
Durham E-Theses

Aspects of Holographic Superconductivity

BARCLAY, LUKE

How to cite:

BARCLAY, LUKE (2012) Aspects of Holographic Superconductivity, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3376/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3376/
 http://etheses.dur.ac.uk/3376/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Aspects of Holographic
Superconductivity

Luke Barclay

A Thesis presented for the degree of

Doctor of Philosophy

Centre for Particle Theory

Department of Mathematical Sciences

University of Durham

England

October 2011



Dedicated to

m, d, m, a, l & g



Aspects of Holographic Superconductivity

Luke Barclay

Submitted for the degree of Doctor of Philosophy

October 2011

Abstract

In this thesis we study two different aspects of holographic superconductivity.

First we study fully backreacting Gauss-Bonnet (GB) holographic superconductors

in 5 bulk spacetime dimensions. We explore the system’s dependence on the scalar

mass for both positive and negative GB coupling, α. We find that when the mass

approaches the Breitenlohner-Freedman (BF) bound and α → L2/4 the effect of

backreaction is to increase the critical temperature, Tc, of the system: the opposite

of its effect in the rest of parameter space. We also find that reducing α below

zero increases Tc and that the effect of backreaction is diminished. We study the

zero temperature limit, proving that this system does not permit regular solutions

for a non-trivial, tachyonic scalar field and constrain possible solutions for fields

with positive masses. We investigate singular zero temperature solutions in the

Einstein limit but find them to be incompatible with the concept of GB gravity

being a perturbative expansion of Einstein gravity. We study the conductivity of

the system, finding that the inclusion of backreaction hinders the development of

poles in the conductivity that are associated with quasi-normal modes approaching

the real axis from elsewhere in the complex plane.

In the latter part of the thesis we investigate asymptotically anti de-Sitter (adS)

and Lifshitz black holes in a bulk gravitational model that has a consistent embed-

ding in string theory and that permits an arbitrary dynamical exponent, z ≥ 1.

We find numerically that for both types of asymptotic spacetime there exists a two

parameter family of black hole solutions. In the adS case these numerical solutions

are supported by analytic solutions in the ‘probe’ or non-backreacting limit. Finally,

we study the dependence of the black hole’s temperature on these two parameters.
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Conventions

Throughout this thesis we will use natural units, in which Planck’s constant (di-

vided by 2π), ~, and the speed of light, c, are set to 1. In general we shall keep

Newton’s gravitational constant explicit. The conversion factors that allow us to

change between the SI system of units, based on the metre, second and kilogram,

and the natural system of units are:

~ = 1.054571596× 10−34J s

c = 2.99792458× 108m s−1.

In addition, Boltzmann’s constant will be set to 1 throughout this work unless

stated to the contrary in the text. For reference Boltzmann’s constant is

kB = 1.3806503× 10−23m2kg s−2K−1.

In representing the spacetime line element ds2 we shall use the mostly minus

signature, such that

ds2 = dt2 − dr2 − dx2 − dy2 − ...

In this thesis we denote the Levi-Civita symbol by εµ1µ2...µn and the Levi-Civita

tensor by εµ1µ2...µn , where the two are related by

εµ1µ2...µn =
√
−gεµ1µ2...µn ,

where g is the determinant of the metric.
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Chapter 1

Introduction and Background

In 1986 Karl Müller and Johannes Bednorz investigated the conductivity of a par-

ticular doped, cuprate material and found it to exhibit superconducting behaviour

with a critical temperature as high as 30K, [3]. In doing this, they discovered a new

class of so called “high temperature” superconductors that fell outside the theoretic

understanding of superconductivity. This new class of superconductor is thought to

be described by a theory with strong coupling which limits the ability to understand

these systems perturbatively. In recent years however, string theory has provided

science with a new avenue by which to explore strongly coupled field theories: the

gauge/gravity correspondence [4]. This correspondence conjectures a duality be-

tween strongly coupled quantum field theories and weakly coupled gravity theories.

This duality allows one to investigate one of the theories by studying the dynamics

of the other. The gravitational system is defined in a higher number of dimensions

to the quantum field theory and can be thought of as a holographic “image” of the

lower dimensional theory. In recent years this powerful conjecture has been applied

to problems in condensed matter physics. The systems that attempt to describe

superconductivity in this way have become known as holographic superconductors.

The correspondence is actually a duality between a gauge theory and a string

theory. For calculational feasibility Einstein’s theory of gravity is often used as a

low energy effective description of the string theory. Much of the work presented

in this thesis is concerned with this approximation and its effect on holographic

superconductivity. We investigate this by studying the key features of a simple

1



Chapter 1. Introduction and Background 2

model of holographic superconductivity using Einstein gravity with the addition

of the next leading order term in a perturbative expansion towards the full string

theory. Such a theory is known as Gauss-Bonnet gravity. By doing this we shall

be investigating the stability of these holographic models to the inclusion of higher

order terms.

The latter part of this thesis is concerned with another aspect of holographic

superconductivity, namely the scaling symmetries of the strongly coupled field the-

ory. Due to a relevance to condensed matter systems there has been a great deal of

recent interest in holographic models of superconductivity in which both the gravity

and quantum field theory exhibit a particular scaling known as Lifshitz scaling. In

such theories the temporal and spatial coordinates scale as t → λzt, xi → λxi and

r → r/λ where z is referred to as the dynamical exponent. A number of models

of holographic superconductivity with this scaling have been found. However, these

models are all either only phenomenological or, if rooted in string theory, only apply

to a fixed value of z. We investigate one particular gravitational model that has a

consistent embedding in string theory and generates a Lifshitz spacetime with ar-

bitrary z with a view to developing a holographic superconductor. Black holes are

a crucial ingredient of a model of holographic superconductivity and our research

is concerned with the black holes that can be found in this particular gravitational

theory.

The layout of the thesis will be as follows: In the remainder of this chapter we will

introduce much of the background material relevant to the later chapters by giving

a brief overview of superconductivity and the gauge/gravity correspondence. In

chapter 2 we review the key concepts of holographic superconductivity. In chapter

3 we study the effect that the inclusion of higher curvature corrections has on a

simple model of a holographic superconductor. In chapter 4 we consider a system

that exhibits Lifshitz scaling and study the black holes that can be found there. In

chapter 5 we conclude and summarize future directions of research.
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1.1 Superconductivity:

Superconductivity was discovered in 1911 [5] when Heike Onnes noticed that the

resistivity of certain metals dropped suddenly to zero below a characteristic tem-

perature, Tc, of the order of a few Kelvin. These infinitely conducting systems

were named superconductors. Twenty two years later Walther Meissner and Robert

Ochsenfeld noticed that any magnetic field present in these materials was expelled

as the temperature dropped below Tc. This discovery, commonly known as the

Meissner effect, distinguishes superconductivity from the idea of perfect conduc-

tivity since the latter would allow a pre-existing magnetic field to persist in the

material. A phenomenological description of these two phenomena was provided

only two years later by the London brothers [6], but it was not until 1957 that a

more complete microscopic understanding of superconductivity was found. In that

year Bardeen, Cooper and Schrieffer presented their Nobel prize winning work that

has become known as BCS theory, a brief outline of which can be found below.

This theory had explanatory and predictive power and was able to accommodate

the key developments in superconductivity until 1986. In that year Bednorz and

Müller discovered a new class of so called “high temperature” superconductors with

critical temperatures above the limit posed by BCS theory of approximately 30K.

This discovery reignited interest in the field of superconductivity partly due to the

practical applications of having superconducting systems at higher temperatures,

but also because of the desire to have a theoretical understanding of these unusual

materials that fall outside the scope of BCS theory.

This thesis is concerned with the attempt to understand this new class of super-

conductor via the gauge/gravity correspondence. Before we go about building the

model of a superconducting system it is prudent to have some understanding of the

system that we wish to model.

1.1.1 BCS theory

Here we present a brief description of BCS theory, a more full discussion can be found

in [7]. BCS theory was developed in 1957 by Bardeen, Cooper and Schrieffer [8],
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however a key development to its discovery came a year prior to its publication when

Cooper discovered that electrons very close to the Fermi surface1 of a material are

unstable to forming a bound state, now known as a Cooper pair [9]. The attractive

force necessary for the binding of the electrons arises as a result of their interaction

with the material’s atomic lattice. As an electron propagates through a medium

it polarizes the surrounding lattice, attracting positive ions. This concentration of

positive charge can then attract another electron binding the two via this weak

electron-lattice interaction. Cooper demonstrated that the energy of an electron in

a Cooper pair is lower than the energy of the lowest free state for a single electron,

referred to as the Fermi energy. This instability means these Cooper pairs will

continue to form until the Fermi surface has been altered sufficiently such that the

Fermi energy equals that of an electron in the bound state. The following year,

Bardeen, Cooper and Schrieffer developed this idea into their microscopic theory of

superconductivity. The electrons in the Cooper pair have equal and opposite spin

meaning the bound state has spin 0 and is a boson. As such, in a similar way to Bose-

Einstein condensation, the Cooper pairs can form a highly correlated condensate.

The phenomenon of zero resistivity is a consequence of the Cooper pairs being a

part of the condensate as a whole. In a normal conductor, resistance arises as a

result of thermal fluctuations of the lattice scattering and impeding the flow of the

conducting electrons. In a superconductor, individual Cooper pairs cannot simply

be scattered by an arbitrary energy interaction due to the nature of the condensate.

There exists a finite “energy gap”, Eg = 2∆, equal to the disassociation energy of

a pair of electrons, which is the minimum energy required to alter the flow of the

condensate. If the temperature of a material is low enough the thermal fluctuations

of the lattice have insufficient energy to affect the condensate allowing the current to

flow unimpeded and the material will superconduct. BCS theory predicts a universal

relation between the energy gap (as measured at zero temperature) and the critical

1Electrons, being fermions, must obey Pauli’s exclusion principle forbidding two or more
fermions from occupying the same quantum state simultaneously. As a result the free states
of a material are filled one by one forming an abstract volume in momentum space, the surface of
which is the Fermi surface.
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temperature

Eg = 2∆ = 3.528kBTc (1.1)

where kB is Boltzmann’s constant. The agreement of this expression with experiment

provided early verification of this microscopic theory.

1.1.2 High Temperature Superconductivity

In 1986 the supremacy of BCS theory ended with the discovery of high temperature

superconductors whose critical temperatures can reach well above 100K and cannot

be fully described by the BCS model. The first type of this new class to be discov-

ered consisted of a layered material dominated by copper-oxide planes sandwiched

between a compound that serves to dope electrons or holes onto the conducting

planes. These materials are now referred to as cuprate superconductors. Other,

non-copper based examples have since been discovered.

Despite a great deal of research over the last 25 years there is still no satisfactory

microscopic explanation of the mechanisms that cause these materials to supercon-

duct. One of the complicating factors is that the underlying physics seems to involve

strong coupling which prohibits a perturbative understanding.

An example of where this can be seen comes from a phenomenological model that

seems the capture the physics of the cuprate superconductors at low temperature:

the Hubbard model [10, 11]. This is a very simple model describing the movement

of electrons between sites in a lattice of atoms in a material. In its simplest form

the Hubbard Hamiltonian consists of two terms: a kinetic term that governs the

likelihood of an electron to ‘hop’ between two sites and a potential term that ac-

counts for the Coulomb interaction between the electrons at each lattice site. The

coupling that determines the relative strength of these two terms is analogous to the

degree of the ‘doping’ of the material and can dramatically alter the nature of the

material. When the potential term dominates, the material becomes an insulator

as conduction is prevented by the strong Coulomb repulsion between the electrons

at each site. When the kinetic terms dominates, the free movement of electrons is
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characteristic of a Fermi liquid. Superconductivity is found between the two. These

characteristics are consistent with the phase diagram of a cuprate superconductor.

Since superconductivity does not occur at either of the extremes perturbation theory

is not possible which can make calculations very difficult.

Holographic superconductors attempt to circumvent these problems by using

the gauge/gravity correspondence. In attempting to model superconductivity in

this way it is sensible to begin by replicating the details of a more macroscopic

theory as opposed to the microscopic detail of a theory like BCS theory. Ginzburg

and Landau presented such a model of superconductivity seven years prior to the

publication of BCS theory. It is now known as the Ginzburg-Landau (GL) theory

of superconductivity, [12].

1.1.3 Ginzburg Landau Theory

In GL theory the total density of electrons in a material, n, is split into two types;

the normal electron density, nn, and the superconducting electron density, ns. A

complex pseudowavefunction, ψ(x), is then introduced as an order parameter rep-

resenting ns

ns = |ψ(x)|2. (1.2)

If ψ and its derivatives are small then the free energy density of the system, fs, can

be expanded in a series of the form

fs = fn + α|ψ(x)|2 +
1

2
β|ψ(x)|4 + ... (1.3)

where fn is the free energy of the material in its normal state. Such an expansion is

valid very close to the critical temperature where |ψ|2 → 0. For this approximation

to remain valid we see that β > 0 but there is no such constraint on α and indeed

two different cases emerge depending on the sign of α, see figure 1.1. Plotting the

free energy as a function of ψ we see that for α > 0 the free energy is minimised

when |ψ|2 = 0 but for α < 0 a new minimum appears at
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fs
fs

Ψ

Figure 1.1: Plots depicting the free energy, fs, as a function of ψ as described by
(1.3). The left and right plots shows fs for α > 0 and α < 0 respectively. One can
see that as α drops below zero new minima appear at non-zero ψ.

|ψ|2 =
−α
β

(1.4)

that is lower then the energy of the normal state. If such a picture is to describe

superconductivity then α must change sign as the temperature drops below Tc.

Expanding α in a Taylor’s series about Tc we find

α(T ) = α′(T − Tc) + ... α′ > 0 (1.5)

which, using (1.4) gives

|ψ|2 ∝ (T − Tc). (1.6)

Thus, in GL theory, the superconducting phase transition is associated with the

breaking of the U(1) symmetry of the complex phase of ψ. As we shall see in

subsequent chapters a very similar mechanism appears in the holographic models of

superconductivity.

1.1.4 Conductivity

The conductivity is the linear response of a system to the application of an electric

field. If the energy (or frequency) of the electric field is greater than the energy gap,

Eg, of the superconductor then the Cooper pairs disassociate and normal conductiv-
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ity resumes. As a result the plots of the conductivity as a function of the frequency

of the electric field have two distinct regions; above and below the frequency gap,

ωg.

It is possible to understand some of the key characteristics of the conductivity

below the frequency gap using the very simple Drude model of electrical conduction

[13]. In this model the drift velocity, v of the electron gas is governed by Newton’s

second law

m
dv

dt
= qE−mv

τ
. (1.7)

Here m is the electron mass, q is its charge, E is the electric field strength and τ is

the time it takes for the electron to come effectively to rest as a result of interactions

with the medium. The current density is given by J = nqv where n is the number

density of the electrons. In the steady state approximation it is straightforward to

derive Ohm’s law J = σE where σ is the conductivity given by

σ =
nq2τ

m
. (1.8)

For an electric current given by E = Eeiωtex the complex conductivity is found to

be

σ = σr + iσi =

(
nq2τ

m

)(
1

1 + ω2τ 2
− i ωτ

1 + ω2τ 2

)
. (1.9)

We can use this expression to get a qualitative understanding of the conductivity of

a superconductor for frequencies below the energy gap. The conductivity associated

with the superconducting electrons can be modelled by letting τ increase contin-

uously to infinity which is consistent with there being no resistance to their flow.

Figure 1.2 shows plots of the real and imaginary parts of the conductivity for a

number of different values of τ . The right plot shows that as τ increases the curve

of σr forms an increasingly high and narrow peak about ω = 0. An integration of

σr over the positive frequencies shows the area under the curve remains constant

despite alterations in τ . Thus as τ → ∞, σr shrinks to a Dirac δ-function about
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Figure 1.2: Plots showing the real, σr, and imaginary σi parts of the conductivity
as a function of ω. Here ω is the frequency of any applied electric field given by
E = Eeiωtex. The darker lines correspond to larger relaxation time, τ .

ω = 0. This δ-function profile indicates the infinite conductivity of the system. In

this same limit σi ∝ 1/ω. This is not unexpected since by the Kramers-Kronig

relations, [14],

σi(ω) = − 1

2π

∫ ∞
−∞

σr(ω
′)dω′

ω′ − ω
, (1.10)

the delta function in σr is associated with a pole in σi
2.

These are some of the basic characteristics that we wish to reproduce in our

holographic models. Before we discuss these holographic models in detail it is worth

introducing the gauge/gravity correspondence upon which these models are based.

1.2 The Gauge/Gravity Correspondence

The gauge/gravity correspondence is a proposed duality between a field theory in-

volving gravity and a quantum field theory without gravity in one dimension fewer.

The correspondence is only a conjecture and has not been proven, however there is

a great deal of supporting circumstantial evidence that has led many to believe it

to be true.

The conjecture has arisen out of research into string theory. String theory was

first developed as an attempt to describe the large number of mesons and hadrons

2The Kramers-Kronig relations apply to all complex functions that are analytic in the upper
half plane. Causality constraints guarantee that this is true in this system, [15].
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discovered in the 1960s, [16], but is now studied with a somewhat more ambitious

aim: to unify all the known fundamental forces under one “theory of everything”

(TOE). There are four known fundamental forces; the strong force, the weak force,

the electromagnetic force and gravity. The first three forces have been unified by

one highly successful quantum field theory (QFT) known as the Standard Model of

particle physics and gravity is accurately described by Einstein’s theory of General

Relativity (GR), [17]. A key problem is that these theories appear inconsistent,

and that when one attempts to include GR in a QFT infinities arise that cannot

be renormalised away. Reconciling these theories to form a consistent theory of

quantum gravity has been one of the core aims of theoretical physics over the last 40

years. String theory is one such attempt that has had many successes at reproducing

a perturbative theory of GR and QFT similar to the standard model, but a lack of

experimental testability has meant the theory still has its critics. Whether or not

string theory actually does describe the world around us is in many ways irrelevant

to the validity of the correspondence, which for the duration of this research we will

hold to be true.

Below we provide a brief overview of the key concepts of string theory focussing

on those areas that are relevant for a motivation of the gauge/gravity correspon-

dence.

1.2.1 String Theory:

String theory is a theory of one dimensional objects that sweep out a two dimensional

worldsheet in some d dimensional spacetime. The number of these d dimensions can

be substantially larger than the four that we observe around us. The idea is that

the strings are sufficiently small in order to appear to the low energy observer as

point particles, as is consistent with current experimental observation. The strings

can be open or closed and can oscillate in many different ways which would appear

to the low energy observer as different particle excitations.
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The action of a bosonic string is described by the Polyakov action, [18,19]:

S = −T
2

∫ ∞
−∞

dτ

∫ l

0

dσ
√
−γγAB∂AXµ∂BX

µ, (1.11)

where γAB is the metric on the worldsheet, Xµ are coordinates of the full spacetime

and σ and τ are spacelike and timelike coordinates on the worldsheet. T is tension

of the string given by

T =
1

2πl2s
=

1

2πα′
. (1.12)

where ls is the string length and α′ = l2s is the referred to as the Regge slope. We

can think of α′, or indeed ls, as a parameter which sets the energy scale at which we

observe the theory. The limit in which α′ → 0 corresponds to the low energy limit

where the string length goes to zero. Thus the strings become points and “stringy

effects” can be ignored.

Extremising the action with respect to Xµ gives a wave equation with boundary

conditions that are different for open and closed strings. The end points of open

strings must obey either Dirichlet or Neumann boundary conditions, and for closed

strings, the end points must connect smoothly.

The bosonic string can be quantized, leading to an infinite tower of states of dif-

ferent masses. Unfortunately the ground-states of both the open and closed strings

are unphysical tachyonic states with m2 < 0. This is one reason why this theory can

never be a TOE. As well as the infinite tower of massive states there are massless

states which are the only states to remain in the low energy limit, as α′ → 0. The

open and closed strings have different massless states. The open string has a mass-

less gauge field with U(1) gauge symmetry. So massless open strings correspond

to a U(1) gauge theory. There are three types of state in the closed string sector,

the most important being a massless, traceless, symmetric spin two tensor called

the graviton. This field allows the low energy oscillations of the closed string to

correspond to classical gravity. There is also a scalar field called the dilaton, Φ,
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which determines the string coupling constant, gs, via

gs = e〈Φ〉 (1.13)

where 〈Φ〉 is the vacuum expectation value of the dilaton. These observations allow

one to begin to see how string theory can provide a unified description of both a

QFT and a theory of gravity.

There are two key flaws in bosonic string theory: the existence of tachyons and

the fact that there are no fermions. These problems can be resolved by the inclusion

of supersymmetry.

Supersymmetry is the only known extension to the Poincaré symmetry group,

[20]. This is achieved by the introduction of new, fermionic generators to the algebra.

One consequence of adding these new symmetries to a theory is the introduction of

additional “super-partners” to the field content that already exists in that theory.

So, for example, by adding supersymmetry to the Standard Model, one would expect

there to be a super-partner to every particle that already exists in that model. The

fact that no such super-partners have yet been observed in the real world has not

rendered this concept un-viable as it is possible that the additional supersymmetries

are broken at some large energy scale and that the masses of these super-partners are

too large to be detected by current experiment. The number, N , of these additional

fermionic generators determines the degree of supersymmetry in the theory. The

more generators the more supersymmetric degrees of freedom.

In the 1980s it was shown that the inclusion of fermions to the worldsheet action

leads to theories with spacetime supersymmetry, [21]. These supersymmetric string

theories have become known as “superstring” theories. With the inclusion of super-

symmetry it is possible to find string theoretic models for which the groundstate is

not tachyonic. In fact there are five different consistent superstring theories known

as; Type I, Type IIA, Type IIB and two types of Heterotic string theory. The inclu-

sion of supersymmetry in the string theory means that the low energy limit is now

not simply classical gravity, but gravity with local supersymmetry. This is referred

to as “supergravity” (SUGRA) and will be discussed shortly. Another consequence
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of quantizing the superstring is that the number of spacetime dimensions, d, is fixed

to d = 10.

In addition to the fundamental string, string theory contains other objects called

D-branes, see [22] for a review. These are D + 1 dimensional, solitonic objects in

string theory upon which open strings can end. The boundary conditions of the open

string mean that the endpoints can move freely on the brane itself but have Dirichlet

boundary conditions in the transverse directions, hence the name D(irichlet)-branes.

It was noted above that the massless open string spectrum contains a U(1) gauge

field. Such gauge fields decompose into fields that reside on, and transverse to the

brane. The D-brane is itself a dynamical object whose low energy dynamics are

described by the “DBI” action, [23]. Studying the low energy dynamics of these

objects allows one to identify the gauge fields that reside on the branes.

As well as being thought of as the end points of open strings, D-branes can be

thought of in a different way. Due to the reparameterization invariance of the metric

(1.11),

(τ, σ)→ (τ ′(τ, σ), σ′(τ, σ)), (1.14)

an open string that moves in a closed loop on a D-brane can be thought of as a closed

string being emitted from that brane, see figure 1.3. Since the massless excitations of

the closed string contain the graviton, D-branes also have a gravitational description

as well as the gauge field description that we discussed above. It is through these

two differing views of the same objects in string theory that one can begin to see

how the gauge/gravity correspondence may arise. Before we develop this further

towards the full correspondence we must look briefly at the gravity theory that is

described by the low energy limit of superstring theory: supergravity.

Supergravity was initially studied in its own right as a supersymmetric exten-

sion to classical gravity, [24], however it was soon realized to describe the low energy

dynamics of some superstring theories. A key step towards understanding the cor-

respondence came in 1995 when Polchinski identified the low energy dynamics of

D-branes in string theory with extremal black p (= D) branes in supergravity, [25].
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Figure 1.3: The left plot shows the world sheet of an open string moving in a closed
loop between two D-branes. Reparameterization invariance of the worldsheet action
allows this to viewed as the worldsheet of a closed string moving between the D-
branes, shown on the right. In this way D-branes can be seen as sources of closed
strings.

Black p-branes are p + 1 dimensional solutions to supergravity and are analogous

to black holes in general relativity. Via this analysis one sees that the D-branes

of string theory can be viewed as gravitational objects that appear to warp the

spacetime around them.

We have presented two very different views of the same objects in string theory.

It was the identification of these two interpretations that led Maldacena in 1997

to propose what is now considered the canonical example of the correspondence.

In [4], he suggested that there exists a duality between a Type IIB string theory in

an adS5 × S5 spacetime with an N = 4 supersymmetric Yang Mills (SYM) SU(N)

gauge theory in four dimensions. This we shall now explain.

1.2.2 The Correspondence

The string theory set up, from which this correspondence arises, consists of N paral-

lel, coincident D3-branes in the 10 dimensional spacetime of Type IIB string theory.

In this set up there can be closed strings that can propagate in the bulk and open

strings whose endpoints can end on any of the N D3-branes. We shall analyse this

theory by considering the low energy limit as α′ → 0, first in the open string picture
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and then in the closed.

In the open string picture we have two types of theory. Far from the branes we

have a Type IIB string theory of closed strings propagating in a 10 dimensional flat

spacetime. At the branes we have open strings which can be described by a gauge

field theory plus corrections due to the massive states. The action for such a system

is given by

S = Sbrane + Sinteractions + Sbulk. (1.15)

where the interactions between brane modes and bulk modes are proportional to

positive powers of the gravitational constant κ ≈ gsl
4
s . In the low energy limit these

two theories decouple and the massive state corrections are suppressed leaving a

gauge field on the N D3-branes and a free, ten dimensional Type IIB supergravity

theory away from the branes. The gauge theory for this set up turns out to be an

N = 4 SYM field theory with an SU(N) gauge group living in 3 + 1 dimensions.

Theories of this sort have a lagrangian of the form

L ≈ − 1

g2
YM

Tr(F 2) (1.16)

where gYM is the Yang Mills coupling constant and Fµν is the field strength tensor

corresponding to a non-Abelian gauge field Aµ.

We shall now consider the same set up from the purely closed string picture.

Away from the branes we have the same closed string theory as before. In this

picture the branes are now sources of closed strings and have a gravitational de-

scription. Even for non-zero α′ the supergravity description can be used to identify

the background geometry of this superstring theory set up. The D3-branes of the

string theory correspond to the extremal black p = 3-branes in supergravity which

have a metric of the form, [26,27]

ds2 = H(r)−1/2
(
f(r)dt2 − dx2 − dy2 − dz2

)
−H1/2

(
f(r)−1dr2 + r2dΩ2

5

)
(1.17)
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where

H(r) = 1 +

(
L

r

)4

, f(r) = 1−
(r0

r

)4

,

L4 = 4πgsNl
4
s . (1.18)

Here L is a lengthscale and dΩ2
5 is the metric of a 5-sphere, S5. r0 is related to the

outer horizon, r+, of the p-brane in supergravity by r4
0 = r4

+ − L4. At extremality,

r0 = 0 and f(r0) = 1 and the event horizon is replaced by the Poincaré horizon

of adS space. Far from the branes, for r � L, H(r) → 1 and the spacetime is

asymptotically flat. Near the branes when r � L, H(r) → (L/r)4 and the metric

takes the form of an adS5×S5 spacetime, where L is the radius of curvature. Globally

we can see that a deep “throat”, or gravitational well, has developed in the vicinity

of the branes. As we did before we shall take the low energy limit. This differs

slightly from the previous picture as in curved spacetimes energies are measured

from the point of view of an observer at infinity. Due to the infinite throat in the

vicinity of the branes the energy of any modes propagating out towards infinity

are red-shifted and arbitrarily large excitations close to the brane can be consistent

with a low energy limit. Once again the theories in the two regions decouple, [28],

leaving two distinct theories; 10 d supergravity away from the branes and full Type

IIB string theory on an adS5 × S5 background in the vicinity of the branes.

The fact that these open and closed pictures are two different interpretations of

the same set up, and that the asymptotic theories are the same in each description,

led Maldacena to conjecture the strong form of the correspondence: That Type

IIB superstring theory with adS5 × S5 boundary conditions is equivalent to N = 4

SU(N) SYM in 3+1 dimensions. Maldacena’s conjecture allows the coupling of the

gauge theory to be identified with the string coupling constant, gs,

g2
YM = 2πgs. (1.19)

Whilst there is still no formal proof for this conjecture it has so far passed every

test thrown at it, see [28] for a review. One of the obstacles to developing a formal
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proof is the difficulty of quantizing the superstring on a curved background. This

also limits the usefulness of the conjecture in this form. In order to be able to

perform useful calculations we must take limits of the correspondence to regimes

where calculations are possible. It is by doing this that we shall identify one of the

most powerful aspects of the correspondence; namely that it is what is known as a

strong/weak duality.

For a gauge theory, the way in which the coupling constant, g, changes at different

energy scales, µ, is governed by the β function

β(g) =
∂g

∂ log(µ)
. (1.20)

If the β function is positive the coupling constant will be weak at low energies and

grow in strength as the energy scale is increased. If β(g) is negative the opposite

is true; at high energies the coupling is weak and strong at low energies. The com-

plexity of many field theories has meant much of our understanding has come from

a perturbative analysis that is only possible when a coupling constant is weak. This

means that at low energy scales theories with a negative β function are notoriously

hard to study. SU(N) gauge theories, in general, fall into this category. There is

however, another dimensionless parameter in such theories for which perturbation

theory is possible in certain limits. By taking the integer N in SU(N) gauge theo-

ries to infinity a perturbative analysis is possible in powers of 1/N . Indeed in [29],

t’Hooft demonstrates that in this limit, the interactions in such theories behave very

much like interactions of closed loops in string theory when the string coupling, gs, is

small. This observation provides more support for the conjectured duality between

string theories and gauge theories. It is important to note that when considering

the large N limit of such theories, even if the gauge coupling is taken to zero, the

infinite nature of the higher order corrections can lead to contributions. It is more

useful in such situations to deal with the effective, or t’Hooft, coupling constant, λ

λ = g2
YMN. (1.21)

On the other side of the correspondence we suggested that understanding string
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theory on a curved background is very difficult. In order to be able to calculate,

we would like to consider the regime in which the string theory can be described by

supergravity. This will be the case if the string length is small in comparison to the

radius of curvature of the spacetime i.e. ls � L. From (1.18) and (1.19) we find

L4 = 2g2
YMNl

4
s = 2λl4s , (1.22)

and we see that a supergravity description is therefore valid in the limit of large

t’Hooft coupling, λ � 1. This means our gauge field is strongly coupled. Keeping

λ large, we can let N →∞ in such a way that the string coupling 2πgs = g2
YM → 0

and string interactions can be ignored. In this way we have a duality between

a weakly coupled supergravity theory, for which calculations are possible, and a

strongly coupled gauge theory for which calculations are hard. This strong/weak

duality is a key strength of the correspondence but also an obstacle to testing its

validity.

1.2.3 The dictionary

So far we have seen briefly how the correspondence may be motivated by string

theory but have not seen how it can be put to practical use. In [30], Witten provided

a precise description of the correspondence by relating the physical observables in

each of the dual theories. In this prescription the partition function of the QFT,

ZQFT , is identified with the partition function of the string theory in the bulk

spacetime, Zstring

〈e
∫
∂M φ0(x)O(x)〉 = ZQFT [φ0] ≡ Zstring[φ→ φ0], (1.23)

where φ represents a field in the bulk spacetime and φ0 its value at the boundary of

that spacetime. A path integral expression of ZQFT has been included on the left

which shows that the boundary values of the fields are to be interpreted as sources

that couple to the QFT operators, O. This relation is non-perturbative and holds to

all orders, however, since string theory on adS is poorly understood most practical
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calculations are conducted in the low energy, large N limit where the string theory

is well approximated by supergravity. In this limit (1.23) allows one to identify the

supergravity action with the generating functional of connected paths in the QFT

SSUGRA[φ0] = −WQFT [φ0]. (1.24)

Correlation functions of a boundary operator can then be computed by functional

differentiation of SSUGRA with respect to the source, φ0,

〈O(x)〉 =
δSSUGRA
δφ0(x)

∣∣∣∣
φ0=0

〈O(x1)O(x2)〉 =
δ2SSUGRA

δφ0(x1)δφ0(x2)

∣∣∣∣
φ0=0

(1.25)

〈O(x1)...O(xn)〉 =
δnSSUGRA

δφ0(x1)...δφ0(xn)

∣∣∣∣
φ0=0

.

This prescription allows one to relate scalar fields of the bulk to scalar operators of

the QFT, gauge fields to current operators and even the metric in the bulk to an

operator representing the QFTs energy momentum tensor.

There is however an added complication to performing calculations such as those

in (1.25), namely that the gravitational action is in general divergent. This was to

be expected since it is well known that QFT correlation functions suffer from UV, or

high energy, divergences. It is a general feature of the gauge/gravity correspondence

that these UV divergences of the QFT relate to divergence of the volume of the bulk

spacetime as r → ∞, [31]. These divergences must be removed by the addition of

appropriate counter terms to the action in a process referred to as “holographic

renormalization”. This process is described in detail in [32] and [33] and an explicit

example will be presented in section 3.6.

Avoiding a full derivation of the process here we shall demonstrate this field/-

operator correspondence with an example. Consider a scalar field, ψ, in a d + 1

dimensional asymptotically adS spacetime whose field equation is given by

∇µ∇µψ −m2ψ = 0, (1.26)
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where m is the scalar mass. The asymptotic falloff of ψ near the boundary is found

to be

ψ(r) =
ψ0

rλ−
+

ψ1

rλ+
+ ..., (1.27)

where λ± = 1/2(d±
√
d2 + 4m2L2) and L is the adS lengthscale. If m2L2 > −d2/4+1

then ψ0 corresponds to a non-normalizable mode and must be interpreted as the

source. After the addition of appropriate counter terms (1.25) gives

〈O〉 ≡ ψ1. (1.28)

If m2L2 ≤ −d2/4 + 1 then both ψ0 or ψ1 are normalizable and either can be set as

the source, leaving the other to be interpreted as the operator.

We can use the integral on the left hand side of (1.23) to calculate the scaling

dimension of the operator. By insisting that the integral is invariant under the

scaling symmetry of the boundary metric

t→ at, xi → axi, (1.29)

it is straightforward to find that the scaling dimension of the dual operator is given

by

dim[O±] = λ±. (1.30)

This direct relation between the asymptotic boundary dynamics of the fields in

the bulk spacetime to the operators of a QFT allows one to think of the QFT as

“living” on the boundary of the bulk spacetime. In this way, the QFT is often

referred to as “the boundary theory”.

1.2.4 Adding Temperature

Finite temperature field theories are studied via the imaginary time formalism where

the temporal coordinate is Wick rotated, t → iτ , thus rendering it “Euclidean”.
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Following [34] we can see how this works by looking at the QFT amplitude associated

with propagating a system from a configuration φ1 at time t1 to φ2 at t2

〈φ2, t2|φ1, t1〉 =

∫
D[φ]eiS[φ]. (1.31)

In the Schrödinger picture, one can write this as

〈φ2, t2|φ1, t1〉 = 〈φ2|eH(t2−t1)|φ1〉, (1.32)

where H is the Hamiltonian. We then Wick rotate the time coordinate and insist

that this new imaginary coordinate is periodic. Then, by summing over a complete

set of basis configurations one obtains the partition function of the field φ = φ1 = φ2

at a temperature T = 1/(kBβ), where β is the periodicity of τ

Z =
n∑
i

e−βEi =
n∑
i

e−Ei/(kBT ) (1.33)

where Ei is the energy of the state φi. From (1.31) we can express this partition

function in the path integral representation

Z =

∫
D[φ]eSE [φ], (1.34)

where SE is the Euclideanised action. This can then be used to calculate properties

of the thermal QFT. For example by introducing a source, J , a Green’s function can

be obtained by functional differentiation of Z[J ] with respect to J at two different

points. This will be the thermal two point propagator for a system at temperature

T = 1/(kBβ).

In 1976 Gibbons and Hawking, [35], applied these methods to gravitational sys-

tems in order to gain more understanding of the quantum nature of black holes. By

treating the metric in a similar way to the field φ, above, they were able to re-derive

the key formulae of black hole thermodynamics which show that, remarkably, black

holes are thermal objects. In [36], Hawking had previously shown that black holes
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emit radiation and have a temperature, TH , given by

TH =
κ

2πkB
, (1.35)

where κ is the surface gravity of the black hole. In [36–39] a consistent theory of

black hole thermodynamics was presented showing that black holes have an entropy,

S, given by

S =
kBA
4GN

, (1.36)

where A is the area of the black hole’s event horizon and GN is Newton’s gravita-

tional constant.

In [40] Witten used these findings to show how the gauge/gravity correspondence

could apply to field theories at a finite temperature. The required string theory set

up is similar to that described above but where the charges of the D3-branes are fixed

such that the D-branes now correspond to non-extremal p-branes in supergravity.

The metric of such a scenario is given by (1.17) but without the requirement that

r0 → 0. We are still interested in the supergravity limit such that, r � L, so the

metric becomes

ds2 =
r2

L2

((
1− r4

0

r4

)
dt2 − d−→x 2

)
− L2

r2

(
1− r4

0

r4

)−1

dr2 − L2dΩ2
5. (1.37)

This metric describes an asymptotically adS Schwarzschild black hole crossed with

an S5. The temperature of the black hole can be calculated by Wick rotating t→ iτ

and ensuring that the horizon is regular. For this to be the case, τ must be periodic

with ∆τ = β = 4π/f ′(r0) = 1/(kBTH). Bulk theories such as this that possess

a black hole are dual to thermal QFTs. This thermodynamic duality was further

confirmed in [41], where the independently calculated entropies of each of the dual

theories were shown to match3.

It is important to note that the N = 4 SYM gauge theory discussed in the

canonical example of the correspondence is an example of a conformal field theory

3Technically they were shown to match up to a factor of 3/4.
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(CFT). Such theories are invariant under a conformal symmetry group, which has

complete scale invariance. By adding temperature to the system we break this

scale invariance by introducing a temperature scale. However, in the absence of

another scale, the absolute value of the temperature is meaningless and it is only

by comparing the temperature to another scale that a meaningful value can be

obtained. In the models of holographic superconductivity discussed in this thesis,

this additional scale is provided by the charge density of the QFT.

1.2.5 Summary

At its heart the correspondence is a duality between a gravity theory in d dimensions

and a lower dimensional field theory. In this way the gravity theory can be thought

of as a holographic ‘image’ of the QFT. This concept of holography is not new to

physics, but first emerged as a resolution to a paradox of black hole thermodynamics.

The problem arose as a result of Bekenstein’s assertion that the maximum entropy

of a given volume scales with the area of that volume, as in (1.36). This contradicts

the intuition that the complexity of a system grows with volume. The holographic

principle was the solution, first proposed by ’t Hooft, which states that a quantum

gravity theory in some volume can be completely described by a field theory on

the boundary of that volume with less than one degree of freedom per Planck area,

[42, 43]. The gauge/gravity correspondence is a precise example of this principle.

It is for this reason that approaches that use the gauge/gravity correspondence are

often prefixed with the word holographic.

We have seen how a gauge/gravity correspondence can be motivated from one

particular string theory set up. We have also seen how this can be deformed to

include theories at finite temperature. In light of the holographic principle many

now think that this correspondence may in fact be much more general, applying to

many different string theories with different gravitational spacetimes with different

duals. It is this view that has led some to assert that perhaps “hidden within every

non-Abelian gauge theory, even within the weak and strong nuclear interactions, is

a theory of quantum gravity”, [44]. Of course, even the simplest manifestation of

the correspondence has not been proven, let alone such a bold statement but it does
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hint at the duality’s potential power.

It is in this light that the correspondence is often put to use; with the dictionary

being applied to arbitrary string and gravity theories to study a corresponding QFT.

Without a proof, these approaches are obviously flawed but allow a possibility to

find out new things about the world around us and the correspondence itself. With

limited other means of studying strongly coupled theories it is certainly worth a

try. The first applications of the correspondence were aimed at describing quantum

chromodynamics - the strongly coupled Standard Model gauge theory describing

quarks. However, with the existence of many open questions in condensed matter

physics that involve strong coupling, attention soon turned in this direction. The

work presented in this thesis is concerned with the application of the gauge/gravity

correspondence to the problems of superconductivity.



Chapter 2

Holographic Superconductivity

We saw in the previous chapter that a theoretical understanding of high temperature

superconductivity is still lacking. There are also indications that the underlying the-

ory exhibits signs of strong coupling behaviour which would make the exploration of

such a theory very difficult. Holographic superconductivity is an attempt to provide

a strongly coupled description of superconducting behaviour via the gauge/gravity

correspondence. The idea is to find a gravitational field theory in the bulk spacetime

whose boundary theory exhibits superconducting behaviour. In 2008 such a theory

was found by Gubser in [45] and developed by Hartnoll, Herzog and Horowitz in [46].

The remainder of this chapter will be concerned with outlining the key aspects of

this model.

2.1 The Basic Model

The model presented in [45, 46] follows the traditional formulation of the gauge/-

gravity duality where the bulk spacetime on the gravity side of the correspondence

asymptotes to adS space. The theory of gravity in this spacetime is chosen to be

classical general relativity which, in accordance with the correspondence, is to be

thought of as a low energy effective theory to some unspecified overarching string

theory. Such an approach is referred to as bottom up, as opposed to top down where

one would start with a well defined string theory from which a specific low energy

25
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theory can be derived1.

The mechanism for superconductivity in this model is analogous to that of the

Ginzburg Landau theory of superconductivity. As described in section 1.1.3, in GL

theory the onset of superconductivity coincides with the condensation of the order

parameter representing the number density of superconducting electrons. The order

parameter at the boundary of the holographic model is an operator, 〈O〉, that at

high temperatures has a zero expectation value, but then condenses at some critical

temperature, Tc. The gravitational dual to this operator is a complex scalar field,

ψ, that propagates in the bulk. Since the notion of temperature is crucial to this

model, the bulk spacetime must possess a black hole. The general idea is that at

high temperatures of the black hole ψ has a trivially zero profile but condenses out

of its vacuum as the temperature drops, corresponding to the condensation of 〈O〉.

In 2008 Gubser found these characteristics to be exhibited in the surprisingly simple

model of a charged scalar field around a charged black hole in adS space.

Before we continue to describe this model in more detail it is interesting to note

that a priori one might expect that such a model is destined to fail. The reason being

that there exists a set of theorems, collectively known as the “no hair theorems”,

that prohibit matter fields of the type described above from having a non-trivial

profile outside of the black hole radius, see [50] for a review and [51] for an explicit

example. However, whilst these theorems are powerful there is no general no-hair

theorem and counter examples do exist, [52]. Gubser’s model is indeed one such

example.

An interesting feature of fields propagating in an adS spacetime is that they can

remain stable whilst having a tachyonic, or negative, mass squared, provided it is

not below the Breitenlohner-Freedman (BF) bound, [53]

m2L2 ≥ −d
2

4
, (2.1)

where L is the adS lengthscale. This bound can be found directly from (1.27) by

1Examples of top down theories of holographic superconductors have since been found, see
[47–49] for examples.
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ensuring that λ± are real. It turns out that in Gubser’s model, if the mass of ψ

lies in the vicinity of the BF bound2 then the system can become unstable to the

spontaneous formation of scalar hair at sufficiently low temperatures of the black

hole. A rough argument is provided in [45] as to why this might be. The argument

involves the effective mass of the scalar field, meff . In the model the effective mass

is related to the actual scalar mass and the temporal component of the gauge field

that gives the black hole its charge

m2
eff = m2 − q2Atg

ttAt. (2.2)

Gubser argues that at low temperatures of the black hole, the profile of gtt and At

can be such that m2
eff is large and negative enough over a sufficient range for an

instability to set in.

The action that describes the bulk gravitational dynamics of this theory in d+ 1

dimensions is given by

S =
1

2κ2

∫
dd+1x

√
−g
[
−R +

d(d− 1)

L2

]
+

∫
dd+1x

√
−g
[
−1

4
F abFab + |∇aψ − iqAaψ|2 − V (|ψ|)

]
, (2.3)

where κ2 = 8πG(d+1) provides an explicit Planck scale in the system, g is the deter-

minant of the metric and R is the Ricci scalar. The negative cosmological constant,

−d(d − 1)/L2, has been written in terms of a length scale, L, A is the gauge field

and ψ is a scalar field with charge q. As we are working with a bottom up approach

to the correspondence there is no specific string theory that will fix our choice of po-

tential, V (|ψ|). Therefore the potential is simply chosen to be the simplest possible

case consisting of a single term, quadratic in ψ

V (|ψ|) = m2|ψ|2, (2.4)

2The problems associated with tachyonic masses, such as causality, etc. are not a problem here
as the bulk theory is not attempting to describe the universe around us, but is simply a tool to
describe the superconducting system on the boundary.
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where m is the mass of the scalar field.

The early formulations of this model consider only what is known as the probe

limit. This is the weakly gravitating limit in which the backreaction of the gauge

and scalar fields on the metric can be neglected. This is an artificial limit but retains

many of the key physical characteristics of the holographic superconductor.

In the probe limit the bulk spacetime is that of a planar Schwarzschild adS black

hole in d+ 1 dimensions

ds2 = f(r)dt2 − dr2

f(r)
− r2(dx2

1 + ...+ dx2
d−1), (2.5)

where

f(r) =
r2

L2

(
1−

rd+
rd

)
. (2.6)

It is straightforward to extremize the action (2.3) with respect to the gauge and

scalar fields to obtain their respective field equations. Since a detailed analysis of

very similar equations will be provided in the next chapter we shall not go through

this here, but simply note that the fall off of the scalar field at the boundary is given

by (1.27) and the expectation value of the boundary operator 〈O〉 is identified with

either ψ0 or ψ1, see section 1.2.3 for details. One can then find numerical solutions

to the field equations for a range of temperatures in order to explore the variation

of 〈O〉. Figure 2.1 shows how 〈O+〉, where dim[O+] = 3, varies with temperature

in a theory where d = 4. The plot shows the sudden condensation of the operator

out of its vacuum at a critical temperature Tc. It is straightforward to verify that

in the vicinity of Tc

〈O〉 ∼ (Tc − T )1/2, (2.7)

precisely that prescribed by GL theory in (1.6).

In order to verify that the boundary theory is superconducting the electrical

conductivity must be calculated. The conductivity is related to the linear response

of the system to a time dependent perturbation of the gauge field of frequency ω.
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Figure 2.1: Plot depicting the condensation of a boundary operator.

The actual calculation involves computing a two point correlator via a process of

holographic renormalization. This will be discussed in detail in section 3.6 and so will

not be discussed here. The results of such a calculation are shown in figure 2.2. This

plot shows the real, σr, and imaginary, σi, parts of the conductivity as a function

of ω. The key feature of this plot is the presence of a step in σr which coincides

with the minimum of σi. This step is interpreted as the frequency/energy gap of

the system. The value, ωg is determined by the minimum of σi. In BCS theory this

would be the energy required to disassociate the electrons in a Cooper pair, above

this frequency/energy normal conductivity resumes. At frequencies below the gap

σr appears to be zero and σi diverges to infinity. These are precisely the desired

characteristics since, by the Kramers-Kronig relations, (1.10), the pole in σi implies

that σr must possess a δ function peak at ω = 0 3. This profile of the conductivity for

ω < ωg agrees precisely with what we expected from our Drude model calculations

in section 1.1.4 and demonstrates that the boundary system does superconduct.

We have shown that the holographic superconductor shares a number of char-

acteristics with GL theory but there are a number of distinctions that are worth

mentioning, [54]. First of all GL theory is not a microscopic theory as the phase

transition is put in by hand and it is only valid in the vicinity of Tc where the order

3Causality constraints guarantee that that our system is analytic in the upper half plane and
that these relations apply, [15].
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Figure 2.2: Plot showing the real (red) and imaginary (blue) parts of the DC elec-
trical conductivity, σ, as a function of ω. The small oscillations at larger ω are a
numerical artefact.

parameter is small. This is not the case with the holographic model as the dynamics

are fully determined by the action and we can study the system at any temperature.

Having said this, it is important to remember that as we are using a bottom up

approach the potential in our action is arbitrary. The addition of higher powers

of ψ to the action, for example, may have little effect near Tc but could dramati-

cally alter the physics at lower temperatures. Thus, a truly microscopic description

of holographic superconductivity can only be achieved from actions obtained from

string theory.

This sums up our initial discussions of the holographic superconductor save for

one important point. In the gauge/gravity correspondence local symmetries in the

bulk correspond to global ones on the boundary. Since superconductivity is asso-

ciated with the breaking of a local symmetry, and superfluidity, the breaking of a

global one, it appears that we have superconductivity only in the bulk and super-

fluidity at the boundary. Whilst this is true it is still possible to view this boundary

theory as superconducting in the limit that the U(1) symmetry is weakly gauged, [55].

In this scenario we are saying that there is a gauge field on the boundary but that its

charge is small and can be neglected. Such an approximation has the consequence
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that photons on the boundary are non-dynamical. This does not pose much of a

problem as in many models of condensed matter physics, including BCS theory, the

dynamism of photons is neglected as their effects are small. For this reason we shall

continue to refer to the boundary theory as a superconductor for the remainder of

this thesis.



Chapter 3

The Gauss-Bonnet Holographic

Superconductor

The research presented in this chapter is largely based on [1] and [2]. This chapter

is concerned with the study of holographic superconductors in a model where the

gravitational theory is given by Gauss-Bonnet (GB) gravity. GB gravity can be

thought of as Einstein gravity with the addition of O(α′) corrections present in a

perturbative expansion towards a full string theory. By including this GB term in the

gravitational action, one can study the stability of the superconducting phenomena

of these low energy models to the inclusion of higher order corrections. Such a set

up was studied in the probe limit in [56], finding that the qualitative features of

the model appeared stable to the inclusion of these GB terms but that the details

were altered. Since that first paper a great many aspects of these models have

been studied, see [57–62] for examples. This chapter is concerned with the findings

of [1] and [2] in which the GB holographic superconductor was studied in the fully

backreacting set up for a range of masses and different values of the GB coupling

constant, α. We shall find that there are regions of parameter space where the

inclusion of the GB term dramatically changes the nature of the system.

We begin with a brief overview of GB gravity followed by a discussion of the

holographic model that we will use. We then solve the model numerically in order

to study the consequences of the GB terms on the superconducting boundary theory.

First, we focus on the critical temperature of the system, then we analytically inves-

32
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tigate the zero temperature limit before finally studying the numerical conductivity

of the system.

3.1 Gauss-Bonnet Gravity

GB gravity is Einstein gravity with the addition to the action of the GB term from

Lovelock gravity [63]. Lovelock gravity is a generalization of Einstein theory to an

arbitrary number of dimensions. The Lovelock lagrangian density is given by

L =
√
−g

p∑
n=0

αnRn (3.1)

where

Rn =
1

2n
Ri1j1k1l1 ...Rinjnknlnε

i1j1...injnεk1l1...knln (3.2)

is the Euler density of a 2n dimensional manifold. Here g is the determinant of the

metric, Rijkl is the Riemann tensor and αn is an arbitrary coupling constant. The

number of spacetime dimensions, d, is given by d = 2p + 2 if even, or d = 2p + 1 if

odd. Like Einstein gravity, the field equations of Lovelock gravity are second order.

Expanding the sum in (3.1) we get

L =
√
−g
(
α0 + α1R + α2

(
R2 +RabcdRabcd − 4RabRab

)
+ ...

)
(3.3)

where the term with the α2 pre-factor is the GB term. This expansion shows that

Einstein gravity can be thought of as a particular case of Lovelock gravity where

α1 = 1, αn = 0 for n ≥ 2 and α0 may or may not be zero depending on whether a

cosmological constant is required. For GB gravity one also allows α2 6= 0 in addition

to α0 and α1. In four dimensions the GB term is a topological invariant and will

have only a trivial effect on the dynamics of the system. In order to observe the

non-trivial effects of the GB term we must consider spacetimes with five or more

dimensions.

In [64] GB gravity was found to be the low energy effective theory for E8 × E8
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heterotic string theory and in [65] it was shown to be ghost free. These findings,

among others, have led many to think that the GB terms provide a suitable candidate

for the O(α′) corrections of Einstein gravity in a perturbative expansion towards a

full string theory. This is the key reason we are interested in studying the effect

that these corrections have on the holographic superconductor. By studying these

superconductors in GB gravity we are investigating the model’s stability to the

inclusion of higher order terms. In addition to this it is also interesting to study what

effect these new terms could have on the superconductor away from a perturbative

limit. For this reason we shall not restrict ourselves to the limit of small GB coupling.

3.2 The Model

We shall begin with the gravitational action of our GB holographic superconductor

S =
1

2κ2

∫
dd+1x

√
−g
[
−R +

d(d− 1)

L2
+
α

2

(
RabcdRabcd − 4RabRab +R2

)]
+

∫
dd+1x

√
−g
[
−1

4
F abFab + |∇aψ − iqAaψ|2 − V (|ψ|)

]
. (3.1)

This is simply the action in (2.3) with the addition of the GB term from (3.1). Here

α is the GB coupling constant with dimensions of length squared. As before, we shall

choose our potential, V (|ψ|), to have the simple form of a single term, quadratic in

ψ

V (|ψ|) = m2|ψ|2, (3.2)

The gravitational field equations are obtained by extremizing this action with respect

to the inverse metric, giving

Rab −
1

2
Rgab +

d(d− 1)

2L2
gab − α

[
Hab −

1

4
Hgab

]
= 8πGTab (3.3)

where

Hab = R cde
a Rbcde − 2RacR

c
b − 2RacbdR

cd +RRab , (3.4)
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Tab is the matter energy momentum tensor

Tab = 2D(aψ
†Db)ψ − FacF c

b −
[
|Dcψ|2 −

1

4
F 2
cd −m2|ψ|2

]
gab , (3.5)

and Da = ∇a − iqAa is the gauge covariant derivative.

In the absence of any matter fields (3.3) admits a pure adS solution

ds2 =
r2

L2
e

[
dt2 − (dx2

1 + ...+ dxd−1)
]
− L2

e

r2
dr2 (3.6)

where

L2
e =

L2

2

(
1 +

√
1− 4α

L2

)
→


1
2
L2 , for α→ 1

4
L2

L2 , for α→ 0

∞ , for α→ −∞,

(3.7)

is the effective adS lengthscale. This expression shows us that the presence of the GB

term renormalizes the adS lengthscale away from the cosmological constant scale,

L, as α becomes non-zero.

In order to study holographic superconductivity we look for plane-symmetric

charged black hole solutions that may or may not have scalar hair. We choose our

metric to have the following form

ds2 = f(r)e2ν(r)dt2 − dr2

f(r)
− h(r)

r2

L2
e

(dx2
1 + ...+ dx2

d−1), (3.8)

where the function e2ν(r) has been introduced to accommodate the backreaction of

the matter fields on the metric. Since the Einstein-GB equations are invariant under

coordinate rescalings we will use this gauge freedom to fix h(r) = 1.

We choose the matter fields to be static, given by

Aa = φ(r)δ0
a, ψ = ψ(r), (3.9)

where we can consistently take ψ to be real.

We shall restrict our analysis to a GB holographic superconductor with five bulk
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spacetime dimensions. This is the minimum number of dimensions required for the

GB term to have a dynamical effect and this choice also corresponds to a boundary

theory with four spacetime dimensions. With our chosen Ansätze the fully coupled

system of gravity, gauge and scalar equations take the simple form

φ′′ +

(
3

r
− ν ′

)
φ′ − 2q2ψ

2

f
φ = 0 , (3.10)

ψ′′ +

(
3

r
+ ν ′ +

f ′

f

)
ψ′ +

(
q2φ2

f 2e2ν
− m2

f

)
ψ = 0 , (3.11)(

1− 2αf

r2

)
ν ′ =

2κ2

3
r

(
ψ′2 +

q2φ2ψ2

f 2e2ν

)
, (3.12)(

1− 2αf

r2

)
f ′ +

2

r
f − 4r

L2
= −2κ2

3
r

[
φ′2

2e2ν
+m2ψ2 + fψ′2 +

q2φ2ψ2

fe2ν

]
, (3.13)(

1− 2αf

r2

)(
1

2
f ′′ + fν ′′ + fν ′2 +

3

2
f ′ν ′

)
+
f ′

r

(
2− αf ′

r
− 2αfν ′

r

)
+
f ′

r

(
1

r
+ 2ν ′

)
− 6

L2
= −κ2

[
−φ2ψ2

fe2ν
+ fψ′2 − φ′2

2e2ν
+m2ψ

]
, (3.14)

where a prime denotes a derivative with respect to r. These five equations are not

independent but related by a Bianchi identity which implies that one is redundant.

We choose to drop (3.14) and use only (3.10) to (3.13) in our calculations.

If ψ = ν = 0 there is an analytic solution to these equations describing a charged,

black hole, [66, 67],

φ =
Q

r2
+

(
1−

r2
+

r2

)
(3.15)

f(r) =
r2

2α

[
1±

√
1− 4α

L2

(
1− r4

+

r4

)
+

8ακ2Q2

3r4r2
+

(
1− r2

+

r2

)]
(3.16)

where r+ is the event horizon, determining the “ADM” mass of the black hole,

[68, 69], and Q is its charge. The lower sign choice in (3.16) must be taken if we

wish to ensure that as α→ 0 we retrieve the correct Einstein gravity description of

a charged, Reissner-Nordström black hole:

f(r) =
r2

+

L2

(
r2

r2
+

−
r2

+

r2

)
+

2κ2Q2

3r4
+

(
r4

+

r4
−
r2

+

r2

)
. (3.17)

From (3.16) one can see that the GB coupling constant must be restricted to α ≤
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L2/4 in order to avoid a naked singularity. In a recent paper, [70], it was suggested

that causality constraints from the hydrodynamic limit, [71], of the correspondence

further limits the GB coupling to α ∈ [−0.711, 0.113]. In this work, however, we

shall permit the full range of α ∈ (−∞, L2/4] in our study for greater understanding

of its effect.

We expect that (3.15) and (3.16) will describe the system at high temperatures

and that below some critical temperature the scalar field will condense out of its

vacuum and obtain some non-trivial profile. With the inclusion of back reaction a

more rigorous argument than that presented in section 2.1 can be provided as to

why this must be so.

As mentioned above, if ψ = ν = 0, the system is described by a charged black

hole given by (3.15) and (3.16). The temperature of this black hole is

T =
1

4π
f ′(r)

∣∣∣∣
r=r+

=
r+

L2π
− κ2Q2

3πr5
+

. (3.18)

If the mass and charge of the black hole balance such that

r6
+

L2
=
κ2Q2

3
, (3.19)

the temperature will be zero and the horizon will become degenerate. Such black

holes are called extremal. If we expand about the horizon of such an extremal black

hole one sees that the topology of the metric becomes adS2 × R3

ds2 =
1

2
f ′′+(r − r+)2dt2 − 2

f ′′+(r − r+)2
dr2 −

r2
+

L2
e

(
dx2 + dy2 + dz2

)
(3.20)

=
12

L2
(r − r+)2dt2 − L2

12(r − r+)2
dr2 −

r2
+

L2
e

(
dx2 + dy2 + dz2

)
. (3.21)

At large distances the spacetime asymptotes to adS5 which places a BF bound on

the scalar mass given by m2
BF5

L2
e ≥ −4. In the near horizon limit the BF bound

is that of an adS2 geometry, m2
BF2

L2
adS2
≥ −1

4
. Thus it is possible for the effective

mass of the scalar to be above the BF bound from the adS5 but below that of the
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adS2 leading to an instability in the near horizon region. Near extremality we have

ψ′′ +
2

(r − r+)
ψ′ −

(
q2Q2L4

36r6
+(r − r+)2

− m2L2

12(r − r+)2

)
ψ = 0 (3.22)

=⇒ m2
eff = m2 − q2Q2L2

3r6
+

. (3.23)

Therefore if the effective mass is more negative than the BF bound of the adS2 there

will be an instability

m2
effL

2
adS2

< −1

4
(3.24)

=⇒ 3 +m2L2 <
q2Q2L4

r6
+3

=
q2L2

κ2
. (3.25)

This shows that in certain regions of parameter space, the system must become

unstable at sufficiently low temperatures.

There are no known analytic solutions to these equations for the case of ψ(r) 6= 0,

so we will obtain solutions numerically. The system that we wish to solve consists

of two second order and two first order, coupled, non-linear, ordinary differential

equations. In order to solve these we need to impose six boundary conditions, two

at the horizon and four at the adS boundary. The position of the horizon, r+, is

defined by f(r+) = 0. The horizon boundary conditions can be found by demanding

that matter fields, metric and energy momentum tensor are regular there, which

gives

φ(r+) = 0, ψ′(r+) =
m2

f ′(r+)
ψ(r+) . (3.26)

At the adS boundary we want the spacetime to asymptote to adS in standard

coordinates so we shall look for a solution with

ν → 0 , f(r) ∼ r2

L2
e

as r →∞ , (3.27)

where, in order to set ν(r →∞) = 0 we have used a scaling symmetry of the metric
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and equations of motion:

eν → aeν , t→ t/a, φ→ aφ. (3.28)

The asymptotic forms of ψ and φ are then determined by the field equations

φ(r) ∼ P − Q

r2
, ψ(r) ∼ C−

r∆−
+
C+

r∆+
, (3.29)

where P , Q, C− and C+ are constants and ∆± = 2 ±
√

4 +m2L2
e. We choose to

set C− = 0, and interpret 〈O∆+〉 ≡ C+, where O∆+ is a boundary operator with

conformal dimension ∆+. If ∆± > 3, the opposite choice of C+ = 0 and 〈O∆−〉 ≡ C−

does give normalizable solutions but will not be considered in this work. An example

of where such a choice is made for a system with Einstein gravity can be found in [72].

Q is proportional to the charge of the black hole and represents the charge density

of the boundary theory, P is its chemical potential. We are now in a position to fix

either P or Q for our boundary condition on φ. We choose to fix Q, keeping the

charge density of the boundary field theory constant. Again see [72] for an example

in which the opposite choice has been used.

One of the parameters of this system that we wish to investigate is m2, the

mass of the scalar field. We shall choose a sample of masses, greater or equal to

that determined by the BF bound, m2 = −4/L2
e. Each choice of mass will be fixed

with respect to the effective adS lengthscale, Le, in order for the dimension of the

boundary operator to remain constant with respect to variations in α.

In the next section we solve (3.10) to (3.13) numerically, reading this 1/r∆+

fall-off of the scalar field to obtain 〈O∆+〉 for a range of temperatures given by

T =
1

4π
f ′(r)eν(r)

∣∣∣∣
r=r+

. (3.30)

Finally, the system of equations has a number of scaling symmetries in addition
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to (3.28)

1. r → ar, t→ at, xi → axi, L→ aL, q → q/a, α→ a2α, A→ aA

2. r → br, t→ t/b, xi → xi/b, f → b2f, φ→ bφ (3.31)

3. φ→ cφ, ψ → cψ, q → q/c, κ2 → κ2/c,

where the last symmetry involves a rescaling of the energy. For numerical conve-

nience we will use these scaling symmetries to set L = Q = q = 1. With this

rescaling κ2 is the parameter used to vary the backreaction of the fields on the met-

ric; if κ2 = 0, referred to as the probe limit, the fields decouple from the metric

entirely.

3.3 The boundary

Since we are interested in the asymptotic fall-off of the fields in our system it is

convenient to compactify the radial distance by introducing a new coordinate

ρ =
r+

r
. (3.32)

In this new coordinate system the horizon is found at ρ = 1 and the adS boundary

at ρ = 0. It also proves helpful to redefine the fields f and ψ according to

g(ρ) = ρ2f(ρ) X(ρ) =
ψ(ρ)r∆−1

+

ρ∆−1
(3.33)



3.3. The boundary 41

which provides us with a regular value of g(0) and linear fall-off of X(ρ→ 0). With

these new definitions (3.10) to (3.13) become

X ′′+X ′
(
g′

g
+ ν ′ +

2∆− 5

ρ

)
(3.34)

+X

(
(∆− 1)

(
g′

gρ
+
ν ′

ρ
+

(∆− 5)

ρ2

)
+ r2

+

(
q2φ2

g2e2ν
− m2

gρ2

))
= 0 (3.35)

φ′′−φ′
(

1

ρ
+ ν ′

)
+ φ

(
ρ2∆−4

r2∆−4
+

2q2X2

g

)
= 0, (3.36)

g′ =
2g

ρ
+

(
−g +

1

L2
2r2

+ −
1

3
κ2r2

+T
0
0

)
2r2

+

ρ(2αg − r2
+)

(3.37)

ν ′ =
r4

+κ
2

3gρ

(T 0
0 − T ρρ )

(2αg − r2
+)

(3.38)

where

T 0
0 =

φ′2ρ4

2e2νr2
+

+
ρ2(∆−1)

r
2(∆−1)
+

[(
(∆− 1)

ρ
X +X ′

)2
gρ2

r2
+

+
q2φ2X2ρ2

ge2ν
+m2X2

]
,

T 0
0 − T ρρ = 2

ρ2(∆−1)

r
2(∆−1)
+

[(
(∆− 1)

ρ
X +X ′

)2
gρ2

r2
+

+
q2φ2X2ρ2

ge2ν

]
.

These equations were solved using a numerical relaxation technique in which the

profiles of each of the fields are guessed and then iteratively “relaxed” to profiles

that solve the system of differential equations to the desired accuracy. Figure 3.1

shows an example of these solutions. The plot of X(ρ) clearly shows that as the

temperature drops below Tc the scalar field condenses out of its vacuum obtaining

a non-trivial profile in the bulk, coinciding with a distortion of the profiles of φ, g

and ν. Reading the linear fall-off of X(ρ) allows 〈O〉 to be plotted as a function of

temperature, producing a plot very similar to figure 2.1. It is then straightforward

to repeat this method for a variety of values of m2, α and κ2. Figure 3.2 shows the

particular example of m2 = −3/L2
e for three values of the GB coupling constant;

α = 0, 0.125 and 0.25 and two values of backreaction; κ2 = 0.0 and 0.1. Each

line in these plots shows the characteristic curve of the operator condensing out of

its vacuum. The upper plot shows the un-normalized condensate, exhibiting how

the inclusion of backreaction and higher curvature terms alter the hight and critical

temperature of the condensate. In the lower plot the curves have been normalized



3.3. The boundary 42

0

0.3

0.6

0 0.5 1

X
(ρ

)

ρ

0

1

2

0 0.5 1

φ
(ρ

)

ρ

0

0.25

0.5

0 0.5 1

g
(ρ

)

ρ

-1

-0.5

0

0 0.5 1

ν
(ρ

)

ρ

Figure 3.1: Plot showing the numerical solutions of (3.35) to (3.38) with α = 0.125,
κ2 = 0.1 and m2 = −3/L2

e for a variety of temperatures. The lines correspond to,
from dark to light, T/Tc ≈ 1.14, 0.98, 0.93, 0.70 and 0.63.
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Figure 3.2: Two plots of the condensate as a function of temperature form2 = −3/L2
e

and a selection of values of α and κ2. In each case, solid lines correspond to κ2 = 0
and dotted lines to κ2 = 0.1. The green plot is α = 0, blue is α = 0.125 and red is
α = 0.25. The upper plot shows non-normalized data, which indicates the variation
of critical temperature as both α and κ2 vary. The lower plot shows the conventional
plot of condensate against temperature, both rendered dimensionless by normalizing
to Tc.
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by Tc showing how alterations in α and κ2 can change the shape of the condensate

but that the near Tc fall-off remains the same.

3.4 The Critical Temperature

The curves in figure 3.2, as well as those from different regions of parameter space,

are qualitatively similar so reproducing more of these plots provides little extra

insight. The key information that we are interested in is the critical temperature of

the system. As well as obtaining the exact value of Tc from plots such as those in

figure 3.2, a rougher but quicker understanding can be obtained from an analytically

generated lower bound introduced in [1]. This bound is found by looking at the scalar

field equation near Tc. For temperatures just below Tc, the scalar is only marginally

away from its vacuum and the metric and gauge field will be described by (3.16)

and (3.15) up to corrections of order O(ψ2). Thus, the scalar field satisfies a linear

equation, (3.11), with f and φ taking their background values. Now letting Y = r3ψ

and manipulating the equation of motion for Y implies that if a solution exists, then

the integral

∫ ∞
r+

1

r3

[
φ2

0

f0

+
3

L2
e

+
3f0

r2
− 3f ′0

r

]
= −

∫ ∞
r+

f0Y
′2

r3Y 2
≤ 0 (3.39)

is negative. For much of parameter space this integral is negative at large T , and

positive as T → 0, thus observing where it changes sign provides a lower bound on

Tc. It is important to note that negativity of this integral does not imply existence

of a solution to the linearised equation near Tc as we have divided by Y (r), but is

simply a necessary condition on one if it exists.

Figures 3.3 to 3.5 show both the analytic lower bound (as lines) and numerical

values (as points) of Tc for different values of α, κ2 and m2. Figure 3.3 demonstrates

the dependence of Tc on m2, focussing on α ≥ 0. It is possible to find supercon-

ducting solutions for m2 > 0, indeed we found solutions up to a mass of m2 ≈ 0.4

for κ2 = 0. We were able to find some solutions at non-zero backreaction but only

for very small m2 and κ2 . The findings of [73] suggest that solutions exist at even

larger values of m2 but that numerical solutions become difficult to obtain due to an
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intriguing “warping” of the space of permissible boundary conditions. The solutions

that we did obtain for a small positive mass were only marginally different to those

of m2 = 0 and so these plots have not been included. In the plots that are shown

we see that in the majority of the parameter space studied, the effect of increasing

backreaction is to reduce the value of Tc. However, as α→ L2/4 and m2 → −4/L2
e

the effect of backreaction is reversed and actually increases Tc. This can be ex-

plored in more detail by plotting Tc as a function of κ2, as seen in figure 3.4. This

plot clearly shows that in this very narrow region of parameter space the effect of

backreaction can be to increase the critical temperature of the system substantially

above its value in the probe limit. The ability to reach super-planckian values of

backreaction has been verified numerically up to κ2 ≈ 150. It is also interesting to

note that as one approaches this regime the lower bound on the critical temperature

becomes significantly less accurate.

It is straightforward to extend this analysis to α < 0, as shown in figure 3.5. In

this regime the effect of altering the mass is less marked so one mass of m2 = −2/L2
e

has been chosen as a representative sample. These plots show that as α becomes

more negative the critical temperature increases. Whilst this increase becomes more

and more gradual as α is reduced it appears that an arbitrarily large Tc can be

obtained by an appropriate choice of α. These plots also show that the effect of

backreaction is, in all cases, to reduce Tc, but as α becomes large and negative its

effect is diminished. This can be understood by looking at the action, (3.1). In the

Einstein limit the curvature of the spacetime scales with κ. When |α| is large the

higher order curvature terms dominate, meaning the curvature scales as
√
κ and

thus the effect of backreaction on the spacetime is reduced.

In an attempt to provide a clearer picture of the characteristics noted above we

can use the analytically calculated lower bound and scan through the parameter

space available to generate the lower bound on a surface of Tc, as seen in figure 3.6.

Whilst these plots, at best, show only a lower bound to the true surface, they do

exhibit some of the interesting characteristics of the system that have been supported

by exact numerical results. We see immediately how altering the mass of the scalar

field dramatically alters the nature of this superconducting system, particularly as
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Figure 3.3: Plot of Tc as a function of α for a variety of κ2; Lines represent the
analytic lower bound, and the points represent numerically obtained values. The
solid black lines and circular points corresponds to κ2 = 0.0, solid grey lines and
square points to κ2 = 0.05, black (large) dashed with triangular points to κ2 = 0.2,
grey (large) dashed and diamond points to κ2 = 1 and black (small) dashed to
κ2 = 5.
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Figure 3.5: Plot of Tc with α for m2 = −2/L2
e. (a) shows the region α ∈ [−1, 0.25]

and (b) shows the same plot but for α ∈ [−100, 0.25]. The lines correspond to the
lower bound, points to numerically obtained values of Tc. The black solid lines (and
circular points) correspond to κ2 = 0; solid grey (and square points) to κ2 = 0.05;
dashed black to κ2 = 0.2 and (smaller) dashed black (with diamond points) to
κ2 = 5.
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Figure 3.6: Plots (a), (b), (c) and (d) show the surface of a lower bound on Tc for
m2 = −4/L2

e, −3/L2
e, −2/L2

e and 0 respectively.
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m2 and α approach their lower and upper bounds respectively.

Having displayed these plots it is important to point out their limitations. We

mentioned above that the negativity of the integral, (3.39), does not guarantee the

existence of a solution to the field equations with ψ 6= 0 but is simply a bound on

solutions if they exists. Thus, the strongest statement that we can make about these

plots is that the true values of Tc must either be on or above these surfaces, or they

must be zero.

3.5 Zero Temperature Superconductors

There is a great deal of interest in the zero temperature limit of these superconduct-

ing systems and in particular in the phase transitions that happen there. Most phase

transitions are triggered by the thermal fluctuations of the system but at zero tem-

perature, where there are no thermal fluctuations, phase transitions are triggered by

the quantum fluctuations associated with Heisenberg’s uncertainty principle. The

critical points about which these zero temperature phase transitions occur are called

quantum critical points (QCPs). It is thought that in certain regimes the effect of

the QCP can extend to finite temperature giving rise to unusual physical phenom-

ena. For real superconducting systems it is impossible to reach the absolute zero

temperature required to study these QCPs. However, this is not necessarily the

case with these theoretical models leading to a great deal of recent activity in this

direction.

For holographic superconductors the temperature of the boundary theory is gov-

erned by the temperature of the black hole in the bulk spacetime. The temperature

of a black hole in our system is given by

T =
1

4π
f ′(r)eν(r)

∣∣∣∣
r=r+

. (3.40)

In general the temperature of a black hole can approach zero in a variety of ways

depending on the type of black hole. For example, above the critical temperature

of our system the black holes are simply Reissner-Nordström black holes in GB

gravity. The temperature of such black holes is given by (3.18), which means that
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the mass and charge can balance such that the temperature goes to zero at finite

r+. This is not the case for the uncharged Schwarzschild black hole that arises when

κ2 = 0. This has f ′(r+) = 4r+/L
2 and the zero temperature limit is approached

when r+ → 0. To study this limit of the holographic superconductor we must

investigate the hairy black hole. A priori it is not immediately obvious how such

black holes approach zero temperature; is it found at some finite r+ or when r+ → 0?

The numerical solutions indicate that the latter may be true since the temperature

is reduced by reducing r+ and within the range studied there have been no apparent

zero temperature solutions at finite r+. However, it is numerically very difficult to

approach r+ = 0 from some finite value and it is possible that a zero temperature-

finite r+ solution exists beyond the scope of the numerics. In [74] the authors

calculated numerical results for holographic superconductors in a regime where r+

is precisely zero and the results of which, reassuringly, seemed to correspond to the

asymptote of their finite r+ solutions. However the results that they obtain are

singular, which as we shall see, raises some concerns.

We can attempt to find information about the true nature of the zero tempera-

ture superconductor with a little investigation of the field equations (3.10) to (3.13).

In particular we will ask whether these equations permit the existence of zero tem-

perature, regular solutions with a non-trivial scalar field. We will show that this is

largely not the case. We extend the work of [75] by showing that there are no regular

zero temperature solutions, including those with r+ = 0 for scalars with tachyonic

masses. We also address scalars with m2 ≥ 0.

We begin by imposing that our system be regular. This will be true if the energy

momentum tensor, Tµν , is non-singular in coordinates that are locally regular at the

horizon, or indeed, at r = 0 if there is no horizon. Using Eddington-Finkelstein

coordinates defined by v = t + r∗ and r = ρ where r∗ is the tortoise coordinate

defined by

dr∗ =
dr

feν
, (3.41)
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the following combinations of the energy momentum tensor must be regular

Tvv = Ttt = feνT tt , (3.42)

Tvρ =
−Ttt
feν

= −eνT tt , (3.43)

Tρρ = Trr +
Ttt
f 2e2ν

=
1

f
(T tt − T rr ). (3.44)

(3.44) gives the most restrictive constraint, namely that

φ2ψ2

f 2e2ν
+ ψ′

2
<∞ (3.45)

must be finite and hence each of the individual terms must also be finite. We wish to

assess whether the field equations permit these constraints to hold for a non-trivial

solution at zero temperature. The field equations are unchanged by the coordinate

transformation and we are free to use (3.10) to (3.13) in our analysis.

Note that (3.12), plus the regularity of (T 0
0 −T rr )/f implies that ν ′(r+) is regular.

If ν ′(r+) is regular then ν(r+) is regular and eν(r+) 6= 0. Thus from the definition of

the temperature of our black hole, (3.30), the requirement of zero temperature must

imply that f ′(r+) = 0.

We shall now study what effect this constraint has on the scalar field equation

fψ′′ +

(
3

r
+ ν ′ +

f ′

f

)
fψ′ +

(
q2φ2

fe2ν
−m2

)
ψ = 0. (3.46)

The terms containing ψ′′ and ψ′ go to zero at the horizon by the regularity of ψ′(r+)

and the fact that f ′(r+) = 0, thus the last term must also go to zero. This implies

that either ψ(r+) = 0 or m2 = q2φ2

fe2ν
. If ψ(r+) 6= 0 then, by (3.44), q2φ2

fe2ν
→ 0 which

implies that m2 = 0. Our analysis does not rule out the existence of regular zero

temperature solutions for this choice of mass. In fact, it seems likely that such

solutions do exist in light of [74], where similar solutions were found for a system

in four dimensional Einstein gravity. We leave the search for such solutions in this

system to future research. To investigate non-zero masses we consider ψ(r+) = 0.

If m2 ≤ 0 then all the leading order terms of (3.46) have the same sign and cannot
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balance irrespective of whether r+ is finite or zero. Thus there can be no regu-

lar, superconducting solutions at zero temperature for scalar fields with tachyonic

masses.

Turning to m2 > 0, where ψ(r+) = 0, it is possible to place strict constraints on

these masses if solutions exist. Using the field equation for f :

(
1− 2αf

r2

)
f ′ +

2

r
f − 4r

L2
= −2κ2

3
r

[
φ′2

2e2ν
+m2ψ2 + fψ′2 +

q2φ2ψ2

fe2ν

]
, (3.47)

we see that if φ′(r+) = 0 then r+ = 0 and f(r) ∼ r2/L2
e as r → 0. From (3.46) we

can then infer that φ(0) = 0 as otherwise q2φ2ψ/fe2ν would be the only term at

leading order. Then from the field equation for φ

φ′′ + φ′
(

3

r
− ν ′

)
− 2q2ψ

2

f
φ = 0, (3.48)

we see that the last term is sub-dominant and the remaining terms cannot cancel.

If φ′(r+) 6= 0, (3.48) implies that r+ 6= 0. Then the leading and next to leading

order terms of (3.47) give

φ′2

e2ν+
=

12

L2κ2
, f ′′+ =

24

L2
. (3.49)

By using these expressions in (3.46) we obtain an equation for the allowed masses

at zero temperature

m2 =
12

L2
(n2 + n) +

q2

κ2
, (3.50)

where n ≥ 1 is the leading power of (r − r+) in an expansion of ψ about r = r+.

This expression shows that there can be no regular solutions for 0 < m2 < 24/L2.

Thus if positive mass solutions do exist they can only be found at very large m2

and/or backreaction; substantially above the values for which finite temperature

solutions have been found. We also see that, unlike the finite temperature system,

the “allowed” values of m2 are directly related to κ2. These observations suggest

that this positive mass result may be spurious.
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A key result of the above analysis is that the zero temperature limit of our super-

conducting systems with tachyonic scalars is not regular. We now wish to investigate

this in a little more detail. In [74] a zero temperature solution was presented in which

the spacetime, with no black hole, possessed logarithmic divergences as r → 0. Such

solutions can be found for our system in the Einstein limit but it becomes clear that

they cannot be consistent with the idea of GB gravity as a perturbative expansion of

Einstein gravity. The reason is that the logarithmic divergences of the metric cause

the curvature invariants, such as the Riemann tensor and Ricci scalar, to diverge

at r = 0. Since the GB terms involve higher order combinations of these invariants

than Einstein gravity this singular behaviour will immediately be dominated by the

GB terms as α becomes non-zero. If this is the case the concept of GB gravity being

a perturbative correction to Einstein gravity is destroyed and the validity of such a

solution must be questioned.

The manifestation of this problem on the fields themselves can be seen from a

near horizon expansion. Following [74], for α = 0, one can find a set of boundary

conditions consistent with the field equations

ψ =

√
3

κ2
(− log r)1/2 + ..., f =

m2

2
r2 log r + ...,

φ = φ0r
β(− log r)1/2 + ..., e2ν = K(log r)−1 + ... (3.51)

where β = −1+
√

1− 12q2

κ2m2 and φ0/K is free parameter that can be used to tune the

system. This Ansatz is consistent with the field equations provided 4q2 > −m2κ2

and after integrating the fields out from the horizon one finds the asymptotic profiles

to be consistent with (3.29). Unlike in the four dimensional system we were unable

to find an appropriate value of φ0/K to remove the source of the boundary operator.

As a result these solutions do not strictly describe a holographic superconductor.

However, they are valid solutions of (3.10) to (3.13) and can be used to demonstrate

our point.

The problem arises because α appears in the equations of motion, (3.10) to

(3.13), like (1− 2αf
r2

). From (3.13) it is possible to show that if f(r) = fsr
s(− log r)t

then s ≤ 2 which means that f/r2 has at least a logarithmic singularity for t > 0.
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Since for α = 0, t = 1 > 0 this means turning on α immediately incorporates new,

singular behaviour at r = 0 which destroys the perturbative relation between GB

and Einstein gravity.

We have shown that there can be no regular solutions to our system at zero

temperature, except possibly for massless or very massive scalars, and we have also

given cause for caution when considering non-regular solutions. It is possible that

consistent, non-regular, zero temperature solutions can be found that respect the

relation between Einstein gravity and GB gravity but it seems unlikely. However, we

can still find out information about the nature of this system in the zero temperature

regime in the absence of such solutions. There are two analytic techniques which

can provide bounds on the the critical values of the constants at the QCP. The first

that we shall consider is precisely the bound in (3.25), found by studying the near

horizon limit of an extremal Reissner Nordström black hole. This same bound can

also be found in a very different way which I will briefly present here. The bound

is found by studying the stability of the scalar vacuum solution to the formation

of scalar hair. As described in [76, 77], we begin by perturbing the background

solution, ψ = 0, by using the ansatz ψ = ψ(r)e−iωt. Assuming ψ(r)� 1 the effects

of back reaction can be ignored (since its effects occur at O(ψ2)) and the scalar field

equation becomes

ψ′′ +

(
3

r
+
f ′

f

)
ψ′ +

(
ω2

f 2
+

2qφω

f 2
+
q2φ2

f 2
− m2

f

)
ψ = 0, (3.52)

with φ and f(r) taking their vacuum values (3.15) and (3.16)

The system is unstable if the field equation shows this small perturbation to

diverge. This will be the case if there is a normalizable solution to (3.52) with

ingoing boundary conditions at the horizon such that ω has a positive imaginary

part. In general this equation can be solved numerically providing us with a bound

on the critical values of the constants for general T . However, we are just interested

in the T = 0 case for which an analytic expression can be obtained.
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For zero temperature our (extremal) black hole has

r6
+

L2
=
κ2Q2

3
(3.53)

and

f(r) =
1

2
f ′′+(r − r+)2 + ... with f ′′+ =

24

L2
. (3.54)

It is then a simple exercise to expand (3.52) in the vicinity of r+. It is suggested

in [76, 77] that since we are concerned only with the onset of an instability it is

sufficient to consider only the “threshold” case of ω = 0. In this case we find the

solution to the expanded field equation to be

ψ → c1(r − r+)ξ+ + c2(r − r+)ξ− , (3.55)

ξ± =
1

2

(
−1±

√
1− 64q2Q2

r6f ′′+
2 +

8m2

f ′′+

)
. (3.56)

If the expression inside the square root goes negative then ψ will turn imaginary and

oscillate infinitely many times before reaching the horizon which, according to [77],

indicates an instability. This provides us with a criterion determining the onset of

an instability at extremality. Using (3.53) and (3.54) if

3 +m2L2 <
q2Q2L4

r6
+3

=
q2L2

κ2
(3.57)

the blackhole is unstable to forming scalar hair, which is precisely the bound in

(3.25).

Figure 3.7 shows both this bound (as red lines) and that taken from the zero

temperature limit of the plots in figure 3.6 (blue lines). The regions below each of

the curves are the regions of parameter space for which the system is unstable to

forming scalar hair, as indicated by each bound. It was suggested in [76, 77] that

the red lines are not simply a bound but actually indicate the location of the QCPs

in the system. Assuming that the true surface of critical temperature is continuous

these plots immediately show that this cannot be the case as in each plot the two
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Figure 3.7: Plots (a), (b), (c) and (d) show two bounds, at T = 0, on the critical
value of κ2 as a function of α for m2 = −4/L2

e, −3/L2
e, −2/L2

e and 0 respectively.
The region below each of the lines is the region of instability. The blue lines were
generated using (3.39) and the red, (3.57). The bounds continue to become less
restrictive as m2 increases above 0. The black point in (a) indicates a system with
m2 = −4/L2

e, α = −4 and κ2 = 1 for which the critical temperature was found to
be Tc = 0.268.
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bounds cross. This has been further verified by the calculation of a non-zero critical

temperature for a system with m2 = −4/L2
e, α = −4 and κ2 = 1 indicated by the

black point in plot (a), which is outside the region of instability as indicated by

bound (3.57). The correct way to see these curves is as complimenting lower bounds

on the critical value of κ2 as a function of α, being aware that the true critical values

could be some way above these combined bounds.

The plots do however indicate that m2 and α do have a significant effect on

the zero temperature limit of the system with both bounds exhibiting the opening

up of a region of superconductivity at large κ2 as both α and m2 approach their

upper and lower bounds respectively. This observation fully supports that of figure

3.4 where numerically obtained values of Tc were found at large, super-planckian

backreaction. From figure 3.7 (a) we see that this is unsurprising since in this region

condensation must occur before the temperature drops to zero. What, however, still

remains unclear is why the critical temperature increases with backreaction here.

Another interesting observation that can be made from these plots is that there can

be no QCPs in the absence of backreaction.

It is also interesting to see how these bounds relate to equation (3.50) which

expresses the values that m2 must take if regular, positive mass, superconducting

solutions exist at zero temperature. Inserting (3.50) into (3.57) shows that that

systems with these masses can never be in the unstable region as indicated by

bound (3.57) and it is only for large and negative α that they can in the unstable

region indicated by (3.39). This does not prove that these solutions do not exist but

indicates that their existence may be unlikely.

3.6 Conductivity

In this section we investigate the electrical conductivity of the boundary theory. We

begin with an explicit calculation of the conductivity which involves the process of

holographic renormalization. We shall then numerically calculate the conductivity

of our system and use it to analyse the nature of our superconducting boundary

theory.
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3.6.1 Holographic Renormalization

The conductivity, σ, is commonly expressed as the current density response to an

applied electric field

σ =
J
E
, (3.58)

where, J and E are the current density and electric field density respectively. Ac-

cording the the gauge/gravity correspondence, a bulk gauge field, Aµ, corresponds

to a four-current density, Jµ, on the boundary

〈Jµ〉 =
δS

L
1/2
e δAµ

, (3.59)

where the factor of L
1/2
e has been introduced to ensure the correct dimensionality of

a four-current density. The conductivity can be calculated by perturbing Aµ in the

bulk and studying its effect on the boundary four-current. As mentioned in section

1.2.3 there is a complication to this calculation relating to the fact that the action

is, in general, divergent. Thus, before we can calculate 〈Jµ〉 the divergences of the

action must be removed by a process of holographic renormalization. Since this

process is important to the correct derivation of an expression for the conductivity

we shall look at this process in detail.

The method that we follow is presented in greater generality in [32]. The first

step is to identify precisely how the action diverges. We shall consider the case of a

general bulk gauge field Aµ. For simplicity, and due to its relevance to our problem,

the only constraint that we shall place on the gauge field for now is Ar = 0. We

are concerned with the behaviour of our action in the vicinity of the adS boundary,

in this region the metric takes the form of (3.6). It is convenient to distinguish the

radial part from the other parts of the metric

ds2 = γabdξ
adξb − L2

e

r2
dr2 (3.60)
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and then write

γab =
r2

L2
e

(
γ

(0)
ab +

γ
(1)
ab

r
+ ...

)
, (3.61)

such that γ
(0)
ab , γ

(1)
ab etc. are independent of the radial coordinate.

In order to understand the behaviour of the action as r → ∞ we need to know

the form of the gauge field in this region; this is given by Maxwell’s equations. In

general Maxwell’s equations involve source terms, which in our model are terms

involving the scalar field, ψ. These terms are sub-dominant and can be neglected

for the remainder of this calculation. Maxwell’s equation are then given by

∇µF
µν = 0 (3.62)

=⇒ 1

r3
(r3A′a)

′ +
L4
e

r4
∂2

(0)Aa = 0, (3.63)

where ∂2
(0) represents the wave operator with respect the boundary metric γ

(0)
ab . The

general solution to this equation is a Bessel function whose large r behaviour can

be shown to be

Aa = A(0)
a +

A
(2)
a

r2
+
L4
e∂

2
(0)A

(0)
a

2r2
log (r) + ..., (3.64)

where A
(0)
a and A

(2)
a are integration constants. We are now in a position to assess

the divergent nature of the action. Once again we only need consider the purely

electromagnetic contribution

S =

∫
M
−1

4
FµνF

µν
√
−gd5x (3.65)

=

∫
M

1

2
Aµ∇νF

µν
√
−gd5x−

∫
∂M

1

2
F µνnµAν

√
γd4x (3.66)

=
1

2

∫
r=Λ

r3

L3
e

γ(0)abA′aAb
√
γ(0)d4x, (3.67)

where, from the second to third line, we have assumed the action to be on shell,

such that ∇νF
µν = 0, and in the third line the boundary is defined to be at some

large, but finite, value r = Λ. This is called the “regularized” action.
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We can now insert (3.64) into (3.67) to isolate the divergent terms as Λ→∞

S =
1

2

∫
r=Λ

A(0)
a γ(0)ab

(
−2A

(2)
b − L

4
e∂

2
(0)A

(0)
b log Λ +

1

2
L4
e∂

2
(0)A

(0)
b

) √
γ(0)

L3
e

d4x. (3.68)

This expression clearly shows that the action possesses a logarithmic divergence as

Λ → ∞. This divergence must be removed by the addition of the correct counter

term action. It is important that the action is expressed in terms of Aa and not

A
(0)
a as it is the former and not the latter that transforms under the gauge group

of Einstein-GB gravity. Thus we must invert the expansion (3.64) to give A
(0)
a =

Aa +O(1/r), and hence obtain:

Sct =
Le log Λ

2

∫
r=Λ

Aaγ
(0)ab∂2

(0)Ab
√
γ(0)d4x (3.69)

=
Le log Λ

2

∫
r=Λ

1

2
FabF

ab√γd4x (3.70)

Adding this counter term action to our original action gives us our renormalized

action, S + Sct = Sren, which is divergence free.

We are now in a position to compute the the boundary current, given by (3.59).

Varying Sren explicitly gives

δSren =

∫
M
−F µν∂µδAν

√
−gd5x− Le log Λ

∫
r=Λ

F ab∂aδAb
√
γd4x (3.71)

=−
∫
r=Λ

√
γd4xδAaγ

(0)ab

[
r3

L3
e

A′b + Le log Λ∂2
(0)Ab

]
. (3.72)

Substituting for Aa from (3.64) gives

δSren

L
1/2
e δAa

=

(
2
A

(2)
a

L
7/2
e

+ L1/2
e ∂2

(0)A
(0)
a log Λ− 1

2
∂2

(0)A
(0)
a L1/2

e − L1/2
e ∂2

(0)A
(0)
a log Λ

)
γ(0)aa

(3.73)

=

(
2A

(2)
a

L
7/2
e

− L
1/2
e

2
∂2

(0)A
(0)
a

)
γ(0)aa. (3.74)

Before we calculate the conductivity it helps to be a little more explicit about our

gauge field. As mentioned before, the conductivity is the current density response
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to an applied electric field. For our particular choice of gauge field, Aa = φ(r)δ0
a,

there is no electric field on the boundary. This must be added by introducing a

perturbation to the gauge field of the form

δAi = Ai(t, r, x
i) = A(r)eik·x−iωtei, (3.75)

where the perturbation lies only in the non-radial spatial directions. With this choice

of field

∂2
(0)Ai = (k2 − ω2)Ai, (3.76)

Ei
∣∣
r=∞ = L1/2

e F0i

∣∣
r=∞ = L1/2

e Ȧ
(0)
i , (3.77)

and it is straightforward to obtain an expression for the conductivity

σ =
Ji
Ei

=
2A

(2)
i

iωL4
eA

(0)
i

− i(ω2 − k2)

2ω
. (3.78)

It is important to note that the second piece in this expression is, to some extent,

arbitrary. The reason for this is that there is an arbitrariness of scale associated

with the removal of the logarithmic divergence in (3.68). This can be demonstrated

by using log (cΛ) instead of log Λ in our counter term action. Such a choice still

renormalizes the action but leaves a residual constant on the boundary. Indeed

in [1] and [2] a different coordinate system was employed in the holographic renor-

malization process resulting in contribution to σ of the form −iω log(Le/L).

In order to find the conductivity of our system all that remains to do is calculate

the integration constants A
(0)
a and A

(2)
a . This is achieved by solving the Maxwell

equations that govern the dynamics of the perturbation. Since we are interested

in including gravitational backreaction we must also accommodate the associated

perturbation of the metric. The relevant Maxwell and Einstein-GB equation for this
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perturbation are

eν

rf
[rfeνA′i]

′ − Äi
f 2e2ν

+
L2

r2f
∆Ai −

2

f
q2ψ2Ai +

φ′

fe2ν

(
h′ti −

2

r
hti − ḣri

)
= 0 (3.79)

ḣ′ti −
2

r
ḣti − ḧri +

L2feν

r2 − 2αf

(
1− α(2ν ′f + f ′)

r

)
∆hri +

2κ2r2Ȧiφ
′

r2 − 2αf
= 0. (3.80)

where hab is a perturbation to the metric tensor, Ai is the perturbation of the gauge

field and ∆ is the laplacian operator along the non-radial spatial directions.

These equations simplify greatly if we consider only the case of zero spatial

momentum, k = 0. In this case (3.80) can be integrated once with respect to t to

give

h′ti −
2

r
hti − ḣri +

2κ2r2Aiφ
′

r2 − 2αf
(3.81)

which can then be substituted directly into (3.79), removing the metric terms, re-

sulting in

A′′ +

(
f ′

f
+ ν ′ +

1

r

)
A′ +

[
ω2

f 2e2ν
− 2

f
q2ψ2 − 2κ2r2φ′2

fe2ν (r2 − 2αf)

]
A = 0 . (3.82)

We are only interested in solutions that obey the physically imposed constraint that

there can be no outgoing radiation at the horizon. Therefore, the gauge field’s near

horizon behaviour must have the form

A(r) ∼ f(r)
−i ω

4πT+ (3.83)

where T+ is the Hawking temperature given by (3.30). The asymptotic form is, of

course, given by (3.64). The solutions to this equation are in general, complex. This

results in a complex conductivity which can be plotted as a function of ω as can be

seen in the following section.

Before we actually calculate the conductivity it is worth noting that in [74] a

very elegant interpretation of the holographic conductivity in a four bulk spacetime

dimensional system was provided. It involved the recasting of their version of (3.82)



3.6. Conductivity 63

to the form of a one dimensional Schrödinger equation

−A,zz +V (z)A = ω2A, (3.84)

where z is a new radial parameter. σ was then interpreted as a combination of

the reflection and transmission coefficients of a wave passing through the potential

barrier, V (z). Viewing it in this way allowed intuition from quantum mechanics

to be used to understand many key aspects of the conductivity of their system.

Unfortunately, due to the higher dimensionality of the system discussed in this

paper, such a treatment has proven less straightforward. Transforming (3.82) in to

the form of (3.84) requires a change of radial coordinate to dz = dr
feν

followed by a

change of variable of A = r−
1
2 Ã. Proper treatment of this system via the Schrödinger

equation requires Ã to be normalizable. Since A(r → ∞) is finite, Ã(r → ∞) is

infinite and hence non-normalizable.

3.6.2 Numerical Conductivity

In this section we shall study the numerical conductivity by looking at plots of the

real and imaginary parts as a function of ω for a variety of values of m2, α and

κ2 at different temperatures. The first plot that we shall consider is figure 3.8,

showing the conductivity for a boundary theory at m2 = −2/L2
e, α = 0.125 and

κ2 = 0 at temperatures of 110%, 50%, 35% and 25% of Tc. The first thing to note is

that below Tc the curves look very similar to those of figure 2.2, with the presence

of a step in Re(σ) and a pole at the origin of Im(σ) which indicates the infinite

conductivity of the system. Since the lines in this plot have been generated for

α 6= 0 we see that the superconducting nature of the system is preserved despite the

presence of these higher order terms. Indeed, this was verified in [56] where is was

shown that the inclusion of GB terms in the probe limit had a largely quantitative

and not qualitative effect on the system, at least in the region of parameter space

that they studied. This plot also shows the conductivity of the system above the

critical temperature, showing clearly that the step and pole disappear with Re(σ)

approaching some finite, non-zero value.
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Figure 3.8: Conductivity: A plot showing the real (solid lines) and imaginary
(dashed lines) parts of the conductivity, σ/Tc, as a function of ω/Tc for m2 = −2/L2

e,
α = 0.125, κ2 = 0 at a variety of temperatures. The black, grey, red and blue lines
correspond to temperatures of 110%, 50%, 35% and 25% of the critical temperature
respectively. The small oscillations at larger ω are a numerical artefact.

It is important to add here though, that the idea that the presence of a pole in

Im(σ) guarantees the superconductivity of the system is not quite true. Indeed, as

backreaction is switched on (κ2 > 0) Im(σ) develops a pole, even at temperatures

above Tc, as seen in figure 3.9. This is somewhat alarming as it implies that the sys-

tem is infinitely conducting in its normal phase. As is explained in [54] however, this

infinite conductivity is not superconductivity but results instead from the transla-

tional invariance of the system. A charged system that has translational invariance

cannot have finite DC conductivity as the application of an electric field will cause

uniform acceleration of the charge. Whilst this translational invariance can persist

below Tc there are additions to the pole in Im(σ), that persist when translational

invariance is broken. It is these additional contributions that correspond to the

superconductivity of the system. Indeed, this is the case in the probe limit. By de-

coupling the matter and gravitational fields we are formally breaking translational

invariance which results in the pole for T > Tc disappearing and means that the

presence of a pole below Tc must have another cause.

Returning to figure 3.8, the plot shows the effect of reducing the temperature

below Tc. For this choice of mass we see that reducing the temperature alters the
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Figure 3.9: The real (solid) and imaginary (dashed) parts of the conductivity at
T = 1.1Tc. The blue and red lines correspond to κ2 = 0 and κ2 = 0.001 respectively.
Otherwise m2 = −2/L2

e and α = 0.125.

plot only slightly; making the step and dip sharper and more pronounced, but does

not change the value of ωg. Accessing lower temperatures has proved numerically

very difficult. The absence of a reliable zero temperature solution means we can

cast no light on what happens at as T → 0.

As we approach the BF bound the plot behaves quite differently, as can been seen

in figure 3.10. Now we see that lowering the temperature does dramatically alter

the plot. At T = 0.5Tc the plots looks very similar to that of figure 3.8, but as the

temperature drops the step and dip shift to higher ω, developing distinct peaks which

turn into poles. These poles are interpreted as quasi-normal modes, [78,79] that have

moved to the real axis from elsewhere in the complex plane [72, 74]. Quasinormal

modes arise in perturbations of black holes of the form e−iωt, exactly as we have

done in perturbing the gauge field Aµ. If ω develops a negative imaginary part

the perturbation will have an exponential decay. As a result of imposing boundary

conditions at the horizon and infinity there are only a discrete set of these modes

which are referred to as quasinormal modes. These modes appear as poles in the

retarded Green’s function, [80], and therefore will appear in the conductivity of

our system. If the modes cross the real axis the exponential decay will turn into

exponential growth indicating the presence of an instability. The presence of these
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Figure 3.10: Conductivity: Plots showing the real (left) and imaginary (right) parts
of the conductivity, σ, as a function of ω/Tc for m2 = −4/L2

e, α = 0.125, κ2 = 0 at
a variety of temperatures. The grey, red and blue lines correspond to temperatures
of 50%, 35% and 25% of the critical temperature respectively.
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modes at the real axis of the plot in figure 3.10 is therefore consistent with the system

being at the threshold of an instability associated with the scalar mass saturating the

BF bound. As the temperature drops further more poles appear at higher values of

ω/Tc (not shown). It is suggested in [81] that in the probe limit of Einstein gravity,

as T → 0 the number of these poles diverges. Since such low temperature analysis is

outside the scope of this paper, we can shed no light on whether or not this occurs

away from the Einstein limit.

We are interested in observing the effect that varying α, κ2 and m2 has on these

phenomena. We will begin by looking at the first case; away from the BF bound

where temperature dependent effects are less prominent. In [1] the authors studied

the effect of α, κ2 for m2 = −3/L2
e. They found that increasing α above the Einstein

limit increased the value of ωg and made the step and dip more pronounced. The

effect of increasing κ2 was to smooth out the features of the plot but not affecting the

value of ωg, that is until the smoothing removes the presence of the hard gap1, at least

within the temperature range studied. Studying the conductivity for larger masses

we see very similar results with quantitative differences rather than qualitative. The

key information has been captured on a plot of ωg against Tc as seen in figure 3.11.

The grey points in the left plot in figure 3.11 correspond to the probe, Einstein

limit of the superconductor. One can see that for the range of masses presented, the

points all fall close to the line ωg = 8Tc. This observation contributed ammunition

to the speculation, [72], that this may be a universal relation. This plot shows that

such a relation is unstable to higher curvature corrections as found in [1].

The plot shows that increasing α increases ωg and largely reduces Tc, except for

very close to α = L2/4. This has the effect of moving the point decidedly off the line.

Decreasing the mass from m2 = 0 increases ωg and Tc with the greatest differences

occurring towards the upper bound of α where variations in Tc are more pronounced.

The right hand plot shows the effect of backreaction. Increasing κ2 has very little

effect on ωg with the majority of the effect coming from the reduction in Tc. As α

gets large and negative the points converge corresponding to the diminished effect of

1 i.e Re(σ) no longer is zero for small ω.
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Figure 3.11: The upper plot shows ωg against Tc for κ2 = 0 and m2 = 0, black
(triangular) points; m2 = −2/L2

e, red (square) points and m2 = −3/L2
e, blue (cir-

cular) points. The lower plot shows ωg against Tc for m2 = −2/L2
e for κ2 = 0 red

(square) points and κ2 = 0.05 green (circular) points. In both plots from top to
bottom the points correspond to α = 0.24999, 0.1875, 0.125, 0.0625, 0, −0.25, −1,
−10, with the grey points corresponding to Einstein gravity. The dashed lines have
been added to guide the eye. The straight line corresponds to ωg = 8Tc.
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backreaction in this regime that was noted above. We were unable to extend these

plots to much larger negative coupling as numerical artefacts began to obscure the

key features of the plot, though since calculation of the condensate seems possible

for arbitrarily large, negative α one might expect these curves to continue towards

the axis without ever reaching it.

We now turn our attention to systems at the BF bound, and in particular what

effect α and κ2 have on the development of the quasi-normal modes. Figure 3.12

shows Re(σ), measured at T = Tc/4, for m2 = −4/L2
e, κ

2 = 0 for a variety of values

of α.

0
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150

0 10 20 30

σ
/T

c

ω/Tc

Figure 3.12: Plot showing Re(σ) measured at T = Tc/4, m2 = −4/L2
e and κ2 = 0

for a range of values of α. From left to right: red, α = −100; blue, α = −1.0; green,
α = −0.25; grey, α = 0; purple, α = 0.125 and black, α = 0.24999. The small
oscillations are a numerical artefact.

This plot shows that increasing or decreasing α does not seem to hinder the

development of these quasi-normal modes. The dominant effect of, say, increasing

the GB coupling constant is to shift the poles to higher ω/Tc. This increase with α

is particularly marked as you approach the upper limit of the coupling constant.

Figure 3.13 shows the effect that backreaction has on the development of the

quasi-normal modes with a plot of Re(σ), measured at T = Tc/4, for m2 = −4/L2
e,

α = 0.24999 for a variety of κ2. We see that turning on backreaction very quickly

removes the appearance of the poles, at least at this temperature; it is still quite

conceivable that they may appear as the temperature is dropped. Analysis of this
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Figure 3.13: Plot showing Re(σ) measured at T = Tc/4 at m2 = −4/L2
e and α =

0.24999 for a range of values of κ2. From left to right: red κ2 = 0.1; blue κ2 = 0.01;
green, κ2 = 0.001 and grey, κ2 = 0.0001.

phenomenon at much lower values of α show the existence of quasi-normal modes

up to much higher values of κ2, supporting the observation that the effect of back-

reaction diminishes as α is reduced.

3.7 Summary

The aim of this research was to explore how the superconductor is effected by the

inclusion of higher order curvature terms. It was shown in [56] that in the probe

limit for a particular choice of mass the effect of the GB terms was quantitative

and not qualitative. Our results largely support this claim but identify a number of

regions where the effect can be quite pronounced. We found that in the majority

of parameter space increasing backreaction reduces Tc but that in a narrow region

where m2 → −4/L2
e and α→ L2/4 its effect is reversed and actually increases Tc. In

this regime large, super-planckian values of backreaction are numerically attainable.

We also found that as α becomes large and negative Tc increases and the effect of

backreaction is diminished as the gravitational action is dominated by the higher

curvature terms. Again, this provides a regime where large critical temperatures

and large values of backreaction are attainable.

The bounds on the critical values of α and κ2, studied in section 3.5, show that
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the curvature terms can have a considerable effect in the zero temperature limit.

We also found that the concept of GB gravity being a perturbative correction to

Einstein gravity can be important when considering spacetimes in this limit. We

found that mildly singular solutions were incompatible with this interpretation and

thus their validity must be questioned.

We studied general solutions in this zero temperature limit finding that there

can be no regular, tachyonic solutions to our system and placed constraints on the

masses of non-tachyonic solutions if they exits. These findings applied to both GB

and Einstein gravity.

We also studied the conductivity of the system. We found that in the region away

from the BF bound α and κ2 changed the value of the frequency gap, ωg, ruling out a

universal relation between it and the critical temperature. In the vicinity of the BF

bound the effect of α was to shift the location of the quasi-normal modes that appear

there but otherwise did not effect their development. The effect of backreaction was

more notable: increasing backreaction away from the probe limit quickly prevented

the appearance of these quasi-normal modes, at least within the temperature range

that we were able to study.



Chapter 4

Towards A Holographic

Superconductor with Lifshitz

Scaling

The holographic systems that we have so far considered asymptote to an adS space-

time at radial infinity. The boundary theories of such systems exhibit a scale invari-

ance of the form

t→ λt, xi → λxi. (4.1)

There is, however, no reason why this scaling symmetry must act in the same way

on space and time. Assuming spatial isotropy, the scaling can be generalized to

t→ λzt, xi → λxi, with z 6= 1 (4.2)

where z is called the dynamical exponent, [82] . There are many condensed matter

systems that exhibit this scaling with different values of z, see [82] and [76] for

examples. Field theories that have this scaling symmetry, but no boost symmetry,

have become known as Lifshitz field theories.

There has been a great deal of recent work in developing a holographic descrip-

tion of these theories. Such a duality was first proposed in [83] in which the bulk

72
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spacetime metric was presented as

ds2 = L2

(
r2zdt2 − dr2

r2
− r2dxidx

i

)
, (4.3)

where L represents an overall curvature scale. A spacetime with this metric is

referred to as a Lifshitz spacetime. There are now a number of phenomenological,

[83,84] and string theoretic models, [85–89], for which (4.3) is a solution and work has

been done in developing a holographic dictionary for these theories that allows the

fields in the bulk to be interpreted as operators of a dual boundary theory, [83,90,91].

As in the adS case, the presence of a black hole in the bulk introduces tem-

perature to the boundary theory and a number of asymptotically Lifshitz black

holes have now been found, [92–95]. However, at the time of writing there are no

asymptotically Lifhshitz black hole solutions to a top down model for an arbitrary

dynamical exponent. The aim of the research in this chapter is to address this by

finding black hole solutions to a particular top down model, [96], that permits an ar-

bitrary dynamical exponent, z ≥ 1. These solutions form a crucial first step towards

developing a top down model of holographic superconductivity in this theory.

4.1 The Model

The theory that we shall consider in this chapter is a six-dimensional N = 4 gauged

supergravity, first presented in [97]. It was shown in [98] that this theory can be

obtained from a consistent truncation of massive Type IIA supergravity which means

that the solutions of the six dimensional theory can be uplifted to solutions in string

theory. In [96] this theory was shown to permit Lifshitz solutions.

In general, the metric (4.3) is not a solution to the vacuum Einstein equations

and appropriate matter content must be found to generate a spacetime of this form.

The bosonic field content presented in [96] consists of the metric, gµν , a dilaton, φ,

an anti-symmetric two-form gauge field, Bµν , and a set of gauge vectors, (A
(i)
µ , Aµ)
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for the gauge group SU(2)×U(1). The bosonic part of the action for this theory is

S =

∫
d6x
√
−g

[
−1

4
R +

1

2
∂µφ∂µφ−

e−
√

2φ

4

(
HµνHµν + F (i)µνF (i)

µν

)
+
e2
√

2φ

12
GµνρG

µνρ +
1

8

(
λ2e

√
2φ + 4λme−2

√
2φ −m2e−3

√
2φ
)]

− 1

8

∫
d6x
√
−gεµνρθστBµν

(
FρθFστ +mBρθFστ + F

(i)
ρθ F

(i)
στ

)
(4.4)

where λ is the gauge coupling, m is the mass of the dilaton, the spacetime indices,

µ, ν, ... run from 0 to 5, and the gauge indices, (i) run from 1 to 3. The last term is

a “topological” term where εabcdef is the Levi-Civita tensor. The field strengths are

given by

Fµν = ∂µAν − ∂νAµ (4.5)

F (i)
µν = ∂µA

(i)
ν − ∂νA(i)

µ (4.6)

Gµνρ = 3∂[µBνρ], (4.7)

and to simplify the expression we follow [96] in defining a new field strength

Hµν = Fµν +mBµν . (4.8)

Varying the action with respect to each field in turn gives the following equations

of motion:

Rµν = 2∂µφ∂νφ+ gµνP (φ) + e2
√

2φ

(
G ρλ
µ Gνρλ −

1

6
gµνG

ρλσGρλσ

)
− e−

√
2φ

(
2H ρ

µ Hνρ + 2F ρ (i)
µ F (i)

νρ −
1

4
gµν

(
HρλHρλ + F ρλ (i)F

(i)
ρλ

))
(4.9)

2φ =
∂P

∂φ
+

1

3

√
1

2
e2
√

2φGµνρGµνρ +
1

2

√
1

2
e−
√

2φ
(
HµνHµν + F µν (i)F (i)

µν

)
(4.10)

∇ν

(
e−
√

2φHνµ
)

=
1

6
εµνρλστHνρGλστ (4.11)

∇ν

(
e−
√

2φF νµ (i)
)

=
1

6
εµνρλστF (i)

νρGλστ (4.12)

∇ρ

(
e2
√

2φGρµν
)

= −me−
√

2φHµν − 1

4
e εµνρλστ

(
HρλHστ + F

(i)
ρλ F

(i)
στ

)
, (4.13)
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where the scalar potential, P (φ), is defined to be

P (φ) =
1

8

(
λ2e

√
2φ + 4λme−

√
2φ −m2e−3

√
2φ
)
. (4.14)

It is shown in [96] that there are solutions to this system of equations whose met-

ric is that of a four dimensional Lifhshitz space time crossed with a two dimensional

hyperbolic space, (Li4 ×H2),

ds2 = L2

(
r2zdt2 − r2dx2

1 − r2dx2
2 −

dr2

r2

)
− a2

y2
2

(dy2
1 + dy2

2), (4.15)

where a is the radius of curvature of the hyperboloid, which can be taken to be

compact, see [99] for details. The specific field configurations that generate this

spacetime were found to be

F
(3)
tr = αL2rz−1, F (3)

y1y2
= γ

a2

y2
2

Gx1x2r = βL3r ⇒ Bx1x2 =
β

2
L3r2 , (4.16)

where the dilaton is a constant, φ∞. The equations are somewhat simplified by the

following rescalings

α̂ = Lαe−φ∞/
√

2 β̂ = Lβe
√

2φ∞ γ̂ = Lγe−φ∞/
√

2

λ̂ = Lλeφ∞/
√

2 â = a/L m̂ = Lme−3φ∞/
√

2 , (4.17)

Equations (4.9) to (4.13) then reduce to a simple set of algebraic equations with the

following solutions

β̂2 = z − 1 α̂2 = γ̂2(z − 1)

γ̂2 =
(2 + z)(z − 3)± 2

√
2(z + 4)

2z
λ̂2 = 2z(4 + z) (4.18)

m̂2

2
=

6 + z ∓ 2
√

2(z + 4)

z

1

â2
= 6 + 3z ∓ 2

√
2(z + 4) .

These define two Lifshitz spacetimes, one for each of the sign choices in (4.18). The
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Figure 4.1: Plot showing the values of z and m̂ that the Lifshitz and adS solutions
can take. The blue line indicates the adS solutions, the red line corresponds to the
Lifshitz solutions with the upper sign choice in (4.18) and the black to the lower
sign choice.

requirement that β̂ is real restricts z to z ≥ 1 and for the lower sign choice, for γ̂ to

be real we find that z must be greater than approximately 4.29.

In addition to these Lifshitz solutions the system permits a 1 parameter family

of adS solutions defined by z = 1 and β̂ = α̂ = 0. With these constraints the field

equations give

λ̂ =
m̂

2
+

3

m̂
,

1

â2
=

5m̂2

8
− 3

2
+

9

2m̂2
, (4.19)

γ2 = −5m̂2

16
+

9

4
− 9

4m̂2
,

where m̂ is a free parameter. In this case the requirement that γ̂ is real implies that

m̂ ∈ [
√

6
5
,
√

6]. Figure 4.1 shows the values of z and m̂ that these Lifshitz and adS

solutions can take.

4.2 Finite Temperature Solutions

We wish to find black hole solutions to this system of equations that asymptote to

the Lifshitz solutions described above. In order to gain a fuller understanding of the
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system it is also useful to investigate black hole solutions in the asymptotically adS

spacetimes as well. In order to do this we must introduce new terms into the metric

and field strength Ansätze to accommodate deviations from the pure Lifshitz and

adS spacetimes.

For simplicity we shall look for black hole solutions that respect the planar

symmetry and static nature of (4.3). Thus the alterations to the metric need only

have radial dependence

ds2 = L2

(
f(r)r2zdt2 − dr2

g(r)r2
− h(r)r2dxidx

i

)
− k(r)a2

y2
2

(dy2
1 + dy2

2). (4.20)

Since Einstein’s equations are invariant under coordinate rescalings we shall use this

gauge freedom to fix r such that h(r) = 1. We also need to insert functions into the

field strengths, (4.16), as follows

F
(3)
tr = αL2rz−1p(r) F (3)

y1y2
= γ

a2

y2
2

(4.21)

Bx1x2 =
1

2
βL3r2s(r) Grx1x2 =

1

2
βL3(r2s(r))′ (4.22)

and in addition we allow the dilaton to vary, φ = φ(r). Here, a prime denotes

differentiation with respect to r. Note that no additional function has been added

to F
(3)
y1y2 , the reason being that a non-trivial function here is forbidden by closure,

dF (3) = 0, of this field strength.

The system can be simplified further by observing that the equation of motion

for F (3), (4.12), relates p and s via

(
e−
√

2φr2k
√
gαp

√
f

)′
= γβL(r2s)′. (4.23)

At radial infinity the constant of integration is zero, whether in a Lifshitz or adS

spacetime, and therefore must be zero everywhere. Integrating both sides we find

F
(3)
tr = αL2rz−1p =

√
fγβL3rz−1se

√
2φ

k
√
g

. (4.24)

Once again, the equations can be simplified by applying the rescalings (4.17).
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We shall also scale out the asymptotic value of the dilaton by letting ϕ = φ − φ∞.

The remaining field equations now become

rg′ = −g
(

4 + 2z +
rf ′

f
+ 2

rk′

k

)
+ 2

(
P̂ (ϕ)− (s2 + rs′s+

r2s′2

4
)β̂2ge2

√
2ϕ − 3

8
m̂2β̂2s2e−

√
2ϕ

−1

2

β̂2γ̂2s2e
√

2ϕ

k2
+

1

2

γ̂2e−
√

2ϕ

k2

)
(4.25)

r2f ′′ = −2f

(
2z + z2 + z

rk′

k
+ z

rg′

2g

)
− rf ′

(
3 + 2z +

rk′

k
+
rg′

2g
− rf ′

2f

)
+

2f

g

(
P̂ (ϕ) + (s2 + rs′s+

r2s′2

4
)β̂2ge2

√
2ϕ +

1

8
m̂2β̂2s2e−

√
2ϕ

+
3

2

β̂2γ̂2s2e
√

2ϕ

k2
+

1

2

γ̂2e−
√

2ϕ

k2

)
(4.26)

r2k′′ = − 2

â2g
− rk′

(
3 + z +

rf ′

2f
+
rg′

2g

)
+

2k

g

(
P̂ (ϕ) + (s2 + rs′s+

r2s′2

4
)β̂2ge2

√
2ϕ +

1

8
m̂2β̂2s2e−

√
2ϕ

−1

2

β̂2γ̂2s2e
√

2ϕ

k2
− 3

2

γ̂2e−
√

2ϕ

k2

)
(4.27)

r2ϕ′′ = −rϕ′
(

3 + z +
rf ′

2f
+
rg′

2g
+
rk′

k

)
+

1

g

(
−∂P̂ (ϕ)

∂ϕ
+
√

2(s2 + rs′s+
r2s′2

4
)β̂2ge2

√
2ϕ

)

+
1

g

(
−
√

2

8
m̂2β̂2s2e−

√
2ϕ +

√
2

2

β̂2γ̂2s2e
√

2ϕ

k2
−
√

2

2

γ̂2e−
√

2ϕ

k2

)
(4.28)
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r2s′′ = −s

(
2z +

rf ′

f
+ 2

rk′

k
+
rg′

g
+ 4
√

2rϕ′ − m̂2e−3
√

2ϕ

g
− 4γ̂2e−

√
2ϕ

gk2

)

− rs′
(

3 + z +
rf ′

2f
+
rg′

2g
+
rk′

k
+ 2
√

2rϕ′
)

(4.29)

And the Gr
r component of the Einstein tensor gives

1

â2k
+ g

(
1 +

r2k′2

4k2
+ z

rk′

k
+
r2k′f ′

2kf
+ 2z +

rf ′

f
+ 2

rk′

k

)
= r2ϕ′

2
g + 2P̂ (ϕ) + (s2 + rs′s+

r2s′2

4
)β̂2ge2

√
2ϕ

− 1

4
m̂2β̂2s2e−

√
2ϕ − β̂2γ̂2s2e

√
2ϕ

k2
− γ̂2e−

√
2ϕ

k2
. (4.30)

The scalar potential now takes the form

P̂ (ϕ) =
1

8
(λ̂2e

√
2ϕ + 4λ̂m̂e−

√
2ϕ − m̂2e−3

√
2ϕ). (4.31)

Whilst we have six equations with only five unknowns it can be shown that a com-

bination of (4.25) to (4.29) is equal to the derivative of (4.30) via a Bianchi identity

and the system is well defined. It is possible to use (4.30) to completely remove g

from the system of equations leaving only four unknown variables.

The metric and field equations are invariant under the following rescaling

r → br, t→ t

bz
, xi → xi

b
, (4.32)

which means we are free to set the Schwarzschild radius of the black hole, r+, to 1.

We will choose, however, to keep r+ explicitly in our calculations for clarity.

4.2.1 Boundary Conditions

Before attempting to find black hole solutions to this system it is important to

investigate the system at its boundaries. We shall begin with the boundary at

radial infinity. We defined our fields such that they all tend to 1, except for ϕ which
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tends to zero, in the asymptotically Lifshitz spacetime:

f = g = k = s = 1, ϕ = 0 and f ′ = g′ = k′ = s′ = ϕ′ = 0. (4.33)

Our choice of coordinates is not quite so convenient for in the asymptotically adS case

since s now goes to zero which means that the factoring out of β̂ is unnecessary. We

propose that for the adS solutions that are disconnected from the Lifshitz solutions

we shall set β̂ = 1 and the fields shall tend to the following:

f = g = k = 1, s = ϕ = 0 and f ′ = g′ = k′ = s′ = ϕ′ = 0, (4.34)

In each case the gradients of the fields go to zero meaning these asymptotic regions

define fixed points of the system. In order to find black hole solutions it is useful to

investigate the stability of each of these fixed points. We do this by adding a small

perturbation to each field, f = 1 + δf , g = 1 + δg, etc. and observing how the field

equations effect these perturbations at linear order.

The adS Fixed Point

Following [100] we observe that the system at the adS fixed point is greatly simplified

by the fact that equation (4.29) fully decouples from the others at linear order, giving

r2δs′′ + 4rδs′ + δs(2− m̂2 − 4γ̂2) = 0. (4.35)

From this isolated equation we obtain the asymptotic form of s:

δs ∼ s+r
θ+ + s−r

θ− , θ± =
1

2

(
−3±

√
37− m̂2 − 36

m̂2

)
. (4.36)

From a combination of the linearised versions of (4.25) and (4.26) one finds that

r2δf ′′ + 4rδf ′(r) = 0 which implies

δf ∼ f0 + f1r
−3. (4.37)
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Finally, linearising (4.27) and (4.28) show that the equations for k and ϕ form a

coupled system given by

LI

δϕ
δk

 =

(3m̂2 − λ̂2)/2
√

2γ̂2

2
√

2γ̂2 2(γ̂2 + 3)

δϕ
δk

 , (4.38)

where LIX = r2 d2

dr2
X+4r d

dr
X is a linear operator. The eigenvalues and eigenvectors

of this system are:

ξ± =
1

8m̂2

(
3m̂4 + 36m̂2 − 36±

(
m̂2 − 6

)√
36− 60m̂2 + 89m̂4

)
(4.39)

v± = (v1±, v2±)T =

(
−8m̂2 ±

√
36− 60m̂2 + 89m̂4

√
2(5m̂2 − 6)

, 1

)T
. (4.40)

We can now solve the eigenvalue equation to find

X1 ∼ x1+r

(
−3+
√

9+4ξ+
)
/2

+ x1−r

(
−3−
√

9+4ξ+
)
/2
, (4.41)

X2 ∼ x2+r

(
−3+
√

9+4ξ−
)
/2

+ x2−r

(
−3−
√

9+4ξ−
)
/2
, (4.42)

were X1 and X2 are the coefficients of X corresponding to ξ+ and ξ− in the eigenvalue

equation respectively. The fall-offs of δϕ and δk are then given by

δϕ ∼ v1+X1 + v1−X2, (4.43)

δk ∼ v2+X1 + v2−X2. (4.44)

Figure 4.2 shows a plot of these exponents as a function of m̂. Each field has

a pair of exponents which are symmetric about −3/2 and whose coefficients can

be interpreted, in precisely the same way as described in section 1.2.3, as a source

and operator in the boundary field theory. As is noted in [100] the straight part of

the red curve, where
√

6/5 < m̂ < 1.254, indicates that this exponent has turned

imaginary. This occurs when ξ− < −9/4 in (4.43) and (4.44) which is equivalent to

a mass violating the BF bound of adS4, see (2.1). With these complex exponents
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Figure 4.2: Plot showing the real part of the field exponents as they approach an
adS spacetime as r → ∞. A combination of the blue and red lines correspond to
the exponents of k and ϕ, the black lines correspond to the exponents of f and the
purple to s. Each pair of exponents sum to −3/2. The joining of the red lines for
small m̂ indicate that the exponents turn complex.

the analogy with operators and sources of the boundary theory cannot be made.

Figure 4.2 shows that for all m̂ ∈ [
√

6/5,
√

6] there is at least one positive

eigenvalue. Exciting these particular modes will lead a solution to diverge from the

fixed point as r →∞.

The Lifshitz Fixed Point

At the Lifshitz fixed point, (4.29) no longer decouples from the others and we must

make do with a numerical understanding of the stability. We do this by decomposing

our system of equations into nine first order differential equations by the introduction

of four new variables for each of the second order differential equations: f̃ = rf ′,

k̃ = rk′, etc. The linearised system of equations can then be written in the following

form

LIIF i = AijF j, (4.45)
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where LII is a new linear operator defined by LIIX = r d
dr
X, F i is a vector of all

the field perturbations, F i = (δf, δf̃ , δg, δk, δk̃, δs, δs̃, δϕ, δϕ̃)T and Aij is a 9 by 9

matrix. This equation is equivalent to

LIIX i = J ijXj, Xk = (S−1)kmFm, (4.46)

where J ij is the Jordan normal form of Aij and is independent of r. Skm is an invert-

ible matrix such that Aij = SikJkl(S−1)lj. Once in this form it is straightforward to

solve the system of equations. We numerically calculate J ij and Sij and find Aij to

be diagonalizable with eigenvalues, ∆i, giving

F i =
∑
j

Sijr∆j . (4.47)

Figure 4.3 shows the real part of the numerically obtained eigenvalues as a func-

tion of z for both the upper and lower sign choices in (4.18). Note that only eight

eigenvalues have been plotted in these graphs since the eigenvalue corresponding to

g can be removed by the use of (4.30). Each pair of eigenvalues is symmetric about

−(z+2)/2 which is consistent with the fall-off of a general field in an asymptotically

Lifshitz spacetime. This can be demonstrated with the example of a generic scalar

field, ψ, propagating in a d + 1 dimensional spacetime defined by (4.3), with an

equation of motion given by

∇a∇aψ −M2ψ = 0, (4.48)

where M is the mass of the scalar field. The solution to this equation will be valid

in the vicinity of radial infinity and is given by

ψ = ψ+r
Λ+ + ψ−r

Λ− , (4.49)

where

Λ± =
−(d+ z − 1)

2
±
√

(d+ z − 1)2

4
+M2L2. (4.50)
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Figure 4.3: Plots of the real parts of the eigenvalues of Aij in (4.45) as a function
of z. The upper and lower plots correspond to the upper and lower sign choices in
(4.18) respectively.
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Here we see that the exponents of each of the fall-offs lie either side of −(d+z−1)/2,

which in our four dimensional Lifshitz spacetime is −(z + 2)/2. In a similar way to

the adS case we can interpret these pairs as an operator and source term in the dual

theory.

Once again, as is noted in [100], there are regions of each plot for which some of

the eigenvalues are complex. For the lower sign choice one finds complex eigenvalues

for z < 16.82, which, using intuition from the adS case, may be associated with a

violation of the Lifshitz equivalent of the BF bound. One can see from (4.50) that in

order for the Λ± to be real the following bound on the scalar mass must be satisfied

M2L2 ≥ −(d+ z − 1)2

4
, (4.51)

where in our case d = 3. Whilst this is reminiscent of the BF bound in adS space,

a proper analysis of whether this does indicate an instability has yet to be done.

The upper sign choice is more complicated with a second region of complex

eigenvalues appearing at larger z. In fact there is only a small window, 5.69 <

z < 5.83, in which all the eigenvalues are real. At present we do not have a clear

understanding of why this is so.

Each plot shows the presence of irrelevant operators for the full range of z.

The Horizon

To obtain black hole solutions for this system we must ensure that our boundary

conditions are consistent with the nature of the near horizon region of a black

hole spacetime. These conditions will be the same irrespective of whether we are

interested in asymptotically Lifshitz or adS black holes. Assuming that the horizon

in non-degenerate, we wish the gtt component of the metric to have a simple zero

and the grr to have a simple pole at r = r+. Checking that the matter and metric

fields and the energy momentum tensor are regular at the horizon imposes no further
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constraints and we find the near horizon expansion of the fields to be

f(r) = f1(r − r+) + f2(r − r+)2 + ...

g(r) = g1(r − r+) + g2(r − r+)2 + ...

k(r) = k0 + k1(r − r+) + k2(r − r+)2 + ... (4.52)

ϕ(r) = ϕ0 + ϕ1(r − r+) + ϕ2(r − r+)2 + ...

s(r) = s0 + s1(r − r+) + s2(r − r+)2 + ...

By inserting these into the field equations and expanding order by order, ap-

propriate boundary conditions can be found. This procedure leaves us with four

independent field variables at the horizon, f1, k0, s0 and ϕ0 for each choice of z or

m̂. Recall from (4.32) that r+ can be set to 1 without loss of generality.

4.3 AdS Black Holes

We begin our search for black hole solutions in the more familiar asymptotically adS

spacetimes. Due to the slightly simpler nature of systems in this case it is possible

to gain some analytic understanding of the black hole spacetimes, which we shall

discuss first.

4.3.1 Analytic Black Holes

We start with the simplest possible case of a system with s(r) = 0 and a constant

dilaton and k field. Recall that for asymptotically adS solutions the parameters of

the system are defined by (4.19) with β̂ = 1. In this case the field equations admit

the planar adS Schwarzschild solution:

f(r) = g(r) = 1−
r3

+

r3
. (4.53)

Whilst we are unable to find more complicated analytic solutions to the fully non-

linear set of equations we are able to study ‘probe’ solutions of the linearised equa-

tions. We use the word probe here in a slightly different sense to its use in chapters
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2 and 3 since we no longer have a free parameter to tune the backreaction to zero.

The solutions that we shall study now are perturbations to ϕ, k and s that are

consistent with (4.53).

We begin by allowing s to vary but keeping ϕ and k constant. Once again (4.29)

decouples from the other equations at linear order giving

[(
1−

r3
+

r3

)
(r2s)′

]′
= (12− λ̂2)s. (4.54)

By writing x = (r+/r)
3 and

s(x) = x−θ±/3P (x), (4.55)

where θ± is given by (4.36), this equation becomes a hypergeometric equation:

x(1− x)Pxx + [(1− x)2θ±/3]Px + (2 + θ±)(2− θ±)P/9 = 0. (4.56)

This has solutions

s(x) = x−θ±/3 2F1[−(θ± + 2)/3, (2− θ±)/3;−2θ±/3, x] (4.57)

where 2F1[a, b; c, x] is a hypergeometric function. Since a + b = c each 2F1[a, b; c, x]

has a logarithmic singularity at x = 1, however a non-singular combination of the

two functions can be found, giving

s(x) ∝ Γ[−2θ−/3]x−θ+/3

Γ[(2− θ−)/3]Γ[−(θ− + 2)/3]
2F1[−(θ+ + 2)/3, (2− θ+)/3;−2θ+/3, x]

− Γ[−2θ+/3]x−θ−/3

Γ[(2− θ+)/3]Γ[−(θ+ + 2)/3]
2F1[−(θ− + 2)/3, (2− θ−)/3;−2θ−/3, x].

(4.58)

The large r fall-off of this expression agrees precisely with (4.36). To ensure non-

singular solutions in this limit we wish θ+ < 0 which is true for λ̂2 > 10 (m̂ <
√

10−2). For an example we shall take λ̂2 = 52/5 which gives θ± = (−3±
√

37/5)/2.

Figure 4.4 shows a plot of s as a function log r.
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We can also consider black hole solutions with non-trivial ϕ and k. Fixing s = 0

we once again find that the equations (4.27) and (4.28) form an isolated coupled

system similar to (4.38)

LIII

δϕ
δk

 =

(3m̂2 − λ̂2)/2
√

2γ̂2

2
√

2γ̂2 2(γ̂2 + 3)

δϕ
δk

 , (4.59)

but where

LIIIX =
1

r2

d

dr

[
r4

(
1−

r3
+

r3

)
dX

dr

]
. (4.60)

The eigenvalues and eigenvectors are once again given by (4.39) and (4.40). As

above we can recast the eigenvalue equation, LIIIX = ξ±X, into hypergeometric

form by writing X = xµY where

µ±(ξ±) = (1±
√

1 + 4ξ±/9)/2, (4.61)

giving

x(1− x)Yxx + (2µ± − (1 + 2µ±)x)Yx − µ2
±Y = 0. (4.62)

This has solutions

X = xµ± 2F1[µ±, µ±; 2µ±;x], (4.63)

where each of the elements in X correspond to a different choice of ξ±. Once again

the solutions are singular at x = 1 but a non-singular combination can be found

X ∝ Γ[2µ−]

Γ[µ−]Γ[µ−]
xµ+ 2F1[µ+, µ+; 2µ+;x]

− Γ[2µ+]

Γ[µ+]Γ[µ+]
xµ− 2F1[µ−, µ−; 2µ−;x]. (4.64)

In order to have a non-singular solution at x = 0 we require µ±(ξ±) > 0. Plotting

µ−(ξ+) as a function of m̂ shows µ−(ξ+) < 0 for all m̂ ∈ [
√

6/5,
√

6], which means
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Figure 4.4: The upper plot shows a perturbation of s that is consistent with (4.53)
for m̂ =

√
10 − 2. The lower plot shows consistent perturbations of ϕ and k for

m̂ = 3/2.

that the element of X corresponding to this eigenvalue must be set to zero. We also

find that we must restrict our solutions to the range 1.254 < m̂ < 1.588 as above

this range µ−(ξ−) < 0 and below this range both µ+(ξ−) and µ+(ξ−) are complex.

From (4.64) it is straightforward to find the expressions for δϕ and δk

δϕ = v1−X2 (4.65)

δk = v2−X2, (4.66)

where X2 corresponds to the eigenvalue ξ−. Figure 4.4 shows an example of ϕ = δϕ

and k = 1 + δk as a function of log r for m̂ = 3/2.
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Whilst these findings are not true solutions to the full system of equations they

provide a strong indication that similar solutions to the full system may be found.

4.3.2 Numerical Solutions

We now wish to find numerical solutions to the full coupled set of differential equa-

tions. These can be found by fixing m̂ and using a “shooting method” in which

the initial data are guessed and each equation is integrated from the horizon out to

some large radial distance. The initial data can then be tuned to give the desired

asymptotic fall-off.

Due to the presence of an irrelevant operator at the fixed point our numerical

solutions will diverge from the fixed point. It is however possible to tune the initial

data to reach a solution that is arbitrarily close to the fixed point solution. This

process is simplest in systems that have only one positive eigenvalue as any general

solution must necessarily converge to a line in parameter space upon which the fixed

point solution must lie. Tuning the initial data then moves the solution along this

line and the location of the fixed point is indicated by a sign flip in the divergences

of the fields.

As we desire the fixed point to have at most one irrelevant operator we shall only

consider asymptotically adS black holes with m̂ ∈ [
√

6/5, 1.162]. Note that in this

range the exponents of ϕ and k are complex.

Via this process we find a two parameter family of asymptotically adS black hole

solutions for a fixed value of m̂. A priori we are free to choose any two of f1, k0, ϕ0

and s0 as our two free parameters and we shall choose them to be ϕ0 and s0.

Figures 4.5 to 4.7 show examples of the asymptotically adS black hole solutions

with m̂ = 1.105. Figure 4.5 shows two solutions where s0 = 0, which implies that

s(r) = 0 for all r meaning these solutions correspond to uncharged black holes. The

upper plot shows the effect of a small perturbation to the dilaton. It leads to a

smaller perturbation in k and largely leaves f and g unchanged which is consistent

with the approximations made in finding the analytic solution (4.64). Since the range

of m̂, for which we have numerical solutions, does not overlap with the range of m̂ for

which (4.65) and (4.66) are valid we are unable to compare the two solutions directly.
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Figure 4.5: Field profiles for asymptotically adS black holes with m̂ = 1.105. In
each plot the red line corresponds to f , the blue to g, black to k, purple to ϕ and
brown to s. The upper plot corresponds to ϕ0 = 0.2, s0 = 0 and the lower to ϕ0 = 1,
s0 = 0.

The lower plot shows the effect of turning ϕ0 up to one. Now the perturbation in k

grows and f and g are no longer equal.

Figure 4.6 shows solutions with ϕ = 0 and s0 6= 0. Again, the upper plot shows

the effect of a small perturbation in s which leaves the other fields largely unchanged.

This is consistent with the approximations made in finding (4.58). In this case it is

possible to overlay the analytic and numerically generated profiles of s for the same

value of m̂, in doing so one finds that the two appear identical to the naked eye

until the numerical solution begins to diverge from the fixed point. Increasing s0

alters all the other fields as seen in the lower plot. Figure 4.7 shows an example of

a solutions for ϕ0 6= 0 and s0 6= 0.
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Figure 4.6: Field profiles for asymptotically adS black holes with m̂ = 1.105. In
each plot the red line corresponds to f , the blue to g, black to k, purple to ϕ and
brown to s. The upper plot corresponds to ϕ0 = 0, s0 = 0.1 and the lower to ϕ0 = 0,
s0 = 1.
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Figure 4.7: Field profiles for asymptotically adS black holes with m̂ = 1.105, ϕ0 = 1
and s0 = 1. The red line corresponds to f , the blue to g, black to k, purple to ϕ
and brown to s.
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4.4 Lifshitz Black holes

We are now interested in finding black hole solutions that asymptote to the Lifshitz

spacetime defined by (4.18). A crucial difference between this case and the asymp-

totically adS case is that it is necessary that s 6= 0 in order to generate the Lifshitz

spacetime. As a result it is less straightforward to obtain an analytic expression for

the black hole similar to (4.53) and we must rely solely on numerical results. The

numerical solutions are found in precisely the same way as in the adS case with the

only difference being that the parameters of the theory are now defined by (4.18)

where the dynamical exponent z ≥ 1 is used to fix the theory as opposed to m̂. For

simplicity we only consider the solutions corresponding to the upper sign choice in

(4.18) since, in this case, the fixed point has only one irrelevant operator. By inte-

grating the equations of motion (4.25) to (4.29) we once again find a two parameter

family of asymptotically Lifshitz black hole solutions for each value of z to which

we assign the free parameters ϕ0 and s0.

Figures 4.8 and 4.9 show examples of the field profiles for these asymptotically

Lifshitz black holes. The upper plots in figure 4.8 depict the case of z = 2, ϕ0 = 0

and s0 = 1. These plots show a dramatic discrepancy between the profiles of f and

g and also show that ϕ and k are perturbed. In fact, it is possible to show that for

z 6= 1 there is no value of s0 for which ϕ and k have trivial profiles. This can be seen

from the boundary conditions governing ϕ1 and k1 that appear in (4.52). Setting

ϕ0 = 0 and k0 = 1 for a system defined by (4.18), the boundary conditions become:

√
2ϕ1 =

β̂2

g1

(
s2

0

(
γ̂2 − m̂2

4

)
− 2−

(
γ̂2 − m̂2

4

))
(4.67)

k1 =
β̂2

g1

(
−s2

0

(
γ̂2 − m̂2

4

)
− 2 +

(
γ̂2 − m̂2

4

))
. (4.68)

If the field profiles are to be trivial then ϕ1 and k1 must both be zero. From (4.67)

and (4.68) we can see that this is only possible when β̂2 = 0 which only occurs at

z = 1. Thus, for z 6= 1 there can be no solutions where both ϕ and k have trivial

profiles.

Another possibility is that s may be trivially equal to one, with ϕ and k having
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Figure 4.8: Plots showing the field profiles for asymptotically Lifshitz black holes
for z = 2. The red, blue, black, brown and purple lines correspond to f , g, k, s and
ϕ respectively. The upper plots show the fields for ϕ0 = 0, s0 = 1 and the lower
plot shows ϕ0 = 0.25, s0 = 2.5.
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Figure 4.9: Plots showing the field profiles for asymptotically Lifshitz black holes
for ϕ0 = s = 1. The red, blue, black, brown and purple lines correspond to f , g, k,
s and ϕ respectively. The solid lines correspond to z = 2 the larger dashed lines to
z = 3 and the smaller dashed lines to z = 5.75.
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non-trivial profiles. We have no analytic arguments to say whether or not this is

possible, but we have seen no indication of this in our numerical solutions.

In the lower plots of figure 4.8 two different values of ϕ0 and s0 have been chosen

which show how the values of these parameters can dramatically alter the profiles

of the fields.

The plots in figure 4.9 show the effect of altering the dynamical exponent for a

system with ϕ0 = s = 1. The plots show the field profiles for z = 2, z = 3 and

z = 5.75, where the last value was chosen to be within the range for which all the

eigenvalues of figure 4.3 are real. These plots show how z can alter the field profiles,

particularly f and g, and that increasing z quickens the convergence to the Lifshitz

solution. This was to be expected as, as can be seen in figure 4.3, increasing z largely

reduces the eigenvalues governing each fields approach to the Lifshitz fixed point.

4.5 Temperature

Having found these black hole solutions it is interesting to investigate some of the

characteristics other than their field profiles. In this section we make the first few

steps of this exploration by studying the dependence of the temperature of these

black holes on the initial parameters ϕ0 and s0.

An expression for the temperature is found by Wick rotating the metric and

ensuring that the horizon is non singular, giving

T =
1

βτ
=
rz+1

+

4π
(f ′g′)

1
2

∣∣∣∣
r=r+

, (4.69)

where βτ is the periodicity of the Wick rotated time coordinate, t→ iτ . Note that

βτ scales as b−z under the rescaling (4.32) which is consistent with the invariance of

2π
βτ
dτ that appears in the metric.

Figures 4.10 to 4.12 show the temperatures of both the asymptotically adS and

Lifshitz black holes as a function of our initial parameter s0, for a variety of values

of ϕ0. Figure 4.10 shows the asymptotically adS black hole for m̂ = 1.105 and figure

4.11 shows the Lifshitz black hole for z = 2. Both plots show that increasing s0

reduces the temperature. A key difference between the adS and Lifshitz black holes
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Figure 4.10: Plot of the temperature of an asymptotically adS black hole with
m̂ = 1.105 as a function of s0. Each line corresponds to different values of ϕ0: the
blue to ϕ0 = 0, red to ϕ0 = 1, yellow to ϕ0 = 2 and green to ϕ0 = 3.

is their behaviour as s0 → 0. This is a valid regime of adS black holes for which

their temperature is finite. Lifshitz black holes however, do not exist at s0 = 0 and

it appears that the temperature diverges as this limit is approached.

The plots also show how the temperature is altered as ϕ0 is changed. In the

adS case we see that increasing ϕ0 dramatically increases the temperature of the

uncharged black hole, and quickens its decent as s0 is increased. In the Lifshitz case

increasing ϕ0 initially increases the temperature before reducing it. Unfortunately

we were unable to verify whether, like the adS case, these curves cross as s0 is

reduced further.

We can also investigate the effect of altering z on the temperature, as seen in

figure 4.12. The left plot shows that increasing z raises the temperature for small

s0 but then quickens its decent as s0 is increased. The curves appear to intersect at

one point which may suggest that this point is invariant under changes in z. The

plot on the right shows that this is not the case. It shows that while the three curves

do intersect within a very small region of parameter space, the intersection point

for curves corresponding to lower values of z moves away from this point, as seen

by the square and triangular points corresponding to z = 1.5 and 1.3 respectively.
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Figure 4.11: Plot of the temperature of an asymptotically Lifshitz black hole with
z = 2 as a function of s0. Each line corresponds to different values of ϕ0: the blue
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Figure 4.12: Plot of the temperature of an asymptotically Lifshitz black hole with
ϕ0 = 1 as a function of s0. Each curve corresponds to a different value of z: blue
to z = 2, red to z = 3, and yellow to z = 5. The three curves presented in the left
plot all appear to intersect at a single point. The plot on the right shows that this
common intersection point does not hold as z is reduced below 2 since the square
and triangular points, corresponding to z = 1.3 and z = 1.5 respectively, do not lie
on this point.
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4.6 Summary

The aim of this research was to find asymptotically Lifshitz black holes solutions to

the model presented in [96]. The motivation was to introduce temperature into the

theory as a crucial step towards developing a model of holographic superconductivity

in this top down model that permits an arbitrary dynamical exponent, z ≥ 1.

We succeeded in finding these black hole solutions and made a few steps towards

investigating their characteristics.

We began by studying the asymptotically adS solutions that this theory permits

in addition to the Lifshitz ones. We numerically found a two parameter family of

asymptotically adS black hole solutions. These numerical solutions are supported

by the finding of analytic black hole solutions that are valid in the regime where

there is no backreaction of the matter fields upon the metric at linear order.

We then moved on to numerically find a two parameter family of asymptotically

Lifshitz black hole solutions. By altering these two parameters it was possible to

dramatically alter the field profiles of these Lifshitz black holes. We also investigated

the effect that z had on the field profiles. Increasing z changed the profiles slightly

and quickened the convergence towards the Lifshitz fixed point.

We then made some initial investigations into the temperature of these black

holes. We found that for both types of black hole the temperature reduced as s0

increased. Unfortunately it was outside the scope of our horizon Ansatzë to ascertain

whether or not the temperature ever reached precisely zero.

In the Lifshitz case, and unlike the adS case, we saw that the temperature di-

verged as s0 was reduced. We also studied the effect that z has on temperature

finding that it seems to raise the temperature at small values of s0 but quicken its

decent as s0 is increased.



Chapter 5

Outlook

This thesis considers two different aspects of holographic superconductivity which

we shall now discuss in turn.

In chapter 3 we study the stability of a fully backreacting model of holographic

superconductivity to the inclusion of higher order corrections to Einstein gravity. We

found that while the key features of the superconductor persist, the details can be

dramatically altered. When studying the zero temperature limit of the system, we

found that the perturbative corrections can have a significant effect that must lead

one to question the validity of some of the solutions in this regime. By considering

the conductivity we have also been able to rule out a universal relation between the

frequency gap and the critical temperature.

The findings of this research suggest a number of interesting avenues for future

work, most notably in relation to the zero temperature limit. The first thing to do

might be to either find, or disprove the existence of zero mass solutions of the sort

presented in [74]. If they exist one could see what effect the GB terms have on these

solutions and the quantum phase transitions that happen there.

Having shown that this system does not permit regular, superconducting, zero

temperature, tachyonic solutions a possible next step might be to find out whether

there exist non-regular solutions that are compatible with the perturbative relation

between Einstein and GB gravity. If so, it would be interesting to find out how

this non-regularity can be interpreted. It would also be interesting to study the

conductivity of this system in such a case, particularly in light of [81] which suggests
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that an infinite tower of quasi-normal modes may appear on the real axis as the

temperature goes to zero.

Another line of enquiry might be to further investigate the regime of positive

scalar masses at finite temperature. In this work we were only able to find solutions

for very small positive m2 which proved to be only marginally different to those of

m2 = 0. In [73], which studied the m2 > 0 case in the probe limit, the authors found

solutions at larger masses but found that solutions become difficult to attain due

to an observed warping of the solution space which was dramatically enhanced by

increasing m2. By investigating this regime in more detail we may be able to see how

the inclusion of higher curvature terms and backreaction affect this phenomenon.

One key limitation of the model that we have considered is that our choice of

potential was completely arbitrary. This, of course, is a consequence of the bottom

up approach and is useful in understanding some of the basic phenomena at play.

However, at temperatures below Tc and particularly in the zero temperature limit

the effect of different choices of potential are likely to be significant. Therefore,

studying the effect of GB terms in top down models might be a useful next step.

In chapter 4 we studied black hole solutions to a gravitational model rooted

in string theory in which the spacetime exhibits Lifshitz scaling with an arbitrary

dynamical exponent, z. We studied the black hole solutions as a crucial first step

towards developing a top down model of a Lifshitz holographic superconductor with

an arbitrary z ≥ 1. Using numerical techniques we were able to find a two parameter

family of asymptotically Lifshitz black hole solutions.

The next step towards building a holographic superconductor is to add a complex

scalar field to the system in the hope that it may act as a condensate in the boundary

theory as we saw in adS superconductors of chapters 2 and 3. Ideally the complex

scalar field should be added in such a way that is consistent with a string theory

embedding and the top down approach of this model. However, a simpler first step

may be to add a phenomenological scalar and gauge field of the sort used in the

model of chapter 3 in order to see if superconductivity is at least possible.

Aside from developing a holographic superconductor the research presented in

chapter 4 shows that this system has a very rich structure within which a great deal
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more research can be done. Our investigation into the black holes of this system has

highlighted some interesting characteristics which we have yet to find an explanation

for. One example is the divergence of the temperature of the asymptotically Lifshitz

black hole as the initial parameter s0 is reduced. This could be investigated further

by seeing how this diverging temperature affects the other physical characteristics

of the black hole.

One might also wish to study the zero temperature limit of these black holes,

which unfortunately was outside the scope of our horizon Ansatz. Having ascer-

tained whether or not a regular zero temperature limit exists it would would be

interesting to study the topology of the near horizon region as this may may be of

significance to holographic superconductivity.

One limitation of this research is that we only considered regions of parameter

space for which the fixed points of the theory have at most one irrelevant operator.

In the adS case this meant restricting our analysis to values of m̂ for which the

fall-offs of some of the fields were complex which raises concerns when considering a

holographic interpretation of these results. We were also only able to study one of

the two Lifshitz solutions that this system permits. This research could be developed

further by widening the study to include these regions that were not included in this

initial investigation.

Due to the complexity of the system we had to rely solely on numerics to obtain

our asymptotically Lifshitz black hole solutions. Another avenue of future research

might be to try and gain a greater analytic understanding of these Lifshitz black

holes. This is particularly important for holographic systems since without a full

understanding of the bulk theory at the boundary we cannot fully understand its

dual. One region where a perturbative analytic understanding may be possible is

in the limit in which z → 1, where one might expect the Lifshitz solutions to be

similar to the adS solutions found at z = 1.

The work in this thesis forms part of a wider effort of applying the gauge/grav-

ity correspondence to a range of open problems in physics from condensed matter

systems to quantum chromodynamics. Its use in this way is interesting for two rea-

sons; firstly, it provides a means of investigating physics at strong coupling which
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is otherwise very difficult and secondly, by using the correspondence in regimes in

which experimental testability is possible we may, in future, be able to test the

validity of the conjectured correspondence itself. The use of the correspondence in

condensed matter physics is still very much in its infancy but it is possible that some

experimentally testable result may be lurking just around the corner.
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