
Durham E-Theses

Higher Order Corrections in Perturbative Quantum

Field Theory via Sector Decomposition

CARTER, JONATHON,PAUL

How to cite:

CARTER, JONATHON,PAUL (2011) Higher Order Corrections in Perturbative Quantum Field Theory

via Sector Decomposition , Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/3370/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3370/
 http://etheses.dur.ac.uk/3370/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Higher Order Corrections in
Perturbative Quantum Field

Theory via Sector Decomposition

Jonathon Carter

A Thesis presented for the degree of

Doctor of Philosophy

Institute for Particle Physics Phenomenology

University of Durham

England

October 2011

Higher Order Corrections in Perturbative

Quantum Field Theory via Sector Decomposition

Jonathon Carter

Submitted for the degree of Doctor of Philosophy

October 2011

Abstract

The calculation of higher order corrections in perturbative quantum field theories is

a particularly important subject. Our current model for particle physics is the stan-

dard model; a quantum field theory which has served to describe a huge amount

of observed data very well. As the Large Hadron Collider is collecting more and

more high energy data with smaller and smaller experimental errors, the accuracy

of theoretical calculations must keep up with experiment in order to discriminate be-

tween physics arising from our current standard model, and beyond standard model

physics.

In chapter 2 we give a brief introduction to the fundamentals of perturbative quan-

tum field theories, with particular emphasis on Quantum ChromoDynamics, where

higher order calculations are particularly important due to the fact that

αs(MZ) ≫ α. In chapter 3 we present a review of methods for calculations within

perturbative quantum field theories, both for real and virtual corrections. In chap-

ter 4 we give a detailed explanation of the method of sector decomposition, and

highlight how it can be applied to the calculation of multi-parameter polynomial

integrals, which appear widely in high energy physics, and in particular within the

higher order calculations of perturbative quantum field theories. In chapter 5 we

present SecDec - a publicly available computer code which implements sector de-

composition. We give a range of examples to demonstrate its power in calculating

various integrals appearing in higher order calculations in perturbative quantum

field theories.

Declaration

The work in this thesis is based on research carried out at the Institute for Particle

Physics Phenomenology, the Department of Physics, Durham University, England.

No part of this thesis has been submitted elsewhere for any other degree or qualifi-

cation and it all my own work unless referenced to the contrary in the text.

Copyright c© 2011 by Jonathon Carter.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii

Acknowledgements

Firstly I would like to thank my supervisor Gudrun Heinrich for her support and col-

laboration over the past four years. Even from her new position at the Max Planck

Institute in Munich she always had time to give invaluable guidance. Thanks also

to Nigel Glover, who became my supervisor after gudrun left the IPPP, and has had

to deal with the tiresome paperwork a PhD student generates...

I would also like to thank everybody at the IPPP for providing such a great atmo-

sphere to work in. Particular thanks go to Linda Wilkinson and Trudy Forster for

their help in organising many research trips throughout my time here, and to the

various IT staff we have had over my time here - Phil Roffe, David Ambrose-Griffith

and Mike Johnson, as well as David Grellscheid and Daniel Mâıtre who provided

expert advise on computing issues.

Thanks to my family, who have always encouraged me to do what makes me happy.

Finally, thanks to Katherine, who has been there for me throughout my time here,

and has helped to keep me sane whilst I have been writing this thesis.

iv

Contents

Abstract ii

Declaration iii

Acknowledgements iv

1 Introduction 1

1.1 Outline . 3

2 Perturbative Quantum Field Theories 4

2.1 QCD Particle Content . 4

2.2 Lie Groups, Algebras and Representations 5

2.3 QCD Lagrangian . 6

2.4 Gauge-fixing and Ghost fields . 7

2.5 Feynman Rules . 8

2.5.1 λφ4 Theory . 8

2.5.2 QCD . 10

2.6 Regularisation . 12

2.6.1 Pauli-Villars Regularisation 13

2.6.2 Mass Regularisation . 14

2.6.3 Dimensional Regularisation 14

2.7 Renormalisation . 15

2.7.1 λφ4 Theory . 15

2.7.2 QCD . 17

2.8 Running Coupling . 18

v

Contents vi

2.8.1 β Function . 19

2.9 Factorisation . 20

2.9.1 The Parton Model . 20

3 Higher Order Corrections in Perturbative Quantum Field Theories 23

3.1 Components of a Higher Order Calculation 23

3.2 Methods for Multi-loop Calculations 24

3.2.1 Integration By Parts (IBP) . 25

3.2.2 Laporta Algorithm . 26

3.2.3 Parametrising the Integrand 27

3.2.4 Mellin-Barnes (MB) Representation 28

3.2.5 Differential Equations . 29

3.2.6 Difference Equations . 30

3.2.7 PSLQ Algorithm . 32

3.3 Methods for Real Radiative Corrections 33

3.3.1 Subtraction . 34

3.3.2 Phase Space Slicing . 36

3.3.3 Sector Improved Phase Space for Real Radiation 38

3.3.4 More Methods . 38

4 Sector Decomposition 39

4.1 Current Status of Sector Decomposition 39

4.2 Basic Concept . 41

4.3 The Method . 42

4.3.1 Multi-Loop Integrals . 42

4.3.2 General parameter integrals 47

5 SecDec 51

5.1 Structure of the program . 51

5.2 Features . 56

5.3 Installation and usage . 57

5.4 Description of Examples . 61

Contents vii

5.4.1 Loop integrals . 61

5.4.2 More general polynomial functions 68

6 Conclusions and Outlook 77

Appendix 78

A Numerical Stability 79

B Numerical Evaluation 82

C Full Explanation of Parameters 84

C.1 Parameters Common to loop and general 84

C.2 Parameters Specific to loop . 88

C.3 Parameters Specific to general . 90

D Template Files 91

D.1 loop Template Files . 91

D.2 general Template Files . 92

E Advanced Usage 94

E.1 Automating the Calculation of Multiple Numerical Points 94

E.2 Leaving Functions Implicit During Algebraic Calculation 96

F Contour Deformation 98

G Timings for a four-loop two-point diagram 101

H Another representation of the non-planar two-loop box 103

I Phase Space Parametrisations 106

I.1 A 2 → 3 Phase Space Parametrisation 106

I.2 A Phase Space for pp→ tt̄+ Double Real Radiation 110

J Troubleshooting 121

Contents viii

K Choosing a Set of Variables to Decompose 123

K.1 Choosing a Minimal Subset for Iterated Decomposition 123

K.2 Decomposing to Avoid Infinite Recursion 124

List of Figures

2.1 O(λ) contribution for φφ → φφ . 9

2.2 O(λ2) contribution for φφ→ φφ . 9

2.3 O(λ2) diagram for φφ→ φφ . 10

2.4 Counterterms for φ4 theory . 16

2.5 A contribution to Deep Inelastic Scattering 21

3.1 gg→ tt̄ . 24

3.2 gg→ tt̄+g . 24

3.3 gg→ tt̄+g . 24

3.4 A one-loop massless self-energy diagram 26

3.5 Poles of the integrand in the w plane 29

4.1 Sector decomposition schematically. 42

5.1 Directory structure of the SecDec program. 51

5.2 Program Flowchart . 53

5.3 Example for a directory structure created by running the loop demo

programs NPbox, QED, ggtt1, A61. A four-loop example defined by

the user to be written to the scratch disk is also shown. 54

5.4 Example for a directory tree corresponding to the pole structure of

the graph QED contained in the demo programs. 55

5.5 The non-planar two-loop box, called NPbox in example 5.4.1.1. 62

5.6 Blue (solid) lines denote massive particles. 64

5.7 Non-planar graphs occurring in the calculation of gg → tt̄ at NNLO.

Blue (solid) lines denote massive particles. 65

ix

List of Figures x

5.8 The three-loop vertex diagram A6,1 with the dotted propagator raised

to the power 1 + ǫ. 67

5.9 Two-Loop Massive Triangle . 68

5.10 Interference of diagrams leading to factors of s35s23 in the denomina-

tor. 72

F.1 3 different contours of integration. The dot represents a singularity

in the integrand f(z) . 99

G.1 A four-loop two-point master integral 101

H.1 The “inner” box as part of the non-planar two-loop box shown in

figure 5.5. 104

K.1 A four-loop massive two-point integral 125

List of Tables

2.1 Spinor/Polarisation Vectors for external particles 12

3.1 Table of transcendentality weights for various numbers which may

occur in the result of a loop calculation 33

5.1 Numerical results for the points (s, t, u) = (−1,−1,−1) and (−1,−2,−3)

of the massless non-planar double box. 63

5.2 Numerical results up to order ǫ2 for the points (s, t,m) = (−0.2,−0.3, 1)

and (−3/2,−4/3, 1/5) of the two-loop ladder diagram shown in fig-

ure 5.6. An overall factor of Γ(1+ ǫ)2 is not included in the numerical

result. 64

5.3 Numerical results for the diagrams shown in figure 5.7. The finite

diagram ggtt1 has been calculated up to order ǫ2. An overall factor

of Γ(1 + ǫ)2 is extracted. 66

5.4 Numerical results for the point (s, t, u) = (−3,−2, 5) of the rank

one two-loop ladder diagram given by eq. (5.2). An overall factor of

Γ(1 + ǫ)2 has been extracted. 66

5.5 Numerical results for the diagram shown in figure 5.8 with the dotted

propagator raised to the power 1+ǫ. The errors are below one percent. 67

5.6 Results for Two-Loop Massive Triangle, m2 = 0.2 68

5.7 Results for 5F4(ǫ,−ǫ,−3ǫ,−5ǫ,−7ǫ; 2ǫ, 4ǫ, 6ǫ, 8ǫ; β) at β = 0.5. The

timings in the last column are the ones for the numerical integration.

The time taken for decomposition, subtraction and ǫ-expansion was

11 seconds. 69

xi

List of Tables xii

5.8 Results for the hypergeometric function 4F3(−4ǫ,−1
2
−ǫ,−3

2
−2ǫ, 1

2
−

3ǫ;−1
2
+ 2ǫ,−1

2
+ 4ǫ, 1

2
+ 6ǫ; β) at β = 0.5 70

5.9 Results for the integral given by eq. (5.7). The factor Cǫ is not in-

cluded in the numerical result. 72

5.10 Numerical result for the integral given by eq. (5.8) for β=0.75. The

factor 2Cǫ is not included in the numerical result. 73

5.11 Numerical result for the integral given by eqs. (5.9) - (5.10) for β=0.8 74

5.12 Contributions to NLO 2j and LO 3j toy process 76

G.1 Timings (in seconds) for the diagram shown in figure G.1. The time

taken for the longest job equals the total time for a given pole order

if the contributing functions are integrated in parallel. The number

of sampling points was 500000 for each pole order. The last column

shows the timings which would result from a calculation in series. . . 102

G.2 “Analytical” and numerical results for the diagram shown in figure

G.1. 102

Chapter 1

Introduction

For millennia people have wondered what the world around us is made of. From the

atomic theory of Democritus, through the discovery of the electron1 by Thomson,

to the vast leaps of understanding of the 20th century of quantum mechanics and

general relativity. The ‘particle zoo’2 has gone through a huge upheaval over the

last century, starting with just the electron, with the proton added by Rutherford,

then the neutron, positron, (anti-)muon, followed by a string of mesons and baryons

(pions, kaons, deltas,...), and the electron and muon neutrinos. In 1954, Yang and

Mills developed the concept of local gauge theories, which were to become the basis

of the Standard Model (SM) of particle physics. The zoo went through a cull in

the 1960s, when Gell-Mann and Zweig put forward the quark model to explain the

proliferation of hadrons, and also the fact that deep inelastic scattering experiments

had hinted that these particles had internal structure. In 1964 Higgs proposed his

eponymous mechanism of spontaneous symmetry breaking. In 1967 Weinberg and

Salam independently put forward the Electro-Weak theory, which required the ex-

istence of both a neutral and a charged, weakly interacting vector boson, and the

massive, scalar Higgs boson. The W±, Z vector bosons of this theory were discov-

ered in the 1980s at CERN, and the last of the known quarks, the top quark, was

1Thomson toasted the discovery with the words,“To the electron - may it never be of any use

to anybody.” A classic example of how advances in our understanding of the world can lead to

applications far beyond our imagination.
2List of all known fundamental particles.

1

Chapter 1. Introduction 2

discovered at the Tevatron in 1995.

Our current description of particle physics explains a vast amount of experimental

data very well, but there are still many questions which need answering. For exam-

ple, astrophysical observations suggest the existence of dark matter3, that is matter

which does not emit or scatter photons but does interact via gravity. The SM has

no explanation for this. Nor can the SM describe the gravitational interaction. The

matter/antimatter asymmetry is also not predicted by the SM. Moreover, the pos-

tulated Higgs boson which completes the theory has not yet been discovered.

Now it is the turn of the Large Hadron Collider to attempt to tackle these prob-

lems. The LHC is colliding protons at a centre of mass energy
√
s = 7 TeV, with

plans to increase this to ∼ 14 TeV in a few years time. This will allow us to either

discover physics beyond the standard model (BSM physics), or rule out particular

BSM models. The most well known goal of the LHC is to discover the origin of

Electro-Weak symmetry breaking, be it the SM Higgs, or something from a BSM

theory (SuperSymmetric Higgs particle(s), Technicolour particles,...). The idea of

SuperSymmetry in its various forms is being probed, and certain models are already

being ruled out by LHC data. Further theories which postulate extra dimensions

predict the creation and subsequent decay of microscopic black holes at the LHC.

No matter what the BSM theory being probed, without a good understanding of the

SM processes which provide a background for BSM signals we can infer very little

from the data. The difficulty of the calculations behind this understanding of the

background increases dramatically with the level of accuracy required. Moreover, if

the BSM model is described as a Quantum Field Theory then all the mechanisms

used to calculate SM backgrounds can be employed to calculate BSM processes.

Thus the development and, ideally, automation of higher order calculations within

perturbative QFTs is crucial for us to advance our understanding of high energy

physics.

3With about 4 times as much dark matter than regular matter

1.1. Outline 3

1.1 Outline

The structure of this thesis is as follows: In chapter 2 we will discuss the background

of how to perform calculations within a perturbative QFT, with reference in par-

ticular to the strong interaction (Quantum ChromoDynamics) as it appears in the

SM. We will outline how these theories contain certain divergences, and how these

divergences can be treated in order to obtain finite results for physical observables.

We will consider the validity of perturbative calculations, and how non-perturbative

effects are dealt with for hadronic initial/final states in a scattering process.

In chapter 3 we will go into more detail about how calculations at higher orders in

the perturbative expansion can be evaluated using a number of methods. In chapter

4, we will introduce the powerful method of sector decomposition, and describe how

it can be used for both real and virtual radiative corrections to perturbative QFTs.

In particular we will show how its application to beyond next-to-leading order cal-

culations is straightforward. In chapter 5 we will present the program SecDec, and

illustrate its wide range of applicability through a number of examples. We will

then present our conclusions and outlook in chapter 6.

Chapter 2

Perturbative Quantum Field

Theories

In this chapter I will discuss a number of features which occur generically in Quan-

tum Field Theories (QFT). I will mainly use Quantum ChromoDynamics (QCD) to

illustrate these, as it contains all of the most complicated features that can arise.

This section provides a brief overview of a number of topics within perturbative

QFT. For more detailed explanations see eg [1–4].

2.1 QCD Particle Content

The fundamental particles of QCD are the quarks (u, d, c, s, t, b), together with their

anti-particles, and the gluon (g). Due to confinement these are never observed as free

particles in nature. Instead these particles group together as baryons (3 quark bound

states) and mesons (quark anti-quark bound states). The theory is invariant under

local SU(3)Colour gauge transformations. Each individual quark has one of three

colours associated with it (r, b, g), as the quarks transform under the fundamental

representation, and only colour-neutral bound states have been observed in nature,

so each quark within a baryon has a different colour (this fact helps us overcome

the apparent violation of the Pauli Exclusion Principle), and a meson is made of a

superposition of 1√
3

(
rr̄ + bb̄+ gḡ

)
. The gluon colour index runs from 1 → 8, as the

gluon transforms under the adjoint representation of SU(3)Colour.

4

2.2. Lie Groups, Algebras and Representations 5

2.2 Lie Groups, Algebras and Representations

Let us define a few terms which will be useful in the following discussion.

A Lie group G is a continuous group, where every infinitesimal group element can

be written as

g(x) = 1 + iαaT a +O(α2)

where the αa are infinitesimal parameters, and T a are the generators of G
The generators span the set of infinitesimal group transformations, and so the com-

mutator of generators can be written as

[
T a, T b

]
= ifabcT c

where the fabc are called the structure constants.

A Lie algebra L is a vector space V , together with a bilinear operator

[·, ·] : V × V → V

such that

[x, x] = 0,

and the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 ∀x, y, z ∈ V

The vector space spanned by the generators of the Lie group, together with the

commutator, form a Lie algebra. This is known as the fundamental representation.

The structure constants also form a representation of the Lie algebra, namely the

adjoint representation, via
(
tb
)

ac
≡ ifabc

since these objects satisfy the commutation relation

([
tb, tc

])

ae
= −

(
fabdf dce − facdf dbe

)
= f cdefabd + f bdef cad

= −fadef bcd = if bcd
(
td
)

ae

where we have used the Jacobi identity.

Following on from the above, we consider the Lie group SU(3). The generators

2.3. QCD Lagrangian 6

of SU(3) are the 3 × 3 generalisations of the Pauli σ matrices. They are 8 trace-

less, Hermitian 3 × 3 matrices, referred to as the Gell-Mann matrices. The adjoint

representation is made up of 8 traceless, Hermitian 8× 8 matrices.

2.3 QCD Lagrangian

QCD is described by the Lagrangian density (henceforth referred to as just ‘La-

grangian’)

LQCD =
∑

f

ψ̄f,i
(
i /Dij −mfδij

)
ψf,j −

1

4
F µν
a F a

µν + Lgauge−fixing + Lghost (2.1)

where f runs over all flavours, i = 1, 2, 3 is the colour index of the quarks and

a = 1, · · · , 8 1 is the colour index of the gluon. That is to say that quarks live in

the fundamental representation, and gluons in the adjoint representation of SU(3)C .

The usual Dirac slash notation of /D = γµDµ is followed, where the gauge covariant

derivative is

Dµ
ij = δij∂

µ − igAµaT
a
ij (2.2)

where g is the strong coupling, and the gamma matrices satisfy the Clifford algebra

{γµ, γν} = 2gµν (2.3)

and ψ̄ ≡ ψ†γ0.

The T a are the generators of SU(3) in the fundamental representation, and obey

commutation relations
[
T a, T b

]
= ifabcT

c (2.4)

The field strength F a
µν is defined by

[Dµ, Dν] = igT aF a
µν (2.5)

which yields

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (2.6)

1as colour indices are raised and lowered with δab, we make no distinction between raised and

lowered indices. Any repeated index is understood to be summed over

2.4. Gauge-fixing and Ghost fields 7

Under the action of an element U(x) of the gauge group SU(3), the fields transform

as

ψ → U(x)ψ (2.7)

Aµ → U(x)AµU−1(x) +
i

g
U(x)∂U−1(x) (2.8)

which leads to the covariant derivative to have the behaviour

Dµ → U(x)U−1(x)∂µ − igU(x)AµU−1(x) + U(x)∂µU−1(x)

= U(x)DµU−1(x) (2.9)

and trivially

F µν → U(x)F µνU−1(x) (2.10)

and the part of the Lagrangian given explicitly is invariant under this transformation.

2.4 Gauge-fixing and Ghost fields

If two field configurations are related by a gauge transformation, then they are

physically indistinguishable. This ambiguity in the theory needs to be dealt with

carefully, by means of gauge-fixing. To this end, we choose a condition for Aµ to

satisfy, so all physically indistinguishable field configurations are represented by

exactly one configuration satisfying this condition. The standard way this is done

for internal gluons in QCD is to set

F (A) ≡ ∂µA
µ = 0 (2.11)

which is referred to2 as the Lorentz condition .

Without an extra term in the Lagrangian, the definition of the gluon propagator is

impossible, since the inverse propagator (in momentum space) is given by

D−1
{a,µ},{b,ν}(p) = iδab

[
p2gµν − pµpν

]
(2.12)

2Erroneously. This was originally named after Ludvig Lorenz, but due to the proliferation of

Hendrik Lorentz’s name throughout theoretical physics it has been commonly misaccredited.

2.5. Feynman Rules 8

which is not invertible. Adding in the term

Lgauge−fixing = − 1

2ξ
(∂µAµ)

2 (2.13)

fixes this, and leads to the propagator given in the next section. A full treatment

of the derivation of Lghost is not given here, see eg [1]. The result is that we must

introduce scalar, anti-commuting Grassman fields c̄, c and add the term

Lghost = ∂µc̄D
µc (2.14)

to the Lagrangian. The ghost fields cancel the unphysical gluon degrees of freedom.

An alternate choice of F (A) in eq. (2.11) is

F (A) = nµAµ = 0 (2.15)

which is referred to as axial gauge. This is a useful choice is of gauge, as it can remove

the internal ghost particles from the theory. For this reason it is also sometimes

referred to as physical gauge, as it retains only the physical particle content of the

theory. The disadvantage of the axial gauge is that it breaks Lorentz-invariance.

2.5 Feynman Rules

Feynman introduced a diagrammatic way to represent perturbative processes in

QFT, which can be derived directly from the Lagrangian of the theory. For pertur-

bative QFT to be a useful tool, the Lagrangian must be of the form

L = Lfree + λLint (2.16)

with Lfree defining the evolution of particles without interactions, Lint describing
the interactions between particles, and λ is a small parameter.

2.5.1 λφ4 Theory

For a simple example we consider λφ4 theory.

The matter content is just one real scalar field φ with mass m. The Lagrangian is

written as

L =
1

2
∂µφ∂µφ− 1

2
m2φ2 − λ

4!
φ4 (2.17)

2.5. Feynman Rules 9

The Feynman propagator is found from the first two terms, by taking the inverse of

the operator in momentum space, ie

DF (p) =
i

p2 −m2 + iδ
(2.18)

The interaction vertex comes from the λ
4!
φ4 term, and it gives a valence 4 vertex,

with a factor of −iλ.
To illustrate how Feynman diagrams work, we will consider the up to O(λ2) contri-

bution to the process φ(p1)φ(p2) → φ(p3)φ(p4). To represent an allowed contribution

to this process, the diagram must have 4 external legs, and only valence 4 vertices.

It should be noted that d is the dimensionality of space-time, which here we will

consider as equal to 4.

The diagrams of figures 2.2 and 2.1 contribute to the scattering amplitude of

p1 p3

p2 p4

−iλ(2π)dδ(d) (p1 + p2 − p3 − p4)

Figure 2.1: O(λ) contribution for φφ→ φφ

k1

k2p2

p1 p3

p4

(−iλ)2
∫ ddk1d

dk2
(2π)2d

i2

(k21 −m2 + iδ)(k22 −m2 + iδ)

× (2π)dδ(d) (p1 + p2 − k1 − k2)

× (2π)dδ(d) (k1 + k2 − p3 − p4)

Figure 2.2: O(λ2) contribution for φφ→ φφ

φφ→ φφ at leading order (LO), and next-to-leading order (NLO) in λ respectively.

The diagram of figure 2.3 does not contribute to the scattering amplitude - notice

that the first δ function gives k2 = p1, and so the propagator becomes i
p2
1
−m2+iδ

2.5. Feynman Rules 10

k1

k2

p1

p2 p3

p4
(−iλ)2

∫ ddk1d
dk2

(2π)2d
i2

(k21 −m2 + iδ)(k22 −m2 + iδ)

× (2π)dδ(d) (p1 + k1 − k1 − k2)

× (2π)dδ(d) (k2 + p2 − p3 − p4)

Figure 2.3: O(λ2) diagram for φφ→ φφ

which gives 1
0
. This diagram is considered as a correction term for the external field,

and not for the scattering process. For more details on this see section 2.7

2.5.2 QCD

Feynman diagrams for QCD follow the usual convention of quarks represented by a

solid line, gluons by a curly line and ghosts by a dotted line. The Feynman rules

for QCD (in covariant gauge) are as follows:

i j
p

δij
i(/p+m)

p2−m2+iδ

a, µ b, ν
p

−δab i
p2+iδ

(

gµν − (1− ξ)p
µpν

p2

)

a b
p

δab
i

p2+iδ

External lines come with spinors/polarisation vectors according to table 2.1

When calculating the square of the amplitude, expressions containing sums over

2.5. Feynman Rules 11

a, µ

ji

igγµT a
ij

p1, a, µ

p2, b, νp3, c, ρ

gf abc [gµν(p1 − p2)
ρ

+ gνρ(p2 − p3)
µ

+ gρµ(p3 − p1)
ν]

p1, a, µ

p2, b, νp3, c, ρ

p4, d, σ

−ig2 [f abef cde (gµρgνσ − gµσgνρ)

+ f acef bde (gµνgρσ − gµσgνρ)

+ f adef bce (gµνgρσ − gµρgνσ)]

b, µ

ac
p

−gf abcpµ

spins/polarisations will occur. Some useful relations for these are

∑

s

ūs(p)us(p) = /p+m

∑

s

v̄s(p)vs(p) = /p−m

∑

λ

ǫµ∗λ (p)ǫνλ(p) = −gµν + pµnν + pνnµ

p.n
(2.19)

2.6. Regularisation 12

External Particle Spinor/Polarisation Vector

Incoming quark u(p)

Incoming anti-quark v̄(p)

Incoming gluon ǫµ(p)

Outgoing quark ū(p)

Outgoing anti-quark v(p)

Outgoing gluon ǫµ∗(p)

Table 2.1: Spinor/Polarisation Vectors for external particles

where we work in axial gauge for external gluons. nµ can be different for each

external gluon, and must satisfy n.p 6= 0. A good choice of this for incoming gluons

with momenta k1, k2 is n1 = k2, n2 = k1.

The (internal) gluon propagator is dependent on ξ, however the final result must be

independent of the choice of gauge-fixing parameter ξ. It is convenient to perform

calculations in the Feynman gauge, namely ξ=1, which simplifies the propagator as

−δab
i

p2 + iδ

(

gµν − (1− ξ)
pµpν

p2

)

→ −δab
igµν

p2 + iδ
(2.20)

Of course any other choice of ξ is equally valid. Two such choices are Landau gauge

(ξ = 0) and Unitary gauge (ξ → ∞).

To calculate the amplitude for a given process, the procedure is to draw every

possible diagram which can contribute to the process (at the desired order in the

coupling g), and then for each diagram:

1. Include a factor of (−1) for each fermion/ghost loop

2. Impose momentum conservation at each vertex

3. Integrate over unconstrained (loop) momenta with the measure ddk
(2π)d

4. Include a symmetry factor to account for the permutation of identical fields.

2.6 Regularisation

There are two qualitatively different types of divergence found within a pQFT:

2.6. Regularisation 13

• Ultra-Violet (UV) divergences arise solely from loop integrals, and relate to

the fact that the loop momentum is unbounded.

• Infra-Red (IR) divergences come both from loop integrals where one (or more)

of the particles in the loop can become soft, or collinear with another particle,

and from soft/collinear final state particles as described above.

For a renormalisable theory (see next section), the UV divergences must be removed

by absorbing them into definitions of fields and couplings in order to be able to ob-

tain meaningful physical results. In order to be able to do this, these divergences

must be regularised.

Soft and final state collinear IR divergences cancel when all contributions to a phys-

ical observable are combined, by the Kinoshita-Lee-Nauenberg theorem [5,6]. How-

ever, intermediate contributions are likely to be divergent. In order to calculate

these contributions, the IR divergences must also be regularised.

2.6.1 Pauli-Villars Regularisation

Pauli-Villars regularisation is a procedure to regulate UV divergent loop integrals.

The idea is to introduce a fictitious particle with large mass Λ, which cancel the

contributions of massless (or mass m≪ Λ) particles for large loop momenta k, but

do not affect the integrand at small k. ie the replacement in a massless propagator

of

1

k2
→ 1

k2
− 1

k2 − Λ2

=
−Λ2

k2(k2 − Λ2)

∼







1
k2

for k2 ≪ Λ2,

−Λ2

k4
for Λ2 ≪ k2

(2.21)

with the usual +iδ prescription implied. Pauli-Villars regularisation breaks gauge

invariance, and so is not suitable for QCD.

2.6. Regularisation 14

2.6.2 Mass Regularisation

This regularisation method can be used to regulate IR divergences. The method

involves giving a small mass to massless particles which induce the IR divergences,

and once the full calculation is performed the result will be independent of this mass.

The above methods put together can be used to regularise a theory, a good demon-

stration of these methods for QED can be found in [1]. Giving mass to a gauge

boson in this way breaks gauge invariance for non-Abelian gauge groups, and so this

is not suitable for QCD.

Here we describe the regularisation scheme that will be used throughout this thesis.

2.6.3 Dimensional Regularisation

Dimensional regularisation (DR) is a regularisation method which regulates both

UV and IR singularities. The method takes the dimensionality of space-time, d, is

taken to be different from 4, ie

d = 4− 2ǫ (2.22)

DR is a particularly good method, as it respects both Lorentz- and gauge-invariance.

All previous definitions have been given for general d, and are still valid. One should,

however, take a moment to consider the mass dimension (henceforth referred to as

just ‘dimension’) of the fields and parameters within the theory.

Firstly, the action S should be dimensionless, ie [S] = 0. Since S =
∫
ddxL(x), we

find that [L] = d. By examining terms which appear in the Lagrangian, we find

that

[∂µAν∂µAν] = d =⇒ [A] =
d− 2

2
[
ψ̄ /∂ψ

]
= d =⇒ [ψ] =

d− 1

2
[
gψ̄ /Aψ

]
= d =⇒ [g] =

4− d

2

We would like to work with a dimensionless parameter g, so we make the substitution

g → µǫRg (2.23)

where µR = µ is an arbitrary mass scale, which is not fixed a priori. Clearly any

physical result should be independent of this scale as it is put in by hand. However,

2.7. Renormalisation 15

in practice there will be a dependence on this scale for perturbatively calculated

quantities, which arises due to the truncation of the perturbative series.

Within DR, there are different choices of dimension for internal/external parti-

cles. The ’t Hooft-Veltman scheme (HV) takes external states to be 4-dimensional,

with internal states being of dimension 4 − 2ǫ. Conventional DR (CDR) has all

states with dimension 4− 2ǫ. This is more convenient for dealing with IR singular-

ities induced by external particles than HV, and it is the scheme used throughout

this thesis. For a recent discussion of regularisation schemes, see [7].

2.7 Renormalisation

We have discussed where divergences arise in perturbative QFT, and how we regu-

larise these divergences. In order to obtain finite cross-sections for physical quan-

tities, we need to remove the UV divergences from the theory in a consistent way.

This process is known as renormalisation. First we will describe how this procedure

is applied to λφ4 theory, and then extend the argument to QCD.

2.7.1 λφ4 Theory

Recall eq. (2.17). We rewrite this with subscripts 0 to indicate that these quantities

(mass, coupling constant and field) are unrenormalised, bare quantities.

L =
1

2
∂µφ0∂µφ0 −

1

2
m2

0φ
2
0 −

λ0
4!
φ4
0 (2.24)

First we want to renormalise the field φ0. To see how this should be done, let’s first

consider the two-point function for the full theory. Let |Ω〉 be the vacuum of the

interacting theory. Let us define a complete set of states

1 = |Ω〉〈Ω|+
∑

α

∫
ddp

(2π)d
|αp〉〈αp| (2.25)

Inserting this into the definition of the two-point function gives

〈Ω|φ(x)φ(0)|Ω〉 =
∑

α

∫
ddp

(2π)d
1

p2 −m2
α + iδ

e−ip·x |〈Ω|φ(0)|α0〉|2 (2.26)

2.7. Renormalisation 16

for x0 > 0, where mα is the energy of the state |α0〉, ie the given state in its centre

of mass frame. If we just consider the one-particle state |α〉, we see that this gives

us the usual Feynman propagator, but with the physical mass instead of the bare

mass, and a multiplicative factor Z = |〈Ω|φ(0)|α〉|2. If we rescale the field we can

remove this factor of Z, hence we make the substitution φ0 = Z1/2φr in eq. (2.24)

to get

L =
1

2
Z∂µφr∂µφr −

1

2
Z m2

0φ
2
r −

λr
4!
Z2φ4

r (2.27)

The bare mass and coupling still appear, so we remove them by making the defini-

tions

δZ = Z − 1 δm = m2
0Z −m2, δλ − λ0Z

2 − λ (2.28)

where m, λ are the physically measured values of the mass and coupling constant.

Rewriting the Lagrangian gives us

L =
1

2
∂µφr∂

µφr −
1

2
m2φ2

r −
λ

4!
φ4
r

+
δZ
2
∂µφr∂

µφr −
1

2
δmφ

2
r −

δλ
4!
φ4
r (2.29)

This leads to the usual Feynman rules, plus counterterms given in figure 2.4. We

i
(
p2δZ − δm

)

−iδλ

Figure 2.4: Counterterms for φ4 theory

must also give some conditions as to what we mean by physical mass and coupling

constant. To do this we fix the renormalisation conditions of eq. (2.30), where the

second diagram is amputated (ie no leg corrections). These conditions fix δZ , δm, δλ

up to any given order in perturbation theory, and then calculations of physical

2.7. Renormalisation 17

= i
p2−m2 + (terms regular at p2 = m2)

= −iλ at s = 4m2, t = u = 0 (2.30)

quantities at this order in perturbation theory will be finite.

This method is different in its application to that usually applied to QCD, where it

is the bare quantities themselves which are renormalised.

2.7.2 QCD

We will renormalise all the bare fields, masses and coupling constants by replacing

them as follows:

ψ = Z
1/2
ψ ψr

A = Z
1/2
A Ar

c = Z1/2
c cr

g = Zggr

m = Zmmr

ξ = Zξξr (2.31)

When calculating a process to a fixed order in perturbation theory, all UV diver-

gences up to this order can be absorbed into the Z factors, and we can make physical

predictions which are free of these divergences. How the divergences are absorbed

into the Z factors is specified by the singularity structure, but how the finite terms

are dealt with is a free choice (providing it is done consistently), and defines the sub-

traction scheme. The simplest scheme is minimal subtraction (MS), where only the

pole terms of ǫ are absorbed. Another more common scheme is modified MS (MS),

where the pole parts and a particular finite part are absorbed, which is equivalent

2.8. Running Coupling 18

to setting subtracting the poles of ǭ, where

1

ǭ
=

1

ǫ
(4π)ǫ e−ǫγE (2.32)

2.8 Running Coupling

In section 2.6.3 we saw how DR introduces a new energy-scale, µ, into calculations.

As previously stated, the result for the calculation of any physical observable should

be independent of this µ. Let us consider this more formally.

For a massless theory with exactly one coupling constant g, consider a dimensionless

physical observable, R, dependent on a single energy scale Q. By naive dimensional

analysis, one would expect R(Q) = const. This is, however, not the case for a

renormalisable QFT. If R is calculated as a perturbative expansion in α = g2

4π
, then

this series requires renormalisation to remove the UV divergences. This introduces

another mass scale, µ, into the calculation. Dimensional analysis leads us to deduce

that R is now dependent on the ratio Q2/µ2, and is thus not constant. We also

deduce that α is dependent on µ. As stated, the true value of R (Q2/µ2, α(µ2))

cannot depend on µ, so we derive the equation

µ2 d

dµ2
R
(
Q2/µ2, α(µ2)

)
≡
[

µ2 ∂

∂µ2
+ µ2 ∂α

∂µ2

∂

∂α

]

R = 0 (2.33)

Introducing the notation

t = log

(
Q2

µ2

)

, β (α) = µ2 ∂α

∂µ2
(2.34)

gives
[

− ∂

∂t
+ β (α)

∂

∂α

]

R
(
et, α

)
= 0 (2.35)

This is a first order partial differential equation, and can be solved by defining the

running coupling, α(Q2), via

t =

∫ α(Q2)

α

dx

β(x)
, α

(
µ2
)
≡ α (2.36)

Differentiating this gives

∂α (Q2)

∂t
= β

(
α
(
Q2
))
,

∂α (Q2)

∂α
=
β (α (Q2))

β(α)
(2.37)

thus R (1, α (Q2)) is a solution of eq. (2.35). ie the scale dependence of R on Q only

enters through the running of the coupling α (Q2).

2.8. Running Coupling 19

2.8.1 β Function

Let’s consider the β function as defined above in eq. (2.34) for QCD. We identify

g ≡ gs, α ≡ αs =
g2s
4π
. The β function can be computed perturbatively to all orders

in αs. The four-loop β function has been calculated in the MS scheme in [8,9]. The

five-loop QED beta function has been presented in [10]. The perturbative expansion

is given by

β(αs) = −αs
∑

n=0

βn

(αs
4π

)n+1

(2.38)

Coefficients βn, n ≥ 2 depend on the particular subtraction scheme used.

The explicit β0 is given by

β0 =
11CA − 2nf

3
(2.39)

with CA = Nc = 3, and nf the number of light quarks (ie quarks with a mass

mq ≪ Q2). The sign of the β function determines the asymptotic (Q2 → ∞)

behaviour of a theory. Solving the first order calculation (ie throwing away βn, n ≥ 1)

gives

log

(
Q2

µ2

)

=

∫ αs(Q2)

αs(µ2)

4π dx

−β0x2
(2.40)

Which is rearranged to give

αs(Q
2) =

αs (µ
2)

1 + β0
4π
αs(µ2) log

(
Q2

µ2

) (2.41)

So as Q2 → ∞ we find that αs(Q
2) → 0 if β0 > 0. This is indeed the case for QCD

with nf ≤ 16. This behaviour is known as asymptotic freedom, and it allows the use

of perturbation theory for processes with large characteristic energy scales Q. The

second implication of eq. (2.41) is that for some scale, named ΛQCD, the coupling

constant blows up. ΛQCD has been calculated using lattice QCD in eg [11], with

different assumed values of nf , and the results were ΛQCD ≃ 260MeV.

This difference in behaviour for small/large energies suggests that we must treat

phenomena in these regimes in a qualitatively different manner. We have already

discussed the use of perturbation theory, and how it is a valid description for high

energies. For low energies perturbation theory breaks down, and we have to work

non-perturbatively. This non-perturbative behaviour is responsible for the structure

of hadrons, and as the LHC is colliding hadrons, and producing multiple hadrons

2.9. Factorisation 20

in final state jets, we need to have a good description of the physics behind this.

To this end, we introduce another energy scale, µ = µF , below which QCD physics

is non-perturbative, and above which we work perturbatively. This procedure is

known as factorisation

2.9 Factorisation

Factorisation is the act of factorising, or decoupling, long- and short- distance effects

of a QFT. Within the standard model, factorisation is applied to QCD only, since

the low energy/long distance effects of the Electro-Weak sector are well described

perturbatively. For a detailed review on factorisation, including theories relating to

the validity of the method in different situations, see [12]. We begin with a discussion

of the parton model.

2.9.1 The Parton Model

The parton model was presented by Feynman in [13]. It states that hadrons are

extended objects, consisting of constituents (partons) held together by their inter-

actions. We assume that hadrons are described in terms of virtual partonic states,

but that we cannot calculate the structure of these states. We do know how to

calculate the scattering processes of a free (ie neglecting parton-parton interactions

within the hadron) parton with, for example, an electron.

Consider electron-proton scattering via a virtual photon at high energy and momen-

tum transfer. If we consider this in the center of mass frame, the proton is length

contracted in the direction of the collision, and the internal interactions are time

dilated. Increasing the center of mass energy of the collision leads to an increased

lifetime of the virtual partonic state,τvps, and a decreased time for the electron to

traverse the proton, tep. If τvps > tep then the proton can be described as being in a

particular virtual partonic state, with a definite number of partons throughout the

interaction. Each parton in this state is modelled as carrying a definite non-negative

fraction, x, of the momentum of the proton. Also, if the momentum transfer is large,

the virtual photon can only travel a short distance, so if the density of the partons

2.9. Factorisation 21

in the proton is low enough, the virtual photon will interact with only one parton.

Interactions occurring in the final state happen over a timescale too long to interfere

with the initial interaction.

So with the p the proton momentum, q the momentum carried by the virtual photon,

Q2 = −q2, x = Q2/2p · q, the parton model states that

σep(x,Q
2) =

∑

a

∫ 1

x

dξ fa(ξ)σ̂ea(x/ξ,Q
2) (2.42)

where a labels the types of parton in the proton, and the fa(ξ) are the parton

distribution functions (PDFs), and give the probability of finding a parton of type

a with momentum fraction ξ within the proton. σ̂ea(x/ξ,Q
2) is the cross-section for

parton a with momentum fraction ξ scattering with the electron. It is clear that f

describes soft physics, and σ̂ describes hard physics, but what exactly do we mean

by this? Consider the diagram of figure 2.5. If (k2)
2
⊥ is large, ie of the order of some

q

k1
k2

k3

Figure 2.5: A contribution to Deep Inelastic Scattering

hard scale Q2 in the process, then this is treated as an NLO correction to the hard

cross-section, and we consider the incoming parton momentum ξp = k1. However

if (k2)
2
⊥ is small, say of the order Λ2

QCD, then this is treated as a correction to the

PDF, and the incoming momentum of the parton for the hard process is ξp = k3.

The scale at which these corrections move from the PDFs to the hard cross-section

is referred to as the factorisation scale, µF . Clearly both the PDFs and the hard

2.9. Factorisation 22

cross-section depend on this scale, although the full physical result cannot depend

on this scale, as it is put in by hand. Eq. (2.42) is thus modified as

σep(x,Q
2) =

∑

a

∫ 1

x

dξ fa(ξ, µ
2
F)σea(x/ξ,Q

2, µ2
F) (2.43)

This logic can be extended to hadron-hadron initial states, where we assume

that exactly one parton from each hadron interacts. Thus the cross-section for

proton-proton collision p(p1) + p(p2) → X can be written as

σpp (p1, p2) =
∑

a,b

∫ 1

0

dx1

∫ 1

0

dx2fa
(
x1, µ

2
F

)
fb
(
x2, µ

2
F

)

× σ̂ab

(

x1p1, x2p2, αS
(
µ2
R

)
,
Q2

µ2
F

,
Q2

µ2
R

)

(2.44)

PDFs are determined from a wide range of experimental results, including fixed

target DIS, HERA data, fixed target Drell-Yan, Tevatron W/Z production and

Tevatron jet production. There are a number of different PDF sets available, up to

NNLO, eg [14–16]

As well as factorising the initial state long-distance physics from the hard cross-

section, we also need to consider final state long-distance physics, namely hadroni-

sation - the process of going from final state partons to final state hadrons. This is

implemented by fragmentation functions (FFs), analogous to PDFs. The FFs are

written as DH/p(z, µ
2
F), which gives the probability that a parton of type p produces

a hadron of type H with momentum fraction z. Putting these results together for

the cross-section of proton-proton collision forming hadron H + anything, we get

σpp→H(p1, p2) =
∑

i,j,k

∫ 1

0

dx1dx2dz fi(x1, µ
2)fj(x2, µ

2)

× σ̂ij→k

(

x1p1, x2p2, αs(µ
2),

Q2

µ2

)

DH/k(z, µ
2) (2.45)

where, for ease of notation, we have set µF = µR ≡ µ. This is a common choice for

calculations.

Chapter 3

Higher Order Corrections in

Perturbative Quantum Field

Theories

In this chapter we will describe a number of mechanisms involved in performing

higher order calculations in pQFTs. We start with specifying what types of process

need to be calculated, then go on to give examples of specific methods used in the

calculation of both virtual and real radiative corrections.

3.1 Components of a Higher Order Calculation

Here we will discuss the components of the calculation of higher order corrections

to the hard scattering process. We will consider only the case of 2 → n processes,

but the same methods apply for any number of incoming particles.

Consider a 2 → n process. The NLO corrections to this process can be split into

two types: One-loop corrections to the 2 → n process, and 2 → n + 1 processes,

where one final state particle can become unresolved (ie soft or collinear). For NkLO

corrections, each individual component is the i-loop correction to the 2 → n+ k− i

process, with k − i particles which can become unresolved in the final state (with

0 ≤ i ≤ k). When the sum of all NkLO contributions is taken, the soft and final

state collinear singular parts of the hard scattering process sum to zero by the KLN

23

3.2. Methods for Multi-loop Calculations 24

theorem. Soft and collinear singularities produced by initial state radiation (ISR)

are absorbed into NkLO PDFs (see section 2.9.1) to give a finite physical result.

For example, the soft singularity from the virtual/real gluon energy going to zero in

figures 3.1 and 3.2 will exactly cancel each other, but the soft/collinear singularities

from the initial state radiated gluon in figure 3.3 must be absorbed into an NLO

PDF to give a finite physical result. Note also that the processes qg → tt̄ + q and

q̄g → tt̄+ q̄ will also contribute to pp→ tt̄ at NLO via ISR.

Figure 3.1: gg→ tt̄ Figure 3.2: gg→ tt̄+g

Figure 3.3: gg→ tt̄+g

3.2 Methods for Multi-loop Calculations

The general steps for calculating a multi-loop amplitude are as follows:

1. Write down the amplitude using Feynman rules, in terms of an integral over

each of the undetermined loop momenta.

2. Employ reduction techniques to express the amplitude as a sum of master

integrals with certain coefficients1.

1SecDec can perform integrals with arbitrary tensor structures of loop momenta in the numer-

ator, contracted with external momenta, in a universal and systematic way. Thus this reduction

is not strictly required, but it greatly speeds up the calculation

3.2. Methods for Multi-loop Calculations 25

3. Compute the master integrals.

Numerous methods for steps 2 and 3 exist. We shall describe a few of these in this

section.

3.2.1 Integration By Parts (IBP)

IBP [17] can be used to find relations between Feynman diagrams, which can in

turn be used to reduce a diagram down to a linear combination of certain ‘master

integrals’. The method is based on the fact that:

∫

ddk
∂

∂kµ
(vµf(k, ...)) = 0 (3.1)

where f(k, ...) is an integrand arising from a feynman diagram, containing products

of denominators, and irreducible numerators in the case where the number of possible

scalar products is greater than the number of possible denominators, and v is either

a loop momentum or external momentum.

As a simple example, consider the one-loop massless self-energy diagram given in

figure 3.4, with propagators raised to powers n1, n2,

D1 = k2, D2 = (k + p)2

I(n1, n2) =

∫

ddk
1

Dn1

1 D
n2

2

(3.2)

Consider

0 =

∫

ddk
∂

∂k
· k 1

Dn1

1 D
n2

2

=

∫

ddk

(
d

Dn1

1 D
n2

2

− 2n1k
2

Dn1+1
1 Dn2

2

− 2n2k · (k + p)

Dn1

1 D
n2+1
2

)

=

∫

ddk

(
d− 2n1 − n2

Dn1

1 D
n2

2

+
n2p

2

Dn1

1 D
n2+1
2

− n2

Dn1−1
1 Dn2+1

2

)

(3.3)

Rearranging eq. (3.3), and relabelling n2 → n2 − 1 gives

p2I(n1, n2) =
(n2 + 2n1 − d− 1)

n2 − 1
I(n1, n2 − 1) + I(n1 − 1, n2) (3.4)

and so we can reduce any I(n1, n2) down to a constant times I(1, 1) by applying

this relationship, and the symmetry I(n1, n2) = I(n2, n1).

3.2. Methods for Multi-loop Calculations 26

p p

p+ k

k

Figure 3.4: A one-loop massless self-energy diagram

For diagrams with many loops and legs there will be a vast number of these rela-

tionships, and only a small number will form a linearly independent set. To reduce

the original integral into a sum of ‘master integrals’ one must employ certain rules

to automate which relations are used, and which integrals are considered masters.

One way to do this is the Laporta Algorithm.

3.2.2 Laporta Algorithm

The Laporta algorithm was proposed in [18]. It has since been implemented in a

number of programs, eg [19–21]. The algorithm sets out a systematic way to reduce

the huge number of possible IBP relations to a small, manageable set which can

be used to express the amplitude as a linear sum of master integrals with various

coefficients.

For a generic Feynman diagram, the amplitude can be written as a sum of in-

tegrals over loop momenta of terms with different numerators, and different powers

of denominators. These can be expressed in a standard form by choosing a basis of

denominators and irreducible numerators, and then each term is categorised by the

powers of the denominators/numerators.

3.2. Methods for Multi-loop Calculations 27

The algorithm proceeds in a systematic way to generate IBP relations such that

each term can be reduced to a sum of master integrals with certain coefficients, and

the problem of calculating the amplitude is then to calculate the remaining master

integrals.

A system of IBP relations is generated by considering integrands of the type:

∏

j (Dj)
βj

∏

i (Di)
αi
, (3.5)

where the Dk are the denominators/irreducible scalar products, and the αi, βj are

the exponents of these. IBP relations generated from these integrands consist of

terms with either the same denominator structure, or terms with one denominator

power reduced by one, due to cancellations from the numerator.

First, the simplest case where there are no numerators, and the number of denomina-

tors is the same as the number of internal legs in the feynman diagram, all of which

have exponent 1, is considered. All IBP relations are generated from this integrand,

and those which are linearly independent are added to the system of identities, and

substituted into the already existing identities. Then more ‘complicated’ integrands

are considered in a systematic way, until a predetermined stopping point is reached.

If this stopping point is chosen suitably, the algorithm will have generated a sys-

tem of identities which allows you to reduce any integral down to a sum of master

integrals. For full details of the algorithm, see [18].

3.2.3 Parametrising the Integrand

A number of different methods for calculating master integrals start with parametris-

ing the integrand using either α-parameters or Feynman parameters.

3.2.3.1 α-Parametrisation

α-parameters are introduced by using the identity

1

(A+ iδ)a
=

(−i)a
Γ(a)

∫ ∞

0

dααa−1ei(A+iδ)α (3.6)

where in the case of Feynman diagram, the A are the propagators of the diagram.

3.2. Methods for Multi-loop Calculations 28

3.2.3.2 Feynman Parametrisation

Feynman parametrisation is based on the identity

1
∏N

j=1A
νj
j

=
Γ(Nν)

∏N
j=1 Γ(νj)

∫ ∞

0

N∏

j=1

dxj x
νj−1
j δ

(

1−
N∑

i=1

xi

)

1
[
∑N

j=1 xjAj

]Nν
,

where Nν =
N∑

j=1

νj (3.7)

where in the case of Feynman diagrams the Ai are the propagators of the diagram.

3.2.4 Mellin-Barnes (MB) Representation

Mellin-Barnes representation has been successfully applied to a number of multi-loop

calculations, eg [22–24]. MB representation is used to replace a sum of two terms

raised to a certain power by the product of these terms raised to certain powers.

This method uses the following identity:

1

(X + Y)ν
=

1

Γ(ν)

1

2πi

∫ +i∞

−i∞
dw

Y w

Xν+w
Γ(ν + w)Γ(−w) , (3.8)

with the contour chosen such that the poles of Γ(ν + w) all fall to the left of the

contour (referred to as left poles), and poles of Γ(−w) fall to the right (right poles).

Poles in ǫ occur when left and right poles coincide at ǫ = 0. These poles are resolved

by shifting the contour away from these poles, which picks up the residue of all the

right poles crossed. For example, for the scalar massless one-loop box, using MB

representation and integrating out Feynman parameters leaves us with an integral

of the form

I(s, t) ∼ 1

2πi

∫ i∞

−i∞
dw

(
t

s

)w

Γ(2 + ǫ+ w)Γ(1 + w)2Γ(−1− ǫ− w)2Γ(−w) (3.9)

The poles in the complex w plane are arranged as in figure 3.5, where ǫ ∝ −1− i for
illustrative purposes. The contour we need to integrate over is C, with the contour

closed to the right, but as ǫ → 0, the right pole at w = −1 − ǫ and the left pole

at w = −1 coincide, so we need to shift to contour C′, picking up the residue at

w = −1 − ǫ. Specifically

I(s, t) =
1

2πi

∫

C
f (x, w) dw (3.10)

=

(

−Res (f(x,−1− ǫ)) +
1

2πi

∫

C′

f (x, w) dw

)

(3.11)

3.2. Methods for Multi-loop Calculations 29

Γ(2 + ǫ + w)

Γ(1 + w) Γ(−w)

Γ(−1− ǫ− w)C C′

Figure 3.5: Poles of the integrand in the w plane

where x = t
s
. The integrand can then be expanded as a Taylor series in ǫ, and

at each order the residues are summed, giving the result as an infinite sum over

residues of right poles. These sums are simple enough for lower orders in ǫ, but for

higher orders various results for series of polylogarithms2 are required (see eg [28]).

The public FORM [29] package XSUMMER [30] implements these results.

3.2.5 Differential Equations

The differential properties of Feynman amplitudes were considered by de Alfaro,

Jakšić and Regge [31]. Kotikov presented the method of using differential equations

with respect to invariants of the amplitude [32], and the method was further devel-

oped by Remiddi and Gehrmann [33–38] and used, together with Lorentz invariance

identities, to calculate the massless two-loop, four-point function master integrals

with one leg off-shell.

The goal of the method is to find a linear system of first order differential equations

for the master integral, which can be solved numerically (or in some cases analyti-

cally), or used to examine the behaviour of the amplitude around certain values of

the external parameters of the calculation.

As the master integrands will involve the external momenta, but the integrated

2The use of symbols [25] to simplify long expressions containing polylogarithms is yielding very

impressive results including the evaluation of the one-loop hexagon in 6 dimensions with three

massive corners [26], and a massive non-planar two-loop box appearing in tt̄ production [27]

3.2. Methods for Multi-loop Calculations 30

result will depend only on external invariants, differentiation with respect to these

invariants is rewritten in terms of differentiation with respect to the external mo-

menta. For example,

p2
∂

∂p2
≡ 1

2
p · ∂

∂p
(3.12)

or, for a four-point function,

s12
∂

∂s12
≡ 1

2

(

p1 ·
∂

∂p1
+ p2 ·

∂

∂p2
− p3 ·

∂

∂p3

)

(3.13)

These differentiations can then be applied to the integrands, and algebraic manip-

ulations can be used to cast the numerators of the resulting expression into irre-

ducible numerators, and then we can use IBP identities and LI identities to rewrite

these expressions in terms of the original master integrals, and master integrals of

subtopologies which are already known. Applying these differentiations leaves us

with a system of linear, first order differential equations for the master integrals,

which can be solved numerically once certain boundary conditions are fixed.

3.2.6 Difference Equations

The method of difference equations takes the space-time dimension d as a complex

variable, and calculates a relationship between the amplitudes I(d) and I(d − 2).

Analytic properties of I(d) are then used to calculate the integral in d = 4 − 2ǫ di-

mensions. The method was proposed by Lee [39], drawing from work of Tarasov [40].

It has since been used successfully in a number of applications by Lee, Smirnov and

Smirnov [41, 42], including the evaluation of all four-loop massless self-energy dia-

grams up to at least O(ǫ5).

To illustrate this we will follow the method of Tarasov.

Consider a scalar Feynman integral in d-dimensions as

I(d)({si}, {m2
i }, {ni}) =

∫

ddk1 · · · ddkL
N∏

j

D
−nj

j (3.14)

Where N is the number of propagators, L is the number of loops, Dj are the denom-

inators appearing in the graph,{si} are invariants made up of external momenta,

and {m2
i } are the masses squared of each propagator. For this method, each mass

3.2. Methods for Multi-loop Calculations 31

must originally be considered as independent - desired values for the masses can be

reinstated later. Introducing α−parametrisation, and applying

U(∂) ≡ U
(

∂

∂m2
1

, · · · , ∂

∂m2
N

)

(3.15)

where U is the Feynman graph polynomial, discussed at length in section 4.3.1.1.

This leads to the result

I(d−2)({si}, {m2
i }, {ni}) =

(

−1

π

)L

U(∂)I(d)({si}, {m2
i }, {ni}) (3.16)

The action of U(∂) on I(d)({si}, {m2
i }, {ni}) will have the effect of raising some of the

ni by one, and we can then relate these back to the original I using IBP relations.

We are then left with a difference equation of the form

I(d−2) = A(d)I(d) +B(d) (3.17)

where A(d), B(d) are known.

The DRA Method

The method of Lee follows a different route. Firstly, let us assume we have only

one master integral for a given topology. If this is not the case the method still

holds, but we are left with a system on linear, first order inhomogeneous difference

equations in d.

For our master integral, using the method given above we end up with an equation of

the form of eq. (3.17), where B(d) is made up of master integrals for subtopologies,

and A(d) is a rational function in d. To solve this equation, knowledge of the

analytic properties of the integral in a given strip Re d ∈ [d0, d0 + 2) is required.

It may also be necessary to fix remaining constants by evaluating the integral at

some particular values of d. The result for the master integral is then given by an

exponentially decaying infinite sum. Thus these sums have a fast convergence, and

a very accurate numerical result can be obtained quickly. PSLQ (see section 3.2.7)

is then applied to obtain an analytic expression for the master integral, as a series

in ǫ = (4 − d)/2. This fast convergence is a significant advantage to this method

when compared with, for example, the harmonic (multiple) sums produced by MB

representation.

3.2. Methods for Multi-loop Calculations 32

3.2.7 PSLQ Algorithm

While not a method for calculating loop integrals itself, the PSLQ algorithm is a

very useful tool for experimentally finding the analytic form of an amplitude which

can be computed numerically to a high degree of accuracy.

The algorithm is based on a PSOS (Partial Sum of Squares) scheme, in conjunction

with LQ (lower trapezoidal-orthogonal) matrix factorisation, hence ‘PSLQ’. The

algorithm was first devised by Bailey and Ferguson [43]. A simplified version, also

supporting complex and quaternion numbers, was developed by Arno, Bailey and

Ferguson [44].

Given a set of numbers {xi} (for applications to loop calculations, we will only

discuss the method over R), the aim is to find integers {ai} such that

∑

i

aixi = 0,with some ai 6= 0 (3.18)

The way this is used in particle physics is to take one coefficient in ǫ of the numerical

result for an amplitude, A, and a basis of constants, {ci}, expected to appear in the

result, and run the algorithm with

{xi} = {c1, · · · , cn, A} (3.19)

If PSLQ finds an integer relation (ie a relation of the type given in eq. (3.18)), then

this can be rearranged to give3

A = −
n∑

i

ai
an+1

ci (3.20)

Notice that an+1 6= 0, otherwise the set of constants {ci} chosen are linearly depen-

dent over Z and thus not a basis. The choice of constants {ci} is not straightforward.

However there are certain insights that can be used to pick the basis. To discuss

this, the concept of ‘transcendentality weights’ should be introduced.

Transcendentality weights follow the rules given in table 3.1 4. The maximum tran-

3this should perhaps be written A“ = ” −∑n

i
ai

an+1
ci, since there is no formal proof that the

relationship holds exactly. Sørensen [45] gives an interesting philosophical review of the use of

experimental mathematics, with particular reference to PSLQ.

3.3. Methods for Real Radiative Corrections 33

Number, x Transcendentality Weight, TW (x)

1 0

π 1

log(2) 2

Lin(2) n

ζn n

ζn1,··· ,nk

∑k
i ni

a× b TW (a) + TW (b)

Table 3.1: Table of transcendentality weights for various numbers which may occur

in the result of a loop calculation

scendentality weight which appears at a given order in ǫ for a given graph can be

predicted. Moreover, with an intelligent choice of ǫ-dependent prefactor for the am-

plitude, all numbers appearing at a given order in ǫ have the same transcendentality

weight. This observation serves to keep the set of expected constants {ci} small.

3.3 Methods for Real Radiative Corrections

The methods for dealing with soft/collinear real radiative corrections are very well

known and applied at NLO. Extension to NNLO and beyond is a highly non-trivial

step, as the singularity structure of the final state becomes much more complicated,

involving many overlapping soft and collinear limits. In this section we will discuss

the methods of phase space slicing and subtraction at NLO, and in some extensions

to NNLO. The common aspects of phase space slicing and subtraction are that they

rely on analytic calculation in only a minimal part of the calculation, namely only

4this is by no means an exhaustive list - it has been theorised by Brown [46] that four-loop

non-planar massless self-energy diagrams can contain not only multiple zeta values (MZVs), but

also Goncharov’s polylogarithms [47] of 6th roots of unity. However, recent work by Lee, Smirnov

and Smirnov [42] has shown that only MZVs appear up to transcendentality weight twelve in these

diagrams

3.3. Methods for Real Radiative Corrections 34

the contributions which can give rise to singularities. Also, for a given process, these

contributions are computed without explicit dependence on the particular observable

considered. The remainder of the calculation is done using numerical integration.

3.3.1 Subtraction

The idea of subtraction has been widely used for NLO calculations. It was used in

the calculation of e+e− annihilation by eg [48], and for hadron-hadron collisions in

eg [49]. There are a number of different methods within the concept of subtraction,

we will mention a few of these below. Firstly a general introduction. Let us consider

the components of the NLO calculation of some 2 → n cross-section,

σNLO =

∫

n

(dσBorn + dσvirtual) +

∫

n+1

dσreal (3.21)

where the first term is integrated over n-particle phase space, and the last term is

integrated over (n+1)-particle phase space. There will be poles in ǫ in both the real

and virtual parts of this calculation, which cancel when summed (UV divergences

have already been taken care of via renormalisation). This fact stops us from being

able to directly calculate the cross-section numerically in 4 dimensions.

The idea of subtraction is to add and subtract an extra term, so that the various

terms in the calculation can be grouped together into terms which are finite over

n- or (n + 1)-particle phase space, and can thus be computed numerically in 4

dimensions. The cross section is written as

σNLO =

∫

n

(

dσBorn + dσvirtual +

∫

1

dσs

)

+

∫

n+1

(dσreal − dσs) (3.22)

The subtraction term, dσs, must have 2 properties:

1. dσreal − dσs must be numerically integrable over n+ 1 particle phase space in

4 dimensions.

2. The analytic integration
∫

1
dσs over the unresolved particle phase space must

be possible, so that the poles can be resolved analytically, and cancelled with

those of dσvirtual so that the integration over n particle phase space can be

performed in 4 dimensions.

3.3. Methods for Real Radiative Corrections 35

The construction of the subtraction term differs from method to method. Each

method involves calculating the matrix element squared in every singular limit (soft,

final state collinear and, for hadronic initial states, initial state collinear), and, in

these limits, factorising the n+1 particle phase space into n⊗1 phase space in such

a way that the integration over the phase space of the unresolved particle is simple,

and can be performed analytically. Infact, in these limits, the singular behaviour

can be factorised in a process independent way, such that these integrals can be

done once and for all, and not repeated for each different process.

Below, I list three popular subtraction methods. For more details, see the refer-

ences given.

Dipole Subtraction

The method of dipole subtraction was proposed by Catani and Seymour [50, 51]. It

has been automated in a number of packages, for example MadDipole [52].

FKS Subtraction

The method of Frixione-Kunszt-Signer subtraction (also referred to as residue sub-

traction) was presented for 3 jet NLO cross-sections [53]. It has since been automated

in MadFKS [54]

Antenna Subtraction

Antenna subtraction was proposed in [55]. It has been widely used for NLO calcula-

tions, eg e+e− → 4j in [56]. It was later applied to colourless initial states at NNLO

in [57–59], with the example of e+e− → 3j. It has since been applied to hadronic

initial states [60–67], and to massive coloured particles in the final state at NLO

in [68,69]. The method can be combined with parton shower Monte Carlo, see [70].

3.3. Methods for Real Radiative Corrections 36

3.3.2 Phase Space Slicing

The method of phase space slicing has been widely used for NLO calculations, for

example e+e− → 3j in [71,72], and e+e− → γ+ j in [73]. It has been further applied

for hadronic initial states in [74]. The method involves partitioning, or ‘slicing’, the

phase space into different regions, and integrating analytically those regions contain-

ing soft or collinear singularities. Let us consider the real radiative NLO corrections

to a 2 → n process. The phase space is first split into two regions: hard and soft.

The hard region is defined as the region where the energy of each final state parti-

cle is greater than a certain value, which introduces a new parameter, δs, into the

calculation.

If collinear singularities are present, the hard region must also be split into two

regions: collinear and non-collinear. The non-collinear region is defined by the fact

that the magnitude of all 2-particle invartiants is above a certain value. This intro-

duces a second parameter, δc, into the calculation.

The unresolved degrees of freedom in the soft and hard-collinear regions are inte-

grated over analytically, and these terms are then combined with the virtual NLO

corrections and the singularities cancel, so they can be integrated numerically over

the n-particle phase space in 4 dimensions. The hard-non-collinear region contains

no singularities in the n + 1-particle phase space by construction, and so this can

also be integrated numerically in 4 dimensions.

To calcuate the contribution from the soft region, the phase space corresponding

to the soft particle is parametrised in terms of the energy and angles of the soft

particle, and terms of order δs are neglected. For example, in the region where

particle n+ 3 is soft we have

dΦn+1 =

(
n+3∏

i=3

dd−1pi
2p0i (2π)

d−1

)

(2π)dδ(d)

(

p1 + p2 −
n+3∑

j=3

pj

)

=

[(
n+2∏

i=3

dd−1pi
2p0i (2π)

d−1

)

(2π)dδ(d)

(

p1 + p2 −
n+2∑

j=3

pj

)]

dd−1pn+3

2p0n+3(2π)
d−1

+O(δs)

= dΦn
dd−1pn+3

2p0n+3(2π)
d−1

+O(δs) (3.23)

3.3. Methods for Real Radiative Corrections 37

For particle k soft, we parametrise pk (up to O(δs)) as

pk = Ek

(

1,~0d−4, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1

)

(3.24)

and use

dd−1pk = dEkE
d−2
k sind−3 θ1dθ1 sin

d−4 θ2dθ2dΩd−4 (3.25)

The eikonal approximation of the matrix element squared is calculated, and is then

integrated over the degrees of freedom of the soft particle. As with subtraction, the

dependence on the soft momentum of the soft approximation to the matrix element

squared is well known and process independent, so these integrations need only be

done once and for all.

A similar process is carried out for the collinear region. For the region where

particles i and j become collinear, the phase space is factorised into an n⊗ 1 phase

space, where the the two partons i and j are combined with pij = pi + pj in the

n particle phase space, and the one particle phase space corresponds to integration

over the unresolved degrees of freedom of pi. These degrees of freedom are then

reparametrised in terms of sij and z, the double invariant and momentum fraction

of parton i in parton i′ = ij respectively, with terms of O(δc) neglected. The d− 3

remaining angles are integrated out. The collinear approximation to the matrix

element is then calculated, making use of the Altarelli-Parisi splitting kernels in

4− 2ǫ dimensions, Pii′(z, ǫ). The integration over sij is then performed analytically,

resulting in a single pole in ǫ. Again, the dependence of the collinear approximation

to the matrix element squared on sij is well known and process independent, and so

this analytic integration need only be done once.

How do we choose values for δs and δc? As the two parameters have been

introduced by hand, the true result must be independent of their values. Thus as

we have neglected terms of O(δ) we should choose them small enough such that

these terms are small. However we should not choose values too small, as this will

affect the numerical stability of the integration in regions labelled as finite.

3.3. Methods for Real Radiative Corrections 38

3.3.3 Sector Improved Phase Space for Real Radiation

The method of SecToR Improved Phase sPacE for real Radiation (STRIPPER) was

proposed by Czakon in [75]. It is based on sector decomposition, together with

knowledge of the singularity structure inspired by FKS subtraction. It has been

applied to double real radiation in hadronic tt̄ production in [76]. It is applicable

to NNLO calculations with at least two massive particles in the final state for the

LO cross-section. The method requires clever parametrisation of the phase space,

which is then decomposed into carefully chosen sectors whereby the singular limits

of the amplitudes are factorised.

For a description of the sector decomposition method, see chapter 4.

3.3.4 More Methods

There are a number of full NNLO results available which have been computed via a

method not mentioned above. Many of these rely on sector decomposition, for ex-

ample the NNLO QCD corrections to pp→ H →WW → lνlν of [77], and recently

for H → bb̄, where non-linear transformations were used alongside sector decom-

position [78]. Also Electro-Weak boson production at NNLO has been calculated

using sector decomposition [79]. For further examples of results produced via sector

decomposition, see section 4.1.

NNLO QCD results for colourless final states produced in hadronic collisions have

been calculated using the qT subtraction method [80,81] most recently for diphoton

production [82].

Chapter 4

Sector Decomposition

4.1 Current Status of Sector Decomposition

Sector decomposition is an algorithmic method to isolate divergences from parameter

integrals as they occur for instance in perturbative quantum field theory. Originally

it was devised by Hepp [83] in the context of the the proof of the BPHZ theorem in

order to disentangle overlapping ultraviolet singularities. Similar ideas, applied to

the subtraction of infrared divergences, can be found e.g. in [84]. It was employed

later to extract logarithmic mass singularities from massive multi-scale integrals in

the high energy limit at two loops [85, 86].

In [87], the concept of sector decomposition was elaborated to a general algorithm

in the context of dimensional regularisation, allowing the isolation of ultraviolet as

well as infrared singularities from Feynman parameter integrals in an automated

way. First applications of this algorithm were the numerical evaluation of two-

loop box diagrams at certain Euclidean points, see e.g. [87–89]. More recently, the

method has been used to numerically check a number of analytic three-loop and four-

loop results [24, 41, 90–101], most of them produced by either the public program

FIESTA [102, 103] or SecDec [104]. Further references about recent applications of

sector decomposition to multi-loop calculations can be found in [103, 105].

Sector decomposition also has been combined with other methods for a numeri-

cal calculation of loop amplitudes, first on a diagrammatic level in Refs. [106, 107],

later for whole amplitudes in Refs. [108–111]. The latter approaches contain a com-

39

4.1. Current Status of Sector Decomposition 40

bination of sector decomposition and contour deformation [112–116], which allows

one to integrate the Feynman parameter representation of an amplitude numerically

in the physical region.

As phase space integrals in D dimensions can be written as dimensionally regu-

larised parameter integrals, sector decomposition can also serve to factorise entan-

gled singularity structures in the case of soft and collinear real radiation. This idea

was first presented in [117] and was subsequently applied to calculate all master

four-particle phase space integrals where up to two particles in the final state can

become soft and/or collinear [118]. Shortly after, this approach has been extended

to be applicable to exclusive final states as well by expressing the functions pro-

duced by sector decomposition in terms of distributions [119]. Further elaboration

on this approach [120, 121] has lead to differential NNLO results for a number of

processes [77,79,122–128]. The combination of the Frixione-Kunszt-Signer subtrac-

tion scheme [53] for soft and collinear real radiation with the decomposition into

sectors to treat real radiation at NNLO, as proposed recently in [75], and applied

to hadronic tt̄ production in [76], is also promising with regards to the reduction of

the number of functions produced by the decomposition. A combination of sector

decomposition with non-linear variable transformations as proposed in [129], and

applied to Higgs decay to bottom quarks in [78], can also serve to reduce consider-

ably the number of functions to integrate, but is less straightforward to automate

completely.

To date, the method of sector decomposition has been applied successfully to a

considerable number of higher order calculations, for a review we refer to [105,130].

Here we will concentrate on the method of sector decomposition from a programming

point of view.

Despite its success in practical applications, for quite some time there was no

formal proof for the existence of a strategy for the iterated sector decomposition

such that the iteration is always guaranteed to terminate. This gap has been filled

in Ref. [131], by mapping the problem to Hironaka’s Polyhedra game [132] and of-

fering three strategies which are proven to terminate. Bogner and Weinzierl also

implemented the algorithm in a public computer program for iterated sector de-

4.2. Basic Concept 41

composition written in C++ [131]. A Mathematica interface to this program, which

also allows the calculation of contracted tensor integrals, has recently been published

in [133].

A different strategy guaranteed to terminate, leading to less subsectors than

the strategies of Ref. [131], was given by A.V. Smirnov and M. Tentyukov, who

implemented the algorithm in the public program FIESTA [102]. Based on a detailed

analysis of Hepp and Speer sectors in Ref. [134], an alternative strategy, which is

based on Speer sectors, has been implemented in FIESTA2 [103]. As the latter

strategy also uses information on the topology of the graph, it can perform the

decomposition more efficiently in certain cases.

Another group has implemented [135] the sector decomposition algorithm in

FORM [29]. Mapping sector decomposition to convex geometry and using algorithms

in computational geometry lead to a guaranteed terminating strategy which seems

to be optimal with regards to the number of produced subsectors [136, 137].

4.2 Basic Concept

Consider the two parameter integral

I =

∫ 1

0

dx

∫ 1

0

dy (x + y)−2+ǫ . (4.1)

The integrand is singular when x and y tend to zero simultaneously. This type

of singularity is referred to as overlapping. The aim of sector decomposition is to

factorise these overlapping singualrities. To this end, we split the hypercube in two,

where one half has x > y and the other half has y > x.

I = I1 + I2 =

∫ 1

0

dx

∫ x

0

dy (x + y)−2+ǫ +

∫ 1

0

dy

∫ y

0

dx (x + y)−2+ǫ (4.2)

We then substitute y = xt in the first sector, and x = yt in the second sector, as

shown in figure (4.1). This gives us

I1 =

∫ 1

0

dx

∫ 1

0

dt x−1+ǫ(1 + t)−2+ǫ

I2 =

∫ 1

0

dy

∫ 1

0

dt y−1+ǫ(1 + t)−2+ǫ

(4.3)

4.3. The Method 42

y

x

−→
+ −→(2)

(1)

+

y

x

t

t

Figure 4.1: Sector decomposition schematically.

Since the term (1 + t)−2+ǫ is finite throughout the integration region, the singu-

larities are now factorised, with the singularity structue determined by the powers

of simple monomials of the integration variables. This concept can be applied to

multi-dimensional polynomial parameter integrals. In general, not all overlapping

singularities are factorised after one step of this process, so the method is iterated

until every singularity is factorised.

4.3 The Method

4.3.1 Multi-Loop Integrals

4.3.1.1 Feynman Parametrisation

A general Feynman graph Gµ1...µR
l1...lR

in D dimensions at L loops with N propagators

and R loop momenta in the numerator, where the propagators can have arbitrary,

not necessarily integer powers νj , has the following representation in momentum

space:

Gµ1...µR
l1...lR

=

∫ L∏

l=1

dDκl
kµ1l1 . . . k

µR
lR

N∏

j=1

P
νj
j ({k}, {p}, m2

j)

dDκl =
µ4−D

iπ
D
2

dDkl , Pj({k}, {p}, m2
j) = q2j −m2

j + iδ , (4.4)

4.3. The Method 43

where the qj are linear combinations of external momenta pi and loop momenta kl.

Introducing Feynman parameters via

1
∏N

j=1 P
νj
j

=
Γ(Nν)

∏N
j=1 Γ(νj)

∫ ∞

0

N∏

j=1

dxj x
νj−1
j δ

(
1−

N∑

i=1

xi
) 1
[
∑N

j=1 xjPj

]Nν
,(4.5)

where Nν =

N∑

j=1

νj , leads to

Gµ1...µR
l1...lR

=
Γ(Nν)

∏N
j=1 Γ(νj)

∫ ∞

0

N∏

j=1

dxj x
νj−1
j δ

(
1−

N∑

i=1

xi
)
∫

dDκ1 . . .d
DκL

kµ1l1 . . . k
µR
lR

[
L∑

i,j=1

kTi Mij kj − 2
L∑

j=1

kTj ·Qj + J + i δ

]−Nν

, (4.6)

where M is a L×L matrix containing Feynman parameters, Q is an L-dimensional

vector composed of external momenta and Feynman parameters, and J contains

kinematic invariants and Feynman parameters.

To perform the integration over the loop momenta kl, we perform the following

shift in order to obtain a quadratic form for the term in square brackets in eq. (4.6):

k′l = kl − vl , vl =
L∑

i=1

M−1
li Qi . (4.7)

After momentum integration one obtains

Gµ1...µR
l1...lR

= (−1)Nν
1

∏N
j=1 Γ(νj)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

l=1

xl)

⌊R/2⌋
∑

m=0

(−1

2
)mΓ(Nν −m− LD/2)

[

(M̃−1 ⊗ g)(m) l̃(R−2m)
]Γ1,...,ΓR

︸ ︷︷ ︸

N (~x)

× UNν−(L+1)D/2−R

FNν−LD/2−m (4.8)

where

F(~x) = det(M)

[
L∑

j,l=1

QjM
−1
jl Ql − J − i δ

]

(4.9)

U(~x) = det(M)

M̃−1 = UM−1 , l̃ = U v

4.3. The Method 44

and ⌊R/2⌋ denotes the nearest integer less or equal to R/2. The expression

[(M̃−1 ⊗ g)(m) l̃ (R−2m)]Γ1,...,ΓR stands for the sum over all different combinations of

R double-indices distributed to m metric tensors and (R − 2m) vectors l̃, and is

included in the decomposition as the numerator function N (~x). The double indices

Γi = (l, µi(l)) , l ∈ {1, . . . , L}, i ∈ {1, . . . , R} denote the ith Lorentz index, belonging

to the lth loop momentum.

As can be seen from Eq. (4.8), the difference between scalar (R = 0) and tensor

(R > 0) integrals, once the Lorentz structure is extracted, is given by the fact that

there are additional polynomials of Feynman parameters in the numerator. These

polynomials can simply be included into the sector decomposition procedure, thus

treating contracted tensor integrals directly without requiring reduction to scalar

integrals.

The functions U and F also can be constructed from the topology of the corre-

sponding Feynman graph. Cutting L lines of a connected L-loop graph to produce

a connected tree graph T defines a chord C(T), with C(T) being the set of lines not

in T . The Feynman parameters associated with the chord C(T) define a monomial

of degree L. The set of all possible trees (referred to as 1-trees to denote that there

is 1 connected component) is denoted by T1. Cutting one more line from T ∈ T1

gives 2 disconnected trees, ie a 2-tree. The set of all 2-trees is denoted by T2, and

the corresponding chord to a 2-tree defines a monomial in Feynman parameters of

degree L+1. For a 2-tree T̂ , define the Lorentz invariants sT̂ =
(
∑

j∈Cut(T̂) pj
)2

, ie

sT̂ is the square of the momentum flowing from one component of T̂ to the other.

Then U and F are constructed as follows:

U(~x) =
∑

T∈T1

[∏

j∈C(T)
xj

]

,

F0(~x) =
∑

T̂∈T2

[∏

j∈C(T̂)

xj

]

(−sT̂) ,

F(~x) = F0(~x) + U(~x)
N∑

j=1

xjm
2
j . (4.10)

For further methods of calculating U ,F , see [138].

4.3. The Method 45

U is positive semi-definite. Its vanishing is related to the UV subdivergences

of the graph. Overall UV divergences, if they occur, will always be contained in

the prefactor Γ(Nν − m − LD/2). In the region where all invariants formed from

external momenta are negative (henceforth referred to as the Euclidean region) F is

also a positive semi-definite function of the Feynman parameters xj . Its vanishing

does not necessarily lead to an IR singularity. Only if some of the invariants are

zero, for example if some of the external momenta are light-like, the vanishing of

F may induce an IR divergence. Thus it depends on the kinematics and not only

on the topology (like in the UV case) whether a zero of F leads to a divergence or

not. The necessary (but not sufficient) conditions for an IR divergence are given by

the Landau equations [139–141], which, in parameter space, simply mean that the

necessary condition F = 0 for an IR divergence can only be fulfilled if some of the

parameters xi go to zero, provided that all kinematic invariants formed by external

momenta are negative. Now U ,F and where applicable N are the starting point for

the decomposition.

4.3.1.2 Primary Sector Decomposition

The following is valid for all multi-loop integrals. For ease of notation, consider the

scalar case (R = 0). Eq. (4.8) then becomes

G = (−1)Nν
Γ(Nν − LD/2)
∏N

j=1 Γ(νj)

∞∫

0

N∏

j=1

dxj x
νj−1
j δ(1−

N∑

l=1

xl)
UNν−(L+1)D/2

FNν−LD/2 .

(4.11)

We would like to transform this into integrations over the unit hypercube, while

retaining the feature that only regions with some xi → 0 can lead to singularities.

Furthermore, we would like to preserve any possible symmetries between certain

Feynman parameters. To this end we split the integration domain into N sectors,

where sector j has xi < xj for all i 6= j. Using the identity

∫ ∞

0

dNx =

N∑

l=1

∫ ∞

0

dNx

N∏

j=1

j 6=l

θ(xl ≥ xj) . (4.12)

4.3. The Method 46

With the θ-function defined as

θ(x ≥ y) =







1 if x ≥ y

0 otherwise.

The integral is now split into N domains corresponding to N integrals Gl. We

extract a common factor and write: G = (−1)NνΓ(Nν − LD/2)
∑N

l=1Gl. For each

integral Gl we substitute

xj =







xltj for j < l

xl for j = l

xltj−1 for j > l

(4.13)

and eliminate xl using the δ–distribution. Since U ,F are homogeneous of degrees

L, L+1 respectively, the above substitution gives U(~x) → U(~t)xLl , F(~x) → F(~t)xL+1
l ,

and so using
∫

dxl
xl
δ
(

1− xl(1 +
∑N−1

k=1 tk)
)

= 1 gives

Gl =

1∫

0

N−1∏

j=1

dtj t
νj−1
j

UNν−(L+1)D/2
l (~t)

FNν−LD/2
l (~t)

, l = 1, . . . , N . (4.14)

Now eq. (4.14) has each Gl as a polynomial parameter integral over the (N −1)-

dimensional unit hypercube, and these can be treated via iterated sector decompo-

sition as described in the next section.

For a diagram with massless propagators, none of the Feynman parameters oc-

curs quadratically in the function F = F0 . If massive internal lines are present, F
gets an additional term F(~x) = F0(~x)+U(~x)

N∑

j=1

xjm
2
j . If the power of the Feynman

parameters in the polynomial forming F is larger than one for at least two different

parameters, initially or at a later stage in the iterated decomposition, an infinite

recursion can occur. This happens in the example given in section 5.4.1.2 if the

default decomposition strategy is employed. A heuristic procedure is implemented

in SecDec to change to a different decomposition strategy only in cases where at

least two Feynman parameters occur quadratically, which lead to a terminating al-

gorithm without producing a large number of subsectors in all examples up to 3

loops considered so far. We do not claim that this procedure is guaranteed to termi-

nate, and examples where it does not terminate exist, however it has proved useful

for practical purposes. For more details, see Appendix K.2.

4.3. The Method 47

4.3.2 General parameter integrals

Sector decomposition can also be employed for more general multi-dimensional pa-

rameter integrals. The general form of the integrals is

I =

∫ 1

0

dx1 . . .

∫ 1

0

dxN

m∏

i=1

Pi(~x, {α})νi , (4.15)

where Pi(~x, {α}) are polynomial functions of the parameters xj , which can also

contain some constants {α}. The νi are powers of the form νi = ai + biǫ (with ai

such that the integral is convergent; note that non-integer powers are also possible).

It should be pointed out that most phase space integrals in D dimensions over real

radiation matrix elements can also be remapped to functions of the type (4.15).

Examples are given in section 5.4.

4.3.2.1 Iterated sector decomposition

Our starting point is a function of the form of Eq. (4.15). First we have to determine

which of the integration variables generate singularities at xj = 1, and which ones

can lead to singularities at zero and one. The parameters xj for which a denominator

vanishes at xj = 1 but not at xj = 0 should be remapped by the transformation xj →
1 − xj . If the integrand can become singular at both endpoints of the integration

range for a parameter xj , we split the integration range at 1/2: After the split

∫ 1

0

dxj =

∫ 1

2

0

dxj
︸ ︷︷ ︸

(a)

+

∫ 1

1

2

dxj

︸ ︷︷ ︸

(b)

(4.16)

and the substitution xj = zj/2 in (a) and xj = 1− zj/2 in (b), all endpoint singular-

ities occur at zj → 0 only. This splitting is done automatically in SecDec; the user

only has to define which integration variables should be split.

So our starting point is a parametric integral where the integrand is singular if

some of the integration parameters go to zero. Our aim is to factorise the singu-

larities, i.e. extract them in terms of overall factors of type x
aj+bjǫ
j , aj ≤ −1. We

proceed as follows.

1. Determine a minimal set of parameters, say S = {xβ1 , . . . , xβr}, such that at least

one of the functions Pi(~x, {α}) vanishes if the parameters of S are set to zero.

4.3. The Method 48

Notice that S is in general not unique, and certain heuristic selection criteria

can be applied to pick the set likely to result in the minimum number of sectors

produced (see Appendix K.1). Notice also that if the exponent νi = ai + biǫ

has ai > 0, then the function Pi does not cause a singularity in the integrand

even if Pi → 0, so decomposing in this case is unnecessary.

2. The corresponding integration range is an r-cube which is decomposed into r

subsectors by decomposing unity according to

r∏

j=1

θ(1− xβj ≥ 0) θ(xβj) =

r∑

k=1

r∏

j=1

j 6=k

θ(xβk − xβj ≥ 0) θ(xβj) . (4.17)

3. Remap the variables to the unit hypercube in each new subsector by the substi-

tution

xβj →







xβkxβj for j 6= k

xβk for j = k .
(4.18)

This gives a Jacobian factor of xr−1
βk

. By construction xβk factorises from at

least one of the functions Pi(~x, {α}).

For each subsector the above steps have to be repeated as long as a set S can be

found such that one of the rescaled functions P̃i(~x, {α}) vanishes if the elements of S
are set to zero. This way new subsectors are created in each subsector of the previous

iteration, resulting in a tree-like structure after a certain number of iterations. The

iteration stops if the functions P̃i(~x, {α}) contain a constant term, i.e. if they are of

the form

P̃i(~x, {α}) = α0 + Q̃i(~x , {α}) , (4.19)

where Q̃i(~x, {α}) are polynomials in the variables xj , and α0 is a constant, i.e.

lim~x→0 Q̃i(~x, {α}) is nonzero.

The resulting subsector integrals have the general form

I =

1∫

0

(
N∏

j=1

dxj x
aj+bjǫ
j

)
m∏

i=1

P̃i(~x, {α})νi . (4.20)

The singular behaviour of the integrand now can be read off directly from the ex-

ponents aj , bj for a given subsector integral.

4.3. The Method 49

III. Subtraction of the poles

For a particular xj the integrand, after the factorisation described above, is of the

form

Ij =

1∫

0

dxj x
aj+bjǫ
j I(xj , {xi 6=j}, ǫ) . (4.21)

If aj > −1, no subtraction is needed and one can go to the next variable xj+1. If

aj ≤ −1, one expands I(xj , {xi 6=j}, ǫ) into a Taylor series around xj = 0. Subtracting

the Taylor series (to order1 p for |aj| = p+1) and adding it back in integrated form,

we obtain a part where the poles are subtracted and a part exhibiting 1/ǫ poles

times a function depending only on the remaining integration parameters.

Ij =

⌊|aj |⌋−1
∑

p=0

1

aj + p+ 1 + bjǫ

I(p)
j (0, {xi 6=j}, ǫ)

p!
+

1∫

0

dxj x
aj+bjǫ
j R(~x, ǫ)

R(~x, ǫ) = I(~x, ǫ)−
⌊|aj |⌋−1
∑

p=0

I(p)
j (0, {xi 6=j}, ǫ)

xpj
p!
. (4.22)

For aj = −1, expanding the above expression in ǫ is equivalent to an expansion in

“plus distributions” [119, 142]

x−1+b ǫ =
1

b ǫ
δ(x) +

∞∑

n=0

(b ǫ)n

n!

[
lnn(x)

x

]

+

,

where
∫ 1

0

dx f(x) [g(x)/x]+ =

∫ 1

0

dx
f(x)− f(0)

x
g(x) , (4.23)

with the integrations over the terms containing δ(x) already carried out.

After having done the subtractions for each xj , all poles are extracted, such that

the resulting expression can be expanded in ǫ. This defines a Laurent series in ǫ

I =
r∑

n=−LP
Cn ǫ

n +O(ǫr+1) , (4.24)

where the coefficients are finite parameter integrals of dimension (N − 1 − |n|) for
n < 0 and of dimension (N − 1) for n ≥ 0. LP denotes the leading pole, which

1To account for half-integer exponents, e.g. aj = −3/2, we use ⌊|aj|⌋, denoting the nearest

integer less or equal to |aj |.

4.3. The Method 50

can be at most 2L for an L-loop integral. The finite coefficient functions can be

directly integrated by Monte Carlo integration if the Mandelstam invariants in F
respectively the numerical constants in a general integrand have been chosen such

that the none of the P̃i(~x, {α}) with exponent νi < 0 vanish in the integration

domain. If this condition is not met, then the integrands are still integrable, but the

integration contour runs through a singularity (since the −iδ prescription is omitted

for practical purposes). Deforming this contour away from the singularity in theory

gives the correct result provided no singularities are crossed during the deformation,

but automating this process is not a solved problem. A routine implementing this

contour deformation is currently in the testing stage in SecDec. See [109, 110], and

Appendix F

4.3.2.2 Improving the numerical stability

For aj = −1 in eq. (4.22), the singularity is of logarithmic nature, i.e. ∼ log(Λ) if a

lower cutoff Λ for the parameter integral was used. In renormalisable gauge theories,

linear (aj = −2) or even higher (aj < −2) poles should not occur. However, they

can occur at intermediate stages of a calculation, and as they are formally regulated

by dimensional regularisation, a method has been worked out for SecDec to be able

to deal with higher than logarithmic singularities efficiently. Details are found in

appendix A

4.3.2.3 Error treatment

The end result after all algebraic calculation has finished is a number of functions to

be integrated at each order in ǫ. The problem of how to integrate these functions to

obtain the numerical result then arises. The two basic choices are to integrate the

sum of the functions, or to sum the integrated functions, at each required order in

ǫ. If the former is chosen, for more complicated integrals the numerical integrator

finds it difficult to efficiently deal with the structure of the integrand, and if the

latter is chosen the question of how to sum the errors arises. For a discussion of

error treatment in SecDec, see Appendix B

Chapter 5

SecDec

5.1 Structure of the program

SecDec

loop general

demos demosperlsrcperlsrc src src

util subexp deco util dummy subexp deco

basesv5.1 doc Cuba-2.1

Figure 5.1: Directory structure of the SecDec program.

The program consists of two parts, an algebraic part and a numerical part. The

algebraic part uses code written in Mathematica [143] and does the decomposition

into sectors, the subtraction of the singularities, the expansion in ǫ and the gen-

eration of the files necessary for the numerical integration. In the numerical part,

Fortran or C++ functions forming the coefficient of each term in the Laurent se-

51

5.1. Structure of the program 52

ries in ǫ are integrated using the Monte Carlo integration program BASES, version

5.1 [144], or one of the routines from the CUBA library, version 2.1 [145]. The

different subtasks are handled by perl scripts. The directory structure of the pro-

gram is shown in figure 5.1, while the flowchart in figure 5.2 shows the basic flow of

input/output streams.

The directories loop and general have the same global structure, only some

of the individual files are specific to loops or to more general parametric functions.

The directories contain a number of perl scripts steering the decomposition and the

numerical integration. The scripts use perl modules contained in the subdirectory

perlsrc.

The Mathematica source files are located in the subdirectories src/deco: files

used for the decomposition, src/subexp: files used for the pole subtraction and

expansion in ǫ, src/util: miscellaneous useful functions. src/dummy: files used

to create optimized fortran files for functions left implicit during decomposition

(general only). For the translation of the Mathematica expressions to Fortran77 or

C++ functions we use the package Format.m [146]. The subdirectories basesv5.1

and Cuba-2.1 contain the libraries for the numerical integration, taken from [144]

and [145], respectively. The documentation, created by robodoc [147] is contained in

the subdirectory doc. It contains an index to look up documentation of the source

code in html format by loading masterindex.html into a browser.

The intermediate files and the results will be stored in a subdirectory of the work-

ing directory whose name mysubdir can be specified by the user (subdir=mysubdir in

param.input, leaving this blank is a valid option). A subdirectory of mysubdir with

the name of the graph, respectively integral to calculate will be created by default.

If the user would like to store the files in a directory which is not the subdirectory

of the working directory, for example in /scratch, he can do this by specifying the

full path outputdir=/scratch in param.input. An example of a directory structure

created by running the examples NPbox, QED, ggtt1, A61, a user-defined three-loop

example, and a four-loop example to be written to the scratch disk is given in figure

5.3.

The directory created for each graph will contain subdirectories according to

5.1. Structure of the program 53

param.input

Template.m

makeFU.pl

decompose.pl

results.pl

graph ∗ .out
Mathematica output

./launch

compilation

BASES
subexp.pl

subtractions

expansion

launch integration

executables

Fortran functions :

polestructure/ ∗ .f

directory loop or general subdirectory, e.g. graph

graph[point]full.res

epstothe[i]/point[i].out

CUBA

Figure 5.2: Flowchart showing the main steps the program performs to produce the

result files. In each of the subdirectories loop or general, the file Template.m can

be used to define the integrand. The produced files are written to a subdirectory

created according to the settings given in param.input. By default, a subdirectory

with the name of the graph or integrand is created to store the produced functions.

This directory will contain subdirectories according to the pole structure of the

integrand. The perl scripts (extension .pl) are steering the various steps to be

performed by the program.

5.1. Structure of the program 54

2loop 3loop

A61NPbox QED ggtt1

/scratch

4loop

. . .

loop/demos/

Figure 5.3: Example for a directory structure created by running the loop demo

programs NPbox, QED, ggtt1, A61. A four-loop example defined by the user to be

written to the scratch disk is also shown.

the pole structure of the graph. The labelling for the pole structure is of the form

e.g. 2l0h0, denoting 2 logarithmic poles, no linear and no higher than linear poles.

It should be pointed out that this labelling does not necessarily correspond to the

final pole structure of the integral. It is merely for book-keeping purposes, and is

based on the counting of the powers of the factorised integration variables. In more

detail, if i1 variables have power −1, i2 variables have a power −2 ≤ i2 < −1 and i3

variables have a power < −2, the labelling will be i1 l i2 h i3, even though the non-

logarithmic poles will disappear upon ǫ-expansion. In particular, for half-integer

powers, the labelling does not correspond to “true” poles, but rather to terms which

can be cast into functions like Γ(−3/2 − ǫ), which are well-defined in the context

of dimensional regularisation, where ǫ can be regarded as an arbitrary (complex)

parameter. Note also that in the case of a prefactor containing 1/ǫ poles multiplying

the parameter integral, the poles which are flagged up at this stage of the program

will only correspond to the poles read off from the integration parameters. In any

case, the final result will be given to the order specified by the user, eg. epsord=0

in param.input.

Each of these “polestructure” directories contains further subdirectories where the

files for a particular power in epsilon are stored. An example is given in figure 5.4.

The user only has to edit the following two files:

• param.input: (text file)

5.1. Structure of the program 55

QED

2l0h0 1l0h0 0l0h0

epstothe − 2 epstothe − 1 epstothe − 1epstothe 0 epstothe 0 epstothe 0

Figure 5.4: Example for a directory tree corresponding to the pole structure of the

graph QED contained in the demo programs.

specification of paths, type of integrand, order in ǫ, output format, parameters

for numerical integration, further options

• Template.m: (Mathematica syntax)

– for loop integrals: specification of loop momenta, propagators; optionally

numerator, non-standard propagator powers

– for general functions: specification of integration variables, integrand,

variables to be split at 1/2

For a detailed explanation of requirements/options in parameter and template files,

see appendices C and D.

To give a specific example rather than empty templates, the files param.input and

Template.m in the loop subdirectory contain the setup for example 5.4.1.1, the non-

planar massless on-shell two-loop box diagram, while those in the general directory

contain the setup for example 5.4.2.1, a hypergeometric function of type 5F4. Apart

from these default parameter/template files, the program comes with example input

and template files in the subdirectories loop/demos respectively general/demos,

described in detail in section 5.4.

The user can choose the numerical integration routine and the settings for

the different integrators contained in the Cuba library, or for BASES, in the file

param.input. The compilation of the chosen integration routine with the corre-

sponding settings will be done automatically by the program.

5.2. Features 56

5.2 Features

SecDec has a number of useful features available, and a number of exciting new

features planned for the future. Examples illustrating these features can be found

in the section 5.4.

Original Features

• Parameters (eg invariant masses) can be left implicit up until the numerical

integration. This means that the algebraic part needs to only be run once,

and then various numerical points can be calculated

• Contracted tensors in the numerator and non-integer powers of propagators in

the denominator allowed for loop integrals

• Choice of integrators - BASES and the Cuba library are available, with full

control over parameters used

• Simple to use with Portable Batch System for parallel processing, and readily

adjusted to work for different batch syntax

• Subtraction with non-integer powers of variables

New Features

A number of new features have been added since SecDec-1.0:

• Functions can be left implicit for the algebraic stage. This is particularly

useful for dealing with complicated but finite functions, where quantitative

knowledge of these functions is not required to guide the decomposition, or

for including measurement functions (currently general only). See Appendix

E.2 for full instructions

• Choice of Fortran or C++ for numerics (currently loop only)

• Integration of complex functions implemented in C++

5.3. Installation and usage 57

• Automation of calculating a set of different numerical points (currently general

only), useful for investigating behaviour of an integral across a range of pa-

rameter values.

Future Features

There are various features currently being planned/developed:

• Applying contour deformation to calculate loop integrals in the physical region.

This has been implemented, and is in the testing stage. It has proved successful

in a number of cases.

• Interfacing with a matrix element generator, eg FeynArts+FormCalc [148], to

automate calculation of real radiation contributions

• Interfacing with a reduction package, eg Reduze [21], to automate numerical

evaluation of required master integrals for a given process.

5.3 Installation and usage

Installation

The program can be downloaded from http://projects.hepforge.org/secdec/.

Installation is done by unpacking the tar archive, using the command tar xzvf

SecDec.tar.gz. This will create a directory called SecDec with the subdirectories as

described above. Change to the SecDec directory and run ./install.

Prerequisites are Mathematica, version 6 or above, perl (installed by default on

most Unix/Linux systems), a Fortran compiler (e.g. gfortran, ifort), and a C++

compiler (eg gcc). The install script only checks if Mathematica and perl are installed

on the system and inserts the corresponding path into the perl scripts. The install

script does not test the existence of a Fortran or C++ compiler because the compiler

should be specified by the user in param.input. If no compiler is specified, it defaults

to gfortran.

5.3. Installation and usage 58

Usage

1. Change to the subdirectory loop or general, depending on whether you would

like to calculate a loop integral or a more general parameter integral.

2. Copy the files param.input and Template.m to create your own parameter

and template files myparamfile, mytemplatefile.

3. Set the desired parameters in myparamfile and define the propagators etc.

(loop) or integrand etc. (general) in mytemplatefile.

4. Execute the command ./launch -p myparamfile -t mytemplatefile in the shell.

If you omit the option -p myparamfile, the file param.input will be taken as

default. Likewise, if you omit the option -t mytemplatefile, the file Template.m

will be taken as default. If your files myparamfile, mytemplatefile are in a dif-

ferent directory, say, myworkingdir, use the option

-d myworkingdir, i.e. the full command then looks like ./launch -d mywork-

ingdir -p myparamfile -t mytemplatefile, executed from the directory SecDec/loop

or SecDec/general.

Alternatively, you can call the launch script from any directory if you prepend

the path to the launch script, i.e. the command

path to launch/launch -p myparamfile -t mytemplatefile executed from my-

workingdir would run the program in the same way. path to launch can be

either the full or relative path for SecDec/loop or SecDec/general.

The program tries to detect the path to Mathematica automatically. In case

you get the message “path for Mathematica not automatically found”, please

insert the path to Mathematica on your system manually for the variable

$mathpath in the file perlsrc/mathlaunch.pl.

The ./launch command will launch the following perl scripts:

• makeFU.pl: (only for loop integrals) constructs the integrand functions

F ,U and the numerator function from the propagators and indices given

in Template.m.

5.3. Installation and usage 59

• decompose.pl: launches the iterated sector decomposition

• subexp.pl: launches the subtractions and epsilon-expansions and writes

the Fortran or C++ functions. Depending on the “exe-flag” specified in

the parameter file (see below for a detailed explanation of the flag), this

script also launches the compilation and the numerical integrations.

5. Collect the results. Depending on whether you have used a single machine or

submitted the jobs to a cluster, the following actions will be performed:

• If the calculations are done sequentially on a single machine, the re-

sults will be collected automatically (via results.pl called by launch).

The output file will be displayed with your specified text editor. The

results are also saved to the files [graph] [point]epstothe*.res and

[graph] [point]full.res in the subdirectory subdir/graph (loops)

respectively subdir/integrand (general integrands) (name specified in

param.input, where you can also specify different names for different

numerical points).

• If the jobs have been submitted to a cluster: when all jobs have finished,

execute the command ./results.pl [-d myworkingdir -p myparamfile] in a

shell from the directory SecDec/loop or SecDec/general to create the

file containing the final results.

If the user needs to change the batch system settings: manually edit

perlsrc/makejob.pm and perlsrc/launchjob.pm. This writes the user-

specified syntax to the scripts job[polestructure] in the corresponding

subdir/graph or subdir/integrand subdirectory.

6. After the calculation and the collection of the results is completed, you can

use the shell command ./launchclean[graph] to remove obsolete files.

If called with no arguments, the script only removes object files, launch scripts,

makefiles and executables, but leaves the Fortran or C++ files created by

Mathematica, so that different numerical points can be calculated without re-

5.3. Installation and usage 60

running the Mathematica code. If called with the argument ‘all’ (i.e.

./launchclean[graph] all), it removes everything except the result files display-

ing the final result and the timings.

The ‘exe’ flag contained in param.input offers the possibility to run the pro-

gram only up to certain intermediate stages. The flag can take values from 0 to 4.

The different levels are:

exe=0: does the iterated sector decomposition and writes files containing lists of

subsector functions (graphsec*.out) for each pole structure to the output

subdirectory. Also writes the Mathematica files subandexpand*.m for each

pole structure, which serve to do the symbolic subtraction, epsilon expansion

and creation of the Fortran or C++ files. Also writes the scripts

batch[polestructure] which serve to launch these jobs at a later stage.

exe=1: launches the scripts batch[polestructure]. This will produce the Fortran

or C++ functions and write them to individual subdirectories for each pole

structure.

exe=2: creates all the additional files needed for the numerical integration.

exe=3: compilation is launched to make the executables.

exe=4: the executables are run.

If the first steps of the calculation, e.g. the decomposition or the creation of the

Fortran or C++ functions, are already done, the following commands are available

to continue the calculation without having to restart from scratch:

• finishnumerics.pl [-d myworkingdir -p myparameterfile]:

if the ‘exe’ flag in param.input resp. myworkingdir/myparameterfile is set

smaller than four, this will complete the calculation without redoing previous

steps.

• justnumerics.pl [-d myworkingdir -p myparameterfile]:

if you would like to redo just the numerical integration, for example to pro-

duce results for a different numerical point or to try out a different number

5.4. Description of Examples 61

of sampling points, iterations etc. for the Monte Carlo integration: change

the values for the numerical point resp. the settings for the Monte Carlo

integration and the pointname in the parameter file, and then use the com-

mand ./justnumerics.pl [-d myworkingdir -p myparameterfile] to redo only the

numerical integrations (if the Fortran files f*.f or C++ files f*.c have been

produced already). Using this option skips the Mathematica subtraction and

epsilon expansion step which can be done once and for all, as the variables at

this stage are still symbolic. After completion of the numerical integrations,

use the command ./results.pl [-d myworkingdir -p myparameterfile] to collect

and display the results as above.

For details on how to automate the calculation for a set of different numerical

points, see appendix E.1.

For a description of how to leave finite functions implicit throughout the algebraic

stage, see appendix E.2

It should be mentioned that the code starts working first on the most complicated

pole structure, which takes longest. This is because in case the jobs are sent to a

cluster, it is advantageous to first send the jobs which are expected to take the most

time.

5.4 Description of Examples

5.4.1 Loop integrals

The examples described below can be found in the subdirectory loop/demos.

5.4.1.1 Non-planar massless two-loop box

The non-planar massless two-loop box is a non-trivial example, as the sector decom-

position applied to the standard representation, produced by combining all propa-

gators simultaneously with Feynman parameters, exhibits “non-logarithmic poles”

(i.e. exponents of Feynman parameters ≤ −1) in the course of the decomposition.

It should be pointed out that, even though the program can deal with linear or

5.4. Description of Examples 62

p3p4

p1

p2

Figure 5.5: The non-planar two-loop box, called NPbox in example 5.4.1.1.

higher poles in a completely automated way, it is often a good idea to investigate

if the integrand can be re-parametrised such that poles of this type do not occur,

because these poles require complicated subtraction terms which slow down the cal-

culation. Non-linear transformations as e.g. described in [129] can be useful in

this context. Further, integrating out first one loop momentum, and then combine

the remaining propagators with the obtained intermediate result using another set

of Feynman parameters often leads to a representation where at least one of the

parameters can be factorised without sector decomposition, thus speeding up the

calculation considerably. This is demonstrated for the non-planar massless two-loop

box in appendix H, and the template to calculate the graph in this way can be found

in SecDec/general/demos.

To obtain results for the non-planar massless two-loop box shown in figure 5.5

without doing any analytical steps, copy the file loop/param.input to a new param-

eter file, say paramNPbox.input, and specify the desired order in ǫ, the numerical

point and possible further options. Likewise, copy the file loop/Template.m to a

new template file, say templateNPbox.m (this already has been done for the exam-

ples described here, see the subdirectory loop/demos). Then, in the loop/demos

directory, use the command ../launch -p paramNPbox.input -t templateNPbox.m.

The file templateNPbox.m already has the propagators of the non-planar double

box predefined. In paramNPbox.input, we defined the prefactor such that a factor

of −Γ(3 + 2ǫ) is not included in the numerical result: if we define

GNP (s, t, u) = −Γ(3 + 2ǫ)

4∑

n=0

Pn
ǫn

+O(ǫ) , (5.1)

the program should yield the results for Pn, given in Table 5.1. Note that according

to eq. (4.4), we always divide L-loop integrals by (iπ
D
2)L, so this factor is never

5.4. Description of Examples 63

included in the numerical result. The decomposition produces 384 subsectors.

(s,t,u) (-1,-1,-1) (-1,-2,-3)

P−4 1.75006±1.3× 10−4 0.41670±1.1× 10−4

P−3 -2.99969± 0.00055 -0.9313 ±0.00067

P−2 -22.821 ± 0.003 -5.8599 ± 0.0035

P−1 113.629 ±0.013 42.79 ±0.02

P0 -395.27 ± 0.05 -162.73±0.09

Table 5.1: Numerical results for the points (s, t, u) = (−1,−1,−1) and (−1,−2,−3)

of the massless non-planar double box.

The result for the graph called NPbox at the numerical point called point in

the input file will be written to the file NPbox [point]full.res in the subdi-

rectory 2loop/NPbox, where 2loop is a subdirectory which has been created by

the program, using the directory name the user has specified in the first entry of

paramNPbox.input. By default, a subdirectory with the name of the graph is cre-

ated, but the user can also specify a completely different directory (e.g. scratch)

where the results will be written to (second entry in paramNPbox.input).

More information about the decomposition is given in the file NPboxOUT.info.

Information about the numerical integration is contained in the files

[point]intfile.log in the subdirectories graph/polestructure/epstothe[i],

where “polestructure” is of the form e.g. 2l0h0, denoting 2 logarithmic poles and 0

linear, 0 higher poles.

It should be emphasized that in param.input, the numbers for the Mandelstam

invariants should be defined as the Euclidean values, so the values for s, t, u, p2i should

always be negative in param.input. Note also that the condition s + t + u = 0

cannot be fulfilled numerically in the Euclidean region, so it should not be used in

onshell={...} in the template file to eliminate u from the function F in the case

of non-planar box graphs.

5.4. Description of Examples 64

1

63

52

4 7

Figure 5.6: Blue (solid) lines denote massive particles.

5.4.1.2 Planar two-loop ladder diagram with massive on-shell legs

The purpose of this example is to show how to deal with diagrams where the de-

composition could run into an infinite recursion if the default strategy is applied.

The rungs of the ladder are massless particles (e.g. photons), while the remain-

ing lines are massive on-shell particles, depicted by solid (blue) lines in figure 5.6.

To run this example, execute the command ../launch -p paramQED.input -t tem-

plateQED.m from the loop/demos directory. Only the primary sectors number one

and seven are at risk of running into infinite recursion, therefore they are listed in

the third-last item of paramQED.input as the ones to be decomposed by a different

strategy. The results for the numerical point called point will be written to the file

QED [point]full.res in the subdirectory 2loop/QED. Numerical results for some

sample points are given in Table 5.2. The kinematic points are defined by the mass

m and the Mandelstam variables s = (p1 + p2)
2, t = (p2 + p3)

2. We extracted a

prefactor of Γ(1 + ǫ)2.

(s,t,m) (-0.2,-0.3,1) (-3/2,-4/3,1/5)

P−2 -1.56161± 1.33×10−4 -2.1817 ± 0.0003

P−1 -5.3373 ±0.0018 -1.4701 ±0.0026

P0 1.419 ±0.025 30.191± 0.014

P1 62.46 ± 0.18 140.73±0.057

P2 284.76 ± 0.87 450.67±0.19

Table 5.2: Numerical results up to order ǫ2 for the points (s, t,m) = (−0.2,−0.3, 1)

and (−3/2,−4/3, 1/5) of the two-loop ladder diagram shown in figure 5.6. An overall

factor of Γ(1 + ǫ)2 is not included in the numerical result.

5.4. Description of Examples 65

m1

m2

p3

p4

p1 p2

ggtt1

p1 p2

m1

p3

p4

ggtt2

Figure 5.7: Non-planar graphs occurring in the calculation of gg → tt̄ at NNLO.

Blue (solid) lines denote massive particles.

5.4.1.3 Non-planar two-loop diagrams with two massive on-shell legs

This example gives results for two non-planar graphs occurring in the calculation

of gg → tt̄ at NNLO, shown in figure 5.7. The analytic results for ggtt1 is not

yet available, and for ggtt2, the result is in preparation [27]. Numerical results at

Euclidean points can be produced by choosing numerical values for the invariants

s, t, u,m2 in paramggtt1.input respectively paramggtt2.input and then executing

the command ../launch -p paramggtt1.input -t templateggtt1.m in the loop/demos

directory, analogously for ggtt2. Results for two sample points are shown in Table

5.3.

5.4.1.4 A rank one tensor two-loop box

In order to demonstrate how to run the program for integrals with non-trivial nu-

merators, we give the example of a rank one planar massless on-shell two-loop box,

where we contract one loop momentum in the numerator by 2 pµ3 .

G =

∫
dDk dDl

(iπ
D
2)2

2 p3 · k
k2(k − p1)2(k + p2)2(k − l)2(l − p1)2(l + p2)2(l + p2 + p3)2

,

(5.2)

where we omitted the iδ terms in the propagators. The result for the kinematic

sample point (s, t, u) = (−3,−2, 5) is shown in Table 5.4. Note that in this example,

we used a positive value for the Mandelstam invariant u, which seems to contradict

5.4. Description of Examples 66

ggtt1

(s, t, u,m2
1, m

2
2) (-0.5,-0.4,-0.1,0.17,0.17) (-1.5,-0.3,-0.2,3,1)

P0 -38.0797±0.0027 -0.19904±1.5× 10−5

P1 -263.22± 0.015 -0.71466±6× 10−5

P2 -936.86± 0.06 -1.45505± 0.0002

ggtt2

(s, t, u,m2
1, m

2
2) (-0.5,-0.4,-0.1,0.17,0) (-1.5,-0.3,-0.2,3,0)

P−4 -10.9159 ± 0.0006 -0.13678±1.46× 10−5

P−3 -43.5213 ± 0.0075 -0.2087 ±0.00024

P−2 165.384 ± 0.048 3.3417 ±0.0014

P−1 20.842±0.268 -6.593±0.007

P0 2117.5 ± 1. 57 20.42±0.04

Table 5.3: Numerical results for the diagrams shown in figure 5.7. The finite diagram

ggtt1 has been calculated up to order ǫ2. An overall factor of Γ(1+ ǫ)2 is extracted.

(s,t,u) (-3,-2,5)

P−4 -0.319449 ±1.7× 10−5

P−3 0.46536 ±8 × 10−5

P−2 0.5848 ±0.0004

P−1 -3.3437 ± 0.0013

P0 -1.6991± 0.0035

Table 5.4: Numerical results for the point (s, t, u) = (−3,−2, 5) of the rank one

two-loop ladder diagram given by eq. (5.2). An overall factor of Γ(1 + ǫ)2 has been

extracted.

5.4. Description of Examples 67

Figure 5.8: The three-loop vertex diagram A6,1 with the dotted propagator raised

to the power 1 + ǫ.

the requirement to have only Euclidean values for the invariants. However, in this

case we can do this because the function F does not depend on u at all. The

numerator does depend on u, but as a numerator which is not positive definite does

not spoil the numerical convergence, we can as well choose a numerical value for u

such that the relation s+ t+u = 0 is fulfilled. This has the advantage that it allows

us to use the latter relation to simplify the numerator.

5.4.1.5 A three-loop vertex diagram with ǫ-dependent propagator pow-

ers

This example shows how to calculate diagrams with propagator powers different

from one. The results for the graph A6,1 (notation of Ref. [90]), given in Table 5.5,

can be produced by running ../launch -p paramA61.input -t templateA61.m from

the loop/demos directory.

P−3 P−2 P−1 P0 P1 P2

0.16666 1.8334 18.123 125.32 889.96 5325.3

Table 5.5: Numerical results for the diagram shown in figure 5.8 with the dotted

propagator raised to the power 1 + ǫ. The errors are below one percent.

The analytical result for this diagram with general propagator powers is given in

Ref. [90] and is also given in the file 3loop/A61/A61analytic.m to allow comparisons

between analytical and numerical results for arbitrary propagator powers.

5.4. Description of Examples 68

5.4.1.6 Two-Loop Massive Triangle in the Physical Region

This example demonstrates the use of contour deformation to calculate diagrams

in the physical region. This feature is not currently publicly available, and as such

template and parameter files for this example are not provided in the loop/demos

directory.

m

m

m

q2 = 1

Figure 5.9: Two-Loop Massive Triangle

Results for m2 = 0.2 are given in table 5.6. A factor of −m−2ǫExp[−2ǫγE] has

been extracted from the result. Analytic result is that of P126, taken from [149]

SecDec Analytic

ǫ−2 4.47+3.02*I 4.47167+3.02354*I

ǫ−1 -16.6+2.98*I -16.54938+2.98071*I

ǫ0 10.98-63.57*I 10.9682- 63.63681*I

Table 5.6: Results for Two-Loop Massive Triangle, m2 = 0.2

5.4.2 More general polynomial functions

The examples described below can be found in the subdirectory general/demos.

5.4.2.1 Hypergeometric functions

As an example for “general” polynomial functions, we consider the hypergeometric

functions pFp−1(a1, . . . , ap; b1, . . . , bp−1; β), using the integral representation recur-

5.4. Description of Examples 69

sively:

pFp−1(a1, . . . , ap; b1, . . . , bp−1; β) =
Γ(bp−1)

Γ(ap)Γ(bp−1 − ap)
× (5.3)

∫ 1

0

dz (1− z)−1−ap+bp−1 z−1+ap
p−1Fp−2(a1, . . . , ap−1; b1, . . . , bp−2; β) ,

2F1(a1, a2; b1; β) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

∫ 1

0

dz (1− z)−1−a2+b1 z−1+a2 (1− β z)−a1 .

Considering 5F4(a1, . . . , a5; b1, . . . , b4; β) with the values a1 = ǫ, a2 = −ǫ, a3 =

−3ǫ, a4 = −5ǫ, a5 = −7ǫ, b1 = 2ǫ, b2 = 4ǫ, b3 = 6ǫ, b4 = 8ǫ, β = 0.5 we obtain

the results shown in Table 5.7. The “analytic result” has been obtained using Hyp-

Exp [150, 151].

ǫ order analytic result numerical result time taken (secs)

ǫ0 1 1.0000002 ±4× 10−7 2

ǫ1 0.189532 0.189596±0.00036 21

ǫ2 -2.299043 -2.306±0.011 124

ǫ3 55.46902 55.61 ±0.39 248

ǫ4 -1014.39 -1018.4±5.9 429

Table 5.7: Results for 5F4(ǫ,−ǫ,−3ǫ,−5ǫ,−7ǫ; 2ǫ, 4ǫ, 6ǫ, 8ǫ; β) at β = 0.5. The

timings in the last column are the ones for the numerical integration. The time

taken for decomposition, subtraction and ǫ-expansion was 11 seconds.

This result can be produced by typing ./launch -d demos -p param5F4.input -t

template5F4.m in the subdirectory general, or by typing ../launch -p param5F4.input

-t template5F4.m in the subdirectory general/demos.

The program can also deal with functions containing half integer exponents.

Table 5.8 shows results for 4F3 with arguments a1 = −4ǫ, a2 = −1/2 − ǫ, a3 =

−3/2−2ǫ, a4 = 1/2−3ǫ, b1 = −1/2+2ǫ, b2 = −1/2+4ǫ, b3 = 1/2+6ǫ. These results

can be produced by the command ../launch -p param4F3.input -t template4F3.m in

the subdirectory general/demos.

5.4. Description of Examples 70

ǫ order analytic result numerical result time taken (seconds)

ǫ0 1 0.999997 ±1.7× 10−5 1.6

ǫ1 -4.27969 -4.2810 ± 0.0055 54

ǫ2 -26.6976 -26.625 ±0.121 90

Table 5.8: Results for the hypergeometric function 4F3(−4ǫ,−1
2
− ǫ,−3

2
− 2ǫ, 1

2
−

3ǫ;−1
2
+ 2ǫ,−1

2
+ 4ǫ, 1

2
+ 6ǫ; β) at β = 0.5

5.4.2.2 Phase space integrals

Sector decomposition can be useful for the calculation of phase space integrals where

infrared divergences are regulated dimensionally. This is particularly the case for

double real radiation occurring in NNLO calculations involving massive particles,

where analytic methods show their limitations.

Here we give examples of 2 → 3 phase space integrals, which should be considered

as part of a 2 → n phase space written in factorised form. We choose particles 3

and 4 to be massless, while p5 is the momentum of a massive state, either a single

particle or a pseudo-state formed by n additional momenta p̃i in the final state, i.e.

p5 =
∑n

i=5 p̃i. After all integrations have been mapped to the unit interval, we have

integrals of the form

∫

dΦ3 = Cǫ

∫ 4∏

i=1

dxi [x1(1− x1)x2(1− x2)]
D−4

2 [x3 (1− x3)]
D−3

[x4 (1− x4)]
D−5

2 [1− β x3 (1− x2)]
2−D , (5.4)

β = 1− m2

s
, Cǫ =

1

(2π)2D−3
dΩD−3dΩD−4 s

D−32D−8β2D−5 . (5.5)

The derivation is given in the appendix, section I.1.

5.4. Description of Examples 71

The invariants in this parametrisation are given by

s13 = −sβ x3 (1− x1)

s23 = −sβ x3 x1
s34 = β K x3 (1− x2) , K =

sβ (1− x3)

1− β x3 (1− x2)

s35 = s
1− β(1− x2x3)

1− β x3(1− x2)

s14 = −K
{
t− + x4 (t

+ − t−)
}
= −K s̃14

s24 = −K
{
u+ − x4 (u

+ − u−)
}
= −K s̃24 ,

where

t± =
(√

x1(1− x2)±
√

x2(1− x1)
)2

(5.6)

u± =
(√

(1− x1)(1− x2)±
√
x1x2

)2

.

We would like to point out that for the examples below, more convenient parametri-

sations, i.e. parametrisations where the variables in the denominator factorise,

and/or reflect symmetries of the squared matrix element, certainly do exist. How-

ever, the purpose of the examples is to illustrate that the code can deal with denom-

inators which are amongst the most complicated ones which do occur in NNLO real

radiation involving two (unresolved) massless particles in the final state, where they

cannot always be “rotated away” by suitable transformations. A hybrid approach

combining sector decomposition with convenient parametrisations/transformations

is certainly the method of choice for real radiation at NNLO. The program can be

used to evaluate the integrals occurring in such an approach.

Three massless particles in the final state

We first consider a case where p5 is a massless particle, i.e. the limit β → 1 in

eq. (5.4). If we combine the phase space with the toy matrix element 1/(s35s23), we

have singularities at x1 = 0, x2 = 0 and x3 = 0. Such denominators come e.g. from

the interference of diagrams as shown in figure 5.10.

5.4. Description of Examples 72

1

2

4

5

3 3

5

4 1

2

Figure 5.10: Interference of diagrams leading to factors of s35s23 in the denominator.

∫

dΦ3
s2

s35s23
= Cǫ

∫ 1

0

4∏

i=1

dxi [(1− x1)(1− x2)]
D−4

2 [x1 x2]
D−6

2 xD−5
3 (1− x3)

D−3

[x4 (1− x4)]
D−5

2 [1− x3 (1− x2)]
3−D . (5.7)

The term [1 − x3 (1 − x2)]
3−D goes to zero for x3 → 1, x2 → 0. Although x3 = 1

does not lead to a singularity in the above example, for numerical stability reasons,

and having in mind the presence of more complicated matrix elements than our

toy example, it is preferable to transform this factor to an expression which is

finite in the above limits. Splitting the x3 integration at 1/2 and then doing sector

decomposition achieves this goal. The program will do this automatically if the

template file contains splitlist={3}, to tell the program that the integration over

x3 should be split at 1/2. Of course the singularities at xi = 0 will also be extracted

automatically.

Using the command ../launch -p params23s35.input -t templates23s35.m in the

subdirectory general/demos, sector decomposition leads to the result given in Table

5.9.

P−3 P−2 P−1 P0

-1.5705± 0.0005 -4.3530 ± 0.0025 1.712± 0.005 31.040± 0.014

Table 5.9: Results for the integral given by eq. (5.7). The factor Cǫ is not included

in the numerical result.

5.4. Description of Examples 73

Two massless and one massive particles in the final state

The example in this subsection illustrates the program option to exclude certain

parts of the integrand from the decomposition, even though they can become zero

at certain values of the integration parameters. This can be useful if a particular

term is known not to lead to a singularity. Note that terms with powers ≥ 0 are

excluded from the decomposition by default.

As an example we pick an integral over s14, where the line singularity has been

remapped already (see appendix, section I.1).

∫

dΦ3
s β

s14
= 2Cǫ

∫ 1

0

dx1dx2dx3dx4[x4 (1− x4)]
D−5

2 xD−3
3 (1− x3)

D−4 (5.8)

× [1− β x3 (1− x1 + x1x2)]
3−D xD−4

1 xD−5
2

× [(1− x1)(1− x2)(1− x1 + x1x2)]
D−4

2

×
[

(
√

(1− x1)(1− x2)−
√
1− x1 + x1x2)

2

+ 4 x4
√

(1− x1)(1− x2)(1− x1 + x1x2)
]4−D

.

Choosing the option “n” for “no decomposition” in the definition of the inte-

grand for the term in square brackets [. . .]4−D (see templates14.m), there will be

no decomposition in the variables x2, x4, although this term vanishes in the limit

x2, x4 → 0, but this limit does not lead to a singularity. The result, which can

be produced by ../launch -p params14.input -t templates14.m in the subdirectory

general/demos, is given in Table 5.10.

P−1 P0

-1.12635 ± 0.0003 -8.771 ± 0.003

Table 5.10: Numerical result for the integral given by eq. (5.8) for β=0.75. The

factor 2Cǫ is not included in the numerical result.

5.4.2.3 Implicit Functions

This example demonstrates the ability to leave certain functions implicit until nu-

merical integration. We want to integrate

5.4. Description of Examples 74

f(x1, x2, x3, x4) = (x1+x2)
−2−2ǫx−1−4ǫ

3 dum1(x1, x2, x3, x4)
1+ǫdum2(x2, x4)

2−6ǫcut(x3)

(5.9)

with

dum1(x1, x2, x3, x4) = 2 + x21 + x32 + x43 + x54 + 4x1x2x3x4 − x21x
3
2x

4
3x

5
4 (5.10)

dum2(x2, x4) = x22 + x24 + β2 + 4x2x4 −
√

x2x4β + 3x22x
2
4 (5.11)

Where β is a symbol defined in the parameter file. dum1 and dum2 are both > 0 for

β > 0 within the integration region (and even if they were not, their exponents are

such that they could only reduce the singular behaviour of the integrand), and so

quantitative knowledge of their exact form is not required to guide the decomposi-

tion. Thus they can be left implicit, and only introduced at the numerical integration

stage. The function cut(x3) ≡ Θ(x3 − cut3), where the value of cut3 is given in the

parameter file. The command ../launch -p paramdummy.input -t templatedummy.m

from the folder general/demos runs this example. The fortran files containing the

explicit form of the functions dum1, dum2, cut are found in demos/testdummy. De-

tails on how to automatically produce these functions are found in appendix E.2

Results for β = 0.8 for cut3 = 0, 0.1 can be found in table 5.11.

cut3: 0 0.1

ǫ−2 0.12890 0

ǫ−1 -3.622 -1.241

ǫ0 32.48 31.89

ǫ1 -120.3 -139.5

ǫ2 429 264

Table 5.11: Numerical result for the integral given by eqs. (5.9) - (5.10) for β=0.8

Phase Space Revisited

Let us reconsider eq. (5.7). One may wish to calculate this as a leading order

contribution to 3j production, or an NLO contribution to 2j production. To this

5.4. Description of Examples 75

end, we include a jet measurement function in the integrand, such that

min (s34, s35, s45)







< sycut =⇒ 2j event

> sycut =⇒ 3j event
(5.12)

where ycut is a dimensionless parameter. This is an implementation of the JADE

algorithm, as described in eg [152]. This is not a realistic example, as the JADE

algorithm has problems when applied to hadronic collisions, due in part to the fact

that the overall partonic energy varies, and so it is difficult to define a dimension-

less distance measure. However, it demonstrates how the use of a jet measure-

ment function can be implemented in SecDec. This example can be run with the

command ../launch -p params23s35JADE.input -t templates23s35JADE.m from the

general/demos directory. The results for various values of ycut are given in table

5.12.

For the 3j result, a cut of p⊥ ≥ 0.05s for each jet (parton) has been applied,

which removes singularities coming from collinear initial state radiation.

5.4. Description of Examples 76

ycut order 2j 3j

0.01

ǫ−3 -1.570 —

ǫ−2 -4.353 —

ǫ−1 32.31 —

ǫ0 284.7 136.12

0.03

ǫ−3 -1.570 —

ǫ−2 -4.353 —

ǫ−1 18.21 —

ǫ0 153.1 87.49

0.1

ǫ−3 -1.570 —

ǫ−2 -4.353 —

ǫ−1 7.068 —

ǫ0 66.12 32.66

0.15

ǫ−3 -1.570 —

ǫ−2 -4.353 —

ǫ−1 4.437 —

ǫ0 48.24 17.20

Table 5.12: Contributions to NLO 2j and LO 3j toy process

Chapter 6

Conclusions and Outlook

We presented a number of important methods for calculating real and virtual cor-

rections for cross-sections in QCD. The increase in difficulty from NLO to NNLO

is vast, and extending methods that work well at NLO has proved very difficult.

For multi-loop integrals, a number of analytical methods (Mellin-Barnes, differen-

tial equations, the DRA method,...) have proved successful for the evaluation of

master integrals, but the difficulty of calculating these master integrals analytically

greatly increases as the number of mass scales in the problem increase. For real

radiative corrections, the method of antenna subtraction seems the most promising

amongst the analytical methods presented for calculations at NNLO.

We then introduced the method of sector decomposition, and described how it is

applicable to both virtual and real radiative corrections. Sector decomposition is

particularly useful for higher order calculations, as algorithmically the procedure is

unchanged as we increase from NLO to NNLO and beyond. Another fundamental

difference between sector decomposition and the methods mentioned above is that

analytic integration is not required.

In chapter 5 we discussed the publicly available computer code SecDec, which can

be downloaded from http://projects.hepforge.org/secdec/. We gave a review

of both existing and planned features, and many examples of how the program

performs very well in a variety of calculations. We saw how SecDec displayed a

significant improvement with respect to the time taken for calculation when com-

pared with FIESTA2, with the example of a four-loop self-energy diagram. We

77

Chapter 6. Conclusions and Outlook 78

demonstrated how SecDec deals with implicit functions, and how this feature can

be used to implement, for example, jet measurement functions. The example of 4F3

showed how SecDec can perform subtractions with non-integer exponents. Results

for four-loop vertex corrections and five-loop self-energy corrections have been cal-

culated with SecDec [153, 154]. We gave preliminary results for calculations in the

physical region via contour deformation. This contour deformation strategy pro-

vides a framework to calculate multi-loop amplitudes in the physical region, which

will prove invaluable both as a test of analytic calculations, and to provide results

where analytic methods have so far not been successful - particularly calculations

containing many scales.

Appendix A

Numerical Stability

After decomposition, complicated diagrams/integrands can have multiple linear (or

higher) poles. When these are subtracted, the resulting integrands, while formally

well behaved for all integration variables tending to zero, can be numerically unsta-

ble. For example, consider the 1−dimensional integrand:

∫ 1

0

dx x−2+ǫf(x) (A.1)

Where f(x) is O(1) as x→ 0. After subtraction, one is left with the integral:

∫ 1

0

dx x−2+ǫg(x), g(x) = f(x)− f(0)− f ′(0)x (A.2)

x−2g(x) is formally O(1) as x → 0, but the denominator and numerator both → 0,

which can cause numerical instability. The way this is addressed in SecDec is via

integration by parts in the following way: Let

I(a, b, g) =

∫ 1

0

dx xa+bǫg(x) (A.3)

Where g(x) is the integrand after subtraction, so g(x) ∼ O(x−a) as x→ 0 Applying

integration by parts gives us

I(a, b, g) =

[
xa+1+bǫ

a+ 1 + bǫ
g(x)

]1

0

− 1

a+ 1 + bǫ

∫ 1

0

dx xa+1+bǫg′(x) (A.4)

The first term is O(x) as x→ 0, and g′(x) ∼ O(x−a−1), so one can rewrite this as

I(a, b, g) =
1

a+ 1 + bǫ
(g(1)− I(a+ 1, b, g′)) (A.5)

79

Appendix A. Numerical Stability 80

For the special case where a = −1, we have

I(−1, b, g) =
1

bǫ

(

g(1)−
∫ 1

0

dx xbǫg′(x)

)

(A.6)

Notice g(1) ≡
∫ 1

0
dx g′(x), as g(x) ∼ O(x) as x→ 0 and hence

I(−1, b, g) =

∫ 1

0

dx
1− xbǫ

bǫ
g′(x) =

∫ 1

0

dx(− log(x)− ...)g′(x) (A.7)

Thus numerical instabilities of the integrand are removed, with a trade-off of one

power of log(x), which is easily integrated numerically. This method is trivial to ex-

tend to functions of more than one variable. Of course in practice this 1−dimensional

example would be coped with by the numerical integrator, but when there is more

than one linear or higher pole, or even when there are many logarithmic poles, these

numerical instabilities arise, and this method serves to remove them.

One drawback to this method is that expressions can become large when differenti-

ated, but in fact there is a very neat solution to this. Notice that after subtraction,

the function g(x) is a sum of a number of terms. Let us write

g(x) =
∑

k

hk(x) (A.8)

where, by construction, each hk ∼ O(1) or higher as x → 0. Let us also define the

map

Ĩ(a, b, g) =







1
a+1+bǫ

(

g(1)− Ĩ(a+ 1, b, g′)
)

for a < −1,

∫ 1

0
dx 1−xbǫ

bǫ
g′(x) for a = −1,

Ĩ(a, b, g) =
∫ 1

0
dx xa+bǫg(x) for a > −1.

(A.9)

Notice that this map is well-defined for g(x) ∼ O(1) as x → 0, and is linear in g.

Notice also that for the stronger condition g(x) ∼ O(x−a) as x ∼ 0,

Ĩ(a, b, g) ≡ I(a, b, g). Hence one can write

I(a, b, g) = Ĩ(a, b, g) = Ĩ(a, b,
∑

k

hk(x)) =
∑

k

Ĩ(a, b, hk) (A.10)

Thus the problematic large expressions can be broken down into many smaller ones,

each of which can be evaluated separately.

Appendix A. Numerical Stability 81

There are of course other methods of dealing with these instabilities. One such

method is using the Taylor expansion of the integrand in the region(s) where these

instabilities occur. One advantage of this method is that no extra powers of log(x)

are generated, and so the integrand behaves better for small x. However there are

a number of drawbacks to this method:

• Extension to more than one linear or higher pole is less trivial. Eg, if x1 and

x2 cause instabilities at 0, then expansions are needed for x1 → 0, x2 → 0,

and x1, x2 → 0

• The definition of where to use the expansion instead of the full function is ad

hoc - in some more complicated examples, even a taking the expansion for

x < 0.5 is still not enough to tame the instabilities.

• introducing an approximation to the function complicates error estimation -

using IBP is exact.

Appendix B

Numerical Evaluation

Details of all parameters referred to in italics in this section can be found in Ap-

pendix C.

Once the algebraic part of the program is completed for a given integral, the struc-

ture of the result is

I

(Pu
Pd

)

=
r∑

n

Cnǫ
n +O(ǫr+1) (B.1)

Cn =

kn∑

i

∫ 1

0

d~xfn,i(~x, {α}) (B.2)

with Pu, Pd the user-defined and default prefactors respectively (loop only - see

prefactorflag. For general, Pu = Pd = 1). kn is the number of integrations for

order ǫn, {α} is a set of parameters/invariants, and fn,i are integrable functions

independent of ǫ. The order of the sum and integral sign in eq. (B.2) can be changed,

and equally subsets of the functions fn,i can be summed and then integrated, such

that the sum of these integrals is the required result. SecDec offers these options -

to sum all functions and then integrate, select togetherflag = 1. This should only

be used for relatively simple integrals, as the numerical integrator will struggle to

map all the features of the integrand for a large sum of functions. This option leads

to the error for Cn to be the error as given by the chosen numerical integrator. If

togetherflag = 0, then the functions fni
arising from each different pole structure will

be considered together, and the sum of the contributions from each of the present

pole structures will be summed to produce Cn. Within each pole structure, there

82

Appendix B. Numerical Evaluation 83

may be a large number of functions to integrate, in which case these are summed

in small groups (specifically, the functions are summed until the sum of the size of

the functions exceeds a given value, grouping = 2000000 KB is default), and then

integrated. In this case, The error for Cn is given by summing all the individual

stated errors in quadrature.

The user should be aware that for complicated functions containing many sub-

tractions, the Monte Carlo error estimate is not quite appropriate: it is calculated

on a purely statistical basis, scaling like 1/
√
N if N is the number of sampling

points. However, this is only a reliable error estimate under the assumption that

the sampling has mapped all the important features of the function (i.e. all peaks)

sufficiently precisely, and strictly is only valid for square integrable functions. If

the function is not square integrable (but integrable), the Monte Carlo estimate for

the integral will still converge to the true value, but the error estimate will become

unreliable. For more involved integrals, we are faced with functions which have

gone through numerous decompositions and subtractions, such that their shape in

the unit hypercube is quite complicated, and therefore the naive Monte Carlo error

estimate tends to underestimate the “true” error.

Often the main source of underestimated errors in the final result is the fact

that there are a large number of integrations to sum, and so adding the errors

in quadrature would only give a truly appropriate error estimate if there were no

systematic errors in the numerical integration.

Notice that the accuracy requested in acc1, acc2 (epsrel, epsabs) for BASES

(Cuba), are the accuracies requested for each integration. So if there are large

cancellations between functions in different integrations, the resulting error will be

higher than that requested by the user, eg (−112± 1.12) + (113 ± 1.13) = 1 ± 1.5.

In these cases, it can be useful to use togetherflag = 1.

The above discussion deals with errors for Cn. To compute the error at each

order in the final answer, we also need to include the multiply by the necessary

prefactor, which mixes error contributions from various orders in ǫ. The errors are

again summed in quadrature. Again, cancellations between different contributions

can occur, leading to the requested accuracy not being reached.

Appendix C

Full Explanation of Parameters

There are many useful options available to the user of SecDec. Here we give details

of these options.

C.1 Parameters Common to loop and general

• subdir: subdirectory where the directory containing all files relating to this

calculation will be placed (if it does not exist, it will be created). If left blank,

the directory containing the parameter file will be used.

• outputdir: The absolute path to the directory for all files relating to this

calculation. This is only required if subdir is not defined. Useful for example

to specify the /scratch directory for results files.

• epsord: The order in ǫ at which the Laurent series will be truncated. The

default is 0. All orders <epsord will be calculated.

• IBPflag: This relates to the treatment of numerical instabilities. There are

3 options: ‘0’ means that no additional treatment is applied, ‘1’ means that

integration by parts is always used, and ‘2’ means that integration by parts

is used only for pole structures deemed complicated enough. Option ‘2’ is

recommended (and is default), unless implicit functions are used (general

only), in which case ‘0’ should be used.

84

C.1. Parameters Common to loop and general 85

• compiler: The fortran compiler to be used. SecDec has been tested with

gfortran (default), g77 and ifort.

• exeflag: flag to decide at which stage the program terminates:

0 - the iterated sector decomposition is done and the scripts to do the sub-

traction and epsilon expansion and to create the fortran or C++ files and to

launch the numerical integration are created (scripts batch* in outputdir) but

not run (useful if a cluster is available to run each pole structure on a different

node)

1 - the subtraction and epsilon expansion are performed, and the resulting

functions are written to fortran or C++ files

2 - all the files needed for the numerical integration are created

3 - compilation is launched to make the executables

4 - the executables are run, either by batch submission or locally

• clusterflag: flag for job submission: ‘0’ for single machine or ‘1’for a cluster.

• batchsystem: if a cluster is used, this specifies the syntax used.

‘0’ indicates that PBS (Portable Batch System) is to be used, ‘1’ indicates

that a user-defined syntax is to be used.

• maxjobs: if using a cluster, the maximum number of jobs allowed in the queue

simultaneously.

• maxcput: estimated time required for longest job. If using a cluster, this is

used to specify which queue the jobs are placed in. If not using a cluster, this

option can be omitted.

• pointname: The name of the numerical point to be calculated. This is useful

when you want to calculate points with different parameters (invariants, user-

defined symbols, numerical integration parameters etc). Can be left blank.

• integrator: Which numerical integration routine is to be used.

‘0’ - BASES (NB BASES is not a valid option when using SecDec with C++)

or from the Cuba library: ‘1’ - Vegas, ‘2’ - Suave, ‘3’ - Divonne, ‘4’ - Cuhre

C.1. Parameters Common to loop and general 86

• basespath: Absolute path for BASES library. Leave blank for SecDec/basesv5.1

• cubapath: Absolute path for Cuba library. Leave blank for SecDec/Cuba−2.1

The following are all BASES specific parameters. Each has suitable defaults and

can safely be left blank if desired. They should be entered as a comma separated

list, specifying the value to be used for the leading pole, subleading pole,...

• ncall: number of Monte Carlo points

• acc1: relative accuracy (as %) for MC grid construction.

• acc2: relative accuracy (as %) for MC integration step.

• iter1: maximum number of iterations for MC grid construction. Bases will

only perform as many iterations as it needs to reach the desired accuracy at

this stage, up to the maximum iter1.

• iter2: maximum number of iterations for MC integration step (iter2 iterations

are not always needed - see above)

The following are all Cuba specific parameters. Each has suitable defaults and can

safely be left blank if desired. They should be entered as a comma separated list

(except for cubaflags), specifying the value to be used for the leading pole, subleading

pole,... Further detail can be found in SecDec/Cuba−2.1/cuba.pdf

• maxeval: maximum number of function evaluations.

• mineval: minimum number of function evaluations.

• epsrel: relative accuracy required (as decimal).

• epsabs: absolute accuracy required (as decimal).

• cubaflags: encodes verbosity, how samples are used, and how random numbers

are generated.

• nstart: Vegas parameter - number of function evaluations on the first iteration.

C.1. Parameters Common to loop and general 87

• nincrease: Vegas parameter - number of extra function evaluations per itera-

tion.

• nnew: Suave parameter - number of new function evaluations in each subdi-

vision.

• flatness: Suave parameter - measure of how ‘flat’ the function to evaluate is

(default is 1).

• key1: Divonne parameter - determines sampling in partition phase.

• key2: Divonne parameter - determines sampling in final integration phase.

• key3: Divonne parameter - sets strategy for refinement phase.

• maxpass: Divonne parameter - controls thoroughness of partitioning phase

(essentially the number of ‘safety’ iterations performed before a partition is

accepted).

• border: Divonne parameter - the width of the border of the integration region.

Functions which cannot be evaluated on the border (most functions in SecDec

have some logarithmic behaviour as some of the integration variables → 0

and so cannot be explicitly evaluated at the border) need a non-zero border.

Function values in this region are extrapolated from inside the integration

region.

• maxchisq: Divonne parameter - maximum chi-squared value a single subregion

is allowed to have in the final integration phase.

• mindeviation: minimum deviation (as decimal) of the requested error of the

entire integral which determines whether it is worthwhile further examining a

region which failed chi-squared test.

• key: Cuhre parameter - chooses basic integration rule

Further common parameters:

C.2. Parameters Specific to loop 88

• togetherflag: Flag to integrate subsets of functions for each pole order sep-

arately and then sum them (‘0’), or to sum all functions for a given order

and then integrate (‘1’). ‘1’ will allow cancellations between functions and

give a more accurate error estimate, but should not be used for complicated

calculations.

• editor: Specifies which text editor the results file will be displayed in. If left

blank, the results will not be automatically displayed

• grouping: The maximum size in bytes of the fortran/C++ functions to be

grouped together for integration. Default is 2000000

• seed: Gives control over the seed used for random number generation by the

numerical integration routines. For BASES, a value of 0 specifies that the

same seed is used for each integration, and 1 specifies that the seed is differ-

ent each time. For Cuba, seed specifies the value of ‘seed’ as documented in

SecDec/Cuba−2.1/cuba.pdf

C.2 Parameters Specific to loop

• graph: Name of the graph to calculate. Can contain underscores and numbers,

but not commas.

• propagators: Number of internal propagators in the diagram

• legs: Number of external legs

• loops: Number of loops

• prefactorflag: Flag for prefactor:

‘0’ - default prefactor (−1)NnΓ [Nn−Nloops ∗Dim/2] is factored out of the

numerical result

‘1’ - default prefactor is included in numerical result

‘2’ - user-defined prefactor is factored out of the numerical result

C.2. Parameters Specific to loop 89

• prefactor: if prefactorflag= 2 then define your desired prefactor here (in Math-

ematica syntax). NB use Nn, Nloops, Dim to denote number of propagators,

loops and dimension (4− 2ǫ by default)

• sij: Values for Mandelstam invariants sij = (pi + pj)
2. For the Euclidean

region sij should all be <= 0. Should be a comma separated list, and the

order should be s12,s23,s13,s14,s24,s34,s15,s25,s35,s45,s16,s26,s36,s45,s56. If

the diagram to be calculated has < 6 legs then you can leave out any invariants

you do not require.

• pi2: Off-shell legs p21, p
2
2, For the Euclidean region, p2i <= 0. Should be a

comma separated list.

• ms2: Masses m2
1, m

2
2, ... identified with ms [1] , ms [2] , ... as entered in the tem-

plate file. Should be a comma separated list, each entry >= 0.

• primarysectors: A comma separated list of primary sectors to be calculated.

This option is particularly useful when a diagram has symmetries such that

some primary sectors are equivalent. If left blank then primary sectors will be

merged.

• multiplicities: the multiplicities of the primary sectors listed above (a comma

separated list in the same order as primarysectors).

• infinitesectors: A comma separated list of sectors to be treated with a ‘prede-

composition’ to sidestep infinite recursion. Default is left blank.

• language: Currently fortran and C/C++ are supported. Default is fortran,

language=Cpp for C/C++

• contourdef: Whether or not contour deformation is to be performed to give

numerical results in the physical region. Should take values of ‘True’ or ‘False’.

This option is not yet publicly available, and only supported in conjunction

with language=Cpp

C.3. Parameters Specific to general 90

C.3 Parameters Specific to general

• integrand: Name of the integrand. Can contain underscores and numbers, but

not commas.

• symbols: A comma separated list of symbols found in the integrand. This op-

tion lets you leave the values of certain parameters in your calculation symbolic

at the algebraic stage, and only when the numerical integration is performed

are these defined.

• values: A comma separated list giving the numerical values of the symbols

(must be in the same order)

• dummys: A comma separated list of any functions in the integrand which are

left implicit at the algebraic stage.

Appendix D

Template Files

D.1 loop Template Files

For the loop program, there are a number of required inputs for the template file.

The following are a list of these inputs, together with the values that they take for

the massless scalar non-planar two-loop box:

• momlist: a list of the loop momenta in the diagram

momlist={k1, k2};

• proplist: a list of the propagators in the diagram

proplist={k12, (k1 + p2)2, (k1 − p1)2, (k1 − k2)2, (k2 + p2)2, (k1 − k2 − p1 −
p2− p3)2, (k2 + p2 + p3)2};

• numerator: a list representing the numerator to include in the calculation.

This is optional, and the default is {1}. For example, to represent (k1.k2)(k1.p1)

you would have numerator={k1 k2, k1 p1}. For the scalar integral example it

is left blank.

• powerlist: a list of the powers of the propagators in the diagram. This can be

left out, and defaults to {1, 1, ..., 1} (ie each propagator is raised to the first

power).

• onshell: this should be a list of replacement rules for the diagram. By default

the program will relabel p2i → ssp[i], and pi.pj → (sp[i, j]− ssp[i]− ssp[j])/2,

91

D.2. general Template Files 92

so if you chose a different naming convention for your external momenta you

should specify similar replacements here. For the massless non-planar box, we

need the replacements

onshell={ssp[] → 0, ms[] → 0}, ie all external legs and propagators are

massless.

It should be noted that if any of your invariants are zero, this should be

stated in the onshell replacements, and not only in the parameter file, as the

decomposition assumes all symbols are non-zero. You may also specify the

non-zero numerical values for your invariants here, however these values will

supersede any values subsequently entered in the parameter file, and as such

you would have to run the algebraic part of the calculation again if you wished

to calculated with a different set of invariants.

• Dim: dimension of spacetime. If left out, default is

Dim=4− 2 ∗ eps;

D.2 general Template Files

For the general program, there are a number of inputs required for the template

file. The following are a list of these inputs for the integrand

(x1(1− x1))
−1−ǫ(x2 + x3 + x4)

2+ǫ(x1x3 − βx2x4)
−1−3ǫ

• nmax: the number of integration variables

nmax= 4;

• intvars: a list of the integration variables intvars=Table[x[i], {i, nmax}];

• factorlist: a representation of the integrand as a list of functions and exponents

factorlist={{x[1],−1− eps}, {1− x[1],−1− eps}, {x[2] + x[3] + x[4], 2 + eps},
{x[1]x[3]− x[2]x[4]beta,−1 − 3eps}};

• splitlist: a list of any variables which can cause singularities at both zero and

one.

splitlist={1};

D.2. general Template Files 93

The template file is processed by Mathematica, so you are free to use any Mathe-

matica syntax you like as long as these required inputs are defined in the way as

stated above. In the current example notice that β must be given a value of < 1 in

the parameter file, otherwise a singularity will occur inside the integration region.

Appendix E

Advanced Usage

The following features were not included in the original release of SecDec. They are

in the most recent version which can now be downloaded from

http://projects.hepforge.org/secdec/, but are not as yet in the CPC version.

E.1 Automating the Calculation of Multiple Nu-

merical Points

(general only) If an integrand contains one or more user-defined parameters then

the algebraic stage need only be done once for the calculation of many different

numerical points. It is desirable to automate the calculation of many numeri-

cal points to minimize the effort for the user. This is done using the perl script

multinumerics.pl. The user must create a text file multiparamfile in mywork-

ingdir, and specify a number of options:

• paramfile=myparamfile: Specify the name of the parameter file.

• pointname=myprefix: Points calculated will have the names myprefix1, mypre-

fix2,...

• lines: The number of points you wish to calculate - if omitted all points listed

will be calculated.

94

E.1. Automating the Calculation of Multiple Numerical Points 95

Following these options, specify the values of the parameters for each point you

wish to calculate. For example, if you had two parameters in your integrand,

a and b (which appear in that order as symbols=a,b in myparamfile), and you

wished to calculate the points (a, b) = (0.1, 0.1), (0.2, 0.4), (0.3, 0.9) then the inputs

in multiparamfile for this would be:

0.1,0.1

0.2,0.4

0.3,0.9

Furthermore, one may wish to calculate the integrand for values of parameters at

incremental steps. This is allowed, and the syntax is as follows: Suppose you wish

to calculate each combination of a = 0.1, 0.2, 0.3 and b = 0.1, 0.3, 0.5, 0.7. The input

for this is

minvals=0.1,0.1

maxvals=0.3,0.7

stepvals=0.1,0.2

Of course, one might want non-constant step values. Eg to calculate every combi-

nation of a = 0.1, 0.2, 0.4, b = 0.1, 0.3, 0.6 the syntax would be:

values1=0.1,0.2,0.4

values2=0.1,0.3,0.6

Please note that values1 must appear before values2 in multiparamfile.

Each of these different syntaxes can be used together - please see

general/demos/multiparam.input for an example of this.

In order to execute the script, the Mathematica-generated functions must already

be in place. The simplest way to do this is to run the launch script, with exeflag=1

in your parameter file. Then from a terminal, from the general directory, issue the

command ‘./multinumerics.pl [-d myworkingdir -p multiparamfile]’. If you are using

single-machine mode (clusterflag=0) then all integrations will be performed, and

the results collated and output as files in the directory specified in myparamfile. If

not, then you will need to run the script again, with the argument ‘1’, to collect the

results. ie ‘./multinumerics.pl 1 [-d myworkingdir -p multiparamfile]’. The script

generates a parameter file for each numerical point calculated. To remove these in-

E.2. Leaving Functions Implicit During Algebraic Calculation 96

termediate parameter files (your original myparamfile will not be removed), issue the

command ‘./multinumerics.pl 2 [-d myworkingdir -p multiparamfile]’. This should

only be done after the results have been collated.

E.2 Leaving Functions Implicit During Algebraic

Calculation

(general only) There are a number of reasons why one might want to leave functions

implicit during the algebraic stage. If you have a large but finite function the alge-

braic part of the calculation will be quicker and produce much smaller intermediate

files if this function is left implicit. Also one might like to use a number of different

eg. measurement functions, which this option allows. To implement this, write your

template file as usual, but where desired use a function which is left undefined, and

list this function under the option dummys in your parameter file. Note that you

may use more than one implicit function at a time, and that these functions can

have any number of arguments. If you also have symbolic parameters, these do not

need to be arguments of your implicit function.

Once you have set up your template and parameter files, you will need to define these

functions explicitly so that they can be used in the calculation. The simplest way to

do this is to prepare a Mathematica syntax file for each implicit function specified,

and place them in the outputdir specified in your parameter file. Suppose you have a

function named dum1, a function of 2 variables, defined as dum1(x1, x2) = 1+x1+x2.

Create a file dum1.m, and insert the lines:

intvars = {z1, z2};
dum1 = 1 + z1 + z2;

where z1, z2 can be replaced by any variable names you wish, as long as they are

used consistently in dum1.m. Notice that for every function specified in dummys

in your parameter file, there must be a Mathematica file dummyname1.m with the

correct name and syntax in the results directory. Once these Mathematica files are

in place, issue the command

‘createdummyfortran.pl [-d myworkingdir -p myparamfile]’ from the general direc-

E.2. Leaving Functions Implicit During Algebraic Calculation 97

tory. This generates the fortran files for the functions you defined, which are found

in the same subdirectory as the originals.

Of course you might prefer to write these fortran files yourself instead of having

them generated for you. This is certainly possible, however we recommend that you

use this perl script to generate functions with the necessary declarations and then

edit these.

An example of this can be found in general/demos, with the files paramdummy.input,

templatedummy.m, and the directory /testdummy

Appendix F

Contour Deformation

Sector decomposition extracts regularised (UV/IR) singularities from loop integrals.

There are, however, other singularities which can appear in these calculations; they

are unregularised, integrable singularities which depend on the kinematic invariants

in the problem. Contour deformation is a method to evaluate these integrals nu-

merically by realising the iδ prescription.

This method relies on Cauchy’s theorem, which states that the integral of an analytic

function, ie one which satisfies the Cauchy-Riemann equations

f(x+ iy) = u(x+ iy) + iv(x, iy),
∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
(F.1)

over a closed contour is zero, provided that contour does not enclose a singularity.

That is
∮

C
f(z)dz = 0

In figure F.1 we see that by Cauchy’s theorem
∮

C0−C1
f(z)dz = 0 =⇒

∮

C0
f(z)dz =

∮

C1
f(z)dz

However
∮

C0−C2
f(z)dz 6= 0 =⇒

∮

C0
f(z)dz 6=

∮

C2
f(z)dz

Since the closed contour C0 − C2 encloses a singularity of the integrand f(z).

Let us consider a sector after decomposition, such that all end point singularities

have been removed. The integral for this sector is of the form

Is = C(ǫ) lim
δ→0

∫ 1

0

dx1 · · · dxnx−a1+b1ǫ1 · · ·x−an+bnǫn Us(~x)Nν−(L+1)D/2−RNs(~x)

[Fs(~x,m
2
i , sjk)− iδ]

Nν−LD/2−m (F.2)

98

Appendix F. Contour Deformation 99

C2
C0
C1

Figure F.1: 3 different contours of integration. The dot represents a singularity in

the integrand f(z)

With L,D,R,m as defined in eq. (4.3.1.1), n is the number of propagators mi-

nus one, m2
i , sjk are masses/external invariants, and Ns,Us,Fs are the decomposed

functions relating to the original N ,U ,F for sector s. For ease of notation, let

us introduce Us(~x)Nν−(L+1)D/2−RNs(~x) ≡ Hs, Nν − LD/2 − m ≡ a + bǫ, and

dx1 · · · dxnx−a1+b1ǫ1 · · ·x−an+bnǫn ≡ D(~x, ǫ) ie

Is = C(ǫ) lim
δ→0

∫ 1

0

D(~x, ǫ)Hs(~x, ǫ)

[Fs(~x,m2
i , sjk)− iδ]

a+bǫ
(F.3)

We wish to construct a contour of integration such that the imaginary part of Fs is

negative. To this end, let us consider the contour C parametrised by

zi = xi − iλxαi (1− xi)
β ∂Fs

∂xi
(F.4)

As long as no poles are crossed in deforming from the unit hypercube to contour C,
we have

lim
δ→0

∫ 1

0

D(~x, ǫ)Hs(~x, ǫ)

[Fs(~x,m2
i , sjk)− iδ]

a+bǫ
=

∫

C

D(~z, ǫ)Hs(~z, ǫ)

[Fs(~z,m2
i , sjk)]

a+bǫ
(F.5)

This choice of contour guarantees that, for small λ, Fs has a negative O(λ) imaginary

part

Fs(~z) = Fs(~x)− iλ
n∑

i=1

xαi (1− xi)
β

(
∂Fs

∂xi

)2

+O(λ2) (F.6)

Where the O(λ2) term is purely real, and further imaginary terms appear at O(λ3).

In principle one could add higher order terms in λ to eq. (F.4) to cancel the

O(λ3), O(λ5), ... terms, but in practice it is sufficient to choose a small value for

λ such that the higher order terms are suppressed. Performing the transformation

Appendix F. Contour Deformation 100

of variables as defined in eq. (F.4), and using notation

Is(~x, ǫ) ≡ J (~x→ ~z(~x))
Hs(~z(~x), ǫ)

[Fs(~z(~x), m
2
i , sjk)]

a+bǫ
(F.7)

with J the Jacobean of the transformation gives us

Is = C(ǫ)

∫ 1

0

n∏

i=1

dxix
−ai+biǫ
i

(
zi
xi

)−ai+biǫ
Is(~x, ǫ) (F.8)

Note that
(
zi
xi

)

= 1 − iλxα−1
i (1 − xi)

β ∂Fs

∂xi
, so we take α ≥ 1, β > 0 to both fix the

end points of the contour, and to ensure that there are no end point singularities

in
∏n

i=1

(
zi
xi

)−ai+biǫ
Is(~x, ǫ). This is then the starting point for subtraction and

expansion as a Laurent series in ǫ.

It should be noted that α, β, λ can be different for each variable, ie αi, βi, λi. The

choice of λ will have an effect on the convergence of the integral, and in general it

should be small wrt any invariants in the calculation. To this end, one invariant

should be factored out of the calculation. If the ratio of some invariants is large,

then choosing a suitable value of the λi is not straightforward. One way to do this

is to follow the method given in [155], whereby a small number of sample points

for each of the

τi = xαi (1− xi)
β

(
∂Fs

∂xi

)

is taken, and then

λi =
1

max(τi)

is used for the integration.

Appendix G

Timings for a four-loop two-point

diagram

In order to give an idea about the timings for a complicated example which we ran on

several processors, we give the timings for the four-loop graph shown in figure G.1.

The coefficient of each pole order is composed of a number of functions which can be

Figure G.1: A four-loop two-point master integral

integrated individually, such that the time taken for the longest job equals the total

time for a given pole order, provided that the contributing functions are integrated in

parallel. The files to run the integration of these functions in parallel are created by

the program automatically. The number of integrations to run individually depends

on the size and number of the regular subsector functions contributing at each pole

order: these functions are summed until their sum reaches about one Megabyte, and

then integrated individually, preferably in parallel.

101

Appendix G. Timings for a four-loop two-point diagram 102

Stage Time for longest job # integrations Total time

Sector Decomposition 615 2160

Subtraction & ǫ-expansion 809 3767

Numerical integration ǫ−1 156 5 508

Numerical integration ǫ0 422 28 4720

Numerical integration ǫ1 492 28 5946

Numerical integration ǫ2 2172 29 8123

Table G.1: Timings (in seconds) for the diagram shown in figure G.1. The time taken

for the longest job equals the total time for a given pole order if the contributing

functions are integrated in parallel. The number of sampling points was 500000

for each pole order. The last column shows the timings which would result from a

calculation in series.

The timings are listed in Table G.1. For information we also give the timings

which would result from a serial calculation in the third column of Table G.1. The

results are shown in Table G.2. Results for FIESTA 2 are also included. The total

time taken to produce the FIESTA 2 result was 8.9 days, in comparison with 7 hours

on a single core with SecDec. The analytical result can be found in [97], [42].

Order Analytical result SecDec FIESTA 2

ǫ−1 -10.3692776 -10.371±0.002 -10.36941±0.00011

ǫ0 -70.99081719 -71.002±0.013 -70.989±0.002

ǫ1 -21.663005 -21.65±0.12 -21.633±0.023

ǫ2 2832.67 2833.79±0.92 2832.86±0.17

Table G.2: “Analytical” and numerical results for the diagram shown in figure G.1.

In this calculation, the symmetry of the problem was used, so only four primary

sectors were evaluated. The corresponding multiplicities of the primary sectors are

taken into account automatically, provided they are specified in param.input.

Appendix H

Another representation of the

non-planar two-loop box

Here we derive a representation of the non-planar two-loop box where one integration

parameter factorises naturally, such that it can be integrated out analytically, leaving

a representation which can be evaluated in a completely automated way by the

routines in SecDec/general, the evaluation being considerably faster than the one

of example 5.4.1.1. This procedure is not limited to our particular example, but

requires an analytical step of introducing a convenient parametrisation.

The expression for the non-planar two-loop box shown in figure 5.5 is given by

GNP =

∫
dDk dDl

(iπ
D
2)2

1

k2(k + p2)2(k − p1)2(k − l)2(l + p2)2(k − l + p4)2(l + p2 + p3)2
.

(H.1)

Considering first the integration over the loop momentum l only, we have a one-loop

box as shown in figureH.1 with P1 = p1 − k, P2 = p2 + k. Feynman parametrisation

for this one-loop subgraph leads to

I1 =

∫
dDl

iπ
D
2

1

(k − l)2(l + p2)2(k − l + p4)2(l + p2 + p3)2

= Γ(2 + ǫ)

∫ 4∏

i=1

dxi δ(1−
4∑

j=1

xj)F(~x, k)−2−ǫ (H.2)

F(~x, k) = −(p1 + p4 − k)2 x1x3 − (p1 + p3 − k)2 x2x4

−(k + p2)
2 x1x2 − (p1 − k)2 x3x4 .

103

Appendix H. Another representation of the non-planar two-loop box104

P1

p4 P2

p3

Figure H.1: The “inner” box as part of the non-planar two-loop box shown in

figure 5.5.

Now we substitute

x1 = t2 (1− t3) , x2 = t1t3 , x3 = (1− t1) t3 (H.3)

and integrate out the δ-constraint to obtain

I1 = Γ(2 + ǫ)

∫ 1

0

dt1dt2dt3 [t3 (1− t3)]
−1−ǫ

×
[
− (p1 + p4 − k)2 t2t̄1 − (p1 + p3 − k)2 t1t̄2

−(k + p2)
2 t1t2 − (p1 − k)2 t̄1t̄2

]−2−ǫ

=
2Γ(2 + ǫ)Γ(−ǫ)Γ(1 − ǫ)

Γ(1− 2ǫ)

∫ 1

0

dt1dt2
[
− (p1 + p4 − k)2 t2t̄1

−(p1 + p3 − k)2 t1t̄2 − (k + p2)
2 t1t2 − (p1 − k)2 t̄1t̄2

]−2−ǫ
, (H.4)

where we used the shorthand notation t̄i = 1 − ti. Now we combine the above ex-

pression with the remaining propagators, treating the expression in square brackets

in eq. (H.4) as a fourth propagator with power 2 + ǫ. One can use the SecDec code

to calculate the resulting function integrand function F2, although this is an easy

calculation to do by hand. One obtains

GNP =
−2 Γ(3 + 2ǫ)Γ(−ǫ)Γ(1− ǫ)

Γ(1− 2ǫ)

×
∫ 1

0

dt1dt2

∫ 4∏

i=1

dzi z
1+ǫ
4 δ(1−

4∑

j=1

zj)F2(~z)
−3−2ǫ

F2(~z) = −s12 z2z3 − T z1z4 − P 2
3 z2z4 − P 2

4 z3z4 ,

where

T = s23 t2(1− t1) + s13 t1(1− t2) , sij = (pi + pj)
2 ,

P 2
3 = s12 (1− t1)(1− t2) , P

2
4 = s12 t1t2 . (H.5)

Appendix H. Another representation of the non-planar two-loop box105

With the substitutions

z4 = t3t4 , z3 = t3 (1− t4) , z2 = (1− t3) t5 , z1 = (1− t3) (1− t5) (H.6)

we finally obtain

GNP =
−2 Γ(3 + 2ǫ)Γ(−ǫ)Γ(1 − ǫ)

Γ(1− 2ǫ)

×
∫ 1

0

dt1dt2dt3dt4dt5 t
−1−ǫ
3 (1− t3) t

1+ǫ
4

[
F2(~t)

]−3−2ǫ

F2(~t) = −s12 t̄3t̄4t5 − T t̄3t4t̄5 − P 2
3 t̄3t4t5 − P 2

4 t3t4t̄4 , t̄i = 1− ti .

In this form the integrand can be fed into the sector decomposition routine for “gen-

eral integrands”. The corresponding template file templatexbox.m can be found in

SecDec/general/demos.

Appendix I

Phase Space Parametrisations

I.1 A 2 → 3 Phase Space Parametrisation

The D−dimensional phase space for p1 + p2 → p3 + p4 + p5 is given by

dΦ3 =
[5∏

j=3

dDpj
(2π)D−1

]

δ+(p23 −m2
3)δ

+(p24 −m2
4)δ

+(p25 −m2
5)

× (2π)Dδ(D)
(

p1 + p2 −
5∑

j=3

pj

)

.

Using

∫

dDpj δ
+(p2j −m2

j) =

∫

dD−1~pj dEj δ(E
2
j − ~p 2

j −m2
j) θ(Ej)

=
1

2

∫

dEj dΩ
(j)
D−2 |~pj|D−3

∣
∣
∣
|~pj |=

√
E 2

j −m2
j

,

∫

dΩD−2 =
2π

D−1

2

Γ(D−1
2

)
,

and eliminating p5 by momentum conservation, one obtains

∫

dΦ3 =
1

(2π)2D−3

1

4

∫

dE3 dE4 dΩ
(3)
D−2 |~p3|D−3 dΩ

(4)
D−2 |~p4|D−3

δ((p1 + p2 − p3 − p4)
2 −m2

5) . (I.1)

Having NNLO phase spaces in mind, let us assume that we have two massless

particles in the final state (which may become unresolved), so m2
3 = m2

4 = 0, and p5

is the momentum of a massive state, m2
5 = m2, either a single particle or a pseudo-

state formed by n additional momenta p̃i in the final state, i.e. p5 =
∑n

i=5 p̃i. In

106

I.1. A 2 → 3 Phase Space Parametrisation 107

this case we can parametrise the momenta p1 . . . p4 as

p1 =

√
s

2
(1,~0(D−2), 1)

p2 =

√
s

2
(1,~0(D−2),−1)

p3 = E3 (1,~0
(D−4), sin η sin θ1, cos η sin θ1, cos θ1) (I.2)

= E3 (1,~0
(D−4), ~n3)

p4 = E4 (1,~0
(D−4), ~n4)

where we choose ~n4 such that

~n4 =








1 0 0

0 cos θ1 sin θ1

0 − sin θ1 cos θ1















sinφ sin θ2

cosφ sin θ2

cos θ2








=








sinφ sin θ2

cos θ1 cosφ sin θ2 + sin θ1 cos θ2

cos θ1 cos θ2 − sin θ1 cosφ sin θ2








Thus

dΩ
(3)
D−2 = d(cos θ1) (1− cos2 θ1)

D−4

2 dΩ
(η)
D−3

dΩ
(4)
D−2 = d(cos θ2) (1− cos2 θ2)

D−4

2 dφ (sinφ)D−4 dΩD−4 . (I.3)

Due to overall rotational invariance around the beam axis, we can integrate out the

azimuthal angle η and use η = 0 in eq. (I.2), leading to ~n3 · ~n4 = cos θ2. We obtain

dΦ3 =
1

4

1

(2π)2D−3
dΩD−3dΩD−4 d(cos θ1) d(cos θ2) d(cosφ) dE3Θ(E3) dE4Θ(E4)

(E3E4)
D−3 (sin2 θ1 sin2 θ2

)D−4

2 (sin2 φ)
D−5

2

δ(m2 − (p1 + p2 − p3 − p4)
2) (I.4)

δ(m2 − (p1 + p2 − p3 − p4)
2) = δ(s−m2 − 2

√
s (E3 + E4) + 2E3E4(1− ~n3 · ~n4)) .

Now we have to choose which variable to eliminate using the δ-constraint. In our

example, we will eliminate E4, leading to

E4 =
s−m2 − 2

√
sE3

2(
√
s− E3 (1− ~n3 · ~n4))

. (I.5)

I.1. A 2 → 3 Phase Space Parametrisation 108

The constraint Θ(E4) leads to

Emax
3 =

s−m2

2
√
s

=

√
s

2
β where β = 1− m2

s
. (I.6)

We substitute

E3 =

√
s

2
β x3 ⇒ E4 =

√
s

2
β

1− x3
1− β x3(1− x2)

cos θ1 = 2 x1 − 1 , cos θ2 = 2 x2 − 1 , cosφ = 2 x4 − 1

to obtain

dΦ3 =
1

(2π)2D−3
dΩD−3dΩD−4 s

D−32D−8β2D−5

4∏

i=1

dxi [x1(1− x1)x2(1− x2)]
D−4

2 [x3 (1− x3)]
D−3

[x4 (1− x4)]
D−5

2 [1− β x3 (1− x2)]
2−D . (I.7)

The invariants in this parametrisation are given by

s13 = −sβ x3 (1− x1)

s23 = −sβ x3 x1
s34 = β K x3 (1− x2) , K =

sβ (1− x3)

1− β x3 (1− x2)

s35 = s
1− β(1− x2x3)

1− β x3(1− x2)

s14 = −K
{
t− + x4 (t

+ − t−)
}
= −K s̃14

s24 = −K
{
u+ − x4 (u

+ − u−)
}
= −K s̃24 ,

where

t± =
(√

x1(1− x2)±
√

x2(1− x1)
)2

(I.8)

u± =
(√

(1− x1)(1− x2)±
√
x1x2

)2

.

Physical singular limits:

x3 → 0 : 3 soft , x3 → 1 : 4 soft ,

x1 → 1 : 3 ‖ 1 , x1 → 0 : 3 ‖ 2 , x2 → 1 : 3 ‖ 4 .

We observe that s̃14 has a line singularity at x4 = 0, x1 = x2. If s14 appears in

the denominator of the matrix element squared we are integrating over phase space,

I.1. A 2 → 3 Phase Space Parametrisation 109

further transformations need to be applied before this integrand can be treated via

sector decomposition. If this is the case we decouple the problem at x4 = 0 from

the line singularity x1 = x2 by the transformation [119]

x4 =
t− (1− z4)

t− + z4 (t+ − t−)
⇒ s̃14 =

t+t−

t− + z4 (t+ − t−)
, (I.9)

leading to

∫ 1

0

dx4 [x4 (1− x4)]
D−5

2 (s̃14)
−1

=

∫ 1

0

dz4 [z4 (1− z4) t
+t−]

D−5

2

[
t− + z4 (t

+ − t−)
]4−D

=

∫ 1

0

dz4 [z4 (1− z4)]
D−5

2

∣
∣
∣x1(1− x2)− x2(1− x1)

∣
∣
∣

D−5

[

(
√

x1(1− x2)−
√

x2(1− x1))
2 + 4 z4

√

x1(1− x1)x2(1− x2)
]4−D

.

Now we split the x2-integration range at x2 = x1 and remap to the unit cube:

∫ 1

0

dx2f(x1, x2) =

∫ x1

0

dx2f(x1, x2)

︸ ︷︷ ︸

(1)

+

∫ 1

x1

dx2f(x1, x2)

︸ ︷︷ ︸

(2)

where we substitute x2 = x1 z2 in (1) and x2 = x1+(1−x1) z2 in (2). Using the fact

that the contribution from region (2) equals the first one if we transform z2 → 1−z2
and x1 → 1 − x1 and combining with the original phase space given in eq. (I.7), we

obtain

∫

dΦ3
1

s14
=

1

(2π)2D−3
dΩD−3dΩD−4 s

D−42D−7β2D−6 (I.10)

∫ 1

0

dx1dz2dx3dz4[z4 (1− z4)]
D−5

2 xD−3
3 (1− x3)

D−4

[1− β x3 (1− x1 + x1z2)]
3−D xD−4

1 zD−5
2 [(1− x1)(1− z2)(1− x1 + x1z2)]

D−4

2

[

(
√

(1− x1)(1− z2)−
√
1− x1 + x1z2)

2

+ 4 z4
√

(1− x1)(1− z2)(1− x1 + x1z2)

]4−D
.

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 110

I.2 A Phase Space for pp → tt̄+ Double Real Ra-

diation

The D−dimensional phase space for p1+p2 → p3+p4+p5+p6, where p
2
3 = p24 = m2

t

and the other particles are massless, is given by

dΦ2→4 =
[6∏

j=3

dDpj
(2π)D−1

]

δ+(p23 −m2
t)δ

+(p24 −m2
t)

δ+(p25)δ
+(p26)(2π)

Dδ(D)
(

p1 + p2 −
6∑

j=3

pj

)

(I.11)

There are many ways to parametrise this phase space, and different parametrisations

are better suited to different calculations. The following parametrisation is useful, in

that it gives s56 in a simple form and avoids some of the square roots that can occur in

the denominator for other parametrisations (eg the ‘energy parametrisation’, where

energies and angles of the outgoing particles form the integration variables). Now

we insert unity in the form

1 =

∫
dDp34

(2π)D−1
(2π)Dδ(D)

(

p3 + p4 − p34

)ds34
2π

δ(p234 − s34) (I.12)

Further, we factorize the phase space corresponding to tt̄ production from the decay

of a particle with momentum p34. Using

dΦ̃tt̄ =
dDp3

(2π)D−1

dDp4
(2π)D−1

δ+(p23 −m2
t)δ

+(p24 −m2
t)

(2π)Dδ(D)
(

p3 + p4 − p34

)

(I.13)

we can write the full phase space as

dΦ2→4 = dΦ̃tt̄
ds34
2π

dDp5
(2π)D−1

dDp6
(2π)D−1

δ+(p25)δ
+(p26)

dDp34
(2π)D−1

δ(p234 − s34) (2π)
Dδ(D)

(

p1 + p2 − p34 − p5 − p6

)

=:
ds34
2π

dΦ̃tt̄ dΦ̃(p5, p6, p34) . (I.14)

Note that dΦ̃tt̄ could be evaluated in four dimensions because there are no singular-

ities associated with the “subprocess” p34 → tt̄.

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 111

Now we seek a parametrisation in which s56 has a simple form. In order to

achieve a convenient form of dΦ̃(p5, p6, p34), we view the phase space as the product

of a phase space for p1 + p2 → p34 + p56 and one for the decay p56 → p5 + p6. In

addition, we introduce the variable v = p1 · p34/p2 · p34, which is invariant under

boosts in z-direction if we choose

p1 =

√
s

2
(1,~0(D−2), 1) and p2 =

√
s

2
(1,~0(D−2),−1) . (I.15)

To be concrete, we introduce
∫

dΦ̃(p5, p6, p34) =

∫

dv dΦ̃v δ(v −
p1 · p34
p2 · p34

) × (I.16)
∫

ds15 ds25 δ(s15 + 2p1 · p5) δ(s25 + 2p2 · p5)
ds56
2π

dΦ̃56

dΦ̃v =
dDp34
(2π)D−1

δ(p234 − s34)
dDp56

(2π)D−1
δ(p256 − s56)

(2π)Dδ(D)
(

p1 + p2 − p34 − p56)

dΦ̃56 =
dDp5

(2π)D−1

dDp6
(2π)D−1

δ+(p25)δ
+(p26)(2π)

Dδ(D)(p5 + p6 − p56)

(I.17)

dΦ̃v corresponds to a 2 → 2 phase space p1 + p2 → p34 + p56. To evaluate dΦ̃v in

the CMS frame of p1 + p2, we choose

p34 = (E34,~0
(D−3), |~p34| sin θ1, |~p34| cos θ1)

and eliminate p56 by momentum conservation. Further, we include the constraint

δ(v − p1 · p34/p2 · p34) which allows us to fix cos θ1 in terms of v. We define

dΦv = dΦ̃v δ(v −
p1 · p34
p2 · p34

)

such that

dΦv =
1

(2π)D−2
dD−1~p34

dE34

2E34
δ(E34 −

√

~p234 + s34) (I.18)

δ(s+ s34 − s56 − 2(1 + v)p2 · p34)δ(v −
E34 − |~p34| cos θ1
E34 + |~p34| cos θ1

)

=
dΩD−3

(2π)D−2
d|~p34| |~p34|D−3d(cos θ1) (1− cos2 θ1)

D−4

2 (1 + v)−2

δ(s+ s34 − s56 − (1 + v)
√
s(E34 + |~p34| cos θ1)) δ

(

cos θ1 −
(1− v)E34

(1 + v)|~p34|

)

E34 =
√

~p234 + s34

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 112

Using cos θ01 =
(1−v)E34

(1+v)|~p34| leads to

dΦv =
dΩD−3

(2π)D−2
d|~p34| |~p34|D−3(1 + v)−2(1− cos2 θ01)

D−4

2

δ(s+ s34 − s56 − 2
√
s
√

~p 2
34 + s34)

(1− cos2 θ01) =
4v |~p34|2 − s34(1− v)2

|~p34|2(1 + v)2
(I.19)

Solving the δ-constraint for |~p34| and considering only the positive solution leads to

|~p34|0 =
√

s2 − 2s(s34 + s56) + (s34 − s56)2

2
√
s

=

√

λ(s, s34, s56)

2
√
s

(I.20)

and

dΦv =
dΩD−3

(2π)D−2

(s+ s34 − s56)

4s(1 + v)2
(
|~p34|2(1− cos2 θ01)

)D−4

2

d|~p34| δ
(

|~p34| −
√

λ(s, s34, s56)

2
√
s

)

(I.21)

where

λ(x, y, z) = x2 + y2 + z2 − 2xy − 2yz − 2zx

is the Källen function. Substituting

z =
s34
s

, y56 =
s56
s

leads to

|~p 0
34|2(1− cos2 θ01) =

s

(1 + v)2
(
v y256 − 2vy56(1 + z) + (v − z)(1 − vz)

)

=
s v

(1 + v)2
(y+56 − y56)(y

−
56 − y56)

where y±56 =
(1 + z)

√
v ± (1 + v)

√
z√

v
(I.22)

We further substitute

y56 = x1 y
−
56 , v =

z + x2(1− z)

1− x2(1− z)
, x2 =

v − z

(1 + v)(1− z)
(I.23)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 113

to obtain

dΦv =
dΩD−3

(2π)D−2
s

D−4

2

(1− x2(1− z))2

4(1 + z)

(

1− x1 y
−
56

1 + z

)

(

x2(1− x2)(1− z)2(1− x1)(1− x1
y−56
y+56

)

)D−4

2

y±56 = (1 + z)

(

1±
√
z

√

(1− x2(1− z))(z + x2(1− z))

)

(I.24)

v

(1 + v)2
y+56 y

−
56 = x2 (1− x2) (1− z)2

Now we turn to dΦ̃56. Regarded in isolation from the other particles involved, dΦ̃56

just describes the decay p56 → p5 + p6. The final state can be described by a polar

and an azimuthal angle forming ΩD−2, which could be integrated over if ~p56 could

be freely rotated in all directions. Our case is different: in the CMS of p1 + p2, we

have fixed ~p56 = −~p34 to be in the same plane as p1 and p2 and ~p34 to be at polar

angle θ1 relative to the z-axis defined by the direction of p1. Therefore the D − 2

angles cannot be integrated out. We choose to replace the D − 2 angular variables

by D − 4 angular variables and the two invariants s15 and s25 using the δ-functions

already introduced in eq. (I.16).

dΦ56 = dΦ̃56 δ(s15 + 2p1 · p5) δ(s25 + 2p2 · p5)

=
1

(2π)D−2
dDp5 δ

+(p25)δ
+((p5 − p56)

2) δ(s15 + 2p1 · p5) δ(s25 + 2p2 · p5) .

(I.25)

For p5 we introduce a parametrisation which is boost invariant in z-direction:

p5 = (E5, p⊥~e5, pz) ,

where ~e5 is a (D-2)-dimensional unit vector, giving rise to the integrations over dφ

and dΩD−4 in dΦ56:

dΦ56 =
1

4 (2π)D−2

dE5

E5
δ

(

E5 −
√

p2⊥ + p2z

)

dp2⊥
(
p2⊥
)D−4

2 dpz d(cosφ) (sin
2 φ)

D−5

2 dΩD−4

δ

(

s56 − 2E5

√

s56 + ~p256 − 2|~p56| (p⊥ sin θ1 cosφ+ pz cos θ1)

)

δ(s15 +
√
s(E5 − pz)) δ(s25 +

√
s(E5 + pz)) (I.26)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 114

The angles dΩD−4 can be integrated out since the system formed by p5 and p6 can be

rotated without physical effect in these azimuthal angles. We use δ(s15+
√
s(E5−pz))

to eliminate pz and δ(s25 +
√
s(E5 + pz)) to eliminate p2⊥:

p0z =
s15 − s25
2
√
s

(p0⊥)
2 =

s15 s25
s

and arrive at

dΦ56 =
1

8 s

1

(2π)D−2
dΩD−4 d(cosφ) (sin

2 φ)
D−5

2

(s15s25
s

)D−5

2

1

|~p56| sin θ1
δ(cosφ− a

b
) (I.27)

=
1

4 s
s

5−D
2

1

(2π)D−2
dΩD−4 (b

2 − a2)
D−5

2

(
4 |~p56|2 sin2 θ1

)−D−4

2

a = s56
√
s+ (s15 + s25)

√

s56 + |~p56|2 − (s15 − s25) |~p56| cos θ1
b = 2 |~p56| sin θ1

√
s15s25

|~p56|2 =
1

4s
λ(s, s34, s56) =

s

4
λ(1, z, y56)

|~p56|2 sin2 θ1 =
s

(1 + v)2
(
v λ(1, z, y56)− z (1− v)2

)
= α2

3

=
s v

(1 + v)2
(y+56 − y56)(y

−
56 − y56)

= s x2(1− x2) (1− x1)(1− x1
y−56
y+56

) (1− z)2

|~p56|2 cos2 θ1 =
s

4

(1− v)2

(1 + v)2
(1 + z − y56)

2 = α2
2

E2
56 = s56 + |~p56|2 =

s

4
(1− z + y56)

2 = α2
1(s56)

where eqs. (I.19), (I.20) and |~p56| = |~p34| have been used in the last two lines. Note

that

α2
2 + α2

3 = α2
1(s56)− s56 .

The limits on s15 and s25 are obtained from the requirement a2/b2 ≤ 1. The

result is

0 ≥ s15 ≥ −√
s (α1(s56) +

√

α2
2) = −s−15

y−15 =
1√
s
(α1(s56) +

√

α2
2) =

1√
s
(E56 + |~p56| | cos θ1|)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 115

and, substituting

s15 = x3 s (−y−15) , (I.28)

s±25 =
s

s−15

(
√

(1− x3)s56 ±
√

x3 α
2
3

)2

(I.29)

=
1

y−15

(
√

(1− x3)s56 ±
√

x3 |~p56|2 sin2 θ1

)2

=
1

y−15

(
√

x1(1− x3)y
−
56 ±

√

x3 x2(1− x2) (1− x1) (1− x1
y−56
y+56

)(1− z)2

)2

.

Therefore we also substitute

s25 = −s−25 − x4 (s
+
25 − s−25) . (I.30)

After these substitutions we obtain

b2 − a2 = s x4 (1− x4) (s
+
25 − s−25)

2 (y−15)
2

= 16 s2 y56 x3 (1− x3) x4 (1− x4) |~p56|2 sin2 θ1

= 4 s3 y−56 x1 (1− x1) (1− x1
y−56
y+56

)

× x2 (1− x2) x3 (1− x3) x4 (1− x4) (1− z)2 (I.31)

dΦ56 =
2D−5

8 s

s
D−6

2

(2π)D−2
dΩD−4

1

(1− z)

√

(1− x1)(1− x1
y−
56

y+
56

) x2(1− x2)

(
y−56 x1 x3(1− x3)x4(1− x4)

)D−5

2 (I.32)

y−56 =
x2 (1− x2) (1− z)2 (1 + v)2

v y+56
(1 + v)2

v
=

(1 + z)2

(1− x2(1− z))(z + x2(1− z))

Now we turn to dΦ̃tt̄. Again, we would like to replace the D−2 angles describing

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 116

the tt̄ final state by invariants. Therefore we introduce

dΦ̃34 = ds13ds23 dΦ̃tt̄ δ(s13 + 2p1 · p3 −m2) δ(s23 + 2p2 · p3 −m2)

= ds13ds23 dΦ34

dΦ34 =
1

(2π)D−2
dDp3 δ

+(p23 −m2)δ+((p3 − p34)
2 −m2)

δ(s13 + 2p1 · p3 −m2) δ(s23 + 2p2 · p3 −m2) .

(I.33)

Proceeding in a way analogous to dΦ56 we obtain

dΦ34 =
1

4 s
s

5−D
2

1

(2π)D−2
dΩD−4 (b

2 − a2)
D−5

2

(
4 |~p34|2 sin2 θ1

)−D−4

2

a/
√
s = s34 − 2E3E34 − 2pz,0 |~p34| cos θ1

b2/s = 4 |~p34|2 sin2 θ1 p
2
⊥,0

Defining

ξ1 = m2 − s13 , ξ2 = m2 − s23 (I.34)

we have

E3 =
1

2
√
s
(ξ1 + ξ2)

pz,0 =
1

2
√
s
(ξ2 − ξ1)

p2⊥,0 =
1

s
ξ1ξ2 −m2 (I.35)

leading to

a = s34
√
s+ ξ1 (α2 − α1)− ξ2 (α1 + α2)

b = 2α3

√

ξ1ξ2 −m2s

α2
1 = E2

34 = s34 + |~p34|2 =
s

4
(1− z + y56)

2 = α2
1(s34)

α2 = |~p34| cos θ1

α3 = |~p34| sin θ1 =
√
s(1− z)

√

(1− x1)(1− x1
y−56
y+56

) x2(1− x2)

(I.36)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 117

Solving the constraint b2 − a2 ≥ 0 leads to

ξ±1 =

√
s

2
(α1 + α2)

(

1±
√

1− 4m2

s34

)

(I.37)

ξ±2 =
1

(α1 + α2)2

{

(ξ+1 − ξ−1)
(√

s34 (1− x5)±
√

α2
3 x5

)2

+ ξ−1 (s34 + α2
3)

}

(I.38)

b2 − a2 = (α1 + α2)
2 (ξ+2 − ξ−2)

2 x6 (1− x6)

= 16 s α2
3 (s34 − 4m2) x5(1− x5) x6 (1− x6) , (I.39)

where we have made the substitutions

ξ1 = ξ−1 + (ξ+1 − ξ−1) x5

ξ2 = ξ−2 + (ξ+2 − ξ−2) x6

(I.40)

The phase space then becomes

dΦ34 =
2D−5

8 s

s
D−6

2

(2π)D−2
dΩD−4

1

(1− z)

√

(1− x1)(1− x1
y−
56

y+
56

) x2(1− x2)

(

(z − 4m2

s
) x5(1− x5) x6(1− x6)

)D−5

2

.

In summary, we have made the substitutions

s34 = s z

s56 = x1 s y
−
56

v =
z + x2(1− z)

1− x2(1− z)
, v =

p1 · p34
p2 · p34

,
dv

dx2
=

1− z2

(1− x2(1− z))2

s15 = −x3 s y−15
s25 = s−25 + x4 (s

+
25 − s−25)

ξ1 = m2 − s13 = ξ−1 + x5 (ξ
+
1 − ξ−1)

ξ2 = m2 − s23 = ξ−2 + x6 (ξ
+
2 − ξ−2) (I.41)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 118

Collecting the Jacobians contributing to dΦ̃(p5, p6, p34) we therefore obtain

dΦ̃(p5, p6, p34) = dv ds15 ds25
ds56
2π

dΦv dΦ56

=
2D−5

16π

sD−3

(2π)2D−4
dΩD−3 dΩD−4 (1− z)D−3

4∏

i=1

dxi

(y−56)
D−2

2

(

1− x1 y
−
56

1 + z

) (

x4(1− x4)
)D−5

2

(

x1 (1− x1) x2 (1− x2) x3 (1− x3) (1− x1
y−56
y+56

)

)D−4

2

(I.42)

Combining now with dΦ̃tt̄ we have

dΦ̃34 = ds13ds23 dΦ34

= dx5 dx6 (ξ
+
1 − ξ−1) (ξ

+
2 − ξ−2) dΦ34 (I.43)

(ξ+1 − ξ−1) (ξ
+
2 − ξ−2) = 4 s2

(1− z)√
z

(z − 4m2

s
)

×
√

(1− x1)(1− x1
y−56
y+56

) x2(1− x2)
√

x5(1− x5)

Therefore

dΦ2→4 =
ds34
2π

dΦ̃34 dΦ̃(p5, p6, p34) (I.44)

=
s

D
2
−1

4π

4D−5

(2π)D−2
dΩD−4 dz dx5 dx6 dΦ̃(p5, p6, p34)

1√
z

(

z − 4m2

s

)D−3

2 (

x5(1− x5)
)D−4

2
(

x6(1− x6)
)D−5

2

= 22D−14 s
3D
2
−4

(2π)3D−4
dΩD−3 dΩD−4 dΩD−4 dz

6∏

i=1

dxi

(1− z)D−3

√
z

(

z − 4m2

s

)D−3

2

(y−56)
D−2

2

(

1− x1 y
−
56

1 + z

)

(

x1 (1− x1) x2 (1− x2) x3 (1− x3) x5(1− x5)(1− x1
y−56
y+56

)

)D−4

2

(

x4(1− x4) x6(1− x6)
)D−5

2

, (I.45)

where y−56 is given by eq. (I.24). To write the invariants in a concise form, we intro-

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 119

duce

ỹ±56 = y±56/(1 + z) = 1±
√
z

√

(1− x2(1− z))(z + x2(1− z))

and we use

α1(s56) + α2√
s

= x1 ỹ
−
56 + (1− x2) (1− z) (1− x1 ỹ

−
56)

α1(s56)− α2√
s

= x1 ỹ
−
56 + x2 (1− z) (1− x1 ỹ

−
56)

α1(s34) + α2√
s

=
(

1− x2 (1− z)
)

(1− x1 ỹ
−
56)

α1(s34)− α2√
s

=
(

1− (1− x2) (1− z)
)

(1− x1 ỹ
−
56) (I.46)

Note that α2 → −α2 is related to x2 → (1 − x2) and that α1(s56) + α1(s34) =
√
s.

We obtain

s34 = s z

s56 = s x1 (1 + z) ỹ−56

s15 = −x3 s−15 = −x3
√
s (α1(s56) + α2)

s25 = −s−25 − x4 (s
+
25 − s−25)

s16 = −(1− x3) s
−
15 = −(1− x3)

√
s (α1(s56) + α2)

s26 = −s25 −
√
s (α1(s56)− α2)

s13 = m2 − ξ−1 − x5 (ξ
+
1 − ξ−1) = m2 − ξ−1 − x5

√
s (α1(s34) + α2)

(

1− 4m2

z s

)

s23 = m2 − ξ−2 − x6 (ξ
+
2 − ξ−2)

s14 = 2m2 − s13 −
√
s (α1(s34)− α2)

s24 = 2m2 − s23 −
√
s (α1(s34) + α2)

s134 = s
(
−x2 (1− z) + x1 ỹ

−
56(1− (1− x2)(1− z))

)

s234 = s
(
−(1 − x2) (1− z) + x1 ỹ

−
56(1− x2(1− z))

)

s35 = m2 − 1

s

(

s25 ξ1 + s15 ξ2 +
a3a5
2α2

3

)

−8s

√

y56(z −
4m2

s
)x3(1− x3)x4(1− x4)x5(1− x5)x6(1− x6)

a3 = s34
√
s− ξ1 (α1(s34)− α2)− ξ2 (α1(s34) + α2)

a5 = s56
√
s+ s15 (α1(s56)− α2) + s25 (α1(s56) + α2) (I.47)

I.2. A Phase Space for pp→ tt̄+ Double Real Radiation 120

Choosing s34, s56, s15, s25, s13, s23, s16, s35 as independent variables, we can verify the

relations

s36 = 4m2 − s13 − s23 − s34 − s35

s45 = 2m2 − s15 − s25 − s35 − s56

s46 = −2m2 + s+ s13 + s15 + s23 + s25 + s35

s26 = −s− s15 − s16 − s25 + s34 − s56

s14 = 2m2 − s− s13 − s15 − s16

s24 = 2m2 + s15 + s16 − s23 − s34 + s56 (I.48)

Note that 4m2 ≤ s34 ≤ s, therefore we substitute

z = 1− β x7 , β = (1− 4m2

s
) , (I.49)

such that ỹ±56 becomes

ỹ±56 =
y±56

2− x7 β
= 1±

√
1− x7 β

√

(1− x2 x7 β)(1− (1− x2) x7 β)

We finally obtain for the phase space

dΦ2→4 = 22D−14 β
3D−7

2

s
3D
2
−4

(2π)3D−4
dΩD−3 dΩD−4 dΩD−4

7∏

i=1

dxi

xD−3
7√

1− x7 β
(1− x7)

D−3

2 (y−56)
D−2

2

(
1− x1 ỹ

−
56

)

(

x1 (1− x1) x2 (1− x2) x3 (1− x3) x5(1− x5)(1− x1
y−56
y+56

)

)D−4

2

(

x4(1− x4) x6(1− x6)
)D−5

2

. (I.50)

The variables x5 and x6 can be excluded from the decomposition as they never lead

to a singularity. E5 → 0 corresponds to x1 → 0, x3 → 0, E6 → 0 corresponds to

x1 → 0, x3 → 1. x7 = 0 means E5 = E6 = 0.

Appendix J

Troubleshooting

Below we give possible reasons and solutions for problems which may arise during

use of the program.

• The function F is zero:

verify the on-shell conditions onshell={...} in the file mytemplate.m where

you defined the integrand. By default, the external legs have been set to be

light-like (p2i = ssp[i] = 0). If you calculate a massless two-point integral or

a one-scale three-point integral, at least one scale must be different from zero

(e.g. set ssp[1] = −1 for a two-point function with external momentum p1,

which amounts to factoring out the overall scale).

Remember that the program by default replaces p2i by ssp[i], (pi + pj)
2 by

sp[i, j]. (This is done in src/deco/calcFU.m). If symbols different from pi are

used for the external momenta, the user has to define their numerical values

in his template file mytemplate.m in the list onshell.

Example: for external vectors called p, q, define numerical values for the in-

variants formed by p and q, e.g. onshell={p2 → −1, q2 → 0, p ∗ q → −0.5}.
Alternatively, you can map to the predefined names for the invariants, e.g.

onshell={p2 → ssp[1], q2 → ssp[2], p ∗ q → (sp[1, 2]− ssp[1]− ssp[2])/2}. This
latter solution allows you to leave the invariants symbolic and specify numerical

values only at the numerical integration stage, by assigning the corresponding

numerical values in param.input.

121

Appendix J. Troubleshooting 122

The user can check if the functions F , U and numerator look as expected by

looking at the file FUN.m in the integralname/ subdirectory.

• The numerical integration takes very long:

apart from the fact that this is to be expected for complicated integrands,

other reasons could be

– the integrand still contains undefined symbols at the numerical integra-

tion stage because the numerical values for the constants have not been

properly defined (e.g. values for which F is not of definite sign, respec-

tively the general function develops a singularity within the integration

range). Things to do are: check the function F in the file FUN.m in the

integralname/ subdirectory (in the loop case); check the log files of the

numerical integration in the subdirectories

integralname/polestructure/epstothe[i], where “polestructure” is

of the form e.g. 2l0h0, denoting 2 logarithmic poles and 0 linear, 0

higher poles.

– you chose a very large number of Monte Carlo points and/or a very large

number of iterations in the input file

– for functions defined in SecDec/general: verify if there is a singularity

for xi → 1 rather than only for xi → 0 and if so, split this variable at 1/2

by adding its label to the splitlist.

• the results do not appear in an editor window:

either you did not specify an editor in param.input (last entry) or your system

is unable to open the editor window. In this case just look at the result file

located in the integralname subdirectory (where integralname is the name

for the calculated integral or graph, specified by you in param.input, third

item). The result file is called integralname [point]full.res.

• you get the message “path for Mathematica not automatically found”:

Insert the path to Mathematica on your system manually for the variable

$mathpath in the file perlsrc/mathlaunch.pl.

Appendix K

Choosing a Set of Variables to

Decompose

K.1 Choosing a Minimal Subset for Iterated De-

composition

There are a number of criteria which are used to choose which set of variables, S,
is used at each stage in the decomposition. These are:

1. Number of variables in S. Clearly as a new sector is produced for each variable

in S, sets with fewer variables are favoured.

2. How many functions S nullifies when S → {0, 0, ..., 0}. The more functions

nullified, the quicker each function becomes factorised and so fewer iterations

are expected.

3. What is the maximum order of S in the function being decomposed? This is

defined by setting each variable in S → X , and finding the highest power of

X . The smaller this value, the fewer additional powers of integration variables

are introduce and this generally leads to fewer sectors.

123

K.2. Decomposing to Avoid Infinite Recursion 124

K.2 Decomposing to Avoid Infinite Recursion

In order to avoid infinite recursion in sectors where it is suspected to occur, an

heuristic method is employed in an attempt to sidestep this. Consider the example

f(~x) = x21 + x22x3 (K.1)

A natural choice of subset to decompose here would be S1 = {x1, x3}, which leads

to

f1(~x) = x1 + x22x3, (K.2)

f2(~x) = x21x3 + x22 (K.3)

It is easy to see that following the same prescription for f2 will lead to

f2,2(~x) = x21 + x22x3 = f(~x) (K.4)

and so we fall into an infinite loop. A different choice of subset S2 = {x1, x2} leads

to

f1(~x) = 1 + x22x3 (K.5)

f2(~x) = x21 + x3 (K.6)

and from here it is clear that the iteration will terminate. To this end the method

used to sidestep infinite recursion is to decompose first all squared variables, and

then follow the standard method outlined above. This has worked in all two-loop

and three-loop applications considered, but we do not guarantee that it works in

every up to three-loop diagram. An example where it fails is a four-loop massive

propagator correction of figure K.1 at threshold (p2 = m2):

K.2. Decomposing to Avoid Infinite Recursion 125

m

m m

p

Figure K.1: A four-loop massive two-point integral

Bibliography

[1] Michael E. Peskin and Daniel V. Schroeder. An Introduction to quantum field

theory. 1995.

[2] R.Keith Ellis, W.James Stirling, and B.R. Webber. QCD and collider physics.

Camb.Monogr.Part.Phys.Nucl.Phys.Cosmol., 8:1–435, 1996.

[3] Raymond Brock et al. Handbook of perturbative QCD: Version 1.0.

Rev.Mod.Phys., 67:157–248, 1995.

[4] Davison E. Soper. Basics of QCD perturbation theory. pages 267–316, 2000.

[5] T. Kinoshita. Mass singularities of Feynman amplitudes. J. Math. Phys.,

3:650–677, 1962.

[6] T. D. Lee and M. Nauenberg. Degenerate systems and mass singularities.

Phys. Rev., 133:B1549–B1562, 1964.

[7] William B. Kilgore. Regularization Schemes and Higher Order Corrections.

Phys.Rev., D83:114005, 2011.

[8] T. van Ritbergen, J.A.M. Vermaseren, and S.A. Larin. The Four loop beta

function in quantum chromodynamics. Phys.Lett., B400:379–384, 1997.

[9] M. Czakon. The Four-loop QCD beta-function and anomalous dimensions.

Nucl.Phys., B710:485–498, 2005.

[10] K. et al Chetyrkin. Talk given at radcor 2011, to be published in the proceed-

ings.

126

Bibliography 127

[11] M. Gockeler, R. Horsley, A.C. Irving, D. Pleiter, P.E.L. Rakow, et al. A

Determination of the Lambda parameter from full lattice QCD. Phys.Rev.,

D73:014513, 2006.

[12] John C. Collins, Davison E. Soper, and George F. Sterman. Factorization of

Hard Processes in QCD. Adv.Ser.Direct.High Energy Phys., 5:1–91, 1988. To

be publ. in ’Perturbative QCD’ (A.H. Mueller, ed.) (World Scientific Publ.,

1989).

[13] R.P. Feynman. Photon-hadron interactions. 1973.

[14] A.D. Martin, W.J. Stirling, R.S. Thorne, and G. Watt. Heavy-quark mass

dependence in global PDF analyses and 3- and 4-flavour parton distributions.

Eur.Phys.J., C70:51–72, 2010.

[15] Marco Guzzi, Pavel M. Nadolsky, Hung-Liang Lai, and C.-P. Yuan. Heavy-

flavor contributions at NNLO in CTEQ PDF analysis. 2011.

[16] J. Rojo, S. Forte, R.D. Ball, L. Del Debbio, M. Ubiali, et al. The impact of

heavy quark mass effects in the NNPDF global analysis. PoS, DIS2010:173,

2010.

[17] A.G. Grozin. Integration by parts: An Introduction. Int.J.Mod.Phys.,

A26:2807–2854, 2011.

[18] S. Laporta. High precision calculation of multiloop Feynman integrals by

difference equations. Int.J.Mod.Phys., A15:5087–5159, 2000.

[19] Charalampos Anastasiou and Achilleas Lazopoulos. Automatic integral re-

duction for higher order perturbative calculations. JHEP, 0407:046, 2004.

[20] A.V. Smirnov. Algorithm FIRE – Feynman Integral REduction. JHEP,

0810:107, 2008.

[21] C. Studerus. Reduze-Feynman Integral Reduction in C++. Com-

put.Phys.Commun., 181:1293–1300, 2010.

Bibliography 128

[22] J. B. Tausk. Non-planar massless two-loop Feynman diagrams with four on-

shell legs. Phys. Lett., B469:225–234, 1999.

[23] Vladimir A. Smirnov. Analytical result for dimensionally regularized massless

on-shell double box. Phys. Lett., B460:397–404, 1999.

[24] G. Heinrich, T. Huber, D. A. Kosower, and V. A. Smirnov. Nine-

Propagator Master Integrals for Massless Three-Loop Form Factors. Phys.

Lett., B678:359–366, 2009.

[25] C. Duhr, H. Gangl, and J.R. Rhodes. From polygons and symbols to polylog-

arithmic functions. 2011.

[26] Vittorio Del Duca, Lance J. Dixon, James M. Drummond, Claude Duhr, Jo-

hannes M. Henn, et al. The one-loop six-dimensional hexagon integral with

three massive corners. Phys.Rev., D84:045017, 2011.

[27] A. von Manteuffel and C. Studerus. Talk given at acat 2011, to be published

in the proceedings.

[28] J. Fleischer, A.V. Kotikov, and O.L. Veretin. Analytic two loop results for

selfenergy type and vertex type diagrams with one nonzero mass. Nucl.Phys.,

B547:343–374, 1999.

[29] J. A. M. Vermaseren. New features of FORM. 2000.

[30] S. Moch and P. Uwer. XSummer: Transcendental functions and symbolic

summation in form. Comput.Phys.Commun., 174:759–770, 2006.

[31] V. de Alfaro, B. Jakšić, and T. Regge. Differential properties of Feynman

Amplitudes. High-Energy Physics and Elementary Particles, 1965.

[32] A.V. Kotikov. Differential equations method: New technique for massive Feyn-

man diagrams calculation. Phys.Lett., B254:158–164, 1991.

[33] Ettore Remiddi. Differential equations for Feynman graph amplitudes. Nuovo

Cim., A110:1435–1452, 1997.

Bibliography 129

[34] T. Gehrmann and E. Remiddi. Differential equations for two loop four point

functions. Nucl.Phys., B580:485–518, 2000.

[35] T. Gehrmann and E. Remiddi. Using differential equations to compute two

loop box integrals. Nucl.Phys.Proc.Suppl., 89:251–255, 2000.

[36] T. Gehrmann and E. Remiddi. Two-loop master integrals for γ∗ → 3 jets:

The planar topologies. Nucl. Phys., B601:248–286, 2001.

[37] T. Gehrmann and E. Remiddi. Two-loop master integrals for γ∗ → 3 jets:

The non- planar topologies. Nucl. Phys., B601:287–317, 2001.

[38] T. Gehrmann and E. Remiddi. Progress on two loop nonpropagator integrals.

2001.

[39] R.N. Lee. Space-time dimensionality D as complex variable: Calculating loop

integrals using dimensional recurrence relation and analytical properties with

respect to D. Nucl.Phys., B830:474–492, 2010.

[40] O. V. Tarasov. Connection between Feynman integrals having different values

of the space-time dimension. Phys. Rev., D54:6479–6490, 1996.

[41] Roman N. Lee, Alexander V. Smirnov, and Vladimir A. Smirnov. Dimensional

recurrence relations: an easy way to evaluate higher orders of expansion in ǫ.

2010.

[42] R.N. Lee, A.V. Smirnov, and V.A. Smirnov. Master Integrals for Four-Loop

Massless Propagators up to Transcendentality Weight Twelve. 2011.

[43] D.H. Bailey and H.R.P Ferguson. A Polynomial Time, Numerically Stable

Integer Relation Algorithm. RNR Techn. Rept, RNR-91-032, 1992.

[44] S. Arno, D.H. Bailey, and H.R.P Ferguson. Analysis of PSLQ, an integer

relation finding algorithm. Math. Comput, 68:351–369, 1999.

[45] Henrik Kragh Sørensen. Exploratory experimentation in experimental math-

ematics: A glimpse at the PSLQ algorithm. PhiMSAMP, London: College

Publications:341–360, 2010.

Bibliography 130

[46] Francis Brown. The Massless higher-loop two-point function. Com-

mun.Math.Phys., 287:925–958, 2009.

[47] A B Goncharov. Multiple polylogarithms and mixed tate motives. Arxiv

preprint math0103059, page 82, 2001.

[48] R.Keith Ellis, D.A. Ross, and A.E. Terrano. The Perturbative Calculation of

Jet Structure in e+ e- Annihilation. Nucl.Phys., B178:421, 1981.

[49] Zoltan Kunszt and Davison E. Soper. Calculation of jet cross-sections in

hadron collisions at order alpha-s**3. Phys.Rev., D46:192–221, 1992.

[50] S. Catani and M.H. Seymour. The Dipole formalism for the calculation of

QCD jet cross-sections at next-to-leading order. Phys.Lett., B378:287–301,

1996.

[51] S. Catani and M.H. Seymour. A General algorithm for calculating jet cross-

sections in NLO QCD. Nucl.Phys., B485:291–419, 1997.

[52] Rikkert Frederix, Thomas Gehrmann, and Nicolas Greiner. Automation of the

Dipole Subtraction Method in MadGraph/MadEvent. JHEP, 0809:122, 2008.

[53] S. Frixione, Z. Kunszt, and A. Signer. Three jet cross-sections to next-to-

leading order. Nucl. Phys., B467:399–442, 1996.

[54] Rikkert Frederix, Stefano Frixione, Fabio Maltoni, and Tim Stelzer. Automa-

tion of next-to-leading order computations in QCD: The FKS subtraction.

JHEP, 0910:003, 2009.

[55] David A. Kosower. Antenna factorization of gauge theory amplitudes.

Phys.Rev., D57:5410–5416, 1998.

[56] John M. Campbell, M.A. Cullen, and E.W.Nigel Glover. Four jet event shapes

in electron - positron annihilation. Eur.Phys.J., C9:245–265, 1999.

[57] A. Gehrmann-De Ridder, T. Gehrmann, and E. W. Nigel Glover. Antenna

subtraction at NNLO. JHEP, 09:056, 2005.

Bibliography 131

[58] A. Gehrmann-De Ridder, T. Gehrmann, and E.W.Nigel Glover. Antenna sub-

traction method for jet calculations at NNLO. Nucl.Phys.Proc.Suppl., 157:32–

36, 2006.

[59] Stefan Weinzierl. The Infrared structure of e+ e- → 3 jets at NNLO reloaded.

JHEP, 0907:009, 2009.

[60] A. Daleo, T. Gehrmann, and D. Maitre. Antenna subtraction with hadronic

initial states. JHEP, 0704:016, 2007.

[61] Alejandro Daleo, Aude Gehrmann-De Ridder, Thomas Gehrmann, and Gion-

ata Luisoni. Antenna subtraction at NNLO with hadronic initial states: initial-

final configurations. JHEP, 1001:118, 2010.

[62] Radja Boughezal, Aude Gehrmann-De Ridder, and Mathias Ritzmann. NNLO

antenna subtraction with two hadronic initial states. PoS, RADCOR2009:052,

2010.

[63] Alejandro Daleo, Aude Gehrmann-De Ridder, Thomas Gehrmann, and Gion-

ata Luisoni. NNLO Antenna Subtraction with One Hadronic Initial State.

PoS, RADCOR2009:062, 2010.

[64] Radja Boughezal, Aude Gehrmann-De Ridder, and Mathias Ritzmann. An-

tenna subtraction at NNLO with hadronic initial states: double real radiation

for initial-initial configurations with two quark flavours. JHEP, 1102:098, 2011.

[65] Gionata Luisoni, Alejandro Daleo, Aude Gehrmann-De Ridder, and Thomas

Gehrmann. NNLO antenna subtraction with one hadronic initial state. PoS,

DIS2010:122, 2010.

[66] Radja Boughezal, Aude Gehrmann-De Ridder, and Mathias Ritzmann. An-

tenna subtraction for two hadronic initial states at NNLO. PoS, DIS2010:101,

2010.

[67] Thomas Gehrmann and Pier Francesco Monni. Antenna subtraction at NNLO

with hadronic initial states: real-virtual initial-initial configurations. 2011.

Bibliography 132

[68] A. Gehrmann-De Ridder and M. Ritzmann. NLO Antenna Subtraction with

Massive Fermions. JHEP, 0907:041, 2009.

[69] G. Abelof and A. Gehrmann-De Ridder. Antenna subtraction for the produc-

tion of heavy particles at hadron colliders. JHEP, 1104:063, 2011.

[70] Aude Gehrmann-De Ridder, Mathias Ritzmann, and Peter Skands. Timelike

Dipole-Antenna Showers with Massive Fermions. 2011.

[71] K. Fabricius, I. Schmitt, G. Kramer, and G. Schierholz. Higher Order Pertur-

bative QCD Calculation of Jet Cross-Sections in e+ e- Annihilation. Z.Phys.,

C11:315, 1981.

[72] W.T. Giele and E.W.Nigel Glover. Higher order corrections to jet cross-

sections in e+ e- annihilation. Phys.Rev., D46:1980–2010, 1992.

[73] A. Gehrmann-De Ridder and E.W.Nigel Glover. A Complete O (alpha alpha-

s) calculation of the photon + 1 jet rate in e+ e- annihilation. Nucl.Phys.,

B517:269–323, 1998.

[74] B.W. Harris and J.F. Owens. The Two cutoff phase space slicing method.

Phys.Rev., D65:094032, 2002.

[75] M. Czakon. A novel subtraction scheme for double-real radiation at NNLO.

Phys. Lett., B693:259–268, 2010.

[76] M. Czakon. Double-real radiation in hadronic top quark pair production as a

proof of a certain concept. Nucl.Phys., B849:250–295, 2011.

[77] Charalampos Anastasiou, Gunther Dissertori, and Fabian Stockli. NNLO

QCD predictions for the H →WW → llνν signal at the LHC. JHEP, 09:018,

2007.

[78] Charalampos Anastasiou, Franz Herzog, and Achilleas Lazopoulos. The fully

differential decay rate of a Hoggs boson to bottom-quarks at NNLO in QCD.

2011.

Bibliography 133

[79] Kirill Melnikov and Frank Petriello. Electroweak gauge boson production at

hadron colliders through O(α2
s). Phys. Rev., D74:114017, 2006.

[80] Stefano Catani and Massimiliano Grazzini. An NNLO subtraction formalism

in hadron collisions and its application to Higgs boson production at the LHC.

Phys.Rev.Lett., 98:222002, 2007.

[81] Stefano Catani, Leandro Cieri, Giancarlo Ferrera, Daniel de Florian, and Mas-

similiano Grazzini. Vector boson production at hadron colliders: A Fully ex-

clusive QCD calculation at NNLO. Phys.Rev.Lett., 103:082001, 2009.

[82] Stefano Catani, Leandro Cieri, Daniel de Florian, Giancarlo Ferrera, and

Massimiliano Grazzini. Diphoton production at hadron colliders: a fully-

differential QCD calculation at NNLO. 2011.

[83] Klaus Hepp. Proof of the Bogolyubov-Parasiuk theorem on renormalization.

Commun.Math.Phys., 2:301–326, 1966.

[84] E. R. Speer. Mass Singularities of Generic Feynman Amplitudes. Annales

Poincare Phys. Theor., 26:87–105, 1977.

[85] M. Roth and Ansgar Denner. High-energy approximation of one-loop Feynman

integrals. Nucl. Phys., B479:495–514, 1996.

[86] Ansgar Denner and S. Pozzorini. An algorithm for the high-energy expansion

of multi-loop diagrams to next-to-leading logarithmic accuracy. Nucl. Phys.,

B717:48–85, 2005.

[87] T. Binoth and G. Heinrich. An automatized algorithm to compute infrared

divergent multi-loop integrals. Nucl. Phys., B585:741–759, 2000.

[88] T. Binoth and G. Heinrich. Numerical evaluation of multi-loop integrals by

sector decomposition. Nucl. Phys., B680:375–388, 2004.

[89] G. Heinrich and Vladimir A. Smirnov. Analytical evaluation of dimensionally

regularized massive on-shell double boxes. Phys. Lett., B598:55–66, 2004.

Bibliography 134

[90] T. Gehrmann, G. Heinrich, T. Huber, and C. Studerus. Master integrals for

massless three-loop form factors: One- loop and two-loop insertions. Phys.

Lett., B640:252–259, 2006.

[91] G. Heinrich, T. Huber, and D. Maitre. Master integrals for fermionic contri-

butions to massless three-loop form factors. 2007.

[92] P. A. Baikov, K. G. Chetyrkin, A. V. Smirnov, V. A. Smirnov, and M. Stein-

hauser. Quark and gluon form factors to three loops. Phys. Rev. Lett.,

102:212002, 2009.

[93] M. Czakon, J. Gluza, and T. Riemann. The planar four-point master integrals

for massive two- loop Bhabha scattering. Nucl. Phys., B751:1–17, 2006.

[94] R. Boughezal and M. Czakon. Single scale tadpoles and O(GFm(t)2α3
s) cor-

rections to the rho parameter. Nucl. Phys., B755:221–238, 2006.

[95] H. M. Asatrian et al. NNLL QCD contribution of the electromagnetic dipole

operator to Gamma(anti-B –¿ X/s gamma). Nucl. Phys., B749:325–337, 2006.

[96] A. V. Smirnov and M. Tentyukov. Four Loop Massless Propagators: a Nu-

merical Evaluation of All Master Integrals. Nucl. Phys., B837:40–49, 2010.

[97] P. A. Baikov and K. G. Chetyrkin. Four Loop Massless Propagators: an

Algebraic Evaluation of All Master Integrals. Nucl. Phys., B837:186–220,

2010.

[98] R. N. Lee, A. V. Smirnov, and V. A. Smirnov. Analytic Results for Massless

Three-Loop Form Factors. JHEP, 04:020, 2010.

[99] R. N. Lee and V. A. Smirnov. Analytic Epsilon Expansions of Master Integrals

Corresponding to Massless Three-Loop Form Factors and Three-Loop g-2 up

to Four-Loop Transcendentality Weight. 2010.

[100] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli, and C. Studerus.

Calculation of the quark and gluon form factors to three loops in QCD. JHEP,

06:094, 2010.

Bibliography 135

[101] T. Gehrmann, E. W. N. Glover, T. Huber, N. Ikizlerli, and C. Studerus. The

quark and gluon form factors to three loops in QCD through to O(ǫ2). 2010.

[102] A. V. Smirnov and M. N. Tentyukov. Feynman Integral Evaluation by a Sector

decomposiTion Approach (FIESTA). Comput. Phys. Commun., 180:735–746,

2009.

[103] A. V. Smirnov, V. A. Smirnov, and M. Tentyukov. FIESTA 2: parallelizeable

multiloop numerical calculations. 2009.

[104] Jonathon Carter and Gudrun Heinrich. SecDec: A general program for sector

decomposition. Comput.Phys.Commun., 182:1566–1581, 2011.

[105] Gudrun Heinrich. Sector Decomposition. Int. J. Mod. Phys., A23:1457–1486,

2008.

[106] Andrea Ferroglia, Massimo Passera, Giampiero Passarino, and Sandro Ucci-

rati. All-purpose numerical evaluation of one-loop multi-leg Feynman dia-

grams. Nucl. Phys., B650:162–228, 2003.

[107] T. Binoth, G. Heinrich, and N. Kauer. A numerical evaluation of the scalar

hexagon integral in the physical region. Nucl. Phys., B654:277–300, 2003.

[108] Achilleas Lazopoulos, Thomas McElmurry, Kirill Melnikov, and Frank

Petriello. Next-to-leading order QCD corrections to tt̄Z production at the

LHC. Phys. Lett., B666:62–65, 2008.

[109] Achilleas Lazopoulos, Kirill Melnikov, and Frank Petriello. QCD corrections

to tri-boson production. Phys. Rev., D76:014001, 2007.

[110] Charalampos Anastasiou, Stefan Beerli, and Alejandro Daleo. Evaluating

multi-loop Feynman diagrams with infrared and threshold singularities nu-

merically. JHEP, 05:071, 2007.

[111] Charalampos Anastasiou, Stefan Beerli, and Alejandro Daleo. The two-loop

QCD amplitude gg → h,H in the Minimal Supersymmetric Standard Model.

2008.

Bibliography 136

[112] Davison E. Soper. QCD calculations by numerical integration. Phys. Rev.

Lett., 81:2638–2641, 1998.

[113] Davison E. Soper. Techniques for QCD calculations by numerical integration.

Phys. Rev., D62:014009, 2000.

[114] T. Binoth, J. Ph. Guillet, G. Heinrich, E. Pilon, and C. Schubert. An algebraic

/ numerical formalism for one-loop multi-leg amplitudes. JHEP, 10:015, 2005.

[115] Zoltan Nagy and Davison E. Soper. Numerical integration of one-loop Feyn-

man diagrams for N-photon amplitudes. Phys. Rev., D74:093006, 2006.

[116] Wei Gong, Zoltan Nagy, and Davison E. Soper. Direct numerical integra-

tion of one-loop Feynman diagrams for N-photon amplitudes. Phys. Rev.,

D79:033005, 2009.

[117] Gudrun Heinrich. A numerical method for NNLO calculations. Nucl. Phys.

Proc. Suppl., 116:368–372, 2003.

[118] A. Gehrmann-De Ridder, T. Gehrmann, and G. Heinrich. Four-particle phase

space integrals in massless QCD. Nucl. Phys., B682:265–288, 2004.

[119] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. A new method

for real radiation at NNLO. Phys. Rev., D69:076010, 2004.

[120] T. Binoth and G. Heinrich. Numerical evaluation of phase space integrals by

sector decomposition. Nucl. Phys., B693:134–148, 2004.

[121] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. Real radiation

at NNLO: e+e− → 2 jets through O(α2
s). Phys. Rev. Lett., 93:032002, 2004.

[122] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. Higgs boson

production at hadron colliders: Differential cross sections through next-to-

next-to-leading order. Phys. Rev. Lett., 93:262002, 2004.

[123] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. Fully differen-

tial higgs boson production and the di-photon signal through next-to-next-to-

leading order. Nucl. Phys., B724:197–246, 2005.

Bibliography 137

[124] Charalampos Anastasiou, Kirill Melnikov, and Frank Petriello. The electron

energy spectrum in muon decay through O(α2). JHEP, 09:014, 2007.

[125] Kirill Melnikov and Frank Petriello. The W boson production cross section at

the LHC through O(α2
s). Phys. Rev. Lett., 96:231803, 2006.

[126] Kirill Melnikov. O(α2
s) corrections to semileptonic decay b → clν̄l. 2008.

[127] Sandip Biswas and Kirill Melnikov. Second order QCD corrections to inclusive

semileptonic b → Xclν̄l decays with massless and massive lepton. JHEP,

02:089, 2010.

[128] Ryan Gavin, Ye Li, Frank Petriello, and Seth Quackenbush. FEWZ 2.0: A

code for hadronic Z production at next-to- next-to-leading order. 2010.

[129] Charalampos Anastasiou, Franz Herzog, and Achilleas Lazopoulos. On the

factorization of overlapping singularities at NNLO. 2010.

[130] Vladimir A. Smirnov. Feynman integral calculus. Springer, 2006.

[131] Christian Bogner and Stefan Weinzierl. Resolution of singularities for multi-

loop integrals. Comput. Phys. Commun., 178:596–610, 2008.

[132] H. Hironaka. Resolution of singularities of an algebraic variety over a field of

characteristic zero. Ann. Math. 79, (1964), 109.

[133] Janusz Gluza, Krzysztof Kajda, Tord Riemann, and Valery Yundin. Numerical

Evaluation of Tensor Feynman Integrals in Euclidean Kinematics. 2010.

[134] A. V. Smirnov and V. A. Smirnov. Hepp and Speer Sectors within Modern

Strategies of Sector Decomposition. JHEP, 05:004, 2009.

[135] Takahiro Ueda and Junpei Fujimoto. New implementation of the sector de-

composition on FORM. PoS, ACAT08:120, 2008.

[136] Toshiaki Kaneko and Takahiro Ueda. A geometric method of sector decom-

position. Comput. Phys. Commun., 181:1352–1361, 2010.

Bibliography 138

[137] Toshiaki Kaneko and Takahiro Ueda. Sector decomposition via computational

geometry. 2010.

[138] Christian Bogner and Stefan Weinzierl. Feynman graph polynomials.

Int.J.Mod.Phys., A25:2585–2618, 2010.

[139] L. D. Landau. On analytic properties of vertex parts in quantum field theory.

Nucl. Phys., 13:181–192, 1959.

[140] R. J. Eden, P. V. Landshoff, David I. Olive, and J. C. Polkinghorne. The

Analytic S-Matrix. Cambridge University Press, 1966.

[141] Fyodor V. Tkachov. Landau equations and asymptotic operation. Int. J. Mod.

Phys., A14:683–715, 1999.

[142] I.M. Gelfand and G.E. Shilov. Generalized Functions, volume 1. Academic

Press, New York, 1964.

[143] Mathematica, Copyright by Wolfram Research.

[144] Setsuya Kawabata. A New version of the multidimensional integration and

event generation package BASES/SPRING. Comp. Phys. Commun., 88:309–

326, 1995.

[145] T. Hahn. CUBA: A library for multidimensional numerical integration. Com-

put. Phys. Commun., 168:78–95, 2005.

[146] Mark Sofroniou. Format.m: C, FORTRAN77, Maple and TeX Code Genera-

tion Package. http://library.wolfram.com/infocenter/MathSource/60/, 2005.

[147] Frans Slothouber and et al. ROBODoc 4.99.40. http://www.xs4all.nl/ rfs-

ber/Robo/robodoc.html.

[148] Thomas Hahn. Feynman Diagram Calculations with FeynArts, FormCalc, and

LoopTools. PoS, ACAT2010:078, 2010.

[149] Andrei I. Davydychev and M.Yu. Kalmykov. Massive Feynman diagrams and

inverse binomial sums. Nucl.Phys., B699:3–64, 2004.

Bibliography 139

[150] T. Huber and Daniel Maitre. HypExp, a Mathematica package for expanding

hypergeometric functions around integer-valued parameters. Comput. Phys.

Commun., 175:122–144, 2006.

[151] Tobias Huber and Daniel Maitre. HypExp 2, Expanding Hypergeometric Func-

tions about Half- Integer Parameters. Comput. Phys. Commun., 178:755–776,

2008.

[152] S. Bethke et al. Experimental Investigation of the Energy Dependence of the

Strong Coupling Strength. Phys. Lett., B213:235, 1988.

[153] Gregor Welsh. An Evaluation of Four-Loop Planar One Scale Three Point

Master Integrals with up to Ten Massless Propagators. 2011. M.Sci. Disser-

tation, Durham University (Advisors: Nigel Glover and Gudrun Heinrich).

[154] Mark Zentile. Multi-loop Feynman Diagrams: Two-leg, Massless Propagator

Integrals up to Five Loops. 2011. M.Phys. Dissertation, Durham University

(Advisors: Nigel Glover and Gudrun Heinrich).

[155] Stefan Beerli. A New method for evaluating two-loop Feynman integrals and

its application to Higgs production. 2008. Ph.D. Thesis, ETH (Advisor: Zoltan

Kunszt).

