
Durham E-Theses

Carbon Storage in an Arti�cial Soil

STEWART, LAURA

How to cite:

STEWART, LAURA (2012) Carbon Storage in an Arti�cial Soil, Durham theses, Durham University.
Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3420/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3420/
 http://etheses.dur.ac.uk/3420/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


i 
 

 

Carbon Storage in an Artificial Soil 
 
 

Laura Stewart 

 

Department of Earth Sciences 

Durham University 

 

 

One Volume 
 

Submitted to Durham University in partial fulfilment of the 
requirements for the degree of Doctor of Philosophy 

 

February 2011 

 

 

 

 



ii 
 

Abstract 
As we strive to find new technologies to dispose of our municipal solid waste, compost-like 

outputs (CLOs) are becoming more widely created. As a product of both aerobic and 

anaerobic digestion, they provide a potentially important carbon store and some have proven 

to enhance existing carbon stores when added to brownfield sites and agricultural land. 

However, the CO2 flux from this artificial soil is relatively high when compared to natural soils. 

The aerobic digestion process under which it is produced lasts only 9 days, producing a 

material which is still comparatively unstable and yet to mature. The CLO is laid in windrows 

where it is hoped that it will stabilise and mature; if the humification process at this stage can 

be optimised, would an even greater carbon store be achieved? 

This thesis seeks to answer this question, through the research into humification in both 

natural and artificial systems; through the measurement of CO2 flux to assess the stability of 

CLO over time; using adapted methodologies to gauge the maturity of this artificial soil by 

analysing the amount of humic acids present; by adding proposed catalysts to the material in 

fully factorial lysimeter studies; and by examining the affects of different physical 

environmental conditions under which CLO product humifies.  

The results of a series of experimental trials, undertaken over a three year period, are 

presented. Manganese-coated sand and char, both currently ‘waste’ products were both used 

as potential catalysts for the humification process of CLO. Temporal trends were seen in most 

samples using infra-red gas analysis, an alkali extraction technique, UV photospectrometry, 

fluorescence and a novel pseudo-thermogravimetric analysis. The waterlogging of the 

samples appeared to have an effect on the humification process and a great deal of 

concurrent data was seen upon the addition of Mn-coated sand and char to the CLO. Both 

appeared to have a stabilising effect on the CLO, reducing flux rate and increasing 

humification as compared to a control. 

An overriding theme present throughout this thesis is the heterogeneous and contaminated 

nature of the non-source-segregated CLO tested. It is therefore recommended that similar 

studies be undertaken on a purer, more homogenous CLO in order to assess whether 

promising results seen could be elucidated in order to gauge the efficacy of biochar and Mn in 

encouraging the production of humic substances. A field trial would allow the unified soil 

system to be considered, rather than the CLO alone. 
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“The constant effort towards population, which is found even in the most vicious 

societies, increases the number of people before the means of subsistence are 

increased.” 

Thomas Malthus, 1798. 
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Chapter 1 

Introduction 

 

The aim and objectives of this research are presented in this chapter. The global context, 

legislative drivers and the commercial aspects are also introduced. 
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1.1 Climate change: summary of IPCC report 4 
 

The rise in atmospheric carbon in the form of greenhouse gases (GHG) has led to an 

increased rate of global warming. There is much debate as to whether this is a natural 

phenomenon or whether the change is directly linked to anthropogenic processes.  Since the 

industrial revolution the large-scale occurrence of the mining of fossil fuels and changes in 

land use, particularly deforestation, has meant that this natural balance has been disturbed; 

carbon is being removed at a far greater rate than it is sequestered. This has led to depletion 

in terrestrially-stored carbon and an increase in atmospheric carbon over the past two 

centuries.  

As the effects of global warming become ever more apparent, leading scientists from around 

the world have called for urgent action to be taken. In 1988, the Intergovernmental Panel for 

Climate Change (IPCC) was established as a joint venture between the World Meteorological 

Organisation (WMO) and United Nations Environmental Programme (UNEP). Scientists from 

all country members contributed research to provide three reports on the causes and impacts 

of global climate change. 

These reports state that the dominant factor in radiative forcing during the industrial era is 

increased GHG emissions. Several GHGs occur naturally but have risen over the past 250 

years due to human activity whilst other GHGs are entirely as a result of human activity. 

Carbon dioxide (CO2) and methane (CH4) are both naturally occurring and being chemically 

stable they are persistent over decades, centuries or longer. Any GHGs already released into 

the atmosphere will have long term impacts on climate. Current atmospheric concentrations of 

CO2 far exceed pre-industrial values found in polar ice core records of atmospheric 

composition dating back 650 years, increasing from 280ppm (pre-industrial) to 379ppm by 

2005 (IPCC). Even in recent decades, emissions of CO2 have continued to increase. The 

primary source of CO2 emissions is from the burning of fossils fuels and from the effects of 

land-use change on plants and soil carbon, as shown in Figure 1.1 
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Figure 1.1:  Global anthropogenic GHG emissions in 2004 (IPCC Fourth Assessment Report 

(AR4)). The nitrous oxide (N2O) is mainly from agriculture, as is the methane. Other significant 

sources of methane are energy and waste. 

Whether or not the current period of global warming is anthropogenically-enhanced climate 

change, the fact that certain measures could be introduced to foster a more sustainable future 

is irrefutable. The natural carbon cycle is being distorted to the detriment of the atmosphere, 

the oceans and the terrestrial carbon stores. As such, several of the United Nations (UN) 

Member States have committed to reducing their GHG emissions following the Kyoto Protocol 

in 1997. Ahead of the Copenhagen Climate Summit in December 2009, the United Kingdom 

(UK) has committed to further reduce its GHG emissions to 80% of 1990 levels by 2050. 

In order for this to happen, it is necessary to analyse the main sources of GHG emissions. 

Figure 1.2 shows the UK’s GHG emissions from 2008 by sector. Energy supply, business, 

transport and residential use account for the largest emissions, but several other sectors are 

significant, including agriculture and waste management. 
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Figure 1.2: 2008 UK greenhouse gas emissions, provisional figure by sector (Department of Energy and Climate Change (DECC)). 
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1.2 Tackling the problem 
 

Although waste disposal and treatment only contributed 3.4% to the total global annual 

greenhouse gas emissions, as calculated by the IPCC, it was still identified as being a key 

problem area. It is believed that this figure could indeed be higher but problems with a lack of 

agreement in data of locally managed waste disposal practices make it difficult to accurately 

measure (IPCC).   

In December 2002, the European Commission (EC) published the European Union (EU) 

Waste Statistics Regulation (EC 2150/2002). This outlines standard nomenclature for waste 

categories and disposal and it requires each Member State to present the Commission with 

their country’s statistics on waste generation, recovery and disposal every two years.  

The IPCC summarises that although CH4 emissions have largely been stabilised in developed 

countries, certain measures should be enforced to encourage this positive trend. Firstly, the 

primary reduction in waste generation through the promotion of recycling and re-use to 

conserve raw materials and energy ought to be encouraged. It is held that waste management 

should be managed at a local level to minimise problems created through variation in waste 

quantity and characteristics; cost and financing issues; regulatory constraints and 

infrastructure requirements. Landfilling-diverting technologies should continue to be 

developed, including large-scale composting, anaerobic digestion, mechanical biological 

treatments (MBTs), and incineration. Secondly, gas could be recovered from existing and new 

back-up landfills. Such strategies can also bring co-benefits such as improved public health 

and safety, pollution prevention, local energy supply and soil protection. 

In 2006, the EU produced a waste framework based upon EC Council Directive 75/442/EEC 

of 1975 and its amendments (1991, 1996, and 2003). Its purpose was to address the issue of 

waste from an environmental perspective, taking a similar stance to the recommendations laid 

out by the IPCC. The report outlines the need for member states to develop clean 

technologies that do not rely on natural resources; recover waste to extract re-useable raw 

materials; and to promote the production of energy from waste management (2006/12/EC 

Article 3).  
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For these objectives to be achieved, it was proposed that each Member State should draw up 

a waste management plan which addressed the following:  

i. The type, quality and origin of waste to be recovered or disposed of. 

ii. General technical requirements. 

iii. Suitable disposal sites or installations.  

It also suggests that the persons legally responsible for waste management should be listed, 

along with estimated costs for schemes and the appropriate measures to encourage 

rationalisation of the collection, sorting and treatment of the waste (2006/12/EC Article 6). 

This waste management plan was to be transposed into national law within two years of the 

publication of the directive. As a result, The UK Department for the Environment, Food and 

Rural Affairs (Defra) updated England’s Waste Strategy in 2007. Targets already laid out in 

the European Landfill directive had already been incorporated into the Waste Strategy 

published in 2000. 
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1.3 Waste management in the UK 

 

1.3.1 Defra’s Waste Strategy 2007 
 

Around 100 million tonnes of waste is being produced annually from households, commerce 

and industry in the UK. The 2008/2009 figures show that 50.3% of this waste is being 

landfilled (Defra). As a result, large volumes of CH4 are still being produced from the 

biodegradable fraction (40% of total CH4 emissions). Although a small amount of residual 

material must be landfilled, much of the waste is recyclable. The government has sought to 

reduce the amount of biodegradable municipal waste (BMW) going to landfill in accordance 

with Article 5.2 of the European Landfill Directive. 

The Government has introduced several key measures to drive this progress. The Landfill 

Allowance Trading Scheme (LATS) was introduced in 2005. Local authorities across England 

will be allocated an allowance to landfill BMW each year. These allowances can be traded, 

banked and borrowed to encourage the development of cost effective strategies. When the 

Waste Strategy was published in 2007, all 121 waste disposal authorities were within their 

limits and none were liable to penalties. This coupled with the Landfill Tax Escalator (a 

scheme which sees an incremental increase of £8 per tonne per annum in the charge paid for 

landfilling) have proven to be successful schemes to bring about the positive changes 

illustrated in Figure 1.3. 
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Figure 1.3:  Defra 2009/2008 Municipal waste statistics. 

The government met its landfill targets for BMW in 2010 and now aims to meet and exceed 

targets for 2015 and 2020. It is proposed that 53% of municipal solid waste (MSW) will be 

recovered by 2010; 67% by 2015 and 75% by 2020. Within the same timeframe, it is hoped 

that recycling and composting will increase to 40%, 45% and 50% respectively.  
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Based upon data from 2001, Figure 1.4 shows how far the UK had to go. It can be seen that 

the UK remained behind its European counterparts. 

 

Figure 1.4: Treatment and disposal of MSW, Adapted from Eurostat (2001). 

Eurostat reported in 2011 that by 2008, although a 20% increase was seen in recycling and 

composting and a corresponding decrease in waste sent to landfill, there were still significant 

differences seen between the different member states. Figure 1.5 shows the UK still lying 

behind Germany, The Netherlands and Sweden in its ability to divert from landfill.  
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Figure 1.5: Recycling rate of MSW in 2007 (ec.europa.eu/environment/waste/strategy,2011). 

Several EU member states impose legal restrictions on the types of waste that can be 

landfilled, a strategy that DEFRA is considering implementing in England. In Denmark, for 

example, landfill is only to be used for waste which cannot be re-used, recycled or incinerated. 

Landfilled material accounts for only 10% of all waste and it includes asbestos, non-recyclable 

polyvinyl chloride (PVC), impregnated wood, contaminated soil, residues from car shredding 

and the bottom ash from municipal incinerators (EEA 2002).  

The UK needs to secure investment in infrastructure if it is to meet the high targets set 

(Maynard and Chemett, 2006; Jones et al., 2006; Waste strategy, 2007). New technologies 

must be cost-competitive to landfill to attract investment. The government have suggested that 

private finance initiatives could encourage a variety of energy recovery technologies. 

However, because many waste management projects are still in the early stages of 

development and therefore perceived as high risk; coupled with the fact that little clarity is 

given about the acceptable end uses for recovered materials, many are reluctant to invest. 

Financiers need more assurance which would come from a degree of certainty over the 

implementation of legislation (Jones et al., 2006). 
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In the main elements section of the Waste Strategy, regulation reform is discussed but it is 

mainly focused on imposing further restrictions on the type of waste that can be landfilled and 

clamping down on illegal dumping of waste. There is little discussion about new legislation for 

recovered materials. For example, anaerobic digestion (AD) is one of the new technologies 

which are strongly supported in the report as it combines the separation of recyclables, the 

production of CH4 which has energy-producing capability through energy from waste (EfW) 

and a compost-like output (CLO) which could potentially be used as a soil conditioner. This 

CLO, however, still remains in the early stages of development and research is hindered due 

to strict legislation which prevents it being laid to land. 

Public opinion also hampers technological advancements. Waste is largely viewed as a 

negative entity and its potential benefits are little understood. Government initiatives such as 

Act on CO2 and the Waste and Resources Action Programme (WRAP), a non-profit 

organisation backed by the government, promote public awareness surrounding waste issues. 

However, proposed schemes such as introducing taxes on waste will only foster negative 

attitudes towards waste. A carrot rather than stick approach, whereby people are rewarded for 

recycling could be more successful.  

WRAP also work alongside the Local Government Association (LGA) in helping Local 

Authorities (LA) to meet their recycling targets. It is the local authorities who are responsible 

for the collection, treatment and disposal of municipal waste. The Environment Agency (EA) 

monitors this to ensure that the LAs are meeting their targets for recycling and composting. 

To ensure that these targets are met, further policies will be implemented and current policies 

upheld. An increase in investment for local government waste collection and disposal is to be 

seen. This is the stance taken by LGA who believe that the landfill allowance trading scheme 

(LATS) and a lack of funding to establish new green technologies makes it impossible for 

some Councils to successfully divert from landfill and meet targets.  

Ultimately, it is important that waste is viewed as a potential resource with financial benefits, 

as well as an environmental problem in need of a solution. If investment in good, robust 

research is made now, a long-term, sustainable approach could be formulated to meet and 

exceed imposed targets.  
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1.3.2 Alternatives to landfill 
 

As approved in the IPCC reports and highlighted in the Waste Strategy, the UK uses a variety 

of new technologies in its drive to divert BMW from landfill. Currently, the LAs’ approaches are 

diverse with some very much more successful than others. Statistics from Defra for 2009/2010 

show counties such as Devon, Dorset and Somerset recycling and composting 49-53% of 

their household waste; Middlesbrough, Sunderland and Sheffield only recycle and compost 

23-27%. It is widely believed that the most beneficial approach would be to use a mix of 

technologies; the solution must be appropriate to its specific location and supply of materials 

(Jones et al., 2006). It is also important to assess each component of a waste stream 

independently using life cycle analysis (LCA) to best deal with each material. For example, 

one tonne of aluminium recycled saves eleven tonnes of CO2 based upon this approach 

(Waste strategy, 2007).  

Green waste is often added to household waste, which increases the biodegradable fraction. 

In County Durham, the fraction of biodegradable waste is estimated to be around 54% of 

waste collected and the recyclable materials around 60 % (Premier Waste Management). 
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1.3.3 The New Technology Demonstrator Programme  
 

As 400 mega-centres are needed by 2015 in order to meet the landfill targets in the next 10 

years (Jones et al., 2006), many of the new waste disposal technologies need thorough 

investigation to weigh up each of their individual benefits. 

The New Technologies Demonstrator Programme (NTDP) was established by Defra in 2003, 

to trial several potential treatment methods for BMW. This was achieved through the 

establishment of nine pilot schemes, each of which demonstrated the viability of a particular 

process. The research resulting from the programme was designed to enable local authorities 

to make impartial, informed decisions when forming their individual waste strategies.  

The budget for the NTDP was £30 million and all bids made for grants were assessed on a 

number of criteria including technical feasibility, emissions, marketable outputs, energy, 

tonnage and value for money.  

Project Name Location Summary 

Biocycle Ludlow, Shropshire Anaerobic digestion of green and kitchen waste 

Bioganix 
Leominster, Hereford & 

Worcester 

In-vessel composting of green waste 

 

ENVAR St Ives, Cambridgeshire In-vessel composting 

Premier Waste County Durham 
Aerobic digestion of Municipal Solid Waste 

(MSW) 

Novera Havering, Essex Gasification of refuse-derived fuel (RDF) 

Merseyside Waste 

Disposal Authority 
Merseyside 

Complex materials recycling facility /mechanical 

heat treatment (MHT) processing 

Waste Gas Technology 

UK Ltd 
Isle of Wight Gasification of RDF 

Compact Power Bristol Gasification/pyrolysis of MSW 

Scarborough Power North Yorkshire Gasification of MSW 

  

Table 1.1: A summary of the nine successful projects chosen by DEFRA 
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1.4 Premier Waste Management (PWM) 

 

One of the nine NTDP funded projects is the aerobic digestion of MSW by Premier Waste 

Management in County Durham.  

Currently, County Durham has two landfill sites which are leased to PWM. Historically, most of 

the county’s waste was disposed of here, being that it was the cheapest option. With annually 

increasing landfill tax, this is become less viable. The company now operates kerbside 

collection of household waste, garden waste and recyclables (paper, cardboard, glass, 

plastics and metals) and manages a recovery scheme - Premier advanced recycling centre 

(PARC) based in Thornley, County Durham. 

 

Figure 1.6: County Durham, area serviced by PWM 

In 2002, an in-vessel aerobic digestion plan was opened at the PARC waste transfer station. 

Initially, the plant consisted of two aerobic digestion towers with a combined capacity of over 

30, 000 tonnes per year. Since 2007, a third tower has been in commission, which facilitates 

an extra 22, 500 tonnes. With reductions in waste collected, this combined capacity should be 

sufficient to process all the waste brought to the transfer station.  
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1.4.1 Aerobic digestion process 
 

In-vessel aerobic digestion allows the composting process to happen on a much larger scale, 

under carefully controlled conditions and over a much faster timescale. Unlike anaerobic 

digestion, which also produces a CLO, this process allows the composting process to occur 

with relatively low GHG emissions. 

 

Once the MSW has been shredded, the ferrous metals are removed and the remaining 

material is fed into a digester at the rate of 100 tonnes every six days. Under carefully 

controlled conditions, the BMW is digested for a period of six days, after which CLO is 

produced. Other recyclable materials are separated via a mesh, over band magnet, density 

separator and eddy currents. The remaining fraction (around 25%) goes to landfill. The CLO 

produced is transferred to windrows for six weeks before a final washing stage to extract any 

remaining plastic film. 

 

 During the process, air is added to maintain aerobic conditions and water to increase 

microbial activity. The water is recycled as a seed for subsequent batches. Moisture content 

and batch temperature are monitored and logged throughout. As the process is fully aerobic, 

the system is also constantly observed for the presence of CH4. As yet, however, no CH4 has 

been detected during the digestion process at the Thornley plant. 
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Figure 1.7: The aerobic digestion process summarised (PWM). 
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As the MSW contains raw and cooked meat, it was necessary for the towers to be approved 

by the State Veterinary Service division of Defra to process category 3 animal by-products and 

catering waste. To meet this requirement, the process has to be monitored to ensure that the 

material reaches and exceeds temperatures of 70°C for at least one hour. This is to guarantee 

that any potential microbial biohazards are eliminated and no pathogens are present.  

 

 

Figure 1.8: a PWM digester tower Figure 1.9: a hopper, transporting MSW from 

the shredder to the digester tower. 

 

During the first seven months of 2006, there were 21,300 tonnes processed of which 15,600 

tonnes were diverted from landfill:   

Recycled Compost  31.4% 

Recycled Plastics      2.8%    

Recycled Glass         4.0% 

Recycled Metals      3.8%  

Process Losses     31.2% 

Landfill Diversion Efficiency  73.2% 

 

 

 

 



 

1.4.2 The carbon budget model
 

An earlier collaboration between PMW and Durham University in April 2006 produced a 

carbon budget model which sou

carbon lost during aerobic digestion, incineration and landfilling of MSW was compared and 

the graph in figure 1.10 produced.

 

Figure 1.10: The Carbon budget model for aerobic digestion, 

and Johnson, 2006). This model was further developed by Eunomia in June 2007 and 

amongst other improvements, allows the composition of the MSW to be varied. This is 

increasingly necessary as the kerbside collection initia

changes. 

It can be seen that aerobic digestion,

disposal option which gives the lowest release of carbon to the atmosphere. This research 

project is based upon this pr

graph indicates the difference between aerobic digestion and incineration; the wider this 

margin, the more economically viable aerobic digestion would be as a recovery scheme. In 

order for this gap to be widened, carbon would need to be further stabilised at some point 

during the process.  

The carbon budget model 

An earlier collaboration between PMW and Durham University in April 2006 produced a 

carbon budget model which sought to calculate the potential for carbon storage in CLO.

aerobic digestion, incineration and landfilling of MSW was compared and 

produced.  

: The Carbon budget model for aerobic digestion, incineration and landfill (Worrall 

and Johnson, 2006). This model was further developed by Eunomia in June 2007 and 

amongst other improvements, allows the composition of the MSW to be varied. This is 

increasingly necessary as the kerbside collection initiatives and public perception of waste 

aerobic digestion, shown by the green line (figure 1.10

disposal option which gives the lowest release of carbon to the atmosphere. This research 

project is based upon this premise and seeks to carry the idea further. Arrow ‘a’ shown on the 

the difference between aerobic digestion and incineration; the wider this 

, the more economically viable aerobic digestion would be as a recovery scheme. In 

his gap to be widened, carbon would need to be further stabilised at some point 
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An earlier collaboration between PMW and Durham University in April 2006 produced a 

calculate the potential for carbon storage in CLO.  The 

aerobic digestion, incineration and landfilling of MSW was compared and 

 

incineration and landfill (Worrall 

and Johnson, 2006). This model was further developed by Eunomia in June 2007 and 

amongst other improvements, allows the composition of the MSW to be varied. This is 

tives and public perception of waste 

shown by the green line (figure 1.10), is the waste 

disposal option which gives the lowest release of carbon to the atmosphere. This research 

emise and seeks to carry the idea further. Arrow ‘a’ shown on the 

the difference between aerobic digestion and incineration; the wider this 

, the more economically viable aerobic digestion would be as a recovery scheme. In 

his gap to be widened, carbon would need to be further stabilised at some point 
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This project seeks to stabilise the CLO produced during the process, thus locking up carbon 

and reducing carbon flux. If this could be achieved, the carbon released throughout the 

process’ life cycle would be decreased and the gap between incineration and aerobic 

digestion increased. Premier waste management stand to gain through the EU Emissions 

Trading Scheme (EU ETS), which Defra describes as: 

“...a market-based mechanism to incentivise the reduction of GHG emissions. The scheme 

operates through the allocation and trade of greenhouse gas emission allowances throughout 

the EU – one allowance represents one tonne of carbon dioxide equivalent.” (Defra 2006). 

If carbon emissions could be reduced effectively during the composting process, PWM would 

in theory be able to sell their surplus allowances by trading directly with other companies or 

through a broker. The EA regulates the scheme in England and Wales.  

Another source of income from aerobic digestion of MSW are the recyclable materials and the 

compost-like output. 

 

1.4.3 The product: Compost-like output 
 

In addition to diverting organic waste from landfill, CLO could potentially prove to be an 

important carbon store. With the UK losing 13 million tonnes of carbon per year (mtC/yr) from 

its soils (Loveland and Bellamy, 2004), restoring this carbon store is of significant importance. 

If the CLO is returned to the land, it could be used to plant crops which in turn would remove 

carbon from the atmosphere. In earlier studies the potential of CLO as a marketable soil 

improver has been explored and has been found to enhance crop yield, soil organic matter 

(SOM), moisture content and decrease erosion in urban soils (Martinez- Blanco et al., 2009; 

and references therein).  

Compost-like outputs are still a relatively new product but the government and WRAP have 

developed a publicly-available specification (PAS) BSI PAS 110 for source-separated 

anaerobic digestates in 2010. This provides an industry specification against which producers 

can verify that the product is of a consistent quality against certain parameters and therefore 

fit for purpose for use as a soil improver. It is vital that products from ‘waste’ are properly 

regulated to help to dispel any mistrust and scepticism that potential buyers might have.  
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The CLO manufactured by Premier is not produced from a source separated feedstock so 

does not meet the requirements for PAS110. It is currently used as topsoil for landfill, but it is 

hoped that with further research, it can be remediated and sold as a soil improver. A synthetic 

soil mix called ParcgroTM has combined CLO with garden waste (tree prunings, grass clippings 

and leaves collected from parks and gardens within County Durham) and it meets the British 

Standard for topsoil (BS3882). It is laid at a brownfield site in Willington, County Durham, 

where willow (which can withstand metal-contaminated soils) it is being grown as a feedstock 

for biofuel. The willow is harvested every three years and fulfils the long-term demand for a 

local biomass-fuelled power station in Teesside.  

 

Figure 1.11: The Willington site showing increased crop growth on the ParcgroTM treated soil. 

However, this product is still in the early stages of development. Research already carried out 

has shown the initial separation process to be inefficient, in that the CLO retains a high level of 

plastic, metal and glass (Simpson, 2008). This gives a highly heterogeneous product which 

causes problems aesthetically and unless pre-treatment occurs, also has the potential to 

cause environmental issues. Furthermore, the material in its current heterogeneous, 

contaminated state is difficult to analyse in terms of the organic carbon content.  

This research project will be carried out under the assumption that the CLO will be refined 

through on-going research which includes enhancements to the post digester separation 

process to maximise the recovery of recyclables and to remove the contaminants from the 

CLO.  



 

Figure 1.12: from waste to energy and carbon store

If these initial problems can be addressed, the 

sustainable way of reducing waste and feeding back into the terre

1.12 shows a scenario whereby waste could be transformed into an artificial soil which could 

be used to regenerate brownfiel

would restore otherwise redundant land into cropland

sustainable fuel for energy. 

 

1.5 Land management
 

The pedosphere holds around 4%

vegetation and currently two thirds that held in the atmosphere (Smith, 2004). Thi

significantly less than the oceans hold but it is by far the most easily managed (Janzen

However, global soil organic ca

in variation of between 1000

(temperature, pH, soil moisture, terrain, land

must be overcome in order to protect and preserve areas of high

enhance areas of low-carbon storage (Bell and Worrall

from waste to energy and carbon store. 

If these initial problems can be addressed, the aerobic digestion process could be one 

sustainable way of reducing waste and feeding back into the terrestrial carbon store. Figure 

shows a scenario whereby waste could be transformed into an artificial soil which could 

be used to regenerate brownfield soils, providing a feedstock for biofuel crops. Essentially, this 

would restore otherwise redundant land into cropland and facilitate the production of a more 

sustainable fuel for energy.  

Land management 

dosphere holds around 4% of the global carbon store, four times the amount in 

vegetation and currently two thirds that held in the atmosphere (Smith, 2004). Thi

the oceans hold but it is by far the most easily managed (Janzen

However, global soil organic carbon (SOC) stocks are difficult to estimate which gives a range 

in variation of between 1000-3000Gt (Schwartz and Namri, 2002). Different variables 

(temperature, pH, soil moisture, terrain, land-use) are responsible for this but the variation 

ome in order to protect and preserve areas of high-carbon storage and to 

carbon storage (Bell and Worrall, 2009). 
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Figure 1.13: Land use change (Janzen, 2004). 

Increasingly, more carbon is being taken from the land and is being released into the 

atmosphere. Currently, it is thought that global soil stocks are being eroded around 10-40 

times as fast as it can regenerate (Pimentel, 2005). This is not only having a huge impact on 

global climate, but also on global carbon stores. Poor land management including vegetation 

removal and over grazing has seen the rapid depletion of carbon from soils. The expansion of 

agriculture has had the largest influence on the carbon cycle; an estimated 55PgC has been 

lost to the atmosphere through the cultivation of agricultural soils (Thompson et al., 2006). 

It is becoming increasingly more important that land is managed effectively to preserve and, if 

possible, enhance the carbon stores that remain. Good, fertile topsoil is essential for 97% of 

the world’s food supply. 

Artificial soils could prove to be the solution to the problem of enhancing existing carbon 

stores. Currently, natural soils are being removed for use in urban landscaping and 

construction. If artificial soils could be used instead, the natural soils would be preserved. As 

previously mentioned in the case of PWM, damaged, nutrient-depleted soils (such as ex-

colliery and other industrial sites) could potentially be improved with the addition of CLO, 

subsequently allowing them to be planted with CO2-absorbing woodland or biofuel crops, and 

thus reducing the need for farmland to be used. If the amount of carbon stored in vegetation 

and soils increased, changes in terrestrial carbon storage observed over recent years might 

be reversed (Janzen, 2004).  In order for this to happen, the nature and behaviour of SOC 

must be understood. This will be addressed in the following chapter.  
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1.6 Project Aim and Objectives 

 

1.6.1 Aim 
 

The aerobic digestion process yields a potential carbon store in the form of an artificial soil: 

compost-like output (CLO). The research seeks to reduce carbon emissions from this artificial 

soil by optimising the humification process. This would increase the stable carbon store within 

the soil, thus reducing carbon released to the atmosphere. If by producing CLO, PWM could 

cut their carbon emissions and return solid, stable carbon back to the earth, two problems 

might be addressed with one solution. Ultimately, the research should enable the company to 

maximise their profits via the carbon credits trading scheme.  

 

1.6.2 Objectives 
 

In order to fulfil this aim, there are five main objectives which are detailed below. 

1. To complete a literature review in order to better understand the conditions needed for 

optimised humification and to investigate methods available for humic acid analysis  

2. To adapt and develop suitable methodologies for the analysis of CLO. 

3. To explore the effects of manganese coated sand, sand and biochar on the 

humification process: the net gain or loss in humic acid and the resulting carbon flux. 

4. To investigate the effects of waterlogging on the carbon flux and humic acid 

production in CLO in order to establish the ideal conditions for the material to be laid. 

5. To attempt to characterise the CLO in order to begin to understand the chemical 

reactions involved during the humification process to further explain the optimum 

conditions for the production of stable carbon. 
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1.7 Thesis outline 
 

Chapter 1 summarised the global context in which the project lies; discussing the legislative 

drivers that have encouraged the use of green technologies when dealing with MSW in the 

UK. The merits and potential problems associated with CLO product derived from an aerobic 

digestion process have also been introduced. Finally, the project’s aim, objectives and thesis 

outline have been described. 

 
Chapter 2 gives a comprehensive study on natural soil organic matter and how this might 

compare to the artificial soil and its organic component. Particular attention is paid to the 

composition, genesis, structure, humification process; some of the commonly used analytical 

methods available for the determination of stable carbon compounds are also introduced. The 

purpose of this chapter is to address project objective 1. 

Chapter 3 outlines the materials and methods used in each experimental trial. The adaptation 

of traditional methods of soils analysis for use on an artificial soil will be described and results 

from preliminary trials presented. Also, the experimental equipment and tools for data analysis 

will be discussed. This has been undertaken in order to fulfil objective 2.  

Chapter 4 describes the experimental design, execution and results the first full experimental 

trials, the first of the three investigations into the humification process of CLO. Manganese 

dioxide-coated sand is added to the soil in a fully factorial experimental design. Objective 3 is 

tackled here.  

 Chapter 5 explores the potential to adapt the accepted and well-used traditional 

thermogravimetric analysis (TGA) method to accommodate larger, more heterogeneous 

samples. The process of Pseudo TGA is detailed with standard reference material to provide a 

matrix with which to compare samples. This chapter straddles both objectives 2 and 3, 

compounding research in earlier trials. 

 Chapter 6 presents the results from a follow-on trial to that presented into chapter 4 where 

char is added to both CLO and peat samples. The latter is introduced as a standard soil. Here, 

the waterlogging of the materials is also introduced. Objectives 3 and 4 are covered here, 

again developing earlier research. 
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Chapter 7 addresses the final objective, where micro-scale study of the interactions between 

four components of CLO; a lipid, a protein, lignin and cellulose along with the three 

amendments used in previous trials; manganese dioxide, sand and char is given. 

Chapter 8 draws together the main conclusions from each trial so that recommendations 

might be made to PWM and possible further studies suggested. This chapter will report 

whether or not the project aim and objectives were met.  

. 

Trial 1 This trial was orchestrated in order to determine appropriate 
experimental techniques for assessing the maturity and 
stability of the CLO. These procedures, ordinarily used for 
natural soils were then optimised to suit CLO.   

Discussed in 
chapter 3 

Trial 2 Building upon the results from trial 1, trial 2 was the first fully 
factorial long trial where lysimeters were constructed and 
different parameters introduced. The effect of time and 
addition of a proposed catalyst on the stability and maturity 
of the CLO were assessed. 

Discussed in 
chapters 4/5 

Trial 3 Trial 3 expanded the themes explored during the previous 
trials. The parameters measured during trials 1 and 2 were 
repeated but the lysimeters were housed indoors in order to 
control temperature and moisture content. New parameters 
were introduced: peat was included in the trial matrix as a 
control soil; waterlogged versus free-draining samples of 
each was studied; a char was added to the matrix as another 
potential catalyst. It was hoped that this trial would run for 12 
months but due to technical problems at PMW, the CLO was 
unavailable for testing for several months so the trial was 
postponed and conducted over a shorter timescale of 26 
weeks instead. 

Discussed in 
chapter 6 

Trial 4 It was intended that this would be a field trial to re-employ 
the factors assessed in trials 1, 2 and 3 in order to ascertain 
whether the same effects witnessed in the laboratory would 
be seen when the material was laid to land. However, owing 
to the legal implications of laying various waste materials to 
land and the time remaining, this was not viable. Instead, a 
micro-study was undertaken, examining the relationship 
between the four main components of CLO: protein, lignin, 
lipids and cellulose. Samples were left for 10 weeks, to make 
it comparable to trials 2 and 3 and the same experimental 
techniques were used to assess the humic acid content after 
this time period.   

Discussed in 
chapter 7 

Table 1.2: The relationship between the four experimental trials and in which chapters they 

are discussed. 
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Chapter 2 

Soil Processes 

 

Discussed in this literature chapter will be the composition and genesis of soil organic matter 

along with the principle reaction processes involved in the formation of humic substances. 

Furthermore, the structure of these stable carbon compounds will also be explored. A review 

of current literature relating to the composting of MSW and other waste materials to produce 

artificial soils will also be presented. 
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2.1 Organic matter in natural soils 

 

Before artificial soils are considered, it is important to understand the processes that occur in 

natural soil systems.   

Natural soils are comprised of both inorganic and organic carbon. The former is derived from 

eroded bed-rock material; the latter from the decomposition of plant matter, microorganisms 

and small animals.  It is this, the soil organic matter (SOM) that is of interest to the research 

presented in this thesis.  However, it is necessary to appreciate the interactions between the 

organic components, minerals and microorganisms, so that can SOM’s place within the unified 

soil system can be fully appreciated (Huang et al., 2004). 

Humins Humic acids Fulvic acids

Simple 

compounds

Humic 

substances

Non-humic 

substances

Soil organic 

matter

 

 

Figure 2.1: the composition of SOM, adapted from Berth et al (2008). 
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Simple compounds are represented by unaltered biomolecules and can be defined by discrete 

categories of biopolymers (polysaccharides, proteins, lignin, and lipids). These biopolymers 

are low molecular weight (MW), easily degraded molecules. Humic substances (HS) are 

biomolecules which are considered to be altered by biological oxidation or chemical reaction 

are not placed in discrete categories. They are characterised by compounds with higher MW 

and a greater degree of aromaticity and are relatively rich in carboxyl and hydroxyl groups 

(Garcia –Gill et al., 2004).  The third group are the non-humic substances that satisfy neither 

of the other two categories and are largely hydrophilic acids which are expected to constitute a 

substantial fraction of dissolved organic carbon (DOC) (Vergnoux et al., 2011).  

SOM is a complex heterogeneous mixture of these organic particles and molecules exhibiting 

a variety of stages of decomposition, ranging from fresh, unaltered material through to 

thoroughly decomposed states. The mean residence time of SOC varies over several orders 

of magnitude between leaf litter and the various humus fractions with turnover of resistant 

plant residues adsorbed onto soil particles being in the order of years; fulvic acid (FA) 

approximately 100 years; humic acids (HA) can remain in the soil for thousands of years 

(Huang et al., 2004). Although HAs and humins constitute the majority of SOC, they only 

contribute a small amount to carbon cycling within the soils due to their recalcitrance.  
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2.2 Humic substances 
 

Humic substances are difficult to define, although several definitions exist: 

Being “...amorphous, polymeric, colloidal, polydispersed substances with high molecular 

weights.” (Sposito, 1989).  

They are “...covalently linked aromatic and aliphatic residues, carrying carboxyl, phenolic and 

alkoxy groups with sulphate esters, alanine and semiquinones, phosphate ester and 

hydroquinone moieties” (Jones and Bryan, 1998).  

They are ubiquitous in both terrestrial and aquatic environments: in natural waters, sediments, 

soils, peats and other natural ecosystems and they are the largest SOC pool (70-80% of soil 

carbon) (Nichols and Wright, 2006). They can comprise between 40 and 70% of dissolved 

organic matter in rivers and streams (Lu et al., 2000). They form highly complex, 

heterogeneous, amorphous molecules and are extremely resistant to degradation: their half 

life can amount to thousands of years (Grinhut et al., 2007).    

Their recalcitrant nature makes HSs an important carbon sink. They represent a dynamic 

system which is subject to continual change; a system which is dependent upon plant cover; 

activity of microorganisms and animals; climate; chemical, physical, physicochemical 

properties, and also mans’ activity. All of these factors determine the amount, composition, 

distribution in soil profile, nature of the HSs and their complexes with minerals (Kononova, 

1961). They play an important biogeochemical role in the ecosystem, having influences on 

redox reactions; the sorption, complexation and transportation of pollutants, minerals and 

trace elements; soil structure and formation (Lafrance et al 1989).  Their dark colour aids the 

regulation of soil temperature and they also improve a soil’s water and nutrient holding 

capacity (Smidt et al 2008). 

Humic substances comprise three operationally defined compounds: humic acids, which are 

soluble in alkali solution; fulvic acids, which are soluble in alkali and acid solution and humin 

which is soluble in neither. It is widely believed that humic acids are compounds with MW 

somewhere between several hundred to several hundred thousand daltons (Da) (Shin et al., 

1999) and fulvic acids less than 10,000 Da (Reemtsma et al., 2008). However, no sharp 

division exists between these different fractions as all are extremely structurally 

heterogeneous (Nichols and Wright, 2006).  
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2.2.1 Structure 
 

In order to appreciate the reactivity of HS, their structures must be considered.  Being that 

they are such a heterogeneous mixture of materials formed from a variety of sources, 

elucidation of their precise structure is a challenge. There is no one universally accepted 

structure, though several researchers have attempted to define one. However, Stevenson’s 

proposed structure of humic acid is the most commonly quoted. 
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Figure 2.2 Stevenson’s (1994) proposed structure of humic acid  

 

It is generally accepted that HAs are part of a product of heteropolycondensation of 

carbohydrates, proteins, fatty acids, lignins... depending upon their origin (Li et al., 1996). 

They are multifunctional molecules chiefly built up from an aliphatic hydrocarbon skeleton core 

(Osterberg et al., 1993) and are substituted with oxygen-containing functional groups including 

carboxyl > phenol > alcohol > quinone and ketonic carbonyl > amino > sulphydryl alkoxyl, 

hydroxyl (Sposito, 1989; Pehlivan and Arslan, 2006). Generally, fulvic acids contain more 

functional groups and have a typical composition of 40-50% carbon (C) and 40-50% oxygen 

(O). Humic acids tend to be more advanced in the humification stages, therefore more 

polymerised with a slightly higher ratio of C (50-65%): O (30-40%) (Stevenson 1994). 

Quantitative studies using elemental analysis can illustrate elemental composition of humic 

structures. This is also the most sensitive method for assessing changes in HA structure 

(Bernal et al., 2009). Table 2.1 shows the results from a study by Li et al. (2004) whereby bulk 

HA was separated into 8 fractions based on MW via ultrafiltration. Elemental compositions of 

each fraction are shown along with the E4/E6 ratios (see section 3.6.2) 
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Fraction 

(1,000Da) 

Mass MW Elemental composition (weight 

%) 

Atomic ratio E4/E6 

   C N H O C/H C/O C/N  

<1 1.90 1.07 48.7 4.0 3.3 44.0 14.76 1.11 12.18 13.6 

1-3 1.60 1.18 48.5 3.6 3.5 44.3 13.86 1.09 13.47 13.2 

3-5 1.70 1.49 48.4 3.4 3.8 44.4 12.74 1.09 14.24 12.6 

5-10 2.00 1.77 49.9 3.9 3.9 42.3 12.79 1.18 12.79 11.7 

10-30 15.5 3.24 53.6 4.4 4.1 37.9 13.07 1.41 12.18 7.0 

31-100 22.2 5.25 54.0 4.6 4.3 37.1 12.56 1.46 11.74 6.1 

100-300 9.40 6.29 54.7 4.6 4.4 36.2 12.43 1.51 11.89 5.7 

>300 45.8 18.56 57.0 5.3 5.3 32.4 10.75 1.76 10.75 4.5 

Bulk - 10.68 56.1 3.9 5.0 35.0 11.22 1.60 14.38 5.8 

 

Table 2.1: various molecular weight fractions of HA, their mass, MW, elemental composition, 

atomic ratio and E4/E6 ratio (Li et al., 2004). 

During this study, aromaticity decreased as MW decreased; smaller MW molecules tend to 

contain a greater number of oxygen-containing functional groups, possibly deriving from lignin 

materials. It was thought that the higher MW fractions may originate from lipid rich 

biopolymers.  

For a more qualitative picture, spectroscopic techniques can be employed to establish 

connectivity and specific functional groups present. Pyrolysis gas chromatography/mass 

spectrometry (Py-GC/MS) determines skeleton structure of HA, whilst nuclear magnetic 

resonance (NMR) has highlighted the existence of primary structures in HSs with major 

molecular structural units including aliphatic acids, ethers, esters, alcohols, aromatic lignin-

derived fragments, polysaccharides and polypeptides (Simpson et al., 2002).  

Thermochemolysis provides detailed structural information on the building blocks of SOM. 

This non-destructive and highly selective method cleaves ester and some ether linkages in 

macromolecules. It also renders many of the polar products volatile enough for gas 

chromatography (GC) analysis (Chefetz et al., 2002). With the development of such analytical 

techniques, our understanding of these complex molecules has been further elucidated. 
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Recent studies using these sophisticated forms of analyses have evolved new proposed 

structures of humic substances (Sutton and Sposito, 2005). Based upon their studies, Grinhut 

et al proposed the following revised structure in 2007. 

 

 

Figure 2.3: Proposed structure of humic acid by Grinhut et al 2007 

However, this large macromolecule is considered to be inconsistent with evidence from 

several other studies (Schaumann, 2006a; Simpson et al., 2002; Li et al., 2003). The more 

widely accepted view is that humic substances are collections of diverse, relatively low MW 

components which form dynamic associations, stabilised by hydrophobic interactions and H-

bonds (Sutton and Sposito, 2005). Such an arrangement is referred to as a supramolecular 

assembly, and is defined by Schaumann and Bertmer (2008) as: 

“ ...a multi-component system of atoms, metal ions and/or molecules which are held together 

by non-covalent interactions such as hydrogen bonds, Van der Waals forces, π-π interactions 

and or electrostatic effects.” 

Tetraethyl ammonium acetate pyrolysis (TEAAc-pyrolysis) has shown that these weak bonds 

play a key role in the make-up of humic substances and induce the retention of low MW 

molecules (fatty acids and alkanols) (Guignard et al., 2005). Diffusion ordered spectroscopy 

(LC-NMR) has also determined that they are largely low MW molecules (2000 Da) that can be 

easily separated (Simpson et al 2002). Coordinated cross-links can form between humic 

substances and multivalent cations which may increase apparent molecular weight 

(Schaumann, 2006).  
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A study by Li et al (2003) concluded that two sub-units of HA may in fact exist: an aliphatic 

with a larger MW and a smaller aromatic group, thus consolidating the heterogeneous nature 

of HS.  

Different source material can lead to different HA within the same environment (Li et al., 2004) 

but there is little conclusive data available concerning specific biological sources of HS from 

different environments. However, a study by Lu et al (2000), showed that differences occurred 

between samples of soil, swamp sediment, peat and coal; the first two having more 

carbohydrate and carboxylic components and a greater loss of polysaccharide and lignin 

fractions. Peat had a greater proportion of aliphatic biopolymers and in coal, aromatic 

compounds dominated. A similar study on agricultural soils showed that they contained a 

large proportion of lignin in their structure, shown by py-GC/MS and Tetramethylammonium 

hydroxide (TMAH).  Smaller particles are expected to have more lignin-derived units in the 

final stages of oxidation (Chefetz et al 2002).  

With this considered, if the source material in the BMW fraction of MSW is significantly 

different to that seen in natural systems, it is probable that differences will be seen in HA 

produced. What affect might this have on the genesis of HAs during aerobic digestion and 

subsequent maturation as compared to the humification processes seen in natural soils? 
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2.2.2 Humification process 
 

Humic substances are formed via the degradation and transformation of biomolecules/plant 

and animal litter (particularly plant cell wall compounds such as lignin and structural 

polysaccharides, together with lipids and proteinaceous materials). This assembly of organic 

“leftovers” provide vital properties to soils (Sutton and Sposito, 2005). The SOM is degraded 

both biotically and abiotically, usually giving a more stable product than the original 

component materials (Lu et al., 2000). The precise nature of the chemical process is little 

understood. Mechanisms can be placed into one of two categories: 

i. Either the biotic polymer degradation where integrity of the biopolymer is not 

destroyed but modified by enzymatic degradation such that it forms the backbone of 

the altered biomolecules (Hedges, 1988). 

ii. The abiotic condensation polymerisation in which simple products of biopolymer 

degradation (phenols, quinones, sugars, amino acids) repolymerise to form altered 

biomolecules (Hedges, 1988).  

 

These two options are not necessarily mutually exclusive (Huang et al 2002). Major 

components of HS include: 

Lignin is a phenolic monosaccharide polymer which is highly aromatic and insoluble in water, 

making it hydrolysis-resistant and therefore protected from microbial attack (Adani and Ricca, 

2004). It ultimately forms peat, coal and oil, under the right conditions. It is thought that 

aromatic compounds in HSs should mainly derive from lignin (Kogel-Knabner 2002; Akim et 

al., 1998).  

Lipids are almost always a minor component of natural SOM but can provide important 

information on sources of humic material (Guignard et al 2005). Three main lipid types 

(aliphatic, aromatic and sterols/terpinols) were identified by a study by Allard in 2005 in forest 

and agricultural soils. 
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Proteins are condensation polymers of amino acids which comprise one of the largest 

classes of nitrogen-bearing substances in soils (30-45%). Containing an amino group (R-NH2) 

and a carboxyl group (R-COOH) which can form a cation and an anion respectively, the 

molecules can exhibit both acidic and basic properties. Protein amino acids dominate but non 

protein amino acids can also be present such as hydroxyl proline and amithine (Allard, 2005). 

Glomalin, a glycoprotein produced by fungi, is found in high concentrations in temperate soils 

due to its resistance to degradation, heat and low pH (Nichols and Wright, 2006). 

Carbohydrates comprise up to half of organic carbon in soils and the common 

monosaccharides include: glucose, galactose, mannose, xylose, glucuronic acid, 

glucosamine. They polymerise to form polysaccharides; for example, glucose plus glucose 

gives a cellulose repeating unit. 

The four biomolecules above (lignin, lipids, proteins and carbohydrates) (and shown in figure 

2.4) are the most abundant organic compounds produced by living organisms in the soil 

environment but this list is not exhaustive. 

Sposito (1989) identified four stages encountered by soil biomass on its formation to humus. 

1. Decomposition of biomass components including lignin into simple compounds 

2. Microbial metabolism of simple compounds 

3. Cycling of C, H, N, O between SOM and microbial biomass 

4. Microbially mediated polymerisation of cycled organic compounds 

Stages 1 and 2 form phenolic polymers, whilst 3 and 4 form humic substances. These are 

converted readily into reactive quinone compounds which polymerise readily. As humification 

progresses, these residues are metabolised (Hayes et al, 1999). Although the residues have 

short lifetimes (perhaps hours), they are produced continuously (Sposito, 1989).  
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Figure 2.4 some of the biomolecules and biopolymers that undergo degradation and 

transformation to form HS. 

The specific reaction pathways involved in the production of humic material are much 

disputed. Figure 2.5 summarises proposed pathways that may occur to produce humic 

substances. Many studies cite lignin as the main contributor of aromatic compounds that 

define HA (Kalbitz et al., 2003; Kogel-Knabner 2002; Akim, et al., 1998) but as many other 

reagents all co-exist in soils, it is probable that this is not the only possible pathways that 

occurs independently, but rather one of several that occur closely and interact (Jokic et al., 

2004). Furthermore, a variety of proposed methods may account for diversity in functional 

groups, presence of different monomeric species and inclusion of biopolymer-like materials in 

HS (Huang et al., 2002). 
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Figure 2.5: Proposed reaction pathways of the humification process, adapted from Stevenson 

(1994). 

Route 1 (Figure 2.5):  Lignin decomposition 

 

Lignin is one of the most abundantly present and most recalcitrant biopolymers present in 

SOM. Following microbial attack, lignin undergoes demethylation which exposes hydroxyl 

phenols that can then be oxidised to form quinones (Filley et al., 2002). Subsequent oxidation 

of the aliphatic side-chains produces carboxyl groups (Saiz-Jimenex, 1994)). Condensation 

with N-containing compounds, then further re-polymerisation occurs, to give an insoluble 

humic material (Czechowski et al 2004).  

 

Route 2a and 2b (Figure 2.5): Polymerisation of quinones  

 
Route 2 (b) involves the polymerisation of quinones from lignin derivatives in the presence or 

absence of amino acids (Stevenson, 1994). The alternative for this route is 2 (a) where 

polyphenols are synthesised by microorganisms from non-lignin carbon sources (e.g. 

cellulose) then are oxidised to quinones (Stevenson, 1994). 
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Extra-cellular enzymes attack lignin and cellulose to produce polyphenols which give low MW 

organic acids and aldehydes on oxidation. As with the previous pathway, quinones form as a 

decomposition product of polyphenols on further enzymatic attack from bacteria, 

actinomycetes or fungi (Kirby, 2006). Quinones then recombine, attach to other molecules or 

undergo self-condensation (especially in the presence of amino acids) (Huang et al., 2005).  

 

Route 3 (Figure 2.5): Maillard reaction 

 
The Maillard reaction (Maillard, 1913) involves a sugar-amine condensation. The aldehyde 

group on the sugar reacts with the amine to produce an N-substituted glycosylamine. This 

then undergoes dehydration to form highly reactive compounds. In the presence of amino 

acids, these compounds polymerise to form a brown humic type substance at moderate 

temperatures (Stevenson 1982). 

 

Yamamoto and Ishiwatari (1992) demonstrated that the Maillard reaction also occurred when 

using proteins other than amino acids. This is important in deeper soil layers as the 

abundance of amino acids is seen to decrease with soil/sediment depth (Yamamoto and 

Ishiwatari, 1992). 

The mechanisms and rate of the Maillard reaction remain vague and it may occur slowly under 

ambient conditions, despite the abundance of sugars and amino acids in soils (Hedges, 1988). 

Natural soil processes such as freezing and thawing or wetting and drying may speed this 

process.  

It is thought that soil mineral processes play a vital role in the catalysis of abiotic formation of 

HS (Huang et al 2004; Jokic et al., 2001). Manganese makes an effective catalyst due to its 

high oxidation potential, high specific surface area and high surface reactivity (Wang and 

Huang 2000). In common soils, manganese dioxide (MnO2) acts as a Lewis acid by accepting 

electrons from phenolic compounds to produce semiquinones and then produces humic 

substances via oxidative polymerisation (Hardie, 2007). The catalytic effects of MnO2 on the 

humification process will be further investigated in Chapters 4 and 7. 

With the major organic constituents of natural soils being plant residues (transformed to amino 

acids, sugars, polyphenols and lignins), what happens in artificial soils when new components 

are added and different proportions of the above are seen?  
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2.3 Artificial soils  
 

With the global carbon store diminishing through processes of poor land management, it is 

increasingly important to find ways to enhance and add to the soil. The obvious way to do this 

is to return organic wastes back to the earth.  Furthermore, this may become mandatory in the 

near future with the European Soil Strategy (Banks and Stentiford, 2007). Despite the high 

levels of CO2 released during mineralisation of composted wastes, the humification stage 

contributes to carbon sequestration (Smidt et al., 2008).  

Adding green wastes and composts to damaged soils can improve vegetation establishment, 

reduce compaction, protect against soil erosion and bind toxic trace metals (Beesley et al., 

2010; and references therein). With evidence pointing to the fact that urban soils may be a 

greater carbon sink than neighbouring native soils, it becomes increasingly more relevant to 

treat the management of carbon storage and the environmental pollution issue as a holistic 

concern rather than two separate issues (Beesley and Dickinson, 2010). 

The ability of composts to improve soil quality and fertility is well understood. They also reduce 

the risk of pathogens, weeds and parasites that are abundant in uncomposted manures and 

other organic wastes that are also put to land. It is important, however for the CLO to be fertile 

enough for planting. A continuous input of organic materials, principally through plant 

production is required to maintain or enhance the structural stability of the soil (Huang et al., 

2002). Soils should be an open system with energy and matter flowing in and out (Bear, 

1964).  

The major organic biodegradable component in MSW is holocellulose (cellulose plus 

hemicellulose) with lignin also being highly significant, especially with regards to its resistance 

to anaerobic degradation. The cellulose/lignin ratio can be used to assess degree of 

decomposition in landfilled wastes. Old landfill (8yrs) would have a ratio of around 0.8; fresher 

refuse samples would be around 4 (Zheng et al., 2007). This ratio can be used as a relatively 

accurate indicator for compost maturity with values of <0.5 being seen for fully degraded 

substrates (Komilis and Ham, 2003).  
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2.3.1 Compost-like outputs 
 

As previously discussed in Chapter 1, CLOs are produced via aerobic and anaerobic 

digestion. These technologies not only offer a diversion from landfill but produce a soil product 

which can potentially be returned to the ground as a carbon store. Many European countries 

such as the Netherlands and Austria favour aerobic digestion (Veeken et al., 2000; Smidt et 

al., 2008). The UK government in its 2007 Waste Strategy championed anaerobic digestion for 

its ability to produce energy. Little is known currently about the differences in the CLOs 

produced via each method but before any compost material is used, it must fulfil certain 

criteria. The PAS 100 standard, introduced by WRAP in 2007, is used to assess the suitability 

of compost made from greenwaste only. In 2010, PAS 110 was introduced for source-

separated anaerobically digested wastes. Currently, no standard exists for CLO produced 

from a co-mingled waste source which is something that would need to be addressed if this 

product was to be marketed. 

 

Figure 2.6 Adapted from WRAP (2003) and Eunomia (2007): typical composition of MSW in 

England and Wales.  

Defra is currently working on a new report (WR0119) which aims to provide current and 

reliable information on the composition of municipal waste. Figure 2.6 gives the most up to 
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date information for England and Wales on the average composition of household waste.  

Changes in composition will be seen both geographically and temporally with the evolution of 

waste management techniques and different cultural habits. For example, food waste varies 

from 40% of MSW in the United States of America (USA) and 20-45% in Asia (Chang and 

Hsu, 2008). 

The green and brown segments show the contributory fractions to biodegradable municipal 

waste. It can be seen that paper, garden and food wastes make up the largest percentage.  

Improvements in source-separation may see a greater reduction in contaminants (metal, glass 

and plastics) entering the biodegradable municipal waste stream.  

Figure 2.7, taken from the same sources shows the average biochemical composition of the 

BMW fraction of MSW.  

 

 

 

Figure 2.7: Adapted from Eunomia (2007) and wrap (2003):  % biochemical composition of 

each waste fraction (% dry matter).  

 

From these sources, it can be seen that cellulose at around 60% is the principal contributor to 

the degradable fraction of BMW, followed by lignin at around 20%. Proteins, sugars and fat 

contribute around 4, 6 and 8% respectively. The large proportion of fat from food waste is one 
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of the key factors that set CLO apart from natural soils. This fraction also contains a great deal 

of water; 50% of meat and 95% of vegetables such as lettuce, cabbage and tomatoes are 

comprised of water. This high moisture content and loose physical structure make it a good 

feedstock for composting (Chang and Hsu 2008). Furthermore, kitchen and garden wastes 

yield more humic substances than other organic waste feedstocks, possibly due to the high 

content of aromatic compounds in plant materials (Smidt et al 2008). A study carried out on 

other organic wastes such as sewage sludge, beer brewery sludge, raw tea compost and 

tobacco dust found a lower degree of humification than in natural soils (Unsal and Ok, 2001). 

Composting is thought to yield HA with chemical and structural characteristics similar to more 

humified soil HA (Sanchez-Monedero et al., 2002). Carbon contents are calculated at 41.1- 

63.2% which is similar to those seen in humic acids from natural soils (Unsal and Ok, 2001). 

The chemical properties will differ though, depending upon the composition of the organic 

waste source.  

As compositions of the substrate material fed into digesters present so much variation, it is 

important that engineering designs can accommodate these changes. When the conditions 

appropriate for traditional feedstocks are applied to food waste-rich feedstocks, the process 

usually performs poorly or fails (Chang and Hsu 2008). Food waste has a particularly high 

potential for CH4 production, partially due to the high fat content (Neves et al., 2009). This is 

beneficial for anaerobic process but not so for aerobic.  

Few studies have investigated the effects of composition variation on the composting process 

(Chang and Hsu 2008). However, several studies have been undertaken to investigate the 

effect that fat has on the process. Fats from animal and vegetable origins are almost 

completely degraded when co-digested with the organic fraction of MSW but can have 

inhibitory effects initially (Neves et al 2009).  

Chang and Hsu (2008) found that protein was the major factor that controlled the rate of 

composting, due to its requirement by bacteria to gain nutrients for their cell structures; fat was 

the most difficult to decompose.  

Bulking agents are often used in food-waste composting to improve structure, enhance 

aeration, to absorb excess liquids and to provide microorganisms with an extra energy source 

to balance the normally high N content. Composting without litter can lead to anaerobic 

conditions. Different bulking agents yield different effects on the composted product; leaf litter 
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and paper give the shortest half life for C whilst peat gives the longest (Eklind and Kirchmann, 

2000). This is possibly due to the fact that excessive aeration that the large surface area of 

litter provides can push the decomposition process preferentially towards mineralisation 

(Smidt et al 2008). It is also believed that lignin addition can also improve HA yields on its 

integration into the molecule (Smidt et al 2008). 

The acidity of food waste due to the presence of short-chain organic acids may also pose 

problems. These may be present in initial materials but also generated during the initial stages 

of the composting process (Yu and Huang, 2009). This generation can further reduce the pH 

which eventually inhibits microbial activity (Beck-Friis et al., 2003). This can be controlled, 

however, by the addition of an alkali amendment. Yu and Huang (2009) advocate the use of 

sodium acetate as a buffer salt which combines with the acetic acid to form a buffer solution. 

This has been found to have positive effects on degradation, although ammonia loss was 

increased also. 

In order to consider CLO as a potential carbon sink the nature, decay processes and 

decomposition products of its organic matter must be considered. The four proposed reaction 

pathways discussed in section 2.2.2 are based on natural systems. Components and 

proportions of such components are very different in artificial soils. As kitchen waste is a major 

component of CLO, the fat and protein levels in the soil are much higher than in natural soils. 

The lipids and proteins from food wastes are likely to differ from the waxes and amino acids 

found in leaf litter.  

Veeken et al. (2000) suggest that the polyphenol/condensation route and lignin 

theory/degradative pathway both had a significant contribution to HA formation in biowastes. 

This is based upon the fact that the feedstock mainly comprises plants with many types of 

lignin groups in the HA fraction. Figure 2.8 offers a typical composition of MSW-derived 

compost; shown are the degradation times for each component over a 60 week period. 
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Figure 2.8:  typical composition of MSW-derived compost with each component’s degradation 

times (Soyez & Plickert 2002) 

If the humification process could be engineered, the extra C that was being added to soils 

through various waste streams would have the potential to store more stable C. If the process 

could be studied and the possible reaction mechanisms catalysed, then more SOM could be 

converted to stable humic material and less mineralised. This would essentially mean less C 

flux and a greater tonnage of C stored. 

Once HAs form, can conditions be manipulated to ensure their recalcitrance? Could the 

environment in which they are laid to earth be engineered to discourage degradation and 

prolong its residence time in the soil? The final section of this chapter will look briefly at the 

factors which make HA vulnerable to degradation. 
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2.4 Degradation of humic substances 
 

Susceptibility to biodegradation depends upon the structural characteristics. The concentration 

of O-alkyl structures and phenolic-O are thought to be the most susceptible. As humification 

proceeds, a loss of O-alkyl (utilised by microbial population) and an increase of aromatic and 

alkyl carbons can be seen with decomposition (Chefetz et al., 2002). Low biodegradability is 

seen in aromatic rich, complex molecules that are low in carbohydrates (Kalbitz et al., 2003); 

dissolved carbohydrates and amino acids are preferentially degraded by soil microorganisms 

(Amon et al., 2001). However, Almendros and Dorado (1999) state that the aromatic/aliphatic 

ratio is not thought to have any significant correlation with resistance of OM and that the 

disordered macromolecular structure seems to have a greater influence than the relative 

proportions of individual components. Because fulvic acids are possibly formed by the 

cleavage of polyphenols (Preston et al., 1982) and tend to be more aliphatic in structure, they 

may be more vulnerable to degradation (Kalbitz et al., 2003). However the humic fraction, may 

behave very differently in its reactions as a supramolecular structure as compared to the 

reactions of its individual components.  

In a study by Qualls (2004) HA, being the most recalcitrant, saw 12.7% of its C mineralised 

after one year; FA 29.2% and leaf litter 38.8%. The depth of the material is also an important 

factor with decomposition in surface leaf-litter being much more rapid than in deeper, mineral 

soils (Qualls et al., 2003). This may have implications for CLO when it is laid to land. 

The process of microbial degradation of HS is largely undertaken by fungi. Bacteria may be 

more dominant in the environment but their ability to decompose stable macromolecules is 

limited to fulvic acids and other lower MW molecules. HA are too large to be taken in by 

microbial cells so are degraded by extra cellular enzymes. These enzymes vary from soil to 

soil, as do the species of fungi to which the enzymes belong (Huang et al., 2004). Small pore 

sizes typically associated with clay soils can only be infiltrated by these enzymes. 

Extracellular enzymes are rapidly sorbed to mineral and humic colloids, which can influence 

the ability of the enzyme to retain its catalytic effectiveness.  When adsorbed, changes in the 

tertiary structure of the enzyme and its active site can decrease its activity or disable it 

altogether (Burns, 1986). However, different materials have different enzyme immobilisation 

capabilities. It has been demonstrated that high concentrations of humic-like polymers may 

inhibit enzyme reactions (Kang et al 2002). Conversely, low concentrations of humic acid 
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might enhance enzymatic transformations of phenolic compounds. Furthermore, it has been 

suggested that SOM can stabilise enzymes (Burns, 1986). Oxidative degradation of lignin 

components in HS carried out by fungi, some microorganisms and minerals and can break 

down these usually refractory molecules to CO2 and water. In a study by Sunda and Kieber 

(1994), manganese oxides were found to split complex HS to form organic compounds of 

lower molecular. 

Molecules adsorbed onto clay minerals decrease the rate of biodegradability rendering them 

unavailable for microbial attack. Spatial arrangement of molecules is also a factor, with the 

dispersion of soil particles aiding mineralisation. The soil matrix is compartmentalised: organic 

substrates can be locked up in pores to which microorganisms do not have access either 

because the pore necks are too small or because water pathways are discontinuous. Non-

polar substrates (e.g. hydrophobic organic molecules) will tend to remain partitioned in 

hydrophobic regions of HS and not diffuse in aqueous solutions where microorganisms and 

their enzymes are located (Huang et al., 2002).  

Since bacterial populations can be preyed upon by protozoa, clay minerals can provide 

protection in small pores (<6µ m) offering shielding from these protozoa. Pore-size distribution 

of a soil is critical in determining relative abundance of habitats with different sizes and water 

regimes (Huang et al., 2002). 

Abiotic degradation of a photophysico-chemical nature can occur in HA (Polewski et al., 

2005). Chromophores in HA absorb light which can lead to an alteration in structure and 

composition. Mekkaoui et al. (2000) however, found them to be photostable after 24 hours, 

and furthermore, that they can produce a screen effect on the photochemical degradation of 

other organic species. Lutzow et al. (2007) report that a proportion of SOM is resistant to UV 

oxidation, possibly due to spatial inaccessibility of OM within clay aggregates and chars.  

The fact that CLO is a heterogeneous material means that a certain degree of flexibility in 

reaction to environmental conditions might be seen, as compared to homogenous material 

(Schaumann, 2006a). 
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2.5 Summary 

 

In relation to natural soils, CLO has a high CO2 flux rate, possibly due to its large organic 

carbon content. As the composition of the MSW and its corresponding CLO are inalterable 

within the scope of this project, the conditions under which the degradation of the OM occurs 

must be monitored and adapted instead.  

Simple compounds are low MW molecules and easily degraded. HS, in contrast, can remain 

in the soil for thousands of years; although they constitute the majority of SOC, they only 

contribute a small amount to carbon cycling within the soils due to their recalcitrance making 

them an important carbon sink. 

As many other reagents all co-exist in soils, it is probable that there are several pathways that 

occur closely and interact to form HS. Furthermore, a variety of proposed methods may 

account for the diversity seen in functional groups. Due to the lack of concurrent knowledge at 

a molecular level, there remains a certain level of debate as to whether or not HS even exist 

as a chemically distinct class or whether they are simply mixture of diverse classes of 

compounds, associated by intermolecular forces (Reemtsa et al., 2008). 

Despite the high levels of CO2 released during mineralisation of composted wastes, the 

humification stage contributes to carbon sequestration. Kitchen and garden wastes yield more 

HS than other organic waste feedstocks, containing chemical and structural characteristic 

similar to more humified soil HA. The chemical properties will differ though, depending upon 

the composition of the organic waste source. 

Susceptibility to biodegradation depends upon the structural characteristics with low 

biodegradability is seen in aromatic rich, complex molecules that are low in carbohydrates 

dissolved carbohydrates and amino acids are preferentially degraded by soil microorganisms . 

The depth of the material is also an important factor with decomposition in surface leaf-litter 

being much more rapid than in deeper, mineral soils. Molecules adsorbed onto clay minerals 

decrease the rate of biodegradability rendering them unavailable for microbial attack. Perhaps 

when the CLO is added to natural soils, it ought to be well mixed to prevent rapid 

mineralisation of a potentially immature material.  

 



48 
 

Chapter 3 

Development of analytical methods 

 

The CLO used in the following experimental trails is of an unknown age; it must therefore be 

assumed that the degradation processes are ongoing. When determining the stability and 

maturity of a CLO, two parameters can be used: the measurement of microbial activity via 

respiration (CO2 produced or heat evolved); or the determination of chemical factors, chiefly 

by examining the HS present (Veeken et al., 2000). 

Current literature outlines several viable methods for analysing HA in natural soils. 

Spectroscopic methods such as Py-GC/MS, Fourier Transfer Infra-red (FTIR) spectroscopy 

and 13C Nuclear Magnetic Resonance (NMR) outlined in Chapter 2, give a wealth of 

information about the elemental composition and possible structure of these complex 

molecules. Analysis using these methods, however, can be expensive. Simpler, more cost 

effective methodologies are available to identify and quantify HS present in soils. This may not 

offer the same detail of elemental composition nor information about the functional groups 

present, but can be useful nevertheless.  

Although methods for the identification and quantification of HS within natural soils are well 

documented, relatively little is known about the organic nature of CLO. Being a relatively new 

material and being produced from a variety of feedstocks by an array of different methods, it is 

difficult to define CLO in order to describe its structure and properties. In determining its 

composition, problems lie in the heterogeneity that can be seen not only geographically but 

also temporally. Different producers use various separation techniques to eliminate 

contaminating components (glass, plastics and metals for example); some are more 

successful than others. MSW composition also varies across the year, depending upon 

consumer spending. For instance, the proportion of plastic seems to increase in December 

and January due to the use of carrier bags for Christmas shopping (Pers. Comm., Tony 

Hitchens). It also varies from year to year as recycling strategies evolve. The implication is 

that it is difficult to formulate a robust method that can be used to assess HA contents of all 

CLOs when proportions of organic carbon differ greatly from batch to batch.   
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3.1 Trial aim 

 

This chapter will provide details of the preliminary experimental methods carried out to assess 

their suitability for their use on CLO from MSW; their development and optimisation will also 

be presented. As most of the trials employ the same materials and basic methods, it is 

practical to outline them in this chapter to avoid repetition.   Details of any differences in the 

experimental set up of each trial will be included in the relevant chapter. 

The primary aim of this project is to assess CLO as a viable C store. In order to investigate 

this, two factors have been chosen. The degree of composting can be measured using two 

parameters: 

Stability - which is directly related to microbial activity. Stable composts have a relatively low 

proportion of easily degradable OM; the more stable the material, the less microbial activity 

will be seen and thus, a lower carbon flux will be exhibited.  

Maturity - which is associated with potential plant growth in the composted media and is 

measured by the presence of humic acid; and 

With these parameters in mind, the evolved CO2 has been measured using an Infra-red Gas 

Analyser (IRGA). Secondly, the production of HA has been used as an indicator for stable C.  

3.2 Trial objectives 
 

In order to ensure that the trial aim was met, the work was divided into five main objectives. 

1. To find an appropriate method for the analysis of CO2 flux from the CLO samples. 

2. To optimise the alkali extraction methodology for the isolation of HA from the parent 

material. 

3. To test the efficacy of using ultra-violet visible (UV) and fluorescence spectrometry to 

examine the nature of the humic acid extracted from the CLO. 

4. To select apposite statistical analytical techniques to evaluate the data collected.  
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3.3 Experimental set up 

3.3.1 Materials  
 

The CLO used was supplied by PWM from their Thornley site in County Durham and was 

produced via aerobic digestion of MSW, as outlined in Chapter 1.4.1. The MSW fed into the 

digester varies in composition but Figure 2.6 in the previous chapter offers a typical 

composition for England and Wales. The resulting CLO is a heterogeneous material that is 

largely organic C, contaminated with ferrous and non-ferrous metals, hard and soft plastics 

and glass. Because the MSW is shredded before it reaches the digester, the small 

contaminating particles easily pass through the mesh filters.  

 

 

Figure 3.1 typical sample of PWM’s CLO 

 

The composition of CLO sees regular changes as a result of evolving recycling initiatives and 

varying collection areas; more deprived areas tend to see less green food waste and more 

packaging (Pers. Comm., Tony Hitchens). As a result of this diversity, this CLO exhibits a very 

broad range in average C content of between 20 - 80% (PWM).  
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The variation in C content poses a problem when trying to acquire a representative sample for 

analysis. Property measurements often require the sample to be homogeneous in order that 

sub-sampling will be representative. In heterogeneous materials such as CLO, too small a 

sample and an insignificant or random characteristic could be magnified; too large a sample 

could mask non-homogeneities (Gao et al., 1995). When testing batches of CLO, several 

replicate samples are needed to give as representative a picture as possible of the nature of 

the batch as a whole.  

During trial 1, an attempt was made to manually extract the contaminating macro-components 

from the CLO, but this was found to be too time-consuming and would have required the 

collection and storage of more than double the sample material. The removed material 

collected was stored for subsequent control experiments. 

The contamination level of various trace metals and salts from PWM’s CLO was studied by 

Simpson (2008) and compared to similar soils. The main elements of concern found in its 

leachate were cadmium, lead, aluminium, iron and manganese which not only all breeched 

the EC drinking and surface water directive, but also landfill discharge consents. It was found 

that the most successful method of remediation was a simple five minute wash with tap water. 

This was found to remove a significant percentage of these contaminants, bringing them to 

within the environmental quality standards (EQS) mentioned. However, at the time of writing, 

this step had not been incorporated into the process so it can be assumed that as yet, the 

CLO is still heavily contaminated. 
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3.3.2 Lysimeters 
 

 

Figure 3.2: Lysimeter used in trial 1 

Lysimeters were constructed as shown in Figure 3.2. They were made of 8cm diameter 

polypropylene piping, cut into 30cm lengths. The diameter of the tube was chosen so that the 

chamber of the Infra-red gas analyser (IRGA) might fight directly over the top, creating the 

necessary seal. The bases were made of polypropylene end-piping, attached with super glue 

and sealed with water-resistant sealant.  

The lysimeters were open at the top to allow aeration; some were free-draining at the bases 

and others sealed, depending upon the nature of the experiment. A mesh lining was included 

to ensure that the CLO material was held in place and not lost through drainage pipes. In 

earlier trials, the lysimeters were placed outdoors on gabions to prevent waterlogging and to 

allow exposure to the environment to mimic field conditions as much as possible.  

For trial 1, they held a capacity of around 600g of CLO. Before the CLO was utilised, the dry 

weight was calculated; as some materials have a greater water-retaining capacity than others, 

it was necessary to establish this so that trial 1 was comparable to future trials. For all trials, 

the soil depth was a minimum of 30cm. 
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The trial was conducted outside of the Department of Earth Sciences, Durham University, and 

flux measurements were taken between October 2006 and December 2006. At low 

temperatures, a small change can have a great effect on flux rate (Chapman and Thurlow, 

1996). This has significant implications for experimental trials carried out during the winter 

months in the north of England.   

The measurements commenced after a two week delay period to allow the microbial 

community to establish. Flux was then measured up to three times a week for ten weeks.  

Once all of the flux measurements had been taken, the samples were sacrificed and frozen for 

humic analysis from January to April 2007.  

 

Sample CLO (g) Sand (g) MnO2 (g) 

1a 600 0 0 

1b 600 0 0 

2a 555 0 5 

2b 555 0 5 

3a 555 5 0 

3b 555 5 0 

4a 550 5 5 

4b 550 5 5 

5a 550 0 10 

5b 550 0 10 

6a 550 10 0 

6b 550 10 0 

 

Table 3.1: Proportions of CLO, sand and MnO2 added to each lysimeter for trial 1. 

The sampling matrix is shown in Table 3.1. All samples were duplicated and measurement of 

each sample was taken twice to give a total of four replicates. Control samples were taken for 

each test to calculated lower limits of detection for each method. Results that fall below this 

will be discounted.  
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3.4 Physical data 

 

Temperature and soil moisture content are both considered to be important factors that control 

flux rate in natural systems. Decomposition is affected by these factors, with seasonal patterns 

observed in CO2 flux (Pumpanen et al., 2003). Preliminary trials were used to determine 

whether or not this was also the case for CLO. It was also useful to obtain some baseline data 

on levels of flux from CLO in order to plan further trials.  

 

3.4.1 Ambient temperature 

 

The temperature was measured using a min/max thermometer on each day that the samples 

are measured for CO2 flux. This will be incorporated into the flux calculation when interpreting 

the data received.  

 

3.4.2 Moisture content 

 

A high water table can increase flux rates (Vouklitis et al., 2000) so any waterlogging within 

the lysimeters may drive CO2 efflux. 

During future trials, moisture content will be determined by sub-sampling and drying a small 

amount of CLO for on each sampling day. The equivalent dry-weight will then be used in the 

flux calculation to make all samples comparable over the course of the trial. 

 

3.4.3 pH 

 

This measurement was not taken until subsequent trials. The leachate from the lysimeters 

was collected and stored below 4ºC in 30ml polycarbonate screw cap containers. On the day 

of analysis, the samples were equilibrated to room temperature and the pH values read using 

a Hanna instrument HI 9025 microcomputer pH meter which had been calibrated at pH 4 and 
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pH 7 ± 0.01 at 25ºC. The electrode probes were rinsed with Mili-Q de-ionised (DI) water 

between each sample reading to minimise contamination.  

3.5 Carbon flux analysis 

 

The method chosen for this parameter was a closed chamber method with CO2 measurement 

via infra-red (IR) analysis, using an EGM-4 Environmental Gas Monitor and CPY-4 chamber 

from PP Systems (Massachusetts, USA). The principle of this involves the measurement of 

gases by determining the absorption of an internally emitted IR source by each sample. The 

technique offers high precision and an accuracy of < 1% of span concentration over the 

calibrated range. It is also portable for field sampling so measurements could easily be taken 

from samples based outdoors. The IRGA allows a relatively quick and simple collection of 

data compared to other methods, which is imperative when a large number of samples must 

be analysed within a tight time-frame. The collected data can be stored on the IRGA and 

transferred to PC or laptop for analysis. 
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Figure 3.3: EGM-4 Environmental Gas Monitor with canopy chamber. The piping is used as a 

hood to eliminate any photosynthetic effects.  

 

3.5.1 Data collection 
 

The conventional method of taking measurements directly from the lysimeters with the use of 

a canopy chamber was adapted for trials one and two, in order to overcome the problem of 

comparatively large fluxes associated with CLOs. The lysimeters were sub-sampled and a 

representative amount of CLO was measured into an air-tight container. Holes were drilled 

into the lid of the container for the air-in and air-out tubes of the IRGA and were made airtight 

with a sealant. 

Samples remained outside until directly before their measurement as initial tests saw a 

significant increase in flux when they were brought inside and allowed to warm to room 

temperature. Following a number of pilot trials, the ideal amount of CLO was found to be 30g 

which was collected from throughout the lysimeter to give a representative sample. The 

sample was then weighed and the exact weight recorded and sealed into the airtight 

container. The ambient outdoor and room temperatures were also measured and recorded. 
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Figure 3.4: typical flux time series in part per million by volume (ppmV) of a CLO sample over 

five minutes. An initial delay period of 30 seconds can be seen followed by a steady increase 

of flux. 

Initially, readings were taken every fifteen seconds (manually timed) over a five-minute time 

period for each sample, with the first minute disregarded to allow the flux to stabilise. The lag 

time can be seen in the first 30 seconds of the sample flux shown in Figure 3.4. On analysis of 

the results, the r2 values were calculated between each minute of data collected. Little 

difference was observed between data collected at two minutes and five minutes. It was 

decided, therefore, to reduce the sampling period from five minutes to two minutes. The 

frequency of data collection intervals was increased from every fifteen seconds to every five 

seconds to ensure sufficient data points were obtained for analysis.  

The IRGA was set to collect data at five second intervals over the period of two minutes. Once 

the tubing was fitted to the glass chamber, parameters such as chamber volume and 

maximum flux rate were set. Finally, the chamber was flushed for two minutes to allow the 

baseline to return to ambient CO2 levels before the lid was sealed and the flux measurement 

commenced. After the specified measuring period the data was stored, the material removed 

and the chamber flushed again before the next sample. Several samples were measured in 

duplicate to ensure precision and blank readings were taken periodically to ensure the 

chamber was being flushed efficiently. 
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3.5.2 Data conversion 
 

The data is recorded as carbon dioxide flux (ppmV) and can be uploaded directly onto a PC 

from the IRGA. A spreadsheet was created to convert the recorded values to grams of carbon 

per gram of CLO per hour. This was achieved by adapting the ideal gas law: 

 

[3.1]     �� = ��� 

 

Where P is the partial pressure; v is the volume measured; n is the number of moles; R is the 

Gas Constant and T is the absolute temperature. Ultimately, the required value is the flux of C 

so equation 3.1 is rearranged thus: 

 

[3.2]      � = ��
	
 

And then combined with: 

[3.3]     � = �� 

 

Where m is mass of carbon fluxing, n is the number of moles and M is molecular mass. This 

give: 

 

[3.4]     � = 
��
	
� � 

 

In order to include changes in ambient temperature, the term ‘b’ for the measured air 

temperature at the time of analysis is also incorporated. The Arrhenius equation is often used 

to demonstrate the temperature dependence of flux but this is not ideal in natural systems, as 

microbes have an optimum temperature above which respiration no longer increases (Fang 

and Moncreiff, 2001). 



59 
 

[3.5]     � = 
 ��
	�
���� � 

 

Finally, the flux value given by the IRGA in ppm (term ’a’) is added. This is converted to a 

weight, rather than a dimensionless figure, by multiplying by 10-6.  

 

[3.6]     � = �� × 10��� 
 ��
	�
���� � 

 

Where m is the mass of carbon fluxing; and M in this case is 44 which is the molecular weight 

of CO2 as shown in Table 3.2 along with other constants used. 

 

Chamber volume (V) 1140 (ml) 

Surface area (SA) 0.0184 (m2) 

Molecular weight of CO2  44.1(g) 

Zero Kelvin (K) 273.15 (°C) 

Atmospheric pressure (P) 0.995 (atm) 

Gas constant (R) 0.0820575 (L atm/mol K) 

 

Table 3.2 the fixed values used in the flux calculation. 

 

The IRGA data was uploaded into Microsoft notepad and then transferred into a Microsoft 

Excel spreadsheet. Flux was measured in four second intervals over a two minute period; the 

average flux for each sample was calculated and then equation 2.6 used to convert the ppm 

values given by the IRGA to grams of carbon per gram of CLO fluxing per hour (gC/gCLO/h) 

or gC/gCLO/day by multiplying by 24. 
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3.6 Humic acid analysis 

 

The CO2 evolved from the soil gives only one dimension to processes that may be occurring; 

in order to better understand C storage within the soil, it is important to look at the stable C 

compounds that are present as well as the CO2 released when labile components are 

mineralised.   

It is also important to use a suite of analytical techniques, rather than relying solely on one. 

This is particularly the case when dealing with new or modified methods or largely 

uncharacterised material. The amount of extractable C depends upon starting material of the 

soil (Veeken et al 2000) so with a material such as CLO, where the starting material is 

variable, it is vital to employ several robust methods. 

In this section, the chemical techniques chosen to analyse the stable HA fraction of the soil 

are detailed. 

 

3.6.1 Alkali extraction 
 

The isolation of HS from soils has long been seen as a challenge, but the highest yields are 

often achieved with a conventional alkaline extraction process (Shirshova et al., 2006) as 

proposed by The International Humic Substance Society (IHSS).  This is a fairly standard and 

widely used technique for both natural and artificial soils that has been developed and 

modified over recent years (Osterberg et al., 1993; Filip et al., 2000; Cheftetz et al., 2002; 

Khayet et al., 2004; Li et al., 2003; Allard, 2005; Hayes, 2006; Brunetti et al., 2008; Droussi et 

al., 009; Vieyra et al., 2009). As each artificial soil differs with regards to its source materials 

and method of production, it is necessary to treat it as an unknown material, rather than 

relying on methods used in other studies. 

The organic C content is high for this artificial soil and any inorganic C that may be present 

should be negligible so ought not to require removal.  This method has been modified for use 

with CLO through a series of preliminary experiments. 
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Current literature and the IHSS propose two main alkaline reagents with which to extract HA: 

sodium hydroxide (NaOH) and sodium pyrophosphate/sodium hydroxide mix (Na4O7P2).  

These were each tested at increasing molar concentrations from 0.1-0.5 molar (M) with CLO 

samples weighing 2g, 5g, 10g, 20g and 100g (Table 3.3). Additionally, the contaminating 

components of the CLO (hard plastic, soft plastic, glass and metal) were also tested to ensure 

that they would not skew the results. 

 

 Alkaline extractant Concentration 

(Molar) 

Acidification to 

pH 2 

Protocol 1 Sodium hydroxide 0.1 HCl 

  0.2 HCl 

  0.3 HCl 

  0.4 HCl 

  0.5 HCl 

    

Protocol 2 Sodium hydroxide. sodium pyrophosphate 0.1 HCl 

  0.2 HCl 

  0.3 HCl 

  0.4 - 

  0.5 - 

 

Table 3.3: The two reagents used at various concentrations used for the preliminary alkali 

extraction procedures. HCl was always used for the acidification step. 

Often, a pre-treatment with an organic solvent such as benzene or methanol is employed to 

remove amino acids, lipids, saccharides and other non-humic compounds that can be co-

extracted (Shirshova et al., 2006). However, if HSs exist as a supramolecular assembly, 

molecules that are held together by weaker forces within the molecule may also be removed, 

thus altering the nature of the ultimately extracted material. Wilson et al., (1988) used 1H-NMR 

to show that these low MW fractions were not, in fact contaminants during the extraction 

procedure but present from association with higher MW molecules. Hence, it was decided to 

omit this pre-treatment step. 

 



62 
 

The following method was used for each test: 

1. The appropriate amount of CLO was weighed out into clean, labelled 100ml polyethylene 

centrifuge bottles. 

 

2. The specified alkaline solution was added using a 10ml Gilson pipette. The bottles were 

placed on a shaker table and agitated for 24 hours.  

 

3. The samples were then separated in a centrifuge (ALC multispeed centrifuge PK121) at 

4000 rpm for 15 minutes and the supernatant decanted into a clean, labelled 250ml 

polyethylene bottle, sealed and stored below 4°C.  

 

4. A further wash of extractant of the same concentration and volume as the first was added 

to each of the 100ml bottles and a second, third and fourth extraction taken.  

 

5. These were again agitated on the shaker table for 24 hours and steps 2-4 were repeated. 

 

6. The subsequent washes were added to the first and then the solution was filtered under 

vacuum filtration using 1.2mm filter paper1. 

 

7. The filtered solution was then divided between two clean, labelled 30ml polycarbonate 

screw cap containers and 100ml was transferred into clean, weighted and labelled 100ml 

polyethylene bottles.  

 

8. The samples in the 30ml polycarbonate screw cap containers were stored in the fridge for 

further analysis (via UV spectroscopy and fluorescence photospectrometry) and the 

samples in  the bottles acidified with Analar HCl to pH 2 

 

9. The bottles were then returned to the shaker table for two hours to allow the humic and 

fulvic acid fractions to separate. 

 

                                                      
1 Largest humic acid particles that exist in most soils and water systems are at most, 110nm (Osterberg et al., 
(1993). 
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10. The 100ml bottles were then centrifuged at 4000 rpm for 15 minutes and the fulvic acid 

decanted off into clean, labelled 30ml polycarbonate screw cap container 

 

11. The remaining humic acid was dried in an oven at 30°C for 48 hours and then the bottles 

weighed and yield calculated. The humic acid was collected and stored in clean, labelled 

sterilins for further analysis. 

 

3.6.2  UV photospectrometry 
 

UV spectroscopy has been used extensively in studying HS, with the ratio of absorbance at 

465nm to 665nm giving the humic and fulvic acid ratio (E4/E6 ratio). This is a useful indicator 

for the degree of aromaticity and thus, humification of SOM (Ghosh and Schnitzer, 1979) and 

furthermore, is thought to be the best indicator of the degree of maturity of composts 

(Domeizel et al., 2004). 

Like alkali extraction, this is a well-used technique with several different methodologies 

advocated. Chen et al., (1978) for example is a much cited methodology (Trubetskya et al., 

1994; Unsal and Ok, 2001; Shirshova et al., 2006; Wei et al., 2007). However, this 

methodology utilises sodium pyrophosphate (Na4O7P2) as the humic/fulvic extractant. For 

efficient analysis during this project’s trials, the first stages of the alkali extraction and the UV 

photospectrometry could be combined. It was decided to trial the use of NaOH rather than 

Na4O7P2, as used successfully by Fuentes et al. (2006), amongst others.  

Samples were prepared as in stages 1-8 of the above alkali extraction method. The samples 

were then pipetted into clean, dry quartz cuvettes and analysed using a Jenway 6505 UV 

photospectrometer at wavelengths 465nm and 665nm. The E4/E6 ratio of the absorbance 

given for each wavelength gives an indication of the aromaticity of the organic compounds 

presents in the sample; the lower the ratio, the greater the degree of aromaticity.  

It was suggested that a pH of between 7 and 8 was optimum for E4/E6 measurement (Chen et 

al., 1977). Some preliminary measurements were taken to assess whether or not an 

acidification stage in the procedure was necessary. Samples were acidified to pH 6, 7, 8, 9 

and 10 and spectra run as per the method outlined above.   
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3.6.3 Fluorescence spectroscopy 
 

Fluorescence spectroscopy is a useful tool for the analysis of HS. This form of analysis only 

became available to this project in September 2008, so only samples from trials 3 and 4 

benefitted from this procedure (Chapters 6 and 7). 

Again, as with UV photospectrometry, the same alkali-extracted material could be used for this 

method. Samples had to be run as soon as feasibly possible after extraction to ensure that 

any degradation of the humic material within the sample was avoided (Allard et al., 1994).  

The samples were pipetted into clean, dry quartz cuvettes and first run through a Jenway 

6505 UV photospectrometer. Emission was read over a range of wavelengths from 200-

500nm to assess the concentration humic material contained in the sample. All HA solutions 

were diluted to <0.3 at the excitation wavelength 337nm (Shirova et al., 2006) with 0.2M 

NaOH x10, x100 or x1000 until an appropriate concentration was achieved. This was to avoid 

re-absorption or the inner filter effect (IFE) (Larsson et al., 2007). The dilution factor was 

recorded for subsequent calculations. Once the concentration was correct, the samples were 

pipetted into a clean, dry quartz cuvette and placed in the fluorescence spectrometer. The 

parameters were set at 300-700 nm emission range and 200-800 nm excitation range with 

readings taken every 5 seconds. This ensured that the quality of the data was sufficient and 

that samples could be run within a suitable timeframe.  

For each sample, the resulting data sheet was stored and then transferred into Microsoft Excel 

(2007) and SigmaPlot 10.0 for analysis. Contour maps of excitation-emission matrix (EEM) 

spectra were produced to provide qualitative information and humification indices (HIX) were 

calculated for quantitative analysis (Ohno, 2005).  HIX was calculated using a comparison of 

the emission seen over two different excitation ranges (435-480 nm and 300-345 nm); the 

higher the index value, the greater the degree of humification.  
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3.7 Statistical analysis 

 

Once the data was collected, it was of fundamental importance to assess whether 

relationships between sets of data were significant or not. For this research, the data has been 

collected and organised using Microsoft Excel (2007) and Minitab 13 software has been used 

for the statistical analysis.  

Analysis of Variance (ANOVA) (General Linear Model) was chosen to assess whether there 

were any patterns present in the data. Throughout the experiments, several parameters are 

examined and with each form of analyses, a different responses. It is necessary to examine 

the relationships between these factors and all must be compared against each other in a 

sensible and logical way.  

Variations will exist between not only the trials undertaken for this project, but similar trials 

carried out by other authors. Thus, it is necessary that a standard exists with which data can 

be effectively compared.  

 

3.7.1 Analysis of Variance (ANOVA) 

 

Data was entered into a master Microsoft Excel (2007) spreadsheet; data of interest was then 

chosen and transferred into a Minitab 13 worksheet. ANOVA (General linear model) was run, 

with the appropriate response variable (flux rate for example) and predictors (week or 

treatment for example) taken from specified columns on the worksheet. Tukey’s simultaneous 

pair-wise comparison test was used to distinguish between means at p < 0.05 as a post-hoc 

test. All results used from this point will be quoted as being statistically significant if they 

satisfy this requirement.  
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3.8 Preliminary test results 

3.8.1 CO2 flux 
 

Both temperature and moisture content were measured alongside carbon flux over a 36 day 

period. Both parameters were found to significantly affect CO2 flux from CLO (Jarvis, 2007).  

This highlights the need for the ambient temperature to be recorded at the time of 

measurement and its inclusion in the flux calculation, outlined in equations 2.1-2.6.  

This data also provide an expected baseline flux for means of comparison in subsequent 

trials. Flux was given at a rate of between 1-25 gC/gCLO/day, which was seen to decrease 

over the short trial period. Replicate samples gave low r2 values, showing a large range in 

values.  

 

3.8.2 Alkali extraction 
 

First, optimum amount of sub-sample needed was established against varying concentrations 

of NaOH ranging from 0.1M – 0.5M. The results of this are shown in Figure 3.5. The yield is 

given as a percentage of the total amount of CLO for that particular sample.  

 

 

Figure 3.5: Percentage yield of HA (relative to the initial sample weight) determined by varying 

the concentration of NaOH used in the alkali extraction. Duplicate samples are included to 

demonstrate the lack of agreement between replicates.   
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The results show a high degree of variation between the replicate samples. A concentration of 

0.2M appears to give the best yield; the difference between it and the other samples is 

statistically significant (p<0.05). A sample weight of 10g gave satisfactory yield of HA for 

comparison and would mean that enough of the sample remained for any further analyses.  

The same tests were repeated with Na4O7P2. The results of the multiple extractions and the 

comparison of its performance against the NaOH can be seen in Figure 3.6 and Figure 3.7 

respectively.  

The Na4O7P2 extracted a greater yield than the NaOH; however, contaminating components 

appeared not to be affected by the latter but the former seemed to extract material from the 

contaminants, thus favouring NaOH as the extractant.  

When making the alkali solutions, the Na4O7P2 pellets took around 6 times longer than the 

NaOH pellets to dissolve. A less concentrated solution might have been necessary to 

accommodate a large number of samples (and therefore large volumes of solution) which may 

have been less effective at extracting the humic substances. Lutzow et al. (2007), found 

NaOH to be most efficient, giving yields of up to 80% OM (as compared to Na4O7P2 which only 

yielded up to 30%). They also found the former much more effective than the latter on coarser 

SOM fractions. Hence, the NaOH is the preferred option. 

So in summary: 

• The NaOH solution is optimal over sodium pyrophosphate.  

• A 10g sample of the CLO yields enough HA for measurement   

• Two extractions with 100ml of 0.2M NaOH is sufficient for the purposes of this trial. 

This method provides an adequate compromise between yield and time/resource constraints 

imposed by the number of samples that needed to be analysed. It also ensures that a minimal 

amount of the samples will be removed from the lysimeters throughout the trials.  
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Figure 3.6: the percentage of humic acid extracted with each wash and the 

total amount for each sample; samples 1a-1c were extracted with 0.2M 

sodium pyrophosphate and samples 2a-2c with. 0.2M NaOH. 

 

Figure 3.7: the percentage yields from both CLO and contaminants using 

0.2M NaOH and 0.2M Na4O7P2 as indicated in green and red respectively. 
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3.8.3 UV Photospectrometry 
 

When samples were acidified, no statistically significant difference was observed between 

data sets. Moreover, on the addition of HCl, precipitation occurred which would render the 

sample less effective for analysis using this method. 

For trial 1 samples, the typical E4/E6 ratio was in the range of 5-12. This is in agreement with 

similar studies conducted on other CLO material (Garcia-Gil et al., 2003; Li et al., 2004; 

Fuentes et al., 2006; Wei et al., 2007; Pedra et al., 2008). For subsequent trials, it is hoped 

that this ratio will reduce if the optimisation of the humification process can be achieved and 

more stable C produced.  

 

3.8.4  Fluorescence spectroscopy 
 

From preliminary tests it was observed that the addition of acid to achieve a neutral pH could 

result in the separation of fractions within the extracted material so it was optimal not to alter 

the pH. Baker et al., (2006) concluded that the pH of the solution had a negligible effect on the 

results and so samples were not adjusted through acidification.  
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3.9 Conclusions 

3.9.1 Revisiting the objectives 
 

At the outset of the trial, five main objectives were outlined.  

 

1. To  find an appropriate method for the analysis of CO2 flux from the CLO samples 

 

This was achieved via the sub-sampling of the lysimeters to overcome the comparatively large 

flux of CLO. It was initially hoped that the IRGA’s flu chamber could be fitted directly over the 

lysimeters so samples could be analysed quickly in situ. When this was attempted, the flux 

readings were above the upper limits of detection so another method had to be sought. 

 When sub-sampling, it is difficult to obtain a representative sample due to heterogeneity that 

would naturally exist at different depths within the lysimeter (Veeken et al 2000). This 

necessary adaptation to the preferred method also meant that the samples were turned every 

time the flux was measured. Would this, therefore, have been representative of the conditions 

under which the CLO would be laid? Thus, Sub-sampling was not only time consuming, but 

may not give a true representation of how a non-aerated soil would flux. However, Kuzyoukov 

et al., (2009) found that mechanical disturbance of the test sites only had an influence on the 

CO2 efflux for up to two weeks so given the trial period, this ought not to be a problem.  

Ultimately, this method of analysis was relatively quick with little sample preparation needed. 

The IRGA was easy and convenient to use. This meant that all of the samples could be tested 

within the same day, which is important to maintain a certain level of control over the 

experiments. Flux rates seen were similar to those sited in a similar study by Tognetti et al., 

(2007) giving confidence in the results produced. There is, however, very little literature 

available on CO2 flux from composted MSW using this particular methodology.  
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2. To optimise the alkali extraction methodology for the isolation of HA from the parent 

material. 

Based on the IHSS method, 0.2M NaOH was chosen with two extraction stages. A sample 

size of 10g with 100ml of extractant appears to yield sufficient humic acid when the process is 

repeated twice.  The sodium pyrophosphate, although it gave a greater yield of humic acid, 

was more time consuming to prepare. More importantly, it also gave extraction yields against 

the control samples of contaminating material. The implications being that if it were used, any 

contaminants present would skew the results.  

A study by Li et al (2003) showed that each extraction can remove humic acids of differing 

MW. The first six extractions appeared to select the components with the highest molecular 

weights. It is important to consider this when deciding upon the optimum number of 

extractions to carry out on each sample. Because of time constraints, the two extractions 

decided upon for this study may preferentially remove higher MW fractions and not give a true 

representation of the humic material as a whole.  

The use of this method alone, however, remains unreliable as non-humic materials (such as 

amino acids, carbohydrates, lipids and metals etc) may be extracted with the NaOH and 

inflates the reported yield (Veeken et al 2000; Nichols and Wright, 2006). This basic extraction 

process may promote various chemical reactions within the humic substances such as 

oxidation, hydrolysis and cleavage reactions (Shirshova et al., 2006). That said, if humic 

substances do exist as a supramolecular assembly, then these moieties would be part of the 

structure.  

 

3. To test the efficacy of using UV and fluorescence spectrometry to examine the nature 

of the humic acid extracted from the CLO 

 

These methods were successfully integrated with the first stage of the alkali extraction (pre-

acidification), meaning that a great deal of time and materials were saved. Efficiency is 

imperative when many samples must to be analysed in a short period of time.  

 

The data produced at this stage seemed to be in general agreement with similar studies. In 

conjunction with UV photospectrometry, it has the potential to provide information about the 

degree of humification of each sample.  
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4. To select apposite statistical analytical techniques to evaluate the data collected.  

 

ANOVA has proven to be a suitable technique to analyse data sets produced, so will be used 

throughout this research for data analysis and the appraisal of results. Although the data sets 

seen thus far have been relatively small and many trends apparent to the naked eye, it will be 

interesting to use a larger amount of data to see whether more subtle differences between 

data sets may occur. 

 

3.9.2 Trial limitations 
 

The sub-sampling necessary to meet the requirements of the IRGA meant that the CLO may 

not have given flux rates that would be representative to those seen in a field situation. These 

preliminary tests meant that measurements were taken over a short space of time; a longer 

trial period might yield more interesting results.  

Some compromises must be made when it comes to deciding over the number of replicate 

samples and washing steps (alkali extraction) in the consideration of time and resources 

available.  

 

3.9.3  Implications for Trial 2. 
 

These preliminary methods have provided a suite of analytical methods, with which the project 

can progress. In trial two, new experimental parameters will be introduced; these methods will 

be employed to give a coherent and comparable new data set within the boundaries of this 

research. Baseline data produced in trial one will add to the information collected in further 

trials to give insight into the reproducibility of the methods in terms of their robustness.  

The need for replicate sampling was highlighted but this must be balanced with the time and 

resources available for each trial. With the inclusion of new parameters and possibly additional 

methods, each series of experiments will take longer and use more material. It is important, 

therefore to use the least number of replicates viable without any detriment to the trial.  
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Chapter 4 

The effect of manganese-coated sand on the 
humification of CLO 

 

This chapter details the design, implementation and results for the second experimental trial. 

Following the method development in trial 1, these experiments seek to test the effectiveness 

of a proposed catalyst of the humification process. It is hoped than manganese dioxide will 

encourage the production of humic substances in the CLO as it has been proven to do in 

natural soil systems (Yamamoto and Ishiwatari, 1992; Wang and Huang, 2000).  
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4.1 Catalysis: Manganese dioxide 
 

Manganese is present naturally in most UK soils. Being a transition element metal, it has 

multivalent nature and can exist in many different forms. With a high specific surface reactivity 

and oxidation potential, manganese oxides are highly reactive as catalysts within soils 

(Brunetti et al., 2008).  

As previously discussed in section 2.2, humic substances are polyelectrolytic macromolecules 

contain a variety of functional groups; of these functional groups, oxygen-containing carboxyl 

and phenolic hydroxyl groups offer acidic binding sites for such naturally occurring metals 

(Senesi and Calderoni, 1988; Jones and Bryan, 1998; Zhou et al., 2005; Chien et al., 2006; 

Chassapis et al., 2009; Li et al, 2010). Manganese may act as a Lewis acid by accepting 

electrons from phenolic compounds, which form semiquinones and then humic substances via 

oxidative polymerisation (Huang, 2004). As well as humic ligands, carbonyl, alcoholic and 

water molecules are also arranged around Mn2+ ions to form an irregular octahedral 

configuration (figure 4.1).  

 

Figure 4.1: the irregular octahedron configuration of Mn2+ (indicated by the red circle) and its 

ligands (indicated by the blue circles). 

Humic ionic groups undergo ligand exchange with H2O or OH- and by surface complexation 

between oxide OH2+ groups and humic ionic groups. Both require either the uptake of protons 

or the expulsion of hydroxyl ions by the oxide. This requirement for protons accounts at least 

partially for the dependence of adsorption on pH (Tipping and Heaton, 1983).  
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Metal-humic complexes can affect the concentration, mobility and bioavailability of these 

metals in soils and associated environments (Zhou et al., 2005; Chien et al., 2006). They can 

offer stability to metals, allowing them to remain in solution and are readily available, yet 

resistant to microbial attack (Chassapis et al., 2009). Metals can reduce intermolecular 

repulsion by reducing humic charge (Bryan et al., 2001). 

The extent of metal-humic binding may vary with the source, MW and configuration of humic 

matter; pH conditions within the soil; ionic strength of the soil water, and chemical properties 

of the metal as well as the relative abundances of both the metal ions and humic substances 

(Chassapis et al., 2009). Li et al (2010) found that the effective pH range was greater than 6; 

considering the pH results given in the previous chapter CLO should offer a suitably 

operational environment although Tipping and Heaton (1983) state that adsorption decreases 

with increasing pH. Zhou et al., (2005) also suggest that pH is amongst the most critical 

parameters in controlling metal-humic complexation. 

Even when humic acid concentrations are low, metal binding can still be significant (Zhou et 

al., 2005) so premature CLO could still potentially benefit from the addition of MnO2. Metals 

with a high charge and a small radius are the most effective at inducing structural change 

(Bryan et al., 2001); again, Mn4+ satisfies this requirement: Mn (along with iron, aluminium, 

cadmium, copper, nickel, lead and zinc) binds particularly strongly to high molecular weight 

fractions (Jones and Bryan, 1998). 

As metal binding plays an important role in the diagenesis (Senesi and Calderoni 1998) and 

aggregation (Bryan et al., 2001) of humic materials, this trial will incorporate MnO2 into the 

CLO to investigate its effects on the humification process. It is hoped that it will act as a 

catalyst in this artificial soil, as observed in natural soils. Aggregation is thought to be due to 

the reduction of long-range electrostatic repulsion on the complexation of the metal ion. 

Conversely, Sunda and Kieber (1994) propose that manganese oxides can actually split 

humic substances to form lower molecular weight compounds, thus making them accessible 

to soil microbes. If this is the case, the addition of MnO2 to CLO should see increased CO2 flux 

when compared to control samples.  

One possible source of MnO2 is from the water treatment process. Rapid sand filters remove 

Mn from drinking water, leaving behind manganese-coated sand. These beds are refreshed 

every four weeks and the waste product is sent to landfill. This totals around 400 tonnes per 
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If CLO can provide a stable carbon store, enriched by manganese, two waste products could 

be used in a beneficial way. With many metals species, manganese is essential for life at low 

concentrations but becomes toxic above certain levels; therefore, the levels added to CLO 

could be a limitation.  

4.2 Trial aims 

To combine manganese dioxide-coated sand from Northumbrian Water with PWM’s CLO in 

order to establish whether it has any effect on the humification process. 

 

4.3 Trial objectives 
 

1. To find the ideal proportion of Mn to use. 

2. To identify the species present in the manganese dioxide coated sand. 

3. To test the availability of the manganese within the given media. 

4. To ensure that the manganese has no unexpected effect upon the analytical methods 

used.  

5. To employ a sand control to exclude any physical effects. 

6. To asses study length, looking at the humification of samples over time. 

7. To examine the proposed catalytic properties of MnO2 –coated sand when added to 

CLO through a fully factorial 10 week trial.  

4.4 Materials used 
 

A more detailed description of the materials (including the contaminating metals species 

present in CLO) and methods used can be seen in Chapter 3.3.1. This section will outline any 

additional methods used, and the experimental design specific to this trial. 

The manganese oxide-coated sand was supplied by Northumbrian Water Ltd. In order to 

satisfyTrial objective 2, the MnO2-coated sand was sent for comprehensive analytical tests to 

an independent laboratory (AES analytical and environmental services, Tyne and Wear). The 

material was found to comprise 90% quartz, 10% MnO2 along with iron and a number of trace 

elements (Table 4.1). 
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Element MnO2-coated sand 

(mg/kg) 

Soil guideline value1 Dutch 

Intervention 

levels1 

Residential 

without plant 

uptake 

Commercial/ 

Industrial 

Arsenic1 2.8 20 500 60 

Cadmium1 32 30 1400 6 

Chromium2 4.0 200 5000 30 

Copper2 42 - - 74 

Iron2 20000 - - - 

Lead2 44 450 750 75 

Manganese2 90000 - - - 

Nickel1 1600 75 5000 75 

Zinc2 10000 - - 800 

1www.environment-agency.gov.uk/subjects/landquality 
 
Table 4.1: Summary of main contaminants present in MnO2-coated sand used in the trial. The 

numbers in bold represent those values which exceed soil guideline values and/or Dutch 

intervention levels.  

 

Cadmium, lead, nickel and zinc all show potentially concerning concentrations. The levels of 

cadmium were particularly high and exceeded the lower soil guideline value (SGV) given by 

the Environment Agency. Cadmium is a major toxic trace metal which reaches the food chain 

directly through crop intake and also indirectly through animal transfer (Liu et al., 2009).  Zinc 

and copper are both toxic to plants above certain levels and although the Environment Agency 

does not have a SGV for either, they are both above the Dutch intervention levels. Mn 

exceeds the WHO drinking water guidelines, as discussed in Chapter 3.... 

 

This problem would have to be addressed if the trial proved to be successful. Simpson (2008) 

found that washing CLO was effective in the removal of certain trace metals; Manganese has 

been proven to show high stability against intense washing (Senesi and Calderoni, 1988), so 

this could be a possible solution. However, toxicity is largely associated with the free cation so 

if the species are complexed, then toxicity would be reduced (Jones and Bryan, 1998). 
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4.5 Experimental set up 
 

Preliminary experiments were carried out to ensure that the Mn used was characterised to 

guarantee continuity throughout the project’s trials. 

A Tessier extraction (Tessier et al. 1979) was carried out on MnO2 coated sand to assess its 

leachability/ availability, as specified in trial objective 3. The World Health Organisation (WHO) 

gives guideline values of 0.05mg/l as the safe limit for manganese in drinking water. The 

concentration of manganese found in leachate from this trial was 5.9mg/l (Jarvis, 2007). At the 

time of analysis, it was believed that the guideline value was 10mg/l, meaning that the 

manganese in the leachate would have been within the safe limit. However, knowing the 

correct guideline value, there could be a significant risk posed to surface and ground water 

associated with the addition of MnO2 coated sand to CLO in its current concentration, should 

any leaching occur. If the MnO2 does have a beneficial effect on the humification process, this 

would have to be addressed prior to it being laid to land.  

In order to rule out any physical effects that the manganese coated sand may exhibit, sand 

was introduced as a control (objective 2). Both the MnO2 coated sand the control sand were 

sieved to eliminate particle-size bias. The average particle size was determined to be 0.85mm. 

Lysimeters were constructed as described in Chapter 3.3.2 and placed outside on gabions, as 

in trial 1. Each sample was set up in triplicate with a fourth sample for sacrifice after five 

weeks. The dry weight of the CLO was calculated and the appropriate amount weighted out 

and transferred to the lysimeters, with the 100% CLO samples weighing 600g. The sand and 

the manganese were added at either 5 or 10% of the dry weight of CLO. The relative 

proportions for each sample are shown in table 4.2. 
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 Sample CLO % Sand % Mn % 

1 100 0 0 

2 95 0 5 

3 90 0 10 

4 95 5 0 

5 90 5 5 

6 85 5 10 

7 90 10 0 

8 85 10 5 

9 80 10 10 

 

Table 4.2: Proportions of sand, CLO and MnO2 added to each lysimeter for trial 2 

The trial was implemented in January 2007 where the ambient temperature was considerably 

lower than in December when the initial trial was completed.  

Consequently, little or no flux was observed at temperatures below 5°C. A study was devised 

to establish the minimum temperature at which flux could be observed. As a result of this 

study, it was decided that on the days where the ambient temperature fell below this minimum, 

three samples would be chosen at random to ensure that no flux could be measured and the 

experimental testing abandoned for that day.  

Sub-samples were taken, as described in section 3.5.1. The soil was turned in the lysimeter  

in order to get a good, representative sub-sample and flux measurements were recorded, 

where possible, three times a week for ten weeks; samples for humic analysis were taken at 

weeks one, five and ten.  These samples were transferred into clean, polythene sample bags; 

labelled with the sample batch, number and date, and stored in the dark at <5°C until they 

could be analysed. Alkali extraction and UV analysis were employed as described in Chapter 

3.  

As ambient temperature and soil moisture are known to have an effect on temperature flux 

(see previous Chapter), both parameters were recorded on the days that the flux was 

measured (section 3.4.1 and 3.4.2).  It would have been useful to measure the moisture 

content of each individual sample to see whether any differences between different treatments 

could be observed. However, as each measurement required the removal of around 20g of 

material (a large enough sample being necessary to remove any effects of heterogeneity), the 

total amount of removed sample at the end of the trial would have been around 50% of the 
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total volume. Instead, three extra pots were set aside for this purpose, each containing 600g 

of CLO. The soil moisture was measured in triplicate on each sampling day.  

The final physical parameter measured was pH (section 3.5.3). It was recorded at weeks 1, 5 

and 10 in order to establish any differences that might be observed between samples or in the 

same samples over time. 

4.6 Statistical analysis 
 

As described in Chapter 3.4, all data collected were entered into a Microsoft Excel 

spreadsheet, formatted and then ANOVA (General Linear Model) performed using Minitab 13. 

The results are given as p-values and all < 0.05 show a significant relationship between the 

two parameters compared. All results used from this point will be quoted as being statistically 

significant if they satisfy this requirement.  

4.7 Results 
 

4.7.1. Physical data and observations 
 

Over the ten week period, no plant growth was observed on the lysimeters despite being 

exposed to wind-blown seeds. In similar CLO lysimeter trial set up by Simpson in 2006, plant 

growth was seen on all samples (Simpson 2008). The lack of growth in this trial was possibly 

due to the fact that the samples were turned twice weekly (during the process of subsampling) 

so any seeds that might have germinated may have been too deeply buried within the 

lysimeter, making growth unlikely. It could also be due to the trial being carried out over the 

Winter months, therefore not conducive to plant growth. The immediate environment also 

differed, with the predominant species of flora being Beech trees; during the Simpson study, 

the site was surrounded by grassland.  
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Soil moisture 

 

The moisture content was not controlled and therefore was dependent upon local climatic 

conditions over the 10 week period. This data is of little use alone, but when used in 

conjunction with the flux data, the differences can be incorporated into the flux calculations.  

 

 

 

Figure 4.3. Gravimetric moisture content of the triplicate CLO samples over 74 days.  

The soil moisture ranged between just over 5% to around 24% over the 74 days. The range 

between triplicates varied between 0 and 10%. This can only be due to the heterogeneous 

nature of the CLO. If, for example, a significant proportion of the subsample contains glass or 

plastic, this could lead to large differences seen in moisture content. This highlights the need 

for large sample sizes and replicates.  

Further research would be needed to begin to understand the intermolecular reactions that 

link humic components into supramolecular associations and to establish the pathways which 

lead to such associations (Sutton and Sposito, 2005). However, Schaumann and Bertmer 

(2008) observed that water molecules bridge molecular segments of SOM which could further 
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adds weight to the supramolecular assembly model theory. Hence, soil moisture may not only 

be necessary for a healthy soil microbial community, but also to aid in the binding of humic 

acids.  

Literature discussed in Chapter 2 suggested that during composting, the ideal moisture 

content would be >40 %; it is possible that the low levels seen in these samples over this 10 

week trial have had an effect on the CO2 flux rate.  

pH  

 

The pH of CLOs are generally mildly alkaline, being in the region of 7- 9.5 (Kaschl, et al (2002) 

and references therein). All samples from this trial measured between 7.4 and 8.3, which is 

comparable to this range, to natural alkaline soils and consistent with the study carried out by 

Simpson (2008) on earlier batches of the same material.  

 

 

Figure 4.4: The pH for each replicate sample at weeks 1, 5 and 10. 
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A great deal of variance was seen between replicate samples; no significant differences seen 

either temporally, or between different samples (p>0.05). In a study by Brunetti et al (2008) pH 

increased on addition of Mn; however, the amended material was of a more homogenous 

material nature so perhaps any differences between samples were easier to detect. 

The fact that no significant differences were seen between samples could mean that the 

behaviour of CLO and the manganese-amended CLO might be more easily predicted. With a 

pH of 7.4 - 8.3 which appears to be consistent through all samples over time, this mildly 

alkaline artificial soil could have a significant impact on soils to which it was added. 

This soil parameter can be the chief factor in controlling phytoavailability in composts, more so 

than trace metal concentration (Smith 2009). This is of considerable importance when such 

composts contain high volumes of potentially toxic elements. Chu and Wong (1987) attributed 

the relatively low concentration of trace metals accumulated by vegetable crops, treated by an 

MSW-compost, on its higher pH and thus causing a liming effect.  

One of the four principal structural characteristics of the HAs and FAs that influence their 

chemical reactivity is structural lability which means that they have a great capacity to 

associate intermolecularly, changing conformation in responses to pH value  (polyfunctionality, 

anionic macromolecular charge, and hydrophobicity being the other three) (Sposito, 1989).  

Humic acids have an amphiphilic nature as they have both hydrophilic and hydrophobic 

moieties in their structures. Thus, HAs are able to reduce surface tension in aqueous solutions 

and can form micelle-like (Figure 4.5) aggregates (Yates and Wandruszka, 1999; Kleber et al 

2001; Sutton and Sposito, 2005). This micellar formation can be catalysed by the presence of 

metal cations and can arise from both intermolecular aggregation and intramolecular coiling 

(Yates and Wandruszka, 1999). A zonal structure is proposed by Kleber et al (2001) whereby 

OM is attached to a mineral surface and is segregated into more than one layer or zone of 

molecules, meaning that some of the adsorbed molecules will not be in contact with the 

mineral surface.  

 

 

 



85 
 

 

 

Figure 4.5: a micelle with its hydrophobic heads and hydrophilic tails (Stewart, 2008). 

Surface activities of humic acid can play an important role in the transport, bioavailability and 

biodegradability of hydrophobic organic pollutants (Yates and Wandruszka, 1999) and the pH 

of the system can largely influence the extent to which this happens. Terashima et al (2004) 

found that an increase in pH within a soil can increase micelle-like aggregation and interfacial 

adsorption, thus having implications on the transport, bioavailability and biodegradability of 

hydrophobic organic pollutants (HOPs) which may be present. This is particularly pertinent if 

the CLO is intended to be used to remediate contaminated land.  

Presence of functional groups (particularly carboxyl and hydroxyl groups) provides the 

capacity for interaction with inorganic cations, specifically in complexation of metals in 

environment (Pehlivan and Arslan, 2006). This metal-humic binding is influenced/controlled by 

pH (You et al 1999). Polar organic functional groups of amphiphiles interact via ligand 

exchange to form stable inner-sphere complexes, favouring particularly strong organo-mineral 

interaction (Kleber et al 2001). Complexation with a metal ion may also instigate the 

aggregation of compounds (Simpson et al 2002) increasing the stability of the soil and the 

availability of phosphorous through displacement. Many contaminated soils are degraded in 

terms of stability and nutrients so if the CLO was to be added to such a site, could the pH 

value of the soil be increased and the soil improved?  Several studies have proved thus 

(Garcia-Gill et al., 2004; Warman et al., 2009). As pH increases, the amount of metal binding 

increases due to ionisation of functions groups (Lu et al 2000).   
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4.7.2. CO2 flux  
 

The carbon flux was recorded in ppm with an IRGA as described in section 3.6 and then 

converted into gC/gCLO/hour via the equation given in section 3.6.2; all data presented in this 

section are given in gC/gCLO/day, to make it comparable to similar studies (Jarvis, 2007; 

Tognetti et al., 2007). 

Control tests were carried out on the flux of both sand and MnO2 coated sand where each was 

measured in turn into an air-tight container. Holes were drilled into the lid of the container for 

the air-in and air-out tubes of the IRGA and were made airtight with a sealant. The flux was 

measured using with an IRGA following the methodology outlined in Section 3.5.1. For each 

the flux was negligible with the concentration of CO2 measured being around ambient level 

(around 460ppm).  
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Figure 4.6: CO2 flux observed over 80 days for 

the control sample; each replicate is 

represented by a different series on the chart.  

 

 

Figure 4.7: CO2 flux observed over 80 days for 

the sample with 5% Mn; each replicate is 

represented by a different series on the chart.  

 

 

Figure 4.8: CO2 flux observed over 80 days for 

the sample with 10% Mn each replicate is 

represented by a different series on the chart.  
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Figure 4.9: CO2 flux observed over 80 days for 

the sample with 5% sand; each replicate is 

represented by a different series on the chart.  

 
 

Figure 4.10: CO2 flux observed over 80 days for 

the sample with 5% sand and 5% Mn; each 

replicate is represented by a different series on 

the chart.  

 

 
 

Figure 4.11: CO2 flux observed over 80 days for 

the sample with 5% sand and 10% Mn; each 

replicate is represented by a different series on 

the chart. 
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Figures 4.12: CO2 flux observed over 80 days 

for the sample with 10% sand; each replicate is 

represented by a different series on the chart.  

 

 

 

Figure 4.13: CO2 flux observed over 80 days for 

the sample with 10% sand and 5% Mn; each 

replicate is represented by a different series on 

the chart. 

 

 

Figures 4.14: CO2 flux observed over 80 days 

for the sample with 10% Mn and 10% sand; 

each replicate is represented by a different 

series on the chart.  
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The samples showed no measurable flux for the first 11 days of the trial. This was thought to 

be due to a retardation of establishment of a microbial community due to the freezing 

temperatures (Blume et al., 2002; Andersson and Nilsson, 2001).  

The range of data for each day is apparent between the triplicate samples but a slight trend to 

increasing flux over time can be observed. In a study by Neves et al (2008), a similar lag time 

of 10 days was observed. Fats were added to cow manure and food waste in order to 

stimulate the production of methane in anaerobic digestion. The lag time observed during trial 

2 could be due to the inhibitory effect of fats, as was witnessed in the Neves study but as the 

maturity of the CLO is unknown, it is difficult to know whether or not these initial stages of 

composition have progressed. 

This initial period was particularly dry so the lack of moisture could account for the absence of 

microbial activity (Schimel et al., 1999). 

During the composting process, two main phases exist: The biooxidative phase and the 

maturing phase. The former sees the rapid degradation of the simple compounds and other 

organic matter. Once the organic substrate is largely depleted, the maturing phase begins. 

This stage is associated with the stabilisation and humification of the remaining organic 

matter. Humic acids with increasing MW, aromatic characteristics, oxygen and nitrogen 

concentrations increase in presence where as fulvic acids and water extractable organic 

carbon decrease (Bernal et al 2009). This stage requires several weeks to months (Veeken et 

al 2000). This period is necessary to ensure the formation of an end product which is stable 

with high nutrient content and a neutral pH. During aerobic digestion, the MSW feedstock is 

processed for only 9 days. Although the conditions are controlled during this time, the material 

that is produced has not reached maturity, nor is particularly stable, hence the large flux rate.  

Each sample saw a rise in flux over the sampling period and the flux begins to decrease again 

towards the end of trial. The flux appears to be greater than the control for samples with 5% 

Mn and even more so with 10% Mn added.  However, in order to rigorously examine these 

differences in data, the ANOVA procedure with Tukey post-hoc significance testing was used 

once again. 
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The control sample (Figure 4.6) , although there appears to be a trend of rising flux from 0.01 

– > 0.12 gC/gCLO/day over ten weeks, the variation between replicate samples meant that no 

statistical significance was seen in the flux over time. The key period for flux change was at 

around day 50 when a significant increase in flux (0.04-0.24gC/gCLO/day) was seen in the all 

samples, excluding the control and the samples containing 5% and 10% Mn (Figures 4.6-4.8). 

Again, this lack of statistical significance could be due to the large spread in data between 

replicates as in each case, a similar qualitative trend can be seen in all samples. This increase 

in flux could be due to the Birch effect as described by Jarvis et al., (2006) whereby the re-

wetting of the soil after a period of dryness sees a corresponding burst of decomposition.   

Figure 4.15 illustrates the relationship between soil moisture (determined by largely by 

precipitation at the temperatures seen during the trial period) (Figure 4.16)) and flux. 

At seventy days, the flux had decreased again in most samples, back down to a similar level 

seen at the beginning of the trial. This could indicate the depletion of the simple compounds 

present, corresponding to the mesophilic phase of the biooxidative stage of composting.  

At this stage, the flux of the samples with 5% sand, and 5% Mn with 5% sand still remained 

slightly higher that recorded in the initial few days of the trial. Both samples containing 10% 

sand reached a flux of almost 0.25 gC/gCLO/day, 0.1 gC/gCLO/day more than the control 

sample at its greatest flux rate. As the proportion of CLO in each sample is taken into account 

for the flux calculations, this factor should have no bearing on the results seen. All samples 

with >10% of amendment added saw an increase in flux; could this be a physical affect due to 

increased aeration? If porosity in a composting pile exceeds 50%, the energy lost could 

exceed the heat produced, eventually meaning a slowing of the rate of degradation (Bernal et 

al 2009). 

 



92 
 

  

Figure 4.15: CO2 flux against the soil moisture content over the 10 week trial 

period.  

 

Figure 4.16: CO2 flux against outdoor temperature on day of sampling over 

the 10 week trial period.

6

8

10

12

14

16

18

0.00

0.05

0.10

0.15

0.20

0.25

13 15 18 20 22 25 27 29 36 41 46 48 49 54 76

M
o

is
tu

re
 c

o
n

te
n

t 
(%

)

g
C

/g
C

L
O

/d
ay

Day

Control 5% sand 10% sand

5% Mn 5% Sand 5% Mn 5% Mn 10% Mn

10% Mn 10% Mn 5% Sand 10% Mn 10% Sand

Moisture content

2

3

4

5

6

7

8

9

10

11

12

0.00

0.05

0.10

0.15

0.20

0.25

13 15 18 20 22 25 27 29 36 41 46 48 49 54 76

T
em

p
er

at
u

re
 (

C
)

g
C

/g
C

L
O

/d
ay

Day

Control 5% sand 10% sand

5% Mn 5% Sand 5% Mn 5% Mn 10% Mn

10% Mn 10% Mn 5% Sand 10% Mn 10% Sand

Temperature



93 
 

A good correlation is seen between the CO2 flux and the soil moisture (r2 0.70) and ambient 

temperature (r2 0.88) as shown in Figures 4.14 and 4.25 respectively .This data largely 

reflects the results seen in the preliminary trials outlined in Chapter 3.8.1.  

 

4.7.3 Humic acid analysis 
 

Raw data are presented as the average of each sample at each week, plotted against the 

yield of humic acid extracted (Figure 4.17) and then against the E4/E6 ratio (Figure 4.18).  

Again, control tests were carried out prior to this trial for both forms of analyses. Humic acid 

content of both sand and MnO2 coated sand was measured using the 11-step alkali extraction 

method, detailed in Section 3.6.1.; no yield was given for either amendment. The absorbance 

for both sand and manganese at 465nm and 665nm were recorded using the method outlined 

in Section 3.6.2. The absorbance of both sand and Mn were below the lower limits of detection 

of the UV photospectrometer (absorbance <0.01nm). This should discount any potential of 

these amendments to skew the data.  

For the alkali extraction the data were normalised, given that all the samples should have 

been the same at week one; any changes seen between samples over time will therefore be 

relative to week one. In Figure 4.17, the weeks are represented by the three series, as shown 

in the key.  
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Alkali extraction of humic acid 

 

 

Figure 4.17 Normalised data showing the efficacy of each treatment over 10 weeks. 

 

There are no significant differences shown between any of the samples at week one; this is to 

be expected, considering the control tests undertaken during trial one (i.e. no humic acid yield 

was seen for sand, and MnO2-coated sand samples). Similarly to the CO2 flux measurements, 

there were no significant differences seen between samples at week 1 and samples at week 

5, suggesting that decomposition and humification were slow for the first 5 weeks possibly due 

to low temperatures and soil moisture.  

The control sample shows a slight increase between weeks 1-5 (and a larger increase in yield 

between weeks 5-10 (0.4g and 2g respectively). The humic yield increased over the ten week 

period for all samples but those containing 5% Mn and 10 % sand; and 10% Mn and 10% 

sand which both decreased significantly. This could be due to an increase in aeration, leading 

to greater microbial activity and faster mineralisation of SOM; a corresponding increase of flux 

was observed for these samples. However, the same was not seen for the 5% sand with 10% 

Mn samples which would be expected when the same proportion of amendment has been 

added.   
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Absorbance 

 

A decrease in absorbance ratio signifies an increase in humification and material which gives 

a ratio of <5 and is said to be humified. Figure 4.17 shows that all samples demonstrated an 

increase in humification over the ten week period. Only the samples with 5% sand; 10% sand; 

and 5% Mn with 10% sand had a ratio of below 5, indicating a humified sample after the 10 

week aging period. 

 

 

Figure 4.18: E4/E6 ratios for all samples as compared to the control sample at weeks 1, 5 and 

10. Each series gives the mean of the three replicate samples. 

Unlike for the carbon flux and alkali extraction data, differences can be seen between samples 

at week one and five, although they are only significant for the sample with 5% Mn (which 

decreases between weeks 5 and 10); 10% Mn (which decreases between weeks 1 and 5); 

and 5% Mn with 5% sand (which decreases between weeks 5 and 10).  

For this data, the differences between replicate samples is again, pronounced. Figure 4.19 

demonstrates the variation in absorbance between 3 replicates at week one.  
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Figure 4.19: boxplot of three replicate control samples to show the spread of data at  week 

one for E4/E6. 

 

If at week one, such variation is seen when all samples should be roughly equal, it is unlikely 

that any differences will be observed between samples according to treatment or over time. 

So although there appear to be trends in the qualitative analysis given by the averaging of the 

triplicate results, ANOVA data reflects this, showing that no significant trends can be seen 

between the different treatments at each timeframe.  

The only conclusion that can be drawn from the absorbance data is that the humic nature of 

all samples appeared to increase over the ten week period in the samples with added sand 

indicating the greatest degree of humification. This is not reflected in the results seen in both 

the alkali extracted humic and flux data.  

In similar studies, the E4/E6 ratio of dissolved organic matter has been seen to decrease with 

an increase in pH which denotes a greater fraction of high MW being released into solution at 

higher pH values (You et al 1999). Because the pH values remained fairly consistent between 

samples over time, it was not possible to determine whether a similar correlation occurred in 

this trial.  

 

 



97 
 

4.8 Conclusions 
 

4.8.1 Revisiting the objectives 
 

 

1. To find the ideal proportion of Mn to use during future trials. 

 
No consistent differences were observed between MnO2 added at 5% and 10% in the three 

analytical methods used. Due to there being some evidence to suggest that samples with 

>10% added amendments might be experiencing increased mineralisation, 5% MnO2 and 5% 

sand will be used in future trials.  

 

2. To test the metal species present in the manganese dioxide coated sand. 

 
The MnO2 coated sand was found to include a number of toxic metal species, including 

cadmium, lead, copper and zinc. This problem would need to be addressed before this could 

be viewed as a viable source of MnO2. However, much of the literature suggests that CLO’s 

alkaline pH might have a heightened ability to bind these metals, making them less 

available/toxic. To test this, a Tessier extraction might be used or perhaps ICP analysis of 

leachate emanating from the lysimeters. 

 

3. To test the availability of the manganese within the given media. 

 
This was achieved by a Tessier extraction; the available manganese was initially thought to be 

within safe levels. However, it far exceeds the WHO guideline values for drinking water so 

should the MnO2-coated sand prove to be successful in catalysing the humification process, 

this would have to be addressed and a safer concentration tested. 
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4. To ensure that the manganese has no unexpected effect upon the analytical methods 

used 

For each analytical method, both the sand and the MnO2- coated sand were tested as a 

control measure. All control tests showed that the amendments should not have any skewing 

effects on any data produced. 

 

5. To employ a sand control to exclude any physical effects. 
 

The sand was sieved to exclude any particle-size bias. As there were few significant 

differences shown between samples, it is difficult to determine whether any effects, physical or 

otherwise occurred. The samples with >10% of amendment added saw an increased flux rate 

and some decreases in HA extracted so a physical effect cannot be discounted.  

 

6. To assess study length, looking at humification in samples over time. 

 
Few differences were observed between the week 1 and week 5 samples for carbon flux and 

alkali extraction data. By week 10, it was possible to observe some differences between 

samples. Following trials could be longer in an attempt to establish further differences in 

humification over time and between samples. None of the samples saw an overall significant 

decrease in flux over the ten week period so a longer trail would be beneficial to ascertain 

whether this would happen in time. 

 

7. To test the catalytic properties of MnO2 –coated sand in CLO. 

 
Results were largely inconclusive but some significant results were observed within the 

datasets.   

The control samples showed neither an increase nor decrease in CO2 flux over the trial 

period. No significant difference was seen in either of the humic data sets for these samples 

either. 

When manganese was added at 5%, no significant increase or decrease in flux was seen. 

When the level was raised to 10%, and increase in flux was observed after five weeks. For the 

former, the absorbance data saw in increase in humification between weeks one and 10, but 

not within the fully humified range (<5). The latter saw an increase in the absorbance ratio 
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between week one and five and then a significant decrease in week ten; again, at week ten, 

the sample was still above the humic acid range. 

In the parallel samples with 5% sand and 10% sand, both saw an increase in flux between 

weeks five and seven. Only with the 5% sand did this significantly decrease again by the end 

of the trial. Both sets of samples gave absorbance ratios of <5 at ten weeks, suggesting a high 

degree of humification.  

The samples with 5% sand with 5% manganese also exhibited a significant increase in CO2 

flux between weeks five and seven. A significant increase in absorbance ratio was seen 

between weeks one and five followed by a significant decrease by the end of the trial.  

A similar pattern in flux was seen in the samples with 10% sand with 10% manganese. A 

corresponding decrease in humic acid yield was also seen after week five. The absorbance 

data showed no significant increase in humification after ten weeks.  

Although qualitative patterns were observed in the alkali extraction data, this method yielded 

few statistically significant results. On the whole, the difference between replicate samples 

was too great for any definitive conclusions to be drawn from the use of this method. 

There appears to be some agreement between data sets but further trials will be needed to 

draw any decisive inferences. Not one treatment shows decisively a decrease in flux and a 

corresponding increase in humic acid when compared to the control sample. With a more 

consistent data set, perhaps comments can be made about the effect of pH and suppositions 

sketched on the catalytic abilities of Mn on the humification process. 

 

4.9.2 Trial limitations 
 

Having analysed the results from Trial 2, it is apparent that the CLO is too heavily 

contaminated with inorganic materials to see any trends in the organic carbon stability. The 

material is highly heterogeneous and thus the necessary subsampling did not prove 

representative of the material in its entirety. Within the composting pile, particles that are too 

large may have a shielding effect where humic material coats the particle, meaning that 

microbes cannot reach it. Particles that are too small may compact which could reduce 

porosity which in turn, could lead to anaerobicity. Conversely, if porosity exceeds 50%, the 

energy lost could exceed the heat produced.  
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The nutrient balance must be at a favourable level for microbial activity; if excess carbon 

exists, the microbes will not have enough nitrogen to metabolise the degradable compounds 

(Bernal et al 2009). 

The results of this study did not identify any clear correlation between treatment and flux. 

Perhaps the manganese had no effect on the humification of CLO, or perhaps more sensitive 

methods are needed. The heterogeneity in the samples can account for a lack of significance 

between various samples but cannot be held accountable in every instance. For example, the 

alkali extraction and UV and fluorescence samples would be expect to show some correlation, 

being borne of the same sub-sample; the differences seen, therefore must be due to 

experimental error. 

 

Only one source of MnO2 was trialled; perhaps other sources could be used and compared to 

establish whether this would have any bearing on the results. 

 

The subsampling of the trial pots is not ideal; when the CLO is laid to earth, it is unlikely that 

the soil will be turned regularly so results produced are not necessarily representative of what 

might pass in situ.   

 

4.9.3 Implications for trial 3 
 

A trial where the atmospheric conditions are controlled to some degree, particularly with 

respect to the ambient temperature and moisture content (thus limiting the Birch effect) of 

each sample, might provide some more definitive results. In this trial, the weather was so 

variable over the trial period that it may have overshadowed any subtle changes between 

samples, even though atmospheric temperature and soil moisture were measured and 

accounted for in flux measurements. Analysis might be a little more conclusive with tighter 

controls in place, meaning fewer factors in play to affect the data. If each test undertaken 

exhibits some experimental error, then small changes in flux and humic acid present within the 

different samples may easily be overshadowed. 

 

The moisture content was also shown to be lower than 40% which may have a detrimental 

effect on the microbial community. Being able to control this may see more consistent patterns 

in flux. A higher temperature may also encourage microbial activity, thus increase the flux rate. 
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FACTOR SPECIFICATION 

Length of trial 12 months 

Sacrificed sample time 10 weeks 

Sampling frequency (flux) twice a week then twice monthly after 10 
weeks 

Conditions controlled Air temperature and moisture content 

MnO2 5% 

Sand 5% 

Table 4.3: proposed specifications for Trial 3. 

 

4.9.4 Further comments 
 
Since Trial 2, issues concerning the legality of the use of CLO as topsoil had some 

implications on the progression of the research. Due to electrical faults during the initial 

months of the Demonstrator phase, the temperature system was ineffective. This rendered the 

process non-compliant with the soil screening values (SVS) standard, thus the CLO produced 

had to be sent to landfill and the digesters halted until further notice. The process was once 

again deemed fit for purpose by the Environment Agency in June 2008. Trial 3 was 

suspended until the material had been permitted for use once again.  
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Chapter 5 
 
Pseudo thermogravimetric analysis as a novel method 
for analysing soil organic matter 
 
 

Given that the results obtained from trial 2 were contradictory and yielded few significant 

results, it was hoped that another form of analysis might provide elucidation of the effects of 

Mn on the humification of CLO.  

 

Thermogravimetric analysis is a commonly used technique which can provide information on 

the organic and inorganic components present in a sample. Based on the premise that 

different carbon compounds decompose on heating at different temperatures, samples of CLO 

can be heated at various heat intervals and corresponding changes in weight measured. 

Resulting, weight loss curves can be produced and samples compared. Labile cellulosic 

material tends to combust at around 300-350ºC; refractory lignin at 400-650 ºC (Manning et al. 

2005). 

 

However, the heterogeneity and the particle size of the CLO render this method impossible to 

use.  An adapted method was formulated where a larger, more representative sample could 

be studied in a similar manner.  
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5.1 Aim 
 

To develop a pseudo-thermogravimetric (PTGA) analysis technique to allow the coarse, 

heterogeneous CLO to be studied with regards to its humic acid content. 

5.2 Objectives 

 
1. To determine appropriate sample weights for analysis. 

 
2. To find a suitable temperature range and temperature intervals. 

 
3. To select a comprehensive series of control samples. 

 
4. To design a matrix of standard samples with which the CLO samples can be compared. 

 
5. To employ the developed method against samples stored from previous and taken from 

subsequent trials. 
 

6. To assess the efficacy of pseudo-TGA as a method for analysing humic material within 
the sample 
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5.3 Methodology 
 
 

5.3.1 Experimental set up 
 

In an experimental trial that is likely to be time consuming with many samples, it is paramount 

that it is undertaken as efficiently as possible. When deciding upon sample size, it was 

important to ensure that a representative sample was taken but of a size that would allow 

several samples to be processed concurrently.  

A Carbolite furnace (CSF 1100) was sourced, being large enough to house several samples 

and also having a suitable temperature range. Two metal trays could fit comfortably into the 

furnace, each tray holding 18x 20ml ceramic crucibles. This allowed 36 samples to be run 

simultaneously (Figure 5.1). A sample size of 1g could comfortably fit neatly within each 

crucible (Objective 1). 

When fulfilling trial objective 2, the components that comprise CLO had to be considered and 

the temperatures at which they combust. Water, having the lowest boiling point, meant that a 

minimum of 100°C was needed. Of the organic components, the lignin and humic acid would 

be expected to have the highest combustion temperature, therefore a maximum of 650°C was 

deemed appropriate.  

Before each use, all crucibles were cleaned, rinsed with Milli-Q DI water and then dried over 

night at 105°C. They were then allowed to cool in a desiccator prior to being weighed to 4 

decimal places on a Mettler AJ100 electronic balance. The appropriate weight of sample was 

then measured into each, labelled crucible. Trays of 2x 18 samples at a time were placed 

within the furnace (once the specified temperature had been reached and equilibrated) and 

then heated for a period of two hours (Heiri et al., 2001).   
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Figure 5.1: Photograph of two of the metal trays, each containing 18 PTGA samples in 

labelled, ceramic crucibles. 

After this period, the trays were removed from the furnace and transferred to a desiccator until 

cooled to room temperature. Meanwhile, the furnace temperature would then be increased by 

50 °C and left to stabilise. Once cooled, the samples were each weighed and again recorded 

then returned to the oven once the defined temperature had been reached. This process was 

repeated until all samples had been heated for two hours at each temperature; the furnace 

was heated at 50°C increments, ranging from 105°C to 655°C 

 

5.3.2 Materials used 

Control samples 

 

Duplicate 10g samples of glass, hard plastic, soft plastic, lignin, cellulose, lipid, protein, Aldrich 

humic acid, MnO2, sand and char were taken and heated at each temperature for a period of 

two hours. After heating, each sample was cooled to room temperature and the weight 

recorded using a Mettler AJ100 electronic balance.  
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Standard sample matrix 

 

 A standard sample matrix was developed using known amounts of each major components of 

CLO. This allows for the comparison of subsequent CLO samples against this matrix in order 

to establish the likely composition and more importantly, the proportion of humic aid each 

contained.  

humic acid lignin cellulose 

0.0 0.9 0.1 

0.1 0.9 0.0 

0.2 0.8 0.0 

0.3 0.7 0.0 

0.4 0.6 0.0 

0.5 0.5 0.0 

0.6 0.4 0.0 

0.7 0.3 0.0 

0.8 0.2 0.0 

0.9 0.1 0.0 

 

Table 5.1: Sample of the standard sample matrix. The full sample matrix can be seen in the 

appendices.  

Each sample weighed 1g in total, in a fully factorial matrix. The method outlined in 5.3.1 was 

followed; results entered into a Microsoft Excel 2007 worksheet and all data normalised to the 

105°C measurement via: 

Loss on ignitionT2 (LOIT2) = ((DWT1 – DWT2)/DW105)*100 

Where T1 represents the first temperature interval and T2 the second temperature interval; 

DW is the dry weight recorded for the sample after being heated to the specified temperature; 

and DW105 represents the dry weight of the sample at 105°C to which all samples are 

normalised, due to water loss that ought to have occurred. The weight loss should then be 

proportional to the OC contained within the samples and not affected by moisture content.  
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Trial 2 samples 

 

Once the aforementioned materials had been analysed, the trial two samples were tested. 

Around 1 g of each sample was measured and its exact weight recorded. The method outlined 

in 5.3.1 was followed; results entered into a Microsoft Excel 2007 worksheet and all data 

normalised to the 105°C measurement.  

 

5.3.3. Statistical analysis 
 

All data were entered into a Microsoft Excel worksheet and then run in Minitab using both 

Analysis Of Variance (General Linear Model) as used in previous trials, and Principal 

Component Analysis in order to establish any patterns present in the data.  

 

Principal Component Analysis 

 

Where ANOVA deals with correlation between known variables within a data set, Principal 

Component Analysis (PCA) deals with uncorrelated variable. Using this method, trends in a 

multivariate data set can be isolated and a large quantity of data can be reduced, whilst still 

retaining as much as possible of the variation present. The principal components (PCs) are 

this smaller number of uncorrelated variables. The lack of correlation is important because it 

means that the PCs are measuring different dimensions within the data. 

During this mathematical procedure, the dataset is transformed into a new coordinate system, 

in which new axes follow the direction of greatest variance in the data set. The appropriate 

number of variables is selected. In this case, the variables will be each temperature interval 

the samples are exposed to. Various combinations are analysed to produce these 

uncorrelated ‘principal components’ (PCs) or eigenvectors. PC-1 exhibits the greatest amount 

of variation, PC-2 the next and so on.  

For this study Minitab 13 software was used to calculate the eigenvectors and eigenvalues 

within the correlation matrix via an iterative process known as the Monte Carlo method. Here, 

randomly generated data is simulated to assess the probability of the data occurring in the 
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order that it has by chance. This statistical technique that involves using a large number of 

repeated calculations is a methodical and formalised version of trial and error. 

Once the PCs have been calculated, one must decide how many it is useful to retain; for this 

trial, all PCs with eigenvalues of ≥1 are retained, plus the first one in sequence that is <1. To 

ensure the correct number of PCs have been retained, a scree plot can be used; the 

eigenvalues are plotted against the PC numbers, and the components depicted on the curve 

of the graph are retained (Figure 5.3).  

To make the study viable, it is important to have five times more data points than variables. In 

this study, there are twelve different temperatures/variables so at least sixty samples were 

needed. There are eleven standard samples, the sixty-four sample matrix described in section 

5.3.2, plus the 3x9 samples from this trial. In total, this gives 101 samples so fulfils the 

minimum quota criteria. 

5.4 Results 
 

5.4.1 Control Sample matrix data 
 

Table 5.2 shows the normalised values calculated for each of the samples and figure 5.3, the 

resulting temperature curves. Included are manganese dioxide coated sand and biochar ; the 

former which was used in trial 2 and the latter, to be used in trial 3, both as proposed 

catalysts; the sand was used as a control amendment during each. 
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Table 5.2: Each control sample with its normalised gravimetric weight loss after having been heated to the corresponding temperature. 

Sample N105°C   N155°C   N205°C   N255°C   N305°C    N355°C    N405°C    N455°C    N505°C    N555°C   N605°C    N655°C    

Fat 1.000 1.000 1.000 0.995 0.940 0.418 0.164 0.000 0.000 0.000 0.000 0.000 

Fat 1.000 1.000 0.995 0.974 0.929 0.454 0.189 0.000 0.000 0.000 0.000 0.000 

Protein 1.000 0.995 0.995 0.836 0.639 0.546 0.448 0.049 0.049 0.049 0.044 0.033 

Protein 1.000 1.000 1.000 0.817 0.624 0.538 0.452 0.065 0.054 0.054 0.054 0.054 

Water 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Water 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Char 1.000 1.000 1.000 1.000 1.000 0.984 0.911 0.073 0.058 0.058 0.058 0.047 

Char 1.000 0.995 0.995 0.995 0.995 0.974 0.885 0.068 0.047 0.047 0.047 0.037 

Manganese 1.000 1.000 1.000 1.000 1.000 1.000 0.990 0.970 0.970 0.970 0.970 0.959 

Manganese 1.000 1.000 1.000 1.000 1.005 1.005 0.995 0.949 0.949 0.949 0.949 0.944 

Sand 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Sand 1.000 1.000 1.000 1.000 1.000 1.010 1.010 1.005 1.005 1.005 1.005 1.005 

Glass 1.000 0.994 0.994 1.000 0.988 0.987 0.987 0.987 0.987 0.987 0.986 0.987 

Glass 1.000 0.985 0.982 0.985 0.986 0.986 0.986 0.986 0.986 0.986 0.986 0.986 

Hard plastic 1.000 1.000 0.900 0.900 0.813 0.442 0.115 0.128 0.152 0.149 0.150 0.152 

Hard plastic 1.000 1.001 0.943 0.914 0.859 0.483 0.207 0.075 0.121 0.119 0.121 0.121 

Soft Plastic 1.000 0.813 0.813 0.751 0.739 0.664 0.538 0.049 0.039 0.038 0.035 0.032 

Soft Plastic 1.000 0.892 0.783 0.783 0.723 0.647 0.549 0.039 0.037 0.038 0.032 0.031 

Paper 1.000 0.870 0.844 0.741 0.399 0.333 0.282 0.168 0.158 0.156 0.151 0.148 

Paper 1.000 0.859 0.841 0.764 0.392 0.306 0.259 0.146 0.135 0.130 0.122 0.117 

Lignin 1.000 0.936 0.884 0.341 0.284 0.193 0.166 0.145 0.137 0.135 0.131 0.129 

Lignin 1.000 0.930 0.889 0.361 0.301 0.198 0.176 0.152 0.143 0.142 0.138 0.137 
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Figure 5.2: Temperature-weight graph showing the various gravimetric trends for the control samples.
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It can be seen that water has been fully removed at 105°C. Glass, sand and manganese-

coated sand remain more or less unchanged gravimetrically through to 655°C. Each of the 

other components appears to have characteristic temperature curves that should prove useful 

in the analysis of bulk CLO. Duplicate samples were consistent, and small anomalies that can 

be seen (for example, between the MnO2 –coated sand at 455°C) could possibly be explained 

by OM on the surface of the material. 

 

Principal Component Analysis 

 

The 11 variables: temperature intervals (155°C-655°C) and their corresponding sample 

weights were entered into a Minitab 13 worksheet and the PCA calculation run. Two of the 

eigenvalues generated were greater than 1; a scree plot (Figure 5.3) was drawn to 

corroborate the number of eigenvalues retained. The first three PCs were retained and the 

scores for each are given in Table 5.3. 
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Figure 5.3: Scree Plot for PCA on PTGA data for control samples, used to indicate the number 

of principal components used. 
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Sample PC-1 PC-2 PC-3 

Lipid -1.893 -2.437 -1.691 
Lipid -1.849 -2.346 -1.721 
Protein -1.512 -1.550 -1.076 
Protein -1.456 -1.517 -0.908 
Char 0.656 -2.260 -3.070 
Char 0.498 -2.205 -3.112 
Manganese 8.003 0.853 0.643 
Manganese 7.868 0.784 0.536 
Sand 8.274 0.967 0.771 
Sand 8.344 0.983 0.768 
Glass 8.098 1.018 0.712 
Glass 8.039 1.211 0.632 
Hard plastic -1.205 -1.089 -0.667 
Hard plastic -1.136 -1.488 -1.067 
Soft Plastic -1.714 1.348 -3.509 
Soft Plastic -1.667 0.638 -2.617 
Lignin -3.051 1.608 0.793 
Lignin -2.926 1.597 0.680 
Humic acid 4.288 1.533 -0.141 
Humic acid 4.233 1.598 -0.138 
Humic acid 4.046 1.499 -0.180 
Cellulose -2.424 -1.231 0.463 
Cellulose -2.210 -1.127 0.406 
Cellulose -2.293 -1.142 0.424 
 

Table 5.3: the principal component scores that explain the greatest variance within the control 

samples. Dark purple shows the samples with the highest positive score and dark pink, the 

highest negative score for each component.  

PC-1 appears to be defined mainly by manganese, glass and humic acid; the samples with 

strong negative loadings are the lipid, lignin and cellulose. They seem to negatively correlate 

with combustibility: the higher the score, the less combustible the component.  

For PC-2, the highest loadings are negative and for the char and lipid. Figure 5.4 better 

illustrates these patterns seen.  
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Figure 5.4: Score plot of PC-1 and PC-2 for the control samples.  

Figure 5.4 presents clear divisions between the various control samples. The inorganic 

elements which remain non-combusted at 655°C (manganese-coated sand, glass and sand) 

each lie to the top right of the plot. The simple compounds (protein, cellulose and fat) occupy 

the bottom left area of the plot. Humic acid gives a high positive value for PC-1 where as are 

lignin, a high negative; both give the highest positive values for PC-2. Could this say 

something about aromaticity, and the difference in positive and negative PC-1 scores about 

molecular weight?  
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5.4.2  Standard sample matrix data 
 

As described in section 5.3.2, humic acid, lignin and cellulose were added in discrete 

quantities in a fully factorial trial. Each of the 64 samples contained a total of 1g of combined 

materials, the matrix for which can be seen in the Appendix along with the resulting data. 

 

Figure 5.5: Temperature-weight graph, showing the first nine samples; the series show the 

relative proportions of humic acid (g), lignin (g) and cellulose (g) in this order. 

The curves mimic the proportions of humic acid and lignin in each sample; as the humic acid 

increases and the lignin decreases, the weight measured after each temperature increases; 

this is illustrated in Figure 5.6. 
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Figure 5.6: the relationship between the percentage of humic acid in the sample and the 

ensuing gravimetric result for three random temperatures.  

Here the relationship between humic acid content of the sample and gravimetric weight loss is 

shown, with high R2 values (0.9977-0.9989). Therefore, the samples that weigh the most at 

temperatures >405°C could contain more HA. However, any of the Trial 2 samples containing 

sand or MnO2-coated sand could be misleading if tending to show this pattern. 
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Principal Component analysis 
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Figure 5.7: Scree Plot for PCA on PTGA data for standard samples. 

 

The principal components were calculated as described in section 5.3.3 the first three 

retained, based upon the scree plot (Figure 5.7).The loadings for each PC are given in Table 

5.4. the most significant positive loadings are indicated by deep violet, the secondary positive 

by a lighter violet. The most significant negative loadings are highlighted in deep red, the 

secondary negative loadings by a lighter red. 
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humic acid lignin cellulose PC-1 PC-2 PC-3 

0.0 0.9 0.1 -2.2014 -0.8236 0.1015 

0.1 0.9 0.0 -1.1966 -0.4891 -0.0819 

0.2 0.8 0.0 -0.1938 -0.3704 -0.3453 

0.3 0.7 0.0 0.2877 -0.0759 0.0227 

0.4 0.6 0.0 1.3992 0.0020 -0.6378 

0.5 0.5 0.0 2.1348 0.2137 -0.7320 

0.6 0.4 0.0 2.7912 0.7580 -0.8101 

0.7 0.3 0.0 3.5417 1.0495 -0.7439 

0.8 0.2 0.0 4.3102 1.2180 -0.7697 

0.9 0.1 0.0 4.8721 1.4320 -0.7411 

0.0 0.9 0.1 -3.5146 2.3284 -0.4493 

0.1 0.8 0.1 -2.1316 1.5828 -0.7410 

0.2 0.7 0.1 -1.3579 1.6645 -0.7794 

0.3 0.6 0.1 -0.7727 2.1098 -0.5384 

0.4 0.5 0.1 0.1589 1.8713 -0.6845 

0.5 0.4 0.1 1.1606 1.8119 -0.6680 

0.6 0.3 0.1 2.9014 0.3819 -1.1855 

0.7 0.2 0.1 3.6348 0.6292 -1.0701 

0.8 0.1 0.1 4.6941 0.5762 -0.8685 

0.9 0.0 0.1 4.7422 1.3990 -0.8766 

0.0 0.8 0.2 -3.8406 2.3224 -0.3043 

0.1 0.7 0.2 -2.0230 0.6923 -0.4088 

0.2 0.6 0.2 -0.5327 -0.4431 -0.3121 

0.3 0.5 0.2 0.0677 -0.2593 -0.2583 

0.4 0.4 0.2 0.9494 -0.1215 -0.3979 

0.5 0.3 0.2 1.5733 0.1207 -0.3369 

0.6 0.2 0.2 2.4440 0.2885 -0.4434 

0.7 0.1 0.2 3.0594 0.5094 -0.5421 

0.8 0.0 0.2 3.8232 0.6650 -0.4740 

0.0 0.7 0.3 -2.6115 -0.9104 0.3484 

0.1 0.6 0.3 -1.4489 -1.3255 0.3501 

0.2 0.5 0.3 -0.5481 -1.0936 0.1871 

0.3 0.4 0.3 0.0311 -0.9921 0.3347 

0.4 0.3 0.3 1.0169 -0.7678 0.2628 

0.5 0.2 0.3 1.7571 -0.6548 0.2918 

0.6 0.1 0.3 2.4728 -0.4902 0.1610 

0.7 0.0 0.3 3.5458 -0.2300 0.2596 

0.0 0.6 0.4 -2.1480 -1.7167 0.2714 
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humic acid lignin cellulose PC-1 PC-2 PC-3 

0.1 0.5 0.4 -1.0067 -1.8622 -0.8344 

0.2 0.4 0.4 -0.7722 -1.2766 0.8145 

0.3 0.3 0.4 -0.0003 -0.9021 0.6970 

0.4 0.2 0.4 1.0703 -0.7028 0.5193 

0.5 0.1 0.4 1.7946 -0.5932 0.4257 

0.6 0.0 0.4 2.1227 -0.5484 0.4446 

0.0 0.5 0.5 -2.6788 -1.5733 0.9417 

0.1 0.4 0.5 -1.6930 -1.3548 0.9038 

0.2 0.3 0.5 -0.7702 -1.2402 0.6894 

0.3 0.2 0.5 0.1234 -1.0524 0.5749 

0.4 0.1 0.5 0.7862 -0.9235 0.5358 

0.5 0.0 0.5 1.5026 -0.7180 0.6600 

0.0 0.4 0.6 -3.1467 -1.5029 0.9052 

0.1 0.3 0.6 -2.2158 -1.3829 0.9017 

0.2 0.2 0.6 -1.5008 -1.2902 0.5351 

0.3 0.1 0.6 -0.8094 -1.1130 0.6506 

0.4 0.0 0.6 0.1290 -0.8931 0.8380 

0.0 0.3 0.7 -3.4171 -1.7259 0.8488 

0.1 0.2 0.7 -2.6037 -1.5048 0.9285 

0.2 0.1 0.7 -1.8710 -1.3381 1.0059 

0.3 0.0 0.7 -0.5697 -1.2862 0.0863 

0.0 0.2 0.8 -3.3417 -1.8402 0.5433 

0.1 0.1 0.8 -0.0918 -2.2007 -2.7316 

0.2 0.0 0.8 0.7084 -1.8816 -2.6205 

0.0 0.1 0.9 -0.9064 -2.3704 -2.6401 

0.1 0.0 0.9 -1.0362 -2.4567 -2.7793 

 

Table 5.4: The principal component scores that explain the greatest variance within the matrix 

samples. 

For PC-1, the primary positive scores are highlighted in purple and the negative in red. One 

pattern that emerges is that most of the positive values seem to be dictated by high humic 

acid with low lignin contents whilst the high negative values seem to be driven by high lignin 

contents. The score plot shown in Figure 5.8 highlights the main patterns in data seen using 

pie charts of the relative proportions of humic acid, lignin and cellulose seen.  
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Figure 5.8: Score plot of PC-1/PC-2for the analysis of the standard samples
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The patterns observed in Figure 5.4 for the control samples are reflected here; the 90 % 

humic acid samples occupy the top right of the plot (high positive scores for both PC-1 and 

PC-2); the 90% lignin sample has high positive scores for PC-2 but high negative scores for 

PC-1; and the 90% cellulose has high negative PC-1 and PC-2 scores.  

Through PCA, it is anticipated that the samples with known components will characterise 

those samples of unknown components; both the control sample matrix and the standard 

sample matrix data should define the CLO sample data and help to establish the main 

constituents that have determined the gravimetric data. The matrices will be used for Trial 2 

and Trial 3 CLO samples and analysed using this method to establish whether or not it is 

sufficiently effective in the quantification of humic acid present. The traditional TGA 

methodology relies on a certain degree of precision so it is imperative that a similar degree is 

observed using the adapted method if the results are to be reliable. 

 

5.4.3 Trial 2 data 
 

 Sample CLO % Sand % Mn % 

1 100 0 0 

2 95 0 5 

3 90 0 10 

4 95 5 0 

5 90 5 5 

6 85 5 10 

7 90 10 0 

8 85 10 5 

9 80 10 10 

 

Table 5.5: the trial matrix for trial 2, included here for ease of reference. 

Figures 5.9-5.11 show the temperature-weight graphs for each sample at weeks 1, 5 and 10. 

Sample 9 was lost at 5 weeks so no data exists.  
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Figure 5.9: Temperature-weight graph for week 1 samples (each series is the mean of 

duplicate samples) 

 

 

Figure 5.10: Temperature-weight graph for week 5 samples (each series is the mean of 

duplicate samples) 
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Figure 5.11: Temperature-weight graph for week 10 samples (each series is the mean of six 

replicate samples) 

 

Differences in the curves between weeks 1 and 10 were can be observed between 205°C and 

405°C which  may indicate differences in the amount of labile material present. During week 

five the samples with 10% sand with 5% Mn, and 10% sand with 10% Mn slightly deviate from 

the other samples. At this stage, they show a significant loss on ignition at 205°C, much like 

the week 10 samples. Analysis of variance of the data sets should highlight any significant 

differences in samples over time and between samples, as compared to the control.  

 

Analysis of Variance 

 

There was a general trend for the samples to differ at each stage of the trial at both 155°C and 

205°C. The weight dropped significantly between weeks 1 and 10 at 255°C. At 405°C, the 

samples weighed slightly more at week 5 than at week 1. At the higher temperatures, week 5 

shows the greatest spread between samples. 6 replicate samples were tested at week 10, 

only 2 for weeks 5 and 10; this may have some bearing on the spread of data.  
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Few statistically significant differences were observed between samples. Samples 7 and 9, 

which both contain 10% sand, had a significantly higher weight than the control sample at 

higher temperature. This could simply be by virtue of the fact that a proportion of sand was 

present in the sample. When sub-sampling the lysimeters, it is difficult to know exactly how 

much sand or manganese-coated sand is present 

The two samples which show significant changes over times are 6 and 8 which have 5% sand, 

10% Mn and 10% sand, 5% Mn respectively. Both record a higher weight at week 5 than at 

week 1; at week 10 however, there is little difference seen between them and the week 1 

samples. This trend occurred at temperatures >305°C. At temperatures ≥ 555°C, sample 7 

was the sample that retained the most weight at the end of the ten week period. These 

samples are the only three samples that contain 10% sand. If it was the sand that remained, 

then perhaps the same should have been seen for samples containing 10% Mn coated sand 

also. 
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Principal Component Analysis 

 

The data trial 2 data was analysed using PCA. Using the scree plot (figure 5.12), the first 3 

components were retained.  
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Figure 5.12: Scree Plot for PCA on trial 2 PTGA data. 

The first 3 PCs were scored for the entire dataset and plotted against one another in Figure 

5.13. In the overall distribution of these plots, at least one clear trend can be seen in the 

increasing PC-1 against increasing PC-2. PC-3 shows less clear trends against the other two 

components.  
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Figure 5.13: Principal component analysis plots showing the main trends in the PTGA data. 

The score plots in Figure 5.14 and 5.15 show PC-1 plotted against PC-2. For Figure 5.14, no 

patterns can be seen between samples with different amendments. Figure 5.15, showing the 

difference between samples at each week does show a trend; when compared to the control 

and standards matrix, week one appears to have more labile material and week 10 more 

humic substances.  
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Figure 5.14: Score plot of PC-1 against PC-2 to illustrate differences 

between thetrial two samples. 

 

 
Figure 5.15: Score plot of PC- against PC2 to show the difference between 

the trial 2 samples at each week
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5.5 Conclusions 
 

5.5.1 Revisiting the objectives 
 

1. To determine the appropriate weight of sample for analysis.  
 

The sample weight chosen was a compromise between the numbers of samples that could be 

processed simultaneously and an adequate size that would account for the material’s 

heterogeneity. An attempted was made to remove any large contaminating particles to ensure 

that the samples contained as much OM as possible. However, it was not possible in the time 

available to remove all contaminants so the OM in each sample will differ slightly. Any 

samples with hard plastics in, for example might show less of a loss on ignition at the higher 

temperatures than the sample ought to.  

 

 
2. To find suitable temperature range and temperature intervals. 

 

Again, it was necessary to cover the required span, with enough increments to capture 

suitably informative temperature curves with a consideration for the practicalities of analysis of 

a large number of samples. A range of 105°C - 655°C was chosen to analyse the organic 

components present. Differences can be seen between cellulosic and refractory components 

over the temperature ranges over the trial period. From the control samples, the only 

components that showed very little loss on ignition were the sand, manganese-coated sand 

and glass, where the weight of all organic material had significantly increased. The range and 

intervals chosen therefore were deemed appropriate. 
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3. To select a comprehensive series of control samples 

 

The major contaminants were analysed, along with the three added materials (sand, MnO2-

coated sand and charcoal). When PC-1 was plotted against PC-2, some interesting patterns 

were seen with which to compare the standard matrix and trial samples. If this aspect of the 

trial were to be repeated, some ferrous and non-ferrous metal could also be tested as both are 

presents as contaminants in the CLO.  

 
 

4. To design a matrix  of standard samples with which the CLO samples can be 

compared 

 
A matrix has been developed with which to compare samples in subsequent trials. Three of 

the main components of CLO were used in the construction of the control matrix (humic acid, 

lignin and cellulose). The trial with the major organic components, however, lacked protein 

and lipid. It was not until Trial 4 that it was decided to include these constituents. The matrix 

as it is produced some interesting patterns and correlated well with the controls matrix when 

the score plots in Figures 5.4 and 5.8 were compared. The protein and lipid in the control 

sample seem to occupy the same area of the chart as the cellulose so if these other labile 

components had been included in the standard matrix, it might have been difficult to 

differentiate between these components.  

 

 
5. To employ the method against the stored samples from previous trials and samples 

taken from subsequent trials. 

When this method was used with the stored samples from Trial 2, few trends were observed. 

The samples with 10% sand all appeared to differ in their temperature curves to the other 

samples tested. These samples all presented less of a loss on ignition than the other samples 

at the higher temperatures (>405°C). This was not true of the samples that contained 10% 

MnO2-coated sand which would be expected if this was purely due to the physical effect 

caused by having a higher degree of non-cellulosic material present in the sample. 
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To test the matrix plot against the trial samples comprehensively, it would be necessary to run 

some complementary spectral analyses to prove that the samples that appear to have more 

lignin, humic acid or cellulose, do in fact do so and to rule out any skewing that could be 

caused by sand and MnO2 –coated sand present in the samples.  

 

Trial 3, discussed in the following chapter was a longer study. This PTGA method was 

repeated on samples from this trial and this objective revisited (see Section 6.8.1).  

 

 

 
6. To assess the efficacy of Pseudo TGA as a method for analysing humic material 

within the sample 

 

Precision was seen between replicate samples and the similarity between the control and 

standard matrix indicated a degree of accuracy. However, when manually weighing the 

sample between each combustion, spillages can happen which can effect this precision. The 

balance used must be sensitive enough to detect minor changes in weight. Further 

complementary spectral analysis would be needed to fully assess the robustness of this 

method, possibly in the form of a validation trial.  

Ultimately, this method has the potential for effectively analysing trends seen in the samples 

temporally. Used in conjunction with PCA, trends seen in the humic acid content of samples 

over the trial period were seen. As in Chapter 4, very few significant trends were seen 

between control and amended samples. Perhaps the longer Trial 4 will highlight any 

noticeable changes in the humification process on the addition of manganese-coated sand.  
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5.5.2 Trial limitations 
 

The standards matrix contained only humic, lignin, and cellulose when it perhaps ought to 

have included other groups such as lipids and proteins. However, there had to be limitations 

otherwise number of samples would have been too large, meaning that the analysis would not 

have been carried out in the time available. 

The time factor also meant that the standards matrix was not analysed with replicate samples.  

The control samples and Trial 2 samples were each tested in duplicate and triplicate and a 

high degree of precision was seen. If the trial were to be repeated, some samples from the 

matrix ought to be duplicated to assess precision. 

When taking samples from the lysimeters, one does not know how much sand/ Mn-coated 

sand is being removed. If the amount of CLO present in the sample is factored in to the 

normalising stage of the data analysis, there is no guarantee that 5 % or 10% of added 

material is necessarily going to be included in that particular sub-sample.  

The furnace used may not have always given accurate temperatures. Often, the temperature 

was set and allowed to stabilise but when the door was opened to load the samples, the 

furnace overcompensated when re-equilibrating. This meant that some batches of samples 

may have been exposed to higher temperatures than intended for some temperature 

increments. 
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Chapter 6 
 

The effect of char on the humification of CLO 

 

 

This chapter details the design, implementation and results for the third experimental trial. 

Following trial 2, these experiments seek to build upon gained knowledge by specific 

adaptation to the experimental design. With certain modifications, it is hoped that the results 

from this trial might see less variation between samples and perhaps more agreement in the 

data derived from the various analytical methods. Samples with char will be added to the 

experimental matrix, as well as samples with sand, and manganese-coated sand, as before. It 

is anticipated that char will encourage the production of humic substances in the CLO as it has 

been proven to do in some natural soil systems. 

 

 

 

 

 

 

 

 

 

 

 

 



132 
 

6.1 Introduction 
 

Following the legal action imposed by the Environment Agency on PWM in December 2007, 

CLO samples were unavailable analysis until September 2008.  It was intended that this trial 

would run for twelve months; due to time constraints imposed by the lack of available of 

materials, the trial was designed to run for six months instead.   

With an increase in kerb-side collection of recyclables, it was hoped that the waste might be a 

little better source-separated than with previous batches. Again, an attempt was made It was 

manually filter the CLO in order to obtain a more homogeneous material to analyse. The 

expectation was that this might give a clearer picture of the processes occurring within the 

organic fraction. The results would then be presented as what could potentially be achieved, 

should the CLO be better separated before it was applied to land. However, this proved to be 

impractical and so was abandoned once again and the whole material used.  
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6.2 The addition of char to soils 
 

Black carbon (BC) or char is found in soils around the World as a result of wildfires and 

historic management practices. Slash and burn agriculture is practiced by around 300-500 

million people globally, and affects around 1/3 of the planet (some 1500 million hectares of 

arable land) (Steiner et al., 2007). Probably the most studied soil with BC is the Terra Preta or 

Amazonian Dark Earth (ADE), an anthropogenically carbon-enriched soil dating back some 

9000 years which stabilises SOM, thereby increasing crop yield and fertility when compared to 

adjacent soils.  (Steiner et al., 2007; Solomon et al. 2007). Native infertile soils such as these 

can be transformed into fertile soils by addition of stable carbon in the form of char. This is 

known to reduce soil acidity and can also reduce the need for chemical fertilisers, meaning 

that the environmental benefits can be achieved at a relatively low capital costs. Such benefits 

are especially pertinent in developing countries.  

The increased fertility is due to enrichment with phosphorous, magnesium, zinc and 

manganese; the increased water-holding capacity, cation exchange capacity (CEC), and pH. 

(Solomon et al. 2007; Fowles et al. 2007; Laird, 2008). ADE could decrease desertification, 

sequester atmospheric C, maintain biodiversity hotspots and decrease pressure on primary 

forests that are being extensively cleared for agricultural use with only limited fertility and 

sustainability (Glaser, 2007). Anthrosols rich in BC, when compared to BC-poor adjacent soils, 

assimilate added organic matter far better and have up to 125% more microbial biomass 

(Liang et al. 2010). ADE is thus an incredibly important carbon sink. 

Having observed the beneficial effect that char can have on highly weathered, acid soils many 

studies have been conducted to examine char’s potential as a viable tool for carbon 

sequestration in other part of the World. With its long-term chemical stability (compared to 

uncharred biomass), buried char could trap CO2 within the pedosphere thus enhancing global 

carbon stores and reducing carbon emitted to the atmosphere. 

 

 

 

 



 

6.2.1 Pyrolysis and biochar
 

The primary release mechanism for GHGs is the extraction an

Earth’s geological reservoir (Fowles, 2007). 

be used instead and burnt in a more sustainable way, this problem could be addressed. 

Pyrolysis is thermochemical process where biomass is heated in the absence of oxygen 

producing heat, energy and char as a 

technological premise, having a short processing chain (therefore inexpensive) and being 

fairly accessible to testing, it

could potentially displace 1.91 billion barrels of fossil fuel a year (

consumption) using biomass to energy plus biochar (Laird, 2008). 

Combining pyrolysis for bioenergy with the application of the char to soil may offer a strategy 

to reduce GHG emissions and deliver other environmental benefits. 

increasing C sink to be built up in soil, one which lifts agricultural production and limits 

leaching of nitrates into water (Winsley, 2007). 

Figure 6.1: The ‘waste to energy diagram 

6.2.1 Pyrolysis and biochar 

The primary release mechanism for GHGs is the extraction and burning of fossil fuels from 

arth’s geological reservoir (Fowles, 2007). If fast-growing biomass or biomass waste could 

be used instead and burnt in a more sustainable way, this problem could be addressed. 

Pyrolysis is thermochemical process where biomass is heated in the absence of oxygen 

producing heat, energy and char as a ‘waste’ product. Being based on a relatively mature 

technological premise, having a short processing chain (therefore inexpensive) and being 

fairly accessible to testing, it is subjected to increasing interest worldwide. The United States 

displace 1.91 billion barrels of fossil fuel a year (25% of current US 

consumption) using biomass to energy plus biochar (Laird, 2008).  

Combining pyrolysis for bioenergy with the application of the char to soil may offer a strategy 

s and deliver other environmental benefits. Char allows an ever

increasing C sink to be built up in soil, one which lifts agricultural production and limits 

leaching of nitrates into water (Winsley, 2007).  

The ‘waste to energy diagram re-visited with the addition of char. 
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Char produced via the pyrolysis process is now commonly called biochar. The UK Biochar 

Research Centre (UKBRC), based at the University of Edinburgh, give the following definition 

of this product: 

“Biochar is a black carbon material produced from the decomposition of plant-derived 

organic matter (biomass) in a low or zero-oxygen environment (i.e. pyrolysis or 

gasification) to release energy-rich gases which are then used for producing liquid fuels or 

directly for power and heat generation.” 

There are a broad range of materials that are currently defined as biochar. However, these 

chars vary depending on the type of feedstock (crop waste, energy crop, wood chip, municipal 

waste, and manure for example) and production process (mainly temperature, pressure and 

time). Such variables may determine the use or potential use of the product obtained. 

 

6.2.2 Production process 
 

The main technologies for producing biochar are fast, moderate and slow pyrolysis and 

gasification. Pyrolysis produces between 12 and 35% biochar with slow pyrolysis (at about 

500 oC and with a very long vapour residence time of between 5 and 30 minutes) giving the 

best biochar yields. Gasification occurs at a higher temperature of at least 750oC with a 

moderate vapour residence time of 10 to 20 seconds and generates approximately 10% 

biochar (UKBRC). Slow pyrolysis tends to produce more uniform chars where as fast pyrolysis 

gives more heterogeneous products (Smith et al. 2010).  

Any carbon dioxide emitted from the process can be taken up again by biofuel crops making it 

a closed system. However, as Schalmadinger et al. (1995) state, the combustion of biomass 

and tree growth do not take place on the same timescale and in harvesting dedicated biofuel 

crops;  part of the soil carbon pool size might decrease when part of plant litter is removed for 

bioenergy.  

Problems occur in the developing world where earth pits/mounds; brick, concrete or metal 

kilns; or retorts are used in a batch process. This produces a low yield with no heat 

productions and significant environmental pollution. In the developed world, a closed system is 

generally used to avoid this.  
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Some authors have questioned whether or not this process is energetically favourable. Gaunt 

and Lehmann (2008) examined the energy balance and emissions associated with pyrolysis 

bioenergy production, combined with the sequestration of the biochar produced. They found 

that the land application of biochar reduced GHG emission to a greater extent than when the 

biochar was used purely as an alternative to fossil fuels.  

 

6.2.3 Feedstocks 
 

The feedstock used defines the biochar’s complex structure, with some feedstocks being more 

productive than others. The wide variety of potential feedstocks includes: 

• Dedicated biomass crop (e.g. Miscanthus, willow) 

• Crop co-product/bi-product/residue (e.g. wood/timber wastes, leaves)  

• Waste materials (e.g. agricultural, manure, paper mill sludge, food waste, green waste) 

There are some concerns that dedicated biofuel crop like Miscanthus would remove carbon 

from the biosphere on harvesting; although this is a fast growing crop, perhaps waste residues 

are a better option, providing they can produce a suitable product. 

 

6.2.4 Biochar product 

Huge variability is seen in physical biochar structures, depending upon the parent material and 

formulation conditions, which leads to different turnover times in soils. Large charcoal particles 

from forest fires can stay in soils for thousands of years whereas smaller particles from 

grassland burning are barely detectable in Steppe ecosystems (Steinbeiss et al. 2009).  

In a study on forest fire-derived BC in Western Kenya, Nguyen et al. (2008) found that BC 

degraded rapidly in soil over a 30 year period and then settled to a steady state. A mean 

residence time of only 8.3 years was calculated for BC, with losses via decomposition and 

transport processes; this is in general agreement with the results reported by Steinbeiss et al. 

(2009). However Kuzyoukov et al. (2009) found that char from a perennial Rye grass had a 

mean residence time of around 2000 years. 
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Regardless of feedstock source or synthesis method, some common benefits (improved 

water-holding capacity, CEC, soil fertility, soil aggregation and carbon content of amended 

soil) are observed (Smith et al. 2010). However, researchers at East Malling developed a 

biochar made from seaweed and found that has a vastly different mineral concentration to 

wood biochars; particularly high concentration of Cl was detrimental to plant growth. On the 

whole, addition of seaweed char severely reduced growth or killed maize plants when applied 

at rates greater than 20 gl-1. When attempting to characterise chars and biochars this 

heterogeneity, and chemical complexity present many analytical challenges (Lopez-Capel, 

2010).  

The functional group chemistry of ADE is enriched with aromatic C structures, O-rich organic 

C moieties and a diverse group of refractory aliphatic compounds, possibly the key factor for 

its biochemical recalcitrance (Solomon et al. 2007). In forest fire-derived BC, surface 

molecular properties change more rapidly than the core with carbonyl groups increasing over 

the first 10-30 years (Nguyen et al. 2008). Unlike other components of SOM, char is largely 

made up of strongly bound, highly resistant moieties making it a potentially highly valuable 

carbon store. The structure of biochar is largely amorphous but contains highly conjugated 

aromatic compounds in a crystalline structure (Downie et al., 2009). There are voids in the 

biochar structure formed as micro and macropores and cracks from biomass origin (UKBRC, 

2010).  

There has been some suggestion that humic acids in soils are derived from BC rather than 

plant material. Haumaier and Zech (1995) discovered that oxidised BC showed “remarkable 

similarities” to the highly aromatic humic acids found in soils in their chemical composition and 

spectroscopic properties. Laird et al. (2008) poses the question that if BC in soil contributes 

substantially to the total aromatic carbon content of SOM then is the aromatic prevalence 

overstated in the various proposed models of HS structure? 
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6.2.5 Function/Reactivity in soils 
 

Soil is independently variable and complex (chemically, biologically, and physically) in space 

and over time and can change with human intervention. Char is emerging as a similarly 

independent, diverse material which is complex both physically and chemically. The impact of 

char on soil is therefore unpredictable, especially when combined with random factor of plant 

interaction (Sohi, 2010). 

The half-life of C in char in soil is greater than a thousand years, meaning a lasting 

contribution to soil quality and sequestered atmospheric carbon for millennia (Laird, 2008). 

Generally, the efflux of CO2 from BC is so small that it cannot be compared to that of SOM 

(Kuzyoukov et al. 2009).  

Many studies have shown that soils, on the addition of char, exhibit short-term increased 

mineralisation (usually >20 days) (Smith et al. 2010). Once this trend has passed, it is thought 

that a long-term storage effect can be achieved. Cheng et al. (2008) found that the organic 

carbon found in char-containing soil was more stable, with significantly less labile organic 

carbon and a longer half life in the recalcitrant OC fraction. Wardle et al. (2008) proposed an 

enhanced loss of SOC when char was added to a boreal forest humus layer. It was suggested 

that the char was responsible for promoting the growth of microbial communities and for 

enhancing the decomposition of labile C compounds, rather than stabilising them against 

degradation in soil. Sohi and Lehmann (2008) suggested that the study was flawed because 

the trial had omitted soil minerals, only carrying out the experiment in a litter bag.  

Ordinarily, SOM turnover rates are usually higher in tropical climates (Zech et al. 1997) but 

there is evidence to suggest that after an initial rapid flux, soils with added char stabilise and 

flux is lower than that seen in adjacent native soils. Liang et al. (2008) studied CO2 evolution 

from these anthrosols as compared to respective adjacent soils. The former had between 61-

80% lower flux than the latter and furthermore, the age of the char in the soil (between 600-

8700 years) gave no significant difference in carbon flux. The core regions remained the same 

regardless of age and no chemical/structural differences were observed between young and 

old char samples, providing further evidence for its recalcitrance. Liang et al. (2010) also 

found that the char-poor soils saw mineralisation to a significantly greater degree than the 

char-rich soils on addition of new organic matter.  
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The longevity of char itself under different climates is unclear, but in one study by Cheng et al., 

(2008), its mineralisation tended to remain unchanged between cooler and warmer climates. 

However, as mentioned previously, not all chars are the same; chars burned at a lower 

temperature show a greater degree of mineralisation. Burnt biomass is largely labile and is 

mineralised within a matter of months or years; biochar is pyrolysed rather than burnt so is 

highly stable and resistant to degradation (Winsley, 2007). Although the positive effects of 

chars on crop yields in tropical soils are known, there is still relatively little known about the 

effects of char addition on soil microorganisms and soil carbon balance (Steinbeiss et al. 

2009; Liang et al. 2010). 

Soil microbial biomass has an important role in nutrient cycling. Biochar could potentially 

provide a habitat for these microbes, protecting them from predators and abiological stress. 

Durenkamp (2010) found that soil microbial biomass slightly increased on addition of biochar 

at permanent grassland but not at an arable site. Biochar did result in extra stimulation of 

microbial biomass upon ryegrass addition and did increase nitrification. After initial CO2 flux, 

little increase in flux was seen. It was concluded that the impact of biochar on soil microbial 

biomass and activity mainly depends on the type of char but also on soil-type and 

experimental conditions. Soil microbial activity is increased by biochar especially that 

produced at lower temperature. The increase in soil microbial activity results from the direct 

microbial utilization of biochar as a nutrient source, and the secure environment provided by 

the physical structure of biochar (Luo, 2010). 

When added to contaminated soils, biochar is found to adsorb DOC, increase soil pH (Beesley 

et al. 2010), increase key soil macro elements and immobilise water-soluble trace metals 

(Beesley and Marmiroli, 2010). However, this may not be true of all metals; in a 60 day study 

of an industrially polluted soil, Beesley et al. (2010) found that copper and arsenic 

concentrations increased in pore water by up to 30 times their original level.  Char is also 

shown to have a high affinity for adsorbing and therefore reducing bioavailability of polycyclic 

aromatic hydrocarbons (PAHs) (Cornelissen et al. 2006), with up to a 50% decrease seen in 

more toxicologically relevant PAHs (Beesley et al. 2010). Oen et al. 2006 further suggest that 

it is the char, rather than the TOC that dictates the distribution of PAHs in the soil with the 

sorption to the former being far greater than to the latter. Cornelissen and Gustafsson (2006) 

studied the effect of adding humic acids and native PAHs on phenanthrene sorption to 

environmental char. The sorption was not decreased with the added humic acid, but was with 

other PAHS. 
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6.2.6 Problems associated with biochar 
 

With any ‘new’ technology, a number of issues both scientific and social, need to be 

addressed. First the technology needed for safe and efficient local production of BC and other 

desirable by-products must be suitable for use on a national scale. The correct infrastructure 

has to be in place to support this and to make the process sustainable, the feedstock, 

production facility and location for end-use should be located in the same area.  

Dr. Simon Shackley from UKBRC claims that from the C abatement perspective, traditional 

charcoal methods are damaging with unknown health impacts and not sustainable. This is due 

to the fact that during charcoal production, CH4 (as well as organic vapours and  nitrous oxide 

(N2O)) are emitted. Charcoal making releases 1.9 tCO2 eq. per tonne wood; burning charcoal 

releases a further 0.8 tCO2. This is 60% more than C emission from straight combustion 

(Shackley, 2010). Any system in the UK would need to meet certain environmental criteria to 

ensure that it qualified as a green technology .It is also likely that the economics and 

organisation of reward scheme would be needed to encourage the utilisation of this 

technology. 

There have been questions as to whether or not the energetics of the pyrolysis system are 

favourable when all of the input processes are taken into account. Gaunt and Lehmann (2008) 

explored this and found that even in systems where the conditions were optimised for the 

production of biochar (at the expense of energy production by around 30%), the energy 

produced per unit was still greater than comparable technologies. Furthermore, avoided 

emissions are between 2-5 times greater when biochar is applied to agricultural land than 

used solely for fossil energy off-sets.  

There are also on-going issues for biomass feedstock. Effective land management is 

necessary to preserve global carbon stocks and land use change could be of potential 

concern. There is no clear understanding of what the demands will be for the crop co-

products, by-products, residues or wastes as new technologies develop. If forest land is 

removed to grow short rotation coppice, an important carbon sink will be lost. The ideal 

solution is to use brownfield sites and contaminated land to grow dedicated feedstocks but 

whether this would have any deleterious effects on the end product remains to be seen.  
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The same potential problem exists when considering the use of certain waste materials as 

feedstock; although this eliminates the debate about biofuel crops competing for land with 

food crops and woodland, the ‘waste’ label could be a potential issue, leading to restrictions 

from waste regulation and prejudice from potential clients. This would not necessarily be 

wholly unjustified as there could be concerns relating to probable contamination from 

pollutants such as PCBs, toxic metals and PAHs which leads to the question: 

When biochar incorporated is into soil, how safe is it to use? 

To avoid PAH production, slow pyrolysis is the key. Chars studied from both ADE and Spanish 

wildfires were both below limits of detection for PAHs (Gaunt and Lehmann, 2008). However, 

more studies needed to assess levels of PAHs from biochars produced under different 

conditions.  

Rather than an environmental pollutant, however, it could be argued that char added to soils 

follows a pathway that occurs in many natural soils ; many soils around the world contain high 

concentrations of char (some >20%) as a result of natural fires with no apparent ill effects 

(Fowles, 2007).  

For all the addition of biochar to soils may improve crop fertility, it is also found to promote 

prolonged weed growth (Major et al. 2005). If the char is to be added to cropland to increase 

fertility, limiting the need for inorganic fertilisers, this could increase the need for herbicides.  
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6.2.7 Current/future research focus in UK 
 

Although research in this area is active and growing, research has focused largely on the 

benefits to agriculture, rather than carbon sequestration (Fowles, 2007). Currently in the UK, 

research is chiefly focused on the characterisation of biochar as a product. To gain an 

empirical understanding, one needs available char, a willing land owner and a robust method 

for testing responses. But it can be difficult to ensure transferability and further, it is often very 

difficult to ensure that every study chooses a comparable range of measures (nutrient status, 

soil pH, soil texture...).  

Classification of biochar would mean that it may become a readily available, commercial 

product; predictive capacity would enhance the market value and allow investment in active 

production. Parallels could be made between this PAS100 and PAS110 graded composts 

which have fulfilled these requirements and completed this process.  

UKBRC are attempting to elucidate issues surrounding this relatively new science – 

classification system for government, industry, academia and the general public. They are in 

the process of developing rapid toolkit for screening short-listed products which emphasises 

five key functional attributes. 

1. Carbon accounting purposes – how much biochar remains in soil over long-term 

2. Fingerprint specific biochars so that different products are traceable 

3. To assess reactions with and impact on soil 

4. To establish viable methods for the analysis of biochar for rapid and inexpensive 

deployment 

5. The ultimate aim is to create a database for a global ‘charchive’ which will be a web-

based catalogue and physical library for a growing inventory of biochar samples.  

 

Until this has been achieved, it remains difficult for academic studies using char to be wholly 

comparable.  
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6.2 Trial aims 

 

To expand on trial 2 experiments by adding char and comparing it with manganese dioxide-

coated sand in its ability to increase the humification of CLO.   

6.3 Trial objectives 

 

1. To control ambient conditions in order to better assess any significant differences 

between data sets. 

 

2. To introduce peat as a soil standard. 

 
 

3. To lengthen the trial period, assessing the degree of humification at 10 weeks and 30 

weeks. 

 

4. To avoid sub-sampling of lysimeters for flux measurements. 

 
 

5. To re-examine the suitability of PTGA as a method of assessing humification. 

 

6. To test biochar against Mn and sand-supplemented samples in terms of their 

individual capacities to stabilise organic matter.  

 

7. To examine any difference in the carbon flux and humic acid content of free-draining 

and water-logged samples. 
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6.4 Materials  
 

A 100kg batch of CLO was collected from the Thornley PARC recycling facility in October 

2008. It was stored outdoors in sealed, breathable containers until use. On inspection, the 

material appeared no less contaminated than previous batches; a second attempt to manually 

remove macro-contaminants was once again aborted due to time constraints and volume of 

material. 

Having encountered problems with heterogeneity during previous trials, sphagnum moss peat 

was introduced as a soil standard. Peat, like CLO, is high in organic carbon but being 

relatively homogeneous in character, it was thought to be a suitable standard.  

As in Trial 2 (Chapter 4), the manganese–coated sand was collected from the Northumbrian 

Water Treatment Works in Castleside, County Durham; the sand was the same material as 

described in Chapter 4.  Again, both were sieved prior to use to eliminate any particle size 

bias. For chemical composition of the manganese-coated sand, see Table 4.1. 

Although the UK Biochar Research Centre (UKBRC) is currently working to produce a 

standard material with reliable properties, none exists as yet. Different feedstocks and 

different methods of production can produce a variety of chars with different properties. The 

char used in this trial was a lumpwood charcoal made from softwood, selected chiefly because 

of its commercially availability, known source and low cost.  

Several trials have been undertaken to assess the effect of particle size on biochar’s efficacy 

(UKBRC, 2010). Some state that it has no bearing on its soil-enhancing properties, others give 

the contrary view. To avoid bias and to ensure and reproducibility, the char in this trial was 

crushed and sieved to ensure that the particle size was comparable to that of the MnO2-

coated sand and sand.  
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6.5 Experimental set up 
 

Based upon results from previous trials and new specifications from Premier Waste, some 

changes and additions were made to the experimental design for this trial. The Mn-coated 

sand, biochar and sand were all added at 5% (dry weight) based on results from trial two and 

on current literature from similar trials (Smidt et al 2008).  

6.5.1 Ambient conditions 
 

It was decided that trial three would be carried out under more controlled conditions so that 

any trends might be more easily seen.  

 

Figure 6.2: a lysimeter for a free-draining sample with the IRGA chamber attached.  

Construction of lysimeters used 96 x 25cm lengths waste pipe and 96 x end caps. The 

lysimeters were made watertight with sealant. Drains and water-depth monitors were 

constructed using 20cm lengths of 6.5mm PVC tubing, rubber bungs and plastic ties/clips. 

Holes were drilled in the pipes for drainage tubing: one at base for water-depth 

measurements, one at 20cm for water-logged drainage. Lysimeters were laid out in trays in 

random order so that any sampling bias would be limited. Protective gauze frames were 

designed and built to cover the samples to minimise any spreading of dust within the 

laboratory. 
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6.5.2 Waterlogging  
 

During this trial, a set of waterlogged samples were introduced alongside the free draining 

samples. As PWM have proposed the idea of creating a pseudo-peat bog made from CLO, it 

was considered important to see how the material behaved under waterlogged conditions.  

As with the previous trials, dry weights were calculated and the relevant proportions added to 

each lysimeter, each in triplicate. A fourth replicate was made and sacrificed after 10 weeks; 

the other samples were measured for 26 so that any longer-term trends might be seen. 

Carbon flux is greatest when the rate of mineralisation is highest, as the labile components of 

the CLO decompose. Long-term behaviour is more likely to show any significant effects of the 

manganese addition after around two weeks.  

 

Measurements of ambient temperature, soil temperature , pH and soil moisture were taken 

throughout the course of the experiment. The free draining samples were watered regularly to 

ensure that moisture content was sufficient for optimal microbial activity (Bernal et al  2009); 

and the waterlogged lysimeters were also watered so that they remained so. Milli-Q deionised 

water was used for this purpose. Small samples were taken regularly to monitor that the soil 

moisture content remained at least 40% (Huang and Hsu, 2008). 

The leachate was collected at weeks 1, 10 and 26 in clean, labelled sterilins and stored below 

4°C for further analysis  

 

6.5.3 Flux measurement 
 

Objective 4 for this trial was to avoid the sub-sampling of the lysimeters during flux 

measurements; In order for samples to remain undisturbed, the CLO was left to mature until 

the flux was within the IRGA’s measurable limits. This facilitated the use of the integrated 

chamber that could be fitted directly over the lysimeter, and measurements to be taken directly 

(Figure 6.1). As the material had been stockpiled at the Thornley site for an indeterminate 

length of time, there was no knowing how old the CLO was at time of collection. That being 

the case, the material was already incomparable to previous batches so the further maturation 

period was of minor consequence. 
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6.6 Statistical analysis 
 

6.6.1 Analysis of Variance 
 

As described in Chapter 3.4, all data collected were entered into a Microsoft Excel 

spreadsheet, formatted and then ANOVA (General Linear Model) performed using Minitab 13. 

The results are given as p-values and all < 0.05 show a significant relationship between the 

two parameters compared. All results used from this point will be quoted as being statistically 

significant if they satisfy this requirement.  

 

6.6.2 Principal Component Analysis 
 

As in Chapter 5, PCA will be used to analyse the PTGA data. Again, Minitab 13 software was 

used to calculate the eigenvectors, eigenvalues and principal components (PCs) within the 

correlation matrix. Once the PCs have been calculated, all with eigenvalues of ≥1 are 

retained, plus the first one in sequence that is <1. To ensure the correct number of PCs have 

been retained, a scree plot is be used; the eigenvalues are plotted against the PC numbers, 

and the components depicted on the curve of the graph are retained (Figure 6.28).  

The variables (temperature intervals 155-655ºC) were entered, giving eleven in total and the 

PCA run. Two eigenvalues were greater than 1; a scree plot (Figure 6.28) was drawn to 

corroborate the number of eigenvalues retained. 

The control sample matrix and the standard sample matrix described in section 5.4.1 and 

5.4.2 were used to compare the trial 3 samples against and inferences were then drawn.  

To make the study viable, it’s important to have five times more data points than variables. 

The 16 standard samples and the 64-sample matrix (described in 5.4.1-2) the 144 samples 

from this trial, gives a total of 224 samples which fulfils the minimum quota criteria (5x the 

number of variables). 

 



 

6.7 Results 
 

6.7.1 Physical analysis and 
 

Over the thirty week trial period, apparent physical differences between the samples were 

observed.  The waterlogged CLO samples tended to form a m

6.2) which appeared to impede carbon flux.

samples.  

 

Figure 6.3: Microbial/Fe film developed over waterlogged sample.

 

From the leachate collected at weeks 1, 10 and 26

 

 

 

 

analysis and observations 

Over the thirty week trial period, apparent physical differences between the samples were 

observed.  The waterlogged CLO samples tended to form a microbial, ocherous crust (figure 

) which appeared to impede carbon flux. This was not seen in the waterlogged peat 

 

: Microbial/Fe film developed over waterlogged sample. 

collected at weeks 1, 10 and 26, the following data was collected
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icrobial, ocherous crust (figure 

This was not seen in the waterlogged peat 

, the following data was collected. 
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pH 
 

Sample 
 

pH 

W1 W10 W26 

CLO 8.18 7.38 7.60 
Waterlogged 7.71 7.67 7.68 
CLO with sand 8.13 7.34 7.58 
Waterlogged 8.11 7.71 8.17 
CLO with MnO2 7.29 7.26 7.36 
Waterlogged 7.63 7.81 7.67 
CLO with biochar 7.63 7.21 7.33 
Waterlogged 8.16 7.84 7.54 
Min 7.23 7.12 7.09 
Max 8.66 8.06 8.19 

Peat 4.46 4.07 4.41 
Waterlogged 4.29 4.11 4.20 
Peat  with sand 4.23 4.01 4.23 
Waterlogged 4.29 4.64 4.10 
Peat  with MnO2 4.58 4.27 4.76 
Waterlogged 4.95 4.61 5.02 
Peat with biochar 4.30 5.28 4.91 
Waterlogged 4.27 4.26 4.26 
Min 3.65 3.71 3.71 
Max 5.49 5.63 5.44 

 

Table 6.1: leachate pH data from trial 3 (Average from three replicates; min and max values 

from individual sample readings). 

 

The main differences in pH were seen between the CLO and the peat samples; the former 

having a significantly higher pH than the latter. No significant differences were seen between 

free-draining and waterlogged samples, between different treatments or over time.  

The pH readings for all CLO samples were within the same range of those seen in Trial 2 

(Chapter 4.7.1), measuring between 7.09 – 8.66 across the 26 week period. The peat samples 

measured between 3.65- 5.63, making them mildly acidic; these values are consistent with 

current literature (Gardea-Torresdey et al. 1996; Andersen et al., 2010).  
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Moisture content 

 

At the beginning of the trial, 50g extra material was added to each lysimeter for the purposes 

of moisture content analysis. At the end of week one, 50g were removed from each lysimeter; 

dried for 48 hours in a furnace at 105°C and then re-weighed. When the fourth set of samples 

was sacrificed for analysis at week 10, the same procedure was followed and each sample 

was analysed in duplicate. At week 26, the moisture content was measured again on the 

remaining triplicate samples. The results are shown in table 6.2.  

 

Sample 
Moisture content (%) 

W1 W10 W26 

Free draining CLO 42.4 45.7 48.2 
Free draining CLO with Mn 45.7 40.0 46.6 
Free draining CLO with Sand 42.7 37.4 31.4 
Free draining CLO with char 40.9 32.4 51.4 
Min 36.1 27.2 28.9 
Max 49.8 46.3 59.9 

Waterlogged CLO 73.6 72.9 73.6 
Waterlogged CLO with Mn 72.5 73.8 74.0 
Waterlogged CLO with Sand 73.1 74.7 73.5 
Waterlogged CLO with char 74.0 75.9 75.3 
Min 69.1 70.1 69.6 
Max 75.6 77.0 77.8 

Free draining Peat 42.8 37.6 36.5 
Free draining Peat with Mn 34.7 34.8 38.1 
Free draining Peat with Sand 35.7 40.1 38.5 
Free draining Peat with char 40.5 40.3 44.4 
Min 31.4 31.6 29.1 

Max 46.2 44.0 49.7 

Waterlogged Peat 80.0 81.1 80.5 

Waterlogged Peat with Mn 80.1 78.5 80.3 
Waterlogged Peat with Sand 77.9 79.5 80.3 
Waterlogged Peat with char 78.1 79.8 81.2 
Min 77.2 77.4 77.9 
Max 83.5 81.4 82.3 

 

Table 6.2: Moisture content of the CLO and peat samples at weeks 1, 10 and 26 (weeks 1 and 

40 show the average of 6 replicates, week 10 is the average of 2 replicates). 
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As expected, the waterlogged samples have a higher water content than the free-draining 

samples. Peat holds slightly more moisture than CLO for the waterlogged samples but not for 

the free-draining samples. . The spread of data is much smaller for waterlogged samples than 

for free-draining samples with min-max values having a difference of ≤6 and ≤20 % 

respectively. The moisture content of the free-draining was ideally supposed to be maintained 

at above 40%. On the whole, the samples were lower than this; it was difficult to maintain this 

level of moisture without waterlogging the samples. This may have implications for microbial 

activity and water-bridge formation, as discussed in Chapter 4.7.1.  
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6.7.2 Degree of carbon flux 
 

The carbon flux was collected in ppm with the IRGA as described in section 3.6.1 and then 

converted into gC/gCLO/day via the equation given in section 3.6.2; all data presented in this 

section are given in the converted units described. 

 

CLO free-draining samples 

 

  

  

Figure 6.4a- d: Scatter graphs showing carbon flux of free-draining CLO over a 26 week period; each 
series represents the three triplicate samples at each data collection 

 

There was a broad spread of data between replicate samples for all samples throughout the 

trial period with differences as large as 20gC/gCLO/day seen between some replicates. All 

samples showed the characteristic sharp increase in CO2 flux over the first ten days and then 

steady decline over the 176 days.  
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CLO waterlogged samples 

 

  

  

Figure 6.5a-d :Scatter graphs showing carbon flux of waterlogged CLO over a 26 week period; each 
series represents the three triplicate samples at each data collection 
 

 
The spread of data and degree of flux is not as great in the waterlogged samples compared to 

the free-draining samples. There is also an apparent steady increase in CO2 efflux over the 

trial period (from 0-≤32gC/gCLO/day), rather than the decrease seen in the previous charts in 

Figures 6.4a-d. Analysis of variance will give a quantitative account of this data. 
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Peat: Free-draining samples 

 

  

  

Figure 6.6a-d: Scatter graphs showing carbon flux off free-draining peat over a 26 week period; each 
series represents the three triplicate samples at each data collection 

 

The peat samples have far less flux than the CLO samples, in the range of 0-4gC/gCLO/day 

as opposed to 0-40gC/g/CLO/day. The chart axes have been adjusted accordingly. Greater 

flux in CLO could be due to more labile material that may exist in CLO or a liming effect 

(Andersson and Nilsson, 2001) caused by a higher pH which is more conducive to the 

appropriate decomposer organisms.  

 The spread of data appears to be greatest for the control sample but still significant for other 

samples. There is no obvious increase or decrease of flux over time and no other apparent 

differences between samples. 
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Peat: Waterlogged samples 

 

  

  

Figure 6.7a-d: Scatter graphs showing carbon flux of waterlogged peat over a 26 week period; each 
series represents the three triplicate samples at each data collection 
 

The spread of data is not as great in the waterlogged peat control samples as it is in the free-

draining peat control; for the other samples, the data-spread is similar between samples and 

to compared to their free-draining counterparts.  

The free-draining CLO samples show the greatest flux which steadily decreases over time 

(from ≤ 3gC/gCLO/day - 0gC/gCLO/day); waterlogged CLO flux appears to increase slightly 

over the 26 week period. The peat samples give around ten times less flux that the CLO, 

possibly due to its relative stability. 
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General discussion for CO2 flux data 
 

 Although samples were stored under the same conditions, some of the samples developed a 

microbial crust. This could account for some of the differences in flux between replicate 

samples. However, the range of data could be seen in the flux values of replicate samples in 

the previous trial when no microbial crust was seen so is not necessarily solely responsible for 

the lack of precision seen.   

Significant differences were seen in CLO flux during weeks 1 and 2, possibly due to the water 

barrier, preventing respiration initially. Perhaps samples were analysed too soon after having 

been watered in the first week but by the second week, had drained a little, releasing CO2 

from the unobstructed soil pore spaces. This increase in flux rate observed over this short time 

period seen in the peat samples. Perhaps the microbial communities present in the peat 

sample had yet to become established in the CLO lysimeters, as was seen in the previous 

trial.  

No statistically significant difference was observed between treatments for CLO samples in 

week one, as expected. By week two, the samples with added biochar exhibited a significantly 

higher flux than the control samples. This could be due to the trend often observed in soils 

with added char for short-term increased mineralisation within the first 20 days, as outlined by 

Smith et al. (2010). 

At week 10, no difference in flux can be distinguished between the different treatments for any 

of the soil samples. The peat samples, whether free-draining or waterlogged, show no 

statistically significant difference between treatments at any point during the trial. Furthermore, 

waterlogging had no apparent effect on the flux of peat.  

For the free-draining CLO samples, the decrease observed in the flux rate was significant 

between 1-10 and 1-26 weeks. The only significant difference for the waterlogged CLO 

samples was in the control samples with the increase in flux between weeks 1-26.  
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A significant difference can only be observed between treatments in the free-draining CLO 

samples; the CLO with char gives the greatest decrease in flux over time; the CLO with added 

manganese-coated sand also shows a slight reduction in flux when compared to the CLO 

control sample. All treatments in the waterlogged CLO samples show a significantly larger 

decrease in flux than the control samples over the trial period. 

 

6.7.3 Humic analysis 

 

Raw data are presented as the average of each the replicate at each week, plotted against the 

yield of humic acid extracted (Figures 6.8-6.11); against the E4/E6 ratio (Figures 6.12 -6.15); 

and finally, against the humification Index (HIX) (Figures 6.20 and 6.21). 

For week 10, there are only two replicates as these were the dedicated sacrificial pots; the 

week 1 and week 26 samples comprise 3 replicates, analysed twice giving a total of 6.  
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ALKALI EXTRACTION: Free-draining CLO 
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 Figure 6.8a: Free-draining CLO samples at 

week 1 (six samples).
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 Figure 6.8b Free-draining CLO samples at 

week 10 (two samples). 
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 Figure 6.8c: Free-draining CLO samples at 

week 26 (six samples).
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ALKALI EXTRACTION: Waterlogged CLO 
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Figure 6.9a Waterlogged CLO samples at 

weeks 1 (six samples). 

Figure 6.9b: Waterlogged CLO samples at 10 

(two samples).  

Figure 6.9c: Waterlogged CLO samples at 26 

(six samples).  
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All free-draining samples appear to raise a similar yield of HA at week one, with little change 

seen at week 10. By week 26, the MnO2-coated sand and char samples show a higher HA 

yield than the control sample with the char having the greatest. The samples with sand seem 

to have a slightly lower average yield than the control at week 26.  

There appears to be very little difference between the samples over time and between each 

treatment in the waterlogged samples. The control samples show the largest data spread 

between replicates. Samples with char, followed by samples with MnO2-coated sand give the 

greatest yield of humic acid; with sand samples present the lowest yield of HA. 

For the control, manganese and char samples, little differences are seen in the average HA 

yield. The samples with sand appear to have the lowest yield. The MnO2-coated sand and 

char-amended soils seem to be affected by waterlogging, giving lower yield than their free-

draining counterparts. The spread of data is lowest in the char-amended samples.  

Despite these apparent trends, when ANOVA was performed, no statistically significant 

differences were observed between waterlogging and free-draining samples, nor were any 

differences seen between the treatments, as compared to the control sample. The actual yield 

only varied from 0.9% for the sand-amended sample and 3% for the sample with added char 

so although the pattern looked apparent, the yields were so low that the difference between 

them was not statistically significant. The only statistically significant trend seen for alkali 

extraction procedure on CLO was the increased yield in humic acid in all samples over the trial 

period.  
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ALKALI EXTRACTION: Free-draining peat 
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Figure 6.10a Waterlogged peat samples at 

week 1 (six samples). 

 

 

 

Figure 6.10b Waterlogged peat samples at 

week 10 (two samples). 

 

 

 

Figure 6.10c Waterlogged peat samples at 

week 26 (six samples). 
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ALKALI EXTRACTION: Waterlogged peat 
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Figure 6.11a Waterlogged peat samples at 

weeks 1 (six samples). 
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Figure 6.11b: Waterlogged peat samples at 

week 10 (two samples). 
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Figure 6.11c: Waterlogged peat samples at 

week 26 (six samples). 
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The peat samples have a higher average yield of humic acid than the CLO samples (4-7.5%) 

but again, show a spread of data between the replicates (as much as 2%). There appears to 

be little difference between the average yields seen in free-draining and waterlogged samples 

but the manganese MnO2-coated sand amended samples appear to have the lowest average 

yield and the char samples the highest for waterlogged peat samples. This appears consistent 

over the 26 week period. Sand seems to have a lower average yield than the control for both 

free-draining and waterlogged samples. 

Despite differences seen in Figures 6.10-6.11, no statistically significant differences were 

observed at 26 weeks between free-draining and waterlogged samples. The control peat 

sample is the only one to show any statistically significant difference between humic material 

in waterlogged and free-draining samples, with it having a slightly increased yield in the latter 

over 26 weeks but remaining the same in the former group.  

The free-draining peat sample amended with sand and the sample amended with char each 

produced significantly less humic acid than the control sample at 10 weeks. At 26 weeks, the 

waterlogged peat samples with char yielded significantly more humic acid than the control 

sample.  
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UV DATA: CLO 
 

The E4/E6 ratio decreased over the trial period for all control samples, more so with the 

waterlogged. For the amended free-draining samples, all three seemed to reduce their ratio 

more than the control over the 26 weeks with the manganese samples showing the lowest. 

The waterlogged samples are a little less clear but it appears the control samples look to 

reduce in ratio more than the other samples. For all samples, the error bars are large, 

especially at 26 weeks so the statistical analysis will show whether any of these relationships 

are significant.  
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Figure 6.12 a and b: temporal changes in absorption ratio at 446nm and 665nm for free-

draining and waterlogged CLO respectively.  
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Figure 6.13 a and b: temporal changes in absorption ratio at 446nm and 665nm for different 

treatments for free-draining and waterlogged CLO respectively. 
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UV DATA: peat 
 

The E4/E6 ratio is significantly lower for peat samples than for CLO, mostly being lower than 2 

rather than between around 6-12. All free-draining and waterlogged samples appeared to 

decrease in E4/E6 ratio over the 26 weeks. Again, the error bars are large for all samples and 

so any apparent patterns in data could be deceptive.  
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Figure 6.14 a and b temporal changes in absorption ratio at 446nm and 665nm for free-

draining and waterlogged peat respectively. 
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Figure 6.15 a and b: temporal changes in absorption ratio at for different treatments for 

different treatments for free-draining and waterlogged peat respectively. 
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There was a statistically significant difference between the CLO and the peat samples, the 

latter giving a lower ratio (in the order of 1-2 as compared to 6-13), thus denoting greater 

humification.  

Within the peat samples, both free-draining and waterlogged samples decreased in ratio over 

the trial period. However, there was no difference between these samples, possibly because 

the small change seen in ratio which was in the order of 0.5, as compared to a change of 

around 6 for the CLO samples. No statistically significant changes were seen between 

different treatments either, possibly for this same reason. 

No difference was seen in the CLO samples between treatments in week one, as to be 

expected. By week 10, the manganese-amended free-draining CLO sample had a significantly 

lower ratio than the control; this continued to be the case at week 26. By the end of the trial, 

the biochar-amended free-draining CLO also showed a significantly lower ratio than the 

control. 

For the waterlogged and free-draining CLO, no significant difference was seen between control 

samples of each, possibly due to the large error bars seen. However, the MnO2-amended and 

char-amended samples both show significant difference in humic material between their free-

draining and waterlogged counterparts at weeks 10 and 26. At the end of the trial, the free-

draining MnO2-amended samples had a ratio of around 6.5 and the char-amended samples, 

around 7. For their waterlogged counterparts, the ratios were both around 9.5.  

Within the waterlogged CLO samples, statistically significant differences in humic content 

were observed with all three treatments, as compared to the control at week 26. Unlike for 

free-draining samples, they appear to have a higher ratio which suggests less humic acid.  
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FLUORESCENCE DATA 
 

The fluorescence fingerprint charts illustrate the evolution of humic material over the 26 week 

period. The peak intensity (PI), with arbitrary units, is shown via the coloured key which 

ranges from 0 (indigo) to 1000 (red). For each sample’s spectrum, two peaks exist at different 

excitation-emission wavelength pairs (EEWP): one at 220nm/440nm which for ease of 

reference will be referred to as peak 1(P1); and a second at 320nm/440nm which will be 

referred to as peak 2 (P2). 

As fluorescent molecules become more condensed, their emission spectra tend to shift 

towards longer wavelength with more simple structures fluorescing at shorter wavelengths 

(Pedra et al., 2008). For example, emission at 350nm tends to show relatively simple 

fluorophores, where emission at 480nm gives highly conjugated and condensed aromatic 

compounds (Fuentes et al., 2006). 

Vieyra et al. (2009) conducted a study on HA and FA formation in composting MSW over a 

period of 150 days. Samples were analysed using fluorescence spectroscopy and Excitation-

Emission Matrices (EEM) produced. Two main peaks were identified, one at excitation-

maximum <280nm and the second at >280. The position of these corresponded to fulvic acid-

like and humic acid-like molecules respectively.  

The two peaks seen in the Vieyra et al. (2009) spectra correspond almost exactly to the two 

peaks seen in Figures 6.16-6.18. It will therefore be assumed that P1 corresponds to FA-like 

compounds and P2, HA-like structures. Any shift in the spectra over time and between 

samples should indicate any changes or differences in their FA and HA content. 

The week one samples all had an EEWP at 240nm/410nm (P1) and at 330nm/420nm (P2). 

The excitation wavelength remained the same in P1 for all samples. In P2, the excitation 

wavelength increased for all of the week 10 and 26 samples to 340nm. The emission 

wavelength remained the same for P1 samples also, with the exception of the CLO with char 

sample at week 26 where an increase in wavelength was observed (420nm to 430nm). For 

P2, the emission wavelengths exhibited an increase only in the week 26 samples for CLO with 

char and CLO with MnO2-coated sand. The control samples saw no change in P2 position 

across the 26 weeks.  
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Figures 6.16a-c: fluorescence fingerprint charts for CLO control samples at weeks 1, 10 and 26 respectively. P1 corresponds to the FA-like fluorescence, P2 the 

HA-like fluorescence. Each sample was diluted x 100 using 0.2M NaOH. 
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Figures 6.17a-c: fluorescence fingerprint charts for CLO with char at weeks 1, 10 and 26 respectively. P1 corresponds to the FA-like fluorescence, P2 the HA-

like fluorescence. Each sample was diluted x 100 using 0.2M NaOH. 
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Figure 6.18a-c: fluorescence fingerprint charts for CLO with MnO2 at weeks 1, 10 and 26. P1 corresponds to the FA-like fluorescence, P2 the HA-like 

fluorescence. Each sample was diluted x 100 using 0.2M NaOH. 
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The peak intensities differ across the samples and over time. Low intensities tend to signify 

highly conjugated, high molecular weight molecules, whereas higher intensities are usually 

associated with fulvic acids and simple structural compounds with lower molecular weights. In 

Figures 6.16-6.18, the peak intensities of P2 are consistently lower than those in P1 with 

values being between 436 and 570 a.u., with the exception of the CLO with char at week 26 

and the CLO with MnO2-coated sand at week 10. Here, the peak intensities reached 706 and 

689 a.u. respectively. This may suggest that the humic acid present contained more lower 

molecular weight moieties at that point than at the other stages of the trial.  

The higher peak intensities seen in P1 suggest more FA-like material which is consistent with 

the data presented in the Vieyra et al. (2009) study. Here, intensities range from 684-933 a.u. 

Highest peak intensity values were seen in the CLO with MnO2-coated sand samples, perhaps 

signifying a breaking down of HA into FA or higher molecular-weight HA molecules into 

smaller.  

The fingerprint charts give a qualitative view of the humification occurring within the samples; 

for quantitative, more sensitive data that can be analysed statistically, the humification index 

(HIX) can be calculated (Ohno 2005).  

 

Figure 6.19: a graph to illustrate the peak intensity versus emission for the relevant area of the 

spectrum for calculating HIX. The three series shown are each of the triplicate samples. 

 

As outlined in section 3.6.3, the HIX is calculated by comparing the emission seen at two 

different excitation ranges: 435-480 nm and 300-345 nm, calculated thus: 

 

HIX = (Σ I 435→480)/(Σ I 300→345)                      (Ohno, 2002).  
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The values calculated are between 0 -1 with the highest values signifying the greater degree 

of humification. 

 

Humification Index 
 

Samples Weeks 0 Week 10 Week 26 ∆HIX1 

CLO: Free-
draining 

    

Control 0.9744 0.9290 0.9327 -0.0417 
Sand 0.9735 0.9257 0.9429 -0.0306 
Mn 0.9121 0.9296 0.9389 0.0268 
Biochar 0.9111 0.9302 0.9470 0.0359 
CLO: Waterlogged     

Control 0.9198 0.9196 0.9373 0.0175 
Sand 0.9160 0.9283 0.9328 0.0168 
Mn 0.9145 0.9232 0.9322 0.0177 
Biochar 0.9079 0.9131 0.9375 0.0296 
Peat: Free-
draining 

   
 

Control 0.9821 0.9553 0.9715 -0.0106 
Sand 0.9699 0.9596 0.9681 -0.0018 
Mn 0.9545 0.9473 0.9677 0.0132 
Biochar 0.9554 0.9573 0.9536 -0.0018 
Peat: Waterlogged     

Control 0.9506 0.9628 0.9534 0.0028 
Sand 0.9464 0.9617 0.9766 0.0302 
Mn 0.9443 0.9579 0.9658 0.0214 
Biochar 0.9539 0.9608 0.9686 0.0147 
1 The change in humification index value over the trial period 

Table 6.3: The humification index calculated for each sample at weeks 1, 10 and 26 (average 

of 2 replicates). The figures in bold represent the most humified sample across the trial period. 

For the free-draining CLO samples, the control and samples with sand appeared more 

humified at the beginning of the trial, losing humic material over the first 10 weeks. 

Humification then appeared to increase again at 26 weeks. The free-draining CLO samples 

with MnO2-coated sand and char both saw an increase at 26 weeks. This is in general 

agreement with the data presented in Figures 6.16-6.18. 

The waterlogged CLO samples all increased in humic material over the trial period; the 

sample with added char showed the greatest increase. 
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Figure 6.20 a and b: temporal changes in HIX (average of triplicate samples) of free-draining 

and waterlogged CLO samples respectively over 26 weeks  

 

  

 

Figure 6.21a and b: temporal changes in HIX (average of triplicate samples) of free-draining 

and waterlogged peat samples respectively over 26 weeks  

 

The HIX is high for all samples which suggest a high degree of humification in the humic 

substances present. All waterlogged samples saw an increase in HIX over the trial period 

which was a statistically significant trend for the control and Mn-coated sand amended CLO 

samples. The free-draining peat with Mn was had a significantly lower HIX than the control at 

each week. 

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

Week 1 Week 10 Week 30

Control Mn Sand Char

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

Week 1 Week 10 Week 30

Control Mn Sand Char

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

Week 1 Week 10 Week 30

Control Mn Sand Char

0.8800

0.9000

0.9200

0.9400

0.9600

0.9800

Week 1 Week 10 Week 30

Control Mn Sand Char

H
IX

 

H
IX

 

H
IX

 

H
IX

 

a b 

a b 



174 
 

There were no statistically significant temporal differences observed across all samples taken 

together. Perhaps more data would have elucidated this, especially for weeks 10-26 where p-

value is close to 0.05. For individual samples, the free-draining CLO with added MnO2-coated 

sand and char each indicated a significant increase in humification after 26 weeks.  

Significant differences were seen between CLO and peat samples, which agree with the other 

forms of analysis. The waterlogged CLO samples all increased over the 26 week period, the 

only set of samples to do so. Both the free-draining CLO and peat showed a similar trend with 

the control and sand samples appearing less humified at the end of the trial than at the start. 

The experiment would perhaps have been more sensitive if time had allowed for more 

replicate samples to be used.  
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Samples Alkali extracted HAa (g) E4/E6 A ratiob HIXc 

W1 W10 W26 ∆gd W1 W10 W26 ∆A W1 W10 W26 ∆HIX 

CLO: Free-draining             

Control 1.3 1.7 2.2 0.33 12.4 9.7 8.9 -3.52 0.9744 0.9290 0.9327 -0.0417 
Mn 1.2 1.5 2.2 1.00 12.2 8.0 6.6 -5.60 0.9735 0.9257 0.9429 -0.0306 
Sand 1.3 1.7 1.7 0.40 11.9 9.4 8.0 -3.95 0.9121 0.9296 0.9389 0.0268 
Char 1.1 1.7 2.9 1.83 12.0 8.6 7.2 -4.76 0.9111 0.9302 0.9470 0.0359 

CLO: Waterlogged             

Control 1.2 1.5 2.4 1.25 11.9 9.7 7.4 -4.46 0.9198 0.9196 0.9373 0.0175 
Mn 1.6 1.3 2.3 0.73 12.1 11.2 9.4 -2.69 0.9160 0.9283 0.9328 0.0168 
Sand 2.0 1.6 1.8 -0.20 10.9 10.3 9.6 -1.30 0.9145 0.9232 0.9322 0.0177 
Char 1.5 1.6 2.2 0.65 11.6 10.2 9.2 -2.42 0.9079 0.9131 0.9375 0.0296 

Peat: Free-draining             

Control 5.3 5.8 6.1 0.76 1.6 1.2 1.1 -0.48 0.9821 0.9553 0.9715 -0.0106 
Mn 5.3 5.2 6.1 0.81 1.5 1.4 1.2 -0.31 0.9699 0.9596 0.9681 -0.0018 
Sand 5.2 4.7 5.3 1.00 1.6 1.2 1.2 -0.41 0.9545 0.9473 0.9677 0.0132 

Char 5.1 4.8 5.8 0.63 1.6 1.3 1.2 -0.41 0.9554 0.9573 0.9536 -0.0018 
Peat: Waterlogged             

Control 5.0 5.0 6.0 0.97 1.7 1.3 1.1 -0.54 0.9506 0.9628 0.9534 0.0028 
Mn 5.0 5.1 5.0 0.02 1.6 1.3 1.2 -0.39 0.9464 0.9617 0.9766 0.0302 
Sand 4.9 4.5 5.3 0.33 1.7 1.4 1.2 -0.56 0.9443 0.9579 0.9658 0.0214 
Char 6.3 5.5 6.8 0.55 1.5 1.3 1.1 -0.39 0.9539 0.9608 0.9686 0.0147 
 

a Weight of humic acid extracted (g; mean of three replicates). 
b Absorbance ratio (465nm/665nm; mean of three replicates). 
c Humification index using emission fluorescence spectra (ratio of areas: 435-480nm/400-345nm; mean of three replicates). 
dChange between new and aged samples (weeks 1-26). 
 
Table 6.4: Comparison of the data from the three forms of humic acid analysis for CLO and peat at weeks 1, 10 and 26.
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A summary of the humic analysis data  
 

Table 6.4 gives an overview of the differences seen between each treatment over the trial 

period for all three humic analysis methods used. The numbers highlighted in bold print show 

the sample that has exhibited the greatest degree of humification within that particular sample 

set. For example, for the free-draining CLO samples, the sample with added char produced 

the greatest yield of HA after 26 weeks, 1.83g more than at week 1.  

Although there is not absolute agreement between data sets in that the different methods will 

show a greater degree of humification in different samples, there is general agreement seen. 

On the whole, if the HA yield increases in the alkali extraction procedure, the E4/E6 ratio 

decreases and the HIX increases. An exception to this is the HIX values for the control and 

sand-amended free-draining CLO and peat samples; both show a decrease in HIX after 26 

weeks. This could signify a reduction in molecular weight of HA components but not 

necessarily a reduction in HA. The fluorescence fingerprint charts in Figures 6.16-6.18 show 

an increase in excitation wavelength at week 26 for the HA-like peak (p2) which is indicative of 

a greater degree of humification.  

For the alkali extraction procedure, no significant differ trend was seen between waterlogged 

and free-draining samples, both giving similar yields; the UV photospectrometry showed the 

same. For HIX, there were significant differences seen between waterlogged and free-draining 

samples with the former having higher HIX values by the end of the trial than at the beginning. 

This is more in line with the flux results seen where free-draining samples increased over time 

and waterlogged samples decreased. The HIX and CO2 flux methods tend to be more 

sensitive than the alkali extraction procedure and the UV photospectroscopy where there 

tends to be more scope for experimental error. This may account for differences seen. 

Both alkali extraction and UV photospectrometry showed significant differences between CLO 

and peat samples where the peat appeared to contain more humic material than the CLO; HIX 

showed no significant differences between the two materials where both were relatively high. 

With regards to differences between treatments, the Mn-coated sand and char- amended free-

draining CLO samples both had a significantly lower E4/E6 ratio than the control after 26 

weeks, implying a greater degree of humification achieved. These samples also showed a 

greater decrease in CO2 flux rate than the control sample. A corresponding increased HA yield 

in the alkali extraction was observed, along with higher HIX values. 
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Some samples show an initial decrease in humic acid at week 10, only for it to rise again by 

26 weeks. Veeken et al (2000) found that in composted biowaste, the humic acid content 

decreased during the initial stage but began to increase once again after 20 days. At the 

beginning of the process, the humic substances were found to mainly be of an aliphatic nature 

which were replaced by aromatic compounds during the composting process. Figures 6.16b 

and 6.18b both indicate that this might be the case in this study where an increase in the peak 

intensity is seen at week 10 in the FA-like peak.  

 

6.7.4 Pseudo TGA data 
 

This method provided some interesting data for the control and standards matrix with a 

temporal trend seen for the Trial 2 samples; therefore it was decided to repeat the analysis 

with the samples from this trial, in fulfilment of objective 5. The method outlined in Chapter 

5.3.1 was followed and the results will presented in the same format, with comparisons made 

to the control sample matrix and the standard sample matrix (Chapter 5.4.2 and 5.4.3). 

A selection of charts will be presented within the body of this section to highlight any relevant 

trends within the data series.  
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Precision between replicate samples 

 

 

 

Figures 6.22 and 6.23: temperature curves for the control and Mn-amended free-draining CLO 

samples at week 1, both graphs showing the two replicates for that sample. 

The reproducibility is high between the two replicate samples. Where two replicates were seen 

(weeks one and ten for all samples), this precision was moderately uniform across all free-

draining and waterlogged CLO and peat samples. For week 26, where there were six 

replicates for each sample, more deviation between samples was seen (Figure 6.24 and 

6.25). 

 

Figure 6.24 and 6.25: temperature curves for the control and Mn-amended free-draining CLO 

samples at week 26, both graphs showing the six replicates for that sample. 

 

The heterogeneity of the CLO samples leads one to expect some deviation but the peat 

samples also showed a similar pattern, in some cases to a greater extent.  
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Temporal analysis 

 

 

Figures 6.26 a-d: temperature curves for the free-draining CLO samples at weeks 1, 10 and 

26.  

 

The week 1 samples appear to decompose on heating to a greater degree than the week 10 

and 26 samples; this is most apparent for char samples.  

There were significant differences between all samples ≤ 455 °C between weeks 1 and 10, 

with the latter appearing to have less cellulosic material to burn. At week 26, this trend was 

only significant at ≤ 355 °C. 
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Figures 6.27 a: temperature curves for the free-

draining CLO samples at week 1 showing the 

average readings for each of the treatment  

  

Figures 6.27 b: temperature curves for the free-

draining CLO samples at week 10 showing the 

average readings for each of the treatment  

 

 

 

 

Figures 6.27 c: temperature curves for the free-

draining CLO samples at week 26 showing the 

average readings for each of the treatment
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No significant differences were seen between free-draining and waterlogged samples for 

either CLO or peat. However all CLO and peat samples were significantly different at each 

temperature interval > 255°C across the trial period. A difference in the shape of the curve can 

be observed between week 1 and 26 between 205°C and 305 °C where the more mature 

samples exhibit less of a loss on ignition.  

The only significant difference seen between treatments was for the samples with added sand. 

In CLO, all the samples with sand weighed significantly more at ≥ 505 °C and for peat, ≥ 405 

°C. Once again, the samples with Mn-coated sand would be expected to exhibit some 

differences also, when the control samples are considered. 

 

Principal Component Analysis  
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Figure 6.28: Scree plot to show the principal components retained. 

 

As discussed in Chapter 5.33, the components with eigenvalues of ≥1 are retained, plus the 

first one in sequence that is <1. So in this case, the first 3 will be the principal components. 
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Temperature 

 

Variable (°C) PC-1 PC-2 PC-3 

155 0.070 -0.523 0.587 
205 0.153 -0.559 -0.016 
255 0.210 -0.527 -0.158 
305 0.289 -0.106 -0.537 
355 0.324 -0.063 -0.383 
405 0.346 0.053 -0.150 
455 0.357 0.110 0.170 
505 0.355 0.144 0.176 
555 0.353 0.159 0.186 
605 0.350 0.158 0.193 
655 0.344 0.184 0.201 

 

Table 6.5: the principal components for each temperature interval. 

The first principal component, PC-1 shows the highest scores for 455 ºC, followed by 505 ºC, 

555 ºC and 605 ºC. This ought to relate to the refractory components. The second principal 

component, PC-2 is dominated by the lowest temperatures, 155-255 ºC. The third principal 

component PC-3 has a high scores at 305 ºC and 355 ºC also but has the highest scores at 

the lowest temperature, 155 °C and so is perhaps dominated by the more labile materials.  

 

Figure 6.29: the loadings at each temperature for PC1, 2 and 3.
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CLO: Control 

Drainage Week PC1 PC2 PC3 

Free-draining 1 0.4823 -0.6248 0.4711 
Free-draining 1 0.7890 -0.3033 0.5173 
Free-draining 10 2.353 0.034 -0.002 
Free-draining 10 2.763 -0.114 0.012 
Waterlogged 10 1.948 -0.817 -0.274 
Waterlogged 10 1.807 -0.895 -0.388 
Free-draining 26 2.104 0.377 -0.108 
Free-draining 26 1.373 0.944 -0.364 
Free-draining 26 1.968 0.385 0.138 
Free-draining 26 1.342 0.446 0.191 
Free-draining 26 2.056 0.108 -0.509 
Free-draining 26 2.168 0.197 -0.295 
Waterlogged 26 1.538 1.416 0.454 
Waterlogged 26 1.715 2.037 0.808 
Waterlogged 26 0.575 1.126 0.987 
Waterlogged 26 1.490 0.827 0.414 
Waterlogged 26 0.702 0.776 0.760 
Waterlogged 26 1.040 0.706 0.554 

 

Table 6.6 Principal component scores for all CLO control samples.  

 

CLO: Mn 

Drainage Week PC1 PC2 PC3 

Free-draining 1 0.9588 -0.2437 0.4133 

Free-draining 1 0.5740 -0.2103 0.3963 

Free-draining 10 2.391 -0.588 -0.314 

Free-draining 10 2.377 -0.330 -0.213 

Waterlogged 10 4.944 0.326 0.303 

Waterlogged 10 2.652 0.165 0.212 

Free-draining 26 3.325 0.611 0.161 

Free-draining 26 2.138 0.409 0.137 

Free-draining 26 3.166 0.611 -0.103 

Free-draining 26 1.637 0.229 -0.569 

Free-draining 26 1.964 0.580 -0.253 

Free-draining 26 1.754 5.411 -5.676 

Waterlogged 26 1.680 0.694 -0.277 

Waterlogged 26 1.729 0.818 0.386 

Waterlogged 26 2.630 1.033 0.430 

Waterlogged 26 2.088 1.196 0.391 

Waterlogged 26 1.732 0.192 0.121 

Waterlogged 26 0.558 2.166 -0.004 
 

Table 6.7 Principal component scores for all CLO samples with manganese. 
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CLO: Sand 

Drainage Week PC1 PC2 PC3 

Free-draining 1 1.1402 0.0723 0.8341 
Free-draining 1 0.8407 0.1434 0.6764 
Free-draining 10 1.765 0.074 0.416 
Free-draining 10 2.456 -0.321 0.121 
Waterlogged 10 4.215 0.135 0.207 
Waterlogged 10 4.929 0.166 0.392 
Free-draining 26 2.102 0.604 0.120 
Free-draining 26 2.450 0.665 0.166 
Free-draining 26 2.560 0.442 0.259 
Free-draining 26 1.948 0.464 0.125 
Free-draining 26 3.798 0.778 0.133 
Free-draining 26 3.141 0.443 0.027 
Waterlogged 26 1.954 0.157 0.242 
Waterlogged 26 1.741 0.172 0.507 
Waterlogged 26 2.653 0.931 0.330 
Waterlogged 26 2.646 1.056 0.287 
Waterlogged 26 0.645 1.617 0.413 
Waterlogged 26 1.616 1.302 0.224 

 

Table 6.8 Principal component scores for all CLO samples with sand. 

 

 

CLO: Char 

Drainage Week PC1 PC2 PC3 

Free-draining 1 -0.3280 0.3531 0.7816 
Free-draining 1 -0.2370 0.1840 0.9172 
Free-draining 10 1.765 0.074 0.416 
Free-draining 10 2.456 -0.321 0.121 
Waterlogged 10 2.060 -0.720 -0.178 
Waterlogged 10 2.265 -0.609 -0.025 
Free-draining 26 1.675 0.876 0.426 
Free-draining 26 1.903 0.751 0.210 
Free-draining 26 2.091 0.518 -0.091 
Free-draining 26 2.010 0.509 -0.011 
Free-draining 26 2.011 0.029 -0.647 
Free-draining 26 2.194 -0.090 -0.366 
Waterlogged 26 1.393 0.846 0.175 
Waterlogged 26 1.163 0.600 0.213 
Waterlogged 26 1.119 1.054 0.391 
Waterlogged 26 1.178 1.018 0.301 
Waterlogged 26 0.491 1.229 0.181 
Waterlogged 26 0.846 1.378 0.305 

 

Table 6.9 Principal component scores for all CLO samples with char. 
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Peat: Control 

Drainage Week PC1 PC2 PC3 

Free-draining 1 -3.7153 0.0200 0.6735 
Free-draining 1 -4.0089 0.1829 0.9595 
Free-draining 10 -2.004 -1.518 -1.087 
Free-draining 10 -1.669 -1.427 -1.231 
Waterlogged 10 -2.037 -1.432 -0.789 
Waterlogged 10 -1.838 -0.980 -0.964 
Free-draining 26 -2.930 -0.277 -0.247 
Free-draining 26 -3.026 0.126 -0.001 
Free-draining 26 -3.253 -0.188 0.021 
Free-draining 26 -3.976 0.935 0.817 
Free-draining 26 -2.967 0.229 -0.848 
Free-draining 26 -2.530 0.347 -1.191 
Waterlogged 26 -3.698 1.054 -0.294 
Waterlogged 26 -3.580 0.421 -0.001 
Waterlogged 26 -3.540 0.542 -0.180 
Waterlogged 26 -4.355 1.900 -0.091 
Waterlogged 26 -4.117 1.359 0.528 
Waterlogged 26 -4.152 1.475 0.684 

 

Table 6.10 Principal component scores for all Peat control samples. 

Peat: Mn 

Drainage Week PC1 PC2 PC3 

Free-draining 1 -3.6293 0.3093 0.9826 
Free-draining 1 -3.5948 0.3304 0.8962 
Free-draining 10 -0.844 -0.911 -0.820 
Free-draining 10 0.702 -1.044 -0.376 
Waterlogged 10 -2.645 -0.479 -0.623 
Waterlogged 10 -2.386 -0.903 -0.006 
Free-draining 26 -4.237 1.412 0.759 
Free-draining 26 -3.908 0.943 0.607 
Free-draining 26 -3.394 1.169 0.741 
Free-draining 26 -2.642 1.628 1.026 
Free-draining 26 -3.179 0.617 -0.683 
Free-draining 26 -0.078 0.695 -0.643 
Waterlogged 26 -3.434 0.300 -0.176 
Waterlogged 26 -2.823 0.689 -0.181 
Waterlogged 26 -3.420 1.523 0.222 
Waterlogged 26 -3.552 1.214 0.026 
Waterlogged 26 -3.441 1.699 -0.167 
Waterlogged 26 -3.168 2.770 0.513 

 

Table 6.11 Principal component scores for all Peat samples with 

manganese-coated sand
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Peat: Sand 

Drainage Week PC1 PC2 PC3 

Free-draining 1 -3.2057 0.3178 0.8573 
Free-draining 1 -3.1525 0.4329 0.9596 
Free-draining 10 -3.733 1.157 0.394 
Free-draining 10 -2.754 0.081 -0.713 
Waterlogged 10 -1.740 0.696 0.093 
Waterlogged 10 -2.491 1.201 0.009 
Free-draining 26 -3.361 1.434 0.669 
Free-draining 26 -3.733 1.157 0.394 
Free-draining 26 -1.432 -0.122 -0.885 
Free-draining 26 -2.404 0.540 -0.192 
Free-draining 26 -0.656 0.445 -0.713 
Free-draining 26 -1.089 0.352 -0.853 
Waterlogged 26 -1.740 0.696 0.093 
Waterlogged 26 -2.491 1.201 0.009 
Waterlogged 26 -1.976 0.759 0.308 
Waterlogged 26 -1.546 1.272 0.761 
Waterlogged 26 -2.688 1.777 -0.024 
Waterlogged 26 -2.233 1.356 -0.080 

 

Table 6.12 Principal component scores for all Peat samples with sand. 

 

Peat: Char 

Drainage Week PC1 PC2 PC3 

Free-draining 1 -3.9617 0.4082 0.8959 
Free-draining 1 -3.9627 0.1180 0.8277 
Free-draining 10 -1.023 -1.611 -1.511 
Free-draining 10 -1.190 -1.728 -1.235 
Waterlogged 10 -2.657 -0.667 -0.634 
Waterlogged 10 -2.645 -0.479 -0.623 
Free-draining 26 -2.707 0.863 -0.036 
Free-draining 26 -2.671 0.081 -0.577 
Free-draining 26 -2.542 -0.151 -1.233 
Free-draining 26 -2.350 -0.411 -1.388 
Free-draining 26 -2.035 -0.710 -1.565 
Free-draining 26 -1.956 -0.692 -1.562 
Waterlogged 26 -3.549 0.842 -0.218 
Waterlogged 26 -3.938 1.082 0.063 
Waterlogged 26 -2.754 0.081 -0.713 
Waterlogged 26 -3.506 0.758 0.223 
Waterlogged 26 -4.185 1.126 0.759 
Waterlogged 26 -4.050 1.244 0.544 

 

Table 6.13 Principal component scores for all Peat samples with char. 
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The highest positive scores for PC-1 in the CLO samples (as highlighted in purple) are across 

weeks 10 and 26. There seems to be little difference between waterlogged and free draining 

samples. The highest positive scores seen for PC-2 are almost exclusively seen in the 

waterlogged samples at 26 weeks. The loadings for PC-3 are relatively low, perhaps 

suggesting a lower proportion of labile material present in the samples. 

All of the highest scores for peat were negative for PC-1. Overall, no difference was seen 

between weeks or between waterlogged and free-draining samples. The peat with sand saw 

the highest PC-1 scores for free-draining samples; the peat with char, were highest at week 1 

and all of the waterlogged samples at week 26.  
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Figure 6.30: A matrix plot of PC-1, PC-2 and PC-3 scores from all trial 3 data. 

 

The distribution of data show several possible trends. Plotting the scores from specific 

samples against one another should make this clearer. The score plots in Figures 6.31 - 6.33 

separate the CLO and the peat samples into different plots (a and b). Firstly, the relationship 

between the different treatments will be examined; secondly, any temporal differences 

between samples; and lastly, any distinctions between waterlogged and free-draining 

samples.  
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Figure 6.31a: Score plot of PC-1/PC -2 for all CLO samples 

 
Figure 6.31 b: Score plot of PC-1/PC-2 for all Peat samples. 
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The CLO samples largely have positive values for both PC-1 and PC-2 whereas the peat 

samples have mainly negative PC-1 and positive PC-2. In Chapter 5, Figures 5.4 and 5.8 

showed the score plots for PC-1 and PC-2 for the control and standard samples respectively. 

When comparing Figures 6.29 and b, some trends can be seen.  

 This matrix data showed that the top left quarter of the chart was dominated by lignin-rich 

samples; the top right quarter by humic acid-rich samples and the bottom left quarter by 

cellulose-rich samples. Comparing the data from this trial with the matrix data, it seems that 

the peat samples may be more lignin (and possibly cellulose) rich whereas the CLO samples 

could be more humic-acid rich.  

As for differences between samples, the samples with Mn-coated sand, sand and char from 

this trial seem to reflect the ‘pure’ Mn-coated sand, sand and char samples from the matrix.  

When assessing temporal differences for all samples (Figures 6.32a and b), patterns can be 

seen for both CLO and peat. Week 1, when compared to the standards matrix, appears to 

have an average composition of 30% HA: 60% lignin: 10% cellulose (or other labile 

components, if the control matrix when taken into account). At week 10, the data points are 

more spread across the positive PC-2 axis and are seen both above and below 0 on the PC-1 

axis. These data points seem to move away from a higher lignin and cellulosic area to a 

higher humic area of the plot. At week 26, a spread of data is once again seen but there is a 

strong positive trend towards high humic acid contents. The peat samples appear to trend 

towards a greater proportion of lignin-like material towards 26 weeks.  

In comparing the waterlogged and free-draining samples, any trends that there might be in the 

data are less clear (Figures 6.33a and b). The waterlogged samples for both peat and CLO, 

however, seem to have slightly higher lignin and HA contents respectively than their free-

draining counterparts. 
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Figure 6.32 a: Score plot of PC-1/PC -2 for all CLO samples at weeks 1, 10 

and 26 

 

 

Figure 6.32 b: Score plot of PC-1/PC -2 for all Peat samples at weeks 1, 10 

and 26 
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Figure 6.33 a: Score plot of PC-1/PC -2 for all Free-draining and 

waterlogged CLO samples across all weeks 

 

 
Figure 6.33 b: Score plot of PC-1/PC -2 for all Free-draining and 

waterlogged Peat samples across all weeks. 
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6.8 Conclusions 
 

6.8.1. Revisiting the objectives 
 

 

1. To control ambient conditions in order to better assess any significant differences 

between data sets. 

The soil moisture was monitored and although an attempt was made to ensure that it was kept 

above 40%, this was not always achieved. The temperature in the laboratory however was 

kept relatively constant.  

Temporal trends were seen for most samples with every form of analysis, along with some 

differences seen between CLO and peat samples, and waterlogged and free-draining 

samples. The differences between control and amended samples were seen more clearly than 

in the previous trial where the ambient conditions were not controlled.  

On the whole, this objective was met successfully although the trends seen in this trial could 

be attributed to the increased trial length, as well as the controlled laboratory conditions. 

 

2. To introduce peat as a soil standard. 

 

Peat was introduced to assess the effect of CLO’s heterogeneity. It was expected that the 

peat, being a more homogenous material, would show better precision between replicate 

samples and therefore highlight trends between different sample sets. However, this was not 

the case with a spread of data seen between replicate samples in this data set too. When 

inspecting the peat, it was clear that although it contained no contaminating species, the 

particle size of the material still varied with pieces of non-degraded wood present. This may 

have affected the precision.  
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Although peat has similarities to CLO in its high organic carbon content, it is a far more mature 

and stabile soil and as such, already much more humified. This being the case, it is possible 

that peat may not be susceptible to catalysis if the humification process has largely occurred 

for the material present. The E4/E6 ratios were very low, some close to the lower limits of 

detection for the photospectrometer (absorbance <0.01), indicating a high level of 

humification. This was significantly lower than the CLO E4/E6 ratios, a trend also seen in the 

flux and alkali extraction data. 

 

3. To lengthen the trial period, assessing the degree of humification at 10 weeks and 26 

weeks. 

 

Temporal trends were seen across all forms of analyses. Current literature provides 

contrasting time periods under which humification of composted material takes place (Eklind 

and Kirchmann, 2000; Paredes et al., 2002; Smars et al., 2002; Cayuela et al., 2008; Chang 

and Hsu, 2008). This, combined with the lack of knowledge on the age and maturity of the 

CLO batch sampled, it is difficult to know whether a longer trial period still might be yet more 

informative.  

 

4. To avoid sub-sampling of lysimeters for flux measurements. 

 

Sampling straight from the lysimeters was much less time consuming than sub-sampling so 

the method used was successful. More significant trends where seen in the flux data in this 

trial than in Trial 2 (Chapter 4). 

 If the age of the material tested had been known, the method followed may not have been 

suitable. If the study was repeated with a better characterised batch of CLO, another method 

may have to be sought. 
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5. To re-examine the suitability of PTGA as a method of assessing humification. 

 

This method proved effective in finding trends between the different data sets. Patterns in 

possible labile and refractory content within samples were seen across the trial period. the 

more mature samples saw less of a loss on ignition between 205-305°C for example. 

 This method, along with the other forms of analyses established temporal trends, with the 

more mature samples appearing more humified; between CLO and peat: the former showing 

HA-like characteristics and the latter, lignin-like characteristics; waterlogged and free-draining 

samples with the former appearing slightly more humified/lignified. It was, however less 

effective at distinguishing between different treatments. Its limitations, some of which are 

discussed in section 5.5.2. 

 

6. To test biochar against Mn-coated sand and sand-supplemented samples in terms of 

their individual capacities to stabilise organic matter. 

 

For the flux data, no difference was observed between treatments for CLO samples in week 

one, as expected. By week two, the samples with added biochar exhibited a significantly 

higher flux than the control samples, possibly due to the trend often observed in soils with 

added char for short-term increased mineralisation within the first 20 days, as outlined by 

Smith et al. (2010). This pattern is mimicked in the humic data also with some samples show 

an initial decrease in humic acid at week 10, only for it to rise again by 26 weeks (see Table 

6.4). The fluorescence fingerprint charts in Figures 6.16b and 6.18b both show an increase in 

the peak intensity at week 10 in the FA-like peak which reduces again by week 26.  

By the end of the trial, a significant difference in flux between treatments can only be observed 

in the free-draining CLO samples; the CLO with char gives the greatest decrease in flux over 

time; the CLO with added manganese-coated sand also shows a slight reduction in flux when 

compared to the CLO control sample. 
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With regards to differences between treatments in the humic data, the Mn-coated sand and 

char- amended free-draining CLO samples both had a significantly lower E4/E6 ratio than the 

control after 26 weeks, implying a greater degree of humification achieved. A corresponding 

increased HA yield in the alkali extraction was observed, along with higher HIX values. The 

HA-like peak (P2) in the fluorescence fingerprint charts (Figures 6.17 and 6.18)  also exhibited 

an increase in emission wavelengths in the week 26 samples for CLO with char and CLO with 

MnO2-coated sand, indicating an increase in humification. The control samples saw no 

change in P2 position across the 26 weeks.  

In conclusion, there is a strong case in the data produced to suggest that both MnO2 –coated 

sand and char amendments both have a positive impact on the humification of CLO. The both 

appear to reduce CO2 flux rate and to increase humic acid content with evidence from several 

forms of analysis.  

 

7. To examine any difference in the carbon flux and humic acid content of free-draining 

and water-logged samples. 

 
 

Differences between these two samples were more apparent with some forms of analyses 

than others. The greatest differences were observed in carbon flux where the free-draining 

CLO samples saw a decrease over the 26 weeks where as the waterlogged CLO samples 

increased. The former had a greater flux rate than the latter also. In terms of humic acid, these 

differences were not quite so pronounced. HIX values suggested a slightly greater degree of 

humification in the waterlogged samples than in the free-draining samples but no significant 

differences were observed between data sets for alkali extraction or E4/E6 data.  

In the PTGA data, the waterlogged samples appeared to be more lignified and humified for 

peat and CLO respectively. Spectral analysis such as IR spectroscopy or NMR would need to 

be carried out to confirm this, however.  
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6.8.2 Trial limitations 
 

 

Leaving the batch of CLO to mature in order that it might be within the IRGA’s detection range 

was not ideal; this was only an option because of the lack of information available about the 

age of the material collected.  

 

The moisture content ought to have been controlled more carefully to ensure that a minimum 

of 40% was achieved at all times.  

 

The temperature of the laboratory was at a constant 19-20 °C. This would only perhaps be 

representative of temperatures in the UK during the summer months. If a longer trial was to be 

carried out under the same conditions, the temperature would have to be adjusted 

accordingly. 

 

The importance of using replicate samples and statistically analysing the data  have been 

highlighted;  when assessed qualitatively using charts produced from the raw data,  a trend 

was often apparent but quantitative analysis showed that the spread of data between replicate 

samples to be too great for that trend to be statistically significant.  

 

The electrical conductivity of the leachate emanating from the lysimeters was not tested. This 

could have provided useful information on the amount of dissolved ions in the different 

samples, particularly between the samples with amendments. It was intended that during this 

trial, inductively coupled plasma-optical emission spectrometry (ICP-OES) would be used to 

monitor any differences in cations present in the leachates of each samples. This method of 

analysis was not available, however, at the time of the trial. 

 

Once again, the CLO material was tested ‘neat’ without any inorganic carbon present. 

Laboratory trials cannot always fully predict what might happen in the field.  
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Chapter 7 

A microstudy 

 

In the previous chapters, CLO sourced directly from PWM’s PARC recycling facility has been 

used for all trials. It was hoped that this final study would be field-based, so that results in 

previous trials could be tested in situ. Although laboratory studies can provide us with valuable 

information, there is no guarantee that what happens in these controlled, simplified systems 

will translate to a complex natural system. Throughout all trials, CLO has been used ‘neat’ so 

no information exists about its interactions with inorganic soil carbon which is known to have 

an important stabilising effect on relatively fresh OM (Huang, 2002; Sohi and Lehmann, 2008). 

No plants have been grown on the soil so primary productivity has not been assessed, nor has 

the effect of a continuous source of fresh organic matter (Bear, 1964; Huang et al., 2002). 

Macro fauna such as earthworms have an important influence on soil carbon turnover (Huang 

et al., 2004) but as all trials so far have more or less been undertaken in a closed system 

effects such as these are yet to be seen.  

With materials that have been classified as waste, it can be difficult to obtain permits to carry 

out land-based trials. BSI PAS 100 and BSI PAS 110 cover composts and source-separated 

anaerobically digested wastes respectively. As yet, co-mingled wastes are unpredictable; their 

feedstocks can differ widely and can be highly contaminated. The MnO2-coated sand and char 

may require separate consideration if they are to be mixed with the CLO and laid to land also. 

When the time came to plan this trial, the Environment Agency had imposed restrictions on 

Premier’s CLO, resulting in it temporarily having to be sent to landfill. It became clear that a 

field-trial was not going to be possible at this time. Rather than this macro-field study, it was 

decided to carry out a micro-study instead, exploring interactions between some of the major 

component of the CLO against the previously tested catalysts in order to gain a greater 

understanding of possible reaction pathways of the humification process.  
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7.1 Introduction 

This study will take four major components of CLO. Cellulose comprises around 60% of MSW 

CLO and is the principal contributor to the degradable fraction of BMW, followed by lignin at 

around 20%. Proteins and fat contribute around 4 and 8% respectively. Each of these 

components will be reacted against one another in a fully, factorial study. The amendments 

from the previous trials (sand, MnO2-coated sand and char) will also be incorporated into 

some of the samples.  

As PWM also produce PAS 100 certified compost, this study could be useful in determining 

the lowest proportion of green waste they can feasibly set aside for their MSW feedstock for 

aerobic digestion. It is expected that a certain volume will be needed to balance the high 

proportions of animal fats and proteins found in kitchen wastes. 

The large proportion of fat from food waste is one of the key factors that set CLO apart from 

natural soils. Initially, it can have an inhibitory effect on decomposition being difficult to 

decompose and having a shielding effect on other molecules from microbial attack.  The 

acidity of food waste due to the presence of short-chain organic acids may also pose 

problems. These may be present in initial materials but may also be generated during the 

initial stages of the composting process (Yu and Huang, 2009). This can further reduce the pH 

which eventually inhibits microbial activity (Beck-Friis et al., 2003). This can be controlled, 

however, by the addition of an alkali amendment. Yu and Huang (2009) advocate the use of 

sodium acetate as a buffer salt which combines with the acetic acid to form a buffer solution, 

having positive effects on degradation. Proteins have been found to be a major factor that 

control the rate of composting, due to the fact that the bacteria require it to gain nutrients for 

their cell structures.  

During the biooxidative stage of composting, the rapid degradation of simple compounds is 

seen and the temperature increases rapidly. During the following thermophilic phase, fats, 

cellulose and lignin are degraded (Senesi, 1989). In a composting pile of around 2000 kg, this 

stage is considered finished at around 90 days (Paredes et al., (2002). The maturation phase 

which follows this is associated with the stabilisation and humification of the remaining organic 

matter and requires several weeks to months to give a stable end product (Veeken et al., 

2000). 
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In Section 2.2.2., a number of feasible routes via which humification might occur was 

proposed: the degradation of lignin; the polymerisation of quinones (derived from cellulose or 

lignin); and the condensation of sugars and proteins via the Maillard reaction. These routes 

involve the four components that will be tested in this trial.  

In natural systems, both MnO2 ((Senesi and Calderoni 1998, Bryan et al., 2001) and char 

(Cheng et al. 2008, Smith et al. 2010) have been found to stabilise SOM and. Conversely, 

Sunda and Kieber (1994) propose that manganese oxides can actually split humic substances 

to form lower molecular weight compounds, thus making them accessible to soil microbes. 

Similarly, Wardle et al. (2008) proposed that an enhanced loss of SOC occurred when char 

was added to a boreal forest humus layer. It was suggested that the char was responsible for 

promoting the growth of microbial communities and for enhancing the decomposition of labile 

C compounds, rather than stabilising them against degradation in soil. These opposing 

arguments were explored in Chapters 4, 5 and 6 where the catalytic potential of each was 

assessed when added to CLO.  These chapters presented the data from trials 2 and 3 where 

humification was assessed using three different techniques: alkali extraction procedure, E4/E6 

ratio given by UV photospectrometry and HIX as determined by fluorescence spectroscopy.  

The spectroscopic methods each indicated the degree of aromaticity of the sample and thus, 

the degree of humification. This micro-study will see the use of the same catalysts and 

humification will be assessed using the same analytical methods as mentioned above. 

Similar micro-studies that have assessed the individual components present in biowaste 

composts (Eklind and Kirchmann, 2000; Paredes et al., 2002; Smars et al., 2002; Cayuela et 

al., 2008; Chang and Hsu, 2008 ) have employed similar experimental controls. They have all 

maintained a minimum moisture content of 40%; ensured an ambient temperature (19-30°C); 

added bulking agents to ensure the correct C/N ratio and to achieve aerobic conditions; and 

used sample sizes of >10 kg . Finally, all biowaste samples were added to a natural soil, 

rather than being assessed in their neat forms. 

Variation was seen, however in their trial length which ranged from 8 to 600 days. Cayuela et 

al., (2008) found that the bio-oxidative phase was complete after 92 days in a 200kg pile, but 

their compost was then allowed to mature over a two month period. Moral et al., (2009) 

suggest that the mineralisation of C and N in manure composts can take between 70 and 364 

days.  During the composting process of these biowastes, Veeken et al., (2000) saw the HA 

content decrease between days 0-10 (the mesophilic phase) with the degradation of fatty 



200 
 

acids and polysaccharides but increased once again after 20 days. Smars et al., (2002) 

witnessed low activity or a lag phase during mesophilic stage, possibly due to low pH which 

persists until neutralised by microbial activity.  

 

7.2 Trial aims 

 

To explore the interactions between four of the major components of CLO (lignin, cellulose, a 

lipid and a protein); both with and without the three amendments used in previous trials (sand, 

manganese-coated sand and char) in order to gain a greater understanding of possible 

reaction pathways of the humification process that occurs in CLO.   

 

7.3 Trial objectives 

 

1. To conduct a fully factorial study, assessing humification occurring between four 

major components of CLO: cellulose, lignin, a lipid and a protein. 

2. To gauge the effect of char and Mn-coated sand and sand on these reactions. 

3. To ascertain whether or not the introduction of an established microbial community via 

seeding of the samples will enhance humification. 

4. To examine any differences seen in samples stored aerobically and anaerobically.  

5. To use alkali extraction, UV photospectrometry and fluorescence spectroscopy to 

analyse the extent of humification achieved by each sample. 
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7.4 Materials  

7.4.1 Substrates 

Based upon the literature reviewed in Chapter 2, four substrates were chosen to represent an 

artificial soil. Cellulose is the major component in most CLO feedstocks, being abundant in 

food, garden and paper sourced wastes. Lignin is thought to be instrumental in two of the four 

humification pathways and is also abundant in most CLO feedstocks. Proteins comprise 

around 15% of food waste and one of the necessary substrates for the Maillard reaction and 

are used rather than amino acids as they are metabolised more slowly (Hayes et al, 1999). 

Finally, animal fat is one of the major components that differentiate CLO from natural soil.  

Aldrich lignin and Aldrich egg albumin protein; ash-free paper was used to represent the 

cellulose component and lard, the lipid fraction. Table 7.1 gives an example of the matrix used 

to calculate the proportion of each substrate and catalyst. 

 

7.4.2 Catalysts 

The char was 100% lump-wood charcoal, as used in Trial 3. As before, it was crushed and 

sieved through a 4mm mesh to ensure that the surface area was comparable to the Mn-

coated sand, and sand. The Mn-coated sand was again collected from Northumbrian Water 

and the sand was builders’ sand from a local hardware shop. These were also sieved through 

the same size mesh to ensure control on the size and surface area.  

 

7.4.3 Seeding 

During industrial composting/anaerobic process, each new batch is seeded to ensure that an 

effective microbial community is established. The breakdown of most organic C in soils due to 

decomposer microorganisms which are affected by pH, redox, temperature, soil texture, 

quality of OM – C/N ratio, phenols, lignin and fat content: energy and nutrients for microbes 

(Cayuela et al., (2008). The inoculum used to seed the appropriate samples was taken from 

the previous trial, given that the conditions in the CLO ought to be similar to that of its 

constituent parts, therefore fulfilling the above criteria. The leachate from a CLO control 

sample was used (pH 7.4); it was important not to use a sample that had been catalysed so as 

not to contaminate the Trial 4 samples with any traces of these.  
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7.4.4 Oxygen 

As the sample matrix in Table 7.1 shows, some samples were aerobic, whilst others were 

anaerobic. A difference was observed between the free-draining and waterlogged samples in 

the previous trial which is why this parameter has been incorporated into this experiment. 

However, Eklind and Kirchmann, (2000) state that a litter addition is needed to achieve 

aerobic conditions in the composting of household waste. This trial will not be including a 

bulking agent so there may be no difference seen between samples.  The albumin and lignin 

substrates are powders so together with the lard, may suffer compaction, also promoting 

anaerobic conditions.   

7.5 Experimental set up 
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1a x x x x x    x  x  
2a x x x x  x   x  x  
3a x x x x   x  x  x  
4a x x x x    x x  x  
225a x  x  x    x  x  
226a x  x   x   x  x  
227a x  x    x  x  x  
228a x  x     x x  x  
 

Table 7.1: A sample of the experimental matrix; the full version of which can be seen in the 

Appendices. 

 

For each sample, 1 g of each component was used. This meant that the 512 samples could 

be constructed in a cost and time effective manner. Larger sample sizes would have been 

difficult to accommodate in the laboratory space available. 

Each sample was weighed and transferred into a clean, labelled, sterile 30ml polypropylene 

screw cap container. The inoculated samples were injected with 1ml of leachate from Trial 3, 

the unseeded samples were injected with 1ml of Milli-Q DI water. The inoculated and sterile 

samples were stored separately to minimise the risk of cross-contamination. The anaerobic 
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samples were sealed and the aerobic samples loosely covered with foil to prevent cross-

sample contamination. The samples were loaded in to trays and placed in the dark under 

controlled laboratory temperature of 22°C for a period of 10 weeks.  

Eight control samples, which consisted of 1ml Milli-Q DI water, were prepared alongside the 

512 samples and stored under the same conditions for the trial period. They were analysed 

with the other samples using the methods described in section 7.6 in order to establish lower 

limits of detection (LLD) for each method.  

 

 

Figure 7.1: some of the 512 samples in labelled 30ml polypropylene screw cap containers. 
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Once again, the length of the trial was dictated by time constraints; the 10 week period chosen 

in order to make it comparable to Trials 2 and 3. In the other studies outlined in Chapter 7.1, 

some trials were as short as 8 days and all detailed significant changes seen in the maturation 

and stability of OM in the first 70 days. This, therefore, should be a suitable timeframe in which 

to witness any differences seen in humification between samples. 

 

7.6 Methods 
 

To make this study comparable to the previous studies, some of the same analytical 

techniques used were employed. This also allowed the many samples to be tested quickly via 

well understood, robust and inexpensive methods. The samples sizes were too small to 

measure flux with the IRGA and too numerous to measure using PGTA in the time available. 

After 10 weeks, the samples were transferred into 100ml polyethylene centrifuge bottles with 

0.2M NaOH. Samples were processed in batches to ensure that they didn’t degrade before 

they were analysed.  

 

7.6.1 Alkali extraction 

 

The alkaline extraction procedure as described in Section 3.7.1 was carried out for each 

sample. In summary, a version of the IHSS method was employed whereby 100ml of 0.2M 

NaOH was used with two extraction stages. HCl was used during the HA/FA separation step.  

 

7.6.2 UV analysis 

 

The same method was followed as detailed in Section 3.7.2. This methods were successfully 

integrated with the first stage of the alkali extraction (pre-acidification), meaning that a great 

deal of time and materials were saved. Efficiency is imperative when many samples must to 

be analysed in a short period of time. The results are given as E4E6 ratio. 
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7.6.3 Fluorescence 

 

The same method was followed as detailed in Section 3.7.3 as in Trial 3, some of the samples 

needed to be diluted to avoid IFE. Absorbance of each sample was tested and if below 0.3 at 

337 nm excitation, was diluted accordingly with 0.2M NaOH.  Results are presented as HIX 

values.  

 

7.6.4 Statistical analysis 

 

As described in Chapter 3.4, all data collected were entered into a Microsoft Excel 

spreadsheet, formatted and then ANOVA (General Linear Model) performed using Minitab 13. 

The results are given as p-values and all < 0.05 show a significant relationship between the 

two parameters compared. All results used from this point will be quoted as being statistically 

significant if they satisfy this requirement.  
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7.7 Results 
 

7.7.1 Substrate 

 

This section reviews the data with respect to the substrates, assessing whether there are any 

key differences or relationships between any of the different combinations. Table 7.2 

summarises the data given for each of the control (no amendment added), aerobic and 

seeded samples.  

 

Sample E4/E6 HIX 
Alkali extracted 
humic acid (g) 

(ln, c, l, p) 3.752 0.8802 0.45 

(ln, c, l) No data 0.9161 0.19 

(ln, c) No data 0.9248 0.34 

(ln) 4.329 0.8801 0.77 

 (c, l, p) No data 0.6135 0.00 

 (c, l) No data 0.7301 0.00 

(c) No data 0.7203 0.00 

 (l, p) No data 0.4528 0.00 

(l) No data 0.7965 0.13 

(p) No data 0.5278 0.00 

(c, p) No data 0.7784 0.00 

(ln, c, p) 2.459 0.8463 0.28 

(ln, p) 2.479 0.8596 0.58 

(ln, l, p) No data 0.8546 0.37 

(ln, l) No data 0.9228 0.47 

(none) No data No data 0.00 

 

Table 7.2: The measurements taken after 10 weeks for all control, aerobic, seeded samples; 

where ln is lignin, c is cellulose, l is lipid and p is protein. 
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Many of the samples produced no data via UV analysis with the absorbance values reading 

below the lower limits of detection of the UV photospectrometer (absorbance <0.01nm) as 

calculated with the blank samples. When an attempt was made to extract humic acid from the 

samples, many yielded none. Furthermore, only one sample containing no lignin yielded HA, 

giving the lowest positive yield of 0.13g; this was the sample containing the lipid solely. This 

was only for one of eight the lipid-only sample and was only marginally above the lower limits 

of detection (0.1g). However, Its HIX value was also larger than the other samples containing 

no lignin, suggesting that it was not a case of the lipid adhering to the sample pot, giving a 

false reading.   

Overall, data for alkali extracted humic acid showed the highest yields existed in those 

samples containing lignin. The relative yields of the samples containing all four substrates with 

each amendment and under each of the four experimental conditions can be seen in Figure 

7.2. The sample with lignin alone, which produced the greatest amount of HA is shown in 

figure 7.3. 

 

Figure 7.2: Percentage humic acid extracted for the sample containing all four substrates 

(average of two samples). 
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Figure 7.3: Percentage humic acid extracted for lignin only sample (average of two samples).  

The sample containing lignin alone yielded the most humic acid (Figure 7.3), followed by the 

samples containing all four substrates (Figure 7.2).  The cellulose samples yielded no humic 

acid; though both the protein and the lipid samples appeared to produce a small amount of 

humic acid these were discounted, as they were below lower limits of detection for this method 

(0.10g). In a similar trial, initial lignin content strongly correlated with residual amount of 

organic carbon seen at the end of the trial (Eklind and Kirchmann, 2000). 

The corresponding HIX values for the samples with lignin were all significantly higher than all 

of the other samples. For the E4/E6 data, the same pattern was observed; the only samples 

that produced data were those which contained lignin. However, not all samples that 

contained lignin produced data. 

As both methods are concerned with the degree of aromaticity of the substance, it is perhaps 

unsurprising that the lignin, being the most aromatic of the substrates, gives high readings for 

each. Could this, perhaps, have any bearing on the results from previous trials? Samples with 

high yields during the alkali extraction and high HIX values might in fact be rich in lignin rather 

than HA.  

Current literature suggests that the maximum fat content should be kept below 40% as the 

other substrates may become covered with lard which can lead to a significant slowing down 

of composting process (Chang and Hsu, 2008; and references therein). This could offer an 

explanation as to why the sample with all substrates returned a lower yield of HA than the 

lignin alone (Figures 7.2 and 7.3). 
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7.6.2 Catalysis 

 

As illustrated briefly in Table 7.1 and fully in the Appendices (Trial 4), 16 samples were 

prepared for each combination of substrate. Of these 16, 4 had no amendments added 

(control), 4 had MnO2-coated sand added, 4 had char added and 4 had sand added. Each of 

this sub-set of four was then subjected to the various experimental conditions (Aerobic, non-

seeded; anaerobic, non-seeded; aerobic, seeded and anaerobic, seeded). The following data 

will highlight any differences observed between samples with the different amendments 

(None, MnO2-coated sand, char and sand). Figures 7.2 and 7.3 show that the amended 

samples appear to yield less HA than the control in most cases. Despite this, no statistically 

significant trends were seen with regards to this, perhaps due to the spread of data. 

 

 

Figure 7.5: Absorbance ratio for samples 1-16 (average of two samples).  

 

For the absorbance data illustrated in Figure 7.5, the samples with manganese appeared to 

show the greatest degree of humification overall. However, ANOVA showed no significant 

differences for any of the treatments compared to the control samples. Figure 7.6a illustrates 

the lack of uniformity between HIX data for the different samples under the same catalyst. If 

the Aerobic, seeded sample is considered on its own (Figure 7.6b), again, sample with added 

Mn appears to give the highest HIX value (0.8925) and thus the greatest degree of 

humification but once more, ANOVA found no statistically significant differences between any 

of the treatments.  
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Because of the volume of samples, the conditions in this case were treated as the replicate 

samples. As Figure 7.6a shows, there is very little agreement between samples when 

subjected to the different experimental conditions which could account for this lack of 

statistical significance. The HIX values are also only vary by a maximum of 0.06 which is 

possibly too small a difference to be statistically significant.  

 

  

Figure 7.6a: HIX for samples 1-16 with all conditions and 7.6b samples 1-16 for aerobic and 

seeded only.  

 

7.7.3 Humification conditions 

 

This section will identify any significant differences between samples that were humified under 

aerobic conditions and samples which were humified under anaerobic conditions; and seeded 

and non-seeded samples. As the total number of samples was numerous, the first sixteen 

samples were again chosen to examine this relationship. These samples comprised lignin, 

cellulose, lipid and protein and under each different experimental condition, a control sample, 

and a sample with each of sand, manganese-coated sand and char were tested. Each sample 

was made in duplicate but not all duplicates were tested to ensure that all samples could be 

analysed within the time available. 
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Sample HA extracted Absorbance ratio HIX Catalyst Aeration Seeding 

1 
0.48 2.680 0.8575 Control Aerobic Non-seeded 

2 
0.31 2.210 0.8728 Mn Aerobic Non-seeded 

3 
0.24 2.877 0.8712 Char Aerobic Non-seeded 

4 
0.24 3.957 0.8910 Sand Aerobic Non-seeded 

5 
0.42 2.680 0.8528 Control Anaerobic Non-seeded 

6 
0.24 2.210 0.8571 Mn Anaerobic Non-seeded 

7 
0.34 2.877 0.8436 Char Anaerobic Non-seeded 

8 
0.36 3.957 0.8347 Sand Anaerobic Non-seeded 

9 
0.45 3.752 0.8802 Control Aerobic Seeded 

10 
0.24 2.510 0.8926 Mn Aerobic Seeded 

11 
0.29 3.066 0.8780 Char Aerobic Seeded 

12 
0.17 2.428 0.8787 Sand Aerobic Seeded 

13 
0.27 3.752 0.8624 Control Anaerobic Seeded 

14 
0.14 2.510 0.8825 Mn Anaerobic Seeded 

15 
0.31 3.066 0.8735 Char Anaerobic Seeded 

16 
0.36 2.428 0.8612 Sand Anaerobic Seeded 

Table 7.3: samples 1-16, each treatment containing 1g of all four substrates. The red text signifies the most humified; the blue text signifies the least.
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Table 7.3 provides the results from each form of analyses for these first 16 samples. Very little 

agreement is seen in this data for example, sample 16 gave the highest HA yield and most 

humified result as tested by E4/E6 (2.428) but the lowest HIX value (0.8612). Furthermore, no 

statistically significant differences were seen between the samples for any of the analyses. 

Figure 7.7 shows the percentage of alkali extracted HA in each of the samples (1-16).   

 

 

Figure 7.7: Alkali extracted HA for samples 1-16 (average of two samples). 

  

Values range from 0.12% and 0.48% and little agreement is shown between the various 

samples. The yield was particularly low when compared to alkali extracted HA from CLO and 

peat (around 1-3% and 4-7% respectively). Of the organic material extracted, the samples 

tended to give high HIX values, which correspond with a higher level of humification (Figure 

7.8) 

  

Figure 7.8: Average values for each group, samples 1-16. 
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In Figure 7.8, the aerobic samples appear to have higher humification index than the 

anaerobic samples and the seeded samples give greater values than the non-seeded 

samples. However, ANOVA gave no statistical significance to these results, possibly due to 

the lack of agreement between replicate samples or the closeness of the HIX values (between 

0.846-0.882). 

 

7.9 Conclusions 

 

The trial produced very little statistically significant data. UV photospectrometry proved to be 

an unsuitable method of analysis with most of the data being below the lower limits of 

detection for the instrument.  Perhaps this was simply because no humic acid was produced. 

The alkali extraction procedure only yielded humic acid when lignin was present in the sample. 

This could have some implications on the results from previous trials, if lignin is in fact 

extracted as well as humic acid during this procedure.  

None of the added amendments had any statistically significant affect on the substrate 

samples. Again, no statistically significant differences were seen between seeded and non-

seeded samples, or differences between aerobic and anaerobic samples. 

Section 7.9.2 will present some of the possible reasons why it is likely that no statistically 

significant trends were seen, and only a small amount of humic acid produced during this trial.  

 

7.9.2 Trial limitations 

 

The key limitation to this trial was the fact that too large a sample set with too many variables 

was attempted to be analysed at once, meaning that precision was sacrificed. If this 

experiment was to be repeated, several changes would be made. 

Firstly, as with all previous trials, a preliminary trial would be undertaken to test the suitability 

of the experimental methods. Psuedo-TGA, for example, provided some interesting results 

with the previous trials’ samples so could be assessed for its suitability here.  
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Once the methods have been chosen, several smaller trials could be designed to run 

consecutively. The various conditions that were tested concurrently (seeded/non-seeded, 

aerobic/anaerobic, catalyst/non-catalyst) would each be analysed in a different trial. This way, 

more replicates could have been used and possibly larger volumes of sample tested.  

As well as these fundamental changes, several other improvements could be made to ensure 

a more robust study in the future. No time zero samples were taken during this trial so how 

humification progressed over 10 weeks is not known.  The same can be said for pH and 

conductivity due to the samples’ extraction with NaOH. This was largely due to the time 

constraint posed by such a large sample matrix. 

Moisture content would have been different for each sample; 1ml of either water or inoculum 

was added for each, the samples ranged from 1-5g in weight, depending upon their 

composition so this variable was not controlled. The samples were kept in the dark; perhaps 

photodegradation is necessary process in the formation of radicals which then polymerise – 

something which ought to be tested. 

Bulking agents are often used in food-waste composting to improve structure, enhance 

aeration, to absorb excess liquids and to provide microorganisms with an extra energy source 

to balance the normally high N content. Composting without litter can lead to anaerobic 

conditions. This could be a potential problem in this study. Chang and Hsu (2008), for 

example, effectively used rice husks as a bulking agent in a similar study on food waste 

composting. If some of the samples had particularly high C/N ratios, they may not have 

humified.  

Rather than the same proportions of each, perhaps should have been more representative of 

actual food waste composition. Chang and Hsu (2008) used 89.5% carbohydrate, 9.4% 

protein, and 1% fat. However, vast differences are seen in compositions of MSW CLOs so 

perhaps there is not necessarily such a thing as a ‘typical’ composition.  

For ideal microbial conditions during the composting process, temperatures should be in the 

range of 52-60 °C and optimum O2 concentration is 15-20 %; excess moisture lead to 

anaerobic conditions where as too little will lead to slow degradation as microbial action 

diminishes (Bernal et al., 2009). Neither the temperature nor the moisture was monitored 

throughout the trial. 
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Particles that are too small may compact, reducing porosity and thus having implications for 

microbial action and potential to lead to anaerobicity (Bernal et al., 2009). The protein and 

lignin were in powder form and together with the lard, made a compacted sample. The 

addition of a bulking agent may provide a solution for this issue.  

No carbon dioxide, methane, nitrous oxide fluxes were measured meaning that microbial 

activity was left unmonitored. There was not enough material to measure CO2 flux via IRGA 

and methods not in place to measure any other gas fluxes.  

Based upon the results for this trial, it would be useful to investigate the major functional 

groups present in both the CLO and the control peat. In future work it would be useful to make 

use of solid state NMR, FT-IR and GC-MS to gauge the change in functional groups present in 

newly produced CLO and after a maturation period. This should provide valuable information 

about the stable compounds present.  

Ultimately, too much was undertaken in too short a time period. This trial, if repeated should 

take all of the above in to consideration and split into a series of smaller trials.  
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Chapter 8 
 

Conclusions and recommendations 

8.1 General Conclusions 
 

This chapter will draw together the major conclusions from each trial in a comprehensive 

summary. The second part of the chapter will offer recommendations based on the main 

findings whilst the third and final part will propose suggestions for further work within this area.  

Chapter 2 explored the composition of SOM; the structure, possible formation pathways and 

the conditions under which HS degrade. As many other reagents all co-exist in soils, it is 

probable that there are several pathways that occur closely and interact to form HS.  

Despite the high levels of CO2 released during mineralisation of composted wastes, the 

humification stage contributes to carbon sequestration. The chemical properties of HA will 

differ depending upon the composition of the organic waste source, which varies temporally 

and geographically.  

Once the humic acid is formed, susceptibility to biodegradation depends upon its structural 

characteristics. The depth of the material is also an important factor with decomposition in 

surface leaf-litter being much more rapid than in deeper, mineral soils. Molecules adsorbed 

onto clay minerals decrease the rate of biodegradability rendering them unavailable for 

microbial attack. When the CLO is added to natural soils, it ought to be well mixed to prevent 

rapid mineralisation of a potentially immature material.  

Stability of the CLO was assessed by measuring CO2 flux using an IRGA; maturity by alkali 

extraction, UV photospectroscopy and fluorescence. A Pseudo TGA method was developed 

as a third suite of analyses with some success. The measurement of CO2 flux using an IRGA 

is documented to offer a high degree of accuracy and ease of use, however, it was not ideal 

for use on the relatively high-emitting CLO. It was necessary to employ methods that would be 

cost-effective, plus quick and simple to run due to the vast number of samples. The methods, 

on the whole, fulfilled these criteria. Had circumstances allowed, it would have been useful to 

obtain some ICP-OES data from the leachate to study the flux of metals from each sample.  
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The alkali extraction procedure lacked sensitivity so experimental error and differences 

between replicate tended to mask trends between samples on the whole. Perhaps more 

success would have been realised with a less contaminated product. However, this method is 

subject to much criticism and it is often advised that it be used in conjunction with several 

other methods. The microstudy detailed in Chapter 7 suggested that perhaps lignin was 

extracted during this process. When the PTGA results are considered, this could mean that 

peat’s relatively high humic acid contents might in part be lignin.  

The results from the absorption and fluorescence data were less reliant on the amount of 

organic matter being uniform in replicate samples. It was still necessary, however, for samples 

to be homogenous enough that the humic matter extracted was representative of the whole 

lysimeter. For example, if one subsample had a large proportion of plastics, plus some paper-

derived material and lignin-typed components from green waste, they would offer different 

results from a sample that had and equal proportion of non-extractable plastic plus some 

digested food waste. For some of the samples tested (particularly in trial 4), data generated 

were below the limits of detection for these methods. 

Chapter 5 saw the development of a new technique: PTGA. Ultimately, this method 

highlighted some interesting patterns and has the potential for effectively analysing trends 

seen in the samples, particularly temporally. As in Chapter 4, very few significant trends were 

seen between control and amended samples, however. Although it was useful for highlighting 

trends in data sets, it is not yet significantly robust to use as a standalone method and would 

require validation testing before it could be used reliably.  

In the 10 week Trial 2 (Chapter 4), there appeared to be some agreement between data set. 

When manganese was added at 5%, no significant increase or decrease in flux was seen. 

When the level was raised to 10%, and increase in flux was observed after five weeks. The 

latter saw an increase in the absorbance ratio between week one and five and then a 

significant decrease in week ten. In the parallel samples with 5% sand and 10% sand, both 

saw an increase in flux between weeks five and seven. Only with the 5% sand did this 

significantly decrease again by the end of the trial. Both sets of samples gave absorbance 

ratios of <5 at ten weeks, suggesting a high degree of humification. Although qualitative 

patterns were observed in the alkali extraction data, this method yielded few statistically 

significant results. On the whole, the difference between replicate samples was too great for 

any definitive conclusions to be drawn from the use of this method. Further trials were needed 
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to attempt to draw any decisive inferences. None of the treatments show decisively a 

decrease in flux and increase in humic acid when compared to the control sample.  

Trial three (Chapter 6) showed some interesting temporal results over the 26 week period, 

with more agreement between analyses than seen the previous trial. Although this was initially 

intended to be one year long, the results after six months showed significant differences in 

many cases than the ‘new’ and ten week old materials. It would still be of interest to see what 

differences, if any, would be observed over a longer timescale. Differences between free-

draining and waterlogged samples were more apparent with some forms of analyses than 

others. The flux, PTGA and HIX data all suggested that the waterlogged samples may be 

slightly more humified after 26 weeks; the alkali extraction procedure and the E4/E6 ratios 

showed no difference between the data sets. There is a strong case in the data produced to 

suggest that both MnO2 –coated sand and char amendments both have a positive impact on 

the humification of CLO. The both appear to reduce CO2 flux rate and to increase humic acid 

content with evidence from several forms of analysis.  

The microstudy designed for trial 4 (Chapter 7) to attempted to observe interactions between 

four of the major components of CLO (lignin, cellulose, a lipid and a protein); both with and 

without the three amendments used in previous trials (sand, manganese-coated sand and 

char) in order to gain a greater understanding of possible reaction pathways of the 

humification process that occurs in CLO.  A fully factorial study was conducted over a 10 week 

period but the trial produced very little significant data. UV photospectrometry proved to be an 

unsuitable method of analysis with most of the data being below the lower limits of detection 

for the instrument.  Perhaps this was simply because no humic acid was produced. The alkali 

extraction procedure only yielded ‘humic acid’ when lignin was present in the sample. This 

could have some implications on the results from previous trials, if lignin is in fact extracted as 

well as humic acid during this procedure. This trial had many limitations which would need to 

be considered if a similar trial was to be repeated.  
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8.2 Future work and recommendations for Premier Waste 
 

For most of the samples across most of the trials, some significant results were produced. The 

material does appear to see significant stabilisation and increasing maturity over a relatively 

short period. With less contaminated and more heterogeneous product, perhaps more 

significant data could be produced and the product better characterised and understood. It 

was not possible to make comparisons between different trials due to the batches not being 

uniform or regulated. Intra-trial observations could be compared but not inter-trial between 

samples.  

Firstly, the interaction of CLO with fresh soil inorganic carbon would be necessary in order to 

establish a unified system, as seen in natural soils. Any humic acid produced needs the 

protection of inorganic carbon particulates if it is to avoid degradation. No information exists 

from this research about interaction with soil fauna and flora, another important factor present 

in natural systems. The latter is of great importance when it comes to having a continuous 

fresh input of OM to the system. If materials were to pass the relevant Governmental 

standards, a field trial would be the best way to achieve this. Here, the sample would be 

subjected to all of the conditions that it would be when laid to land so its behaviour would be 

better predicted. A longer time-scale would be useful too, in order to assess whether the Mn-

coated sand or char had any beneficial catalytic effects, or whether waterlogged would aid 

humification.  

In terms of laboratory analyses, leachate experiments using ICP-OES would be useful to see 

what effect the added Mn and biochar has on the release of metals from the CLO. This may 

have some bearing on their suitability as a soil amendment. 

The PTGA method showed some potential in its ability to characterise the organic fraction of 

CLO. However, the method would need to be validated using techniques such as solid state 

NMR, FT-IR and GC-MS to gauge the change in functional groups present in newly produced 

CLO and after a maturation period.  

In terms of carbon flux, only CO2 was measured during the trials; it would be useful to monitor 

CH4 flux also, particularly from the waterlogged samples. If a significant volume is produced, 

then waterlogging becomes a far less attractive prospect.  
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Different sources of MnO2 and char could be trialled to see whether this had any effect on the 

humification of the CLO. It is known that different feedstocks that produce the char can give a 

different product with different properties. Manganese oxide could be sourced from mining 

waste and its catalytic ability tested, for example. CLO could be added to acidic soils to see 

whether a liming effect will be seen, caused by its alkaline pH.  

If CLO is to become a marketable product, many of the above will need to be addressed 

before it can be fully characterised. This is a potentially useful product which not only diverts 

waste from landfill, but has the potential to store carbon and to improve degraded soils. 

Further research in this area is paramount in order to maximise the benefits of this potentially 

valuable resource.  If PWM intend to use CLO as a viable carbon store/soil improver, the 

separation techniques used must be improved for co-mingled wastes. Only then can useful 

experimental trials be carried out. Section 8.5.1 outlines some ideas for future trials that PWM 

could undertake to better characterise and understand their CLO produced. Perhaps if some 

of these are undertaken, a more stable and mature material could be produced.  
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