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Abstract 

 

   A set of previously unrecognised quartz-pyrite veins are present in the Assynt 

Terrane of the mainland Lewisian Complex, NW Scotland. The veins cross-cut the 

Badcallian and Inverian fabrics, and the Scourie Dykes. The veins have been 

reworked by Laxfordian deformation fabrics (ca. 1.8 Ga) and later brittle faults of 

various ages. Fieldwork analyses suggest that the veins are a multi-modal system of 

tensile/hybrid fractures which are locally influenced by the existing foliation of the 

gneisses. They are inferred to have formed during regional NW-SE extension, an 

orientation that is almost orthogonal to the NE-SW extension direction associated 

with the intrusion of the Scourie Dykes. Microstructures within the quartz veins 

suggest that overprinting Laxfordian events reached maximum temperatures of 

500°C under moderate strain rates, while pervasive ductile deformation was 

restricted mainly to the Canisp Shear Zone and was succeeded by brittle deformation 

as the temperature decreased but strain rates remained high within the shear zone. 

Re-Os dating of the pyrite within the quartz veins gives an age of 2259±61 Ma, 

placing the emplacement of the veins after the oldest dates for the Scourie Dykes 

(2420, 2400 & 2375 Ma) but before the youngest ages (1990 Ma). Sulphur isotope 

analysis suggests that the pyrite is of primitive mantle origin and may have been 

either stripped from the crust by fluid circulation or was associated with the 

intrusion of the Scourie dykes. The presence of the quartz-pyrite veins in both the 

Assynt and Gruinard Terranes suggest they were amalgamated during or prior to 

Inverian deformation while the absence of the veins in the Rhiconich Terrane is 

consistent with the suggestion that this terrane was not amalgamated until the 

Laxfordian Orogeny. The emplacement of the veins may linked to the formation 

and/or amalgamation of the Loch Maree Group supracrustal sequence. 
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Chapter One – Introduction  

 

1.1 Research Proposal 

   This project proposes to document the structural and microstructural relationships 

of a hitherto unstudied regional set of quartz-pyrite veins which occur throughout 

the Assynt Terrane in the Lewisian Complex, NW Scotland, and to date the 

formation of these veins using the Re-Os geochronometer. Preliminary field studies 

by the supervisors of the structural setting of the veins suggest that they cross-cut 

early Badcallian gneissose fabrics, Inverian reworked fabrics and ca. 2.4 Ga Scourie 

dykes in the Lewisian. The veins are thought to have been reworked by Laxfordian 

deformation fabrics (ca. 1.8 Ga onwards) and later brittle faults of various ages. The 

veins appear to be restricted to the Assynt Terrane and the project will assess 

whether the absolute age is consistent with the field relationships. There is 

considerable debate about the application of terrane models to ancient orogenic 

gneiss complexes like the Lewisian and this project will yield important new 

insights and potentially recognise a ‘signature’ event since these veins are 

apparently restricted only to the Assynt Terrane in NW Scotland.  

 

1.2 Work Carried Out 

   I began the project with four weeks of field work, from the end of September to 

the end of October, in the Assynt Terrane of the Lewisian Complex, NW Scotland, 

based at Inchnadamph Lodge at the southern end of Loch Assynt. My work centred 

along the Assynt-Lochinver valley where good exposures were known to occur 

along the shore of Loch Assynt and in road cuts along the Lochinver road, although 

considerable time was also spent at Clashnessie Bay, Achmelvich Bay and Kylesku. 

I measured the orientation, thickness, length, lineations and en echelon off-shoots of 
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all the quartz-pyrite veins encountered and studied the relationship of the veins to 

other structures within the country rocks (e.g. Badcallian, Inverian and Laxfordian 

foliation, Scourie dykes and later brittle faults). I collected orientated samples of the 

quartz-pyrite veins from a broad range of locations throughout the terrane to be 

made into thin sections for optical and SEM analysis, as well as samples of the 

pyrite within the veins to be dated using the Re-Os geochronometer.  

   On returning from the field I collated my data into one excel database. I plotted the 

orientations of the veins onto stereograms using a range of filters (e.g. location, age 

of country rock, and relationship to Lewisian foliations) to establish any trends in 

their orientation. Veins containing lineations on their margins were analysed using 

stress inversion techniques. Using ArcMap, I plotted the positions and orientations 

of the quartz-pyrite veins onto a geological map and high resolution aerial 

photographs. With the assistance of D. Selby, I selected six of the samples of pyrite 

collected in the field to be dated using the Re-Os geochronometer. During 

November and December I prepared these samples, to be run on the mass 

spectrometer, in the laboratory under the instruction of A. Finlay, following the 

method described in the paper (Chapter Two).  

   During November I began to research and learn about quartz microstructures in 

preparation to analyse thin sections of the quartz-pyrite veins. I selected twelve 

orientated samples, which covered a range of settings within the Assynt Terrane, to 

be made into thin sections, and cut the large samples myself using the rock saw 

under the instruction of D. Sales. I also began to analyse the microstructures in three 

existing thin sections of the quartz-pyrite veins. 

   During late November and December, I made a poster detailing the results of my 

research to that point, which included field observations, structural analysis, 

preliminary microstructural analysis of the three existing thin sections, and the 
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results of a pilot Re-Os study carried out by D. Selby on the pyrite within one of the 

veins. I presented this poster at the annual Tectonic Studies Group Conference at 

Durham (5
th

 – 7
th

 January 2011), and was awarded runner up in the Postgraduate 

Poster Competition.  

   In January D. Selby and A. Finlay helped me to run my prepared pyrite samples on 

the Mass Spectrometer and to analyse the results using a program they had 

developed. We then combined these with the results of other pyrite samples from the 

Assynt Terrane previously analysed by D. Selby, and plotted them on a graph to 

obtain an isochron, from which a date for the crystallisation of the pyrite could be 

calculated. Based on the results it was decided to analyse three more pyrite samples 

for which I conducted the laboratory work under the supervision of A. Finlay. These 

were run on the Mass Spectrometer shortly before Easter and the results analysed 

and added to the others. From these results D. Selby assisted me in selecting the 

results that produced an isochron with the smallest inaccuracy, which is presented in 

the paper below.  

   In early February my thin sections were ready and I was able to begin analysing 

the twelve thin sections of the quartz veins under the optical microscope with the 

aim of determining their temperature and pressure history post-emplacement to see 

if this reflected any of the events believed to have occurred in the Lewisian Complex 

around this time. This work was carried out under the supervision of R Holdsworth. 

I also analysed the relationships of the pyrite to the quartz in the veins to establish 

that the pyrite was formed synchronously with the quartz, and thus that the date 

obtained for the crystallisation of the pyrite was concurrent with the formation of the 

quartz veins. In addition, I studied the relationship between any other minerals (e.g. 

muscovite, chlorite and calcite) and quartz grains in the veins to help deduce their 

history. Following a preliminary analysis of all the thin sections, three were selected 
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to be analysed under the SEM to look more closely at the relationships between the 

pyrite and the quartz, other minerals and the quartz and shear structures within the 

quartz. The SEM analysis was conducted during three sessions in late March and 

April and was carried out in the Physics Department with the assistance of L. Bowen 

in Carbon Coating the samples and operating the SEM.  

   After Easter, I collated all my results so far and wrote a first draft of the paper. 

After reviews by my supervisors it was decided that I should spend another week in 

the field to gather a bit more data and so during the second week of June I returned 

to the Assynt Terrane. I concentrated on looking for evidence of the opening 

directions of the veins primarily around Clashnessie, as there is a wide variation in 

the orientation of the quartz-pyrite veins in that area, and on gathering some more 

data from veins which had been affected by the Laxfordian Event within the Canisp 

Shear Zone. I also collected typical samples of the Badcallian, Inverian and 

Laxfordian Gneisses. 

   On returning from the field I selected one sample of each of the Badcallian, 

Inverian and Laxfordian gneisses to be made into thin sections, as well as two 

samples of quartz veins containing pyrite. The thin sections were prepared by the 

end of June and I was able to analyse the microstructures within the gneisses and 

compare these to the microstructures within the quartz-pyrite veins. I was also able 

to further establish the relationship of the pyrite to the quartz within the veins. 

During late June I also added my new structural data to the existing data and 

analysed this again using stereograms and stress inversion techniques to discover 

any trends in the orientation and/or distribution of the veins. 

   By early July I was able to begin writing up my findings from this project into a 

paper (see below) which will be submitted for publishing to the Journal of the 

Geological Society of London.  
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Chapter Two – Quartz-pyrite Veins of the 

Assynt Terrane 

The age, geological character and structural setting 

of quartz-pyrite veins in the Assynt Terrane, 

Lewisian Complex, NW Scotland. 

 

*A version of this chapter will be submitted for publishing co-authored by R. 

Holdsworth
1
, D. Selby

1
, A. Finlay

1
 & T. Fallick

2
. 

1 
Department of Earth Science, Durham University, Science labs, Durham, 

DH13LE. 

2 
SUERC, Scottish Enterprise Technology Park, Rankine Avenue, East Kilbride, 

G750QF. 

 

2.1 Introduction: 

   Like many regions of continental metamorphic basement, the Lewisian Complex 

of NW Scotland preserves evidence for multiple episodes of igneous intrusion, 

ductile and brittle deformation and associated phases of metamorphism and 

mineralisation (e.g. Wheeler et al., 2010, Beacom et al., 2001 and references 

therein). Whilst cross-cutting and overprinting relationships observed in the field 

and thin section allow relative age relationships to be established on both regional 

and local scales, only radiometric ages are able to give information concerning the 

absolute ages of events. Despite the emergence of an increasing number of 

geochronometers for Earth Scientists, an enduring problem in many basement 
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regions is a relative paucity of material suitable for reliable radiometric dating. This 

has become a particularly significant problem in the Lewisian Complex since 

Kinney et al. (2005) and Friend & Kinny (2001) proposed that the Lewisian may 

comprise a number of lithologically and geochronologically distinct tectonic units or 

terranes.    

   In this paper, we describe the lithology, field relationships and microstructures of a 

previously undescribed set of quartz-pyrite veins that are recognised throughout the 

Assynt Terrane. These display a consistent set of contact relationships relative to 

regionally recognised igneous, metamorphic and deformational events. We have 

dated the pyrite in the veins using the Re-Os technique and obtain a consistent set of 

ages that help to better constrain the geochronology of this important part of the 

Lewisian Complex in NW Scotland. 

 

2.2. Regional Setting: 

   The Precambrian rocks of the Lewisian Complex of NW Scotland form a fragment 

of the continental basement of Laurentia at least as far SE as the Great Glen Fault 

(Fig. 1). The complex underwent a number of major crustal-scale geological events 

during the Archaean and Palaeoproterozoic and is divided into a number of tectonic 

regions or terranes which are separated by steep shear zones. 

   The Assynt Terrane (Fig. 1), as defined by (Kelly et al., 2008) comprises grey, 

banded, tonalitic gneisses which are locally highly heterogeneous in nature ranging 

from ultramafic to acidic compositions (Sheraton et al., 1973). The orthogneisses are 

derived from tonalite, trondhjemite and granodiorite plutons intruded at 3030 to 

2960 Ma (Macdonald & Fettes, 2007).  The depletion of LIL elements is more 

extensive in the Assynt Terrane compared to adjacent terranes (e.g. Rhiconich, 
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Gruinard) as a result of Badcallian granulite-facies metamorphism (Wheeler et al., 

2010) which occurred ca. 2490 Ma (Park, 2005).  

   The central part of the Assynt Terrane is cut by the major NW-SE-trending, 

steeply dipping Canisp Shear Zone (CSZ) which has a maximum width of 1.5km 

(Fig. 2). There are also many other NW-SE to WNW-ESE trending minor shear 

zones cutting the surrounding gneisses (Park & Tarney, 1987). Some of these shear 

zones, including the CSZ, developed initially during Inverian deformation and 

amphibolites-facies retrogression which affected substantial parts of the Assynt 

Terrane ca. 2480 Ma (Love et al., 2004). Mafic to ultramafic Scourie dykes are 

present throughout the entire terrane. These predominantly cross-cut local Inverian 

fabrics, although those intruded first are thought to carry Inverian amphibolites-

facies assemblages and a weak, steeply-dipping foliation in places (Park et al., 

1994). The later main phase Laxfordian event (ca. 1760 Ma) was associated with the 

widespread retrograde development of phyllosilicate-rich fabrics during lower 

amphibolite to upper greenschist-facies metamophism (Attfield, 1987, Beacom et al. 

2001). The effects of Laxfordian reworking in the Assynt Terrane are highly 

localised, being largely restricted to the central part (ca. 1km wide) of the CSZ and 

other shear zones, as well as along the margins of pre-existing Scourie dykes. This 

contrasts with the neighbouring Rhiconich and Gruinard Terranes where this event 

reached amphibolites facies and was associated with more pervasive ductile shearing 

and reworking (Droop et al., 1989). This has led to the suggestion that the Assynt 

Terrane lay at a shallower crustal depth during the Laxfordian event (e.g. Dickinson 

& Watson, 1976; Coward & Park 1987). Table 1 provides a summary of the 

chronology of the Assynt Terrane. 
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Figure 1; The terranes of the mainland Lewisian Complex 

(Kelly et al., 2008 & Love et al., 2004). GGF – Great Glen 

Fault. 
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Ma Event Kinematics 

 

2900 - 2490 

 

Badcallian granulite-facies metamorphism 

and deformation. 

NE-SW fabrics and shear zones. 

 

Folding and sub-

horizontal thrusting. 

 

2490 - 2400 

 

Inverian amphibolites retrogressive 

metamorphism and deformation. 

Steep NW-SE trending shear zones. 

 

 

Dextral transpression 

– north-up thrusting 

with small dextral 

component. 

 

2400 - 1900 

 

Emplacement of the NW-SE to E-W 

trending Scourie dyke swarm. 

Deformation and formation of the Loch 

Maree Group. 

 

Dextral transtension. 

 

1900 - 1800 

 

Early-Laxfordian amphibolites-facies 

metamorphism and deformation. 

NW-SE fabrics and shear zones. 

 

 

Dextral transtension 

– on oblique shears 

and asymmetric 

shear folds. 

 

1600 - 1400 

 

Mid-Laxfordian upper greenschist-facies 

metamorphism and deformation. 

NW-SE fabrics and shear zones. 

 

 

Dextral transpression 

– north-up thrusting 

and upright folds. 

 

1400 - 1200 

 

Late-Laxfordian lower greenschist-facies 

metamorphism and deformation. 

NW-SE shear zones and some brittle 

deformation. 

 

Sinistral strike-slip – 

steeply plunging 

asymmetric folds 

and crush belts. 

Table 1; Summary of the chronology of the mainland Lewisian Complex of NW 

Scotland during the late Archaean and paleao-Proterozoic (Adapted from Beacom, 

2001). 
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2.3. Field relationships of quartz-pyrite veins: 

   The occurrence of quartz veins is a widely recognised but little described 

phenomena in the Lewisian Complex of the Assynt Terrane (e.g. Sheraton et al., 

1973). Some generally foliation-parallel veins are clearly relatively late features that 

are closely associated with retrogression and shearing along Laxfordian shear zones 

and the development of schistose, phyllosilicate-rich high strain zones (Beach 1976; 

Beacom, 1999). However, the present study has revealed that an earlier, much more 

widespread and distinctive group of quartz-pyrite veins are present throughout the 

Assynt Terrane. They are particularly easy to see in fresh road-cut exposures where 

the pale white colour of the veins stands out markedly from the generally dark-

coloured granulite facies Badcallian gneisses. The distribution of the veins 

throughout the Assynt Terrane does not seem uniform – they typically occur in 

clusters cutting the gneisses in regions covering areas of tens to hundreds of square 

metres, with particularly well-defined groups occurring in the Loch Assynt and 

Clashnessie regions, and along the trace of the CSZ (Fig. 2). 

   The veins typically range from a few millimetres to several tens of centimetres in 

width (e.g. Fig. 3a-e), and are relatively straight and continuous features that can be 

traced for several metres or, less commonly, tens of metres along strike. They have 

sharply-defined margins, are occasionally anastomosing and sometimes contain 

inclusions of country-rock or patches of pink feldspar. Pyrite is not found in all of 

the veins, but where it occurs it is typically either located along the margins as large 

crystals (>0.5 mm) or as large clusters (>1cm) of crystals distributed sparsely 

throughout the veins (Fig. 3h). In some cases pyrite clusters have been partially to 

completely oxidised to red haematite, particularly where they have been exposed at 

the surface for an extended period; this gives the veins a distinctive localised red 

staining. Within the CSZ, pyrite crystals are also sometimes found in the sheared 
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gneisses surrounding the vein. In some road cuts, the development of quartz-pyrite 

veins is additionally associated with a localised yellow-brown sulphurous 

weathering of the gneisses, e.g. east of Lochinver (NC 1020 2360).  

 

2.3.1 Cross-cutting relationships 

   The quartz-pyrite veins display a consistent set of cross-cutting relationships with 

other features in the Lewisian Complex of the Assynt Terrane and can be used to 

deduce a regionally consistent relative chronology of events. They typically cross-

cut the oldest, moderately to shallowly-dipping Badcallian foliations and folds (Fig. 

3a) in the Assynt terrane, although at Clashnessie, where the foliation is particularly 

strong and highly variable, the veins are occasionally concordant with the foliation. 

The veins also consistently cross-cut the steeply-dipping Inverian shear fabrics of 

the CSZ (Fig. 3b) and other minor shear zones within the terrane, as well as most of 

the Scourie dykes (Fig. 3c). Both veins and dykes are consistently overprinted and 

reworked by dextral shear fabrics related to the Laxfordian event, including the 

development of the CSZ (Figs. 3d). The veins are also cross-cut by late Laxfordian, 

epidote-bearing small-scale shear zones and fractures (Fig. 3f). Many of the larger 

quartz clasts found in the immediately overlying basal units of the Torridonian 

sandstones (both Stoer and Torridon Groups) are plausibly derived from the veins. 

The quartz-pyrite veins are also cross-cut by gouge-bearing post-Torridonian faults 

(e.g. NC 1020 2360). 

   These observations collectively suggest that the quartz-pyrite veins post-date both 

the NW-SE trending Inverian fabrics and Scourie dykes. They appear to pre-date all 

Laxfordian fabrics and faults and also the deposition of the Torridonian sediments. 

 

2.3.2 Orientation and kinematics    
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The orientations of 140 quartz-pyrite veins measured in the Assynt Terrane during 

the present study are shown in Figs. 4a-c, and the lineations found on the veins in 

Fig. 4d. A rose diagram plot (Fig. 4b) suggests a dominance of NE-SW strikes with 

subordinate NW-SE, NNW-SSE, and WNW-ESE trends. The regional stereograms 

(Figs. 4a & c) suggest a wide range of vein orientations, with a reasonably strong 

concentration of planes striking NE-SW and, to a lesser extent NW-SE; dips are 

quite variable even for veins with similar strike orientations. Note that both NE-SW 

and NW-SE trending sets display bimodal dip directions (e.g. NW or SE and NE or 

SW respectively, Figs. 4a & c). These observations suggest a generally multimodal 

pattern of fracture orientations. 

   In order to try and separate out the possible effects on vein orientation of local 

country rock fabrics and Laxfordian overprinting, the data have also been plotted 

according to the localities where well-defined clusters of veins are found. The 

stereograms for both the Clashnessie and Achmelvich (Figs. 4e & f) areas show a 

wide range of orientations in the strike and dip of the veins and with no clear trends 

easily distinguished. The Lochinver cluster (Fig. 4g) preserves two rough trends 

striking NE-SW and NW-SE, with the latter dominant. The best defined trends are 

found in the Kylesku and Loch Assynt (Figs. 4h & i) clusters. The Kylesku cluster 

shows two distinct trends striking NE-SW and NW-SE, whilst at Loch Assynt, there 

is a very well-defined trend striking NE-SW with the majority of veins dipping 

steeply NW. In the Scourie cluster (Fig. 4j) the veins have shallow dips and the 

majority strike ENE-WSW.  

   The vein data have also been plotted according to the local fabrics they cross-cut 

or are reworked by. In the regions of gneiss dominated by the Badcallian event, both 

the foliations (Fig. 4k) and the veins (Fig. 4n) have large variations in their 

orientations. The foliation shows a slight N-S trend dipping W, whereas the veins 



13 

 

show a reasonably strong NE-SW trend of strikes, with bimodal dips to the NW and 

SE. The Inverian foliation has a strong NW-SE trend with bimodal dip trends (Fig. 

4l), whereas the veins show a NE-SW trend which mainly dips steeply NW (Fig. 

4o). Both the Laxfordian foliation and the veins within the Laxfordian fabrics show 

a strong NW-SE trend (Figs. 4m & p), reflecting the intensive reworking of fabrics 

and reorientation of veins into parallelism with those fabrics during overprinting 

deformation.  

   The reasons for the observed variations in vein orientation are unclear. The fact 

that the best defined trends are found in rocks where NW-SE trending Inverian and 

Laxfordian fabrics are largely absent (e.g. Loch Assynt, Kylesku) may point to the 

controlling influence of pre-existing foliations and/or later reworking of veins into 

these orientations elsewhere. It is possible that some variations in orientation are the 

result of block rotations related to later brittle faults, although we have been unable 

to conclusively demonstrate the presence of such rotations at any of the localities 

studied. 

   The kinematics of the veins are difficult to deduce with any great certainty. Most 

of the veins appear to be primarily dilational (Mode 1 tensile) features based on 

observed offsets of markers in the adjacent wall rocks, i.e. the vein opening 

directions lie at high angles to the vein walls). A few large veins in the Loch Assynt 

and Lochinver regions display en echelon off-shoots (e.g. Fig. 3e) consistent with 

some degree of shearing during emplacement. Of the seven veins found with such 

off-shoots, five indicated a sinistral and two a dextral sense of shear. There does not 

appear to be any obvious orientation control on the shearing directions, and perhaps 

the shearing may be due to local strains.  A few (7) veins display mainly dip-slip 

slickenline lineations on their outer contacts, but it is unclear whether these are the 

same age or later than the veins. 
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2.4. Microstructure: 

2.4.1 Lewisian Gneiss 

   The Badcallian granulite gneisses of the Assynt Terrane vary considerably in 

composition from ultramafic to acidic (Sheraton et al., 1973). The various 

compositions of gneiss show foliation on all scales, from millimetres to tens of 

metres (Sheraton et al., 1973), and it is best developed in intermediate gneisses, 

where it is defined by 0.5 to 5 cm thick layers of contrasting light (plagioclase and 

quartz) and dark (hornblende and biotite) layers, with individual layers rarely 

continuing for more than a few metres (Jensen, 1984). Samples of intermediate 

gneiss from Loch Assynt typically contain 30% quartz, 20% plagioclase, 10% 

microcline, 10% orthopyroxene and 30% heavily retrogressed material, with 

occasional relict grains of clinopyroxene. The retrogressed material comprises of 

fine grained intergrown aggregates of chlorite, epidote, actinolite and hornblende 

and is probably a product of the later retrograde breakdown of pyroxenes. Holland 

and Lambert (1975) observe that pure, unregressed granulite is very rare in the 

Assynt Terrane, with almost all the gneisses containing some secondary amphibole. 

   The Badcallian gneisses were reworked in shear zones (e.g. the CSZ) during the 

Inverian, which imposed a new NW-SE foliation in the rocks (Attfield 1987). 

Deformation within the shear zone is extremely heterogeneous, with lenses of low-

strain gneiss enclosed by anastomosing bands of highly deformed, sheared gneiss 

(Attfield 1987). Intrafolial folds are uncommon but can be found in zones of 

Inverian deformation (Attfield 1987). Samples of these reworked Inverian gneisses 

from within the CSZ contain 20% quartz, 40% feldspar (predominantly plagioclase 

with alteration bands), 5% orthopyroxene, 15% amphiboles (hornblende and some 

epidote), 15% biotite and chlorite mica, and 5% other minerals such as 

clinopyroxene. The hornblende, epidote, biotite and chlorite are likely to be a 
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product of the breakdown and hydration of pyroxenes (Beach, 1976) during 

retrogression first to amphibolite facies during the Inverian Event (~2.5 Ga) and 

subsequently to upper greenschist facies during the Laxfordian Orogeny (~1.7 Ga). 

The quartz crystals contain prismatic subgrains and form irregular, sub-parallel 

ribbons of crystals which are 0.25 - 1mm in size, smaller than in the undeformed 

Badcallian gneisses, possibly due to syn-tectonic recrystallisation under high strain 

rates (Jensen, 1984). 

   The Laxfordian Orogeny reactivated the inner part of the CSZ, producing a new, 

finer foliation (Sheraton et al., 1973). Commonly, the gneisses which have been 

reworked in both small and large shear zones have a mineralogy that differs 

significantly from that of the original gneiss and the extent of the changes that occur 

appears to be in proportion to the intensity of the deformation (Beach, 1976). A 

sample of Laxfordianised gneiss from the CSZ contains about 75% quartz, 10% 

hornblende, 10% biotite and muscovite mica, and 5% feldspar porphyroblasts 

(typically ~1mm in size). The quartz is banded on a millimetre scale with alternating 

bands of small quartz grains (<100μm) and larger quartz grains (~500μm to 1mm) 

which form an anastomosing schistose foliation. The micas are pinned to, and 

orientated parallel to, the bands of smaller quartz crystals. The quartz crystals 

themselves are often elongate and contain poorly developed subgrains. Jensen 

(1984) also recognised the ‘schistose’ fabric within Laxfordian gneisses and finds 

similar microstrucures and quartz grain sizes within his analysis. Hornblende is 

surprisingly scarce in the sample analysed and the percentage of quartz is higher 

than in either the Badcallian or Inverian gneisses. Petrographic analyses of Lewisian 

gneisses by Beach (1976) show that, during regression, pyroxene is first replaced by 

hornblende, which is then replaced by biotite in the most intensely deformed 

gneisses. The analyses also show that an increase in the modal percentage of quartz 
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accompanies the growth of biotite. The Laxfordian reworking occurred in intense 

zones which anastomosed around lenses of unreworked Badcallian or Inverian 

gneiss (Sheraton et al., 1973). Tight intrafolial folds are common within the 

Laxfordianised gneisses and in places Inverian folds have been refolded (e.g. on the 

coast at Port Alltan na Bradhan; see Attfield, 1987). The Scourie dykes within the 

CSZ have also been pervasively affected by Laxfordian reworking with shearing 

particularly concentrated along their margins (Sheraton et al., 1973). 

 

2.4.2 Quartz-Pyrite Veins 

   The quartz veins display an array of deformation textures resulting from both 

recrystallisation and shearing processes, suggesting they have experienced a long 

history of deformation at different temperatures and pressures. A number of 

overprinting relationships are seen which can be used to reconstruct a relative age 

sequence. The deformation textures are described with reference to the age of the 

gneiss fabric which the veins either intrude or – in the case of veins in the CSZ – are 

overprinted by. Table 2 summarises the vein samples taken for detailed optical and 

SEM study and their cross-cutting relationships with features in the host Lewisian 

Gneisses.  

    

2.4.3 Veins Cutting Badcallian Fabrics 

   The quartz veins emplaced into the Lewisian Gneisses which have Badcallian age 

foliations (~2.7 Ga) do not appear to have been significantly reworked or deformed 

at outcrop scales. Nevertheless they preserve a range of deformation microstructures 

within the quartz crystals that reflect modest amounts of grain-scale deformation. 

The seemingly most deformed (e.g. sample 34) contain large quartz crystals (> 

1mm, but typically 3 – 7mm) which show sweeping undulose extinction and have 
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highly lobate grain boundaries as a result of the migration of grain boundaries into 

each other due to differences in the stored strain energy of neighbouring grains 

during recrystallisation (Stipp et al., 2002). Chessboard subgrains (Fig. 5a) within 

the large quartz crystals are also common and form in response to the migration of 

dislocations within the crystal lattice into subgrain walls during recrystallisation 

(Passchier & Trouw, 2005). These structures are a result of grain boundary 

migration recrystallisation which occurs either at high temperatures (>500°C) or at 

low strain rates (Hirth & Tullis, 1992). Other deformed veins (e.g. sample 55) also 

show sweeping undulose extinction, but the boundaries of the large grains are less 

lobate and relict smaller grains (<100μm) are present along them, a product of grain 

boundary bulging recrystallisation which occurs under lower temperatures (300 – 

400°C) or higher strain rates. As temperature increases or strain rate decreases these 

small grains are recrystallised to form larger grains. Around 30 percent of the large 

grains show elongate subgrains. These deformation textures suggest grain boundary 

migration recrystallisation is beginning to occur, but likely reflect more moderate 

temperatures (400 - 500°C) and moderate-low strain rates.  

   The least deformed veins within Badcallian foliation are found on the shores of 

Loch Assynt (e.g. sample 3). The quartz crystals within these veins also display 

undulose extinction. The large grains contain deformation lamellae, which are zones 

of differently orientated crystal lattice separated by dislocations. Grain boundaries 

have undergone small-scale bulging during recrystallisation and small grains 

(<100μm) have developed within the bulges and along the deformation lamellae 

(Fig. 5b). Using the sensitive tint plate, it can be seen that the small grains have 

distinctly different crystallographic orientations to the large grains, and thus they are 

younger. These structures typically form at lower temperatures (~300°C) or at high 

strain rates. The development of elongate subgrains in the large grains occurs rarely 
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and indicates temperatures may reached 400°C or that strain rates may have 

decreased (Hirth & Tullis, 1992). 

   The range of deformation microstructures observed in the quartz veins suggests 

that these parts of the Assynt Terrane experienced a moderate temperature (400 - 

500°C) event which was characterised by low strain rates, which may have allowed 

extensive recrystallisation. The veins on the shore of Loch Assynt show 

considerably lower temperatures (perhaps as low as 300°C) and higher strain rate 

conditions. This may be the result of later deformation associated with slip on the 

Loch Assynt fault, to which they are proximal.  

 

2.4.4 Veins Cutting Inverian Fabrics 

   The veins emplaced into Lewisian Gneiss which has been reworked by Inverian 

age fabrics within the CSZ also show little obvious deformation at outcrop scale. 

Like the veins emplaced into Badcallian foliation, they show a range of deformation 

microstructures - including undulose extinction, deformation lamellae, new grain 

growth along crystal boundaries, subgrain development and the development of 

lobate grain boundaries – which are indicative of recrystallisation under low to 

moderate temperatures (350 - 500°C) and high to moderate strain rates.  

   Some veins (e.g. sample 23b) contain large (>2mm) quartz crystals with lobate 

boundaries, formed by grain boundary migration under moderate temperatures and 

strain rates, which show grain boundary bulging and the development of new, small 

grains (<250μm) within the bulges, particularly at triple-point grain boundaries (Fig. 

5c). These structures are typical of recrystallisation under low temperatures (300 - 

400°C) or at high strain rates, and indicate a lower temperature event which may 

have occurred after the main high temperature event. There is little evidence for this 

event being recorded within the veins emplaced into Badcallian Gneisses, and it may 
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be that it is related to localised later deformation and fluid flow in the CSZ 

immediately after vein emplacement.  

   Many of the veins contain small (<10mm), brittle fractures along which chlorite, 

muscovite, calcite, albite, k-feldspar and spinel can be found. The presence of these 

minerals is likely to result from fluid flow depositing minerals in spaces within the 

quartz aggregate (e.g. in sample 25, calcite is found within pull-apart type fractures 

in the quartz; Figs. 5d & 6a). However, it is not clear if these fractures occurred at 

an early point in the veins’ history or during a more recent brittle event.  

 

2.4.5 Veins Reworked by Laxfordian Fabrics 

   The veins emplaced within the Laxfordian part of the CSZ have been heavily 

reworked at outcrop scale (e.g. Figs. 3d & 3g). Many of the microstructures 

resulting from the recrystallisation of quartz are similar to those seen in the veins 

which were emplaced into gneisses with Badcallian and Inverian foliations, but the 

degree of deformation is much higher due to reworking. In most veins (e.g. sample 

64) the larger quartz crystals (>2mm) show sweeping undulose extinction, 

deformation lamellae, subgrain development and lobate grain boudaries. The 

majority of small grains have been recrystallised to form large grains, although a 

few relict ones can still be seen along the boundaries of the large grains. These 

microstructures indicate deformation under moderate temperatures (350 - 500°C) 

and strain rates.  

   In a few samples (e.g. sample 41), the lobate grain boundaries formed by grain 

boundary migration (moderate temperature and strain rate) show evidence of later 

grain boundary bulging and the development of new, small grains (<250 μm) along 

grain boundaries. This lower temperature, higher strain rate overprinting can also be 
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observed in some of the veins in the Inverian part of the CSZ (e.g. sample 23b, 

discussed above). 

   The veins reworked by Laxfordian deformation are also characterised by a range 

of microstructures related to shearing. Many contain discontinuous, sub-parallel 

bands of reduced crystal size (<100 μm) which are 0.5 - 1mm in width and have no 

clearly defined margin, creating a mylonitic fabric (Fig. 5e) similar to that in the 

Laxfordian gneiss described above. Some of the larger bands (e.g. in sample 64) 

contain muscovite and chlorite micas which can be clearly seen in hand specimen. 

SEM analysis shows many of the micas have kinked lattices (Fig. 6b), indicative of 

deformation under low temperature ductile conditions. SEM analysis also shows the 

large mylonitic bands contain calcite, albite and k-feldspar amongst, and 

surrounding, the micas (Figs. 6b & 6c). The k-feldspars are frequently stretched out 

into ribbons parallel to the cleavage within the micas (Fig. 6b).  

   Sub-parallel cataclastic bands of predominantly angular quartz crystals, which 

have grain sizes that are dramatically smaller (<100 μm) than the surrounding quartz 

aggregate (0.5 – 3 mm) are present within some quartz veins (e.g. sample 41) (Fig. 

5f). They are often discontinuous and linked along strike by fluid inclusion trails. 

The bands are typically less than 250μm in width, although they can be greater than 

1mm locally. The narrower bands contain only quartz fragments, while larger bands 

also contain muscovite and chlorite micas which are often oriented at a high angle to 

the bands. One such band resembles a large (3mm) fish-shaped structure, which can 

be seen in hand specimen, and is filled predominantly with angular quartz and mica, 

but also some plagioclase and pyroxene. The angular nature of the material within 

the cataclastic bands indicates localised shearing under brittle conditions, although 

there has been some limited healing and later recrystallisation of the cataclasites.  
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   SEM analysis also reveals a brittle component to the mylonitic zones in Sample 

64. Some larger mylonitic zones have well defined sharp margins and some dark, 

well defined cleavage planes within the kinked micas (Fig. 6b) suggesting shearing 

along these planes under brittle conditions (e.g. sample 64). The mylonitic zones 

also contain small areas (<100 μm) of intense fracturing with brecciated quartz and 

feldspar grains which has allowed the formation of micas within the spaces created 

(Fig. 6d). This suggests that the brittle deformation post-dated the ductile 

deformation and the shearing continued into the brittle field of the upper crust. 

   The presence of micas, calcite, plagioclase, k-feldspar and epidote within both the 

mylonitic and cataclastic fabrics is likely due to fluid flow through the fractures, and 

the presence of white mica is known to enhance slip (e.g. Mariani et al., 2006).  

 

2.4.6 Pyrite 

   Pyrite can be found in many of the veins in the Assynt Terrane and occurs in a 

variety of forms. Some samples (e.g. samples 64 and 28) contain large clusters of 

pyrite crystals up to approximately 1.5cm in diameter which host a number of quartz 

crystals (0.25mm and 1mm in size) amongst the pyrite (Fig. 5g). Small (<100μm), 

angular fragments of pyrite at the edges of the clusters are inter-grown with the 

quartz aggregate.  

   Other samples contain pyrite which is intimately intergrown with quartz (e.g. 

sample 15) (Fig. 5h). SEM analysis shows a smooth-textured, bright white, 

unaltered pyrite, as well as a local boreal, radial textured variety (Fig. 6e). Large 

areas of smooth texture are unassociated with fractures within the quartz. By 

contrast, the areas of boreal texture are consistently associated with fracturing which 

runs through the thin section, and most likely introduced fluids which also caused 

the oxidation of the pyrite.  
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   The alteration of the pyrite to various iron oxides also occurs at margins and along 

fractures within some large pyrite clusters (e.g. sample 64). SEM analyses confirm 

this pattern of breakdown (Fig. 6f), with phases of decreasing iron oxide content 

radiating away from the fractures.  

   Small (<1mm) pyrite clusters are also associated with the mylonitic zones within 

the quartz veins (e.g. sample 64), and can also be seen in hand specimen. This pyrite 

may result from fluid flow associated with deformation after the emplacement of the 

veins, during a period of raised temperatures and increased strain within shear zones. 

Small pyrite clusters are also observed in the gneisses, especially in those 

surrounding veins found within the CSZ, although it is unclear if this is as a result of 

the emplacement of the veins, or later fluid flow and mineralisation.  

 

2.4.7 Chronology 

   The evidence from the microstructures within the veins suggests that most of the 

pyrite grew at the same time as the quartz and that it is a primary mineral phase. The 

veins then experienced modest amounts of deformation and recrystallisation during 

a moderate temperature (400 - 500˚C) and strain rate event (the Laxfordian) felt 

throughout the Assynt Terrane. Laxfordian deformation, especially within the CSZ, 

resulted in the formation of mylonitic fabrics within the veins to accommodate 

shearing under ductile conditions. This coincided with a period of high fluid flow 

and the local introduction of new minerals (muscovite, chlorite, calcite and spinel) 

into fractures within the veins. There may also have been some limited 

remobilisation and re-precipitation of pyrite at this time both within the veins and 

the adjacent sheared gneisses. The shearing continued into the brittle field where 

deformation was taken up by cataclastic fabrics within the veins and suggests either 

a decrease in temperature and/or crustal depth.  
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2.5. Rhenium-Osmium Geochronology: 

2.5.1 Analytical Methodology 

Six pyrite samples co-genetic with quartz veining were analyzed for their rhenium 

(Re) and Osmium (Os) abundances and isotopic compositions. The analyses were 

conducted at the Total Laboratory for Source Rock Geochronology and 

Geochemistry at the Northern Centre for Isotope and Element Tracing (NCIET) at 

Durham University. The pyrite sample set represent five locations (Gruinard Bay, 

Lochan Sgeireach, Waterworks, Lochinver, Loch Assynt) across the field area (see 

above; Fig. 2; Table 3).  

   The pyrite samples were isolated from the quartz vein by crushing, without metal 

contact, to a < 5 mm grain size. After this stage > 1 g of pyrite was separated from 

the crushed vein by hand picking under a microscope to obtain a clean mineral 

separate. The Re and Os analysis reported in this study followed the analytical 

protocol of Selby et al. (2009). In brief, this involved loading ~ 0.4 g of accurately 

weighed pyrite into a carius tube with a known amount of a 
185

Re and 
190

Os tracer 

(spike) solution and 11 ml of inverse aqua regia (3 ml 11N HCl and 8 ml 15 N 

HNO3). The carius tubes were then sealed and placed in an oven at 220°C for 24 hrs. 

Osmium was isolated and purified from the acid medium using CHCl3 solvent 

extraction and micro-distillation, with Re separated by anion exchange column and 

single-bead chromatography. The Re and Os fractions were loaded on Ni and Pt 

filaments, respectively and analyzed for their isotope compositions using negative-

ion mass spectrometry on a Thermo Electron TRITON mass spectrometer. Rhenium 

isotopes were measured statically using Faraday Collectors, with the Os measured in 

peak hopping mode using the Secondary Electron Multiplier. Total procedural 

blanks for Re and Os are, 2.7 ± 1.1 pg and 0.4 ± 0.4 pg, respectively, with an 

average 
187

Os/
188

Os of 0.37 ± 0.17 (n = 2, 1 SD). The Re and Os uncertainties 
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presented in Table 3 are determined by the full propagation of uncertainties from 

the mass spectrometer measurements, blank abundances and isotopic compositions, 

spike calibrations, and the results from analyses of a Re and Os standards. The Re 

standard data together with the accepted 
185

Re/
187

Re ratio (0.59738; Gramlich et al., 

1973) is used to correct for mass fractionation. The Re and Os standard solution 

measurements performed during the two mass spectrometry runs were 0.5982 +/- 

0.0012 (Re std, n = 2) and 0.1608 +/- 0.0002 (DROsS, n = 2), respectively, which 

agree with the values reported by Finlay et al. (2011) and references therein.  

 

2.5.2 Results 

The total Re and Os abundances of the pyrite samples range from 6.8 to 25.8 ppb 

(parts per billion) and 298.8 to 660.5 ppt (parts per trillion; Table 3), respectively. 

The majority of the Os within the samples is radiogenic 
187

Os (> 92 %; Table 3). 

Four of the samples (G-Bay, BH2, BH5, LA2) possess > 99 % radiogenic 
187

Os 

(Table 3). As a result the 
187

Re/
188

Os values are high to very high (265.6 to 17531), 

with the accompanying 
187

Os/
188

Os values being very radiogenic (11.04 to 675.2). 

The predominance of radiogenic 
187

Os (
187

Os
r
) in the pyrite samples defines them as 

Low Level Highly Radiogenic (LLHR; Stein et al., 2000; Morelli et al., 2005). To 

account for the high-corrected uncertainties between the 
187

Re/
188

Os and 
187

Os/
188

Os 

data we present the latter with the associated uncertainty correlation value, rho 

(Ludwig, 1980), and the 2  calculated uncertainties for 
187

Re/
188

Os and 
187

Os/
188

Os 

(Table 3). The regression of all the Re-Os data using Isoplot V. 3.0 (Ludwig, 2003) 

and the 
187

Re decay constant ( ) of 1.666×10
-11

a
-1

 (Smoliar et al., 1996) yields a 

Model 3 Re-Os age of 2259 ± 61 (2.9 %) Ma, with an initial 
187

Os/
188

Os of 0.9 ± 9.0 

(2 , Mean Squared Weighted Deviates [MSWD] = 22; Fig. 7a). Using this initial 

187
Os/

188
Os value, including the uncertainty, from the regression of the Re-Os data 
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the abundance of 
187

Os
r
 can be calculated from the total 

187
Os (common plus 

radiogenic) in the pyrite samples (Table 3). The 
187

Os
r
 is a result of decay of 

187
Re 

and can be used to calculate model Re-Os dates for each sample. The model Re-Os 

dates, with the exception of sample 64.1, all agree within uncertainty with the Re-Os 

isochron age (Table 3; Fig. 7a). Sample 64.1 yields a model date of 1597.6 ± 1371.2 

Ma. Although this date is within uncertainty of the other model ages and the Re-Os 

isochron age its nominal age is significantly younger than for the other five pyrite 

samples. As such, sample 64.1 may represent a separate, distinct quartz and sulphide 

mineralization event. If we consider this to be the case and regress the 
187

Re/
188

Os vs 

187
Os/

188
Os data without sample 64.1, a Re-Os isochron age of 2249 ± 77 Ma, with 

an initial 
187

Os/
188

Os of 3 ± 13, is produced (2 , MSWD = 15; Fig. 7a). This Re-Os 

isochron age is within uncertainty of that determined from all the Re-Os data, 

however the degree of scatter about the isochron is less (MSWD of 15 vs 22), which 

may be attributed to sample 64.1 and thus suggest that it is not part of the main 

quartz vein and sulphide mineralization at ~ 2.2 Ga. 

Isochron ages can also be determined by the regression of 
187

Re vs 
187

Os
r
 plus 

their uncertainties. The regression of all 
187

Re and 
187

Os
r
 data yield a date of 2230 ± 

140 Ma, with an initial 
187

Os (common) of 6 ± 24 ppt (Fig. 7b; MSWD = 1.2). 

Excluding sample 64.1 an identical age is determined (2220 ± 140 Ma, initial 
187

Os 

= 7 ± 24; MSWD = 1.3; Fig. 7b). Finally, if we calculate the 
187

Os
r
 using the initial 

187
Os/

188
Os value (3 ± 13; Table 3) determined from the 

187
Re/

188
Os vs 

187
Os/

188
Os 

isochron without sample 64.1 (Fig. 7a) a 
187

Re vs 
187

Os
r
 isochron date of 2170 ± 180 

Ma is determined (Fig. 7c, initial 
187

Os = 15 ± 31, MSWD = 0.56). 
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2.6. Sulphur Isotope Analysis  

2.6.1 Analytical Methodology 

   The isotopic composition of sulphur was determined using standard techniques. 

Samples of the sulphide were taken from the quartz veins at several locations (Table 

3) throughout the Assynt terrane and were also used for the Re-Os, along with an 

additional sample, 60-A, which is taken from a shallowly dipping vein in a road 

cutting between Scourie and Kylesku. 

   Under the microscope, the least oxidised grains were handpicked for each sample 

and 0.01g weighed out for analysis. Sulphur was extracted as SO2 from the 

sulphides by fusing samples under vacuum at 1076°C in a Cu2O (200mg) matrix 

(Wilkinson et al., 2005). The method of Coleman & Moore (1973) was followed for 

extracting sulphur from SO2 from sulphates and analysed on a VG SIRA II mass 

spectrometer to obtain values for δ
66

SO2 which were converted to δ
34

S. Standard 

correction factors were then applied (Craig, 1957). Results are given in conventional 

δ
34

S notation relative to the Vienna Canon Diablo troilite standard (V-CDT). The 

reproducibility based on full replicate analyses of internal laboratory standards was 

±0.2 per mil (1σ). 

2.6.2 Results 

   All the samples from the sulphur isotope analysis yielded high amounts of δ
34

S. 

The lowest yield was 82% from samples 64.1 and BH5, while the highest yield was 

97% from sample 28. The δ
34

S from the sulphides ranges from +3.0 to –2.2. All the 

samples are greater the 0.0 except for sample 64.1, which also had the joint lowest 

yield percent of δ
34

S. Leaving aside sample 64.1 the lowest δ
34

S is 0.1 from sample 

60-A.  
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   A δ
34

S range of between +3.0 and -2.2 encompasses the primitive mantle value of 

0.0 δ
34

S (Rollinson, 1993). Thus, this indicates that the sulphur of the pyrite 

contained within the quartz veins is likely all derived from the primitive mantle.  

 

2.7. Discussion: 

   The simplest types of natural veins are Mode 1 fractures which open in the 

direction of the minimum principle stress and have strike orientations perpendicular 

to this (e.g. Peacock & Mann, 2005). The general NE-SW strike orientation of the 

quartz-pyrite veins in the Assynt Terrane, implies a NW-SE opening direction, 

although the veins show a wide range of other orientations which are attributed to a 

number of factors: the presence of highly variable foliation or strongly banded 

gneisses (Wheeler et al., 2010); the presence of pre-existing fractures, the formation 

of Inverian shear zones throughout the complex (Park & Tarney 1987), or to the 

reworking of veins by Laxfordian fabrics. Limited amounts of shearing during 

emplacement resulted in the local development of veins which formed en echelon 

arrays or with en echelon offshoots, probably due to the opening directions of the 

veins being at an angle to the principle direction of extension (Peacock & Mann, 

2005). These may represent veins which are influenced by a local stress field 

(Mandal, 1995) or are exploiting pre-existing, obliquely oriented fractures during 

their emplacement, as this requires less energy than forming new fractures. It may 

be that some of this shearing during emplacement represents a crust which was still 

under strain, although it is commonly thought the Inverian shearing ended shortly 

after the intrusion of the early Scourie dykes (ca. 2.4 Ga), and that the fractures 

opened during vein emplacement provided a way for this to be taken up.  

   Veins form by the precipitation of fluids circulating through the crust into dilating 

fractures (Davies & Reynolds, 1996), and are more likely to form in zones of high 
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fluid flow. Faults and shear zones may have influenced the clustered distribution of 

the quartz-pyrite veins as several vein clusters are related to the presumably Inverian 

CSZ and the more minor Stoer Shear Zone (see Fig. 2). The distribution may also be 

influenced by the highly heterogeneous nature of the gneisses within the terrane, 

where foliation is best developed in intermediate gneisses (Sheraton et al., 1973), 

and perhaps fluid flow was more likely to occur in areas of well developed foliation.  

   The field relationships seen in the Assynt Terrane suggest that the quartz-pyrite 

veins are younger than the Scourie dykes. Furthermore, the principle NE-SW 

orientation of the quartz-pyrite veins lies at almost 90˚ to the NW-SE orientation of 

the Scourie Dykes, requiring a major change in the regional extension vector for 

dyke intrusion versus vein emplacement. Temporally the situation is more complex. 

The Re-Os isochron age for the veins (2259±61 Ma) falls within the broad range of 

ages obtained from the Scourie dyke swarm across the entire Lewisian Complex 

(2418 Ma to 1991 Ma; Heaman & Tarney, 1989; Cohen et al., 1988; Waters et al., 

1990). Haeman & Tarney (1989) proposed two episodes of dyke intrusion, with ages 

concentrated around 2418 Ma and 1992 Ma, although only a small sample of dykes 

were dated by the authors. More recently, Davies et al. (2009) have proposed at least 

four separate periods of dyke intrusion (2420 Ma, 2400 Ma, 2375 Ma and 1990 Ma), 

with distinct mantle sources tapped during each event. The idea that there are 

multiple dyking episodes is consistent with some geological field relationships. It is 

known, for example, in the southern region of the Lewisian Complex that some 

Scourie dykes cut the Loch Maree Group metasediments and metavolcanics, which 

were formed in oceanic basins and accreted to the continental crust through 

subduction between 2.1 and 1.9 Ga (Park et al., 1994). If there are multiple episodes 

of Scourie dykes, with some pre-dating and some post-dating the quartz-pyrite 
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veins, this implies that there were significant changes in the orientation of regional 

stress vectors during the 500 Ma period between 2.4 – 1.9 Ga.  

   The heterogeneity of the crust in the Assynt Terrane is demonstrated not only by 

the clustered distribution of the quartz-pyrite veins, but also by the varying extent of 

recrystallisation experienced by quartz within the veins. Recrystallisation, through a 

range of processes and under a range of temperature and strain rate conditions, has 

overprinted most primary features associated with the precipitation of quartz within 

the veins, e.g. fibrous textures, although some quartz-pyrite intergrowth features are 

preserved (e.g. Fig. 5h). The Laxfordian Orogeny (1.8 Ga) may have locally raised 

the temperature of the crust to amphibolite facies conditions (Park, 1994) allowing 

subgrain rotation and grain boundary migration recrystallisation to operate within 

the quartz and facilitated the formation of upper regime two to regime three 

microstructures (Hirth & Tullis, 1992). The presence of upper Regime Two and 

Regime Three (Hirth & Tullis, 1992) microstructures in veins across the Assynt 

Terrane demonstrates that the increase in temperature associated with the Laxfordian 

event was felt throughout the terrane, although the extensive reworking which 

characterises the Laxfordian in the Rhiconich and Gruinard terrranes (Macdonald & 

Fettes, 2007) is absent. An increase in strain rate associated with extensive shearing 

and the reactivation of major shear zones during the Laxfordian (Attfield, 1987) 

caused the formation of the schistose and mylonitic fabrics within the 

Laxfordianised gneiss and the quartz-pyrite veins. Over-printing of high temperature 

quartz microstructures in veins within the CSZ by low temperature and/or high 

strain rate microstructures indicates that the Laxfordian was not just a single event 

but contained at least two separate events. Park (1994) suggested there were two 

tectono-thermal events within the Laxfordian; the earlier at ~1.87 Ga associated with 

peak granulite to amphibolites facies metamorphism, and the latter at ~1.74 Ga 
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associated with highly variable amphibolites to greenschist facies retrogression 

(Park, 2005). As the overprinting features are limited to the quartz veins within 

major shear zones, it is proposed that the second event may have been restricted to 

these zones within the Assynt Terrane. The presence of cataclastic bands within 

veins affected by Laxfordian shearing gives further evidence to the presence of a 

second, lower temperature, event during the Laxfordian which operated under brittle 

conditions. The pressure-temperature range of the Laxfordian orogeny, deduced 

from the quartz microstructures, fits well with the pressure-time and temperature-

time plots based on geochronological, palealothermal and palaeobaric studies 

suggested by Wynn et al. (1995) (Fig. 8). 

 

 

 

 

 

Figure 8; The PT conditions during the Late Archaean and Early 

Proterozoic, showing the Scourie dyke episodes and the vein 

emplacement period (Based on Wynn, 1995). 
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    The sulphur isotopic analysis gives δ
34

S values which are of primitive mantle 

derivation (Rollinson, 1993). Sulphide minerals are often introduced into the crust 

during the crystallisation of mafic magmas Cameron (1994), and thus are present in 

the Lewisian Gneisses. The type of sulphide observed in the gneisses depends on the 

degree of retrogression they have undergone, as pyrrhotite is particularly susceptible 

to alteration to pyrite. Fluids associated with retrogression would thus also have 

been able to strip sulphide minerals from the crust and concentrate them in solution. 

Wheeler et al. (2010) suggests that post-Inverian autometamorphism was operating 

during the intrusion of the Scourie Dykes, where the rocks were still hot (300 to 

500°C), causing the early dykes to be metamorphosed to amphibolites facies 

(Tarney, 1973) and enabling the continuation of fluid migration through the crust. 

However, the presence of feldspars within some veins raises the question of whether 

pyrite is the only auxiliary mineral within the veins. The veins may be the result of 

highly concentrated fluids associated with the intrusion of the Scourie Dyke Suite 

which only retained a very small amount of other minerals present in the Scourie 

Dykes. However the large difference in the orientation of the veins compared to the 

dykes casts doubts on this suggestion, unless there was a break in time and change 

of stress directions before these fluids circulated through the crust.  

   The Re-Os model age of sample 64.1 (1597.6 ± 1356 Ma) is considerably younger 

than the model ages for the other samples (2198.5 – 2328.7 Ma), and has a very 

large uncertainty as well as the lowest Os count of (242.8 ± 33.9 ppb) of all the 

samples; it is also the only sample with δ
34

S less than zero (-2.2). Although this is 

still close enough to zero to suggest it is derived from the primitive mantle, like the 

other samples, it suggests that the sulphide within the vein may have a different 

origin to that within other veins, or that it may have been affected by different 

processes following emplacement, perhaps related to its location south of the CSZ 
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within the Assynt Terrane. The small-scale, through-going fractures within some of 

the quartz veins could have provided potential pathways for fluid migration and 

enabled the introduction of new minerals into the veins (Wheeler et al., 2010). 

Therefore, two ore forming events are possible; the first occurring simultaneously 

with the emplacement of the veins and the second occurring during a period of high 

levels of fluid flow associated with the Laxfordian Orogeny (Sills, 1983). The 

second event, associated with later brittle deformation, may also have oxidised any 

pyrite formed during the vein emplacement. However, further fieldwork and dating 

would be needed to verify and constrain this second ore forming event. 

 

2.7.1 Implications for Terrane Models 

   Dating of the TTG protoliths suggests that the gneisses of the Gruinard terrane are 

at least 100 Ma younger than those of the Assynt Terrane and underwent granulite 

metamorphism at 2730 Ma, as opposed to 2490 Ma in the Assynt Terrane (Love et 

al., 2004 & Park, 2005). Thus they are thought to belong to separate terranes which 

amalgamated along the Strathan Line, south of Lochinver, during Inverian folding 

and retrogression (Fig. 1, Love et al., 2004). The presence of quartz-pyrite veins 

within both the Assynt and Gruinard terranes is consistent with amalgamation 

during the Inverian, and prior to the emplacement of the veins. 

   The Inverian (2490 – 2480 Ma) metamorphism is strongly prevalent in the Central 

region but is milder, or entirely absent, in the Northern region. However, the 

Laxfordian metamorphism was much more intense in the Northern region than the 

Central region, suggesting these regions had different accretionary and early 

metamorphic histories and were juxtaposed tectonically along the Laxford Front 

after the Inverian Event but before, or during, the Laxfordian orogeny (Kinny & 

Friend, 1997). Friend & Kinny (2001) thus proposed that the Lewisian Complex was 
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amalgamated from separate crustal blocks – terranes – and does not represent one 

contiguous block of mid-Archaean crust which was been variably reworked. They 

proposed that the Assynt and Rhiconich terranes were separate crustal blocks that 

were only finally juxtaposed by a major episode of shearing during the Laxfordian 

(Friend & Kinny, 2001 & Park, 2005). The apparent absence of 2259 Ma quartz-

pyrite veins in the Rhiconich terrane is certainly consistent with the suggestion that 

the latter is a crustal block that has experienced a different history prior to 

Laxfordian shearing along the Laxford front. 

 

2.7.2 The Loch Maree Group 

   The supracrustal Loch Maree Group (LMG) outcrops at two locations within in 

the Gruinard Terrane, at Gruinard Bay and northeast of Loch Maree, and is bounded 

on both sides by Lewisian gneiss (Park et al., 2001). The supracrustal rocks include 

amphibolites of volcanic and volcaniclastic origin (Love et al., 2010) and 

terrigenous metagreywackes, with subordinate marbles, graphite schists, calc-schists 

and banded iron formations (Droop et al., 1989). There have been a range of 

interpretations regarding the formation of the group. Many authors have interpreted 

the LMG to have been formed in an intracontinental extensional rift basin (e.g. 

Floyd et al., 1989 and Park et al., 1994) which received clastic detritus from 

adjacent uplifted basement as well as from internal and volcanogenic sources (Floyd 

et al., 1989). Floyd et al. (1989) also suggests the LMG may be a minor relic of a 

rift system which once stretched from Canada to Finland. More recent 

interpretations, however, suggest the LMG formed in a trench or back-arc setting at 

a continental margin (Park et al., 2001; Park, 2002; Wheeler et al., 2010) as a result 

of the accretion of oceanic plateau rocks and oceanic sediment to the base of the 

over-riding plate during subduction (Love et al., 2010). Deformation of the rocks 
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then occurred during accretion and the later Laxfordian Orogeny (~1.9 – 1.7 Ga) 

(Park et al., 2001). 

   Park (2005) suggests that a SE plate may have been subducting underneath a NW 

plate (containing the currently outcropping Lewisian gneisses). If subduction zone 

roll-back occurred in the upper plate in the period 2.2-2.3 Ga, this would lead to 

NW-SE extension consistent with the stress field associated with the emplacement 

of  the quartz-pyrite veins. Although the accretion of the LMG is estimated at 2.0 – 

1.9 Ga based on Sm-Nd studies and detrital zircon ages (Park et al., 2001), the 

subduction zone could have been operating prior to this, within the broad Re-Os age 

range for the formation of the quartz-pyrite veins (2259±61 Ma).  

   It may be that initiation of the subduction zone changed the stress field within the 

crust from that present during the early episodes of Scourie Dyke intrusion (2420 – 

2375 Ma). When the oceanic plateau, which would form the LMG, collided with the 

subduction zone the zone would have become jammed and subduction may have 

ceased (Park et al., 2001), perhaps causing a reversion to the pre-subduction stress 

field. As a result the dykes intruded during the 1990 Ma Scourie dyke episode have 

a similar orientation to the earlier dykes. Laxfordian deformation then resulted in the 

inclusion of the LMG into the Gairloch Shear Zone, causing extensive deformation 

and changing the orientation relationship with the surrounding gneisses to that 

observed in the present (Park, 2005).  

 

2.8. Conclusions 

- A hitherto unrecognised set of quartz pyrite veins have been identified in the 

Assynt and Gruinard Terranes of the Lewisian complex. The veins consistently 

cross-cut Badcallian and Inverian structures in the gneisses, as well as the majority 
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of Scourie dykes. They are reworked during Laxfordian shearing events and are also 

cross cut by a range of later brittle faulting events. 

- The dominant strike direction of the quartz-pyrite veins suggests emplacement 

during NW-SE extension of the crust.  

- The Re-Os date of 2259±61 Ma for the pyrite within the veins confirms the field 

relationships. In absolute terms, the veins are younger than the Badcallian and 

Inverian events as well as the three of the episodes of Scourie dyke intrusion, and 

are post-dated by the last episode of Scourie dyke intrusion as well as Laxfordian 

fabrics.  

- The primitive mantle origin of the sulphur suggests the pyrite in the veins was 

either stripped from the Lewisian crust or was a product of the early intrusion of 

Scourie dykes, although stripping from the crust is more likely as it is known that 

there is significant sulphur content in the gneisses which would originally have been 

derived from the primitive mantle and fluid flow through the crust would have been 

promoted during the Inverian Event that may have continued afterwards. 

- There is a marked change in the extension direction between the early Scourie 

Dykes and the quartz-pyrite veins, and again between the veins and the later Scourie 

Dykes suggesting periods of NE-SW extension associated with the intrusion of 

Scourie dykes were interrupted by an event, or several events, which imposed a 

NW-SE extension direction on the crust. 

- The presence of the quartz-pyrite veins in both the Assynt and Gruinard Terranes 

confirms their amalgamation prior to 2259±61 Ma, most likely during the Inverian 

event. The apparent absence of the veins in the Rhiconich Terrane suggests it may 

not have been amalgamated with the Assynt and Gruinard Terranes until the 

Laxfordian Orogeny.  
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- The emplacement quartz-pyrite veins may have been related to roll-back-related 

extension above a NW-dipping subduction zone located to the SE of the Assynt and 

Gruinard Terranes which later accreted the Loch Maree Group volcanics and 

sediments into the Lewisian crust.  
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Tight folds in the Badcallian foliation of the Lewisian Gneisses at Clashnessie 

Bay (NC  0585, 3099) 

Radial hornblendes on the foliation planes in the Badcallian Gneisses at        

Clashnessie Bay (NC 0573, 31251). 

Appendix A –  

Field Photographs 
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Garnets in the Badcallian Gneisses at Kylesku (NC 2199, 3393). 

Tight folds in the Inverian Gneisses below the Lewisian-Torridonian contact to 

the west of Guinag (NC 1950, 2780). 
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Quartz-pyrite veins cutting each other on the NE shore of Loch Assynt (NC 2140, 

2510). 

Quartz-pyrite vein emplaced into a thick ultra-mafic band in the Badcallian 

Gneisses at Clashnessie Bay (NC 0585, 3099). 
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Quartz-pyrite vein concordant with the strong Badcallian foliation at Clashnessie 

Bay (NC 0604, 3103). 

Pink feldspars are occasionally found in the quartz veins (ONC 1025, 2360). 
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Weathered pyrite clusters in a vein in a road cutting between Kylesku and Scourie 

(NC1711, 4054). 

Clean, non-weathered pyrite found in a quartz vein in a road cutting between 

Kylesku and Scourie (NC 1711, 4054). 
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Typical yellow-orange stain found where pyrite in the veins has been weathered 

and broken down into iron oxides (NC 0570, 3147). 

Localised bands of more intensely deformed gneisses associated with Laxfordian 

shearing inside the Canisp Shear Zone (NC 0831, 2497). 
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Quartz-pyrite vein which 

has  been  reworked  by 

Laxfordian  shearing  and 

deformation in the Canisp 

Shear  Zone  (NC  0831, 

2497). 

Tightly folded foliation in the Laxfordian part of the Canisp Shear Zone at       

Achmelvich Bay (NC 0515, 2620). 
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Large block (light coloured) of Badcallian gneiss in the Canisp Shear Zone which 

has been unaffected by Inverian and Laxfordian shearing, surrounded by darker, 

intensely deformed and anastomosing Laxfordian gneisses (NC  0881, 2416). 

Quarzt-pyrite veins reworked into concordance with the foliation by intense     

Laxfordian deformation (NC 0515, 2620). 
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Gouge along the margin between a quartz-pyrite vein and the Lewisian country 

rock (NC 0855, 3102). 

Quarzt-pyrite vein folded with the Gneisses during Laxfordian shearing and     

deformation in the Canisp Shear Zone at Achmelvich Bay (NC 0515, 2620). 
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Small-scale  shear  zone 

developed perpendicular 

to  the  foliation  of  the 

Laxfordian  gneisses  in 

the Canisp Shear Zone at            

Achmelvich Bay. Poten-

tially   related  to  late  

Laxfordian  deformation 

(NC 0577, 2552). 

Small-scale  crush  belt 

orientated perpendicular 

to  the  foliation  in  the 

Laxfordian  gneisses  in 

the Canisp Shear Zone 

at  Achmelvich  Bay.   

Potentially relater to the 

small-scale  shear  zone 

above  and  to  late      

Laxfordian  deformation 

(NC 0577, 2552). 
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Quartz-pyrite vein cut and offset by a post-Laxfordian fault in a road cutting near 

Lochinver (NC 1020, 2360). 

Epidote-filled minor shear zone which cross-cuts the quartz-pyrite vein (NC 2130, 

2500). 
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Badcallian gneiss from Loch Assynt. 

Inverian gneiss from the Canisp Shear Zone at Achmelvich Bay. 

Appendix B – Microstructure 

Optical Analysis 

1 mm 

1 mm 
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Laxfordian gneiss from the Canisp Shear Zone at Achmelvich Bay. 

1 mm 

1 mm 

Sample 3: Deformation lamellae within the large quartz crystals. 
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Sample 3: Elongate subgrains within large quartz grains formed through subgrain 

rotation recrystallisation, and surrounded by a mass of smaller quartz grains. 

Sample 64: Muscovite and chlorite mica present along a mylonitic band. Edges of the 

band of reduced grains size are well defined and contain black areas, suggesting may 

be a brittle component of deformation post-dating the ductile deformation. 

1 mm 

1 mm 
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1 mm 

1 mm 

Sample 41: Small angular crystals with cataclastic bands which cut across the 

crystals, indicates deformation under a brittle regime. 

Sample 41: A fish structure associated with the cataclastic bands, containing 

quartz, mica and feldspar. 
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Sample 64: Angular pyrite at the edge of a cluster interspersed with the quartz 

mass. 

1 mm 

1 mm 

Sample 64: Angular pyrite at the edge of a cluster interspersed within the quartz 

mass. 
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Appendix C –  

Microstructure SEM Analysis 

Sample 64: Predominantly muscovite mica with some chlorite mica (lighter     

colour), some well developed cleavage planes, and K-Feldspar ribbons strung out 

along the cleavage planes as well as present along the edges of the mica. 

Sample 64: Predominantly muscovite mica with some chlorite mica (lighter     

colour), kinked mica lattices suggest the minerals have been subject to shearing,      

K-Feldspar present along the edges of the mica, and corona structures along the 

edges of the micas (left) which are of K-Feldspar composition. 
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Sample  64:  Muscovite  micas  with  some  well  developed  cleavage  planes,         

suggesting brittle  movement  along these planes,  and ribbons of  K-feldspar       

parallel to the cleavage planes. 

Sample 64: Predominantly muscovite mica with some chlorite mica (lighter     

colour), some well developed cleavage planes, and K-Feldspar ribbons strung out 

along the cleavage planes as well as present along the edges of the mica. 
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Sample 64: Brittle fracturing of the mica and K-feldspar as well as the quartz. 

Sample 64: The breakdown of pyrite into iron-oxides centred along fractures 

within the pyrite, the unaltered pyrite is the brightest white colour. 
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Sample 64: Formation of iron oxides centred along fractures resulting from the 

breakdown of pyrite, phases can be seen radiating out from the fractures. 

Sample 64: Formation of iron oxides from the breakdown of pyrite centred along 

fractures can be seen forming new phases (different shades of grey). 
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Sample  15:  Boreal  texture  of  the  iron  oxide (haematite)  formed from the      

breakdown of pyrite. 

Sample 15: Areas of smooth textured pyrite and boreal textured of the iron oxide 

(haematite) formed from the breakdown of pyrite. 
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Sample 15: Smooth textured areas of pyrite with some areas of boreal texture,  

indicating limited breakdown of pyrite into iron oxides (i.e. haematite). 

Sample 25: Calcite formed in pull-apart-type fractures within the quartz. 
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Sample 25: Calcite, muscovite and chlorite micas grown together along a fracture 

in the quartz. Long, white, platy spinels interspersed within the muscovite and 

chlorite micas. 

Sample 25: Calcite and muscovite mice formed in pull-apart-type fractures within 

the quartz. 
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Sample 25: Calcite, muscovite and chlorite micas grown together along a fracture 

in the quartz. Long, white, platy spinels interspersed within the muscovite and 

chlorite micas. 

Sample 25: Long, white, platy spinel interspersed with muscovite alongside     

calcite. 
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Sample 25: White, platy spinel within the muscovite micas. 

Sample 25: CL of quartz, showing difference phases of overgrowth. 
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Regional Setting 

   The far northwest of Scotland is one of the 

most beautiful parts of the UK, it also has some 

of the most varied and exciting geology in 

Britain. As you drive northwards through 

Scotland you notice that you are gradually 

leaving society behind and entering a land of 

mountains, lochs and deer. This part of 

northwest Scotland contains some of the oldest 

rocks in the world; the Lewisian Complex. In a 

thin coastal strip stretching from Cape Wrath in 

the north to Loch Torridon in the south, a section 

through different crustal depths of an Archaean 

craton is exposed (Figure 1).  

Figure 1: The location of the 

mainland Lewisian Complex, and 

the geochronology of the complex 

(Love et al., 2004 & Kelly et al., 

2008). 
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   Some of these rocks are over 3.0 Ga old. They were initially supracrustal rocks 

which were intruded with voluminous amounts of TTG magmas. The Badcallian 

event (2.7 Ga), metamorphosed the rocks to granulite facies and imposed the strong 

foliation shortly after emplacement. Retrogression to amphibolites facies conditions, 

through hydration reactions (Sills, 1983), occurred during the Inverian event (2.6 – 

2.5 Ga) and the amalgamation crustal blocks created major crustal shear zones. The 

intrusion of the first episode of Scourie dykes, at 2.4 Ga, marks the beginning of a 

period of crustal extension. During this period the Loch Maree Group of supracrustal 

rocks was formed in an arc setting and dated at around 2.2 Ga (Floyd et al., 1989). 

The second major episode of Scourie dykes were intruded around 2.0. The 

Laxfordian orogeny occurred as minor ocean basins closed and continents moved 

together, causing many of the major Inverian shear zones to be reactivated.  

   Within the Assynt Terrane of the Lewisian Complex are a set of hitherto 

undocumented quartz-pyrite veins. The pyrite within them has been dated at 

2250±150 Ma, using the Re-Os geochronometer, in a pilot study by D. Selby at 

Durham University. Consequently, this project seeks to understand the structural 

relationships of these veins to fabrics within the complex, the conditions under which 

the veins were emplaced, the age of the pyrite within the veins and the implications 

for the geochronology of the Lewisian Complex. 

 

Work carried out 

 Fieldwork in the Assynt Terrane during October 2010, which was supported 

by the fund money. During 4 weeks I collecting data on the characteristics of 

the quartz-pyrite veins, the structural relationships of the veins and the nature 

of the country rock around the veins. I also collected samples of pyrite and 

orientated samples of the quartz from within the veins. 

 Produced stereonets and rose diagrams to analyse the structural and kinematic 

data. 

 Prepared 12 orientated samples of quartz from the veins to be cut for thin 

sections, which will be used for microstructural analysis to constrain the P-T 

conditions during emplacement and overprinting events. The thin sections are 

currently being made by the technician. 

 Analysed three existing thin sections of vein quartz to establish P-T 

conditions at emplacement. 
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Figure 2: Photograph of a quartz-

pyrite vein cutting Badcallian 

foliation at Lagg Fisheries. 

 Isolated eight samples of pyrite and carried out Rhenium tests on the samples. 

The samples are processed and awaiting mass spectrometry. 

 Prepared a poster detailing my research so far to be presented at the Tectonic 

Studies Group conference on the 5
th

-7
th

 January. 

 

Results 

   The quartz-pyrite veins are present 

throughout the Assynt Terrane, normally in 

loose clusters. They range in width from five 

centimetres to seventy-five centimetres. The 

majority of the veins cross-cut the Badcallian 

(Figure 2) and Inverian fabrics as well as the 

first episode of Scourie dykes, but are 

reworked by Laxfordian fabrics. Small-scale 

epidote-bearing shear zones are found cross-

cutting the veins, and are probably formed 

under greenschist facies conditions during the 

Late Laxfordian. In places post-Laxfordian 

fractures also cross-cut the veins. En echelon 

off-shoots and lineations were also found on 

the veins, and indicate shear and opening 

directions.  

   The quartz-pyrite veins have a polymodal distribution with three dominant trends 

(Figure 3). The main trend strikes NE-SW, with secondary trends striking NW-SE 

and NNW-SSE. Thus the main trend suggests an opening direction NW-SE, which is 

perpendicular to the orientation of the Scourie dykes. The secondary trend is parallel 

to the direction of the Scourie dykes but has probably been influenced by the strong 

Badcallian and Inverian foliation within the Lewisian gneisses. 

   Three existing thin sections of quartz from within the veins show bulging grain 

boundaries, subgrain growth, deformation lamellae and sweeping undulose 

extinction. These are features of metamorphism at temperatures above 300°C and 

perhaps above 500°C (Passchier & Trouw, 2005) which is consistent with mid-

crustal emplacement of the veins under amphibolites facies conditions. This agrees 

well with the geochronology, as the Scourie dykes intruded at 2.4 Ga were also 

emplaced under amphibolites conditions (Weaver & Tarney, 1981).  
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   The Re-Os age of 2250±150 Ma for the pyrite within the quartz veins is important 

as it places the emplacement of the veins between the ages of 2.4 and 2.1 Ga. This 

overlaps with the intrusion of the Scourie dykes and the beginning of formation of 

the Loch Maree Group.  

 

Conclusions so far 

   The structural relationships from the field establish a geochronology to which the 

Re-Os age of the pyrite within the veins conforms, and further analysis will provide 

more model ages. The predominant strike orientation of the quartz-veins lies at high 

angle to the Scourie dykes which were intruded into the gneisses both before and 

after the veins. However, there is a marked change in the extension direction between 

the intrusion of the Scourie dykes and the emplacement of the quartz-pyrite veins. 

Consequently, it is likely that the emplacement of the veins may be related to the 

beginning of the formation of the Loch Maree Group in an arc setting near the 

margin of the Assynt Terrane. The microstructures within the veins record 

amphibolites facies conditions, consistent with emplacement at mid-crustal depths 

and further studies hope to further constrain the P-T conditions during emplacement 

and during subsequent overprinting events.  
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