] (γ = 0.50, 0.95) and

[EFSA] estimators of ψ5(θ) for each substance in the RIVM fish toxicity database

satisfying n ≥ 3. We only consider estimators under behavioural modelM1 as this is

the regulatory accepted model. The reason we elected to use AFspec = 10 is because

it is implicitly suggested in technical guidance documents (EFSA, 2005). Since on

the log-scale the assessment factor acts as an assessment shift of log10(AFspec) to the

log summary statistic, choosing a different value of AFspec is simply equivalent to

shifting the abscissa by the assessment shift; the ordinate remains unchanged. A line

of equality is also drawn (red line in plots) to indicate where δ5(Y) > log10(ATS)

(blue points) and where δ5(Y) < log10(ATS) (green points). Additionally, Figure 6.1

(bottom row) is similarly constructed but with the summary statistic equal to the

tolerance value of the rainbow trout; consequently there are fewer substance points

in these plots. The reason for the restriction of n ≥ 3 was because for certain

datasets with n = 2, extremely small HC5 estimates were obtained (up to 10−50)

which heavily distorted interpretation.

From Figure 6.1 it is observed that there is a strong linear correlation between
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the median [AJ] log10(HC5) estimators and the log10(ATS) (correlation coefficient:

ρ = 0.97 (minimum); ρ = 0.92 (rainbow trout)). A high degree of correlation

between the [EFSA] estimators and the log10(ATS) was also observed (ρ = 0.90

(minimum); ρ = 0.84 (rainbow trout)), but less so compared to the conservative [AJ]

estimator (ρ = 0.68 (minimum); ρ = 0.61 (rainbow trout)). The latter is mainly due

to a number of datasets with ni = 4, 5. Note that these correlations hold for all AFs

since linear correlation is independent of positive affine transformations. For 96%

of pesticides, the median [AJ] estimator was relatively less protective than the ATS

based on the minimum tolerance value summary statistic. For the conservative [AJ]

and [EFSA] estimators, the corresponding fractions were 37% and 79% respectively.

The corresponding fractions for the three estimators relative to the ATS based on the

rainbow trout tolerance value summary statistic are 78%, 27% and 56% respectively.

It is intuitively correct that the latter fractions are less than the former fractions

because the rainbow trout’s tolerance value will always be greater than or equal

to the minimum tolerance value. Furthermore, the fractions are consistent with

earlier findings that the conservative [AJ] estimator is typically more conservative

than the [EFSA] estimator, which is always more conservative than the median [AJ]

estimator.

6.3 A Generalised Decision Rule

In this section we explore a generalised deterministic decision rule based only the

rank order of the toxicity data. Through a probabilistic lens, we focus on making

recommendations regarding the application of this decision rule. Consider a chem-

ical risk assessment which is to be based on n distinct species log-tolerance values

Y1 = y1, Y2 = y2, . . . , Yn = yn; we use capitalisation to emphasise random variables

prior to observation. The SSD assumption under the usual species exchangeable

context states that all log-tolerance realisations are independent and identically dis-

tributed from a distribution function FY . Although we have thus far adopted the

SSD assumption of normality over log-concentration, we work within greater gen-

erality and only assume that FY is continuous for the time being. We denote the
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order statistics of log-tolerance values to be Y(1:n) ≤ Y(2:n) ≤ · · · ≤ Y(n:n).

In Section 2.5 it was reported that log10(ATS) is obtained by applying an as-

sessment shift K to the summary statistic of observed toxicity data (on original

concentration scale). By defining the summary statistic to be an order statistic, we

subsequently denote T (n, i,K) to be log10(ATS), defined as

T (n, i,K) = Y(i:n) −K. (6.1)

This is effectively a decision rule for choosing the PNEC. Setting i = 1 retrieves

the standard decision rule such that 10K is equivalent to the assessment factor, and

10Y(1:n) is the lowest tolerance value (on the original concentration scale).

For purposes of evaluating this generalised decision rule, we will use the MFE, as

proposed in EFSA (2005), as a measure of risk. The MFE calculates the statistically

expected proportion of species whose (log-)tolerance values will be exceeded at a con-

centration less than some particular environmental exposure (log-)concentration; in

this case the log-concentration is T (n, i,K). Unlike other proposals of measuring

the PAF, the MFE doesn’t require specification of additional control parameters.

Moreover, it is attractive from a risk management perspective because of its math-

ematical closed form. By definition, the MFE is equivalent to

∫ ∞
−∞

fT (t)FY (t)dt = 1−
∫ ∞
−∞

FT (t)fY (t)dt,

whereby the alternative expression defined by the right-hand side arises from inte-

gration by parts.

It is assumed that each Yi can be decomposed as Yi = µ + σZi where Zi is a

realisation from a standardised distribution FZ having expectation zero and variance

one. The parameters µ and σ2 therefore represent the population mean and variance

over log-concentration respectively. It is straightforward to deduce that the i-th
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order statistic Y(i:n) has a distribution function equal to

FY(i:n)(y) = Fβ(i,n−i+1) (FY (y;µ, σ))

= Fβ(i,n−i+1)

(
FZ

(
y − µ
σ

))
, (6.2)

where Fβ(i,n−i+1) is the cumulative distribution function (CDF) of a Beta distribution

with shape parameters i and n− i+ 1. Hence, we can extend this to determine the

CDF and probability density function (PDF) of the generalised decision rule as

FT(n,i,K)
(t) = Fβ(i,n−i+1)

(
FZ

(
t− µ+K

σ

))
;

fT(n,i,K)
(t) = fβ(i,n−i+1)

(
FZ

(
t− µ+K

σ

))
fZ

(
t− µ+K

σ

)
1

σ

respectively; where fZ is the PDF of the random variable Z. Combining the defi-

nition of the MFE with the distributions above yields the following expressions for

the MFE evaluated at T (n, i,K)

∫ ∞
−∞

fβ(i,n−i+1)

(
FZ

(
t− µ+K

σ

))
fZ

(
t− µ+K

σ

)
FZ

(
t− µ
σ

)
dt

σ

= 1−
∫ ∞
−∞

Fβ(i,n−i+1)

(
FZ

(
t− µ+K

σ

))
fZ

(
t− µ
σ

)
dt

σ
.

Both integrals can be simplified via a change of variables to obtain

MFE(n, i,K∗) =

∫ ∞
−∞

fβ(i,n−i+1) (FZ (z +K∗)) fZ (z +K∗)FZ (z) dz (6.3)

= 1−
∫ ∞
−∞

Fβ(i,n−i+1) (FZ (z +K∗)) fZ (z) dz, (6.4)

where K∗ is denoted as the standardised assessment shift in EFSA (2005, Appendix

A), i.e. K∗ = K/σ. From here onwards, we refer to the MFE as a function of

standardised assessment shift, i.e. MFE(n, i,K∗).
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6.3.1 Comparing Decision Rules

Subject to certain criteria, it is plausible that a risk assessment may be based on

a sample size of n = 1; see for example the third row of Table 6.1. However,

additional conditions in the assessment guidelines may be applicable (not displayed

in Table 6.1) which may preclude the use. Furthermore, assessment factors for other

regulatory contexts (e.g. assessment of fish under the realm of EC 1991) may not

allow for n = 1 in general. Since we seek a generalised decision rule, we nominally

define n = 2 as being the minimum sample size which has wide reaching applicability

to ERA. Thus, risk assessors will likely choose to use n = 2 unless there are other

reasons to consider larger sample sizes. Henceforth, we define the current protection

threshold to be MFE(2, 1, K∗) for a given value of K∗, i.e. the MFE of applying an

assessment factor to the minimum of two tolerance values. This threshold defines a

reference point which can be used to evaluate other assessment procedures.

We refer to a decision rule T (n, i,K) as desirable if it satisfies MFE(n, i,K∗) ≤

MFE(2, 1, K∗) for some SSD over a relevant interval of K∗, namely (0, K∗max]. In

other words, the MFE of the decision rule does not exceed the status quo for some

suitably large interval of standardised assessment factors, which may even be the

entire positive real line. Whilst desirability is a useful criterion for classifying deci-

sion rules, there may exist multiple rules for fixed order statistic index i. In order

to aid a risk manager, a stronger criterion may be sought after.

Regulators would benefit from revising the decision rule which yields the current

protection threshold to T (n, 1, K) for any n > 2. In other words, fixing the order

statistic to be the minimum observed tolerance value, but increasing the minimum

sample to be larger than n = 2 would yield an MFE that is desirable. On the

other hand, this revised decision would lead to a sure loss for industry (e.g. the

chemical manufacturer or importer) since more laboratory tests are required. Now

consider the decision rule T (n, i,K) with n ≥ 2 and i > 1; for n = 2 this will be

unacceptable from a regulatory viewpoint. From an industry perspective, however,

an increase in order statistic index may be beneficial. Hence, we define the decision

rule T (n, 2, K) to be mutually beneficial to both the regulators and industry if

MFE(n, 2, K∗) ≤ MFE(2, 1, K∗) for all K∗ ∈ (0, K∗max] and there exists no other
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n′ < n for which this inequality holds true. In other words, T (n, 2, K) constitutes

a desirable decision rule with the smallest possible sample size. Note that this

mutually beneficial decision rule would still be employed with the same assessment

factor applied by the current requirements.

Once can iterate this argument to obtain the next mutually beneficial decision

rule T (n, 3, K). In general, if we have a decision rule T (m, j,K) which is classed as

mutually beneficial, then the next mutually beneficial decision T (n, i,K) is obtained

by seeking the smallest n ≥ m and largest i > j which satisfies

MFE(n, i,K∗) ≤ MFE(m, j,K∗) ≤ MFE(2, 1, K∗) ∀K∗ ∈ (0, K∗max]. (6.5)

This procedure yields a sequence of mutually beneficial decision rules: T (n1, i1, K),

T (n2, i2, K), . . . , T (nmax, imax, K) with i1 < i2 < · · · < imax and n1 ≤ n2 ≤ · · · ≤

nmax. We anticipate nmax . 15 because it is likely that beyond this value one will

fall into the realm of intermediate quantitative tier hazard assessment methods, i.e.

direct calculation of a HCp. Each mutually beneficial decision rule T (nt, it, K) is

made in reference to T (nt−1, it−1, K) (with t = 0 corresponding to the decision rule

which yields the current protection threshold). One might consider defining each

mutually beneficial decision rule with respect to T (2, 1, K) only. However, it does

not seem plausible that a risk manager would be satisfied with a situation where

the MFE evaluated at T (n1, i1, K) does not uniformly bound the MFE evaluated at

T (n2, i2, K) for i2 > i1 even if both decision rules are classed as desirable. For the

sake of convenience, we refer to all decision rules in the aforementioned sequence as

mutually beneficial.

In constructing the ‘mutual benefit’ criterion for choosing among the decision

rules, we have discounted two factors. First, from an industrial viewpoint we have

ignored the cost of testing additional species. However, it is anticipated that test-

ing additional species would in many contexts outweigh the cost of performing a

higher tier risk assessment. Second, from a regulatory viewpoint we have ignored

stakeholder utility (e.g. public consultation) which may not rationalise the trade-off

between n and i for fixed K.
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As an example of our discussion, consider the MFE based on the log-normal

SSD assumption; this is in line with the standard model discussed throughout this

research. This assumption was also the basis of the decision rules for Method 2 in

EFSA (2005, p. 28). By noting that Z has a standard normal distribution, then

this implies, as shown in EFSA (2005), that

MFE(n, i,K∗) = 1−
∫ ∞
−∞

Fβ(i,n−i+1) (Φ (z +K∗))φ(z)dt,

where Φ(·) and φ(·) respectively denote the CDF and PDF of a standard normal

distribution.

In order to explore the generalised deterministic decision rule T (n, i,K) we

numerically evaluate the MFE for: sample sizes 2 ≤ n ≤ 13; order statistics

1 ≤ i ≤ min(n, 4); and standardised assessment shift K∗ ∈ [0, 4]. This interval

of standardised assessment shifts is deemed sufficient for all intents and purposes.

However, subject to the magnitude of the SSD variance, this may require modifica-

tion and would likely be a policy decision. Figure 6.2 plots MFE(n, i,K∗) against

K∗ for the selected sample sizes and order statistics; each line colour and line-type

corresponds to a distinct pair (n, i). Note that the solid red curve corresponds to

the current protection threshold. To aid in analysing Figure 6.2, we additionally

plot the MFE curves relative to the current protection threshold (see Figure 6.3).

With reference to the current protection threshold, it is observed from Figure 6.2

that the decision rule corresponding to (n, i) = (3, 1) is desirable over K∗ ∈ [0, 4].

Further inspection indicates that (n, i) = (5, 2) corresponds to a mutually beneficial

decision rule since its MFE is uniformly smaller than the current protection threshold

over the specified region of K∗, but not for (n, i) = (4, 2). Furthermore, two addi-

tional mutually beneficial decision rules are identified corresponding to (n, i) = (8, 3)

and (11, 4). Figure 6.4 is a de-cluttered plot of the three mutually beneficial decision

rules for the log-normal SSD identified above, with the current protection threshold

curve overlaid.

A number of additional observations from the analysis are worth mentioning.

First, for fixed sample size the MFE decreases as the order statistic index decreases
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with strict inequality for all K∗ 6= 0. Second, for fixed order statistic index the MFE

decreases as the sample size increases. Thus, MFE(n, i,K∗) is a decreasing function

as either n increases, i decreases, or as K∗ increases. However, a caveat is that

these points are only shown to be true for the log-normal SSD; we analyse them for

other SSDs later on. Additionally, by properties of the Beta distribution, it is clear

that the PAF of species variability decreases as we move from mutually beneficial

decision rule T (m, j,K) to the next mutually beneficial decision rule T (n, i,K) such

that i > j. Both parties — regulators and industry — stand to gain from this

because the probability of a high PAF is lowered which consequently implies the

chance of triggering a higher tier risk assessment is lowered.

6.4 Evaluating Robustness

In this section we evaluate the generalised decision rule defined in the previous

section under a range of different SSDs. In particular, we focus on SSDs over log-

concentration which deviates slightly from normality. This can be observed as an

ad hoc empirical analysis of robustness; a similar analysis was performed by EFSA

(2008) for decision rules which employed the geometric mean as a summary statistic.

The various families of distributions we consider is intended to capture key features

of where an SSD (over log-concentration) may depart from normality, for example,

skewness, fat/long tails, peakedness and bimodality. Our choice of distributions to

explore these properties is not exhaustative, but rather chosen to be representative

and offer flexibility (through shape parameters). With the exception of the logis-

tic SSD (chosen because of its prevalence in some regulatory sectors), all families

yield the normal distribution as a special case. Larger families of distributions, for

example the Johnson SU distribution (Johnson, 1949), which offer more flexibility

via larger numbers of shape parameters, might be an appropriate avenue of further

research if combinations of different properties required evaluation of robustness.
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6.4.1 Distributions

Here we give brief details of the distribution functions we consider, namely: the

logistic distribution; the skew-normal distribution; Student’s t-distribution; the ex-

ponential power distribution and a class of normal mixture distributions. Note that

all distributions we describe are over log-concentration, that is if X is the toler-

ance value of a random species drawn from the SSD, then Y = log10(X) is the

log-tolerance value of this species. For this section, we will use the term SSD to

refer to distributions of Y . Also, note that all distributions are fully defined on the

real line.

The Logistic Distribution

The logistic distribution, parameterised by mean µ and scale s, has a PDF

f(y;µ, s) =
exp{−(y − µ)/s}

s (1 + exp{−(y − µ)/s})2 .

If Y has a logistic distribution, then EY = µ and Var(Y ) = π2s2/3.

The logistic distribution is frequently assumed by many SSD proponents (Alden-

berg and Slob, 1993; Traas et al., 2002; Dyer et al., 2006); this is mainly because

of its complete analytically tractability. Recently, however, the normal distribution

has become recognised as the more pragmatic choice (ECHA, 2008a).

The Skew-Normal Distribution

The skew-normal (SN) distribution, parameterised by location ω, scale ψ, and shape

α, has a PDF

f(y;ω, ψ, α) =
2

ω
φ

(
y − ψ
ω

)
Φ

(
α
y − ψ
ω

)
.

If Y has a SN distribution, then EY = ψ + ω
√

2/πδ and Var(Y ) = ω2(1− 2δ2/π),

where δ = α/
√

1 + α2.

The SN distribution is a generalisation of the normal distribution (Azzalini,

1985), and might be useful for ecological compositions which demonstrate some

degree of skewness over log-transformed concentration. It is implemented in R (R,
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2006) through the sn package (Azzalini, 2008). As α → ±∞, the SN distribution

tends towards the half-normal distribution; when α = 0, the normal distribution is

recovered.

Student’s t Distribution

Student’s t-distribution, parameterised by ν degrees of freedom, has a PDF

f(y; ν) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

y2

ν

)−( ν+1
2

)

.

If Y has a Student t-distribution, then EY = 0 and Var(Y ) = ν/(ν − 2) which is

defined for ν > 2.

Student’s t-distribution has longer tails for small degrees of freedom, but its

distribution function can be shown to tend towards a standard normal distribution

function as ν →∞.

The Exponential Power Distribution

The exponential power (EP) distribution, parameterised by mean µ, scale σ, and

shape p ≥ 1, has a PDF

f(y;µ, σ, p) =
1

2p1/pσΓ(1 + 1/p)
exp

{
−|y − µ|

p

pσp

}
.

If Y has an EP distribution, then EY = µ and Var(Y ) = p2/pσΓ(3/p)/Γ(1/p).

The EP distribution (also known as the generalised error distribution) is a class

of distributions which allows for varying degrees of tails; see Nadarajah (2005) for

further details. It is implemented in R (R, 2006) through the normalp package (Mineo

and Ruggieri, 2005). When p = 2 the normal distribution is recovered; when p = 1

the Laplace distribution is recovered.
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Bimodal Normal Mixture Distribution

The bimodal normal mixture (BNM) distribution, parameterised by locations (µ1, µ2),

scales (σ1, σ2), and weight ω, has PDF

f(y;µ1, µ2, σ1, σ2, ω) =
ω

σ1

φ

(
y − µ1

σ1

)
+

(1− ω)

σ2

φ

(
y − µ2

σ2

)
,

where φ(·) is the PDF of a standard normal random variable. If Y has a BNM

distribution, then EY = ωµ1 + (1− ω)µ2 and Var(Y ) = ω2σ2
1 + (1− ω)2σ2

2.

The BNM is a non-standard distribution that we explore for purposes of assessing

bimodality. This property is clearly plausible for multi-taxa species communities

where the toxicant has a very specific mode of action which may target one (possibly

small) group of species since it represents two clusters of species. If ω tends towards

either zero or unity, then we obtain a normal distribution. The normal distribution

is also recovered if one sets µ1 = µ2 and σ1 = σ2 for any ω ∈ [0, 1].

6.4.2 Analysis

Of the distributions we described, we only explored certain cases in each. In all

cases, we only consider the standardised distributions, i.e. having expectation 0 and

variance 1, by consequence of Equation 6.3. The MFE curves are not necessarily

comparable for fixed (n, i) across K∗ since for fixed K, K∗ may be shape dependant.

This does not preclude our robustness analysis, since we are only interested in the

robustness of the previously identified mutually beneficial decision rules.

For the SN distribution we considered |α| = 1, . . . , 5; for Student’s t-distribution

we considered at ν = 3, 4, 5; for the EP distribution we considered p = 1.5, 2.5, 3, 5

and for the BNM distribution we consider ω = 0.1, 0.5 and 0.9 with µ2 = −µ1 = 2

and σ1 = σ2 = 1. For the BNM distribution, other parameterisations provide much

different results, however the key features for discussion are sufficiently captured

by these choices. In Figure 6.5 we display the standardised PDF and CDF for

each distribution across different parameterisations. For each plot we also show the

standard normal PDF and CDF (bold red curve).

By considering plots similar to those of Figures 6.2–6.4, we are able to determine
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Figure 6.5: Standardised distributions of alternative SSDs.
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that for an interval of K∗ ∈ (0, 4], the aforementioned mutually beneficial decision

rules (see Section 6.3.1) appear to coincide with those determined for the other

distributions analysed with the exception of the BNM distribution with ω = 0.1.

In the interest of clarity we do not display all the corresponding versions of

Figures 6.2–6.4, but instead display the MFE curves (left panel) corresponding to

the mutually beneficial decision rules [based on (n, i) = (5, 2), (8, 3), (11, 4)] and

the current protection threshold [(n, i) = (2, 1)], over K∗ = [0, 4], for various pa-

rameterisations in. These plots are shown in: Figure 6.6 (logistic); Figure 6.7 (SN);

Figure 6.8 (Student t); Figure 6.9 (EP) and Figure 6.10 (BNM). In addition, for each

plot (right panel) we also show the MFE curves relative to the current protection

threshold curve.

It is clear from Figure 6.10 (right panel) that the BNM distribution with ω = 0.1

is exceptional such that the decision rules based upon procedures of (n, i) = (5, 2),

(8, 3) and (11, 4) are not mutually beneficial because the MFE curves corresponding

to the former procedures cross the current protection threshold curve. The first

crossing occurs at K∗ ≈ 1.1, and the second crossing occurs at K∗ ≈ 2.5 at which

point mutual benefit is restored. For this standardised SSD, the mutually beneficial

decision rules (with K∗max = 4) were determined from Figure 6.11 to correspond to

the procedures: (n, i) = (6, 2), (11, 3), and (16, 4). As K∗ becomes appreciably large

it will be the left ‘hump’ of the BNM (which is a normal distribution) that will have

most mass. Thus the MFE curves for very large K∗ would be similar to those for

the normal SSD.

An additional noticeable observation arises in the context of the Student-t SSD.

The decision rules evaluated in Figure 6.8 were classifiable as mutually beneficial

on the interval of standardised assessment shifts K∗ ∈ [0, 4]. However, extending

this interval to K∗ = [0, 8] (Figure 6.12) indicated that the decision rules are no

longer mutually beneficial; this is similar to the case for the BNM (ω = 0.10).

Figure 6.12 (right panel) clearly demonstrates the crossing for ν = 3 and ν = 4;

the crossing for ν = 5 is not observable on the plotted domain. Further calculations

verified that letting ν →∞ leads to MFE curves coinciding with those determined

under a normal SSD. It was further found that log-MFE curve plots (not displayed



6.4. Evaluating Robustness 179

0 1 2 3 4

0.
00

1
0.

00
5

0.
02

0
0.

05
0

0.
20

0

K*

M
F

E

(n, i) = (2, 1)
(n, i) = (5, 2)
(n, i) = (8, 3)
(n, i) = (11, 4)

0 1 2 3 4

0.
6

0.
7

0.
8

0.
9

1.
0

K*
R

el
at

iv
e 

M
F

E

(n, i) = (2, 1)
(n, i) = (5, 2)
(n, i) = (8, 3)
(n, i) = (11, 4)

Figure 6.6: MFE (left panel) and relative MFE (right panel) curves for decision
rules corresponding to (n, i) = (2, 1); (5, 2); (8, 3) and (11, 4) under the logistic SSD.
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Figure 6.12: MFE (left panel) and relative MFE (right panel) curves for decision
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here) for ν . 50 were approximately convex and approximately concave for ν & 50.

Inferences based on the evaluation of the aforementioned decision rules for ν & 50

were numerically consistent with other distributions including the normal SSD.

In light of this, it is plausible that for some risk assessments a domain of K∗ ∈

[0, 4] may not suffice in justification of the mutually beneficial decision rules, even

when unimodality is assumed. However, heuristically, if K∗ = 4 — the approximate

value where the decision rules failed to be mutually beneficial for the Student-t

SSD with ν = 3 — then the actual assessment factor applied (to the summary

toxicity statistic on original concentration scale) will be approximately 104σ. So for

σ ≥ 1/4, the currently implicitly suggested assessment factor of 10 will fall within

the currently explored domain. Of course, one is not in a position to know σ in

advance unless one assumes the model of Aldenberg and Luttik (2002) (cf. M4).

Finally, whilst the aforementioned mutually beneficial decision rules also coin-

cided with those evaluated under the EP distribution (up to the specified parame-

terisations), it was noticeable that for small shape parameter p, the log-MFE curves

were far less concave than those for other distributions.
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Taxon sp 95% C.I. ς N

Fish 0.65 (0.628, 0.675) 1524 169
Crustaceans 0.92 (0.877, 0.977) 657 86
Mammals 0.36 — — 69

Table 6.2: Pooled standard deviations of log transformed (base 10) toxicity data
(EC50s) stratified by taxon. Reproduced from EFSA (2005, Table 2). C.I. = confi-
dence interval; ς was defined earlier to be the total degrees of freedom.

6.5 Empirical Reassessment

Thus far we have evaluated a generalised deterministic decision rule under a number

of different SSDs to explore robustness. In particular, a set of mutually beneficial

decision rules were arrived at from these considerations. That is, a set of decision

rules where a trade-off is made between regulators and industry which ensures that

the current undefined mean level of protection accountable to interspecies variability

is not exceeded; in fact it is lower for most decision rules.

In this section we reassess the mutually beneficial decision rules from an appli-

cation viewpoint. Such a reassessment is precluded using the methodology derived

above since the MFE — a summary measure of the level of protection — is specified

over standardised assessment shifts. One approach to overcome this is to recall that

K = K∗σ, where conditional on σ, K has an interpretation which is understood

by risk managers, i.e. that of a log transformed assessment factor. Earlier analysis

in Chapter 3 suggested σ was heterogeneous between substances; notwithstanding

this, we adopt the basis of M4, in particular that of fixing σ = sp. The hypoth-

esis of homogeneity for σ was not supported for the taxonomic group of fish (see

Section 3.8), nonetheless it has been applied in Luttik and Aldenberg (1997); Alden-

berg and Luttik (2002) and EFSA (2005). EFSA (2005, Table 2) presented pooled

standard deviation estimates for SSDs over log-concentration for different taxonomic

groups based on a larger pesticide toxicity database; this RIVM database is a subset

which is described in De Zwart (2002). We reproduce these values for three of the

taxonomic groups in Table 6.2.

By substituting σ = sp for a specific taxonomic group listed in Table 6.2, we
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can rescale the abscissa such that it reflects the log assessment factor (K), thus

being comparable to those in Table 6.1 (up to a exponential transform). It should

be noted that values of K are not independent of behavioural model, whereas lower

tier quantitative assessment generally is without reference to a model, hence caution

is required in interpreting and communicating this analysis to end users. In the

interests of clarity, we limit the evaluation of the mutually beneficial decision rules

to the log-normal and log-logistic SSD; extension to other distributions would be

relatively straightforward. In Figure 6.13 we show MFE curves for each taxonomic

group, plotted over log-assessment factor, for the aforementioned mutually beneficial

decision rules; log-normal (left panel) and log-logistic SSD (right panel). Note that

since our treatment of assessment factor extrapolation is pertinent to AFspec only

(see Section 2.5), we only consider the domain K ≤ 2, i.e. AFspec ≤ 100. This

is because the relevant official sources for assessment factors appear to implicitly

suggest AFspec = 10 or AFspec = 100; larger overall assessment factors will be

relevant to additional uncertainties not incorporated in the SSD model.

There is a further caveat on the interpretation of this empirical reassessment

because the standard deviation values used in the analysis were obtained using

acute EC50 toxicity data. If one was interested in interpreting the results from a

risk assessment based on chronic data, then it would need to be assumed that the

pooled standard deviations are representative of those for chronic data. Evidence in

Roex et al. (2000) and Craig (2006) is inconclusive as to whether this assumption is

valid and further investigation is clearly required.

Since the fish taxon has been a key feature of examples presented in this research,

we display the MFE values for the mutually beneficial decision rules in Table 6.3 for

fixed assessment factor values. In addition, we display the MFE for decision rules

which corresponds to (n, i) = (3, 1) since this is admissible into many risk assessment

dossiers. As per Figure 6.13, we only tabulate values of AFspec considered practical,

namely, those less than two orders of magnitude.

It is clear from Figure 6.13 that if the assessment procedures were applied blindly

to all taxa, then taxa which exhibit less variability in toxicological sensitivity will

be relatively more protected than those taxa with higher variability. However, such
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an implication, as drawn here, is conditional on the assumption of homogeneity of

σ for each taxon.

6.6 A Theoretical Inspection

In the following sections we theoretically explore the notion of the generalised de-

terministic decision rule T (n, i,K) from the analytical probabilistic viewpoint in

order to better defend their applicability for risk assessment. Previous sections rely

upon numerical and graphical validation techniques which would most likely satisfy

the requirements of risk managers, and aid in the communication of our proposal.

However, theoretical elaboration can strengthen the defensibility, as well as lead to

greater insight.

6.6.1 Useful Results

Here we describe a few useful results which provide extra insight into the theoretical

structure of the MFE evaluated at the generalised deterministic decision rule. A triv-

ial, but nonetheless important, observation is that the MFE evaluated at T (n, i,K)

for a given SSD is non-increasing as i increases.

Proposition 6.6.1 For any SSD, MFE(n, i,K∗) ≥ MFE(n, k,K∗) for n ≥ i ≥ k.

Proof First note that Yk:n ≤ Yi:n for i ≥ k. Since the potentially affected fraction

(PAF) of species affected is an increasing function in environmental concentration,

we have that

PAF (T (n, k,K)) ≤ PAF (T (n, i,K)) .

Hence, by fact that the expectation operator is monotonic, the result is immediate.

Having shown that the MFE is a decreasing function for decreasing order statistic

index choice, we can also show that that the MFE is a decreasing function for

increasing sample size, as demonstrated in the next proposition.
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Proposition 6.6.2 For any continuous SSD, MFE(n1, i,K
∗) > MFE(n2, i,K

∗) for

n2 > n1 ≥ i.

Proof From Equation 6.4 we have that

MFE(n, i,K∗) = 1−
∫ ∞
−∞

Fβ(i,n−i+1) (FZ (z +K∗)) fZ(z)dz

= 1− EZFβ(i,n−i+1) (FZ (z +K∗)) ,

where the expectation is taken with respect to the standardised SSD. Using a stan-

dard identity of the regularised incomplete Beta function (Abramowitz and Stegun,

1972), namely

Fβ(a,b)(u) = Fβ(a+1,b)(u) +
Γ(a+ b)

Γ(a+ 1)Γ(b)
(1− u)bua,

we can also determine that

Fβ(a,b)(u) = Fβ(a,b+1)(u)− Γ(a+ b)

Γ(a)Γ(b+ 1)
(1− u)bua.

This implies that

Fβ(a,b)(u) ≤ Fβ(a,b+1)(u),

with a strict inequality if and only if u 6= 0, 1. It is immediate from this result that

Fβ(i,n−i+2) (FZ (z +K∗)) > Fβ(i,n−i+1) (FZ (z +K∗))

uniformly on the finite real line; this is a type of first order stochastic dominance.

Since the expectation operator is monotonic, we therefore determine that

1− EZFβ(i,n−i+2) (FZ (z +K∗)) < 1− EZFβ(i,n−i+1) (FZ (z +K∗))

⇒ MFE(n+ 1, i,K∗) < MFE(n, i,K∗),

and so

MFE(n2, i,K
∗) < MFE(n1, i,K

∗)
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for any n2 > n1 ≥ i.

The special case of K∗ = 0, which implies an assessment factor of AFspec = 1,

offers complete tractability in calculating the MFE of the generalised decision rule,

moreover, it is completely independent of the SSD.

Proposition 6.6.3 Define T ni to be a random variable which has a Beta distribution

with shape parameters i and n− i+ 1. Then we have that

MFE(n, i,K∗) = ETni FZ
(
F−1
Z (T ni )−K∗

)
, (6.6)

where the expectation is taken with respect to the distribution of T ni . Furthermore,

when K∗ = 0,

MFE(n, i, 0) =
i

n+ 1

irrespective of the SSD.

Proof Apply the change of variables: t = FZ(z+K∗) to Equation 6.3 to obtain the

expression given by Equation 6.6. By setting K∗ = 0, this expression immediately

reduces to

MFE(n, i, 0) = ETni [T ni ] =
i

n+ 1
.

If we consider what we earlier defined to be the current protection threshold

for any standardised assessment shift K∗, i.e. MFE(2, 1, K∗), then when K∗ = 0

we have that the current protection threshold is equal to 1/3. This means that

any other decision rule T (n, i,K) must satisfy MFE(n, i, 0) ≤ MFE(2, 1, 0) = 1/3

if it is to be considered desirable or mutually beneficial. This result is used to

state the next proposition. Note also that Equation 6.6 relates to another equation:

EZFZ
(
Z̄ −K∗

)
, which defines the MFE when an assessment factor is applied to

the geometric mean of the toxicity data. The latter equation is the focus of EFSA

(2008).

Proposition 6.6.4 For a given sample size n ≥ 2, a necessary, but not sufficient,

requirement for a generalised decision rule to be classed as mutually beneficial is for
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the order statistic index i to satisfy

i ≤ n+ 1

3
. (6.7)

The proof is straightforward by Proposition 6.6.3.

For the decision rules corresponding to the assessment procedures of (n, i) =

(2, 1), (5, 2), (8, 3), and (11, 4), mutual benefit is satisfied by equality in Equation 6.7

rather than inequality. Any value of i satisfying a strict inequality in this case would

yield a decision rule classifiable as desirable to the risk manager by our earlier

definition.

6.7 Stochastic Dominance

Given a set of decision rules T (n, i,K), where effectively K is set in advance, then

it is a risk management decision as to the choice of (n, i). Currently, regulatory

guidelines require, in general, (n, 1) for n ≥ 2. As demonstrated in Section 6.3.1,

other prescriptions of (n, i) can lead to decision rules which are mutually beneficial

to risk managers and industry. However, the level of protection provided by each

decision rule is uncertain, suggesting that a criterion is required in order to be able

to adequately decide which estimator(s) should be considered; we advocated the

MFE as a sufficient criterion, subject to a presumed SSD, or many SSDs.

By extending upon the definitions in Section 6.3.1, we classify a generalised

decision rule T (n, i,K) to be desirable over another T (m, j,K), if for a given SSD,

MFE(n, i,K∗) ≤ MFE(m, j,K∗) for all K∗ ∈ (0, K∗max]. Analytically showing where

this property holds for pairs of decision rules is difficult and so we appeal to the

theory of stochastic dominance (Hadar and Russel, 1969; Levy, 2006). In turn, we

shall analytically demonstrate that the aforementioned mutually beneficial decision

rules, indentified using numerical techniques do in fact satisfy stochastic dominance.
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6.7.1 An Equivalent Measure of Protection

Stochastic dominance is a dominance argument used in the application of utility

based decision theory (Berger, 1985). Basically, a utility function u(·), defined up

to a positive affine transformation, acts on a set of possible outcomes obtainable via

different decisions to admit real numbers used to rationalise a level of preference.

To choose a decision under uncertainty, classical utility theory assumes that rational

behaviour corresponds to maximising ones expected utility. For the problem here,

the ‘outcomes’ are T (n, i,K), and the ‘utility function’ can be vaguely interpreted

as the PAF function (over log-concentration). An alternative viewpoint would be,

conditional on K∗ being fixed for all decision rule options, to consider the decisions

as specifying (n, i) and the utility function as FZ(F−1
Z (t)−K∗) (cf. Equation 6.6).

The ‘expected utility’ in this instance would be MFE(n, i,K∗). Due to the utility

function literature focusing on the maximisation of expected utility, it will be more

convenient for us to consider an equivalent function

V (u;K∗) = 1− FZ
(
F−1
Z (1− u)−K∗

)
.

V (u;K∗) is equivalent to the former function, except that it measures the fraction

of species potentially unaffected whilst still satisfying V ′(u;K∗) > 0, i.e. protecting

more species is preferred to protecting less. The reconsidered function allows us to

straightforwardly exploit current utility theory and definitions. For what follows,

we shall assume that V (u;K∗) is known and well defined.

Define Un
i = 1 − T ni , where T ni was defined in Proposition 6.6.3. It is straight-

forward to show that Un
i has a Beta distribution with shape parameters n − i + 1

and i; notice that the shape parameters have interchanged from the distribution of

T ni . Hence,

EUni V (Un
i ;K∗) = EUni

[
1− FZ

(
F−1
Z (1− Un

i )−K∗
)]

(6.8)

= 1−MFE(n, i,K∗).

The separation of the underlying SSD and assessment procedure (n, i) in Equa-
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tions 6.6 and 6.8 is highly important because it allows for the two components to

be analysed separately.

To conclude our specification of V (u;K∗), we also present the first and second

derivatives with respect to u to be

V ′(u;K∗) =
fZ
(
F−1
Z (1− u)−K∗

)
fZ
(
F−1
Z (1− u)

) ; (6.9)

V ′′(u;K∗) =
1

f 2
Z

(
F−1
Z (1− u)

){fZ (F−1
Z (1− u)−K∗

)
f ′Z
(
F−1
Z (1− u)

)
fZ
(
F−1
Z (1− u)

)
−f ′Z

(
F−1
Z (1− u)−K∗

)}
. (6.10)

These functions are required later in demonstrating stochastic dominance.

6.7.2 Definitions

Recall our redefinition of a decision rules desirability, i.e. a decision rule T (n, i,K) is

desirable over another T (m, j,K), if for a given SSD, MFE(n, i,K∗) ≤ MFE(m, j,K∗)

for allK∗ ∈ [0, K∗max]. By Equation 6.8, this definition is equivalent to EUni V (Un
i ;K∗) ≥

EUmj V (Um
j ;K∗). Therefore, ‘preference’ in estimators is implied by a ‘preference’ of

distribution for Un
i ; such a concept is referred to as ‘orderability’ under stochastic

dominance (Hadar and Russel, 1969). This is better understood by expanding the

final condition of desirability to show

∫ 1

0

[
fβ(n−i+1,i)(u)− fβ(m−j+1,j)(u)

]
V (u;K∗)du ≥ 0. (6.11)

Showing if, and when, Equation 6.11 holds is the focus of the remainder of

this section. It is clear that
[
fβ(n−i+1,i)(u)− fβ(m−j+1,j)(u)

]
� 0 ∀u ∈ [0, 1], hence

we must appeal to other methods. Two standard approaches to showing whether

Equation 6.11 holds are first and second order stochastic dominance, denoted FOSD

and SOSD respectively. Following the text of Hadar and Russel (1969) and Levy

(2006), we provide the definitions of FOSD and SOSD below.
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First Order Stochastic Dominance (FOSD)

Given two probability density functions f(x) and g(x) with corresponding cumula-

tive distribution functions F (x) and G(x), and utility function u(x), we say that f

dominates g by first order stochastic dominance when u′(x) > 0 ∀x; and F (x) ≤

G(x) ∀x with at least one strict inequality.

To prove that FOSD does in fact satisfy stochastic dominance, we invoke inte-

gration by parts to retrieve

∫ ∞
−∞

[f(x)− g(x)]u(x)dx

= [{F (x)−G(x)}u(x)]∞−∞ −
∫ ∞
−∞

[F (x)−G(x)]u′(x)dx.

The term on the left is clearly zero for both limits because limx→±∞ [F (x)−G(x)] =

0 by definition of cumulative distribution functions and u(x) is bounded. By our hy-

pothesis, the term on the right returns a non-negative quantity because [F (x)−G(x)] ≤

0 (with at least one value, x0, for which the inequality is strict thus ensuring that f

and g are not identical) under the assumption that u′(x) > 0 for all x.

Second Order Stochastic Dominance (SOSD)

Given two probability density functions f(x) and g(x) with corresponding cumula-

tive distribution functions F (x) and G(x), and utility function u(x), we say that f

dominates g by second order stochastic dominance when u′(x) > 0 ∀x; u′′(x) ≤ 0

∀x; and
∫ x
−∞ F (t)dt ≤

∫ x
−∞G(t)dt ∀x with at least one strict inequality.

To prove that SOSD also satisfies stochastic dominance, we follow on from first

order stochastic dominance and repeat integration by parts for a second time to

obtain

∫ ∞
−∞

[f(x)− g(x)]u(x)dx (6.12)

= −
[{
F (2)(x)−G(2)(x)

}
u′(x)

]∞
−∞ +

∫ ∞
−∞

[
F (2)(x)−G(2)(x)

]
u′′(x)dx,
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where

F (2)(x) =

∫ x

0

F (t)dt =

∫ x

0

∫ t

0

f(w)dwdt; and

G(2)(x) =

∫ x

0

G(t)dt =

∫ x

0

∫ t

0

g(w)dwdt

are the second-order cumulative distribution functions. The assumptions listed

above ensure that Equation 6.12 is non-negative.

6.7.3 Failure of FOSD

Failure to satisfy either FOSD or SOSD is not enough to say that stochastic dom-

inance is violated. Higher n-th order stochastic dominance has been discussed in

the economics literature; for examples consult Levy (2006) and references therein.

There is good reason for focusing on FOSD and SOSD due to the assumptions placed

on the behaviour of the utility function. Namely, (i) u′(x) > 0 and (ii) u′′(x) ≤ 0

are rational assumptions to make. We explained the logic behind (i) earlier; for (ii)

the condition suggests risk aversion in the standard utility theory context (consult

Levy 2006 for further elaboration).

FOSD is sometimes limited in its applicability, however subtle use was made

of it earlier in proving that MFE strictly decreases as sample size increases for

fixed order statistic index, i.e. MFE(n, i,K∗) < MFE(m, i,K∗) ∀K∗ > 0 such that

n > m ≥ i. The current inspection is with regard to estimators with different

sample sizes and order statistic indices. Although V ′(y;K∗) > 0 ∀y ∈ (0, 1), which

is immediately obvious from Equation 6.9, Figure 6.14 shows that FOSD fails by

plotting the cumulative distributions of the random variable Un
i for (n, i) = (5, 2),

(8, 3), and (11, 4) — the mutually beneficial decision rule procedures for many dif-

ferent ‘near-normal’ SSDs. It is observed that the CDFs intersect one another at

the different points (although not apparent from the figure), thus existing points u0

such that Fβ(n−i+1,i)(u0) > Fβ(m−j+1,j)(u0).

We therefore appeal to SOSD which is a stronger argument than its predecessor.

Crossings in the CDFs of Fβ(n−i+1,i)(u) and Fβ(m−j+1,j)(u) are allowed by restrict-

ing the conditions to F
(2)
β(n−i+1,i)(u) and F

(2)
β(m−j+1,j)(u), so long as the difference in
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Figure 6.14: CDFs of Un
i for some different decision rule procedures.

the area between Fβ(n−i+1,i)(u) and Fβ(m−j+1,j)(u) before they intersect is greater

than the difference in area after they meet. In the following sections we examine

F
(2)
β(n−i+1,i)(u) and V ′′(u;K∗) ≤ 0 ∀y ∈ (0, 1) with respect to the aforementioned

decision rules.

6.7.4 Analysis of Un
i

Here we explore whether

[
F

(2)
β(n−i+1,i)(u)− F (2)

β(m−j+1,j)(u)
]
≤ 0 (6.13)

holds for the decision rules described earlier as mutually beneficial. If we assume that

V ′′(u;K∗) ≤ 0 ∀u ∈ (0, 1), then a sufficient condition for satisfying Equation 6.13

is the decision rule T (n, i,K) being mutually beneficial over T (m, j,K) for a given

SSD. The converse argument only allows us to state that if the above condition

is satisfied, then the decision rule is desirable. Notwithstanding this, we seek the
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smallest n ≥ m and largest i > j such that

F
(2)
β(n−i+1,i)(u) ≤ F

(2)
β(m−j+1,j)(u) ∀u ∈ (0, 1), (6.14)

starting with (m, j) = (2, 1) and iteratively redefining (m, j) as the current solution

(n, i).

In Figure 6.15 (left panel) we plot the second-order cumulative distribution func-

tion F
(2)
β(2,1)(u) (black curve) which corresponds to our definition of the current pro-

tection threshold, obtained by setting (m, j) = (2, 1). In addition, we also plot

F
(2)
β(n−i+1,i)(u) for i = 2 and n = 2, . . . , 5. In the interest of clarity, Figure 6.15 (right

panel) displays the corresponding curves as per the left panel, relative to F
(2)
β(2,1)(y).

It is clear from these figures that the solution to Equation 6.14 is (n, i) = (5, 2).

This concurs with empirical analysis in Section 6.3.1.

Setting (m, j) = (5, 2), we can repeat this analysis. Figure 6.16 (left panel) plots

F
(2)
β(n−i+1,i)(u) for i = 3 and n = 2, . . . , 5; for comparison, curves corresponding to

(n, i) = (2, 1) (black curve) and (5, 2) (red curve) are also displayed. In the interest

of clarity, the middle and right panels plot the curves relative to F
(2)
β(2,1)(u) and

F
(2)
β(4,2)(u) respectively. This figure clearly implies that the solution to Equation 6.14

is (n, i) = (8, 3), again concurring with earlier numerical analysis.

Finally, iterating this argument once further yields the next solution of Equa-

tion 6.14 to be (n, i) = (11, 4). In Figure 6.17 we plot the curves of F
(2)
β(n−i+1,i)(u)

for all identified decision rules which satisfy Equation 6.14 (including (n, i) = (2, 1))

and thus ensure SOSD conditional on V ′′(u;K∗) ≤ 0, which happen to also coincide

with the numerically determined mutually beneficial decision rules in Section 6.3.1.

All second-order CDFs uniformly dominate one another on the interval (0, 1), and

are only equal at the limits of the domain.

We know of no general analytical proof for the general dominance property of

second-order Beta CDFs for the risk assessment procedures listed. However a case-

by-case proof basis is relatively straightforward which is acceptable since the sample

size range of interest is likely to be for n . 10. As an example, we demonstrate

the result for the first case, i.e. showing that F
(2)
β(n−i+1,i)(u) ≤ F

(2)
β(m−j+1,j)(u) for
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Figure 6.17: Second-order CDFs F
(2)
β(n−i+1,i)(u) for (n, i) = (2, 1), (5, 2), (8, 3) and

(11, 4).

(n, i) = (5, 2) and (m, j) = (2, 1), but not so for (n, i) = (4, 2). This implies that

relative to the procedure (m, j) = (2, 1) yielding the current protection threshold,

n = 5 is the minimum sample size that satisfies Equation 6.14 for order statistic

index i = 2. Showing the former requires computation of

F
(2)
β(4,2)(u)− F (2)

β(2,1)(u) =

∫ u

0

∫ t

0

[
fβ(4,2)(x)− fβ(2,1)(x)

]
dxdt

=

∫ u

0

∫ t

0

[
20x3(1− x)− 2x

]
dxdt, (6.15)

where the last line of Equation 6.15 is arrived at by definition of a Beta density

function. Performing the double integral on the left-hand side of the above equa-

tion yields −1
3

(2u6 − 3u5 + u3). Simple analysis shows that this function takes its

maxima as zero at u = 0 and u = 1 and that it has a minimum value which is less

than zero. Hence, Equation 6.15 is less than or equal to zero for all u ∈ [0, 1] with

at least one point satisfying a strict inequality.

Using the same arguments for comparing the procedure of (n, i) = (4, 2) to the
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risk assessment procedure of (m, j) = (2, 1) yielding the current protection threshold,

we have n = 4 satisfying Equation 6.14 for i = 2 if and only if

∫ u

0

∫ t

0

[
12x2(1− x)− 2x

]
dxdt = −

(
3

5
u5 − u4 +

1

3
u3

)
≤ 0.

It is straightforward to determine this does not hold for all u ∈ [0, 1]; for example,

at u = 1 one obtains 1/60 6≤ 0. Hence (n, i) = (4, 2) does not satisfy Equation 6.14

relative to the default assessment procedure (m, j) = (2, 1).

6.7.5 Analysis of V (u;K∗) for Different SSDs

Here we explore whether V ′′(u;K∗) ≤ 0 for u ∈ (0, 1) and some region of interest

K∗ ∈ (0, K∗max] based on some of the SSDs discussed in Section 6.4.1, namely the

normal, logistic, Student-t and skew-normal. The first two are central to regular

probabilistic ERA; the third allows further examination in light of the findings

of Section 6.4.2. The final SSD examined is important because SSDs (over-log

concentration) are generally assumed to be symmetric, which may not be the case.

From here onwards, unless specified otherwise, we take K∗max → ∞. It is easy to

confirm that V ′(u;K∗) > 0 for u ∈ (0, 1) directly from Equation 6.9 since fZ(z) > 0.

In Appendix E we determine V ′(u;K∗) and V ′′(u;K∗) for the aforementioned SSDs.

Additionally, in Figures E.1a (normal); E.1b (logistic); E.2a (SN; α = −3); E.2b

(SN; α = +3); and E.3a (Student-t; ν = 3), we plot V (u;K∗) and its first and

second derivatives, exemplified with K∗ = 1 (all figures are located in Appendix E).

In the following sections we briefly describe the analysis of V (u;K∗) for each of the

SSDs.

Normal Distribution

It is straightforward to confirm that V ′′(u;K∗) ≤ 0 ∀u ∈ (0, 1) and ∀K∗ ≥ 0. In

light of V ′(u;K∗) > 0, one can analytically confirm the decision rules (n, i) = (5, 2),

(8, 3) and (11, 4) stochastically dominate each other, and the assessment procedure

of (n, i) = (2, 1) corresponding to the current protection threshold, based on the
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normal SSD and MFE risk measure.

Logistic Distribution

By the properties of the hyperbolic tangent function, it is straightforward to deduce

that V ′′(u;K∗) ≤ 0 ∀u ∈ (0, 1) and ∀K∗ ≥ 0. As per the normal SSD, when coupled

with the fact that V ′(u;K∗) > 0, the aforementioned decision rules are confirmed to

stochastically dominate each other based on the logistic SSD and MFE risk measure.

Skew-Normal Distribution

The structure of V ′′(u;K∗) is relatively more complicated to analyse. One can

appeal to sophisticated software packages to analyse the functions, for example, we

utilised R (Version 2.4.1) and Maple (Version 9.5). In Section 6.4 we numerically

examined members of SN family with |α| ≤ 5. For these members, we concluded

that V ′′(u;K∗) ≤ 0 for all u ∈ (0, 1); hence we maintain our assertion of stochastic

dominance for the aforementioned decision rules based on the SN SSD (|α| ≤ 5) and

MFE risk measure.

Student’s t-Distribution

It is straightforward to show that V ′′(u;K∗) ≤ 0 in the case of a Student-t SSD with

ν degrees of freedom if

F−1
Z (1− u) ∈

[
1
2
K∗ −

√
1
4
K∗2 + ν − 2, 1

2
K∗ +

√
1
4
K∗2 + ν − 2

]
,

and K∗ 6= 0, which is equivalent to u being an element of the closed interval

[
1− Ftν

(
1
2

√
ν
ν−2

K∗ +
√

ν
4(ν−2)

K∗2 + ν
)
, 1− Ftν

(
1
2

√
ν
ν−2

K∗ −
√

ν
4(ν−2)

K∗2 + ν
)]
,

where Ftν (·) is the cumulative distribution function of a Student-t random vari-

able with ν degrees of freedom. It is easy to demonstrate that ν → ∞ implies

V ′′(u;K∗) ≤ 0, as expected based on the fact that the Student-t distribution ap-

proaches a normal distribution in the limit.
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A further result of this is that for finite ν, there exists u ∈ (0, 1) for which

V ′′(u;K∗) > 0, thus violating the hypothesis of SOSD. This change in sign is no-

ticeable in Figure E.3a where V ′′(u;K∗) > 0 for u /∈ (0.034, 0.82). Whilst very

difficult to see from Figure E.3b, the corresponding region for when K∗ = 4 is

u /∈ (0.003, 0.64). Although in Figure 6.12 the MFE curves for ν = 3 indicate that

the aforementioned decision rules are mutually beneficial, and thus desirable, at

K∗ = 1, SOSD does not hold for this case. This highlights that failure to satisfy

SOSD is a not a sufficient condition for failure of stochastic dominance.

In Section 6.4, we used numerical techniques to demonstrate that the generalised

decision rule based on the assessment procedures (n, i) = (5, 2), (8, 3) and (11, 4)

under the context of a Student-t SSD are not necessarily desirable (or mutually

beneficial) for all K∗. Whilst this might damage the credibility of the proposed

decision rules from a regulatory perspective, we should note a few counteracting

points. Beyond the critical value of K∗ about which the decision rules lose relative

desirability, the relative margin of difference in MFE between the different assess-

ment procedures is not particularly large. Moreover, very large values of K∗, which

propel the summary statistic into the far-lower tail of the SSD, are unlikely to be

practical for the dimension of uncertainty they are intended to account for. Thus the

effects, exhibited in the tails of this distribution on infinite range of log-toxicological

concentrations, may in fact have little practical bearing, potentially still allowing

for our choice of revised assessment procedures. Moreover, the critical point of K∗

where the breach in mutual benefit occurs was numerically found to be increasing

rapidly as ν increases relatively slowly. Despite the t-distribution being of impor-

tance in the Bayesian updating of the normal model (with the prior distribution

described by Equation 2.8) after averaging over the uncertainty about the normal

variance, here the t-distribution is a model for the variability in tolerance. To our

knowledge, practitioners of SSD based risk assessment have never proposed such a

fat-tailed distribution, so its importance in this context is limited.
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6.8 Generalised Decision Rules for Species Non-

Exchangeability

The decision rules discussed throughout this chapter were discussed in the context of

species exchangeability; a reasonable assumption, perhaps, contingent on the tier of

assessment. However, for the sake of completeness, we briefly discuss the generalised

decisions under the assumption of a single non-exchangeable species being present

in the observed toxicity data, in accordance with the discussion by EFSA (2005).

In Section 5.1 we discussed two models for a single non-exchangeable species:

D1 (Equations 5.7) and D2 (Equations 5.8). The model used most prominently

throughout this research, D2, was motivated by the requirement of mathematical

tractability for repeated use. However, since the purpose of this section is essentially

guidance of order statistics conditional upon sample size, one can effectively use the

more ‘flexible’ model proposed by EFSA (2005) since complicated calculations can

be made in advance and only need to be made once.

In the species exchangeable context, we denoted Y(i:n) to be the i-th log-tolerance

value for a sample of n values; the distribution function FY(i:n)(y) for y ∈ R is given

by Equation 6.2. In the single-non-exchangeable species context under the model

D2, Yj are normal with mean µ and standard deviation σ for j ∈ J∗S , and Y † is

normal with mean µ − k′σ and standard deviation φ′σ. By conditioning the event

{Y(i:n) ≤ y} on Y †, one can define the CDF of Y ∗(i:n) (the asterisk indicates the

inclusion of the non-exchangeable species) to be

FY ∗
(i:n)

(y) = P[Y(i:n) ≤ y |Y † ≤ y]P[Y † ≤ y] + P[Y(i:n) ≤ y |Y † > y]P[Y † > y],

which is equivalent to

FY ∗
(i:n)

(y) = FY(i:n−1)
(y) +

[
FY(i−1:n−1)

(y)− FY(i:n−1)
(y)
]

Φ

(
y − µ+ k′σ

φ′σ

)
.

It is then straightforward by consideration of location-scale properties to subse-

quently deduce the distribution of log10(ATS) = Y ∗(i:n) − K, which accounts for

species non-exchangeability.
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Repeating the analysis of Sections 6.3, in particular the example laid out for the

log-normal SSD in Section 6.3.1, one can derive a general expression for the MFE,

for each decision rule procedure (n, i), standardised assessment factor choice K∗,

and non-exchangeability parameters specific to a certain species to yield

MFE(n, i,K∗, k′, φ′) = 1−
∫ ∞
−∞

{
Fβ(i,n−i) (Φ(z +K∗)) 1{n6=i}

+
[
Fβ(i−1,n−i+1) (Φ(z +K∗)) 1{i 6=1} + 1{i=1}

− Fβ(i,n−i) (Φ(z +K∗)) 1{n6=i}
]
Φ

(
z +K∗ + k′

φ′

)}
φ(z)dz.

The numerical quadrature involved in evaluating this function is highly sensitive to

the choice of (n, i) when K∗ is large. In Appendix F we re-express the integrand

in order to increase the precision in evaluation. Although the evaluation of this

function is difficult and requires careful handling, the rules we report from it are

reusable, thus satisfying risk managers prerequisite of tractability.

In order to demonstrate this method with the rainbow trout as the special

species, we fix the non-exchangeability parameters to be those provided in EFSA

(2005) because the research presented in this chapter is frequentist in nature, thus

not being sensible to apply the Bayesian MAP estimates used previously. With

(k′, φ′) = (0.45, 0.62), one can numerically identify the mutually beneficial assess-

ment procedures (assuming (n, i) = (2, 1) is the procedure which when adjusted

for species non-exchangeability provides the current protection threshold) from Fig-

ure 6.18 to be (n, i) = (6, 2), (10, 3), and (14, 4). The latter differs slightly from

the rule (n, i) = (13, 4) reported in EFSA (2005). However, extrapolation shows

the absolute difference in MFE between the procedures is less than 2% for all K∗,

which may be insignificant to risk managers, especially when compared to the dif-

ference in MFE for the minimum threshold: 1% for (n, i) = (14, 4) and 0.6% for

(n, i) = (13, 4).

Issues regarding robustness to other types of SSD are beyond the scope of this

brief discussion, and would require more complicated estimation of non-exchangeability

parameters. This is in addition to any further consideration that may be required

regarding the numerical integration. A caveat for the mutually beneficial decision
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Figure 6.18: MFE(n, i,K∗, 0.45, 0.62) versus K∗. Each line colour and type corre-
sponds to a distinct assessment procedure (n, i) for n ≤ 13 and i ≤ min(n, 4).

rules listed above would be that they only strictly apply to the rainbow trout; per-

turbations in (k′, φ′) leads to alternative decision rules. These decision rules listed

might be objected to by the chemical industry as they appear to suggest that the

resultant PNECs will be more conservative (e.g. when n = 5, i = 2 for species

exchangeability, whereas i = 1 when accounting for species non-exchangeability of

the rainbow trout). However, this is just an artefact of the MFE curve correspond-

ing to the minimum level of protection also being adjusted (by up to 6% absolute

difference) to reflect the inherent sensitivity of the rainbow trout.
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6.9 Conclusions

Where a qualitative assessment of the risk to an ecological community is required,

the simplest regulatory accepted method for characterising the hazard component

is generally based on applying an assessment factor to a summary statistic — the

lowest observed value — of laboratory derived toxicity data. ECHA (2008a, p. 18)

states that:

‘The assessment factors presented should be considered as general factors

that under certain circumstances may be changed.’

Justification for changing the assessment is required and some possible reasons are

provided in ECHA (2008a), for example: more test species; knowledge of similar

substances; knowledge of the toxic mode of action. Some of these justifications have

been discussed in a probabilistic setting within this thesis. There may in addition

be reason for changing the choice of assessment factor based on the conclusions of

research in this chapter. However, we do not recommend this. This is because (i) the

assessment factor (AF) is meant to account for additional uncertainties which are

not captured by the SSD, and (ii) the current level of protection which is obtained

by application of current deterministic decision rules is nowhere mentioned (EFSA,

2005).

The evaluation of the generalised decision rule from a probabilistic viewpoint, and

with respect to the MFE as a summary of protection, naturally led to a dominance

criterion being established. This criterion was used to imply a set of mutually

beneficial decision rules, i.e. industry being incentivised by regulators to assess more

species. The probabilistic modelling only accounted for uncertainty in interspecies

variability. Other uncertainties, for example, acute-to-chronic extrapolation and

the difference in taxonomic/trophic groups assessed, would need to be considered

further, but would likely be ‘accounted for’ by assessment factor prescriptions in the

current technical guidance documentation. However, some of the limitations here

would also extend to the standard probabilistic SSD approaches.

The set of mutually beneficial estimators proposed in this chapter move beyond

the current regulatory status quo of setting the toxicity summary statistic to be
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lowest measured tolerance value, to other procedures such as: the second ordered

tolerance value from a sample of five, etc. Furthermore, the reported decision rules

are interpretable for either acute or chronic assessment endpoints, which enhance

the appeal of the revised assessment methodology from a risk management perspec-

tive. The same assessment factors, as currently prescribed for the risk assessments,

are still applied with the revised summary statistic. In the vast majority of SSDs

marginally deviant from normality (over log-concentration), the rules were shown

to be robust. The exceptions included the negative-skewed bimodal normal mixture

SSD and the Student-t SSD; discussion was provided on each of these cases. How-

ever, a potentially important observation drawn in this report is that unimodality

is not a restrictive enough condition to offer mutual benefit, although there was no

reason to assume as much, a priori.

Alterations to the decision procedures were made with respect to suitably large

(and in some cases infinite) domains of standardised assessment shift. In order to

gain an appreciation of the differences in the current level of protection offered for

different taxonomic groups, the standardised assessment shift scale — under the log-

normal and log-logistic SSD viewpoint — was transformed under the context ofM4,

namely where σ is fixed as the pooled standard deviation estimates provided in EFSA

(2005) (cf. Luttik and Aldenberg 1997). Any conclusions drawn from this brief

empirical reassessment are subject to the näıve assumptions of the aforementioned

behavioural model.



Chapter 7

Conclusions & Future Directions

This chapter provides a short summary of the main results from this thesis, followed

by a discussion of future research potential and needs.

7.1 Conclusions

In this thesis we have extended the current state of the science for ecotoxicological

risk assessment. This has been regarding the standalone issue of estimating the

concentration of a toxicant — denoted as the PNEC — below which is unlikely to

cause adverse effects to ecological assemblages. The key chapters of original research

in this thesis, namely Chapters 3–6, describe hazard assessment decision rules which

are intended to yield estimates of a proxy for the PNEC. As is the case for current

guidance documentation, the proposals made in this thesis address distinct criticisms

of the current state of assessment rather than a consolidation of them. However,

there is a wide degree over overlap.

The initial background review discovered that there were a number of different

models and estimators for the PNEC. The degree of uncertainty refinement also

separated the different estimators. Of the quantitative approaches, we identified

two general procedures for determining a PNEC: deterministic and probabilistic.

The former is contingent on the principle of the precautionary principle, whereas

the latter attempts to model the sensitivity of the biological assemblage and quantify

aspects of the uncertainty.

208
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Probabilistically derived estimators are generally founded on the basis of a model,

called the species sensitivity distribution. This represents the interspecies variabil-

ity of tolerance for a given community. The widely accepted principle for ensuring

the long-term stability of an ecosystem is to protect at least 95% of species. The

threshold concentration at which this occurs is denoted as the HC5 — effectively

the 5-th percentile of the SSD when estimated using chronic toxicity data. The

lack of resource-intensive long-term toxicity data has meant that there has been

considerable research in the ecotoxicological risk assessment literature that focuses

on estimating the ‘acute HCp’. With the lack of toxicity data in general to suggest

otherwise, the SSD is often accepted as being describable by a log-normal distribu-

tion.

From this definition of a protection goal, we sought to examine estimation of

this percentile under uncertainty. Current literature makes ambiguous recommen-

dations such as choosing the upper 95% one-sided underestimate confidence limit

of the HCp as to err on the side of caution. The current technical guidance docu-

mentation requests that the median HC5 should be determined along with a 50%

confidence interval. However there is no indication of how the confidence level will

be interpreted.

We analysed the HCp estimation problem from a decision theoretic perspective.

This allowed for the inclusion of loss — a valuable concept to account for overesti-

mation being more serious than underestimation (from a protectionist viewpoint).

A range of scientifically defensible estimators was discussed and compared, each de-

riving from different principles. In particular, a range of behavioural models was

considered. This included the default model accepted by regulators, which has been

considered in recent literature and official documentation. The assumptions of the

behavioural models would require further investigation. Based on considerations of

the generally accepted need for conservatism, a new estimator was proposed and

details given on how it might be implemented.

Aside from the theoretical considerations given to the estimation of the HCp, a

major contribution of this thesis was connected to the physicalities of the data gener-

ating mechanism. Species non-exchangeability — a term coined by EFSA (2005) —
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describes the situation in which a single species’ tolerance value (extendable, if nec-

essary, to multiple species) is not simply regarded as identically distributed upon its

identification. The motivating example of this is the rainbow trout which is regarded

by ecotoxicologists as a ‘typically sensitive species’ relative to other fish species. The

biological mechanics of why the rainbow trout may be more susceptible to adverse

effects induced by toxicant exposure are unknown. However the implications are

highly important since it may lead to overachieved protection goals, or rather over-

conservatism, especially in light of the rainbow trout being a typical dossier species

for chemical safety assessment. An exploratory analysis demonstrated that there is

evidence to reject the null-hypothesis of exchangeability among species in a large

database of fish toxicity data for pesticide exposure. In particular, the rainbow trout

was highlighted as exhibiting the most prevalent and systematic bias.

Decision rules which accounted for species non-exchangeability were presented

by modifying the assumptions placed on the data generating mechanism. In order

to keep within the remit of the research aims of this report, a tractable modifica-

tion was sought. A simpler model to that proposed in EFSA (2005) was suggested

which led to HCp estimators, and corresponding uncertainty measures, being fully

tractable extensions of those currently used by risk assessors. A Bayesian model

selection criterion was used to ascertain the adequacy of the parsimonious model.

The introduction of additional parameters into the estimators required that we ex-

plore the assumption of discounting their associated uncertainty to ensure scientific

defensibility. A performance analysis was developed and applied to a large multi-

substance database. Whilst it is a regulatory decision as to whether the inferences

drawn from the analysis would be satisfactory for application, we considered them

to be within sufficient tolerance boundaries.

Exploratory analysis in fact indicated that there may be more than one non-

exchangeable species present. The development of the estimators is fully extendable

to incorporate multiple non-exchangeable species. However this is not advised be-

cause the SSD concept would begin to break down; the simple predictability of the

construct would no longer function as required. It is plausible that the exchange-

ability assumption is untenable from a statistical modelling perspective in light of
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this. The natural procedure would be to fit a model where each species and chem-

ical has an effect. However such modelling techniques would likely over-extend the

statistical skills available within the risk assessment circle. The remit of this thesis

is to develop decision rules which are tractable for lower and intermediate tiers of

quantitative risk assessment.

Although the vast majority of the research in this thesis deals with improve-

ments of the probabilistic risk assessment field, deterministic decision rules are also

regularly appealed to. The assessment factors underpinning these estimators are

the least defensible due to the ambiguous and non-explained magnitudes. Current

guidance documentation describes the factors as ‘guidance values’ and open to re-

duction provided sufficient reasoning is provided. Limited in necessary experience in

the regulatory arena, we stopped short of recommending changes to absolute assess-

ment factors, with only minor discussion in Chapters 3 and 6. We did explore the

toxicity summary statistic upon which the assessment factor is applied — currently

defined to be the lowest tolerance value.

Since the current guidance is described for sample sizes ranging from less than

three, we explored a generalised estimator for a wider range of sample sizes which

would typically be exempt from fully probabilistic analysis (cf. ECHA 2008a). Rec-

ommendations regarding the order statistic with which to use (from the minimum

up to the fourth ordered tolerance value) were based upon a probabilistic evaluation

of the deterministic estimator. This is so that the mean fraction of species whose

endpoints are violated by each estimator is not exceeded by a preceding recom-

mended estimator. Furthermore, the estimators were denoted as mutually beneficial

between the chemical manufacturer and the risk manager. Similar findings were

explored in EFSA (2005). However, we presented analytical verification, as well

as a demonstration of the robustness of the generalised estimators to distributional

assumptions.

Where appropriate, modelling was performed within the Bayesian paradigm.

Unlike many other areas of risk assessment, Bayesian analysis is relatively new in

ecotoxicological risk assessment. An often contentious element of Bayesian analysis

is the prior distribution with two schools of thought existing: the subjectivists and
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the objectivists. The former advocate the use of data to update expert judgements

which have been elicited, whereas the latter appeal to non-informative priors in or-

der to maximise the influence of the data. For purposes of being able to tractably

compare our results with other established or assessment body literature, we ap-

pealed to ‘standard’ non-informative prior distributions. Expert judgements could

be incorporated into the research presented here, straightforwardly in many cases,

and may be a key to overcoming data shortages. Regulators are likely to be scepti-

cal about the inclusion of expert judgements as they will bear the responsibility of

having to scrutinise the judgements to ensure that they are unbiased.

Finally, we would note that the research elements in this thesis address weak-

nesses not only raised in current literature, but also in current guidance documen-

tation. Uptake of this research would not be fast, but may facilitate additional

research in the meantime. Therefore we list some additional research needs in the

next section.

7.2 Future Research

The purpose of this thesis has been to develop the current technical guidance in

ecotoxicological risk assessment, namely the hazard assessment. Yet our accom-

plishment has been restricted to only a fraction of the research needs required to

make current ecotoxicological risk assessment fit for purpose. In this section we

discuss some of the primary deficiencies which require further investigation.

The arrival of EC (2006) into the commercial arena of the EU means that there

is mounting pressure on chemical manufacturers to assess the risk of substances

whilst testing fewer species in order to align risk assessment with modern societal

and ethical considerations. The current number of species required to be tested is

already significantly low. Consequently more attention has been focused on data

augmentation using predictive tools based on historical data. Tools such as the US

EPA’s ICE program (Dyer et al., 2006, 2008) were mentioned in Section 2. The va-

lidity of such methods still has to be more firmly established before acceptance will

be granted. However, there is potential to better construct the predictive models
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employed which underlie these tools. Moreover, the behavioural models discussed in

this thesis may offer an alternative and perhaps simpler path of future risk assess-

ment. As a consequence, demonstrating the need for immediate research into the

area of borrowing strength from historical assessment data. It may be appropriate

to explore this from the perspective of meta-analysis. Roex et al. (2000) performed

a meta-analysis in trying to explore acute-to-chronic extrapolation between species

across different studies. Meta-analysis could also strengthen our understanding of

retrospective risk assessment where per-species tolerance values derive from differ-

ent studies [scientific experiments] or for exploring measurement error further (see

below) where multiple records have been recorded for the same species-chemical

pair. However, the issue of publication bias, especially where reports are made to

regulators only, may undermine the scope of this analysis.

In addition, a further need is to construct better hierarchical modelling for in-

termediate quantitative tier risk assessments. For example, databases of historical

toxicity data based on many different modes of action would most likely be better

modelled using a hierarchical modelling structure. Current guidance specifies that

SSDs must be representative of multiple taxa, which might be inappropriate due

to different species richness coefficients and per-taxa relative sensitivities. Initial

research into this, for example Grist et al. (2006) and Hickey et al. (2008), has

explored hierarchical modelling by taxonomic families and orders respectively.

The SSD literature predominantly focuses on interspecies extrapolation whilst

accounting for sampling uncertainty. Yet there are additional uncertainties which

need to be accounted for; the reason for ECHA (2008a) imposing an assessment

factor to the estimated HC5. A fundamental requirement is the need to explore

measurement error; currently no distinction is made between actual and observed

species tolerance. The harmonisation techniques currently practiced by risk assessors

are due to varying standards of historical data deriving from scientific experiments

spanning multiple decades. If data was available, then one could revise the deci-

sion rules to incorporate measurement error. This would likely lead to smaller SSD

variance estimators (since noise stemming from the measurement error is removed).

Hyper-parameter estimates would also change; the heterogeneity parameters would
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have more weight in the estimation of SSD variance underM2. If one also considers

non-exchangeability, then we might expect more weight to be given to the historical

data (if we discount the non-exchangeability of tolerance being a complex artefact

of measurement error). Although, k would not be expected to change significantly

in the case of D2 since it acts as a shift; its role under D1 would be more complicated

due to it is a shift-factor of the SSD standard deviation. In general, the consequences

of accounting for measurement error in the decision rules we discuss are unclear as

it affects so many components. Although current guidance such as ECHA (2008a)

insists upon chronic data populated SSDs, there is an obvious advantage to under-

standing whether acute risk assessment decision rules can be adequately mapped to

chronic versions, and if so, quantifying the attached uncertainty.

Greater attention is currently being given to the assessment of multiple sub-

stance risk. Laboratory conditions usually only test one substance at a time, thus

discounting combined effects. As chemicals can combine independently, additively,

synergistically or antagonistically and have correlated effects, the mathematics and

statistics required in making such assessments is much more complex (Plackett and

Hewlett, 1952), let alone the uncertainty quantification. The current approach pro-

posed in Traas et al. (2002) makes a number of crude assumptions, thus motivating

the need for further research.

A key component of any future research will be the adequate balance of pragma-

tism for purposes of scientific defensibility and parsimony. This would be for pur-

poses of making non-higher tier assessment transparent to assessors and stakehold-

ers, as well as being economical. Such research will require communication between

risk managers and scientists, including those with statistical expertise. Defining pro-

tection goals will be one of the future challenges. However it will potentially allow for

regulators to efficiently choose assessment factors without unnecessarily triggering

higher tier assessments or leading to over-protective risk management goals.
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Appendix A

Posterior Distributions & [EFSA]

Estimators

A.1 Posterior Distributions

Here we give details of the posterior distributions derived for the unknown SSD

parameters θ in the species exchangeable context; all relevant notation was provided

in Section 2.5. Within the Bayesian paradigm, the data generating mechanism for

toxicity data Y based on substance S can be written identically for each behavioural

model as yj |µ, σ2 ∼ N(µ, σ2) for j ∈ JS .

For behavioural modelsM1 andM2, the likelihood function for the data condi-

tioned on θ = (µ, σ2) is immediately defined from the above distributional assump-

tion. In the case ofM3, the data generating mechanism is augmented such that the

toxicity data for the N additional substances G is used under the assumption that

the log-SSD variance parameter σ2 is homogeneous between these substances and

S. Hence, one additionally has yij |µi, σ2 ∼ N(µi, σ
2) for j ∈ Ji and i ∈ G, and we

denote θ = (µ, σ2, µi : i ∈ G). For M4, the likelihood function is also immediately

defined, under the assumption that σ is fixed and known; we denote the unknown

SSD parameter as θ ≡ µ.

In all behavioural models, it is assumed that the non-informative prior distribu-

tion for µ (extendable to (µi : i ∈ G) also) is p(µ) ∝ 1 for µ ∈ R. For M1, the prior

distribution for σ2 is given as p(σ2) ∝ σ−2 for σ2 ∈ R+. These two distributions

229
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are independent Jeffreys’ priors, which together constitute a practical Jeffreys prior

for θ; see Section 2.6.3 and Kass and Wasserman (1996) for further details. The

behavioural model for M2 implies that σ2 |α, β has an inverse-gamma distribution

for σ2 ∈ R+ with shape and scale parameters α > 0 and β > 0, which are estimated

separately from an additional toxicity database. As for M1, the independent Jef-

freys prior distribution for σ2 > 0 (treating µ separately) is used for M3. For M4,

the prior distribution is singularly defined by the distribution of µ, a priori.

For a fully specified likelihood function `(θ |Y) (in the case of M3 one would

augment Y as {Y,YG} instead) and prior distribution function p(θ), one can update

the prior distribution using Bayes’ Theorem, to admit the posterior p(θ |Y):

p(θ |Y) =
`(θ |Y)p(θ)∫

Θ
`(θ |Y)p(θ) dθ

.

Under the behavioural model of M3, it is necessary for the nuisance parameters

(µ1, . . . , µN) to be integrated out since they have no bearing on the assessment

pertaining to S; this leaves the marginalised posterior distribution function.

It is straightforward to deduce that for all behavioural models, a posteriori,

p(µ, σ2 |Y) = p(µ |σ2; Y)p(σ |Y), such that µ |σ2; Y ∼ N(ȳ, σ2/n) for µ ∈ R and

σ2 |Y is distributed according to the behavioural model as

M1: σ
2 |Y ∼ IG

(
n−1

2
, n−1

2
s2
)
.

M2: σ
2 |Y ∼ IG

(
2α+n−1

2
, 2α+n−1

2
s2

adj

)
.

M3: σ
2 |Y,YG ∼ IG

(
ς
2

+ n− 1, ς+n−1
2

s∗p
2
)
.

for σ2 ∈ R+; where s2
adj is defined by Equation 2.14; s∗p

2 is defined by Equation 2.17;

and ς =
∑

i∈G(ni − 1).

It should be noted that while the prior distributions for each behavioural model

are improper, i.e. they do not integrate to unity, the posterior distributions are in

fact proper and well defined on the appropriate domain. This property allows us

to circumvent many, but not all, of the problems encountered by undefined prior

distributions.
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A.2 [EFSA] Estimators

Here we give details of the derivation of the standard [EFSA] estimators from a

Bayesian perspective, under the species exchangeable context. Recall from Ap-

pendix A.1 that the posterior distributions of (µ, σ2) for M1, M2, and M3 are of

the form

µ |σ2; Y ∼ N(ȳ, σ2/n) µ ∈ R;

σ2 |Y ∼ IG (λ0, λ1) σ2 ∈ R+

for some λ0 and λ1 which are functions of the data and prior distribution parameters.

Furthermore, recall from Section 2.6.4 that the MFE = Eθ |YΦ
(
δp(Y)−µ

σ

)
where

δp(Y) is a possible decision rule (cf. Equation 2.10). Hence, the MFE is equal to

∫ ∞
0

P[µ+ σZ < δp |σ2; Y]f
(
σ2 |Y

)
dσ2

=

∫ ∞
0

P
[
Z ′ <

δp − ȳ
σ
√

1 + 1/n

∣∣∣∣σ2; Y

]
f
(
σ2 |Y

)
dσ2,

where Z and Z ′ are both independently standard normal random variables. By

definition of the normal and inverse-gamma distribution, we can explicitly write the

MFE as

1√
2π

λλ01

Γ(λ0)

∫ ∞
0

∫ ũ(δp |Y)

−∞
σ−2(λ0+3/2) exp

{
−σ−2

(
λ1 + u2

2

)}
dudσ2,

where ũ(δp |Y) =
{
u ∈ R : δp ≥ ȳ +

√
1 + 1

n
u
}

. Next we perform integration with

respect to σ2, and subsequently changing variables to t = u
√
λ0/λ1 leads one to

obtain

1√
2πλ0

Γ
(
λ0 + 1

2

)
Γ(λ0)

∫ √
λ0
λ1
ũ(δp |Y)

−∞

(
1 +

t2

2λ0

)−(2λ0+1)/2

dt.

The integrand is observed to be the density function of a Student-t distribution

with 2λ0 degrees of freedom, implying that the MFE is Ft2λ0
(
ũ(δp |Y)

√
λ0λ

−1
1

)
where Ft2λ0 is the corresponding CDF.

If one controls the MFE to be p%, then an [EFSA] decision rule is

δp(Y)[EFSA] = ȳ −
√

1 +
1

n

√
λ1

λ0

t2λ0,p,
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where t2λ0,p is the (100−p)-th percentile of a Student-t distribution with 2λ0 degrees

of freedom. Substituting λ0 and λ1 with the shape and scale parameters for the

posterior distribution of σ2 conditional on the relevant behavioural model concludes

the derivation.



Appendix B

Hyper-parameter Estimation

In this appendix we give details of the different methods for estimating the hyper-

parameters of the various behavioural models, and models for non-exchangeability.

B.1 Notation

We denote G as the total collection of substances available in the toxicity database.

G2 is the group of substances relevant to estimating the log-SSD variance hetero-

geneity parameters α and β, which are specified through the hierarchical model as

the shape and scale parameters of an inverse-gamma distribution representing the

population with which σ2 is a priori sampled from under the behavioural model

M2.

In a species exchangeable context, for each substance i ∈ G and species j ∈ Ji,

log-tolerance values yij are assumed to be conditionally and independently normally

distributed with mean µi and variance σ2
i , where Ji is the collection of species of

which have been tested with substance i, such that |Ji| = ni. In addition, we denote

ȳi and si as the usual sample mean and standard deviation of the log-toxicity data

for substance i. In the interest of clarity, we extend this notation by alternatively

writing the precision τi = 1/σ2
i where appropriate, and µG and τG as shorthand for

the vectors of the µi and τi for i ∈ G respectively.

When a model for the non-exchangeability of a single special species is appro-

priate, we use a subset of G, denoted G1, which contains all substances relevant to

233
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the estimation of the non-exchangeability parameters: (k′, φ′) for the EFSA model

(denoted D1); and (k, φ) for the model used in this research (denoted D2) which

leads to tractable decision rules. The model under D1 for all substances i ∈ G1 is

yij |µi, σ2
i ∼ N(µi, σ

2
i ) for j ∈ J∗i ;

y†i |µi, σ2
i , k
′, φ′ ∼ N

(
µi − k′σi, [φ′σi]2

)
,

where J∗i is the collection of ordinary species of which tolerance values have been

recorded for substance i, such that |J∗i | = n∗i ≡ ni − 1. Also, y†i is the log-tolerance

value for the special species assessed with substance i ∈ G1. The model under D2

for all substances i ∈ G1 is

yij |µi, σ2
i ∼ N(µi, σ

2
i ) for j ∈ J∗i ;

y†i |µi, σ2
i , k, φ ∼ N

(
µi − k, [φσi]2

)
.

A restriction is made on G1 such that n∗i ≥ 2 ∀i ∈ G1. In addition, we take the as-

sumption that G1 ⊆ G2; discussion on these assumptions can be found in Section 5.5.

We will denote v1 and v2 as the number of substances in G1 and G2 respectively. For

clarity, under D1 and M2 we denote the heterogeneity parameters as (α′, β′). Fi-

nally, we define ȳ∗i and s∗i as the usual sample mean and standard deviation of the

log-tolerance values for all species in J∗i .

B.2 Estimation of α & β: EFSA Method

Here we give details of a frequentist methodology proposed by EFSA (2005) for

estimating hyper-parameters α and β whilst working under the context of species

exchangeability and behavioural modelM2. Begin by noting that the full likelihood

function of the unknown parameters for substances in G2 is:

`(µG2 , τG2) =
∏
i∈G2

∏
j∈Ji

√
τi
2π

exp
{
−τi

2
(yij − µi)2

}
. (B.1)
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From within the frequentist paradigm, we augment the model by invoking that

each τi is conditionally independently sampled from a gamma distribution with

shape α and rate β. The marginalised likelihood function is obtained by multiply-

ing Equation B.1 by
∏

i∈G2 p(τi |α, β) and integrating with respect to the ‘nuisance

parameters’ τG2 . In the integral, τi only features as

τ
α+(ni/2)−1
i exp

{
−τi

2

[∑
j∈Ji

(yij − µi)2 + 2β

]}
,

which is proportional to a gamma distribution with shape parameter α+(ni/2) and

rate parameter β + 1
2

∑
j∈Ji(yij − µi)

2. Hence,

`(µG2 , α, β) =
∏
i∈G2

(2π)−
ni
2

βαΓ(α + ni/2)

Γ(α)[β + 1
2

∑
j∈Ji(yij − µi)

2](α+ni/2)
.

Maximisation with respect to µi is achieved at µ̂i = ȳi, independently of α and β,

thus the profile marginal log-likelihood for α and β is

L(α, β) =
∑
i∈G2

{
−ni

2
log(2π) + α log β + log Γ(α + ni/2)

− log Γ(α)− (α + ni/2) log
[
β + 1

2
(ni − 1)s2

i

]}
. (B.2)

Equation B.2 is easily maximised using suitable software, such as the optim() func-

tion in R (2006).

B.2.1 Example: RIVM Fish Database

For the RIVM fish toxicity database we analyse in this research (see Section 4.1), we

determined that ϑ̂ ≡ (α̂, β̂) = (1.05, 0.088). Also, using standard likelihood theory

(Rice, 1995) the covariance matrix is estimated by
[
−L′′(ϑ̂)

]−1
, where L′′(·) is the

Hessian matrix of the log-likelihood function given by Equation B.2. For the RIVM

fish database, we retrieve

[
−L′′(ϑ̂)

]−1
=

 0.012288 0.001615

0.001615 0.000265

 .
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A 100(1− x)% confidence region for ϑ is specified by the region

{
ϑ : (ϑ− ϑ̂)TL′′(ϑ̂)(ϑ− ϑ̂) ≤ χ2

2,x

}
,

where χ2
2,x is the 100(1−x)-th percentile of a Chi-square distribution with 2 degrees

of freedom.

B.3 Estimation of k′ & φ′: EFSA Method

Here we give details of a frequentist methodology proposed by EFSA (2005) for

estimating hyper-parameters k′ and φ′ whilst working under the context of non-

exchangeable species model D1, and behavioural model M1. The hyper-parameter

estimates proposed were intended for application with a deterministic procedure.

For all substances i ∈ G1, define ti = (y†i − ȳ∗i )/s
∗
i . Then, from the non-

exchangeability model D1, one deduces that

ȳ∗i |µi, σi ∼ N(µi, σ
2
i /n

∗
i );√

n∗i − 1
s∗i
σi

∣∣∣∣ σi, φ′, ∼ χn∗i−1,

where χπ denotes a Chi distribution with π degrees of freedom. Therefore, the

numerator in ti is normally distributed with mean −k′σi and standard deviation

σi

√
φ′2 + 1/n∗i . Hence ti/

√
φ′2 + 1/n∗i has a non-central t-distribution with π =

n∗i − 1 degrees of freedom and non-centrality parameter η = −k′/
√
φ′2 + 1/n∗i .

Since each statistic ti is completely independent of µi and σi, we can determine

the likelihood function for k′ and φ′, for all substances i such that the special species

is assessed, to be ∏
i∈G1

1√
φ′2 + 1

n∗i

fTπ,η

(
ti

/√
φ′2 + 1/n∗i

)
,

where fTπ,η denotes the PDF of the non-central t-distribution with π degrees of

freedom and non-centrality parameter η. Maximisation of this function is simple

using suitable software, such as that discussed previously, and leads to estimates of

k′ and φ′.
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Note that one substance had to be removed from the RIVM database in order

to perform this maximisation. This was because s∗ = 0 which leads to an undefined

value of t.

B.4 MAP Estimators of k & φ

Here we give details of a method for estimating hyper-parameters k and φ whilst

working under the context of non-exchangeable species model D2, and behavioural

model M1. Begin by noting that the full likelihood function for the unknown pa-

rameters for substances in G1 is:

`(k, φ, µG1 , τG1)

∝
∏
i∈G1

φ−1τ
ni/2
i exp

{
−τi

2

[
φ−2(y†i − µ+ k)2 +

∑
j∈J∗i

(yij − µi)2

]}
= φ−v1

∏
i∈G1

τ
ni/2
i exp

{
−τi

2

[
(φ−2 + n∗i )(µ̂i − µi)2 + (ni − 1)σ̂2

i

]}
, (B.3)

where

µ̂i =
φ−2(y†i + k) + n∗i ȳ

∗
i

φ−2 + n∗i
; (B.4)

σ̂2
i =

1

ni − 1

[
φ−2(y†i + k − µ̂i)2 + n∗i (µ̂i − ȳ∗i )2 + (n∗i − 1)s∗i

2
]
. (B.5)

Multiplying the likelihood function by the joint prior distribution for k, φ, µG1 and

τG2 , which was defined in Section 5.5, yields the un-normalised posterior distribution.

Note that because we use the precision τ as opposed to the variance σ2 in the

interest of clarity, it is necessary to transform the prior distribution for each τi;

which is determined to be p(τi) ∝ τ−1
i for τi > 0, independently for each i ∈ G1. The

un-normalised posterior distribution is defined as

p(k, φ, µG1 , τG1 |Y)

∝ φ−v1
∏
i∈G1

τ
ni/2−1
i exp

{
−τi

2

[
(φ−2 + n∗i )(µ̂i − µi)2 + (ni − 1)σ̂2

i

]}
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for µi ∈ R, τi ∈ R+, k ∈ R, φ ∈ R+. Integrating the un-normalised posterior

distribution with respect to the ‘nuisance parameters’ µG1 and τG1 , yields the un-

normalised marginalised posterior distribution for the hyper-parameters. Hence,

p(k, φ |Y) ∝ φ−v1
∏
i∈G1

Γ(α̂i)

β̂α̂ii

1√
φ−2 + n∗i

,

where α̂i = 1
2
(ni − 1) and β̂i = α̂iσ̂

2
i . Maximising this function with respect to its

arguments determines the joint MAP estimator.

B.5 MAP Estimators of k′ & φ′

Here we give details of a method for estimating hyper-parameters k′ and φ′ whilst

working under the context of non-exchangeable species model D1, and behavioural

model M1.

Essentially the likelihood function for this model is the same as in the final line

of Equation B.3, except now µ̂i and σ̂2
i are implicit functions of the different non-

exchangeability hyper-parameters and τi, as we must replace k by k′/
√
τi and φ by

φ′ in Equations B.4 and B.5; we therefore denote these two respective equations as

µ̂i(τi) and σ̂2
i (τi) respectively.

The posterior distribution for k′, φ′, µG1 , and τG1 maintains the same form with

the changes made for µ̂i and σ̂2
i , and φ replaced by φ′. Integration of the full

un-normalised posterior with respect to µi is a tractable calculation; however in-

tegration with respect to each τi must be approximated numerically which may

be done straightforwardly by numerical quadrature to high accuracy. Hence, the

un-normalised posterior distribution for k′ and φ′ is

p(k′, φ′ |Y) ∝ φ−v1
∏
i∈G1

1√
φ′−2 + n∗i

∫ ∞
0

τ α̂i−1
i exp

{
−τi

2
(ni − 1)σ̂2

i (τi)
}
dτi.

This posterior distribution is maximised in a similar fashion as before with respect

to its arguments to determine the joint MAP estimator.
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B.6 MAP Estimators of k, φ, α & β

Here we give details of a method for estimating hyper-parameters k, φ, α and β

whilst working under the context of non-exchangeable species model D2, and be-

havioural model M2. Our derivation follows on from Appendix B.4. For M2, we

use the additional v2 − v1 substances in G2\G1. The likelihood function defined by

Equation B.3 is augmented such that

`(k, φ, µG1 , τG1 , µG2\G1 , τG2\G1)

= `(k, φ, µG1 , τG1)
∏

i∈G2\G1

τ
ni/2
i exp

{
−τi

2

[
ni(ȳi − µi)2 + (ni − 1)s2

i

]}
. (B.6)

We next multiply by the joint posterior distribution, defined in Section 5.5, recalling

that G1 ⊆ G2 so that the prior distribution for each τi is a gamma distribution

with shape parameter α and rate parameter β. As for M1, we integrate out the

nuisance parameters in order to obtain the un-normalised posterior distribution for

the remaining hyper-parameters, which, via an extension of the earlier calculations,

is determined to be

p(α, β, k, φ |Y) ∝
[
βα

Γ(α)

]v2
φ−v1

(∏
i∈G1

1√
φ−2 + n∗i

)(∏
i∈G2

Γ(α̃i)

β̃α̃ii

)
, (B.7)

where α̃i = α + α̂i and β̃i = β + β̂i for i ∈ G2 ⊆ G1. As was the case earlier,

maximisation with respect to its arguments determines the joint MAP estimator.

B.7 MAP Estimators of k′, φ′, α′ & β′

Here we give details of a method for estimating hyper-parameters k′, φ′, α′ and

β′ whilst working under the context of non-exchangeable species model D2, and

behavioural model M1.

We follow a similar strategy to that of Appendix B.5 whereby we modify the

estimation procedure provided in Appendix B.6. Begin by noticing that the likeli-

hood function for the model here is essentially the same as defined by Equation B.6,

except the part pertaining to M1 is as described in Appendix B.5, i.e. we must
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replace k by k′/
√
τi and φ by φ′ in Equations B.4 and B.5.

We multiply by the identical posterior distribution as in Appendix B.6 with

k and φ replaced by k′ and φ′ respectively. As per before, the integration with

respect to µG2 is tractable, however it is required that one numerically approximate

the integrals for each τi. Hence, the un-normalised posterior distribution for the

hyper-parameters is

p(k′, φ′, α′, β′ |Y) ∝

[
β′α

′

Γ(α′)

]v2
φ−v1

 ∏
i∈G2\G1

∫ ∞
0

τ α̂i−1
i exp

{
−τiβ̂i

}
dτi


(∏
i∈G1

∫ ∞
0

τ α̃i−1
i exp

{
−τi

2

[
2β′ + (ni − 1)σ̂2

i (τi)
]}

dτi

)
.

This posterior distribution is maximised in a similar fashion as before with respect

to its arguments to determine the joint MAP estimator.



Appendix C

Deriving Bayes Rules

In this appendix we give details about the derivation of certain Bayes rules (and other

estimators where appropriate) which were discussed in Chapter 3. Our operational

procedure is to determine the decision rule δ∗p(Y) which minimises the posterior

expected loss; this is what we defined to be the Bayes rule (cf. Equation 3.1). The

relevant posterior distributions for the different behavioural models are discussed

in Appendix A for species exchangeable contexts; the corresponding versions for

species non-exchangeable models are described throughout Chapter 5, and can be

used, if required, to easily augment the decision rules listed here.

C.1 [SEL]: M1 & M2

The posterior expected loss is straightforwardly given by Eθ |Y[ψp(θ) − δp]
2. It is

then simple to deduce (for example consult Berger, 1985, p. 161) that this quan-

tity is minimised at δ∗p(Y) = Eθ |Yψp(θ). Using standard properties of conditional

expectation yields the Bayes rule as

δ∗p(Y)[SEL] = ȳ − κp(n, α)σ̂, (C.1)

where the assessment shift-factor is defined by

κp(n, α) ≡ Kpσ̂
−1Eσ2 |Yσ = Kp

√
2α + n− 1

2

Γ
(

2α+n−2
2

)
Γ
(

2α+n−1
2

)
241
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and σ̂ = sadj. By setting α = β = 0, Equation C.1 yields the Bayes rule for M1

(since sadj = s); otherwise setting (α, β) to the values estimated from the additional

toxicity database (see for example Appendices B.2) yields the Bayes rule for M2.

C.2 [AJ] Estimator: M2

In this section we give the derivation of the [AJ] estimator via similar arguments to

those described in Section 2.6.3; i.e. defining it to be the 100(1− γ)-th percentile of

the posterior distribution of ψp(θ). Under the behavioural modelM2, the posterior

distribution of ψp(θ) |Y is a scaled non-central t-distribution with density function

fψp(t |α, β; Y) =
1

sadj/
√
n
fT2α+n−1,η

(
ȳ − t

sadj/
√
n

)
, (C.2)

where fT2α+n−1,η is the PDF of a non-central t-distribution with 2α + n− 1 degrees

of freedom and non-centrality parameter η = Kp

√
n.

By definition, the 100(1 − γ)-th percentile of the distribution given by Equa-

tion C.2 is the value δ
(γ)
p (Y |α, β) satisfying

∫ δ
(γ)
p (Y |α,β)

−∞
fψp(t |α, β; Y)dt = 1− γ.

Therefore, the [AJ] estimator is

δ(γ)
p (Y |α, β)[AJ] = ȳ − 1√

n
F−1
T2α+n−1,η

(γ)sadj.

C.3 [GAL]: M1 & M2

Here we outline the derivation of the [GAL] Bayes rule. For notational convenience

we will drop the θ dependence parameterisation and denote ψp ≡ ψp(θ).

The posterior expected loss can be written as Eψp |YL(ψp, δp), and a Bayes rule

is defined as the decision rule which minimises this quantity. Thus substituting

L(ψp, δp) by the GAL function (as defined by Equation 3.6), and differentiating

with respect to the decision rule δp, implies that a local stationary point is the
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solution to ∫ δp

−∞
C2fψp(t |Y)dψp −

∫ ∞
δp

C1fψp(t |Y)dψp = 0,

or equivalently,

C1P[ψp ≥ δp] = C2P[ψp ≤ δp]

This equation is satisfied if and only if

P[ψp ≤ δp] =
C1

C1 + C2

.

Hence, this stationary point occurs at the 100C1/(C1 + C2)-th percentile of the

posterior distribution of ψp(θ). It is straightforward to confirm this point is in fact

a unique minimum, and thus the [GAL] Bayes rule.

The posterior distributions for θ under behavioural models M1 and M2 are

provided in Appendix A.1. Determination of the posterior distribution of ψp(θ) is

then obtainable by routine distribution theory (e.g. see Appendix C.2). In each

situation, the [GAL] Bayes rule can be interpreted as an [AJ] decision rule if one

sets 1− γ = C1/(C1 + C2), or equivalently, γ = C2/(C1 + C2). Note, however, that

Aldenberg and Jaworska (2000) did consider the behavioural model M2.

C.4 [LINEX]: M1–M4

Here we derive the Bayes rule for scaled LINEX loss function for all behavioural

models in order to maximise clarity. As a starting point, we derive the Bayes rule

under M2, and describe how this is extended for other behavioural models. The

posterior expected loss is simply given by

Eθ |Y
[
exp

{
λ

(δp − ψp(θ))
σ

}
− λ(δp − ψp(θ))

σ
− 1

]
.
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The first term in this expectation cannot be tractably determined. However, a closed

form integral expression can be obtained as

exp

{
λKp +

λ2

2n

} (2α+n−1
2

) 2α+n−1
2

Γ
(

2α+n−1
2

)
×
∫ ∞

0

t
2α+n−3

2 exp

{
−
(

2α + n− 1

2

)
t+ λt1/2

(δp − ȳ)

sadj

}
dt,

where α and β are estimated accordingly from a suitable toxicity database. The

latter two terms in the posterior expected loss are equal to

−λ

[
(δp − ȳ)

Γ
(

2α+n
2

)
Γ
(

2α+n−1
2

) (2α + n− 1

2

)−1/2

s−1
adj

]
− 1.

We next differentiate the posterior expected loss with respect to δp, and set this

equal to zero in order to determine a local turning point. This leads to the Bayes

rule being the solution to

∫ ∞
0

t(2α+n−2)/2 exp

{
λ
√
t
(δp − ȳ)

sadj

−
(

2α + n− 1

2

)
t

}
dt =

Γ

(
2α + n

2

)[
2α + n− 1

2

]− 2α+n
2

exp

{
−λ
[
Kp +

λ

2n

]}
(C.3)

for δp. The right-hand side of Equation C.3 is independent of the data Y, which

implies that the left-hand side must also be independent; hence, (δp − ȳ)/sadj must

be a constant. By denoting this constant as −κ∗p, one can therefore conclude that

the Bayes rule is defined as

δ∗p(Y |α, β, λ)[LINEX] = ȳ − κ∗p(n, α, λ)sadj,

where κ∗p(n, α, λ) (the assessment shift-factor) is the solution to Equation C.3 for

κ∗p ≡ (δp − ȳ)/sadj, as required. Although not done here, it is straightforward to

confirm that κ∗p(n, α, λ) is unique for fixed parameters.

Having defined the scaled [LINEX] Bayes rule forM2, it is now relatively easy to

justify the Bayes rule for the other behavioural models considered in this thesis. By
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setting α = β = 0, one obtains the scaled [LINEX] Bayes rule for M1, as has been

demonstrated previously by consequence of the posterior distributions of θ being

members of the normal inverse-gamma family. For M3, the method is exactly the

same except that the posterior distribution of σ2 |Y,YG is different, as described

earlier. It is straightforward to deduce that replacing 2α by ς and sadj by s∗p will

lead to the counterpart scaled [LINEX] Bayes rule. ForM4 we assume σ is known,

and so the Bayes rule reduces to being the solution to

δ∗p(Y |σ, λ)[LINEX] = −σ
λ

ln

(
Eµ |σ2;Y

[
exp

{
−λ
σ
ψp(θ)

}])
.

Standard properties of moment generating functions (for example, consult Rice

1995) for normal random variables identifies the Bayes rule to be

δ∗p(Y |λ)[LINEX] = ȳ −
(
Kp +

λ

2n

)
σ.

C.5 Scaled [SEL]: M1

Here we derive the Bayes rules under the behavioural model M1 for the SEL loss

function such that loss is placed on the discrepancy (ψp(θ)−δp(Y))/σ. The posterior

expected loss is given by

Eθ |YL(ψp(θ), δp;σ) = Eθ |Y
[
ψp(θ)− δp

σ

]2

.

Next we differentiate this with respect to δp to obtain

d

dδp
Eθ |YL(ψp(θ), δp;σ) = 2δpEθ |Y

[
σ−2
]
− 2Eθ |Y

[
ψp(θ)σ

−2
]
.

It is straightforward to show that the turning point obtained by equating this to

zero is a minimum and hence a Bayes rule. This can be written as

δ?p(Y)[SEL] = Eθ |Y[µ]−Kp
Eθ |Y[σ−1]

Eθ |Y[σ−2]
.
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By determining the necessary moments of the normal inverse-gamma posterior dis-

tribution, the scaled [SEL] Bayes rule for M1 is

δ?p(Y)[SEL] = ȳ −Kp

√
n− 1

2

Γ(n
2
)

Γ(n+1
2

)
s.

C.6 Scaled [GAL]: M1

Here we derive the Bayes rules under the behavioural model M1 for the SEL loss

function such that loss is placed on the discrepancy (ψp(θ) − δp(Y))/σ. The loss

function for scaled [SEL] was given by Equation 3.15. The posterior expected loss

can be written as

Eθ |YL(ψp(θ), δp;σ) =

C1

∫
ψp(θ)≥δp

(
ψp(θ)− δp

σ

)
p(θ |Y)dθ + C2

∫
ψp(θ)<δp

(
ψp(θ)− δp

σ

)
p(θ |Y)dθ,

where integration is with respect to θ = (µ, σ2). By recalling that the posterior

distribution can be written as p(θ |Y) = p(µ |σ2; Y)p(σ2 |Y), we differentiate the

posterior expected loss with respect to δp we obtain

d

dδp
Eθ |YL(ψp(θ), δp;σ) = −C1

∫ ∞
0

1

σ
p(σ2 |Y)

∫ ∞
δp+Kpσ

p(µ |σ2; Y)dµdσ2

+C2

∫ ∞
0

1

σ
p(σ2 |Y)

∫ δp+Kpσ

−∞
p(µ |σ2; Y)dµdσ2.

A turning point is obtained by equating this to zero, which is straightforwardly

shown to be a minimum. This occurs for δp which satisfies

C1

C1 + C2

∫ ∞
0

1

σ
p(σ2 |Y)dσ2 =

C1

C1 + C2

∫ ∞
0

1

σ
p(σ2 |Y)dσ2

∫ δp+Kpσ

−∞
p(µ |σ2; Y)dµσ2.

The left hand-side term is simply determined as a moment of the inverse-gamma

distribution. Denote this moment as

M =
Γ
(
n
2

)
Γ
(
n−1

2

) (√n− 1

2
s

)−1

.
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The outer integrand of the right hand-side is equal to M times the probability

density function of an inverse-gamma distribution function with shape and scale

parameters n/2 and (n − 1)s2/2 respectively. Hence, the right-hand side integral

is equal to M × P[ψ(θ) ≤ δp |Y] with a re-parameterised distribution of θ (normal

inverse-gamma). Using the result from Appendix C.2, the Bayes rule yielded is

δ?p(Y |C1, C2)[GAL] = ȳ −
√
n− 1

n
F−1
Tn,Kp

√
n

(
C2

C1 + C2

)
s

where FTn,Kp√n(·) is the cumulative distribution function of a non-central T distri-

bution with n degrees of freedom and non-centrality parameter Kp

√
n.



Appendix D

Details of Bayes Factors

Here we give details of how to calculate the Bayes factors discussed in Section 5.7.2.

To derive the Bayes factor in favour of D1 against D2 based upon the evidence for a

single substance S, we fix the hyper-parameters as theMAP estimates, for reasons

discussed in Section 5.7.2. A description of the models for D1 and D2 is provided in

Section 5.7. We begin by deriving the Bayes factor forM1. The marginal probability

of the data for model D2, P[Y | D2], is given by

∫ ∞
0

∫ ∞
−∞

`(µ, τ | k, φ; Y)p(µ, τ) dµ dτ = cφ−1

∫ ∞
0

∫ ∞
−∞

(2π)−n/2τn/2−1

× exp
{
−τ

2

[
(φ−2 + n∗)(µ̂− µ)2 + (n− 1)σ̂2

]}
dµ dτ,

where µ̂ and σ̂2 are defined by Equations 5.2 and 5.3 respectively; and c is the

undefined normalising constant of the improper non-informative prior distribution.

It is simple to deduce that the marginal probability fully integrates out to

c(2π)−(n−1)/2

φ
√
φ−2 + n∗

Γ(α̂)

β̂α̂
,

where α̂ = 1
2
(n− 1) and β̂ = α̂σ̂2.

The corresponding marginal probability of the data for model D1 is derived in

a similar manner, except now µ̂ and σ̂2 are implicit functions of the different non-

exchangeability hyper-parameters and τ ; this was explained in Appendix B.5 in

the context of determining the MAP estimators. Hence, it is a straightforward
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extension to obtain the marginal probability for D1 as

c(2π)−(n−1)/2

φ′
√
φ′−2 + n∗

∫ ∞
0

τ α̂−1
i exp

{
−τ

2
(n− 1)σ̂2(τ)

}
dτ,

where µ̂(τ) and σ̂2(τ) are defined in Section B.5, with k replaced by k′/
√
τ , and φ

replaced by φ′ respectively.

Subject to the argument made earlier that the ratio of the undefined normalising

constants cancel by division, the Bayes factor B12 is defined as

φ
√
φ−2 + n∗

φ′
√
φ′−2 + n∗

β̂α̂

Γ(α̂)

∫ ∞
0

τ α̂−1 exp
{
−τ

2
(n− 1)σ̂2(τ)

}
dτ.

The integral is the same as that in Appendix B.5, which is done straightforwardly

using numerical quadrature to high accuracy.

The Bayes factor B12 for M2 is a straightforward extension of the derivation

for M1. First, the marginal probability for both D1 and D2 is adapted by altering

the prior distribution p(µ, τ) conditional on the fixed estimates of the appropriate

hyper-parameters (α′, β′) for D1 and (α, β) for D2. The Bayes rule is calculated in

a similar manner by taking the ratio of these two marginal probabilities, yielding

B12 =
β′α

′

βα
Γ(α)

Γ(α′)

φ
√
φ−2 + n∗

φ′
√
φ′−2 + n∗

β̃α̃

Γ(α̃)

∫ ∞
0

τ α̃
′−1 exp

{
−1

2
τ [2β′ + (n− 1)σ̂2(τ)]

}
dτ,

where α̃ = α + α̂; β̃ = β + β̂; and α̃′ = α′ + α̂.

As per the Bayes rule for M1, the integral is straightforwardly evaluated by

numerical quadrature to high accuracy.



Appendix E

Analysis of V (u;K∗)

Here we analytically determine V (u;K∗), including V ′(u;K∗) and V ′′(u;K∗), for

some of the different shaped SSDs described in Section 6.4. Note that for this

appendix, we use the term ‘SSD’ to refer to distribution over log-concentration. For

each SSD we also define the standardised SSD fZ(z) such that the population mean

and variance is 0 and 1 respectively. In addition, we exemplify these functions by

plotting V (u;K∗), V ′(u;K∗) and −V ′′(u;K∗) with K∗ = 1 in: Figure E.1a (normal),

Figure E.1b (logistic), Figure E.2 (SN, with α = ±3), and Figure E.3a (Student-t,

ν = 3). In light of the discussion of the Student-t SSD during Section E.3b, we also

examine K∗ = 4.

In Section 6.7.1 we defined V (u;K∗) = 1−FZ
(
F−1
Z (1− u)−K∗

)
. The first and

second derivatives of V (u;K∗) with respect to u ∈ (0, 1) are given by Equations 6.9

and 6.10 respectively.

E.1 Normal Distribution

fZ(z) =
1√
2π

exp
{
−1

2
z2
}

;

V ′(u;K∗) = exp
{
−1

2
K∗ [K∗ − 2Φ−1(1− u)]

}
;

V ′′(y;K∗) = −K∗
√

2π exp
{

1
2

[Φ−1(1− u)]
2

+K∗Φ−1(1− u)− 1
2
K∗2

}
,

where Φ(·) and Φ−1(·) are the cumulative distribution and quantile functions re-
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spectively.

E.2 Logistic Distribution

For notational convenience, let q(u) = F−1
Z (1− u) ≡ −s ln

(
u

1−u

)
and s =

√
3/π.

fZ(z) =
e−z/s

s (1 + e−z/s)
2 ;

V ′(u;K∗) = eK
∗/s

(
1 + e−q(u)/s

1 + e−(q(u)−K∗)/s

)2

;

V ′′(u;K∗) = −eq(u)/s

(
1 + e−q(u)/s

)4

(1 + e−(q(u)−K∗)/s)
2

 tanh
(
K∗

2s

)
sech2

(
−q(u)

2s

)
1 + tanh

(
K∗

2s

)
tanh

(
−q(u)

2s

)
 .

E.3 Skew-Normal Distribution

For notational convenience, let q(u) = F−1
Z (1− u). Additionally, we also define the

following functions:

ζ =
2

π

(
α

α2 + 1

)
;

ϕζ(x;α,K∗) = φ
(
α
[√

1− ζ(x−K∗) +
√
ζ
])

;

Φζ(x;α,K∗) = Φ
(
α
[√

1− ζ(x−K∗) +
√
ζ
])
,

where φ(·) and Φ(·) are were defined in Appendix E.1.

fZ(z) = 2
√

1− ζϕζ (z; 0, 0) Φζ (z;α, 0) ;

V ′(u;K∗) =
ϕζ (q(u); 0, K∗) Φζ (q(u);α, 0)

ϕζ (q(u); 0, 0) Φζ (q(u);α,K∗)
;

V ′′(u;K∗) =
1

2

ϕζ (q(u); 0, K∗) Φζ (q(u);α, 0)

ϕζ (q(u); 0, 0) Φζ (q(u);α,K∗)

×
{
α

[
ϕζ (q(u);α, 0)

Φζ (q(u);α, 0)
− ϕζ (q(u);α,K∗)

Φζ (q(u);α,K∗)

]
−
√

1− ζK∗
}
.
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E.4 Student’s t-Distribution

For notational convenience, let q(u) = F−1
Z (1− u) and

Cν =
1√

(ν − 2)π

Γ
(
ν+1

2

)
Γ
(
ν
2

) .

fZ(u) = Cν

(
1 +

z2

ν − 2

)( ν+1
2 )

;

V ′(u;K∗) =

(
ν − 2 + (q(u)−K∗)2

ν − 2 + q(u)2

)−( ν+1
2 )

;

V ′′(u;K∗) =
1

Cν

(
ν + 1

ν − 2

)(
1 +

q(u)2

ν − 2

)ν+1(
1 +

(q(u)−K∗)2

ν − 2

)− ν+1
2

{
(q(u)−K∗)

(
1 +

(q(u)−K∗)2

ν − 2

)−1

− q(u)

(
1 +

q(u)2

ν − 2

)−1
}
.
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Figure E.1: Example analysis of V (u;K∗) for the normal and logistic SSD. Top:
V (u;K∗ = 1); middle: V ′(u;K∗ = 1); top: −V ′′(u;K∗ = 1).
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Figure E.2: Example analysis of V (u;K∗) for the standardised SN SSD with α = ±3.
Top: V (u;K∗ = 1); middle: V ′(u;K∗ = 1); top: −V ′′(u;K∗ = 1).
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Figure E.3: Example analysis of V (u;K∗) for the standardised Student-t SSD with
ν = 3. Top: V (u;K∗); middle: V ′(u;K∗); top: −V ′′(u;K∗). Red-dashed lines
correspond to V ′′(u;K∗) = 0.



Appendix F

Numerical Evaluation of

MFE(n, i,K∗, k′, φ′)

For species non-exchangeable model D1 (Equations 5.7) with non-exchangeability

parameters (k′, φ′) fixed, the MFE evaluated at the generalised decision rule

T (n, i,K) = Y(i:n) −K,

under a log-normal SSD with location µ and standard deviation σ, was described in

Section 6.8 as being equal to

MFE(n, i,K∗, k′, φ′) = 1−
∫ ∞
−∞

{
Fβ(i,n−i) (Φ(z +K∗)) 1{n6=i}

+
[
Fβ(i−1,n−i+1) (Φ(z +K∗)) 1{i 6=1} + 1{i=1}

− Fβ(i,n−i) (Φ(z +K∗)) 1{n6=i}
]
Φ

(
z +K∗ + k′

φ′

)}
φ(z)dz,

where K∗ = K/σ is the standardised assessment shift and 1A is the indicator func-

tion yielding value one if event A is true, zero otherwise.

For sufficiently large K∗, the integral is close to one for the majority of deci-

sion rules we are concerned with (by noting that large PNECs are unacceptable).

In fact, by linearity, the integral is separable into three integrals each yielding a

value of approximately one (not including the indicator functions). The precision

in calculating each integral and subsequently summing is severely affected by some
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choices of (n, i) and large K∗.

To improve accuracy of the integration1, we rewrite the integrand such that

floating point arithmetic is done to higher precision. As an example, consider one of

the terms in the integral (above) which can be written as Fβ(a,b) (Φ(z + c)) Φ(dz +

e)φ(z) for some a and b which are positive integers, and c, d and e which are positive

real numbers. This can be re-expressed as

[
1− Fβ(b,a) (Q(z + c))−Q(dz + e) + Fβ(b,a) (Q(z + c))Q(dz + e)

]
φ(z),

where Q(z) = 1−Φ(z). Integration of this expression would consequently yield 1−ε,

where ε is very small for certain choices of a, b, c and e. Consequently, numerical

integration can be performed to a higher precision. Applying this principle to all

terms in the integrand yields

MFE(n, i,K∗, k′, φ′) =∫ ∞
−∞

Fβ(n−i+1,i−1) (Q(z +K∗)) 1{i 6=1}φ(z)dz

−
∫ ∞
−∞

Fβ(n−i+1,i−1) (Q(z +K∗))Q

(
z +K∗ + k′

φ′

)
1{i 6=1}φ(z)dz

+

∫ ∞
−∞

Fβ(n−i,i) (Q(z +K∗))Q

(
z +K∗ + k′

φ′

)
1{n6=i}φ(z)dz

+

∫ ∞
−∞

Q

(
z +K∗ + k′

φ′

)
1{n=i}φ(z)dz.

The final integral (neglecting the indicator function) is straightforwardly deter-

mined to be

∫ ∞
−∞

Q

(
z +K∗ + k′

φ′

)
φ(z)dz = Φ

(
−(K∗ + k′)√

1 + φ2

)
.

Numerical evaluation of the penultimate integral was observed to be sensitive

for large n when i = 1. By properties of the Beta CDF, the integrand for this term

1Numerical integration was performed using the integrate function in R version 2.9.2 (R, 2006).
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can be re-written as

∫ ∞
−∞

[Q (z +K∗)]n−1Q

(
z +K∗ + k′

φ′

)
φ(z)dz,

which can be evaluated to a reasonably high accuracy. Performing numerical quadra-

ture on each integral separately leads to suitably stable and accurate evaluation of

the MFE for each assessment procedure.



Acronyms

ACR Acute to Chronic Ratio (p. 13)

AF Assessment Factor (p. 15)

AIC Akaike Information Criterion (p. 102)

AJ Aldenberg and Jaworska (p. 28)

AL Aldenberg and Luttik (p. 28)

AS Assessment Shift (p. 25)

ATS Adjusted Toxicity Statistic (p. 25)

BIC Bayesian Information Criterion (p. 101)

BF Bayes Factor (p. 141)

BNM Bimodal Normal Mixture (p. 176)

CDF Cumulative Distribution Function (p. 19)

ERA Ecotoxicological Risk Assessment (p. 8)

ECx Effect Concentration to x% of the species population (p. 12)

EFSA European Food Safety Authority (p. 4)

EP Exponential Power (p. 175)

EU European Union (p. 1)

FEAT Flash Environmental Assessment Tool (p. 45)
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FOSD First Order Stochastic Dominance (p. 193)

GAL Generalised Absolute Loss (p. 51)

HCp Hazardous Concentration to p% of community (p. 20)

LA Luttik and Aldenberg (p. 13)

LCx Lethal Concentration to x% of the species population (p. 12)

LINEX LINear EXponential (p. 55)

M Method-of-Moments (p. 26)

MCMC Markov Chain Monte Carlo (p. 132)

MFE Mean Fraction Exceeded (p. 31)

NOEC No Observed Effect Concentration (p. 13)

PEC Predicted Environmental Concentration (p. 9)

PNEC Predicted No Effect Concentration (p. 9)

PAF Potentially Affected Fraction (p. 19)

PDF Probability Distribution Function (p. 167)

RCR Risk Characterisation Ratio (p. 8)

RIVM The Dutch National Institute for Public Health and the Environment

(p. 23)

SEL Squared Error Loss (p. 48)

SN Skew-Normal (p. 174)

SOSD Second Order Stochastic Dominance (p. 193)

SSD Species Sensitivity Distribution (p. 17)

US EPA United States of America Environmental Protection Agency (p. 37)


