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ABSTRACT 

Saccharomyces cerevisiae cells respond to nutrients in their environment by 

altering their metabolic and transcriptional state in order to optimise the use 

of available nutrients and decide which of the several developmental 

pathways to pursue. In the yeast S. cerevisiae, meiosis and pseudohyphal 

growth are two major differentiation outcomes in response to nitrogen 

starvation. A central component of unfolded protein response pathway, the 

bZIP transcription factor Hac1ip, negatively regulates meiosis and 

pseudohyphal growth. The present study investigates this negative regulatory 

mechanism at early meiotic genes by Hac1ip in nitrogen-rich conditions. 

Regulation of transcription by Ume6p transcriptional regulator, Rpd3p-Sin3p 

histone deacetylase complex and Isw2p-Itc1p chromatin remodelling 

complex at URS1 was also investigated here. We also tested for induction of 

pseudohyphal growth in diploids from SK1 genetic background in response to 

nitrogen starvation conditions known to induce meiosis. 

I constructed destabilised β-galactosidase reporters expressed from URS1-

CYC1-Ub-X-lacZ reporters to analyze transcriptional activity at URS1 site of 

early meiotic genes in nutrient rich conditions. The data presented here 

successfully demonstrates Hac1ip-mediated repression at URS1 sites in 

nitrogen-rich conditions. URS1-CYC1-Ub-X-lacZ reporters were expressed in 

mitotic repression machinery mutants (ume6Δ, rpd3Δ, sin3Δ, isw2Δ and 

itc1Δ) under nitrogen rich conditions. The data presented here from these 

experiments not only corroborates their known role in repression at URS1 but 

also suggested regulation at additional sites in the minimal CYC1 promoter. 

Deletion of Sin3p suggested independent repression function separable from 

Rpd3p. Isw2p also acts independently of Itc1p at sites other than URS1. We 

also show that pseudohyphal growth was stimulated by non-fermentable 

carbon sources in sporulation efficient SK1 genetic background. The data 

also indicates that stimulation of pseudohyphal growth by non-fermentable 

carbon sources does not require respiration function or functional 

mitochondrial RTG pathway. 
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PUBLICATION 

 
Ime1 and Ime2 are required for pseudohyphal growth of 

Saccharomyces cerevisiae on nonfermentable carbon sources. 
Strudwick N, Brown M, Parmar VM, Schröder M. 

Durham University, School of Biological and Biomedical Sciences, Durham 

DH1 3LE, United Kingdom. 

 

Abstract 

Pseudohyphal growth and meiosis are two differentiation responses to 

nitrogen starvation of diploid Saccharomyces cerevisiae. Nitrogen starvation 

in the presence of fermentable carbon sources is thought to induce 

pseudohyphal growth, whereas nitrogen and sugar starvation induces 

meiosis. In contrast to the genetic background routinely used to study 

pseudohyphal growth (Σ1278b), nonfermentable carbon sources stimulate 

pseudohyphal growth in the efficiently sporulating strain SK1. Pseudohyphal 

SK1 cells can exit pseudohyphal growth to complete meiosis. Two 

stimulators of meiosis, Ime1 and Ime2, are required for pseudohyphal growth 

of SK1 cells in the presence of nonfermentable carbon sources. Epistasis 

analysis suggests that Ime1 and Ime2 act in the same order in pseudohyphal 

growth as in meiosis. The different behaviors of strains SK1 and Σ1278b are 

in part attributable to differences in cyclic AMP (cAMP) signaling. In contrast 

to Σ1278b cells, hyperactivation of cAMP signaling using constitutively active 

Ras2(G19V) inhibited pseudohyphal growth in SK1 cells. Our data identify 

the SK1 genetic background as an alternative genetic background for the 

study of pseudohyphal growth and suggest an overlap between signaling 

pathways controlling pseudohyphal growth and meiosis. Based on these 

findings, we propose to include exit from pseudohyphal growth and entry into 

meiosis in the life cycle of S. cerevisiae. 

 

Mol Cell Biol. 2010 Dec; 30(23):5514-30. (Reprint: Appendix I) 
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INTRODUCTION  

Organisms respond to a number of stimuli in their environment ranging from 

temperature, osmolarity, pH, nutrition, etc. The budding yeast Saccharomyces 

cerevisiae also responds to its nutritional environment in different ways to a number 

of different nutritional cues. Limitation of one or more key nutrients can trigger a 

variety of developmental responses. S. cerevisiae diploids undergo meiosis in 

response to nutrient starvation and form spores which stay dormant until they 

germinate in favourable conditions. Alternatively the diploid cells can form 

pseudohyphae, which are synchronously growing elongated cells branching out from 

an edge of the colony to forage for nutrients. Similar responses in haploids are 

termed as filamentation, which is marked by invasive growth that is capable of 

invading the underlying medium and increased cell-cell adhesion. Haploid or diploid 

cells can stop mass accumulation, arrest cell cycle progression and enter G0 state. 

These differentiation events require a lot of metabolic, transcriptional and 

morphological, reprogramming. The role of nutrient sensing and signalling is to sense 

the nutritional state of the cell and its environment and initiate signalling that would 

allow accumulation of cell mass. Nutrient signalling pathways also optimize the 

nutrient conversion to cell mass and indirectly regulate cell proliferation and 

developmental pathways. These processes are performed by various signalling 

cascades initiated in response to specific nutritional niches and cross talk between 

these pathways executes the cell’s response. There has been considerable advance 

in understanding of the components of different signalling pathways but we do not, as 

of yet, understand completely the molecular mechanisms behind how cells sense 

nutrients and respond into signals to decide its cell fate.   

 

1.1   Nutrient signalling pathways in S. cerevisiae:  

Diploid S. cerevisiae cells respond to nutrients in their environment by altering their 

metabolic and transcriptional state to optimise the use of available nutrients and to 

decide which of the several developmental pathways to pursue. There are number of 

signalling pathways that respond to availability and type of carbon source, nitrogen 

source, amino acids and other nutritional cues and mediate cell’s response (Figure 
1.1). The first step towards signalling is sensing of cell’s extracellular nutritional 
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environment and intracellular concentration of nutrients. Carbon source, nitrogen 

source and amino acid as nutrients have been discussed here. 

 

1.1.1 Carbon source 

S. cerevisiae can grow readily on fermentable carbon sources by fermentation and 

utilise non-fermentable carbon sources by respiration. Glucose is preferred over 

other fermentable carbon source sources and more so over non-fermentable carbon 

sources. This repression of utilization of other carbon sources including the non-

fermentable carbon sources is called glucose repression (Gancedo, 1998). Glucose 

sensing occurs through the G-protein coupled receptor (GPCR) Gpr1p, which 

interacts with the G protein α-subunit Gpa2p and transmits the signal [Figure 1.1 and 

(Kraakman et al., 1999; Xue et al., 1998; Yun et al., 1997; Yun et al., 1998)]. Besides 

GPCRs, S. cerevisiae also express a family of hexose transporters that are involved 

in sugar sensing or transport. RGT2 and SNF3 are members of this family, which 

encode transmembrane proteins that act as low affinity and high affinity sensors of 

glucose and initiate signalling of a pathway that controls the expression of hexose 

transporter genes (Özcan et al., 1996). However, direct binding of glucose has not 

been shown for both the proteins. Hexose kinases Hxk1p, Hxk2p and Glk1p are 

intracellular proteins that bind to glucose and phosphorylate it at C6 (Bianconi, 2003; 

Clifton et al., 1993; Lobo and Maitra, 1977; Walsh et al., 1983). This is the first step in 

metabolism of glucose to form glucose 6-phosphate (Rose et al., 1991). Two 

signalling pathways respond to glucose,  the first through PKA mediated monomeric 

Ras GTPases and a second using a Gα homolog, Gpa2p and a putative G-protein 

coupled receptor, Gpr1p (Batlle et al., 2003; Broach and Deschenes, 1990; 

Harashima et al., 2006; Rolland et al., 2002). Snf1p kinase is essential for growth on 

less preferred fermentable carbon sources such as sucrose, galactose and maltose 

or non-fermentable carbon sources like glycerol and ethanol. Besides its requirement 

for growth in the absence of glucose, Snf1p is also required in a number of processes 

such as meiosis, ageing, glycogen accumulation, inositol growth and pseudohyphal 

growth (Ashrafi et al., 2000; Honigberg and Purnapatre, 2003; Kuchin et al., 2002; 

Shirra and Arndt, 1999). Snf1p is a member of the AMP-activated protein kinase 

family that responds to AMP:ATP ratio. In the absence of glucose, the Snf1p 
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serine/threonine protein kinase activates Cat8p and Sip4p and represses Mig1p 

regulating transcriptional changes associated with glucose derepression (Hong et al., 

2003; Lesage et al., 1996; Nath et al., 2003; Rahner et al., 1996; Randez-Gil et al., 

1997). Protein kinase A (PKA), Snf1p, and the Rgt2p-Snf3p glucose sensors play 

redundant and overlapping roles in carbon source signalling (Rolland et al., 2002). 

 

1.1.2 Nitrogen source  

Yeast cells respond to the availability and type of nitrogen source. Preferred nitrogen 

sources are metabolised over less preferred nitrogen sources. These favourable 

nitrogen sources enhance growth rate and repress metabolism of less preferred 

nitrogen source. Ammonium and glutamine are preferred nitrogen sources and their 

addition to cells growing on alternate nitrogen source results in repression of large 

collection of genes involved in the nitrogen catabolism. This is also called nitrogen 

discrimination pathway (NDP) or nitrogen catabolite repression (NCR) (Hofman-

Bang, 1999). The quality of nitrogen sources and their availability informs metabolic 

processes and influences the developmental decisions of the cell. The presence of 

high quality nitrogen sources prevents pseudohyphal growth or invasive growth and 

the presence of any nitrogen source prevents meiosis and sporulation. Mep1p, 

Mep2p and Mep3p are the ammonium transporters in S. cerevisiae that sense 

extracellular nitrogen (Figure 1.1). Mep2p, and Mep1p are required for nitrogen 

sensing and activation of cAMP-PKA pathway following addition of nitrogen source to 

nitrogen starved cells (Van Nuland et al., 2006). Overexpression of Mep2p under 

nitrogen replete condition activates transcriptional profile consistent with activation of 

MAPK pathway (Lorenz and Heitman, 1998a; Rutherford et al., 2008). The activity of 

Mep2p, but not Mep1p or Mep3p is required for induction of pseudohyphal growth 

(Lorenz and Heitman, 1997). However the details of Mep2p signalling are not fully 

elucidated. Nitrogen starvation induces GPR1 transcription and Gpa2p-Gpr1p has 

been implicated in nitrogen sensing as gpa2 and gpr1 strains show a defect in 

pseudohyphal differentiation (Kübler et al., 1997; Lorenz and Heitman, 1997; Lorenz 

et al., 2000b; Tamaki et al., 2000). But the primary function of Gpr1p is glucose 

sensing as Gpr1p binds to glucose with low affinity and Gpr1p may be integrating 

glucose and nitrogen signals in the pseudohyphal pathway.  
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pseudohyphal growth. Snf1p is activated in presence of alternate carbon source or 
non fermentable carbon sources to induce expression of glucose repressed genes. 
Nitrogen sources are sensed through ammonium permease Mep2p and possibly 
through Gpa2p-Gpr1p. The SPS (Ssy1p-Ptr3p-Ssy5p) system senses extracellular 
amino acid concentration and upregulates amino acid permease gene expression, 
while the intracellular amino acid is sensed by a mechanism involving uncharged 
tRNAs and Gcn2p thereby activating GCN pathway. As a result general protein 
synthesis is repressed by phosphorylated eIF2α with the selective exception of Gcn4p 
to upregulate amino acid biosynthesis. General amino acid permease Gap1p is 
stabilised in absence of a high quality nitrogen source to induce uptake of amino acids. 
Growth on poor nitrogen sources also activates Gln3p and Gat1p to induce nitrogen 
catabolite repression (NCR) genes. Under nutrient-rich conditions, TORC1 inhibits the 
function of transcriptional activators that are involved in nitrogen catabolite-repression 
(Gat1p, Gln3p), retrograde response (Rtg1p, Rtg3p) while activates those involved in 
ribosome biosynthesis (Sch9p).  Black arrows indicate transcriptional upregulation or 
downregulation. See text for further details. 
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1.1.3 Amino acid 

The sensing of amino acid availability both for incorporation into protein and as 

nitrogen source in biosynthetic reactions occurs through signalling cascades in yeast. 

The SPS (Ssy1p-Ptr3p-Ssy5p) signalling system senses external amino acid 

concentrations (Forsberg and Ljungdahl, 2001). The Ssy1p sensor protein, which 

resembles an amino acid permease, signals to two transcription factors Stp1p and 

Stp2p, targeting mainly genes that encode amino acid metabolizing enzymes and 

amino acid transporters (Andreasson and Ljungdahl, 2002). Internal amino acids are 

sensed by general control of amino acid biosynthesis (GCN). This intracellular 

nitrogen sensing mechanism involves association of uncharged tRNA and Gcn2p 

kinase leading to its activation. Gcn2p phosphorylates eIF2α in response to amino 

acid starvation and other stimuli, reducing global protein synthesis (Cherkasova and 

Hinnebusch, 2003; Dever, 2002; Hinnebusch, 2005; Hinnebusch and Natarajan, 

2002). However, GCN4 mRNA is upregulated by Gcn2p through upstream open 

reading frames (Mueller and Hinnebusch, 1986) and Gcn4p upregulates genes for 

biosynthesis of amino acids, the nitrogen source in the medium. The presence of 

preferable nitrogen source or high concentration of amino acids represses general 

amino acid permease Gap1p (Magasanik and Kaiser, 2002). Upon nitrogen limitation 

Gap1p expression is induced by two GATA transcription factors Gln3p and Gat1p 

(Stanbrough and Magasanik, 1996; Stanbrough et al., 1995). Gap1p is also 

implicated in activation of the  PKA pathway that involves the protein Sch9p kinase 

on addition of amino acids to nitrogen starved cells  (Donaton et al., 2003; Thevelein 

et al., 2005). Gln3p is a master regulator under alternative nitrogen sources along 

with Gat1p acting as transcriptional activators while Dal80p and Gzf3p acting as 

transcriptional repressors of NCR sensitive genes (Coffman et al., 1996; Cooper, 

2002; Magasanik and Kaiser, 2002; Scherens et al., 2006). Limiting glutamine and 

TOR inhibitor rapamycin also activate Gln3p (Beck and Hall, 1999; Crespo et al., 

2002). Glutamate and α-ketoglutarate are very important for nitrogen assimilation and 

therefore the pathways regulating the levels of glutamate are closely related to 

nitrogen regulation. The Retrograde (RTG) signalling pathway is one such pathway 

that regulates the genes of TCA cycle maintaining glutamate homeostasis in the cell. 

It is activated in response to mitochondrial defects or inactivation of key tricarboxylic 

acid (TCA) cycle enzymes (Butow and Avadhani, 2004; Liu and Butow, 1999)  This 
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way yeast cells can assimilate nitrogen by conversion to ammonium and then 

condensation with α-ketoglutarate to form glutamate. Exogenous glutamate levels 

sensed by SPS-system negatively regulate Rtg2p (Figure 1.1). Cells utilising glucose 

repress citric acid cycle genes and maintain α-ketoglutarate levels from pyruvate and 

acetyl-CoA by the RTG signalling pathway. The citric acid cycle enzymes are 

responsive to heme-dependent Hap1p and heme independent Hap2-3-4-5p complex 

in the presence of alternative carbon sources (Liu and Butow, 1999). The RTG 

pathway consists of RTG1 and RTG3 encoding basic helix-loop-helix leucine zipper- 

(b-HLH/Zip) type transcription factors. Rtg1p and Rtg3p form a heterodimer to bind to 

target gene promoters. RTG2 encodes a cytosolic protein with an N-terminal ATP-

binding domain. Integrity of ATP-binding domain of Rtg2p is essential for its function. 

Rtg2p is required for Rtg3p dephosphorylation and nuclear translocation of Rtg1/3p. 

Rtg1/3p activates several genes of the TCA cycle, CIT2 (encodes the peroxisomal 

isoform of citrate synthase) and DLD3 (encodes cytosolic isoform of D-lactate 

dehydrogenase). Besides Rtg1p, Rtg2p and Rtg3p, Grrr1p also acts positively, while 

Mks1p, Lst8p and Bmh1-2p negatively regulate the RTG signalling pathway of 

mitochondria (Liu and Butow, 2006). Therefore RTG pathway provides a means to 

grow on poor nitrogen sources and maintains glutamate levels in the absence of 

mitochondrial function. The RTG pathway also regulates genes of the glyoxylate 

cycle, genes involved in β-oxidation of fatty acids and genes encoding enzymes of 

lysine biosynthesis (Chelstowska and Butow, 1995; Dilova et al., 2002).  

 

1.1.4 The TOR signalling pathway 

The TOR signalling pathway is a major integrator of nutrient-derived signals that in 

co-ordination with other signalling pathways controls cell growth and proliferation. 

Crosstalk of TOR signalling pathway and other pathways has been proposed to 

regulate responses to nitrogen/amino acid availability. Treatment of cells with 

rapamycin results in physiological changes like G1 cell cycle arrest, protein synthesis 

inhibition, glycogen accumulation and autophagy which closely resemble those 

observed in cells deprived of nutrients. TOR signalling is controlled by two distinct 

evolutionarily conserved multimeric protein complexes known as TORC1 and 

TORC2. Tor1p and Tor2p associate with Kog1p, Tco89p and Lst8p in the protein 
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complex TORC1. In TORC2, Tor2p associates with Lst8p, Avo1p, Avo2p, Avo3p, 

Bit61p and Bit2p as a separate complex (Chen and Kaiser, 2003; Loewith et al., 

2002; Reinke et al., 2004; Wedaman et al., 2003). TORC1 is rapamycin sensitive and 

is involved in nutrient signalling, while TORC2 is rapamycin insensitive and is 

involved in spatial control of cell growth, but a clear distinction of separate functions 

is not possible as the TORC1 component Kog1p also regulates actin polarization 

(Aronova et al., 2007; Loewith et al., 2002; Wang and Jiang, 2003). Tap42p is a 

direct target of TORC1 phosphorylation and regulates repression of stress regulated 

genes, nitrogen catabolite repression and retrograde signalling as well as crosstalk 

between  TORC1 and general amino acid control (GAAC) response [Figure 1.1 and 

(Cherkasova and Hinnebusch, 2003; Duvel et al., 2003; Rohde et al., 2004)]. During 

growth in preferred nitrogen sources, Gln3p is cytosolic but translocates to the 

nucleus by Sit4p-dependent phosphorylation when cells are shifted to poor nitrogen 

sources or upon rapamycin treatment and activates transcription of genes required 

for utilisation of less preferable nitrogen sources (Beck and Hall, 1999; Cardenas et 

al., 1999). Sit4p and Tap42p act in concert to dephosphorylate downstream targets in 

response to rapamycin, thus making Tap42p a positive regulator of phosphatase 

activity. Tap42p also acts in a similar fashion in rapamycin activation of RTG target 

genes (Duvel et al., 2003). The TORC1 protein kinase phosphorylates Sch9p and 

phosphorylation is required for activation of Sch9p (Urban et al., 2007). Sch9p plays 

a significant role in connecting TOR-dependent nutrient sensing to ribosome 

biogenesis and a major role in coupling the cell size to cell division (Figure 1.1). 

Sch9p is a protein kinase that induces ribosome biogenesis and represses genes 

involved in carboxylic acid metabolism when overexpressed and regulates a similar 

set of functions as Ras-PKA (Jorgensen et al., 2004; Zaman et al., 2009). Sch9p is 

rapidly dephosphorylated in response to rapamycin, carbon or nitrogen starvation, 

while Sch9p restores phosphorylation when shifted from ammonium to urea and 

addition of missing nutrient rapidly (Urban et al., 2007). Diminished Sch9p activity or 

deletion of GPR1 induces genes required for sterol and cell wall biosynthesis. It has 

also been suggested that Sch9p mitigates the signalling activity of Gpa2p (Zaman et 

al., 2009). These results hint a possible crosstalk between TOR pathway and Gpa2p-

PKA pathway through Sch9p.  The Tor pathway often works in parallel with the 

cAMP-PKA pathway to control common targets and also intersects with other 

signalling networks, such as the GAAC response (Chen and Fink, 2006; Hinnebusch, 
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2005; Marion et al., 2004; Roosen et al., 2005; Urban et al., 2007; Zurita-Martinez 

and Cardenas, 2005). Several newly identified Tor substrates, Sch9p, Ypk1p and 

Slm1p, Slm2p, further link TOR function to amino acid signalling, actin organization, 

control of cell integrity and stress responses (Audhya et al., 2004; Bultynck et al., 

2006; Daquinag et al., 2007; Fadri et al., 2005; Kamada et al., 2005; Mulet et al., 

2006; Urban et al., 2007).  

 

1.2    Differentiation responses in Saccharomyces cerevisiae: 
 

Differentiation responses in S. cerevisiae are heavily regulated by the extracellular 

and intracellular nutrient environment. S. cerevisiae produce mitotic daughters when 

the nutrients are plentiful. However when the nutrients are scarce normal cell growth 

and mitosis ceases. The nitrogen starvation can induce two different responses in a/α 

diploid S. cerevisiae.  In the presence of fermentable carbon sources yeast form can 

undergo morphological change to form pseudohyphae (Gimeno et al., 1992), while 

non-fermentable carbon source induces the a/α diploid cell to undergo meiosis and 

form an ascus (Herskowitz, 1988), which can again germinate when the nutrients are 

plentiful (Herman and Rine, 1997). Meiosis or sporulation plays an important role in 

the sexual life cycle of budding yeast S. cerevisiae and it is critical in generating 

genetic diversity while conserving the functional genome (Marston and Amon, 2004) 

and surviving nutrient starvation (Kupiec et al., 1997). Pseudohyphal growth allows 

immobile cells to forage for nutrients and escape nitrogen limiting conditions. When 

cells in pseudohyphal growth form face severe starvation, the cells can undergo 

sporulation. The a and α haploid cells on depletion of nutrients enter into a no-

metabolic and quiescent stage with G1 arrest in the mitotic cycle. When carbon 

source is limiting, haploid cells can form filamentous growth known as haploid-

invasive growth, which is characterised by elongated cell morphology, altered 

budding pattern and invasion of agar. Thus the differentiation responses are 

regulated depending on cell type and nutritional availability at each stage of yeast life 

cycle, except for mating (Figure 1.2A).  
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1.2.1 Meiosis  

Meiosis is the cellular program that transforms diploid a/α cell into four haploid 

progenies (a or α) in an ascus. The process of meiosis requires a transcriptional 

program of approximately 1000 genes and can be divided roughly in three stages: 

early, middle and late stage depending on temporal expression of genes required for 

meiosis (Chu et al., 1998; Primig et al., 2000). Firstly, the key meiotic regulatory 

genes are expressed as cells exit the G1 phase of mitotic growth and enter the 

meiotic program. Secondly, on activation of early meiotic genes the cells undergo 

DNA replication, meiotic recombination and lastly, two sequential rounds of 

chromosome segregation to form four haploid products. During meiotic prophase, 

pair of homologous chromosomes become physically associated along the length by 

a large protein structure referred to as synaptonemal complexes (Page and Hawley, 

2004). The process of meiosis and spore formation combined is called sporulation. 

The entry into meiosis is regulated by the IME1 gene (Initiator of Me

 

iosis 1) in 

response to nutritional and cell type controls. The master regulator of meiosis Ime1p 

is induced in MATa/MATα cells under nitrogen starvation in the presence of a non-

fermentable carbon source starting a transcriptional programme to ensue meiosis 

(Sagee et al., 1998). The positive and negative regulatory sequences in the IME1 

promoter control IME1 transcription in response to nutritional cues and cell type 

control. Presence of even low levels of glucose represses sporulation while non-

fermentable carbon source like acetate induce sporulation in nitrogen starved 

diploids (Kassir et al., 2003).  

 

1.2.1.1 Nutritional regulation of meiotic induction 

Meiotic induction of S. cerevisiae depends on nutritional control and cell type control. 

For cells to enter the meiotic program they need two specific nutritional cues. One, 

the environment must lack one essential growth nutrient, mainly nitrogen limitation, 

which causes G1 arrest in the mitotic cycle. Second, is the absence of glucose, as 

this can inhibit meiotic initiation and promote differentiation into pseudohyphal 

growth. The cell type control means that only diploid yeast undergoes meiosis while 

haploids are prevented from undergoing meiosis. Upon nitrogen and glucose 
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starvation, the master regulator of meiosis, IME1 is expressed to induce set of early 

meiotic genes.  

The level of nitrogen and the type of carbon source is sensed by the IME1 promoter 

to induce transcription of IME1. IME1 is repressed in growing cells, but once cells 

cease growth, it is expressed at a moderate level (Kassir et al., 1988; Smith and 

Mitchell, 1989). Further induction of IME1 is inhibited in the presence of glucose or in 

the absence of non-fermentable carbon source (Purnapatre and Honigberg, 2002). 

IME1 transcription requires the function of respiratory metabolism of non-fermentable 

carbon source (Treinin and Simchen, 1993). However the requirement for a non- 

fermentable carbon source can be bypassed by overexpression of IME1. IME1 has a 

large (~2kb) promoter region (Granot et al., 1989; Rupp et al., 1999) at which the cell 

type and nutritional signals converge to regulate the entry into meiosis. The IME1 

promoter is divided into four contiguous regions, upstream control regions (UCS1-4) 

and contains other regulatory elements within this region [Figure 1.2B and (Sagee et 

al., 1998)].  

Regulation of IME1 by nitrogen source  

The UCS1 element in the IME1 promoter responds to nitrogen levels, as deletion of 

UCS1 leads to inappropriate activation of IME1 in vegetatively growing cells (Figure 

1.2B). In addition mutants lacking cAMP or AMP dependent PKA also sporulate in 

the absence of nitrogen limitation (Matsumoto et al., 1983). Cdc25p is a known PKA 

and MAP kinase activator and has been suggested to transmit nitrogen signals to 

UCS1 (Matsumoto et al., 1983). Induction of meiosis in laboratory strains is mainly 

studied by nitrogen limitation, but it is not certain that nitrogen starvation represses 

meiosis or nitrogen starvation causes G1 arrest and indirectly promotes meiosis. 

However when nitrogen is present in absence of other essential nutrients, S. 

cerevisiae still induces meiosis supporting the notion that nitrogen starvation 

indirectly induces meiosis by G1 arrest.  

Regulation of IME1 by glucose 
The meiotic program is inhibited in the presence of glucose even at relatively low 

concentrations. The IME1 promoter senses glucose through UCS2. Three main 

elements UASru, UASrm and IREu, repress in the presence of glucose, but activate 

in the absence of glucose and/or presence of acetate (Kassir et al., 2003). The 
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elements UCS1, UASru, IREu and UASv (UAS activity in vegetative growth) integrate 

several signalling pathways to repress IME1 transcription in the presence of glucose 

(Figure 1.2B). Thus the block on meiosis by glucose is mediated by a number of 

signalling pathways. Snf1p kinase, which is inhibited by glucose under the glucose 

repression pathway, is required for expression of IME1 and IME2, an early meiotic 

gene. The glucose sensors Rgt2p and Snf3p act upstream of Snf1p and are required 

for repression of IME1 in the presence of glucose. Activated PKA inhibits IME1 and 

IME2 and promotes growth. Gpa2p also binds directly to Ime2p to inhibit its kinase 

activity (Donzeau and Bandlow, 1999). Also transient activation of Ras pathway has 

also been suggested to repress meiotic initiation indirectly through activation of PKA 

pathway. The Rim15p kinase promotes the association of Ime1p to Ume6p 

(transcriptional activator of EMGs) to induce the early meiotic genes. But glucose 

represses RIM15 expression and PKA directly inhibits Rim15p by phosphorylation. 

IME1 may also be repressed by the PKA pathway through the Msn2p-Msn4p 

transcription complex inhibition by phosphorylation (Garreau et al., 2000). Msn2p-

Msn4p activates transcription of many stress responsive genes by binding to stress 

responsive element (STRE) present in the promoters of these genes. TPS1 

(trehalose phosphate synthethase 1), one such stress responsive gene is required for 

induction of IME1 (De Silva-Udawatta and Cannon, 2001). Also a STRE site is 

present in the IME1 promoter region. PKA may also regulate the Msn2p-Msn4p 

complex by phosphorylating Sok2p, which is thought to bind to Msn2p-Msn4p and 

convert it to a transcriptional repressor (Shenhar and Kassir, 2001). The regulation of 

IME1 is very important as is evident from the complex IME1 promoter and interplay of 

negative and positive regulatory proteins. Thus, there are a number of pathways that 

regulate the expression of IME1, but complete mechanism of meiotic initiation is 

partially known.     
 

Regulation of IME1 by non-fermentable carbon source 
In the presence of non-fermentable carbon source IME1 is expressed at low levels, 

resulting from the competition of the repressive action of UCS1, URSu, URSd, IREd 

and positive action of UASru, IREu, UASrm and UASv (Figure 1.2B). Upon nitrogen 

depletion, relief of UCS1 repression promotes the increase of transcription (Kassir et 

al., 2003). Meiotic induction has also been shown to be dependent on the alkalization 
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of the media. Metabolism of non-fermentable carbon sources produce CO2, which 

creates alkaline conditions in the medium (Ohkuni and Yamashita, 2000). Further 

RIM101 is required both for adaptation to extracellular alkalization and for IME1 

transcription (Lamb et al., 2001).  

 

Activation of meiosis by G1 arrest and CLN3 

In S. cerevisiae the cells require G1 arrest to undergo meiosis (Hirschberg and 

Simchen, 1977). Cln3p, a G1 cyclin is present at constant levels during cell cycle and 

functions primarily to promote transition from G1 to S phase. When G1 arrest occurs, 

Cln3p levels decline rapidly and this decline is required partly for meiotic induction 

because Cln3p inhibits IME1 expression and Ime1p localization to nucleus (Colomina 

et al., 1999; Gallego et al., 1997; Parviz and Heideman, 1998).  

 

Return to growth 

Nitrogen and glucose starvation is not only required to initiate meiosis, but also to 

complete the process because addition of rich media can inhibit sporulation even 

after meiotic S phase, meiotic recombination, and synapotenemal complex formation 

have taken place (Esposito and Esposito, 1974; Friedlander et al., 2006; Honigberg 

et al., 1992; Honigberg and Esposito, 1994; Sherman and Roman, 1963; Simchen et 

al., 1972; Zenvirth et al., 1997). Moreover such refed cells can exit the sporulation 

program and return to mitotic growth as long as the commitment point has not 

passed. Commitment occurs after premeiotic DNA replication and recombination, but 

before meiosis I and cells cannot return to vegetative growth after this point. 

Overproduction of IME1 in stationary phase cultures can induce meiotic 

recombination and synaptonemal complex formation, but glucose can stall further 

progression into late prophase, suggesting that nutritional signals can control later 

steps in the program through an IME1-independent pathway (Lee and Honigberg, 

1996). 
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1.2.1.2 Cell type control 

Cell type control ensures that IME1 is not induced in haploid cells under any 

nutritional condition. RME1 (Repressor of IME1) represses transcription of IME1 in 

haploids and inhibits meiosis so haploids cannot undergo meiosis. Rme1p is 

expressed at much higher levels in haploids than diploids and represses IME1 by 

binding to Rme1p repressor element (RRE1) site in UCS4 of IME1 [Figure 1.2B, 
(Covitz et al., 1991; Covitz and Mitchell, 1993)]. Rme1p also binds to a similar site in 

the promoter of CLN2, which encodes a G1 cyclin, to activate its transcription and 

Cln2p inhibits IME1 expression (Purnapatre et al., 2002). Only MATa/MATα cells can 

undergo meiosis as a1-α2, the heterodimer produced in diploids binds to an operator 

site in the RME1 promoter repressing its transcription (Covitz and Mitchell, 1993; 

Herskowitz et al., 1992). In addition to repression of RME1, a1-α2 also promotes 

IME1 expression by activation of IME4 (Shah and Clancy, 1992). IME4 is also a 

positive regulator of meiosis and is only expressed in a/α diploid cells. Though IME4 

is an early meiotic gene it is not under the regulation of Ime1p. IME4 encodes a 

putative mRNA N6-adenosine methyltransferase required for entry into meiosis 

(Clancy et al., 2002). Expression of IME4 is induced under starvation conditions 

(Shah and Clancy, 1992) and IME4 can transcribe sense and antisense mRNA. The 

antisense promoter of IME4 is stronger than the sense promoter in haploids and 

causes inhibition of sense transcript by antisense transcript thereby inhibiting entry 

into meiosis. Conversely in diploids the sense IME4 transcript is produced as the 

antisense promoter is inhibited by a1-α2 heterodimer (Hongay et al., 2006). IME4 is 

essential for IME1 accumulation and sporulation (Shah and Clancy, 1992). An rme1 

mutation does not alter the regulation of IME4 expression by a1-α2 but the rme1 

mutation can suppress an ime4 insertion mutation to permit expression of IME1. 

Moreover a1-α2 represses RME1 expression directly. These data suggest that RME1 

and IME4 may act in parallel pathways to activate IME1 (Covitz et al., 1991; Shah 

and Clancy, 1992).  
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1.2.1.3 Regulation of early meiotic genes  

IME1 encodes a transcriptional activator, which once induced is required for 

transcription of early meiotic genes (EMGs) (Kassir et al., 2003; Mandel et al., 1994; 

Smith et al., 1993). An IME1 null mutation leads to loss of expression of all meiotic 

genes except IME4 (Kassir et al., 2003; Kupiec et al., 1997). Ime1p associates with 

Ume6p, a transcriptional repressor of early meiotic genes under vegetative growth 

and a transcriptional activator under meiosis inducing conditions. Ume6p interaction 

with Ime1p leads to expression of early meiotic genes like IME2, SPO13 and HOP1 

(Malathi et al., 1997; Rubin-Bejerano et al., 1996). Rim11p, GSK3 family protein 

kinase activated in response to starvation by nitrogen limitation (Xiao and Mitchell, 

2000) phosphorylates Ime1p to stabilise Ime1p-Ume6p association (Malathi et al., 

1997; Malathi et al., 1999).This association can be destabilised by presence of 

glucose through repressing expression of Rim15p (Vidan and Mitchell, 1997). Ume6p 

is a C6-zinc cluster DNA binding protein that binds to 9-bp upstream repressing site 1 

(URS1) present in promoters of early meiotic and non-meiotic genes (Anderson et al., 

1995; Strich et al., 1994). Deletion of UME6 induces the expression of genes 

containing URS1 in vegetative growth conditions (Bowdish and Mitchell, 1993; Strich 

et al., 1994). ume6Δ cells arrest during prophase early in meiosis and display delay 

in induction of mid and late genes (Steber and Esposito, 1995). These data show that 

Ume6p is not only a repressing factor in mitotic growth, but also promotes the meiotic 

process induction. It has also been suggested that repression by Ume6 is relieved by 

in vivo interaction of Ume6p and Cdc20p, an activator of anaphase promoting 

complex/cyclosome (APC/C) ubiquitin ligase. Ume6p degrades partially after 

ubiquitination and Ime1p association is required for complete destruction and entry 

into meiosis by induction of EMGs (Mallory et al., 2007). Under mitotic growth 

conditions Ume6p is not degraded as Cdc20p is inactive due to its phosphorylation 

by PKA. Early meiotic genes are transcribed following histone acetylation by Gcn5p 

histone acetyl transferase (Figure 1.3A) (Burgess et al., 1999). 

Ume6p interacts with Sin3p and recruits the Rpd3p histone deacetylase to bring 

about repression under vegetative growth conditions (Kadosh and Struhl, 1997) by 

denying access to SAGA histone acetyl transferase complex (Figure 1.3B). Sin3p is 

a co-repressor which is recruited by Ume6p to the promoters of early meiotic genes 

and Rpd3p functions as a histone deacetylase (Kadosh and Struhl, 1997).   
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Figure 1.3 Interplay of transcriptional regulators, histone-modifying enzymes 
and chromatin remodelling complexes in regulation of early meiotic genes.  
A - Under nitrogen starvation, Ime1p associates with Ume6p and Gcn5p acetylates 
histone to induce early meiotic genes (EMGs). B - In presence of nitrogen Ume6p 
negatively regulates transcription of EMGs by recruitment of Sin3p-Rpd3p histone 
deacetylase (HDAC) which lead to histone deacetylation.  
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Rpd3p deacetylates histone tails associated with nucleosomes around the promoter 

region by removing acetyl group from N-terminal lysine residues of H2A, H2B, H3 

and H4 and leads to repression (Kadosh and Struhl, 1998; Rundlett et al., 1998; 

Suka et al., 2001). S. cerevisiae forms Rpd3p large and small complexes known as 

Rpd3L and Rpd3S (Carrozza et al., 2005). The large complex Rpd3L typically 

contains Rpd3p, Ume1p, Sds3p, Sap30p and Pho23p subunits. Rpd3S complex in 

addition to Rpd3p, Ume1p and Sin3p, also contains Eaf3p and Rco1p. Both these 

complexes perform different functions. Rpd3L localizes primarily to the promoter 

regions and represses transcription. Set2p methyltransferase is recruited by RNA 

polymerase II to methylate transcribed regions (Joshi and Struhl, 2005). Eaf3p, 

subunit of Rpd3S complex has a chromodomain motif to recognise methyl-lysine 

modifications and recruits Rpd3S to the transcribed regions to suppress intragenic 

transcription initiation (Carrozza et al., 2005; Keogh et al., 2005). The RPD3-SIN3 

histone deacetylase (HDAC) complex is involved in regulation of a wide range of 

genes in meiosis, metabolism, osmotic stress, telomere boundary regulation, 

anaerobic growth (De Nadal et al., 2004; Ehrentraut et al., 2010; Kadosh and Struhl, 

1997; Rundlett et al., 1998; Vidal and Gaber, 1991). Ume6p also recruits Isw2p a 

protein of the ATP-dependent chromatin remodelling complex Isw2p-Itc1p which is 

required for repression on early meiotic genes during mitotic growth of yeast possibly 

by maintaining repressed chromatin loci (Goldmark et al., 2000).  

ISW2-ITC1 comprises a heterodimer of the Itc1p and Isw2p proteins and is a 

representative member of the ISWI subfamily of the SWI2/SNF2 family of chromatin 

remodeling proteins (Fitzgerald et al., 2004; Tsukiyama et al., 1999); both Itc1p and 

Isw2p are required for the chromatin remodeling activity of the holocomplex (Gelbart 

et al., 2001). In addition, two small histone fold containing proteins, Dpb4p and 

Dls1p, are present in at least a fraction of Isw2 complexes purified from yeast 

(McConnell et al., 2004). Isw2 has been demonstrated to affect in vivo repression of 

transcription of several genes (Fazzio et al., 2001; Goldmark et al., 2000; Kent et al., 

2001; Sherriff et al., 2007) and, together with Ino80, to promote replication fork 

progression (Vincent et al., 2008). Isw1p functions with the Chd1p chromatin 

remodeler at few other genes (Alén et al., 2002; Xella et al., 2006). It has been 

suggested that Isw2 accomplishes these activities by modifying the spacing of 

sequential mononucleosomes along short, contiguous stretches of chromatin through 
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nucleosome sliding (Kagalwala et al., 2004; Tsukiyama et al., 1999). Interestingly, 

Isw2 complex is able to accomplish this sliding of nucleosomes without disrupting the 

integrity of the association of the DNA and the octamer (Fazzio and Tsukiyama, 

2003; Kassabov et al., 2002). The Isw2 complex interacts efficiently with both naked 

DNA and nucleosomal arrays in an ATP-independent manner and both units are 

required for nucleosome stimulated ATPase activity and chromatin remodeling 

activity (spacing) (Gelbart et al., 2001). Isw2p-Itc1p spaces nucleosomes every 200 

bp and the spacing is the function of its association with linker DNA, which is 

mediated by Itc1p. Extensive binding of Itc1p with the linker DNA is also suggested to 

prevent the nucleosomes from moving too close to each other and hence the length 

of linker DNA interaction maintains the spacing of nucleosomes. Isw2p-mediated 

repression by creating nuclease inaccessible chromatin structure that includes TATA 

box is likely to target the binding of TATA box binding protein (TBP). Isw2p mediated 

chromatin remodeling and Sin3p/Rpd3p histone deacetylase may cooperate to inhibit 

TBP binding at some target promoters including HOP1 (Shimizu et al., 2003).  

 

Ume6p is phosphorylated by Rim11p and possibly by Mck1p and interacts with 

Ime1p and transforms into an activator to induce meiosis (Bowdish et al., 1995; 

Mallory et al., 2007; Rubin-Bejerano et al., 1996; Washburn and Esposito, 2001). 

IME2 is activated in a two step process where Sin3p-Rpd3p is inactivated and may 

be dissociated from Ume6p and then associated with Ime1p leading to transcriptional 

activation of IME2 (Bowdish et al., 1995; Rubin-Bejerano et al., 1996). TATA box of 

IME2 gene is occupied in the repressed conditions and induction of meiosis recruits 

chromatin structure remodelling complex (RSC) to remodel nucleosomes (Inai et al., 

2007). Then association of SAGA complex containing Gcn5p histone acetyl 

transferase to IME2 leads to its transcriptional activation (Burgess et al., 1999). Once 

the Ume6p mediated repression is relieved on URS1, early meiotic genes including 

IME2 are expressed. Ime2p is a meiosis specific serine/threonine protein kinase and 

is functionally related to Cdc28p, the cyclin dependent kinase (Chu et al., 1998). 

Ime2p contains a TXY motif in its activation loop that is similar to activation loops of 

mitogen-activated protein kinases (MAPKs) (Schindler et al., 2003). IME2 

transcription which, begins shortly after induction of meiosis rises around the time of 

chromosomal divisions. The biphasic expression and accumulation of IME2 requires 

Ime1p in the first phase (Mitchell et al., 1990) and Ndt80p in the second phase (Chu 
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et al., 1998). Ime2p firstly regulates EMGs expression through Ime1p and controls 

meiotic S phase by functionally replacing some, but not all Cdc28p mitotic S-phase 

promoting roles (Benjamin et al., 2003; Guttmann-Raviv et al., 2001; Honigberg, 

2004). During early phase of sporulation, Ime2p also phosphorylates replication 

protein A. Ime2p represses the transcription of IME1 eventually in the later stages of 

meiosis (Guttmann-Raviv et al., 2002; Shefer-Vaida et al., 1995; Smith and Mitchell, 

1989). Ime2p also phosphorylates Ime1p and targets it for degradation (Guttmann-

Raviv et al., 2002). Negative feedback regulation of Ime1p ensures its narrow window 

of expression in relation to Ime2p for progression of meiotic program. 

 

Meiotic DNA replication follows the expression of IME1 and IME2 (Honigberg and 

Purnapatre, 2003). Ime2p phosphorylates Sic1p, an inhibitor of Clb-Cdc28p kinase 

and degrades it to initiate meiotic DNA replication (Dirick et al., 1998; Stuart and 

Wittenberg, 1998). Ime2p plays a role in the progression of meiosis by positively 

regulating Ndt80p through direct phosphorylation and promotes meiotic division 

(Benjamin et al., 2003; Foiani et al., 1996; Sia and Mitchell, 1995; Sopko et al., 2002) 

Ime2p is an unstable protein kinase and inactivation of Ime2p is needed for the 

formation of normal asci (Sari et al., 2008). This is supported by the evidence that 

Ime2p negatively regulates Sum1p, a repressor protein that functions against Ndt80p 

(Pak and Segall, 2002). The promoter region of NDT80 contains two URS1 sites 

besides two middle sporulation elements (MSEs). NDT80 is positively regulated by 

Ime1p and Ime2p. Ndt80p, once activated, induces expression of its own and other 

genes involved in middle stages of meiosis through MSEs (Chu et al., 1998). Ime2p 

also ceases the EMG expression by negatively regulating Ime1p (Guttmann-Raviv et 

al., 2001). In late stages of meiosis, Ime2p has been proposed to regulate Cdh1p, a 

targeting subunit of the anaphase-promoting complex/cyclosome and may thus 

regulate chromosome segregation by modulating the activity of this ubiquitin ligase 

(Bolte et al., 2002). Ime2p is degraded shortly after meiosis II is completed (Benjamin 

et al., 2003). Ubiquitin-mediated destruction of Ime2p occurs in a Grr1p-dependent 

manner when glucose, which inhibits meiosis, is added to sporulating cells 

(Purnapatre et al., 2005). In addition, it has been proposed that glucose can inhibit 

the Ime2p activity through the Gpa2p heterotrimeric GTP-binding protein (Donzeau 

and Bandlow, 1999). Ime2p is phosphorylated at Thr and Tyr residues in a Cak1p-

dependent fashion (Schindler et al., 2003) and Ime2p autophosphorylates its 
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activation loop (Schindler and Winter, 2006). Later Ime2p is hyperphoshorylated and 

accumulated in meiotic M phase and is subsequently degraded. RIM4 is required for 

IME1 and IME2 dependent transcriptional activation pathways and acts upstream of 

IME2 (Soushko and Mitchell, 2000). RIM4, a gene which encodes a putative  RNA 

binding protein is required for high level expression of EMGs, meiotic division and 

recombination (Deng and Saunders, 2001). 
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1.2.2  Pseudohyphal growth 

S. cerevisiae diploid cells can undergo a dimorphic switch under nitrogen limitation in 

presence of a fermentable carbon source like glucose. Pseudohyphal growth is 

characterized by features like elongated cell shape, unipolar budding, symmetric cell 

division, adhesion of cells to each other after the cell division is completed and 

invasion of solid growth media (Gimeno et al., 1992; Kron et al., 1994). There is 

symmetric cell division in pseudohyphal growth as opposed to asymmetric cell 

division in budding (Kron and Gow, 1995). The presence of fusel alcohols, which are 

end products of catabolism of less preferred amino acids also induce pseudohyphal 

growth (Chen and Fink, 2006; Dickinson, 1996). The ability to form pseudohyphae in 

response to nutrient starvation is advantageous to yeast as this facilitates foraging for 

scarce nutrients. Also formation of pseudohyphae under stress may allow the cells to 

deal with stress by choosing alternative developmental program (Zaragoza and 

Gancedo, 2000). The haploids form filamentous growth when carbon source is 

limiting and is referred as haploid invasive growth. Haploid cells invade agar medium 

and show altered budding pattern, though invasive growth is less vigorous and cells 

less elongated than diploid pseudohyphal growth (Gancedo, 2001; Gimeno et al., 

1992; Kron and Gow, 1995).  

 

1.2.2.1 Nutrient sensing and pseudohyphal growth:  

Glucose sensing occurs through G-protein coupled receptor Gpr1p, which interacts 

with G protein α-subunit Gpa2p and transmits the nutritional signal via PKA and 

cAMP synthesis (Kraakman et al., 1999; Xue et al., 1998; Yun et al., 1997; Yun et al., 

1998). This association is necessary for pseudohyphal growth (Lorenz et al., 2000b; 

Xue et al., 1998). Nitrogen starvation induces GPR1 transcription but the primary 

function of Gpr1p is glucose sensing. Gpr1p binds to glucose with low affinity and 

may monitor glucose levels necessary for filamentous growth or may integrate 

glucose and nitrogen signals in the pseudohyphal pathway. Rgt2p and Snf3p have 

also been proposed to bind to glucose and relay glucose signal. Glycolytic pathway 

intermediates are also sensed by the cells (Kruckeberg et al., 1998; Ozcan and 

Johnston, 1999; Rolland et al., 2001). Glucose phosphorylating enzymes (Glk1p, 

Glk2p and Hxk2p) also respond to the presence of glucose and regulate a large 
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number of genes (Johnston, 1999; Rolland et al., 2001).  Pseudohyphal growth can 

also be triggered by maltose or maltotriose through a signaling pathway independent 

of Gpr1p (Van de Velde and Thevelein, 2008).  

Pseudohyphal differentiation mainly responds to nitrogen starvation and poor 

nitrogen sources like proline (Gimeno et al., 1992; Lorenz and Heitman, 1998b). 

Mep1p, Mep2p and Mep3p are the ammonium transporters that are important to the 

regulation of pseudohyphal and invasive growth. Mep2p is important as it senses 

nitrogen starvation to signal the formation of pseudohyphal growth through cAMP-

PKA pathway and at least activates transcriptional profile consistent with activation of 

MAPK pathway (Lorenz and Heitman, 1998a; Rutherford et al., 2008; Van Nuland et 

al., 2006). The amino acid transporter Ssy1p of the SPS nutrient sensing system, 

which sense extracellular amino acids has been shown to regulate invasive growth 

(Forsberg and Ljungdahl, 2001; Klasson et al., 1999).  Gap1p is an amino acid 

permease, which is tightly regulated depending on the nitrogen source in the 

medium. The presence of preferable nitrogen source or high concentration of amino 

acids represses Gap1p (Magasanik and Kaiser, 2002). Gap1p transports all common 

amino acids, many D-amino acids and nonmetabolizable amino acid analogs. Upon 

nitrogen limitation Gap1p expression is induced by two GATA transcription factors 

Gln3p and Gat1p (Stanbrough and Magasanik, 1996; Stanbrough et al., 1995). 

Gap1p is also implicated in activation of the PKA pathway on addition of amino acids 

to nitrogen starved cells (Donaton et al., 2003). Gpa2p-Gpr1p is involved in nitrogen 

sensing as gpa2 and gpr1 strains show pseudohyphal growth defect. These growth 

defects can be rescued by introduction of constitutive RAS allele or addition of 

external cAMP (Kübler et al., 1997; Lorenz and Heitman, 1997; Lorenz and Heitman, 

1998a; Lorenz and Heitman, 1998b; Lorenz et al., 2000b; Tamaki et al., 2000). 

Internal amino acid is sensed by general control system for amino acid biosynthesis. 

Gcn4p is activated in response to depletion of any amino acid and induces a number 

of genes involved in amino acid biosynthesis (Jia et al., 2000; Natarajan et al., 2001). 

This intracellular nitrogen sensing mechanism involves association of uncharged 

tRNA and Gcn2p kinase leading to its activation. Gcn2p phosphorylates eIF2α in 

response to amino acid starvation and other stimuli, reducing global protein synthesis 

(Dever, 2002; Hinnebusch, 2005). However, GCN4 mRNA is upregulated by Gcn2p 

through upstream open reading frame (Mueller and Hinnebusch, 1986) and Gcn4p 
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upregulates genes for biosynthesis of amino acids. tRNA that decodes for glutamine 

codon CUG was shown to regulate pseudohyphal growth in response to amino acid 

and nitrogen availability (Beeser and Cooper, 2000; Murray et al., 1998). Glutamine 

is the main source of nitrogen in yeast cells for biosynthetic reactions and tRNA 

seems the likely mechanism to sense intracellular nitrogen.  

 
1.2.2.2 Pathways regulating pseudohyphal growth 
There are several pathways that function to induce and regulate pseudohyphal 

growth response. The formation of pseudohyphal growth requires coordination of at 

least two pathways, a mating and filamentation mitogen activated protein kinase 

(MAPK) signalling cascade and cAMP dependent protein kinase A (PKA) pathway 

and these pathways may act in parallel and partially overlapping manner. 
 

1.2.2.2.1 The MAP Kinase pathway  

The mating and filamentation MAP kinase pathway controls the activity of the 

heterodimeric transcription factor complex Ste12p-Tec1p (Gavrias 1996, Rupp 1999), 

which activates expression of FLO11 and regulates cell elongation and cell adhesion 

[Figure 1.4 and (Chen and Thorner, 2010)]. The transcription factor Tec1p is 

required for filamentous growth which is stimulated by mitogen activated protein 

kinase (MAPK) cascade  and together with Ste12p binds to filamentous and invasion 

response elements (FREs) to activate target genes (Madhani et al., 1997). The 

mating and filamentation MAPK cascade consists of the MAPK kinase Ste11p, the 

MAPK kinase Ste7p, the MAPK Kss1p and the scaffold Ste5p, which is regulated by 

Msb2p (Cullen et al., 2004; Madhani and Fink, 1998). Msb2p recruits general 

signaling proteins, such as Sho1p and isoprenylated, plasma-membrane-tethered 

Cdc42p and its p21-activated kinase, Ste20p, to the filamentation MAPK cascade 

(Cullen et al., 2004). Cdc42p interacts with Ste20 to displace the negative regulator 

Hsl7p (Fujita et al., 1999; Leberer et al., 1997; Peter et al., 1996). Ste20p also 

responds to low nitrogen through Sho1p to activate the MAPK cascade (O'Rourke 

and Herskowitz, 1998). Ste20p phosphorylates Ste11p and activates its protein 

kinase, which in turn phosphorylates Ste7p (Choi et al., 1994; Wu et al., 1995). 

Kss1p, is activated when phosphorylated by Ste7p to induce Tec1p-Ste12p. Kss1p in 

its unphosphoryated form is associated with Ste12p and the negative regulators 
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Dig1p and Dig2p to inhibit it from inducing genes involved in invasive growth 

(Bardwell et al., 1998). Activation of Kss1p decreases Tec1p sumoylation with 

concurrent increase in the transcriptional activity of Tec1p (Wang et al., 2009). Thus 

the MAPK pathway regulates the transcriptional activation of FLO11 through Tec1p-

Ste12p. FLO11 is an important flocculin during invasive and filamentous growth as 

FLO11 deletion leads to loss of invasive and filamentous growth (Lo and Dranginis, 

1998) while increasing the FLO11 expression increases this phenotype (Palecek et 

al., 2000). The transcription factor Flo8p is also required for pseudohyphal and 

invasive growth (Liu et al., 1996) by regulating expression of the flocculins FLO1, 9 

and 11 (Kobayashi et al., 1999). Ste12p and Tec1p regulate the expression of FLO11 

from MAPK cascade downstream of Kss1p, while Flo8p regulates Flo11p 

downstream of PKA pathway (Madhani et al., 1999). Flo8p seems to regulate 

invasive and filamentous growth in a pathway independent from Ste12p but acts 

downstream of the cAMP-PKA pathway (Rupp et al., 1999). 

 

1.2.2.2.1.1 Related MAPK pathways and their signalling specificity 
S. cerevisiae contain at least five distinct MAPK pathways involved in pheromone 

response (PH), high osmolarity glycerol (HOG), cell wall integrity (CWI) and spore 

wall assembly besides filamentation and invasive growth (FG) pathway (Gustin et al., 

1998). This section provides a brief overview of PH pathway, HOG pathway and its 

shared common components with FG pathway. Also discussed in this section is the 

signalling specificity maintained by MAPK signalling of FG pathway, PH pathway and 

HOG pathway.  

The mating or PH pathway is activated when haploid yeast senses pheromones of 

opposite mating type in its vicinity. Activation of the pheromone receptor Ste2p in 

MATa and Ste3p in MATα cells leads to dissociation of a coupled heterotrimeric 

guanine nucleotide-binding protein (G protein) Gpa1p-Ste4p-Ste18p to activated Gα 

subunit (Gpa1p) and Gβγ (Ste4p/18p) subunits. Ste4p/18p tethers the MAP kinase 

module Ste11p/Ste7p/Fus3p to the plasma membrane through its interaction with 

their scaffold protein Ste5p. MAPK Fus3p and Kss1p are phosphorylated by Ste7p, 

which in turn phosphorylate the transcriptional activator Ste12p. Ste12p initiates the 

transcription of pheromone response genes and transiently arrests cell cycle on G1 

to induce cell fusion with the mating partner [(Figure 1.4) and reviewed in (Schwartz 

and Madhani, 2004)].  
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The HOG MAPK pathway is activated through sensor protein Sho1p and partly 

through Sln1p. Under high-salt conditions, interplay between membrane anchor 

protein Sho1p and osmosensor membrane proteins Msb2p and Hrk1p tethers the 

MAP kinase module Ste11p/Pbs2p/Hog1p to plasma membrane (Figure 1.4) (Maeda 

et al., 1995; Tatebayashi et al., 2007; Tatebayashi et al., 2006). Ste11p activates the 

Pbs2p MAPKK, which then activates the Hog1p MAPK (Posas and Saito, 1997). 

Signalling through Sln1p activates the redundant Ssk2p and Ssk22p MAPKKKs and 

ultimately Hog1p but does not involve the common MAPKKK Ste11p. Activated 

Hog1p initiates adaptive responses to high osmolarity, including temporary arrest of 

the cell-cycle progression, readjustment of the transcription and translation patterns, 

and glycerol synthesis [(Figure 1.4) and (Bilsland-Marchesan et al., 2000; Escote et 

al., 2004; Hohmann, 2002; O'Rourke and Herskowitz, 2004; Teige et al., 2001)]. 

 

The common components of all the three pathways are Cdc42p, p21-activated 

kinase Ste20p, adaptor protein Ste50p and Ste11p. Cells employ 

compartmentalization, use of scaffold proteins in distinct macromolecular complexes 

and cross-inhibition to maintain specificity and avoid inappropriate activation of other 

pathways.  

 

1.2.2.2.1.1.1 Crosstalk between FG and PH MAPK modules:  FG MAPK pathway 

activates Ste11p, Ste7p and Kss1p to promote cell adhesion, cell elongation and 

reorganisation of cell polarity, through Kss1p mediated activation of Ste12p-Tec1p 

(Figure 1.4). Stimulation of the FG pathway through the Msb2p sensor activates 

Kss1p and does not activate Fus3p because Fus3p is sequestered by Ste5p binding 

and is only activated when recruited to the plasma membrane. Also nutritional 

starvation activates Ste11p and Ste7p by a mechanism that does not involve Ste5p 

scaffold. Activated Kss1p ensures that Tec1p is not degraded, and that Ste12p-

Tec1p-dependent FG-specific gene expression is induced. Feedback 

phosphorylation of Ste7p by Kss1p specifies an invasive growth response through 

selective activation of Kss1p and filamentation-specific gene expression. This is 

because mating-specific gene expression is suppressed by the feedback 

phosphorylation status of Ste7p (Maleri et al., 2004). The kinase cascade of Ste20p, 

Ste11p, and Ste7p, and transcriptional activator Ste12p, also function in pheromone 
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pathway.  Thus, the pheromone pathway and the FG pathway share a common 

MAPKKK (Ste11p) and MAPKK (Ste7p). However, Ste7p activates Fus3p in 

response to pheromones and it has been shown that Fus3p inhibits filamentous 

growth through degradation of Tec1p, which is a cofactor for Ste12p in the 

expression of filamentation genes. Fus3p phosphorylates threonine 273 in Tec1p, 

which leads to ubiquitination and degradation through an SCF ubiquitin protein ligase 

(Bao et al., 2004; Chou et al., 2004). Tec1p is not a substrate for Kss1p, so Tec1p 

remains stable during filamentous growth (Chou et al., 2004). The scaffold protein 

Ste5p insulates the mating pathway from the filamentation pathway, as shown by 

analysis of a point mutation in Ste5p that confers increased activation of Kss1p and 

reduced Fus3p-dependent degradation of Tec1p (Schwartz and Madhani, 2006). 

Ste7p and Fus3p can bind through docking interaction and do not need tethering by 

Ste5p scaffold protein for Fus3p activation. However Ste5p is important as it was 

shown that minimal scaffold (ms) region in Ste5p selectively promotes Ste7p to 

Fus3p signalling (Good et al., 2009). This is further supported by the data that 

constitutively active Ste7p mutant poorly activated Fus3p (Maleri et al., 2004). 

Pheromones also activate Kss1p (Figure 1.4), but the activation is gradual and 

transient as compared to Fus3p (Hao et al., 2008). However Fus3p and Kss1p can 

phosphorylate Dig1p/Dig2p, but Fus3p mediated degradation of Tec1p prevents 

formation of Tec1p/Ste12p heterodimer for FG-specific gene expression. Instead 

Fus3p phosphorylates Ste12p, which homodimerizes and binds to pheromone 

response element (PRE) of pheromone response genes (Olson et al., 2000; Yuan 

and Fields, 1991).  
 

1.2.2.2.1.1.2 Crosstalk between FG and HOG MAPK modules: The HOG MAPK 

module uses Ste11p, Pbs2p and Hog1p while FG MAPK module uses Ste11p, Ste7p 

and Kss1p, the common component being the MAPKKK Ste11p. The HOG and the 

FG pathways also share components like Sho1p and Msb2p upstream of Ste11p. 

(Cullen et al., 2004; Pitoniak et al., 2009; Tatebayashi et al., 2007). In the HOG 

pathway, the Msb2p or Hkr1p and Sho1p recruit the Pbs2p MAPKK to the plasma 

membrane (Reiser et al., 2000). Ste50p interacts with Sho1p to bring Ste11p into 

close proximity with Pbs2p, thereby activating Pbs2p (Tatebayashi et al., 2006). 

Finally, Pbs2p activates the Hog1p MAPK, which is tightly bound to Pbs2p by 
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multiple docking interactions (Murakami et al., 2008). Pbs2p cannot phosphorylate 

either Fus3p or Kss1p, because their docking sites are incompatible. In FG pathway 

Msb2p and Sho1p activate Kss1p through Ste11p without the need for any known 

scaffold protein (Good et al., 2009). Osmostress can activate the Kss1p MAPK very 

weakly and transiently (Shock et al., 2009; Wang et al., 2009), while glycosylation 

defects that activate Kss1p do not activate Hog1p (Yang et al., 2009). In the absence 

of Pbs2p or Hog1p, however, osmostress robustly activates Kss1p, and induces FG-

like polarized cell growth (O'Rourke and Herskowitz, 1998). Conversely, activation of 

Hog1p, either by osmostress or by overexpression of Pbs2p, inhibits FG responses 

(Pitoniak et al., 2009). Using an ATP analog-sensitive Hog1p mutant, it was directly 

shown that the cross-talk barrier requires Hog1p kinase activity (Westfall and 

Thorner, 2006). But it is yet unclear how Hog1p prevents the cross talk between 

these pathways. In the absence of Ste7p or Kss1p/Fus3p, glycosylation defects 

activate Hog1p, indicating that the FG pathway also cross-inhibit the HOG pathway 

(Yang et al., 2009). Thus, a reciprocal inhibitory loop exists between the HOG and 

FG MAPK modules that allow stable activation of only one or the other pathway 

under various stress conditions. In wild-type cells both Ste7p and Kss1p are 

phosphorylated in response to osmostress, but signalling specificity is maintained 

and FG pathway genes are not transcribed under these conditions (Davenport et al., 

1999; O'Rourke and Herskowitz, 2004; Westfall and Thorner, 2006). This signalling 

specificity may be achieved through HOG signalling by preventing DNA binding of 

Tec1p and thereby interrupting FG pathway signalling (Shock et al., 2009). Another 

group reported that specificity may be maintained in response to osmostress when 

Hog1p phosphorylates Ste50p and that this phosphorylation of Ste50p limits the 

duration of Kss1p activation to prevent FG pathway activation (Hao et al., 2008). 

Kss1p inhibits activation of Hog1p MAPK indirectly through the Ptp2 protein 

phosphatase (Saito and Tatebayashi, 2004).  The mechanistic detail of cross-

pathway inhibition between the HOG and the FG pathways is still unclear. It will be 

important to obtain a more detailed understanding of how the HOG and the FG 

pathways are activated, respectively, by osmostress and nutritional conditions. 

 

1.2.2.2.1.1.3 Crosstalk between PH and HOG modules: Both modules are 

activated by the membrane-bound Ste20p kinase that phosphorylates and activates 

Ste11p. The pheromone signalling activates Fus3p through Ste7p which is 
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dependent on Ste5p scaffold protein. Ste7p cannot activate Hog1p, as the docking 

sites in Ste7p have no affinity to Hog1p (Remenyi et al., 2005).  HOG pathway 

activates Hog1p with Sho1p, Pbs2p and Ste5p co-scaffolds. When Ste7p was 

covalently attached to Ste11p, only pheromone pathway was activated while fusion 

of Pbs2p to Ste11p only activated HOG pathway (Harris et al., 2001). This indicated 

that robust protein-protein complexes can specify which MAPK pathway is activated. 

Activation of the HOG pathway triggers the activity of phosphatases, which then 

feedback to inhibit other MAPK pathways; for example, by dephosphorylating Fus3p 

and Kss1p (Davenport et al., 1999; Hall et al., 1996). Such phosphatase activity has, 

however, not been demonstrated in wild-type cells. Fus3p activates Fus1p, which 

binds and inhibits Sho1p arm of HOG pathway (Nelson et al., 2004). Hog1p also 

negatively regulates Fus3p possibly by activating Msg5p phosphatase (Hall et al., 

1996). Thus, these two MAPK modules are securely insulated from each other by 

specific scaffolds, docking interactions, cross-pathway inhibition and possibly by 

phosphatases.  
 

1.2.2.2.2 The PKA pathway is activated by the D-glucose sensor G-protein coupled 

receptor Gpr1p (Lorenz et al., 2000b; Tamaki et al., 2000) and the high affinity 

ammonium permease Mep2p [ Figure 1.4 (Boeckstaens et al., 2007; Lorenz and 

Heitman, 1998b; Rutherford et al., 2008)]. Protein kinase A (PKA) is activated by 

heteromeric G-protein α subunit Gpa2p activated adenylate cyclase (Kübler et al., 

1997; Lorenz and Heitman, 1997). Ras2p, a GTP binding protein plays an important 

role in pseudohyphal growth as expression of constitutively active RASVal19 

decreased GTPase activity and induced pseudohyphal growth in diploid yeast 

(Gimeno et al., 1992). The ras2/ras2 diploid was still able to induce pseudohyphal 

growth with round cells in response to nitrogen starvation (Kübler et al., 1997; Mösch 

et al., 1999). A downstream target of Ras2p is adenylate cyclase Cyr1p (Thevelein, 

1991; Thevelein, 1992). PKA, which is activated consists of three catalytic subunits in 

S. cerevisiae, Tpk1p, Tpk2p and Tpk3. Tpk2p directly interacts with Sfl1p and 

inhibits, the transcriptional repressor of FLO11 (Robertson and Fink, 1998). Tpk2p 

phosphorylates Flo8p to stimulate its binding to the FLO11 promoter and activation of 

FLO11 (Pan and Heitman, 1999; Pan and Heitman, 2002). TPK1 and TPK3 deletion 

leads to enhanced pseudohyphal growth (Pan and Heitman, 1999; Robertson and 

Fink, 1998), suggesting that TPK1 and TPK3 are inhibitors of pseudohyphal growth, 
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but the substrates of TPK1 and TPK3 are yet unidentified. Bcy1p forms a negative 

regulatory subunit of PKA, which dissociates on cAMP stimulation. Mutations in 

BCY1, that forms a complex with Tpk1-3p, activate PKA and enhance filamentous 

growth at both low and high nitrogen concentrations (Pan and Heitman, 1999). Flo8p 

and Sfl1p act antagonistically to regulate the expression of FLO11 in response to 

cAMP stimulus to induce pseudohyphal growth depending on nutritional signals 

(Lorenz et al., 2000b; Rupp et al., 1999). The importance of cAMP-PKA pathway in 

pseudohyphal growth comes from the observation, that external stimulus of cAMP 

induces pseudohyphal growth while overexpression of phosphodiesterase Pde2p 

blocks pseudohyphal growth (Ward et al., 1995). 
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Figure 1.4 MAPK and PKA signalling cascade in pseudohyphal growth. This 
model provides an interpretation of MAPK and PKA pathways involved in 
pseudohyphal growth (FG) based on the existing data. Both the pathways control 
expression of FLO11 and large collection of other genes required for pseudohyphal 
growth. MAPK modules of PH pathway, HOG pathway and FG pathway are also 
shown. Though these MAPK share common components, they maintain signalling 
specificity (see text for details). Dotted lines indicate that the relationship is unclear.  
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1.2.2.2.3 Other pathways involved in filamentous differentiation (rpll) 
Stress-induced signaling also plays an important role in induction of pseudohyphal 

growth. In addition to nitrogen and carbon starvation, oxygen limitation may also 

affect dimorphic switching in both haploids and diploids (Wright et al., 1993). Hap2-3-

4-5p complex responds to hypoxic conditions and regulates oxygen regulated genes. 

FLO11 (also known as MUC1) expression has been shown to increase under hypoxic 

conditions (ter Linde et al., 1999), suggesting that pseudohyphal growth may be 

induced in absence of oxygen. Nutrient responsive TOR signalling has also been 

shown to promote pseudohyphal growth. Sublethal concentration of rapamycin 

inhibits pseudohyphal growth in response to nitrogen limitation (Cutler et al., 2001). 

Mitochondrial retrograde (RTG) signalling pathway is also required for pseudohyphal 

growth through MAPK pathway as deletion of RTG signalling cascade components 

showed defect in MAPK activation (Chavel et al., 2010).  

Environmental stress like heat stress also induces pseudohyphal growth (Zitomer 

and Lowry, 1992). Osmotic stress transduced via the Sho1p receptor may also 

enhance pseudohyphal growth (O'Rourke and Herskowitz, 1998). Additionally, 

various alcohols also induce pseudohyphal differentiation, like ethanol enhances 

pseudohyphal growth in diploid strains  and other fusel alcohols including 1- butanol, 

isoamyl alcohol and n-amyl alcohol stimulate filamentous growth in haploids growing 

in glucose containing liquid medium (Lorenz et al., 2000a). The metabolic 

intermediate responsible for generating a filamentous growth signal or the induction 

of filamentous growth may suggest that the alcohols serve as signals to switch to 

alternate developmental pathway. Skn7p, a transcription factor that mediates 

oxidative stress responses downstream of PKA, is required for filament formation in 

response to nitrogen starvation (Lorenz et al., 2000b). In addition, the stress-

responsive transcriptional repressor Xbp1p represses CLB2 expression to induce cell 

elongation and filament formation in response to nitrogen starvation (Miled et al., 

2001). Ras2p activity also decreases the activity of the stress responsive 

transcription factors Msn2p and Msn4p. This suppressed stress response has been 

suggested to be responsible for inducing invasive growth (Stanhill et al., 1999). 

Mutations in BIR1, a gene homologous to inhibitor of apoptosis (IAP) proteins in 

vertebrates, also enhance pseudohyphal growth but block sporulation during carbon 

source deprivation (Uren et al., 1999). Not surprisingly, genes linking nutrient 
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regulation to cell growth and division also affect pseudohyphal growth. The 

abundance and activity of the G1 cyclin Cln3p has multiple connections to cell-size 

control and nutrient sensing during vegetative growth as Cln3p accumulates when 

cells have sufficient nutrients to continue growth. Deletion of CLN3 confers enhanced 

pseudohyphal growth (Loeb et al., 1999), suggesting that Cln3p abundance may 

carry part of the nitrogen starvation signal. Overexpression of WHI2, a gene required 

for cell cycle arrest upon carbon source depletion, stimulates filamentous growth 

(Radcliffe et al., 1997). However, WHI2 is not required for pseudohyphal growth and 

is partially blocked by mutations in the STE MAPK pathway. Deletion of the Whi3p 

RNA-binding protein abrogates pseudohyphal growth, leading to small round cells on 

nitrogen starvation media (Mösch and Fink, 1997). Mutations in mannose utilization 

and protein glycosylation pathways activate MAPK signalling pathways used in 

invasive and filamentous growth. 

 

The unfolded protein response pathway transcription factor Hac1ip plays an 

interesting role in pseudohyphal differentiation. Ire1p is activated in response to build 

up of unfolded proteins in the ER by dissociation of Ire1p from Kar2/BiP and 

oligomerization of lumenal domains of Ire1p (Bertolotti et al., 2000; Korennykh et al., 

2009; Shamu and Walter, 1996). This is followed by trans autophosphorylation 

activating the endoribonuclease activity of Ire1p (Bertolotti et al., 2000), which splices 

constitutively expressed Hac1 mRNA. Ire1p cleaves HAC1 mRNA 5’ and 3’ exon-

intron junctions in an unconventional non spliceosome fashion (Sidrauski and Walter, 

1997). The 252 nucleotide intron with splice sites is shown in Figure 1.5 A. The 

exons are ligated by tRNA ligase, Rlg1p thus producing spliced HAC1i mRNA 

(Sidrauski et al., 1996). Induced HAC1i mRNA is translated into Hac1ip, which is 

translocated to the nucleus and induces expression of many chaperone genes, 

components of ERAD and phospholipid biosynthesis genes (Schröder and Kaufman, 

2005). High nitrogen concentrations stimulated HAC1 mRNA splicing, which ceased 

during nitrogen starvation (Figure 1.5 B). Therefore, nitrogen starvation may at least 

partially stimulate filamentous growth by slowing protein translation rates, inactivating 

the unfolded protein response, and inhibiting HAC1 splicing (Schröder et al., 2000). 

Other yeast developmental responses, such as entering the sporulation pathway, 

also respond to environmental stresses. In general, sporulation occurs under conditi- 
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-ons of nitrogen and carbon starvation while pseudohyphal differentiation is induced 

in nitrogen-poor but carbon rich environments. This switch may be mediated by 

Gpa2, which, when overexpressed, reduces sporulation but enhances filamentous 

growth (Donzeau and Bandlow, 1999; Lorenz and Heitman, 1997). Gpa2p appears to 

direct cells toward pseudohyphal growth rather than sporulation by directly interacting 

with the Ime2p kinase (Donzeau and Bandlow, 1999). In turn, overexpression of 

Ime2p inhibits pseudohyphal growth but enhances sporulation in the presence of 

glucose and nitrogen while RIM1, 8, 9 and 13 mutations reduce IME2 activity and 

switch cells from meiotic division to filamentous growth (Su and Mitchell, 1993a; Su 

and Mitchell, 1993b). 

 

1.2.2.2.4 Other proteins involved in regulation of pseudohyphal growth 
There are a number of other genes involved in the regulation of pseudohyphal growth 

whose precise role is not very clear. PHD1 gene is induced in low nitrogen conditions 

(Erdman et al., 1998) and when overexpressed in nutrient rich condition induces 

vigorous pseudohyphal growth (Gimeno and Fink, 1994). PHD1 transcription is 

induced by mating pheromones and nitrogen starvation and deletion of PHD1 with 

deletion of STE12 completely suppresses pseudohyphal growth (Gimeno and Fink, 

1994; Lo et al., 1997). Sok2p is also involved in negatively regulating pseudohyphal 

growth as sok2/sok2 diploids show increased pseudohyphae. Sok2p seems to act 

downstream of PKA subunits  (Ward et al., 1995) but also in a separate, PKA 

independent pathway (Pan and Heitman, 2000). The forkhead transcription factor 

Fkh1p and Fkh2p also regulate pseudohyphal growth and invasive growth as 

deletion of both transcription factors induces filamentous growth (Hollenhorst et al., 

2000). Fkh1p and Fkh2p regulate transcription of CLB2 and other genes involved in 

mitosis, showing the link between cell cycle and pseudohyphal growth (Zhu et al., 

2000). Interestingly, overexpression of the Yak1 kinase, an antagonist of the cAMP-

PKA pathway, enhances pseudohyphal growth in response to nitrogen starvation 

(Zhang et al., 2001). In the absence of glucose, Yak1 localizes to the nucleus where 

it phosphorylates Pop2, a transcriptional regulator of glucose-repressed genes 

(Moriya et al., 2001). Thus Yak1 may be a key link between glucose sensing and 

invasive or filamentous growth. The RNA polymerase II complex also regulates 

invasive and filamentous growth, perhaps by altering expression of effectors and 
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repressors of these processes. Overexpression of the RNA polymerase subunit 

RPB7 causes cell elongation and filament formation (Khazak et al., 1995). Also, 

mutations in other components of the RNA polymerase II complex (Ssn3p, Ssn8p, 

Srb8p, Cse2p and Med1p) constitutively activate invasive growth in haploids 

(Palecek et al., 2000). 
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1.3 The N-end Rule: Protein destabilisation using the N-end rule 
Proteins function as important structural and functional entities in the cell to regulate 

a vast number of pathways. Proteins are in a dynamic state in the cell being 

continuously synthesized and degraded. Proteins are degraded to modulate levels of 

certain regulatory proteins or to get rid of damaged proteins. These proteins are 

conjugated to ubiquitin by the function of three enzymes: E1 ubiquitin activating 

enzymes, E2 ubiquitin conjugation enzymes and E3 ubiquitin ligases. The 

ubiquitinated protein is then degraded by the 26S proteosome. Methionine is by 

default the first amino acid incorporated during translation and this can be replaced 

with other destabilising amino acid residues to derive proteins of different half-life. 

Thus the N-terminal amino acid residue can determine the stability of the protein and 

this pathway is called N-end rule (Varshavsky, 1997). The N-end rule has been found 

in organisms ranging from E. coli, S. cerevisiae, A. thaliana to mammalian cells 

(Tasaki and Kwon, 2007). Artificially engineered chimeric ubiquitin-β-galactosidase 

protein encoded by Ub-lacZ is an artificial N-end rule substrate. β-Galactosidase 

encoded by lacZ is routinely used to monitor transcriptional activity in S. cerevisiae 

and has a half-life of >30 h (Bachmair and Varshavsky, 1989). The chimera of 

ubiquitin and β-galactosidase encodes a protein in yeast in which the nascent protein 

is deubiquitinated exposing the N-terminus (Bachmair et al., 1986). The ubiquitin 

moiety is cleaved by ubiquitin-specific proteases (Ubp) like UBP1/2/3 and YUH1 

found in yeast (Bachmair et al., 1986; Baker et al., 1992; Tobias et al., 1991; Tobias 

and Varshavsky, 1991). The metabolic instability of engineered N-end rule substrates 

is due to the degradation signals called degrons, which is recognised by N-recognins. 

In eukaryotes, the N-degron consists of three determinants: a destabilizing N-terminal 

amino acid of the protein substrate, the internal lysine residue which forms the 

anchor for ubiquitin chain and the conformationally flexible region in the vicinity of the 

other determinants required for ubiquitylation and/or degradation (Hu et al., 2006). 

The N-end rule follows a hierarchic structure where asparagine (Asn) and glutamine 

(Gln) are tertiary destabilizing residues. They function by enzymatic deamidation to 

form secondary destabilizing residues aspartate (Asp) and glutamate (Glu) (Baker 

and Varshavsky, 1995; Kwon et al., 2000). These secondary destabilising residues 

are then conjugated to arginine (Arg) by ATE1 encoded arginyl-tRNA protein 

transferase to derive the protein substrate with Arg for degradation. Phenylalanine, 
leucine, tryptophan, tyrosine, isoleucine, lysine and histidine besides arginine form 
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other primary destabilizing residues (Balzi et al., 1990; Davydov and Varshavsky, 

2000; Hu et al., 2005; Kwon et al., 2002; Kwon et al., 1999; Lee et al., 2005b). N-

recognins are a class of E3 ubiquitin ligases that tag the N-end rule substrates with 

ubiquitin via covalent bonding (Hu et al., 2006) and allow degradation by 26S 

proteosome. In yeast UBR1 encodes the sole E3 ubiquitin ligase responsible for 

ubiquitylation of proteins with destabilising N-terminal residues (Alén et al., 2002; Xie 

and Varshavsky, 1999). The 225 kDa N-recognin Ubr1p consists of at least two 

binding sites identifying N-terminal residues. Type 1 residues are basic amino acid 

residues like Arg, Lys and His and type 2 residues are bulky hydrophobic residues 

like Phe, Leu, Trp, Tyr and Ile (Varshavsky, 1997). Therefore replacing default N-

terminal amino acid residue, methionine with destabilising residues can change half-

life of the protein. (Table 1.1) shows half-life of β-galactosidase destabilised with the 

amino acid residues as indicated. 

The N-end rule functions naturally in a number of pathways  which include the 

regulation of import of short peptides through ubiquitination and degradation of 

CUP9,  a transcriptional repressor of PTR2 peptide transporter (Alén et al., 2002), 

regulation of signal transduction and cell differentiation in response to mating 

pheromones through degradation of GPA1 (Madura and Varshavsky, 1994), the 

fidelity of the chromosome segregation by degradation of the SCC1 cohesin subunit 

(Alén et al., 2002; Rao et al., 2001; Turner et al., 2000), regulation of apoptosis by 

degradation of caspase cleaved inhibitor DIAP1 of apoptosis (Ditzel et al., 2003; 

Varshavsky, 2003), the regulation of meiosis (Kwon et al., 2003), leaf senescence 

and seed germination in plants (Yoshida et al., 2002), control of shoot and leaf 

development (Graciet et al., 2009) and neurogenesis and cardiovascular 

development in mammals (An et al., 2006; Johnson et al., 1990; Kwon et al., 2002; 

Lee et al., 2005b). In order to monitor transcriptional activity mediated through URS1, 

the URS1-CYC1-Ub-lacZ reporters were constructed in the current study exploiting 

N-end rule pathway. 
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Table 1.1 Destabilisation of β-galactosidase proteins by N-end rule in S. cerevisiae.   

X amino acid residue Half-life of X- β-gal 

Arg 
~2 min 

Lys, Phe, Leu, Trp, Asp, Asn and 
His 

~3 min 

Tyr and Gln 
~10 min 

Ile and Glu ~30 min 

Pro* >5h 

Met, Cys, Ala, Ser, Gly, Val and 
Thr   

>30h 

Table 1.1 Varying half lives of X-β-gal proteins exposing different amino acids at the 

N-terminal end in S. cerevisiae measured at 30oC. Reproduced from (Bachmair and 

Varshavsky, 1989; Balzi et al., 1990; Gonda et al., 1989). *Ub-Pro-β-gal is 

deubiquitinated 20 times slower than the other Ub-X-β-gal proteins and is a long lived 

protein in yeast. 

  



40 
 

1.4 Unfolded protein response pathway and its role in nutrient sensing and 
developmental programs 

The unfolded protein response (UPR) pathway is induced in response to accumulation 

of unfolded proteins in the endoplasmic reticulum (ER). The cells respond to this ER 

stress through a signal transduction pathway that transduces the signal of unfolded or 

misfolded proteins from the ER lumen to the nucleus (Schröder and Kaufman, 2005). 

ER expansion and upregulation of chaperone gene expression are the main events 

occurring in this pathway, which leads to decrease in load of unfolded proteins in ER 

(Figure 1.6). The following sections discuss UPR pathway in yeast and mammals and 

its role in nutrient sensing and developmental programs. 

 

1.4.1 UPR pathway in yeast: 

In budding yeast S. cerevisiae, Ire1p (Inositol requiring) in unstressed conditions is 

bound to BiP/GRP78/KAR2 chaperones in a monomeric form (Bertolotti et al., 2000; 

Harding et al., 2000; Urano et al., 2000a; Urano et al., 2000b). On an increase of 

unfolded proteins in the ER, BiP/GRP78/KAR2 bind the unfolded polypeptides, 

rendering Ire1p relatively free. Ire1p now oligomerizes and undergoes 

autophosphorylation through its serine threonine kinase domain, activating its RNAse 

domain. Ire1p was shown to be forming a higher order oligomer to actuate response to 

counter the buildup of unfolded proteins in the ER (Korennykh et al., 2009). Activated 

Ire1p splices at the 5’ and 3’ exon-intron junctions of HAC1 messenger RNA (Figure 
1.5 A). The exons are ligated by transfer RNA ligase (Rlg1p) (Sidrauski et al., 1996). 

HAC1 mRNA encodes Hac1ip, basic leucine zipper transcription factor (bZIP) (Cox and 

Walter, 1996; Kawahara et al., 1997; Sidrauski et al., 1996). Thus  Hac1ip (”i” for 

induced) then activates genes by binding to the consensus sequence Unfolded Protein 

Response Element (UPRE; CAGCGTG) present in the promoters of responsive genes 

like chaperone genes and activate their transcription (Mori et al., 1996; Mori et al., 

1998; Mori et al., 1992). The expressed chaperones would necessarily help to deal 

with ER unfolded protein stress. Unspliced HAC1u mRNA is poorly translated and is 

unable to activate transcription as efficiently as Hac1ip synthesized from spliced HAC1i 

mRNA (Chapman and Walter, 1997; Cox et al., 1997; Welihinda et al., 2000). The 

transcriptional activation through UPRE is dependent on a functional SAGA histone 
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acetyltransferase (Welihinda et al., 1997) and Hac1ip in vitro interacts with Gcn5p the 

catalytic subunit of SAGA (Welihinda et al., 2000).   

 

1.4.2 Mammalian UPR pathway: 

In higher eukaryotes, there are two orthologs of yeast Ire1p, IRE1-α and IRE1-β. 

Activated Ire1p splices XBP1 mRNA encoding the bZIP transcription factor X-box 

binding protein (Xbp-1) in metazoans which activates UPR-target genes (Yoshida et 

al., 2001). Unspliced XBP1-mRNA (XBP1u) encodes a short lived protein responsible 

for repression of these UPR target genes (Yoshida et al., 2006). The splicing of XBP1 

mRNA by Ire1p excises an intron resulting in a frameshift in the XBP1 transcript 

(XBP1s) resulting into Xbp1s similar to Hac1ip in yeast (Figure 1.6). IRE1 is also 

involved in activation of cell death pathways in response to prolonged ER stress by its 

interaction with tumor necrosis associated factor (TRAF2) to modulate the activity of c-

JUN N-terminal kinase (JNK) pathway via the apoptosis signaling-regulated kinase 1 

(ASK-1), which controls apoptosis through caspase-12 activation (Hetz et al., 2006; 

Nishitoh et al., 2002; Urano et al., 2000b; Yoneda et al., 2001). The non-specific Ire1p 

RNAse activity has also been suggested to reduce global reduction of protein into ER 

by degradation of mRNA localized to ER membrane (Hollien et al., 2009). The Ire1p 

mediated mRNA splicing of HAC1/XBP1 is conserved from yeast to mammals while 

higher eukaryotes have evolved additional sensors of ER stress in protein kinase 

activity of PKR-like endoplasmic reticulum kinase/pancreatic eIF2α-kinase (PERK) and 

activating transcription factor 6 (ATF6) (Figure 1.6). The UPR regulates translation 

through attenuation of general transcription by increasing the protein kinase activity of 

PERK, which in turn phosphorylates the eIF2α translation initiation factor inhibiting 

general translation (Harding et al., 1999). Under conditions of ER stress, BiP 

dissociates from lumenal domain of PERK triggering oligodimerization, 

autophosphorylation and leading to activation of its cytosolic kinase domain (Bertolotti 

et al., 2000; Harding et al., 2000; Liu et al., 2003; Ma et al., 2002; Ron and Walter, 

2007; Urano et al., 2000a; Urano et al., 2000b). PERK phosphorylation of eIF2α not 

only decreases the protein folding load of ER, but also activates NFкB signaling and 

potentially promoting cell survival and an inflammatory response (Deng et al., 2004; 

Jiang et al., 2003). eIF2α phosphorylation selectively increases translation of activating 
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transcriptions factor 4 (ATF 4) mRNA through upstream open reading frames (uORFs) 

present in the ATF4 transcript (Lu et al., 2004; Vattem and Wek, 2004). ATF4 localizes 

to the nucleus and activates transcription of genes encoding amino acid transporters, 

redox enzymes that promote protein folding in the ER lumen and a proapoptotic 

transcription factor called CCAAT enhancer- binding homologous protein (CHOP) 

(Jiang et al., 2004; Schröder and Kaufman, 2005). ATF4 also increases transcription of 

XBP1 mRNA and augments the UPR response (Yoshida et al., 2000). 

Dephosphoryaltion of eIF2α by the association of protein phosphatase I (PPI) to 

constitutively expressed repressor of eIF2α phosphorylation (CReP) and stress 

inducible ATF4 target, growth arrest and DNA damage inducible gene 34 (GADD34) 

relieves PERK dependent translation attenuation (Brush et al., 2003; Ma and 

Hendershot, 2003). The third sensor of ER stress, activating transcription factor (ATF6) 

is also regulated by its interaction with BiP and release of BiP allows ATF6 packaging 

into COPII vesicles to be translocated to Golgi under ER stress (Chen et al., 2002). In 

Golgi, ATF6 is sequentially cleaved by site-1-protease (S1P) and site-2-protease (S2P) 

to release a 50 kDa cytosolic domain (Haze et al., 1999). This portion of ATF6 may 

then heterodimerize with XBP1 and localize to the nucleus to activate genes encoding 

ER chaperones (Yoshida et al., 2000). The ER associated protein degradation (ERAD) 

pathway is also activated to degrade unfolded/misfolded proteins (Casagrande et al., 

2000; Friedlander et al., 2000; Travers et al., 2000). Thus, upregulation of chaperones 

synergizes with translational control and protein degradation machinery in protecting 

cells against unfolded and misfolded proteins. 
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Figure 1.6 Unfolded protein response pathway in yeast and mammalian cells. 
Three sensors of unfolded protein in ER, IRE1, PERK and ATF6 initiate signalling 
cascade that restores ER homeostasis and if needed be undergoes apoptosis. UPR 
also regulates metabolic pathways, cell differentiation and inflammation and cell 
survival. UPR in yeast is triggered in presence of unfolded proteins by activation of 
Ire1p, whose ribonuclease activity splices HAC1 mRNA to synthesize Hac1ip. The 
newly synthesized Hac1ip induces transcription of genes containing UPRE 
(chaperones and foldases), components of ER-associated degradation (ERAD) 
pathway and proteins involved in phospholipid biosynthesis for ER expansion. XBP1 
mRNA is spliced by mammalian homologues of yeast IRE1, IRE1-α and IRE1-β. This 
splicing causes frameshift in XBP1 transcript, which is translated into Xbp1 activating 
UPR target genes like yeast. When ER stress is prolonged, IRE1 activates cell death 
pathways in association with tumor necrosis associated factor 2 (TRAF2) to modulate 
the activity of the c-Jun N-terminal kinase (JNK) pathway via the apoptosis signaling-
regulating kinase (ASK1), which controls apoptosis. In higher eukaryotes PERK and 
ATF6 form additional branch of UPR. Under ER stress, PERK is dissociated from BiP, 
triggering PERK dimerization, autophosphorylation and activation of cytosolic kinase 
domain. Activated PERK phosphorylates translation initiation factor eIF2α, which 
attenuates global protein translation reducing protein load of ER. ATF4, however is 
exempted from this embargo due to selective transcription through conserved 
upstream ORFs (uORFs) in ATF4 mRNA. The ATF4 localizes to the nucleus and 
upregulates genes encoding amino acid transporters, promote protein folding proteins 
(e.g., ERO1), and a proapoptotic transcription factor called the CCAAT enhancer-
binding homologous protein (CHOP), transcription of XBP1 mRNA. High eIF2α 
phosphorylation activates NF-кB signalling, which promotes cell survival and 
inflammatory response. Activating transcription factor 6 (ATF6) is also regulated by 
interaction with BiP in the ER lumen. ATF6 dissociates from BiP, permitting ATF6 to 
pack into COPII vesicles for trafficking to the Golgi. ATF6 is sequentially cleaved by 
the site-1-protease (S1P) and site-2-protease (S2P) in Golgi, with release of the 50 
kDa cytosolic domain of ATF6. This portion of ATF6 may then heterodimerize with 
XBP1 before trafficking to the nucleus to activate genes encoding ER chaperones. 
ATF6 shares homology with two tissue-specific proteins: CREB-H in hepatocytes and 
OASIS in astrocytes (not shown), which activate the stress-dependent transcription of 
genes with promoters containing inflammatory response elements and cAMP-
responsive elements, respectively. Thus the UPR integrates all three pathways to 
restore ER homeostasis. 
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1.4.3 Role of UPR in nutrient sensing and differentiation of yeast 

The UPR pathway when induced regulates the transcription of 381 open reading 

frames in yeast. Roughly 50% of ORFs were known to function in the secretory 

pathway, but still ~100 ORFs were known to be regulated by UPR but had other known 

functions unrelated to secretory pathway, indicating that they may be related to other 

cellular processes (Travers et al., 2000). One function of UPR is control of 

differentiation responses like meiosis and pseudohyphal growth in S. cerevisiae. Yeast 

responds characteristically to its nutrient niche and the differentiation responses are 

controlled by a combination of cell type and environmental cues. Under nitrogen 

starvation conditions diploid yeast undergoes pseudohyphal growth in presence of a 

fermentable carbon source (Gimeno et al., 1992), while sporulation occurs in the 

presence of a non-fermentable carbon source (Kupiec et al., 1997). UPR pathway 

senses the nitrogen availability and regulates the differentiation of yeast. The splicing 

of HAC1 mRNA is seen in nitrogen-rich conditions, but the splicing is inhibited under 

nitrogen starvation (Figure 1.5 B). In nitrogen-rich conditions the UPR pathway 

represses both the pseudohyphal growth and meiosis (Schröder et al., 2000). 

Overexpression of Hac1ip decreased activation of early meiotic genes (EMGs) under 

nitrogen starvation, while deletion of HAC1 increased mRNA levels of EMGs under 

nitrogen-rich conditions, but Ime1p levels were not affected. The negative regulation 

of EMGs’ transcription through Hac1ip requires Ume6p. Ume6p recruits the ISW2 

chromatin remodeling complex (Goldmark et al., 2000) and the Rpd3-Sin3 HDAC 

(Schröder et al., 2004) to Upstream Repressing Sequence 1 (URS1). URS1 can be 

found in promoters of meiosis-specific genes like SPO13, HOP11 and IME2 and non-

meiotic genes like CAR1 (Gailus-Durner et al., 1996). Overexpression of Hac1ip also 

repressed pseudohyphal growth and deletion of HAC1 or IRE1 derepressed 

pseudohyphal growth. UPR inducing drugs like tunicamycin and 2-deoxyglucose 

repressed pseudohyphal growth in wild-type but not in ire1Δ and hac1Δ (Schröder et 

al., 2000). These data show that Hac1ip is synthesized in response to nitrogen-rich 

environment and negatively regulates nitrogen starvation responses. Schroder et al, 

2000 suggested a model of UPR-signaling pathway sensing the nutritional state of the 

cell and regulating the nitrogen starvation induced differentiation responses (Figure 
1.7). The splicing of HAC1 mRNA in response to extracellular nitrogen may be due to 

increased protein synthesis leading to high levels of newly synthesized unfolded 
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polypeptides in nitrogen-rich conditions compared to nitrogen-starved conditions and 

this activates the UPR by splicing of HAC1 mRNA. On the contrary, nitrogen starved 

conditions have lower rates of protein synthesis decreasing the ER load, leading to 

Ire1p inactivation and shutting off the Hac1ip synthesis. Thus UPR plays a role in 

nutrient sensing and controlling differentiation events in yeast.  

 

1.4.4 Basal UPR pathway in yeast:  

Healthy cells under nutrient rich conditions also experience basal UPR activity in 

presence of unfolded proteins in ER. Synthetic lethalities in yeast between UPR and 

ERAD (Travers et al., 2000) or chaperone machinery (Tyson and Stirling, 2000), and 

increase in UPR signaling have been reported with defective ERAD in yeast (Cox and 

Walter, 1996) and mammalian cells (Hori et al., 2004; Lee et al., 2003). HAC1 mRNA 

splicing varies dynamically in response to nitrogen availability and presence of different 

carbon sources. HAC1 mRNA splicing is induced under nitrogen-rich conditions, while 

spliced HAC1 ceases as nitrogen becomes limiting. The level of HAC1 mRNA splicing 

is induced tenfold in non-fermentable carbon source compared to fermentable carbon 

sources. These data indicate that the UPR senses the changes to its nutritional 

environment and controls nutritional and differentiation programs, besides the basal 

UPR that serves to aid protein folding in healthy cells (Schröder et al., 2000). The 

repression of metabolic genes ACS1 encoding acetyl coenzyme A synthethase, CAR1 

encoding arginase, and INO1 in Ume6p and RPD3-SIN3 HDAC-dependent manner 

further highlights the role of UPR in healthy cells to its metabolic regulation (Schröder 

et al., 2004). 
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Figure 1.7 UPR as a nutrient sensor regulating differentiation events in yeast. In 
nitrogen rich environment, HAC1 mRNA is spliced due to high protein synthesis, which 
represses pseudohyphal growth and meiosis. When nitrogen is limiting  the Hac1i p 
synthesis is shut off and depending on the carbon source cells undergo meiosis or 
pseudohyphal growth.  
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1.4.5 Role of UPR in nutrient sensing and differentiation in higher eukaryotes: 

In higher eukaryotes changes in glucose levels are responded by UPR. Decreased 

glucose levels induce the ER chaperone machinery indicating that UPR responds to 

nutritional state of the cell. Here this section provides an overview of UPR and its role 

in nutrient sensing and differentiation. 

 

1.4.5.1 Glucose regulated events in pancreatic β-cells and plasma B-cells: 

Hypoglcemia induced ER stress and UPR in liver cells and abrogation of PERK 

pathway in mice leads to hypoglycemia due to reduced levels of glycogen and 

phosphoenol pyruvate carboxykinase, a rate limiting step in gluconeogenesis 

(Gonzales et al., 2008; Scheuner et al., 2001). Decreased glucose levels induce eIF2α 

phosphorylation by PERK and limit translation to decrease proinsulin production in β-

cells (Scheuner et al., 2001). A nearly fivefold increase in total protein synthesis, ~50% 

of which is proinsulin production, challenges the folding capacity of ER in glucose 

stimulated β-cells. UPR responds by adjusting organelle mass and induces 

chaperones and foldases to maintain favorable environment for proper folding of 

proinsulin in cases of hyperglycemia, insulin resistance or high fat diet (Scheuner and 

Kaufman, 2008). As glucose levels rise, the ADP/ATP ratio increases, inactivating 

PERK signaling and inducing proinsulin production (Scheuner et al., 2001). The role of 

protein phosphatase 1 (PP1) has been proposed, where in the presence of glucose, 

eIF2α is dephosphorylated to allow proinsulin production (Vander Mierde et al., 2007).  

eIF2α phosphorylation is also required for maintenance and function of differentiated β-

cells (Back et al., 2009). In this way glucose sensing by β-cells to control proinsulin 

production may have evolved ER signaling to support this specialized cell type. 

Decreased or increased glucose levels trigger ER stress in isolated pancreatic islets 

and insulinoma cells (Elouil et al., 2007; Greenman et al., 2007). High glucose and 

high fatty acid supply induce ER stress in β-cells and play a part in development of 

type 2 diabetes. Sustained ER stress reduces insulin expression and increases 

apoptosis (Kaneto et al., 2006; Laybutt et al., 2007). It has been proposed that ER 

stress suppresses insulin biosynthesis at the transcriptional level by JNK activation 

(Kaneto et al., 2006). UPR related events are seen in β-cells of type 2 diabetes and 

CHOP mediated apoptosis is a fundamental contributing factor to β-cell failure in the 
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disease (Laybutt et al., 2007; Scheuner and Kaufman, 2008). Further β-cell dysfunction 

has also been related to ER stress in animal models with defective disulphide bridge 

formation in proinsulin (Herbach et al., 2007). The mice with impaired disulfide bond 

formation in proinsulin induce diabetes, while similar mutation in human insulin gene 

induces permanent neonatal diabetes (Huang et al., 2007; Stoy et al., 2007). So the 

involvement of glucose in controlling proinsulin translation by UPR is also evident in 

pancreatic β-cells.  

Differentiation of B-cells: The role of UPR in differentiation in mammalian system is 

reported in the terminal differentiation of B-cells to antibody secreting plasma cells. 

UPR is activated on antigenic stimulation of B lymphocytes to terminally differentiate 

into plasma cells producing high rate of antibodies to deal with antigen. IRE1 mediated 

XBP1 splicing is required to drive the differentiation and activation of UPR is needed to 

expand the ER and meet the demand of high secretory activity of B-cells (Calfon et al., 

2002; Iwakoshi et al., 2003; Lee et al., 2005a; Reimold et al., 2001; Zhang et al., 

2005). This is consistent with the requirement for XBP1 in pancreatic acinar cell 

development (Lee et al., 2005a). A key role of Xbp1 is in ER expansion through 

induction of phospholipid biosynthesis and membrane proliferation for plasma cell 

differentiation (Shaffer et al., 2004; Sriburi et al., 2004). Terminal differentiation of B-

cells requires repression of c-myc transcription (Lin et al., 2000) through recruitment of 

mammalian Rpd3p orthologs to the c-myc promoter by Blimp-1 (Yu et al., 2000). These 

data together with the observation that the UPR controls HDACs in yeast suggests that 

UPR signaling is not only important to drive but also important to maintain 

differentiation in mammals.  

 

1.4.5.2 UPR and Insulin signaling: 

Under nutrient excess, insulin levels rise and activate downstream signaling pathways.  

Insulin stimulates glucose uptake, nutrient storage and protein synthesis after binding 

to the insulin receptor (IR) to promote differentiation and growth (Draznin, 2006; Nandi 

et al., 2004; Saltiel and Kahn, 2001; Saltiel and Pessin, 2002; Shulman, 1999; 

Taniguchi et al., 2006). Binding of insulin to the IR induces a conformational change in 

the IR and activates tyrosine autophosphorylation of the IR, IR substrate (IRS) 1, 2, 3, 

and 4, and of several SRC homology 2 (SH-2) domain containing (SHC) proteins. 



50 
 

Tyrosine-phosphorylated IRS and SHC proteins are anchoring points for proteins 

containing SH-2 domains, including recruitment of both SH-2 domains in the regulatory 

subunits of phosphatidylinositol (PI) 3-kinase (PI3K). p85 is the regulatory subunit of 

PI3K and this interaction relieves the basal repression of catalytic subunit of PI3K 

(p110). Activated PI3K catalyzes the formation of PI-3,4-bisphosphate and PI-3,4,5-

trisphosphate and recruitment of phosphoinositide-dependent kinases (PDK) 1 and 2 

and several protein kinase B (PKB/AKT) isoforms to the plasma membrane. PDKs 

when co-localized at the plasma membrane phosphorylate and activate PKB1, -2, and 

-3. Activated PKB controls many cellular events, including glucose transport, protein 

and glycogen synthesis, cell proliferation and survival by phosphorylation of numerous 

substrates. The importance of PI3K in mediating the metabolic actions of insulin is 

supported by studies where genetic or pharmacological inhibition of PI3K completely 

abolishes insulin stimulation of glucose transport, lipogenesis and glycogen synthesis 

(Cheatham et al., 1994; Sharma et al., 1998). More evidence comes from the fact that 

alterations in insulin stimulation of PI3K activity have been observed in mouse models 

of obesity, as well as in humans with type 2 diabetes (Bandyopadhyay et al., 2005; 

Cusi et al., 2000; Heydrick et al., 1995).  

Recent results show that p85α and p85β, the regulatory subunits of PI3K interact with 

XBP1 and increase its nuclear translocation in response to insulin, thereby activating 

UPR (Park et al., 2010; Winnay et al., 2010).  The results also show that p85α 

deficient cultured cells or hepatocytes result in reduced nuclear accumulation of 

XBP1 after ER stress and considerably attenuate UPR by reduction in IRE1α and 

ATF6 pathway activation and a concomitant reduction in the expression of UPR 

targets at the mRNA and protein levels. However translocation of XBP1 to nucleus 

can resolve ER stress with limited activation of PERK arm of UPR. But obese mice 

with refeeding and metabolic overload led to severe PERK phosphorylation. So the 

intact response of p85 to insulin receptor signaling is necessary for activation of UPR 

to deal with metabolic overload.  This is especially important because when insulin 

levels rise in response to excess of nutrient availability the activation of insulin 

receptor signaling increases protein synthesis, nutrient storage and promotes 

differentiation and growth (Nandi et al., 2004; Saltiel and Pessin, 2002; Taniguchi et 

al., 2006). This metabolic overloading causes ER stress and activation of the PERK 

arm of UPR downregulates the protein load by reducing global  translation (Harding 
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et al., 2000; Harding et al., 1999) and increased IRE1 kinase activity blocks insulin 

receptor signaling. So a model was proposed where decrease in p85α leads to a 

reduced nuclear translocation of XBP-1 and therefore reduce cellular response to ER 

stress and a decrease in ATF6α pathway activation. Conversely, active insulin 

receptor signaling increased the efficiency of XBP-1s by promoting its association 

with p85, leading to faster and higher upregulation of the chaperones, without chronic 

activation of UPR (Park et al., 2010; Winnay et al., 2010). This highlights the critical 

role of PI3K regulatory subunits in modulating the UPR.  

 

Mice with genetic or diet-induced obesity show a considerable elevation in ER stress, 

with elevated phosphorylation of PERK and IRE1α and enhanced splicing of XBP-1  

(Özcan et al., 2004). Conversely, the increase in insulin sensitivity associated with 

weight loss is associated with a substantial reduction in markers of UPR activation 

(Gregor et al., 2009). Enhancement of protein folding led to improvements in obesity-

associated insulin resistance and glucose metabolism (Ozawa et al., 2005; Özcan et 

al., 2006). So UPR may decrease insulin sensitivity in obese state through IRE1α-

dependent activation of c-Jun N-terminal kinase (JNK), which leads to 

phosphorylation of insulin receptor substrate-1 (IRS-1) on inhibitory serine residues 

(Audhya et al., 2004; Herschkovitz et al., 2007; Tanti et al., 2004).  When subjected 

to a high-fat diet, XBP-1–heterozygous mice gain more weight and become more 

insulin resistant than control mice (Özcan et al., 2004). These mice also show an 

increase in ER stress in adipose tissue, with enhanced PERK and IRE1α 

phosphorylation and activation of JNK. Likewise, XBP-1-deficient fibroblasts show 

enhanced PERK phosphorylation, hyperactivation of JNK and increased serine 

phosphorylation of IRS-1 (Özcan et al., 2004). The ER stress response has been 

strongly implicated in the pathophysiology of diabetes, affecting both insulin 

sensitivity in liver and fat, and the survival of pancreatic β-cells (Calfon et al., 2002; 

Eizirik et al., 2008; Fonseca et al., 2007; Nakatani et al., 2005). Adipose tissues from 

obese, insulin-resistant mice and humans show a persistent low level of inflammation 

in addition to activation of ER stress pathways, including induction of the UPR. 

Therefore inflammation is a common feature of obesity and type 2 diabetes 

(Hotamisligil, 2006; Özcan et al., 2004; Shoelson et al., 2006; Wellen and 

Hotamisligil, 2005). In obese mice, there is a ~50% reduction in p85α expression in 
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liver (Kerouz et al., 1997). In response to excess nutrients IRE1-XBP1-p85α pathway 

manage ER homeostasis and modulate insulin sensitivity but failure of this pathway 

in obesity leads to activation of UPR promoting proinflammatory and proapoptotic 

state (Park et al., 2010; Winnay et al., 2010). This link between the regulatory subunit 

of PI3K regulated by insulin and the cellular response to ER stress establishes a role 

of UPR in nutrient sensing mechanism in higher eukaryotes and its regulation of 

cellular processes. The crosstalk between the PI3K system and the UPR might have 

evolved to ensure the utilization of nutrients at the highest level of their availability in 

cell types requiring increased protein load without needing to activate other arms of 

UPR that would otherwise block protein synthesis. 
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1.5 Aims and Objectives 

 

Aims:  

A) Study of regulation of EMGs under nutrient-rich conditions   
 

• To investigate whether Hac1ip mediates repression on EMGs through URS1 in a 

nitrogen-rich environment 

• To study the role of histone and chromatin modifying complexes in regulation of 

URS1-controlled genes under nutrient rich conditions 

S. cerevisiae responds to their nutritional environment and decide their cell fate. The 

yeast responds to nitrogen starvation by differentiating to form a spore or 

pseudohyphal growth depending on the type of carbon source. Nitrogen-rich conditions 

repress these differentiation events. The unfolded protein response pathway is known 

to contribute to control of these nitrogen starvation responses. Under nitrogen-rich 

conditions Hac1ip is synthesized but when extracellular levels of nitrogen drop, Hac1ip 

synthesis ceases. Pseudohyphal growth is repressed by activation of UPR or by 

overexpression of Hac1ip. The hac1Δ/hac1Δ strains show derepression of 

pseudohyphal growth. Negative regulation of early meiotic genes is shown by 

increased levels of mRNA levels in the absence of Hac1ip and repression in the 

presence of Hac1ip under nitrogen starved conditions. Therefore, Hac1ip inhibits 

meiosis under nitrogen starved conditions. Hac1ip-mediated negative regulation also 

requires the function of RPD3-SIN3 HDAC under these conditions, while the ISW2-

ITC1 chromatin remodelling complex was dispensable for this repression. However, 

the URS1-mediated repression in the presence of extracellular nitrogen has not been 

demonstrated. Therefore, demonstration of Hac1ip-mediated negative regulation of 

early meiotic genes through URS1 under nitrogen-rich conditions would further 

strengthen the case for involvement of the UPR sensing nitrogen. This will provide 

direct evidence of control of differentiation responses by UPR. UAS-less URS1-CYC1-

lacZ reporters have been used to demonstrate negative regulation by Hac1ip at URS1 

under nitrogen-starved conditions. But under nitrogen-rich conditions, β-galactosidase 

expression from these reporters is barely detectable. Therefore, these reporters did not 

yield conclusive data and could not be used here. Therefore, to test whether Hac1ip 
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negatively regulates the transcription of early meiotic genes through URS1 under 

nitrogen-rich conditions, I constructed URS1-CYC1-Ub-X-lacZ reporters. Destabilised 

β-galactosidase expressed from these reporters would have robust mitotic expression 

and different half lives as a result of the N-end rule. URS1-CYC1-Ub-X-lacZ reporters 

have been tested in different deletion strains of genetic elements to validate these 

reporters. Further, functional URS1-CYC1-Ub-X-lacZ reporters could be used in 

genetic screens. Hac1ip upregulates ER chaperone expression through UPRE 

elements by histone acetylation of promoters by the SAGA histone acetyltransferase 

(Welihinda et al., 1997; Welihinda et al., 2000). Hac1ip also negatively represses 

EMGs via URS1 and requires the function of the RPD3-SIN3 HDAC. The URS1-CYC1-

Ub-X-lacZ reporters will be handy in studying the structural features of Hac1ip which is 

involved in transcriptional activation and repression. These functional reporters can be 

used to investigate transcription factors, histone deacetylases and chromatin 

remodelling factors involved in the regulation of EMGs through URS1 under nitrogen-

rich conditions.  

 

B) Role of non-fermentable carbon sources in pseudohyphal growth 
 

• To investigate the effects and role of non-fermentable carbon sources on 

pseudohyphal growth  

Nitrogen starvation in the presence of a fermentable carbon source initiates 

pseudohyphal growth differentiation in S. cerevisiae. The UPR pathway also repressed 

pseudohyphal growth under nitrogen-rich conditions as ire1Δ/ire1Δ and hac1Δ/hac1Δ 

diploids also showed increased pseudohyphal growth and expression of Hac1ip 

repressed pseudohyphal growth. Thus cells compromised in UPR pathway under 

sporulation inducing conditions (limiting nitrogen and acetate), responded 

inappropriately by switching to pseudohyphal growth. Splicing of HAC1 mRNA was 

higher in the presence of acetate as compared to other carbon sources (Schröder et 

al., 2000). These observations suggest that at least when UPR is defective, cells 

exhibit pseudohyphal growth on a non-fermentable carbon source. Therefore, it would 

be interesting to test whether a/α diploid cells also induce pseudohyphal growth on 

non-fermentable carbon source. If this is the case, genetic elements involved in this 
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phenomenon can be investigated. Thus this study will provide us an insight into effect 

of non-fermentable carbon sources on pseudohyphal growth. 

  



 

 

 

 

 

 

 

Chapter 2  
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2.1  Chemicals, media, reagents and commercial kits 

 Table 2.1 List of Chemicals 

Sr. No Chemical Company , Catalogue No. 

1.  
 
Acetic acid 

 
Fisher Scientific,  
# A/0360/PBH 

2.  
 
Agar 

 
Fisher Scientific, # 9002-18-0 

3.  
 
Agarose molecular grade 

 
Bioline, # BIO-41025 

4.  
 
Albumin 

 
Sigma-Aldrich, # A2153-50G 

5.  
 
Ammonium persulphate 

 
Fisher Scientific, # BP179-25 

6.  
 
Calcium chloride 

 
Sigma-Aldrich, # C1016-100G 

7.  
 
Clelands reagent 

 
Calbiochem, # 233155 

8.  
 
Dimethyl  sulfoxide 

 
Sigma-Aldrich, # D5879 

9.  
 
Disodium hydrogen orthophosphate 
dodecahydrate 

 
Fisher Scientific,  
# 10039-32-4 

10.  
 
Disodium hydrogen phosphate 

 
Sigma-Aldrich, # S3264-250G 

11.  
 
Ethanol 

 
Fisher Scientific ,  
# E/0500/17  

12.  
 
Ethylenediaminetetraacetic acid (EDTA) 

 
Fisher Scientific, # BPE119-500 

13.  
 
Ficoll 400 
 

 
Fluka, # 46327 

14.  
 
D-Glucose 
 

 
Fisher Scientific, # 50-99-7 

15.  
 
Glycerol 
 

 
Fisher Scientific, # 56-81-5 

16.  
  
Hydrochloric acid 

 
Fisher Scientific ,  
# H/1100/PB17 

17.  
 
Iso-amyl alcohol 
 
 

 
BDH, # 272124U 
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18.  
 
Isopropyl β-D-thio-galactopyranoside 
(dioxane free) 

 
Melford, # MB 1008 

19.  
 
Lithium Acetate 

 
Fisher Scientific ,  
# L/2050/50 

20.  
 
Magnesium chloride 
 

 
BDH, # 2909647 

21.  
 
Magnesium sulphate 

 
Fisher Scientific,  
# M/1050/53 

22.  
 
2-Nitrophenyl-β-D-galactopyranoside 
 

 
BDH, # 400312X 

23.  
 
Phenol:CHCl3:isoamylalcohol 
(25:24:1;v/v/v) 
 

 
Fisher Scientific,  
# BPE1752P-400 

24.  
 
Polyethylene glycol 4000  

 
Sigma-Aldrich, # P 3640 
 

25.  
 
Potassium acetate 
 

 
Fisher Scientific,  
# P3760153 

26.  
 
Poatassium chloride 

 
Fisher Scientific,  
# P/4240/53 

27.  
 
Potassium dihydrogen phosphate  

 
Fisher Scientific,  
# 7778-77-0 

28.  
 
Potassium phthalate monobasic 
 

 
Sigma-Aldrich, # P6758 -500 G 

29.  
 
Protease inhibitor cocktail 

• Complete 
• Mini 

 
Roche Applied Science,  
# 11836153001 
# 11836153001 

30.  
 
Sheared salmon sperm DNA (8.31 mg/ml 
or 6.89 mg/ml) 

 
Sigma, # D-1626  

31.  
 
Sodium chloride 
 

 
Fisher Scientific, # 7647-14-5 

32.  
 
Sodium dodecyl sulfate 
 
 

 
Promega, # H5114 
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33.  
 
Sodium hyroxide 
 

 
Anal-R Normapur,  
# 28244.262 

34.  
 
Tris (hydroxymethyl) methylamine 
 

 
Fisher Scientific,  
# T/3710/60 

35.  
 
Tween 20 

 
Fisher Scientific,  
# BPE 337-500 
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Table 2.2 Media reagents 

 
Sr. No. 

 
Chemical 

 
Company, Cat. No. 

 
1.  

  
LB broth 

  
Formedium, # LBXO102 

2.  
 

 
LB agar 

 
Formedium, # LBXO202 

 
3.  

 
YNB agar 

 
Formedium, # CCMO210 

4.  
 

 
YNB broth 

  
Formedium, # CCMO110 

5.  
 

 
YNB w/o a.a. 

 
Formedium, # CYNO405 

6.  YNB w/o a.a. w/o ammonium sulphate Formedium, # CYNO501 

7.  
 

 
Difco YNB w/o a.a. 

 
BD, # 291940 

8.  
 

 
Difco agar noble 

 
BD, # 214220 

9.  
 

 
Bacto-peptone 

 
BD, # 211677 

10.  
 

 
Bacto-yeast extract 

 
BD, # 212750 

11.  
 

 
Agar 

 
Fisher Scientific, # 9002-
18-0 
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Table 2.3 List of Reagents/Enzymes/Antibiotics  
 

 
Sr.No 

 
Enzymes/Antibiotics 

 
Company, Cat. No. 

 
1.  
 

 
1 U/μl β-galactosidase 
 

 
Promega, # E2000 

 
2.  

 

 
5 Weiss U/μl T4 DNA ligase 
 

 
Fermentas, # EL0011 

 
3.  

 
Pfu DNA polymerase 
 

 
Fermentas, # EP0501 

 
4.  

 
RNase A, 10-20 mg/ml, DNase-free 
 

 
Fermentas, # EN0531 
 

 
5.  

 
1 U/μl Calf intestine alkaline 
phosphatase 
 

 
New England BioLabs,  
# M0290L 

 
6.  Glusulase 

 

 
Perkin Elmer, # NEE154 

 
7.  

 
Turbo NarI 

 
Promega, # R7261 

 
8.  

 
PspOMI 

 
New England BioLabs ,  
# R0653 

 
9.  

 
BamHI 

 
Fermentas, # ER0051 

 
10.  

 
BauI 

 
Fermentas, # ER1841 

 
11.  

 
Eco32I (EcoRV) 

 
Fermentas, # ER0301 

 
12.  

 
EcoRI 

 
Fermentas, # ER0271 

 
13.  

 
Ampicillin 100 µg/ml  
 

 
Melford, # A0104 

 
14.  

 
Tetracycline 12.5 µg/ml 
 

 
Fluka Biochemika, # 87130 

 
15.  
 

 
Hygromycin B 

 
Duchefa Biochemie, # 31282-
04-9 
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16.  

 
Tunicamycin(Streptomyces 
lysosuperficus) 

 
Calbiochem, # 654380 

 
17.  

 
G-418 

 
Melford, # G0175 

 
18.  

 
Kanamycin 

 
Gibco, # 11815-024 

 
 
 

Table 2.4 List of Commercial kits  

 
Sr.No 

 
Kit 

 
Company, Cat. No. 

 
1.  

 
Reagent A (Bio-Rad DC Protein Assay) 
 

 
BioRad, # 500-0113 
 

 
2.  

 
Reagent B (Bio-Rad DC Protein Assay) 
 

 
BioRad, # 500-0114 

 
3.  

 
Bovine serum albumin (BSA) standard 

 
Sigma-Aldrich, # A2153-
50G 

 
4.  

 
5 x Reporter lysis buffer 

 
 Promega, # E3971 
 

 
5.  

 
Wizard SV Gel and PCR clean up system 

  
Promega, # A9282 

 
6.  

 
Qiagen Miniprep Kit 

 
Sigma-Aldrich, # 27104 

 
7.  

 

 
GeneEluteTM HP Plasmid Midiprep kit 

 
Sigma-Aldrich, # NA0200 

 
8.  

 
GeneluteTM Gel extraction kit      

 
Sigma-Aldrich, # NA1111 

 
9.  

 
GeneEluteTM HP Plasmid Maxiprep kit  

 
Sigma-Aldrich, # NA0310 

 
10.  

 
Gene RulerTM 1Kb DNA ladder 

 
Fermentas Life Sciences, 
# SM0311 
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11.  

 
2 mM dNTPs 
 

 
Fermentas Life Sciences, 
# R0181 
 

12.  QIAprep Spin Miniprep kit  Qiagen, # 27104 

 

 

 

Table 2.5 List of amino acids and media supplements 

 
Sr.No 

 
Enzyme/Antibiotic 

 
Company, Cat. No. 

 
1.  

 
Adenine sulphate 

 
Fluka, # 01880 

 
2.  

 
Inositol 

 
Formedium, # DOCO200 

 
3.  

 
L-Lysine 

 
Formedium, # DOCO161 

 
4.  

 
L- Methionine 

 
Formedium, # DOCO168 

 
5.  

 
L-Valine 

 
Formedium, # DOCO1197 

 
6.  

 
L-Threonine 

 
Formedium, # DOCO185 

 
7.  

 
Isoleucine 

 
Formedium, # DOCO152 

 
8.  

 
L-Aspartic acid 

 
Formedium, # DOCO121 

 
9.  

 
L-Tyrosine 

 
Formedium, # DOCO192 

 
10.  

 
L-Arginine 

 
Formedium, # DOCO108 

 
11.  

 
L-Glutamic acid 

 
Calbiochem , # 3510 

 
12.  

 
L-Histidine 

 
Formedium, # DOCO148 

 
13.  

 
Uracil 

 
Formedium, # DOCO300 
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14.  

 
L-Phenylalanine 

 
Formedium, # DOCO173 

 
15.  

 
L-Tryptophan 

 
Formedium, # DOCO188 

 
16.  

 
L-Leucine 

 
Formedium, # DOCO157 

 
17.  

 
L-Serine 

 
Formedium, # DOCO181 
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2.2 List of primers and oligonucleotides 

Table 2.6. List of primers and oligonucleotides. Oligonucleotides were synthesized by 

Eurogentec Ltd. Lyophiized primers were resuspended in sterile water to a final 

concentration of 100 µM and stored at -20oC. 

Sr.No. Primer Sequence 

 
1.  

 

A1 

 

GCATTAATGAATCGGCCAAC 

2.  A2 ACTAAATTAATAATGCAGATTTTCGTCAAGACTTTGACCGG 
 

3.  

 

 

B1 

 

ATAGCAGAATGGGCAGACATTAC 
 

 
4.  

 

B2 

 

TGACGAAAATCTGCATTATTAATTTAGTGTGTGTATTTGTGTTT

GCG 

5.  I-β-gal CCGGATCCGTGTATACCACCTCTTAGCCTTAGCACGAGATG 

TAAGG 

6.  Q-β-gal CCGGATCCGTGCTGACCACCTCTTAGCCTTAGCACGAGATGT

AAGG 
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2.3 List of plasmids 
 
Table 2.7. List of plasmids  

Plasmids were maintained in E.coli (DH5α or XL10-GOLD) strains with ampicillin as 

selection marker. XL10-GOLD E.coli cells were selected by antibiotic tetracycline 

encoded by F´ episome. Plasmids in S. cerevisiae were selected by metabolic 

marker as indicated below. Note: x is the N-terminal amino acid of β-galactosidase. 

 

 
Sr.No. 

 
Plasmids 

 
Description 

 
Source 

 
1. 

 

pLGΔ312S 

 

CYC1-lacZ-URA3-2µ 
 

(Guarente and 

Mason, 1983) 

 
2. 

 

pLGΔ312S-IME2, 

pLGΔ312S-INO1 

 

URS1(IME2)-CYC1-lacZ-URA3-2µ, 

URS1(INO1)-CYC1-lacZ-URA3-2µ 

 

(Kadosh and 

Struhl, 1997) 

 
3. 

 

pUB23-M, pUB23-

K, pUB23-L and 

pUB23-R 

 

GAL1, 10-Ub-x-lacZ-URA3-2µ 
 

(Bachmair and 

Varshavsky, 1989) 

 
4. 

 

pVP-IME2-M-β-gal, 

pVP-IME2-K-β-gal, 

pVP-IME2-L-β-gal, 

pVP-IME2-R-β-gal, 

pVP-IME2-I-β-gal 

and  

pVP-IME2-Q-β-gal 

 

 

URS1(IME2)-CYC1-Ub-x-lacZ-

URA3-2µ 

 

 

 

 

 

 

This study 

 
5. 

 

pVP-INO1-M-β-gal, 

pVP-INO1-K-β-gal, 

pVP-INO1-L-β-gal, 

 

URS1(INO1)-CYC1-Ub-x-lacZ-

URA3-2µ 

 

 

This study 
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pVP-INO1-R-β-gal, 

pVP-INO1-I-β-gal 

and 

pVP-INO1-Q-β-gal 

 
6. 

 

pVP-M-β-gal, 

pVP-K-β-gal, 

pVP-L-β-gal, 

pVP-R-β-gal, 

pVP-I-β-gal and  

pVP-Q-β-gal 

 

CYC1-Ub-x-lacZ-URA3-2µ 

 

This study 

 
7. 

 

pRS314-HAC1i 

 

HA-HAC1i-TRP1-CEN 

 

(Schröder et al., 

2004) 

 
8. 

 

p2UG 

 

GRE3-CYC1-URA3-2µ 

 

(Schena et al., 

1991) 

 
9. 

 

pG-N795 

 

GPD-N795-TRP1-2µ 

 

(Schena et al., 

1991) 

 
10. 

 

p2UG-HA-HAC1i 

 

GRE3-CYC1-HA-HAC1i-URA3-2µ 

 

(Schröder et al., 

2004) 
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2.4 List of strains:  

 

Table 2.8 List of strains  

Sr.No. Organism Name Genotype            Source 

1.  S.cerevisiae MSY134-36 SK-1 MATa arg6 rme1Δ5::LEU2 

ura3 leu2::hisG trp1::hisG lys2 

ho::LYS2 

(Schröder et 

al., 2004) 

2.  S.cerevisiae MSY136-40 SK-1 MATα arg6 rme1Δ5::LEU2 

ura3 leu2::hisG trp1::hisG lys2 

ho::LYS2 

(Schröder et 

al., 2004) 

3.  S.cerevisiae MSY 184-55 SK-1 MATa arg6 rme1Δ5::LEU2 

ume6-5::LEU2 ura3 leu2 trp1 lys2 

ho::LYS2 

(Schröder et 

al., 2004) 

4.  S.cerevisiae MSY 289-02 SK-1 MATa arg6 rme1Δ5::LEU2 

ura3 leu2::hisG trp1::hisG lys2 

ho::LYS2 rpd3Δ::hphMX4 

Schröder Lab 

Strain 

Collection 

5.  S.cerevisiae MSY 283-06 SK-1 MATa arg6 rme1Δ5::LEU2 

ura3 leu2::hisG trp1::hisG lys2 

ho::LYS2 isw2 Δ::kanMX2 

Schröder Lab 

Strain 

Collection 

6.  S.cerevisiae RCY 20-05 SK-1 MATa arg6 rme1Δ5::LEU2 

sin3Δ ::LEU2 ura3 leu2::hisG 

trp1::hisG lys2 ho::LYS2 

Schröder Lab 

Strain 

Collection 

7.  S.cerevisiae MSY 301-03 SK-1 MATa arg6 rme1Δ5::LEU2 

ura3 leu2::hisG trp1::hisG lys2 

Schröder Lab 

Strain 
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ho::LYS2 itc1Δ::natMX4,  Collection 

8.  S.cerevisiae MSY 138-17 SK-1 MATα his3ΔSK 

rme1Δ5::LEU2 ura3 leu2::hisG 

trp1::hisG lys2 ho::LYS2 

(Schröder et 

al., 2004) 

9.  S.cerevisiae MSY 296-01 SK-1 MATα his3ΔSK 

rme1Δ5::LEU2 ura3 leu2::hisG 

trp1::hisG lys2 ho::LYS2 

hac1Δ::kanMX2 

Schröder Lab 

Strain 

Collection 

10.  S.cerevisiae AMP 109 SK-1 MAT a/α  ura3/ura3 

leu2::hisG/leu2::hisG 

trp1::hisG/trp1::hisG lys2/lys2 

ho::LYS2/ho::LYS2 

(Vidan and 

Mitchell, 

1997) 

11.  S.cerevisiae AMP 1618 SK-1 MATα met4 rme1D5::LEU2 

IME2-20-lacZ::LEU2 ura3 

leu2::hisG trp1::hisG lys2 ho::LYS2  

(Vidan and 

Mitchell, 

1997) 

12.  S.cerevisiae AMP 1619 SK-1 MATa arg6 rme1D5::LEU2 

IME2-20-lacZ::LEU2 ura3 

leu2::hisG trp1::hisG lys2 ho::LYS2  

(Vidan and 

Mitchell, 

1997) 

13.  S.cerevisiae MSY 33-12 SK-1 MATa his3ΔSK leu2 ura3 
trp1 lys2 ho::LYS2 

Schröder Lab 

Strain 

Collection 

14.  S.cerevisiae MSY160-88 SK-1 MATα met4 ura3 leu2 trp1 
lys2 ho::LYS2 arg6 

Schröder Lab 

Strain 

Collection 
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15.  S.cerevisiae MSY 33-12 x 

MSY 160-88 

SK-1 MATa/α ura3/ura3 leu2/leu2 
trp1/trp1 lys2/ lys2 
ho::LYS2/ho::LYS2 

This study 

16.  S.cerevisiae MSY 673-01 SK-1 MATα his3ΔSK leu2 ura3 
trp1 lys2 ho::LYS2 rtg2Δ::kanMX2   

This study 

17.  S.cerevisiae MSY 669-01 SK-1 MATa met4 ura3 leu2 trp1 
lys2 ho::LYS2 rtg2Δ::kanMX2  

This study 

18.  S.cerevisiae MSY 673-01 x 

MSY 669-01  

SK-1 MATa/α ura3/ura3 leu2/leu2 
trp1/trp1 lys2/ lys2 
ho::LYS2/ho::LYS2 rtg2Δ::kanMX2/ 
rtg2Δ::kanMX2  

This study 

19.  S.cerevisiae MSY 676-01  SK-1 MATα his3ΔSK leu2 ura3  
trp1 lys2 ho::LYS2  rtg3Δ::kanMX2 

This study 

20.  S.cerevisiae MSY 678-02 SK-1 MATa met4 ura3 leu2 trp1 
lys2 ho::LYS2 rtg3Δ::kanMX2 

This study 

21.  S.cerevisiae MSY 676-01 x 

MSY 678-02 

SK-1 MATa/α leu2/ leu2 ura3/ ura3  
trp1/ trp1 lys2/ lys2 ho::LYS2/ 
ho::LYS2  rtg3Δ::kanMX2/ 
rtg3Δ::kanMX2 

This study 

22.  S.cerevisiae MSY 38-03  SK-1 MATa arg6 his3ΔSK leu2 
ura3 trp1 lys2 ho::LYS2 

Schröder Lab 

Strain 

Collection 

23.  S.cerevisiae MSY 160-88 SK-1 MATα arg6 met4 ura3 leu2 
trp1 lys2 ho::LYS2 

Schröder Lab 

Strain 

Collection 

24.  S.cerevisiae MSY 38-03 x  SK-1 MATa/α arg6/arg6 ura3/ ura3 
leu2/ leu2 trp1/ trp1 lys2/ lys2 

This study 
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MSY 160-88 ho::LYS2/ ho::LYS2 

25.  S.cerevisiae MSY 659-01  SK-1 MATα arg6 his3ΔSK leu2 
ura3 trp1  lys2 
ho::LYS2rtg1Δ::kanMX2    

This study 

26.  S.cerevisiae MSY 656-01 SK-1 MATa arg6 met4 ura3 leu2 
trp1 lys2 ho::LYS2  rtg1Δ::kanMX2 

This study 

27.  S.cerevisiae MSY 659-01 x 

MSY 656-01 

SK-1 MATa/α arg6/ arg6 ura3/ ura3 
leu2/ leu2 trp1/ trp1 lys2/ lys2 
ho::LYS2/ ho::LYS2  
rtg1Δ::kanMX2/ rtg1Δ::kanMX2 

This study 

28.  E.coli DH5α F- φ80lacZ∆M15 ∆(lacZYA-

argF)U169 recA1 endA1 hsdR17(rk
-, 

mk
+) phoA supE44 thi-1 gyrA96 

relA1 λ- 

Schröder Lab 

Strain 

Collection 

29.  E.coli XL10-Gold Tetr Δ(mcrA)183 Δ(mcrCB-

hsdSMR-mrr)173 endA1 supE44 

thi-1 recA1 gyrA96 relA1 lac Hte [F’ 

proAB lacIqZ ΔM15 Tn10 (Tetr) 

Amy Camr] 

Stratagene 

30.  E.coli SCS110 rpsL (Strr) thr leu endA thi-1 lacY 

galK galT ara tonA tsx dam dcm 

supE44 ∆(lac-proAB) [F´ traD36 

proAB lacIqZ∆M15] 

Schröder Lab 

Strain 

Collection 
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2.5 Stock solution 

Note: Solutions were preferably made in high-purity H2O (conductivity = 18 µ-1m-1) 

and autoclaved. If this was not possible, solutions were are prepared in autoclaved 

high-purity H2O and then filter sterilized by filtration over a 0.22 µm filter. 

Table 2.9 Stock solutions 

Sr. 
No. 

Solution Quantity Composition Recipe 

1. 10 g/l 
bromophenol 
blue 

10 ml 10g/l bromophenol 

blue 

Dissolved 100 mg bromophenol 

in ~9 ml H2O. Added H2O to 10 

ml. 

 

 
2. 

 
2 x assay 
buffer 

 

400 ml 

 

200 mM NaxH3-xP04 

(pH 7.3) 

2 mM MgCl2 

100 mM α-

mercaptoethanol 

1.33 mg/ml 2-

nitrophenyl-β-D-

galactopyranoside 

 

 

177 ml 0.4 M Na2HPO4 

23 ml 0.4 M NaH2PO4 

0.8 ml 1 M MgCl2 

2.8 ml β-mercaptoethanol 

532 mg 2-nitrophenyl-β-D-

galactopyranoside. Added H2O to 

400 ml and mixed. Stored in 50 

ml aliquots at -20°C. 

 
3. 

 

Na2CO3, 1 M 
 

500 ml 

 

1 M Na2CO3 

 

Dissolved 53.0 g Na2CO3 in ~400 

ml H2O. Added H2O to 500 ml 

 
4. 

 

Tris·HCl (pH 
6.8), 1 M 

 

1 l 

 

Tris·HCl (pH 6.8), 1 

M 

 

Dissolved 121.14 g Tris in ~800 

ml H2O. Adjusted pH to 6.8 with 

conc. HCl (~42 ml). Added H2O to 

1 l. Autoclaved 
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5. 

 
Tris·HCl  
(pH 7.5), 1 M 

 

1 l 

 

Tris·HCl (pH 7.5), 1 

M 

 

Dissolved 121.14 g Tris in ~800 

ml H2O. 

Adjusted pH to 7.5 with conc. HCl 

(~42 ml). 

Added H2O to 1 l. 

Autoclaved. 

 
6. 

 
Tris·HCl (pH 
8.0), 1 M 

 

1 l 

 

Tris·HCl (pH 8.0), 1 

M 

 

Dissolved 121.14 g Tris in ~800 

ml H2O. 

Adjusted pH to 8.0 with conc. HCl 

(~42 ml). 

Added H2O to 1 l. 

Autoclaved.  

 
7. 

 
1 x 
Tris·Acetate· 
EDTA 
(1xTAE) 

 

1 l 

 

40 mM Tris·HOAc 

2 mM M EDTA 

pH ~8.5 

 

Dissolved 4.84 g Tris  in ~800 ml 

H2O and added 1.41 ml acetic 

acid and 0.74 

gNa2EDTA·2H2O.Added H2O to 1 

l and adjusted the pH to ~8.5 

 
8. 

 
10% (w/v) 
SDS 

 

500 ml  

 

10% (w/v) SDS 

 

Dissolved 50 g SDS in ~450 ml 

H2O. 

Added H2O to 500 ml. 

Did NOT autoclave 

 
9. 

 
70% (v/v) 
EtOH 

 

50 ml 

 

70% (v/v) EtOH 

 

Mixed 35 ml EtOH and 15 ml H2O 

and stored at -20°C. 

 
10. 

 
EDTA, 0.5 M 

 

500 ml 

 

EDTA, 0.5 M 

 

Dissolved 93.1 g Na2EDTA·2H2O 

in ~350 ml H2O. Adjusted pH to 

8.0 with 10 M NaOH (~25 ml). 

Added H2O to 500 ml. Autoclave 
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11. 

 
1 M LiOAc 

 

250 ml 

 

1 M LiOAc 

 

25.50 g LiOAc·2H2O 

Dissolved in ~200 ml H2O. 

Added H2O to 250 ml. 

Filter sterilized, 

 
12. 

 
5 M KOAc, 
pH 4.8 

 

500 ml 

 

5 M KOAc, pH 4.8 

 

147.5 ml HOAc, add H2O to ~450 

ml, adjusted pH to 4.8 w/ KOH 

pellets while cooling in an 

ice/H2O bath. Added H2O to 500 

ml and autoclaved. 

 
13. 

 
10 x TE (pH 
8.0) 

 

4 l 

 

100 mM Tris·HCl 

(pH 8.0) 

10 mM EDTA 

 

400 ml 1 M Tris·HCl (pH 8.0) 

80 ml 0.5 M EDTA 

Added H2O to 4 l. Autoclaved 

 
14. 

 
MgCl2, 1 M 

 

100 ml 

  

Dissolved 20.33 g MgCl2·6 H2O in 

~80 ml H2O. Added H2O to 100 

ml. Autoclaved. 

 
15. 

 
5 M KOAc, 
pH 4.8 

 

500 ml 

 

5 M KOAc, pH 4.8 

 

147.5 ml HOAc, added H2O to 

~450 ml, adjusted pH to 4.8 w/ 

KOH pellets while cooling in an 

ice/H2O bath. Added H2O to 500 

ml and autoclaved. 

 
16. 

 
NaOH, 10 M 

 

500 ml 

 

10M NaOH 

 

Dissolved 200 g NaOH in ~350 

ml H2O.Solution gets very hot! 

Stored in a polyethylene bottle 
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17. 

 
10 x SDS-
PAGE buffer 

 

1 l 

 

1.92 M glycine 

0.248 M Tris 

10 g/l SDS 

 

144.13 g glycine 

  30.03 g Tris 

  10.00 g SDS 

Add H2O to ~ 900 ml, stir until 

completely dissolved, then add 

H2O to 1 l. 

 
18. 

 
6 x SDS-
PAGE 
sample 
buffer 

 

10 ml  

 

350 mM Tris·HCl, 

pH 6.8 

30% (v/v) glycerol 

10% (w/v) SDS 

0.5 g/l bromophenol 

blue 

2% (v/v) β-

mercaptoethanol 

 

3.50 ml 1 M Tris·HCl 

3.78 g glycerol 

1.00 g SDS 

500 μl 10 g/l bromophenol blue 

200 μl β-mercaptoethanol 

Add H2O to ~ 9 ml, dissolve over-

night if necessary. Add H2O to 10 

ml. 

 
19. 

 
30% (v/v) 
glycerol 

 

500 ml 

 

30% (v/v) glycerol 

 

189 g glycerol. Added H2O to 

~400 ml, mixed well by stirring. 

Added H2O to 500 ml and 

autoclaved. 

 
20. 

 
50 mg/ml 
ampicillin 

 

10 ml 

 

50g/ml ampicillin 

 

Dissolved 500 mg ampicillin in 10 

ml sterile H2O.Filter sterilized. 

Mixed and aliquoted in smaller 

volumes. 

 
21. 

 
12.5 mg/ml 
Tetracycline 

 

10 ml 

 

12.5 mg/ml 

Tetracycline 

 

Dissolved 125 mg tetracycline in 

sterile 10 ml of 70% ethanol. 

Mixed and aliquoted in smaller 

volumes. 
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2.6 Yeast and bacteriological media 

Table 2.10 Liquid media for Escherichia coli 

Medium Composition Quan
tity 

Recipe 

LB broth, 
Lennox 

10 g/l tryptone 

  5 g/l yeast extract 

  5 g/l NaCl 

1 l 20 g LB broth, Lennox 

formulation 

Added H2O to ~900 ml, stirred 

until all solid haddissolved, 

added H2O to 1 l, dispensed into 

bottles and autoclaved. 

1 x TSS 10 g/l tryptone 

 50 g/l yeast extract 

 5 g/l NaCl 

100 g/l polyethylene glycol 

3350 

5% (v/v) DMSO 

50 mM MgCl2 

 

1 l Added 10 g tryptone, 50 g yeast 

extract, 5 g Nacl, 100g 

polyethylene glycol 3350, 50 ml 

DMSO, 50 ml of 1M MgCl2 to 

900 ml H2O. Adjusted the pH to 

6.5 with HCl. Filter sterilized and 

stored protected from light at 

4°C 
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Table 2.11 Solidified media for Escherichia coli 

Medium Composition Quan
tity 

Recipe 

LB agar, 
Lennox 

 

 

10 g/l tryptone 

  5 g/l yeast extract 

  5 g/l NaCl 

15 g/l agar 

1 l 35 g LB agar, Lennox 

formulation 

Added 1 l H2O, mixed until 

suspension is homogenous, and 

autoclaved. Poured the plates. 

Stored at 4°C after plates 

solidified. 

LB agar, 
Lennox + 100 
µg/ml 
ampicillin 

10 g/l tryptone 

  5 g/l yeast extract 

  5 g/l NaCl 

15 g/l agar 

100 µg/ml ampicillin 

1 l 35 g LB agar, Lennox 

formulation 

Added 1 l H2O, stir until mixture 

was homogenous and autocla-

ved. Allowed to cool down to 

~55°C, added 2 ml 50 mg/ml 

ampicillin, mixed, and poured 

plates. Stored at 4°C for ≤ 2 

weeks after plates had solidified. 

LB agar, 
Lennox + 100 
µg/ml 
ampicillin + 
12.5 µg/ml 
tetracycline 

10 g/l tryptone 

  5 g/l yeast extract 

  5 g/l NaCl 

15 g/l agar 

100 µg/ml ampicillin 

12.5 µg/ml tetracycline 

1 l 35 g LB agar, Lennox 

formulation.  

Added 1 l H2O, stirred until 

mixture was homogenous and 

autoclaved. Allowed to cool 

down to ~55°C, added 2 ml 50 

mg/ml ampicillin, 12.5 µl of 12.5 

mg/ml tetracycline, mixed, and 

poured plates. Stored at 4°C for 
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≤ 2 weeks after plates had  

solidified. 

LB agar, 
Lennox + 100 
µM IPTG + 20 
µg/ml X-Gal 

10 g/l tryptone 

  5 g/l yeast extract 

  5 g/l NaCl 

15 g/l agar 

100 µM IPTG 

1 l 35 g LB agar, Lennox 

formulation 

Added 1 l H2O, stir until mixture 

was homogenous and autocla-

ved. Allowed to cool down to 

~55°C, added 0.5 ml 40 mg/ml 

X-gal, 1 ml 100 mM IPTG, 

mixed, and poured plates. 

Stored at 4°C in the dark after 

plates had solidified. 
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Table 2.12 Liquid media for Saccharomyces cerevisiae 

Medium Composition Quan
tity 

Recipe 

 
C-SPO 
medium 

 

2% (w/v) KOAc 

30 mg/l L-Tyr 

20 mg/l adenine sulfate 

20 mg/l uracil 

20 mg/l L-His·HCl 

20 mg/l L-Arg·HCl 

20 mg/l L-Met 

40 mg/l L-Trp 

30 mg/l L-Lys·HCl 

100 mg/l L-Leu3 

50 mg/l L-Phe 

5 mg/l myo-inositol 

 

 

 

 

 

210 mg/l L-Thr 

 

600 

ml 

 

12 g KOAc 

18 mg L-Tyr 

10 ml 1.2 g/l adenine sulfate 

  5 ml 2.4 g/l uracil 

  5 ml 2.4 g/l L-His·HCl1,2 

  5 ml 2.4 g/l L-Arg·HCl 

  5 ml 2.4 g/l L-Met 

10 ml 2.4 g/l L-Trp1,2 

  5 ml 3.6 g/l L-Lys·HCl 

10 ml 3.6 g/l L-Leu 

10 ml 3.0 g/l L-Phe 

500 μl 10 g/l myo-inositol 

Added H2O to 580 ml, stirred 

until all solid dissolved, 

dispensed into bottles and auto-

claved. After the medium cooled 

down to ~55°C added: 

5.25 ml 24 g/l L-Thr2 

All stock solutions were sterilized by autoclaving unless otherwise 

indicated (note 2). 

1) Stored stock solution at 4°C. Filter sterilized. 

2) 100 mg/l L-Leu is specially for SK-1 strains. The usual concentration 

is 30 mg/l L-Leu. 

3) C-SPO dropout medium was made excluding the concerned amino 

acid stocks. 
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PSP2 medium 

 

0.67% (w/v) yeast nitrogen 

base w/o amino acids 

0.10% (w/v) bacto-yeast 

extract 

1% (w/v) KOAc 

30 mg/l L-Tyr 

50 mM K-phthalate (pH 5.0) 

 

 

20 mg/l uracil 

20 mg/l L-Arg·HCl 

20 mg/l L-His·HCl 

20 mg/l L-Met 

20 mg/l L-Trp 

30 mg/l L-Ile 

30 mg/l L-Lys·HCl 

150 mgl/ L-Val 

375 mg/l L-Ser 

20 mg/l adenine sulfate 

50 mg/l L-Phe 

100 mg/l L-Glu 

100 mg/l L-Leu3 

 

 

 

 

 

100 mg/l L-Asp 

200 mg/l L-Thr 

 

600 

ml 

 

4 g yeast nitrogen base w/o 

amino acids 

 

0.6 g bacto-yeast extract 

6 g KOAc 

18 mg L-Tyr 
Dissolve d 6.13 g K-phthalate in 

~400 ml H2O, adjusted pH to 5.0 

with KOH pellets 

  5 ml 2.4 g/l uracil 

  5 ml 2.4 g/l L-Arg·HCl 

  5 ml 2.4 g/l L-His·HCl1,2 

  5 ml 2.4 g/l L-Met 

  5 ml 2.4 g/l L-Trp1,2 

  5 ml 3.6 g/l L-Ile 

  5 ml 3.6 g/l L-Lys·HCl 

  5 ml 18 g/l L-Val 

  5 ml 45 g/l L-Ser 

10 ml 1.2 g/l adenine sulfate 

10 ml 3.0 g/l L-Phe 

10 ml 6.0 g/l L-Glu 

16.7 ml 3.6 g/l L-Leu 

Added H2O to 580 ml, stirred 

until all solid had dissolved, 

dispensed into bottles and auto-

claved. After the medium did 

cool down to ~55°C added: 

15 ml 4.0 g/l L-Asp2 

  5 ml 24 g/l L-Thr2 
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SD medium 

 

0.67% (w/v) yeast nitrogen 

base w/o amino acids 

2% (w/v) D-glucose 

30 mg/l L-Tyr 

20 mg/l uracil 

20 mg/l L-Arg·HCl 

20 mg/l L-His·HCl 

20 mg/l L-Met 

20 mg/l L-Trp 

30 mg/l L-Ile 

30 mg/l L-Lys·HCl 

150 mg/l L-Val 

375 mg/l L-Ser 

20 mg/l adenine sulfate 

50 mg/l L-Phe 

100 mg/l L-Glu 

100 mg/l L-Leu3 

 

 

 

 

 

100 mg/l L-Asp 

200 mg/l L-Thr 

 

600 

ml 

   

4 g yeast nitrogen base w/o 

amino acids 

12 g D-glucose 

18 mg L-Tyr 

  5 ml 2.4 g/l uracil 

  5 ml 2.4 g/l L-Arg·HCl 

  5 ml 2.4 g/l L-His·HCl1,2 

  5 ml 2.4 g/l L-Met 

  5 ml 2.4 g/l L-Trp1,2 

  5 ml 3.6 g/l L-Ile 

  5 ml 3.6 g/l L-Lys·HCl 

  5 ml 18 g/l L-Val 

  5 ml 45 g/l L-Ser 

10 ml 1.2 g/l adenine sulfate 

10 ml 3.0 g/l L-Phe 

10 ml 6.0 g/l L-Glu 

16.7 ml 3.6 g/l L-Leu 

Added H2O to 580 ml, stirred 

until all solid had dissolved, 

dispensed into bottles and 

autoclaved. After the medium 

did cool down to ~55°C added: 

15 ml 4.0 g/l L-Asp2 

  5 ml 24 g/l L-Thr2 
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YPAc broth 1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) KOAc 

 1. Dissolved 10 g bacto-yeast 

extract, 20 g bacto-peptone, 

and 20 g KOAc in ~800 ml 

H2O. 

2. Added H2O to 1 l and mixed. 

Dispensed into bottles. 

3. Autoclaved. 

YPD broth 1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) D-glucose 

1 l 1. Dissolved 50 g YPD broth 

powder in ~800 ml H2O. 

2. Added H2O to 1 l and mix. 

3. Dispensed into bottles. 

4. Autoclaved. 
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Table 2.13 Solidified media for Saccharomyces cerevisiae 

Medium Composition Quan
tity 

Recipe 

 
PSP2 agar 

 

0.67% (w/v) yeast nitrogen 

base w/o amino acids 

0.10% (w/v) bacto-yeast 

extract 

1% (w/v) KOAc 

2% (w/v) agar 

30 mg/l L-Tyr 

20 mg/l uracil 

20 mg/l L-Arg·HCl 

20 mg/l L-His·HCl 

20 mg/l L-Met 

20 mg/l L-Trp 

30 mg/l L-Ile 

30 mg/l L-Lys·HCl 

150 mgl/ L-Val 

375 mg/l L-Ser 

20 mg/l adenine sulfate 

50 mg/l L-Phe 

100 mg/l L-Glu 

100 mg/l L-Leu3 

50 mM K-phthalate (pH 5.0) 

 

 

 

 

 

 

 

 

 

600 

ml 

 

4 g yeast nitrogen base w/o 

amino acids 

0.6 g bacto-yeast extract 

  

 6 g KOAc 

12 g agar 

18 mg L-Tyr 

  5 ml 2.4 g/l uracil 

  5 ml 2.4 g/l L-Arg·HCl 

  5 ml 2.4 g/l L-His·HCl1,2 

  5 ml 2.4 g/l L-Met 

  5 ml 2.4 g/l L-Trp1,2 

  5 ml 3.6 g/l L-Ile 

  5 ml 3.6 g/l L-Lys·HCl 

  5 ml 18 g/l L-Val 

  5 ml 45 g/l L-Ser 

10 ml 1.2 g/l adenine sulfate 

10 ml 3.0 g/l L-Phe 

10 ml 6.0 g/l L-Glu 

16.7 ml 3.6 g/l L-Leu 

Dissolved 6.13 g K-phthalate in 

~400 ml H2O, adjusted pH to 5.0 

with KOH pellets, and added 

H2O to 488 ml. Mixed all compo-

nents by stirring until the 

suspension is homogenous and 

autoclaved. After the medium 

did cool down to ~55°C added: 
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100 mg/l L-Asp 

200 mg/l L-Thr 

 

15 ml 4.0 g/l L-Asp2 

  5 ml 24 g/l L-Thr2   

Poured ~25 ml into one 90 mm 

petri dish. 

SD agar 
 

0.67% (w/v) yeast nitrogen 

base w/o amino acids 

2% (w/v) D-glucose 

2% (w/v) agar 

30 mg/l L-Tyr 

20 mg/l uracil 

20 mg/l L-Arg·HCl 

20 mg/l L-His·HCl 

20 mg/l L-Met 

20 mg/l L-Trp 

30 mg/l L-Ile 

30 mg/l L-Lys·HCl 

150 mgl/ L-Val 

375 mg/l L-Ser 

20 mg/l adenine sulfate 

50 mg/l L-Phe 

100 mg/l L-Glu 

100 mg/l L-Leu3 

 

 

 

 

 

 

100 mg/l L-Asp 

200 mg/l L-Thr 

 

600 

ml 

   

4 g yeast nitrogen base w/o 

amino acids 

12 g D-glucose 

12 g agar 

18 mg L-Tyr 

  5 ml 2.4 g/l uracil 

  5 ml 2.4 g/l L-Arg·HCl 

  5 ml 2.4 g/l L-His·HCl1,2 

  5 ml 2.4 g/l L-Met 

  5 ml 2.4 g/l L-Trp1,2 

  5 ml 3.6 g/l L-Ile 

  5 ml 3.6 g/l L-Lys·HCl 

  5 ml 18 g/l L-Val 

  5 ml 45 g/l L-Ser 

10 ml 1.2 g/l adenine sulfate 

10 ml 3.0 g/l L-Phe 

10 ml 6.0 g/l L-Glu 

16.7 ml 3.6 g/l L-Leu 

Added 488 ml H2O in a 1 l 

Erlenmeyer flask, stirred until 

the suspension is homogenous, 

and autoclaved. After the 

medium did cool down to ~55°C 

added: 

15 ml 4.0 g/l L-Asp2 

  5 ml 24 g/l L-Thr2 

Poured ~25 ml into one 90 mm 
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petri dish. 

SLA agar 0.17% (w/v) yeast nitrogen 

base w/o amino acids and 

w/o ammonium sulphate 

2%(w/v)D-glucose/ 

Potassium acetate/ 

L-Lactate/ 

Pyruvate/Glycerol/Ethanol 

2% (w/v) agar 

5 mg/l uracil 

5 mg/l L-Trp 

5 mg/l L-Lys·HCl 

5 mg/l L-Leu 

50 µM Ammonium Sulfate 

 

 
600 
ml 

1.02 g yeast nitrogen base w/o 

amino acids w/o and ammonium 

sulphate 

12 g D-glucose/Potassium 

acetate/L-Lactate/ 

Pyruvate/Glycerol/Ethanol 

 

12 g agar 

1.25 ml 2.4 g/l uracil 

1.25 ml 2.4 g/l L-Trp 

0.83 ml 3.6 g/l L-Lys·HCl 

0.83 ml 3.6 g/l L-Leu 

0.03 ml of 1 M (NH4)2SO4 

Added H2O to make 600 ml in a 

1 l Erlenmeyer flask, stirred until 

the suspension is homogenous, 

and autoclaved. Pour ~25 ml of 

media into each petri dish and 

allow to set. 
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YPAc agar 

 

1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) KOAc 

2% (w/v) agar 

1 l 1. Added 1 l H2O to 10 g bacto-

yeast extract, 20 g bacto-

peptone, 20 g KOAc, and 20 

g agar in a 2 l Erlenmeyer 

flask. 

2. Stirred until suspension is 

homogenous. 

3. Autoclaved. 

4. Allowed solution to cool to 

~55°C. 

5. Poured ~25 ml into one 90 

mm Petri dish. 

YPD agar 

 

1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) D-glucose 

1.5% (w/v) agar 

1 l 1. Added 1 l H2O to 65 g YPD 

agar powder in a 2 l 

Erlenmeyer flask. 

2. Stirred until suspension is 

homogenous. 

3. Autoclaved. 

4. Allowed solution to cool to 

~55°C. 

5. Poured ~25 ml into one 90 

mm Petri dish. 

YPD + 1 mg/ml 
hygromycin B 
agar 

1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) D-glucose 

1.5% (w/v) agar 

600 µg/ml hygromycin B 

1 l 1. Added 1 l H2O to 65 g YPD 

agar powder in a 2 l 

Erlenmeyer flask. 

2. Stirred until suspension is 

homogenous. 

3. Autoclaved. 

4. Allowed solution to cool to 

~55°C. 

5. Added 20 ml 50 mg/ml 
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hygromycin B (filter 

sterilized) and mixed. 

6. Poured ~25 ml into one 90 

mm Petri dish. 

YPD + 50 µg/ml 
X-Gal agar 

 

1% (w/v) bacto-yeast extract 

2% (w/v) bacto-peptone 

2% (w/v) D-glucose 

1.5% (w/v) agar 

50 µg/ml X-Gal 

0.1 M NaxH3-xPO4 (pH 7.0) 

1 l 1. Added 900 ml H2O to 65 g 

YPD agar powder in a 2 l 

Erlenmeyer flask. 

2. Stirred until suspension is 

homogenous. 

3. Autoclaved. 

4. Allowed solution to cool to 

~80°C. 

5. Added 100 ml 1 M NaxH3-

xPO4 (pH 7.0), 1.25 ml 40 

mg/ml X-Gal, and mixed. 

6. Poured ~25 ml into one 90 

mm Petri dish. 
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2.7 Protocols 

2.7.1 Microbiology 

2.7.1.1 S. cerevisiae cell culture 

Protocol: A pair of forceps was dipped in ethanol and passed briefly through Bunsen 

burner. A single isolated S. cerevisiae colony was picked up with tip of the toothpick 

using forceps from an appropriate agar plate and was aseptically inoculated to 14ml 

sterile tube containing 2-4 ml appropriate medium. The tubes were then incubated in 

incubator shaker at 30ºC until saturation (generally 2-3 days). The tubes were 

removed from the incubator and vortexed to resuspend cells. 50 μl cell suspension 

and 450 μl of medium used to grow the overnight cultures were added to semi-micro 

cuvette and mixed. This is 1:10 dilution of original grown culture. Using 500 μl of 

medium as blank for spectrophotometer, the absorbance at A600 of 1:10 diluted 

culture was determined. A600 readings are linear up to A600 ~0.6. If A600 was more 0.6, 

sample was diluted 10-fold or higher. Appropriate medium was added to sterile 

Erlenmeyer flasks with at least twice as big size as the intended culture volume 

working under aseptic conditions. S. cerevisiae cultures grown in medium 

supplemented with acetate as carbon source were grown in Erlenmeyer flasks with 

baffles for better aeration and agitation. The amount of inoculum to be added was 

calculated as the amount required to yield A600 ~0.01. From 14ml culture tubes with 

yeast culture, the calculated culture was added to flasks.  The flasks were placed into 

a shaker incubator with shaking at 225 – 250 rpm at 30ºC overnight. The growth of 

the culture was monitored at regular intervals once visible growth was seen after 12-

24 h by removing 500 μl and pipeting into a disposable semi-micro cuvette and 

determining the A600 of the sample. Cultures grown in YPD were monitored at 

intervals of 1.5-2 h and PSP2, SD or YPAc grown cultures were monitored every 2-4 

h. When the yeast culture achieved A600 between 0.3 – 0.6, this was considered as 

exponential growth phase. 

Reference: (Treco and Winston, 1997) 
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2.7.1.2 Yeast Culture Sample Collection 

Protocol: Yeast culture to be sampled was transferred into an ice-cold 15 or 50 ml 

centrifuge tube. Approximately ~20 ml of culture volume was collected for β-

galactosidase reporter assays. The sample volume for yeast strains expressing 

URS1-CYC1-Ub-x-lacZ reporters with ‘x’ as Arg or Leu was ~50 ml. The tubes were 

centrifuged at 3000 rpm, 4°C for 2 min to sediment the cells. The supernatant was 

discarded and the cells were frozen in liquid nitrogen and stored in a -20°C or -80°C 

freezer for longer periods. 

Reference: (Treco and Winston, 1997) 

 
2.7.1.3 Frozen Yeast Stock Cultures 
Reagents: 

• Freshly grown yeast culture in YPD broth or SD medium. Yeast nitrogen 

base without amino acids from Formedium has been specifically used to 

make the SD medium for the purposes of making frozen stocks. 

Protocol: The cryotubes were labelled with strain name and date using an ethanol 

resistant pen or the labelling system. 1 ml 30% (v/v) glycerol was dispensed into 

each cryotube. The cells grown were resuspended by briefly vortexing and pipetted 1 

ml cell suspension into the appropriate cryotube. The frozen stocks were made in 

duplicates for each strain or clone. The cryotubes were closed tightly and mixed by 

inverting and placing the tube into an ethanol/dry ice bath or into liquid nitrogen. 

Once the culture is frozen, the cryotubes were placed into a cryobox in a -70°C 

freezer.  

Reference: (Treco and Lundblad, 1993) 

 

2.7.1.4 E. coli cell culture  

Protocol: A pair of forceps was dipped in ethanol and passed briefly through Bunsen 

burner. A single E. coli colony from an appropriate agar plate was picked up using 

forceps and toothpick. Toothpick was aseptically added to 14ml sterile tube 

containing 2-3 ml LB medium supplemented with appropriate antibiotics to inoculate 
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the culture. The tubes were then incubated in incubator shaker at 37ºC overnight or 

16 h. These cultures were used for plasmid minipreparation or for inoculating larger 

volumes of culture for maxipreparation. The overnight grown culture was diluted 

1:100 into the new medium (For poorly replicated plasmids inoculum was washed 

three times with 1 ml H2O). Appropriate medium was added to sterile Erlenmeyer 

flasks under aseptic conditions. The final flasks for growth were at least twice as big 

size as the intended culture volume. The flasks were placed into a shaker incubator 

with shaking at 225 – 250 rpm at 37ºC overnight. The growth of the culture was 

monitored by removing 500 μl every 30 mins (LB broth cultures) and pipeting into a 

disposable semi-micro cuvette and determining the A600 of the sample. 

Appropriate antibiotics added to LB broth as follows: 

Antibiotic Stock solution Working concentration Dilution 

ampicillin 100 mg/ml in H2O 100 µg/ml 1:1000 

tetracycline 12.5 mg/ml in  12.5 µg/ml 1:1000 

 

Reference: (Elbing and Brent, 2002) 

 

2.7.1.5 Frozen E. coli Stock Cultures 

Protocol: A single colony was picked up to inoculate 3 ml LB broth containing 

appropriate antibiotics and incubated at the 37ºC temperature overnight with shaking 

at 220 rpm until it reaches an A600 nm of ~0.5. The cryotubes were labelled with strain 

name and the day’s date using an ethanol resistant pen or using the labelling system. 

0.5 ml 30% (v/v) glycerol was dispensed into each cryotube. The cells were 

resuspended by briefly vortexing and 1.375 ml of cell suspension was pipetted into 

the appropriate cryotube. The frozen stocks were made in duplicate for each strain or 

clone. The cryotube was closed tightly, mixed by inverting and placed into an 

ehanol/dry ice bath or into liquid nitrogen. Once the culture was frozen the cryotubes 

were placed into a cryobox in -70°C freezer.  

Reference: (Elbing and Brent, 2002) 
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2.7.2 Yeast genetics 

2.7.2.1 Mating of Yeast Strains 

Protocol: Two haploid strains of opposite mating type were cross streaked on a YPD 

plate. Each parental strain was streaked as controls as shown in Fig 2.1. The plates 

were incubated overnight at 30°C. The master plate with controls and mated strains 

was replica plated to a selective plate that selects for growth of the diploid strain. The 

plate was then incubated at 30°C until patches are grown (2-3 days). Patches for 

single colonies were streaked on a selective plate that selects for growth of the 

diploid strain and against growth of the two haploid strains. Around 6-8 isolated 

colonies were tested for growth on non-fermentable carbon sources by streaking a 

small fraction of the colony on YPAc plate. The YPAc plates were incubated for 1 - 3 

days at 30°C and scored streaks for growth. The colonies showing strong growth on 

the YPAc plate were selected for further processing. 

 

 

Figure 2.1. Mating of haploid yeast strains by crossing of patches on a YPD 

Reference: (Treco and Winston, 1997) 

 

2.7.2.2 Random Spore Isolation 

Protocol 

Spore dissection: 1 ml YPD broth was inoculated with cells from one isolated colony 

of a diploid a/α yeast strain and incubated with shaking (~250 rpm) at 30°C until cells 

have grown to saturation (1-2 d). 4 ml YPAc broth was inoculated with 40 μl of the 

saturated YPD culture and grown with shaking (~250 rpm) at 30°C until cells had 

grown to saturation (~2 d). The cells were collected by centrifugation for 2 min at 

3000 rpm and RT and the supernatant was discarded. The pellet was washed by 

a

α

a/α
a

α

a/α
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addition of 4 ml H2O and resuspending cells by vortexing, and collect cells by 

centrifugation as earlier. These cells were resuspended in 4 ml C-SPO medium by 

vortexing and incubated with shaking (~250 rpm) at 30°C for 3 – 5 d to sporulate the 

yeast cells. The cells were collected by centrifugation as earlier and resuspended in 1 

ml H2O by vortexing, and transferred to a 1.5 ml microcentrifuge tube. The cells were 

collected by centrifugation for 10 – 15 s at 12,000 g and supernatant was aspirated. 

The pellet were resuspended in 90 μl H2O. 10 μl glusulase was added to this tube 

and mixed well and incubate for 30 min at 30°C. The cell wall digestion was 

terminated by addition of 1 ml H2O.  The tube was centrifuged for 10 – 15 s to collect 

cells and supernatant was discarded. Cells were washed once with 1 ml H2O and 

resuspended in 0.1 ml H2O by vortexing the cell suspension at maximum speed for 2 

min. Cell suspension was completely pipetted out, 1 ml H2O was added, vortexed at 

maximum speed for 10 s, and pipetted out the H2O. This step was repeated twice. 

0.01% (v/v) NP-40 was added and vortexed at maximum speed for 10 s. Cell 

suspension was sonicated in an ice/H2O bath for 10 s at 150 W and incubated for 1 

min on ice to dissipate heat. This step was repeated five times. 10 μl cell suspension 

was counted in a haemocytometer to ascertain number of cells per ml. Based on the 

cell count 10, 100, 1,000, and 10,000 cells were plated onto five agar plates each    

(YPD agar plates or selective plates).  The plates were incubated at 30°C until 

colonies are grown (2-3 d). Only well separated colonies on the plate were processed 

further. 

Determination of spore genotype 

The plates with well separated colonies were replica plated on YPAc agar plate to 

screen for growth on non-fermentable carbon sources and on selective plates to 

screen for particular genotypes. The plates were then incubated at 30°C until 

colonies were grown. If desired, regrow master plate by incubating at 30°C. The 

colonies that didn’t grow on acetate were discarded. 3-4 times (in multiples of 48) 

more colonies were streaked for single colonies on YPD agar plates than genotypes 

that were generated by sporulation of the diploid strain. The plates were then 

incubated at 30°C until colonies are grown (~2 days). Individual patches were made 

on a YPD agar plate. Parental haploid strains that were used to construct the diploid 

strain were patched as controls. The plates were then incubated at 30°C until 

patches were grown (~2 days). These patches were replica plated to YPAc agar 
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plates and selective plates to determine genotypes based on growth assays for 

metabolic and drug resistance markers. Mating type was tested by colony PCR 

analysis. Growth was monitored regularly and growth was recorded. 

Reference: (Spencer and Spencer, 1996) 

 

2.7.3 Cell Biology  

2.7.3.1 Pseudohyphal growth assays 
Protocol: Desired freshly grown diploid cells grown on appropriate plates were taken 

with a inoculating loop working aseptically. This loop full of yeast cells was streaked 

onto synthetic low ammonium (SLA) medium plates to obtain single colonies. SLA 

plates contained 2% of indicated carbon source. The streaking was done taking care 

not to scratch the agar surface. The plates were then incubated at 30°C and 

pseudohyphal growth was observed regularly after ~2d. At least ten colonies were 

photographed for each plate with an inverted microscope at magnification of 40-100x. 

Reference: (Schröder et al., 2000) 

 

2.7.3.2 Construction of Petit mutants 
Protocol: 2 ml YPD broth was supplemented with 10 µg/ml of ethidium bromide 

working aseptically. A single colony of desired yeast strain to construct petit mutant 

was inoculated in the tube from previous step and incubated o/n at 30°C in incubator 

shaker. The culture from this tube was streaked to get isolated colonies YPD plates. 

YPD plates were incubated 30°C until the colonies form. The YPD plate with isolated 

colonies was replica plated on YPAc plate. The colonies unable to grow on YPAc 

plate were chosen and streaked for single colonies. These colonies were tested once 

again on YPAc plate and used for further experiments.  

Reference: (Fox et al., 1991) 
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2.7.3.3 Induction of Expression from Glucocorticoid Response Elements (GRE) 
in S. cerevisiae 

Reagents 

• Exponentially growing yeast culture transformed with an empty GRE expression 

vector or an GRE expression vector controlling expression of your desired protein 

and a vector expressing the rat glucocorticoid receptor 

• 100 mM deoxycorticosterone (DOC) in EtOH, filter sterilised, stored at -20°C 

Protocol: Exponentially growing untreated culture was taken as 0 h sample working 

aseptically close to the flame of a Bunsen burner. Approximately ~10 ml culture was 

removed for β-galactosidase assays. The cells were collected by centrifugation at 

3000 rpm, 4°C for 2 min and placed tubes on ice. The supernatant was decanted and 

the tubes containing pellet was frozen in liquid nitrogen and stored at -20°C or -80°C. 

The remaining exponentially growing yeast culture was split into the desired number 

of cultures in Erlenmeyer flasks working close to the flame of a Bunsen burner. The 

expression was induced by adding 1 – 100 μM DOC depending on the experiment. 

The flasks were returned into the shaker and the cultures were incubated at 30°C, 

225-250 rpm for 0.25 – 4 h (as desired). Samples were collected as described in 

protocol 2.7.1.2. 

Reference: (Schena et al., 1991) 

 

2.7.4 Protein Biochemistry 

2.7.4.1 Protein Extraction for β-Galactosidase Assays 

Reagents: 

• 10-20 ml yeast culture samples were washed and stored in 2ml 

screw cap tubes. Samples were stored at -20°C. 

• 5 x Reporter Lysis Buffer was stored at RT 

• Roche Complete Protease Inhibitor (RPI) tablets  
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• 1 x RLB + RPI, ice-cold, made fresh. To make fresh added 4 Vol. H2O to 1 Vol. 5 

x RLB, mixed and placed on ice. One Roche Complete Protease Inhibitor tablet 

was added to 50 ml of 1 x RLB 

• Glass beads, Ø = 0.5 mm  

Protocol: The yeast culture samples were thawed at RT and placed on ice. 400 μl 

ice-cold 1 x RLB + RPI were added to a 2.0 ml flat bottom microcentrifuge tube 

containing the cell pellet and the cells were resuspended by vortexing. To this ~150 

mg glass beads were added and the cells and glass beads were vortexed briefly at 

maximum speed and placed on ice. The tubes were then placed into the Precellys 24 

Instrument and cells homogenized with two 30 second cycles of 6, 500 rpm at 4°C. 

Then the glass beads and cell debris were sedimented for 2 min at 12000 g, 4°C and 

the supernatant transferred into a labelled fresh tube. The tubes containing the cell 

lysates were centrifuged once again for 2 min at 12000g, 4°C. Finally the samples 

were stored on ice or in a fridge while performing β-galactosidase assays and protein 

assays. 

 

2.7.4.2 β-Galactosidase Assay  

Reagents: 

• Protein samples 

• 5 x Reporter Lysis Buffer, stored at RT 

• 1 x RLB + RPI, ice cold. Made fresh by adding 4 Vol. H2O to 1 Vol. 5 x RLB, 

mixed and placed on ice. One Roche Complete Protease Inhibitor tablet was 

added to 50ml of 1 x RLB. 

• Roche Complete Protease Inhibitor (RPI) tablets  

• 2 x assay buffer 

• 1 U/μl β-galactosidase 

• 1 M Na2CO3 
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Protocol: 

β-galactosidase standard: 1 μl 1 U/μl β-galactosidase was added to 99 μl ice-cold 1 

x RLB+RPI in a tube. The contents of the tube were mixed and tube was stored on 

ice. 10 μl of this 1:100 dilution (10 mU/ μl β-galactosidase) was added to 990 μl ice-

cold 1 x RLB in a new tube and mixed. The tube was then placed on ice. The 

standards were pipetted into the wells of a 96 well microtiter plate as outlined in the 

following table. Each standard concentration was prepared in duplicates. 1 x RLB + 

RPI was used to make these dilutions. 

β-galactosidase 
standard [mU/50 μl] 

Volume of 0.1 mU/μl 
β-galactosidase solution 

(step 2) 

Volume of 1 x 
RLB 

0.0 0 μl 50 μl 

1.0 10 μl 40 μl 

2.0 20 μl 30 μl 

3.0 30 μl 20 μl 

4.0 40 μl 10 μl 

5.0 50 l 0μl 

 

The protein samples were diluted into the linear range of the β-galactosidase 

standard using 1 x RLB + RPI. Dilutions up to 50-fold were directly prepared in the 

wells of the microtiter plate, higher dilutions were prepared in 1.5 ml microcentrifuge 

tubes and 50 μl of the dilution was added to a well of the microtiter plate. 

β-galactosidase activity was determined in all samples at least in duplicate. 50 μl of 2 

x assay buffer was added to each well. The plate was covered with parafilm and 

incubated at 37°C for 30 min. The reaction was stopped by adding 150 μl 1 M 

Na2CO3. Air bubbles were removed before reading the absorbance of the samples at 

405 – 420 nm in a microtiter plate reader. A wavelength of 340 nm was used as a 

reference wavelength. 

Reference: (Miller, 1972; Rosenthal, 1987) 
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2.7.4.3 Protein Assay for β-galactosidase assay 

Reagents: 

• Protein samples were kept on ice. 

• Reagent A (Bio-Rad DC Protein Assay) 

• Reagent B (Bio-Rad DC Protein Assay) 

• Bovine serum albumin (BSA) standard 

Protocol: The protein samples were diluted 1:5 or 1:2 in H2O. 5 µl sample, standard 

including the blank, and buffer control were pipetted into a clean, dry microtiter plate. 

For all samples, blanks, buffer controls, and standards at least two replicates were 

prepared. The buffer control was 1 x RLB + RPI diluted 1:5 or 1:2 in H2O. 25 µl 

reagent A and 200 µl reagent B were added into each well using a multichannel 

pipette and incubated at RT for 15 min with gentle shaking at 50 rpm on an orbital 

shaker and the absorbance was read at 750 nm in a microplate reader. 

Reference: (Lowry et al., 1951) 

 

2.7.5 Molecular Biology 

2.7.5.1 Polymerase Chain Reaction (PCR) 
Reagents: 

• DNA template: 5ng/μl plasmid DNA 

• 10 x Pfu DNA polymerase buffer w/o MgCl2 

• 2 mM dNTPs 

• 25 mM MgCl2 

• Pfu DNA polymerase (2.5 U/µl) 

• Primers (100 µM) 

Protocol: For a 10 μl analytical (PCR) mix the following: 

1.0 μl  10 x Pfu DNA polymerase buffer w/o MgCl2  

1.0 μl 2 mM dNTPs 
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x μl  25 mM MgCl2 (0.5 – 6.0 mM) 

0.1 μl  primer 1 

0.1 μl primer 2 

0.2 μl  Pfu DNA polymerase 

1.0 μl  Template 

6.6 - x μl  H2O 

10 μl  Total 

Remarks:For ‘N’ reactions, (N+2)10 μl was prepared, premix, mixed, and suspended 

into individual tubes. For preparative PCRs, 1 μl 5 U/μl Pfu DNA polymerase was 

used in 100 μl final volume.  

Reference: (Kramer and Coen, 2001) 

 

2.7.5.2 DNA agarose gel electrophoresis 
Reagents: 

• DNA molecular weight marker/DNA mass standard 

• 10 x DNA sample loading buffer: 20% (w/v) Ficoll 400 
       0.1 M NA2EDTA, pH 8.0 

      1% (w/v) SDS 
      0.25% bromophenol blue 
     0.25% xylene cyanol 

Protocol: An adequate volume of 1 x TAE was prepared to fill the electrophoresis 

tank and to prepare the gel. The desired amount of electrophoresis-grade agarose 

was added into an Erlenmeyer flask and appropriate volume of 1 x TAE was added 

for pouring the gel. The agarose was melted in a microwave oven at the highest 

power setting for 1 – 5 min, swirling every ~30 to 60 s to ensure even mixing and to 

avoid boiling over of the agarose solution. The agarose solution was then cooled 

down to 55°C. Ethidium bromide was added to the concentration of 0.5 µg/ml to 

agarose solution and the contents were mixed by swirling. The gel casting platform 
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was sealed either using a tape or placing in the slot in the electrophoresis tank 

designed to cast gels. The melted agarose was poured into the casting platform and 

the gel comb was inserted making sure that no bubbles are trapped underneath the 

combs and all bubbles on the surface of the agarose are removed before the gel 

sets. After the gel had solidified the casting platform was removed to open the sealed 

ends and the gel comb was removed taking care not to tear the sample wells. The 

gel casting platform containing the set gel was placed into the electrophoresis tank. 1 

x TAE was added to cover the gel to a depth of about 1 mm (or just until the tops of 

the wells are submerged). The DNA samples were prepared in a 1.5 ml 

microcentrifuge tube as follows: 

x  µl DNA sample 

(0.9·z – x) µl H2O 

 

(0.1·z) µl 10 x DNA sample loading buffer 

z  µl total (z ≤ well volume) 

 

Using a pipette the samples were loaded into the wells. An appropriate DNA 

molecular weight marker was also included in the gel run. The leads were attached to 

the power supply unit and the other end placed on top of the electrophoresis tank so 

that the DNA will migrate into the gel toward the anode or positive lead. The voltage 

was set to the desired level, typically 1 to 5 V/cm of gel, to begin electrophoresis. The 

progress of the separation was monitored by the migration of the dyes in the loading 

buffer. The electrophoresis was continued until the dye front reached 70 % of the gel 

length or to achieve desired resolution of bands. The power supply was turned off 

and visualized the DNA by placing the gel onto a UV light source (λ = 254nm). 

Reference: (Voytas, 2000) 

 

2.7.5.3 Restriction Endonuclease Digestion 

Protocol: The reaction mixture was prepared as per the table below in a 1.5 ml 

microcentrifuge tube: 
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0.9 z – x -y µl H2O 

x µl DNA solution, 

0.1 z µl 10 x restriction endonuclease buffer 

y µl restriction endonuclease in 50% (v/v) glycerol 

z µl Total 

Remarks: 

• For digests with several restriction endonucleases: y = Σyi. 

• The maximum for y is 0.1 z (ymax = 0.1 z) 

• z is usually defined by the size of the wells of the agarose gel. Otherwise, z = 

20 µl or z = 100 µl. 

The tubes were mixed well by flipping (not vortexing) and briefly centrifuged in a 

microcentrifuge to collect all liquid at the bottom of the tube. The tubes were then 

incubated at the desired temperature for the desired time. 

Reference: (Bloch and Grossmann, 1995) 

 

2.7.5.4 Dephosphorylation of DNA 5’ termini with calf intestinal alkaline 
phosphatase (CIAP) 

Protocol: The amount of DNA ends [in picomoles] that had to be dephosphorylated 

was calculated. Calf intestine alkaline protease (CIAP) was diluted for immediate use 

in 1 x CIAP reaction buffer to a final concentration of 0.01 U/μl. Each picomole of 

DNA ends will require 0.01 U CIAP. 

The reaction mixture was made in a 1.5 ml microcentrifuge tube as follows: 

X µl DNA (up to 10 picomoles) 

5 µl 10 x CIAP reaction buffer 

X µl 0.01 U/μl CIAP 

45 – 2 x µl H2O 

50 µl Total 

The tubes were mixed well by flipping (not vortexing) and briefly centrifuged in a 

microcentrifuge to collect all liquid at the bottom of the tube. The tubes were then 
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incubated at 37°C for 30 min and an additional x μl 0.01 U/μl CIAP was added and 

incubated further for 30 min at 37°C. 300 μl 10 mM Tris·HCl (pH 7.5), 200 mM NaCl, 

1 mM EDTA, 0.5% (w/v) SDS was added to stop the reaction. The preparation was 

subjected to phenol: CHCl3 extraction and purified the DNA using a spin column.  

Reference: (Tabor, 1987) 

 

2.7.5.5 DNA Ligation with T4 DNA ligase 

Protocol:  

Ligation of 5’ and 3’ overhanging ends 

The ligations were set-up on the basis of guidelines as below: Use 50 ng vector DNA 

and an 1:1 – 1:3 molar ratio of vector to insert DNA. The following mix was added 

into a 1.5 ml microcentrifuge tube:  

X µl vector DNA (50 ng) 

Y µl insert DNA (1:1 – 1:3 molar ratio vector:insert) 

1 µl 10 x T4 DNA ligase buffer 

0.2 µl 5 Weiss-U/μl T4 DNA ligase 

8.8 – x - y µl H2O 

10 µl Total 

The tubes were mixed well by flipping (not vortexing) the tube and briefly centrifuged 

in a microcentrifuge to collect all liquid at the bottom of the tube. The tubes were then 

incubated at 16°C for ≥ 16 h and stored at 4°C. The ligation mixture was transformed 

into E. coli by chemical transformation or after purification by electroporation. 

Reference: (Cherepanov and de Vries, 2001; Rossi et al., 1997) 

 

2.7.5.6 Plasmid DNA miniprep from E. Coli 

Protocol: 1.5 ml of a saturated overnight E. coli culture was transferred into a 1.5 ml 

microcentrifuge tube. The remainder of the culture was stored at 4°C. The cells were 

collected by centrifugation for 1 min at 14,000 g, RT and the supernatant aspirated. 
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The tubes were centrifuged again for 1 min at 14,000 g, RT and supernatant was 

aspirated. 100 μl 50 mM D-Glc, 25 mM Tris·HCl (pH 8.0), 10 mM EDTA was added 

and the cells were resuspended by vortexing or pipetting up and down. The tubes 

were incubated for 5 min at RT. Then added 200 μl 0.2 N NaOH, 1% (w/v) SDS and 

mixed by inverting tubes 4-6 times and incubated on ice for 5 min. 150 μl ice-cold 5 

M KOAc (pH 4.8) was added and mixed by inverting tubes 4 - 6 times and incubated 

for 5 min on ice. This was followed by centrifugation for 3 min at 14,000 g, 4°C and 

transferred the supernatant into a new microcentrifuge tube. 0.8 ml ethanol were 

added and mixed by inverting the tubes 2-3 times. The tubes were then incubated at 

RT for 2 min or stored at - 20°C. The tubes were then centrifuged for 1 min at 14,000 

g, RT and the supernatant was discarded. 1 ml 70% ethanol, was added to the tubes 

and centrifuged for 1 min at 14,000 g, RT. The supernatant was discarded by 

aspiration or inverting the tube and centrifuged again briefly to collect the remaining 

liquid at the bottom. The residual 70% ethanol was pipetted out and the pellets were 

dried in air for 5 min at RT. The pellets were resuspended in 30 μl 1 x TE (pH 8.0), 

0.3 mg/ml RNase A and incubated at 4°C until pellets are dissolved (~0.5 - 1 h). 

Reference: (Sambrook, 1989) 

 

2.7.5.7 Plasmid Midiprep: GenElute™ High Performance (HP) Plasmid Midiprep 
Kit (Sigma-Aldrich) 

Protocol:  
The kit was stored at room temperature. Once the RNase A solution was added to 

the resuspension solution it was stored at 2 to 8°C. The neutralization solution was 

also stored at 2 to 8 °C. The reagents were mixed thoroughly and examined for 

precipitation. If any reagent formed a precipitate upon storage, it was warmed at 55-

65°C until the precipitate dissolved and was cooled down to room temperature before 

use. The resuspension solution was prepared by adding 750 μl RNase A provided in 

the kit and stored at 4°C. Wash solution 2 was diluted with 120 ml of 95-100% 

ethanol prior to initial use. A single colony was inoculated in 2 ml LB broth with 

appropriate antibiotics and incubated overnight at 37oC to prepare the preculture. 50 

ml of LB broth containing appropriate antibiotic was inoculated from the preculture at 

a dilution of 1:200 to 1:500 and incubated overnight at 37oC. The cells from 50 ml 
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overnight grown culture were harvested by centrifugation at 5,000 x g for 10 min and 

the supernatant was discarded. All steps were carried out at room temperature. The 

cells were resuspended in 4 ml of resuspension solution by pipetting up and down, or 

vortexing to make sure that the cells are resuspended. The resuspended cells were 

lysed by adding 4 ml of the lysis solution and immediately mixing the contents by 

gently inverting 6 to 8 times and letting the mixture sit for 3 to 5 min until it became 

clear and viscous. The lysis was not prolonged more than 5 min. A filter syringe was 

prepared by removing the plunger and placing the barrel in a rack to keep the syringe 

barrel upright. The lysed cells were neutralized by adding 4 ml of chilled 

neutralization solution and gently inverted 4 to 6 times. A white aggregate (cell 

debris, proteins, lipids, SDS, and chromosomal DNA) was formed to which 3 ml of 

binding solution was added and inverted 1 to 2 times. The lysate was immediately 

poured into the barrel of the filter syringe and sit for 5 min. Meanwhile a binding 

column was placed into a collection tube provided and 4 ml of column preparation 

solution was added to the column and spun in a swinging bucket rotor at 3,000 x g 

for 2 min. The eluate was discarded. The content of the filter syringe barrel was 

emptied into the binding column by gently inserting the plunger to expel half of the 

cleared lysate into the column. The plunger was pulled back slightly to stop the flow 

of the remaining lysate. The column assembly was spun in a swinging bucket rotor at 

3,000 x g for 2 min and the eluate discarded. The rest of the cleared lysate was 

added to the column and spun at 3,000 x g for 2 min. 4 ml of wash solution 1 was 

added to the column and spun in a swinging bucket rotor at 3,000 x g for 2 min. The 

eluate was discarded. 4 ml of wash solution 2 was added to the column and spun in 

a swinging bucket rotor at 3,000 x g for 5 min. The binding column was transferred to 

a new collection tube and 1 ml of elution solution was added to the column and was 

kept at RT for 5 min. The column assembly was centrifuged in a swinging bucket 

rotor at 3,000 x g for 5 min to recover the plasmid. The plasmid DNA present in the 

eluate was concentrated by ethanol precipitation. The plasmid solution was 

transferred to tubes that can withstand ≥15,000 x  g. 0.1 volume of 3.0 M sodium 

acetate, pH 5.2, and 2.5 volume of 95-100 % ethanol was added to the plasmid 

solution and mixed well by inversion and incubated at -70oC for ≥ 30min. The tubes 

were centrifuged at ≥15,000 x g at 4°C for 30 min and the supernatant was decanted, 

being careful not to disturb the pellet. The pellet was rinsed with 1.5 ml of 70% 

ethanol and centrifuged as before for 10 min. The supernatant was carefully 

VIPUL
Highlight
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decanted and the pellet was dried until the residual ethanol evaporated. The DNA 

pellet was resuspended in 100 µl of 1 x TE (pH 8.0) and stored in refrigerator. 

 

Reference: (Birnboim and Doly, 1979; Vogelstein and Gillespie, 1979) 

 

2.5.7.8 Promega Wizard® SV Gel and PCR Clean-Up System 

Protocol: 

For DNA extraction from agarose gels: The membrane wash solution was 

prepared by adding the suggested volume of 95% ethanol to the membrane wash 

solution prior to beginning the procedure. For DNA extraction from agarose gels the 

gel slice containing the DNA was weighted and mixed in the membrane binding 

solution at a ratio of 10μl of solution per 10 mg of agarose gel slice. The mixture was 

vortexed and incubated at 65°C for 10 min or until the gel slice is completely 

dissolved. The tube was vortexed every few min to increase the rate of melting the 

agarose gel. The tubes were centrifuged briefly at room temperature to ensure the 

contents are at the bottom of the tube.  

For cleaning plasmid preparation and PCR amplification products: The plasmid 

preparation or amplified PCR product was added to an equal volume of membrane 

binding solution   

DNA Purification: One SV minicolumn was placed in one collection tube for each 

purification reaction. The mixture of membrane binding solution with gel slice/plasmid 

solution/PCR product (prepared as described above) was added to the SV 

minicolumn assembly and incubated for 2 min at room temperature. The SV 

minicolumn assembly was centrifuged at 16,000 × g for 2 min. The SV minicolumn 

was removed from the spin column assembly and the liquid was in the collection tube 

was discarded. The SV minicolumn was replaced onto the collection tube. The 

column was washed by adding 700μl of membrane wash solution, previously diluted 

with 95% ethanol, to the SV minicolumn and centrifuging the SV minicolumn 

assembly for 1 min at 16,000 × g (14,000rpm). The collection tube was emptied as 

before and placed the SV minicolumn back in the collection tube. The wash step was 

repeated with 500μl of membrane wash solution and the SV minicolumn assembly 

was centrifuged for 5 min at 16,000 × g. The SV minicolumn assembly was removed 
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from the centrifuge, being careful not to wet the bottom of the column with the 

flowthrough. The collection tube was emptied and the column assembly was 

recentrifuged for 1 min to allow evaporation of any residual ethanol. The SV 

minicolumn was carefully transferred to a clean 1.5 ml microcentrifuge tube. 50μl of 

nuclease-free water was added directly to the center of the column without touching 

the membrane with the pipette tip and incubated at room temperature for 2 min. The 

elution volume depended on the downstream application. The tube containing the 

column assembly was centrifuged for 1 min at 16,000 × g and the SV minicolumn 

was discarded. The microcentrifuge tube containing the eluted DNA was stored at 

4°C or -20°C. 

 

2.7.5.9 Phenol/CHCl3 Extraction of DNA 
Protocol:  
All steps were performed in a fume hood. 1 Vol. Phenol/CHCl3/isoamylalcohol 

(25/24/1 v/v/v), saturated with 1 M Tris·HCl (pH 8.0) was added to the DNA sample. 

The mixture was briefly vortexed to homogenize the aqueous and phenolic phases 

and then centrifuged at 12,000 g, RT for 1 min to separate both phases. The upper 

aqueous phase was transferred into a new 1.5 ml microcentrifuge tube. A white 

protein precipitate may form between the two phases, depending on the amount of 

protein in the sample. Care was taken as to not transfer any protein precipitate into 

the new 1.5 ml microcentrifuge tube. Repeated the above two steps at least once or 

until a protein precipitate between the aqueous and phenolic phase was no longer 

present. Then pooled both phenolic phases in a 1.5 ml microcentrifuge tube and 

extracted the pooled phenolic phase with ¼ Vol. 1 x TE (pH 8.0) as described earlier 

and pooled both the aqueous phases. Added 1 Vol. CHCl3/isoamylalcohol (24/1 v/v) 

to the pooled aqueous phase and repeat it at least once. Remark: One 

CHCl3/isoamylalcohol (24/1 v/v) extraction is not sufficient to remove all traces of 

phenol. Four extractions are, but the minimal number of extractions requires to 

complete remove the phenol, is somewhere between two and four. Vortexed briefly to 

mix the aqueous and organic phase. Centrifuged at 12,000 g, RT for 1 min to 

separate both phases. The upper, aqueous phase was transferred into a new 1.5 ml 

microcentrifuge tube and processed as desired or stored at 4ºC. 

Reference: (Sambrook, 1989) 
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2.7.5.10 Transformation of Yeast with LiOAc/PEG 

Protocol: The cells were grown by inoculating 2 ml YPD broth with a single colony 

and incubated until saturation (A600 > 3.0) at 30°C. This was the preculture. For each 

transformation 5 ml YPD broth was inoculated with an A600nm = 0.01 using the 

preculture and incubated at 30°C with shaking at 250 rpm. The absorbance was 

measured regularly until A600nm = 0.8-1.2 was reached. The culture was transferred to 

a 50 ml tube and the cells were collected by centrifugation for 2 min at 3000 rpm, 

4°C. The supernatant was decanted and the cells were placed on ice. While the cells 

were centrifuging the sheared salmon sperm DNA was thawed in a 37°C water bath, 

then placed on ice. The cell pellet was resuspended in 5-10 ml one-step buffer by 

vortexing. The cells were centrifuged for 2 min at 3000 rpm, 4°C, the supernatant 

was decanted and placed on ice. The residual liquid was aspirated and 88 μl of one-

step buffer was added to a cell pellet obtained from 5 ml of YPD broth. The cell pellet 

was resuspended by vortexing to remove any cell clumps and placed on ice. The 

salmon sperm DNA was denatured by boiling (100°C) for 5 min in a heat block and 

placing on ice. The transforming DNA was dispensed into 1.5 ml microcentrifuge 

tubes and placed on ice. 12 μl 8.31 mg/ml (14.5 μl 6.89 mg/ml) sheared salmon 

sperm DNA was also added to each tube containing the transforming DNA using a 

large orifice pipette tip. 88 µl cell suspension from earlier step was added to tubes 

containing transforming DNA and 100 μgm sheared salmon sperm DNA using large 

orifice pipette tips. The tubes were vortexed for 15 s at maximum speed and 

incubated the cells in a 42°C water bath for 30 min without mixing. The tubes were 

placed on ice. The cells were collected by centrifugation in a microcentrifuge for 10 s 

at RT and placed on ice. The supernatant was pipetted out completely and the pellet 

was resuspended in 200 µl H2O by pipetting up and down until no cell clumps 

remained. The whole content of a tube was plated onto an appropriate plate. The 

plates were incubated at 30°C in an incubator until colonies formed (usually 3-14 

days). The colonies that appeared on the plate after the incubation period were 

streaked for single colonies. These were then tested for their growth on non-

fermentable carbon source by streaking the colonies on PSP2/YPAc plate. The 

colonies that were able to grow on non-fermentable carbon source were preserved 

as frozen stocks. 
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Transformation controls:  

Each time yeast cells are transformed included the following controls: 

• Negative control: 100 μl cells were transformed with 5 μl 1 x TE (pH 8.0) to test 

for sterility of the reagents and procedure.  

• Positive control: One transformation with 100 ng of an autonomously replicating 

yeast plasmid was used for positive control to determine the transformation 

efficiency (colonies/µg transforming DNA).  

Reference: (Chen et al., 1992) 

 

2.7.5.11 Preparation of electrocompetent E. Coli 
Protocol: 500 ml LB broth was inoculated with 5 ml of a fresh overnight E. coli 

culture. The cells were grown at 37ºC with shaking at ~250 rpm until an A600nm of 0.5 

was reached. The cells were transferred to an ice-cold 500 ml centrifuge bottle and 

chilled on ice for 15 min. The cells were collected by centrifugation at 4000 g, 4ºC for 

15 min and the supernatant was decanted. The cells were washed by adding 500 ml 

ice-cold water, resuspended by vortexing and centrifuged at 4000 g, 4ºC for 15 min. 

The supernatant was decanted and the cells were washed twice as described in the 

earlier step. The cells were now resuspended in 8 ml ice-cold 10% (v/v) glycerol and 

transferred to a preweighted, ice-cold 40 ml centrifuge tube and centrifuged for 10 

min at 4ºC at 3000 g. The supernatant was decanted and the tube was weighed. The 

weight of the pellet was calculated and resuspended by vortexing in one cell volume 

ice-cold 10% (v/v) glycerol. The cells were aliquoted into 40 µl aliquots into ice-cold 

1.5 ml microcentrifuge tubes and frozen in a dry ice/ethanol bath or in liquid nitrogen 

and store at -70ºC indefinitely.  

Reference: (Seidman et al., 1997a) 

 

2.7.5.12 Electroporation of electrocompetent E. Coli 
Reagents: 

• Electrocompetent E. coli cells 

• Control plasmid pUC18 (10 pg/µl) 
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• Plasmid DNA for transformation 

• Ligation reactions: Clean-up on a PCR purification column.  

• Elute with 20 μl elution buffer. Use 5 μl eluate for electroporation. 

• 2 M D-glucose, filter sterilized 

• 1 N HCl 

• LB plates with appropriate antibiotics (ampicillin 100µgm/ml and 

tetracycline 12.5 µgm/ml) 

• LB broth 

• LB broth + 20 mM D-glucose 

Protocol: The pulse controller was set to 200 Ω. For each electroporation 1 ml LB + 

20 mM D-Glc was prepared in a 1.5 ml microcentrifuge tube. The electrocompetent 

cells were thawed by taking out the tubes from - 80ºC freezer and immediately 

placed on ice. The DNA (up to 5 µl) was added to the tube containing 

electrocompetent cells and the mix was placed on ice. The cell suspension was then 

pipetted into an ice cold electroporation cuvette to the bottom of the cuvette and 

gently tapped to remove any foam or air bubbles in the cell suspension. The outside 

of the cuvette was wiped dry, and placed into a chilled safety chamber slide. The 

cuvette was then pulsed at 25µF, 2.5 kV. The time constant was kept above 5.0 ms. 

1 ml LB + 20 mM D-glucose was added immediately to the cuvette using a 1000 µl 

pipette and the cells were transferred into a 14 ml culture tube. These tubes were 

then incubated in a 37ºC shaker for 1 h with shaking (~220 rpm). The cells were 

plated at different aliquots of 5, 10, and 200 µl onto LB-agar plates containing 

appropriate antibiotics. The remaining cell suspension was centrifuged for 1 min at 

15,000 g at RT to collect cells. The supernatant was aspirated and the cell pellet 

resuspended in 100 – 200 µl H2O and plated onto LB-agar plates containing 

appropriate antibiotics. The plates were then incubated in a 37ºC incubator for 16 h. 

The plates were then observed for appearance of colonies which were then stored in 

the refrigerator until the colonies were used as inoculum for plasmid minipreparation. 

The following controls were used with each batch of electroporation. Negative 

controls were included with 5 µl of 1 x TE (pH 8.0) to determine any possible 

contamination. In the positive controls 10 pg of pUC18 plasmid was used to 

determine the efficiency of transformation. The ligation mixtures for transformation 

were subjected to purification by PCR-clean up column. 
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Reference: (Seidman et al., 1997a) 

 

2.7.5.13 Preparation of chemically competent E. coli cells 

Protocol: LB broth 4 ml was inoculated with one colony E. coli cells from a fresh LB 

agar plate and grown overnight at 37°C with shaking at 225 rpm. The overnight 

culture was diluted 1:100 into LB broth and incubated at 37°C with shaking at 225 

rpm. After ~1 h, the absorbance A600 nm of the culture was measured and then 

monitored every 15 - 30 min. The culture was transferred to a weighed centrifuge 

tube when the 0.3 – 0.4 A600 nm was reached and precooled on ice. The tube was 

then centrifuged for 10 min at 1000 g and 4°C to collect the cells and the supernatant 

was decanted. The centrifuge tube was weighed and the cell pellet was resuspended 

by gently shaking in 1/10 of the original culture volume ice-cold 1 x TSS. The cells 

were aliquoted in ice-cold 1.5 ml microcentrifuge tubes as aliquots of 100 – 500 μl 

and frozen in liquid nitrogen or a dry ice/ethanol bath. The cells were stored at -70°C 

indefinitely. 

Reference: (Seidman et al., 1997b) 

 

2.7.5.14 Chemical Transformation of E. Coli 

Protocol: The competent cells were thawed by taking them out of the -80ºC freezer 

and immediately putting them on ice. Upto 5 µl of DNA solution was added to 

microcentrifuge tubes and placed on ice. The thawed competent cells were mixed 

carefully by inverting the tube once or twice and 100 µl of competent cells were 

added to tubes containing DNA. The tubes were gently flipped to mix the contents 

and incubated on ice for 30 min. At the end of the incubation period the tubes were 

placed into a 1.5 ml microcentrifuge tube swimmer and placed into a 42ºC waterbath 

for exactly 90 sec without moving the tubes. The microcentrifuge tubes with the 

swimmer was taken out of the waterbath and placed immediately on ice for 5 min. 

900 µl LB broth + 20 mM D-glucose was added to each tube and transferred to 14 ml 

culture tubes, and incubated at 37ºC with shaking (~220 rpm) for 1 h. 200 µl cell 

suspension was plated onto LB-agar plates containing appropriate antibiotics. The 

remaining cell suspension was centrifuged for 1 min at 15,000 g at RT to collect cells 
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and the supernatant was discarded. The cells pelleted were resuspended in 100 – 

200 µl H2O and plated onto LB-agar plates containing appropriate antibiotics. The 

plates were incubated in a 37ºC incubator for 16 h and colonies counted. The plates 

were stored in the refrigerator until the colonies were used as an inoculum for 

plasmid minipreparation. The controls were used with each batch of electroporation. 

Negative controls were included with 5 µl of 1 x TE (pH 8.0) to determine any 

possible contamination. In the positive controls 100 pg of pUC18 plasmid was used 

to determine the efficiency of transformation.  

Reference: (Seidman et al., 1997b) 

 

2.7.5.15 Gap-repair technique for recombinational cloning in yeast 

Reagents 

• Vector DNA (~1 ug/transformation) 

• Insert DNA (~200 ng/transformation) 

• Yeast culture for transformation 

• E. coli XL10 GOLD competent cells 

• SD medium lacking uracil made with yeast nitrogen base from 

Becton Dickinson 

• SD agar plates lacking uracil 

• QIAprep Spin Miniprep kit  

 

Protocol: A WT S. cerevisiae strain (ura3) was transformed with ~1 μg of vector 

DNA and ~200 ng of insert DNA by LiOAc transformation as described in 2.7.5.10. 

The cells were plated onto selective SD plate lacking uracil and incubated at 30°C 

until the colonies formed. Single colonies were picked up and inoculated in 2-4 ml 

synthetic dextrose (SD) medium lacking uracil made with yeast nitrogen base from 

Becton Dickinson. The tubes were then incubated in shaker incubator at 30°C for ~2 

days or until saturation. The cells were harvested by centrifugation at 5000g, 5 min 

and the supernatant discarded. The cells were resuspended in 250 ul Buffer P1 

(containing 0.1 mg/ml RNAse A) and transferred to a 2 ml flat bottom tube. Glass 

beads (~150 mg) were added to this tube and the cells were lysed using Precellys 24 
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instrument (two 30 second cycles of 6, 500 rpm at 4°C by using cycles for 30 s each). 

The tube was centrifuged at 5000 g, 5 min at 4ºC and supernatant was transferred to 

a fresh 1.5 ml tube. 250 μl lysis buffer P2 was added to the cell lysate, inverted gently 

4-6 times and incubated on ice for 5 min. 350 μl neutralization buffer N3 was added 

to the tube and gently inverted 4-6 times to neutralize. The lysate was centrifuged for 

10 min at 10,000 g at 4°C. QIAprep spin column was placed in a 2ml collection tube 

and cleared lysate form earlier step was applied to it. The whole assembly was 

centrifuged for 30-60s 10,000 g at 4°C and follow through was discarded. QIAprep 

spin column was washed by adding 0.75 ml of Buffer PE and centrifuging 30-60s 

(10,000 g). The follow-through was discarded and QIAprep spin column assembly 

was centrifuged again for 1 min to get rid of any residual wash buffer. QIAprep spin 

column was transferred to a fresh collection tube and 25 μl of 1XTE was applied to 

the center. The column was left to stand for 2 min at RT and then centrifuged for 1 

min. The eluate was used to transform E. coli XL10 GOLD cells as described in 

2.7.5.14. The plasmids extracted from the clones were subjected to restriction 

digestion analysis and fragments of interest were checked by sequencing. 

Reference: (Ma et al., 1987) 

 

2.7.5.16 Site directed mutagenesis  
Reagents: 

• QuikChange II XL Site-Directed Mutagenesis kit (Stratagene 

200521) 

• Plasmid DNA isolated from dam+ strains  

• Oligonucleotides: I-β-gal and Q-β-gal (Table 3.1) 

Protocol: Two complimentary oligonucleotides I-β-gal and Q-β-gal containing the 

silent restriction site BauI flanked by unmodified nucleotide sequence were 

synthesized. Oligonucleotides also contained mutation that introduces isoleucine or 

glutamine amino acid as the first amino acid of β-galactosidase. Control and sample 

reactions were prepared as indicated below:  

  5 μl of 10× reaction buffer  

  2 μl (10 ng) of pWhitescript 4.5-kb control plasmid (5ng/μl) or dsDNA template 
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  1.25 μl (125 ng) of oligonucleotide primer #1 (100 ng/μl) 

  1.25 μl (125 ng) of oligonucleotide primer #2 (100 ng/μl) 

  1 μl of dNTP mix  

  3 μl of QuikSolution reagent  

 36.5 μl of double-distilled water (ddH2O) to a final volume of 50 μl  

Then 1 μl of PfuUltra HF DNA polymerase (2.5 U/μl) was added to each reaction. 

The thermal cycler was used for mutant strand synthesis. A 5 min extension time at 

95°C followed by 18 cycles of 95°C for 50 sec, 60°C for 50 sec and 68°C for 1 min/kb 

of plasmid length followed by 68°C for 7 min was used. Following temperature 

cycling, the reaction tubes were placed on ice for 2 min to cool the reactions to 37°C. 

The reaction mixtures were digested with 1ul of DpnI (10 U/μl) for 1 h at 37°C to 

remove non mutated parental DNA. 2μl of DpnI digested DNA was transformed in 

E.coli as per protocol 2.7.5.14. Mutated plasmids should now have a BauI site 

introduced with the oligonucleotides. These plasmids were selected based on 

digestion with BauI restriction enzyme and confirmed by sequencing.  

Reference: (Cormack, 1997) 

 

2.7.5.17 DNA sequencing 

Protocol 

Plasmid DNA samples (at least 125 ng per reaction) were provided after checking on 

the agarose gel with Restriction digestion analysis. The primers covering overlapping 

regions were provided at the concentration of 3.2pmol/μl.DNA sequencing was 

carried out by DNA Sequencing Facility at Durham University. The DNA sequencing 

was undertaken using an Applied Biosystems 3730 DNA Analyser. The sequence 

data that was generated was analyzed using BioEdit software. 
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2.7.5.18 Immunoprecipitation 

Reagents: 

• Lysis buffer,  

ice-cold: 

  50 mM NaxH3-xPO4 (pH 7.3)  

150 mM NaCl 

10% (v/v) glycerol 

    1 mM EDTA 

    1 mM Na3VO4 

  10 mM NaF 

0.25% (v/v) NP-40 

      add fresh: 7 mM β-mercaptoethanol 

1 μg/ml pepstatin 

1 tablet complete mini protease inhibitors/10 ml 

• 6 x SDS-PAGE 

sample buffer: 

350 mM Tris-HCl (pH 6.8)  

30% (v/v) glycerol 

10% (w/v) SDS 

0.2 g/l bromophenol blue 

0.6% (v/v) β-mercaptoethanol  

 

• Protein A sepharose, 50% (w/v) slurry in PBS + 0.01% (w/v) NaN3 

• Protein G PLUS agarose, 25% (w/v) slurry  
 

Protocol 
Note: All steps in this protocol are performed on ice or at 4°C, if not indicated 

otherwise. 

Yeast culture samples were thawed at RT and placed on ice. 5 ml ice-cold H2O was 

added to each tube, cells were resuspended and centrifuge for 2 min at 3000 rpm, 

4°C to sediment cells. The supernatant was decanted and 1 Vol. ice-cold lysis buffer 

was added. The cells were lysed by two passages through a French press and the 

solution was transferred into 1.5 ml microcentrifuge tubes and centrifuged at 10,000 

g, 4°C for 10 min. Supernatant was transferred into new tubes and protein 

concentration was determined using Bio-Rad DC Protein Assay kit. Equal protein 

amounts were used in each immunoprecipitation with maximum volume not 

exceeding ~ 500 μl. 50 μg protein was saved for a Western blot with anti-PGK as a 
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loading control for the immunoprecipitation. The volume was adjusted to 500 μl with 

ice-cold lysis buffer in 1.5 ml screw-cap microcentrifuge tube. 20 μl 25% (w/v) protein 

A or G agarose were added using large orifice pipette tips to each 

immunoprecipitation and incubated for 1 h with over head rotation at 4°C. The tubes 

were centrifuge for 2 min at 12,000 g, 4°C to collect beads and the supernatant was 

transferred quantitatively into a new tube. Antibodies and competing peptides were 

added to respective tubes and incubated with over head rotation overnight at 4°C. 20 

μl 50% (w/v/) protein A or G sepharose slurry was added to each 

immunoprecipitation and incubated for another 1 – 2 h at 4°C with overhead rotation. 

Immunoprecipitation reactions were transferred into 1.5 ml spin filter microcentrifuge 

tubes and centrifuged for 2 min at 12,000 g. The flow through was discarded and 

spin filter was placed into a new 1.5 ml centrifuge tube. The sepharose beads were 

washed 3 times with 500 μl ice-cold lysis buffer with 0.1% (v/v) NP-40 and once with 

500 μl ice-cold lysis buffer without NP-40.  Supernatant was separated from beads by 

centrifugation for 2 min at 12,000 g, 4°C. Tubes were centrifuged once more for 2 

min at 12,000 g and 4°C and placed into a clean 1.5 ml microcentrifuge tube. 15 – 20 

μl 6 x  SDS-PAGE sample buffer was added and the samples boiled for 3 min in a 

heat block. After the samples cooled down, eluate was collected by centrifugation for 

2 min at 12,000 g, RT and used for SDS-PAGE gels. 

Reference: (Bonifacino et al., 1999) 

 

2.7.5.19 SDS-PAGE gel electrophoresis 

Protocol: The electrophoresis unit and criterion 4-15% Tris-HCl gradient precast gels 

were assembled according to manufacturer’s instructions and buffer reservoirs filled 

with 1 x SDS-PAGE buffer. Samples were prepared by adding appropriate amount of 

6x SDS-PAGE sample buffer on ice and centrifuged briefly (~15 s) at 12,000 g and 

RT. The samples were then boiled for 5 min at 100ºC and centrifuged again briefly to 

collect the whole sample at the bottom of the tube. The wells were washed by 

pipeting SDS-PAGE buffer several times using gel loading tips. The samples were 

loaded onto gel using gel loading pipette tips. SDS-PAGE electrophoresis unit was 

aligned as per the colour coded banana plug and jacks. 200V voltage of was applied 

until the bromophenol blue dye front nearly elutes from the gel. The electrophoresis 
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unit was disassembled according to manufacturer’s instructions and was processed 

to transfer proteins from gel to a PVDF membrane by immunoblotting. 

Reference: (Gallagher, 1999) 

 

2.7.5.20 Electrotransfer and Western Blot 

Protocol: The stacking gel was cut off and transferred into 100 ml ice-cold transfer 

buffer (10 mM NaHCO3 + 3 mM Na2CO3) and incubated with gentle agitation for 1 h 

at 4ºC. Whatman 3MM papers were incubated in ice-cold transfer buffer and PVDF 

membrane onto ~ 50 ml methanol. Once the PVDF membrane was completely 

wetted, it was transferred to transfer buffer for ~15 min. The gel sandwich was 

prepared by placing cassette with the gray side down on a clean surface followed by 

one pre-wetted fiber pad. A sheet of Whatman 3MM paper was placed onto the 

equilibrated gel to match all edges exactly. Whatman 3MM paper carrying the gel 

was placed onto the fiber pad with the gel facing up. Any air bubbles between the 

Whatman 3M paper and the gel were removed by rolling a Pasteur pipette gently 

over the gel. Pre-wetted PVDF membrane was placed on the gel removing any air 

bubbles. The sandwich was completed by placing a sheet of Whatman 3MM paper 

onto the PVDF membrane and pre-wetted fiber pad onto the Whatman 3MM paper. 

The cassette was firmly closed and locked with the white latch. Magnetic stirrer was 

added in the tank. The gray side of each cassette was placed facing the cathode (- 

pole). The transfer unit was placed into a large plastic a glass tray placed on a stir 

plate in the cold laboratory. The tank was filled completely with ice-cold transfer 

buffer. The lid was put on and cables were plugged into the power supply. Transfer 

was started by setting the voltage to 30 V with stirring of the transfer buffer for 

overnight. Upon completion of the run, membrane was removed by disassembling 

the blotting sandwich. 

Western Blot: The membranes were transformed into plastic trays containing PBST 

(PBS + 0.1% (v/v) tween 20) + 5% (w/v) skim milk powder and incubate 1 h at RT 

with shaking (~50-60 rpm). The membranes were transferred into a 50 ml centrifuge 

tube containing 50 μl/cm2 PBST + 2.5% (w/v) skim milk powder + primary antibody 

(Anti-HA antibody, Roche 12CA5, 100 ng/ml; Anti-PGK, Molecular Probes, 2mg/ml) 

removing any air bubbles between the tube walls and the membrane and incubated 1 
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h at RT with rotation. The membranes were then washed four times with PBST by 

incubating for 5 min at RT with shaking. The membranes were then incubated with 

PBST + 2.5% (w/v) skim milk powder + secondary antibody (anti-mouse IgG-POD-

(Fab’)2;Roche #60530, 1:300 dilution) for 1 h at RT with rotation. The membranes 

were washed with PBST four times for 5 min each at RT with shaking. The blots were 

developed using ECL kit (GE Healthcare). 

References: (Gallagher et al., 1997; Towbin et al., 1979) 
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3.1 CYC1-lacZ reporters for monitoring transcriptional activity under nutrient-
rich conditions 

Meiosis is negatively regulated in the presence of glucose and nitrogen sources and 

this has been extensively studied. However, the direct regulation of meiosis by 

nitrogen abundance is not very well understood. S. cerevisiae diploid cells under 

nitrogen starvation and in the presence of non-fermentable carbon sources undergo 

meiosis (Herskowitz, 1988; Kupiec et al., 1997). The onset of the meiotic program is 

marked by induction of the early meiotic genes. The bZIP transcription factor Hac1ip 

is a negative regulator of early meiotic genes under nitrogen replete conditions 

(Schröder et al., 2000) through the upstream repression site 1 (URS1, 

TCGGCGGCT), present in most of the early meiotic genes. The negative regulation 

of early meiotic genes is shown by an increase in the mRNA levels of early meiotic 

genes in the absence of Hac1ip and repression in the presence of Hac1ip under 

nitrogen starved conditions (Schröder et al., 2004). Further evidence comes from the 

use of CYC1-lacZ reporters, which are routinely used for measuring transcriptional 

activity. In the CYC1-lacZ reporters, the Escherichia coli lacZ gene is fused to the 

CYC1 promoter [Figure 3.1 and (Guarente and Mason, 1983; Kadosh and Struhl, 

1997; Wu et al., 2001; Zhang et al., 1998)]. Schröder et al., 2004 used URS1-CYC1-

lacZ reporters, derivatives of CYC1-lacZ reporters (known as pLGΔ312SΔSS in 

Figure 3.1B) without any upstream activating sequences of the CYC1 promoter to 

study URS1-controlled transcriptional repression by Hac1ip under meiotic growth 

conditions. Hac1ip was constitutively expressed in these experiments, which 

repressed the activation of β-galactosidase from URS1-CYC1-lacZ reporter. 

However, the regulation that underlies nutrient-rich/mitotic growth conditions could 

not be shown directly because pLGΔ312SΔSS constructs show barely detectable 

levels of β-galactosidase under nutrient rich conditions and are only induced under 

meiotic conditions. I wanted to directly demonstrate whether the negative regulation 

of Hac1ip on URS1-controlled genes can be recapitulated in nutrient rich conditions. 

In order to test this we wanted to employ a system that firstly elevates expression of 

a reporter gene mediated through URS1 and secondly it is easily detected in large 

number of samples. Early meiotic genes are repressed in nutrient rich conditions and 

so their mRNA cannot be detected easily (Kupiec et al., 1997). Moreover early 

meiotic gene transcripts are highly unstable when expressed during vegetative 
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growth or sporulation (Surosky and Esposito, 1992). Analysis by reporter system 

allows monitoring specific changes at transcriptional level as compared to techniques 

like quantitative real time RT-PCR, which also depends on mRNA stability rather than 

transcription initiation. Therefore we decided to use heterologous promoter to elevate 

expression of a reporter gene that can be used to measure transcriptional activity 

with relative ease. β-Galactosidase reporter assays are routinely used for testing 

transcriptional activity at a promoter element of interest. Transcriptional activity 

regulated by cis acting element can be studied by cloning in a heterologous promoter 

upstream of lacZ. The transcriptional regulation can be detected by colorimetric 

estimation of β-galactosidase activity without having to detect mRNA transcripts in 

multiple samples. The principal advantage of these assays is their high sensitivity, 

reliability, convenience, inexpensive and adaptability to large-scale measurements. 

β-Galactosidase reporter employs an enzyme assay as compared to non-enzymatic 

fluorescence based reporters and therefore allows quantitative study of 

transcriptional induction and repression phenomenon. Advances in microplate 

technology have allowed both assay miniaturization and the possibility to save time, 

reagents and increase dramatically the number of samples analysed. The use of β-

galactosidase reporter enzymes allows a more rapid and equally sensitive method for 

detection of transcription than the analysis of specific transgene transcripts within the 

cells. Construction of a control reporter where introduction of point mutations in 

URS1, can prevent binding of Ume6p is convenient in comparison to manipulation of 

URS1 in the endogenous genes. Since β-Galactosidase reporter also can be applied 

to a wide variety of other experimental uses, construction of destabilised reporters is 

useful as well as a technical advancement in the field. The pLGΔ312SΔSS 

constructs without any CYC1 upstream activating sequences have barely detectable 

levels of β-galactosidase in nutrient-rich vegetative (mitotic) growth conditions, 

precluding the use of pLGΔ312SΔSS based plasmids to investigate whether Hac1ip 

represses on URS1 in vegetative growth conditions (Bowdish and Mitchell, 1993; 

Kadosh and Struhl, 1997; Schröder et al., 2004). Therefore we needed a reporter 

system that was elevated under nutrient rich conditions. Figure 3.1 shows various 

derivatives of CYC1-lacZ reporters widely used to study transcriptional activity driving 

the expression of β-galactosidase by heterologous promoter elements. pLGΔ312S-

based plasmids, which contains CYC1 upstream activating sequences and show 

robust mitotic expression suited the purpose of the study (Figure 3.1A). The CYC1 
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fragment -324 to +141, which includes two UASCYC1 and the TATA region, is fused to 

β-galactosidase encoded by the lacZ region (Guarente and Mason, 1983). The 

plasmid pLGΔ312S-INO1 contains one URS1 element from INO1 gene and 

pLGΔ312S-IME2 contains two URS1 elements from IME2 gene and are located in 

the CYC1 promoter immediately upstream of UASCYC1 [Figure 3.1C and (Kadosh and 

Struhl, 1997)]. I employed the URS1 containing CYC1-lacZ reporters to test the 

transcriptional activity mediated on URS1 elements in vegetative growth conditions.  

S. cerevisiae WT strains were transformed with pLGΔ312S, pLGΔ312S-INO1 and 

pLGΔ312S-IME2 and their transcriptional activity was monitored in cells grown in 

nutrient-rich synthetic acetate medium (PSP2 medium) and harvested at exponential 

phase to measure β-galactosidase levels. The steady state levels of URS1-CYC1-

lacZ reporters expressed under the CYC1 promoter containing 0, 1 or 2 URS1 sites 

is shown in Figure 3.2. β-Galactosidase is expressed at elevated levels from URS1-

CYC1-lacZ reporter plasmids with or without any URS1 under nutrient-rich 

conditions. The mitotic repression is not remarkable with one URS1 site but in 

presence of two URS1 sites there is a repressing trend in nutrient rich conditions.  

The URS1-CYC1-lacZ reporters show elevated expression in nutrient-rich conditions 

without any URS1 sites, making them appropriate to study transcriptional regulation 

at URS1 in nutrient abundance as compared to UAS-less CYC1-lacZ reporters. 

Under mitotic growth conditions the URS1 site is repressed by an array of proteins 

recruited by Ume6p to repress early meiotic genes, but this repression is relieved 

under meiotic conditions allowing transcription of early meiotic genes (Kupiec et al., 

1997). pLGΔ312ΔSS-based plasmids used in the study by Schröder, et al., 2004 

have shown that constitutively expressing HAC1i under nitrogen starved conditions 

represses β-galactosidase levels through URS1 but in the presence of nitrogen no 

clear conclusion could be implied due to weak expression of these reporter plasmids. 

However, deletion of HAC1 derepresses this regulation in nitrogen-rich conditions. 

This may be because HAC1i splicing occurs at basal levels in vegetatively growing 

cells and may induce some repression through URS1. In order to demonstrate 

negative regulation by Hac1ip through URS1, ectopic Hac1ip expression may be 

necessary in nutrient-rich conditions. Therefore, induced expression of HAC1i would 

suit the purpose of the experiment to capture the repression mediated by Hac1ip. 



Figure 3.1. CYC1-lacZ reporter constructs used to study transcriptional activity. 
List of CYC1-lacZ constructs containing UASCYC1 and URS1 used in this study and 
various other studies  for measuring transcriptional activity mediated via URS1. URS1-
upstream repressing site 1;UAS-upstream activating sequence; X a.a.-N-terminal 
amino acid of lacI. CYC1’ denotes the one codon fused to lacI. The arrows indicate 
open reading frames and their direction of transcription. C and D have been referred in 
the text as URS1-CYC1-lacZ and URS1-CYC1-Ub-X-lacZ reporters respectively. 
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Figure 3.2. Steady state levels of β-galactosidase encoded by URS1-CYC1-lacZ 
containing zero, one and two URS1 sites expressed in vegetative growth 
medium. (A) WT strains MSY138-17 and MSY 133-34 were transformed with 
pLGΔ312S, pLGΔ312S-INO1 and pLGΔ312S-IME2 and grown in synthetic acetate 
medium (PSP2 medium) and harvested at exponential phase to measure β-
galactosidase levels. (B) The fold repression is defined as the ratio of β-galactosidase 
expressed from plasmid with zero URS1 sites to one or two URS1 sites. The average 
and standard error from at least three independent transformants are shown. 
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3.2 Demonstration of Hac1ip-mediated negative regulation of EMGs through 
URS1 

The splicing of HAC1 mRNA increases in response to the high nitrogen levels and 

lead to synthesis of Hac1ip and activate a basal UPR, while splicing ceases under 

nitrogen starvation (Schröder, 2000). When Hac1ip was overexpressed it had little or 

no effect on IME1 mRNA levels but repressed IME2 levels including other meiotic 

and non-meiotic genes containing URS1 (Schröder et al., 2000; Schröder et al., 

2004). Overexpression of Hac1ip represses through URS1 under nitrogen starvation 

conditions and when HAC1 was deleted, expression of genes containing URS1 

derepressed modestly (~2 fold). However, we wanted to investigate whether Hac1ip 

negatively regulates through URS1 in nutrient rich conditions. The results in figure 
3.2 show that URS1-CYC1-lacZ reporters have elevated expression under nitrogen-

rich conditions and repressing trend in the presence of URS1, which allows these 

reporters to study regulation under nitrogen-rich conditions. To investigate the Hac1ip 

-mediated repression on EMGs via URS1 in nitrogen-rich conditions, I decided to use 

URS1-CYC1-lacZ reporters (Figure 3.1A and C).  

In nitrogen-rich conditions a basal UPR is active, which splices HAC1 mRNA leading 

to some repression (Bicknell et al., 2007; Kuhn et al., 2001; Schröder et al., 2000). 

Constitutively expressing spliced form of HAC1i slows the growth of the cells and is 

toxic to the cells (Mori et al., 2000). Therefore ectopic expression of HAC1i from an 

inducible system addresses the potential problem of repression by Hac1ip 

synthesized from basal UPR activation and toxicity to cells. The expression of Hac1ip 

was induced from pRS423-GRE3-HA-HAC1i, which contains three glucocorticoid 

response elements and expression is induced only in the presence of glucocorticoid 

receptor (pG-N795) (Schena et al., 1991) and steroids. Hac1ip is successfully 

induced under the control of glucocorticoid response elements in the presence of the 

steroid deoxycorticosterone (DOC) and the rat glucocorticoid receptor expressed 

constitutively in yeast (Figure 3.3B) and (Schröder et al., 2004). In figure 3.3B, the 

Western blot was carried out on supernatant of Sin3p immunoprecipitation samples 

and blocking peptide used here competes with Sin3p for binding to anti-Sin3 

antibody. Blocking peptide does not affect detection of non-Sin3p bound Hac1ip, 

which is overexpressed here and therefore present in molar excess as compared to 

Sin3p. The levels of β-galactosidase, when Hac1ip was induced by DOC were mostly 

unchanged in the presence of URS1 elements (Figure 3.3A). 
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The levels of β-galactosidase remain unchanged in the strains containing one or two 

URS1 sites as compared to no URS1 site in the presence of induced Hac1ip. The 

repression of IME2 and INO1 mRNA levels seen in the Northern blot analysis by 

overexpression of HAC1i could not be seen with the URS1-CYC1-lacZ reporters 

(Schröder, 2004). The expression of Hac1ip which is induced from inducible plasmid 

pRS423-GRE3-HA-HAC1i on addition of 50 μM DOC for 1 hour in the presence of 

glucocorticoid receptor expressed from pG-N795 was checked by Western blot 

(Figure 3.3B) and (Schröder et al., 2004). If the repression on β-galactosidase levels 

is caused by Hac1ip synthesized from basal UPR activation, the inducible system 

would not allow any further repression by Hac1ip expression. The other possibility is 

that the long half-life of the reporter protein β-galactosidase masks any dynamic 

changes in transcriptional activity caused by inducible expression of HAC1i. In the 

presence of Hac1ip, any transcriptional repression caused by Hac1ip on URS1-

controlled β-galactosidase expression may be masked owing to the longer half-life of 

β-galactosidase (>30 h). Thus data from figure 3.2 and figure 3.3 suggests that an 

inducible expression of Hac1ip did not repress the β-galactosidase levels possibly 

due to already present Hac1ip from basal UPR activation and may be due to residual 

activity of β-galactosidase due to its long half-life, which may hinder the testing of 

transcriptional regulation under vegetative growth conditions. One problem with β-

galactosidase reporter systems is the relatively long half-life, which prevents 

monitoring of dynamic changes during gene regulation. Background expression due 

to preexisting reporter molecules present within the cells before the actual 

experiment cause a low signal-to-noise ratio. Therefore use of destabilized reporter 

system can give a low background as pre-existing β-galactosidase molecules are 

rapidly degraded and this can provide a broad dynamic range to the assay. 

Therefore, to test the possibility that β-galactosidase half-life and therefore residual 

activity hinders monitoring of transcriptional activity I decided to reduce the half-life of 

β-galactosidase.   

 

  



Figure 3.3. Inducible expression of Hac1ip does not repress β-galactosidase 
driven by URS1 encoded by URS1-CYC1-lacZ reporters. (A) Expression of URS1-
CYC1-lacZ in the presence of Hac1ip induced by 50 µM DOC for one h in strains 
grown in PSP2 medium. The average and standard error from at least three 
independent transformants are shown. (B) HA tagged Hac1ip is induced by DOC for 1 
h in lane 3 and 4 as detected by Western blot. Supernatant of the samples used for 
immunoprecipitation with anti-Sin3 antibody were used here. The blocking peptide in 
lane 2 and 4 competes with Sin3p for binding to anti-Sin3 antibody. HA tagged Hac1ip 
was detected by anti-HA antibody and phosphoglycerate kinase (PGK) was detected 
as loading control. 
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3.3 Construction of URS1-CYC1-Ub-X-lacZ reporters 

The β-galactosidase with higher half-life may mask the transcriptional activity 

mediated by URS1. In order to remove the background β-galactosidase rapidly we 

decided to decrease the half-life of β-galactosidase so that we can use URS1-CYC1-

lacZ reporters to measure transcriptional repression. The N-terminal amino acid 

residue can determine the stability of the protein and this pathway is called the N-end 

rule (Varshavsky, 1997). Features that confer metabolic instability to the protein are 

called degrons. In eukaryotes, the N-degron consists of three determinants: a 

destabilizing N-terminal amino acid of the protein substrate, the internal lysine 

residue which forms the anchor for the ubiquitin chain and the conformationally 

flexible region in the vicinity of the other determinants required for ubiquitylation 

and/or degradation (Hu et al., 2006). The destabilizing residues are recognized by N-

recognins and the N-end rule substrates are tagged with ubiquitin to allow 

degradation by the 26S proteosome (Hu et al., 2006). When a chimeric gene 

encoding the ubiquitin-β-galactosidase fusion protein is expressed in yeast, ubiquitin 

is cleaved off the nascent polypeptide exposing the amino acid residue present at the 

ubiquitin-β-galactosidase junction, thereby making it possible to express a β-

galactosidase protein with different amino acid residues on its amino-terminus. These 

β-galactosidase proteins can have a varied half-life from less than 3 min to more than 

30 hours depending on the β-galactosidase amino acid residue exposed after 

cleavage of ubiquitin. Thus, an amino acid residue at the N-terminus of the protein 

can decide the stability of the protein (Bachmair et al., 1986; Bachmair and 

Varshavsky, 1989). The metabolic instability of engineered N-end rule substrates is 

due to degradation signals called degrons, which are recognised by N-recognins (E3 

ubiquitin ligases). Decrease in half life of β-galactosidase protein based on N-end 

rule relies on post-translational removal of the ubiquitin moiety by proteases 

(Bachmair et al., 1986). Since techniques like Northern Blot and highly sensitive 

quantitative real time RT-PCR detect all the lacZ mRNA transcripts irrespective of 

destabilisation of β-galactosidase protein, use of enzymatic detection of β-

galactosidase as transcriptional output give more dynamicity to the assay.  
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The pUB23 and pLGΔ312S series of plasmids were used to construct URS1-CYC1-

Ub-X-lacZ reporters (Bachmair et al., 1986; Bachmair and Varshavsky, 1989; 

Guarente and Mason, 1983). The Ub-X-lacZ reporter plasmids (pUB23) contain the 

ubiquitin moiety which is fused to β-galactosidase coding region and the amino acid 

after ubiquitin coding region is changed from methionine to a destabilizing residue. 

This allows the first amino acid of the β-galactosidase coding region to be changed to 

any amino acid substituting methionine. Expression of Ub-β-gal fusion proteins is 

driven by the inducible GAL1,10 promoter [(Bachmair and Varshavsky, 1989) and 

(Figure 3.4)]. In order to use these reporters to monitor transcriptional activity 

through URS1, the GAL1,10 promoter has to be replaced by a constitutive promoter 

carrying URS1 elements. The reporter plasmids with URS1 containing promoter 

sequences cloned upstream of UASCYC1 were used to replace the GAL1,10 promoter 

(Figure 3.1 and Figure 3.4). The sequence encoding ubiquitin moiety with different 

amino acid residue was amplified by PCR from pUB23M, pUB23K, pUB23L and 

pUB23R plasmids (Bachmair and Varshavsky, 1989) using primers A1 and A2. The 

B1 and B2 primers were used to amplify a fragment from pLGΔ312S-IME2 or 

pLGΔ312S-INO1 or pLGΔ312S that would amplify a region spanning the URA3 

region, URS1 sequence and the lacZ region. The primers A2 and B2 were designed 

to have an overhang complementary to each other to get a fusion PCR product as 

shown in Figure 3.4. Primers A1 and B1 were designed to amplify fragments that 

would contain NarI and PspOMI sites respectively, so that the resulting fusion PCR 

product could be digested using these restriction enzymes and cloned into 

pLGΔ312S-IME2. As shown in Figure 3.4 this would result in a PCR product having 

the sequence URA3-URS1 (2, 1 or 0)-P’CYC1-ubiquitin-X amino acid-lacI-lacZ. The 

cloning of the fusion product into pLGΔ312S plasmids using restriction enzyme NarI 

and PspOMI only yielded pVP-IME2-M-β-gal and pVP-IME2-L-β-gal. One reason was 

that digestion of vector with NarI and PspOMI was inefficient. The other reason could 

be inefficient digestion of PCR product. Therefore, the fusion products were first 

cloned into pSTBlue-1 blunt vector. Cloning of fusion products released from 

pSTBlue-1 vector by digestion with NarI and PspOMI into pLGΔ312S was not 

successful either. Therefore I resorted to gap repair method of homologous 

recombination in yeast, which does not depend on requirement of sticky ends of DNA 

for ligation but only requires homologous sequences in the vector and insert (Ma et 

al., 1987). Figure 3.5 shows the strategy used to clone the fusion products by the 
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gap repair method. The fusion product released with EcoRI from pSTBlue-1 Blunt 

vector and BamHI-digested pLGΔ312S plasmid fragment have homologous regions 

at URA3 and lacI. Co-transformation of these fragments into S. cerevisiae allows 

homologous recombination to yield the final plasmid as shown in figure 3.5. 

Formation of functional URA3 metabolic marker in the plasmid constructed by 

homologous recombination allowed selection in a ura3 strain on uracil dropout plates. 

Plasmids were extracted from yeast and transformed into E. coli. The reporters with 

isoleucine and glutamine were obtained by site-directed mutagenesis of the 

constructed plasmids (Table 3.1). These reporters are now referred to as URS1-

CYC1-Ub-X-lacZ reporters which contain 0, 1 (from INO1) or 2 URS1 (from IME2) 

and the N-terminal amino acid of β-galactosidase exposed is denoted by ‘X’, which is 

methionine, lysine, leucine, arginine, isoleucine or glutamine. The individual plasmids 

as shown in figure 3.1 are designated as pVP-IME2-X- β-gal containing two URS1 

sites, pVP-INO1-X- β-gal containing one URS site and pVP-X- β-gal containing no 

URS1 site. As a result the destabilized URS1-CYC1-Ub-X-lacZ reporters would 

encode β-galactosidase with lower half lives that may be useful to achieve dynamic 

and tighter monitoring of the transcriptional regulation by Hac1ip.   
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Figure 3.4. Cloning strategy for URS1-CYC1-Ub-X-lacZ reporter plasmids. The 
fusion product was amplified using A1 and B1 primers and was cloned into pLGΔ312S 
or pST-Blue1 vector. 
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Table 3.1. List of cloning strategies for the construction of destabilized URS1-CYC1-

Ub-X-lacZ reporters. 

Sr. No. Plasmid Method 

1. pVP-IME2-M-β-gal 

& 

pVP-IME2-L-β-gal 

 

Fusion PCR and cloning into pLGΔ312S-IME2 at NarI 

and PspOMI 

2. pVP-IME2-K-β-gal  

pVP-IME2-R-β-gal  

pVP-INO1-M-β-gal 

pVP-INO1-K-β-gal 

pVP-INO1-L-β-gal 

pVP-INO1-R-β-gal 

pVP-M-β-gal  

pVP-K-β-gal  

pVP-L-β-gal  

pVP-R-β-gal 

Fusion PCR, cloning into pSTBlue-1 vector, Gap repair  

3. pVP-IME2-I-β-gal 

pVP-IME2-Q-β-gal 

  

pVP-INO1-I-β-gal  

pVP-INO1-Q-β-gal 

 

pVP-I-β-gal  

pVP-Q-β-gal 

Site-directed mutagenesis of pVP-IME2-R-β-gal using 

I-β-gal and Q-β-gal oligonucleotides containing silent 

restriction site BauI 

Site-directed mutagenesis of pVP-INO1-R-β-gal using 

I-β-gal and Q-β-gal oligonucleotides containing silent 

restriction site BauI 

Site-directed mutagenesis of pVP-M-β-gal using I-β-gal 

and Q-β-gal oligonucleotides containing silent 

restriction site BauI 

 

 

The URS1-CYC1-Ub-X-lacZ reporters were digested with EcoRV and BamHI to 

confirm the predicted fragments. Restriction digestion analysis (Figure 3.6A-F) 

showed expected fragments. The selected clones were checked for the N-terminal 

amino acid of β-galactosidase in each construct by sequencing. Figure 3.6G shows 

the sequences of the constructed plasmids compared with the original plasmid used 
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for plasmid construction. URS1-CYC1-Ub-X-lacZ reporters show different amino acid 

residues at the N-terminus. The silent restriction site BauI introduced in isoleucine 

and glutamine plasmid constructs by site directed mutagenesis produced an extra 

band and this was checked by restriction enzyme digestion with BauI (Figure 3.6E-F) 

and then confirmed by sequencing (Figure 3.6G). The silent restriction site, BauI can 

be seen in the sequences of pVP-I-β-gal and pVP-Q-β-gal plasmids. 

 

 

 

  



Figure 3.6A. Confirmation of pVP-IME2-M-β-gal and pVP-IME2-K-β-gal reporter 
plasmids by restriction digestion analysis. The plasmids digested with BamHI and 
EcoRV showing the expected fragment sizes were confirmed by sequencing. 
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Figure 3.6B. Confirmation of pVP-IME2-L-β-gal and pVP-IME2-R-β-gal reporter 
plasmids. The plasmids digested with BamHI and EcoRV showing the expected 
fragment sizes were confirmed by sequencing. 
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Figure 3.6C. Confirmation of pVP-INO1-M-β-gal, pVP-INO1-K-β-gal, pVP-INO1-L-
β-gal and pVP-INO1-R-β-gal reporter plasmids. The plasmids digested with BamHI 
and EcoRV showing the expected fragment sizes were confirmed by sequencing. 
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Expected fragment sizes 

Plasmid Enzyme Predicted fragments 

pLGΔ312S-INO1 BamHI 9664 bp + 448 bp 

EcoRV 7785 bp + 2327 

pVP-INO1-M- β-gal 
pVP-INO1-K- β-gal 
pVP-INO1-L- β-gal 
pVP-INO1-R- β-gal 
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9664 bp + 676 bp 
7785 bp + 2555 bp 
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Figure 3.6D. Confirmation of pVP-M-β-gal, pVP-K-β-gal, pVP-L-β-gal and pVP-R-
β-gal reporter plasmids. The plasmids digested with BamHI and EcoRV showing the 
expected fragment sizes were confirmed by sequencing. 
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Plasmid Enzyme Predicted fragments 

pLGΔ312S BamHI 10063 bp  

EcoRV 7785 bp + 2278 bp 

pVP-M- β-gal 
pVP-K- β-gal 
pVP-L- β-gal 
pVP-R- β-gal 
 

BamHI 
EcoRV 

10291 bp 
7785 bp + 2506 bp 

Expected fragment sizes 
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Figure 3.6E. Confirmation of pVP-IME2-Q-β-gal, pVP-IME2-I-β-gal, pVP-INO1-Q-
β-gal and pVP-INO1-I-β-gal reporter plasmids. The plasmids digested with BamHI 
and EcoRV showing the expected fragment sizes were confirmed by sequencing. 
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Figure 3.6F. Confirmation of pVP-Q-β-gal and pVP-I-β-gal reporter plasmids. The 
plasmids digested with BamHI and EcoRV showing the expected fragment sizes were 
confirmed by sequencing. 
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Figure 3.6G. Comparison of lacZ N-terminal amino acid residues of URS1-CYC1-
Ub-X-lacZ reporter plasmids. URS1-CYC1-Ub-X-lacZ reporter plasmids were  
sequenced and confirmed for the N-terminal amino acid by comparing it to the original 
plasmids; pUB23-M and pLGΔ312S. pVP-I-β-gal and pVP-Q-β-gal plasmid sequences 
with BauI silent restriction site introduced by site-directed mutagenesis. DNA  bases 
are colour coded and amino acids are black colour. 
 

Ubiquitin - 76 aa β-galactosidase - 1045 aa 

C.ACGAG 

BauI   
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3.4 Validation of URS1-CYC1-Ub-X-lacZ reporters 

The newly constructed reporters (now called URS1-CYC1-Ub-X-lacZ reporter) 

express chimeric ubiquitin-β-galactosidase protein, which is designed to have a 

decreased half-life due to destabilizing amino acid residues at the N-terminal end of 

the β-galactosidase. Expression of β-galactosidase from URS1-CYC1-Ub-X-lacZ 

reporter is driven by the CYC1 promoter and is expected to be mitotically repressed 

through URS1. β-Galactosidase with decreased half-life are expected to increase the 

dynamic range of the assay and validate the use of these reporters to monitor the 

transcriptional repression via URS1. To test whether the half-lives of destabilized β-

galactosidase has been decreased and validate the mitotic repression in newly 

constructed reporter plasmids, we measured the steady state levels of β-

galactosidase in wild type strains. The URS1-CYC1-Ub-X-lacZ reporter plasmids 

were transformed into a wild type strain and grown in synthetic acetate (PSP2) 

medium, harvested in the exponential growth phase and frozen at -20oC before using 

them for the β-galactosidase assays. The decreased steady state levels of the 

destabilised β-galactosidase protein due to decreased half lives can be seen in 

Figure 3.7. In the strains containing the plasmid with 0 URS1 sites, the β-

galactosidase levels have decreased ~five fold with leucine and arginine and ~15 fold 

with glutamine at N-terminal amino acid as compared to the methionine residue at 

the N-terminus. The β-galactosidase levels exposing destabilising N-terminal amino 

acid residues (Q, L and R) have decreased steady state levels reflecting the lower 

half-life as compared to β-galactosidase with methionine at the N-terminal end 

(compare zero URS1 sites). The β-galactosidase levels for isoleucine were very low 

and so were omitted in the later experiments. On comparing β-galactosidase levels 

exposing methionine residues without URS1 sites, there was ~three fold repression 

with URS1 (compare zero URS1 to one and two URS1 with methionine residues). 

There was ~1.5-2.5 fold repression with leucine and arginine amino acids containing 

one and two URS1 as compared to zero URS1 (compare zero to one and two URS1 

for leucine and arginine). There was no remarkable increase in repression with an 

increase in the number of URS1 elements with methionine, leucine and arginine 

residues (compare one and two URS1).  

The steady state levels have decreased when chimeric proteins start with 

destabilising N-terminal amino acid residues. But surprisingly the presence of 
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ubiquitin moiety in the chimeric β-galactosidase led to repression in levels of β-

galactosidase exposing methionine residues (Figure 3.7) when compared to β-

galactosidase levels in figure 3.2. De-ubiquitination of the nascent ubiquitin-β-

galactosidase chimera was not affected by the type of amino acid at the ubiquitin-β-

galactosidase junction (Bachmair et al., 1986). Same study also showed that the half 

life of the ubiquitin-Met-β-galactosidase and control β-galactosidase, which was not 

fused to ubiquitin were comparable. This indicates that fusing ubiquitin to β-

galactosidase N-terminal end does not affect half life and therefore steady state 

levels. However the variation in degradation of β-galactosidase encoded from slightly 

different URS1-CYC1-Ub-lacZ reporters due ubiquitin moiety cannot be excluded 

completely. It should be noted that while the repression in ubiquitin-Met-β-

galactosidase was reproducible, the magnitude of this repression was variable. This 

is possibly caused due to protease susceptibility of ubiquitin-Met-β-galactosidase. 

However, quantitatively more reproducible data was achieved by addition of protease 

inhibitors to the extraction buffer. This is evident in the subsequent experiments, 

where mitotic repression is reproducible and not over 1.5 fold (Figure 3.8 and 3.9).  

The β-galactosidase levels are repressed in the presence of URS1, which 

corroborates that the early meiotic gene promoters containing URS1 are maintained 

in a repressed state under mitotic growth conditions and validating the assay system. 

We selected the destabilised β-galactosidase reporters with leucine and arginine as 

the N-terminal amino acid for further experiments as these constructs show lowered 

steady state levels and repression in the presence of URS1. 

 

 

 

 

 

 

 

 

 

 

 

 



 B 

0     1     2   
 
      M  

0     1     2 
 
       I    

 0     1     2 
     
      Q 

  0     1     2 
  
        L 

  0     1     2 
 
        R 

0 

2500 

5000 

7500 

10000 

URS1 (y) 

 Amino acid (x) 

β-
ga

la
ct

os
id

as
e 

(U
/m

g)
 

**P=0.0045 

ns 

 A 

Fo
ld

 re
pr

es
si

on
 

URS1       1      2      1      2      1      2      1      2 

M             Q              L              R 

0 

1 

2 

3 

4 

Figure 3.7. Decreased steady state levels of β-galactosidase expressed by 
URS1-CYC1-Ub-X-lacZ reporters and repression by URS1  in vegetative growth 
conditions. Wild type strain (MSY 134-36) strain was transformed with the reporters 
plasmids  and grown to exponential phase and used for the assay. The average and 
standard error from at least three independent transformants are shown. (B) Fold 
repression is defined here as the ratio of β-galactosidase expressed from a plasmid 
without URS1 sites to β-galactosidase expressed from a plasmid with one or two 
URS1 sites. 
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3.5 Discussion 

In order to study the transcriptional repression by Hac1ip at URS1, I first looked at the 

expression of URS1-CYC1-lacZ reporters in nitrogen-rich conditions. Kadosh and 

Struhl, 1997 have demonstrated mitotic repression on URS1 with URS1-CYC1-lacZ 

reporters based plasmids. Expression of β-galactosidase from CYC1-lacZ reporters 

showed robust expression (figure 3.2) as compared to UAS-less reporters (Schröder 

et al., 2004). Since URS1 is a mitotically repressed site, the level of β-galactosidase 

containing URS1 under mitotic growth conditions should be lowered. When plasmids 

containing two URS1 sites were compared to plasmids containing no URS1 site, the 

repression in β-galactosidase levels directed by URS1 was not remarkable, but there 

was a repressing trend (Figure 3.2). This indicates that URS1 sites in the CYC1 

promoter do not show robust mitotic repression. Induced expression of Hac1ip didn’t 

cause any further repression possibly due to long half-life of β-galactosidase (Figure 

3.3). Therefore, β-galactosidase was destabilized using N-end rule. As a result, 

URS1-CYC1-Ub-X-lacZ reporters were created and steady state levels of β-

galactosidase were decreased due to mitotic repression at URS1 (figure 3.7). 
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3.6 Demonstration of Hac1ip-mediated negative regulation of EMGs through 
URS1 using URS1-CYC1-Ub-X-lacZ reporters 

In order to circumvent the potential problem caused by the long half-life of β-

galactosidase (>30 h) and masking of transcriptional repression mediated by URS1, 

we used the destabilised URS1-CYC1-Ub-X-lacZ reporters. The leucine and arginine 

amino acid residues at the N-terminal end of the lacZ coding region decreased the 

half-life of β-galactosidase to three min and two min, respectively [(Bachmair and 

Varshavsky, 1989; Balzi et al., 1990; Gonda et al., 1989) and Figure 3.7]. The levels 

of β-galactosidase were also decreased in the presence of URS1 sites depicting the 

repression under mitotic growth conditions (Figure 3.7). I employed URS1-CYC1-Ub-

X-lacZ reporters encoding β-galactosidase with decreased half-lives to test whether 

Hac1ip represses through URS1 under nitrogen-rich conditions. In order to do this 

Hac1ip was constitutively expressed from pRS314-HAC1i driven by its endogenous 

promoter (Schröder et al., 2004). I chose plasmid constructs with methionine, leucine 

and arginine at the ubiquitin-β-galactosidase junction to drive the expression of β-

galactosidase from URS1 sites. A WT strain was co-transformed with URS1-CYC1-

Ub-X-lacZ reporter (either containing zero or two URS1 sites) and pRS314-HAC1i. 

Plasmid pRS314 was transformed as a vector control. The strains carrying the 

combinations of the plasmids were grown in vegetative growth medium and 

harvested at exponential phase of growth to measure β-galactosidase levels. In the 

presence of Hac1ip, the URS1-CYC1-Ub-X-lacZ reporters with methionine and 

leucine do not show any repression (Figure 3.8). Mitotic repression in the presence 

of URS1 can be still seen (~1.3 fold for the methionine plasmid and ~three fold for the 

leucine plasmid). β-Galactosidase levels expressed from arginine constructs donot 

show remarkable mitotic repression seen in other constructs but show ~1.7 fold 

repression in the presence of Hac1ip. Expression of Hac1ip does not cause any 

decrease of β-galcatosidase levels. Therefore Hac1ip-mediated repression cannot be 

concluded as expression of Hac1ip does not repress β-galactosidase URS1. β-

Galactosidase levels measured for constructs with arginine at the N-terminus of β-

galactosidase protein were barely detectable when the same number of cells were 

used as for other constructs possibly due to decreased half-life of ~two min. This 

causes variation in β-galactosidase assay and therefore a difficulty in using arginine 

constructs. 
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The negative regulation of Hac1ip on early meiotic genes mediated by URS1 could 

not be corroborated when URS1-CYC1-Ub-X-lacZ reporters were expressed in the 

presence of Hac1ip expressed from its endogenous promoter in nitrogen-rich 

conditions. The constitutive expression of Hac1ip from pRS314-HAC1i has been 

shown by Schröder et al, 2004.  

 

 

  



Figure 3.8. Expression of URS1-CYC1-Ub-X-lacZ reporters in the presence of 
Hac1ip. URS1-CYC1-Ub-X-lacZ reporters (X= M, L or R; URS1=0,1 or 2) are 
expressed in the presence of Hac1ip expressed from pRS314-HAC1i in WT strain 
(MSY 134-36). The fold repression is the ratio of β-galactosidase levels expressed 
from a plasmid with zero URS1 to β-galactosidase levels expressed from a plasmid 
with two URS1 sites. The average and standard error from at least three independent 
transformants are shown. (B) Fold repression is defined here as the ratio of β-
galactosidase levels expressed from a plasmid without URS1 sites to β-galactosidase 
levels expressed from a plasmid with two URS1 sites. 
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3.7 Disruption of Hac1ip-mediated negative regulation in hac1Δ 

The destabilisation of β-galactosidase in the URS1-CYC1-Ub-X-lacZ reporters did 

not reveal repression mediated by Hac1ip through URS1 (Figure 3.8). This is 

surprising because induced expression of Hac1ip repressed transcription of EMGs 

and β-galactosidase levels from UAS less CYC1-lacZ reporters under nitrogen 

starvation conditions suggested negative regulation of EMGs through URS1 

(Schröder et al., 2000; Schröder et al., 2004). An alternative explanation is that 

endogenously spliced Hac1ip under vegetative growth may be enough to mediate 

repression through URS1 on early meiotic genes. To test whether endogenously 

spliced Hac1ip under vegetative growth is sufficient to repress through URS1, I 

decided to delete HAC1 and test URS1-CYC1-Ub-X-lacZ reporters in the hac1Δ 

strains. 

In order to demonstrate the repression caused by Hac1ip synthesized in vegetatively 

growing cells, the URS1-CYC1-Ub-X-lacZ reporters were transformed into a HAC1 

null mutant (hac1Δ) strain and a WT strain and grown under vegetative growth 

conditions (synthetic minimal acetate medium; PSP2). β-Galactosidase levels were 

measured from cells harvested at exponential phase (Figure 3.9). The methionine 

plasmids show moderate mitotic repression (~1.5 fold) in the WT strain. When HAC1 

was deleted, β-galactosidase levels were activated moderately (~0.68 fold) in the 

presence of two URS1 sites. The β-galactosidase reporters with leucine as N-

terminal amino acid showed ~two fold repression in the presence of URS1 sites in 

the WT strain. But in the absence of Hac1ip (hac1Δ) the leucine constructs showed 

~0.17 fold activation in β-galactosidase levels (Figure 3.9B). When the WT strain 

was compared to hac1Δ (Figure 3.9C), deletion of HAC1 leads to ~2.5 fold activation 

with methionine plasmids and ~13 fold activation of β-galactosidase levels with 

leucine plasmids. So the mitotic repression at URS1 is abolished in absence of 

Hac1ip.                                                                                                                                       

The repression by Hac1ip via URS1 is relieved when Hac1ip is deleted in HAC1 null 

mutant suggesting the disruption of negative regulatory mechanism on URS1. The 

activation of β-galactosidase levels under nitrogen-rich conditions in hac1Δ strains 

indicates that Hac1ip also regulates URS1-controlled genes in nutrient-rich conditions 

to repress meiosis.  



Figure 3.9 Repression is relieved in the absence of Hac1ip. Expression of URS1-
CYC1-Ub-X-lacZ reporters in a HAC1 null mutant (hac1Δ) and WT strain in minimal 
synthetic acetate (PSP2) medium. The amino acid residues  at the N-terminus of β-
galactosidase are methionine (M) and leucine (L). The average and standard error 
from at least three independent transformants are shown. (B) The fold repression 
depicts mitotic repression by URS1 sites. Fold repression is the ratio of β-
galactosidase levels from a plasmid with zero URS1 sites to β-galactosidase levels 
from a plasmid with two URS1 sites and fold activation is the ratio of β-galactosidase 
levels from a plasmid with two URS1 sites to β-galactosidase levels from a plasmid 
with zero URS1 sites. (C) Activation of β-galactosidase levels is calculated as the ratio 
of the fold repression of WT to hac1Δ. 
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3.8 Discussion 

URS1-CYC1-Ub-X-lacZ reporters encoding β-galactosidase with decreased half lives 

were tested in the presence of constitutively expressed Hac1ip. The negative 

regulation of Hac1ip on early meiotic genes mediated by URS1 could not be seen in 

URS1-CYC1-Ub-X-lacZ reporters (Figure 3.8). The cells in this experiment were 

grown in minimal acetate medium (PSP2). PSP2 contains acetate as the sole source 

of carbon. The level of HAC1 mRNA splicing is reported to be higher in the presence 

of acetate as carbon source (2% acetate in YPAc) as compared to other carbon 

sources tested (Schröder et al., 2000). Thus the abundance of Hac1ip under these 

conditions (minimal acetate vegetative medium; 1% acetate) may be enough to 

achieve constitutive repression on URS1 under mitotic growth conditions, which may 

mask the repression that may be otherwise caused solely by Hac1ip expressed from 

pRS314-HAC1i. When Hac1ip was deleted, β-galactosidase levels were derepressed 

(Figure 3.9C), suggesting negative regulation at URS1. However, an experiment in 

which HAC1i is ectopically expressed in hac1Δ strains would substantiate these data. 

The URS1-CYC1-Ub-X-lacZ reporters studied here can be used in nutrient-rich 

conditions to study transcriptional regulation on URS1-controlled genes in future 

work. 

  



 

 

 

 

 

 

 
 

Chapter 4 

Transcriptional  regulation of metabolic genes 
under nutrient rich condition 
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4.1 Ume6p in regulation of URS1-controlled genes 

Using URS1-CYC1-Ub-L-lacZ reporter with leucine residue at the N-terminal end of 

β-galactosidase I showed that insertion of the URS1 sites decreases steady state 

level of β-galactosidase. However this was not seen convincingly earlier with 

methionine plasmids. It is known that the URS1 site is occupied by 

Ume6p/Sin3p/Rpd3p repressing the transcription in vegetative growth conditions 

(Schröder et al., 2004). The ISW2-ITC1 chromatin remodelling complex is also 

recruited by Ume6p under mitotic growth in a parallel pathway to RPD3-SIN3 HDAC 

complex (Goldmark et al., 2000). To validate if the repression of URS1-CYC1-Ub-L-

lacZ reporter can be attributed to the known repressing mechanism of URS1 where 

recruitment of ISW2-ITC1 and RPD3-SIN3 by Ume6p to URS1 site leads to 

repression in vegetatively growing cells, I looked at the URS1-controlled lacZ 

expression by expressing URS1-CYC1-Ub-L-lacZ reporters in an ume6Δ strain. The 

WT strain showed ~2.5 fold mitotic repression through URS1. However, deletion of 

UME6 led to a ~4.5 fold increased levels of β-galactosidase as compared to WT in 

the presence or absence of URS1 (Figure 4.1). Thus, ume6Δ leads to elevated 

expression of URS1-CYC1-Ub-L-lacZ reporters, which suggests that either Ume6p 

negatively regulates components of an activating mechanism/binding of these 

components to URS1 or other cis-acting sites in the CYC1 promoter. It is also 

possible that deletion of Ume6p causes disruption of Ume6p/Rpd3p/Sin3p repressing 

unit which leads to recruitment of histone modifying complexes that activate the 

transcription at URS1.   

 

 

  



Figure 4.1 Ume6p in the regulation of URS1 controlled genes. URS1-CYC1-Ub-X-
lacZ (X= L; leucine) reporters were expressed in ume6Δ strain and WT. The average 
and standard error from at least three independent transformants are shown. (B) The 
fold repression depicts mitotic repression by URS1 sites. Fold repression is calculated 
as the ratio of β-galactosidase levels from a plasmid with zero URS1 sites to β-
galactosidase levels from a plasmid with two URS1 sites in the strains indicated. (C) 
Fold activation is the ratio of β-galactosidase levels from WT to β-galactosidase levels 
from ume6Δ. 
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4.2 RPD3-SIN3 histone deacetylase complex in regulation of URS1-controlled 
genes under nutrient-rich conditions 

The transcriptional repression of early meiotic genes involves function of the RPD3-

SIN3 histone deacetylase (HDAC) complex and the ISW2-ITC1 chromatin 

remodelling complex. The RPD3-SIN3 HDAC is a large multiprotein complex involved 

in regulation of a wide range of genes in meiosis, metabolism, osmotic stress, 

telomere boundary regulation and anaerobic growth (De Nadal et al., 2004; 

Ehrentraut et al., 2010; Kadosh and Struhl, 1997; Rundlett et al., 1998; Vidal and 

Gaber, 1991). Rpd3p functions as histone deacetylase and Sin3p is a co-repressor 

which is recruited by Ume6p to the promoters of early meiotic genes (Kadosh and 

Struhl, 1997). Schröder et al., 2004 showed that Hac1ip interacts physically with 

Rpd3p-Sin3p HDAC to mediate nitrogen-mediated negative regulation of EMG 

transcription and that the catalytic activity of Rpd3p is required for this negative 

regulation. They also showed that the Ume6p binding site URS1 is the site of Hac1ip- 

mediated repression. To test whether the RPD3-SIN3 complex is involved in 

regulation of URS1-CYC1-Ub-X-lacZ reporters as reported for URS1-controlled 

EMGs under nitrogen-rich conditions, we expressed URS1-CYC1-Ub-X-lacZ 

reporters in a strain deleted for RPD3 on minimal synthetic medium (PSP2).  

The WT strain shows ~2 fold repression in the presence of URS1 (Figure 4.2). But in 

the absence of Rpd3p (rpd3Δ), β-galactosidase levels are not only decreased (~2.5 

fold) with URS1 but also when compared to WT (Figure 4.2B). This was surprising 

as Kadosh and Struhl, 1997 have shown using URS1-CYC1-lacZ reporters that the 

deletion of Rpd3p showed moderate derepression (~four fold). Next I looked at Sin3p 

which is a component of Rpd3p-Sin3p HDAC multiprotein complex involved in 

transcriptional repression at EMGs. Sin3p, which acts as a co-repressor is recruited 

to URS1 by Ume6p. Sin3p then targets Rpd3p HDAC to deacetylate early meiotic 

gene promoters and to mediate transcriptional repression. To test whether the known 

function of Sin3p is involved in regulation of URS1-CYC1-Ub-X-lacZ reporters, I 

expressed URS1-CYC1-Ub-X-lacZ reporters in sin3Δ strains under vegetative growth 

conditions. In the presence of Sin3p (WT), the β-galactosidase levels decreased in 

the plasmids containing URS1 (~2.5 fold), but when Sin3p was deleted the β-

galactosidase levels elevated not only in the presence of URS1, but also in the 

absence of URS1 (Figure 4.3). When the WT strain is compared to sin3Δ strain, β-
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galactosidase levels elevated to ~three fold (Figure 4.3C). Thus, the mitotic 

repression seen in the WT strain (~2.5 fold) is not seen in sin3Δ strain and deletion of 

Sin3p elevated β-galactosidase levels in absence or presence of URS1. 

 

 

 

  



Figure 4.2. Role of Rpd3p in regulation of URS1. URS1-CYC1-Ub-X-lacZ reporters 
(X= L; leucine) were expressed in rpd3Δ strain and WT strain in synthetic minimal 
media. The average and standard error from at least three independent transformants 
are shown. (B) The fold repression depicts mitotic repression by URS1 sites. Fold 
repression is calculated as the ratio of β-galactosidase levels expressed from a 
plasmid with zero URS1 sites to β-galactosidase levels expressed from a plasmid with 
two URS1 sites in the strains indicated. 
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Figure 4.3 Role of Sin3p in regulation of URS1-CYC1-Ub-X-lacZ reporters. URS1-
CYC1-Ub-X-lacZ reporters (X= L; leucine) were expressed in the absence of Sin3p 
(sin3Δ) in minimal synthetic medium. (B) The fold repression depicts mitotic repression 
by URS1. Fold repression is calculated as the ratio of β-galactosidase levels 
expressed from a plasmid with zero URS1 sites to β-galactosidase levels expressed 
from a plasmid with two URS1 sites. (C) Activation of β-galactosidase levels is 
calculated as the ratio of the fold repression of WT to the fold repression of sin3Δ from 
(B). The β-galactosidase levels shown are an average and standard error from at least 
three independent transformants.  
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4.3 Role of ISW2-ITC1 chromatin remodelling complex in regulation of URS1-
controlled genes 

ISW2 and ITC1, which are components of the Isw2p-Itc1p ATP dependent chromatin 

remodelling complex are recruited by UME6 to repress early meiotic genes 

(Goldmark et al., 2000) and other non-meiotic genes like INO1 (Sugiyama and 

Nikawa, 2001). The Isw2p complex creates a nuclease inaccessible chromatin 

structure upstream of the Ume6p binding site in target promoters (Goldmark et al., 

2000). The Itc1p-Isw2p chromatin remodelling complex was not involved in Hac1ip- 

mediated repression under nitrogen starvation conditions (Schröder et al., 2004). 

However, I wanted to investigate and validate the role of the chromatin remodelling 

complex ISW2-ITC1 in repression at URS1 of URS1-CYC1-Ub-X-lacZ reporters 

under nutrient-rich conditions. In order to test whether the same mechanism of 

repression by ISW2 and ITC1 on URS1-controlled genes in mitotic growth conditions 

as reported is also functional on the URS1-CYC1-Ub-X-lacZ reporters we 

transformed URS1-CYC1-Ub-X-lacZ reporters into isw2Δ cells. The cells were 

harvested at exponential growth phase and after lysis, β-galactosidase assays were 

performed. WT strain shows ~2.5 fold repression and isw2Δ strain shows ~1.2 fold 

repression in the presence of URS1 (Figure 4.4B). Deletion of Isw2p led to ~fourfold 

and ~tenfold elevated expression of β-galactosidase in absence and presence of 

URS1 respectively (Figure 4.4A). This suggests that ISW2 may be negatively 

affecting transcription of the URS1-CYC1-Ub-X-lacZ reporter at sites other than 

URS1. Itc1p is also a component of ISW2-ITC1 complex and so I wanted to test 

whether Itc1p was responsible for repression of β-galactosidase levels of URS1-

CYC1-Ub-X-lacZ reporters. Levels of β-galactosidase expressed from URS1-CYC1-

Ub-X-lacZ reporters in itc1Δ strains were measured. WT strain shows ~2.5 fold 

mitotic repression, while this repression is lost when ITC1 was deleted (Figure 4.5B). 

Deletion of itc1Δ led to ~three fold activation in presence of URS1 but there was no 

change in absence of URS1 (Figure 4.5), which indicates that ITC1 is involved in 

repression at URS1 in URS1-CYC1-Ub-X-lacZ reporters as has been reported 

earlier. The elevated levels of β-galactosidase in the presence or absence of URS1 in 

figure 4.4 indicates that this activation may be independent of URS1. When Itc1p is 

deleted, β-galactosidase levels are derepressed only in presence of URS1, indicating 

that ITC1 is involved in the repression machinery at the URS1 site. Thus deletion of 
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ITC1 shows that repression at URS1 of URS1-CYC1-Ub-X-lacZ reporters is lost, but 

when ISW2 is deleted, β-galactosidase levels are elevated even in the absence of 

URS1 indicating that ISW2 may be acting independently of ITC1.  

 

  



Figure 4.4. Role of Isw2p in regulation of URS1 mediated repression. URS1-
CYC1-Ub-X-lacZ reporters (X= L;leucine) were expressed in isw2Δ strain and WT 
strain. (B)The fold repression depicts mitotic repression. Fold repression is calculated 
as the ratio of β-galactosidase levels expressed from a plasmid with zero URS1 sites 
to β-galactosidase levels expressed from a plasmid with two URS1 sites. (C) Fold 
activation is calculated as the ratio of fold repression of WT to fold repression of isw2Δ 
levels from (B). The β-galactosidase levels are an average and standard error of at 
least three independent transformants. 
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Figure 4.5 Itc1p is involved in regulation of URS1 mediated repression. URS1-
CYC1-Ub-X-lacZ (X= L;leucine) reporters were expressed in itc1Δ strain. (B) The fold 
repression depicts mitotic repression by URS1. Fold repression is calculated as the 
ratio of β-galactosidase levels expressed from a plasmid with zero URS1 to β-
galactosidase levels expressed from a plasmid with two URS1. (C) Fold activation of 
β-galactosidase levels is calculated as the ratio of the fold repression of WT to the fold 
repression of itc1Δ from values in (B). The average and standard error from at least 
three independent transformants are shown. 
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4.4 Discussion 

Deletion of Ume6p leads to activation of β-galactosidase in the absence of URS1 

(Figure 4.1) suggesting that Ume6p may be regulating other sites causing activation 

of URS1-CYC1-Ub-X-lacZ reporters without URS1. The URS1-CYC1-Ub-X-lacZ 

reporters used in this study contains the CYC1 fragment from -324 to +141 that 

includes two UASCYC1 sites, the TATA region and URS1 elements cloned  

immediately upstream of UASCYC1 [(Guarente and Mason, 1983; Kadosh and Struhl, 

1997) and Figure 3.1C]. UASCYC1 from the promoter region of the CYC1 gene 

encoding iso-1-cytochrome c  is tightly regulated by levels of intracellular heme 

(Guarente and Mason, 1983). CYC1 is also induced by oxygen and lactate, and 

repressed by glucose (Boss et al., 1980; Guarente and Hoar, 1984; Guarente and 

Mason, 1983; Hortner et al., 1982). Induction of oxygen occurs through binding of the 

transcription factor Hap1p to UAS1 in the CYC1 promoter (Pfeifer et al., 1987), while 

repression in the presence of glucose is mediated by binding of Mig1p and the 

CCAAT-binding activator complex subunits Hap2p, Hap3p, Hap4p and Hap5p to 

UAS2 in the CYC1 promoter (Olesen et al., 1987; Treitel and Carlson, 1995). It is 

likely that regulation of Hap1p or Hap2p-3p-4p-5p complex on UASCYC1 is somehow 

negatively regulated by Ume6p, because UME6 is not only a meiosis specific 

regulator but also regulates genes involved in arginine catabolism (Strich et al., 

1994), peroxisomal function (FOX3) (Einerhand et al., 1995) and DNA repair genes 

(PHR1) (Sweet et al., 1997). Microarray data show that HAP1 gene was derepressed 

in ume6Δ (Table 4.1). The HAP4 gene, whose gene expression provides 

transcriptional activation domain to the Hap2p-3p-4p-5p complex showed a small 

increase in transcription (Williams et al., 2002). So it can be conceived that HAP1 

encoding a zinc finger transcription factor, which requires homodimerization for high 

affinity DNA-binding to UAS1 may be regulated by UME6. Other regulatory 

mechanisms barring the transcriptional level regulation by Ume6p cannot be 

excluded for regulation at UASCYC1.  

It can be conceived that Ume6p is involved in activation of URS1-CYC1-Ub-X-lacZ 

reporters also through UASCYC1 and looking at the genes regulated by Hap1p in 

ume6Δ strains may throw more light on understanding of UME6 targets. Also 

understanding the UASCYC1 regulatory mechanism promises to be of particular 
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interest as the core CYC1 promoter is used in investigation of transcriptional 

activation and repression. 

Table 4.1. Microarray data showing expression of HAP genes in UME6 and ume6Δ 

strains of SK1 genetic background [data from (Williams et al., 2002)] 

Sr. No Gene Normalized intensity 
 

UME6 ume6Δ 

1.  HAP1 144 237 

2.  HAP2 87 508 

3.  HAP3 587 311 

4.  HAP4 2380 2603 

5.  HAP5 205 498 

6.  CYC1 2097 2762 

 

In the absence of Rpd3p (rpd3Δ), there was a decrease in the levels of β-

galactosidase as compared to wild type, but when Sin3p was deleted the repression 

on URS1 was derepressed. The behaviour of rpd3Δ cells may be not that surprising 

as Kadosh and Struhl, 1997 suggested that sin3Δ strain lost URS1-dependent 

transcriptional repression to a larger degree than in rpd3Δ strain. Moreover the effect 

of deletion of Rpd3p on repression could be compensated by other related HDAC 

(Rundlett et al., 1996) with Sin3p (Figure 4.2). The elevated expression of β-

galactosidase in sin3Δ strains in the absence of URS1 sites indicates that Sin3p 

regulates another site in URS1-CYC1-Ub-X-lacZ reporters (Figure 4.3). The data 

also suggests that Sin3p may have repressing function as β-galactosidase levels are 

elevated in sin3Δ. The contribution of transcriptional repression by Sin3p has been 

earlier suggested to be minor (Kadosh and Struhl, 1997), but the data here shows 

that the contribution of Sin3p is not minor. Presumably other sites in the CYC1 

promoter region of URS1-CYC1-Ub-X-lacZ reporters exist where Sin3p mediates 

repression. Mutations in Sin3p or Sin3p binding sites in CYC1 promoter region that 

may be responsible for this repression can provide more insight into Sin3p mediated 

repression. 
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Deletion of ISW2 results in mitotic transcriptional derepression of many genes 

normally induced under meiosis (Goldmark et al., 2000). Deletion of ISW2 here 

elevated expression of β-galactosidase from URS1-CYC1-Ub-X-lacZ reporters even 

without URS1 (Figure 4.4) suggesting that Isw2p acts on other sites in this reporter. 

ISW1, another member of imitation switch (ISWI) class and ISW2 act redundantly 

with Chd1p in regulation of CYC1 (Alén et al., 2002). It can be speculated from this 

data that ISW2 may be repressing on sites other than URS1, which may be activated 

when ISW2 is deleted  because Hap1p binding to UAS1 in the CYC1 promoter region 

was restored in isw2Δ strains because of loss of nucleosome positioning (Morohashi 

et al., 2007). Therefore, deletion of ISW2 may open chromatin structure around the 

CYC1 promoter region in URS1-CYC1-Ub-X-lacZ reporters which may lead to 

activation of β-galactosidase. Isw2p and Itc1p have been suggested to act in the 

same pathway (Gelbart et al., 2001), but when ITC1 was deleted β-galactosidase 

were elevated only in the presence of URS1. This suggests negative regulation was 

lost at URS1 when ITC1 was deleted. Therefore elevated β-galactosidase levels in 

the absence of URS1 in isw2Δ strain, suggests that ISW2 may be acting 

independently of ITC1 at sites other than URS1 in URS1-CYC1-Ub-X-lacZ reporters. 

The itc1Δ strain shows that the regulation on URS1 is lost (Figure 4.5) and this can 

be explained by the fact that a population of Itc1p preferentially interacts with Ume6p 

besides its interaction with Ume6p and Isw2p (Goldmark et al., 2000).  

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Chapter 5  

Pseudohyphal growth on non-fermentable carbon 

sources  
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5.1 Pseudohyphal growth on non-fermentable carbon sources 

The yeast S. cerevisiae show different growth patterns including yeast and 

pseudohyphal forms depending on the environmental cues and cell type. Under 

nitrogen deplete conditions and in the presence of fermentable carbon sources, S. 

cerevisiae differentiate to form pseudohyphae, which is characterized by an 

elongated cell shape, unipolar budding, symmetric cell division, adhesion of cells to 

each other after cell division is completed and invasion of solid growth media 

(Gimeno et al., 1992; Kron et al., 1994). The formation of pseudohyphal growth 

requires coordination of at least two signalling pathways, the mating and 

filamentation mitogen activated protein kinase (MAPK) signalling cascade and the 

cAMP-dependent protein kinase A (PKA) pathway. These   pathways may act in a 

parallel and partially overlapping manner. The unfolded protein response (UPR) 

represses pseudohyphal growth and meiosis under nitrogen-rich conditions. 

However, when the UPR pathway is compromised under sporulation-inducing 

conditions the cells respond inappropriately by switching to pseudohyphal growth. 

ire1Δ/ire1Δ and hac1Δ/hac1Δ diploids also showed increased pseudohyphal growth 

and expression of spliced Hac1ip repressed pseudohyphal growth. The splicing of 

HAC1 mRNA was higher in the presence of acetate as non-fermentable carbon 

source compared to other carbon sources (Schröder et al., 2000), suggesting that 

repression of pseudohyphal growth by the UPR is especially an effect of non-

fermentable carbon source. So non-fermentable carbon sources repress 

pseudohyphal growth and presence of acetate under pseudohyphal growth 

conditions (glucose and nitrogen limiting) may affect the cell’s response. Therefore, 

we tested whether a/α diploid cells under pseudohyphal growth-inducing conditions 

were affected by the presence of acetate in the SK1 genetic background. The 

pseudohyphal growth conditions, in the presence of glucose and nitrogen limiting 

conditions (SLAD plates; glucose and 50 μM ammonium sulfate) induced moderate 

pseudohyphal growth, characterized by branching chains of cells extruding away 

from the centre of the colony (Figure 5.1). Surprisingly, when acetate was included in 

the media containing glucose and limiting ammonium sulphate, a/α diploid cells show 

enhanced pseudohyphal growth (Figure 5.1). Besides acetate other non-fermentable 

carbon sources are also utilised to generate energy through respiration and so we 

wanted to check whether other non-fermentable carbon sources also showed a 
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similar effect on pseudohyphal growth. L-lactate, pyruvate, glycerol and ethanol were 

added to glucose and tested for pseudohyphal growth. Pseudohyphal growth was 

also enhanced in the presence of other non-fermentable carbon sources as well 

(Figure 5.1). Enhanced pseudohyphal growth in the presence of acetate and other 

non-fermentable carbon sources under pseudohyphal growth inducing conditions 

was surprising for two reasons. Firstly, the utilization of non-fermentable carbon 

sources is repressed in the presence of glucose (Gancedo, 1998; Schüller, 2003) 

and secondly non-fermentable carbon sources have been shown to induce meiosis 

and not pseudohyphal growth (Gimeno et al., 1992; Kupiec et al., 1997). These 

observations should be noted with the background information that pseudohyphal 

growth is widely investigated in Σ1278b strain background (Gimeno et al., 1992), 

while SK1, which is an efficiently sporulating strain (Kane and Roth, 1974) is 

employed in studying meiosis. In contrast to SK1 strain nonfermentable carbon 

sources inhibit pseudohyphal growth in Σ1278b WT strain (Strudwick et al., 2010). 

The presence of glucose represses several enzymes of citric acid cycle and 

respiratory chain (Schüller, 2003). However, the nitrogen limiting conditions on SLA 

plates may derepress genes encoding citric acid cycle enzymes as reported for 

rapamycin treated cells grown on glucose (Hardwick et al., 1999). Therefore it is 

possible that non-fermentable carbon sources require the metabolic and respiratory 

function to induce pseudohyphal growth. To test whether respiratory function is 

required for inducing pseudohyphal growth in presence of non-fermentable carbon 

sources respiration deficient petite mutants were created. The respiration deficiency 

was checked by the inability of petite mutants to grow on plates containing only non-

fermentable carbon source like acetate as seen in figure 5.1A. The petite mutants 

were grown on glucose supplemented with various non-fermentable carbon sources. 

Pseudohyphal growth was unchanged in respiration-deficient petite mutants 

compared to a wild type strain, indicating that respiration is not required for induction 

of pseudohyphal growth by non-fermentable sources in the SK1 genetic background 

(Figure 5.1). These results also suggest that moderate pseudohyphal growth on 

glucose may be caused by fermentation by-products like ethanol, since ethanol also 

stimulates pseudohyphal growth [(Figure 5.1) (Lorenz et al., 2000a)]. S. cerevisiae 

cells may be detecting its own metabolic by-products to sense the environment and 

evoke signalling to decide the cell fate. However, there is evidence that petite 
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mutants in Σ1278b background are unable to undergo filamentous growth and 

require mitochondrial function (Kang and Jiang, 2005).  

 

  



Figure 5.1 Non-fermentable carbon sources induce pseudohyphal growth and 
respiratory function is not required for induction of pseudohyphal growth. (A) 
Growth of WT (AMP109) and a petit mutant (ρ0) on acetate as carbon source. (B) 
AMP109 strain was grown on SLA agar plates containing 50 µM (NH4)2SO4, yeast 
nitrogen base without amino acids and (NH4)2SO4, different carbon sources as 
indicated and amino acids to complement amino acid auxotrophy. The colony 
morphology after 7 d growth is  shown. 
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5.2 Role of mitochondrial retrograde signalling pathway in regulation of 
pseudohyphal growth 

The non-fermentable carbon sources therefore induce pseudohyphal growth 

independent of their use as respiratory energy source. The SLAD plates used here 

lack glutamate and so cells need to synthesize glutamate, which is the main 

precursor of other amino acids. Glutamate and its metabolite glutamine are a source 

of all nitrogen utilized by yeast in biosynthetic reactions (Magasanik and Kaiser, 

2002). Growth under pseudohyphal growth conditions in the presence of non-

fermentable carbon sources and absence of glutamate (Figure 5.1) suggests that 

early steps of the TCA cycle must be activated to meet the demand for glutamate. 

Mitochondrial retrograde (RTG) signalling is closely associated with the carbon and 

nitrogen metabolism in yeast cells and the main function of the RTG signalling 

pathway is to maintain glutamate levels in the cell (Magasanik and Kaiser, 2002). 

Rapamycin inhibits TOR kinases and induces expression of RTG-dependent target 

genes (Komeili et al., 2000), which increases the pool of glutamine and glutamate. 

RTG genes induce expression of the first three steps of the TCA cycle, CIT2 (citrate 

synthase) involved in the glyoxylate cycle and DLD3 (D-lactate dehydrogenase). 

CIT2 is an enzyme in the glyoxylate cycle that enables yeast cells to utilize acetate 

and ethanol as sole carbon source. The transcript profiles of genes regulated by the 

RTG pathway in SK1 genetic background strain were found upregulated as 

compared to Σ1278b strain background (Table 5.1). Σ1278b is normally used to 

study pseudohyphal growth and non-fermentable carbon sources inhibit 

pseudohyphal growth in this strain background (Gimeno et al., 1992; Strudwick et 

al.). To test whether activation of RTG genes in the SK1 background are responsible 

for induction of pseudohyphal growth in the presence of glucose and acetate, we 

created rtg deletion strains and tested their growth on plates containing low nitrogen, 

glucose in the presence or absence of non-fermentable carbon sources. 

Pseudohyphal growth was unchanged in rtg2Δ and rtg3Δ strains compared to WT 

showing that RTG pathway here is not involved in regulation of pseudohyphal growth 

on non-fermentable carbon sources (Figure 5.2). There was no difference in the WT 

and the mutants in the presence of glucose. Deletion of RTG genes leads to 

glutamate auxotrophy. The rtg1Δ strains I used were also arginine auxotrophs. 
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Therefore, rtg1Δ strains did not grow on SLA plates, which lack glutamate and 

arginine and therefore could not be tested here.  



Figure 5.2 Role of RTG signalling pathway in induction of pseudohyphal growth 
on non-fermentable carbon source. Mitochondrial retrograde (RTG) signalling 
pathway mutants rtg2Δ and rtg3Δ strains were grown on  nitrogen limiting conditions 
as in figure 6.1 
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5.3 Discussion 

Non-fermentable carbon sources trigger pseudohyphal growth under nitrogen limiting 

conditions supplemented with glucose (Figure 5.1) in the SK1 genetic background. 

Stimulation of pseudohyphal growth in respiration deficient cells suggested that 

respiration function of the cell is not required for induction of pseudohyphal growth. 

These findings have partly been published in Strudwick et al, 2010. The difference in 

response to acetate stimuli in SK1 strain compared to Σ1278b strain is attributed 

differences in cyclic AMP (cAMP) signalling. Elevated cAMP signalling in Σ1278b 

background has been shown to inhibit pseudohyphal growth (Strich et al., 1994; 

Strudwick et al., 2010).   

Deletion of mitochondrial RTG pathway components did not affect the enhanced 

growth stimulated by non-fermentable carbon sources (Figure 5.2). Pseudohyphal 

growth was unchanged when acetate was provided in addition to glucose in rtg2Δ 

and rtg3Δ indicating that RTG pathway may not be involved in regulation of 

pseudohyphal growth in the presence of non-fermentable carbon sources. The 

response to carbon source is regulated by a number of pathways but in the presence 

of glucose, utilization of alternate carbon sources is inhibited due to glucose 

repression. Non-fermentable carbon sources like ethanol and acetate are converted 

to acetyl-CoA which is catabolised by TCA cycle in mitochondria or assimilated in 

peroxisomes for gluconeogenesis. The RTG deletion strains growing on SLAD plates 

in the absence of glutamate indicates that glutamate prototrophy is achieved by 

expression of ACO1, CIT1, CIT2, IDH1 and IDH2 of TCA cycle and glyoxylate cycle, 

which are induced by RTG genes (Liao and Butow, 1993; Liu and Butow, 1999). The 

expression of genes, which encode the first three steps of the TCA cycle from 

oxaloacetate to α-ketoglutarate is under the regulation of Hap2-3-4-5p in full 

mitochondrial function, but switch their dependence to RTG genes in compromised 

mitochondrial function (Liu and Butow, 1999). When the cells respiratory function is 

reduced or lost these genes lose control by HAP genes and are under regulation by 

RTG genes. Glutamate negatively feeds back by inhibition of RTG signalling 

pathway. The dual regulation of early steps of TCA cycle by Hap2-3-4-5p and Rtg1-2-

3p transcription complex allows cells to adapt to carbon source and mitochondrial 

state and ensures the availability of glutamate. Growth in glucose and acetate under 

nitrogen-limiting conditions despite deletion of RTG genes suggests that the Hap2-3-



171 
 

4-5p complex regulates the expression of genes of first three steps of TCA cycle. 

Mitochondrial retrograde signalling pathway has been suggested to be a negative 

regulator of pseudohyphal growth in Σ1278b strain background (Jin et al., 2008). 

However, rtg2Δ and mitochondrial defect still induce intermediate pseudohyphal 

growth suggesting the possibility that other retrograde signalling pathways may be 

involved and cannot be excluded here (Epstein et al., 2001; Traven et al., 2001). 

Table 5.1. Microarray data showing transcript profile in terms of raw intensity 

expressed from Σ1278b and SK1 genetic backgrounds (Strudwick et al., 2010). 

 
Sr. No 

 
Gene 

 
Raw intensity 

 

Σ1278b SK1 

1.  CIT1 -0.52 12.70 
 

2.  CIT2 -0.91 
 

13.20 

3.  DLD3 -1.54 
 

9.65 

4.  ACO1 -0.41 
 

12.78 

5.  IDH1 -0.76 
 

12.10 

6.  IDH2 -0.97 
 

12.19 
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6.1 Conclusions and future work: 

In yeast S. cerevisiae the differentiation responses depend on the nutritional 

environment. Many studies have been carried out studying nitrogen starvation 

responses like meiosis and pseudohyphal growth. Nitrogen-rich conditions are known 

to repress these differentiation events in S. cerevisiae. In the current study the 

negative regulatory mechanism at early meiotic genes by Hac1ip in nitrogen-rich 

condition was investigated by using URS1-CYC1-Ub-X-lacZ reporters. Figure 3.9 

successfully demonstrates that Hac1ip negatively regulates at URS1 in nitrogen-rich 

conditions. The regulation of metabolic genes under nutrient rich conditions by 

Hac1ip, an important transcription factor of UPR signifies the importance of how UPR 

also functions as nutrient sensing pathway and thereby influencing the differentiation 

program. When the nitrogen is limiting, UPR is turned off and Hac1ip synthesis 

ceases. This can induce nitrogen starvation responses like pseudohyphal growth or 

meiosis based on the carbon source (Figure 1.7). When nitrogen is abundant, HAC1 

mRNA splicing is induced dramatically, repressing both the pathways. Therefore the 

information of nutritional state of the cell is sensed by UPR, which represses nitrogen 

starvation responses, promotes growth and decides the fate of developmental 

pathways. Hac1ip is a bZIP transcription factor, which activates transcription of genes 

containing UPR element and INO1 gene (Chapman et al., 1998).  According to the 

genome-wide two-hybrid interaction screen, Hac1ip does not interact with any other 

protein (Uetz et al., 2000). Future studies can be carried out to study mechanism of 

repression and targets of Hac1ip. 

A poorly understood aspect of meiotic gene regulation is how transcriptional 

repression is maintained under nutrient rich conditions through URS1. The 

interactions between the URS1 regulatory element and its associating factors are 

complex. Experiments on individual mutants (ume6Δ, rpd3Δ, sin3Δ, isw2Δ and itc1Δ) 

of the mitotic repression machinery at URS1 under nitrogen rich conditions 

corroborate their role in regulation of early meiosis. These experiments also suggest 

regulation at additional sites in the minimal CYC1 promoter other than URS1 of 

URS1-CYC1-Ub-X-lacZ reporters. Understanding regulation at UASCYC1 would be 

important in dissecting the transcriptional activity by Ume6p in core CYC1 promoter. 

Deletion of Rpd3p of RPD3-SIN3 HDAC complex didn’t considerably affect 

transcription at URS1, but deletion of Sin3p did suggesting that either Sin3p has 
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additional repressing functions or there are additional sites regulated by Sin3p 

(Figure 4.2 and 4.3). Identifying these additional sites could provide more insight into 

regulation at URS1-CYC1-Ub-X-lacZ reporter. This is useful, primarily because 

minimal CYC1 promoter is extensively used as heterologous promoter to study 

transcriptional regulation and other cell processes. Secondly these reporter systems 

have widespread uses in genetic screen and techniques like two-hybrid screen. 

URS1-CYC1-Ub-X-lacZ reporters constructed in this study show reduced steady 

state levels as compared to the WT β-galactosidase. These reporters are a technical 

advancement in the field of reporter system and can be widely used to study 

transcription. Rpd3p and Sin3p or Isw2p and Itc1p functions were separable as 

suggested by independent repression by Sin3p and Isw2p deletion. This will be 

useful to identify and understand the way deletion of proteins with stronger 

phenotypes act. 

We tested the SK1 genetic background for pseudohyphal growth under nitrogen 

starvation conditions known to induce pseudohyphal growth. This induced moderate 

pseudohyphal growth due to glycolytic by products such as ethanol. Stimulation by 

nonfermentable carbon sources stimulated pseudohyphal growth and this stimulation 

didn’t require the nonfermentable carbon source as respiratory energy source 

(Figure 5.1B). The results presented in figure 5.2 also show that stimulation of 

pseudohyphal growth does not require mitochondrial RTG pathway. This work 

highlights the importance of different signaling cascades like MAPK signaling and 

cAMP signaling stimulated by different nutrient conditions. Studies on pathways 

functioning in pseudohyphal differentiation are important, because pathogenic yeasts 

also use these pathways for dimorphic switch to hyphal growth (Borges-Walmsley 

and Walmsley, 2000; Lengeler et al., 2000; Roman et al., 2007). The change to 

hyphal form is a virulence factor in many human and plant pathogenic yeasts. Insight 

into the signal transduction mechanisms that are necessary for the morphological 

change will contribute to an understanding of basic biological phenomena and of 

pathogenesis. Better understanding of these pathways and its elements can be used 

to develop novel drug targets. 

A major challenge moving forward will be to better understand how simple 

eukaryotes such as yeast are able to precisely discriminate between different nutrient 
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signals and how they are able to generate a diversity of responses given that they 

use different but overlapping pathways in different contexts.   
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Pseudohyphal growth and meiosis are two differentiation responses to nitrogen starvation of diploid Sac-
charomyces cerevisiae. Nitrogen starvation in the presence of fermentable carbon sources is thought to induce
pseudohyphal growth, whereas nitrogen and sugar starvation induces meiosis. In contrast to the genetic
background routinely used to study pseudohyphal growth (�1278b), nonfermentable carbon sources stimulate
pseudohyphal growth in the efficiently sporulating strain SK1. Pseudohyphal SK1 cells can exit pseudohyphal
growth to complete meiosis. Two stimulators of meiosis, Ime1 and Ime2, are required for pseudohyphal growth
of SK1 cells in the presence of nonfermentable carbon sources. Epistasis analysis suggests that Ime1 and Ime2
act in the same order in pseudohyphal growth as in meiosis. The different behaviors of strains SK1 and �1278b
are in part attributable to differences in cyclic AMP (cAMP) signaling. In contrast to �1278b cells, hyperac-
tivation of cAMP signaling using constitutively active Ras2G19V inhibited pseudohyphal growth in SK1 cells.
Our data identify the SK1 genetic background as an alternative genetic background for the study of pseudohy-
phal growth and suggest an overlap between signaling pathways controlling pseudohyphal growth and meiosis.
Based on these findings, we propose to include exit from pseudohyphal growth and entry into meiosis in the
life cycle of S. cerevisiae.

Diploid cells of the budding yeast Saccharomyces cerevisiae
choose between two developmental responses to nitrogen star-
vation, namely, pseudohyphal growth and meiosis (30).
Pseudohyphal growth allows sessile S. cerevisiae cells to forage
for nutrients and is a growth form distinct from the vegetative,
yeast-like growth form. Pseudohyphal growth is induced by
nitrogen starvation in the presence of fermentable carbon
sources (30). Pseudohyphal growth is characterized by an elon-
gated cell shape, adhesion of cells to each other after cell
division has been completed, a switch from a bipolar to a
unipolar budding pattern, and prolongation of the G2 phase of
the cell cycle to allow daughter cells to grow to the size of their
mothers (45). This increased cell size allows newly born
pseudohyphal daughters to immediately enter the cell cycle
and to bud in synchrony with their mothers. Starvation for
nitrogen and fermentable carbon sources is a prerequisite for
induction of meiosis. In meiosis (also called sporulation), sin-
gle diploid cells form an ascus containing four haploid, stress-
and starvation-resistant spores. Meiosis is temporally divided
into at least early, middle, and late phases of gene expression
(16, 74). After premeiotic DNA replication, cells go through
two meiotic divisions (meiosis I and II), initiation of prospore
wall growth at sites near the spindle pole bodies (SPBs), nu-
clear division, and maturation of the spore walls to form ma-
ture asci (47).

The protein kinase A (PKA) pathway and the mating and
filamentation mitogen-activated protein kinase (MAPK) path-

way control pseudohyphal growth. Both pathways stimulate
pseudohyphal growth by stimulating expression of the cell sur-
face flocculin Flo11 (51). The PKA pathway is activated by the
glucose sensor Gpr1 (55, 102) and by the high-affinity ammo-
nium permease Mep2 (7, 53, 83). Gpa2 activates adenylate
cyclase, which in turn activates PKA (46, 54). In S. cerevisiae,
three catalytic subunits of PKA, Tpk1, Tpk2, and Tpk3, regu-
late pseudohyphal growth. Tpk2 directly interacts with and
inhibits the transcriptional repressor of FLO11, Sfl1 (77).
Phosphorylation of the transcription factor Flo8 by Tpk2 stim-
ulates binding of Flo8 to the FLO11 promoter and activation
of FLO11 (71, 72). In contrast to TPK2, deletion of TPK1 or
TPK3 enhances pseudohyphal growth (71, 77), suggesting that
Tpk1 and Tpk3 are inhibitors of pseudohyphal growth. Sub-
strates for Tpk1 or Tpk3 involved in repression of pseudohy-
phal growth have not been identified. The mating and filamen-
tation MAPK cascade (56), consisting of the MAPK kinase
kinase Ste11, the MAPK kinase Ste7, the MAPK Kss1, and the
scaffold Ste5, is regulated by the cell surface mucin Msb2 (20).
Msb2 recruits general signaling proteins, such as Sho1, the
isoprenylated, plasma membrane-tethered protein Cdc42, and
its p21-activated kinase, Ste20, to the filamentation MAPK
cascade (20). The MAPK pathway controls the activity of the
heterodimeric transcription factor Ste12-Tec1 (29, 82), which
activates expression of FLO11 and regulates cell elongation.

Entry into meiosis is governed by a transcriptional cascade
controlling expression of early meiotic genes (EMGs) (47).
Starvation induces expression of IME1 (85). Ime1 carries a
transcriptional activation domain (98), which activates tran-
scription of EMGs (99), including IME2, after binding of Ime1
to the DNA-binding protein Ume6 (11, 79). A two-hybrid
interaction between Ume6 and Ime1 is stimulated by several
protein kinases, including the glycogen synthase kinase 3� ho-
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mologs Rim11, Mck1, and Mrk1 and the protein kinase Rim15
(57, 58, 106, 110). Binding of Ime1 to Ume6 induces degrada-
tion of Ume6 (59). The protein kinase Ime2 is required for full
expression of EMGs (99), stimulates its own expression
through an upstream activating site (96), and promotes meiotic
DNA replication by directly phosphorylating Rfa2 (17, 18).
Sic1 phosphorylation by Ime2 triggers its proteasomal destruc-
tion and entry into meiotic S phase (21, 89). IME2 is also
required for expression of middle meiotic genes (4, 64, 69) and
for reestablishment of repression of EMGs in the middle mei-
otic phase (47). Nutrient-rich conditions repress transcription
of IME1. The PKA pathway represses expression of IME1 in
the presence of glucose (60, 62) and inhibits phosphorylation
of Ime1 by Rim11 (80). Cells expressing constitutively active
Ras2G19V, Gpa2R273A, or Gpa2G132V (22, 105, 111) or deleted
for the regulatory subunit of PKA, BCY1, do not sporulate
(12).

Using an efficiently sporulating strain, SK1 (42), we report
that elements of the early meiotic cascade, such as Ime1, bind-
ing of Ime1 to Ume6, and Ime2, are required for pseudohyphal
growth of SK1 cells. In contrast to the genetic background
routinely used to study pseudohyphal growth, i.e., strain
�1278b (30), nonfermentable carbon sources stimulate
pseudohyphal growth of SK1 cells independent of their utili-
zation in respiration. Pseudohyphal SK1 cells can complete
meiosis. Differences in cyclic AMP (cAMP) signaling may ex-
plain, in part, the different behaviors of these two strains.
Whereas constitutively active Ras2G19V stimulates pseudohy-
phal growth of �1278b cells, it inhibits pseudohyphal growth of
SK1 cells. Our work establishes the SK1 genetic background as
a tool for the study of mechanisms controlling the life choice
decision between pseudohyphal growth and sporulation of di-
morphic yeasts and filamentous fungi.

MATERIALS AND METHODS

Plasmid constructions. To obtain plasmid pRS316-T99N-UME6-lexA, the
�4.4-kbp SpeI/HindIII fragment of pKB193 (11) was cloned into SpeI- and
HindIII-digested pRS316 (97). To cure the T99N mutation in UME6, the 263-bp
BamHI/NheI fragment of pRS316-T99N-UME6-lexA was replaced with a similar
fragment from pCITE-4a(�)-HA-UME6 (M. Schröder and R. J. Kaufman, un-
published data) encoding wild-type (WT) Ume6. pMW2 (108) (CEN URA3
RAS2G19V) was used to express constitutively active Ras2. The plasmids used for
this study are listed in Table 1.

Yeast methods. Yeast strains (Table 2) were transformed by the LiOAc
method (15). IME1 and IME2 were deleted by PCR-based gene deletion (32,
107), using the oligodeoxynucleotides listed in Table 3. Mating type was deter-
mined by PCR (38). Respiration-deficient �0 cells were generated by treatment

with 20 �g/ml ethidium bromide as described previously (24). Growth was mon-
itored as described before (91). Pseudohyphal growth was assayed on synthetic
low-ammonium (SLA) medium (91) plates containing a 2% (wt/vol) concentra-
tion of the indicated carbon source and, as required, amino acids or uracil to
complement auxotrophies, at 5 to 10 mg/liter for SK1 cells. Ethanol was used in
sealed containers containing a 2% (wt/vol) ethanol reservoir. WT and mutant
strains were matched for auxotrophic mutations. In experiments in which mutant
strains carried WT metabolic genes, the corresponding amino acids or uracil was
added at the same concentration to plates for both the WT and mutant strains.
Uracil was provided at 5 mg/liter in SLA plates for �1278b cells (30, 54, 55). Cells
were streaked onto SLA plates to obtain single colonies. Pseudohyphal growth
and agar invasion were scored after growth at 30°C for the times indicated in the
figure legends. Pilot experiments revealed no difference in pseudohyphal growth
on plates supplemented with 2.5 to 10 mg/liter of the amino acids or uracil
required to complement auxotrophies. L-Lysine was included in all plates be-
cause the ho::LYS2 allele produces a weak Lys� phenotype. cAMP (Calbiochem,
Merck, Darmstadt, Germany) was used at 5 mM. To document the filamentation
phenotype, pictures from at least four representative colonies were taken under
bright-field illumination at a magnification of �40 to �100 with an inverted
microscope (Inverso; Fisher Scientific), an eyepiece camera (Globecam D;
Fisher Scientific), and imaging software (Image Driving software; Fisher Scien-
tific). Pictures from asci were taken at a magnification of �400. Time-lapse video
microscopy was performed on the same microscope, using AMCap software.
Plates were incubated at room temperature for time-lapse video microscopy.
Wet tissues were placed into plates, and plates were sealed with Parafilm to
minimize evaporation. Agar invasion was determined after washing away cells
above the agar by gently scraping plates with a spreader under running distilled
water for �1 min. The remaining cells were photographed at a magnification of
�40 to �100. Haploid invasive growth was assayed after growth for 3 days at
30°C on yeast extract-peptone-dextrose (YPD) plates. Plates were photographed
before and after washing the cells from the agar surface to document total and
invasive growth, respectively. Activity of the FG(TyA)::lacZ reporter was mea-
sured and standardized to total cellular protein activity as described before (66,
91). Cell length and width were measured using the straight tool in ImageJ. Bud
and birth scars were stained as described before (25, 75). Briefly, cells were
grown for 18 h on SLA acetate plates and washed off plates. A total of 1 � 104

cells were resuspended in 25 �l of 1-mg/ml calcofluor white M2R (dissolved in
water) and 50 �l of 1-mg/ml fluorescein isothiocyanate-wheat germ agglutinin
(FITC-WGA) dissolved in phosphate-buffered saline (PBS; 4.3 mM Na2HPO4,
1.47 mM KH2PO4, 2.7 mM KCl, and 137 mM NaCl [pH 7.2]), incubated for 15
min at room temperature, and washed three times with PBS. Cells were visual-
ized using a Nikon Eclipse TE 300 microscope and a 60� A/1.4 oil objective.
Calcofluor white-stained bud scars were observed using a DAPI (4�,6-diamidino-
2-phenylindole) filter, and FITC-WGA-stained birth and bud scars were ob-
served using an FITC filter.

Measurement of sporulation. To determine sporulation, a fresh stationary-
phase culture grown in rich medium (YPD; 2% [wt/vol] glucose, 2% [wt/vol]
peptone, 1% [wt/vol] yeast extract) was used to inoculate rich acetate medium
(YPAc; 2% [wt/vol] KOAc, 1% [wt/vol] yeast extract, 2% [wt/vol] peptone).
These cells were grown to mid-log phase in baffled flasks, collected by centrifu-
gation at 3,000 � g for 2 min, washed once with water, resuspended in complete
sporulation medium (C-SPO) (106), and grown at 30°C with shaking for the
required amount of time. Cells were visualized under a phase-contrast micro-
scope, and the percentage of asci was determined for 3 replicates.

Tetrad dissection. Asci were washed off plates from areas containing small
colonies consisting predominantly of asci formed by pseudohyphal cells by use of
sterile water collected by centrifugation, and the cell wall was digested with
Glusulase for 15 min at 30°C. Spores were dissected using a tetrad dissection
microscope (Singer Instruments, Watchet, United Kingdom), placed onto a YPD
plate, and allowed to germinate and grow for 2 days at 30°C. Pictures were taken
with a GelDoc 2000 system (Bio-Rad Laboratories, Hemel Hempstead, United
Kingdom).

Heat shock treatment. Cells were grown to mid-log phase in liquid YPD
medium at 25°C (for glycogen and trehalose determinations) or 30°C (for North-
ern analysis) with shaking before being shifted to 37°C (for glycogen and treha-
lose determinations) or 39°C (for Northern analysis) for the indicated times.
Samples were taken immediately and processed as described below.

Metabolite determinations. Glycogen and trehalose concentrations were de-
termined as described by Parrou et al. (73). Briefly, cells were collected by
centrifugation and washed once with ice-cold water, and the pellet was frozen
immediately at 	20°C. Cell pellets were resuspended in 250 �l 0.25 M Na2CO3

and heated at 95°C for 2 h with occasional mixing. The pH was adjusted to 5.2
by addition of 150 �l 1 M acetic acid and 600 �l 0.2 M sodium acetate buffer, pH

TABLE 1. Plasmids used for this study

Plasmid Features Reference

pCITE-4a(�)-HA-
UME6

UME6-His6 bla Schröder and Kaufman,
unpublished data

pHS103 2�m URA3 IME1 bla 99
pHS105 2�m URA3 IME2 bla 99
pIL30 FG(TyA)lacZ::URA3 66
pKB193 2�m URA3 T99N-UME6-

lexA bla
11

pMW2 CEN URA3 RAS2G19V bla 108
pRS316 CEN6 ARSH4 URA3 bla 97
pRS316-UME6-lexA CEN6 ARSH4 URA3

UME6-lexA bla
This study

pRS316-T99N-
UME6-lexA

CEN6 ARSH4 URA3
T99N-UME6-lexA bla

This study
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5.2. The suspension was split into two equal parts. The first of these was incu-
bated overnight at 57°C with continuous shaking in the presence of 100 �g

-amyloglucosidase from Aspergillus niger (Sigma, St. Louis, MO), freshly pre-
pared as a 10-mg/ml stock dissolved in 0.2 M sodium acetate buffer, pH 5.2. The
second half of the suspension was incubated overnight at 37°C with 3 mU
trehalase (0.25 U/ml; Sigma). Liberated glucose was measured using a GO
glucose assay kit (Sigma) as directed. To measure the glucose concentration in
plates, small sections of the most densely grown areas were cut out with a scalpel
and placed into a syringe attached to a 0.22-�m filter. Liquid was expelled by
applying pressure to the plunger. The glucose concentration was measured using
a glucose meter (Roche Diagnostics).

cAMP assay. cAMP concentrations were measured essentially as described
before (23, 67, 84, 90). In brief, cells grown to mid-log phase on acetate were
collected by centrifugation and washed with ice-cold water. The cell pellet was
resuspended in 6% ice-cold trichloroacetic acid. Acid-washed glass beads (di-
ameter � 0.4 to 0.6 mm) were added before the suspension was snap-frozen in

liquid nitrogen and thawed on ice. Cells were then lysed using a Precellys 24
homogenizer (Bertin Technologies, Montigny-le-Bretonneux, France) at 6,000
rpm twice for 30 s each, with a 1-min break between, at 4°C. Following removal
of cell debris by centrifugation (2,000 � g for 15 min, 4°C), HCl was added to the
supernatant to a final concentration of 10 mM. The sample was extracted four
times with diethyl ether and subsequently dried in a speed vacuum. The lyoph-
ilized cAMP was resuspended in assay buffer from the cAMP Biotrak enzyme
immunoassay (EIA) system (GE Healthcare, Little Chalfont, United Kingdom),
and the cAMP concentration was measured by use of this kit as directed. Sam-
ples were standardized against the cell number.

Northern analysis. RNA analysis by Northern blotting was performed as
described previously (92). Probes for HSP12, HSP26, HSP82, and FLO11
(MUC1) were generated by PCR, using genomic DNA as the template. The
probes for HOP1, IME1, IME2, INO1, SPO13, and the loading control pC4/2
have been described elsewhere (48, 92). All mRNAs were quantitated by phos-
phorimaging on a Typhoon 9400 system (GE Healthcare).

TABLE 2. Yeast strains used for this studya

Strain and genetic background Genotype Reference

SK1 genetic background
AMP 109 a/
 10
AMP 115 a/
 ime1-12::TRP1/ime1-12::TRP1 10
AMP 1618 
 IME2-20-lacZ::LEU2 rme1�5::LEU2 met4 106
AMP 1619 a IME2-20-lacZ::LEU2 rme1�5::LEU2 arg6 91
KSY 162 a/
 ime2-K97R-myc::TRP1/ime2-K97R-myc::TRP1 trp1�FA::hisG/trp1�FA::hisG his3-11,15/

his3-11,15 ho::hisG/ho::hisG
65

KSY 187 a/
 IME2-myc::TRP1/IME2-myc::TRP1 trp1�FA::hisG/trp1�FA::hisG his3-11,15/his3-11,15
ho::hisG/ho::hisG

65

MSY 133-29 a his3�SK rme1�5::LEU2 This study
MSY 133-34 a his3�SK rme1�5::LEU2 This study
MSY 135-12 a met4 rme1�5::LEU2 This study
MSY 135-43 a met4 rme1�5::LEU2 This study
MSY 136-40 
 arg6 rme1�5::LEU2 92
MSY 138-17 
 his3�SK rme1�5::LEU2 92
MSY 184-55 a arg6 rme1�5::LEU2 ume6-5::LEU2 This study
MSY 185-65 
 his3�SK rme1�5::LEU2 ume6-5::LEU2 This study
MSY 186-68 
 arg6 rme1�5::LEU2 ume6-5::LEU2 92
MSY 188-119 a his3�SK rme1�5::LEU2 ume6-5::LEU2 This study
MSY 202-14 
 arg6 rme1�5::LEU2 ime2-2::LEU2 This study
MSY 203-22 a met4 rme1�5::LEU2 ime2-2::LEU2 This study
MSY 203-27 a met4 rme1�5::LEU2 ime2-2::LEU2 This study
MSY 203-33 a met4 rme1�5::LEU2 ime2-2::LEU2 This study
MSY 206-36 
 his3�SK rme1�5::LEU2 ime2-2::LEU2 This study
MSY 552-17 
 his3�SK rme1�5::LEU2 ime1�::hphMX4 This study
MSY 558-38 
 his3�SK rme1�5::LEU2 This study
S497 a/
 his3-11,15/his3-11,15 trp1�FA/trp1�FA ho::hisG/ho::hisG 88
S635 a/
 IME2�C241-HA6-kanMX/IME2�C241-HA6-kanMX his3-11,15/his3-11,15 trp1�FA/

trp1�FA ho::hisG/ho::hisG
88

�1278b genetic background
MLY 61 a/
 a/
 ura3-52/ura3-52 54
MLY 187 a/
 a/
 ura3-52/ura3-52 ras2::G418/ras2::G418 55
MLY 232 a/
 a/
 ura3-52/ura3-52 gpr1::G418/gpr1::G418 55
MSY 699-01 a/
 a/
 ura3-52/ura3-52 ime1�::kanMX2/ime1�::hphMX4 This study
MSY 694-51 a/
 a/
 ura3-52/ura3-52 ime2�::kanMX2/ime2�::hphMX4 This study

a All haploid SK1 strains have the additional alleles ura3, leu2::hisG, trp1::hisG, and lys-2 ho::LYS2, and all diploid SK1 strains are homozygous for these alleles, if
not noted otherwise. The alleles arg6 (68), his3-11,15 (Saccharomyces Genome Database), his3�SK (68), ho::hisG (2), ho::LYS2 (2), ime1-12::TRP1 (99), ime2-2::LEU2
(64), ime2::kanMX (88), IME2-20-lacZ::LEU2 (106), IME2-myc::TRP1 (4), ime2-K97R-myc::TRP1 (4), IME2�C241-HA6-kanMX (88), leu2::hisG (2), lys2 (2), met4 (68),
rme1�5::LEU2 (19), trp1::hisG (2), trp1�FA::hisG (37), ume6-5::LEU2 (101), ura3 (2), and ura3-52 (78) have been described before.

TABLE 3. Oligodeoxynucleotides used for this study

Oligonucleotide Sequence

ime1�, 5� .........................GCTTTTCTATTCCTCTCCCCACAAACAAAATGCAAGCGGATATGCATGGACAGCTGAAGCTTCGTACGC
ime1�, 3� .........................TGAATGGATATATTTTGAGGGAAGGGGGAAGATTGTAGTACTTTTCGAGAAGGCCACTAGTGGATCTG
ime2�, 5� .........................CGGTTAAGGTGGCTGTCTAGAGAATATAAACCTGTATTTATTTACCAGGCAGGCCACTAGTGGATCTG
ime2�, 3� .........................CTGAGCCGGGTAACCGAACACAAAGATCTCGTTCTACTTTTTTTGACCTCAAGCTTCGTACGCTGCAGG
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RESULTS

Nonfermentable carbon sources stimulate pseudohyphal
growth. We previously reported that a/
 diploid cells defective
in a nutrient-regulated signaling pathway respond inappropri-
ately to a meiotic stimulus by initiating pseudohyphal growth
(91). These observations prompted us to investigate whether
diploid a/
 WT cells with the SK1 genetic background induce
pseudohyphal growth when exposed to starvation conditions
known to induce meiosis. To test this hypothesis, we grew
diploid a/
 SK1 cells on plates containing nonfermentable
carbon sources and a limiting ammonium sulfate concentration
(50 �M). In these plate assays, pseudohyphal growth is char-
acterized by multiple projections of cells radiating away from
the colony center (30). Diploid WT SK1 cells formed few
pseudohyphae and were modestly capable of invading the agar
when grown on glucose (Fig. 1A and B). Nonfermentable car-
bon sources, such as acetate, glycerol, pyruvate, and L-lactate,
stimulated formation of branched pseudohyphae and agar in-
vasion (Fig. 1A and B). Pseudohypha formation and agar in-
vasion were also enhanced on plates containing both glucose
and a nonfermentable carbon source (Fig. 1A and B). This
stimulation could be observed as early as 1 day after inocula-
tion of the plates (not shown). Furthermore, �1.6% (wt/vol)
glucose remained even in the most densely grown areas of
plates after 10 days of growth, suggesting that nonfermentable
carbon sources stimulate pseudohyphal growth in the presence
of glucose. Based on their appearance, pseudohyphae formed
on nonfermentable carbon sources appear to share many mor-
phological features with previously described pseudohyphae
(30), such as cell adhesion after completion of cytokinesis, agar
invasion, and directional growth (Fig. 1).

Glucose strongly inhibits utilization of alternative carbon
sources by inhibiting expression of several enzymes of the citric
acid cycle and the respiratory chain (93). However, limiting
nitrogen concentrations under pseudohyphal growth condi-
tions may derepress these genes. For example, rapamycin
treatment, which mimics nitrogen starvation, induces glucose-
repressible genes in glucose-grown cultures (35). To establish
whether respiratory metabolism of nonfermentable carbon
sources is required for stimulation of pseudohyphal growth by
these carbon sources, we produced respiration-deficient petite
cells. We confirmed the loss of respiratory function by the
inability of petite cells to grow on plates containing only ace-
tate as a carbon source. Acetate and pyruvate stimulated
pseudohyphal growth in petite cells in the presence of glucose
(Fig. 1D). In contrast, glycerol, ethanol, and L-lactate did not
stimulate pseudohyphal growth of petite cells. These three
carbon sources require NAD�-dependent oxidation reactions
in order to be metabolized (93), indicating that less efficient
regeneration of NAD� from NADH may interfere with stim-
ulation of pseudohyphal growth by these carbon sources in
petite cells. Taken together, these data indicate that nonfer-
mentable carbon sources stimulate pseudohyphal growth inde-
pendent of their use as respiratory energy sources. These re-
sults also suggest that the less pronounced pseudohyphal
growth seen on glucose as a sole carbon source (Fig. 1A) may
be caused by the accumulation of glycolytic waste products,
especially ethanol, during fermentative growth. In support of

this hypothesis, we found that ethanol stimulates pseudohyphal
growth and agar invasion (Fig. 1E) (52).

Microscopic examination of pseudohyphae on plates con-
taining only nonfermentable carbon sources at a higher mag-
nification revealed that pseudohyphal cells exited pseudohy-
phal growth and formed asci (Fig. 1C). Cells both above and
below the agar surface sporulated as early as 3 days after
inoculation of plates (not shown). All pseudohyphae of all
colonies sporulated. All spores isolated from asci formed by
pseudohyphal cells on acetate were viable (Fig. 1F). The mat-
ing type locus displayed a 2:2 segregation pattern (Fig. 1G),
indicating normal execution of both meiotic divisions. No asci
were observed in the presence of glucose. Asci sometimes
displayed a linear arrangement of two to four spores, especially
in cells grown on glycerol (Fig. 1C). All spores from linear asci
were viable and displayed a 2:2 segregation pattern for the
mating type locus (not shown). Taken together, these data
show that nonfermentable carbon sources stimulate pseudohy-
phal growth and that pseudohyphal cells can enter and suc-
cessfully complete meiosis.

Ime1 and the protein kinase activity of Ime2 are required
for pseudohyphal growth on nonfermentable carbon sources.
Sporulation of pseudohyphae precluded investigation of cellu-
lar characteristics of pseudohyphal cells, such as cell elonga-
tion. Both Ime1 and Ime2 control entry into meiosis. Sporu-
lation of ime1�/ime1� and ime2�/ime2� cells is decreased
several hundredfold compared to that of WT strains (43, 99).
Functions for IME1 or IME2 outside meiosis have not been
reported. Hence, we characterized pseudohypha formation
and agar invasion of ime1�/ime1� and ime2�/ime2� strains.
Surprisingly, pseudohypha formation was nearly completely
absent in ime1�/ime1� cells (Fig. 2A). Deletion of IME1 se-
verely decreased the pseudohyphal morphology of nearly all
colonies on a plate, independent of the position of the colony
on the plate (Fig. 2A). However, ime1�/ime1� cells were able
to invade the agar (Fig. 2C), showing that filamentation and
agar invasion are genetically separable phenotypes. Similarly,
filamentation, but not agar invasion, was defective in ime2�/
ime2� cells grown on glucose, a mixture of glucose and acetate,
or acetate, but not glycerol (Fig. 2B and D). Deletion of IME2
decreased the pseudohyphal morphology of nearly all colonies
on plates containing glucose, glucose plus acetate, or acetate as
the carbon source (data not shown). However, the pseudohy-
phal growth defect of ime2�/ime2� cells was not as severe as
the pseudohyphal growth defect of ime1�/ime1� cells (Fig. 2A
and B). The roles of IME1 and IME2 in pseudohyphal growth
were independent of the ability of yeast to respire (not shown).
Overexpression of Ime1 and Ime2 from multicopy (2�m) plas-
mids enhanced pseudohyphal growth (Fig. 3A) and had no
effect on agar invasion (Fig. 3D). This finding is consistent with
decreased pseudohypha formation of ime1�/ime1� and ime2�/
ime2� strains (Fig. 2). Cells carrying the protein kinase-defec-
tive K97R-ime2 allele displayed a defect in pseudohypha for-
mation similar to that with the IME2 deletion (Fig. 2E and F),
showing that the protein kinase activity of Ime2 is required for
pseudohyphal growth and meiosis. Deletion of the C terminus
of Ime2 (Ime2�C241), which controls the mitotic stability of
Ime2 (88), did not affect pseudohyphal growth (not shown).
Taken together, these data show that Ime1 and Ime2 are re-
quired for pseudohypha formation by SK1 cells.
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FIG. 1. Nonfermentable carbon sources stimulate pseudohyphal growth in WT a/
 diploid SK1 strains (AMP 1618 � AMP 1619 transformed
with pRS316). Identical results were obtained with another diploid WT strain (AMP 109) (cf. Fig. 1 and 2). Colony morphology (A), agar invasion
(B), and ascus formation (C) are shown after growth for 7 days. (D) Stimulation of pseudohyphal growth in respiration-deficient petite cells. The
colony morphology after 7 days of growth is shown. (E) Stimulation of pseudohyphal growth by ethanol. (F) Asci formed by pseudohyphal cells
contain four viable spores. Asci formed by a WT strain (AMP109) on SLA medium supplemented with 2% KOAc were dissected with a tetrad
dissection microscope, and spores were placed onto a YPD plate and allowed to germinate and grow for 2 days. (G) PCR genotyping of the mating
type locus reveals a 2:2 segregation pattern for MATa and MAT
.
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FIG. 2. Ime1 and the protein kinase activity of Ime2 are required for pseudohyphal growth. The colony morphology of WT (AMP 109) and
ime1�/ime1� (AMP 115) strains (A) and of WT (MSY 135-43 � MSY 136-40) and ime2�/ime2� (MSY 202-14 � MSY 203-27) strains (B) is
shown. Bar graphs show percentages of pseudohyphal colonies. For each strain and carbon source, 200 colonies were classified as pseudohyphal
or nonpseudohyphal. Error bars represent standard errors. (C and D) Agar invasion by WT (AMP 109) and ime1�/ime1� (AMP 115) strains
(C) and by WT (MSY 135-12 � MSY 138-17) and ime2�/ime2� (MSY 203-22 � MSY 206-36) strains (D). Filamentation (E) and agar invasion
(F) of WT (KSY 187) and K97R-ime2/K97R-ime2 (KSY 162) strains were scored after 7 days of growth.
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Ime1 acts through Ime2 to stimulate pseudohyphal growth.
In meiosis, Ime1 activates transcription of EMGs, including
IME2. Ime2 stimulates expression of EMGs, including its own
expression, independent of IME1 (64, 96). Ime2 is also a neg-
ative regulator of IME1 expression (81, 95, 96, 99) and Ime1
stability (34). To establish whether IME1 and IME2 act in the
same order in pseudohyphal growth and meiosis, we investi-
gated whether overexpression of Ime1 or Ime2 from 2�m
plasmids would rescue the pseudohyphal growth defects of
ime1�/ime1� and ime2�/ime2� strains. Expression of Ime1 in
ime1�/ime1� cells and of Ime2 in ime2�/ime2� cells restored
pseudohyphal growth on nonfermentable carbon sources (Fig.
3B and C). Expression of Ime2 in ime1�/ime1� strains partially
restored pseudohypha formation (Fig. 3B), whereas expression
of Ime1 in ime2�/ime2� strains had no effect on acetate (Fig.
3C), suggesting that activation of IME2 by Ime1 is required for
pseudohyphal growth on acetate. The partial restoration of
pseudohyphal growth by overexpression of Ime2 in ime1�/
ime1� cells is consistent with an Ime2-independent function of
Ime1 in pseudohyphal growth. The more severe pseudohyphal
growth defects of ime1�/ime1� cells than those of ime2�/
ime2� cells (Fig. 2) also suggest an Ime2-independent role for
Ime1 in pseudohyphal growth. Agar invasion was not altered
by overexpression of Ime1 or Ime2 in the WT, ime1�/ime1�, or
ime2�/ime2� strain (Fig. 3D and not shown), providing addi-

tional evidence that Ime1 and Ime2 are not involved in regu-
lation of agar invasion.

Evidence that binding of Ime1 to Ume6 is involved in
pseudohyphal growth on nonfermentable carbon sources.
Ime1 activates transcription of EMGs, including IME2,
through the DNA-binding protein Ume6 (11, 59, 79). Ume6
also recruits two transcriptional repression complexes to EMG
promoters, namely, the ISW2 chromatin remodeling complex
(31) and the Rpd3-Sin3 histone deacetylase (HDAC) (41).
Deletion of UME6 derepresses EMG transcription, including
that of IME2, under nutrient-rich conditions (92, 101, 109) but
also abrogates activation of these genes during starvation. A
T99N mutation in Ume6 interferes with activation of EMGs by
Ime1. This mutation decreased the interaction between Ime1
and Ume6 �35-fold in a two-hybrid assay (110). The T99N
mutation interferes with association of Ime1 with EMG pro-
moters (11, 39, 79, 92) and with degradation and removal of
Ume6 from EMG promoters by Ime1 (59). These data sug-
gested that Ume6 also has a role in pseudohyphal growth.
Deletion of UME6 derepressed filamentation (Fig. 4A). Agar
invasion by ume6�/ume6� cells was enhanced compared to
WT cells (Fig. 4A). This function of Ume6 in agar invasion is
likely to be independent of IME1 and IME2, because deletion
or overexpression of these two genes had no effect on agar
invasion (Fig. 2 and 3). Expression of WT Ume6 and T99N-

FIG. 3. IME1 acts through IME2 to stimulate pseudohyphal growth. Colony morphology is shown for WT (MSY 135-12 � MSY 138-17) (A),
ime1�/ime1� (AMP 115) (B), and ime2�/ime2� (MSY 203-22 � MSY 206-36) (C) strains transformed with empty vector (pRS426) or 2�m
plasmids expressing IME1 (pHS103) or IME2 (pHS105) from their endogenous promoters. Similar results were obtained with an rme1�/rme1�
strain (MSY 135-12 � MSY 138-17) and an RME1/RME1 strain (AMP 109). For simplicity, only MSY 135-12 � MSY 138-17 is shown in panel
A. (D) Agar invasion of the strains in panel A. Filamentation and agar invasion were scored after 7 days of growth.
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Ume6 complemented the enhanced agar invasion of ume6�/
ume6� strains (Fig. 4B). T99N-Ume6 inhibited filamentation
more severely than WT Ume6 did (Fig. 4B). This behavior of
the T99N-Ume6 mutant is consistent with repression of IME2
by the two transcriptional repression complexes recruited to
the IME2 promoter by Ume6 and, at the same time, with
abrogation of the Ime1-Ume6 interaction by this mutation.
These data indicate that the early meiotic cascade consisting of
Ime1, recruitment of Ime1 to URS1 by Ume6, and Ime2 is
required for both pseudohyphal growth and meiosis but not for
agar invasion.

Ime1 is required for cell elongation, bud site selection, and
budding of daughter cells before their mother cells. Next, we
characterized cellular features that distinguish yeast-form and
pseudohyphal cells to obtain more detailed insight into the
roles of Ime1 and Ime2 in pseudohyphal growth. In contrast to
yeast-form cells, pseudohyphal cells invade agar because they
overexpress Flo11 (51). Compared to yeast-form cells,
pseudohyphal cells are elongated, adhere to each other after
cell division has been completed, and switch from a bipolar to
a unipolar budding pattern. Yeast-form daughters are born
smaller than their mothers. Pseudohyphal daughters are born
with a size comparable to the size of their mothers, allowing

them to bud at the same time as, or even slightly before, their
mothers (45).

Deletion of IME1 or IME2 did not affect agar invasion of
diploid cells (Fig. 2), indicating that Ime1 and Ime2 act inde-
pendent of Flo11. Flo11 is also required for haploid invasive
growth (33). Deletion of IME1 and IME2 did not decrease
haploid invasive growth (Fig. 5A). Northern blotting confirmed
that FLO11 expression was largely unperturbed in ime1�/
ime1� cells (Fig. 5B). Consistent with these observations, we
found that deletion of IME1 or IME2 did not significantly
decrease expression of an FG(TyA)::lacZ reporter (not shown)
whose activation correlates well with the activity of the fila-
mentation MAPK cascade in pseudohyphal cells (66).

Microscopic examination of microcolonies revealed that
ime1�/ime1� cells were not as elongated as WT cells when
grown on SLA plates with glucose or acetate as the carbon
source (Fig. 5C). Acetate enhanced cell elongation in both
strains. ime2�/ime2� and K97R-ime2/K97R-ime2 cells (Fig. 5D
and data not shown) were also not as elongated as their cor-
responding WT cells. The elongation defects of the ime2�/
ime2� and K97R-ime2/K97R-ime2 strains were less severe than
the elongation defect of the ime1�/ime1� strain. These elon-
gation phenotypes are consistent with the less severe

FIG. 4. Recruitment of Ime1 to early meiotic gene promoters, including the IME2 promoter, by Ume6 is required for pseudohyphal growth.
(A) Pseudohyphal growth is derepressed in a ume6�/ume6� (MSY 184-55 � MSY 185-65) strain compared to that in a WT strain (MSY
133-34 � MSY 136-40). (B) Abrogation of the interaction between Ume6 and Ime1 in cells expressing the T99N-UME6 allele as the sole source
of Ume6 results in a pseudohyphal growth defect. Filamentation and agar invasion phenotypes of ume6�/ume6� (MSY 186-68 � MSY 188-119)
strains carrying empty vector (pRS316) or plasmids expressing WT Ume6 (pRS316-UME6-lexA) or T99N-Ume6 (pRS316-T99N-UME6-lexA) are
shown. Filamentation and agar invasion were scored after 7 days of growth.
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FIG. 5. Ime1 and Ime2 act independent of Flo11 expression and the filamentation MAPK cascade. (A) Haploid invasive growth is not defective
in ime1� and ime2� strains. Invasive growth was scored after 3 days of growth on YPD plates. The strains used were upper WT (MSY 135-12),
ime2� (MSY 203-27), lower WT (MSY 558-38), and ime1� (MSY 552-17). (B) Deletion of IME1 does not affect transcription of FLO11. RNA
samples isolated from a WT (AMP 109) or ime1�/ime1� (AMP 115) strain grown to mid-log phase on YPAc and shifted for the indicated times
to C-SPO medium were analyzed by Northern blotting. (C and D) The microscopic appearance of microcolonies is shown for WT (AMP 109)
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pseudohyphal growth phenotype of ime2�/ime2� colonies af-
ter growth for several days (Fig. 2A) and with the stimulation
of pseudohyphal growth by acetate (Fig. 1A). These data show
that IME1 and IME2 are required for elongation of pseudohy-
phal cells.

ime1�/ime1� and ime2�/ime2� microcolonies are more
globular than microcolonies of WT cells. This suggested that
another characteristic of pseudohyphal cells that contributes to
directional growth is affected by deletion of IME1 and IME2.
To characterize whether the budding patterns of WT and
ime1�/ime1� strains are bi- or unipolar, we stained bud scars
with calcofluor white after growth of both strains for �18 h on
SLA acetate plates. For both strains, we observed cells with
bud scars at both poles (not shown). Calcofluor white staining
did not reveal a difference in bud site selection between the
two strains (not shown). Bipolar budding cells display a strong
bias toward the pole opposite their birth site in their first few
divisions (14). For this reason, it may be difficult to distinguish
between bi- and unipolar budding patterns by staining with
calcofluor white only. To reveal more subtle differences in bud
site selection, we costained cells with FITC-WGA. In addition
to bud scars, FITC-WGA also stains birth scars (25). Identifi-
cation of the birth scar allowed classification of budding events
into events at the poles distal and proximal to the birth scar
(Fig. 5E). This classification revealed that WT and ime1�/
ime1� cells grown for 18 h on SLA acetate plates budded
exclusively at the distal pole in their first division (Table 4).
This bias for the distal pole persisted for the first few divisions
in both strains. However, this bias appeared to decrease faster
in the ime1�/ime1� strain. The second bud was formed at the
birth pole in �17% of ime1�/ime1� cells, whereas only �4.7%
of WT cells chose the birth pole for their second bud (P �
0.05). This small increase in selection of the proximal pole in
the second cell cycle may suffice to explain the more globular
growth of ime1�/ime1� cells.

Time-lapse video microscopy revealed that pseudohyphal
WT daughter cells budded before or around the same time as
their mothers (12 of 14 mother-daughter pairs). Mothers could
bud much later (60 min) than their daughters (4 of 12 moth-
er-daughter pairs in which the daughter budded first). In con-
trast, ime1�/ime1� daughter cells budded after their mothers
(10 of 10 mother-daughter pairs) (Fig. 5F). This reversal in the
budding order is a second factor that contributes to the glob-
ular growth of ime1�/ime1� cells.

Comparison of the roles of nonfermentable carbon sources
in pseudohyphal growth in the SK1 and �1278b genetic back-
grounds. Our data show that stimulation of pseudohyphal
growth by nonfermentable carbon sources in the SK1 genetic
background requires IME1 and IME2. Next, we wished to

extend these findings to the �1278b genetic background, which
is used more routinely to study pseudohyphal growth (30, 54).
In contrast to the case for the SK1 genetic background, non-
fermentable carbon sources inhibited pseudohyphal growth in
diploid a/
 �1278b WT cells (Fig. 6A). Likewise, IME1 and
IME2 were not required for pseudohypha formation by diploid
a/
 �1278b WT cells on glucose (Fig. 6B).

Elevated cAMP signaling inhibits pseudohyphal growth on
nonfermentable carbon sources. Stimulation of pseudohyphal
growth in the presence of nonfermentable carbon sources in
SK1 cells is different from the behavior of �1278b cells (Fig. 1
and 6A). To explore explanations for the different behaviors of
these two genetic backgrounds, we decided to focus on the
PKA pathway. The PKA pathway is a signaling pathway re-
sponding to the quality of the carbon source, is activated by
glucose (87), and is involved in the regulation of pseudohyphal
growth (26). The PKA pathway is hyperactive in �1278b cells
compared to another genetic background, SP1 (100). Strains
with high constitutive PKA activity fail to express IME1 (60,
62), and PKA signaling inhibits Ime1 (80) and Ime2 (22, 76).
These data suggest that elevated cAMP signaling in �1278b
cells interferes with activation of Ime1 and Ime2, resulting in a
pseudohyphal growth defect on nonfermentable carbon

and ime1�/ime1� (AMP 115) strains (C) and for WT (MSY 136-40 � MSY 135-12) and ime2�/ime2� (MSY 202-14 � MSY 203-27) strains (D)
grown for 12 to 24 h on SLA plates containing glucose or acetate as a carbon source. The P values for all pairwise strain and medium comparisons
are �0.01. (E) Examples of bud site selection in WT (AMP 109) and ime1�/ime1� (AMP 115) cells grown on SLA acetate plates at 30°C for 18 h.
Bud scars were stained with calcofluor white and are false-colored in green. Bud and birth scars stained with FITC-WGA are false-colored in red
to reveal the polarity of the cells. Note that calcofluor white does not stain the birth scar and that FITC-WGA does not stain the chitin ring between
the mother and its growing bud. (F) Order of budding of mother and daughter cells in WT (AMP 109) and ime1�/ime1� (AMP 115) strains grown
on SLA acetate plates. Abbreviations: D, daughter; M, mother. Uppercase letters represent the cell budding first, and lowercase letters represent
the cell budding last. The numbers identify mother-daughter pairs. The cells from which the colonies originated are labeled with an “F.” These
cells are spherical and display a random, nonpolar budding pattern.

TABLE 4. Distribution of bud scars relative to the birth site in WT
(AMP 109) and ime1�/ime1� (AMP 115) cellsa

No. of bud scars on
cells

No. of cells
with only
distal bud

scars

No. of cells
with �1
proximal
bud scar

% of cells
with only
distal bud

scars

% of cells
with �1
proximal
bud scar

WT cells
1 157 0 100 0
2 61 3 95 4.7
3 15 12 56 44
4 5 6 45 55
5 0 3 0 100
6 0 3 0 100

ime1�/ime1� cells
1 106 0 100 0
2 53 11 82 17
3 14 14 50 50
4 3 10 23 77
5 1 6 14 86
6 0 5 0 100
7 0 0
8 0 1 0 100

a Cells were grown for 18 h on SLA acetate plates at 30°C. Cells were then
stained with calcofluor white and FITC-WGA to reveal bud and birth scars, as
described in Materials and Methods. Only the difference in selection of the
second bud site was significantly different (P � 0.05, assuming that the number
of bud scars formed at the proximal pole follows a Poisson distribution).
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sources. To test this hypothesis, we first confirmed that cAMP
signaling is constitutively elevated in �1278b cells compared to
SK1 cells. Consistent with elevated cAMP signaling in �1278b
cells, we found that growth on nonfermentable carbon sources,
sporulation, induction of heat shock genes, and accumulation
of storage carbohydrates upon heat shock were decreased in
�1278b cells (Fig. 7A to D). All of these phenotypes are known
to be inhibited by elevated cAMP signaling (13, 100, 104).
Deletion of cAMP signaling components such as GPR1 or
RAS2 elevated sporulation and storage carbohydrate accumu-
lation in heat-shocked �1278b cells (Fig. 7F, H, and J). Ex-
pression of constitutively active Ras2G19V in SK1 cells inhib-
ited sporulation and storage carbohydrate accumulation
during heat shock (Fig. 7E, G, and I). These data confirm that
cAMP signaling contributes to the magnitude of these pheno-
types in �1278b and SK1 cells. cAMP levels were elevated in
�1278b cells compared to those in SK1 cells (4.5 � 0.3 pmol/
107 cells versus 3.5 � 0.2 pmol/107 cells). These data confirm
that cAMP signaling is elevated in �1278b cells compared to
SK1 cells. Steady-state IME1 mRNA levels were significantly
decreased in �1278b cells (Fig. 8A), consistent with repression
of IME1 by elevated cAMP signaling in �1278b cells. Addition
of cAMP or expression of constitutively active Ras2G19V in-
hibited pseudohyphal growth in SK1 cells (Fig. 8B and C).
FLO11, whose expression is stimulated by an activated cAMP
signaling pathway in �1278b cells, displayed strongly elevated
mRNA levels in SK1 cells (Fig. 8A and D). Furthermore,
acetate induced the expression of FLO11 in SK1 cells (Fig. 8D)
but not in �1278b cells (70), which may contribute to increased
pseudohyphal growth and invasiveness of SK1 strains grown on

nonfermentable carbon sources (Fig. 1A and B). Deletion of
RAS2, GPR1, or GPA2 did not allow �1278b cells to form
pseudohyphae on nonfermentable carbon sources (not shown),
possibly because FLO11 expression requires cAMP signaling
in �1278b cells (71, 72, 77). Taken together, these data suggest
that cAMP signaling inhibits pseudohyphal growth on nonfer-
mentable carbon sources by inhibiting IME1 and IME2.

DISCUSSION

Our work has shown that nonfermentable carbon sources
stimulate pseudohyphal growth independent of respiratory
function and that pseudohyphal cells formed in the absence of
glucose exit pseudohyphal growth to successfully complete
meiosis (Fig. 9). Two regulators of entry into meiosis, IME1
and IME2, are required for stimulation of pseudohyphal
growth by nonfermentable carbon sources. The use of a dif-
ferent genetic background, SK1, from that used routinely for
investigation of pseudohyphal growth, �1278b, was critical for
making these observations. Pseudohyphae formed by SK1 cells
on nonfermentable carbon sources share several features with
pseudohyphae formed by �1278b cells, for example, cell elon-
gation, daughter cells budding before or at the same time as
their mothers, and invasion of the agar. However, pseudohy-
phal SK1 cells appear to employ a bipolar budding pattern.
Bipolar budding diploid cells display a strong bias toward bud-
ding at the pole opposite their birth site in the first few divi-
sions (14). This bias (Table 4), together with daughters bud-
ding before their mothers (Fig. 5F), may allow SK1 cells to
form pseudohyphae. Both of these features are affected by
deletion of IME1. The budding order of daughter and mother
cells is reversed in ime1�/ime1� cells (Fig. 5F). The bias for
budding distal to the birth site is less pronounced in ime1�/
ime1� cells, especially for the second budding event (Table 4).
These buds and their first daughters are directed toward the
origins of the colonies, thus explaining why ime1�/ime1� cells
are defective in pseudohyphal growth.

Role of Ime1 and Ime2 in pseudohyphal growth. Studies on
Ime1 and Ime2 in meiosis provide clues regarding the extent to
which these two proteins may act through the same or similar
downstream targets to stimulate pseudohyphal growth on non-
fermentable carbon sources. Ime1 acts through Ume6 to acti-
vate EMGs, including IME2 (11, 59, 79, 98). Ume6 serves dual,
opposing roles on EMG promoters. Under nutrient-rich con-
ditions, it represses EMGs via recruitment of the Rpd3-Sin3
HDAC (41) and the ISW2 chromatin remodeling complex
(31), whereas in starvation its interaction with Ime1 is required
for activation of EMGs, either because Ime1 bound to EMG
promoters via Ume6 provides a transcriptional activation do-
main (11, 79, 98) or because the interaction between these two
proteins is required to remove Ume6 from EMGs (59). To
investigate whether this transcriptional switch also operates in
pseudohyphal growth, we turned to a T99N mutation in Ume6.
This mutation decreases the interaction of Ume6 with Ime1 in
a two-hybrid assay (�35-fold) but does not derepress expres-
sion of EMGs prior to induction of meiosis (11), suggesting
that the T99N mutation does not affect interaction of Ume6
with the Rpd3-Sin3 HDAC or the ISW2 chromatin remod-
eling complex. Cells expressing T99N-Ume6 formed less
pseudohyphal colonies than cells deleted for UME6 (Fig. 4B).

FIG. 6. Characterization of the roles of IME1 and IME2 in
pseudohyphal growth in the �1278b background. (A) Inhibition of
pseudohyphal growth by nonfermentable carbon sources in the �1278b
genetic background. The strain used was MLY 61 a/
. (B) IME1 (MSY
699-01 a/
) and IME2 (MSY 694-51 a/
) are not required for
pseudohyphal growth on glucose in �1278b cells. In both panels, the
colony morphologies after 7 days of growth on the indicated carbon
sources are shown.
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This finding is consistent with the interpretation that derepres-
sion of IME2 enhances pseudohyphal growth in ume6�/ume6�
cells. T99N-Ume6 also interfered with pseudohypha formation
compared to WT Ume6 (Fig. 4B), which can be explained by
the inability of Ime1 to activate IME2 in cells expressing T99N-
Ume6. This effect of the T99N-Ume6 mutant was more pro-
nounced on plates containing both glucose and acetate than on
plates containing only glucose (Fig. 4B), which is consistent
with elevated expression of IME1 in cells grown on nonfer-
mentable carbon sources (Fig. 8E) and after exponential
growth on glucose (44). The pseudohyphal growth defect of the
T99N-Ume6-expressing cells was also not as severe as the
pseudohyphal growth defect displayed by ime1�/ime1� cells,
either because of a residual interaction between T99N-Ume6
and Ime1 or because of the existence of additional, Ume6-
independent Ime1 targets. Epistasis analysis (Fig. 3) supports

the idea that Ime1 acts largely through inducing expression of
Ime2 to stimulate pseudohyphal growth. The behavior of the
T99N-Ume6 mutant (Fig. 4B) provides further support for this
view. At the same time, the pseudohyphal growth defect of
ime1�/ime1� cells is more severe than the pseudohyphal
growth defect of ime2�/ime2� cells (Fig. 2 and 5), showing that
Ime1 also stimulates pseudohyphal growth independent of
Ime2. This situation is similar to regulation of entry into mei-
osis by Ime1 and Ime2, where Ime1 also acts through Ime2 and
independent of Ime2 to stimulate entry into meiosis (64). We
conclude that all key elements of the early meiotic cascade
function in pseudohyphal growth. The transcriptional targets
of Ime1 in pseudohyphal growth remain to be identified, but
EMGs and genes carrying the Ume6-binding site URS1 in
their promoters are likely targets.

Several substrates for Ime2 are known, including Sic1 (21,

FIG. 7. cAMP signaling is hyperactive in �1278b cells compared to SK1 cells. (A) Sporulation of a/
 diploid SK1 (AMP 109; filled bars) and
�1278b (MLY 61 a/
; open bars) cells. (B) Induction of heat shock genes in WT cells (AMP 109 and MLY 61 a/
) shifted from 30°C to 39°C for
30 min. (C and D) Accumulation of glycogen (C) and trehalose (D) in WT cells (AMP 109 [filled bars] and MLY 61 a/
 [open bars]) shifted from
25°C to 37°C for the indicated times. (E) Expression of constitutively active Ras2G19V from plasmid pMW2 in a WT a/
 diploid SK1 strain (AMP
109) inhibits sporulation. Filled bars, AMP 109 plus pRS316; open bars, AMP 109 plus pMW2. (F) Deletion of GPR1 in a WT a/
 diploid �1278b
strain (MLY 61 a/
) increases sporulation. Filled bars, WT (MLY 61 a/
); open bars, gpr1�/gpr1� strain (MLY 232 a/
). (G and H) Glycogen
accumulation is shown for cells shifted from 25°C to 37°C for the indicated times. (G) AMP 109 transformed with pRS316 (filled bars) or pMW2
expressing Ras2G19V (open bars). (H) MLY 61 a/
 (black bars), MLY 232 a/
 (gpr1�/gpr1�; gray bars), and MLY 187 a/
 (ras2�/ras2�; open bars).
(I and J) Trehalose accumulation in the cells shown in graphs G and H. For each measurement, the average and standard error for two replicates
are shown.
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94), Cdh1 (8), the middle meiotic gene-specific transcription
factor Ndt80 (4, 69), the repressor of middle meiotic genes
Sum1 (65), and Rfa2 (17, 18). Stabilization of the G1-S tran-
sition-promoting G1 cyclins Cln1 to -3 in grr1�/grr1� cells stim-

ulates pseudohyphal growth (6). Consequently, pseudohyphal
cells are characterized by a shortened G1 and an extended G2

phase (45). In meiosis, Ime2 substitutes for Cdc28 to trigger
entry into meiotic S phase by phosphorylating Sic1 and trig-

FIG. 8. cAMP signaling represses pseudohyphal growth in SK1 cells. (A) Expression of IME1 and FLO11 in WT SK1 (AMP 109) and �1278b
(MLY 61 a/
) strains grown on rich acetate medium (2% KOAc, 1% yeast extract, 2% peptone) to exponential growth phase. All bands are from
the same blot. P values were derived from an unpaired, two-tailed t test (n � 6). (B and C) Addition of 5 mM cAMP to SLA glucose plates (B) or
expression of constitutively active Ras2G19V from plasmid pMW2 (C) inhibits pseudohyphal growth in SK1 cells (AMP 109). Filamentation and
agar invasion were scored after 7 days of growth. Bars, 40 �m for glucose and 100 �m for the other carbon sources. (D) Acetate induces expression
of FLO11 in a WT SK1 strain (AMP 109). Cells were grown to mid-log phase on YPD or YPAc before isolation of RNA for Northern analysis.
The �1278b strain was MLY 61 a/
. (E) Comparison of steady-state mRNA levels for IME1, IME2, the EMGs HOP1 and SPO13, and the inositol
biosynthetic gene INO1 in an SK1 strain (AMP 1619) grown to exponential growth phase on glucose (lane 1) or acetate (lane 2) or 4, 8, or 12 h
after being shifted to sporulation medium (C-SPO medium) (see Materials and Methods).
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gering degradation of Sic1 (21), an inhibitor of Cdc28 and of
the G1-S transition, suggesting that Ime2 may stimulate
pseudohyphal growth by stimulating Sic1 degradation. Never-
theless, future studies are required to identify the Ime2 sub-
strates in pseudohyphal growth.

Sporulation of pseudohyphal cells. In the absence of glu-
cose, pseudohyphae of SK1 cells exit pseudohyphal growth to
successfully complete meiosis (Fig. 1). Several models for con-
version of pseudohyphal cells into asci are imaginable.
Pseudohyphal cells may exit pseudohyphal growth to form
normal yeast- or vegetative-growth-form cells which then enter
and execute meiosis. Alternatively, pseudohyphal cells may
directly exit pseudohyphal growth and enter meiosis. Near-
quantitative conversion of filaments into asci within 3 days and
the requirement of IME1 and IME2 for pseudohyphal growth
support the second model. Independent of the precise mech-
anism of switch from pseudohyphal growth to meiosis, the
question arises of which stimulus triggers entry into meiosis by
pseudohyphae. A further decrease in nutrient content of the
medium caused by metabolic activity of the growing pseudohy-
phae may induce meiosis. Ascus formation by the tip cell of
pseudohyphae (Fig. 1C) provides evidence against such a sim-
ple nutrient depletion model. Alternatively, entry into meiosis
may be under temporal control. Detailed time-lapse studies
will be necessary to establish whether pseudohyphal cells enter
meiosis directly or via prior formation of yeast-form cells. Asci
sometimes displayed a linear arrangement of two to four
spores. This ascus morphology has been observed previously in
Saccharomyces ludwigii (36) and after sporulation of newly
formed zygotes of S. cerevisiae (103).

Role of cAMP signaling in pseudohyphal growth. Stimula-
tion of pseudohyphal growth in the presence of nonferment-
able carbon sources in SK1 cells contrasts with the behavior of
�1278b cells, in which nonfermentable carbon sources inhib-
ited pseudohyphal growth (Fig. 6A). cAMP signaling activity
was elevated in �1278b cells compared to SK1 cells (Fig. 7),
confirming an earlier report (100). Strains with high constitu-
tive PKA activity fail to express IME1 (60, 62). PKA signaling
inhibits Ime1 (80) and Ime2 (22, 76). Therefore, �1278b cells
may fail to form pseudohyphae on nonfermentable carbon
sources because the activation of IME1 and IME2 is defective.
Both IME1 and IME2 provide virtually essential functions for
pseudohyphal growth on several nonfermentable carbon
sources (Fig. 2). Attenuation of cAMP signaling by deletion of
RAS2, GPR1, or GPA2 did not rescue pseudohyphal growth of
�1278b cells on nonfermentable carbon sources (not shown),
possibly because FLO11 expression requires an active cAMP
signaling pathway in �1278b cells (71, 72, 77). In SK1 cells,
FLO11 expression was induced strongly by acetate (Fig. 8D).
In contrast, acetate does not induce FLO11 in �1278b cells
(70). This potential uncoupling of FLO11 expression from the
PKA pathway in SK1 cells may allow SK1 cells to attenuate
PKA signaling on nonfermentable carbon sources (5, 63) in
order to activate IME1 and IME2. Two isoforms of the cata-
lytic subunit of PKA, Tpk1 and Tpk3, have negative roles in
pseudohyphal growth (71, 77), indicating that Tpk1 or Tpk3
may target IME1 or IME2 to inhibit pseudohyphal growth on
nonfermentable carbon sources.

Several lines of evidence suggest that Ime1 and Ime2 act
independently of Flo11 in pseudohyphal growth. Haploid in-

FIG. 9. Control of cell differentiation by the early meiotic cascade.
(A) Revised life cycle of S. cerevisiae incorporating sporulation of
pseudohyphal cells. Haploid a and 
 cells grow and divide in a nutri-
ent-rich environment. Mating type switching allows a cells to switch to
an 
 mating type and vice versa. a and 
 cells mate to form an a/

diploid cell when exposed to mating pheromones secreted by their
opposite mating types. a/
 diploid cells grow and divide in a nutrient-
rich environment. Severe starvation triggers sporulation of a/
 diploids
and formation of an ascus harboring four haploid spores. Moderate
starvation triggers pseudohyphal growth, which may allow yeasts to
forage for nutrients. Severe starvation of pseudohyphae also induces
sporulation. After exposure to nutrients and breakdown of the ascus
wall, the spores germinate to form haploid a and 
 cells. (B) Model
summarizing how the early meiotic cascade consisting of Ime1, Ume6,
and Ime2 regulates cell differentiation in diploid S. cerevisiae cells.
Starvation of a/
 diploid cells induces expression of Ime1 and conver-
sion of the transcriptional repressor Ume6 to an activator, leading to
induction of early meiotic genes, including IME2. Activation of IME1
and IME2 is a general differentiation signal that promotes both
pseudohyphal growth and meiosis. Induction of pseudohyphal growth
or meiosis by Ime1 is abolished by a T99N mutation in Ume6. Mod-
ulation of the differentiation signal generated by IME1 and IME2 by
other, uncharacterized events is expected to govern the choice between
pseudohyphal growth and meiosis.
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vasive growth or agar invasion by diploid cells was not de-
creased by deletion of IME1 or IME2 (Fig. 5A). Deletion of
IME1 did not significantly affect FLO11 mRNA levels (Fig.
5B). ime1�/ime1� cells and, to a lesser degree, ime2�/ime2�
cells displayed cell elongation defects (Fig. 5C). Therefore,
Ime1 and Ime2 may act independent of and in parallel to
FLO11 in pseudohyphal growth.

Implications for other yeast species. Ime2 belongs to a fam-
ily of conserved MAPKs found in all eukaryotes (27, 28), in-
cluding mammalian MAK, the Schizosaccharomyces pombe
proteins Mde3 and Pit1, and the Ustilago maydis protein kinase
Crk1. All family members may function in sexual development.
MAK is expressed during spermatogenesis (40, 61), Mde3 and
Pit1 are important for the timing of the meiotic divisions
and spore morphogenesis (1), Crk1 is required for mating (28),
and Ime2 is required for entry into meiotic S phase (21). Our
finding that Ime2, Ime1, and Ume6 are required for pseudohy-
phal growth of S. cerevisiae suggests that Ime2 orthologs func-
tion in processes other than meiosis, for example, in hyphal
development and filamentous growth of pathogenic yeasts,
such as Ustilago maydis, Magnaporthe grisea, and Candida spe-
cies, that undergo dimorphic transitions important for their
virulence (9, 49, 50, 86). Indeed, Crk1 is required for hyper-
polarized growth of U. maydis cells with defects in cAMP
signaling (27) and for infection of maize plants (28), and Ume6
is required for hyphal extension in Candida albicans (3). Our
work provides a motivation to investigate the roles of Ime2
orthologs, and possibly orthologs of other meiotic genes, in
pseudohyphal and hyphal growth forms and in the virulence of
pathogenic yeast species.
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84. Sáez, M. J., and R. Lagunas. 1976. Determination of intermediary metab-

VOL. 30, 2010 IME1 IS REQUIRED FOR PSEUDOHYPHAL GROWTH 5529



olites in yeast. Critical examination of the effect of sampling conditions and
recommendations for obtaining true levels. Mol. Cell. Biochem. 13:73–78.

85. Sagee, S., A. Sherman, G. Shenhar, K. Robzyk, N. Ben-Doy, G. Simchen,
and Y. Kassir. 1998. Multiple and distinct activation and repression se-
quences mediate the regulated transcription of IME1, a transcriptional
activator of meiosis-specific genes in Saccharomyces cerevisiae. Mol. Cell.
Biol. 18:1985–1995.
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