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Abstract 

Optical trapping of colloidal microparticle arrays in evanescent fields is a relatively 

new area of study. Optically driven array formation is a complex and fascinating 

area of study, since light mediated interactions have been shown to cause 

significantly different behaviour for multiple particles when compared with the 

behaviour of a single particle in an optical field.  

 

Array formation was studied with interference fringes in the counterpropagating 

evanescent fields so as to investigate the effect of a periodic trapping potential. A 

subtle balance between optical trapping and optical binding forces is shown to 

produce modulated lines and arrays. Optically trapped colloidal arrays were also 

studied in the absence of interference fringes, by using either orthogonally 

polarised laser beams or a beam delay line. When interference fringes were absent, 

the formation of arrays was mainly due to gradient forces and optical binding. The 

experimental studies presented here include the optical trapping of dielectric soft 

and hard spheres, Au colloids, and Janus particles.  
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Chapter 1: Introduction 
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1. Introduction 

1.1. Motivation 

This thesis investigates phenomena occurring when multiple particles are 

confined within counterpropagating evanescent fields generated by total 

internal reflection (TIR) at a glass-water interface. The aim is to explore 

experimentally the effects of light-mediated interactions that occur between 

trapped particles (optical binding). Multiple particle interactions are often 

complex and computationally demanding, and so experimental observations 

continue to challenge our understanding of the observed phenomena. 

 

Optical binding interactions are an important consideration for many optical 

trapping applications, since they are non-negligible when compared to the 

optical forces arising from incident beams.1 

   

1.2. A brief history of optical trapping and binding 

Radiation forces were first postulated 400 years ago by Kepler, who studied the 

laws of planetary motion and suggested that light-matter interactions were 

responsible for the tails of comets pointing away from the sun. Later, Maxwell’s 

19th century work on electromagnetism states that “in a medium in which 

waves are propagated there is a pressure normal to the waves and numerically 

equal to the energy in unit volume.” This prompted Nichols and Hull to 

attempt the measurement of radiation pressure in 1901,2 but it was not until the 

advent of coherent light sources in the 1960s that allowed Ashkin’s 

groundbreaking work on optical micromanipulation. In 1970, Ashkin reported 

that microparticles were drawn to the centre of a focused laser beam, and then 

moved in the direction of propagation of that light.3 Optical trapping was then 

realised by using two beams for the stable confinement of microparticles. 

Ashkin and co-workers then proceeded to demonstrate stable trapping and 

manipulation of a microparticle using a single high numerical aperture laser 
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beam, a technique now known as optical tweezing.4  

 

When considering the optical trapping forces due to a highly focused beam of 

wavelength λ acting on a particle of radius a, it is intuitive to consider either 

one of these size limiting regimes: ray optics in which a large particle acts as a 

lens (a > 5λ), or Rayleigh in which the particle is represented by an induced 

point dipole (a < λ/10). Light reflected by a particle experiences a change in 

momentum that drives the particle in the direction of propagation of the 

incident beam (i.e. an axial scattering force). In the Rayleigh regime, movement 

transverse to beam propagation is due to the gradient force. A dipole moves 

along an electric field gradient (e.g. due to the high numerical aperture of a 

focused beam) to minimise its potential energy, which occurs at a point where 

the electric field is the greatest. Gradient forces thus impose on-axis 

confinement on optically trapped particles.5 The ray optics model predicts the 

same optically induced behaviour due to the reflection and refraction of light at 

the particle surface. For particles which are similar in size to the incident 

wavelength, an exact treatment uses Mie-Debye theory to expand the scattered 

electromagnetic field about the particle surface via vectorial spherical 

wavefunctions (i.e. non-trivial and computationally demanding).   

 

The implications of Ashkin’s seminal work have been far-reaching in providing 

new tools for the manipulation of living cells, organelles within cells 6 and 

DNA, 7 and as a powerful technique that can be integrated with microfluidics8-10 

and fluorescence microscopy.11 Optical trapping of multiple particles has been 

extended to two- and three-dimensions using liquid crystal spatial light 

modulators (SLM) to holographically generate an array of optical tweezers.12-14 
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1.2.1. Transverse optical binding 

Optical binding interactions between two optically trapped dielectric spheres 

were first reported by Burns et. al. in 1989. 15, 16 Multiple particles were trapped 

in a plane transverse to the propagation of an ellipsoidal beam (Figure 1.1), and 

were observed to statistically prefer separations that were multiples of the 

wavelength of the applied field. The mechanism for optical binding, in this case, 

is an interference effect between the light scattered by the particles and the 

applied field. The forces on optically bound particles will then be different from 

the forces experienced by an optically trapped particle in isolation.  

 

 

Figure 1.1:Experimental setup for transverse optical binding as performed by 

Burns, Fournier and Golovchenko in 1989.15, 16 

 

In the experiments by Burns et. al., the diameter of the trapped polystyrene 

particles (1.43 μm) were several times the wavelength of the trapping beam 

(0.387 μm in water). The same trapping configuration was employed by 

Mohanty et. al. for particles smaller (diameters of 300 nm and 600nm) than the 

wavelength of the trapping beam (1064 nm Nd:YAG, or 800 nm in water).17 

Particle separations were multiples of the applied wavelength in the 300 nm 

case, but deviated significantly in the 600 nm case. Calculations that treat the 

particles as point dipoles predict separations that are integer multiples of the 

applied wavelength (i.e. in the Rayleigh limit).18, 19 However, when the particle 
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size approaches the applied wavelength, calculations of the scattered field and 

resultant particle separations must take into account the curvature of the 

particle surface (via Mie-Debye theory).   

 

The 2-beam transverse trapping geometry has been studied theoretically for 

multiple particles by Ng et. al.20 Using Mie theory to compute the multiple 

scattering between particles, Ng and co-workers predict 2-dimensional photonic 

clusters with stable or quasistable particle positions depending on levels of 

damping.  
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1.2.2. Longitudinal optical binding 

Optical binding in counterpropagating Gaussian beams was first reported by 

Tatarkova et. al.21 for silica microspheres of size ka > 3.9, where the 

wavenumber, k = 
2π
λ

 and a is the particle radius. The microspheres were 

trapped on-axis, with smaller particle spacings as more particles were added to 

the array. Separately, Singer et. al.22 investigated the size dependency of 

equilibrium spacing with the following observations: 

• Microspheres with diameters less than half the laser wavelength were 

trapped with separations of approximately λ/2.  The mechanism for 

optical binding is via the interference between the incident and 

backscattered fields.  

• Microspheres with diameters on the order of the laser wavelength were 

arrayed with separations that increased with particle size. The 

mechanism for optical binding is due to forward-scattered light 

refocusing and the subsequent balancing of radiation pressure.  

• Microspheres with diameters greater than twice the laser wavelength 

formed closed chains, in which the particles were in contact. The 

radiation pressure exerts a greater inward force on the particles than the 

repulsive force due to the refocusing of light, and so leads to the collapse 

of optical binding. 

 

Optical binding that is predominantly the result of particle interactions with 

forward-scattered light has been modelled by assuming paraxial propagation of 

the applied and scattered fields.23 This model of optical binding is limited to on-

axis optical binding where particle diameters are greater than the incident 

wavelength, but successfully agrees with the sphere separations previously 

reported by Tatarkova et. al.21, and observations of bistability and hysteresis in 

long-range optical binding.24, 25  
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Optical binding of Mie particles have been modelled using a coupled dipole 

method (CDM),26 in which the microspheres are subdivided into point dipoles 

(or Rayleigh particles). The force acting on each particle then becomes a sum of 

the forces acting on its constituent dipoles due to the incident and scattered 

fields. CDM agrees qualitatively with the data previously presented by Metzger 

et. al.,24, 25 namely that the equilibrium positions in a bistable 2-sphere array are 

sensitive to 1% changes in refractive index contrast. This method accounts for 

short range modulation in the optical binding forces which result from 

interference between the incident and backscattered fields, as well as the longer 

range forward-scattered optical binding.  This approach is valid for particles of 

arbitrary shape and size, but is largely limited to smaller particles by 

computational memory requirements. 

 

A more exact and general approach to calculating optical binding forces was 

presented by Gordon et. al.27, 28, which uses a generalized multipole technique 

(GMT) to expand the scattered electric fields inside and outside the particle-

water interface as a series of Bessel or Hankel vectorial spherical wavefunctions, 

respectively. Once the electromagnetic fields were calculated, Maxwell’s stress 

tensor (MST) was evaluated to obtain the optically induced force on each 

particle. This approach is applicable to microspheres of all sizes and even for 

high refractive index contrast between the particles and host medium. 

 

The same authors show experimentally that, for large PS microspheres (ka = 

4.2), the average inter-particle spacing decreases nonlinearly as the total number 

of trapped particles increases, and that particles near the centre of an array are 

more closely spaced than particles near the ends. The difference between the 

outer particle spacing, dout, and the inner spacing, dinn, increases with particle 

numbers (Figure 1.2). Taylor and Love29 use a similar GMT-MST method, in 

combination with a more intuitive ansatz model, to illustrate how forward 

scattering of light explains the observed behaviour of an optically bound chain. 
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Consider a particle chain bound by counterpropagating beams: the force 

pushing inwards on particles closer to the centre is enhanced by the focusing of 

light due to neighbouring particles. Assuming there are some losses along the 

chain, then the force pushing outwards on the end particles will also increase, 

but by a smaller amount. Additional particles will increase the forces pushing 

the inner particles inwards, which increases the transmission efficiency that 

then pushes the outer particles outwards. As even more particles are added to 

an array, the array is sufficiently compressed so that the particles experience the 

attractive near-field gradient forces from neighbouring particles. In such cases, 

no repulsive forces support a well-spaced array, so the chain collapses.  

 

 

Figure 1.2: Inhomogenous properties of inter-particle spacing. (a) Averaged 

inter-particle spacing dav as a function of the number of particles I. (b) The inner 

most inter-particle spacing dinn and the outer most interparticle spacing dout, as a 

function of I.28 

 

Taylor and Love subsequently report spontaneous off-axis trapping and 

oscillation of optically bound microparticle chains in trapped 

counterpropagating Gaussian beams.30 GMT-MST simulations show that small 

perturbations (e.g. due to Brownian motion) are amplified by a “plume” of off 

axis scattered light, which then pulls neighbouring particles further off axis 
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(Figure 1.3). This phenomenon is not expected for an array of relatively few 

trapped microparticles, as the particles will be too far from each other to be 

pushed off-axis by the scattered “plume”. If particle size D, refractive index 

contrast Δn, or total particle number N are sufficiently high, small perturbations 

can lead to stable off axis trapping. If those same parameters are higher still, the 

array stabilizes into a closed orbit which can be asymmetric about the z-axis, or 

a figure-of-eight about the trap centre. In contrast, previous observations of 

array oscillations were attributed to an intentional beam misalignment and 

amplification of motion due to hydrodynamic coupling between closely spaced 

particles.27, 28   

 

 

Figure 1.3:  Field intensity around a single off-axis particle, showing the 

“plume” of light focused by the particle in this case a 3 μm diameter silica 

sphere. Due to the diverging nature of the beam, this is angled slightly off-axis, 

and so a second particle will be drawn even further away from the axis through 

the gradient force.30 

 

While a large proportion of optical binding studies have focused on large 

microparticles in non-interfering incident fields, Hang et. al. have studied the 

behaviour of small (ka =1.1) polystyrene spheres trapped in interference fringes, 

using a multiple scattering expansion of the scattered fields similar to GMT.31 

They consider a system of two pairs of equal-intensity counterpropagating 

electromagnetic waves illuminating a particle chain with varying incident angle 

β (Figure 1.4). The incident fields interfere to form fringes that act as optical 

traps. The optical trapping length scale is λOT =λ/(2 cos β). Optical binding in 

this geometry occurs when the externally induced dipole on one particle is in 
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phase with the backscattered field from an adjacent particle. Hence, the optical 

binding length scale is λOB =λ/(1±cos β). Transverse optical binding corresponds 

to incident angle β= π/2,  when λOT=λOB=λ/2. Longitudinal optical binding 

corresponds to β= 0, when λOT=∞, and λOB=λ. The authors also found other 

values of β for which λOT and λOB are commensurate, at which optical binding 

interactions act to stabilise a long chain of spheres.  

 

 

Figure 1.4:  Four beam counterpropagating geometry used by Hang et. al. to 

study the effect of varying λOT relative to λOB.31 

 

When λOT and λOB are incommensurate, Hang et. al. predict spatial modulation 

in the particle chains which is a multiple of  λOT (Figure 1.5). Particle chains of 

length close to a multiple of the modulation length scale are found to be stable, 

while other long particle chains are unstable.  The modulation amplitude 

increases with sphere size, but the repeat distance depends solely on the 

incident angle β.  

 

Figure 1.5: Particle separations normalized by λOT  for (a) particles numbers N=9; 

(b) N=17; (c) N=25; (d) N=33; at β=0.2π and ka=1.1.31  
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1.2.3. Optical binding in evanescent fields 

In 1992, Kawata and Sugiura reported that the evanescent field generated by 

total internal reflection (TIR) of a laser beam was able to impart momentum to 

microspheres placed in it.32 The particles moved along the glass-water TIR 

interface in the direction of evanescent wave propagation. The penetration 

depth of the evanescent field falls as the incident angle θi increases (Equation 

2.11), and so the imparted velocity also decreases. The optically induced forces 

on a single particle in an evanescent wave have been described by various 

groups using ray optics,33 Mie-Debye theory,34 and CDM.35, 36 They invariably 

show that dielectric particles with refractive index greater than the host 

medium will be drawn towards the TIR interface by the gradient force (in 

contrast to initial reports of repulsion at the interface by Kawata and Sugiura). 

This attraction can be rationalised as follows: the local surface force acts in an 

outward direction (i.e. from the sphere to the surrounding medium). Since the 

evanescent field decays exponentially away from the TIR interface, the net force 

on the particle is towards the TIR interface. The same theoretical treatments also 

predict stronger particle interactions when the incident beam is p-polarised (i.e. 

the electric field is in the plane of incidence), than when it is s-polarised (i.e. the 

electric field is in the TIR plane). Reece et. al. confirm the polarisation and 

incident angle dependence by measuring the particle speed when placed in an 

evanescent wave (Figure 1.6).37  
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Figure 1.6: Velocity of 5 μm polymer colloids at a BK7 glass-water interface, 

resulting from optical interactions with evanescent waves generated by p- 

(solid triangles) and s-polarized (solid squares_) light incident at different 

incident  angles around the critical angle. Solid lines are an aid to the eye. The 

dotted line represents the experimentally determined critical angle.37  

 

The use of counterpropagating evanescent fields is then able to trap 

microparticles near the TIR interface, since translational forces on microparticles 

along the interface will be balanced out. Counterpropagating evanescent fields 

have been used to demonstrate optical transport,38 and optical sorting39 of 

microparticles.  

 

Two-dimensional array formation of submicron particles in counterpropagating 

evanescent waves was first studied by Mellor and Bain,40-42 using the 

experimental setup pictured in Figure 1.7. At an incident angle θi of 68˚ (just 

above the critical angle θc for silica), the incident beam of wavelength 1064 nm 

produced evanescent fields with interference fringe spacing D ~ 400 nm, and 

penetration depth dp ~ 800 nm.  
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Figure 1.7: Schematic illustration of the evanescent wave optical binding 

experiment. A dilute suspension of monodisperse PS particles in water is 

introduced between the prism and a coverslip. The trapped particles are 

observed in white light with a 100x oil-immersion objective and recorded on a 

video camera.40-42 

 

They report size and polarisation dependent behaviour for arrays formed in 

counterpropagating evanescent waves, which are briefly summarised below:  

• For particles of diameter ≥ λ/nH2O, line arrays were formed parallel to the 

propagation of the evanescent fields. Trapped arrays are able to move 

transversely (i.e. in fringe direction), without losing structural integrity.  

• For particles of diameter < λ/nH2O, particles form chessboard or hexagonal 

two-dimensional arrays, where particle spacings are generally 

commensurate with the interference fringes (Figure 1.8). The unit cell 

symmetry was found to be polarisation dependent, and the transition from 

one array to the other is reversible. Occasionally, spontaneous 

rearrangement to an incommensurate hexagonal structure was observed.  

• For particles of diameters that are slightly larger than the fringe spacing (i.e. 

460 and 520 nm) trapped in the evanescent fields from p-polarised light, 

hexagonal arrays are observed where every second or third column is 

unoccupied (or broken hexagonal).  

• For orthogonally polarised incident beams, the evanescent fields are non-
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interfering but a hexagonal array is still observed. The constituent particles 

are not in contact, and particle spacings are not dictated by the presence of 

interference fringes.  

 

 

(a) 

 

(b) 

Figure 1.8:  In s-polarised light: (a) array of 460-nm diameter spheres. A centred 

rectangular unit cell is shown, with lattice parameters a and b perpendicular 

and parallel to the fringes, respectively. (b) Hexagonal array formed by 520 nm 

particles in s-polarized light with 5 μM NaCl.40-42 
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Figure 1.9 shows the force on a single particle in a set of interference fringes as a 

function of particle size parameter ka, calculated by Taylor et. al.43 for the 

experimental setup used by Mellor et. al.40-42: k is the wavenumber in the host 

medium, and a is the particle radius. A positive force indicates that the particle 

is attracted to a bright fringe, while a negative force means that the particle is 

attracted to dark fringes. The particle-fringe interaction has been calculated by 

other groups44-46 with similar results giving the following rule-of-thumb: a 

single particle will move to cover the maximum number of antinodes (bright 

fringes) in an interference field. The trapping of particles on/between 

interference fringes is then able to explain the commensurate arrays observed 

by Mellor et. al., but does not explain the spontaneous formation of 

incommensurate arrays.   

 

 

Figure 1.9: Force acting on a single particle placed halfway between a bright and 

dark fringe, as a function of size parameter ka as calculated by Taylor et. al.43 
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Reece et. al. have enhanced the evanescent field intensities and obtained larger 

particle arrays by surface plasmon polariton (SPP) resonance (Figure 1.10).47 The 

enhanced evanescent wave generated by SPP was shown to organise linear 

arrays of 5μm silica microparticles at much lower powers (by a factor of 3) than 

that for standard evanescent wave optical traps.  

 

Figure 1.10: Successive frames showing the behaviour of 5μm silica 

microparticles as a function of increasing power. The formation of 

linear arrays can be seen at P= 100 mW, due to enhanced optical 

interaction from surface plasmon polariton excitation.47 

 

Optical binding in evanescent waves have been studied using a mode locked 

cavity to create resonance of the counterpropagating beams.48, 49 In these 

experiments, 1.0 μm silica spheres formed chains up to 150 μm in length (Figure 

1.11). Such chains were transversely mobile (as reported by Mellor et. al.), and 

since the cavity mode lock rules out beam misalignment, the mechanism of this 

optically driven motion remains unexplained. As the number of trapped 

particles is increased, the spatially extended chain becomes unstable and is 

observed to collapse, or show angular and translational off-axis motion.  
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Figure 1.11: Chain-like structures of 1 μm silica formed for different input 

powers (corresponding peak intensity on the surface is given in brackets): (i) 

100 mW (0.34 mW μm-2); (ii) 175 mW (0.68 mW μm-2); (iii) 219 mW (0.94 mW 

μm-2); (iv) 266 mW (1.02 mW μm-2).49 
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1.3. Thesis Outline 

The aim of this thesis is to explore the behaviour of particle arrays within 

evanescent optical traps. The common theme throughout is the balance between 

optical trapping and optical binding forces, which gives rise to a rich diversity 

of array behaviours.  

 

Chapter 2 begins with basic equations that are relevant to optical trapping in 

evanescent fields. This chapter then sets out my experimental method using an 

existing optical trapping setup (λ= 1064 nm Nd:YAG), and a newly developed 

optical trapping setup (λ= 840 -890 nm Ti:sapphire).  

 

Chapter 3 presents results obtained on the fixed wavelength optical trapping 

setup (λ= 1064 nm Nd:YAG), for a number of different microparticle materials 

such as polystyrene (PS), silica, sterically stabilised poly(ethylene glycol) 

methacrylate (PEGMA-P2VP), and gold. Simulations to support our 

experimental observations are presented here. These simulations are the work 

of our collaborators (whose contribution is made clear in the text). 

 

Chapter 4 presents results from experiments using a tunable laser source (λ= 

840 -890 nm Ti:sapphire) where the two counterpropagating beams are 

mutually coherent. Optical trapping of PS microspheres of different sizes while 

varying incident wavelength allowed near-continuous tuning of ka. This 

enabled experimental study of array formation as the node/ antinode affinity of 

individual particles approached zero (Figure 1.9). 

 

Chapter 5 presents results from experiments using a tunable laser source (λ= 

840 -890 nm Ti:sapphire) where the two counterpropagating beams are 

mutually incoherent. Use of a beam delay line enabled optical trapping 

experiments where the two beams were of the same polarisation but did not not 

form stable interference fringes. Without the periodic potential provided by the 
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interference fringes, stable arrays will mainly be due to gradient forces and 

optical binding.  

 

Chapter 6 highlights two interesting phenomena that occurred during optical 

trapping experiments. While neither phenomenon is particularly helpful for 

elucidating array forming mechanisms, they serve as a reminder of the 

unpredictability of optical binding interactions.   

 

Finally, Chapter 7 summarises some of the common themes drawn from the 

results presented in the preceding chapters.  
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2. Experimental Method  

2.1. Equations and parameters 

2.1.1. The evanescent field 

The generation of evanescent fields by total internal reflection (TIR) is 

described1, 2. For a plane wave incident at a planar interface at an incident angle 

θi, part of the wave is reflected and part is transmitted through the interface 

(Figure 2.1). 

 

 

Figure 2.1: Propagation vectors for internal reflection. The x-y plane is the 

interface, and the x-z plane is the plane of incidence.  

 

The wavefunction of the transmitted electric field, tE  is  

 ( )
0

i t
t texp ω−= tk rE E i  (2.1) 

where 0tE is the electric field at the interface, and ω is the angular frequency of 

the transmitted light, t is time, kt is the wavevector of the transmitted wave and 

r is the position vector.  

 tx tz zk x k= +tk r⋅⋅⋅⋅  (2.2) 

 sin cost tt tx zk kθ θ= +tk r⋅⋅⋅⋅  (2.3) 

there being no y-component of k. Equation (2.1) can be rewritten as  

 0 sin cos )t tt tt t x zexp(-i[ k k - t]θ θ ω+=E E  (2.4) 
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The angle of propagation of the transmitted beam, tθ  is given by Snell’s Law  

 
sin

sin
ti

i
t n

θθ =  (2.5) 

where t
ti

i

nn n= . Equation (2.5) can be used to show that  

 

1
2 2

2

sin
cos 1 i

t t t
ti

k k
n

θθ
 

= ± − 
 

 (2.6) 

When the incident medium is the more optically dense of the two (ni > nt), there 

exists a critical angle, θc, above which all incoming energy is reflected back into 

the incident medium.  This phenomenon is called total internal reflection (TIR). 

If θi ≥ θc, Equation (2.6) gives 

 

1
2 2

2

sin
1i

tz t
ti

k ik i
n

θ β
 

= ± − ≡ ± 
 

 (2.7) 

 sint
tx i

ti

k
k

n
θ=  (2.8) 

Substituting Equations (2.7) and (2.8) into Equation (2.4) gives 

 0
sint i

ti
t t

k xi tnexp( z ) exp θ ωβ   −    
=E E ∓  (2.9) 

The positive exponential suggests an increasing field at greater distance from 

the interface, and so is physically untenable. Thus, the evanescent wave must 

have amplitude that decays exponentially from the interface into the less dense 

medium. Energy transport occurs parallel to the interface, but not in the z-

direction. 

 

Equation (2.9) can be manipulated to find the penetration depth, dp, which is 

defined as the distance from the interface that the electric field falls to 1/e of the 

amplitude at the interface.  

0 0 ( 1)pt t texp(- d ) = expβ −=E E E  

  1pd =β  (2.10) 
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 0
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i
t

ti
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n
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λ
β

θπ

= =
  

−  
  

 (2.11) 

where λ0 is the wavelength in vacuum.  

 

 

 

Figure 2.2: Side view of two overlapping plane waves (wavefronts shown as red 

solid lines) with an angle between the beams, φ, thus creating an interference 

pattern (in blue). The inset shows the right angled triangle used to find the 

fringe spacing D. 

 

The interference fringe spacing D formed by two crossing plane waves can be 

found using the trigonometric identity from the right angled triangle shown in 

Figure 2.2 to be as follows: 

φ/2 2D 
 λ0/n 

φ 
Fringes 
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  0sin( )
2 2Dn

λφ
=  (2.12) 

 0

2 sin( )
2

D
n

λ
φ

=  (2.13) 

where λ0 is the wavelength of light in a vacuum, n is the refractive index of the 

host medium, and φ is the angle between the beams. When the plane waves are 

counterpropagating, the fringe spacing is simply λ0/2n.  

 

The fringe spacing D for an evanescent interference pattern depends on the 

angle of incidence θi.  

 0

2 sini i

D
n

λ
θ

=  (2.14) 

At the critical angle (θi = θc) the fringe spacing equals λ0/2n, with 
2H On n= . For θ

i 

> θ
c
, the fringe spacing is reduced from this value by a factor sin θ

c
/sin θ

i
. 

Finally, as θi approaches 90˚, D tends to 0 2 glassnλ .  
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2.1.2. Generalized Lorentz-Mie Theory for optical binding 

The theoretical treatment of optical binding using Generalized Lorentz-Mie 

Theory (GLMT) is especially appropriate for the particles sizes used in my 

experimental work. The following section summarises the application of GLMT 

to optical binding as described in Taylor’s work.3  

 

We begin by showing that an electromagnetic field ( )e r  can be decomposed 

into a complete orthonormal basis of eigenfunctions ( )ie r , each with amplitude 

ai:  

 ( ) ( )i i
i

a=∑e r e r  (2.15) 

Next, a particle exposed to a given incident field will produce a scattered field 

which can again be represented in that same basis, with amplitudes si: 

 = ⋅s T a  (2.16) 

where T is a matrix describing the scattering behaviour of the particle. In 

general T will depend on the shape and physical properties of the particle, and 

for dielectric particles can be determined by considering the boundary 

conditions on the electromagnetic field at the dielectric interface. 

 

GLMT is ideal for studying spherical particles as it represents incident and 

scattered fields in terms of vector spherical wavefunctions (VSWFs) comprised 

of spherical Bessel and Hankel functions, respectively. For further details of the 

beam expansion as represented using VSWFs, the interested reader is directed 

to other texts.3-5  Each individual VSWF is a solution to Maxwell’s equations. 

Since the VSWFs form a complete orthogonal set, any coherent field can be 

represented as a sum of normalized VSWFs. This method can be applied to 

particles of any size, from the Rayleigh limit up to the ray optics regime, but is 

most efficient for particles in the Mie regime where particle sizes are 

comparable to the wavelength of light. 
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GLMT generalises easily to multiple particles due to the linearity of the 

electromagnetic field equations. The scattering behaviour of each individual 

particle is calculated from the total field incident on the particle, which is the 

sum of the external field and all the scattered waves from other particles. Thus 

the total field ( )ka  incident on particle k (as in Equation (2.16)) is: 

 ( )
( )
( ) ( )k k j

ext
j k≠

′= +∑a a s  (2.17) 

where ( )j′s are the field coefficients for the field  scattered by sphere j, in the 

basis of VSWFs centred on particle k. Equation (2.17) applies simultaneously to 

every particle k in the system, written in their individual bases, and the result is 

a large system of coupled equations which can be solved to determine the 

resultant field.   

 

The effect of multiple scattering, where the scattered light from one particle is 

re-scattered by another particle, are only a small perturbation to the first-order 

solution. Where the effect of multiple scattering is significant, an iterative 

solution can be obtained, as follows:  

 

Firstly, Equation (2.17) can be expressed as:   

 ext= +a a Fs  (2.18) 

where ijF is the translation matrix which transforms a scattered field in the basis 

of sphere i into an incident field in the basis of sphere j, as given by:  

 ( ) ( )j i= ⋅s F s  (2.19) 

Using the notation of Equation (2.18), the scattered field 0s is the field obtained 

by treating every sphere as a scatterer in isolation.  

 ( )0 ext= ⋅s T a  (2.20) 

The next incident field due to the zero-order scattered field is then:  

 ( ) ( )1 0ext= + ⋅a a F s  (2.21) 

The first-order scattered field is then:  
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 ( ) ( )1 1= ⋅s T a  (2.22) 

 The second-order net incident fields is then:  

 ( ) ( )2 1ext= + ⋅a a F s  (2.23) 

and so on until the field converges.  

 

Multiple scattering can be represented using the infinite sum:  

 ( ) ( )... ext= + ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅  s T T F T T F T F T a  (2.24) 

Taylor’s calculations suggest that a solution to Equation (2.18) which is accurate 

to one part in 10-5 can be obtained within about 10 to 20 iterations, even for 

particles whose centres are only 3 radii apart.3  
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2.2. Optics setup 

2.2.1. Optical trapping with Nd:YAG 

A schematic diagram of the setup is shown in Figure 2.3(a). An optical trap was 

created at the glass-water interface by overlap of the forward and retroreflected 

λ=1064 nm beams.  

 

Figure 2.3: Schematic showing (a) the optical bench layout, and (b) the 

experimental setup around the microscope for optical trapping in evanescent 

waves generated by TIR with a Nd:YAG λ=1064 nm laser.  
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For trapping, a continuous wave 500 mW Nd:YAG diode pumped laser (1064 

nm) [Forte 1064-S, Laser Quantum Ltd.] was used. It is sufficiently powerful for 

the intensities (I) required to interact with the colloidal particles (I ≈ 0.2 mW μm-

2 compared to I ≈ 0.02 mW μm-2 recorded by Kawata,6 and has a sufficiently long 

coherence length of > 240 mm. To create interference fringes, the coherence 

length of the laser must be greater than the pathlength difference between the 

two wavefronts. Twice the distance between the TIR interface and the spherical 

retroreflector is around 300 mm, and so the coherence length of the laser should 

be greater than that. To minimise losses, optics were purchased with anti-

reflection coatings for 1064 nm and mirrors were gold-coated, wherever 

possible. 

  

A Faraday Isolator [IO-3-1064-HP, OFR] prevents the retroreflected beam from 

returning to the laser, to avoid distortion and instability in the wavefront and 

potential damage to the laser. The Faraday isolator consists of a Faraday Rotator 

(a glass cylinder within a magnetic field) sandwiched between two air-gap 

polarizer cubes aligned 45˚ to each other (Figure 2.4). The input polariser (P1) 

was aligned to allow the entire forward beam through. As the light passes 

through the Faraday Rotator, the magnetic field rotates the polarisation by 45˚ 

(the Faraday Effect), and so the output polariser (P2) is rotated 45˚ to P1. Any 

reflected light returns through P2, and is rotated a further 45˚ within the 

Faraday Rotator. The returning beam is now polarised 90˚ to P1, and so is 

rejected by the polariser cube.  
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Figure 2.4: Schematic showing a Faraday Isolator. Black arrows indicate the 

polarisation of light. 

 

After the Faraday Isolator, there is a λ/2 waveplate to allow either s- or p-

polarised light to be used in the experiments. The beam is then expanded by a 

Galilean telescope (a concave lens with focal length f = -50 mm, followed by a 

convex lens with f = +250 mm) from ≈ 1 mm to a beam diameter of 6 mm.  

 

The hazardous 1064 nm Nd:YAG laser used for trapping is invisible, and so a 

low power visible laser was used for most of the alignment. A 633 nm He:Ne 

laser at 1 mW was directed onto the beam axis using a mirror mounted in a 

flipper mount [New Focus, model 9891]. 

 

A standard microscope (DM/LM, No. 11888500, Leica) was used as the basis of 

the experiment, with the hemispherical lens [BK7 or SF10, diameter = 10.0 mm]  

mounted on the microscope stage (Figure 2.3(b)). The beam was raised via a 

periscope and focused onto the flat prism surface using a convex lens with focal 

length f = +50 mm [Newport, KPX082AR.33]. To create evanescent waves that 



Chapter 2: Experimental Method 

 32 

penetrate sufficiently far into the sample to interact strongly with colloidal 

particles of diameter 2a ≈ D near the TIR interface, the angle of incidence needs 

to be just above the critical angle. As the incidence angle approaches the critical 

angle, the penetration depth increases steeply (Equation(2.11)). However, the 

beam is focussed and can be thought of as an infinite sum of plane waves with a 

spread of incident angles. For total internal reflection of the entire beam, the 

spread of angles should be no more than half the difference between the 

incident angle and the critical angle. The N.A. of a lens is given by 

 . . sin
2 2

d
N A

f

ϕ = = 
 

 (2.25) 

where ϕ is the focussing angle, d is the diameter of the beam before the lens, 

and f is the focal length of the lens. If d = 6 mm, and f = 50 mm, then the 

focussing angle  ϕ = 6.8◦.  

(θi - θc) ≥
2

ϕ
 = 3.4◦ 

 

The hemispherical lens was either BK7 [nBK7 =1.507; θc(BK7) = 62.2˚] or SF10 [nSF10 

= 1.702; θc(SF10) = 51.6˚] glass. Table 2.1 shows the fringe spacings D and 

penetration depths dp for the incident angles and incident media used, as 

calculated using Equations (2.11) and (2.14). 

 

Table 2.1: Fringe spacings and penetration depths for the different incident 

angles and incident media used [λ= 1064 nm; nBK7 =1.507; nSF10 = 1.702; θc(BK7) = 

62.2˚; θc(SF10) = 51.6˚]. 

BK7 SF10 Incident 

angle, 

θi 

Fringe 

spacing, D/ 

nm 

Penetration 

depth, dp/ nm 

Fringe 

spacing, D/ 

nm 

Penetration 

depth, dp/ nm 

53 

56 

60 

64 

68 

 

 

 

393 

382 

 

 

 

705 

400 

392 

378 

362 

348 

338 

640 

370 

270 

226 

200 
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The beam was retroreflected to the same spot at the glass-water interface with a 

spherical mirror, thus creating interference fringes in the overlapping 

evanescent fields. The spherical mirror was made in-house by coating a concave 

lens [f = -150 mm, radius of curvature = 77.52 mm, Newport KPC031] with 

chromium and then gold in a thermal evaporator. The chromium layer allows 

the gold to adhere to the substrate. The spherical mirror is mounted directly 

onto the microscope stage with three fine control actuators to focus the reflected 

spot as required. Since the spherical mirror and prism are connected, the mirror 

does not need to be readjusted whenever the stage is raised to refocus the 

objective.  

 

For some of the experiments a λ/4-waveplate was inserted into the beam path 

between the spherical mirror and the prism. When the λ/4-waveplate has its fast 

axis aligned 45˚ to the polarisation of the forward beam, two passes through the 

λ/4-waveplate rotates the plane of polarisation of the returning beam by 90◦. 

The two beams are now orthogonally polarised with respect to each other. The 

λ/4 waveplate must be used with the polarising beamsplitter cube (PBC) 

[10BC16PC.9, Newport] and power meter in place (Figure 2.3(a)). The PBC 

allows p-polarised light to pass straight through, while s-polarised light is 

reflected by 90◦. If the forward beam is p-polarised and the returning beam is s-

polarised, the PBC prevents the reflected beam from returning to the laser 

source via the Faraday Isolator. When the λ/4-waveplate has converted the 

returning beam to s-polarised light, the power meter reading is at its maximum. 

 

The evanescent spot was observed by a CCD camera [JVC TK-S350] via the 

microscope objective (100x magnification, N.A. = 1.25, oil immersion [C Plan, 

No. 11506072, Leica]). An IR filter placed before the CCD camera was used to 

screen scattered laser light, and prevent bleaching of the camera. A series of 

magnification lenses were mounted on a wheel so as to allow the magnification 

to be changed between 100 x 1.0, 100 x 1.5, and 100 x 2.0 during the experiment. 
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Above the magnification lens, a convex tube lens focuses the light onto the CCD 

chip of the camera. MPEG-2 videos were recorded on a computer using a PCI 

framegrabber [WinTV2K Version 4.0.21126, Hauppage] and observed during 

experiments on a separate monitor.    
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2.2.2. Optical trapping using a tunable Ti:sapphire laser  

The Ti:Sapphire optical trapping setup incorporates several improvements: 

• A tunable laser was used to optically trap PS microspheres of different 

sizes allowing near-continuous tuning of ka. This enabled experimental 

study of array formation as the node/ antinode affinity of individual 

particles approached zero (See Figure 1.9). From Taylor’s calculations,7 the 

crossover point occurs at ka =1.985 and 3.263. For my experiments, the first 

crossover point is expected for a PS particle diameter of 420 nm with 

trapping wavelengths λH2O =665 nm, or λair =886 nm (Figure 2.5). The 

second crossover point is expected for 700 nm PS at λH2O =674 nm, or λair 

=898 nm, which is just out of the tuning range for the Coherent Indigo-S 

oscillator.  
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Figure 2.5: Plot showing particle size vs wavelength for ka values where the 

particles is attracted to neither bright nor dark interference fringes, based on the 

calculations of Taylor et. al.7 

 

• A more powerful laser and a 50:50 beamsplitter were used to generate two 

separate trapping beams (in contrast to previous work with a single beam 

and a retroreflecting mirror).  One of the beam paths included a delay line 

so as  to introduce a pathlength difference. A pathlength difference greater 

than the coherence length leads to mutually incoherent beams arriving at 
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the TIR interface. This enables experimental study of optical trapping and 

binding in non-interfering evanescent fields. 

• To adjust the focus of the microscope objective, the objective is translated 

instead of the hemisphere. Thus, the TIR interface is not moved during the 

experiment and the trapping beams remain well aligned relative to the 

centre of the hemisphere.  

• The microscope optics are designed to provide even illumination that fully 

fills the numerical aperture of the microscope objective (described further 

in Section 2.2.2.1). 

• Videos were recorded using an area scan CMOS camera [Pixelink 

PLB761U], instead of a CCD camera [JVC TK-S350] with interlaced 

readout. The CMOS camera resolved previous issues such as interlaced 

readout, and enabled better control of exposure time, gain and frame rate.   

 

A schematic of the Ti:sapphire optical trapping setup is shown in Figure 2.6. 

 

 

Figure 2.6: Schematic showing the optical bench layout for optical trapping in 

evanescent waves using a Ti:Sapphire laser. 
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The trapping laser is the infrared fundamental emitted from a Ti:sapphire 

oscillator [Coherent Indigo-S] which is tuneable over the range λ= 840-890 nm. 

The output power of the laser varies less than 10% over the wavelength tuning 

range Table 2.2. The Ti:sapphire laser is driven by a frequency-doubled Nd:YAG 

source, at a frequency of 4.0 kHz. The Coherent Indigo-S is a pulsed laser 

source, but can be treated as quasi-continuous with a long pulse width of 35 ns.  

 

Wavelength, 

λ/nm 

Pump current, 

I/A 

Output Power, 

W 

840.2 

849.8 

860.0 

865.0 

870.5 

880.0 

890.5 

16.2 

16.3 

16.5 

16.4 

16.5 

16.9 

17.3 

1.275 

1.327 

1.322 

1.320 

1.337 

1.347 

1.360 

Table 2.2: Output power for the Coherent Indigo-S measured between the first 

mirror and the Faraday isolator shown in Figure 2.6. The pump current is 

adjusted slightly when the wavelength is changed to ensure that only one lasing 

mode is excited.  

A broadband Faraday Isolator [Thorlabs IO-5-TiS2-HP] prevents any 

retroreflected light from returning to the oscillator. The beam diameter is then 

expanded from 2 to 5 mm by a Galilean telescope (two achromatic doublet 

lenses with focal lengths,  f= -25 mm[Thorlabs ACN 127-025-B], and f = +50 

mm[Thorlabs AC 127-050-B]). 

 

Trapping beam power is attenuated using a zero-order λ/2 waveplate [Edmund 

Optics NT46-413] and a polarising beamsplitter cube [Edmund Optics NT49-

870]. The polarising beamsplitter cube only transmits p-polarised light, so 

rotation of the zero-order waveplate will allow all or none of the beam to pass 

into the rest of the optical setup as horizontally polarised light. Next, an 
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achromatic λ/2 waveplate [Edmund Optics NT46-561]  allows selection of 

horizontally or vertically polarisation. Placement of mirrors and other reflecting 

surfaces in the optical beam path has been carefully considered to ensure that 

both beams reach the TIR interface with the same linear polarisation.  

 

The trapping beam is then split along two beam paths using  a 50:50 

beamsplitter cube [Thorlabs BS011]. One beam path incorporates a delay line 

comprised of a 25 mm right angle prism mounted with 25 mm horizontal 

translation (resulting in a path length difference of zero to 50 mm). For light 

with a Lorentzian optical spectrum, the coherence length Lcoh can be defined as8  

1
coh coh

c
L cτ

π ν π ν
= = =

∆ ∆ ɶ
 

cohτ is the coherence time, ν∆  is the full-width at half-maximum of the optical 

bandwidth (in Hz), and ν∆ ɶ  is the full-width at half-maximum of the optical 

bandwidth (in cm-1). Since the Coherent Indigo-S has a single-shot linewidth of 

<1 cm-1, Lcoh≈ 3 mm. A path length difference of 50 mm is therefore sufficient to 

enable optical trapping experiments to switch between mutually coherent and 

mutually incoherent laser beams.  

 

Both beams are then raised via periscopes and focused using f = +50 mm 

achromatic doublet lenses [Thorlabs AC127-050-B] onto the flat surface of a BK7 

half-ball lens with an incident angle, θi = 64.5˚. At the BK7 surface, the laser spot 

is approximately 20 μm x 30 μm (20 μm along the y-axis, and 30 μm along the x-

axis).  Table 2.3 shows the fringe spacing, D and penetration depth, dp as the 

incident wavelength is varied over  λ= 840-890 nm. 
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Wavelength, 

λ/nm 

Fringe Spacing,  

D/ nm 

Penetration 

Depth, dp /nm 

840 

850 

860 

870 

880 

890 

309 

312 

316 

320 

323 

327 

556 

563 

570 

576 

583 

590 

Table 2.3: Fringe spacings and penetration depths for optical trapping with the 

Ti:sapphire laser [λ= 840-890 nm; nBK7 =1.507; θc(BK7) = 62.2˚, θi(BK7) = 64.5˚]. 

Uncertainty in θi  of ±0.5˚ translates to an error  of ±2 nm in fringe spacing. 

 

As on the previous optical trapping setup, the hazardous λ= 840-890 nm laser is 

invisible. A low power 633 nm He:Ne laser at 1 mW was used for most of the 

alignment. The red alignment beam was directed onto the infrared beam path 

using the two irises indicated in Figure 2.3, and  a mirror mounted in a flipper 

mount [New Focus, model 9891].  

 

2.2.2.1.Microscope imaging 

To maximise the large numerical aperture of the microscope objective (N.A. 

=1.25), a condenser should be placed under the sample in an upright 

microscope (Figure 2.7). The function of a condenser is to produce even 

illumination at large angles to match the numerical aperture of the microscope 

objective.1, 9 The collector and condenser lenses act to produce parallel rays of 

illumination at the sample plane from any one point of the illumination source. 

This form of microscope illumination is call Kohler illumination. This type of 

illumination ensures that the optical resolution of the microscope objective is 

fully utilised and that even illumination is obtained without imaging the light 

source.  
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Even though any one point of the LED light source produces coherent 

illumination at a range of angles, the total illumination from all points of an 

extended source is almost incoherent since each coherent plane wave will have 

random phases. When the sample is incoherently illuminated, the resolution 

limit is given by the Rayleigh criterion1 

0.61
. .d N A

λ=  

where N.A. is the numerical aperture of the objective, λ is the wavelength of 

illumination, d is the distance between the objects. Thus 

320 nmd ≈  

if imaging in blue light λ =455 nm, N.A. = 1.25, and n =1.333. (The microscope 

objective used is corrected for chromatic aberrations.) Aberrations in the optics 

will reduce the optical resolution from the theoretical limit. 
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Figure 2.7: Ray-tracing diagrams for an infinite-tube length compound 

microscope set up for Kohler illumination. For the illuminating light path, the 

filament lamp, condenser stop and objective exit pupil are shown to be in 

conjugate planes. For the image-forming light path, the collector stop, object, 

intermediate image plane and CCD microchip are shown to be in conjugate 

planes. In my setup, the photo-ocular is absent so the CCD is positioned at the 

intermediate image plane (or the back focal plane of the tube lens).9 
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The illumination optics in a typical standard microscope (e.g. DM/LM, Leica) 

consist of an aspheric collector lens, and a simple two-lens Abbe condenser. In 

place of an aspheric collector lens, I used two off-the-shelf achromatic doublets 

[Thorlabs AC254-030-A1, and AC508-075-A1], shown as L1 and L2 in Figure 2.8. 

In place of an Abbe condenser, the BK7 half-ball lens (which is necessary for 

creating the evanescent fields by TIR) is used in combination with lenses L3 

[Thorlabs AC508-075-A1] and L4 [Thorlabs AC254-030-A1] to produce 

illumination at large angles at the sample plane.  

 

 

Figure 2.8: Ray tracing diagrams for the illumination optics on the Ti:sapphire 

optical trapping setup showing: (Image at infinity) Rays from a single point of 

the light source are out of focus on the flat face of the hemisphere; (Object at 

infinity) Parallel rays from the light source are focused at large angles on the flat 

face of the hemisphere. To achieve Kohler illumination, components should be 

separated by the distances shown in Table 2.4. 

 

WinLens [published by LINOS Photonics], a simple raytracing program, was 

used to configure the illumination optics. To achieve Kohler illumination using 

the optics shown in Figure 2.8, the optics should be separated by the distances 

listed in Table 2.4 below. Rays from a single point of the light source are out of 

focus on the flat face of the hemisphere. Parallel rays of light from the LED light 

source are focused at large angles on the sample plane, resulting in illumination 

N.A.= 0.90.  
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Optical Component Separation, mm 

LED 

L1 

L2 

L3 

L4 

BK7 Hemisphere 

0 

12.1 

12.9 

476.5 

31.1 

1.5 

Table 2.4: Separation between optics shown in Figure 2.8, as 

calculated by paraxial raytracing in Winlens. Separation is calculated 

as the distance between the last surface of the preceding optical 

component and the first surface of the optical component listed on 

the left.  

 

The evanescent spot was imaged using a CMOS camera [Pixelink PLB761U] via 

a microscope objective (100x magnification, N.A. = 1.25, oil immersion [HI Plan, 

No. 11506238, Leica]), as shown in Figure 2.9. Magnification lenses were 

mounted using screw-in lens tubes to enable magnifications of 100 x 2.0 during 

the experiment. Above the magnification lenses, an IR filter was placed to 

prevent scattered laser light from bleaching the camera. Next, an achromatic 

doublet lens [f=+200 mm, Thorlabs AC25-200-A1] focuses an image of the 

sample plane onto the CMOS detector. Videos were recorded on a computer via 

a USB link, at a frame rate of 50Hz.  
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Figure 2.9: Schematic showing a close-up of the experimental setup around the 

BK7 hemisphere for optical trapping in evanescent waves generated by TIR 

with a Ti:sapphire λ= 840-890 nm laser.  
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2.3. Sample preparation 

One drop of the sample was sandwiched between the half-ball lens (diameter = 

10 mm) and a coverslip [L4096-2, Agar Scientific]. During experiments, 

evaporation of the sample led to capillary currents destabilising the particle 

arrays. To reduce this effect, an excess of lens immersion oil [L4082, Agar 

Scientific] was applied on top of the coverslip and allowed to overflow the 

edges of the prism. This technique was messy but enabled stable trapping 

experiments to run for over 20 minutes.   

The half-ball lens was cleaned in acetone using an ultrasonic bath for 15 

minutes. It was then rinsed with ethanol, and then rinsed several times in 

deionised water. The lens was further sonicated for 15 minutes in 70% 

concentrated nitric acid, before multiple rinses in deionised water. Finally, the 

lens was dried under nitrogen. This cleaning procedure removed most particle 

aggregates, as well as any dirt that might allow particles to adhere to the prism 

surface. The polystyrene (PS) have a slight negative charge originating from the 

sulphate groups on the particle surface, while the Au particles are stabilised by 

citrate present from their synthesis. As a result, the negative charge of the clean 

BK7 or SF10 surface is usually sufficient to prevent adhesion of negatively 

charged particles.  

 

2.3.1. Polystyrene 

PS solutions (Bangs Labs 390 nm [PS02N/6703], 420 nm [PS02N/2141], 460 nm 

[PS02N/5895], 620 nm [PS03N/ 6001], 700 nm [PS03N/ 6012], 800 nm 

[PS03N/6388]; Agar Scientific Ltd. 520 nm [S130-6], 300 nm [S130-5], 945 nm 

[S130-7]) and silica solution (Bangs Labs 520 nm [SS03N/7190]) were diluted 

1:1000 with deionised water (Millipore), or 10 μM NaCl solution. 
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2.3.2. PVP-PEGMA 

Poly(ethylene glycol) methacrylate (PEGMA) stabilised poly-2-vinylpyridine 

(P2VP) microspheres were synthesised by Damien Dupin10, 11 in 3 diameters: 

380, 640 and 830 nm. The PEGMA-P2VP microspheres were provided as 

suspensions in water and were diluted by 1:2000 (380nm) or 1:1000 (640 and 830 

nm) into a solution of 0.62 mM cetyl trimethylammonium bromide (CTAB).  

 

The presence of 0.62 mM CTAB is sufficient to prevent the adhesion of PEGMA-

P2VP to the negatively charged glass surface during trapping experiments. The 

cationic surfactant adsorbed to the negatively charged BK7 surface so that 

PEGMA-P2VP no longer adhered to the BK7 surface, even during optical 

trapping at maximum laser power. The diluted samples were pH 8, regardless 

of CTAB concentration. Our collaborators measure a small negative charge on 

the microspheres at pH 8 by electrophoresis (Figure 2.10),11 which seems to 

contradict our observation that a cationic surfactant is necessary in preventing 

the PEGMA-P2VP from adhering to the glass-water interface during evanescent 

wave optical trapping experiments. 

 

 

Figure 2.10: Electrophoretic mobility vs pH curves obtained for 0.01 wt% 

aqueous solutions of PEGMA-P2VP latexes in the presence of 0.01 M NaCl: (♦) 

370 nm diameter; (▲) 480 nm diameter; (x) 560 nm diameter; (□) 640 nm 

diameter; (●) 830 nm diameter; (■) 1010 nm diameter.12 
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2.3.3. Au 

The Au solution (British Biocell International 250 nm [GC250]) was diluted 1:5, 

and then the particles were allowed to settle out overnight. Half the supernatant 

was removed by pipette and the remainder was shaken up to redistribute the 

colloid. The Au colloid is supplied with citrate stabilisers to prevent 

aggregation of the particles. The ionic strength of undiluted Au solution is high 

enough to allow adhesion of Au particles to the BK7 surface during 

experiments, but a fivefold dilution removes this problem. Sonication of the 

sample for ~5 minutes helped reduce the number of colloidal aggregates 

observed in the sample. 

 

2.3.4. Janus particles 

Janus particles (881 nm amino-modified silica, coated with 10 nm Cr and 20 nm 

Au) were kindly prepared by Olivier Cayre using a gel trapping technique12. 

Aggregates within the sample were broken up using a VC-505 Sonics Vibracell 

ultrasonic horn (3mm tapered microtip, four 5-second pulses at 36% 

amplitude). For comparison, 2% wt. 881 nm amino-modified silica was also 

supplied, which was diluted 1:100 with deionised water before use.   

 

2.4. Measurement of lattice parameters 

An IR filter is required to prevent saturation of the camera due to the strong 

scattering of the laser light by the colloidal particles. With the IR filter in place, 

the weak scattering off imperfections at the glass-water interface is 

undetectable. The interference pattern can therefore only be inferred from the 

movements of the colloidal particles on interaction with the evanescent fields.  

 

The DM/LM Leica microscope was calibrated using a stage micrometer with a 

100 μm scale and 2 μm sub-divisions[Agar Scientific L4202, line width= 1 μm, 

overall accuracy = ±1 μm]. At a magnification of 150x, each image pixel is 47.6 

nm, and 43.3 nm along the x- and y-axis, respectively. This calibration has 1% 
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uncertainty associated with the accuracy of the stage micrometer.   

 

On the Ti:sapphire optical trapping setup, the position of the f=+200 mm tube 

lens needed fine adjustment to produce the correct magnification. The stage 

micrometer was found to be too grainy for fine calibration, and so a 1000 lines 

per mm holographic diffraction grating film [Edmund Optics NT01-307] was 

used instead. At a magnification of 100x, each image pixel is  59.86 nm in both 

x- and y-axes.  

 

Videos were recorded in 25 Hz MPEG-2 and 50 Hz .avi formats on the Nd:YAG 

λ=1064 nm, and Ti:sapphire λ=840-890 nm optical trapping setups, respectively. 

Wherever possible, 50 consecutive video frames of stable trapped arrays were 

extracted as .JPEG files using VirtualDub-MPEG2 1.6.19.  In Matlab, the images 

were processed with an algorithm comprised of bandpass, peak find, centroid 

weighting, particle tracking and particle sorting routines to calculate average 

particle positions and their associated statistical error.13-15 Since particle 

positions are typically averaged over 100 frames, dimensions are quoted with 

sub-pixel accuracy14. Uncertainties in particle positions and array lattice 

parameters are quoted as standard error of the mean xσ .   

 
( )
( )

2

1
ix i

x

x x

N NN
σσ

Σ −
= =

−
 (2.26) 

If N measurements of particle position, xi were repeated there should be a 68% 

probability the new mean value of would lie within xx σ± . 

 

Larger PS particles of diameters 620nm -800nm are imaged as dark donuts with 

a bright centre against a bright background. A semi-automatic flood-fill routine 

is run on the image to generate a background that is even darker than the ‘dark’ 

donut (Figure 2.11). The flood-fill routine starts near the edges of an image and 

darkens adjacent pixels until a pixel which is much darker is encountered. The 



Chapter 2: Experimental Method 

 49 

user can input parameters to control the boundary value at which the flood-fill 

routine detects the particle edge. The particle centres are not darkened and can 

then be detected correctly using the bandpass and peak find routines.  

 

 

 

Pre flood fill
Flood filled

 

Figure 2.11:  Line array of 620 nm PS (λ= 880 nm, p-polarised): (a) unprocessed 

image; (b) image after flood fill routine; (c) line profiles of images before and 

after. 

2D FFT in Matlab was also used to obtain array lattice parameters. For square 

and hexagonal arrays, the values obtained agreed with those obtained by 

particle tracking. For modulated arrays, it was more difficult to interpret the 

FFT peaks to obtain the appropriate lengthscale. Tilted arrays gave a ‘tailing’ 

effect on the 2D FFT plot. For consistency, I used the particle tracking routine 

for all arrays. 

 

(b) 

(c) 

(a) 
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Figure 2.12: Commensurate lattices formed on interference fringes: (A) is a 

hexagonal lattice denoted hex1, where 3b a= ; (B) is a square lattice (a=b); and 

(C) is a hexagonal lattice denoted hex2, where 3a b= . Centred rectangular unit 

cell shown in red; primitive hexagonal unit cells shown in blue dashes.16 

 

Lattice parameter a is the particle spacing along the direction of propagation of 

the incident light, and lattice parameter b is the particle spacing along the 

interference fringes (Figure 2.12). When array spacings are commensurate with 

the interference fringes, the appearance of square or hexagonal packing can be 

rationalised as follows: If a square array(a=b) is used as a starting point(Figure 

2.11(b)), increasing the effective particle size expands the b parameter. 

When 3b a= , the lattice is hexagonal, so denoted as hex1(Figure 2.11(a)). 

Conversely, decreasing the effective particle size leads to compression of the b 

parameter to a point where the lattice is hexagonal ( 3a b= ), but with a unit 

cell that is a 30˚ rotation of the hex1 case. This second type of hexagonal array is 

denoted hex2 (Figure 2.11(c)).  

  

Experimentally formed arrays are very often distortions of the above array 

types. The halfway point between square and hex1 is 1.366b a= . If 1.00a < b < 

1.30a, the array is unambiguously hex1. If 1.30a < b < 1.40a, the array is 

described as a square-hex1 intermediate. Similarly, if 1.00b < a < 1.30b, the array 

is unambiguously hex2. If 1.30b < a < 1.40b,  the array is described as a square-

hex2 intermediate.  
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3.  Optical Trapping using λ= 1064 nm Nd:YAG  

Array formation of submicron dielectric particles in counterpropagating 

evanescent fields was studied, using an experimental setup modified from 

Mellor’s original setup.1 The TIR incident medium was a hemispherical lens 

instead of an equilateral prism, so as to reduce astigmatism when focusing the 

incident laser beams. The following section describes array behaviour that was 

often qualitatively different from Mellor’s observations, even though the 

experimental method was very similar. Optical binding phenomena are size and 

refractive index dependent, and so the following discussion is organised 

according to particle sizes and materials that display similar types of array 

behaviour.  

 

3.1. Setting up the Optical Trapping Area 

Rough alignment of the trapping beams was achieved with a low magnification 

objective (10x or 20x) by observing the He-Ne spots at the TIR interface in the 

absence of the infrared filter. Even though both beams were undergoing total 

internal reflection, speckle was visible at the TIR interface due to the coherent 

scattering from imperfections of the glass surface. Both forward and reflected 

beams were centred on the flat side of the half-ball lens and on the video 

monitor, and then focused using the f = +50 mm lens and spherical mirror 

(Figure 2.3(b)). A drop of sample was then sandwiched between the TIR 

interface and the glass coverslip. Immersion oil was applied to the coverslip, 

and the 100x objective was focussed at the glass-water interface. Fine 

adjustment of the He-Ne spots was then made before switching to the infrared 

beams. At low power, the speckle from the infrared laser beams was useful for 

confirming the alignment of the trapping area. The infrared filter could then be 

replaced, the 1064 nm laser power increased and particle interactions observed 

in brightfield illumination.  
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It was often useful to begin trapping with the laser spots slightly moved apart 

as shown in Figure 3.1(a). Particles that enter the non-overlapping evanescent 

fields would then be drawn towards the interface and pushed into the 

overlapped trapping region. When sufficient particles were collected in the 

trapping region, the spots were moved closer together to increase the stable 

trapping area. When the forward and retroreflected beams have the same 

polarisation, interference fringes are formed by the overlapped evanescent 

fields. Particles that interacted with the interference fringes were restricted to 

one-dimensional Brownian motion along the interference fringes. Since the 

interference fields were not directly imaged, the overlap and interference 

fringes were inferred by the motion of particles. As previously reported by 

Mellor,1 at low particle densities, particles diffuse up and down the fringes 

independent of each other.  

   

 

Figure 3.1: Illustration of (a) how the laser spots are arranged at the start of an 

experiment, and (b) how they are overlapped as the array forms. Particles are 

trapped within the overlapped evanescent fields, but feel translational forces 

(indicated by arrows) in the non-overlapped areas which are useful for 

increasing particle movement into the array. Evanescent fields are ellipsoidal as 

the beams are impinging the TIR surface at an angle. 

(b) 

(a) 
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3.2. Polystyrene 

3.2.1. Close packed arrays of small PS particles (390, 420 and 460 nm) 

When the incident beams are p-pol and close to the critical angle (θi =53˚; θc 

=51.6˚; nSF10 =1.702), 460 nm PS particles formed a square array. Particle positions 

were commensurate with the interference fringes, as can be seen from the a-

parameter in Table 3.1. On switching to incident s-pol, or orthogonal 

polarisation, the array became compressed along the fringe direction (Figure 

3.2(b) and ‘Video 3.1: 460nm PS compression’). Since the individual particles 

were difficult to resolve, b was estimated from the number of particles present 

along a fringe when individual particles could be resolved in p-pol(Table 3.1).  

Since the compressed array was assumed to be commensurate, then a =775 nm, 

b =570 nm and nearest neighbours are separated by only 480 nm. Particles in the 

tightly packed s-pol array were still separated by the electrical double layer 

repulsion, as the array readily broke up into individual particles when the 

trapping fields were turned off. Since the particles in the compressed array are 

virtually in contact with one another, this is an example of collapsed optical 

binding.2 Smaller PS microspheres of diameters 390 and 420 nm formed 

similarly compressed and unresolvable arrays in both s-pol and p-pol. P-pol 

light scatters more strongly than s-pol light along the fringe direction,2 giving 

rise to non-contact particle separations.  
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Figure 3.2: Arrays of 460 nm PS (a) in p-pol, forming a square array; (b) in s-pol, 

which is then compressed parallel to the fringes (θi =53˚; D = 390nm; nSF10 

=1.702˚; λ=1064 nm). 

 
Incident 

angle 

Polarisation a, nm a/D b, nm Nearest 

neighbour 

separation, nm 

s unresolved - ≈ 570 - 53˚ 

p 775±5 1.98 700±10 520 

s 780±5 2.07 705±10 525 56˚ 

p 770±5 2.04 740±10 530 

Table 3.1: Lattice parameters for square arrays of 460 nm PS, as 

shown in Figure 3.2  

 

(a) (b) 
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3.2.2. Broken hex2 arrays of 460 nm PS 

Increasing the incident angle from 53˚ to 56˚ decreased the fringe spacing from 

390 to 380 nm, while also decreasing the penetration depth (Table 2.1). At θi =53˚ 

in p-pol, lattice parameter a was commensurate with the fringe spacings. As the 

incident angle was increased to θi =56˚, a was expected to decrease but in reality 

the array remained commensurate. The reduction in interference fringe spacing 

introduced strain which acted to destabilise the square lattice, and so other 

array types have been observed. Figure 3.3(a) shows a region of square packing 

coexisting with a region in which every third or fourth fringe was vacant, and 

the particles on the adjacent fringes were displaced towards the vacant fringe. 

Such ‘broken’ hexagonal structures are denoted broken hex2, and were first 

described by Mellor et al. for 460 and 520 nm PS.1, 3-5 The broken hex2 packing 

cannot be converted to a condensed array simply by filling in the vacant fringes, 

but also requires a lattice translation of half a unit cell in the b-direction for 

every other pair of particle columns.  This requirement may provide some 

kinetic stabilization to the ‘broken’ hexagonal structure. Other intermediate 

structures were sometimes observed, such as three occupied fringes with the 

fourth fringe vacant (Figure 3.3(b)).   
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Figure 3.3: Arrays of 460 nm PS particles showing (a) an unstable broken hex2 

array with every third fringe vacant; which rearranges to (b) a broken hex2 

array with every fourth fringe vacant. These arrays are obtained in p-pol (θi 

=56˚; D = 380 nm; nSF10 =1.702˚; λ=1064 nm).  

  

Generalized Lorenz-Mie theory (GLMT) simulations by Love et. al.2 successfully 

reproduced broken hex2 arrays of 520 nm PS in p-pol, which are similar to the 

arrays shown above.  When the incident beams are p-polarised, the scattered 

field from a particle located on a bright fringe has significant intensity along the 

interference fringe which acts to stabilise other particles occupying the same 

fringe. Particles of diameter 460 and 520 nm are too large to occupy every fringe 

in a hexagonal array, and so the most stable structure is one that contains vacant 

columns.  

 

Figure 3.4: Broken hex2 array of 520 nm polystyrene particles: (a) a snapshot of a 

Brownian dynamics simulation2 (b) experimentally observed array3-5. 

 

(a) (b) 
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3.2.3. A discussion of array stability 

Mellor observed that the transition from square to broken hex2 array could be 

effected reversibly by changing the polarization;1, 3-5 I found however that once a 

large square array had formed it persisted in both incident polarisations (Figure 

3.5). In my experiments, the evanescent fields are expected to be more intense 

due to reduced astigmatism in the focused of the laser beams. Increasing the 

field intensity would have the same effect as turning down the temperature, kT, 

and so I should expect a larger variety of array configurations (corresponding to 

local minima in potential energy). Instead, my experiments showed fewer 

rearrangements to kinetically stable structures once the arrays are in the lowest 

energy configuration. The electric field amplitudes, penetration depths and 

fringe spacings are, however, not identical in the two experiments and the most 

stable structure results from a subtle balance between optical trapping, optical 

binding and electrostatic repulsions.  

 

 

Figure 3.5: Arrays comprised of large numbers of 460 nm PS are square (a) in p-

pol, but with many edge defects; (b) in s-pol. (θi =56˚; D = 380nm; nSF10 =1.702˚; 

λ=1064 nm). 
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3.2.4. Arrays of larger PS particles  

3.2.4.1. Arrays of 620 nm PS 

Arrays of 620 nm PS have hexagonal ordering, with the orientation of the unit 

cell dependent on incident beam polarisation. Figure 3.6(a) shows a 

commensurate hex1 array of 620 nm PS obtained in s-pol, and Figure 3.6(b) an 

incommensurate hex2 array in p-pol. Lattice parameters a and b for arrays of 

620 nm PS are listed in Table 3.2. Particle positions in the incommensurate hex2 

array were not solely due to interaction with interference fringes in the 

evanescent field. Light mediated interactions seem to stabilise the 

incommensurate hex2 array. On changing the incident polarisation from p-pol 

to s-pol, the incommensurate hex2 array rearranged to a commensurate hex1 

array. The rearrangement was not instantaneous on changing the polarisation, 

and sometimes proceeded via a commensurate metastable square array that 

persisted for more than a minute (Figure 3.6(b)) before final rearrangement to 

the hex1 structure.  The reverse transition from hex1 to hex2 occurs 

instantaneously on changing the polarisation from s-pol to p-pol. The forward 

and reverse rearrangements between hexagonal arrays appear to proceed via 

different metastable states with different energy barriers.  

 

   

Figure 3.6: Arrays of 620 nm PS particles showing (a) incommensurate hex2 in p-

pol, (b) transitory square in s-pol, and (c) commensurate hex1 in s-pol.  (θi =60˚; 

θc =51.6˚; nSF10 =1.702˚; λ=1064 nm)  

 

(c) (a) (b) 
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Incident angle, θi 

Polarisation 

a /nm b /nm a/D Commensurate/ 

Incommensurate 

56˚; s 

56˚; p 

770±5 

1190±5 

1165±15 

720±10 

2.03 

3.14 

Commensurate 

Incommensurate 

60˚; s 

60˚; s (transitory square) 

60˚; p 

60˚; orthogonally polarised 

735±5 

705±5 

1175±5 

1205±5 

1175±10 

665±10 

770±20 

720±20 

2.03 

1.94 

3.24 

3.32 

Commensurate 

Commensurate 

Incommensurate 

Incommensurate 

68˚; s 

68˚; p 

760±5 

1210±10 

1105±15 

740±20 

1.99 

3.16 

Commensurate 

Incommensurate 

Table 3.2: Lattice parameters for hexagonal arrays of 620 nm PS particles. Larger 

errors in the b-parameter reflect the oscillatory movement of the entire array 

during trapping.  

 

In the absence of interference fringes, 620 nm PS particles formed an 

incommensurate hex2 array, similar to that formed in p-pol. The p-pol hex2 

array had more defects along the periphery of the array, while array particles in 

orthogonally polarised fields were observed to fill edge defects more freely. It 

appears that particle-fringe interactions affect particle dynamics and act to 

stabilise the hex1 array observed in s-pol, but optical binding leads to the 

incommensurate hex2 array observed in p-pol and in the absence of interference 

fringes.   

 

 

3.2.4.2. Arrays of 700 and 800 nm PS 

For arrays of 700 and 800 nm PS, it was difficult to determine the most stable 

array for large numbers of particles. For larger particles, the strength of optical 

binding interactions dominates the behaviour of arrays,6 and so a large number 

of point and line defects are stabilised in the observed arrays. Figure 3.7(a) 

shows a stable array of 700 nm PS containing line defects and no obvious 

symmetry, which finally rearranged to a hex2 array Figure 3.7 (b).  
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Figure 3.7: Arrays of 700 nm PS particles in p-pol showing (a) a stable but highly 

defective array; and (b) an incommensurate hex2 array that formed eventually 

(nBK7 =1.507; θc =62.2˚; θi =68˚˚; λ=1064 nm).  

 

Similarly, Figure 3.8(a) shows a commensurate hex2 array of 800 nm PS formed 

in s-pol (a =1460±5 nm; b =820±5 nm; D =360 nm; D/a = 4.06). On changing to p-

pol, the hex2 array rearranged to a stable but irregular array (Figure 3.8(b)). 

This rearrangement raises the question of whether the hex2 array is always the 

lowest energy state in p-pol.  

 

 

Figure 3.8: Arrays of 800 nm PS particles showing (a) in s-pol, a commensurate 

hex2 arrangement; and (b) in p-pol, a stable but highly defective array. 

(nSF10=1.702; θi=60˚; λ=1064 nm; [NaCl] =1 μM) 
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3.2.5. Modulated lines of larger PS (800 nm) 

As PS particles diffuse into the interfering evanescent fields, they formed a line 

along the direction of propagation of the evanescent waves. For a line of fewer 

than six 800 nm PS particles, the particle separation was uniformly 1140 nm (i.e. 

3x the interference fringe spacing). As more particles joined the line, the 

particles rearranged to form a modulated array of ‘pairs’ and ‘triplets’ (Figure 

3.9). Adjacent particles were not separated by a multiple of the fringe spacing. 

However, 2nd nearest neighbours in both pair and triplet modulated lines were 

separated by 5D, in both p-pol and s-pol (Figure 3.9 and Table 3.3). When the 

forward and reflected beams were orthogonally polarised, the line had uniform 

particle spacing of ca. 880 nm (for nBK7 =1.507; θi =68˚) which equals the shorter 

particle spacing in the modulated linear array, and is not a multiple of the 

evanescent wavelength parallel to the glass-water interface. In the absence of 

interference fringes, optical binding interactions account for the non-contact 

linear array observed. The recurrence of the same particle separation for linear 

arrays of 800 nm PS formed with and without interference fringes suggests that 

this length scale could be due to optical binding. In the presence of interference 

fringes, there is competition between optical binding and optical trapping 

forces that leads to the modulation of the linear array.  

 

 

Figure 3.9: Lines of 800 nm PS particles  showing (a) uniform spacings of 3D, 

which subsequently rearranges to (b) pairs, and (c) triplets  

(nSF10 =1.702; θi =56˚; λ=1064 nm; s-pol; [NaCl] =1 μM). 
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Incident angle, 

θi; 

Polarisation 

Uniform 

separations /nm 

Separations of 2nd nearest 

neighbours in pairs or triplets 

/nm 

Fringe 

spacing, D 

/nm 

(triplet) 880 +990 =1870 =5.0D 56◦; s 

56◦; p 

- 

(triplet) 860 +930 =1790 =4.7D 

378 (SF10) 

68◦; p 1140 =3.0D (pair) 905 +1030 =1935 =5.1D 

(triplet) 890 + 945 =1835 =4.8D 

382 (BK7) 

Table 3.3: Particle spacings for 800 nm PS in a linear array. 2nd nearest neighbour 

spacings are the sum of averaged “small” and “large” adjacent particle 

separations as indicated in Figure 3.9(b) and (d). 
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3.3. Silica arrays (520 nm Silica) 

In the presence of interference fringes, arrays of 520 nm silica particles were 

commensurate squares (a = 770 nm; b = 840 nm; a/D = 2.02). Switching between 

s-pol and p-pol incident light did not change the arrays observed, but did affect 

particle dynamics. In p-pol, the arrays grew more quickly in the y direction, 

while in s-pol the arrays grew faster in the x direction. Silica has a lower 

refractive index than PS (nsilica = 1.37, nPS = 1.55), and so will interact less strongly 

with the evanescent field. The behaviour observed for 520 nm silica is 

qualitatively similar to that of 390 and 420 nm PS, as previously reported by 

Mellor.1 No stable arrays were obtained in the absence of interference fringes.   

  

  

Figure 3.10: Arrays of 520nm silica particles are square and commensurate in (a) 

p-pol, and (b) s-pol. (nSF10 =1.507; θi =68˚; λ=1064 nm) 

 

 

(a) (b) 
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3.4. Sterically Stabilised Microparticles 

PS particles are charge-stabilised soft spheres, and so the equilibrium distance 

between particles in a close-packed array is affected by the electrical double-

layer repulsion. Colloidal hard spheres of poly(ethylene glycol) methacrylate 

(PEGMA) stabilised poly-2-vinylpyridine (P2VP) microspheres were 

synthesised and sent to us by our collaborators.7 Stable arrays of optically 

trapped 380 and 640 nm PEGMA-P2VP were obtained in both p-pol and s-pol.  

 

3.4.1. 380 nm PEGMA-P2VP 

Figure 3.11 shows a series of optically trapped arrays of 380 nm PEGMA-P2VP 

with interference fringes in the evanescent field. Lattice parameters (Table 3.4) 

indicate that arrays have the same packing in both incident polarisations, even 

if particle dynamics differ. Array packing is observed to depend on the 

evanescent field intensity as the array is formed. It is difficult to measure the 

incident spot size and hence to quantify the evanescent field intensity. However, 

by beginning experiments with a tightly focused laser spot and then translating 

the f = +50 mm lens (Figure 2.3(b)) to reduce the evanescent field intensity, we 

can still obtain a qualitative comparison of  the different arrays formed at 

different trapping intensities. When the evanescent fields have high intensity 

(i.e. the incident beams are tightly focused), close-packed hexagonal arrays 

were formed (as shown in Figure 3.11 (a) and (b)). On reduction of the incident 

field intensity, either by turning the laser power down, or by defocusing the 

incident beams, the hexagonal array did not rearrange to a more loosely packed 

array. Particles on the edges of the hexagonal array seemed to be less stably 

trapped; sometimes diffusing out of the trapping area or rearranging to give 

some transient checkerboard packing. Square arrays were only formed if the 

hexagonal array was completely disrupted, and a new array allowed to form at 

lower evanescent field intensities (Figure 3.11(c) and (d)). At even lower field 

intensities in p-pol, a weakly bound array is observed where every other 

column is occupied (Figure 3.11(e)). Initially, the loosely bound array showed 
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small regions of square packing. As more particles joined the array, particles 

were more stably bound when occupying the same fringe. Eventually, 

rearrangements led to the loose array where every other column was occupied. 

 

 

Figure 3.11: Arrays of 380 nm PEGMA-P2VP: (a),(c), and (e) are in p-pol; (b) and 

(d) are in s-pol. The images are ordered with decreasing field intensity (and 

array stability) from top to bottom. Calculated interference fringes are 

superimposed in red to guide the eye (nBK7 = 1.507; θi = 64.5˚; λ=1064 nm). 
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Image Polarisation Array type a /nm a/D b /nm 

Figure 3.10 (a) p hexagonal 780 ±5 2.00 442 ±20 

Figure 3.10 (b) s hexagonal 782 ±5 2.01 432 ±20 

Figure 3.10 (c) p square 784 ±5 2.01 724 ±20 

Figure 3.10 (d) s square 802 ±5 2.06 731 ±10 

Figure 3.10 (e) p hex2 (column vacancies) 1563 ±10 4.01 823 ±40 

Table 3.4: Lattice parameters for arrays of 380 nm PEGMA-P2VP particles, as 

shown in Figure 3.11. Larger errors in the b-parameter reflect the oscillatory 

movement of the entire array along the fringe direction during optical trapping. 

(nBK7 = 1.507; θi = 64.5˚, D = 390 nm) 

 

Decreasing the field intensity (equivalent to an increase in temperature) should 

result in the lowest energy array being formed more easily. Arrays of 380 nm 

PEGMA-P2VP are observed to increase in packing density as the field intensity 

was increased. Higher packing densities should be entropically less favourable 

due to a loss of particle motion about the lattice points, and so the formation of 

these arrays must be driven by the tight focus of the Gaussian beam leading to 

strong gradient forces along the y-axis.   

 

3.4.2. 640 nm PEGMA-P2VP 

Arrays of 640 nm PEGMA-P2VP were hex1 and hex2 in incident s-pol and p-

pol, respectively (Figure 3.12). The commensurate hex1 array formed in s-pol 

sometimes underwent a non-reversible spontaneous rearrangement which 

resulted in an incommensurate hex2 array(Figure 3.12(c)). In s-pol, the 

incommensurate hex2 array was a non-contact array with a nearest neighbour 

separation of 783 nm. This incommensurate hex2 array is still significantly more 

compressed than the commensurate array formed in p-pol (Table 3.5). This is 

qualitatively different from the case for 620 nm PS, where a hex2 array in p-pol 

was incommensurate with the interference fringes (Table 3.2). Comparison of 

the lattice parameters in Table 3.2 and Table 3.5 indicates that the arrays were 

more compressed in both a and b for 640 nm PS than it was for 620 nm PEGMA-
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P2VP. This is counterintuitive as the PS particles are not only larger, but are 

charge stabilised soft spheres. On the other hand, it is unsurprising that the 

incommensurate array was obtainable in both p-pol (as seen with 620 nm PS) 

and s-pol (as seen with 640 nm PEGMA-P2VP). Given sufficient particle 

numbers, optical binding interactions could eventually overcome optical 

trapping forces, resulting in a lowest energy array that is incommensurate. 

 

 

 

 

Figure 3.12: Arrays of 640 nm PEGMA-P2VP: (a) commensurate hex2 array in p-

pol; (b) commensurate hex1 array in s-pol, which spontaneously rearranges to 

(c) an incommensurate hex2 array in s-pol. Calculated interference fringes are 

superimposed in red (nBK7 = 1.507; θi = 64.5˚; λ=1064 nm). 

 

(c) 

(a) 

(b) 
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Array a /nm a/D b /nm 

(a) Commensurate p-pol hex2 

(b) Commensurate s-pol hex1 

(c) Incommensurate s-pol hex2 

1550 ±10 

785 ±10 

1350 ±10 

3.97 

2.01 

3.46 

840 ±80 

1305 ±20 

795 ±40 

Table 3.5: Lattice parameters for arrays of 640 nm PEGMA-P2VP particles, as 

shown in Figure 3.12. Larger errors in the b-parameter reflect the oscillatory 

movement of the entire array along the fringe direction during optical trapping. 

(nBK7 = 1.507; θi = 64.5˚; λ=1064 nm; D = 390 nm) 
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3.5. 250 nm Au Microparticles 

In this section, experiments involve the optical trapping of Au microparticles in 

evanescent fields. Sasaki and co-workers studied the radiation pressure exerted 

on an optically tweezed Au particle near an interface, with and without an 

applied evanescent field.8 They showed that a metallic particle smaller than the 

wavelength of the evanescent field was pushed towards the interface and along 

the direction of propagation of the evanescent wave. The electromagnetic forces 

on a metallic particle near a dielectric surface were analysed by Chaumet and 

Nieto-Vesperinas using a coupled dipole method (CDM).9 They predicted that 

at incident angles close to the critical angle, the gradient force acting on a 

metallic particle can be either repulsive or attractive. In the case of small 

particles (0.097 < ka <0.25), when the imaginary part of the permittivity is >3/2, 

the real part of the particle polarisability is always positive and so the gradient 

forces act toward the interface. At λ =1064 nm, the complex permittivity of Au is 

53.65 4.18i− + ,10, 11 so we might expect stable trapping of small Au microparticles 

using evanescent fields.   
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Figure 3.13:  Potential energy in the vertical direction for a gold cylinder (radius 

a = 125nm) in water within an evanescent wave created under TIR (Gaussian 

incidence, beam waist W0=10 μm). (a) θi = 62.5˚ (s-pol); (b) θi = 62.5˚ (p-pol); (c) θi 

=  70˚ (s-pol), (d) θi =  70˚ (p-pol). Thicker curves, interaction with the plane 

considered; thinner curves with crosses, no interaction with the plane. Darker 

curves, λ = 532 nm; lighter curves, λ = 1064 nm. Insets, the same curves for a 

glass cylinder in water and λ = 632.8 nm.10 

 

Subsequent work by Arias-Gonzalez and Nieto-Vesperinas used multiple 

scattering calculations to study the forces on 250 nm Au particles located near a 

dielectric surface in propagating beams and evanescent waves with different 

polarisations10.  Figure 3.13 shows the potential energy in the vertical direction 

created by a propagating evanescent field acting on a 250 nm Au cylinder in 

water (i.e. 2D model for a sphere). The angle of incidence θi  = 62.5˚, in Figure 

3.13(a) and (b); while θi = 70˚, in Figure 3.13(c) and (d). The respective insets 

correspond to a glass cylinder in water and λ = 632.8 nm. Lighter curves 

correspond to λ = 1064 nm (nonresonant), and darker curves correspond to λ = 

532 nm (plasmon excitation), highlighting the weaker gradient potential under 

resonant conditions. Most remarkable in this work is the prediction that a Au 

cylinder would be attracted to the interface in p-pol, but repelled from it in s-

pol. This is in contrast to my experimental observations, as discussed below.   
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In my experiments, 250 nm Au microspheres were successfully trapped by 

counterpropagating evanescent waves near a TIR interface when both incident 

beams are p-pol or s-pol. When the incident light was s-pol, the Au 

microspheres formed lines perpendicular to the interference fringes. Particles in 

a line occasionally ‘hop’ onto neighbouring particles, stacking away from the 

interface. Figure 3.14 a still frame captured in s-pol, where stacked particles 

were seen as larger and darker spheres than single particles.  Stacked gold 

microspheres readily  broke up into single particles and were seen to diffuse out 

of the trapping area (see ‘Video 3.2: 250 nm Au spol’, which plays at 0.25x 

speed). Large 2D arrays of Au microspheres were not been observed in s-pol. 

Previous work by Mellor showed that PS particles form a large 2D array before 

particles begin to occupy a second layer.1, 3-5 In contrast, 250 nm Au particles 

trapped in s-pol are able to stack on individual particles. In s-pol, there must be 

sufficient scattering from Au particles in the z-direction to allow stacking by a 

second particle in s-pol.  

 

 

Figure 3.14: Reptating lines of 250 nm Au particles in incident s-pol. Stacked 

particles are seen as darker spots. Calculated interference fringes are 

superimposed in red. (nBK7 =1.507; θi =68˚; D = 380 nm) 

 

In p-pol, the particles form large open clusters without a regular lattice structure 

(Figure 3.15 and ‘Video 3.3: 250 nm Au ppol’). The entire array experienced 

oscillatory motion along the interference fringe direction, but the particles were 

stably trapped with respect to each other. In contrast, small PS particles trapped 

several interference fringes apart experience uncorrelated 1D Brownian motion 
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along the fringes.1, 3-5 Addition of another Au particle caused rapid 

rearrangement of the array until another stable (and seemingly disordered) 

configuration was found. Particle spacings are incommensurate with the 

interference fringes. Nevertheless, the fringes appear to stabilize arrays of Au 

microspheres since particles were not stable trapped using orthogonal 

polarisations. 

 

 
Figure 3.15: An open array of 250 nm Au particles in incident p-pol. Calculated 

interference fringes are superimposed in red. (nBK7 =1.507; θi =68˚; D = 380 nm) 
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3.6. Janus particles  

Janus particles, named after the double-faced Roman god, are colloids with two 

sides of different chemistry or polarity.12 The behaviour of Janus particles in our 

counter-propagating evanescent optical fields was of interest due to the 

anisotropy in refractive indices. We obtained half-Au coated 881 nm amino-

modified silica microspheres courtesy of Olivier Cayre, who prepared them as 

follows: A dilute monolayer of silica microspheres was partially embedded in a 

PDMS elastomer via a gel trapping technique, and then coated first with a 10 

nm layer of Cr and then with 20 nm of Au by thermal evaporation. The Janus 

particles were then retrieved using mechanical means, i.e. sticky-tape, washing 

and then centrifuge.13  

 

The behaviour of Janus particles in AC fields has been studied by other 

researchers. In a low frequency AC field, half-Au coated PS microspheres of 

sizes 4.0 - 8.7 μm in water were oriented with the plane between their 

hemispheres aligned in the direction of the electric field, since this results in the 

largest induced dipole moment.14 The Au-PS Janus microparticles then undergo 

induced charge electrophoresis (ICEP) motion perpendicular to the applied AC 

field with their dielectric hemisphere forward. Unlike homogenous particles 

that translate parallel to the AC field axis and are repelled from insulating 

walls, the Au-PS Janus microparticles were attracted towards the insulating cell 

walls.15, 16 

 

Figure 3.16 shows the build up of an array of half-Au coated 881 nm amino-

modified silica microspheres. The particles had a uniform appearance in 

brightfield illumination, suggesting that the plane between the Au-silica 

hemispheres is oriented parallel to the TIR interface. For comparison, optically 

trapped lines of uncoated 881 nm amino-modified silica microspheres are 

shown in Figure 3.17. The array of Janus particles seems qualitatively similar to 

that of  800 nm PS and 881 nm silica microspheres. When fewer than 6 particles 
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were trapped in a line, a uniform non-contact separation of 3D was observed. 

When more than 6 particles were trapped in a line, a modulated array of ‘pairs’ 

was once again observed, as was seen for 800 nm PS. The modulation persisted 

even when particles began to occupy a second row, but eventually collapsed 

into a close contact configuration with increasing particle numbers. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 3.16: Build-up of a line of half-Au coated 881 nm silica 

microspheres showing (a) uniform separations of 3D; (b) 

modulated ‘pairs’; (c) modulated separations persisting as particles 

sit in a 2nd row; and (d) particles in close contact as even more 

particles are trapped. (nBK7 =1.507; θi =64˚; s-pol; λ=1064 nm) 

 

 

(a) 

 

(b) 

Figure 3.17: Build-up of a line of uncoated 881 nm silica particles 

showing (a) uniform separations of 3D; and (b) modulated ‘pairs’. 

(nBK7 =1.507; θi =64˚; s-pol; λ=1064 nm) 
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Table 3.6 summarises the array spacings for half-Au coated and uncoated 881 

nm silica. The modulated pair separations are slightly larger and 

incommensurate for the half-Au coated microspheres, but this may simply be a 

steric effect due to their larger size. Unfortunately, both the Janus particles and 

the uncoated 881 nm silica microspheres often adhere to the BK7 surface or to 

one another during trapping. This restricted the size of arrays that were held 

together purely by optically induced forces.   

 

 Half-Au coated Uncoated 

Uniform spacing 1210±5 nm (=3.1D) 1200±5 nm (=3.1D) 

Modulated pair 

Nearest neighbour 

2nd Nearest neighbour 

 

1125±5 nm; 965±5 nm 

2090±5 nm (=5.4D) 

 

1050±5 nm; 950±5 nm 

2000±5 nm (=5.1D) 

Table 3.6: Array spacings for lines of half-Au coated 881 nm amino-modified 

silica microspheres. (nBK7 =1.507; θi =64˚; s-pol; λ=1064 nm; D =395 nm) 

 

The behaviour of half-Au coated 881 nm silica microspheres in our evanescent 

wave optical traps is dominated by the behaviour of the uncoated silica 

microspheres. The skin depth of Au, δ is given by17 

 
4 'n

λδ
π

=  (3.1) 

where n’ is the complex part of the refractive index of Au. For 
2

798 nm
H On

λ = ,  n’ 

≈ 4.18,10, 18 so δ = 15 nm. Since the Au coating on the Janus particles is thicker 

than the skin depth, the half-coated hemispheres should behave like solid Au 

hemispheres. It is possible that the Au layer was 20 nm thick at the top, but 

thinner towards the equator of the Janus particle, which would contribute 

towards trapping behaviour that was dominated by the 881 nm silica core. 
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3.7. A discussion of the results presented here 

In the previous sections, it can be seen that dielectric particles (PS, silica,  and 

PEGMA-P2VP) of sizes 390-800 nm can be stably trapped in regular two-

dimensional arrays. Arrays formed from smaller particles (390, 420 and 460 nm 

PS, and 380 nm PEGMA-P2VP) were observed to form commensurate square 

arrays when the beams were tightly focussed and incident close to θc (i.e. the 

evanescent field intensity was at its highest for the given setup). In p-pol and at 

larger incident angles, 460 nm PS were observed to form broken hex-2 arrays. 

These broken hex-2 arrays may be analogous to the 1-dimensional modulated 

lines formed by 800 nm PS. Larger dielectric particles (620, 700 and 800 nm PS, 

and 640 nm PEGMA-P2VP) formed hexagonal commensurate arrays, but 

spontaneous rearrangement to stable incommensurate arrays sometimes 

occurred. 

 

The 380 and 640 nm PEGMA-P2VP arrays were all non-contact arrays, and 

showed similar qualitative behaviour when compared with arrays of PS 

particles. Arrays of sterically stabilised microspheres demonstrate that stable 

non-contact arrays do not result solely from a balance between optical forces 

acting to compress the array, and the short-range electrostatic repulsion 

between soft spheres.  

 

The arrays formed by 250 nm Au colloids were surprising as they were optically 

bound relative to one another even when separated by relatively large 

distances. In contrast with the dielectric case, the individual gold colloids were 

able to reversibly stack away from the TIR interface in s-pol. This suggests that 

in s-pol there are sufficiently strong optical binding interactions perpendicular 

to the interface to stabilise such stacks. 
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4. Coherent Optical Trapping using a Ti:S Tunable Laser 

Stable arrays of polystyrene microspheres were obtained using the Ti:sapphire 

optical trapping setup described in Section 2.2.2. In both the coherent and 

incoherent trapping experiments, there was a qualitative distinction between 

‘small’ particles that form two dimensional arrays (390, 420, 460 and 520 nm PS), 

and ‘larger’ particles that form lines (620, 700 and 800 nm PS). It is therefore 

convenient to organise my results accordingly. Results in this Chapter have 

been obtained with a BK7 half-ball lens, and incident angle θi = 64.5˚. The 

interference fringe spacing, D, is listed in Table 2.3.  

 

An array is commensurate with the interference fringes if lattice parameter a is 

an integer multiple of the fringe spacing D. However, a systematic error has 

been noted where the a/D values are consistently 2% lower than the nearest 

integer value. This is most likely a calibration error due to the use of a 1000 lines 

per mm diffraction grating film to calibrate the microscope. In the following 

discussion, if a/D is just under the nearest integer value by 4% or less, the array 

is considered commensurate. 
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4.1. Small polystyrene particles (390, 420 and 460 nm) 

4.1.1. 390 nm PS 

Arrays of 390 nm PS were commensurate with the interference fringes, and 

remain so as the wavelength was tuned from λ= 840 - 890 nm. In p-pol, particles 

occupied every other fringe in a hex2 array. In s-pol, arrays had a square-hex1 

intermediate packing. As the wavelength (and interference fringe spacing, D) 

decreased  in s-pol, expansion of the lattice parameter b occurred. When in s-pol 

at λ= 840 and 850 nm, no stable array was obtained. Since array parameter a is 

closely dictated by particle-fringe interaction, smaller D may act to destabilise 

arrays in s-pol as the particles become too large to occupy every fringe. 

However, in the case of 390 nm PS, the particles were too small for this to be the 

reason for array instability at λ= 840 - 850 nm. Larger 520 nm PS arrays were 

stably trapped for the full range of λ= 890 - 840 nm, with similar array spacings 

(Section 4.1.4).   

 

 
Figure 4.1: Arrays of 390 nm PS at λ= 880 nm: (a) hex2 array with every other 

interference fringe vacant in p-pol; and (b) square-hex1 intermediate in s-pol 

(nBK7 =1.507; θc =62.2˚; θi =64.5˚). 
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P-pol S-pol Wavelength, 

nm a, nm a/D b, nm a, nm a/D b, nm 

890 

880 

870 

860 

850 

840 

1299±10 

1289±7 

1258±9 

1240±11 

1230±11 

unstable 

3.97 

3.99 

3.93 

3.92 

3.94 

unstable 

665±17 

699±23 

676±19 

696±19 

643±25 

unstable 

652±13 

644±13 

628±13 

622±15 

unstable 

unstable 

1.99 

1.99 

1.96 

1.97 

unstable 

unstable 

881±13 

778±15 

936±33 

955±30 

unstable 

unstable 

Table 4.1: Lattice parameters for arrays of 390 nm PS. Lattice parameters a and b 

are particle separations perpendicular and parallel to the interference fringes, 

respectively (nBK7 =1.507; θc =62.2˚; θi =64.5˚). 

 
 
 

4.1.2. 420 nm PS 

Arrays of 420 nm PS showed significantly different array packings and stability 

as the wavelength was varied. As previously discussed (Figure 1.9), PS particles 

are expected to experience no attraction towards bright or dark interference 

fringes for ka =1.985. This occurs for 420 nm PS microspheres when incident 

wavelength, λair = 886 nm. Commensurate arrays of 420 nm PS are therefore 

expected to occur only for incident wavelengths above and below the crossover 

point.  

 

The qualitative behaviour of 420 nm PS arrays in p-pol can be described as 

follows (Figure 4.2): At λ= 880 and 890 nm, large stable commensurate arrays 

were obtained with broken hex2 packing. When λ= 870 nm, the array was 

mainly an incommensurate hex2, but with some transient broken-hex2 columns 

that appeared for <0.1 seconds before rearranging to hex2 again. When λ= 860 

nm, a large commensurate hex2 array was observed, where every other fringe 

was occupied. Finally, when λ= 840 and 850 nm, the arrays once again were 

hex2 with transient rearrangements to producing unstable broken hex2 

columns. Array parameters were not calculated for these unstable hex2-broken 

hex2 arrays, since neither type of array was sufficiently stable to analyse more 
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than 5 consecutive frames.  Lattice parameters for arrays of 420 nm PS in p-pol 

are shown in Table 4.2. Broken hex2 array types (λ= 880 and 890 nm) are 

assigned doublet or triplet corresponding to repeating arrays with vacancies 

every third or fourth column, respectively.  For broken hex2 arrays, a is quoted 

as two numbers: The smaller number is the distance between adjacent occupied 

fringes, and the larger number is the distance between occupied columns when 

separated by a vacant fringe. a/D for a broken hex2  array is the sum of both 

distances divided by the interference fringe spacing.  

 
 

P-pol Wavelength, 

nm 

Array type 

a, nm a/D b, nm 

890 

 

Broken hex2 (doublet) 

Broken hex2 (triplet) 

411±9; 557±8 

401±8; 499±8 

2.96 

3.98 

646±36 

633±33  

880 Broken hex2 (doublet) 

Broken hex2 (triplet) 

415±9; 549±8 

395±7; 485±7 

2.98 

3.95 

619±22 

606±20 

870 Hex2 864±22 2.70 582±26 

860 Hex2 1240±13 3.92 667±25 

850 Hex2 (transient broken) Unstable - - 

840 Hex2 (transient broken) Unstable - - 

Table 4.2: Lattice parameters for 420 nm PS trapped using coherent p-pol 

trapping beams (nBK7 =1.507; θc =62.2˚; θi =64.5˚). For broken hex2 arrays, a is 

quoted as two numbers: The smaller number is the distance between adjacent 

occupied fringes, and the larger number is the distance between occupied 

columns when separated by a vacant fringe. a/D for a broken hex2  array is the 

sum of both distances divided by the interference fringe spacing. 
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Figure 4.2: Arrays of 420 nm PS in p-pol at: (a) λ= 890 nm showing broken hex2; 

(b) λ= 880 nm showing broken hex2; (c) λ= 870 nm showing an incommensurate 

hex2; (d) λ= 860 nm showing an incommensurate hex2; (e) λ= 850 nm showing 

hex2 with transient broken hex2 structure; and (f) λ= 840 nm showing hex2. 

(nBK7 =1.507; θc =62.2˚; θi =64.5˚). 
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The qualitative behaviour of 420 nm PS arrays in s-pol can be described as 

follows: At λ= 890 nm, a large stable commensurate square-hex1 intermediate 

array was obtained. At λ= 880 nm, a large commensurate square-hex1 

intermediate array was still obtained but with transient rearrangements to hex2 

array and back via rotation of the unit cell. The large square-hex1 array also 

showed instability with respect to compression along the y-axis (interference 

fringe direction), which resulted in particles forming a two-layered array. At λ= 

870 nm, the array packing was exactly hex1, but was incommensurate. The hex1 

array also underwent compression along the y-axis, and thus formed a second 

trapped layer. At λ= 860 nm, a large incommensurate hex2 array was obtained. 

The ends of the hex2 array (where fewer particles occupy a column) 

occasionally rearranged to hex1 packing and back via rotations of the unit cell.  

At λ= 840 and 850 nm, the arrays were observed to be commensurate hex2, but 

were highly unstable with respect to rotations of the unit cell. Lattice 

parameters for arrays of 420 nm PS in s-pol are shown in Table 4.3 

 

S-pol Wavelength, 

nm 

Array type 

a, nm a/D b, nm 

890 

880 

870 

860 

850 

840 

Square-hex1 

Square-hex1 

Hex1 

Hex2 

Hex2 

Hex2 

622±17 

637±13 

490±19 

1026±17 

918±33 

904±21 

1.90 

1.97 

1.53 

3.25 

2.94 

2.93 

809±12 

874±20 

864±12 

621±22 

567±28 

549±24 

Table 4.3: Lattice parameters for 420 nm PS trapped using coherent s-pol 

trapping beams (nBK7 =1.507; θc =62.2˚; θi =64.5˚). 

. 
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Figure 4.3: Arrays of 420 nm PS in s-pol at: (a) λ= 890 nm showing square-hex1 

intermediate; (b) λ= 880 nm showing square-hex1 intermediate; (c) λ= 870 nm 

showing an incommensurate hex1; (d) λ= 860 nm showing an incommensurate 

hex2; (e) λ= 850 nm showing hex2; and (f) λ= 840 nm showing hex2. (nBK7 =1.507; 

θc =62.2˚; θi =64.5˚). 

 

Array parameter a was commensurate in both s-pol and p-pol for incident 

wavelengths λ= 840, 850, 880 and 890 nm. At these incident wavelengths, 

particles positions were dictated by particle-fringe interactions. 

Incommensurate hexagonal arrays were obtained in s-pol at λ= 860 and 870 nm, 

and in p-pol at λ= 870 nm. Thus, it can be inferred that the crossover point 

(where individual particles experience no bright or dark fringe affinity) 

occurred for 420 nm PS between incident wavelengths λ=  860 to 870 nm. The 

theoretical crossover wavelength of λ=  886 nm is close (approximately 2% 

difference). The theoretical model does not account for reflection of the 
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scattered wave from the TIR interface, and this might account for the difference 

in crossover points.   

 

In p-pol, 420 nm PS arrays were stable with respect to rotations of the unit cell. 

Particles scatter more strongly along the y-axis in p-pol, and this acts to stabilise 

particles occupying the same interference fringe.1 In s-pol, the scattered field 

does not stabilise particles occupying the same fringe and so 420 nm PS arrays 

are less stable with respect to rotations of the unit cell. Rotational 

rearrangements occur more readily for smaller arrays or ends of larger arrays, 

i.e. where fewer particles occupy the same interference fringe, so there is still an 

energy barrier to such rotations that is a function of array size.   

 

4.1.3. 460 nm PS 

For  λ= 860-890 nm in p-pol, arrays of 460 nm PS are incommensurate and have 

hex2 unit cells, as shown in Figure 4.4. Individual particles are not very stable 

within the array, as can be seen from the large errors in a- and b-parameters 

(Table 4.4). For λ= 840 and 850 nm in p-pol, no stable arrays are obtained.  

 

 

Figure 4.4: Arrays of 460 nm PS in p-pol at λ= 890 nm with an 

incommensurate hex2 packing. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 
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P-pol Wavelength, 

nm a, nm a/D b, nm 

890 

880 

870 

860 

850, 840 

1039±48 

1163±67 

1033±144 

1281±34 

Unstable 

3.18 

3.60 

3.23 

4.05 

Unstable 

643±49 

636±30 

625±27 

673±48 

Unstable 

Table 4.4: Lattice parameters for 460 nm PS trapped using coherent p-pol 

trapping beams (nBK7 =1.507; θc =62.2˚; θi =64.5˚). 

 
In s-pol, 460 nm PS initially formed long hex1 arrays (Figure 4.5). As the array 

increased in size beyond 3 filled rows, the hex1 array became increasingly 

unstable. Rotations of the unit cell from hex1 to hex2 and back were observed. 

Eventually, as more particles were trapped in the array, a stable 

incommensurate hex2 array was obtained. Table 4.5 shows the lattice 

parameters for both the hex1 and hex2 arrays obtained in s-pol. The hex1 arrays 

were incommensurate for λ= 880 and 890 nm, but commensurate for all other 

incident wavelengths. The hex2 arrays were incommensurate with no obvious 

trend.  

 

 
Figure 4.5: Arrays of 460 nm PS in s-pol at λ= 860 nm with (a) commensurate 

hex1; and (b) incommensurate hex2 packing. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 
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Hex2 Hex1 Wavelength, 

nm a, nm a/D b, nm a, nm a/D b, nm 

890 

880 

870 

860 

850 

840 

1067±35 

986±49 

1109±16 

1067±35 

1233±18 

1212±18 

3.26 

3.05 

3.47 

3.38 

3.90 

3.92 

616±30 

609±32 

654±21 

637±27 

665±22 

661±44 

578±24 

605±19 

630±18 

627±22 

619±18 

610±18 

1.77 

1.87 

1.97 

1.98 

1.98 

1.97 

1033±23 

1105±47 

1067±24 

1056±38 

1089±28 

1108±15 

Table 4.5: Lattice parameters for 460 nm PS trapped using coherent s-pol 

trapping beams. Hex1 arrays were formed initially when there were 3 filled 

rows or less in an array. Hex2 was formed eventually as the array increases in 

size. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 

 

Hex2 arrays of 460 nm PS in both p-pol and s-pol showed no obvious trend in 

lattice spacing with varying incident wavelength, λ or interference fringe 

spacing, D.  However, the hex1 arrays in s-pol were largely commensurate, so 

the particles were still interacting with the interference fringes. Misalignment 

and loss of coherence in p-pol alone is not a likely cause, since the arrays are 

observed by switching between s- and p-pol before changing the wavelength. 

For 460 nm PS, ka = 2.29 and 2.16 for λ= 840 and 890 nm, respectively. At these ka 

values, the particles are expected to sit on dark fringes. However, ka=2.16 is not 

far from the crossover point and so the magnitude of the particle-fringe 

interaction is relatively small (see Figure 2.5). Optical binding forces are 

therefore more likely to overcome the particle fringe interaction, and possibly 

explains the incommensurate arrays observed here. 

 

4.1.4. 520 nm PS 

Arrays of 520 nm PS were stable and commensurate in both linear polarisations 

over the range λ= 840 - 890 nm. In p-pol, hex2 arrays were obtained with every 

other fringe occupied. In s-pol, a square-hex1 intermediate was obtained where 

lattice parameter a decreased as D became smaller, but lattice parameter b was 

constant (within the limits of statistical error). Array spacings for 520 nm PS 
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were strongly dictated by D, and were similar to the arrays formed by 390 nm 

PS (Section 4.1.1). 

 

 

Figure 4.6: Arrays of 520 nm PS at λ= 860 nm: (a) in p-pol showing 

commensurate hex2; and (b) in s-pol showing commensurate square-hex1 

intermediate packing. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 

 

P-pol S-pol Wavelength, 

nm a, nm a/D b, nm a, nm a/D b, nm 

890 

880 

870 

860 

850 

840 

1300±19 

1291±31 

1274±15 

1254±20 

1243±18 

1220±20 

3.98 

4.00 

3.98 

3.97 

3.98 

3.95 

695±30 

687±22 

686±50 

679±17 

673±53 

644±18 

649±17 

643±19 

633±18 

627±25 

619±23 

611±26 

1.98 

1.99 

1.96 

1.98 

1.98 

1.98 

847±26 

824±21 

837±14 

844±15 

854±26 

847±16 

Table 4.6: Lattice parameters for 520 nm PS. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 
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4.2. Larger polystyrene particles (620, 700 and 800 nm) 

Coherently trapped polystyrene particles of sizes 620, 700 and 800 nm formed 

line arrays. Off-axis trapping did occur, but the array became increasingly 

unstable and often breaks up before a full second row could be obtained. 

Longer arrays often displayed a flagellating motion which increased in 

frequency and amplitude as more particles joined the line. Taylor and Love2 

have shown that for a line of microparticles in counterpropagating Gaussian 

beam traps, small perturbations to the array can often be amplified and lead to 

off-axis circulation of the entire array. The scattered field from an off-axis 

particle has been simulated as an off-axis plume, which leads to other particles 

being drawn off-axis. In the work presented here, the flagellating motion may 

be an analogous case, where small perturbations are amplified by the off-axis 

scattering of particles in an array. Flagellating motion often led to one of several 

things: 

• A short segment of the line breaking off, moving above/ below and rejoining 

the longer part of the line in a ‘zipping together’ motion. The long unstable 

line was reformed and could then repeatedly break up, and zip up. 

• The line array (or a portion of it) becoming tilted relative to the x-axis. This 

seemed to stabilise the line with respect to flagellating motion and break up. 

It was also possible to observe up to three stable line arrays in the evanescent 

trapping area. Stable two-dimensional arrays with regular structure have not 

been observed for 620, 700 and 800 nm PS using the Ti:S trapping setup, so only 

line arrays are discussed in this section. 

 

Larger errors were recorded for particle spacings in line arrays. Contributing 

factors are: 

• Line arrays consist of far fewer particles than the two-dimensional arrays of 

smaller PS particles. For example, the spacing quoted for a line of two 

particles is simply the separation averaged over 50 video frames, with its 

associated statistical error. For larger arrays, spacings were averaged over 50 
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video frames before being averaged over the number of rows or columns in 

that particular array. The particle spacings are therefore much more accurate 

for large stable arrays, and this is reflected by smaller statistical errors.  

• The diffraction of light between particles that are close together can lead to 

asymmetric distortions of the imaged particle. Particles that are close 

together might therefore look further apart than they really are. 

• The line arrays were less stably trapped along the y-axis, and underwent 

more translations and transient tilting distortions. 

 

4.2.5. 620 nm PS 

620 nm PS initially formed line arrays where particles were spaced apart, a 

typical example of which is shown in Figure 4.7. Particle spacings seemed to 

show two stable trapping length scales, one of which was commensurate while 

the other was just a little short of being commensurate (Table 4.7).  

 

 
Figure 4.7: Line array of well spaced 620 nm PS at λ= 880 nm, in p-pol. (nBK7 

=1.507; θc =62.2˚; θi =64.5˚) 

 

Commensurate Incommensurate Wavelength, 

nm 

Polarisation 

a, nm a/D a, nm a/D 

890 

880 

850 

850 

840 

p 

p 

p 

s 

s 

977±6 

970±4 

918±2 

921±7 

921±3 

2.99 

3.00 

2.94 

2.95 

2.98 

1232±10 

1257±8 

1198±5 

1165±23 

1188±7 

3.77 

3.89 

3.84 

3.73 

3.84 

Table 4.7: Line spacings for arrays of 620 nm PS which do not contain 

compressed groups of particles. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 
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As the number of 620 nm PS particles increased in the line array, particles were 

trapped close together to form compressed groups of 2 or more particles. 

Within these compressed groups, particle spacings were just over 2D, as 620 nm 

PS were too large to occupy every other dark fringe. When 3 or more particles 

were in a compressed group, particle spacings decreased below 2D  and tended 

to the diameter of the microsphere. Similarly, when groups of compressed 

particles were next to each other, the spacing between them decreased below an 

integer multiple of D. Closely spaced particles in a compressed group appeared 

ellipsoidal, and were possibly squeezed out of the trapping plane in the z-

direction(see Figure 4.8 below). (This ellipsoidal distortion is an imaging 

artefact due to the diffraction of light between closely spaced particles. The 

optical forces are too weak to actually deform PS microspheres.)  

 

 

Figure 4.8: Line array of 620 nm PS at λ= 880 nm, in p-pol. A group of five 

particles is seen to be clustered together and appear ellipsoidal. The most 

closely spaced particles are only 620 nm apart, and are possibly squeezed out of 

the trapping plane in the z-direction. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 
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Spaced Compressed Wavelength, 

nm 

Polarisation 

a, nm a/D a, nm a/D 

890 

 

p 

s 

931±5 

963±4 

2.85 

2.94 

676±7 

683±6 

2.07 

2.09 

880 

 

p 

s 

953±6 

936±5 

2.95 

2.90 

667±4 

681±10 

2.07 

2.11 

870 

 

p 

s 

934±7 

939±3 

2.92 

2.94 

682±7 

676±4 

2.13 

2.11 

860 

 

p 

s 

922±3 

931±3 

2.92 

2.95 

655±8 

653±7 

2.07 

2.06 

850 

 

p 

s 

918±2 

921±7 

2.94 

2.95 

736±5 

729±10 

2.36 

2.34 

840 p 

s 

918±5 

- 

2.97 

- 

645±16 

- 

2.09 

- 

Table 4.8: Line spacings for arrays of 620 nm PS which contain compressed 

groups of particles. ‘Spaced’ refers to particle spacings between single particles 

or between compressed groups. ‘Compressed’ refers to particle spacings within 

a tightly packed group. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 

 

Table 4.8 lists the particles spacings for lines of 620 nm PS which contain 

compressed groups of particles. Lines of 620 nm PS were commensurate, as 

particle positions are strongly dictated by the interference fringes. The 

occurrence of compressed particle groups was often asymmetric about the 

centre of the trap. The presence of interference fringes provided an energy 

barrier to rearrangement of the line array, and so provided some kinetic 

stabilisation of asymmetric lines.  

 

4.2.6. 700 and 800 nm PS 

Line arrays of 700 and 800 nm PS are commensurate in both s-pol and p-pol, 

with particle separations of approximately 3D, 4D or 5D (Table 4.9 and Table 

4.10). Particles did not form compressed groups, as was observed for 620 nm PS. 

This may simply be a consequence of larger particle size, or it may also indicate 

relatively weaker particle-fringe interaction (as one would expect for 700 nm PS 

from looking at Figure 2.5). Line arrays of 700 nm PS were distinctly less stable 
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with respect to particles hopping between fringes, and so in some cases particle 

spacings were calculated using as few as 15 consecutive video frames. Figure 

4.9 and Figure 4.10 show line arrays of 700 and 800 nm PS, respectively.  

 

P-pol S-pol Wavelength, 
nm a, nm a/D a, nm a/D 
890 

 
961±8, 

1287±12, 
1603±5 

2.94, 
3.94, 
4.90 

954±10, 
1285±8 

2.92, 
3.93 

880 
 

944±4, 
1254±5, 
1578±13 

2.92, 
3.88, 
4.89 

924±15, 
1266±10, 
1606±17 

2.86, 
3.92, 
4.97 

870 
 

966±8, 
1253±4, 
1569±8 

3.06, 
3.97, 
4.97 

1269±11 3.97 

860 
 

970±5, 
1211±7, 
1541±6 

3.07, 
3.83, 
4.88 

961±4, 
1228±9 

3.04, 
3.88 

850 
 

963±12, 
1222±12, 
1536±12 

3.09, 
3.92, 
4.92 

1242±7, 
1531±16 

 

3.98, 
4.91 

840 915±8, 
1227±5, 
1505±6 

2.96, 
3.97, 
4.87 

1268±26 4.10 

Table 4.9: Line spacings for arrays of 700 nm PS. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 

 

 

Figure 4.9: Line array of 700 nm PS at λ= 860 nm, in p-pol. (nBK7 

=1.507; θc =62.2˚; θi =64.5˚) 
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P-pol S-pol Wavelength, 

nm a, nm a/D a, nm a/D 
890 

 
961±6, 

1267±4 
2.94, 

3.85 

984±6, 
1280±7, 

1594±14 

3.01, 

3.91, 

4.87 
880 

 
958±4, 

1251±7 
2.96, 

3.87 
976±5, 

1265±4, 

1572±7 

3.02, 

3.92, 

4.87 
870 

 
943±5, 

1236±6, 

1590±7 

2.95, 

3.86, 

4.97 

955±5, 

1270±10, 

1538±7 

2.99,  

3.97, 

4.81 
860 

 
1004±6, 

1522±7, 

1876±7 

3.18,  

4.82, 

5.94, 

987±5, 

1230±3, 

1868±5 
 

3.12,  

3.89, 

5.91, 
 

850 
 

- - 942±5, 

1205±7, 

1525±5 

3.02,  

3.86, 

4.89, 
840 916±4, 

1497±6, 

1741±20 

2.96,  

4.84, 

5.63 

902±3, 

1213±3, 

1517±3 

2.92,  

3.92, 

4.91 

Table 4.10: Line spacings for arrays of 800 nm PS. (nBK7 =1.507; θc =62.2˚; θi =64.5˚) 

 
 

 
Figure 4.10: Line array 800 nm PS at λ= 860 nm, in s-pol. (nBK7 =1.507; 

θc =62.2˚; θi =64.5˚) 
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5. Incoherent Trapping using a Tunable Ti:S Laser 

5.1. Small polystyrene particles (420, 460 and 520 nm) 

Mutually incoherent laser beams can be used to optically trap 420, 460 and 520 

nm PS particles. Stable two-dimensional arrays do not always form. Particles 

can still be attracted by the gradient forces, but continue ‘jostling’ about freely 

in the trapping area. A qualitative difference with the coherent trapping case is 

that particle movements experience no kinetic stabilisation when hopping 

between interference fringes. Thus, single particles and particles on the edges of 

the array move more readily within the trapping area. 

 

5.1.1. 420 nm PS 

Incoherent optical  trapping of 420 nm PS produced a two dimensional array as 

shown in Figure 5.1. In p-pol, the arrays were hex2 with increasing stability and 

decreasing a-parameter as the incident wavelength was changed from λ= 840 

nm to λ= 890 nm. In s-pol, the array was a tilted hex2 and a tilted hex1 at λ= 840 

nm and λ= 890 nm, respectively. When λ= 865 nm in s-pol, the array was 

unstable with respect to rotations of the unit cell, and continuously rearranged 

between hex1 and hex2. Table 5.1 lists the lattice parameters for 420 nm PS in 

mutually incoherent beams. Errors associated with lattice parameter a showed a 

ten-fold increase when compared to coherently trapped arrays, due to the lack 

of particle-fringe interactions.  

 

P-pol S-pol Wavelength, 

nm a, nm b, nm a, nm b, nm 

840 

865 

890 

1182±84 

949±64 

841±22 

635±30 

578±52 

475±17 

883±39 

- 

507±70 

543±21 

- 

871±19 

Table 5.1: Lattice parameters for incoherently trapped arrays of 420 

nm PS. (nBK7 =1.507; θc =62.2˚; θi =64.5˚). 
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Figure 5.1: Incoherently trapped arrays of 420 nm PS at: (a) λ= 840 nm in p-pol, 

showing hex2 with unstable columns;  (b) λ= 865 nm in p-pol, showing stable 

hex-2; (c) λ= 890 nm in p-pol, showing stable hex-2; (d) λ= 840 nm in s-pol, 

showing tilted hex-2; and (e) λ= 890 nm in s-pol, showing tilted hex-1. (nBK7 = 

1.507; θc = 62.2˚; θi = 64.5˚) 
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5.1.2. 460 nm PS 

460 nm PS formed hex2 arrays in both polarisations, as shown in Figure 5.2. 

There were, however, two surprising behaviours for incoherently trapped 460 

nm PS. Firstly, there was a decrease in lattice parameter a and b in s-pol  as the 

wavelength was increased from λ= 840 nm to λ= 890 nm (Table 5.2). Secondly, 

the hex 2 arrays were very stable in s-pol and highly unstable in p-pol. For λ= 

865 in p-pol, no stable array was observed even though a large number of 

particles was still localised within the trapping area.  

 

 

Figure 5.2: Incoherently trapped arrays of 420 nm PS at λ= 840 nm: (a) in p-pol, 

showing a hex2 array with unstable columns; and (b) s-pol, showing a large 

stable hex-2. (nBK7 = 1.507; θc = 62.2˚; θi = 64.5˚) 

 

P-pol S-pol Wavelength, 

nm a, nm b, nm a, nm b, nm 

840 

865 

890 

1230±74 

- 

1093±97 

641±42 

- 

663±36 

1068±41 

1055±35 

1000±37 

639±23 

619±19 

600±17 

Table 5.2: Lattice parameters for incoherently trapped arrays of 460 

nm PS. (nBK7 =1.507; θc =62.2˚; θi =64.5˚). 
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5.1.3. 520 nm PS 

Incoherently trapped 520 nm PS formed hex2 or square-hex2 intermediate 

arrays in p-pol (Figure 5.3). At λ= 840 nm in p-pol, the array was hex-2. When λ= 

865 nm, a hex2 array was formed initially, but this eventually rearranged to a 

square-hex-2 intermediate via compression in the a parameter. The square-hex2 

intermediate array was still obtained when the incident wavelength was 

increased to 890 nm. In s-pol, no stable arrays were obtained for λ= 840 and 865 

nm. Figure 5.4 shows a tilted hex1 array obtained in s-pol at λ= 890 nm. Lattice 

parameters for incoherently trapped arrays of 520 nm PS are listed in Table 5.3. 

 

 

Figure 5.3: Incoherently trapped arrays of 520 nm PS in p-pol at: (a) λ= 

840 nm, showing hex2; (b) λ= 865 nm, showing hex-2; (c) λ= 865 nm, 

showing square-hex-2 intermediate; and (d) λ= 890 nm, showing 

square-hex-2 intermediate. (nBK7 = 1.507; θc = 62.2˚; θi = 64.5˚) 
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Figure 5.4: Incoherently trapped arrays of 520 nm PS in s-pol at λ= 890 

nm, showing a tilted hex1. (nBK7 = 1.507; θc = 62.2˚; θi = 64.5˚) 

 

P-pol S-pol Wavelength, 

nm 

 

a, nm b, nm  Unit cell a, nm b, nm  Unit 

cell 

840 995±3 635±15 Hex2 - - - 

865 

 

1000±33 

861±42 

631±22 

610±36 

Hex2 

Square-Hex2 

- - - 

890 870±40 625±43 Square-Hex2 508±71 899±18 Hex1 

Table 5.3: Lattice parameters for incoherently trapped arrays of 520 nm PS. (nBK7 

=1.507; θc =62.2˚; θi =64.5˚). 
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5.1.4. A few points regarding incoherently trapped arrays of small PS 

While the lattice parameters for incoherently trapped arrays of small PS often 

have large errors, or follow no immediately obvious trend, it is still useful to 

highlight a few general observations: 

 

• The occurrence of arrays with different unit cell orientations (e.g. hex1, 

square and hex2) is not entirely due to interference fringes. Of note is the 

transition from hex2 to hex1 which occurred for 420 nm PS in s-pol when the 

incident wavelength was increased from λ= 840 to λ= 890 nm (Section 5.1.1).  

 

• There appears to be a general trend for lattice parameter a to decrease with 

increasing incident wavelength. This was often accompanied by a more 

stable array. While lattice parameter a was expected to no longer be an 

integer multiple of be D (and this was observed), there is no obvious reason 

why a should decrease with increasing wavelength (see Table 5.1, Table 5.2, 

and Table 5.3). 

 

• Broken hex2 arrays were not observed. This is expected, since interference 

fringes are necessary to stabilise periodic column vacancies (Section 3.2.1). 
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5.2. Larger polystyrene particles (620, 700 and 800 nm) 

5.2.1. Lines of 620, 700 and 800 nm PS 

Incoherent trapping of 620, 700 and 800 nm PS produced stable line arrays. The 

qualitative behaviour of incoherently trapped lines can be described as follows: 

 

• Individual particles move easily along the x-axis as there is no confinement 

due to the absence of interference fringes. However, particles in a line array 

still maintain non-contact separations. 

 

• Compressed groups do not occur as for coherently trapped lines of 620 nm 

PS (i.e. where particles occupy dark fringes 2D apart when they are too 

large to do so).  

 

• For lines of more than 10 particles, it was observed that particles spacings 

towards the middle of the array were smaller than particle spacings at the 

ends, as shown in Figure 5.5. This effect was symmetric about the centre of 

the trapping area, in contrast to the asymmetric modulation of lines 

observed when interference fringes were present (Section 4.1.2). Without 

interference fringes, the reduced particle spacing was possibly due to 

stronger optical binding towards the centre of the array. This effect has been 

previously reported for optically trapped line arrays in counterpropagating 

beams.1-3  
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Figure 5.6 is a scatter plot of particle spacings vs particle position for lines of 10 

or more 620 nm PS particles. Figure 5.7 is a scatter plot showing minimum and 

maximum particle spacings divided by the incident wavelength, vs the total 

number of particles in an incoherently trapped line array. For 620 nm PS, there 

seems to be a an increased difference between the smallest and largest particle 

spacings for longer lines. This trend is barely obvious for 700 and 800 nm PS 

(Figure 5.7 (b) and (c)). Particle spacings were much less stable for incoherently 

trapped lines, so this experiment may need repeating before any solid 

conclusions can be drawn. Better sample confinement may be needed to reduce 

convection in the sample medium during experiments, thus reducing 

fluctuations in particle spacing.  

 

 

Figure 5.5: Incoherently trapped line array of 620 nm PS at λ= 865 nm, in p-pol. 

Particles spacings were seen to decrease towards the centre of the line. (nBK7 

=1.507; θc =62.2˚; θi =64.5) 
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Figure 5.6: Scatter plot for particle spacings, vs particle position for lines of 10 or 

more 620 nm PS particles. Particle spacing is shown as the distance between 

adjacent particles, while particle positions are assigned so that the centre of the 

line array occurs at zero. If the array contains an odd number of particles, then 

the particle positions are integer values either side of zero. If the array contains 

an even number of particles, then the particle positions are m+0.5, where m is a 

positive or negative integer.    
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Figure 5.7: Scatter plot of minimum and maximum particle spacings 

divided by the incident wavelength, against the total number of 

particles in a incoherently trapped line array, for: (a) 620 nm PS; (b) 720 

nm PS; and (c) 800 nm PS. 
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5.2.2. An open cluster of 800 nm PS 

Of note is the observation that during incoherent trapping stable two-

dimensional arrays can be obtained (Figure 5.8 and ‘Video 5.1: 800 nm 

incoherent open cluster’). These open clusters occurred in p-pol, and were 

observed for 700 nm PS at λ= 865 nm and 800 nm PS at λ= 840 nm. Open 

clusters were obtained from individual particles entering the trapping area one-

by-one. Eventually, fluctuations in the system caused the open clusters to 

collapse, forming line arrays. The reverse rearrangement from line arrays to 

open clusters was not observed.  

 

These open clusters are comparable to open clusters observed during coherent 

trapping of 250 nm Au (λ= 1064 nm in p-pol) (Section 3.5). It is remarkable that 

stable open clusters were observed for incoherently trapped PS (i.e. without the 

stabilisation of interference fringes), since the 250 nm Au array was unstable if 

orthogonally polarised beams were used.  

 

 

Figure 5.8: Incoherently trapped open array of 800 nm PS at λ= 840 

nm, in p-pol. (nBK7 =1.507; θc =62.2˚; θi =64.5) 
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6. Miscellaneous Interesting Phenomana 

6.1. Optical guns 

This phenomenon has been observed for 520 nm PS particles trapped in a 

multilayered array. When the incident angle is close to the critical angle (λ = 

1064 nm; θi =53˚; θc =51.6˚; nSF10 =1.702) the penetration depth of the electric field, 

dp = 640 nm, extends into the sample above a single layer array of 520 nm PS 

particles. Particles are seen to move from the single layer array to forming a 

second and even third layer of close packed particles, thus resulting in a three-

dimensional multilayered array. Optical binding is a many-body, long-range 

interaction and as discussed previously, kinetically stable structures are readily 

formed during particle build up of arrays. In my experiments with 520 nm PS 

particles, the formation of several layers leads to a build up of strain in the array 

which is released by the ejection of a large number of particles from the array at 

speeds of ca. 130 μm s-1 (Figure 6.1 and ‘Video 6.1: 800 nm PS popcorn’). The PS 

particles have low Reynolds number of approximately 10-4 and so the continued 

motion of large numbers of particles beyond the trapping area is not an inertial 

effect. A possible explanation is that the stream of particles ejected from the 

array acts as a waveguide that couples the evanescent field into a region of 

space beyond the incident laser spot.  

 

 

Figure 6.1: Large numbers of 520 nm PS particles being ejected at high speed 

from the array. (θi =53˚; θc =51.6˚; nSF10 =1.702; λ = 1064 nm) 
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6.2. Optical popcorn 

This phenomenon has been observed while optically trapping arrays of 420 nm 

PS, 700 nm PS and 800 nm PS using the Ti:S setup (which is approximately 

twice the power of the λ=1064 nm Nd:YAG laser). Optical ‘popcorn’ sometimes 

forms from the most stably trapped arrays. The array is suddenly and 

inexplicably obscured by a large sphere, which shrinks rapidly into a cluster of 

particles (Figure 6.2 and ‘Video 6.2: 800 nm PS popcorn’). This is not simply a 

large cluster that is drawn into the trapping area, as such clusters can be seen 

approaching the array. Secondly, there are fewer individual particles left in the 

array, with none having left the array by any other mechanism. It is therefore 

reasonable to conclude that some particles have ‘popped’ and then deflated. In 

the process, several particles become fused together. Hence, optical ‘popcorn’ 

seems to be an appropriate description.  

 

 

Figure 6.2: Optical ‘popcorn’ disrupts a line of 800 nm PS particles. (θi =64.5˚; θc 

=62.2˚; nBK7 =1.507; λ = 880 nm). 
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7. Conclusions and Further Work 

In the preceding chapters, experimental observations have been presented for 

two different optical trapping setups (λ = 1064 nm Nd:YAG and λ = 840 –890 

nm Ti:sapphire), for a number of microparticle sizes and materials. In this 

section, some general conclusions are presented. 

 

i. Increasing laser power is equivalent to lowering the temperature of the 

system, as the trapped particles are now in a deeper potential well. 

Experimental  observations show that at higher laser powers fewer array 

types (e.g. 460 nm PS (Section 3.2.1))or more tightly packed arrays (e.g. 380 

nm PEGMA-P2VP (Section 3.4))were obtained. This is counterintuitive, as 

one would expect a larger variety of array structures (corresponding to local 

potential energy minima) to be stable at low temperature (or high laser 

power). One explanation for these trends is that the interaction of the denser 

array with the field would have to lower the potential energy, since  entropy 

is lowered also. The denser array would thus be stabilised at low 

temperatures (or higher laser powers) and destabilised at higher 

temperatures. Similarly, the more open structures would be favoured at 

higher temperatures due to higher potential energy but also increased 

entropy.   

 

ii. There is a clear distinction between ‘small’ and ‘large’ PS microspheres that 

occurs for both optical trapping systems. Smaller PS particles, i.e. 390, 420, 

460 and 520 nm, form stable two-dimensional arrays while larger PS 

particles, i.e. 700 and 800 nm, tend to form line arrays. Particles that are 

much smaller than the incident wavelength will tend to behave like dipoles 

which scatter according to sin2 θi. Larger particles tend to interact with the 

field like ball lenses that refocus the light in the plane of incidence, therefore 

favouring the formation of lines. The tendency to form lines or plane arrays 
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is a function of ka, and so 620 nm PS was observed to form stable plane 

arrays for λ = 1064 nm, but not at shorter wavelengths.   

 

iii. Hex1 arrays (b = √3 a) were observed only in s-pol for both optical trapping 

setups and all particle sizes studied. The scattered field from a particle in s-

pol is mainly in the plane of incidence, which seems to favour hex1 packing. 

In p-pol, particles scatter significantly in the trapping plane, and this would 

seem to favour hex2 packing. However, trapping in orthogonal polarisations 

or increasing the array size in s-pol did lead to the rearrangement of hex1 

into hex2 (Section 4.1.3). Hex1 packing also occurred for incoherently 

trapped arrays in s-pol(Section 4.1.2 and 4.1.4), so interference fringes were 

not necessary to stabilise the hex1 array. It is unclear why the orientation of 

the unit cell is sensitive to particle size, and incident polarisation. Accurate 

scattering calculation would be needed to explore this behaviour. 

 

iv. Broken hex2 arrays occur in p-pol close to the first crossover point at which 

PS particles experience no force towards bright or dark fringes (ka=1.985). 

This is true for both optical trapping setups. When λ=1064 nm, broken hex-2 

was observed for 460 and 520 nm PS, corresponding to ka = 1.81 and 2.05, 

respectively. When λ=890 nm, broken hex-2 was observed for 420 nm PS, 

corresponding to ka = 1.98. In p-pol, there is significant scattering along the 

fringe direction, which acts to stabilise chains of particles occupying the 

same bright fringe. The particles sizes that do form broken hex2 arrays are 

too large to sit on every fringe. The result of these two effects is that the 

lowest energy array is one containing column vacancies. 

 

v. Coherent trapping of larger PS microparticles produced lines with 

modulated structures. For λ=1064 nm, 800 nm PS formed modulated lines 

with ‘pair’ or ‘triplet’ groupings due to a balance of optical trapping and 

optical binding forces. Adjacent 800 nm PS particles in modulated lines 
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showed incommensurate particles spacings, which could be attributed to 

optical binding. However, the repeating unit (i.e. distance between pairs + 

distance within pairs) was commensurate. These modulated lines can be 

thought of as the 1D equivalent of the broken hex array, which is also due to 

competing forces from optical trapping and binding (Section 3.2.4). For 

λ=840-890 nm, 620 nm PS formed lines which contained compressed groups 

of particles. While these compressed groups appear similar to those 

observed for 800 nm PS (λ=1064 nm), adjacent particles for lines containing 

‘pairs’ and ‘triplets’ of 620 nm PS (λ=840-890 nm) are commensurate. 

However, as more particles join the compressed group, the particle spacing 

deviates from a multiple of D. The highly compressed groups (of more than 

three 620 nm PS particles) are possibly stabilised by optical binding, and are 

analogous to the incommensurate ‘pairs’ and ‘triplets’ observed for 800 nm 

PS (λ=1064 nm). 

 

vi. Open arrays were observed for 250 nm Au (λ=1064 nm, p-pol)(Section 3.1) 

and 800 nm PS (λ=840 nm, p-pol, incoherent beams)(Section 5.2). The open 

cluster of 250 nm Au particles periodically rearranged due to random 

fluctuations (e.g. Brownian motion or laser power). The rearranged array 

was also stable but still had no repeating unit. This is possibly due to 

multiple energy minima separated by small energy barriers arising from 

significant higher order scattering by Au particles. Similarly, the open cluster 

of 800 nm PS was kinetically stabilised, as it eventually rearranged to a line 

array.  

 

Optically trapped colloidal arrays showed highly complex and diverse 

behaviours which can be externally controlled by varying ka, incident 

polarisation, particle refractive index, or the mutual coherence of the evanescent 

fields. However, experimental work continues to provide anomalous arrays that 

are not yet accounted for with robust simulation. There continues to be much 
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room for experimental and theoretical work into understanding optical binding, 

as it could prove to be a powerful tool for the study of colloids, biological 

systems or even photonic crystals.   

 

Further studies into phenomena associated with optical binding might include 

investigations such as: 

i. Experimental demonstration of fringe affinity of single and multiple 

particles based on the theoretical predictions of Taylor, as described in 

Chapters 1 and 2.  

ii. Theoretical validation of the experimental observations made in Chapters 3 

to 6, as some of the observed array behaviours remain unexplained. 

iii.  A more controlled and quantitative experimental study of different array 

stabilities as a function of number of trapped particles, incident polarisation, 

field intensity, and particle refractive index.  


