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Abstract

This thesis is concerned with providing further statistical development in the area of web

usage analysis to explore web browsing behaviour patterns. We received two data sources:

web log files and operational data files for the websites, which contained information on

online purchases. There are many research question regarding web browsing behaviour.

Specifically, we focused on the depth-of-visit metric and implemented an exploratory

analysis of this feature using clickstream data. Due to the large volume of data available

in this context, we chose to present effect size measures along with all statistical analysis

of data. We introduced two new robust measures of effect size for two-sample comparison

studies for Non-normal situations, specifically wherethe difference of two populations is

due to the shape parameter. The proposed effect sizes perform adequately for non-normal

data, as well as when two distributions differ from shape parameters. We will focus on

conversion analysis, to investigate the causal relationship between the general clickstream

information and online purchasing using a logistic regression approach. The aim is to

find a classifier by assigning the probability of the event of online shopping in an e-

commerce website. We also develop the application of a mixture of hidden Markov models

(MixHMM) to model web browsing behaviour using sequences of web pages viewed by

users of an e-commerce website. The mixture of hidden Markov model will be performed in

the Bayesian context using Gibbs sampling. We address the slow mixing problem of using

Gibbs sampling in high dimensional models, and use the over-relaxed Gibbs sampling, as

well as forward-backward EM algorithm to obtain an adequate sample of the posterior

distributions of the parameters. The MixHMM provides an advantage of clustering users

based on their browsing behaviour, and also gives an automatic classification of web pages

based on the probability of observing web page by visitors in the website.
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Chapter 1

Clickstreams: New Source of Data in

E-Commerce

1.1 Introduction

The adventure and advancement of the world wide web, beside all its influence on modern

life, has played a major role to conduct business. Electronic commerce has grown rapidly

in the decade by means of this new technology. Nowadays, firms offer goods/services

not only through traditional channels such as retail outlets, but also in online virtual

stores. An economic study (U.S. Census Bureau, 2005) conducted by the Department of

Commerce shows that e-commerce, on a percentage basis, outperformed all four major

economic sectors of manufacturing, merchant wholesalers, service industries, and retail

trade in 2002-2003 (Banks and Said, 2006). However, e-commerce is more distinguished

by changing the possibilities with regards to the distribution of goods or services. It has

also served companies and organizations to improve their performance through better

customer management, marketing strategies, and expanding the range of products and

operations in the business area.

As the internet essentially works on the basis of data interchange, there is new data

sources available which companies can exploit. This data enables e-commerce managers

to supervise a business in ways that were not previously possible. Visitors’ behaviour can

be tracked by data collected in the server log files while they are surfing their website

(Van den Poel and Buckinx, 2005). The prominent example of using this data, is so-

called Web Usage Mining, which provides knowledge on how people behave in the web

site specially in making purchase decisions. E-bay is an example in online auctions, which
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provides data about the price of products by means of the amount of money customers are

willing to pay. Another well-structured data set is produced by social network analysis,

which helps to find relationships among people and business (Banks and Said, 2006).

Bapna et al. (2006) illustrate automated data collection methods in several areas of e-

commerce that give the resources for some tests of economic theories.

One of the favourable aspects of e-commerce is its ability to produce valuable data re-

garding website design, website performance and website customization. In investigating

what needs to be fixed in an e-commerce website, customers play the most important

role. Customers expect to be catered to, and they need a site that lets them get in and

be immediately successful in pursuing their objectives. The e-retailer can use server logs

data, instead of traditional customer surveys, to infer about customers’ opinion regard-

ing the website. For example, website managers by running A/B design tests are able

to produce data about visitors’ behaviour in two different designs of an webpage. A/B

testing, or split testing, is a method by which a baseline control sample is compared to

a variety of single-variable test samples in order to improve response rates. In the web

designing context A/B split testing is exploited to determine which elements on a page

are helping the performance of a web page, and which are not. For example, one might

test two different headlines on a landing page and check whether one would outperform

the other. The customers’ usage information can help by providing a list of popular des-

tinations from a particular webpage. The web manager is interested in investigating long

convoluted traversal paths or low usage of a page with important site information by web

usage data. The task may imply that the site links and information are not laid out in

an intuitive manner (Cooley et al., 1999a).

The analysis of data generated by e-commerce provides the opportunity to outline better

client relations (Bauer et al., 2002). It may be implemented more efficiently by influencing

the current customers’ and clients’ visiting and shopping behaviour if the products and

services get adjusted to the profile of visitors individually (Van den Poel and Buckinx,

2005). The more refined the segmentation or profiling of the customer base, the more

efficiently a profitable target segment can be identified (Moe and Fader, 2004). By direct

communication to current clients and prospective customers through websites, companies

are able to adjust products, services, advertisement campaigns, and any other policies to

the profile of visitors in order to influence customers’ visiting and shopping behaviour.

Baesens et al. (2004) outlined customer relationship management by considering alterna-

tive strategies pursued for different user segments, resulting from clustering methods on

web data. Web data has been exploited to run systems which give advice about prod-

ucts, information or services a user might be interested in, while surfing the web pages.
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These applications aim to assist users in a decision-making process where they want to

choose some items amongst a potentially large set of alternative products or services.

Such systems which are usually referred to as recommender systems has been used for

many different information items such as books, music, films, news, scientific literatures

(Werthner et al., 2007).

Knowledge gained by web data representing users’ navigational behaviour on the web-

sites can be applied to provide different information and services to website users. Any

activities in website design to fulfil this aim is called web personalization (Eirinaki and

Vazirgiannis, 2003). Web personalization can be performed for particular users or user

segments. The main purpose to web personalization on an e-commerce website might

be converting website browsing behaviour into customers. It also can help to improve

website design, customer retention and loyalty (Nasraoui, 2005). Mobasher et al. (2000)

has outlined a good description of the different kinds of web personalization which can

affect essential Customer Relationship Management (CRM) activities.

Customer trust is a key issue in e-commerce. Customers are supposed to receive a secure

system when they make online payments. A hacked system and misused data would cause

serious problem for a company, as it is hard to regain customers’ trust. Web data sources

and mining techniques are used for intrusion detection and anomaly detection. Statistical

models on web usage data are used to identify attacks and to indicate doubtful activities

by an authorized user. Normal transaction behaviour is usually captured by a statistical

model and activities are compared to the model (Banks and Said, 2006).

The growth of e-commerce permits the customer to choose from several alternatives. The

ability of the customers to check the products of e-vendors working in the same trade by

moving from a website to another in a short time has affected customer loyalty. Visitors to

an e-commerce website display slight loyalty to the specific website when searching for a

product or category (Johnson et al., 2004). Additionally, the percentage of website visits

that result in purchasing is very low (Bucklin and Van den Poel, 2003). Consequently,

e-vendors need some effective levers to remain in such a competitive community. This

persuades e-vendors to use data obtained from web users to discover useful knowledge to

help to keep customers loyal to the e-commerce website (Abraham, 2003).

Although, e-commerce provides a considerable amount of data, they do not follow many

assumptions which are useful for statistical modelling, like independent observations. Fur-

thermore, the number of people who do shopping online is increasing and more businesses

are adding electronic services. It means that e-commerce data is increasing in volume,

and it is not easy to extract interpretable descriptions that support business decisions.
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Considering the sheer increase of data in size and complexity, more intelligent knowledge

mining techniques are necessary (Roussinov and Zhao, 2003; Abraham, 2003). This per-

suaded researchers to contemplate developing methodologies by which the hidden patterns

of web behaviour visits become apparent through exploring web data. This broad class

of research is usually referred to as web mining analysis (Chakrabarti, 2003).

1.2 Web Mining

Web Mining includes the application of data mining methodologies, techniques, and mod-

els to all kind of data forms relating to the World Wide Web. On the other hand, data

mining is the analysis of large data sets to find un-suspected relationships and to sum-

marize the data in novel ways that are both understandable and useful to the data owner

(Cooley et al., 2000). There are three types of data available in the web, which have been

a focus of attention: web usage data, also known as clickstream data; web content data;

and web structure data (Cooley et al., 1999a). Therefore, by mining the web, we refer

to uncovering patterns in web content, structure, and usage demonstrates by means of

data mining methods and models. Accordingly, based on research studies carried on the

different web-related data, web mining has been categorized into three domains: content,

structure and usage mining (Chakrabarti, 2003). In what follows, we will provide a gen-

eral overview of all three kinds of web-based data. Figure 1.1 depicts a diagram about

the taxonomy of the Web Mining.

1.2.1 Web Usage Mining

Each click made by a user on a web browser while surfing the Internet, corresponding to an

HTTP request sent to the server of the website, generates a single entry in the server access

logs. Each log entry may includes such information as fields identifying the hitting date

and time of the request, HTTP Status, bytes sent, download time, the server IP address of

the user, the resource requested, status of the request, HTTP method used, browser and

operating system type and version, the referring web resource, and, if available, client-side

cookies which uniquely identify a repeat visitor (Johnson et al., 2004). This information

varies depending on the log format. The file containing this information, usually referred

to as a web log file, is the primary source of data representing the navigational behaviour

of visitors.

In addition to web logs, the operational database(s) for the website may contain additional
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Figure 1.1: A diagram about web mining taxonomy (Cooley et al., 2000)

information regarding user profile, user conversion (desired action based on direct requests

from marketers, advertisers, and content creators– usually making an online purchase

for an e-commerce website), user demographics for registered users, and user ratings on

various objects such as products, music, films, past purchases, etc. Some of these data can

be captured anonymously as long as it is possible to distinguish between different users

(Mobasher, 2006). For example, anonymous information contained in client-side cookies

can be considered a part of the user’s profile information, and used to identify repeat

visitors to a site. E-commerce exploits this data along with clickstream data to have

a more clear picture of the user’s behaviour. These data may be available on separate

servers and will need to be merged with the web logs before preprocessing can be done.

Web usage mining is the application of data mining techniques to large web data reposi-

tories in order to extract interesting and useful knowledge and implicit information that

reflect the behaviour of humans as they interact with the Internet (Cooley et al., 1999a;

Kosala and Blockeel, 2000). Some of the data mining algorithms that are used in web

usage mining employ statistical modelling, clustering and classification, association rule

generation, and sequential pattern generation (Kosala and Blockeel, 2000).
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Figure 1.2: A web usage mining process (Cooley et al., 2000)

1.2.2 Web Content Mining

The content data in a site is the collection of objects and relationships that is conveyed

to the user. For the most part, this data is comprised of combinations of textual mate-

rials and images. The data sources used to deliver or generate this data include static

HTML/XML pages, multimedia files, dynamically generated page segments from scripts,

and collections of records from the operational databases. The site content data also

includes semantic or structural meta–data embedded within the site or individual pages,

such as descriptive keywords, document attributes, semantic tags, or HTTP variables

(Kolari and Joshi, 2004). The underlying domain ontology for the site is also considered

part of the content data. Domain ontologies may include conceptual hierarchies over

page contents, such as product categories, explicit representations of semantic content

and relationships via an ontology language such as RDF, or a database schema over the

data contained in the operational databases (Kosala and Blockeel, 2000). This informa-

tion is an unstructured data source contrary to fully structured data like database tables.

Web content mining techniques are also applied to this unstructured data embedded in

web documents and services. Web content mining is sometimes called web text mining,

because the text content is the most widely researched area. Most of the focus on web

content mining techniques is on clustering and classification analysis.
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1.2.3 Web Structure Mining

Web structure data refers to the information available in the inter-page linkage structure

among web pages as well as intra-page linkage structure of content within a page. This

data represents the designer’s view of the content organization within the site. Structure

for a site can be revealed by an automatically generated site map. Web Structure Mining

discusses basic ideas and techniques for extracting text information from the web, includ-

ing collecting and indexing web documents and searching and ranking web pages by their

textual content and hyper-link structure (Chakrabarti et al., 1998). Note that we may

need to have a knowledge of the topology or structure of the website, the network hier-

archies and relationships among the web pages to enable us to perform a preprocessing

task such as path completion.

1.3 Clickstream Data

Clickstream data gathered from a website can provide insight into the behaviour of the

website visitors. To illustrate what type of information can be collected while a user is

surfing the internet, consider the typical behaviour of a user who decides to purchase a

product online. This task starts by signing onto the internet and using a search engine

to find what sites sell a favourite brand. Then the user would click on the first link

represented by the search engine and begin to browse inside the website. Shopping in the

website would result in adding an item to a shopping cart. To make an order, personal

information is completed using online forms. This might include credit card number and

shipping address. The next page usually displays the order information and total cost.

Finally, by confirming the order, one checks whether a confirmation email has been sent.

If so, one would sign out of the internet. During this entire process, clickstream data has

been collected in the web log file of the Web retailer’s server (Werner et al., 2002).

The clickstream is defined as the aggregate sequence of page visits executed by a particular

user as the user navigates through a website. It consists of the records of a user’s activity

on the internet, including how one got to the website, every website and every page of the

website that the user visits, how long the user was on a page or site, in what order the

pages were visited, the point at which he left the website, the merchandise he considered

buying, any newsgroups that the user participates in and even the e-mail addresses the

user provides for correspondence (Mobasher et al., 2000). In the next section we get

familiarized with web server log files as a main source of data available for the analysis of

users’ behaviour on the Web.
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1.3.1 Web Server Log Files

For each request from the user’s browser (Internet explorer, Mozilla Firefox, Netscape,

etc.) to a web server, a response is generated automatically, called a web log file, log

file, or web logs. This response takes the form of a simple single-line transaction record

that is appended to an ASCII text file on the web server. This text file may be comma-

delimited, space-delimited, or tab-delimited. There are two standard Web log formats,

The Microsoft standard format (or Microsoft professional Internet services format) and the

National Center for Supercomputing (NCSA) common log file format. The field definitions

of clickstream data are thus already defined to help simplify and reduce development time

when dealing with these formats. As follows, we will illustrate the different fields which

exist in a typical log file (Markov and Larose, 2007).

Remote Host Field

This field consists of the Internet Protocol (IP) address of the remote host making the

request for the user visiting a website. An IP address is a numerical identification and

logical address that is assigned to devices participating in a computer network utilizing

the internet protocol for communication between its nodes (Comer, 2000). IP addresses

are stored in binary numbers, but they are usually displayed in human readable notations.

An IP address comprises three pieces of information: a name, an address, and a route.

The name indicates what a visitor seeks. The address helps to find out where it is,

and the route shows how to get to the address. When the remote host name is not

available, then the domain name system (DNS) can help to decode the host names into

IP address and vice versa. In view of the fact that humans prefer to work with domain

names and computer are most efficient with IP addresses, the DNS provides an important

interface between human and computer (for more information see the Internet Systems

Consortium, www.isc.org). IP addresses are usually represented by dot-decimal notation,

four numbers each running from 0 to 255. A typical user IP address in the log entries

would be 141.243.1.172.

Identification Field

Identification fields show the login IDs of users who have entered a password protected

area of the site. This field is used to store identity information by the client only if

the web server performs an identity check. However, this field is rarely used because

identification information provided is in the form of text rather than a securely encrypted

form. Therefore, this field usually contains a ∼ , or −− , indicating a null value (Markov
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and Larose, 2007; Liu, 2006).

Date and Time Fields

The date and time of the local server for each page request is recorded in the log file in

Greenwich Mean Time (GMT). It is more common for the date/time field to follow the

following format: dd/Mon/yyyy:hh:mm:ss offset, where hh:mm:ss represents 24–hour

time, given in Eastern Date Time (EDT) system, dd/Mon/yyyy represents the date, and

an offset is a positive or negative constant indicating in hours how far ahead of or behind

the local server is from Greenwich Mean Time (GMT). For example, a date/time field

of 12/Sep/2008:13:21:02 -0700 indicates that a request was made to a server at 01:21

p.m. on September 12, 2008, and the server is 7 hours behind GMT.

HTTP Request Field

The HTTP request field consists of the information requested by the user’s browser from

the web server. The entire HTTP request field is embraced within quotation marks.

Basically, this field can be partitioned into four areas: the request method, Uniform

Resource Identifier (URI), the header, and the protocol. The most common request

method is GET, which represents a request to retrieve data, identified by URI. For example,

GET/index.html HTTP/1.1 represents a request from the user’s browser for the web server

to provide the webpage index.html. Besides GET, other requests include HEAD, PUT,

and POST. For more information about these request methods, refer to the W3C World

Wide Web consortium, www.w3.org. The URI contains the page or document name

and the directory path requested by the client browser. It may also contain information

concerning the keywords are being used by user in search engines that point to the website.

The keyword are terms and phrases that can be used to find the relevant link by a search

engine. The HTTP request field also includes the protocol section. This indicates which

version of the HyperText Transfer Protocol is being used by the clients browser, HTTP in

the mentioned example. Based on the relative frequency of newer protocol version (e.g.,

HTTP/1.1), the web developer may decide to take advantage of the greater functionality

of the newer version and provide more online features.

Referrer Field

The referrer field provides information about the webpage that the user came from. In

this case, the referrer field lists the URL of the previous website visited by the client,

which linked to the current page. For images, the referrer is the webpage on which the
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image is to be displayed. The referrer field contains important information for marketing

purposes, since it can track how people found a website. Again, if the information is

missing, a dash is used.

User Agent Field

The user agent field indicates the user’s browser, browser version, and operating system.

This field can also contains information regarding bots or web crawlers. A Web crawler,

or bot, is a computer program that browses the internet in a automated manner to provide

up-to-date data for a specific purpose. A bot may be used to create a copy of all the visited

pages for later processing by a search engine that will index the downloaded pages, to

make a faster search. It also can be used to collect e-mail addresses, usually for sending

spam. A web developer can use user agent field to block certain sections of the website

from the web crawlers, in the interests of preserving bandwidth. This field also enables

the analyst to determine whether a human or a bot has accessed the website, and thereby

to omit the bot’s visit from the analysis.

Status Code Field

Once a browser request fails, a three digit response from the web server is transmitted to

the user, and recorded in the web log file. This field, referred to as a status code, indicates

whether the request was successful, or if there was an error. In the case of error, it also

indicates which type of error occurred. Codes of the form 2xx indicate that the request

from the client was received, understood, and completed. Codes of the form 3xx indicate

that further action is required to complete the client’s request. Codes of the form 4xx

are used to show that the client’s request cannot be fulfilled, due to incorrect syntax or a

missing file. Finally, codes of the form 5xx indicate the failure of the web server to fulfil

what was apparently a valid request (Markov and Larose, 2007).

Transfer Volume Fields

The transfer volume field indicates the size of the file, in bytes, sent by the web server

to the client’s web server. Only GET successful requests, status code = 200, will have a

positive value in the transfer volume field. Otherwise, it will consist of a dash or a value

of zero. This field is useful to monitor network traffic, the load carried by the network

through a 24–hour cycle.

Figure 1.3 depicts a fragment (three entries) of a log entry of a typical web server log

file. For the first entry, it shows a user with IP address 175.12.131.24 accessing a
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Figure 1.3: A fragment of a common server log file

resource /wiki/Clickstream on the server en.wikipedia.org at 2009-02-01 10:08:43

in Greenwich Mean Time. The browser type (Microsoft Internet Explorer) and version

(6.0), as well as operating system information on the client machine (Windows NT) are

captured in the agent field of the entry. Finally, the referrer field specifies that the user

came to this location from an outside source: www.dur.ac.uk. The second entry has a

different ISP, consequently it confirms that this records was produced by a different user.

The third record is from the first user, with the same ISP, but the URL has changed to

a new page.

1.3.2 Preprocessing

The web log files are not well-structured data and cannot be directly used for web mining

purposes. For example, when a user requests a web page containing graphic and sound

files, the request results in several records/lines in the web log file that represent just one

page request. One also need to remove the records in the web log files which are made by

bots, as those line do not reflect the human browsing behaviour. Considering the irrelevant

information in web logs files, from the web usage mining point of view, it is required as an

essential data preparation activity to convert the raw data into data abstraction necessary

for further analysis (Natheer and Chan, 2006; Helmy et al., 2008), usually referred to as

a data preprocessing step. Cooley et al. (1999a) provides a comprehensive discussion of

the stages and tasks in data preparation for Web usage mining. In this section we briefly

illustrate some common preprocessing task.

User Identification

Since a user may visit a site more than once, before modelling user behaviour one needs

to distinguish between different users. There is no emphasis to obtain knowledge about
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user identity, but one needs the sequence of activities performed by the same user during

different sessions, which is usually called user activity.

The most reliable way to identify users is by user registration. In this case, each user has

his/her own user ID for logging into the website. It has also the advantage of collecting

additional demographic information about users. Unfortunately, due to privacy concerns,

many users are not interested in browsing in a website when they are asked for registration

and logins. Even for registered users, many prefer to provide false information (Cooley

et al., 1999a).

Another way to identify users is based on the IP address, as users with different IP address

are definitely are people who connected from different computer. Due to the increasing

number of internet users, ISP proxy servers rotate IP addresses which are assigned to

clients as they browse the Web. Therefore, one may find many identical IP addresses in

log entries, due to the limited number of proxy server IP addresses, from large internet

service providers (Mobasher, 2007). It obliges us to find a way to distinguish among

those who come to the website with the same IP address. One heuristic is to use a

combination of IP address with other clickstream information such as user agent field or

referrer. It can be assumed that each different agent type, including browser software,

or its version, or operating system for an IP address represents a different user (Pirolli

et al., 1996). One may take advantage of site topology to construct browsing paths for

each user. Afterwords, if a page is requested that is not directly accessible by a hyper-link

from any of the pages visited by the user, again, it can be assumed that there is another

user with the same IP address (Liu, 2006).

Note that user identification on log server data actually helps to distinguish between

machines rather than users, except in the case of registered users of a website who log

into the website through a user ID and a password. For example, if a user visits a website

from a machine in the work office, and later returns to the website from home, the user

identification pre-processing fails to identify the user. Oppositely, when a machine is

used by several users, browsing the website by different people might be considered as a

re-visiting of the website by the same user.

Figure 1.4 depict a fragment of a typical web log data file, Using a combination of IP and

agent fields in the log file, we are able to partition the log into activity records for three

separate users, as depicted on the right panel. The IP is used first, and the different IP

addresses get separated. In the next step the agents of the each group of web log entries

with the same IP are investigated to find whether all the agents are the same. The entries

with the same log but dissimilar agent are separated as different Users.
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Figure 1.4: A sample of user identification using IP and agent fields, adopted from (Liu, 2007)

Sessionization

The purpose of session identification is to divide the page accesses of each user from the

clickstream data into an actual sequence of single user navigations during a single visit to

the website. Session identification, which is sometimes named as episode identification,

is usually performed as a final step in preprocessing of the clickstream data (Markov

and Larose, 2007). In the lack of additional authentication information from users and

without mechanisms such as embedded session ids, sessionization is carried out based

on heuristic methods. Various heuristics for sessionization have been introduced and

studied by Cooley et al. (1999a). More recently, Spiliopoulou et al. (2003) proposed

a comprehensive framework for evaluating the effectiveness of such heuristics, and the

impact of different heuristics on various Web usage mining tasks has been analysed by

Berendt et al. (2002)

Sessionization heuristics are categorized into two basic groups: time-oriented and navigation-

oriented. The time-oriented heuristic applies time-out estimates to distinguish between

successive sessions. For logs with long periods of time, it is very likely that users visit the

website more than once. One heuristic is to assume that the user starts a new session,

whenever the time between page requests exceeds a certain limit (Cooley et al., 1999a).

As an example of a time-oriented heuristic, one may scan the user activity log and par-

tition it into different sessions whenever the total session duration exceeds a threshold

θ. One may choose the total time spent between two subsequent requests and split the

session when it exceeds a threshold δ. It is usual to take 30 minutes threshold as a default
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Figure 1.5: A Sample for sessionization based on global time threshold θ = 30 minutes and

local time threshold , δ = 10, minutes (Liu, 2006)

time-out, and Catledge and Pitkow (1995) established a time-out of 25.5 minutes based on

empirical data. It would be more efficient to find an appropriate time-out after analysing

the web logs, and to use different settings for each website (Liu, 2006).

Navigation-oriented sessionization uses either the static site structure or the implicit link-

age structure captured in the referrer fields of the server logs (Cooley et al., 1999a). A

common way is to assign a request to a constructed session if the referrer for that request

was previously invoked in the session. Otherwise, the request is considered as the start of

a new session. Note that a request may have been accessed previously in multiple sessions.

In this case, the request belongs to more than one open constructed session. One may

use additional information to assign the request properly. For example, the request could

be added to the most recently opened session satisfying the above condition (Liu, 2006).

An example of the application of sessionization heuristics is given in Figure 1.5. Applying

a global time threshold with θ = 30 minutes, the user activity record has been partitioned

into two separate sessions. If we were to apply a local time threshold of δ = 10 minutes,

the user record would be seen as three sessions, namely, A→B→C→E, A, and F→B→D.

On the other hand, using the navigational-oriented heuristic on the same user activity

record would result in different sessions (see Figure 1.6). once the request for F (with

time stamp 1:26) is reached, there are two open sessions, namely, A→B→C→E and A.

But F is added to the first because its referrer, C, was invoked in the first session. The

request for B (with time stamp 1:30) may potentially belong to both open sessions, since

its referrer, A, is invoked both in the first session and in the second session. In this case,

it is added to the second session, since it is the most recently opened session.
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Figure 1.6: A Sample for sessionization based on the navigation-oriented approach (Liu, 2006)

Data Fusion/Merging

Data fusion is an essential preprocessing task on clickstream data where the analysis of

user behaviour is performed over the log files of multiple related websites. In large-scale

websites, multiple Web or application servers are used to show the content served to the

users. The web log files produced by different servers need to be merged properly to

capture the users’ trace. Fusion is followed by the sessionization and user identification

preprocessing methods, in combination with the heuristics based on the referrer field in

the web log file. Tanasa and Trousse (2004) introduce the heuristics to be applied for

merging web log data from different servers.

Data Filtering

When loading a particular web page, the browser also requests all the objects embedded

in the page. It leads to the registration of several record lines in the web log file for

logs, cookies, graphic files, etc. Data filtering involves the task of removing extraneous

references to embedded objects that may not be important for the purpose of analysis,

including references to style files, graphics, or sound files, which belong to top/bottom

frames (Markov and Larose, 2007). The filtering process also involves the removal of

some of the data fields, such as number of bytes transferred or the version of HTTP

protocol used, that may not provide useful information in analysis or data mining tasks

(Werner et al., 2002). In addition to these fields, we may also omit some web log entries

in processing to quickly identify the exact records that we need from the Web logs. One

example is the removal of the log entries associated to the users which have sent just one

request. These single-page-visit users are usually referred to as users who have found the
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website irrelevant to their needs and leave the website quickly.

Filtering can be accomplished by checking the suffix of the URL name. For example, all

log entries with filename suffixes such as, gif, jpeg, GIF, JPEG, jpg, JPG, and map can

be removed. In addition, common scripts such as count.cgi can also be removed. Web

analytic systems use a default list of suffixes to remove files. Note that data filtering

is usually site-specific, so the list can be modified depending on the type of site being

analysed. For example, suppose we aim to analyse user behaviour for a website that

contains a graphical archive. In this case, the log entries of graphics files represent explicit

user actions, and should be retained for analysis. Therefore, filtering requires keeping all

of the GIF or JPEG files from the server log file (Markov and Larose, 2007).

Despidering

With information overload on the web, web search engines start the task of gathering

information on the web and provide relevant web links containing the information needs

of customers. This task is performed by dispatching automatic programs, usually called

spider, crawler, or web bots, which browse all over the web and gather information for

the search engine databases. The behaviour of bots differs to human behaviour, as they

usually request all possible links of the website one after the other. In fact, for using

clickstream data to capture web usage, we need to remove this type of non-human access

behaviour. Despidering refers to the action of removing references from web log file due

to crawler navigations. With the growth of search engines and internet usage, it is likely

to find a considerable percentage of references resulting from search engines, spiders, or

other crawlers (Markov and Larose, 2007).

Famous search engine crawlers (such as Google, msn, Yahoo!, etc.) can be identified by

checking the user agent field of the web log entries. Maintaining a list of such bots, one can

remove all records of the web log when its referrer belongs to the list. Another heuristic to

detect crawlers is to inspect the typical behaviour that crawlers may follow. For example,

Well-behaved crawlers that respect the standard robot exclusion protocols strive to access

an exclusion file named robot.txt in the server root directory in the first attempts of

crawling. As a result, One may identify such crawlers by detecting sessions that begin

with access to this file. However, for those crawlers that either do not identify themselves

explicitly or implicitly; or those crawlers that deliberately masquerade as real human

users, identification and removal of crawler references may require the more complex

heuristic methods or anomaly detection techniques. For example, Tan and Kumar (2002)

applies classification algorithms to build models of crawlers and Web robot navigations.
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Path Completion

Path completion refers to the task of filling in page references that are not recorded in

the web log file, due to browser and proxy server caching. When a user returns to a page

that has been already visited (downloaded) during the same session, the second access to

that page will result in viewing the previously downloaded version of the page without

sending any request to the server. This lack of request from the browser results in a

missing reference in the web log file. Missing references due to caching can be heuristically

inferred through path completion which relies on knowledge of the site structure and

referrer information from server logs (Cooley et al., 1999a).

If a page request is not directly linked to the last page a user requested, one can check the

referrer log to see if the page is in the user’s recent request history. If so, one can assume

that the user backtracked with the back button. Otherwise, the site topology must be

used to the same effect. If more than one page in the user’s history contains a link to the

requested page, a reasonable option is to take the closest page to the previously requested

page. It is also required to estimate the time of each added page reference. An approach

is to assume that any visit to a page already seen makes it work as an auxiliary page,

which is used to guide the user to the new pages. The average reference length time (the

average amount of time spent on each page) for auxiliary pages of the website can be used

as an estimate of the access time for the missing pages.

For example consider a website topology given in Figure 1.7. Let suppose a typical user

whose navigational path in the log file is presented by A→B→C→D→E (depicted by

grid lines in the Figure 1.7). Since there is no link from C to D, it seems obvious that

the user has backtracked, using the browser’s back button, to page B and then D and

E. Due to using a cached file on the client-side, the back reference from C to B does

not appear in the log file. Given site structure and the referrer information, we infer the

missing references C→B and B→D (depicted by a dashed line in Figure 1.7). The path

completion step results in actual user paths of A→B→C→B→D→E.

Data Integration

An effective framework for knowledge discovery in e-commerce is usually performed by in-

tegrating the preprocessed clickstream data with user data from different sources. Online

purchase, which is usually called a conversion in this context, is of the highest impor-

tance regarding integration with clickstream behaviour. E-vendors are interested to find

patterns of behaviour between people who purchase online and those who do not. Other
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Figure 1.7: A Sample for path completion by diagram of the website structure. The navigational

path represented by log file and the missed path is depicted by different kinds of arrows (Liu, 2006)

user data such as demographics and purchase histories, especially in the case of registered

users, also provide valuable information in pattern discovery. Operational databases may

present information about product categories and attributes (Kohavi et al., 2004). Part

of the data to integrate with clickstreams are produced by events which shows a user’s

tendency to buy the products presented in the website. For example, shopping cart

changes, order information, impressions (the action of the user to visit a page containing

an item of interest), click-through (the action of the user to click on an item of interest

in the current page), provide additional data about users surfing the website (Kimball

and Merz, 2000). The integrated database enables web managers to produce e-metrics

including frequency of purchases, the value of purchases, the number of different items

purchased, the number of different item categories purchased, average time spent on pages

or sections of the website, day of week and time of day for certain activities, response to

online recommendations specials, etc. (Buchner and Mulvenna, 1999).

Pageview/Transaction Identification

For a static single frame site, each page request in clickstream data corresponds to a

specific user action. For example, clicking on a link, reading an article, viewing a product

page, adding a product to the shopping cart, or visiting the index page, etc. These ac-

tions result in a collection of web objects or resources generated by the user’s web browser.

The task of transforming and aggregating semantically meaningful user groupings of page

references is called pageview (or transaction) identification (Cooley et al., 1999a). De-

pending on the goals of the analysis, this data aggregation is performed at different levels

of abstraction. The most basic level of data abstraction is that of all webpages. How-
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ever, it may be desirable to consider pageviews at a higher level of aggregation, where

each pageview represents a collection of pages or objects, for example, pages related to

the same concept category (Liu, 2006). Transaction identification also depends on the

navigational structure of the site, as well as on the page contents and the underlying site

domain knowledge. For example, Moe (2003) used the general content of pages viewed to

categorize pages as buying, browsing, searching or knowledge-building pageviews.

In e-commerce websites, pageviews may correspond to various product-oriented events,

such as product views, registration, shopping cart changes, purchases, etc. In this case,

identification of pageviews may require a priori specification of an event model based on

which various user actions can be categorized.

1.3.3 Data Structures

The web log data has the potential to provide a data structure in which records repre-

sent a single visit to a Website, for users who accessed the website, and fields comprise

corresponding attributes of the the website being visited. The information includes the

webpages requested, as well as the order of the webpages, the amount of time spent on

each page, and any other possible derivatives from the web log file entries. This data is

usually referred to as user-session data, in view of the fact that its records represent the

sessions of website viewing. As a user may visit a website several times, it is likely to

have multiple sessions (records) corresponding to an individual user. In fact, the output

of session identification makes a set of sessions S = {S1, S2, . . . , Sm} which are uniquely

marked by session ID field. The attributes of the session can be extracted from the web

log file, including information such as the date of the session, whether the session is a

weekend session, total time duration, number of web pages visited, whether the referrer

is of search engines, etc. User identification provides a set of users, U = {U1, U2, . . . , Un}
and corresponding user ID fields. The user identifier helps to establish whether the web-

site has already been visited by the user in a specific session. Therefore, another session

attribute is produced by categorizing the session as a repeat session or a first-visit session.

Figure 1.8 shows part of a typical user-session data set

For some data mining tasks, such as clustering and association rule mining, where the

ordering of pageviews in a session is not relevant, The user session is represented as a

vector over of size k of pageviews, P = (P1, P2, . . . , Pk) which is a result of a pageview

identification process. As mentioned earlier, pageviews can be webpage categories (or

product page entities) to which mining tasks are applied. Ignoring the order of pages

requested, each of the pageview categories can be considered as a character of a session
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Figure 1.8: A Sample of user-session data produced by the web log file after data preprocessing

(in some literature this is called a transaction matrix)

and represented by a field in user-session data, in some literature called user-pageview

data (Liu, 2006). The fields contain the weight, representing its significance, associated

with the pageview in the session. The weights can be determined in a number of ways, in

part based on the analysis purpose and type. In most of the analysis tasks the weights are

binary, representing the existence or non-existence of a pageview in the session (Mobasher,

2007). In some websites where users are asked to rank the items in the webpages, weights

may be based on user ratings of items. A reasonable weight can be assigned by a function

of the duration of the pageview in the user’s session. As the time spent by a user on

the last pageview in the session is not available, a heuristic is to set the weight for the

last pageview to be the mean time duration for the page taken across all sessions in

which the pageview does not occur as the last one. Using the normalized value of page

duration instead of raw time duration is recommended in order to take into consideration

variations in session time duration. In applications, the log of pageview duration is used

as the weight to reduce the long tail of distribution noise in the data. A sample pageview

data set has been shown in Figure 1.9. The value associated to each page for the user is

the total time spent by the user on the page.

The ordering of pageviews visited by users will also contain information about their brows-

ing behaviour. A web manager might be interested in analysing the clickstream path

taken by users during their session on the website (Berkhin et al., 2001). Furthermore,

clustering of users can be implemented based on methods which consider the ordering
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Figure 1.9: A typical pageview data set, or pageview part of a user-session file, representing

pageview attributes (total time spent on the page in this case) associated to the session

of pageviews, for example model-based clustering by means of first-order hidden Markov

models (Smyth, 1997; Ypma and Heskes, 2002). Therefore, it is necessary to prepare a

data structure which represents the sequence of pageviews. The sequence of pageviews

for different sessions can be represented by vectors of different lengths for each session,

j = (j1, j2, . . . , jm), where m ≥ 1. Corresponding to the sequence of the pageviews

visited, the index of the pageviews in the state space P = {P1, P2, . . . , Pk} is used to

represent the sequence. For example, a vector of j = (1, 4, 1, 2, 6) shows the pageviews

of P1 − P4 − P1 − P2 − P6 respectively during the session. One might apply weighted

analysis of the sequences by considering a sequence of weights joint to the pageview se-

quence, wj = (wj1 , wj2 , . . . , wjm), for example based on the amount of time spent on each

pageview.

It is also possible to integrate the conversion file with the user-session data set. The

conversion file comprises the information about online purchases. This file helps to add

a binary attribute of whether a session resulted in an online purchase of one or more

products/services, the amount of purchase, as well as codes of the product/services. The

integrated data set allows the analyst to investigate the browsing behaviour that has value

to the business, usually an online sale in-commerce websites (Van den Poel and Buckinx,

2005). This type of analysis is called conversion analysis. It also enables the analyst to

inspect the impact of marketing campaigns, such as email, banner, referral and custom

defined marketing campaigns.

For registered users who login to the website, depending on the requested information

in the registration forms, there is more information available about the user. This in-

cludes attributes such as gender, age, occupation categories, educational level, etc. The

provision of information in registration forms, information such as telephone number, age
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and income, can be used to construct a measure of trust concerning customers (Van den

Poel and Buckinx, 2005). However, due to privacy concerns, some people tend not to

give correct answers to profile questions. Registration gives the web owner access to the

history of purchase behaviour and the interests of the users (Moe and Fader, 2004). His-

toric purchase behaviour is already proved to be commonly used in analysing customer

behaviour in offline settings (Schmittlein and Peterson, 1994). This may also provide a

measure loyalty to the website, as the amount a customer is buying is commonly used as

an indication of loyalty (Jones and Sasser, 1995).

Generally, the textual features from the content of web pages represent the underlying

semantics of the site. Each pageview can be represented as an r-dimensional feature

vector, F = (F1, F2, . . . , Fr), where r is the total number of extracted features (words

or concepts) from the website vocabulary list. For each pageview j there exist F j =

(F j
1 , F

j
2 , . . . , F

j
r ), where F j

i is the weight of the ith feature in pageview j, for 1 ≤ j ≤ r.

For the whole collection of pageviews in the site, we then have a k × r pageview-feature

matrix. The integration process may, for example, involve the transformation of user

transactions (in user-pageview matrix) into content–enhanced transactions containing the

semantic features of the pageviews. The goal of this is to represent each user session (or

more generally, each user profile) as a vector of textual (semantic) features or concept

labels rather than as a vector over pageviews. In this way, a user’s session reflects not

only the pages visited, but also the significance of various concepts or context features

that are relevant to the user’s interaction. We do not employ content data in this thesis.

1.4 SLC User-Session Data

Within this thesis we use data provided to us by a SAYU company. This is clickstream

data from commercial websites selling products and services on the internet.We will refer

to this data as the SLC data set throughout this thesis. SLC data is a user-session data

set comprising two source of information: Server log files and conversion data. As we

will not access the registered user data, demographic information about the visitors is

not available. Tracking data contains general clickstream information from the website

which is obtained using log server files. We also use conversion data which comprises

information about visitors who do an online shopping during a web session. The con-

version information involves an identifier for conversion records, time, date, IP, agent,

and amount of conversion. The total data available to use was collected from May 25th

2008 to June 18th 2008, but to reduce the data size to feasible amounts, we only exploit

about one week of clickstream data. The SLC data consists of 10496 records, each record
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corresponds to a single visit to the website. This number of visit has been made by 10091

distinct users/machines.

The main preprocessing tasks on the web log data files were implemented by the local

company’s expert. The preprocessing includes eliminating bots from the web log files

(despidering); eliminating irrelevant elements in the log files (filtering), and generating

the IDs to enable us to identify users (user identification). We also perform a sessionization

by splitting the sessions where the time stamp between two consequent page request lasts

more than 30 minutes (Catledge and Pitkow, 1995). The date and time stamp are used to

extract any other related to the time or date (e.g., visit on week day, holidays, day time

of the session, etc.). Records of the sessions of only one page request (single-page visits)

were filtered out, considering them as users who enter the website by mistake (Bucklin

and Sismeiro, 2003).

After preprocessing clickstream data, several different measures can be extracted to rep-

resent attributes of the website, visit/session, or user. The website attributes which are

most often incorporated into web analytic tools for websites includes Website traffic, stick-

iness/slipperiness, profitability, as well as traversal paths. Clickstream data can provides

key performance indicators (KPI) that reflect critical success factors of the website. At

the level of sessions, it is highly important to measure the attributes such as frequency,

recency, and depth of visit, along with path navigations. For example, the amount of time

spent at website during a session which can be served as a measure of depth of visit has

been found crucial in understanding the web visitor’s behaviour (Padmanabhan et al.,

2001). In the next chapter a wider range of the metrics and reports that can be obtained

using clickstream data will be discussed in more details.

1.5 Thesis Outline

This thesis is concerned with providing further statistical development in the area of web

usage analysis to explore web browsing behaviour patterns. The SLC data set will be

used to illustrate the results throughout the reminder of the thesis. The structure of the

thesis is as follows:

Chapter 2 provides a brief over-review of the metrics/measures that can be obtained using

clickstream data. The metrics will be given at two levels: metrics for the website, and

metrics for a web session. These measures will be calculated for the SLC data set and

some of the results are reported through tables and graphs. Chapter 3 is devoted to the

explanatory analysis of information available in clickstream data. We also take a look at
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the some of questions may be of interest when analysing web browsing behaviour. Chapter

4 provides an introduction to the two new robust measure of effect size for Non-normal

situation, as some key variables of clickstream data do not follow the Normal distribution.

In chapter 5 our focus will be on conversion analysis, to investigate the causal relationship

between the general clickstream information and online purchasing using a logistic regres-

sion approach. The aim is to find a classifier by assigning the probability of the event of

online shopping in an e-commerce website. We implement an automatic stepwise model

selection, we chose the best model, in terms of AIC, by choosing from the main effect

model, as well as all possible interaction terms. In comparison with previous studies, our

contribution has been to take into account interaction terms, as well as main effect general

clickstream information. Our aim was to identify the most significant predictors of online

purchasing to maximize the predictive power of our model in practice. We also Compare

the predictive performance of the logit model with classification analysis and regression

trees (CART).

In chapter 6 we review the theory behind the mixture of hidden Markov models (MixHMM).

The parameters estimation will be reviewed and we also extend the EM algorithm for

computing the parameters of the MixHMM when observations come from the Poisson,

Binomial, Exponential, and the Normal distributions. Then, the Bayesian approach will

be developed for MixHMM. We also test this model using a simulated data set. We

address the slow mixing problem of the Gibbs sampling, and illustrate how a stochastic

forward-backward recursion help improve the mixing of the chain compared to the direct

Gibbs sampling algorithm. The performance of the model was assessed over an artificial

navigation pattern.

In chapter 7 we develop the application of a MixHMMs to model web browsing behaviour

using sequences of web-pages viewed by users of an e-commerce website. The novel

contribution of this chapter is to extend the MixHMM in the Bayesian framework in

the web data context. This model provides a better understanding of the web browsing

pattern in a website. It also can be used to cluster users based on their sequence of web

pages visited, where each mixture components represent a class of browsing behaviour.

Another practical feature of the model is the ability to make a soft classification of the

web pages.
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Chapter 2

Metrics and Reports Using

Clickstream Data

In this chapter we aim to explain the metrics/measures that can be obtained using click-

stream data. These measures are calculated for the SLC data set and some of the results

are reported in tables and graphs. It should be noted that we do not discuss all possible

web analytical tools which can be used with clickstream data sets, as that is beyond the

scope of this chapter. Moreover, the web analyst does not necessarily measure all possible

metrics, but is required to calculate measures based on the goal of the website which may

vary from site to site. Some useful information regarding web analytics can be found in

Kaushik (2007, 2010), Peterson (2004), and Sterne (2002).

2.1 Introduction

Clickstream data has been used to measure different aspects of a website, or behaviour

of visitors to a website. In a commercial context it is especially helpful to investigate

whether the website works towards the business objectives, by providing key performance

indicators (KPI) that reflect the critical success factors of the website, such as website

traffic, engagement, and profitability.

Web analytic reports from clickstream data using descriptive statistical methods may

include information such as most frequently accessed pages, average length of visit to

a page, average length of a specific path through a site, common entry and exit pages,

the rate of visits with online purchase, etc. Despite the lack of depth in such reports,

the resulting knowledge can be potentially useful for improving the websites performance
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and, specifically, providing support for marketing decisions in the case of e-commerce

websites. Nowadays, there are many commercial web analytics solutions and services

available for analysis of clickstream data including free vendors such as Google Analytics

and Yahoo Web Analytics; medium-level paid web analytics services, such as VisiStat,

HitsLink and Web-Stat or, notably, enterprise-level services such as Omniture, Oremetrics

and Webtrends.

Clickstream data also helps to measure the attributes of web sessions. The frequency,

recency, depth of visits, along with path navigations of the visit, all can be obtained

using clickstream data (Padmanabhan et al., 2001). The variable most often used in the

literature is the number of pages visited in a session (Van den Poel and Buckinx, 2005).

The recency, the time elapsed since the last visit, has also been introduced in browsing

behaviour studies to understand more about customers virtual shopping habits (Moe and

Fader, 2004; Van den Poel and Buckinx, 2005). The time visitors spend on a specific

website or a webpage during a session has been found to be crucial in understanding the

web visitor’s behaviour (Padmanabhan et al., 2001). Bucklin et al. (2002) studied how

the number of pages viewed influences visitors’ propensities to continue browsing. The

average time someone spends during a session on web pages and the total time spent at

the site during the entire period of observation are among other time-related measures.

Other variants on these variables can also be computed; for example Van den Poel and

Buckinx (2005) used a variable named Hurry to indicate whether the average time of the

clicks during the last session was less than the average over the past.

2.2 Navigation Metrics and Reports

Clickstream data collected automatically by application servers is the primary source of

data representing the navigational behaviour of visitors. Depending on the goals of the

analysis, this data can be transformed and aggregated at different levels of abstraction

to provide metrics. In this section we review some fundamental metrics often used in the

web usage context.

2.2.1 Website traffic

An important indicator in the web usage context is the traffic of the website, defined by

the amount of data sent and received by visitors to a website (Kaushik, 2010). The traffic

would be a measure to show how popular a website is. This can also be monitored on
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individual pages or sections within a website. The following types of information are often

used when monitoring web traffic:

Number of visits and unique visitors: The number of sessions that the website is

visited over a specific time period, known as number of visits, is usually used as a web

traffic indicator. Using anonymous unique identifiers in cookies we are able to identify if

a visit is made by the same visitor (same machine) to the website during a specified time

period. The number of visitors is another measure which shows the magnitude of the

traffic on a website, sometimes referred to as unique visitors. These statistics are usually

tracked and reported on a weekly or monthly basis to indicate whether there is any pattern

of change. It is also possible to take advantage of control charts to differentiate whether a

significant change from the natural variability of the metric occurs, based on a reasonable

choice of time period unit.

Total number of pages visited: The total number of actions, usually the number of

pages visited, carried out by users over a specific time period, can also be used to indicate

website traffic. The total number of times which a specific web page is visited can be

exploited to see if any change in the page, for example changing the design or content,

results in more visits.

2.2.2 Website stickiness/slipperiness

In addition to the website traffic, which is the matter of attracting people to the website,

it is important to encourage them to spend some time on the website and keep them

interested in it. The web owner also wants visitors to re-visit the website. This concept is

usually referred to as stickiness in the web analysis context, or sometimes known as level

of engagement.

The stickiness of an e-commerce website is also related to the profit of the website, as a

web owner wants visitors to see what the business can offer and how it can help them.

The more interested visitors the website receives, the more likelihood they will buy from

it. Stickiness can be calculated for a specified period using the average amount of time

visitors spend on the website per visit (ATPV):

This measure can be calculated for the entire website, a section of the website, or even

individual pages. If the web page has a link to a file, intended to be downloaded by

visitors, the number of times the file gets downloaded can serve as an indicator of the

stickiness of the web page.
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Table 2.1: Website traffic indicators for the specific time period of one week

Variable Frequency Percentage

No. of visits 2 1652 15.7%

3 193 1.8%

4 77 0.7%

5 28 0.3%

+6 29 0.3%

Repeat Visits 1979 18.8%

Single Visits 8517 81.2%

Total 10496

It should be noted that it is not always an advantage to have a high value of stickiness.

When users are on content pages, which are designed to represent the products or in-

formation about the products, it is desirable for them to spend more time or have high

stickiness. Adversely, for a navigation web page which is used to guide visitors somewhere

else in the website, the more time spent, more clicks, or more pages visited may indicate

that visitors are not being efficiently guided to the right section of the website. In this

case a low value of stickiness is desirable. A low level of stickiness is sometimes referred

to as slipperiness. In addition to the navigation pages, the high value of slipperiness for

pages such as registration, shipment information, and transaction web pages indicates

that they perform their functions appropriately.

Repeat visits versus First-time visits: The number of users who come back to the

website after their first visit can provide important information about the websites stick-

iness. The high percentage of the sessions in which users have already visited the website

at least once, referred to as repeat visits, can indicate how sticky the website is. The dis-

tribution of multiple visits/sessions also reveals how many people re-visit the website. For

example, the average number of multiple sessions can serve as another metric to represent

the stickiness of the website.

Table 2.1 reports the frequency of repeat and single visits. A large proportion of visitors,

72.2%, visited the website for only one session in the period of study; and there were

27.8% visitors of multiple sessions.

Bounce rate: The bounce rate refers to the percentage of visitors who come to the

website but do not engage but rather leave the website after a few seconds or only visit

a single page on the website rather than continue viewing other pages within the same
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website. There is no complete agreement about the definition of bouncing and it may

vary from site to site. Bounce may be defined as visiting only one page on the website,

or it may be defined as single-page visits as well as visits which last five or ten seconds.

The bounce rate can be calculated by

Bounce rate =
total number of bounced visits

Total number of visits
(2.1)

The bounce rate can also be calculated for an individual web page. In this case, it is

necessary to fix a time-out for the web page, which may vary depending on the content or

navigation page. Then, the page bounce rate is the number of visitors who enter the site

at a page and leave within the specified time-out period without visiting another page,

divided by the total number of visitors who entered the site at that page.

2.2.3 Recency and frequency

The information about how often visitors return (frequency) and how long it is since

they were last on the website (recency) are key metrics in customer behaviour study.

Frequency and recency has been employed for many decades in business to identify active

customers and achieve higher response rates to customer retention and loyalty efforts

(Bucklin and Van den Poel, 2003). These measures have been used in business to develop

a simple customer retention program (Glady et al., 2009; Fader et al., 2005). In the case of

registered users, the web manager can identify a group of users for whom these measures

exceed the limit. Therefore, it enables the web manager to implement a business act in

order to influence customers’ behaviour (for example by offering a discount) to encourage

the customer to continue interacting with the e-business.

Frequency of visits: Frequency of visits by a visitor can be measured by the number

of sessions a user visits a website. This might be limited to the period of time (e.g. the

frequency of visits in a day/week). A related measure can help to distinguish between

first-visit and repeat-visit to a website. This is important in the web usage analysis

context, as it would help to know whether a visitor has previous knowledge about the

website map in the current session. It should be noted that the average of the frequency

measure of sessions may also provide a metric for the website stickiness.

Recency of visit: Recency in this context means the number of hours/days/weeks

elapsed since the last visit to a website by a user. It is mostly a measure of web session

quality. One popular measure is to use the average time between the last three visits

(Glady et al., 2009), where it is referred to as latency.
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Depth of visit: Besides the frequency of visits, another factor in web browsing behaviour

is depth of visit. Depth of visit is a measure of visit quality showing how much a visitor

interacts with the website in a web session. The more action by users on a website, the

more successful the website to keep users in. However, the majority of visits to most

websites worldwide contain fewer than 10 actions (Markov and Larose, 2007). Depth of

visit is mostly used as an attribute for a web session. There are two variables in a web

session which can be used for this purpose: the number of pages visited and the time the

user spends on the website (Kaushik, 2007).

Number of pages visited: The number of pages visited (NPV) in a web session is the

most popular measure to indicate depth of visit as a metric for the session. In the case

of a repeat visit, another metric for a visit (or quality) is the total number of pages (or

products) viewed during several sessions in a specific period of study. On the other hand,

the average number of pages visited per session (ANPV) can present a measure for depth

of engagement for a website. This is the fraction of the total number of pages visited

(TNPV) over the total number of visits (TNV).

ANPV =
TNPV

TNV
. (2.2)

It is also helpful to look at a histogram of NPV as a graphical display of tabulated

frequencies of the number of pages visited. The histogram shows the entire distribution

of depth of visits instead of a single statistic such as average number of pages visited per

session.

Figure 3.1 (left) depicts the histogram of the number of pages viewed per session by

visitors during the period of study, excluding the single-page visits. It also includes the

summary statistics. The average number of pages visited was almost 7.5 pages for the

period of study. The median indicates that half the users of the website viewed five or

fewer web pages in a session. The minimum value is two pages, as we excluded single-page

visits. The value for the upper quartile shows that 75% of sessions resulted in visiting

less than 10 pages. A large number of sessions consist of only visiting two pages. Having

many two-page visits is not good news for a web developer, as it might be due to a large

number of users finding the website either not user-friendly or not relevant to their needs.

However, it is not still disappointing, since most websites worldwide see the majority of

users visiting fewer than 10 pages (Markov and Larose, 2007).

Session time duration: Session time duration is the amount of time a user spends on

a website during a session. Logically, if users find the website interesting or relevant to

their needs they are expected to stay longer. However, a high level of time spent on the

website may not be considered as an advantage for an e-commerce website. For example,
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Figure 2.1: Histogram of the number of pages visited (left) and session visit time duration

(right) for the period of study. Note that the single-page visits are removed
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an inappropriate web design may cause a customer to spend more time on the website to

find the required item, to obtain the relevant information, fill in the shipment and payment

information and generally take longer to complete online shopping than necessary. As a

general rule, a good policy is to have a target goal which makes sense for the website.

As another metric, the aggregated version of time spent on site may be used. This way

the web metric is the total amount of time a visitor spent on the website during a longer

period (such as a week or month). One might decide to just consider the time duration

for the last session, or the last K sessions before the current session. It is also possible to

use a moving average of length K instead of total amount of time spent.

Similar to the number of pages visited, statistical summaries, such as average, median,

or any other required statistic of the session time duration over several visits can provide

a metric for the website depth of visit. Figure 3.1 (right) shows the histogram of the

session time duration. To increase the granularity, the upper tail has been clipped at

100 minutes for this graph. The average session time duration is around seven minutes.

Since the session time duration is a skewed distributed measure, we may need to look at

the median as a summary statistic to represent the central tendency. The median session

duration is about 3.4 minutes, which seems to be a more realistic estimate of the typical

session time duration for those who visited more than one page. It implies that half of

the sessions last less than 3 minutes and 20 seconds.
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Average time duration per page: The average time users spend per page over all

successive web pages viewed can represent the depth of visits to a website using both

session time duration and number of pages visited. It can be computed by session time

duration divided by number of pages viewed.

ATD =
TD

NPV−1
, (2.3)

where TD is the total time spent on the website and NPV represents the total number

of pages visited. The number of pages visited needs to be subtracted by one unit at the

denominator, as the last page visited is not counted as a part of the visit time duration,

but in the number of pages visited. Average time duration per page may be computed

only for the time spent on the content pages, excluding the traversal pages to give a more

reasonable metric showing depth of visit.

Table 2.2: Table of metrics of the website using the SLC data set

Measure value Measure value

Number of visits 17400 Average time per visit (Min.) 7.1

Number of unique visitors 15789 Average time per page (Sec.) 63

Number of repeat visits 2890 Number of Pages visited per visit 7.4

Number of page visited 88904 Bounce Rate (%) 41.3

Total Time spent (hour) 1250 Conversion Rate (%) 7.9

The equivalent metric using time duration per page can be obtained for the website by

the total time spent on it (TTD), divided be the total number of pages visited (TNPV)

ATD =
TTD

TNPV − TNS
, (2.4)

where TNS denotes the total number of sessions, and ATD is the website average time

duration per page. Because of the skewed distribution of the ATD, the use of median

would be recommended, instead of arithmetic mean of time duration per page.

Hurriedness: In the web usage analysis, the analyst may want to distinguish short

sessions on the pages from others. This can be produced by comparing the average time

per page, extracted from all users behaviour on a website, with a specific level. For

example, sessions whose average time duration per page is less than the average over all

sessions can be grouped into the hurry sessions.

Table 2.2 shows some metrics of the website under study using clickstream data in SCL

data set. It includes the traffic measures: Number of visits, unique visitors, and pages
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visited. It also shows the total amount of time spent on the website by visitors which

is 1250 hours. Stickiness of the website is reported through average time spent per visit

which is nearly 7 minutes. The bounce rate also shows that 41% of visitors just visit a

single page or leave the website within 10 seconds.

2.2.4 Conversion and Profitability

A successful conversion in internet marketing occurs when a visit is guided by the website

to purchase a product(s) online. The conversion rate of a website, defined as the percent-

age of website visits that lead to an online purchase, is of great importance to e-commerce

web marketers. Consequently, a great deal of effort has been made to improve the con-

version rate by examining the motives of purchasers (Montgomery, 2001). It should be

noted that conversion definition may vary for different types of website, and is mostly

related to the aims of the website. In addition, a successful conversion can be defined for

any type of desirable action from the web owner. For example, it may refer to actions

such as a membership registration, newsletter subscription, software download, etc.

Number/Amount of conversion visit: The conversion can be measured by the number

of visitors who make a purchase from the website as a percentage of the total number of

visitors (TNV), referred to as conversion rate:

Conversion Rate =
Number of visitors who make an online purchase

Total Number of visitors
. (2.5)

A typical conversion rate will be between 0.5%-8% depending on the sector, target market

and quality of the website and proposition. Within online retail financial services, for

example, 1 - 2% would be typical with 2% being very good (Kaushik, 2007).

Frequency of purchase: Frequency of purchase for the visitor can be measured by the

total number of purchases a user ever makes at the site, usually available in the case

of registered users. This measure may also be considered as a loyalty factor. For some

analytical purposes it might be informative to compute the number of items purchased in

the last visit to the website. Moreover, the analyst may be interested in using the average

number of items purchased per visit.

Recency of purchase: The time elapsed between purchases has been proved to be an

informative measure in off-line settings to find active and profitable customers versus

non-active customers who shopped a long time ago (Wu and Chen, 2000). This measure

has also been investigated and found effective for an e-commerce setting (Moe and Fader,

2004; Van den Poel and Buckinx, 2005). The recency of purchase can be measured by the
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number of days elapsed since the last session which resulted in purchase. The summary

statistics of this attribute over all visitors may serve as KPIs at the level of website.

Amount of purchase: The amount of money a user spends on the website is one of the

most important factors to compute the customer value. There are several ways to measure

the profitability of a visitor. For example, their total spending ever at the website, the

average they spend on the website per session, or their average spending per session in

which a purchase is made, all serve as measures related to visitor profitability. The analyst

may only use the measures of amount spent during the last visit, or the moving average

of amount spent at the last K visits.

Table 2.3 displays the different profitability measures computed for the SLC data set over

the period of study. The conversion rate is reported as 13%, excluding bounce visits. This

is a high conversion percentage as most websites have a conversion rate of less than 5%.

Table 2.3: Table of conversion statistics for the SLC data set

Measure Value

Number of conversion visits (#) 1354

Total amount of conversion (£) 51,594

Average number of pages to purchase (#) 9.6

Average conversion time (Min.) 15.0

Time duration per conversion (Min.) 55.2

Conversion rate (%) 7.4

Staying on a website without making any purchase is not an advantage for an e-commerce

website, as it may result in slowing down the server (similar to the customers in a restau-

rant or coffee shop). For an e-commerce website the time duration can be adjusted by

the number of online shoppers. The time duration per conversion (TDPC) shows what

amount of time spent on website by visitors provides a conversion for the website.

TDPC =
Total time duration

Total No. of conversion
. (2.6)

However, for an e-commerce website that sells complex products/services, a longer visit

duration may indicate a visitors interest in obtaining information about the products/services,

or it may simply reduce the telephone service time, as customers get information from

the website.

Considering the amount of purchase, the analyst can investigate the performance of the
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website in terms of the time duration per hour/minute/second (ACPH).

ACPH =
Total amount of conversion

Total time duration
, (2.7)

The ACPH shows what amount of revenue the website makes per hour/minute/second.

Instead of time spent, it is also possible to look at the number of pages viewed by shoppers

on the website before buying the first item. A related metric to represent the e-commerce

website performance is called first purchase momentum (FPM) given by

FPM =
Required click to first purchase

Average of actual clicks to first purchase
. (2.8)

The required click to first purchase needs the knowledge about the topology of the website.

That is, if a visitor who aim to buy an product through the website could complete the

order by visiting K page (or performing K actions), where K is the minimum number

of action for this purpose. The average number of clicks made by visitors who buy that

item from website is calculated using clickstream data. Hence, the FPM assumes values

between 0 and 1. A FPM close to 1 shows the clarity of the content and navigation on

the website.

Average conversion time: It is useful to provide a metric using the ratio of conversion

time and session time, since this can be used to investigate at what point in a session

a user decides to make an order. A desirable metric for an e-commerce website is given

by the average amount of time shoppers spend on the website to buy an item online.

A shorter conversion time shows a good performance by the website in terms of guiding

visitors for e-shopping.

Table 2.3 shows some conversion statistics for the website using SLC data set, including

the total number of sessions in which an online purchase occurs and the total amount

of conversion. The average number of pages visited to the first purchase, in the group

of conversion sessions, is reported as 9.6 pages and on average it takes place around 15

minutes after the session starts. Time duration per conversion shows that for every 55

minutes that visitors surf the website one conversion occurs.

2.3 Trend and Segmentation Reports

Several important web analytic reports can be produced by drilling-down the web metrics

into segments of different web session attributes. The resulting report can either be

utilised to compare several segments with respect to the metric, or it gives the measures

for the specific subset of the visit. For example, depth of visit metric may be calculated for
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visitors who made an online purchase and those who finished a session without purchasing.

As another example, the traffic reports of a website can be reported only for a specific

geographic location. Finding the website metrics for natural ordering of time would also

provide the ability to observe potential trends in metrics. This would be achieved by

computing the measures for different time periods such as day, week, or month. In this

section we review some reports available in the clickstream data by which more knowledge

can be obtained about aspects of website or web browsing behaviour through trend and

segmentation reports.

2.3.1 Segmentation Reports

Segmentation of web metrics aims to provide a better perception of how the key factors

would affect the metrics. It might be implemented based on certain defined actions in the

website, such as adding an item to the shopping cart, clicking on an online advertisement,

completing a registration form, or most importantly completing a payment transaction.

Geographic location: Web server log files provide information about the internet service

provider (ISP), the company that offers its customers access to the internet. This naturally

gives us some information about the area from which a user of the website connects to the

world wide web. This information can be used, for example, to report on the number of

users who connect from the domestic area (UK in the SLC data), or if the connection has

been made through an ISP outside the country. The analyst may be interested in tracking

whether there are some specific web pages that are being viewed mostly by people from

a specific area or country.

Table 2.4: Segmentation report of the sessions in which users come to the website by

means of UK internet service providers or other non-UK ones

Variable PNV BR NPV TD CPV CR

Non-UK Visitors 48.6 46.8 4.1 51.3 1.2 3.1

UK Visitors 51.4 36.3 5.2 53.4 6.3 14.6

PNV: Proportion of the number of visits (%)

BR: Bounce rate (%)

NPV: Number of pages viewed per visit (#)

TD: Average time session duration (Seconds)

CPV: Amount of conversion per visit (£)

CR: Conversion rate (%)

Table 2.4 shows that about 51.4% of the visitors to the website are located in the UK.
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It seems that the bounce rate is higher for the non-UK visitors. The depth of visit for

visitors who stay on the website, excluding bouncing visitors, seems to be slightly larger

for UK visits than non-UK ones. However, there is a considerable difference between

conversion attribute, as the UK visitors spend 5 times more than non-UK visitors on

the website. The conversion rate is also reported to be much higher for the UK visits

compared to non-UK visits.

Referring website: Users arrive at a website either by typing the website address or by

clicking on a link given by intermediate websites, such as advertisement links or search

engines. A common way of finding a website link is by searching via motor search engines

such as Google, Yahoo or Bing. Each website has a proportion of its traffic produced by

search engines. An important report in web analytics is the traffic of the website received

from different referring websites, the website from which the visitor comes to the website.

Reporting the ordered conversion rate for different referring websites can help to show

those which send the target population to the website.

Searching keywords: Many web analytic services provide reports that show the search

terms used by visitors who found the site through search engines. This type of report

can give knowledge about advertiser bidding and help to optimise the bidding over search

keywords of the website. For more information see Kaushik (2007).

First-time/Repeat session: The website metrics can be broken down based on whether

the session is a first-time session or a repeat one. For example an analyst may be interested

in calculating the average time spent on the website for these groups. More importantly,

they can find out the percentages of conversion for first-time visits compared to repeat

visits.

Technical machine information: Clickstream data contains information about the

types of browsers and operating systems used. This information may be useful to web

designers for optimising the website for the appropriate technical capabilities that help

visitors use the website.

Visitor demographics: Demographic information of visitors gives some information

about the population visiting the website. This kind of information is only available for

registered users of the website. The demographics may include: gender, age, education

level, household size, number of children, income, language spoken, race, or other relevant

information collected at the registration step.

A visitor becomes a registered user of the website by providing some credentials, usually

in the form of a username (or email address) and password. This way, a visitor can access
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information that is unavailable to a non-registered visitor. Non-registered visitors are

usually referred to as guests. A clickstream of registered users can be identified when

they provide the credentials for a website which is usually called logging in, or signing in.

Registration may also help to produce other measures. For example, a measure of trust

can be defined by whether a visitor did or did not put his telephone number or profession

at the site owner’s disposal when registering (Van den Poel and Buckinx, 2005; Li et al.,

2002). Drilling down the metrics based on demographic information can help to reveal

some patterns if it affects the web browsing behaviour of visitors. For example, users who

speak a different language to the language of the website may be found to have longer

session time duration.

2.3.2 Trend Reports

The web analyst may drill down the metrics such as the number of visits, the number of

pages visited, session time duration, by time/date attributes of the visit made by visitors

to a website, which are known as trend reports. These reports can provide the analyst

with a better perception of any required metric as they show the changes of a metric over

a time period, in addition to the metric for the whole period.

The time-stamp available in the clickstream helps to find the visit-date, the date of a new

web session in which the first request of the user’s browser is sent to the server. Visit-date

information enables us to derive other temporal session attributes such as whether the

session takes place on weekdays, holidays, weekends, or any required period of interest.

It should be noted that weekends and holidays in different countries are not the same, so

it is necessary to take into consideration the country in which the user is located when

browsing the website.

The same report can be produced based on visit-time, the time spent by the server on a

company’s website. As visitors may connect from different time zones it is necessary to

know the local time at which the visitor connects to the website. In order to compute

the local time, remote IP longitude available in clickstream data is used to indicate how

far ahead or behind Greenwich Mean Time (GMT) the local server time is. Every other

variable related to the time of the visit can be extracted from this field. Depending on

the purpose of the analysis, any other alternative time category might be used.

It is usually desirable to find the website traffic for different hours in a day in order to

find the most popular viewing time of the site. This would show the peak time of the

traffic, may be used to find a suitable time to do promotional campaigns. On the other
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Figure 2.2: Line chart shows the trend of the number of visits (left) and the percentage of

visitors referred from Google ads to the website (right) over a period of one week.
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Figure 2.3: Bar-chart for the average time spent per page (left) and the amount spent on sale

for different hours of a day, where the conversion rate for each level is represented at top of the

bar (right).
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hand, the websites low traffic hours would be ideal for performing maintenance activities.

Figure 2.2 (left) shows how the number of visits changes over a one-week period. It seems

that the website traffic has a decreasing pattern during a week. It also contains the web

traffic indicators for the whole period of study. Figure 2.2 (right) depicts the trend in the

percentage of visits referred to the website from Google during a one-week period. It also

shows that, in total, 20.0% of the websites traffic is from Google.

Figure 2.3 (left) shows the average time spent per page in different time of the day. In

order to exclude the different hours, the graph only shows the statistics for domestic

visitors connected to the website from the UK. Ignoring the visits from 1:00am–5:00am,

it seems that the average time spent per page is nearly the same at different times of

the day. Figure 2.2 (right) shows the amount of sale for the website in different times of

the day. As would be expected, the highest amount of sales takes place during day time,

from 9:00am–12:00pm. The width of the bars is proportional to the conversion rate for

the corresponding time segment.

2.4 Web Page and Traversal Reports

As well as the general information about a website and sessions such as traffic, depth,

time/date, time duration, depth of a session, etc., clickstream data provides information

about the sequence of web pages a user visits while browsing the website. The sequences

of web pages visited in a session can be analysed to determine which path would result

in a desired outcome, for example an online purchase, visiting a certain part of site, etc.

One primary web traversal analysis is to investigate the entry/landing pages, the page

at which a user starts his/her session, and exit pages from a session. For example, a

web manager might be interested in finding the landing pages which are more likely to

guide users to a specific part of the website. It is also informative to be able to measure

the amount of time people spend on different pages or sections of the website. In this

section we review some metrics and reports based on the traversal path visitors take on

the website.

Top entry and exit pages: Clickstream data provides information about the most-used

entry pages, the page by which users get onto the website in a session is usually referred to

as an entry/landing page of the session. Regarding entry pages, the percentage of visitors

who arrive at the homepage is highly important as website designers aim to design the

homepage in such a way as to give the best impression to visitors. It would also be

informative to drill down the stickiness for different top entry pages. For example, the
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bounce rate or stickiness for each of the top entry pages might be produced to see if they

have a high bounce rate.

The analyst can report the top exit pages, the last pages visited just before the user

left the website. This might give the web designer an indication as to why visitors leave

the website. If this leakage point can be determined, the websites performance could be

improved. The exit pages can also reveal navigation characteristics about the website. A

related metric can be found based on the proportion of users who leave the website from

a specific page, or part of the website, sometimes known as the emigration rate for the

page:

Emigration rate =
Average number of exit from the page/section

Average number of visit to the page/section
. (2.9)

Table 2.5 shows the first five top-entry pages and the trends of the number of visits over

a one-week period. This can be plotted afterwards by a trend plot with 5 colour lines. It

is reported that only 17% of the visitors to our SLC data set arrived at the homepage.

The first top entry page are product pages, 52%.

Top error rate pages The error rate for the web page or section is calculated by the

total number of times a page goes to the error pages

Error rate =
The number of errors appearing for the page/section

the number of visits to the page/section
. (2.10)

The most popular paths: A primary report finds the most frequent paths visitors take

on the website. From a web design point of view this report is highly important as it

shows whether the visitors follow the path that the web designer wanted them to follow.

If not, it gives some indication as to how to redesign the website structure. It should

be noted that on most websites the most popular paths are usually followed by a small

percentage of visitors, usually 1%. Thus, it is questionable whether one can make any

decision with such a small fraction of site traffic (Kaushik, 2007).

Another report can show the traversal between page/section to page/section, where a

higher percentage of traversal is denoted by a thicker arrow between pages. For example

the table of the most popular paths through the website, from the homepage to the contact

page.
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Table 2.5: The most popular landing pages of the website.

Rank Landing page Frequency Percent (%)

1 /shopping.php 3943 52

2 /home.php 1289 17

3 /choosingshaver.php 607 8

4 /search.php 379 5

5 /philishave.php 303 4

2.5 Discussion

In this chapter, we discussed how the measurement, collection, and reporting of click-

stream data can provide valuable information to enable us to understand website usage

and performance. In addition to the common application of clickstream for website traffic,

engagement and depth we used the conversion information to report some KPI regard-

ing the profitability of the website. As well as the metrics produced for the website, we

reviewed the metrics that can be extracted from clickstreams, showing attributes of the

web sessions. These measures will be used for different analytical purposes throughout

the thesis.
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Chapter 3

Analysis of Clickstreams: Depth of

Visit

In this chapter we aim to probe the SLC data in more depth using summary statistics,

graphs, tables, and basic statistical tests. The focus is on the number of pages visited

(NPV) and session time duration (TD) as metrics which indicate the depth of a visit. We

will investigate these variables individually and also try to reveal the inter-relationship

between measures. As well as some basic explanatory analysis of web session data, we ad-

dress some problems regarding the use of standard statistical tools such as the two-sample

t-test, and a goodness-of-fit test for large sample size clickstream data. We illustrate how

graphical tools equipped with effect size measures can give the analyst an alternative in

order to assess practical significance along with statistical significance.

3.1 Introduction

Analysis of the clickstream data offers the opportunity to enhance an understanding of a

website and prediction of the website’s visitor behaviour (Andersen et al., 2000; Markov

and Larose, 2007). The statistical analysis of session data constitutes the most common

form of analysis. The resulting knowledge can be potentially useful for improving the

website’s performance and, specifically, to provide support for marketing decisions for an

e-commerce website.

Despite the presence of difficulties in using clickstream data, a great deal of effort has been

put into the study of browsing behaviour using clickstream data. A descriptive study of

clickstream data can be found in Catledge and Pitkow (1995). Bucklin and Sismeiro
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(2003) developed a model for analysing internet browsing in terms of the probability of

leaving the website or selecting another page. They also modelled visiting time duration

for a single web page using covariates such as the number of bytes transferred, cumulative

number of pages viewed prior to the current page, a reload request for a page, having

dynamic content, advertising on a web page, an error occurring in a page transfer, and

server response time. Danaher et al. (2006) applied a random effects model to determine

the impact of some factors on session time duration and the number of pages viewed. The

longer the page visit lasts, the more likely it is to keep the visitor interested in the site and

consequently gives users more time for conversion (Hanson, 2000). Moe and Fader (2004)

showed that repeat visits and greater long-term sales are associated with user interest.

Demers and Lev (2001) illustrated that websites with longer visit session duration show

higher monthly profit. Hence, visit time duration may serve as an indicator of the future

earnings of a website. Chatterjee et al. (2003) investigated the association between repeat-

visits and conversion rate. The depth of search has been investigated by Johnson et al.

(2004), using an exponential gamma timing process. Moe and Fader (2004) studied the

loyalty of users over time based on the frequency of visits to specific websites and showed

that frequent shoppers are more likely to purchase in subsequent sessions. Park and Fader

(2004) made an inference about individual browsing behaviour using multivariate timing

mixture model for modelling cross-site timing behaviour. Bucklin and Sismeiro (2004)

reviewed major developments from the analysis of clickstream data, covering advances

in e-commerce context. It also discussed the inherent limitations of clickstream data for

understanding and predicting browsing behaviour.

3.2 Distribution of Number of Pages Visited

In this section we describe SLC clickstream data by examining and summarizing the dis-

tribution of each individual variable. We take advantage of tables of frequency, plots and

summary statistics to obtain basic knowledge about variables studied. Summary statis-

tics provide information about central tendency, dispersion, and the shape of the overall

distribution. Nevertheless, researchers are mostly interested in finding a mathematical

model which explains the probability behaviour of the variable. Having found a mathe-

matical model, the analyst would be able to answer any probabilistic question about the

variable under scrutiny, as well as all measures of tendency, dispersion, shape, etc.

A key factor of customer behaviour on a website is the number of actions (usually the

number of pages visited) made by visitors during a session on a website. From a web

developing point of view, when visitors to a website perform more actions it can be
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interpreted as the website having efficiently engaged the visitor. However, the majority

of visits to most websites worldwide contain fewer than 10 actions (Markov and Larose,

2007). In general, it is very important for web managers to detect if visitors leave a website

quickly. We are interested in finding a statistical distribution to explain the probability

behaviour of the number of pages visited. This way, we can infer about the probability

that a user leaves a website after visiting n pages. It can also establish a way to compare

websites with respect to the number of actions visitors perform in different time periods

to recognize when a considerable change from previous patterns takes place (see box 3.1).

Questions 3.1 How many pages do people view (or load) during a visit

session?

Hypothesis 3.1 The probability behaviour of the variable NPV can be ex-

plained by Weibull distribution, NPV ∼Weibull(α, λ)

Approaches 3.1 The test to investigate whether the sample of data is con-

sistent with a specified distribution function (e.g. Kolmogorov-Smirnov,

Chi-Squared goodness of fit test), QQ-plot visually helps to probe whether

data follows a reference distribution

3.2.1 Graphical representation

A primary analysis is to use summary statistics to obtain a perception of quantity of visit.

It is also helpful to look at the histogram of number of pages visited as a graphical display

of tabulated frequencies of the variable. Plots and numerical summaries play a crucial

role in statistical analysis. Particularly, we take advantage of plots to present the data

before entering a modelling step, and also as diagnostic tools after modelling the data

(Chambers and Hastie, 1993). Figure 3.1 displays the histogram of the number of pages

viewed for users of the website. We showed this histogram as a measure of depth of visit,

in chapter 2. The histogram emphasize that NPV has a very right-skewed distribution.

The boxplot is a common way of representing numerical data through its five-number

summaries: minimum, lower quartile, median, upper quartile, and maximum (Chambers

et al., 1983). It also serves as a quick way of representing the distribution of one or more

quantities graphically. It may seem more primitive than a histogram or kernel density

estimate but it does have some advantages. Specifically, it takes less space and is poten-

tially useful for comparing the distribution of a quantity over several groups or several

quantities. On the other hand, contrary to the histogram, the appearance of which can be

heavily affected by the choice of number and width of bins, the boxplot, to some extent,
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Figure 3.1: Histogram (left) and box-percentile plot (right) of the number pages visited for

multiple-page visits sessions.
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is a robust tool for representing a distribution. There is a similar problem for a kernel

density estimate, as the choice of band-width can heavily influence its appearance. A

boxplot is also used to indicate which observations potentially can be considered outliers.

There is a difficulty in using the standard boxplot for a large number of observations, as

it displays a lot of data records as outliers. This problem becomes more critical when

data have a skewed distribution. In practice, not all values found beyond the whiskers

in a boxplot are outliers, but this is the result of the expectation that distributions of

data should be Normal. The outer box of the boxplot can be increased by increasing

the coefficient of the inter-quartile range (IQR) from 1.5 to a larger value. For example,

a boxplot with 3×IQR covers a larger proportion of the data points with its whiskers.

However, a large number of data points may be located outside the whiskers for long-tailed

distribution. It also does not make a good picture of the tail of the distribution.

Hubert and Vandervieren (2008) introduced an adjusted boxplot using the robust measure

of skewness, medcouple. Taking into account the skewness, the adjusted boxplot try to

reasonably cover tails of the distribution. This approach also helps not to flag many

regular observation as potential outliers. The function adjbox in R software, available

as part of the robustbase package, plots the adjusted boxplot based on Hubert and

Vandervieren (2008). This function did not give us the adjusted boxplot for the NPV

variable. The problem is that the available algorithm for computing medcouple fails for
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large data sets (Brys et al., 2006). Meanwhile, for large sample size observations the

adjusted boxplot may represent many overlaid points located outside the whiskers. That

is, it does not provide a suitable graphical view of the tails.

An alternative way is using a modified version of the standard boxplot which represents

the 1st, 5th, 12.5th, 25th, 50th, 75th, 85.5th, 95th and 99th quantiles on the graph. At

any height the width of the irregular box is proportional to the quantile of that height,

up to the 50th percentile, and above the 50th percentile the width is proportional to 100

minus the quantile. Thus, the width at any given height is proportional to the percent

of observations that are more extreme in that direction. This way, the modified boxplot

represents data by boxes of different width which contain intervals of 0.99, 0.90, 0.75, 0.50

proportion of data. This approach can be extended to produce a boxplot by considering

all percentiles of the data. The result is known as box-percentile plot, providing more

information about the univariate distributions. The median, lower quantile and upper

quantile are marked with line segments across the box (Esty and Banfield, 1992).

The large number of data records in our study and the long-tailed distribution of NPV

caused us to choose the box-percentile as an alternative to the ordinary boxplot to repre-

sent this variable. Figure 3.1 (right) shows a box-percentile plot of the number of pages

viewed. We assign the height of 1 as the maximum height at 50-th percentile or median

(plotted from -0.5 to 0.5). The height of the plot for at p-th percentile when p < 50 is

p/100 and for p > 50 is (100−p)/50. For example at 25-th percentile (at x=3) the height

is half of the height of graph at median, 25/50 = 0.5. The same height represents the

75-th percentile, as it is located after median. The short distance between minimum value

and the lower quartile, and also between lower quantile and the median, implies that the

data values have been located in a relatively small range of data. On the other hand, the

large gap between the upper quartile and 99-th percentile emphasises a long right-tailed

distribution.

3.2.2 The Weibull distribution

The Weibull distribution is a continuous probability distribution used since 1951 to de-

scribe the statistical behaviour of phenomena (Weibull, 1951). The probability density

function of a Weibull random variable X is:

f(x; λ, α, θ) =
α

λ

(
x− θ
λ

)α−1
exp

[
−
(
x− θ
λ

)α]
x ≥ θ (3.1)

where θ, α > 0 , λ > 0 are called the threshold, shape, and scale parameter respectively. In

some literature, this distribution is referred to as the shifted Weibull distribution (Johnson
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et al., 1994). In the case of θ = 0, the pdf given in 3.1 reduces to the density function of

the standard two-parameter Weibull distribution. The Weibull distribution is often used

in the field of life data analysis, due to its flexibility, as it resembles the behaviour of

other statistical distributions such as the Normal and the Exponential by various values

for shape and scale parameters. If we consider stopping browsing a website as a failure,

the NPV is a failure variable, as the session with NPV= k means that the visitor has left

the website after the k-th page visit. The Weibull distribution is defined by shape, scale,

and threshold parameters. The parameter α describes the shape of the Weibull curve. A

shape of 3 approximates a normal curve. A shape between 2 and 4 is still fairly normal.

A small value for α, say 1.25, gives a right-skewed curve, where large values, say 10, give

a left-skewed curve. The scale parameter in the Weibull distribution is matched to the

63.2 percentile of the data. The scale defines the position of the Weibull curve relative

to the threshold, analogous to the way the mean defines the position of a normal curve.

A scale of 5, for example, says that 63.2% of the sessions will leave the website in the

first 5 web pages following the threshold (two pages in our study). Threshold is a shift of

the distribution away from 0. A negative threshold shifts the distribution to the left of 0,

and a positive threshold shifts the distribution to the right of 0. All data must be greater

than the threshold.

It should be noted that the number of pages visited is an integer quantity. Hence, when

using the Weibull distribution in order to approximate the probability behaviour of this

variable we need to implement correction of continuity to fix the discontinuity. For this

reason, we add a random number, u, from uniform distribution between -0.5 to 0.5,

U ∼ U(−0.5, 0.5) to the original NPV observations. The NPVc = NPV +u is used

throughout this section.

3.2.3 Parameter estimation

There are often a number of different approaches available for estimating parameters of

the distribution given a data set. Depending on the statistical properties of the method,

an analyst may need to choose the appropriate method to apply, the desired application

of the fitted model or even the relative difficulty in applying a method.

Graphical Method: A straightforward way to estimate the parameters of the Weibull

distribution is given based on the following relationship:

ln ln(
1

1− F (x− θ)
) = α ln(x− θ)− α ln(λ) (3.2)
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The relationship given in 3.2 provides a way of checking whether data follows the Weibull

distribution. That is, the plot of logarithm of data versus ln ln(1/[1 − F̃ (x − θ)]), when

data follows the Weibull distribution, is expected to be located on a straight line with a

slope α and the intercept α ln(λ), where F̃ denotes the empirical cumulative distribution

function of the data. Graphical methods are usually used because of their simplicity and

graphical appeal (Abernethy et al., 1983).

In the case of having a straight line fitted, the slope and intercept can be used to estimate

α and λ. As the parameters for linear regression are usually estimated through least

squares, corresponding parameters of the Weibull distribution found this way are referred

to as least square estimates in some literature. This plot is depicted in Figure 3.2 (left).

Due to omitting the single-visit sessions from the SLC data, the number of pages viewed

starts from 2. Therefore, it is reasonable to use a shift (or location) parameter of θ = 2.

Figure 3.2 (right) shows the QQ-plot of the NPVc, empirical quantiles of the NPVc versus

quantiles of the shifted Weibull distribution, where the shape and scale parameters are

α̂ = 0.76 and λ̂ = 4.84 respectively. The plot shows that the theoretical distribution

reasonably explains the distribution of NPV variable.

The QQ-plot is a common graphical technique for comparing two data sets, either two

sets of empirical observations, or one empirical set against a theoretical set. It helps

to assess how closely two data sets agree by plotting the quantiles of two distribution

functions against each other. The 45-degree line gives a graphical measure of the resulting

goodness of fit so that it shows the difference between the sample set and the theoretical

distribution. It can also be used as a graphical method to find the regions or the range

of values that theoretical distribution does not fit well, via departure from the 45-degree

line (Gibbons and Chakraborti, 2003). As can be seen from Figure 3.2 (right) most of

the points lie on the 45-degree line. There is a small departure from the straight line at

the far end of the right tail (the values larger than 99-th percentile). Hence, the QQ-plot

shows a reasonable fit of the theoretical distribution over the number of pages visited in

the website, but it slightly deteriorates at the extreme end of the right tail. However, it

is difficult to infer if this departure from the straight at tail is due to miss-specification,

as QQ-plot for many sample experiment show an slight deterioration from straight line.

Figure 3.3 (left) depicts how well the fitted Weibull distribution curve matches on the

histogram of the number of pages viewed. In the Figure 3.3 (right) the cumulative density

function (cdf) of the fitted Weibull distribution is also very close to the empirical cdf of

the NPV variable.

Maximum likelihood and Method of Moments: The classical Maximum Likelihood
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Figure 3.2: The logarithm of the NPV versus the ln ln(1 − F̃ )−1 and the fitted simple linear

regression (left). QQ-Plot of the number of pages visited (right).
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Figure 3.3: The Weibull curve on the histogram of the number of pages visited (left) and the

cumulative density function of the NPV and the fitted shifted Weibull distribution (right)
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(ML) approach can also be applied to estimate the parameters of the distribution. The

ML method is mostly used because of its desirable analytical properties (Engelhardt,

1975). Another standard analytical method to estimate the model parameters is given by

the method of moments (MM) in which the parameters are estimated through equalising

the k-th theoretical and sample moments, for some values of k depending on the number

of parameters of the reference distribution (Mann et al., 1974).

The ML estimators of the parameters of the Weibull distribution are not analytically

tractable, so that numerical methods are used to estimate the parameters given in the data

set. We used several different starting points to verify if the maximisation algorithm had

reached the global maximum rather than the local, when finding the ML estimate using

both fitdistr and mle functions. The ML estimates of the shape and scale parameters

respectively are α̂ = 0.87 and λ̂ = 5.39. Figure 3.4 (left) shows the QQ-plot of the NPV

versus the theoretical model estimated by ML approach. The plot shows that the QQ-line

deteriorates from the straight line for the right tail of the distribution, whilst it gives a

reasonable fit for the range of values where there is a high percentage of observations.

However, departure from the straight line at extreme right tale at the QQ-plot does not

mean that the ML estimate is weaker than the other estimation methods. Figure 3.5

displays the QQ-plot to the point NPV= 20, the 95-th percentile of the number of pages

visited. This way, we remove the tail so as to gain a better understanding of the GOF

of the parameters estimation regardless of the right tail. It can be seen that the ML

estimates show a closer fit for the range of values between (0 , 20) in comparison to the

PPCC., when compared to PPCC.

Probability plot correlation coefficient (PPCC) method: The correlation coeffi-

cient between the paired sample quantiles, known as the probability correlation coefficient,

is used as another technique to identify the shape parameter for a distributional family

that best describes the data set, specifically for distributions with a single shape param-

eter (Filliben, 1975). It also serves as a measure of goodness of fit of a theoretical model

to the observed data. The closer the correlation coefficient to one, the better the distri-

bution fits the data. The correlation is represented on the graph known as probability plot

correlation coefficient plot. The y-axis of PPCC plot represents the correlation coefficient

between the empirical quantiles of the variable under study and the quantiles of the fitted

theoretical distribution for different values of the shape parameter is given in x-axis. One

can simply estimate the shape parameter by the value which gives the highest correlation

coefficient. This technique is appropriate for family distributions that are defined by a

single shape and scale parameter, like the Weibull distribution.
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Figure 3.4: The QQ-plot of the number of pages visited using ML estimate of the parameters

(left) and using PPCC estimate of parameters (right).
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Figure 3.5: The QQ-plot for the NPV versus the fitted Weibull distribution using ML estimates

(left) and PPCC estimates (right), zoom in the range of values (0, 20)
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Figure 3.6: The Probability Plot Correlation Coefficient (PPCC) Plot. The y-axis represents

the correlation coefficient between the empirical quantiles of the NPV and the quantiles of the

fitted Weibull distribution with corresponding shape parameter given in the x-axis.
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The PPCC method does not give any information about the scale parameter so the scale

parameter is chosen after estimating the shape parameter by calibrating the theoretical

quantiles to provide the better QQ-plot over the range of quantiles. This way, the scale

parameter is estimated through a graphical tool. Figure 3.6 shows the PPCC plot for the

NPV variable. The optimum value for the shape parameter α̃ = 0.72 gives us an estimate

for the shape parameter and the scale parameters λ̃ = 4.32 provides a reasonable QQ-plot

over the range of possible distributions. Figure 3.4 (right) depicts the QQ-plot of the NPV

versus the theoretical model estimated by PPCC approach. The graph shows that there

is a good match between the empirical distribution and the theoretical fitted distribution

in the corresponding QQ-plot and the fitted model reasonably explains the distribution

of NPV.

3.2.4 Goodness-of-fit test

The goodness of fit (GOF) of a statistical model measures how well it describes a set of

observations. Measures of goodness-of-fit typically summarise the discrepancy between

observed values and the values expected under the model in question. Such measures

can also be used in statistical hypothesis testing. For example, the Kolmogorov-Smirnov

(K-S) statistic helps to test whether outcome frequencies follow a specified distribution.
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As another example, Pearson’s chi-square test can help to test whether two samples are

drawn from identical distributions.

Kolmogorov-Smirnov test: The non-parametric one-sample K-S test helps to investi-

gate whether data follows a theoretical probability distribution. It compares an empirical

cumulative distribution of a sample with a reference probability distribution. The KS

test can be applied only for continuous quantities, so we use the NPVc variable to test

if the Weibull distribution provides a good fit. The test is performed under the null hy-

pothesis that the NPVc follows the Weibull distribution with estimated shape and scale

parameter. The K-S test statistic for ML estimates is D = 0.1348 and the corresponding

p-value is less than 2.2 × 10−16, which reject the hypothesis of the NPV being followed

by Weibull distribution at any level of significance. The result is not surprising as, in

the case of the large sample size, standard statistical tests tend to be significant even for

small departures from the hypothesis. Table 3.1 shows the p-value of the KS test for all

three estimation methods.

Chi-square test for goodness-of-fit: We also inspect whether the NPV variable comes

from a population with a specific distribution by the chi-square test for goodness-of-fit.

The chi-square goodness-of-fit test can be applied to any univariate distribution using

the cumulative distribution function. The chi-square goodness-of-fit test is applied to

binned data, where each observation is allocated into different classes. This is in fact not

a restriction since frequency table can simply be calculated for non-binned data before

implementing a chi-square test. However, the value of the chi-square test statistic depends

on how the data is binned. This method requires a sufficient sample size in order to

have a valid approximation of chi-square distribution. The chi-square goodness-of-fit test

can be applied for both discrete and continuous distributions, unlike the K-S test which

can be applied only for continuous distributions. The chi-square test is defined for the

null hypothesis of H0: The data follows a specified distribution; against the alternative

hypothesis Ha: The data does not follow the specified distribution. For the chi-square

goodness-of-fit computation, the data is divided into K bins and the test statistic is

defined as:

χ2 =
K∑
i=1

(f oi − f ei )2

f ei
(3.3)

where f oi and f ei are respectively the observed and expected frequency for the i-th bin. The

expected frequency is calculated by f ei = N × [F (ui)− F (li)], where F is the cumulative

distribution function for the distribution being tested. ui and li denote the upper and

lower limits for the i-th class respectively and N is the sample size. This test is sensitive

to the choice of bins. There is no optimal choice for bin width, as the optimal bin width

depends on distribution, but reasonable choices of bin width should produce similar, not
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identical, test results.

The goodness-of-fit chi-squared statistic for testing whether the NPV variable follows the

shifted Weibull distribution gives a test statistic of χ2 = 418.3 with 33 degrees of freedom

for ML estimates, where we used integer values between 1 and 35 to produce the bins.

The last bin put all NPV ≥ 35 into a single category. As the 0.99-th quantile of the NPV

is 35. The p-value is less than 10−12 which express that there is a very poor fit on data by

the proposed model. This result contradicts the visualizations of the fitted distribution.

It seems that basic statistical goodness-of-fit tests do not perform well for our data set.

Following this, we calculate the corresponding effect size for the goodness-of-fit test. The

results of the Chi-square test is given in Table 3.1.

3.2.5 Effect size for goodness-of-fit

Statistical significance does not necessarily provide information about the importance or

magnitude of a measured difference. Instead, many use indicators known as effect sizes

(ES), to quantify the importance of such a difference. Cohen (1977) proposed an effect

size to measures the magnitude of the discrepancy between a reference distribution and a

given distribution in alternative hypothesis based on a table of frequencies. An effect size

can be a statistic similar to the chi-square statistic, but it uses the proportions, instead

of the frequencies, given as follows:

ψ =

√√√√ K∑
i=1

(poi − pei )2
pei

, (3.4)

where poi and pei are respectively the observed and expected proportion for the i-th bin.

The expected frequency is calculated by pei = F (ui) − F (li), where F is the cumulative

distribution function for the distribution being tested. Cohen (1977) also suggests prac-

tical rules to interpret ψ, through several hypothetical examples. An ψ around 0.1 is

deemed a small effect; ψ ≈ 0.3 is a medium effect; and ψ ≈ 0.5 is a large effect.

Table 3.1 summarises the goodness-of-fit test results as well as the corresponding effect

size for different estimation methods. Despite the fact that both K-S and Chi-square test

for goodness-of-fit significantly reject the hypothesis of having a reasonable fit on data

by the Weibull distribution, the effect size shows a very small value for the goodness-

of-fit. That is, the fitted Weibull distribution is very close to the empirical distribution

of the NPV and can be considered a good fit. This shows that due to a large sample

size, non-parametric statistical tests appear very sensitive to any small departure from

the assumption on the null hypothesis, even if the departure is not practically significant.
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Table 3.1: Goodness of Fit test results and effect size for goodness-of-fit, for different

parameter estimation method

Estimation P-value P-value

Method ( α , λ ) K-S χ2 ψ

LS (0.76, 4.84) ≤ 0.00 ≤ 0.00 0.028

ML (0.87, 5.39) ≤ 0.00 ≤ 0.00 0.059

PPCC (0.72, 4.32) ≤ 0.00 ≤ 0.00 0.037

3.3 Analysis of Session Time Duration

Another important attribute of a web session is the length of visit to the website. Logically,

we expect a visitor stay longer if she/he finds the website interesting or relevant to their

needs. However, spending a fairly large amount of time on the website may not be

considered an advantage for an e-commerce website. An inappropriate web design, for

example, may cause a customer to spend more time on the website to find the required

item, to get the relevant information, fill in the shipment and payment information and

generally take a longer time to complete the online shopping process than necessary. As

a general rule, it is a good policy to have a target goal which makes sense for the website.

In practice, clickstream data has very little information about visitors as data are limited

to just the browsing behaviour on the website. Potential demographic factors that affect

website duration, including gender, age, education and occupation, cannot be investigated,

except by using the registered users data (Dreze and Hussherr, 2003).

3.3.1 Relationship with Number of pages visited

In addition to the session time duration, an interesting attribute of browsing behaviour

is the amount of time people spend on individual pages of a website. The question is

whether visitors spend more time on the pages when they visit more pages on the website

after finding the required information. In technical terms, we address the relationship

between the number of pages visited and session time duration. It is obvious that the

more pages a visitor surfs on a website, the more time is spent on that website. However,

how these two measures are associated still needs to be determined. A researcher might

be interested in investigating how much time a visitor spends on the page, when they

have already visited n pages on the website (see box 3.2).
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Questions 3.2 How is the duration on a website affected by the number

of pages a visitor spends on website? It seems that the time on the pages

increases exponentially as the number of pages visited increases.

Hypothesis 3.2 There is a linear relationship between the variables TD

and NPV.

Approaches 3.2 Correlation tests; regression models, generalized linear

model

In this section we use explanatory data analysis tools to learn more about the type of

association between the session time duration attribute and the number of pages visited.

We will also examine whether this relationship is affected by other attributes of the session,

such as whether a visit is made by domestic visitors, or the presence of functionality

features like conversion.

A critical issue about session time spent on a website is that there is no information

about the time spent on the last page, and one can only focus on the time duration before

the last page viewed. The analyst needs to remove all single-page visits to calculate the

measure, as there is no information available on how long they stay on the website.

Graphical representation

First, we have to look at the histogram of the session time duration to learn about

the distribution of the variable. Figure 3.7 (left) displays the histogram of the session

time duration for sessions during which at least two pages were visited. To increase the

granularity, the upper tail has been clipped at 100 minutes. It also includes the summary

statistics for the variable TD. The average session time duration is 7.12 Minutes. The

session time duration is highly skewed distributed to the right. For this reason, the mean

is highly influenced by extreme values and can arguably be used as a measure of central

tendency. Therefore, we look at the median as a robust measure of central tendency. The

median of the time session duration is about 3.35 minutes, which seems to be a more

realistic estimate of the typical session time duration, among those who visited more than

one page. It implies that half of the sessions last less than 3 minutes and 20 seconds.

The time duration variables are naturally right skewed. In this situation, it is more

common to use the log transformation instead of the original variable to get a distribution

closer to the Normal (Mosteller and Tukey, 1977). It is also possible to use the log-Normal

distribution if it provides a description of the distribution. For example, Bucklin and
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Figure 3.7: Histogram of the session time duration (left) and its logarithm (right). It should

be noted that to avoid negative values of logarithm, time duration has been rescaled to seconds.
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Sismeiro (2003) used a log-Normal model for time spent on web pages. Figure 3.7 (right)

shows the histogram for the logarithm of the session time duration. The dashed line

shows the fitted Normal distribution based on ML estimate of the parameters. Although,

the Normal distribution does not show a perfect fit, it can reasonably approximate the

distribution of LogTD.

A scatter plot is a helpful graphical representation for displaying the relationship between

two scale variables. Having very skewed variables for both NPV and TD, a scatter plot

of the NPV versus TD does not give us a clear picture of the association between two

variables, as most of the data points overlap due to lying on a very small range of values.

Figure 3.8 (left) shows the relationship between NPV and TD. For better granularity, we

concentrate on the sessions which last less than 5 minutes and have less than 15 pages

viewed. This graph does not provide a clear association between the two measures. The

scatter plot of the log-scaled variables appear in Figure 3.8 (right), revealing the evidence

of positive association, between logarithm of the number of pages viewed and logarithm of

the session time duration. The correlation coefficient between the two variables is 0.656,

indicating a medium strong linear relationship.

Nevertheless the approximate linearity displayed in Figure 3.8 (right) for LogTD against

LogNPV shows that a logarithmic transformation is appropriate. For some further insight

on the transformation needed see Rao (1973). We perform the regression analysis with a
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Figure 3.8: Scatter plot of the TD versus NPV (left) and logTD versus logNPV including fitted

linear regression line (right).
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Figure 3.9: Profile likelihood for a Box-Cox transformation, and 95% confidence band for λ
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general class of transformations of the dependent variable, using the Box-Cox approach

(Box and Cox, 1964).

y(λ) =

{
(yλ − 1)/λ λ 6= 0

log(y) λ = 0
(3.5)

As y needs to be positive, the Box-Cox transformation can be applied over y + α for a

positive constant α to avoid problems with zero entries. Box and Cox (1964) show that

the profile likelihood function for λ is

L(λ) = c− n

2
log RSS

(
z(λ)
)

(3.6)

where c is a constant and z(λ) = y(λ)/ẏλ−1, where ẏ is the geometric mean of the observa-

tions and RSS(z(λ)) is the residual sum of squares for the regression of z(λ). The Box-Cox

method suggests choosing a λ that maximises the profile likelihood function. However,

it is desirable to choose easily interpretable transformations such as square-root, log or

inverse. We use the function boxcox from the package MASS to calculate and display

the Box-Cox likelihood function, Figure 3.9. The horizontal dashed line provides an ap-

proximate 95% likelihood ratio confidence interval for λ. The maximum log-likelihood is

obtained at λ = 0.115. As the confidence band includes the 0, it is more interpretable

to use the log transformation. We have also used the powerTransform function from

package car to find the multiple transformation over TD and NPV simultaneously. But,

it does not change the model dramatically.

Model estimation and interpretation

This section shows our attempts to use regression models to find the relationship between

session time duration and the number of pages visited for the SLC dataset. This analysis

may lead to insight about user behaviour in a specific e-commerce website. On the other

hand, the model is more descriptive than predictive. The linear regression model assumes

that the conditional mean of response variable, Y , given regressors, X, is a linear function

of X, whereas the conditional variance of Y given X is a known constant matrix, usually

written in the form of

y = X β + ε, E(ε |X) = 0, V (ε |X) = Ω (3.7)

where y is the vector response variable, X is the observed design matrix, β is a p-

dimentional vector of unknown parameters which needs to be estimated by data, usually
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known as regression coefficients, and ε is called the error term. The variance-covariance

matrix of the vector of error terms is

Ω =


σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 · · · σ2


We apply simple linear regression to find the relationship between session logTD and

logNPV. The ML estimate of the parameters is given in Table 3.2. So the linear relation-

ship between logTD and logNPV is given by

logTD = 2.73 + 1.37 logNPV. (3.8)

The statistical test of the null hypothesis H0 : βi = 0 versus the alternative H1 : βi 6= 0 is

rejected at a high level of precision for both parameters, p-value< 10−15. Exponentiating

both sides of the equation 3.8, we can approximate the relationship by the following

non-linear form:

TD = 15.3 NPV1.37 . (3.9)

The estimated power value 1.37 for NPV, shows the rate by which visiting an extra page

increases the amount of time a visitor stays on a website. The coefficient of determination

is R2 = 0.43. We also computed the effect size for goodness-of-fit in multiple regression

proposed by Cohen (1977), usually known as Cohen’s F effect size defined by:

Cohen’s F =
R2

1−R2
. (3.10)

Cohen’s F value in Table 3.2 shows a medium effect size for the association between

logNPV and logTD.

Model diagnostics

In this section we use model diagnostic procedures to investigate whether the assumptions

of linear regression are satisfied. These procedures include graphical tools as well as

statistical tests to check for violation of assumptions such as: error term not having the

Normal distribution; variance not being constant across the explanatory variables; fitted

relationships being non-linear. For detailed discussion on interpretation of regression

diagnostics based on residuals see Draper and Smith (1998)
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Table 3.2: Table of coefficients of the linear regression model for the logTD based on the

logNPV and corresponding standard error and p-values.

Coefficient Estimate Std t-value Pr(> |t|)

Intercept 2.730 0.0321 73.70 < 10−15

Log(NPV) 1.373 0.0166 88.38 < 10−15

R-squared= 0.436

Cohen’s F = 0.773

In the linear regression model it is assumed that the error term follows the Normal distri-

bution. Figure 3.10 shows the histogram and the normal probability plot of the residuals

to inspect whether the residuals deviate from the normality assumption. It can be seen

that the points in the probability plot form a fairly straight line, indicating that residuals

are approximately normally distributed.

Plotting residuals on the y-axis against fitted values on the x-axis is a useful diagnos-

tic tool to check the assumption of constant variance of error term, usually referred to

as homoscedasticity. If the model is appropriate, data points appear evenly scattered

around the horizontal line at zero. Figure 3.11 (left) suggests that the variance of the

residuals decreases as the response value increases, so the model suffers greatly from the

heteroscedasticity problem. Furthermore, a statistical test for heteroscedasticity has been

developed, as an early effort see Breusch and Pagan (1979). A widely-used test proposed

by White (1980), in some literature is the LM test. The LM test statistic is a function

of the coefficient of determination, R2
e, when the squared residuals are considered as a

response variable to the original regressors of the model. In practice we fit the squared

residuals to the full second-order model implied by the original regressors. For example,

for regressors X1, X2 we examine the model

ε2 = a+ b X1 + c X2 + dX1X2 + e X2
1 + f X2

2 . (3.11)

The LM test statistic is given as:

LM = n×R2
e, (3.12)

where n is the number of observation. The LM statistic approximately follows a chi-

square distribution with degrees of freedom equal to the number of estimated parameters

minus one, under the null hypothesis of homoscedasticity (White, 1980). The LM test

statistic and its corresponding p-value are computed for equation 3.8, where the p-value of
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Figure 3.10: The histogram of the residuals of the fitted model (left) and the normal probability

plot of the residuals (right).
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Figure 3.11: The plot of the residuals versus fitted values (left) and plot of residuals versus

order of observations (right).
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Table 3.3: Table of coefficients of the linear regression model error and p-values using

FGLS estimation, Coefficient of determination, and Cohen’s F

Coefficient Estimate Std t-value Pr(> |t|)

Intercept 3.363 0.0293 114.09 < 10−15

Log(NPV) 1.308 0.0130 100.20 < 10−15

R-squared= 0.973

Cohen’s F = 36.032

< 10−15 indicating a critical heteroscedasticity problem of the regression model. It is also

necessary to check if observations are independent. This can be graphically observed by

plotting the residuals on x-axis versus the order of the observations. Figure 3.11 (right)

shows this plot for the fitted model and it does not show any discernible pattern. However,

as there exists no natural ordering in our data there is no need to check this assumption.

Feasible Generalized Least Square (FGLS)

In the case of heteroscedasticity, the ordinary least squares can be statistically inefficient,

or even give misleading inferences. One solution to unequal variances of the observations

is to estimate the unknown parameters in a linear regression model using generalized least

squares (GLS). The GLS model assumes less (or no) restriction on variance-covariance

matrix of error terms. As a special case, it can be assumed that variance varies for different

observations and there is no covariance between errors, so that all the off-diagonal entries

of Ω are 0. This special case is also referred to as weighted least square (WLS). That is,

the Ω in equation (3.7) is of the following form:

Ω =


σ2
1 0 · · · 0

0 σ2
2 · · · 0

...
...

. . .
...

0 0 · · · σ2
N


The GLS estimates of parameters are computed by minimizing the following quadratic

from:

β̂ = arg min
β

(y −Xβ)′Ω−1(y −Xβ), (3.13)
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As the true variance-covariance matrix is not known, the GLS estimates of the parameters

cannot be estimated directly. One approach is to estimate the variance-covariance matrix

and then use it to minimize (3.13). This provides an estimate of parameters which is

usually known as feasible generalized least squares (FGLS). Several algorithms have been

proposed to find the FGLS. Wooldridge (2010) gives an algorithm which computes the

FGLS parameter of coefficients and its variance-covariance matrix in two iterative steps.

We use a modified version of this algorithm in the following steps so that the iteration

continues until it converges, a small change in the estimates of coefficients:

1. Find the ordinary least square (OLS) estimate of the parameters, and obtain the

corresponding residuals,

β̂ols = (X ′X)−1X ′y. (3.14)

2. Find the initial estimate of Ω using the residuals of the OLS estimates. That is,

a squared matrix with squared residuals for main diagonal entries and zero for the

rest:

Ω̂(1) =


e21 0 · · · 0

0 e22 · · · 0
...

...
. . .

...

0 0 · · · e2N

 ,

where ei is the observed residual for i-th observation at step 1.

3. Re-estimate the parameters of the model using the initial estimate of the variance-

covariance matrix, Ω̂(1), and corresponding residuals. The parameters can be com-

puted by

β̂(t) = (X ′Ω̂(t)X)−1X ′Ω̂(t)y. (3.15)

where t ≥ 1

4. Re-estimate the Ω using the squares of the residuals computed model fitted in step

3. Denoting the residuals by ui, the variance-covariance matrix is estimated by

Ω̂(t) =


u21 0 · · · 0

0 u22 · · · 0
...

...
. . .

...

0 0 · · · u2N

 ,

where t ≥ 2. This is called the FGLS estimate of the variance-covariance matrix.

5. Iterate steps 3 and 4 until the estimates of coefficients converge, for example using

the Euclidean distance, || β̂(t+1) − β̂(t)|| < ε.
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Figure 3.12: The histogram of the residuals of the fitted model (left) and the normal probability

plot of the residuals (right).
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Table 3.3 shows the FGLS estimate of parameters. The estimates do not show a dramatic

change compared to the ordinary least squares estimates. However, the estimate of the

standard deviation of the coefficient shows smaller values. It should be noted that FGLS

can be obtained by fitting the ordinary least square estimate of the linear model through

origin, after transforming the response variable and regressors so that it changes into a

homoscedastic model. That is,

y∗i =
yi
σ̂i
, x∗ki =

xki
σ̂i

(3.16)

where σ̂i is the square root of the estimate of variance for the i-th observation, the i-th

diagonal element of variance-covariance matrix. The intercept term also transforms into

a regressor of 1/σ̂i. Figure 3.12 (left) plots the LogTD/σ̂i versus LogNPV/σ̂i. This plot

shows the linear relationship between the dependent and regressor clearly. It can also be

seen that the variation is about the same throughout the range of values. The R-squared

for no intercept model and corresponding effect size is also represented in Table 3.3 and

shows that the FGLS estimate has improved the model - for more information about

computing the coefficient of determination for the regression-through-the-origin model

see Casella (1983). Figure 3.12 (right) plots the residuals against the fitted values. This

plot shows that residuals are about evenly scattered around the horizontal line at zero

across the entire range of fitted values.
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Figure 3.13: Forest plot for intercept and slope parameters of the linear regression between

LogNPV vs LogTD for several websites
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Meta-analysis of the association

We aim to investigate whether the relationship between the number of pages visited and

session time duration given by 3.8 is the same for several websites at the same period of

time as SCL data set. We would, of course, have fitted an overarching regression model,

and tested for equality of coefficients for different regressors. However, our aim here is

simply to assess whether the kinds of result we see seems to replicate for different websites.

We compute the FGLS estimate of the parameters of the regression model. The results

are summarized using a forest plot to provide a graphical representation of estimates of

slope and intercept parameters, as well as their 95% confidence intervals. Forest plots

are commonly used in medical research to represent a meta-analysis of the results of

randomized controlled trials (Hodges and Olkin, 1985). Figure 3.13 shows the estimated

parameters of the model for several website. The estimate of intercept parameter (left),

and slope parameters (right) is represented by a square, incorporating 95% confidence

intervals represented by horizontal lines. Assuming the normal distribution for the FGLS

estimated of parameters, confidence intervals are symmetrical about the estimates for each

study. The area of each square is proportional to the number of visit for each website,

in our study. The overall measure based on all data from different websites on the plot
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is shown by a vertical line and a diamond. If the confidence intervals for individual

studies overlap with a vertical line at zero, it demonstrates that at the given level of

confidence the hypothesis of no effect is not rejected. The same interpretation is applied

for the overall estimate. The graph shows that websites varies significantly in terms of

the intercept parameters of the model, range between 2 to 4. The slope parameters are

closer in compare to the intercepts around 1.4, showing that the models are in fairly close

agreement.

3.3.2 Session time duration for sub-population

In many cases, a researcher is interested in gathering information about two populations

in order to compare them with respect to a metric. This is usually known as a two-sample

comparison problem. We wish to determine whether two-samples are from the same or

different populations. The most familiar statistical test for this situation is the two-sample

t-test, used for cases in which two populations may be assumed to be Normal, but with

possibly different locations, and with extensions to handle possibly different spreads. In

this section we compare the session time duration as a measure of depth of visit for some

sub-populations of visitors.

Figure 3.14 (left) shows the back-to-back histogram of the session time duration based

on conversion segmentation. The length of a visit is visibly longer for the conversion

sessions. The plot, in fact, represents the conditional distribution of the session time

duration given the session with and without an online purchase. The graph also shows

that in 50% of the non-conversion sessions, the visitor leaves the website within 30 seconds

of visiting it. Hence, increase of the session time duration is associated with an increase

in the probability of making an online purchase. Figure 3.14 (right) displays the back-

to-back histogram for domestic visitors versus non-domestic visitors. For both groups,

the distribution of the session time duration seems to be similar, although the summary

statistics show that UK visitors spend slightly more time on the site.

The session time duration does not follow the Normal distribution. Hence, the assumption

of normality for the t-test does not hold. For this reason, we also compare the sub-

population with non-parametric Mann-Whitney Wilcoxon (MWW) test, also known as

the Mann-Whitney U test. The MWW test is a non-parametric statistical hypothesis

test for assessing whether one distribution is stochastically greater than the other, under

the assumption of continuous responses. It is the non-parametric analogue of the two-

sample t-test. Table 3.4 shows the test statistics and corresponding p-values of both tests,

showing nearly the same result for the significance of the effect on session time duration.
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Figure 3.14: Back-to-back histogram of session time duration given the response variable

conversion and non-conversion visits (left); given UK visitors and non-UK visitors (right).
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Table 3.4 reports two effect sizes for two-sample comparison studies: Cohen’s d and the

non-parametric Cliff’s δ effect size. Cohen’s d (Cohen, 1977) is a widely-used effect size,

defined as the difference between the means of two populations divided by their common

standard deviation. Cliff (1993) introduced a simple non-parametric index, δ, which is

computed by counting the number of occurrences of an observation from one group having

a higher response value than an observation from the second group, and vice-versa. The

effect size measures for two-sample comparison will be extensively discussed in the next

chapter. We bring two effect sizes in Table 3.4 to emphasise again that the result of

statistical significant tests do not necessarily show the importance of effect.

The large p-value for the factor Linked by Google, 0.49, in Table 3.4 shows that the

median of the session time duration for visitors arriving at the website from Google is not

different compared to those who directly typed the address. This result is also supported

by the small value of the Cliff’s δ effect size. This is not the case when we investigate

the repeat visit factor for which the p-value corresponding to t-test is significant at any

level and the p-value for MWW test is reported 0.011, whilst both effect size measures

show small values. So the suggestion is that the conversion and non-conversion group

differ in STD, with small p-value and large effect size. However, any other differences are

not practically significant in relation to background variation, even though they may be

statistically significant.
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Table 3.4: Non-parametric Kruskal-Wallis test to investigate the factors which affect the

session time duration. Note that, for factors of two level, the test is equivalent to the

Wilcoxon Test

MWW Test Two-sample t-test Effect size

Factor Statistics p-value Statistics p-value Cohen’s d Cliff’s δ

Linked by Google 8690.0 0.496 0.42 0.673 0.01 0.01

Conversion visit 214.2 0.000 26.20 0.000 0.98 0.65

Visit from UK 613.3 0.000 7.45 0.000 0.18 0.11

Repeat Visit 2143.5 0.011 4.47 0.000 0.10 0.03

Visit on Weekend 1036.4 0.061 0.73 0.144 0.03 0.02

Figure 3.15: Scatter plot logTD versus logNPV marked for two group of conversion and non-

conversion visits (left); marked for UK and non-UK visitors (right). It also displays the fitted

linear regression line for separate groups.
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Figure 3.16: The effect size for difference of the slopes in linear regression line in two groups of

conversion sessions and non-conversion sessions (left); and the UK visit group versus non-UK

visits (right).
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We also aim to explore whether there is an association between the session time duration

and the number of pages visited for different subgroups. As a special case Figure 3.15

(left) shows the overlaid scatter-plot of logTD versus logNPV for both the conversion

and non-conversion groups. It also displays the fitted linear regression line separately

for subgroups. Similarly, Figure 3.15 (left) shows the scatter plot for the subgroups of

UK visits and non-UK visits. It seems that the fitted line between logTD and logNPV

has different slope and intercept for the group depending on conversion visits and non-

conversion. But, there is no such pattern for UK and non-UK visitors. The bigger slope

of the fitted line for the non-conversion than for the conversion group visits shows that

session time duration increases more rapidly, as the number of pages visited increases.

It is also desirable to calculate the magnitude of difference between the slope coefficients

of fitted linear regression for sub-groups. using the difference between their probabil-

ity distributions, usually known as a divergence measure. We illustrate the well-known

Kullback-Leibler divergence measure in the next chapter, as it can serve as an effect size

(Kullback, 1968).

Figure 3.16 (left) provides a graphical representation of the conditional distribution of

the estimates of slope parameter given the conversion or Non-conversion visits. It should

be noted that we assume the ML estimate of coefficients follow the Normal distribution.
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The dashed line represents the distribution of the estimate for the subgroups of visitors

without conversion. Equivalently we plot the distribution of the estimate of slope for the

subgroup of conversion visits by a solid line. It can be seen that the distribution of the

coefficient estimator for the conversion group has a mean (and median) larger than the

non-conversion group. Furthermore, the variation of the distribution for conversion group

is larger than the non-conversions. The graph shows that distribution of the estimate

of slope is very significantly different, whilst the effect size measures of Cohen’s d and

Cliff’s δ show medium effect size. We will discuss the effect size measures in more detail

throughout the next chapter. The overlapped area by two distribution is highlighted to

represent the similarity (or dissimilarity) of distributions graphically. Figure 3.16 (right)

shows the distribution of the estimate of the slope for both subgroups of UK visitors and

Non-UK visitors. It can be seen that these distributions are very similar. This is also

expressed by the corresponding small effect size measure.

3.4 Discussion

In this chapter we used the explanatory analysis for the attribute of depth of visit for web

session, using two measures of the number of pages visited and the session time duration.

We showed that the number of pages visited can reasonably be approximated by the

Weibull distribution. We illustrated three common ways of estimating the parameters of

the Weibull distribution. The goodness-of-fit test strongly rejects the hypothesis that the

number of pages visited follows the Weibull distribution. However, the goodness-of-fit

effect size and graphical tools reveal a small value for the difference between the fitted

and the theoretical distribution. It should be noted that statistical significance does not

necessarily provide information about the importance or magnitude of a phenomenon.

Instead, one needs to use indicators known as effect sizes (ES) to quantify the importance

of such a difference.

Statistical significance is not a direct measure of ES, but there exists a functional rela-

tionship between the sample size, the ES and the p-value. For this reason, if the sample

size is sufficiently large, even a weak ES may appear as statistically significant. Therefore,

a standard statistical test may fail to provide the necessary information in the case of

clickstream data analysis when a huge amount of data is available. In the next chapter

we introduce two robust effect sizes base on quantile function, which can be used for

non-normal circumstances such as depth of visit measures.
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Chapter 4

Robust and Scale-free Effect Sizes:

Clickstream Analysis

Statistical significance does not necessarily provide information about the importance or

magnitude of a measured difference. Instead, many use indicators known as effect sizes

(ES), to quantify the importance of such a difference. Statistical significance is not a direct

measure of ES, but there exists a functional relationship between the sample size, the ES

and the p-value. For this reason, if the sample size is sufficiently large, even a weak ES may

appear as statistically significant. The ES has been mainly introduced and investigated

for changes in location under an assumption of Normality for the underlying population.

However, there are many circumstances where populations are non-Normal, or depend on

scale and shape and not just a location parameter. In this chapter, we critically review

the common ES measures. We then introduce two novel alternative ES for two-sample

comparisons, one scale-free and one on the original scale measurement, and analyse some

of their theoretical properties. We examine these ES for two-sample comparison studies

under an assumption of Normality and investigate what happens when both location and

scale parameters differ. We explore ES for phenomena for non-Normal situations, using

the Weibull family for illustration. Finally, for an application, we assess differences in

customer behaviour when browsing E-commerce websites.

4.1 Introduction

Classical hypothesis-testing is the standard way of using experimental data to test whether

a phenomenon exists (Gigerenzer, 1993; Ledesma et al., 2009). However, statistical signif-
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icance does not necessarily provide information about the importance or magnitude of the

phenomenon, whereas this is often the focus of researchers in science and social science

(Krueger, 2001). For this reason, providing such measures – known as effect sizes (ES)

– is considered a necessary complement to hypothesis-testing (Thompson, 1998). This

typically concerns four quantities: the p-value, the sample size, a measure of ES, and the

power of the test. Each of these quantities is typically a function of the other three (Co-

hen, 1992; Descôteaux, 2007) and so in quantifying and interpreting experimental research

we must consider them together. The p-value is not a direct measure of ES. Statistically

significant findings are not always practically significant findings, partly because taking a

large enough sample size will result in a small p-value. This is illustrated in Figure 4.1,

which plots the p-value from the standard Normal-based test, versus the sample size for

the hypothesis test of H0 : µ = 0 versus H1 : µ > 0. The expected p-value can be

computed by

p-value = 1− Φ(
µ− µ0

σ√
n

) , (4.1)

where n is the sample size, µ is the true mean of the population, µ0 is the mean of the

population based on the null hypothesis, and σ is the standard deviation of the population.

In this example we have µ0 = 0 and σ = 1. Different lines represent different true values of

µ in the population studied, where the values µ = 0.01, . . . , µ = 0.05 are so close to zero as

to be practically insignificant in most contexts. In each case, we can choose a sample size

large enough to generate statistical significance, however tiny the practical significance.

Conversely, a statistical test with weak power, perhaps because of small sample size,

may not appear as statistically significant, but the measured effect relative to background

variation may be deemed to be of practical significance (Wilson Van Voorhis and Morgan,

2007). For this reason, appropriate specification of both statistical significance and the

magnitude of effect, is required to provide inference of practical utility (Thompson, 1998).

Measures of ES have been available for decades, but mainly limited to meta-analysis for

combining estimates from different studies (Keselman et al., 1998). Except for simple

situations, they are not found in many statistics computer packages. Hence, even for

researchers who are interested in using measures of ES, it is difficult to compute such

measures. One reason why ES might not be routinely employed is that they have been

largely developed for simplistic situations, such as changes in location under assumptions

of Normality. However, there are many circumstances where populations are non-Normal,

or depend on scale and shape and not just a location parameter. There do exist some

non-parametric measures of ES which don’t need such assumptions, but these mostly serve

as dominance measures. It is important to distinguish between the concepts of ES and

dominance. We regard one distribution F as dominating a second distribution G when
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Figure 4.1: The p-value of the test versus the sample size for H0 : µ = 0 versus H1 : µ > 0,

given the true value of µ for some N(µ, 1) examples.
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each quantile of F is larger than the corresponding quantile of G. However, there are many

settings in which two distributions do not necessarily dominate each other, but exhibit

contrasting differences for different parts of the range. For example, when comparing two

lifetime distributions for a survival analysis, the survival function for one group may be

initially larger than that for the other group, but then cross over and become smaller.

For such cases, classical ES do not truly describe these differences.

In this chapter, we briefly review existing ES measures for two-sample comparison studies.

We then introduce two robust ES measures based on quantile differences and use these

to examine changes in location under a Normality assumption, and thence to changes in

location and scale. We show how the proposed ES behaves for general comparisons of two

distributions. For a practical application, we compute ES in the context of identifying

patterns in web browsing behaviour.

4.2 Effect sizes for the two-sample comparison

4.2.1 Cohen’s d and dr

The most familiar ES is Cohen’s d (Cohen, 1977), defined as the difference between the

means of two populations divided by their common standard deviation. In practice, d is

estimated by d = (x̄1 − x̄2)/s, where x̄1, x̄2 are the sample means, and s is an estimate

of the common standard deviation. When the population standard deviations cannot

be assumed to be the same, Hedges (1981) proposed using the usual pooled standard

deviation sp estimate to replace s, where s2p = [(n1 − 1)s21 + (n2 − 1)s22]/(n1 + n2 − 2).

Cohen’s d is one of the most widely-used ES measures for comparing the means of two

independent samples and expresses the intuitively appealing concept that the magnitude

of effect is the difference between the centres of two populations relative to a measure

of individual variation. There is often implicitly the assumption that the underlying

populations are Normal.

Cohen (1977) gave practical rules to interpret ES. An ES of 0.2 to 0.3 standard deviations

is deemed a small effect; ES ≈ 0.5 is a medium effect; and ES ≈ 0.8 is a large effect.

He warned that such criteria are relative and interpretations must take into account the

content, purpose, and method of research, except perhaps in the context of research with

entirely novel variables (Lenth, 2001). The value of this rule to applied research has been

questioned, since the practical importance of ES also depends on other quantities, such

as the effectiveness of alternative treatments and cost-benefit analysis of the treatment
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Hodges and Olkin (1985).

Cohen (1977) also proposed a correlation form, dr, of his d index, where dr is the corre-

lation between numerical variable Y and binary variable X. Cohen’s dr is

−1 < dr =
d√

d2 + (1/pq)
< 1, (4.2)

where p and q are the proportions of subjects belonging to groups A and B (usually the

experimental and control groups) respectively, as indicated by X. Cohen’s dr is large

when d is large and also when p and q are similar. dr is a bounded index which facilitates

interpretation of the ES and this might be considered an advantage of using dr instead of

d.

4.2.2 Robustness

There have been many attempts to extend Cohen’s d to more complicated situations,

for example weakening the assumption of common variance. Glass et al. (1981) initially

recommended using (x̄1 − x̄2) scaled by the estimated standard deviation of the control

group instead of sp. However, this simply ignores that we might prefer an ES which

explicitly incorporates heteroscedasticity. Typically, Cohen’s d and other commonly used

ES are not robust: small changes in the tails can substantially inflate variance estimates

and thus decrease Cohen’s d. A well-known example is based on the contaminated Normal

distribution (Tukey, 1960; Wilcox, 2005; Wilcox and Tian, 2011). Suppose that H(x) =

0.9Φ(x) + 0.1Φ(x/10), where Φ is the standard Normal cdf. Now consider two groups,

both Normally distributed and with common variance σ2 = 1, and suppose their means

are µ1 = 0, µ2 = 0.8, so that d = 0.8, a large ES. For the contaminated Normals with the

same means, Cohen’s d falls to d = 0.59, a medium ES.

In general, replacing the mean and variance with some robust estimate can be used to give

a robust ES; for example Algina et al. (2005) uses 20% trimmed means and a Winsorized

variance. There is a loss of tail information when trimming. Hedges and Friedman (1993)

proposed an analogue for Cohen’s d when the focus is on comparing the tails or some

other feature of a distribution rather than the centre. For example for the upper tail of

the distribution, dα = (x̄1α − x̄2α)/sα, where x̄jα for j = 1, 2 are the means of observed

values higher than the α-quantile and sα their (assumed) common standard deviation.
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4.2.3 Common language effect size

The Common Language Effect Size (CLES) statistic is a probability measure generating

an ES when comparing two means of independent samples. It is defined as the probability

that a randomly selected individual from one group has a higher score on a variable than

a randomly selected individual from another group (McGraw and Wong, 1992). Thus, if

X and Y are independent Normal N(µ, σ2) quantities, the CLES is:

l1 = P (X < Y ) = Φ(
µx − µy
σ
√

2
). (4.3)

A value of l1 = 0.5 implies that two distributions entirely overlap. Values close to zero or

one imply a larger ES and less overlap. The CLES can be calculated for different probability

distributions and under different assumptions and has the advantage of representing ES

using a common probability scale (Ledesma et al., 2009). CLES is often employed as a

measure of numerical dominance in location to judge whether one distribution is generally

larger or smaller than another. For example, l1 = 0.5 for Normal random variables with

the same mean, irrespective of variance.

Anderson and Berry (2009) proposed a modified version of the CLES for the cases for

which the population follows a distribution with both location and scale, and for which

both parameters may differ. In this case, if the standardized random variables X−µx
σx

and
Y−µy
σy

each follows the distribution of some standard random variable Z symmetric around

0, with cumulative distribution function ΦZ , a dominance measure can be computed as:

l2 = ΦZ

(
µx − µy
σx + σy

)
. (4.4)

A corresponding point of overlap is given by

σy µx + σx µy
σx + σy

, (4.5)

which is familiar as the posterior mean in various Bayesian statistical settings.

The probability of superiority ES (Grissom and Kim, 2005) is similar to the CLES, but

based on sample ranks and given by PSU = U/n1n2, where U is the Mann-Whitney U

statistic . This measure assumes similarity of shape in the underlying populations, but is

not robust to heteroscedasticity (Mann and Whitney, 1947; Grissom, 1994).

4.2.4 Non-overlap effect size

An ES for the two-sample comparison can be obtained by comparing the percentiles of

the populations. Cohen (1977) introduced three such measures under an assumption of
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Normality with equal variation. One measure is the probability that random variable X

is less than the mean of random variable Y :

u1 = P (X < µy) = Φ(
µy − µx

σ
). (4.6)

Cohen’s second measure gives the overlap formed by taking the percentage in one density

that exceeds the same percentage in the other density. For Normal distributions with

equal variance this is the probability that the distribution of one population lies below

the joint average:

u2 = P (X <
µx + µy

2
) = Φ(

µy − µx
2σ

). (4.7)

Cohen’s third measure considers the part of the two densities that do not overlap. This

can be expressed as u3 = 2− 1/u2.

These non-overlap ES are probability measures and so can be applied without reference to

context. They can be used to help interpret Cohen’s d in circumstances when the variable

under study is new and when its behaviour has not been widely studied – for example,

in psychological studies when a new questionnaire has been introduced to measure an

characteristic. Thus, assuming Normality, when d = 0.5, the overlap area is 23% and

correspondingly u3 = 0.67 (Ledesma et al., 2009).

4.2.5 Non-parametric effect size

Cliff (1993) introduced a simple non-parametric index, δ, which is computed by counting

the number of occurrences of an observation from one group having a higher response

value than an observation from the second group, and vice-versa. This statistic estimates

the probability that a value selected from one group is greater than a value selected from

the other group, minus the reverse probability. Thus,

δ =

∑n1

i=1

∑n2

j=1 sign(xi1 − xj2)
n1 × n2

, (4.8)

where xi1 is the i-th observation from group A, and xj2 the j-th observation from group

B; and n1 and n2 are the respective sample sizes. δ = ±1 indicates complete separation

between the two groups, whereas δ = 0 indicates complete overlap.

When the data do not follow the Normal distribution or where the variable under study

corresponds to an ordinal level of measurement, Cliff’s δ might be preferred to Cohen’s d or

dr (Hess and Kromrey, 2004). Cliff’s δ is a non-parametric measure, so its interpretation

is unaffected when the assumptions of Normality or homoscedasticity are violated (Coe,

2002). However, δ is more useful as a crude dominance measure.
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4.2.6 Explanatory power effect size

Wilcox and Tian (2011) proposed an approach to measuring ES based on special case

measures that reflect the proportion of variance in a response variable Y accounted for

by an explanatory variable X using regression. Doksum and Samarov (1995) gave such a

measure for simple linear regression studies. One advantage of this approach is that it can

be generalized to multi-sample problems. There are numerous robust analogues based on

robust regression techniques. For two-sample studies, X takes values 0 and 1 correspond-

ing to the two groups. See Kulinskaya and Staudte (2006) for a suggested measure, but

note that their measure depends on sample size and so can’t be fully recommended.

4.2.7 Graphical representations

Quantile-quantile and percentile-percentile plots have long been exploratory graphical

tools for two-sample comparison studies (Wilk and Gnanadesikan, 1968). Doksum and

Sievers (1976) and Doksum (1977) suggested using a graphical representation of the shift

function for comparing two groups. This involves making comparisons at a number of

distribution features, rather than only location or scale parameters. The magnitude of

difference between two populations may also be explored using the ordinal dominance

curve (Darlington, 1973), where the area under or above the ordinal dominance curve may

be used as a measure of dominance. For a better separation of points when observations

are close to the y = x line, the Tukey sum-difference graph has been recommended instead

of the pp plot and qq plot (Cleveland, 1994). Such plots provide a complete representation

of the differences between two populations, but of course don’t offer a single summary ES.

4.3 Developing effect sizes for non-Normal data

There are many circumstances where populations are known or suspected to be non-

Normal, and perhaps depend on scale and shape as well as location. Basing an ES on

medians alone does not help: for example, the medians of two distributions might be equal,

but the tails of the two distributions might be very different (Fleming et al., 1980). Indeed,

where two populations may be Non-Normal, or heteroscedastic, or nonhomomerous in

other ways, traditional measures of ES can be misleading and do not provide sufficient

information about the magnitude of the effect (Grissom and Kim, 2005; Wilcox, 2005).

However, it remains desirable to have a measure of effect size which is credible for such

settings, especially if such effect sizes can be computed on a scale-free basis in order to
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facilitate comparisons from several studies, for example as further inputs to meta-analysis.

Our need is to construct an ES over the full distribution. Extending from the notion of

the graphical comparison described above, one possibility for the two-sample comparison

is to compare the quantile functions and vertical quantile comparison functions of two

distributions F and G. In principle, these should provide general ES which are applicable

to both non-Normal and Normal settings.

Definition: Quantile function. Let F be a probability distribution function. The

quantile function for F is given by

Q(p) = inf {x ∈ R : p ≤ F (x)} , 0 ≤ p ≤ 1. (4.9)

For discrete probability distribution functions, the Quantile function returns the minimum

value of x for which the statement holds. For random variables for which the cumulative

distribution function (cdf) is continuous and strictly monotonic, F : R → (0, 1), Q(p) is

the inverse of the cdf, and it is common to use F−1 as notation.

Definition: Vertical quantile comparison function. Suppose that F and G are

continuous probability distribution functions. The vertical quantile comparison function

for G with baseline F is:

V G
F (p) = G(F−1(p)), 0 ≤ p ≤ 1. (4.10)

This may be used to represent the distance between two probability distributions (Li

et al., 1996). If F = G then V F
F (p) is the probability distribution function of the Uniform

distribution. Thus, differences between V G
F (p) and the Uniform cdf equate to differences

between F and G. One may plot the vertical quantile comparison function versus the

probability to display the difference between two distributions (Holmgren, 1995).

Definition: Vertical shifted function. The vertical shifted function for G with base-

line F is defined to be V G
F (p)− p. This summarizes differences between F and G at each

point p because the Uniform cdf is F (p) = p.

4.3.1 Quantile absolute deviation

In this section, we extend the idea of comparing two distributions by their quantiles for

the entire range of probabilities over [0, 1].

Definition: Quantile Absolute Deviation. For two populations with cumulative
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distribution functions F and G, we define the Quantile Absolute Deviation (QAD) as:

K(F , G) =

∫ 1

0

∣∣∣ F−1(p)−G−1(p) ∣∣∣ dp, (4.11)

where F−1 and G−1 are quantile functions for the two distributions. The QAD is a symmet-

ric positive measure and may be interpreted as the average distance between the quantiles

of the distributions. When two distributions are similar, their quantiles must also be sim-

ilar and K(F , G) will be small. The QAD satisfies the three divergence properties of a

criterion:

1. Self similarity: K(F , F ) = 0.

2. Self identification: K(F , G) = 0 if and only if F = G.

3. Positivity: K(F , G) ≥ 0 for all F,G.

The space of quantile functions with the above mentioned distance is a metric space be-

cause the distance fulfills all the following axioms of a metric. For probability distribution

functions F , G, and H:

1. Self identification: K(F , G) = 0 if and only if F = G.

2. Symmetry: K(F , G) = K(G , F ).

3. Triangle inequality: K(F , G) +K(G , H) ≥ K(F , H).

The QAD is not a scale-free measure as it has the same unit of measurement as the variable

under investigation. Thus, K(F , G) = 1 implies that on average the quantiles of the

variable with distribution F differ by one unit from the quantiles of distribution G. It

may or may not be true that one of the distributions dominates the other, but if this is

the case, the QAD may be interpreted directionally.

One may exclude the observations which lie in the far tails of the distribution, in order

to eliminate the effect of outliers or extreme values on the ES. A 100α% trimmed QAD

can be calculated using only observations which are placed between the (α/2)-th and

(1− α/2)-th percentiles of the data. This measure can be computed as:

Kα(F , G) =
1

(1− α)

∫ 1−α/2

α/2

∣∣∣F−1(p)−G−1(p) ∣∣∣ dp. (4.12)

For illustration, a K0.1(F , G) is computed by discarding the lower and higher 5% tails of

each of the two populations and by calculating the rescaled K(F , G). Kα(F , G) is more
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robust to outliers, but does not give a metric measure over the space of quantile functions

and loses tail information.

4.3.2 Quantile comparison effect size

In this section, we introduce the notion of using a distance measure – statistical divergence

– as an ES. Statistical divergence is a weaker notion than that of distance as it does not

need to be symmetric. That is, the divergence from F to G is not necessarily equal to

the divergence from G to F . The vertical shifted function V G
F (p)− p provides a basis for

such a divergence. For two cumulative distribution functions F and G, define

Div(F ||G) = 2×
∫ 1

0

∣∣∣G(F−1(p))−G(G−1(p))
∣∣∣dp = 2×

∫ 1

0

∣∣∣ V G
F (p)− p

∣∣∣dp, (4.13)

which takes values over the interval [0, 1]. Although this measure satisfies divergence

properties, it is not a symmetric measure as Div(F ||G) 6= Div(G ||F ) necessarily. Instead

we may obtain a symmetric measure by averaging these divergences, and this is what we

propose to use as an ES.

Definition: Quantile comparison effect size. We define the Quantile comparison

effect size (QCES) as

D(F , G) =
1

2
Div(F ||G) +

1

2
Div(G ||F )

=

∫ 1

0

∣∣∣G(F−1(p))− p
∣∣∣+
∣∣∣ F (G−1(p))− p

∣∣∣ dp. (4.14)

This is a bounded measure, giving values between 0 and 1, which facilitates its interpre-

tation as an ES, unlike alternative unbounded divergence measures.

There are, of course, alternative divergence measures such as the Kullback-Leibler (KL)

divergence. This is the relative entropy between two continuous probability density func-

tions f(x) and g(x) (Kullback, 1968):

DKL(D ||G) =

∫ ∞
−∞

f(x) log
f(x)

g(x)
dx. (4.15)

This is commonly used as a measure of similarity between two density distributions. In a

Bayesian context, this divergence and its variants may be used to measure the difference

between prior and posterior distributions, and symmetrized versions may be obtained.

ES based on quantile comparison can be computed directly where F and G are known.

Otherwise we may substitute the cdf by the empirical cdf. Thus, suppose we draw samples
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Figure 4.2: Values of the QCES corresponding to standard thresholds for Cohen’s d ES.

from distribution F and distribution G and estimate F by F̃ and G by G̃, the correspond-

ing empirical cdfs. From these we may determine the empirical quantile functions F̃−1

and G̃−1 as appropriate. See the appendix A for algorithms to compute empirical ES.

4.3.3 Interpreting the QC effect size

Cohen’s practical rules to interpret ES can be mapped into the QCES by evaluating the

QCES for Normal distribution comparisons where we fix the scale at σX = σY = 1 and

consider location changes of sizes deemed by Cohen to be small (µX −µY = 0.2), medium

(µX − µY = 0.5), and large (µX − µY = 0.8). A graph showing the QCES for general

choices for d = µX − µY in this case is shown in Figure 4.2.

If we adopt similar thresholds, this suggests that QCES values of around 0.1 to 0.2 corre-

spond to small effects; values around 0.2 to 0.4 correspond to medium effects; and larger

values suggest large effects. A QCES of at least 0.7 represents the situation where two

Normal distributions with the same scale mostly do not overlap. For more complicated

comparisons with non-Normal distributions and possible changes in the values of several

parameters, distributions may still contain substantial overlap with respect to quantiles.

Having assessed the QCES over several plausible comparisons, we thus suggest the follow-
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ing guidelines. A value of QCES in (0.10,0.20) suggests a small effect; (0.20,0.30) suggests

a medium effect; and 0.30 and above correspondes to a large effect. As Cohen suggests,

such ES need to be interpreted in context; computation of a summary ES cannot replace

detailed comparison of the two distributions. For the robustness illustration of §4.2.2

using contaminated Normal distributions, the corresponding values of the QCES are 0.26

and 0.21, indicating medium effect sizes on our scale in both cases.

4.3.4 ES computation for some simple examples

The computation of QCES and QAD involves integration over a function of two quantile

functions. As such, they rarely provide tractable analytic forms, particularly for distri-

butions for which there is no simple expression for the quantile function; see Gilchrist

(2000) for details of quantile functions for a large number of known distributions. How-

ever, it is informative to investigate the behaviour of these ES in terms of the parameters

of distributions in some simple settings. Thus, here we compute QAD and QCES (1) when

comparing Uniform distributions with different location parameters; (2) when comparing

Exponential distributions with different rate parameters.

Uniform distribution: Suppose that X ∼ U(0 , α) and Y ∼ U(0 , β) where β ≥ α.

The quantile function for X ∼ U(a , b) is F−1X (p) = (b− a) p+ a. So, using (4.9) the QAD

is given by

K(X , Y ) =
β − α

2
, (4.16)

In this case, the QAD is simply the difference between the means of the two distribu-

tions. The QCES (4.14) is computed using Div(X ||Y ) and Div(Y ||X), remembering the

restriction to β ≥ α, giving

D(X , Y ) = 1− α

β
. (4.17)

For β close to α the QCES tends to zero, and for β � α the QCES approaches the upper

limit, one.

In practice, we typically won’t know the values of parameters and so must estimate them.

One way to explore the behaviour of these ES is to treat these parameters as random

variables, in which case these ES are random variables. Suppose, for example, that the

parameters are independently α ∼ N(µα, σ
2
α) and β ∼ N(µβ, σ

2
β). In the above Uniform

case, the QAD is Normal:

K(X , Y ) ∼ N
(µβ − µα

2
,
σ2
β + σ2

α

4

)
(4.18)
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Figure 4.3: The pdfs for the compared Normal distributions.

suggesting that we would expect the ES to be the underlying difference between the two

Uniform means, but with variation stemming from uncertainty about those means. The

QCES is a simple linear transformation of a ratio of two independent non-zero mean Normal

distributions, as discussed by (Hinkley, 1969). In some cases this ratio distribution may

be well approximated by another Normal distribution which can serve as the basis for

exploration of behaviour.

Exponential distribution: Suppose that X ∼ Exp(α) and Y ∼ Exp(β) where β ≥ α.

The quantile function for X ∼ Exp(θ) is F−1X (p) = −1
θ

ln(1− p). Thus, the QAD (4.11) is

K(X , Y ) =
1

α
− 1

β
, (4.19)

being the difference between the means of the two distributions. We find that the QCES

(4.14) is

D(X , Y ) =
β − α
α + β

, (4.20)

so that QAD can be interpreted as the difference in means scaled to (0,1), as is so for the

Uniform case. As for the Uniform case, one might be interested in exploring these ES as

random variables, assuming Normal distributions for the α and β parameters. However,

these distributions are analytically intractable.
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4.4 Two-sample Normal distribution comparisons

We now explore the QAD and the QCES for a number of situations. First, we assume that

the underlying distributions are known and we examine ES for the Normal distribution

comparison and, later, for the Weibull distribution comparison, varying parameter choices

in each case. In a further section we examine ES calculations for a practical example for

which the underlying distributions are estimated by empirical cdfs.

We compare five Normal N(µ, σ2) distributions to the standard Normal N(0, 1) distri-

bution, as baseline. Figure 4.3 displays them. The parameter choices are the baseline

itself, and the N(0.2, 1), N(1, 1), N(0, 2), N(3, 2), and N(5, 1.5) distributions. These give

a range of parameter choices for varying mean and standard deviation, and for a range of

classical ES; for example: the comparison between N(0, 1) and N(0.2, 1) corresponds to

Cohen’s d = 0.2, a small ES. We include a check on the baseline comparison with itself.

Table 4.1: Mean and standard deviation of Monte Carlo simulations of Cohen’s d, Cliff’s δ,

the QAD and QC Effect sizes, and the KL divergence, for Normal distribution comparisons

with N(0, 1) baseline.

Effect Size

Cohen’s d Cliff’s δ KL QAD QCES

N( 0 , 1.0)
mean -0.002 -0.005 0.133 0.135 0.071

sd (0.141) (0.078) (0.074) (0.077) (0.045)

N(0.2, 1.0)
mean 0.200 0.110 0.199 0.220 0.122

sd (0.144) (0.076) (0.101) (0.119) (0.068)

N(1.0, 1.0)
mean 1.007 0.521 0.929 0.996 0.521

sd (0.149) (0.061) (0.198) (0.144) (0.066)

N(0.0, 2.0)
mean -0.002 -0.002 1.354 0.810 0.214

sd (0.142) (0.085) (0.363) (0.127) (0.028)

N(3.0, 2.0)
mean 1.913 0.819 6.022 2.992 0.821

sd (0.186) (0.041) (1.180) (0.222) (0.041)

N(5.0, 1.5)
mean 3.940 0.994 13.256 5.002 0.994

sd (0.252) (0.005) (2.226) (0.182) (0.003)

Table 4.1 shows the mean and standard deviation of Monte Carlo simulations of Cohen’s

d, Cliff’s δ, the QAD and QC Effect sizes, and the KL divergence, for Normal distribution

comparisons with a N(0, 1) baseline. For each paired comparison we obtain a random

sample of 100 observations from each distribution and then compute ES for the compari-
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Figure 4.4: The quantile function (4.9) for some Normal distributions, with associated QAD,

where the Normal distribution N(0, 1) is the baseline.

son. We repeat this 10000 times and compute the mean and standard deviation for each

ES for each simulation. All the ES increase as the mean is shifted. For the N(0, 2) com-

parison, i.e. with the same mean and larger scale than baseline, Cohen’s d and Cliff’s δ

ES remain close to 0 (no effect), but QCES=0.214 which would suggest a medium effect.

This illustrates that Cohen’s d and dr are not particularly sensitive to scale changes. The

unbounded measures – Cohen’s d, KL, and the QAD – have larger standard deviations as

the value of the ES increases. The bounded measures – Cliff’s δ and the QCES – tend to

have smaller standard deviations for larger ES. When one distribution is dominant, this

is reflected in both Cliff’s δ and the QCES having approximately similar values. As some

of these ES are skewed, we also computed the medians and approximate 95% probability

intervals on the median for each ES. These gave a similar interpretation.

Figure 4.4 shows the quantile function (4.9) for these distributions, with the solid line

representing the quantile function of the baseline N(0, 1). Consider distribution functions

F and G with means µF , µG and standard deviations σF , σG. As the mean increases,

the quantile function shifts upwards. In the case of σF = σG, this shift is the increase

in the mean. The QAD effect size, K(F , G), is the area between the quantile functions

for F and G. For Normal distributions with equal spread, K(F , G) = |µF − µG|. In
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Figure 4.5: The vertical comparison quantile function (4.10) for some Normal distributions,

with associated QCES. The left panel shows V G
F (p) = G(F−1(p)). The right panel shows the

corresponding function V F
G (p) = F (G−1(p)).

the case where µF = µG and σF < σG the quantile functions intersect, with the quantile

function for G distorted to lower values at lower probabilities and higher values at higher

probabilities, indicating heavier tails. Where µF 6= µG and σF 6= σG, there is typically

both shift and distortion. In contrast to ES such as Cohen’s d, the QAD is sensitive to

differences across the full distributions and so produces a larger value for the QAD when

the standard deviation changes but the mean parameter stays fixed.

Figure 4.5 plots the vertical quantile comparison functions (4.10) between distributions F

and G, using F as baseline in the left-hand panel, and – reflected – G as baseline in the

right-hand panel. F = G corresponds to the solid line y = x in both panels. When two

distributions are close, V G
F (p) and V F

G (p) are functions close to y = x. Specific types of

departure from the solid line suggest potential orderings of the two distributions (Barlow

and Proschan, 1975). Intersections indicate that the distributions may have close mean

parameters and different standard deviations. A function lying strictly above or below the

solid line indicates that one of the distributions stochastically dominates the other. When

one distribution is very far from the other, the vertical quantile comparison function is

far from the solid line. The QCES is computed using the area(s) between the curve and

the solid line. Thus, the more dissimilar the distributions, the larger the QCES.

Figure 4.6 illustrates how the value of the QAD (4.11) changes as we vary the mean and
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Figure 4.6: Contour plot of the QAD (4.11) for Normal distribution comparisons with N(0, 1)

baseline: changes in ES as we vary µ and σ. The point (0,1) locates the baseline. ES are positive

unbounded.
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Figure 4.7: Contour plot of the QCES (4.14) for Normal distribution comparisons with N(0, 1)

baseline: changes in ES as we vary µ and σ. The point (0,1) locates the baseline. ES are in

(0,1) by design.
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standard deviation. Large differences in mean correspond to larger ES. For fixed means,

large differences in the scale parameter lead to larger ES. Differences in both location

and scale lead to even larger ES. An equivalent graph for the QCES (4.14) is illustrated

in Figure 4.7. This ES is always in (0,1), with higher values representing large effects.

Note that because this measure highly depends on the degree of overlap of distribution

functions, the ES will not change substantially when one of the distributions has a large

standard deviation relative to the other.

4.5 Two-sample Weibull distribution comparisons

In this section we investigate the behaviour of these ES for the Weibull distribution

(Weibull, 1951), which has been used to describe the statistical behaviour of many phe-

nomena due to its flexibility. We have already illustrated the Weibull distribution and its

properties in §3.2.2. Recall that the shifted Weibull distribution for a random variable

X ∼ W (α, λ, θ) has pdf:

f(x;α, λ, θ) =
α

λ

(
x− θ
λ

)α−1
exp

{
−
(
x− θ
λ

)α}
x ≥ θ, (4.21)

where α > 0 is a shape parameter, λ > 0 is a scale parameter, and θ is the threshold or

location parameter. When θ = 0, this function reduces to the two-parameter distribution,

and we use the notation X ∼ W (α, λ).

We compare Weibull distributions with different shape and scale parameters to a baseline

W (1, 1) distribution. This is equivalent to an exponential distribution with rate parameter

1. We choose counterpart Weibull distribution parameters in such a way so as to cover

the variety of shapes the distribution may take, as shown in Figure 4.8.

As for the Normal distribution comparison, we carried out a similar Monte Carlo explo-

ration of ES for Weibull distribution comparisons with a W (1, 1) baseline. Means and

standard deviations for simulated ES are given in Table 4.2. Small changes in the shape

parameter produce small ES for all measures. Larger changes in shape parameter have

only a small impact on Cohen’s d and Cliff’s δ, suggesting that these do not capture such

changes well. The QCES for the W (1.7, 1) and W (0.5, 1) comparisons to baseline indicate

that these changes in shape and scale have a larger practical effect than Cohen’s d and

Cliff’s δ suggests.

Figure 4.9 shows the corresponding quantile functions, with the solid line representing the

quantile function for the baseline W (1, 1) distribution. As the scale parameter λ increases,
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Table 4.2: Mean and standard deviation of Monte Carlo simulations of Cohen’s d, Cliff’s δ,

the QAD and QC Effect sizes, and the KL divergence, for Weibull distribution comparisons

with W (1, 1) baseline.

Effect Size

Cohen’s d Cliff’s δ KL QAD QCES

W (1.0, 1)
mean -0.000 0.009 0.120 0.130 0.071

sd (0.143) (0.082) (0.067) (0.079) (0.045)

W (1.2, 1)
mean -0.064 0.025 0.154 0.163 0.090

sd (0.141) (0.084) (0.065) (0.075) (0.043)

W (1.7, 1)
mean -0.126 0.075 0.349 0.296 0.174

sd (0.137) (0.079) (0.069) (0.070) (0.040)

W (0.5, 1)
mean 0.322 -0.087 1.185 1.231 0.217

sd (0.094) (0.081) (0.491) (0.398) (0.038)

W (2.0, 3)
mean 0.953 0.239 0.880 0.878 0.600

sd (0.213) (0.018) (0.108) (0.088) (0.061)

W (3.0, 3)
Mean 1.718 0.289 1.555 1.690 0.788

sd (0.232) (0.002) (0.242) (0.130) (0.046)

the quantile function shifts upwards. Different shape parameters lead to distorted quantile

functions which intersect the quantile function for the baseline W (1, 1) distribution. The

magnitude of the QAD effect size (4.11) is the area between two such quantile functions.

In general, larger scale parameters produce larger ES. Figure 4.11 shows how the QAD

changes as we vary α, λ from the baseline at (1,1). For a fixed value of α, an increase in

λ results in a sharp increase in ES, and especially for α < 1.

Figure 4.10 displays the vertical shift quantile functions and the associated QCES (4.14)

for these comparisons. Changing the scale parameter affects the ES considerably; changes

in shape have less impact. The contour plot shown in Figure 4.12 summarises changes in

ES as we vary (α, λ) from the baseline point (1, 1).

4.6 Application: analysis of clickstream data

In this section we use the proposed effect sizes of the chapter for an application in click-

stream data analysis. Analysis of clickstream data can help to enhances understanding

and prediction of website visitor behaviour (Andersen et al., 2000), usually with the aim of
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Figure 4.8: The pdfs for the compared Weibull distributions.

Figure 4.9: The quantile function (4.9) for some Weibull distributions, with associated QAD

comparing to a baseline W (1, 1) distribution.
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Figure 4.10: The vertical comparison quantile function (4.10) for some Weibull distributions,

with associated QCES comparing to a baseline W (1, 1) distribution. The left panel shows V G
F (p) =

G(F−1(p)). The right panel shows the corresponding function V F
G (p) = F (G−1(p)).

Figure 4.11: Contour plot of the QAD (4.11) for Weibull distribution comparisons with W (1, 1)

baseline: changes in ES as we vary α, λ. The point (1,1) locates the baseline. ES are positive

unbounded.
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Figure 4.12: Contour plot of the QCES (4.14) for Weibull distribution comparisons with

W (1, 1) baseline: changes in ES as we vary α, λ. The point (1,1) locates the baseline. ES are in

(0,1) by design.
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Figure 4.13: Back-to-back histograms of session time duration for 1,353 website visits resulting

in a sale, and durations for 8,747 non-sale visits.
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maximising customer sales and revenue. Exploratory analysis of such data, even though

often superficial, is useful for improving system performance and providing marketing

decision-support (Markov and Larose, 2007). A simple common question, for example,

is whether the revenues extracted from customers arriving from different entry points is

about the same or different. This is a simple two-sample comparison. The amount of data

available is huge, potentially millions of records per day. Therefore, standard methods for

exploring such simple hypotheses fail as they inevitably yield tiny p-values. Furthermore,

the underlying populations are often highly non-Normal. We may instead employ ES to

explore such hypotheses, for which we need the ES methods developed in this chapter.

We use SLC data introduced in chapter 1. Recall that this clickstream data is collected

for one website for one week in the summer of 2008. Some data cleaning is required in

order to remove duplicates and so forth. In all, 10496 visit details were recorded.

There are very many potential relationships to explore. For this illustration, we examine

session time duration, T , the time a customer spends on the website. We exclude cus-

tomers who visit only one page. Figure 4.13 shows histograms of T , right censoring at

100 minutes, with visits classified as leading to sales, T1, or no sale, T0. The distributions
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Figure 4.14: Fitted pdfs of visit time duration T , separately for sales and non-sales visits,

estimation via maximum likelihood.
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are visually quite different. Summary statistics suggest larger values of T for visits which

lead to sales. In testing whether the means of the two populations T0 and T1 are equal,

the standard t-test is not much help. The distributions seem clearly non-Normal, and

the sample size is so large that tiny p-values necessarily result. The Mann-Whitney test

has similar drawbacks. Cliff’s nonparametric ES is δ = 0.22, implying some degree of

dominance. Cohen’s d = 0.95 suggests a large effect under an assumption of Normality,

but this is inappropriate here. We thus compute the quantile-based QAD and QCES ef-

fect sizes. We may compute these either by using empirical cdfs or by fitting suitable

distributions to each set of observations.

4.6.1 Fitting a distribution and then computing effect sizes

We fit separate Weibull distributions to T0 and T1 via maximum likelihood. The fits are

shown in Figure 4.14. The shaded area is the overlap in the two distributions. The shape

parameters are α1 = 1.39 > 1 and α0 = 0.76 < 1 for the sales and non-sales groups

respectively. The sales-group distribution also has a larger scale parameter. Quantile
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Figure 4.15: The fitted quantile functions for session time duration for visit time duration,

separately for sales and non-sales visits.

plots suggested that these fits were good except in the furthest extremities. The quantile

functions for these distributions are shown in Figure 4.15. The shaded area is the QAD

(4.11), which evaluates to K(T1 , T0) = 9.35, suggesting that on average the quantiles of

T for the sales group exceeds quantiles in the non-sales group by 9.35 minutes. It should

be noted that The QAD and QCES do tell us which distribution is dominant, when a

dominance exists. At this point complimentary graphs can help to infer about ordering

and effect size just shows the magnitude of effect.

Figure 4.16 depicts the vertical quantile comparison functions (4.10) for these distribu-

tions. The QCES is the area between these functions and turns out in this case to be

QCES= 0.61. Following the argument in §4.3.3, we would judge this as indicating a very

strong ES.

In order to assess sensitivity, we take the W (0.76, 4.95) distribution for T0 as baseline

and calculate the QCES when we vary the fitted parameters of the distribution for T1.

Figure 4.17 shows the resultant contour plot. The baseline is indicated by a black square.

The actual QCES is indicated by a shaded circle. The plot suggests that the sales group

has fitted parameters which are very far from parameter values which would produce a

much smaller ES.
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Figure 4.16: Vertical comparison quantile functions for T0 and T1.

Figure 4.17: Sensitivity plot: a contour plot of QCES values for varied parameter choices for

sales-group distribution, comparing to baseline distribution T0.
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4.6.2 Using empirical quantile functions to generate effect sizes

We may instead use the empirical quantile functions, derived from the empirical cdfs, to

compute ES. This avoids the need to estimate parametric forms for the variables under

study. Using the empirical cdfs, we computed QAD=9.08 which is slightly smaller than

the corresponding parametric estimate. The corresponding value of the QCES is 0.654,

again suggesting a very large effect size.

4.7 Inference based on bootstrapping

The theoretical distributions of the QAD and the QCES are complicated to find. Thus, we

derive a bootstrap approximation of their distributions given the observed samples (Davi-

son and Hinkley, 2006). For the two-sample comparison, repeated resamples are drawn

with replacement from the two sets of observations and ES and so forth calculated from the

resamples. We repeated this resampling process 10,000 times in order to find bootstrap

distributions and confidence intervals for our ES (Hesterberg et al., 2003). We did this for

the parametric method described in §4.6.1, which involves fitting Weibull distributions

to each resample and then computing ES, and for the nonparametric method described

in §4.6.2, which generates a different empirical cdf for each resample. Table 4.3 shows

the result of the bootstrap sampling for QAD and QC effect sizes for both parametric

and non-parametric approaches. F0 and F1 are the fitted cdfs for T0 and T1 respectively,

and F̃0 and F̃1 are the corresponding empirical cdfs. The column entitled Observed gives

the ES computed from the original sample. The remaining columns summarise the boot-

strapped ES. Histograms of the bootstrapped ES are all reasonably Normal in shape, and

the summaries give no cause for concern.

Table 4.3: Bootstrap summry statistics based on 10,000 resamples: estimation of the

standard error, 95% confidence interval, and bias for each ES.

Effect Size Observed Mean SE 95% CI Bias

Parametric QAD K(F0 , F1) 9.346 9.328 0.346 (8.65 , 9.99) +0.018

Empirical QAD K(F̃0 , F̃1) 9.081 9.056 0.347 (8.39 , 9.74) +0.025

Parametric QCES D(F0 , F1) 0.611 0.610 0.009 (0.59 , 0.63) +0.001

Empirical QCES D(F̃0 , F̃1) 0.645 0.646 0.009 (0.63 , 0.66) −0.001
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4.8 Discussion

The standard ES proposed for two-sample comparison studies are mostly based on the

assumption of the Normal distribution and limited aspects of changes in parameter. In

this chapter we have introduced two ES measures, the QAD and the QCES, which are based

on quantile functions and which better summarises differences distributions over the full

range of probabilities. The QAD is an ES for which differences between distributions

are summarised in terms of the original units of measurement. The QCES has been

developed as bounded, standardized, divergence measure for circumstances where the

unit of measurement is not meaningful or relevant. We have investigated these ES for two

parametric families and in a practical application, and suggested some practical thresholds

for what constitutes small and large effects.
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Chapter 5

Conversion Analysis: Logit Model

In this chapter we use the logit model to assess the contribution of predictors to purchasing

behaviour for the SLC data set. This model helps to predict the probability of an online

purchase during a website visit session. A set of session attributes obtained by clickstream

data are used as predictors. The subset of variables, including interaction terms, is selected

from the session attributes using stepwise variable-selection techniques. This enables us

to derive individual purchase probabilities for each visit based on general clickstream

behaviour. It should be noted that we use just the general clickstream data of users

navigating the website, whereas in the case of using registered customers one may access

information about the users in more detail (for example, history of customers purchases

and customer demographics). Having the best model fitted, the predictive power of the

model for classifying customers concerning their purchase behaviour on the Internet is

assessed. In comparison with previous studies, our contribution is to take into account

interaction terms, as well as main effect general clickstream information. We intend to

identify the most significant predictors of online purchasing which maximize the predictive

power of our model in practice. This chapter contains initial exploratory modelling and

graphing to illustrate some of the concepts and introduce some of the key issues. We do

not perform exhaustive modelling of all relationship as this is not the focus of this thesis.

5.1 Introduction

A well-known feature of online shopping is that visitors of e-commerce websites are rarely

loyal to a specific website when searching for a particular product/service or category

(Van den Poel and Buckinx, 2005). Visitors can search several e-commerce websites for
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a product/service in a relatively short time at no cost and select the one which satisfies

them the best. Thus, clients are able to easily compare the offers of several companies

in an e-business environment. This also leads companies to a more intensive competition

arena. On the other hand, every year the number of people who do online shopping

increases and people do not look at internet only as a source of information. Therefore,

many companies show interest in running an active and successful e-business along with

their offline media. For this reason, successful e-marketing may require a special effort to

improve knowledge about visitors in order to capture a reasonable share of the market.

Clickstream data obtained by online virtual store can be used as a source of information

with regards to the customers buying behaviour. Clickstream data typically contains

information about the behaviour of visitors to the company’s website. Investigating the

behaviour of visitors to the company’s website, online buyers and non-buyers, may pro-

vide a better understanding of the characteristics of visits with respect to shopping. An

important metric which is computed using clickstream data is the conversion rate of a

website, defined as the percentage of website visits that lead to a purchase, is of great

importance for an e-commerce website manager. Consequently, there has been substan-

tial interest in analysis of conversion using clickstream data. This analysis may provide a

better perception of online buying behaviour, as it helps to improve the conversion rate

by examining the motives for purchases (Sismeiro and Bucklin, 2004).

Moe and Fader (2000) was an early effort to investigate customer conversion rates, which

introduced a dynamic model using behavioural changes over time to forecast internet

behaviour. Later, they extended the application to historical visiting data and the type of

customer visit (Moe and Fader, 2001). Padmanabhan et al. (2001) introduced a model to

predict the probability of a purchase for the remainder of a session. Sismeiro and Bucklin

(2004) show that experience as well as browsing behaviour can improve prediction of online

buying. Van den Poel and Buckinx (2005) applied a logistic regression model for predicting

online-purchasing behaviour using web browsing data as well as customers demographic

data and purchase records. They used a set of variables as a detailed clickstream data,

such as number of pages visited related to products, supply procedures, and personal

information.

5.2 Response and explanatory variables

The SLC data, introduced in chapter 2, is used to fit the logit model on conversion status

based on general clickstream information available in the SLC data. First, we randomly
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split the data set into two equal parts: training data, to fit the model and estimate the

parameters of the model and test data to assess the ability of the model for classification

purposes.

The response variable is conversion status (CVS). The CVS, as a binary response variable,

indicates whether an online purchase has been made through a web session. We assign

the value of 1 for the session in which an online purchase occurs, and 0 otherwise. As

reported in chapter 3, the conversion rate is 13.0%, which is hight level for an e-commerce

website.

The explanatory variable most often used in the literature is the frequency of visits.

Moe and Fader (2000) shows that the conversion rate is significantly higher for visitors

who often return to the website. They also investigate the effect of the recency variable

in a logistic regression as additional information to consider customers’ behaviour. The

accumulated visits variable has also proved to be a powerful indicator of purchase potential

(Moe and Fader, 2001). Padmanabhan et al. (2001) found that the length of time a visitor

spends on a website is positively associated with potential purchase. Bucklin et al. (2002)

took into account the cumulative number of pages viewed as depth of visit, and showed

that it affected the propensity to continue browsing along with measures of repeat visits.

For a complete list of clickstream attributes used for modelling conversion see Van den

Poel and Buckinx (2005). For the list of explanatory variables in SLC data used in the

model selection see Table 5.1.

5.3 Explanatory analysis of conversion

In this section we use graphical representations to show how general clickstream data can

explain the browsing behaviour in the session in terms of conversion rate. Specifically,

we explore the conversion in a session for SLC data by investigating session attributes

separately for sessions with and without conversion.

In the offline situation, people tend to shop more on weekends than during the week.

Now the question is whether there is evidence to show that the same pattern of shopping

from e-retailers on weekends holds. Figure 5.1 (left) exhibits a bar chart of the conversion

rate for different days of the week. It seems that the conversion rate is slightly higher

for Sundays. The width of the bars is proportional to the traffic of the website for each

day. The equal width of the bars shows that nearly the same number of visitors visits the

website on different week days.
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Table 5.1: The label and short description of the variables in SLC data used in the model

selection. It also represent the number of levels. For continuous variables number of levels

is reported 1

Variable Label No. of levels

logTD logarithm of time Duration (log-Seconds) 1

logNPV logarithm Number of pages visited 1

logFTD logarithm of former time duration (log-Seconds) 1

NFV Number of former visits 1

UK Whether come from UK 2

GA Whether come from Google Ad 2

RV Whether repeat visit 2

VW Visit on weekend 2

VWD Day of the week 7

HD Hour of the day 24

TNPV Total number of Pages visited 1

MPD Mean of the time page durations (Seconds) 1

StdPF Std of the time page durations (Seconds) 1

Figure 5.1: The bar chart represents the rate of online purchase given the frequency of return

to the website. The width of the bars is proportionate to the number of observations occurring

in each category.
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Figure 5.2: Back-to-back histograms of session time duration (left) and average time duration

per page (right) given the response variable conversion and non-conversion visits.
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The effect of the number of times a visitor returns to the website on the conversion rate is

investigated in Figure 5.1 (right). The highest conversion rate is observed for the category

of one previous session. The conversion rate seems to decrease as the visitor returns to

the website on several occasions (in the period of one week). It should be noted that the

width of the bars is proportional to the traffic observed in the corresponding category.

The length of a session may provide valuable information about browsing behaviour. In

general, it is likely for users who aim to buy to spend more time on the content web pages.

There might be an exception for those who know the website very well and regularly order

an item from the website. In this case, there is the need for other auxiliary information

to distinguish them, such as whether the visit is a repeat sessions or total amount of time

spent on website.

Figure 5.2 (left) shows the back-to-back histogram of the session time duration based on

conversion segmentation. The length of a visit is visibly longer for the conversion sessions.

The plot, in fact, represents the conditional distribution of the session time duration given

the session with and without an online purchase. The graph also shows that in 50% of the

non-conversion sessions, the visitor leaves the website within the first 2 minutes and 30

seconds of visiting it. However, only 1% of the conversion sessions last 2.5 minutes or less.

Hence, increase of session time duration is associated with an increase in the probability

of making an online purchase.
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Figure 5.3: Heat plot to represent the interaction effect of logarithm of session time duration,

logTD, and logarithm of number of pages visited, logNPV, (left) and previous session time dura-

tion and logTD (right) on conversion rate. The heat spectrum shows the magnitude of conversion

rate.
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The average time spent on each page arguably can be considered as a measure of attention

to the web pages while a user is surfing a website. It is expected that more time will be

spent on pages, specifically content pages, when one aims to make a purchase. Figure 5.2

(right) indicates how the distribution of the average time duration over pages differs for

conversion and non-conversion sessions. The summary statistics have been computed for

both groups, indicating that the median of average time per page is 77 seconds which is

considerably higher than the 28 seconds computed for the non-conversion session. It is

apparent that average time duration per page for conversion sessions is greater than for

non-conversion sessions.

Figure 5.3 (left) portrays the effect of session time duration and number of pages viewed

on purchase rate simultaneously. The colour of each square segment shows the level of

conversion rate. It can be seen that, regardless of the number of pages, conversion occurs

at the same rate at different levels of session time duration.

Similarly, the interaction effect of session time duration and previous session time dura-

tions on purchase rate is depicted in Figure 5.3 (right). It explains that users who make

purchases in a fairly short time in the current session have previously spent a reasonable

amount of time on the website. We also observe that the highest rate of purchase occurs

for those who have already spent between 10 to 30 minutes visiting. This rate sharply

January 23, 2012



5.4. Model Specification and Estimation 109

Table 5.2: The conversion rate for the UK and non-UK visitors who arrived to the website

through Google link or other ways. Margins give the percentages of online purchase for

UK/non-UK visitors, and Google/non-Google referring to the website.

Non-Google Google Total

Non-UK 2.6 % 9.0 % 3.1 %

UK 15.2 % 12.4 % 14.5 %

Total 13.1 % 12.2 %

decreases after 30 minutes for first-time visits, whereas for repeat-visit sessions it drops

after 20 minutes.

Table 5.2 shows that domestic visitors of the website (connection from UK ISP) are less

likely to engage in purchasing when coming to the website via Google Ad links., while this

pattern is reversed for non-UK visitors. This may imply that the interaction term in the

model on conversion is necessary. Marginal percentages show that people from the UK, in

general, are more likely to purchase from the website. The conversion rate for subgroups

of Google/non-Google referring does not show a difference as large as UK/Non-UK, but

0.9% increase of conversion rate in practice may be significant. Specifically, in the sub-

group of UK visitors the conversion rate is 2.8% higher than Google search. It might

be due to the customers who come to the website for a repeat visit directly either by

typing in the address in the navigator toolbar, or using the bookmarking facility of the

web navigators.

5.4 Model Specification and Estimation

The logit model is well-understood and commonly used in statistics, machine learning

and many other disciplines. Its statistical foundation helps in the investigation of the

relationship between discrete responses and a set of explanatory variables by means of a

probabilistic model. It is a good candidate to model binary and ordinal responses, which

arise in many fields of study. Several main textbooks discuss the logit models, such as

Collett (1991), Agresti (1990), Cox and Snell (1989), and Hosmer and Lemeshow (1989).
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5.4.1 Binary Logit Model

In the binary logit model, the response variable Yi of the i-th individual or an experiment

unit can take one of two possible values, denoted for convenience by 0 and 1 (for example,

Yi = 1 if an online purchase takes place during a visit session i, otherwise Yi = 0). Suppose

xi = (xi1, xi2, . . . , xik) is a vector of explanatory variables and πi = Pr(Yi = 1 | xi) is the

response probability to be modelled. The linear logistic model is in the form of

log

(
πi

1− πi

)
= β0 + β1 xi1 + · · ·+ βk xik, (5.1)

where the βjs are the parameters of the model, and xij is the realization of the j-th

explanatory variable for the i-th unit. The model can be presented by matrix notation:

η(p) = Xβ, where β = (β0, β1, . . . , βk)
′ is vector of parameters, π = (π1, π2, . . . , πN), and

X is design matrix, and η(.) is called link function.

The likelihood is a function of the data and the parameters of the model. The maximum

likelihood (ML) estimator of the parameters is computed by maximising the likelihood

function. The form of the likelihood for the binary responses is given as:

L(β) =
N∏
i=1

pYii (1− pi)1−Yi . (5.2)

Two iterative maximum likelihood algorithms have been developed to estimate the ML

estimate of parameters: the Fisher-scoring method, which is equivalent to fitting the

model by iteratively re-weighted least squares method, and the Newton-Raphson method.

Both algorithms provide the same parameter estimates; however, the estimated covariance

matrix of the parameter estimators may differ slightly, as the Fisher-scoring method is

based on the expected information matrix, while the Newton-Raphson method uses the

observed information matrix. It should be noted that for a binary logit model the observed

and expected information matrices are identical. This results in the same estimated

covariance matrices for both algorithms. For details of the algorithms see McCullagh and

Nelder (1989) or Hosmer and Lemeshow (2000).

5.4.2 Single Logistic Regression Models

The simplest type of logistic regression model involves only one explanatory variable;

as a starting point, we first fit simple logistic regression on conversion status for each
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Table 5.3: The summary of the single logistic regression model, and the labels of general

clickstream measures studied

Variable Label df AIC P-Value C-Index

↗ logTD log Time Duration 1 6434 0.000∗∗∗ 0.75∗∗
↗ logNPV log Number of pages visited 1 7860 0.000∗∗∗ 0.65∗
↗ logFTD log of Former Time Duration 1 8075 0.494 0.51

↘ NFV Number of Fomer visits 1 8044 0.000∗∗∗ 0.52

↗ UK Whether come from UK 1 7870 0.000∗∗∗ 0.64∗
≈ GA Whether come from Google Ad 1 8074 0.330 0.50

≈ RV Whether Repeat Visit 1 8074 0.278 0.52

≈ VW Visit on Weekend 1 8074 0.771 0.50

≈ VWD Visit on Week day 6 8070 0.323 0.50
↗
↘ HD Hour of the Day 23 8050 0.000∗∗∗ 0.61∗
↘ TNPV Total Number of Pages Visited 1 8043 0.000∗∗∗ 0.71∗∗
↗ MPD Mean of the page durations 1 8013 0.000∗∗∗ 0.73∗∗
≈ StdPF Std of the Page Duratios 1 8075 0.491 0.50

† Significant at level: 0.1 (∗) 0.05 (∗∗) < 0.05 (∗∗∗)
‡ Effect size: small (∗) medium (∗∗) large (∗∗∗)
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explanatory variable in the SLC data set. This helps to obtain a rough idea of the

variables which have a strong association with the conversion status.

Table 5.3 shows the list of explanatory variables. Each row corresponds to the simple

logistic regression fitted for a single explanatory variable. The columns of degrees of

freedom and p-values correspond to the analysis of deviance, using the chi-square statistics

indicating the significance of reduction in deviance. The table also shows the Akaike

Information Criteria (AIC) of the model, as a penalised lack-of-fit measure, and the C-

index, the area under the ROC curve, is an effect size measure showing the predictive

power of the model. It should be noted that non-binary categorical variables (e.g., the

effect of the weekdays on purchase) do not have one coefficient but rather have as many

coefficients as there are categories minus one. Of course, not all of these variables will

be in the final fitted model, but this will be an starting point to find the association of

covariates to the response variable and model building.

There are seven variables with small p-values (≤ 0.000) when fitting simple linear regres-

sion, distinguished by ∗ in Table 5.3. The direction of association is also represented using

the symbols: ↗ for positive,↘ for negative, and ≈ no association. Among these variables

the NFV has a very small C-Index, 0.52. It should be remembered that a model that

randomly classifies the response variable will have an average ROC area of 0.5; As a rule

of thumb an C-Index of 0.65 or above is deemed practically significant in many contexts

(Van den Poel and Buckinx, 2005). The strongest (positive) association to conversion

belongs to the logarithm of the session time duration, logTD. The positive association for

UK shows that visitors from UK are significantly more likely to make a purchase. Having

positive association for MPD shows that depth of visit increase the chance of conversion.

Although it is expected, the model shows that the conversion rate varies for different

hours in a day. It should be noted that just because a particular explanatory variable

alone does not result in a strong model that does not mean that it will not be useful when

combined with other variables.

5.5 Model Selection Procedures

Following the parsimonious principle in statistics, we seek a relatively small subset of

predictors which can reasonably explain the response variable. When the number of

predictors increases, the number of possible interaction goes up considerably. Therefore,

one needs some special algorithms for the purpose of choosing the best subset. For

example, for 15 available main effect terms, there exist 105 two-way interaction terms. We

January 23, 2012



5.5. Model Selection Procedures 113

Table 5.4: The summary of stepwise model path and the deviance analysis.

Step Variable df Res. df RDev AIC BIC P-Value

1 1 10495 8071.09 8073.09 8080.35

2 + logTD 1 10494 6429.73 6433.73 6448.25 <1.0e-16

3 + UK 1 10493 6273.31 6279.32 6301.09 <1.0e-16

4 + NFV 1 10492 6199.70 6207.71 6236.74 <1.0e-16

5 + logFTD 1 10491 6187.33 6197.34 6233.62 4.3e-04

6 + logTD:logFTD 1 10490 6173.63 6185.64 6229.18 2.1e-04

7 + GA 1 10489 6164.10 6178.11 6228.91 2.0e-04

8 + UK:GA 1 10488 6149.37 6165.37 6223.44 1.2e-04

examine the result of three widely used variable-selection algorithms: forward selection;

backward elimination; and forward/backward procedures.

The forward selection method first estimates parameters for effects forced into the model.

These effects are the intercepts and the effects of the first n explanatory variables we are

interested in keeping. The procedure continues by computing and examining independent

variables one-by-one to the logistic regression model and choosing the largest of these

statistics. If it is significant at the αin level, the corresponding effect is added to the

model. It should be noted that, once an effect is entered into the model, it is never

removed from it. The process is repeated until none of the remaining effects meet the

specified level for entry. It may also be asked to terminate when a stopping value is

reached.

The first step for a backward selection method includes fitting a model with all the effects

we are interested in examining. At each step an effect is removed if it does not meet the

significance level of stay αout, or we decide to keep n specified variables in the model. The

process continues until no other effect in the model can be removed or until the stopping

value is reached.

The forward/backward selection is similar to the forward selection except that effects

already in the model do not necessarily remain. Effects are entered into and removed

from the model in such a way that each forward selection step may be followed by one or

more backward elimination steps. The stepwise selection process terminates if no further

effect can be added to the model or if the effect just entered into the model is the only

effect removed in the subsequent backward elimination.
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In addition to the variables listed in Table 5.3 we also allows the quadratic term of the

continuous variables to be selected in the stepwise selection process. All three methods

suggest the same model, so we have not shown the details of the forward selection and

backward elimination processes. The summary of the forward/backward selection method

is shown in Table 5.4, allowing all first-order and interaction terms. In the first step, the

intercept-only model is fitted and individual score statistics for the potential variables are

evaluated. Due to the large number of observations in our study, the Bayesian Information

criterion (BIC), which will be discussed in the next section, is applied as a score statistic

in the stepwise variable selection. Each addition or deletion of a variable to or from a

model is listed as a separate step, and at each step the new model is fitted. At step

2, the variable logTD is selected into the model since it is the most significant variable

among those to be chosen (reduction of 1632.10 in BIC), emphasizing the importance of

the visit time duration in distinguishing between conversion sessions and non-conversion

sessions. The UK and NFV, as well as the logFTD variables, are the three variables

that explain the online purchase. Through 8 steps, the variable selection methods result

in the contribution of 4 main effects and 2 two-way interaction effects. Finally, in step

9, the remaining variables outside the model do not meet the entry criterion, and the

forward/backward selection is terminated.

It should be noted that using AIC as score statistics in the forward/backward selection

results in a model containing 6 extra interaction terms. The contribution of these inter-

action effects is not significant and the large number of observations is the main reason

for illusory merit of entrance. Considering the single logistic model fitted in Table 5.3,

MPD have not allowed to get in the model. This can be explained by the multicollinearity

between the variables in the model and these two variable. For example, there is positive

correlation between logTD and MPD.

The NPV variable does not meet the criterion to enter to the model, but that does not

necessarily mean that there is no relationship between purchase and number of pages

visited. This might be due to the high correlation of variable logNPV and logTD (0.66

in our sample) that causes the model to have both effects simultaneously. As the VWD

do not meet the entry criterion of the model, there is no evidence showing that people

tend to purchase from an e-retailer at the weekend or on any particular day of the week

more than any other. We observed in Figure 5.1 that the conversion rate is slightly higher

for Sundays. However, this does not cause a considerable reduction in model predictive

quality and its effect is not in the final selected model.

The hour of the day has been found to be a highly influential factor, as shown in Table 5.1

which consider both p-value and C-Index. This factor was not selected in the stepwise
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Table 5.5: The summary of stepwise model path and the deviance analysis.

Step Variable df Res. df Dev AIC BIC P-Value

1 1 10495 8071.09 8080.35 8089.60

2 + LogTD 1 10494 6429.73 6448.25 6457.49 <1.0e-16

3 + UK 1 10493 6273.32 6301.10 6310.34 <1.0e-16

4 + NFV 1 10492 6199.70 6236.74 6245.97 <1.0e-16

5 + Hour.C2 1 10491 6174.37 6220.66 6229.90 <1.0e-04

6 + logFTD 1 10491 6162.22 6217.77 6227.00 <1.0e-04

7 + LogTD:logFTD 1 10490 6148.46 6213.27 6222.50 <1.0e-04

8 + GA 1 10489 6138.29 6212.36 6221.58 <1.0e-04

9 + UK:GA 1 10488 6123.56 6206.89 6216.11 <2.1e-04

Figure 5.4: Bar-plot for the the conversion rate at different hours of the day (left) a three

period of the the day (right)
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approach. It may be because this factor imposes 23 degrees of freedom. Figure 5.4 (left)

shows the conversion rate for different hours of the day. We also show the rate for over

night, day time and evening, Figure 5.4 (right). The graph shows that the conversion

rate over night is nearly half that of the rest of the day. We recode this factor more

parsimoniously into a three-level, as shown on the Figure 5.4 (left) and also a two-level

time period, considering 00:00–06:00 versus the rest of the day. We refer those recoded

factors as Hour.C3 and Hour.C2 respectively. It is quite obvious that the conversion

rate during the day, 6:00–17:00, is three times more than night time, 00:00–06:00. This

difference is much less noticeable when comparing the day time versus evening time.

Performing the forward-backward selection using both scenarios showed that only the

two-level time category, Hour.C2, is significant enough to appeared in the final model.

The summary of the forward/backward selection method is shown in Table 5.5. The result

shows that in the fifth step the Hour.C2 is entered to the model. All factors selected in

Table 5.4 still remain in the final model.

5.6 Parameter Estimation and Visualisation

Unlike linear regressions, whose coefficients provide a direct multiplicative interpretation,

for logistic regressions it is more difficult (but still possible) to directly interpret the

magnitude of a coefficient. Thus, one may simply interpret the sign as indicating a

positive or negative effect and try to indicate magnitude using other means like building

contingency tables and auxiliary graphs. It is also more complicated to interpret the

coefficients of explanatory variables of the model when the corresponding interaction

terms are significant. We will take advantage of data visualization techniques to assess

the interaction effects.

Table 5.6 lists the parameter estimates, their standard errors, z-score statistics for indi-

vidual parameters, and corresponding p-values. It shows that session time duration is the

most significant effect of the model. It is also supported by the back-to-back histogram

depicted in Figure 5.2. Due to presence of interaction terms in the model, the coefficients

need to be interpreted carefully.

In order to clarify how interaction term affects the probability of the conversion, we

applied an interaction plot for one continuous effect and also for the case of two categorical

effects. Figure 5.5 (left) shows two separate logistic curves, for session which arrive at the

website through Google and non-Google arrivals, based on the variable (log) session time

duration. It should be noted that the corresponding interaction term, GA:logTD, is not
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Table 5.6: The maximum likelihood estimate of the parameters of the logit model and

corresponding test statistics

Coefficient Estimate Std Error Z-value P-Value

(Intercept) -11.187 0.431 -25.95 < 2.0e-16

logTD 1.135 0.030 37.53 < 2.0e-16

UK 1.848 0.145 12.75 < 2.0e-16

NFV -0.534 0.094 -5.68 1.4e-08

Hour.C2 1.034 0.185 5.56 2.7e-08

logFTD 0.377 0.064 5.91 3.5e-09

GA 1.457 0.329 4.43 9.6e-06

logTD:logFTD -0.052 0.011 -4.65 3.3e-06

UK:GA -1.767 0.336 -5.25 1.5e-07

significant in the model. The slight difference of two lines emphasises the negligible effect

of interaction term in predicting purchase behaviour in the model. One can also infer from

the Figure 5.5 (left) that probability of conversion slightly increases up to 150 seconds (2

minutes and 30 seconds corresponds to the logarithm of 5) of the session duration, and

then it shows a sharp increase.

Figure 5.5 (right) provides a graphical representation of interaction effect of logarithm of

time spent on the website in previous visits (logFTD) and the logarithm of the current

session time duration (logTD) in the logistic regression on conversion. This interaction

term has been found statistically significant in the final model. The plot shows consider-

able distance between curves for different values of former time spent on the website. We

observe that visitors who spend less than 2 minutes and 30 seconds on the website (i.e.

logTD less than 5) are more likely to purchase if they have visited the website before, but

this difference is not considerable. On the other hand, for those spending more than 5

minutes visiting, the increase in the probability of purchase rises more sharply for first-

visit surfers (solid line or FTD= 0), and gradually decreases as the previously-spent time

increases. This plot also let us compare the probability of conversion based on interaction

effect model. For example, the logTD= 7 and FTD= 0 the probability of conversion is

estimated to be 0.6, whilst this probability decrease to 0.4 for FTD= 10.

The frequency of return to the website has been found significant in the model. The

negative sign of the parameter estimate describes that several return visits to the website

would decrease the likelihood of purchase in the session. However, because of the presence

of the interaction and quadratic terms in the interpretation, the main effects need to be
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Figure 5.5: Interaction plot for the logistic regression, the effect of logTD×GA (left) and the

effect of logTD×logFTD (right).
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interpreted carefully.

5.7 Assessing Model Quality

Once we have created a model, we need to assess how good it is, both in absolute terms

and when it is compared with competing models. There are several classes of model

quality criteria.

Residual Deviance: The statistic −2×Log-likelihood, sometimes referred to as the

residual deviance (RDev), is a measure of how far a particular model is from the ideal

model that perfectly fits the training data set, where the ideal deviance is considered to

be 0. The deviance for only-intercept model which is called the null deviance is computed

at the first step. The null deviance is actually the measure of the worst-possible model

for predicting a given response variable, since it does not take any explanatory variables

into account.

The residual deviance follows a chi-square distribution under the null hypothesis that

all the explanatory effects in the model are zero. This provides a statistical test for

the goodness-of-fit hypothesis and the corresponding p-value can be computed for the

statistic.
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The difference between the residual and null deviances indicates how much the explanatory

variables help to improve the model’s fit. Table 5.4 depicts the reduction of 1641.36 in

deviance by entering logTD variable into the model. This is the highest possible reduction

made among those variables we are interested in. The larger the reduction in deviance,

the better the model fits the training data set. Given the logTD variable into the model,

the maximum reduction, 156.41, is induced by the UK variable. To determine whether a

particular reduction is statistically significant, a p-value is obtained from an analysis of

deviance chi-square test (see p-value measure in the Table 5.3).

Penalised residual deviance: When estimating model parameters using the ML ap-

proach, adding any parameter, regardless of the significance, decreases the residual de-

viance. In practice, a model with fewer explanatory variables and interaction terms is

usually preferred, given that it has comparable residual deviance to a more complex

model. This is because simpler models yield more intuitive justifications and are less

likely to over-fit the training dataset. The problem of using residual deviance in model

selection can be resolved by introducing a penalty term for the number of parameters in

the model.

Two common criteria which are defined as the penalised version of residual deviance are:

Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC). Suppose the

model contains k explanatory effects. For the j-th observation, let pj denote the estimated

probability of the observed response. A commonly-used quality metric AIC augments the

residual deviance measure with the number of explanatory variables and assigns a lower

(better) score to simpler models. The AIC is computed by:

AIC = −2 logL+ 2(k + 1), (5.3)

Schwarz (1978) introduced another penalised residual deviance in which the penalty is

larger than in the AIC. It is usually called Bayesian Information Criterion (BIC), or in

some literatures referred as to Schwarz Criterion. The formula is given as:

BIC = −2 logL+ (k + 1)× log(N), (5.4)

where N is the number of observation. The AIC and BIC statistics give two different

ways of adjusting the −2 log-Likelihood statistic for the number of terms in the model

and the number of observations used. These statistics should be used when comparing

different models for the same data; lower values of the statistic indicate a more desirable

model.
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Table 5.7: Model fit statistics for Intercept model and the selected stepwise model fitted

Intercept Intercept and

Criterion Only Covariates

RDev 8071.09 5816.33

AIC 8073.09 5836.82

BSC 8080.35 5908.92

R2 Nagelkerke 0 0.32

Generalized Coefficient of Determination: Cox and Snell (1989) proposed the gen-

eralization of the coefficient of determination to a more general linear model:

R2 = 1−

{
L(0)

L(β̂)

} 2
N

, (5.5)

where L(0) is the likelihood of the model with only an intercept parameter, or the null

deviance, L(β) is the likelihood of the specified model, and N is the sample size. The

quantity R2 achieves a maximum of less than one for discrete models, where the maximum

is given by

R2
max = 1− {L(0)}

2
N . (5.6)

Nagelkerke (1991) proposes the following adjusted coefficient, which can achieve a maxi-

mum value of one:

R̃2 =
R2

R2
max

. (5.7)

Table 5.7 contains the AIC, the BIC and the RDev measures for the difference between

the intercept-only model and the fitted model. These model fit statistics can be used

to compare different models. The model with smaller values is preferred. The statistics

confirm that the general session attributes do not give us sufficient information to explain

all purchase behaviour; they explain around 32% of the variation.

5.8 Classification by logistic regression

Logistic regression can be applied as a classification technique to assign each item into the

class which is most probable given the realizations of the explanatory variables. For binary

response data, the response is either an event or a non-event. From the fitted model, a
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Table 5.8: Association of predicted probabilities and observed responses for the stepwise

logit model fitted (using test data set). The left hand side measures compute for the

cut-point which produces the highest largest positive and true negative simultaneously

True Positive 0.69 Somers’s D 0.675

True Negative 0.69 Gamma 0.694

False Positive 0.31 Tau-a 0.151

False Negative 0.31 C-Index 0.835

predicted event probability can be computed for each observation. If the predicted event

probability exceeds some cut-point value z ∈ [0 , 1], the observation is predicted to be an

event observation; otherwise, it is predicted as a non-event. A 2× 2 frequency table can

be obtained by cross-classifying the observed and predicted responses. Each cut-point

generates a classification table.

5.8.1 Classification assessment

A good model must accurately classify items of the training data set, as well as the test

data set. The logit model assigns each item the probability of being 1. Setting a threshold,

say 0.5, we classify the items for which the model-calculated probability ≤ 0.5 as 0, and

for > 0.5 as 1. There is no definite answer to find the optimal threshold. It depends on

the relative costs of obtaining false positives (e.g., mistakenly predicting that a person will

purchase when he/she actually does not) versus false negatives (e.g., mistakenly predicting

that a person will not purchase online when he/she actually does). If the cost is the same,

then an optimal value for the cut-point would be the value which produces the highest

true positive, the number of correctly predicted events, and true negative, the number of

correctly predicted non-events, simultaneously.

Table 5.8 contains four measures of association of predicted probabilities and observed

responses which helps to assess the predictive ability of a model. We use the test data set

to compute these measures. They are based on the number of pairs of observations with

different response values, the number of concordant pairs, and the number of discordant

pairs, which are also displayed.

A common way of showing the trade-offs of different thresholds is by using an ROC curve,

a plot of the true positive rate (the number of true positives over total number of positives)

versus the false positive rate (the number of false positives over total number of negatives)
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for all possible choices of thresholds. For example, a high threshold will yield a low false

positive rate, as only samples with very high probabilities will be classified as positive.

We will explain in the next section how the optimum cut-point can be found using the

intersection of sensitivity and specificity curves. For the fitted logistic model the optimum

cut-point probability is 0.35.

5.8.2 Receiver Operating Characteristic (ROC) Curves

The accuracy of the classification is measured by its sensitivity, the ability to predict an

event correctly, and specificity, the ability to predict a non-event correctly. Sensitivity

is computed through the proportion of event responses that were predicted to be events.

Similarly, specificity is the proportion of non-event responses that were predicted to be

non-events. It is also common to compute three other conditional probabilities: false

positive rate, false negative rate, and rate of correct classification. The false positive rate

is the proportion of predicted event responses that were observed as non-events. The

false negative rate is the proportion of predicted non-event responses that were observed

as events. Given prior probabilities, these conditional probabilities can be computed as

posterior probabilities using Bayes’ theorem.

In the SLC data set, suppose n1 individuals are observed to make an online purchase. Let

this group be denoted by C1, and let the group of the remaining n0 = n− n1 individuals

who do not make online purchase be denoted by C0. Significant effects are identified for

the sample and a logistic regression model is fitted to the data. For the i-th individual, an

estimated probability p̂i of the purchasing is calculated. Higher values of the estimated

probability are assumed to be associated with the event. A receiver operating characteris-

tic (ROC) curve is constructed by varying the cut-point that determines which estimated

event probabilities are considered to predict the event. For each cut-point z, the following

measures can be computed to a data set:

TP(z) =
∑
i∈C1

I(p̂i ≥ z)

TN(z) =
∑
i∈C0

I(p̂i < z)

FP(z) =
∑
i∈C0

I(p̂i ≥ z)

FN(z) =
∑
i∈C1

I(p̂i < z),
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Figure 5.6: The plot for the sensitivity and specificity of the model for different thresholds

(left); ROC Curve to show the ability of the model to predict the event (right). The black line

represents the model that performs no better than random classification. Results are based on

test data set
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where I(.) is the indicator function. TP (True Positive) is the number correctly predicted

as buyers, TN (True Negative) is the number correctly predicted as non-buyers, FP (False

Positive) is the number falsely predicted as buyers, FN (False Negative) is the number

falsely predicted as non-buyers. We consider the proportion of the true positive and true

negative events as measures of sensitivity and specificity.

SENS(z) =
TP(z)

n1

SPEC(z) =
TN(z)

n0

MSPEC(z) =
FP(z)

n0

.

SENS (Sensitivity) function is the proportion of number of true positive events over

number of events, and SPEC (Specifity) is computed through fraction of true negative

over number of non-events. The value of 1 − SPEC(z) which is the proportion of the

number of false positives over the number of non-events.

A plot of the ROC curve is constructed by plotting sensitivity against 1−specificity.
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A model with good classification accuracy should have significantly more true positives

than false positives at all thresholds. Figure 5.6 (right) shows the predictive ability of the

model in comparison with the random classification above. The black line, corresponds

to a model of random classification. An area of 0.5 corresponds to a model that performs

no better than random classification and an area of 1 is ideal (any area above 0.9 is

extremely impressive). The area under the ROC curve quantifies model classification

accuracy; the higher the area, the greater the disparity between true and false positives,

and the stronger the model in classifying members of the training data set, 0.835 in our

study. The area under the ROC curve equals the statistic C-Index. These graphs and

corresponding statistics are computed based on test data set.

To produce this graph, the parameters of the model are estimated by the training data

and then the model is applied to test data to predict the probability of a conversion. We

consider those buyers for whom the predicted probability exceeds the specific cut-points.

In this case, sensitivity is computed by the ratio of the people who are correctly classified

as buyers. Specificity is defined as the ratio of the correctly classified non-buyers. The

C-Index is the area under the ROC curve, which can be easily computed as the ratio of

correct classification (both buyers and non-buyers).

Figure 5.6 shows the ability of the model to distinguish visitors who purchase (sensitivity),

do not purchase (specificity), and a measure of overall ability of true classification (C-

Index) using test data set. Choosing the best cut-point for the probability of purchase

gives us 78% precision of classification. We may choose a cut-point of 0.25 by which we

classify nearly 90% of buyers and 70% of non-buyers correctly.

5.8.3 Model Diagnostics

In this section we use model diagnostic procedures and tests to investigate whether the

assumptions of logistic regression fitted on SLC data are satisfied. The residuals for logistic

regression are computed as with linear regression - observed response minus expected

values. However, as the response is a probability (0 ≤ pi ≤ 1), depending on whether the

response is 0 or 1 residuals are negative or positive respectively. Hence, ordinary residual

plots are not useful for logistic regression. The binned residual plot is a diagnostic tool

for which the range of the predicted values is divided into several bins, and within each

bin the average of the predicted values and average of residuals are computed. Finally, it

plots the averages of binned residuals versus average of binned predicted values. Based

on assumptions of logistic regression the residuals are independent with mean zero, thus

their binned averages also have these properties. As a result, the binned plot is expected
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Figure 5.7: The binned residual plot to check the assumption of independent residuals

(left); Boxplot of the predicted probabilities for each response category, Conversion versus Non-

conversion visits (right).
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to show a random pattern around the horizontal line at zero if the assumption of the

model holds. The binned residual plot also displays more information about the reference

distribution by showing error bounds for residuals. These bounds can be computed either

using simulation, or if the number of points averaged within each bin is reasonably large,

the mean residuals are approximated by the Normal distribution. We can then display

the 95% error bounds for each bin (see Gelman and Hill (2006), page 97).

Figure 5.7 (left) displays the residual binned plot for the fitted logistic regression on con-

version. We used the function binnedplot in the package arm to produce the binned plot.

It is observed that for low probabilities of conversion, residuals show a systematic dis-

crepancy from zero toward negative values, indicating that the assumption of independent

errors is not met. The stepwise lines indicate 95% bounds for residuals. Many binned

residuals fall outside the bound for low probabilities and show a model misfit. So, despite

the predictive ability of the logistic regression model, there are some issues regarding the

assumptions of the model. Figure 5.7 (right) shows the boxplot of the predicted probabil-

ities based on the logit model for the two groups of conversion and non-conversion visits.

The width of boxes is proportional to the number of observations/visits in each group. It

can be seen that the distribution of probabilities in the non-conversion group is heavily

skewed toward zero.
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5.9 Classification and Regression Tree

There are additional alternative approaches to logistic regression that can be used to

classify the visits in terms of conversion. Although we do not aim to investigate different

classification approaches and choose the best one, an alternative approach helps to bench-

mark the predictive ability of logistic regression. In this section we use the classification

and regression trees (CART) method, as an alternative nonparametric data mining algo-

rithm to the standard logistic regression model (Austin, 2007). The CART algorithm is

a widespread approach which is well-known for its ease of interpretation. The result of

the CART model is usually represented by a decision tree. Decision trees are composed

of a set of rules based on variables in the modelling data set so that rules are selected to

achieve the best split of response variable. A decision tree splits a node or the explanatory

variable so that it best differentiates between the categories of the target variable. The

same process is applied to each child node. Splitting stops when no further significant

splits are found, or some pre-set stopping rules are met. As an alternative, algorithm

data is split as much as possible and then non-significant branches are ignored, known

as pruning. Each branch of the tree ends in a terminal node, where there is no more

split. Each terminal node is uniquely defined by a set of rules. Each observation falls into

exactly one terminal node. For detailed technical discourses of the CART methodology,

also referred to as binary recursive partitioning, see Breiman et al. (1984).

We use the same training data set from the SLC data as used to estimate the parameters of

logistic regression. This enables us to compare the fitted logistic regression and the CART

outputs in terms of predictive ability, as well as significancy of the predictors. The results

of CART is displayed in a tree structure in Figure 5.8. The x-axis defines the probability

of incidence (conversion in our study). So the location of each node with respect to the

x-axis shows the probability of conversion in the subgroups identified by the node. The

most significant association with conversion is found for the logTD variable with a cut-off

at 5.56 (equivalent to 4.5 minutes). It can be seen that the chance of conversion is very

low for visiting sessions lasting less than 4.5 minutes, 0.015. The odds ratio of conversion

for the long sessions (more than 4.5 minutes) versus short session visits is 25 to 1.

In the second step, the procedure is repeated within the subgroups identified in step one,

for sessions which last more than 4.5 minutes. The most significant split is obtained by

UK versus non-UK visitors. The odds ratio for the subgroup of the long visit sessions on

conversion is 4 to 1 in favour of UK visits. The last split is found at level four by splitting

the average time spent on pages, MPD, for 2390 visits. This subgroup is split into 837

visits with an average page time duration of below 57 seconds with conversion probability
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Figure 5.8: Classification and regression tree (CART) analysis of general clickstream data on

conversion.
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of 0.236, and a second group of 1553 with an average page time duration of above 57

seconds with a conversion probability of 0.382. The tree building procedure stops here

as no further significant splits can be found or further splitting would create subgroups

of insufficient size. For more information about stopping rules and pruning see Breiman

et al. (1984).

We use the test data to produce the ROC curve of the CART, see Figure 5.9 (left), to

assess the predictive ability of the model in comparison with the random classification

above. The optimal cut-off is located at 0.22, where both the sensitivity and specificity

are the same and equal to 0.78. This value is very close to equivalent optimum sensitivity

and specificity of logistic regression. Figure 5.9 (right) shows the area under the ROC

curve for the CART model as a metric for model classification accuracy. This value is

also very similar to the accuracy achieved by logistic regression. This way, neither the

logistic model nor the CART out-performs each other in terms of predictive ability.

When the CART results are compared to the findings of logistic model, in both cases the

strongest relationships are identified by logTD and UK. Unlike the logistic regression, the

Hour.C2 factor has not been chosen at this level of pruning for the CART model. However,

CART is also found in logNPV and MPD to be a relevant predictor for conversion which
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Figure 5.9: The plot for the sensitivity and specificity of the CART model for different thresh-

olds (left); ROC Curve to show the ability of the model to predict the event (right). The black

line represents the model that performs no better than random classification.
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has not been entered in the final logistic regression by the model selection step. This can

be justified by the multi-collinearity between the predictors. For example, the correlation

between the logTD and MPD variables is 0.482. It is also known that logistic regression

models generally focus more on the relative statistical significance, whilst CART results

tend to find the absolute effects (Muller and Möckel, 2008).

However, repeating the CART for different subsets of SLC data showed that only the

first and second roots of the CART (logTD and UK/Non-UK) are stable, whilst the

selected logistic is robust and did not change. This is in addition to the fact that different

definitions of cut-offs, split and stopping criteria, as well as pruning procedures may

present different classification trees.

5.10 Summary and discussion

In this chapter we used the logit model to describe the association between general

clickstream information concerning visits and whether a visitor will engage in online-

purchasing behaviour during his visit to the website. This model provides a predictive

tool for an e-commerce web owner that helps to infer the visitor behaviour, and as a
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result, to improve the online conversion rates of the website.

Past research has already incorporated the presented clickstream information to examine

the relationship with purchase propensity. However, they all considered a main effect

model and in some cases quadratic forms of variables in their studies. This study not

only incorporates the proposed explanatory variables into the model but also allows the

interaction terms to be added to the model if they contribute for better goodness-of-fit.

The results show that the performance of the model increased significantly by considering

the interaction terms into the model. Unfortunately, the SLC data does not contain the

detailed clickstream variables and demographics to allow us to compare the performance of

the model with previous studies. All three variable selection procedures (forward selection,

backward elimination, and stepwise) that were applied suggest the same model. We

consider the selected subset as the most important variable to describe online purchasing

behaviour.

The most important variables that result from the selection techniques are the logarithm of

the session time duration, whether the visitor is from the UK, the number of former visits

to the website, the logarithm of the former time spent on the website, The interaction of

session time duration and time previously spent on the website, whether or not visitors

arrive at the website from Google, and finally the interaction of domestic visit from the

UK and linking to the website from Google.

There are some explanatory variables that are significant when performing a single logistic

regression Table 5.3, which were not entered into the final model (e.g., the number of pages

visited). This is mostly because of the presence of multi-collinearity. The correlation

matrix of the explanatory variables in the subset of chosen variables shows that there

is not a large multi-collinearity which would be present when incorporating all of the

explanatory variables.

The model presented in this chapter offers a more in-depth investigation of conversion

behaviour based on general visit information compared to models without the interaction

terms. This results in a higher predictive ability and a better way of classifying customers

concerning their purchase behaviour on the Internet. This is a significant contribution

toward understanding the features that control a visitor’s decision to make a purchase

or not. Moreover, we can limit the number of necessary inputs based on the different

selection techniques.

The logit model can help to approximate the probability of whether or not a purchase is

made during the visit using the set of predictors used in the model. The ease of inter-
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pretation of logit is an important advantage over other methods such as neural networks.

Once the coefficient parameters are estimated, this model allows us to obtain a condi-

tional probability estimate of purchase. The probability approximation can be used to

rank customers in terms of their probability of purchase.

From the digital marketing point of view, using interaction and squared terms in the

logistic regression for a small number of generic web browsing features enabled us to reach

reasonable classification power. The logistic regression model provides a mathematical

equation that can easily estimate the probability of online purchase for each visitor while

he/she is browsing the website. This way, the web owner would be able to identify

high potential visitors, in terms of conversion tendency, and generate leads for suitable

targeting actions. In a web-focused marketing solution, the targeting action might help

to keep the customer in the website before leaving to find another competitor.

There are additional alternative approaches including neural networks, categorical prin-

cipal component analysis (CATPCA) and further developments of CART models such as

multiple additive regression trees (MART) and multivariate adaptive regression (MARS)

which can be used to find the best approach for predicting conversion visits. Choosing

the best approach discussed in the literature would go beyond the scope of this thesis,

and is not our aim. The CART approach was chosen here mainly because of its ease

of interpretation and its relatively widespread use. The sensitivity and specificity values

show that both logistic regression and CART are suitable for classification purposes. So

the CART model is an alternative for classification when the required assumption for the

parametric model such as logistic regression is not met. However, CART is not very stable

and is subject to change by using different sets of data.
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Chapter 6

Bayesian Mixture of Hidden Markov

Models

6.1 Introduction

This chapter essentially provides the theoretical background for the Bayesian analysis

of Mixture of Hidden Markov models (MixHMM). The application, modelling internet

browsing behaviour in an e-commerce website, will be discussed in the next chapter. As

the aim is to model web-page traversal we focus on the output of hidden Markov Models

with discrete nominal distributions. We assume that the number of components and the

number of regimes for the hidden Markov models are known. The implementation of the

MixHMM will be extended to the Bayesian context through direct Gibbs sampling and

forward-backward Gibbs sampling methods. For this reason we review the relevant meth-

ods in mixture models and Hidden Markov models such as forward-backward recursion.

Note that the classical methods of HMM are used in the Bayesian context to improve

the mixing in the Gibbs sampling from the conditional distribution. We also examine

the label-switching problem in the application of the MCMC method for MixHMM which

is an issue for both cases of mixture models and HMMs. Using Gibbs sampling for the

MixHMM, as a high dimensional model, one might face a high level of autocorrelation

for samples. use thinning to provide an independent sample from the marginal posterior

distribution of the model parameters. The performance of the model is assessed over

an artificial navigation pattern. The contribution in this chapter is to implement the

MixHMM in the Bayesian framework. see section 6.8 for a simulation study and example

to illustrate the following theory. See chapter 7 to see an application of the theory to our

actual data set.
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Figure 6.1: Graphical representation of a Markov model

6.2 Markov Model

A Markov model (Markov chain) is a stochastic process with the Markov property. The

term stochastic means that all transitions between different states of the process are

probabilistic, and having the Markov property means that, given the present state, future

states are independent of the past. Mathematically, The Markov chain is defined as a

sequence of random variables {St; t = 1, 2, . . . , T} for which St ∈ S = {1, 2, . . . , S}. The

Markov property of a Markov chain can be expressed by:

Pr{St | St−1, . . . , S1} = Pr{St|St−1}
= Pr{St = s′|St−1 = s}
= γt(s, s

′). (6.1)

The conditional independence can be denoted by St ⊥⊥ S1, . . . , St−2 |St−1. A graphical

representation of a Markov model has been depicted in Figure 6.1 using a directed acyclic

graph (DAG). A DAG consists of an arrangement of connected nodes and edges, where

nodes represent the unknown or observed quantities. The edges represent the dependen-

cies between nodes. The conditional distribution of each node, given the value of all other

nodes, depends only on the nodes to which it is connected.

If γt(s, s
′) = γ(s, s′) for every t where s, s′ = 1, 2, . . . , S then {St; t = 1, 2, . . . , T} is called

a homogeneous Markov chain. The probability of transition between states is usually

represented in a matrix form, Γ = [ γ(s, s′) ]S×S, known as the transition matrix. The

probability associated to the element (i , j), the i-th row and j-th column, shows the

probability of transition from state i to the state j. Let πt(s) = Pr{St = s} denote the

probability distribution over the St. The probability of being at state s at time t = 1,

π1(s), is called the initial state probability. One may use vector notation to represent the

state probability distribution:

πt = [πt(1), πt(2), . . . , πt(S)]. (6.2)

The chain is called stationary if for every t, πt = π. That is, the distribution of the

hidden state regardless of the time remains the same.
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6.3 Hidden Markov Model

A hidden Markov Model (HMM) is a Markov chain in which the states are unobserved,

and the inference about the states is essentially based on visible observed outputs which

depends on the hidden states. There exist many phenomena and systems based on HMM,

and consequently they have been used in a variety of fields such as signal processing

(Rabiner, 1989; Juang and Rabiner, 1991), finance and econometrics (Albert and Chib,

1993), genetics (Churchill, 1989), and many other disciplines (Castellano and Scaccia,

2007). HMM is also related to other classes of stochastic models. It can be considered as

a mixture model in which the mixing distribution is a finite state Markov chain (Scott,

2002). As a special case, when all rows of the transition matrix are equal, HMM converts

into a finite mixture model (Everitt and Hand, 1981). A common example of a hierarchical

HMM with observable outputs from the Normal distribution is the conditionally Gaussian

linear state-space model (West and Harrison, 1997).

Throughout this section we mostly use Rabiner (1989), a well-known introduction for

HMM, to illustrate the basic concepts of the HMM. Specifically, the likelihood for the

model is given and how the resulting likelihood function can be optimized with the EM-

algorithm is shown. This involves maximising the likelihood function with respect to the

parameters of the model. In this section the computation is given for some known family

of probability distributions.

Note that in a regular Markov model the states are directly visible to the observer. There-

fore, the state transition probabilities are the only parameters of the model, but for a

HMM in addition to the transition probabilities, the probabilities of observing an output

given the hidden state are unknown parameters of the model. Each state variable has a

probability distribution over the possible outputs.

Mathematically, the hidden Markov model is a sequence of hidden variables {St; t =

1, 2, . . . , T}, usually known as state variables, with corresponding observable random vari-

ables {Yt; t = 1, 2, . . . , T}, usually referred to as output variables. Both states and outputs

are indexed by time t. The hidden Markov chain {St} can take values from the set of all

possible states S = {1, 2, . . . , S} at any time. The realization st of the variable St is called

the state (or regime in some applications) of the chain at time t, of course taking values

from S. The hidden Markov model satisfies the Markov property over the hidden state

variable: given the value of hidden variable St−1, the conditional probability distribution

of the hidden variable St at time t depends only on the value of St−1. Additionally, The

output variable Yt only depends on the hidden variable at time t, St. When there is only

one state available, |S| = 1, the HMM is reduced to a simple random walk.

January 23, 2012



6.3. Hidden Markov Model 134

Figure 6.2: Graphical representation of a HMM. The conditional distribution of each node,

given the value of all the other nodes depends only on the nodes to which it is connected by an

edge.

Figure 6.2 illustrates the dependency structure in a HMM by a DAG. For ease of notation,

hereafter we denote the history of the process until time t by Y(t), and equivalently for

hidden states S(t). This can be seen from the DAG represented in Figure 6.2 that Yt ⊥⊥
S(t−1), Y(t−1) |St, that is:

Pr{Yt|Y(t−1), S(t),θ} = Pr{Yt|St,θ}. (6.3)

Throughout this chapter, the conditional probability distribution function for a discrete

random variable Yt will be denoted by:

ps(yt) = Pr{Yt = yt|St = s,θ}. (6.4)

When Yt is a continuous random variable, the probability function is replaced with the

density function, fs(yt). Where Λ is the set of parameters relevant to the observed prob-

ability distribution ps(yt), then a hidden Markov model is usually denoted by the triplet

Θ = (π,Γ,Λ) collectively. The elements of the matrix Γ are referred to as transition

probabilities, and the elements of the Λ are known as emission probabilities. Throughout

this chapter, instead of Θ notation we use a vector of all parameters of the model denoted

by θ.

6.3.1 Likelihood in HMM

For a given sequence of the observations, the ML estimate of the parameters, Θ =

(π,Γ,Λ), can be derived by maximising the likelihood function of HMM. Consider the

sequence of observations Y = (Y1, Y2, . . . , YT ) and the sequence of hidden states S =

(S1, S2, . . . , ST ), and their corresponding realizations by y = (y1, y2, . . . , yT ) and s =
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(s1, s2, . . . , sT ) respectively. The likelihood function for a HMM is given by

L(θ) ∝ Pr{Y = y | θ} (6.5)

=
∑
ST

Pr{Y = y,S = s | θ} (6.6)

=
∑
ST

Pr{Y = y | S = s,θ}Pr{S = s | θ} (6.7)

=
∑
ST
L(θ,S) (6.8)

where S is the set of all possible hidden states, and ST denotes the set of all possible

combinations of hidden states for the sequence of observations of length T . In view of

the fact that HMM observations are conditional on the hidden states of the chain, the

maximisation needs to be implemented over the complete likelihood function, L{θ,S},
in which the hidden states are considered to be known. Considering the Markov property

in HMM we have

Pr(S = s | θ) = Pr(S1 = s1 | θ)
T∏
t=2

Pr(St = st|St−1 = st−1,θ)

= π1(s1)γ(s1, s2)γ(s2, s3) · · · γ(sT−1, sT ), (6.9)

and the distribution of the observed variable Yt only depends on the hidden state St, that

is

Pr{Y = y | S = s,θ} =
T∏
t=1

Pr{Yt = yt | St = st,θ} =
T∏
t=1

pst(yt). (6.10)

The complete likelihood, Lc(θ) = L(θ,S), in HMM for a given sequence of S = s is

L(θ,S = s) = π1(s1)γ(s1, s2)γ(s2, s3) · · · γ(sT−1, sT )
T∏
t=1

pst(yt). (6.11)

Maximisation of the log-likelihood

Maximising the complete likelihood when the length of the sequence of observations is

large may cause an overflow problem. In practice, the logarithm of the likelihood is a

suitable alternative for computational purposes. Having defined the following indicator

functions:

ut(s) =

{
1 if St = s

0 if St 6= s

vt(s, s
′) =

{
1 if St−1 = s and St = s′

0 if St−1 6= s or St 6= s′

(6.12)

January 23, 2012



6.3. Hidden Markov Model 136

The logarithm of the complete likelihood (6.11) known as the log-likelihood function

`c(θ) = `(θ,S) can be rewritten as a sum of three terms,

`(θ,S) =
S∑
s=1

u1(s) lnπ1(s) +
S∑
s=1

S∑
s′=1

(
T∑
t=2

vt(s, s
′)

)
ln γ(s, s′) +

S∑
s=1

T∑
t=1

ut(s) ln ps(yt).

(6.13)

which can be maximised separately to find the maximum of the (6.13). We illustrate how

to find the maximum likelihood estimate of the transition and emission parameters for

a HMM by maximisation of the complete likelihood function in the following theorems.

These results have been already proved, see Harte (2010) page 6, but we explain the proofs

in more details to developed the results for the MixHMM in §6.4.

Theorem 6.1 The first term of the complete log-likelihood function in (6.13) is max-

imised by the following initial state probabilities:

π̂1(s) =
u1(s)∑S
s=1 u1(s)

.

Proof In order to maximise the first term of the complete likelihood (6.13), one needs to

consider the constraint of
∑S

s=1 π1(s) = 1. Defining the function F ,

F =
S∑
s=1

u1(s) lnπ1(s) + η

(
1−

S∑
s=1

π1(s)

)
, (6.14)

where η is the Lagrange multiplier. The derivatives of F with respect to π1(s) for s =

1, 2, . . . , S,
∂F

∂π1(s)
=
u1(s)

π1(s)
− η, (6.15)

implies that η =
∑S

s=1 u1(s). Therefore,

π̂1(s) =
u1(s)∑S
s=1 u1(s)

. (6.16)

2

Theorem 6.2 The second term of the complete log-likelihood function in (6.13) is max-

imised by the following transition probabilities:

γ̂(s, s′) =

∑T
t=2 vt(s, s

′)∑T
t=2 ut(s)

.
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Proof For the second term of equation (6.13), we need to consider that there are S

constraints,
∑S

s′=1 γ(s, s′) = 1, corresponding to the rows of the transition matrix. So, we

define the function G, .

G =
S∑
s=1

S∑
s′=1

(
T∑
t=2

vt(s, s
′)

)
ln γ(s, s′) +

S∑
s=1

ηs

(
1−

S∑
s′=1

γ(s, s′)

)
, (6.17)

where η1, η2, . . . , ηS are the Lagrange multipliers, then

∂G

∂γ(s, s′)
= −ηs +

1

γ(s, s′)

T∑
t=2

vt(s, s
′). (6.18)

Hence, if we consider −ηsγ(s, s′) +
∑T

t=2 vt(s, s
′) = 0 then

S∑
s′=1

(
− ηsγ(s, s′) +

T∑
t=2

vt(s, s
′)
)

= 0. (6.19)

Since
∑S

s′=1 γ1(s, s
′) = 1 then ηs =

∑S
s′=1

∑T
t=2 vt(s, s

′) so that

γ̂(s, s′) =

∑T
t=2 vt(s, s

′)∑S
s′=1

∑T
t=2 vt(s, s

′)
(6.20)

=

∑T
t=2 vt(s, s

′)∑T
t=2 ut(s)

. (6.21)

2

We also need to maximise the last term of the complete likelihood:

S∑
s=1

T∑
t=1

ut(s) ln ps(yt). (6.22)

This part of the complete log-likelihood depends on the probability distribution of the

observed process. Harte (2010) illustrate this step for a few of the most commonly-used

distributions in HMM. We explain the computations in more depth for discrete nominal,

Poisson, Gamma, Binomial, and Normal distributions and result will be developed for the

MixHMM.

Theorem 6.3 (Discrete nominal distribution): The third term of the complete log-

likelihood function in (6.13) is maximised by the following value for the parameter of the

discrete nominal distribution:

p̂s(y) =

∑T
t=1∧Yt=y ut(s)∑T

t=1 ut(s)
,

where ps(y) is the probability of observing y for the group of observation in the hidden

state s.
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Proof In this case we first define

wt(y, s) =

{
1 if Yt = y and St = s

0 if Yt 6= y or St 6= s
(6.23)

where y ∈ Sy is the set of all possible values of Yt. This way, for a homogeneous HMM

the equation (6.22) can be rewritten as:

S∑
s=1

T∑
t=1

∑
y∈Sy

wt(y, s) ln ps(y). (6.24)

Considering the constraints over the parameter space, the function H needs to be max-

imised.

H =
S∑
s=1

T∑
t=1

∑
y∈Sy

wt(y, s) ln ps(y) +
S∑
s=1

ηs

(
1−

∑
y∈Sy

ps(y)
)
. (6.25)

The derivative of H with respect to the parameters of the probability distribution over Yt,

the probability of the observation in this case, provides the ML estimate of the parameters.

∂H

∂ps(y)
=

T∑
t=1

wt(y, s)

ps(y)
− ηs. (6.26)

The solution of the equation −ηsps(y) +
∑T

t=1wt(y, s) = 0 gives us the values for the pa-

rameter space which maximise the function H. Note that
∑

y∈Sy ps(y) = 1, so summation

over Sy gives us the ηs:

ηs =
∑
y∈Sy

T∑
t=1

wt(y, s) =
T∑
t=1

ut(s). (6.27)

so that

p̂s(y) =

∑T
t=1wt(y, s)∑

y∈Sy
∑T

t=1wt(y, s)
(6.28)

=

∑T
t=1∧Yt=y ut(s)∑T

t=1 ut(s)
. (6.29)

2

Therefore, the ML estimate of ps(y) is given by the empirical probability of observing y

for the group of observation in the hidden state s. These probabilities can be summarized

into a matrix notation Λ = [ ps(y) ]|Sy |×S, as the set of all emission probabilities.
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Theorem 6.4 (Poisson distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the parameter of the Poisson

distribution:

θ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)

,

where θs is the rate parameter of the Poisson distribution for the hidden state s.

Proof For the Poisson distribution

Pr{Yt = y | St = s,θ} =
θys
y!

exp{−θs} (6.30)

so the third part of the complete log-likelihood (6.22) is a function of the rate parameter of

the Poisson distribution. The partial derivatives give the ML estimate of the parameters.

Let

H =
S∑
s=1

T∑
t=1

ut(s)
(
yt ln θs − ln(yt!)− θs

)
, (6.31)

and so
H

∂θs
=

1

θs

T∑
t=1

ut(s)
(
yt − θs

)
, (6.32)

hence

θ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)

. (6.33)

The set of parameters is the vector of Λ = [θ1, θ2, . . . , θS]. So the ML estimate of the rate

parameters is the average of the observed values in the group of observations which are in

the hidden state s. 2

Theorem 6.5 (Exponential distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the parameter of the Exponential

distribution:

θ̂s =

∑T
t=1 ut(s)∑T
t=1 ut(s)yt

.

where θs is the rate parameter of the Exponential distribution for the hidden state s.

Proof In this case

fYt(y | St = s,θ) = θsexp{−θsy}. (6.34)

That is, the third part of the complete log-likelihood (6.22) is a function of rate parameter

of the Exponential distribution. Let

H =
S∑
s=1

T∑
t=1

ut(s)
(

ln θs − θsyt
)
, (6.35)
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and the partial derivatives provide the ML estimates of the parameters.

H

∂θs
=

T∑
t=1

ut(s)
( 1

θs
− yt

)
, (6.36)

hence

θ̂s =

∑T
t=1 ut(s)∑T
t=1 ut(s)yt

. (6.37)

The set of parameters is the vector of Λ = [θ1, θ2, . . . , θS]. The ML estimate of the

parameter for exponential variables appears to be the classical estimate of the inverse of

the average value of observations, for each group of observations in the hidden state s.

2

Theorem 6.6 (Binomial distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the parameter of probability of

success in the Binomial distribution:

θ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)nt

.

where θs is the probability of success in the Binomial distribution for the hidden state s.

Proof In this case

Pr{Yt = yt | St = s,θ} =

(
nt
yt

)
θyts (1− θs)nt−yt (6.38)

Let

H =
S∑
s=1

T∑
t=1

ut(s)

[
ln

(
nt
yt

)
+ yt ln θs + (nt − yt) ln(1− θs)

]
. (6.39)

Now the partial derivatives give us the ML estimates of the parameters.

H

∂θs
=

T∑
t=1

ut(s)
(yt
θs
− nt − yt

1− θs

)
, (6.40)

hence

θ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)nt

. (6.41)

2

The set of parameters is the vector of Λ = [θ1, θ2, . . . , θS]. The ML estimate is given by

the total number of successes over the total number of experiments, separately for each

group of observations in the hidden state s .
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Theorem 6.7 (Normal distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the mean and variance param-

eters of the Normal distribution:

µ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)

σ̂2
s =

∑T
t=1 ut(s)(yt − µ̂s)2∑T

t=1 ut(s)
.

where µs and σ2
s are respectively the mean and variance parameters of the Normal distri-

bution for the hidden state s.

Proof In this case

fYt(yt|St = s,θ) =
1√

2πσ2
s

exp
(
− 1

2σ2
s

(yt − µs)2
)
. (6.42)

Let

H =
S∑
s=1

T∑
t=1

ut(s)
(
− 1

2
ln 2πσ2

s −
1

2σ2
s

(yt − µs)2
)
, (6.43)

and the partial derivatives provide the ML estimates of the parameters.

H

∂µs
=

T∑
t=1

ut(s)
(
yt − µs

)
(6.44)

H

∂σ2
s

=
T∑
t=1

ut(s)
(
− 1

2σ2
s

+
1

2(σ2
s)

2
(yt − µs)2

)
. (6.45)

Hence

µ̂s =

∑T
t=1 ut(s)yt∑T
t=1 ut(s)

(6.46)

σ̂2
s =

∑T
t=1 ut(s)(yt − µ̂s)2∑T

t=1 ut(s)
. (6.47)

The set of parameters is the vector of Λ = {(µs, σ2
s), s = 1, 2, . . . , S}. So, the ML estimate

µ and σs are respectively the sample mean and variance of the observations which are in

the state of s.

2

Having the completed likelihood function maximised enable us to find the the ML esti-

mates of the parameter in HMM using the EM algorithm which will be reviewed later

in §6.3.4. This algorithm uses the value of the complete likelihood function `c(θ) in a

recursive formula, and so it needs to be computed as a part of the parameter estimation

step.
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6.3.2 Likelihood Recursion

In this section, we review the recursive method which provides the value of the likelihood,

at the same time as recursive estimation is implemented. However, this method is useful

in other statistical procedures such as Metropolis-Hastings algorithm, or model selection,

when it is required to find the likelihood value (Scott, 2002). The likelihood function

(6.8) is defined by the sum over elements of ST . In practice, even for a moderate number

of states S, evaluating the likelihood function by direct evaluation is computationally

expensive. Hence, one needs a method to compute the likelihood in an efficient way.

The so-called Likelihood recursion algorithm facilitates the calculation of the likelihood

by decreasing the number of steps to O(S2T ) steps which is markedly smaller than O(ST ).

The likelihood recursion method is carried out based on forward probabilities. The forward

probability αt(s) is referred to as the joint probability of the partial observation sequence

until time t and the state event St at time t, that is

αt(s) = Pr{Y1 = y1, Y2 = y2, . . . , Yt = yt, St = s | θ}, (6.48)

where t = 1, 2, . . . , T and s = 1, 2, . . . , S. This probability can be calculated using a

forward recursive procedure. The forward probabilities in equation (6.48) can be formu-

lated by the following summation form (see Harte, 2010, pg. 3 for detailed proof). This

involves initialising the forward probability α1(s) = π1(s) ps(y1) and then updating the

next forward probabilities through induction steps

αt(s) =
S∑

s′=1

αt−1(s
′)γ(s′, s)ps(yt). (6.49)

It is more convenient to represent the recursive formula via matrix notation. Having let

αt = [αt(1), αt(2), . . . , αt(S)] and Dt = diag{p1(yt), p2(yt), . . . , pS(yt)}, then (6.49) can be

written as

αt = αt−1 ΓDt, (6.50)

where the starting value for the recursive formula is α1 = π1D1. similarly

αt = π1D1(ΓD2)(ΓD3) · · · (ΓDt). (6.51)

The computation is iterated over t = 1, 2, . . . , T . Finally, the summation of αT (s)

αT (s) = Pr{Y1 = y1, Y2 = y2, . . . , YT = yT , ST = s | θ} (6.52)

over possible values of S provides the desired likelihood value (Rabiner, 1989).

L(Θ,Y ) =
S∑
s=1

αT (s). (6.53)
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Using induction, it can also be shown that the matrix notation for the likelihood of a

HMM is:

L(θ) = π1D1(ΓD2)(ΓD3) · · · (ΓDT )1′ = αT1′ (6.54)

where 1′ = (1, 1, . . . , 1)1×S.

In practice, for a large observation sequence, the likelihood computation would result

in very small values for forward probabilities – this could consequently cause computer

overflow. A common way to overcome this problem is to calculate the log-likelihood

rather than the likelihood function. Chib (1996) proposed a modification to the forward

recursion procedure; to compute the log-likelihood by the following recursive formula:

ln τt = lnα′t−1 +Mt + ln
( S∑
s=1

exp
{

ln ps(yt) + ln
[ S∑
s′=1

αt−1(s
′)

τt−1
γ(s′, s)

]
−Mt

})
(6.55)

where

Mt = maxs ln
(
ps(yt)

S∑
s′=1

γ(s′, s)
αt−1(s

′)

τt−1

)
. (6.56)

Equation (6.55) scales the forward probabilities αt(s) at each step, so it suppresses the

possibility of computer overflow.

6.3.3 Forward-Backward Recursion

The forward-backward (FB) recursion algorithm is basically a way to compute the likeli-

hood function, developed by Baum et al. (1970). The FB recursion algorithm computes

the likelihood function in two steps: forward recursion which accumulates information

about the distribution of St as it moves down the hidden Markov chain; and the back-

ward recursion which updates the distribution of St calculated in the forward step once

information has been collected from all observed data. It needs to define the backward

probabilities in addition to the forward probabilities. The backward probabilities βt(s)

are referred to as the joint probability of the partial observation sequence after time t

given the state event St at time t, that is

βt(s) = Pr{ Yt+1 = yt+1, Yt+2 = yt+2, . . . , YT = yT |St = s,θ} (6.57)

where t = 1, 2, . . . , T and s = 1, 2, . . . , S. These probabilities are known as back-

ward probabilities as they are calculated in a backward recursive method. Analogous

to the forward probabilities we may represent backward probabilities by a vector βt =

[βt(1), βt(2), . . . , βt(S)]. The last backward probability is set to

βT = [ βT (1), βT (2), . . . , βT (S) ] = [1, 1, . . . , 1]1×S, (6.58)
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and simple calculation gives us the following recursive form for backward probabilities:

βt+1 = ΓDt+1βt, (6.59)

or

βt = (ΓDt+1)(ΓDt+2) · · · (ΓDT )1′. (6.60)

Given the model parameters θ, the T × S matrices A = [ αt(s) ] and B = [ βt(s) ] can be

calculated in a recursive manner.

Forward-backward probabilities are also related to the likelihood of a HMM. It can be

shown that for any 1 ≤ t ≤ T we have

L(θ) =
S∑
s=1

αt(s)βt(s) = αtβt, (6.61)

as αt(s) accounts for the partial observation until time t and the βt(s) consider the re-

mainder of the observation sequence. Hence, the forward-backward recursion can be seen

as a way of profiling S out of L(θ, S), by plugging in Ŝ, or integrating S out of L(θ, S)

for example in (6.61).

Forward-Backward probabilities provide a way to associate the optimal state sequence for

a HMM given the observation sequence. There are several ways to choose the optimality.

One possibility is to choose the most likely state value of s ∈ S for St. Hence, one needs

to find the probability of being at state St = s at time t given the observation sequence

Y .

φt(s) = Pr{St = s | Y = y,θ} (6.62)

Equation (6.62) can be written in terms of forward-backward probabilities:

φt(s) =
αt(s) βt(s)∑S
s=1 αt(s)βt(s)

. (6.63)

Note that
∑S

s=1 φt(s) = 1 so φt(s) acts like a probability measure. One may produce the

most likely sequence of states by

Ŝt = arg max
1≤s≤S

{φt(s)} t = 1, 2, . . . , T. (6.64)

6.3.4 EM Algorithm in HMM

Baum et al. (1970) proposed a recursive algorithm for parameter estimation in Markov

chains and Welch (2003) developed the technique for HMMs. The Baum-Welch algorithm
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can be considered as a generalised expectation-maximization (EM) algorithm. The EM

algorithm gives a way to compute the maximum likelihood estimates of parameters in

the statistical models where the model depends on unobserved latent variables. This

algorithm starts by initialising values for θ and the hidden states St, then it repeats two

steps, expectation (E) and maximisation (M), as long as the set of parameters θ̂ has not

converged. The E-step involves evaluating the log-likelihood using the current estimate

of the hidden states, and M-step entails maximising the expected log-likelihood found on

the E-step with respect to the parameters of the model. These estimated values for the

parameters are used to determine the distribution of the hidden states in the next E-step.

Having initialised the parameter set θ, the EM algorithm for HMM includes performing

the following two steps alternatively:

E-Step: one estimates ut(s) and vt(s, s
′) given the current estimate of θ, by taking their

conditional expectation:

ût(s) = E[ut(s) | θ̂ ]

= Pr{St = s | Y = y, θ̂}
= α̂t(s) β̂t(s)/L(θ̂) (6.65)

v̂t(s, s
′) = E[vt(s, s

′) | θ̂ ]

= Pr{St−1 = s, St = s′ | Y = y, θ̂}
= γ̂(s, s′) α̂t−1(s) p̂s′(yt) β̂t(s

′)/L(θ̂) (6.66)

M-Step: Maximisation involves estimating new values for θ̂ by maximising the com-

plete likelihood (6.11). This depends on the distribution of ps(yt); the computation has

been represented for the number of distributions in §6.3.1. We use the EM algorithm to

integrate S out of L(θ,S).

6.4 Mixtures of Hidden Markov Models

In this section, we illustrate the class of mixture models in which the components are the

hidden Markov model, usually known as mixture of Hidden Markov Model (MixHHM). We

extend the computations for HMMs for which the observed variable follows the nominal

discrete distribution. Mixture distributions are used when it is assumed that the data

are from one of a range of patterns. The idea of mixture models was first developed by

Pearson (1894) for a mixture of two univariate Normal distributions. Mixture models
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provide a flexible class of models for density estimation when classical models from the

library of known distributions fail to provide a good fit for data. Mixture models have also

been used as a model-based clustering approach by which observations can be clustered

into different groups through a probabilistic framework (McLachlan and Basford, 1988).

For a comprehensive review of mixture models see Titterington and Makov (1985) and

McLachlan and Peel (2000).

The application of MixHMM has been found useful in different fields during the last

decade. Qi et al. (2007) used the model to approximate the similarity of two pieces of

music by computing the distance between the associated model, where in their application

the music is treated as a time series data sequence. It has also been found that this model

performs well for identifying groups of genes in gene expression time-courses (Schliep et al.,

2004). Dias et al. (2010) introduced the application of MixHMM in finance by modelling

Asian stock markets indexes. Modelling Internet browsing behaviour using MixHMM was

first introduced by Ypma and Heskes (2002). They used the classical ML approach to

estimate the parameters of the model. This model provides the practical advantage of

clustering the users of the website, as well as soft categorisation of webpages of the website

at the same time.

Suppose a set of realizations Y = {Y1,Y2, . . . ,YI}, where each Yi = {Y i
t , t = 1, 2, . . . , Ti}

is the sequence of observations for item i. In other words, Y consists of I sequences

of observations from a HMM with K different sets of parameters Θk = (πk,Γk,Λk) for

k = 1, 2, . . . , K. Thus, the full parameter space consists of K sets of HMM parameters

Θ = {Θk, k = 1, 2, . . . , K}. Throughout this chapter, θ denotes the vector of parameters,

consists of all parameters of the model. We let the random variable Ci represent the

associated HMM to which the i-th item belongs. The ML estimate of all the parameters

is derived by maximising the complete likelihood of the MixHMM. Now we introduce the

likelihood function of the MixHMM.
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6.4.1 Likelihood of MixHMM

Having assumed that I items are independent conditionally, the likelihood is the product

of the likelihoods of each of the observed sequences.

L(θ|y) ∝ Pr{Y1 = y1,Y2 = y2, . . . ,YI = yI | θ} (6.67)

=
I∏
i=1

Pr{Yi = yi | θ} (6.68)

=
I∏
i=1

L(θ|yi). (6.69)

The likelihood for the i-th item is

L(θ|yi) =
K∑
k=1

Pr{Yi = yi | Ci = k,θk}Pr{Ci = k | θk}, (6.70)

where the vector θk consists of all parameters associated with the k-th HMM component.

The membership probability is defined as the conditional probability that the i-th item

belongs to the k-th HMM given the observations for the i-th item:

ωik = Pr{Ci = k | Yi,θk} (6.71)

where
∑

k ω
i
k = 1. The membership probabilities form the conditional distribution of Ci

given the sequence of observations. The unconditional distribution of Ci, Pr{Ci = k} = ωk

delivers no information for the membership of the i-th item and will be denoted without

the index of i. The unconditional membership probabilities, ωk, are essentially the mixture

proportions which are non-negative and sum to one over k. In practice, ωk represents

the relative frequency of occurrence for each group in the population. Using mixture

coefficients ωk the equation (6.70) can be expressed as follows:

L(θ|yi) =
K∑
k=1

L(θk|yi) ωk, (6.72)

where L(θk|yi) is the likelihood for i-th observation when the class of model is known.

The likelihood in the MixHMM needs to be represented based on the complete likeli-

hood function which considers both the hidden state variables and observed sequence

data. Thus, the conditional probability of the likelihood will be replaced by its complete

likelihood function.

L(θk|yi) = Pr{Yi = yi | Ci = k,θk}
=

∑
si∈ST

Pr{Yi = y,Si = si | Ci = k,θk} (6.73)

=
∑
si∈ST

L(θk,Si|yi) (6.74)
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Note that the parameter space for the conditional probability terms given Ci = k is only

limited to the Θk. The complete likelihood is similar to the (6.11) given in the previous

section.

L(θk,Si | yi) = πk(s
i
1)γk(s

i
1, s

i
2)γk(s

i
2, s

i
3) · · · γk(siTi−1, s

i
Ti

)

Ti∏
t=1

pksit
(yit). (6.75)

6.4.2 Maximisation of the complete log-likelihood for MixHMM

The EM algorithm for the MixHMM does not appear to have been described or employed

before. It can be implemented by generalization of the algorithm introduced for HMM.

In this section we illustrate how the EM algorithm can be implemented for MixHMM.

Now let

wik =

{
1 if Ci = k

0 if Ci 6= k

ui,kt (s) =

{
1 if Sit = s and Ci = k

0 if St 6= s

vi,kt (s, s′) =

{
1 if St−1 = s and St = s′ and Ci = k

0 if St−1 6= s or St 6= s′ and Ci = k

(6.76)

then the logarithm of the complete likelihood can be written as the sum of three terms,

`(θ,S,C) =
I∑
i=1

wik

S∑
s=1

ui,k1 (s) lnπ1,k(s)

+
I∑
i=1

wik

S∑
s=1

S∑
s′=1

(
T∑
t=2

vi,kt (s, s′)

)
ln γk(s, s

′)

+
I∑
i=1

wik

S∑
s=1

T∑
t=1

ui,kt (s) ln pks(yt). (6.77)

Theorem 6.8 The first term of the complete log-likelihood function of MixHMM in (6.77)

is maximised by the following initial state probabilities:

π̂1,k(s) =

∑I
i=1w

i
ku

i,k
1 (s)∑I

i=1w
i
k

∑L
s=1 u

i,k
1 (s)

Proof In order to maximise the first term of the complete likelihood (6.77), we consider
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the constraint of
∑S

s=1 π1,k(s) = 1. Defining the function F ,

F =
I∑
i=1

wik

S∑
s=1

ui,k1 (s) lnπ1,k(s) + η

(
1−

S∑
s=1

π1,k(s)

)
, (6.78)

where η is the Lagrange multiplier. The derivatives of F with respect to π1,k(s) for

s = 1, 2, . . . , S,
∂F

∂π1,k(s)
=

∑I
i=1w

i
ku

i,k
1 (s)

π1,k(s)
− η, (6.79)

implies that η =
∑I

i=1w
i
k

∑S
s=1 u1,k(s). Therefore,

π̂1,k(s) =

∑I
i=1w

i
ku1,k(s)∑I

i=1w
i
k

∑S
s=1 u1,k(s)

(6.80)

2

Theorem 6.9 The second term of the complete log-likelihood function in (6.77) is max-

imised by the following transition probabilities:

γ̂k(s, s
′) =

∑I
i=1w

i
k

∑T
t=2 v

i,k
t (s, s′)∑I

i=1w
i
k

∑T
t=2 u

i,k
t (s)

.

Proof For the second term of equation (6.77), we consider that there are S constraints,∑S
s′=1 γk(s, s

′) = 1, corresponding to the rows of the transition matrix. So, we define the

function G, .

G =
I∑
i=1

wik

S∑
s=1

S∑
s′=1

(
T∑
t=2

vi,kt (s, s′)

)
ln γk(s, s

′) +
S∑
s=1

ηs

(
1−

S∑
s′=1

γk(s, s
′)

)
, (6.81)

where η1, η2, . . . , ηS are the Lagrange multipliers, then

∂G

∂γk(s, s′)
= −ηs +

1

γk(s, s′)

I∑
i=1

wik

T∑
t=2

vi,kt (s, s′). (6.82)

Hence, if we consider −ηsγ(s, s′) +
∑I

i=1w
i
k

∑T
t=2 vt(s, s

′) = 0 then

S∑
s′=1

(
− ηsγ(s, s′) +

I∑
i=1

wik

T∑
t=2

vt(s, s
′)
)

= 0. (6.83)

Since
∑S

s′=1 γ1(s, s
′) = 1 then ηs =

∑S
s′=1

∑T
t=2 vt(s, s

′) so that

γ̂k(s, s
′) =

∑I
i=1w

i
k

∑T
t=2 v

i,k
t (s, s′)∑S

s′=1

∑I
i=1w

i
k

∑T
t=2 v

i,k
t (s, s′)

(6.84)

=

∑I
i=1w

i
k

∑T
t=2 v

i,k
t (s, s′)∑I

i=1w
i
k

∑T
t=2 u

i,k
t (s)

. (6.85)

2
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Theorem 6.10 (Discrete nominal distribution): The third term of the complete log-

likelihood function in (6.77) is maximised by the following value for the parameter of the

discrete nominal distribution:

p̂ks(y) =

∑I
i=1w

i
k

∑T
t=1∧Yt=y u

i,k
t (s)∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)

,

where pks(y) is the probability of observing y for the group of observation in the hidden

state s and the k-th mixture component.

Proof The same procedure as described for HMM, provides us with the ML estimate of

the parameters. In this case we first define

zi,kt (y, s) =

{
1 if Y i

t = y and Sit = s and Ci = k

0 if Yt 6= y or St 6= s and Ci = k
(6.86)

where y ∈ Sy is the set of all possible values of Yt. This way, the third part of the equation

(6.77) can be rewritten as:

I∑
i=1

wik

S∑
s=1

T∑
t=1

∑
y∈Sy

zi,kt (y, s) ln pks(y). (6.87)

Considering the constraints over the parameter space, the function H needs to be max-

imised.

H =
I∑
i=1

wik

S∑
s=1

T∑
t=1

∑
y∈Sy

zi,kt (y, s) ln pks(y) +
S∑
s=1

ηs

(
1−

∑
y∈Sy

pks(y)
)
. (6.88)

The derivative of H with respect to the parameters of the probability distribution over Yt,

the probability of the observation in this case, provides the ML estimate of the parameters.

∂H

∂pks(y)
=

I∑
i=1

wik

T∑
t=1

zi,kt (y, s)

pks(y)
− ηs. (6.89)

The solution of the equation −ηspks(y) +
∑I

i=1w
i
k

∑T
t=1 z

i,k
t (y, s) = 0 gives us the values

for the parameter space which maximise the function H. Note that
∑

y∈Sy p
k
s(y) = 1, so

summation over Sy gives us the ηs:

ηs =
I∑
i=1

wik
∑
y∈Sy

T∑
t=1

zi,kt (y, s) =
I∑
i=1

wik

T∑
t=1

ui,kt (s). (6.90)

so that

p̂ks(y) =

∑I
i=1w

i
k

∑T
t=1 z

i,k
t (y, s)∑I

i=1w
i
k

∑
y∈Sy

∑T
t=1wt(y, s)

(6.91)

=

∑I
i=1w

i
k

∑T
t=1∧Yt=y u

i,k
t (s)∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)

. (6.92)

2
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These probabilities can be summarized into a matrix notation Pk = [ pks(y) ] of dimension

S × L. So Λ = {P1, P2, . . . , PK} is the set of parameters.

For the remainings distributions we do not write the proof, as it can be obtained very

similar to the way we presented for HMM. That is, one needs to make the partial derivative

of the third part of the log-likelihood equation (6.77) with respect to the set of parameters.

The answer to the system of equation made by partial derivatives equal to zero, maximise

the equation.

Theorem 6.11 (Poisson distribution): The third term of the complete log-likelihood

function in (6.77) is maximised by the following value for the parameter of the Poisson

distribution:

θ̂ks =

∑I
i=1w

i
k

∑T
t=1 u

i,t
t (s)yt∑I

i=1w
i
k

∑T
t=1 u

i,t
t (s)

,

where θks is the rate parameter of the Poisson distribution for the hidden state s and the

k-th mixture component.

Theorem 6.12 (Exponential distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the parameter of the Exponential

distribution:

θ̂ks =

∑I
i=1w

i
k

∑T
t=1 u

i,k
t (s)∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)yt

.

where θs is the rate parameter of the Exponential distribution for the hidden state s and

the k-th mixture component.

Theorem 6.13 (Binomial distribution): The third term of the complete log-likelihood

function in (6.13) is maximised by the following value for the parameter of probability of

success in the Binomial distribution, Where the number of experiments nt is known:

θ̂ks =

∑I
i=1w

i
k

∑T
t=1 u

i,k
t (s)yt∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)nt

.

where θs is the probability of success in the Binomial distribution for the hidden state s

and the mixture component k.

Theorem 6.14 (Normal distribution): The third term of the complete log-likelihood

function in (6.77) is maximised by the following value for the mean and variance param-

eters of the Normal distribution:

µ̂ks =

∑I
i=1w

i
k

∑T
t=1 u

i,k
t (s)yt∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)

σ̂ks =

√∑I
i=1w

i
k

∑T
t=1 u

i,k
t (s)(yt − µ̂ks)2∑I

i=1w
i
k

∑T
t=1 u

i,k
t (s)

.

January 23, 2012



6.4. Mixtures of Hidden Markov Models 152

where µks and σks are respectively the mean and standard deviation parameters of the Nor-

mal distribution for the hidden state s and mixture component k.

The set of emission parameters for the Poisson, Exponential and the binomial can be

represented in a K × S matrix of Λ = [ θsk ], where cell (k, s) represent the parameter of

the distribution for s-th hidden hidden states and k-th mixture components. Similarly

for the Normal distribution, we can put the mean parameters into a matrix M = [ µk,l ]

and variance parameters into Σ = [σ2
k,l ] both of dimension K ×S. The set of parameters

is Λ = {M,Σ}.

For the rest of the chapter we illustrate the model when the Y i
t follows the discrete nominal

distribution, as the result will be used for the modelling web browsing behaviour in terms

of visiting web pages. We assume the discrete nominal distribution for observing different

pages of the website.

6.4.3 EM Algorithm for MixHMM

The maximisation of complete log-likelihood function for MixHMM enables us to find the

ML estimates of the parameters of the model using EM algorithm. The EM algorithm

for MixHMM be carried out by initialising θk and repeating the following two steps until

θ̂ has converged.

E-Step: estimate wik, ut(s) and vt(s, s
′) given the current estimate of θk by taking their

conditional expectation:

ûi,kt (s) = E[ut(s) | θ̂k] (6.93)

= Pr{Sit = s | Yi = yi, θ̂k} (6.94)

= α̂i,kt (s) β̂i,kt (s)/L(θ̂k,Si | yi) (6.95)

v̂i,kt (s, s′) = E[vi,kt (s, s′) | θ̂k] (6.96)

= Pr{Sit−1 = l, Sit = l′ | Yi = yi, θ̂k} (6.97)

= γ̂i,k(s, s′) α̂i,kt−1(s) p̂
i,k
s′ (yt) β̂

i,k
t (s′)/L(θ̂k, si | yi) (6.98)

where αi,kt (s) and βi,kt (s) are forward and backward probabilities respectively, given the i-

th observation for k-th HMM. The expectation step also involves updating the membership
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parameter:

ŵik = E[wik] (6.99)

= Pr{Ci = k | Yi} (6.100)

=
ωk Pr{Yi | Ci = k,Θk}∑
k ωk Pr{Yi | Ci = k,Θk}

(6.101)

M-Step: Estimate new values for θ̂ by maximising the complete likelihood L(θk, si |yi).
In other words, at this step the parameter space Θ is updated. This step also includes

updating the mixture probabilities ωk by averaging membership probabilities over all

items i = 1, 2, . . . , I.

ω̂k =
1

I

I∑
i=1

wik. (6.102)

For each Θk, this is a weighted version of the computation presented for HMMs, with

respect to the mixture probabilities.

π̂k(s) =

∑I
i=1 ω

i
kû

i,k
1 (s)∑I

i=1 ω
i
k

∑L
s=1 û

i,k
1 (s)

(6.103)

γ̂k(s, s
′) =

∑I
i=1 ω

i
k

∑Ti
t=2 v̂

i,k
t (s, s′)∑I

i=1 ω
i
k

∑L
s=1

∑Ti
t=2 v̂

i,k
t (s, s′)

(6.104)

The maximisation of the third component of Λ depends on the distribution of pks(y).

We have already extended these parameters in previous section for the MixHMM. After

sufficient iteration of EM algorithm, it provides the ML estimate of the parameters in the

model.

6.4.4 Simulation Study

We used the function hmm command of the R package hmm.discnp to compute the ML

estimates of the parameters of HMM for the discrete nominal distribution by the EM

algorithm. This function was modified to implement the EM algorithm for MixHMM.

Our function is also able to run the tied model, where a common emission matrix is fit

for all mixture components (see Appendix B, function mixhmm). It should be noted that,

through correspondence with the package maintainer, Rolf Turner, this resulted in finding

a bug in the codes regarding the mixture argument of the package.

We investigated the performance of the EM algorithm for MixHMM by generating an

artificial data with several different settings. We present a simple example here which
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Figure 6.3: Graphical representation of true transition and emission matrices and the estimated

values using EM algorithm (right)
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consists of 100 sequences of observations from HMM with two different set of parameters.

The length of sequences varies by a average of 150. The components of HMM in the

mixture model have 2 hidden states and emit 5 different values. The components are

generated such that 40% of the sequences come from the first component and 60% from the

second component respectively. Each sequence is labelled by i = 1, 2, showing the HMM

by which the data has been generated. These labels help in our analysis to check whether

the MixHMM is able to distinguish the cluster of sequences generated from the same

HMM correctly. The length of the sequence is chosen by a discrete uniform distribution

from 100 to 150. The transition and emission matrices for the HMM components are as

follow:

Γ1 =

[
0.60 0.40

0.40 0.60

]
Γ2 =

[
0.10 0.90

0.90 0.10

]

Λ1 =


0.90 0.50

0.00 0.30

0.00 0.00

0.00 0.00

0.10 0.20

 Λ2 =


0.20 0.80

0.20 0.10

0.00 0.30

0.10 0.00

0.50 0.10


Figure 6.3 shows the graphical representation of true transition and emission matrices and

the estimated values using EM algorithm for MixHMM. A green colour spectrum is used
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to represent the magnitude of transition and emission probabilities, from white for 0 to

dark green for 1. The graph shows that the EM estimates of parameters are reasonably

close to the true values, making us sure that there exists a good correspondence between

learned and true parameter values. Similarly, it provides a very close estimation for initial

probabilities, πi. For another example of MixHMM with discrete nominal observations

for an artificial data set, as well as real data set application see Ypma and Heskes (2002).

Although, the algorithm successfully gives us point estimates of the parameters, it does

not provide any information about the precision of the estimates. Fuh and Hu (2007)

showed how to use bootstrap to find a confidence interval for the parameters of a HMM,

but with our best knowledge there has been no research in this area for the MixHMM.

The maximum likelihood approach to mixture models or HMM obtains point estimates

of parameters by maximising the likelihood function. Extending the EM algorithm for

more complicated models such as nested HMM or MixHMM, needs the analyst to develop

the mathematical formula and also to produce the codes. Note that for high dimensions,

apart from the computational difficulties associated with finding the local maximum of

the likelihood surface, there usually exist several local maxima. This way, the ML gives

different estimates for quantities of interest such as transition and emission probabilities

depending on the initial plug-in values. Thus, it is necessary to choose between the

local maxima where in many cases it is not easy to choose between them. Several local

maxima may also cause a problem in the model selection phase, where we must choose

the number of components as well as the number of hidden states/regimes. A standard

method for choosing the number of components, K, applies the likelihood value of the

fitted model, or a penalised version of the likelihood such as Akaike Information Criterion,

known as AIC (Akaike, 1974). Hence, different values of the local maximum likelihood

give different values for AIC. This way, likelihood-based criteria do not help in choosing

a suitable value for the number of components. Due to the obstacles to the ML approach

in both mixture models and HMMs we aim to use the Bayesian paradigm for MixHMM,

where the MCMC approach serves as an alternative method by producing samples from

the posterior distribution of the parameters.

6.5 Bayesian Inference of MixHMM

One of the main reasons for using sampling methods is that they enable an analyst to

apply more complex structure models for which other techniques, if feasible, are highly

complicated to implement (Puolamki and Kaski, 2009). In our case, an MCMC method

enables us to implement MixHMMs without recursive EM algorithms, although recursive
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methods can help for rapidly mixing in the MCMC algorithm. Bayesian inference for

HMMs via Gibbs sampling has been developed by Albert and Chib (1993) and Robert

et al. (1993) with the single-site updating of any hidden state. Chib (1996) proposed

forward-filtering backward-sampling (FF-BS) to generate the sequence of the hidden states

through the algorithm. We aim to extend the Bayesian inference to the MixHMM in

the context of web usage data analysis, where a considerable number of observations is

collected every day. In this section we illustrate the hierarchical structure of the proposed

model and the assumptions on parameters of the model. We choose a uniform prior

distribution over the parameters of the model. Updating the parameters is illustrated for

both methods of direct Gibbs sampling and stochastic forward-backward recursion.

One of the specific advantages of using Bayesian MixHMM over the classical maximum

likelihood approach is related to the problem of zero probabilities. In the MixHMM, this

problem occurs when there are no transitions observed between states or no observation

of y ∈ Sy when the model is in the hidden state s ∈ S in the sequence of observations.

In such a case, the ML estimate of the transition probability in each mixture component

will be zero. To deal with this problem in the Bayesian context, one can consider such a

prior for transition parameters to enforce the belief that all transitions are possible (Cadez

et al., 2000b). Bayesian MixHMM also enables the analyst to compute the probability

intervals of interest, for example the probability interval for a session containing an online

purchase or visiting the contact page. Note that, prior knowledge can be applied in terms

of a prior distribution over the parameters of the model. The model can also be updated,

by sequential Bayesian analysis, using recent data collected from web server logs.

In the Bayesian approach, given the data set y one aims to obtain the posterior distribu-

tion of the vector of parameters θ:

p(θ | y) ∝ p(y | θ) p(θ) (6.105)

where p(y|θ) is the likelihood function and p(θ) is the prior distribution of the parameters.

In some applications an analyst is also interested in obtaining the joint distribution of the

state and the parameters p(s,θ|y). In the next section, we define the complete hierarchical

model for MixHMM and the set of parameters in the model. The prior distribution over

parameters and hidden variable, as well as observed variables will be discussed.

6.5.1 Complete Hierarchical Model

Consider a dataset consisting of I different sequences of output observations, where each

follows the HMM with a discrete nominal distribution for sequences of observations. Fig-
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Figure 6.4: The graphical representation of the joint distribution of MixHMM.

ure 6.4 depicts the DAG of the hierarchical MixHMM. Circles represent the unknowns

or observed quantities, including variables and parameters. Square boxes represent fixed

hyper-parameters. The part of the DAG placed in the dashed-line box shows that for

i = 1, 2, . . . , I individuals this model is duplicated. The components of MixHMM have

been surrounded by a solid-line box for k = 1, 2, . . . , K, where Γk and Λk are transition

and emission matrices for the k-th HMM respectively. Hyper-parameters in a hierarchical

structure helps us to get weakly informative priors for the parameters, and to make only

minimal assumptions on the data.

The quantity Ci is the hidden variable which we refer to as the membership variable, since

it takes values k in {1, 2, . . . , K}, showing that item i belongs to the model k. Hence,

Ci has a discrete nominal distribution with unknown probability parameters, known as

membership probabilities. We represent all membership probabilities in a matrix form

Ω = [ ωik ]T×K and call Ω the membership matrix later on, as the i-th row of the k-th

column of the membership probability matrix, ωik is the probability that the item i follows

the k-th HMM. The vectors ζ, δ, and τ are fixed hyper-parameters in the hierarchical

structure of the model. The joint distribution of all the variables conditional on fixed

hyper-parameters may be written as:

p(Ω,Γ,Λ,y, s, c|δ, τ , ζ) ∝ p(Ω|ζ)p(c|Ω)p(Γ|δ, c)p(Λ|τ , c)p(s|c,Γ)p(y|s, c,Λ). (6.106)

In the next section, we explain the prior distributions of Γk, Λk; the distribution of

hidden membership variables, Ci, and hidden state variables, Sit ; and the distribution

over observed variable Y i
t .
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6.5.2 Prior Information

The posterior distribution of the parameters, given the observation sequences, depends

on the prior distribution assumed for the parameters. In our discrete nominal case (and

also multinomial distribution), an often-used candidate prior is the Dirichlet distribution.

The Dirichlet distribution, denoted by D(δ), is a continuous distribution function with

the following density function for the vector y = (y1, y2, . . . , yK):

f(y; δ) =
Γ(
∑K

i=1 δi)∏K
i=1 Γ(δi)

K∏
i=1

yδi−1i (6.107)

subject to
∑K

i yi = 1, 0 < yi < 1, and δi > 0. Note that the Γ( · ) in 6.107 denotes the

well-known gamma function, and δ is a vector of positive real numbers of length K. The

Dirichlet distribution is the multivariate generalization of the Beta distribution. It is a

conjugate prior of the nominal discrete distribution and the Multinomial distribution.

We consider the product of independent Dirichlet distribution over the rows of the tran-

sition matrix Γ, as a prior for the transition probabilities.

γs ∼ D(δks,1 , δ
k
s,2 , . . . , δ

k
s,S) (6.108)

where δks = (δs,1, δs,2, . . . , δs,S) is the hyper-parameter vector for the prior distribution. A

vector of δs = 1S serves as a uniform prior for the rows of transition matrix on the simplex

of dimension S, where 1k denotes a vector of 1’s of dimension k. The Jeffreys’ priors for

the Multinomial distribution provides a non-informative prior by setting δs = 1S/S (Kass

and Wasserman, 1996). For the emission matrix Λ, we assume the product of independent

Dirichlet distributions over columns. The hyper-parameter τ = 1L gives a uniform prior,

and τ = 1L/L is the Jeffreys’ prior.

λs ∼ D(τ k1,s , τ
k
2,s , . . . , τ

k
L,s). (6.109)

We denote τ ks = (τ1,s, τ2,s, . . . , τL,s) as the hyper-parameter vector for the prior distribution

of Λ. We postulate the Dirichlet distribution over weight parameters ω.

ω ∼ D(ζ1 , ζ2 , . . . , ζK). (6.110)

The hyper-parameter vector for the prior distribution of ω is denoted by ζ = (ζ1, ζ2, . . . , ζK).

By setting the parameter vector to ζ = 1 one assigns equally likely probabilities to the

mixture proportion parameters.
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6.5.3 Gibbs Sampler for MixHMMs

Gibbs sampling is a simulation method based on Markov chain theory in which one

takes samples from conditional distributions instead of directly sampling from an original

distribution. This way, it generates a Markov chain with a stationary distribution which

is not independent and identically distributed. However, the extension of the law of large

numbers guarantees for an approximation of any posterior quantity of interest based upon

this sample (Geman and Geman, 1984; Tanner, 1991; G. and George, 1992; Smith and

Roberts, 1993).

Using the Gibbs sampler for simulating samples from the parameters of the MixHMM

involves three steps: (1) sampling from the membership state variable given the obser-

vation sequence and parameters (2) sampling from the hidden states variables given the

observation sequence and parameter; (3) sampling from the distribution of the param-

eters given hidden states, membership states, and observation sequence. This alternate

sampling produces a sequence of N triplets of parameters, hidden state, and membership

states.

{(Θ,S,C)n, n = 1, 2, . . . , N} (6.111)

In order to generate realizations from the posterior joint distribution of the parameters,

we alternate the following moves all through Gibbs sampling:

1. updating the transition matrices Γ: The s-th row of transition matrix Γk is

sampled from the following Dirichlet distribution:

γs ∼ D(δks,1 + a1 , δ
k
s,2 + a2 , . . . , δ

k
s,S + aS) , (6.112)

where as′ =
∑I

i=1

∑Ti
t=2 v

i,k
t (s, s′) is the number of transitions from component s to

component s′ over all items assigned into the class of k (Robert et al., 1993).

2. updating the emission probabilities Λ: the s-th row of emission matrix Λk is

sampled from the following Dirichlet distribution:

λs ∼ D(τ k1,s + b1 , τ
k
2,s + b2 , . . . , τ

k
L,s + bL) (6.113)

where bl =
∑I

i=1

∑Ti
t=1∧yt=y(l) u

i,k
t (s) counts how many times the value y(l), the l-th

element of the Sy, appears in the component s of the class k.
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3. updating the membership variables Ci: The membership of each item is sam-

pled directly from a discrete nominal distribution, where the parameters are mem-

bership probabilities of the item i, (ωi1, ω
i
2, . . . , ω

i
K) given in the i-th row of the

membership matrix Ω.

Ci ∼ DN (ωi1 , ω
i
2 , . . . , ω

i
K). (6.114)

The membership probabilities ωik are computed at each iteration:

ωik ∝ πci(s
i
1)γci(s

i
1, s

i
2)γci(s

i
2, s

i
3) · · · γci(siT−1, siT )

Ti∏
t=1

psit(y
i
t) ωci (6.115)

with the constraint of
∑K

k=1 ω
i
k = 1.

4. updating the hidden state variable St: A direct Gibbs sampling draws each

hidden state variable Sit from its full conditional distribution using the following

distribution:

Pr{Sit = s | Si−t,y,Γ} ∝ γci(st−1, s)γci(s, st+1)pst(yt) t = 1, 2, . . . , T. (6.116)

where the Si−t denotes all state variables of the i-th individual, excluding the state

at time t (Robert et al., 1993; Robert and Titterington, 1998). Scott (2002) intro-

duced sampling from p(s | y,Γ) using a stochastic version of the forward-backward

(FB) recursion algorithm. This method gives a faster mixing algorithm, as fewer

components are introduced into the Gibbs sampler. The stochastic FB algorithm

modifies (6.116) by using a stochastic version of the forward-backward recursions to

sample St directly from Pr(S |θ,Y ). The forward recursion step involves producing

A2, A3, . . . , AT , as introduced in §6.3.3, and the stochastic backward recursion draws

ST from Pr(ST |θ,Y ) for t = T−1, T−2, . . . , 1 from the distribution proportional to

the column St+1 of At+1 respectively. In our analysis we use the stochastic FB sam-

pling extended for MixHMM by conditioning the algorithm over the membership

variable Ci.

5. updating the mixture proportion parameters ω: The ω = (ω1, ω2, . . . , ωK) is

sampled from the Dirichlet distribution:

ω ∼ D(ζ1 + d1 , ζ2 + d2 , . . . , ζK + dK) (6.117)

where dk =
∑I

i=1w
i(k) is the number of items/individuals over all items assigned

into the class of k.
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6.5.4 Model selection

When there exists no information about the dimensions of the model, it is necessary

to select a model with respect to the number of hidden state, S, and the number of

components, K. Traditionally, the likelihood function can help when choosing a model

which better describes the data. In the likelihood approach, one may run the posterior

sampler for a variety of models with different combinations of the (S = s,K = k). It is

always expected that the log-likelihood will be increased by increasing the number of the

parameters in the model. An insignificant increase of the log-likelihood in comparison

with a model with fewer parameters shows that higher dimension does not increase the

ability of the model to describe the patterns observed in the data. Based on the parsimony

principle of statistical modelling, a good model with fewer parameters is preferred. In the

Bayesian approach where we have a distribution over the log-likelihood, it is common to

sketch the box-plot of the log-likelihood of different models in the same plot to help make

judgements (Scott and Hann, 2007). A penalised version of log-likelihood such as the

Bayesian information criterion (BIC) can also be used to avoid the over-fitting problem.

The BIC is given as:

BIC = −2 `(θ) + p ln(n), (6.118)

where p is the number of free parameters to be estimated, and n the number of obser-

vations, or equivalently, the sample size. Similarly, a box-plot of the BIC measure in

Bayesian analysis of the MixHMM can provide a comparison framework to choose the

model with smallest BIC. The total number of parameters in a untied MixHMM need to

be estimated is:

K × (S × S) +K × (L× S) +K, (6.119)

including K transition matrices Γk with S×S parameter, K emission matrix Λk with L×S
parameter, and an mixture proportion vector ω of size K. The number of parameters for

the tied MixHMM is reduced by considering a common emission matrix:

K × (S × S) + 1× (L× S) +K. (6.120)

Ypma and Heskes (2002) use a cross-validation method by partitioning a sample of the

data into complementary subsets: training and test/validation data sets. The training

data set is used to estimate the parameters of the model. Having the estimated param-

eters, the test data set is used to check if the model is good enough. This approach is

mainly aimed at assessing how accurate the predictive model is in practice. They used

the following score for out-of-sample test.

score(Ytest) = −
∑I

i=1 ln
∑K

k=1 ωkP (Ytest | Ci = k,θ)

Ntest

(6.121)
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Another possibility for making inference about the unknown number of hidden states

and number of mixture components might be the use of the so-called reversible jump

algorithm which allows for the changing dimension of the parameter space. The idea of

reversible jump Markov chain Monte Carlo (RJ-MCMC) was first introduced by Green

(1995) and Richardson and Green (1997). Robert and Titterington (2000) showed how

the RJ-MCMC techniques can be used to estimate the parameters of a HMM model, as

well as the number of regimes for a mixture of normal distributions, and Castellano and

Scaccia (2007) extended it to the mixture of normal distribution with different means

and variances under each regime. To our best knowledge, RJ-MCMC has not yet been

developed for MixHMM.

RJ-MCMC can serve to make an inference about the dimensionality of the model, but in

practice, in particular for models with high complexity, this might be very difficult. For

example consider the MixHMM for nominal discrete observations and its application for

modelling Internet browsing behaviour. First, transformation from the parameter vectors

of one model to another requires the computation of the determinant of the Jacobian

matrix. This for such a high dimensional model, if not impossible, might be very difficult.

Also, having a large sample size, as we have in the clickstream data, can significantly

increase the time of running the RJ-MCMC, whilst it seems more efficient to let the

Gibbs sampler be run over different machines for different models and use the results to

make a comparison of the models.

6.6 Some issues in implementing the Gibbs sampler

6.6.1 Slow mixing

A common problem of using MCMC methods is so called slow mixing, when values θ(t)

generated at iteration t is look a lot like the θ(t+1) and this similarity continues for all

iterations, or in technical term there is a strong autocorrelation between the samples.

This way, the contribution of each additional Gibbs sample to the quality of inferences

about the posterior density is small. Hence, the sampler requires extremely long run of

the MCMC algorithm from a slow-mixing MCMC algorithm to reach a sample size that

adequately represents the posterior distribution, which might be practically not feasible.

A simple solution for slow mixing is to retain every m-th MCMC iterate, where m is known

as the thinning interval. The thinning interval is selected so that the samples are apart

enough to approximate an independence sampler, thinned sequence of generated samples

are expected to have a low autocorrelation. In addition to reducing autocorrelation,
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thinning the sequence of samples also helps save computer memory and time (Jackman,

2009).

6.6.2 Label-Switching in MixHMM

When the Bayesian approach is applied to mixture models, one might face the so-called

label-switching problem (Richardson and Green, 1997). This problem arises mainly be-

cause of the invariance of the likelihood with respect to the permutations of the component

labels in the mixture model, or regimes in HMM (Redner and Walker, 1984). Similarly in

Bayesian analysis, the posterior is symmetric when the prior distribution is the same for

equivalent parameters in different components/regimes. Consequently, the Gibbs Sam-

pler might mix up the samples component labels when label-switching occurs. So there

is an arbitrariness in reporting the order of labels. In this respect, the sampler encoun-

ters the highly symmetric multi-modal posterior distribution. Similarly, the problem of

label switching might occur in the HMM, as multiple ways of labelling the regimes (hid-

den states) can alternate during the MCMC iterations and fail to identify the HMMs

parameters in model fitting.

Given a mixture model withK components, there areK! symmetric modes of the posterior

distribution. If the Gibbs sampler can thoroughly and evenly travel all the K! symmet-

ric modes, the posterior expectation for each component parameter should be identical.

However, as K increases, K! is very large and the sampler may fail to thoroughly and

evenly explore the distribution surface. In this case, an unbalanced label-switch causes

a multi-modal distribution surface for the posterior distribution. This feature provides a

diagnostic to check label-switching (Jasra et al., 2005). One can also discover the prob-

lem of label-switching through overlaid trace-plots for equivalent parameters of different

components of the mixture model. Unbalanced label-switching also cause a very poor

estimate in estimating the marginal density from the Gibbs sampler such that the re-

sults might be very different from different runs (Fruhwirth-Schnatter, 2001). Note that

the sampler might perform well in picking out the parameter from the data and label-

switching may not occur at all. The unbalanced structure of the MixHMM does not let

the label-switching occurs for components, But it needs to be checked for hidden state for

each component. Thus we take advantage of trace plots to find out if the label-switching

is taking place.

However, there is no guarantee that label-switching will not happen if the sampler is run

with more iterations (Jasra et al., 2005). There are situations of extreme unbalanced

label-switching. In this case, every component maintains its own mode in the long run
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and the sampler does not observe any label-switching. The unbalanced label-switch is

more likely to happen when the dimension of the model increases (Sperrin et al., 2010).

6.7 Simulation Study

Data generation

In this section we illustrate how MixHMM works for an artificial data set. We generate

200 sequences of observations by MixHMM, consisting of three components of HMM. The

components of HMM in the mixture model have 3 hidden states and emit 5 different

values. The components are generated such that 30% of the sequences are for the first

component and 40% and 30% for the second and third component respectively. This

way, the second component is 30% more likely to occur compared to the first and third

component. Each sequence is labelled as i = 1, 2, 3, showing the HMM by which the data

has been generated. These labels help in our analysis to check whether the MixHMM is

able to distinguish the cluster of sequences generated from the same HMM correctly. The

length of the sequence is chosen by a discrete uniform distribution from 2 to 100. The

transition and emission matrices for HMM components are as follows:

Γ1 =

 0.80 0.10 0.10

0.10 0.80 0.10

0.00 0.20 0.80

 Γ2 =

 0.90 0.10 0.00

0.20 0.70 0.10

0.10 0.00 0.90

 Γ3 =

 0.20 0.80 0.00

0.00 0.30 0.70

0.60 0.20 0.20



Λ1 =


0.90 0.50 0.30

0.00 0.00 0.10

0.00 0.00 0.10

0.00 0.00 0.20

0.10 0.50 0.30

 Λ2 =


0.10 0.30 0.20

0.85 0.30 0.20

0.05 0.40 0.20

0.00 0.00 0.20

0.00 0.00 0.20

 Λ3 =


0.00 0.00 0.10

0.00 0.00 0.00

0.10 0.10 0.80

0.10 0.80 0.00

0.80 0.10 0.10



Model selection

Model selection in MixHMM involves choosing the number of hidden states and the num-

ber of components. We ran the posterior sampler for models with 2 to 4 mixture com-

ponents, where for each one the number of hidden states varies between 2 to 4. The

samples from the posterior of the log-likelihood `(θ) for each model are recorded, based

on 30,000 samples with the first 10,000 samples discarded as burn-in, and with a thinning

interval of 10. Figure 6.5 (left) shows the box-plots representing the posterior distribution

of −2 × `(θ), where for each model with K mixture components the value of −2 × `(θ)
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Figure 6.5: The boxplot of the −2×Log-likelihood (left) and BIC (right) for different models in

terms of the number of mixture components K and the number of hidden states/regimes S. The

number shown under each box-plot represents the number of parameters of the model
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decreases until S = 3, but little reduction is seen by increasing to S = 4. Figure 6.5

(right) shows the box-plots of the posterior distribution of the BIC for MixHMMs fitted

varying the number of clusters K and the number of hidden states S. The smallest range

of values has been produced for the model of K = 3 and S = 3. The result shows that BIC

successfully helped to find the true number of hidden states and clusters. The remainder

of this section describes the results received for models with K = 3 and S = 3.

After selecting the number of components and the number of hidden variables, the model

will be run again for the selected model. We run the Gibbs sampler with 60,000 iterations,

first 10,000 samples burn-in, and thinning interval of 10, we take a 5000 sample from the

posterior of the parameters in MixHMM with K = 3 − S = 3. We will later see that

the burn-in can help to take an uncorrelated sample from the posterior through Gibbs

sampler. Figure 6.6 shows the graphical representation of true transition and emission

matrices and the average over the posterior samples of transition and mission matrices

using Gibbs samples. We only show the parameters of the first two components, where

the third component shows a similar pattern to the first two components. A green colour

spectrum is used to represent the magnitude of transition and emission probabilities,

from white for 0 to dark green for 1. The graph shows that the average of the posterior

samples is reasonably close to the true values, making us sure that there exists a good
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Figure 6.6: Graphical representation of true transition and emission matrices (left), and the

average of estimated values transition and mission matrices using EM algorithm (right)
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correspondence between learned and true parameter values.

Figure 6.7 (left) displays the trace-plot for the Gibbs samples of the log-likelihood (in

hundreds) of the model with K = 3 and S = 3. The trace-plot helps to check if the

Gibbs sampler has eventually reached a stationary distribution, usually referred to as

convergence of the sampler. The caterpillar shape of the trace-plot confirms that the

samples of the conditional distributions of the parameters have reached the stationary

status. Figure 6.7 (right) depicts the autocorrelation plot, known as the ACF-plot, of

the likelihood samples. This plot shows that the thinning, have provide an uncorrelated

sample of log-likelihood.

Figure 6.8 shows the trace-plot of the posterior sample of transition probabilities; each

component is represented by a different colour. The paths reveal no evidence of a problem

of label-switching of hidden states (Celeux et al., 2000; Stephens, 2000). This can be

noticed by either swapping chains in the plot (changing colours) or the appearance of

multiple modes. Figure 6.9 shows the MCMC sample paths of emission probabilities

for the different components. similarly, it shows the trace plot of emission probabilities,

where each plot contains emission probabilities for all mixture components with different

colours. Both graphs show that no label-switching, either for mixture components or

hidden states, has been placed. If the label switching happens we expect to see that the

colour of a sequence swap between different ones.

January 23, 2012



6.7. Simulation Study 167

Figure 6.7: The trace-plot of log-likelihood values of the function at each iteration (left) and

the ACF plot of values of the log-likelihood (right).
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Figure ?? displays the trace-plot of Gibbs samples of transition probabilities [γk(s, s
′)]

for both classes. The plot does not show any evidence of non-stationary status after

burn-in samples. Hence, we may use the samples of the conditional distributions of the

parameters to summarize the posterior distribution of transition probabilities. This trace-

plot for transition probabilities are also used as a diagnostic tool to check if there exists

any label switching problem in mixture models and HMMs (Celeux et al., 2000). Similarly,

Figure ?? displays the trace plots of the emission parameters. The shape of observation in

the tace-plot gives us enough evidence for having a stationary sample from the posterior

distribution of emission probabilities.

We also look at the ACF -plot of the parameters. There is a large numebr of parameters

in the our MixHMM, so we just display the ACF -plot of the transition probabilities in

Figure 6.11 for both mixture components. We observe that after thinning and using

forward-backward recursion, it remains very low level of autocorrelation between the

Gibbs samples.

In order to investigate whether the model is able to learn correct labelling/clustering

of states, we observe the average of the Gibbs samples drawn for the elements of the

membership matrix Ω. The results reveal that the model successfully assigns all individ-

uals/items to the true clusters. We also check whether a misspecified model is able to

perform labelling correctly when the number of components in the data is smaller than
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Figure 6.8: The trace-plot of transition probabilities.
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Figure 6.9: The trace-plot of emission probabilities to investigate label switching between hidden

states.
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Figure 6.10: The trace-plot of emission probabilities to investigate the label switching between

mixture components.
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Figure 6.11: The ACF plot of transition probabilities for the first component (left) and the

second component (right).
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the number of components in the fitted model. Considering K = 4, we observed that

the learned membership probabilities only assign sequences of observation to two mixture

components of three. This can be considered as a way of finding that model has been

misspecified.

6.8 Conclusions

MixHMMs are a flexible class of models useful for representing dependent heterogeneous

phenomena. In this chapter we illustrated Bayesian inference for MixHMMs with a known

number of regimes and components. We assumed the observed sequences are independent,

conditional on the state variable, from a discrete distribution. We extended the MixHMM

introduced by Ypma and Heskes (2002), which use the classical ML approach of inference

in MixHMM, to a Bayesian analogue.

We considered a hierarchical model which allowed us to make vague a priori assumptions

on the parameters of the model. The joint posterior distribution of all the parameters

of the model was simulated by the Gibbs sampler. The updating of the parameters was

illustrated. In particular, a stochastic forward-backward recursion was used to to improve

the mixing of the chain compared to the direct Gibbs sampling algorithm. It also had
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the advantage of providing efficient estimates of the posterior marginal distribution of

the state variable itself. We illustrated how to choose an appropriate model for the data

and obtain point estimates for its parameters on the basis of the MCMC output. Finally,

we showed how the posterior predictive density of future observations can be simulated

through the MCMC algorithm.

January 23, 2012



Chapter 7

Modelling Web Browsing: Bayesian

MixHMM

In this chapter, we aim to model sequences of page requests within a session using a

Bayesian MixHMM by a direct forward-backward Gibbs sampling method. The Bayesian

mixture of hidden Markov model (BMixHMM) provides an approach to categorizing web

pages into groups of web pages automatically. It also gives a way of grouping users into

different clusters based on the web browsing pattern of visitors. We apply the MixHMM

to the real clickstream data from a commercial website, and we obtain a rational page

categorisation and user classification.

7.1 Introduction

A major concern in the context of web usage analysis has been to develop statistical

models to describe the pattern of the sequence of web pages viewed whilst a user navigates

through a website; the sequence of pages-viewed supplies information about the patterns

of browsing behaviour of users through a website. Analysis of this kind of clickstream

data, sometimes referred to as the page-view data set, enables the website maintainer to

describe the common sequence in which web pages are viewed, or the category of related

web pages. Website managers are usually interested in detecting common entrance/exit

traces and page-visit routes that lead to visitors leaving the website, as well as some

explanatory tools to improve the design of the website, ordering online, downloading, or

any kind of action of interest. Page-view data sets may also help the website designer

to personalise the website by determining different patterns of surfing through to the
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website, usually by clustering visitors into different groups (Liu, 2007).

Page-view information can be extracted from the web server log-file. The key information

on server log-files for this kind of data includes: the URL requested by the user, the

IP address of the requesting computer and a time stamp delivered for the page request,

mostly by clicking during navigation. This kind of data has a complicated structure as

some visitors come back to the website for multiple visits. For this reason, the sequence

of page-views is nested within a browsing session (Scott and Hann, 2007).

Although each visitor may have a browsing pattern, it is reasonable to assume that the

aim of a visit may also affect browsing behaviour. For example, consider a typical visit

to a website by a user who wishes to gather some information about a product he aims

to buy. Next, he opens another browsing window (or tab) to gather more information

from websites of other providers, whilst the Internet browser is still open for the previous

one. He might then return to the original website to compare the information. This

comparison may result in him adding an item to his basket through the website and

visiting the conversion pages to order the product online, or going to the contact page to

order by phone, or just leaving the website without any purchase.

Modelling browsing behaviour has been studied by researchers in different disciplines

such as statistics, computer science, and marketing. Substantial amounts of early efforts

in modelling user navigation patterns from web data were based on non-probabilistic

techniques which try to find common navigation patterns, for example see Cooley et al.

(1999b). One early work using the probabilistic approach to describe website navigation

patterns was by Huberman et al. (1997). They applied the random walk approach to

model the number of page-requests for a particular website. Markov models have been

an essential approach for modelling the sequence of page-view observations (Jank and

Shmueli, 2006). Sarukkai (2000) uses the first-order Markov chain as a tool for link

prediction, so that each user is described by the first-order Markov model. This model

helps to predict the most probable link a user may choose during their web browsing in the

next session. A similar model is given later by Eirinaki, Vazirgiannis, and Kapogiannis

(2005). Cadez et al. (2000a, 2003) used the mixtures of first order Markov chains as a

model-based clustering approach for visitors to the website. Smyth (1997) used HMM

as a probabilistic clustering approach for clustering individuals based on a sequence of

observations. One approach is to model the browsing behaviour during each session, based

on the sequence of web pages viewed regardless of previous sessions (Ypma and Heskes,

2002). Scott and Smyth (2003) applied the Markov Poisson process model to study

the intensity of page requests within a web session. Kleinberg (2003) applied the point

process to model patterns of browsing behaviour on a website. Montgomery et al. (2004)
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introduced a hidden Markov model based on a dynamic multinomial probit regression

to use both page-view data and also user-session data to model customer paths through

an e-commerce website. Scott and Hann (2007) introduced a nested HMM, in order to

describe the sequence of multiple sessions taken by the same user, to model the browsing

behaviour in a specific session.

7.2 Modelling Browsing Behaviour

One advantage of using a stochastic model over other statistical analysis methods, such

as the regression model or generalized linear model, is that it can be applied as an in-

sessional analysis rather than post-sessional. This means that these models can be used

to predict the ongoing browsing behaviour of users as they are surfing the web pages. The

most desirable application is to distinguish between users with and without high potential

to purchase online by tracing web page requests at each point of the session.

A typical website is made up of a large number of web pages. Hence, modelling the

page-view sequences visited during a session induces a large number of parameters in the

model. To avoid this problem the page-views may be modelled based on a sequence of

web page categories instead of a sequence of web pages. However, manual categorizations

can be cumbersome, as there is typically a large number of web pages on a typical E-

commerce web site. In the case of modelling the browsing pattern by means of HMM,

the large number of web pages increases the dimension of the emission matrices. This

may not cause an over-fitting problem for the application over clickstream data sets, as

there is always a sufficient amount of data available in this context. Nevertheless, it is

desirable to assign each page to a specific category. The categorization is mainly based

on the general purpose of the web pages and may differ from one website to another. An

example of web categorization is given by Scott and Hann (2007) presented in Table 7.1.

On the other hand, it is not usually an easy task to assign each of the web pages to a

particular category. Note that a different choice of page categorisation may affect the

resulting model. A solid web page categorization, in contrary to a probabilistic approach

we use in this chapter, also might bring controversy, because there are usually some pages

which can be assigned to more than one page category. Ypma and Heskes (2002) take

the advantage of MixHMM as an approach for automatic (versus manual) categorization

of web pages along with the inter-category transitions.

Users arrive at a website for different purposes. The aim of the visit may affect the

pattern of browsing within the website. Hence, a web analyst is interested in assigning
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Table 7.1: Page categories in the page-view sequence data sets and their description (Scott

and Hann, 2007).

Category Description

Home Home page for the website, sometimes referred to as front-page of

the website.

Product Web pages devoted to presenting information about a single prod-

uct.

Basket Web pages regarding putting items into, or removing them from,

the shopping basket/cart.

Information Web pages which provide information such as: Frequently Asked

Questions (FAQ), instructions on how to use the product, general

information about the products, pages of legal disclaimers, etc.

Order Web pages devoted to placing the order, relevant online forms,

shipment, banking details, etc. These are sometimes referred to

as shopping cart pages.

Shop Assist Web pages devoted to displaying or comparing several products.

Site Map Site Map for the online stores.

Contacts Web pages containing general contact information including ad-

dress, email, telephone, etc.

Exit Exit/Leave web page is an artificial mark for the status in which

a user leaves the website at the end of the session.

visit sessions to different types/categories. Several types of web session pattern may

exist on a web site, and these types may differ from one website to another. Hence,

introducing a model to distinguish the membership of a session to each of these patterns

could be of great interest. This membership may be used as additional user data to

describe web browsing behaviour. In this section we illustrate how the BMixHMM can be

applied to label/cluster a session into different classes, as well as simultaneous web page

categorisation.

7.2.1 Page-view Data Description

We used clickstream data collected during two weeks from an E-commerce website, where

the focus was on the sequence of web pages viewed rather than the attributes of the web

sessions. The website sells many different products which can be divided into four major

categories: electric shavers, dental care, health and well-being, and home applications.
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During the data collection period the site was not modified in terms of design or price.

Some product offerings were changed but we assumed their effects to be negligible on

general customer browsing behaviour. The website contains more than 120 distinct pages,

but ultimate product pages have not been given in the log file, all being labelled by a single

code. Therefore, there remain 40 web pages (or classes of web pages) distinguishable in

the log-file, including the exit status. We also assigned each page a category label, based

on the web page categories presented in Table 7.1. Single-page sessions that contained

only one page were excluded from the data set - as mentioned earlier, single-page sessions

are usually considered as either users who come to the website by mistake or automated

computer programs which intrude on the website while scanning the web. The remaining

10091 sessions were generated by 8375 visitors and contained 126,348 page requests. We

also added an exit page request at the end of each session sequence to distinguish between

the return sessions. We split the data into training and testing data sets by choosing 4375

visitors at random for training and the rest were treated as a test data set. Training data

was used to estimate the parameters of the model and test data sets were used to assess

the predictive ability of the model for desired probabilities and labelling.

Table 7.2: Sample of page sequence observation, webpages are coded from 1 to 40.

User Sequence

1 1 1 1 1 1 40 1 40 1 1 1 1 17 1 1 40

2 9 1 1 1 1 1 1 1 1 1 1 40

3 1 1 1 1 1 40

4 10 1 10 1 10 1 40

5 1 13 40 2 13 1 6 1 13 1 13 1 6 1 6 1 6 1 1 13 2 40

6 13 1 1 1 2 1 1 1 2 40

7 1 1 1 1 40

8 1 2 4 2 1 1 1 8 3 7 7 40

9 5 1 5 5 40

10 1 40 1 1 40 1 40 1 1 1 1 1 40 1 1 1 1 1 1 40 1 40

In addition to the sequence of page requests for each user, the time stamp supplying

information about the time spent on page sequences, accurate to the nearest second was

logged. Having completed the pre-processing tasks, including the user identification and

sessionization, the log-file data files were converted into a set of sequences, where each

sequence was represented as an ordered list of web page codes. We also used a different

set of codes to represent the categories of web pages requested by the user. Table 7.2

shows a sample of such sequences for 10 users. The web-servers of the local website for a
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twenty-four-hour period typically produce around 1000 such sequences.

Cadez et al. (2000b) introduced a plot to represent the sequence of web categories visited

by users of a website. They call the it a canvas plot which consists of a sequence of coloured

tiles, in which each tile represents a page request. Each row corresponds to a different

user, and colours encode the category to which the requested page belongs. Figure 7.1

displays the sequence of web categories visited by 30 users. We used the same categories

as given in the Table 7.1. The Exit category is an artificial page which shows the status

of ending a session. Hence, the presence of the Exit block between sessions shows that

the user returns to the website for repeat visits. The sessionization methods, used in the

preprocessing, split the session so that it is ended when no page request occurs for more

than 30 minutes. This may cause a pattern for users who leave the website open in the

Internet browser.

A graphical representation of the empirical transition matrix between page categories

(left) and corresponding entry page distribution (right) is depicted in Figure 7.2. A

green spectrum represents the magnitude of the probabilities. The right panel shows the

empirical probability of the entry page for each web page category, computed based on

single-visits and the first session of repeat-visits. The entry page for most sessions is the

Product page rather than the Home page. This is usually due to the links given through

the search engine results when visitors search for products’ names (Scott and Hann, 2007).

A considerable percentage of visitors who begin the visit through the home page, either

type the full IP address of the website, or come through the links provided by search

engines.

Figure 7.2 (left) shows the empirical transition probabilities between web page categories.

The last column of the table gives the probability of leaving the website from each category.

The contact page category is followed by the highest frequency of website exit. This may

be due to the fact that some visitors visit the contact page to place the order by phone;

In this case, contact pages might serve as ordering pages. The order category has a high

rate of exit (24%), showing that considerable percentages of users leave the website when

an online order is submitted successfully. The graph also shows that about 1 out of 4

users leaves the website when faced with on error page. Error pages appear only in the

ordering process. This mostly happens as ordering pages are hosted by a separate server

from the rest of the web site, in order to offer greater security when providing information

for a transaction on Order pages. So users who connect through weak internet services

may therefore fail to complete the online transaction successfully.

The product category is the most frequent destination from other page categories on the
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Figure 7.1: The canvas-plot of the pages visited by 30 users based on the page categories

introduced by Scott and Hann (2007)
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Figure 7.2: Empirical probability transition matrix between page categories.
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Figure 7.3: Empirical probability transition matrix between web pages of the site
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website, including a 66% probability of a self-transition. A long sequence of product page

requests is a common pattern of shopping behaviour when customers compare the features

of different products. In this example we have distinguished between web pages which

provide general information rather than detailed information about the products. For

example, newsletters, shipment information and refund policies are considered as General

information (GInfo). The product information (PInfo) category includes pages providing

information about features of the product/services which the E-Commerce website sells.

It is important to point out that transition probabilities in the last row, Exit, show the

probability of entry page for visitors who return to the website for multiple visits. A

comparison of these probabilities with entry page probabilities, given in the right-hand

panel, helps to investigate the plausible different patterns of entering the website for

multiple sessions versus single-visit sessions. For example, the percentages of entering the

website through the home-page (27%) is larger for multiple sessions than first-visit sessions

(20%). An explanation might be that visitors come back to the website by recalling the

website in the address bar, using the bookmark feature of the Internet browsers, or typing

the website address after the first visit.

Figure 7.3 displays the empirical transition probabilities between individual web pages

of the website; the pages are labelled from 1 to 40. The last column of the table gives

the probability of leaving the website from each page. We have also arranged the page

labels in such a way that pages of the same category are next to each other. Since

there is a large number of web pages, it is not an easy task to obtain a pattern from

the empirical transition probabilities between web pages. However, one can find the

high transition probabilities through the dark cells. For example, the check-out page

has the highest frequency of leaving the website which supports the assumption that a

considerable percentage of visitors leave the website after a successful online purchase. It

also shows a high probability for exiting after visiting the contact page which may be due

to the website’s visitors ordering by telephone.

Some zero probabilities in Figure 7.3 are due to the topology of the website, in view of the

fact that there exists no direct link between some web pages. In practice, one may find

a small empirical transitions probability for structural disjoint pages. This is principally

because of the proxy server caching ability of internet browsers by which a user can go

back to previous pages by using the back button preserved in the internet browser. On

the other hand, some automatic association between pages results in the completion of a

transition. For example, it is common to invoke an automatic update of a page containing

the users basket information so far when a user adds an item to the basket in the shopping

cart pages.
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Figure 7.4: The DAG representation of the joint distribution of hierarchical Bayesian MixHMM

for tied emission probability model (left) and untied model (right).

7.2.2 Model Interpretation

In this section we apply the BMixHMM to describe the page-view pattern collected from

a local E-commerce website. We illustrate the terminology used for the MixHMM in the

web browsing equivalents. The joint probability distribution for two hierarchical Bayes

models, the tied and untied models, is represented through DAGs in Figure 7.4. The DAG

on the left assumes that the emission probabilities are the same for different components

of the mixture model, usually known as the tied model in the context of HMM, but each

component has a different transition probability matrix. Otherwise, the untied model

assumes different emission probability matrices for different components, in addition to

the different transition probability matrices. The joint distribution of all the variables

conditional on fixed hyper-parameters is given by:

p(Ω,Γ,Λ,y, s, c |δ, τ , ζ) ∝ p(Ω |ζ)p(c |Ω)p(Γ |δ, c)p(Λ |τ , c)p(s |c,Γ)p(y |s, c,Λ). (7.1)

We have earlier explained in chapter 6 how to use Gibbs sampling to take samples from

posterior distribution of the parameters through three steps: (1) sampling from the mem-

bership state variable given the observation sequence and parameters; (2) sampling from

the hidden states variables given the observation sequence and parameters; (3) sampling

from the distribution of the parameters given hidden states, membership states, and

observation sequence. This alternate sampling produces a sequence of N triplets of pa-

rameters, hidden state, and membership states {(Θ,S,C)n, n = 1, 2, . . . , N}. Later in
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this section, we explain how the parameters of the MixHMM can be interpreted in the

web browsing behaviour context.

Let Sy = {1, 2, . . . , L} denote the set of indices assigned to the web pages which make

up the web site. We reserve the code L for the virtual exit/return status which is not an

actual web page, but marks the end of a session, so that all sessions end with L. This is

also used to represent returning to the website after an exit. As the same code is used for

the status of the exit and return visit, no element of Sy is an absorbing state. The sequence

of web pages viewed during a session by a user is denoted by Yi = (Y i
1 , Y

i
2 , . . . , Y

i
Ti

), where

Y i
t ∈ Sy represents the t-th page request generated by the user i.

A visitor may visit a web page for various reasons, such as to obtain information about a

product/service, to make an online order, to search for a product, to read the companys

shipment policy, or merely to transition to another part of the website. Hence, a rea-

sonable web page categorisation can be obtained using the intention of visitors who visit

a web page. The application of MixHMM as a dynamic web page categorisation based

on the intention of visiting a web page was first introduced by Ypma and Heskes (2002).

They model each sequence of web browsing by a HMM of dimension S, where the hidden

state variables are interpreted as the aim of visiting a web page during a web session. In

other words, Sit is the aim of visiting the page of the code Y i
t in the t-th page request by

visitor i. The expression, dynamic web page categorisation means that the model helps

to assign a value between 1 and S to Sti probabilistically.

It is also deemed that there are K distinct types of browsing behaviour which can be

described by the components of the MixHMM. So, each session/user is assigned to one

web browsing type. The hidden membership variable Ci serves as a label for the type

of browsing behaviour associated with user i, as for each user we observe a different web

browsing pattern, depending on the aim of the visit to the website in that session. It

is assumed that visitors with different purposes will show their own specific pattern of

viewing web pages. These labels are used to cluster users into different classes with respect

to web browsing behaviour.

The transition matrix Γk gives the probability of transitions between web page categories

for the user of type k. The emission matrix Λ comprises the probability of visiting different

web pages when a user is in a specific web page category. In our application of MixHMM

in which the hidden states produce a category over web pages, emission matrices are not

expected to be too different for various sessions. For example, regardless of the type of

visit, when the user is in the product category he/she is as likely to visit web pages that

represent the products. Hence, we consider a MixHMM for which the emission matrix
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Figure 7.5: The boxplot of the BIC for different models fitted varies according to the number

of clusters K and the number of hidden states S.

is the same for all different user/session types. This restriction on the parameter space

is usually referred to as parameter tying in the context of mixture models. In addition

to the ease of interpretation for web page categories, parameter tying has the advantage

of decreasing the risk of over-parametrisation in the model. Parameter tying is of more

importance in the case of modelling the pattern of web browsing for websites containing

a large number of web pages and small number of visitors. The DAG of the hierarchical

Bayes model for MixHMM with tied emission matrices has been depicted in Figure 7.4. In

this way, MixHMM shows differences between types of user through the contrast between

transition matrices of components. In other words, classes of users are distinguished by

patterns of movement between web categories.

The membership probability ωik gives us the probability that a session/user i belongs

to the type of session/user k. We summarise all membership probabilities into a I ×
K matrix denoted by Ω, where each row represents the user/session and each column

corresponds to the mixture components of the model. The weight parameter ωk shows

the percentages of session/user which belongs to the type k. Equivalently, this is the

membership probability for a typical session/user where there is no information about

page-view sequence considered.
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7.2.3 Model Selection

We first need to choose whether an untied MixHMM model is beneficial versus using a

tied model. Fitting the untied model produces two emission matrices which necessarily

does not gives the same web page categories. Hence, the result can not be of practical

usefulness for web page categorization. Regardless of the application, using an untied

model with S hidden states and K mixture components induces (K − 1)× 40× S more

parameters to the model in comparison with the untied model. This causes a considerable

increase in BIC and consequently is not recommended based on a parsimonious principle

for statistical modelling. Hence, for the rest of the chapter we fit and illustrate the results

for the tied MixHMM.

In order to determine the number of hidden states S and the number of components/clusters

K, the Gibbs sampler is implemented for different combinations of S ∈ {2, 3, . . . , 6} and

K ∈ {2, 3, 4}. The value of BIC for each model is recorded, and the model with the small-

est BIC is chosen as a model which describes the browsing pattern the best compared

to the rest. Figure 7.5 shows the box-plot of the posterior distribution of the BIC for

fitted models. It can be seen that a MixHMM in a model with (K,S) = (2, 6), provides

the smallest BIC. There are 314 parameters, including two transition matrices Γk with

6×6 parameter, a common emission matrix Λ with 40×6 parameter, and two parameters

in the mixture proportion vector ω. The difference between the BIC of this model and

the rest is large enough to choose the simpler model and avoid the over-fitting problem.

Therefore, the remainder of this chapter describes the model with K = 2 and S = 6,

although we made similar exploration for the other choices.

7.2.4 Model Results

Figure 7.6 (left) displays the trace-plot for the Gibbs samples of the log-likelihood (in

hundreds) of the model with K = 2 and S = 6. The caterpillar shape of the trace-plot

shows that the samples of the conditional distributions of the parameters have reached the

stationary status, or in other words, the sampler converged. Figure 7.6 (right) depicts the

autocorrelation plot of the likelihood samples. This plot shows that the autocorrelation

function declines rapidly. The autocorrelation will be much larger for the Gibbs samples

without the use of forward-backward sampling and thinning.

Figure ?? shows the trace-plot of the posterior sample of transition probabilities for both

mixture components, where different colours are used for different components. As in the

trace-plot of the log-likelihood, the caterpillar shape of the graph shows that the samples
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Figure 7.6: The trace-plot of Log-Likelihood values of the function at each iteration (left) and

the ACF plot of values of the log-likelihood.

0 1000 2000 3000 4000

−
61

3
−

61
2

−
61

1
−

61
0

−
60

9
−

60
8

−
60

7
−

60
6

Index

Lo
g−

Li
ke

lih
oo

d 
[x

10
0]

0 5 10 15 20 25 30
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F
 o

f L
og

−
Li

ke
lih

oo
d

of the posterior distributions of the transition parameters have reached the stationary

state. Using the same graph to represent mixture components helps to investigate the

label-switching problem in mixture models; the paths reveal no evidence of a problem

of label-switching of mixture components. This can be noticed in the graph by either

swapping chains in the plot which cause changing colours or the appearance of multiple

modes (Celeux et al., 2000). Figure ?? shows the MCMC sample paths of emission

probabilities for all mixture components. To increase the visibility, the graph only shows

the first eight emission probabilities, where different hidden states are represented by

different colours. This graph also shows that the chain for emission probabilities has

reached to the stationary state. It also shows that there is no label-switching problem at

the level of hidden states.

The green spectrum is used to show the average of the estimated transition and emission

probabilities. It should be noted that the hidden states need to be interpreted based

on the emission probabilities, simply by looking at the conditional distribution of web

pages, given that the chain is in a particular hidden state. Web pages with relatively high

probability of being observed, when the chain is hidden state j, give us a clue to interpret

the j-th web page category. Figure 7.9 represents the emission matrix of the fitted model,

computed by taking an average over posterior samples of the emission probabilities. Using

the tied model, the emission matrices for both mixture components are the same. In the
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Figure 7.7: The trace-plot of transition probabilities, as label-switching diagnostic.
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Figure 7.8: Using the trace-plot of emission probabilities to investigate the label switching

between hidden states. It only shows 8 emission states (web-page).
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Figure 7.9: Graphical representation of the emission matrix for tied MixHMM with K = 2

mixture components and S = 6 hidden states
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same way we can show the the probabilities of observing each of the 40 pages of the

website when the user is in hidden state j = 1, 2, . . . , 6.

7.2.5 Interpreting the hidden states

Let us now interpret these categories, referring back to Figure 7.9. The high probabilities

of observation when the user is in the first state have been assigned to the front pages of

the website such as homepage and guidances to choose between different types of main

products. This implies that the first category can be considered as the homepage category.

The second state is related to the pages which provide general information about the

products for sale on an e-commerce website. State three assigns a very high probability,

0.92, for visiting the pages of items for sale, implying that the product pages are the main

focus of this category. Having a very high probability on the virtual exist/return page

shows that the fourth state represents the situation in which a user leaves the website.

Fifth state represents search category, as it assigns the high probabilities to search and

sparessearch web pages. The high probability of being in product pages for this category is

because the search pages send the visitors to the product pages. The main focus for state

six is on online shopping state so that it devotes large probabilities to the Order/Basket,

check-out-order and related-items web pages. We summarise the these categories into the

following table:

Hidden State 1 2 3 4 5 6

Description Home General Info Product Exit/Return Search Order

MixHMM produces categories of web-pages based on different kinds of action rather than

solid classification. In practice, there is some support for this, as many page-clicks on

websites produce artificial clicks. For example, by adding an item to the basket the

website automatically shows the page of related items and also produces its corresponding

records in the log file. There is usually a similar pattern for search pages in which users

are guided to the product pages by searching by keyword. As a result, it is inevitable that

there will be some product pages in the search category when the user is in the action of

searching.

Figure 7.10 shows that two mixture components have a different pattern of transition

probabilities between web page categories. The first row of the transition matrices reveals

the transition to web categories from the homepage. It can be seen that users of the second

browsing model tend to travel to product pages more than those in the first component.
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Figure 7.10: Graphical representation of transition matrices of tied MixHMM with K = 2

mixture components and S = 6 hidden states.

In contrast, users of the first pattern more likely to go to shopping-related web pages such

as shopping cart and check-out pages, from home page rather than the second pattern

(transition probability of γ1(1, 5) = 0.22 versus γ2(15) = 0.01).

Comparing the 4-th row of the transition matrices, corresponding to the return/exit cat-

egory, provides some information about how users return to (or leave) the website for

repeat visits in two browsing patterns. Figure 7.10 shows that the first browsing pat-

tern has higher transition probabilities for all elements of the 4-th row, except for the

4-th column. This implies that there is a higher interest in returning to the website for

repeat visit in the first browsing pattern, whilst a high probability of staying in state

4, γ2(4, 4) = 0.58, implies that there are shoppers in the first browsing pattern who are

willing to buy, as they add items into the basket, but may leave the website to check other

online retailers, or gather information from other sources.

There is a fairly similar pattern of transition from search pages and shopping pages to

other page categories for both mixture components. However, transition from shopping

pages to exit/return is higher for the first component which can be explained by the

fact that there are more online shoppers, who are more likely to leave and return to the

website, in the first browsing pattern.
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Figure 7.11: Graphical representation of the membership probabilities for tied MixHMM model

with K = 2 and S = 6 (left) and K = 3 and S = 5 (right).

Clustering users by MixHMM

The MixHMM also provides a way of clustering users/session with the same browsing be-

haviour into different groups without predetermined web categories. This can be done by

computing the membership probability for each user. Figure 7.11 shows the membership

probabilities produced for 20 users/session who surf the website. In the left panel each

row represents the average of the posterior sample of membership probabilities produced

by tied MixHMM with K = 2 component and S = 6 hidden states. It can be seen that the

model has been able to differentiate between user behaviour reasonably. This approach

provides a soft clustering, when the model allows a unit to be assigned to several clusters

partially, as well as hard clustering, when the unit should be assigned to only to one

cluster. In the right panel we may compare the membership allocation for the equivalent

tied MixHMM with K = 3 and S = 5, as the best of the models with three mixture

components. It can be found that more clusters do not provide as good a separation for

user groups, as there exist many users with nearly the same membership probability for

different clusters. For example, observations 18 and 19 are well separated in the left panel,

but the three-component model on right panel produces an unstable clustering decision

between two or three components of the model.
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Figure 7.12: The posterior distribution for the probability of online purchase (left) leaving the

website and return (right).
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Figure 7.13: The posterior distribution for visiting product pages (left) visiting front page

(right).
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Investigating the session types

The estimate of mixture proportion parameters implies that 72% of all visitors have

sessions of type 1, and the remaining are of type 2. Once we have the parameters of

the MixHMM estimated, we are able to compute the probability of any pattern of page

views. Calculating these probabilities also helps to make a better perception about differ-

ent session types, represented by mixture components of MixHMM. As one of the most

demanding events in the E-commerce context, we are interested in the probability of

online shopping, and visiting the check-out-order page, based on the current pattern of

the number of pages visited. The distribution of this probability is shown in Figure 7.12

(left) for each session type, corresponding to mixture components. It should be noted

that this probability should be computed using the conditional probability of visiting the

check-out-complete page given the number of pages viewed in the session. The odds ratio

of online purchase in the second session type compared to the first session type is 2.50,

so that a visitor of session type 2 is more than twice as likely to make an online purchase

than a user of a session of type 1. The session types also differ according to the probability

of returning to the website. Figure 7.12 (right) shows the probability that a user leaves

a website and returns to continue the visit. Type 1 session clearly have a higher return

probability than type 2, with an odds ratio of 1.8.

Figure 7.13 (left) shows a clear difference in the probability of observing product pages.

The computed odds ratio, 3.05, states that users of type 1 are 3 times more likely to

visit product pages than users of type 2. We are also interested in comparing the two

session types in terms of coming to the website through the front page of the website.

This probability is plotted in Figure 7.13 (right), where it is nearly the same for both

types except the fact that the distribution of the posterior is more spread in session type

2. There might be several features in a web page traversal for which we can compute

the posterior distribution of the probabilities for each session type. For example,the

web owner might be interested to the found out what is the probability (percentage) of

visiting the contact page, when a visitor has already added an item to the basket, or the

probability of leaving the website without shopping after visiting the shipment policy page

of the website.

7.3 Discussion and Future Work

We have used a Bayesian MixHMM approach for modelling the user behaviour on a

website to produce dynamic categories of web pages and transitions between web page
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categories simultaneously. The model also helps to assign user behaviour into different

types/classes. We then display the behaviour of a random sample of users in each cluster

along with the size of each cluster. The application of MixHMM provides reasonable web

page categories for a local E-commerce pageview data set.

The proposed MixHMM can be extended into a multivariate case, where the sequence

of time duration spent on each page helps with user behaviour clustering along with

the sequence of web pages visited. This can be achieved by using duration models such

as the log-normal or Weibull over the page visit time. Another extension which might

improve the ability of the model to describe web browsing behaviour is characterized by

considering a dependency structure among web pages within a given category in addition

to the the transitions among web page categories.

A weighted analysis of the sequences might be applied by considering a sequence of weights

jointly with the page view sequence. There are a number of methods which might be

applied for weighting. An option is using the duration of visiting the page. Another

possibility is to set the weight for the last page-view to be the mean time duration for the

page taken across all sessions. It might be required to assign a normalized value of page

duration instead of raw time. In some applications, the log of page time duration may

help to reduce the noise in the data.

As mentioned earlier in chapter 6, reversible jump MCMC is an alternative to simulta-

neously estimate the posterior distribution of the number of components in the mixture

model and the number of hidden states, and all other parameters of the model. A disad-

vantage of the using Gibbs sampler is that it is computationally expensive. The value of

parameters at each step depends on the previous samples which suppress the use of mul-

tiple chains after convergence. Using the reversible jump makes it more computationally

difficult and expensive. Hence, an improvement can be proposing a Bayesian methodol-

ogy without heavy computational difficulties that enables researchers to make an inference

about the dimension parameters, i.e. the number of hidden states and number of mixture

components, while estimating the parameters of the model.
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Chapter 8

Conclusion

This thesis originated from research questions proposed by experts of a local web man-

agement company which provides services for commercial websites selling products on the

internet. Hence, the main purpose was to investigate statistical approaches on clickstream

data, as the aggregate sequence of page visits executed by a particular user as the user

navigates a website, can provide insight into the behaviour of visitors, specifically with

respect to shopping, for e-commerce websites.

8.1 Clickstreams Data Preparation

We received two data sources: web log files and conversion data files. The log file contains

information about every single click made by a user on a web browser while surfing the

Internet, corresponding to an HTTP request sent to the server of the website. In addition

to web logs, we received an operational data file for the websites, containing information

on online purchases. We also produced a data format containing the sequence of page

visits for every user as the user navigates a website. One limitation for the analysis of

web page sequence is the presence of missing page references that are not recorded in

the log-file. This is due to browser and proxy server caching. When a user returns to

a page that has already been visited (downloaded) during the same session, the second

access to that page will result in viewing the previously downloaded version of the page

without sending a request to the server. This problem is usually solved by knowledge of

the site structure. We performed a rule-based path completion procedure, but because of

our limited knowledge of the website there is no guarantee that we were able to make a

complete analysis.
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The web log files do not consist of well-structured data and cannot be used directly for

analytical purposes. Making clean clickstream data that can provide reliable information

about web browsing behaviour requires a good understanding of the structure. For this

reason, we explained the clickstream data structure and showed how to convert the raw

data into data abstraction necessary for further analysis, referred to as a data preprocessing

step, in the first chapter. For example, removing redundant records of log file data when

a user requests a web page containing graphic and sound files, as the request results in

several records/lines in the web log file that represent just one page request. We also

needed to remove the records in the web log files made by bots, as those lines do not

reflect human browsing behaviour.

For analytical purposes, we excluded bounce visits from the data, as they show the be-

haviour of visitors who have been guided to the website by mistake. A limitation on

clickstream data is that there is no information available for the time spent on the last

page visited. Considering the fact that time spent on a page provides critical information

about the depth of the visit, statistical analysis of depth of visit suffers from the missing

information. Another problem arises in clickstream data when the user actually leaves

the session leaving the browser open. If the user then returns to the website through the

open page in the browser, the clickstream data shows it as the same visit. We used the

web sessionization rule of splitting the session into two when the time between two clicks

is more than 30 minutes. User identification, which distinguishes between different users

when a user visits a site more than once, has been implemented by the web management

company.

Another limitation in using clickstream data is that log server data actually helps to

distinguish between machines rather than users, except in the case of registered users of

a website who logs into the website through a user ID and password. For example, if a

user visits a website from a machine in the workplace, and later returns to the website

from home, the user identification pre-processing fails to identify the user. Conversely,

when a machine is used by several users, browsing the website by different people might

be considered as a re-visiting of the website by the same user.

8.2 Exploratory Analysis of Clickstream Data

Throughout this thesis we have shown how clickstream data can provide an insight into

the performance of a website and the behaviour of website visitors. This includes a brief

review of web metrics and statistical reporting using clickstream data. Depending on the
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goals of the analysis, this data could be transformed and aggregated at different levels of

abstraction to provide metrics. For example, these metrics could be reported at the level

of website or web session. We have illustrated that the metrics could provide valuable

information to enable us to understand website usage and performance. In addition to

the common application of clickstream for website traffic, this data could be used along

with conversion information to help report some KPIs regarding the profitability of the

website. As well as the metrics produced for the website, we reviewed the metrics that

can be extracted from clickstreams, showing attributes of web sessions such as frequency,

recency, and depth of a visit.

We also performed an exploratory analysis on depth-of-visit metric, by the number of

pages visited and session time duration as metrics which indicate the depth of a visit. Most

of the metrics in the clickstream data are less likely to follow the Normal distribution.

Hence, the traditional statistical methods which assume the normality of the data need to

be applied with caution. We showed that the number of pages visited can reasonably be

approximated by Weibull distribution. We showed that the ML estimate of the parameters

is not necessarily able to provide a reasonable estimate of the parameters, as it would make

a very good fit for the high density part of the distribution and a poor fit for the rest. We

showed that graphical estimates and PPCC provide an estimate of parameters so that the

fitted model fairly explains the probabilistic behaviour of the variable at the dense part

of the distribution, as well as the thin tail.

Despite the practical importance of the effect size for large sample circumstances, there

has not been enough research on effect size measures. Effect size is mainly introduced and

investigated for changes in location under an assumption of Normality for the underlying

population. However, as mentioned earlier clickstream data are usually non-Normal. On

the other hand, most non-parametric effect sizes measures compute dominancy measures,

where each quantile of the distribution is larger than the equivalent quantile for the other

one. This is not the case when the distribution depends on scale and shape and not just

on a location parameter. For this reason, we introduced two novel alternatives ES for

two-sample comparisons, one scale-free and one on the original scale measurement, and

analysed some of their theoretical properties. We illustrated these measures by fitting

a theoretical distribution, and also non-parametrically. We examined these ES for two-

sample comparison studies under an assumption of Normality and Weibull distribution.

The application of these effect sizes was represented for the session time duration in the

customer behaviour analysis.
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8.3 Conversion Analysis

Clickstream data typically contains information about the behaviour of visitors to a com-

pany’s website. Investigating the behaviour of online buyers and non-buyers may provide

a better understanding of the characteristics of visits with respect to shopping. The con-

version analysis is of great importance for an e-commerce website manager. Consequently,

there has been substantial interest in analysis of conversion using clickstream data. We

used the logit model to describe the association between general clickstream information

concerning visits and whether a visitor will engage in online-purchasing behaviour during

his visit to the website. The ease of interpretation of the logit is an important advantage

over other methods such as neural networks. Once the coefficient parameters are esti-

mated, this model allows us to obtain a conditional probability estimate of purchase. The

probability approximation can be used to rank customers in terms of their probability

of purchase. This way, the web owner will be able to identify high potential visitors,

in terms of conversion tendency, and generate leads for suitable targeting actions. In a

web-focused marketing solution, the targeting action might help to keep the customer on

the website rather than leaving to find another competitor.

Implementing an automatic stepwise model selection, we chose the best model, in terms

of AIC, by choosing from the main effect model, as well as all possible interaction terms.

In comparison with previous studies, our contribution has been to take into account

interaction terms, as well as main effect general clickstream information. Our aim was to

identify the most significant predictors of online purchasing to maximize the predictive

power of our model in practice.

The results show that the predictive performance of the model increased significantly by

considering the interaction terms in the model. The most important variables resulting

from the selection techniques are the logarithm of the session time duration and whether

the visitor is from the UK. The effect of more detailed regional information can be in-

vestigated in the case of availability of data. At the moment the model just looks at

conversion regardless of the product. It would be interesting to model the conversion for

different products/services that website offers.

There are some explanatory variables that are significant when performing a single logistic

regression which were not entered into the final model. This is mainly due to the presence

of multi-collinearity. The correlation matrix of the explanatory variables in the subset of

chosen variables shows that there is not a large multi-collinearity which would be present

when incorporating all of the explanatory variables. It should be noted that despite the

predictive ability of the fitted logit model, there exists a severe discrepancy from the
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assumptions of the model.

Comparing the result of the logit model with CART shows that the medium effect fac-

tors, session time duration and visiting from UK, appeared in both models. For the small

effect model we would not necessarily have the same factors in the model. However, both

models show very close predictive performance. It would be interesting to check the addi-

tional alternative approaches including neural networks, categorical principal component

analysis (CATPCA) and further developments of CART models.

The model can be improved by considering more predictors in the model, for example

any knowledge about the web pages viewed during the session. We may be interested in

distinguishing between the number of content pages versus the number of transition pages

visited during a session by a visitor and determining whether it affects the probability

of conversion. Time spent on reading the shipping policy might be associated with the

probability of conversion. Conversely, we may find some pages that help to identify visitors

who are on the website to gather information, for example visitors who download white

papers not specifically related to the service or products that the website offers. Using

registered users who login to the website, depending on the requested information in the

registration forms, may increase the predictive performance of the model. This includes

attributes such as gender, age, occupation, and educational level.

8.4 Analysis of Sequences of Pages Visited

The ordering of pageviews visited by users will also provide information about their brows-

ing behaviour. A web manager might be interested in analysing the clickstream path taken

by users during their session on the website. Furthermore, clustering of users can be im-

plemented based on methods which consider the ordering of pageviews. Since the early

stages of web usage analysis, mixture models have been proposed as model-based clus-

tering approaches for clustering users. The general idea behind mixture models, such as

a mixture of Markov models, or mixture of hidden Markov models, assumes that K user

clusters exist (user behaviour in this context) within the data. Each user session is as-

sumed to follow a probability model of the observed (and hidden variables for MixHMM).

In this approach, a user cluster is chosen with some probability. Then, the user session is

generated from a Markov model with parameters specific to that user cluster.

A mixture of Markov models can not only probabilistically cluster user sessions based

on similarities in navigation behaviour, but can also capture characteristics of each user

cluster, as it enables us to compute the probability of visiting a page or any sequence
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of pages. In our application we computed the probability of contact page, check-out or

product pages for different clusters. Model-based clustering techniques can be applied

to other session attributes, such the time spent on each page. For example, Mair and

Hudec (2008) introduced the mixture of proportional hazard models to group navigational

behaviour with respect to sequence of time spent on webpages.

We reviewed the theoretical background of hidden Markov models and mixture of hidden

Markov models. We extended the EM algorithm for the MixHMM with observations

from the Normal, Poisson, Exponential, and Binomial distributions. The classical EM

algorithm for MixHMM does not provide an estimate of the variance of the parameters.

On the other hand, different plugin values of the EM algorithm may result in a different

ML estimate of the parameters. So we used the Bayesian approach with vague prior

distribution over parameters of MixHMM to find an estimate of the parameters, as well

as their precision.

We provided the theoretical background to implement the mixture of Hidden Markov

models (MixHMM) in the Bayesian framework. We applied this model for modelling

internet browsing behaviour on an e-commerce website. As the aim was to model web-

page traversal we focused on the output of hidden Markov Models with discrete nominal

distributions. We assumed that the number of components and the number of regimes

for the hidden Markov models were known.

The main difficulty of using Gibbs sampling for the MixHMM, as a high dimensional

model, was the high level of autocorrelation for samples, and consequently slow mixing.

As an early solution in the mixture model we used a stochastic forward-backward recursion

to improve the mixing of the chain compared to the direct Gibbs sampling algorithm. Ad-

ditionally, we used thinning to provide an independent sample from the marginal posterior

distribution of the model parameters. The performance of the model was assessed over an

artificial navigation pattern. It should be noted that diagnostic checks are not very well

developed in the HMM and consequently for MixHMM. Therefore further improvement

could be made in terms of providing diagnostic checks for the MixHMM.

Further development could be achieved by providing a methodology that would allow

us to estimate the number of mixture components and hidden states while estimating

the parameters of the model. The reversible jump MCMC technique has already been

proposed to simultaneously estimate the posterior distribution of the number of regimes

in the mixture model and all other parameters of the model. However, we found it very

complicated to implement it for MixHMM due to computation of the Jacobian matrix.

Hence, it would be desirable to find a simpler methodology for computing the number
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of mixture components for high dimensional models such as MixHMM. Our approach at

the moment looks at the distribution of BIC for running the model for several different

settings. This approach is computationally expensive, as the Gibbs sampler needs a

considerable number of samples to provide an adequate independent sample.

Furthermore, the large sample size nature of the clickstream data induces some difficulties

in using standard statistical methods such as the two-sample t-test, and goodness-of-fit

test, as the test is significant even for very small effects. The classic goodness-of-fit tests

are often significant, although, the graphical tools reveal a small departure of the observed

and the theoretical distribution. This suggests that we should equip our analysis based

on the adequate graphical tools, as well as effect size measures to provide the analyst with

an alternative to assess practical significance along with statistical significance.

The proposed MixHMM assumes that observing each page only depends on the hidden

status of the user at time t and its type of session. It would be beneficial to consider

the effect of the previous page on the next page, as well as the hidden state. We showed

that MixHMM can serve as a model-based approach to clustering sessions. However,

this model only considers the transition between web-pages. An improvement could be

obtained by using a methodology which takes into account other general features of a web

session (or users) such as session time duration, number of pages visited, traffic source, etc.

to determine the groups of session/users that are close to each other based on a measure

of distance or similarity. Other types of analysis that can be performed on sequential

patterns include trend analysis, change point detection, or similarity analysis.

Another idea would be to develop a multivariate Mixture of hidden Markov model, which

would consider the time spent on each page, as well as page traversal. When we attempt

to use two variables in the model, an alternative is to consider the effect of time on

the pages on the MixHMM by developing a weighted version of MixHMM. Montgomery

et al. (2004) introduce the dynamic multinomial probit model to model online browsing

behaviour, engaging pageview sequence in cooperation with demographic information as

well as content measures.

Finally, we wish to stress that advances in data pre-processing, analyzing, and modelling,

to the clickstream data is very demanding at the moment. The successful application of

these models has been found in different web personalization, customer relationship, PPC

optimisation, etc. Despite this progress, developing robust and effective methodology is

still in demand.
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Appendix A

Robust Effect Sizes: E-commerce

application

A.1 Algorithms for computing Effect Size

Algorithm 1 Calculate the empirical quantile function, eqf(x[ ],p[ ])

Require: a vector of observations x[ ] based on which empirical quantile function is computed

Require: a vector of probabilities p[ ] for which the empirical quantile function is computed

1: nx ← length of the vector x[ ]

2: np ← length of the vector p[ ]

3: for i = 1 to nx do

4: Fx[i]← i/nx

5: end for

6: for i = 1 to np do

7: qx[i]← minimum value of x[ ]

8: end for

9: for j = 1 to np do

10: for i = 1 to nx − 1 do

11: if p[j] ≥ Fx[i] then

12: qx[j]← x[i+ 1]

13: end if

14: end for

15: end for

16: return qx[ ]
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Algorithm 2 Calculate the empirical QAD effect size, qad(x[ ], y[ ])

Require: a vector of observations x[ ]

Require: a vector of observations y[ ]

1: x[ ]← sort vector of x[ ] by ascending order

2: y[ ]← sort vector of y[ ] by ascending order

3: Nx ← length of the vector x[ ]

4: Ny ← length of the vector y[ ]

5: for i = 1 to nx do

6: Fx[i]← i/nx

7: end for

8: for i = 1 to ny do

9: Fy [i]← i/ny

10: end for

11: p[ ]← merge Fx and Fy and sort them by ascending order

12: np ← length of the vector p[ ]

13: Qx ← eqf(x[ ], p[ ])

14: Qy ← eqf(y[ ], p[ ])

15: for i = 1 to np-1 do

16: dp[i]← p[i+ 1]− p[i]
17: end for

18: for i = 2 to np do

19: dQ[i− 1]←
∣∣∣Qx[i]−Qy [i]

∣∣∣
20: end for

21: qad← 0

22: for i = 2 to np-1 do

23: qad← qad+ dQ[i]× dp[i])
24: end for

25: return qad

Algorithm 3 Calculate the empirical cdf, ecdf(x[ ] , q[ ])

Require: a vector of observations x[ ] based on which the cdf is computed

Require: a vector of quantiles q[ ] for which the cdf is computed

1: x[ ]← sort the vector of x[ ] by ascending order

2: nx ← length of the vector x[ ]

3: q[ ]← sort the vector of q[ ] and keep unique values

4: nq ← length of the vector q[ ]

5: for i = 1 to nq do

6: sum← 0

7: for j = 1 to nq do

8: if x[j] ≤ q[i] then
9: sum← sum+ 1

10: end if

11: end for

12: F [i]← sum/nx

13: end for

14: return F [ ]
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Algorithm 4 Calculate the area of non-self-intersecting polygon with n vertices, area(v[ , ])

Require: a (n+ 1)× 2 matrix of vertices v[ , ] of a non-self-intersecting polygon

1: area← 0

2: nv ← the number of vertices

3: for i = 1 to nv do

4: area← area+ 1
2
×

(
v[i, 1]× v[i+ 1, 2]− v[i, 2]× v[i+ 1, 1]

)
5: end for

6: return area

Algorithm 5 Calculate the empirical divergence measure, div(x[ ], y[ ])

Require: a vector of observations x[ ]

Require: a vector of observations y[ ]

1: x[ ]← sort the vector of x[ ] by ascending order

2: GGinv ← [0, ecdf(x[ ], x[ ]), 1]

3: FGinv ← [0, ecdf(y[ ], x[ ]), 1]

4: n← length of GGinv

5: for i = 1 to n do

6: v[i, 1]← GGinv[i]

7: end for

8: for i = 1 to n do

9: v[i, 2]← FGinv[i]

10: end for

11: for j = 1 to 2 do

12: v[n+ 1, j]← 0

13: end for

14: for i = 1 to n+ 1 do

15: if v[i, 1] > v[i, 2] then

16: tmp← v[i, 1]

17: v[i, 1]← v[i, 2]

18: v[i, 2]← tmp

19: end if

20: end for

21: div ← 2× area(v[ , ])

22: return div

Algorithm 6 Calculate the empirical quantile comparison effect size, qces(x[ ], y[ ])

Require: a vector of observations x[ ]

Require: a vector of observations y[ ]

1: divxy ← div(x[ ], y[ ])

2: divyx ← div(y[ ], x[ ])

3: qces← 1
2
× divxy + 1

2
× divyx

4: return qces
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Appendix B

R Codes

B.1 Plots and Exploratory Analysis

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Produce a heat-plot based on three numeric vector

#

#-------------------------------------------------------------------------------

heat.plot <- function(x, y, z, seg=100,

xlabt=NULL, ylabt=NULL,

maxx=NULL, maxy=NULL,cex=3)

{

if(is.null(maxx)) maxx <- max(x)

if(is.null(maxy)) maxy <- max(y)

xd <- (maxx-min(x))/seg

yd <- (maxy-min(y))/seg

brkx <- seq(min(x),maxx, xd)

brky <- seq(min(y),maxy, yd)

brkx[1]<- min(x)-0.000001

brky[1]<- min(y)-0.000001

c <- length(brkx)

x.mid <- (brkx[1:c-1]+brkx[2:c])/2

y.mid <- (brky[1:c-1]+brky[2:c])/2

x.cat <- cut(x=x, breaks=brkx, right=T)

y.cat <- cut(x=y, breaks=brky, right=T)

tot <- table(x.cat,y.cat)

den<- tot

den[tot==0]<-1

tab <- table(x.cat,y.cat, z)

tab <- tab[,,2]

pct <- (tab/den)*100

pct[tot<10]<-tab[tot<10]

222



B.1. Plots and Exploratory Analysis 223

tab <- round(pct,0)

freq <- as.vector(tab)

maxt <- 100

heat.col <- heat.colors(maxt)

colv <- heat.col[maxt-freq]

colv[as.vector(tot==0)]<-0

x.points <- rep(x.mid, times=seg)

y.points <- rep(y.mid, each= seg)

if (is.null(xlabt)) xlabt<- deparse(substitute(x))

if (is.null(ylabt)) ylabt<- deparse(substitute(y))

nf <- layout(matrix(c(1,2), 1,2), c(6,1), TRUE)

layout.show(nf)

par(mar=c(5,5,2,1))

plot(x.points,

y.points,

col=colv,

pch=15,

cex=cex,

xlab=xlabt,

ylab=ylabt,

cex.lab=1.1,

cex.axis=1.1)

box()

par(mar=c(5,0,2,3))

image(matrix(1:100,1), col=heat.colors(100)[100:1], axes=F, xlim=c(0,.1))

axis(4,at=seq(0,1,length.out=11),labels=seq(0,100,10), cex.axis=1.1)

box()

layout(matrix(c(1)))

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Produce a interaction-plot for representing inter-action effect in

# logistic regression

#-------------------------------------------------------------------------------

interact.curve<-

function(depend,

independ,

class,

xlabt="Explanatory variable",

ylabt="Probability of Conversion",

maxt=0,

leg.txt=c("0","1"),

dit=TRUE, scat=TRUE, bounds=TRUE, curve=TRUE)

{

if (maxt==0) maxt <- max(independ)

# ------------------------- drawing a empty plot to put shapes in

plot(independ, depend,
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type="n",

family="serif",

xlab=xlabt,

ylab=ylabt,

cex.lab=1.2,

xlim=c(min(independ),maxt),

ylim=c(-0.2,1.2)

)

logi.scat <- function(depend, independ, colt=3)

{

model <- glm(depend~ independ,

family=binomial(link=logit))

qnt<- quantile(independ,seq(0,1,0.01))

qnt <- unique(qnt)

c<- length(qnt)

indep.mid <- (qnt[1:c-1]+qnt[2:c])/2

qnt[1]<- min(independ)-0.000001

indep.cat<-cut(x=independ,breaks=qnt, right=T, labels=indep.mid)

#--------------- make table to find the percent of conversion

tab<-table(depend,indep.cat)

pct=(tab[2,]/(tab[1,]+tab[2,]))

#------------- put the percent point on the plot

points(indep.mid,pct, pch=20, cex=0.8 , col=colt )

}

# ------ add fitted values by simple logistic model

logi.curve <- function(depend, independ, colt=2)

{

model <- glm(depend~ independ,

family=binomial(link=logit))

new.indep <- seq(min(independ),maxt,(maxt-min(independ))/100)

prob <- predict(model,

data.frame(independ=new.indep),

type="response")

lines(new.indep, prob , col=colt, lwd=1.5, lty=1)

}

logi.dit <-

function (depend,independ, inside=TRUE, colt=-1)

{

indep.0 <- independ[depend == 0]

indep.1 <- independ[depend == 1]

n <- length(depend)

n0 <- length(indep.0)

n1 <- length(indep.1)

uni.plot.0 <- function(x) length(which(indep.0 == x))/length(indep.0)

uni.plot.1 <- function(x) length(which(indep.1 == x))/length(indep.1)

# get the number of repeated values of "independ":

uni.indep.0 <- unique(indep.0)

uni.indep.1 <- unique(indep.1)

r0 <- rank(uni.indep.0)
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r1 <- rank(uni.indep.1)

uni.indep.0[r0]<-uni.indep.0

uni.indep.1[r1]<-uni.indep.1

cosa.0 <- apply(as.matrix(unique(indep.0)), 1, uni.plot.0)

cosa.1 <- apply(as.matrix(unique(indep.1)), 1, uni.plot.1)

scale <- 0.2

s.cosa.0 <- cosa.0/max(cosa.0)*scale

s.cosa.1 <- cosa.1/max(cosa.1)*scale

s.cosa.0 [r0]<- s.cosa.0

s.cosa.1 [r1]<- s.cosa.1

c0 <- length(uni.indep.0)

c1 <- length(uni.indep.1)

if (inside)

{

x0 <- uni.indep.0

y0 <- rep(0, length(uni.indep.0))

x1 <- c(uni.indep.0[2:c0],maxt)

y1 <- s.cosa.0

w0 <- uni.indep.1

z0 <- 1-s.cosa.1

w1 <- c(uni.indep.1[2:c1],maxt)

z1 <- rep(1, length(uni.indep.1))

}

if (!inside)

{

x0 <- uni.indep.0

y0 <- rep(0, length(uni.indep.0))

x1 <- c(uni.indep.0[2:c0],maxt)

y1 <- -s.cosa.0

w0 <- uni.indep.1

z0 <- 1+s.cosa.1

w1 <- c(uni.indep.1[2:c1],maxt)

z1 <- rep(1, length(uni.indep.1))

}

rect(x0,y0,x1,y1, lwd=1, col=colt)

rect(w0,z0,w1,z1, lwd=1, col=colt)

}

dep0 <- depend[class==0]

indep0 <- independ[class==0]

logi.scat(dep0, indep0, col=1)

logi.curve(dep0, indep0, col=1)

logi.dit(dep0, indep0,inside=TRUE)
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dep1 <- depend[class==1]

indep1 <- independ[class==1]

logi.scat(dep1, indep1, col=2)

logi.curve(dep1, indep1, col=2)

logi.dit(dep1, indep1, inside=FALSE, colt=2)

legend(legend=leg.txt, "topright",

col = c(1,2),

text.col = "black",

lty= rep(1,2),

pch= rep(20,2),

merge = TRUE)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Produce ROC-curve for the fitted logistic regression model

#

#-------------------------------------------------------------------------------

ROC.logi <- function(plott=FALSE)

{

n <- nrow(wdata)

set.seed(17)

train <- sample(1:n, 7000)

model <- glm(formula=stepwise.model$formula,

data=wdata[train,],

family=binomial(link=logit))

test.data<- wdata[-train,]

pred <- predict(model,

newdata=test.data,

type="response")

pct1<-table(wdata$cvs)/nrow(wdata)

cutpoints <- (0:20)/20

spec <- sens <- misspec <- phi <- NULL

for (i in cutpoints)

{

class<- cut(pred,c(-Inf,i,Inf),label=c(0,1))

tab <- table(class, wdata$cvs[-train])

T0 <- tab[1,1]

T1 <- tab[2,2]

F1 <- tab[1,2]

F0 <- tab[2,2]

spec <- cbind(spec, T0/(tab[1,1]+tab[2,1]))

sens <- cbind(sens, T1/(tab[1,2]+tab[2,2]))

misspec <- cbind(misspec, 1-T0/(tab[1,1]+tab[2,1]))

phi <- cbind(phi, (T0+T1)/sum(tab))

}

plott= TRUE
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if(plott)

{

plot(misspec, sens,

type="b",

pch = 15,

axes=FALSE,

ylim=c(0,1),

xlim=c(0,1),

ylab="Sensitivity",

xlab="1-Specificity",

cex.lab=1.2,

lwd=2,

cex.lab=1.2,

cex.axis=1.2,

font.lab=1,

col="red"

)

abline(0,1, lwd=2)

axis(1,seq(0,1,0.1), cex.axis=1.1)

axis(2,seq(0,1,0.1), cex.axis=1.1)

box()

grid(nx=NULL,ny=NULL, col="black")

text(x=0.7,y=0.42, "Estimated area = 0.849", cex=1.2)

}

invisible(list(spec,sens, misspec,phi))

}

ROC.logi(plott=TRUE)

B.2 Effect Size

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute QAD effect size for two Weibul distributions

#

#-------------------------------------------------------------------------------

qad = function(shape0,scale0, shape1, scale1)

{

incr = 1e-4

p = seq(0,1,incr)

u0 <- qweibull(p,shape0, scale0)

u1 <- qweibull(p,shape1, scale1)

qad = sum(abs(incr*abs(u1-u0)[-1]))

return(qad)

}

#-------------------------------------------------------------------------------
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#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute QC effect size for two Weibul distributions

#-------------------------------------------------------------------------------

qces = function(shape0,scale0, shape1, scale1)

{

incr = 1e-4

p = seq(0,1,incr)

u = pweibull(qweibull(p,shape1, scale1), shape0, scale0)

w = pweibull(qweibull(p,shape0, scale0), shape1, scale1)

qces = sum(abs(incr*abs(u-p)[-1]))+sum(abs(incr*abs(w-p)[-1]))

return(qces)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute Cliff’s delta effect size for two arbitrary distributions

#

#-------------------------------------------------------------------------------

cliff = function(y0,y1)

{

n1 <- length(y0)

n2 <- length(y1)

sgn <- numeric(n1*n2)

for (i in 1:n1)

for (j in 1:n2)

sgn[(i-1)*n2+j] <- sign(y0[i]-y1[j])

d <- sum(sgn)/(n1*n2)

return(d)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute Cohen’s d effect size for two arbitrary distributions

#

#-------------------------------------------------------------------------------

cdes = function(y0,y1)

{

n0 <- length(y0)

n1 <- length(y1)

mu0 <- mean(y0)

mu1 <- mean(y1)

sp <- ((n0-1)*var(y0)+(n1-1)*var(y1))/(n1+n0-2)

d <- (mu1-mu0)/sqrt(sp)

return(d)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute Empirical QAD effect size for two arbitrary distributions

#
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#-------------------------------------------------------------------------------

eqad = function(x, y, plot=TRUE)

{

y = sort(y)

x = sort(x)

ny = length(y)

nx = length(x)

My.eqf = function(x,p)

{

nx = length(x)

Fx = (1:nx)/nx

np = length(p)

Qx = rep(min(x),np)

for (j in 1:np)

for (i in 1:(nx-1))

if (p[j] >= Fx[i])

{

Qx[j] = x[i+1]

}

return(Qx)

}

p = sort(unique(c((0:nx)/nx, (0:ny/ny))))

np = length(p)

Qx = My.eqf(x,p)

Qy = My.eqf(y,p)

diff.p = diff(p)

diff.Q = abs(Qx-Qy)[-1]

eqad = sum(diff.Q*diff.p)

return(eqad)

}

plotqad = function(x, y)

{

y = sort(y)

x = sort(x)

ny = length(y)

nx = length(x)

eqf.point = function(x)

{

nx = length(x)

ux = unique(x)

p = numeric(length(ux))

for (i in 1:length(ux))

p[i] = (1/nx)*sum(x<=ux[i])

foo1= c(0,rep(p,each=2))

foo1 = foo1[-length(foo1)]

foo2= rep(ux,each=2)

mat=cbind(foo1,foo2)

return(mat)

}

foox=eqf.point(x)

fooy=eqf.point(y)

mat=rbind(foox,fooy[nrow(fooy):1,],foox[1,])
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plot(foox, type=’l’, lwd=1.5, xlim=c(0,1), ylim=c(min(x,y),max(x,y)))

polygon(mat,col="lightgreen",border="white")

lines(foox, type=’l’, lwd=1.5, xlim=c(0,1), ylim=c(0,10))

lines(fooy, type=’l’, lty=2, lwd=1.5)

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Compute Empirical QC effect size for two arbitrary distributions

#

#-------------------------------------------------------------------------------

eqces = function(x, y, plot=TRUE)

{

y = sort(y)

x = sort(x)

ny = length(y)

nx = length(x)

My.area = function(n)

{

area = 0

for (i in 1:(nrow(n)-1))

area = area + 0.5 * (n[i,1]*n[i+1,2]-n[i,2]*n[i+1,1])

return(area)

}

My.ecdf = function(x,q)

{

x = sort(x)

nx = length(x)

q = sort(unique(q))

F = numeric(length(q))

for (i in 1:length(q))

F[i] = (1/nx)*sum(x<=q[i])

return(F)

}

GGinv = c(0, My.ecdf(x,x), 1)

FGinv = c(0, My.ecdf(y,x), 1)

m = cbind(GGinv,FGinv)

m = rbind(m,c(0,0))

if (plot==TRUE)

{

plot(m, type=’l’)

polygon(m,col="lightgreen",border="darkgreen")

lines(m, type=’l’)

grid(nx=NULL, lwd=1.5, col="grey")

}

n = m

n[n[,1]<=n[,2],] = n[n[,1]<=n[,2],2:1]

eqces = My.area(n)

names(eqces) = NULL

return(eqces)

}
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B.3 Mixture of Hidden Markov Model

##-------------------------------------------------------------------------------

##----------------------------- Generate Mixture of hidden Markov Model

sim.mhmm = function(I, seed, omega, tpm, epm)

{

ispd = list(NULL)

K= length(omega)

for (k in 1:K)

ispd[[k]] = revise.ispd(tpm[[k]])

set.seed(seed)

S = nrow(tpm[[1]])

L = nrow(epm[[1]])

Ci= rdisc(I, prob=omega)

Ti = sample(30:120,I,TRUE)

St = list(NULL); for (i in 1:I) St[[i]] = numeric(Ti[i])

Yt = list(NULL); for (i in 1:I) Yt[[i]] = numeric(Ti[i])

for (i in 1:I)

for (t in 1:Ti[i])

{

if (t==1) St[[i]][t]=rdisc(1,ispd[[Ci[i]]])

if (t>1) St[[i]][t]=rdisc(1,tpm[[Ci[i]]][St[[i]][t-1],])

Yt[[i]][t]=rdisc(1,epm[[Ci[i]]][,St[[i]][t]])

}

return(list(Yt=Yt,St=St, Ci=Ci))

}

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Perform mixture of Hidden Markov Model on matrix of discrete observations

# Using EM Algorithm

#-------------------------------------------------------------------------------

My.mhmm <-

function(y, yval = NULL, par0 = NULL, M = NULL, K=NULL, rand.start = NULL,

tolerance = 1e-04, verbose = FALSE, itmax = 200, tying=FALSE,

crit = "Linf", data.name = NULL)

{

if (is.null(data.name))

data.name <- deparse(substitute(y))

if (is.vector(y)) y <- matrix(y, ncol=1)

y <- My.tidyup(y, yval)

if (is.null(yval))

yval <- sort(unique(as.vector(y)))

OL <- length(yval)

L <- ncol(y)

O <- length(unique(as.vector(y)))

if (is.null(par0) & is.null(M))

stop("One of par0 and M must be specified.")

cpd <- rep(1/K, K)
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if (is.null(rand.start))

rand.start <- list(tpm = TRUE, Rho = TRUE, cmp=TRUE)

parm <- My.init.all(par0, L=L, M=M, K=K, OL=OL, rand.start)

icrit <- match(crit, c("PCLL", "L2", "Linf"))

if (is.na(icrit))

stop("Stopping criterion not recognized.")

if (is.null(par0$cmp) & is.null(K))

stop("One of par0$cmp and K must be specified.")

if (!is.null(par0$cmp))

K <- ncol(par0$cmp)

old.theta <- NULL

new.theta <- NULL

for (k in 1:K)

old.theta <- cbind(old.theta, c( c(parm[[k]]$tpm[, -M]),

c(parm[[k]]$Rho[1:(m - 1),])

)

)

old.ll <- -Inf

digits <- 2 + ceiling(abs(log10(tolerance)))

model <- list()

em.step <- 1

if (verbose)

cat("\n Initial set-up completed ...\n\n")

if (verbose)

cat("Repeating ...\n\n")

chnge <- numeric(3)

repeat{

if (verbose)

cat(paste("EM step ", em.step, ":\n", sep = ""))

for (k in 1:K)

{

model[[k]] <- My.recurse(y, tpm = parm[[k]]$tpm,

Rho = parm[[k]]$Rho,

ispd = parm[[k]]$ispd,

cmp = parm[[k]]$cmp

)

}

cmp <- revise.cmp(model, cpd)

cpd <- revise.cpd(cmp)

ll <- revise.ll(model, cpd)

if (tying)

{

Rho <- 0

for (k in 1:K)

Rho = Rho + model[[k]]$Rho*cpd[k]

for (k in 1:K)

model[[k]]$Rho = Rho

}

for (k in 1:K)

parm[[k]] <- list( tpm = model[[k]]$tpm,

ispd = model[[k]]$ispd,

Rho = model[[k]]$Rho,

cmp = cmp[,k])

new.theta <- NULL

for (k in 1:K)
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new.theta <- cbind(new.theta, c( c(parm[[k]]$tpm[, -M]),

c(parm[[k]]$Rho[1:(m - 1),])

)

)

chnge[1] <- if (old.ll > -Inf)

100 * (ll - old.ll)/abs(old.ll) else Inf

chnge[2] <- sqrt(sum((old.theta - new.theta)^2))

chnge[3] <- max(abs(old.theta - new.theta))

if (verbose) {

cat(" Log-likelihood: ", format(round(ll, digits)),

"\n", sep = "")

cat(" Percent decrease in log-likelihood: ",

format(round(chnge[1], digits)), "\n", sep = "")

cat(" Root-SS of change in coef.: ", format(round(chnge[2],

digits)), "\n", sep = "")

cat(" Max. abs. change in coef.: ", format(round(chnge[3],

digits)), "\n", sep = "" )

}

if (chnge[icrit] < tolerance) {

theta <- new.theta

converged <- TRUE

nstep <- em.step

break

}

if (em.step >= itmax) {

cat("Failed to converge in ", itmax, " EM steps.\n",

sep = "")

theta <- new.theta

converged <- FALSE

nstep <- em.step

break

}

old.theta <- new.theta

old.ll <- ll

em.step <- em.step + 1

}

ll <- revise.ll(model, cpd)

names(model) <- paste("Cluster", 1:K, sep="")

for (k in 1:K)

model[[k]]$like.y <- NULL

return(list(model = model, cmp = cmp, cpd = cpd, log.like = ll, converged = converged,

nstep = em.step, data.name = data.name))

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

#-------------------------------------------------------------------------------

# Perform the Viterbi Algorithm for the mixture of Hidden Markov Model on

# matrix of discrete observations

#-------------------------------------------------------------------------------

My.viterbi <-

function (y, object = NULL, tpm, Rho, ispd, yval = NULL)

{

y <- tidyup(y, yval)

n <- nrow(y)
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nc <- ncol(y)

if (!is.null(object)) {

tpm <- object$tpm

Rho <- object$Rho

ispd <- object$ispd

}

K <- nrow(tpm)

rslt <- list()

for (j in 1:nc) {

psi <- list()

delta <- ispd * Rho[y[1, j], ]

delta <- delta/sum(delta)

for (tt in 2:n) {

tmp <- apply(delta * tpm, 2, function(x) {

((1:length(x))[x == max(x)])

})

psi[[tt]] <- tmp

delta <- Rho[y[tt, j], ] * apply(delta * tpm, 2,

max)

}

temp <- list()

temp[[n]] <- (1:K)[delta == max(delta)]

for (tt in (n - 1):1) {

i <- 0

temp[[tt]] <- list()

for (x in temp[[tt + 1]]) {

k <- x[1]

for (w in psi[[tt + 1]][[k]]) {

i <- i + 1

temp[[tt]][[i]] <- c(w, x)

}

}

}

rrr <- matrix(unlist(temp[[1]]), nrow = n)

rslt[[j]] <- if (ncol(rrr) == 1)

as.vector(rrr)

else rrr

}

if (nc == 1)

rslt <- rslt[[1]]

rslt

}

B.4 Bayesian Mixture of Hidden Markov Model

#-------------------------------------------------------------------------------

#--------------------------- Invoke the necessary R packages

#---------------------------

invoke.lib = function()
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{

library(MASS)

library(lattice)

library(coda)

library(MCMCpack)

library(hmm.discnp)

}

#-------------------------------------------------------------------------------

#-------------------------------- A function to generate general discrete values

#--------------------------------

rdisc = function(n=1, prob=NULL, levels=NULL)

{

if (is.null(prob))

{

print("probability vector shuld be specified")

stop

}

K = length(prob)

if (is.null(levels)) levels=1:K

cum.prob= cumsum(prob)

foo = rep(0, n)

for (i in 1:n)

{

u = runif(1)

foo[i] = levels[match(1,as.numeric(u <= cum.prob))]

}

return(foo)

}

#-------------------------------------------------------------------------------

#----------------------------- A function to update initial state probabilities

#-----------------------------

revise.ispd =

function (tpm)

{

eee = eigen(t(tpm))

k = match(1, round(eee$values, 6))

if (length(k) != 1)

{

cat("Problems with eigenvalues:\n")

print(eee$values)

stop()

}

ispd = Re(eee$vectors[,k])

ispd/sum(ispd)

}

#-------------------------------------------------------------------------------

#---------------------------- A function to help forward recursion computations

#-----------------------------

My.ffun =

function (y, Rho)

{

January 23, 2012



B.4. Bayesian Mixture of Hidden Markov Model 236

M <- ncol(Rho)

py <- Rho[y, 1:M]

py[is.na(py)] <- 1

return(py)

}

#-------------------------------------------------------------------------------

#------------------------------ A function to put the initial values of the MCMC

#--------------------------------

get.init = function(tpm0=NULL, epm0=NULL, ispd0=NULL, St0=NULL, omega0=NULL, Ci0=NULL, mpm0=NULL)

{

if (is.null(tpm0)) {

tpm0 = list(NULL)

for (k in 1:K) tpm0[[k]] = matrix(rdirichlet(S,alpha=delta), ncol=S)

}

assign("tpm", tpm0, envir=.GlobalEnv)

if (is.null(epm0)) {

epm0 = list(NULL)

for (k in 1:K) epm0[[k]] = t(rdirichlet(S,alpha=tau))

}

assign("epm", epm0, envir=.GlobalEnv)

if (is.null(ispd0)) {

ispd0 = list(NULL)

for (k in 1:K) ispd0[[k]] = revise.ispd(tpm[[k]])

}

assign("ispd", ispd0, envir=.GlobalEnv)

if (is.null(omega0)) omega0 = rdirichlet(1,alpha=zeta)

assign("omega", omega0, envir=.GlobalEnv)

if (is.null(St0))

{

St0 = list(NULL)

for (i in 1:I)

for (t in 1:Ti[i])

St0[[i]] = ceiling(S*runif(Ti[i]))

}

assign("St", St0, envir=.GlobalEnv)

if (is.null(mpm0)) {

mpm0 = matrix(0, nrow=I, ncol=K)

for (k in 1:K)

for (i in 1:I)

mpm0[i,k] = sum(diag(log(epm[[k]][Yt[[i]],St[[i]]])))

mpm0 = exp(mpm0)/apply(exp(mpm0), MARGIN=1, FUN=sum)

assign("mpm", mpm0, envir=.GlobalEnv)

}

if (is.null(Ci0)) Ci0 = ceiling(K*runif(I))

assign("Ci", Ci0, envir=.GlobalEnv)

}

#-------------------------------------------------------------------------------
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#------------------------------ Te starting loop for Gibbs sampler

#--------------------------------

hyper.par = function()

{

assign("delta", rep(1,S), envir=.GlobalEnv)

assign("tau", rep(1,L), envir=.GlobalEnv)

assign("zeta", rep(1,K), envir=.GlobalEnv)

}

#-------------------------------------------------------------------------------

#------------------------------ Set vectors to keep the sampling outputs

#------------------------------

set.vectors = function(n)

{

tpm.t = array(0, dim=c(Nr, K*S*S)); assign("tpm.t", tpm.t, envir=.GlobalEnv)

epm.t = array(0, dim=c(Nr, K*S*L)); assign("epm.t", epm.t , envir=.GlobalEnv)

ispd.t = array(0, dim=c(Nr, K*S)) ; assign("ispd.t", ispd.t, envir=.GlobalEnv)

omega.t = array(0, dim=c(Nr, K)) ; assign("omega.t", omega.t, envir=.GlobalEnv)

Ci.t = array(0, dim=c(Nr, I)) ; assign("Ci.t", Ci.t, envir=.GlobalEnv)

llik.t = array(0, dim=c(Nr, 1)) ; assign("llik.t", llik.t, envir=.GlobalEnv)

St.t = array(0, dim=c(Nr, 10)) ; assign("St.t", St.t, envir=.GlobalEnv)

}

#-------------------------------------------------------------------------------

#------------------------------ Updare the transition matrix probabilities (tpm)

#---------------------------

update.tpm = function()

{

nij = list(NULL)

for (k in 1:K) nij[[k]] = matrix(0, ncol=S, nrow=S)

for (i in 1:I)

for (t in 1:(Ti[i]-1))

nij[[Ci[i]]][St[[i]][t],St[[i]][t+1]] = nij[[Ci[i]]][St[[i]][t],St[[i]][t+1]] + 1

for (k in 1:K)

for (s in 1:S) tpm[[k]][s,] = rdirichlet(1,alpha=nij[[k]][s,]+delta)

assign("tpm", tpm, envir=.GlobalEnv)

return(tpm)

}

#-------------------------------------------------------------------------------

#------------------------------ Producing the probabilities and updating

#------------------------------ the hidden states by Direct Gibbs sampling

#-------------------------------

update.St.DG = function()

{

for (i in 1:I)

{

Pt = matrix(0, nrow=Ti[i], ncol=S)

Pt[1,] = ispd[[Ci[i]]]*epm[[Ci[i]]][Yt[[i]][1],]*tpm[[Ci[i]]][,St[[i]][2]]

Pt[1,] = Pt[1,]/sum(Pt[1,])

St[[i]][1] = rdisc(n=1, prob=Pt[1,])

for (t in 2:(Ti[i]-1))
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{

Pt[t,] = tpm[[Ci[i]]][St[[i]][t-1],]*epm[[Ci[i]]][Yt[[i]][t],]* tpm[[Ci[i]]][,St[[i]][t+1]]

Pt[t,] = Pt[t,]/sum(Pt[t,])

St[[i]][t] = rdisc(n=1, prob=Pt[t,])

}

Pt[Ti[i],] = tpm[[Ci[i]]][St[[i]][Ti[i]-1],]*epm[[Ci[i]]][Yt[[i]][Ti[i]],]* rep(1,S)

Pt[Ti[i],] = Pt[Ti[i],]/sum(Pt[Ti[i],])

St[[i]][Ti[i]] = rdisc(n=1, prob=Pt[Ti[i],])

}

assign("St", St, envir=.GlobalEnv)

return(St)

}

#---------------------------------------------------------------------------

#------------------------------ Producing the probabilities and updating

#------------------------------ the hidden states by

#------------------------------ Stochastic Forward-Backward Gibbs sampling

update.St.FB = function()

{

for (i in 1:I)

{

if (S>1)

{

P_t = array(0,dim=c(S,S,Ti[i]))

Pt = matrix(0, nrow=Ti[i], ncol=S)

pij = matrix(0, nrow=Ti[i], ncol=S)

pij[1,] = ispd[[Ci[i]]] * epm[[Ci[i]]][Yt[[i]][1],]

pij[1,] = pij[1,]/sum(pij[1,])

for (t in 2:Ti[i])

{

for (s in 1:S)

P_t[s,,t] = pij[t-1,s]* epm[[Ci[i]]][Yt[[i]][t],]* tpm[[Ci[i]]][s,]

P_t[,,t] = P_t[,,t]/sum(P_t[,,t])

pij[t,] = apply(P_t[,,t], MARGIN=2, FUN=sum)

}

Pt[Ti[i],] = apply(P_t[,,Ti[i]], MARGIN=2,FUN=sum)

St[[i]][Ti[i]] = rdisc(n=1, prob=Pt[Ti[i],])

for (t in 1:(Ti[i]-1))

{

Pt[Ti[i]-t,] = P_t[,St[[i]][Ti[i]-t+1],Ti[i]-t+1]/sum(P_t[,St[[i]][Ti[i]-t+1],Ti[i]-t+1])

St[[i]][Ti[i]-t] = rdisc(n=1, prob=Pt[Ti[i]-t,])

}

}

if (S==1) St[[i]] = rep(1, Ti[i])

}

assign("St", St, envir=.GlobalEnv)

return(St)

}

#-------------------------------------------------------------------------------

#--------------------------- Update the emission probability matrix (epm)

#---------------------------

update.epm = function(tying)

{

mij = list(NULL)
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for (k in 1:K) mij[[k]] = matrix(0, nrow=L, ncol=S)

for (i in 1:I)

for (s in 1:S)

for (l in 1:L)

mij[[Ci[i]]][l,s] = mij[[Ci[i]]][l,s]+sum(Yt[[i]]==l & St[[i]]==s)

for (k in 1:K)

for (s in 1:S)

epm[[k]][,s] = t(rdirichlet(1,alpha=mij[[k]][,s]+tau))

if (tying){

for (k in 1:(K-1)) mij[[k+1]] = mij[[k]] + mij[[k+1]]

for (s in 1:S) epm[[1]][,s] = rdirichlet(1,alpha=mij[[K]][,s]+tau)

for (k in 1:K) epm[[k]] = epm[[1]]

}

assign("epm", epm, envir=.GlobalEnv)

return(epm)

}

#-------------------------------------------------------------------------------

#--------------------------------- Update the initial state probabilities (ispd)

#---------------------------------

update.ispd = function()

{

for (k in 1:K) ispd[[k]] = revise.ispd(tpm[[k]])

assign("ispd", ispd, envir=.GlobalEnv)

return(ispd)

}

#-------------------------------------------------------------------------------

#-------------------------------- Update the Membership Probability Matrix (mpm)

#---------------------------

# update.mpm = function()

# {

# for (k in 1:K)

# for (i in 1:I)

# mpm[i,k] = sum(diag(log(epm[[k]][Yt[[i]],St[[i]]])))

# mpm = exp(mpm)/apply(exp(mpm), MARGIN=1, FUN=sum)

# assign("mpm", mpm, envir=.GlobalEnv)

# return(mpm)

# }

update.mpm = function()

{

foo = matrix(0,ncol=K, nrow=I)

for (k in 1:K)

for (i in 1:I)

{

ll.St = sum(log( ispd[[k]][St[[i]]][1]*

diag(tpm[[k]][St[[i]][1:(Ti[i]-1)],St[[i]][2:Ti[i]]])))

ll.Yt = sum(diag(log(epm[[k]][Yt[[i]],St[[i]]])))

ll.Ci = sum(log(omega[k]))

foo[i,k] = ll.Yt+ll.St+ll.Ci
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}

for (k in 1:K)

{

foo2 = foo-matrix(foo[,k], ncol=K, nrow=I)

mpm[,k] = 1/ apply(exp(foo2), MARGIN=1, FUN=sum)

}

mpm[is.nan(mpm)] = 0

assign("mpm", mpm, envir=.GlobalEnv)

return(mpm)

}

#-------------------------------------------------------------------------------

#--------------------------- Update the Membership variable (Ci)

#---------------------------

update.Ci = function()

{

for (i in 1:I)

Ci[i] = rdisc(n=1, prob=mpm[i,])

assign("Ci", Ci, envir=.GlobalEnv)

return(Ci)

}

#-------------------------------------------------------------------------------

#--------------------------- Update the mixture weight (omega)

#---------------------------

update.omega = function()

{

w = numeric(K)

for (k in 1:K) w[k] = sum(Ci==k)+zeta[k]

omega = rdirichlet(1,alpha=w)

assign("omega", omega, envir=.GlobalEnv)

return(omega)

}

#-------------------------------------------------------------------------------

#--------------------------- Computing Likelihood

#---------------------------

comp.llik = function()

{

llik = matrix(0, nrow=I, ncol=K)

for (k in 1:K)

{

for (i in 1:I)

{

alpha = as.double(ispd[[k]])

lscale = as.double(0)

py = My.ffun(Yt[[i]], epm[[k]])

for (t in 1:Ti[i])

{

if (t>1)

alpha = alpha %*% tpm[[k]]

if (is.vector(py)) alpha = alpha * py else

alpha = alpha * py[t,]

sum.alpha = sum(alpha)

January 23, 2012



B.4. Bayesian Mixture of Hidden Markov Model 241

alpha = alpha/sum.alpha

lscale = lscale + log(sum.alpha)

}

llik[i,k] = lscale

}

}

llik = sum(log(exp(llik)%*%t(omega)))

assign("llik", llik, envir=.GlobalEnv)

return(llik)

}

#-------------------------------------------------------------------------------

#--------------------------- Send output into the external text file

#---------------------------

send.out = function(tpm.t,epm.t,ispd.t, Ci.t,omega.t, llik.t,St.t)

{

write.table(tpm.t, file = "tpm.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(epm.t, file = "epm.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(ispd.t, file = "ispd.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(Ci.t, file = "Ci.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(omega.t,file = "omega.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(llik.t, file = "llik.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

write.table(St.t, file = "St.csv", col.names=FALSE, row.names=FALSE, sep = ",", append=TRUE)

}

#-----------------------------------------------------------------------

#--------------------------- Main Gibbs sampler program

#---------------------------

MyGibbs = function(Yt,K,S,N,J, burnin, thin, iter, tpm, epm, ispd, St, omega, Ci, mpm, Nr, tying=FALSE,

tpm0=NULL, epm0=NULL, ispd0=NULL, St0=NULL, omega0=NULL, Ci0=NULL, mpm0=NULL, method=’fb’)

{

invoke.lib()

assign("Yt",Yt,envir=.GlobalEnv)

assign("S",S,envir=.GlobalEnv)

assign("K",K, envir=.GlobalEnv)

assign("J",J, envir=.GlobalEnv)

assign("N",N,envir=.GlobalEnv)

assign("Nr", Nr,envir=.GlobalEnv)

assign("iter",iter,envir=.GlobalEnv)

Ti = unlist(lapply(Yt, FUN=length)); assign("Ti", Ti , envir=.GlobalEnv)

L = max(unlist(Yt)); assign("L", L , envir=.GlobalEnv)

I = length(Yt); assign("I", I , envir=.GlobalEnv)

set.vectors(n=(N-burnin)/thin)

do.sample = function(Yt, iter)

{

hyper.par()

get.init(Ci0=Ci0, epm0=epm0, tpm0=tpm0, St0=St0)

assign("t0",Sys.time(),envir=.GlobalEnv)
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j = 0

for (r in 1:N)

{

if (r%%1==0) cat(r, "\n")

omega = update.omega()

tpm = update.tpm();

ispd = update.ispd()

epm = update.epm(tying)

mpm = update.mpm()

llik = comp.llik()

Ci = update.Ci()

if (method=’standard’) St = update.St.DG()

if (method=’fb’) St = update.St.FB()

if (r > burnin & r%%thin==0)

{

j = j+1

tpm.t[j,] = unlist(tpm)

epm.t[j,] = unlist(epm)

ispd.t[j,] = unlist(ispd)

Ci.t[j,] = Ci

omega.t[j,] = omega

llik.t[j,] = llik

St.t[j,] = unlist(St)[round(seq(1,length(unlist(St)),length=10))]

}

if (j==Nr)

{

send.out(tpm.t,epm.t,ispd.t, Ci.t, omega.t, llik.t, St.t)

j=0

}

}

assign("t1",Sys.time(),envir=.GlobalEnv)

return(list(tpm.t =tpm.t, epm.t=epm.t, ispd.t=ispd.t, Ci.t=Ci.t, omega.t=omega.t,llik.t=llik.t, St.t=St.t))

}

out = do.sample(Yt,iter)

return(out)

}

B.5 Representing Results of MixHMM

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-plot for EPM

##----------------------------------------------------------------------------

trace.epm = function(epm, nc, nr, grid=TRUE)

{

mat= matrix(1:(nc*nr), ncol=nc,nrow=nr, byrow=FALSE)

nf = layout(mat =mat,

widths = rep(0.9*1/nc ,nc),

heights= rep((1/nr) ,nr),
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respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for (i in 1:(nr*nc))

{

par(mar=c(.2,.3,.2,0))

Min= min(epm[,i])

Max= max(epm[,i])

R = (Max-Min)

plot(epm[,i], type=’l’, ylim=c(0,1), lwd=1.5,axes=F)

if (any(i==1:nr))

mtext(side=2, text= as.character(i), line=2,cex=.7,family=’serif’, las=2)

box()

if(grid) grid(nx=NULL, col=1, lty=2, lwd=.3)

if (any(i==1:nr))

axis(2,at=seq(0.2,0.8,.2),labels=seq(0.2,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0, padj=+0.0, las=1, family="serif", tick=F)

}

par(mar=mar)

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-plot for TPM

##----------------------------------------------------------------------------

trace.tpm = function(tpm)

{

nc= sqrt(ncol(tpm))

mat= matrix(0, ncol=nc+2,nrow=nc+2, byrow=FALSE)

mat[2:(nc+1),2:(nc+1)] = 1:(nc^2)

nf = layout(mat =mat,

widths = c(1/6,rep(1,nc),1/6),

heights= c(1/6,rep(1,nc),1/6),

respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for (i in 1:(nc^2))

{

par(mar=c(.3,.3,0,0))

plot(tpm[,i], type=’l’, ylim=c(0,1), axes=F)

box(lwd=1.5)

if (any(i==1:nc))

axis(2,at=seq(0.2,0.8,.2),labels=seq(0.2,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0, padj=+0.0, las=1,

family="serif", tick=F)

grid(nx=NULL, col=’darkblue’, lty=3, lwd=.3)

}

par(mar=mar)

layout(matrix(c(1)))

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-plot for TPM to check label switching between mixture components
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##----------------------------------------------------------------------------

mix.lswitch.tpm = function(tpm,K)

{

N= nrow(tpm)

S= sqrt(ncol(tpm)/K)

mat = matrix(0, ncol=S+1,nrow=S+2, byrow=FALSE)

mat[2:(S+1),2:(S+1)] = 1:(S^2)

mat[S+2,2:(S+1)] = S^2+1

mat[2:(S+1),1] = S^2+2

mat[1,2:(S+1)] = S^2+3

cols=colors()[c(12,34,128,150,435,52,376,151,31,371)]

nf = layout(mat =mat,

widths = c(.1/S, rep(1/S,S)),

heights= c(.8/S, rep(1/S,S), 1/S),

respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for (i in 1:S)

for (j in 1:S)

{

par(mar=c(.3,.3,0,0))

plot(1:N, ylim=c(0,1), axes=F,col=2, type=’n’)

if (i==1)

mtext(side=2, text= as.character(j), line=2,cex=.7,family=’serif’, las=2)

if (j==1)

mtext(side=3, text= as.character(i), line=1,cex=.7,family=’serif’, las=1)

for (k in 1:K)

{

lines(tpm[,j+(i-1)*S+(k-1)*(S^2)], col=cols[k])

box(lwd=1.5)

if (i==1)

axis(2,at=seq(0.0,0.8,.2),labels=seq(0.0,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0, padj=+0.0, las=1,

family="serif", tick=F)

grid(nx=NULL, col=’darkblue’, lty=3, lwd=.3)

}

}

par(mar=c(3,.5,2,.1))

lab = 1:K

image(matrix(1:K, ncol=1), col=cols[1:K], axes=F)

text(seq(0,1,length.out=K), rep(0,K), lab, cex=1, col=colors()[c(rep(24,9),1)], font=2)

box()

grid(nx=K, ny=0, col=1, lty=1, lwd=1.2)

mtext(’Mixture Component’, side=1, cex=1.1, line=0.5,family=’serif’)

par(mar=c(0,0,0,0))

plot(0, type=’n’, axes=F, ylab=’’, xlab=’’)

mtext(side=2, ’Transition Probabilities’, family=’serif’, cex=1.1, line=3)
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par(mar=c(0,0,3,0))

plot(0, type=’n’, axes=F, ylab=’’, xlab=’’)

mtext(side=3, ’Transition Probabilities’, family=’serif’, cex=1.1, line=1)

par(mar=mar)

layout(matrix(c(1)))

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-plot for EPM to check label switching between hidden status

##----------------------------------------------------------------------------

hmm.lswitch.epm = function(epm, nr, nc, K, main=NULL)

{

N= nrow(epm)

mat = matrix(0, ncol=K+2,nrow=nr+3, byrow=FALSE)

mat[2:(nr+1),2:(K+1)] = 1:(nr*K)

mat[nr+2,2:(K+1)] = nr*K+1

mat[1:nr+1,1] = nr*K+2

cols=colors()[c(12,34,128,150,435,52,376,151,31,371)]

nf = layout(mat =mat,

widths = c(.3/K, rep(1/K,K), 0.1/K),

heights= c(.1/nr,rep(1/nr,nr),.9/nr, .05/nr),

respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for(k in 1:K)

{

par(mar=c(.1,.5,.2,.1))

for (i in 1:nr)

{

plot(1:N, axes=F, ylim=c(0,1), type=’n’, ylab=’’, xlab=’’)

if (k==1)

mtext(side=2, text= as.character(i), line=2,cex=.7,family=’serif’, las=2)

if (is.null(main)) main2=paste(’Component ’,as.character(k))

else main2 = main

if (i==1)

mtext(side=3, text=main2, line=.5,cex=1.,family=’serif’, las=1)

for (j in 1:nc)

{

lines(epm[,i+(j-1)*nr+(k-1)*nr*nc], col=cols[j])

box(lwd=1.5)

if (k==1)

axis(2,at=seq(0.0,0.8,.2),labels=seq(0.0,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0, padj=+0.0,

las=1, family="serif", tick=F)

if (i==nr)

axis(1,at=seq(0,N,1000),labels=seq(0,N,1000), cex.lab=0.5, cex.axis=0.8, hadj=0.5, padj=-2.0,

las=1, family="serif", tick=F)

grid(nx=NULL, col=’darkgrey’, lty=1, lwd=.5)

}

}
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}

par(mar=c(1,.5,2,.1))

lab = 1:nc

image(matrix(1:nc, ncol=1), col=cols[1:nc], axes=F)

text(seq(0,1,length.out=nc), rep(0,nc), lab, cex=0.9, col=colors()[c(rep(24,9),1)], font=2)

box()

grid(nx=nc, ny=0, col=1, lty=1, lwd=1.2)

mtext(’Hidden State’, side=1, cex=1.1, line=.5,family=’serif’)

par(mar=c(0,0,0,0))

plot(0, type=’n’, axes=F, ylab=’’, xlab=’’)

mtext(side=2, ’Emission Probabilities’, family=’serif’, cex=1.1, line=0.5)

par(mar=mar)

layout(matrix(c(1)))

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-plot for EPM to check label switching between Mixture components

##----------------------------------------------------------------------------

mix.lswitch.epm = function(epm, nr, nc, K, main=NULL)

{

N= nrow(epm)

mat = matrix(0, ncol=nc+2,nrow=nr+3, byrow=FALSE)

mat[2:(nr+1),2:(nc+1)] = 1:(nr*nc)

mat[nr+2,2:(nc+1)] = nr*nc+1

mat[1:nr+1,1] = nr*nc+2

cols=colors()[c(12,34,128,150,435,52,376,151,31,371)]

nf = layout(mat =mat,

widths = c(.1/nc, rep(1/nc,nc), .1/nc),

heights= c(.2/nr,rep(1/nr,nr),.5/nr, .2/nr),

respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for(j in 1:nc)

{

par(mar=c(.1,.5,.2,.1))

for (i in 1:nr)

{

plot(1:N, axes=F, ylim=c(0,1), type=’n’, ylab=’’, xlab=’’)

if (is.null(main)) main2=paste(’Hidden State ’,as.character(j)) else main2 = main

if (i==1) mtext(side=3, text=main2, line=.5,cex=1.,family=’serif’, las=1)

for (k in 1:K)

{

if (k==1 & j==1) mtext(side=2, text= as.character(i), line=2,cex=.7,family=’serif’, las=2)

lines(epm[,i+(k-1)*nr*nc+(j-1)*nr], col=cols[k])

box(lwd=1.5)

if (j==1) axis(2,at=seq(0.0,0.8,.2),labels=seq(0.0,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0, padj=+0.0,

las=1, family="serif", tick=F)

if (i==nr) axis(1,at=seq(0,N,1000),labels=seq(0,N,1000), cex.lab=0.5, cex.axis=0.8, hadj=0.5, padj=-2.0,

las=1, family="serif", tick=F)

grid(nx=NULL, col=’grey’, lty=1, lwd=0.5)
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}

}

}

par(mar=c(1,.5,2,.1))

lab = 1:K

image(matrix(1:K, ncol=1), col=cols[1:K], axes=F)

text(seq(0,1,length.out=K), rep(0,K), lab, cex=0.9, font=2)

box()

mtext(’Mixture Component’, side=1, cex=1.1, line=.5,family=’serif’)

par(mar=c(0,0,0,0))

plot(0, type=’n’, axes=F, ylab=’’, xlab=’’)

mtext(side=2, ’Emission Probabilities’, family=’serif’, cex=1.1, line=0.5)

par(mar=mar)

layout(matrix(c(1)))

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Matrix-Autocorrelation-plot for TPM

##----------------------------------------------------------------------------

acf.tpm = function(tpm)

{

nc= sqrt(ncol(tpm))

mat= matrix(0, ncol=nc+2,nrow=nc+2, byrow=FALSE)

mat[2:(nc+1),2:(nc+1)] = 1:(nc^2)

nf = layout(mat =mat,

widths = c(1/6,rep(1,nc),1/6),

heights= c(1/6,rep(1,nc),1/6),

respect=TRUE)

layout.show(nf)

mar = par(’mar’)

for (i in 1:(nc^2))

{

par(mar=c(.3,.3,0,0))

acf(tpm[,i], axes=F,lwd=2.0)

grid(nx=NULL, lwd=0.3, col=’black’, lty=2)

box()

if (any(i==1:nc)) axis(2,at=seq(0.2,0.8,.2),labels=seq(0.2,0.8,.2), cex.lab=0.5, cex.axis=0.8, hadj=0,

padj=+0.0, las=1, family="serif", tick=F)

if (any(i==seq(nc,nc^2,nc))) axis(1,at=seq(10,30,10),labels=seq(10,30,10), cex.lab=0.5, cex.axis=1.0, hadj=0, padj=-1.5, las=1, family="serif", tick=F)

}

par(mar=mar)

layout(matrix(c(1)))

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## Trace-plot and acf-plot for Likelihood

##----------------------------------------------------------------------------
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trace.llik = function(llik)

{

Min= min(llik/100)

Max= max(llik/100)

R = (Max-Min)

plot(llik/100,type=’l’, ylab=’Log-Likelihood [x100]’, xlab=’Index’, ylim=c(Min-R,Max+R))

box()

grid(nx=NULL, lwd=1.0, col=’black’, lty=2)

}

##----------------------------------------------------------------------------

##----------------------------------------------------------------------------

## acf-plot for Likelihood

##----------------------------------------------------------------------------

acf.llik = function(llik)

{

acf(llik, main=’’, ylab=’ACF of Log-Likelihood’, lwd=3)

box()

grid(nx=NULL, lwd=1.0, col=’black’, lty=2)

}
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