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Assessment of high resolution SAR imagery for mapping floodplain water bodies: 

a comparison between Radarsat-2 and TerraSAR-X 

 

Mohamed Saif Al-Ali 

 

Abstract 

 

Flooding is a world-wide problem that is considered as one of the most devastating natural 

hazards. New commercially available high spatial resolution Synthetic Aperture RADAR 

satellite imagery provides new potential for flood mapping. This research provides a 

quantitative assessment of high spatial resolution RADASAT-2 and TerraSAR-X products for 

mapping water bodies in order to help validate products that can be used to assist flood disaster 

management. An area near Dhaka in Bangladesh is used as a test site because of the large 

number of water bodies of different sizes and its history of frequent flooding associated with 

annual monsoon rainfall. Sample water bodies were delineated in the field using kinematic 

differential GPS to train and test automatic methods for water body mapping. SAR sensors 

products were acquired concurrently with the field visits; imagery were acquired with similar 

polarization, look direction and incidence angle in an experimental design to evaluate which has 

best accuracy for mapping flood water extent. 

 

A methodology for mapping water areas from non-water areas was developed based on radar 

backscatter texture analysis. Texture filters, based on Haralick occurrence and co-occurrence 

measures, were compared and images classified using supervised, unsupervised and contextual 

classifiers. The evaluation of image products is based on an accuracy assessment of error matrix 

method using randomly selected ground truth data. An accuracy comparison was performed 

between classified images of both TerraSAR-X and Radarsat-2 sensors in order to identify any 

differences in mapping floods. Results were validated using information from field inspections 

conducted in good conditions in February 2009, and applying a model-assisted difference 

estimator for estimating flood area to derive Confidence Interval (CI) statistics at the 95% 

Confidence Level (CL) for the area mapped as water. For Radarsat-2 Ultrafine, TerraSAR-X 

Stripmap and Spotlight imagery, overall classification accuracy was greater than 93%. Results 

demonstrate that small water bodies down to areas as small as 150m² can be identified routinely 

from 3 metre resolution SAR imagery. The results further showed that TerraSAR-X stripmap 

and spotlight images have better overall accuracy than RADARSAT-2 ultrafine beam modes 

images. The expected benefits of the research will be to improve the provision of data to assess 

flood risk and vulnerability, thus assisting in disaster management and post-flood recovery. 
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Chapter One: 

INTRODUCTION 

 

1.1 Background  

 

Natural disasters are defined as events not brought about by human activity that have 

significant negative on people, infrastructure, and the environments (see Figure 1.1). In 

year 2010 alone, 385 natural disasters worldwide are reported to have killed more than 

297000 people, affected over 217.0 million others and caused US$ 123.9 billion of 

economic damages (Guha-Sapir et al., 2011).  Amongst the various types of disasters, 

flooding and other hydrological events (such as tropical cyclones) are devastating and 

frequent. Flood disasters were the most frequently occurring disasters on average 

annually for the years 2000 to 2009, and also for the year 2010, in terms of occurrence 

and victims (i.e. numbers affected) (Figure 1.1).  

 

The Asian continent has the most hydrological disasters that affected people.  For 

example in 2010 95% of the global disaster victims were located in Asia (see Figure 

1.2). Bangladesh is one of those countries most seriously impacted by floods. Floods 

caused by a combined effect of the annual monsoon and a direct hit by cyclone Sidr in 

November 2007 affected around 15 million people, including damaging 1,088,120 

households, and 2,472,944 acres of crops (CERF, 2008). The 2010 Pakistan flood 

inundated one-fifth of that country and affected over 20 million people along the Indus 

River (Guha-Sapir et al., 2011). The large number of affected people from flood 

disasters in such Asian countries suggests that a key factor for these impacts may be a 

lack of resilience to cope with the event in terms of infrastructure, properties, 

adaptation, awareness, and preparation.  
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Figure 1.1: Natural disaster impacts by sub-group: 2010 versus 2000-2009 annual 

average (Guha-Sapir et al., 2011). 

 

 

Figure 1.2: Percent share of reported victims by disaster sub-group and continent in 

2010 (Guha-Sapir et al., 2011). 
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The extent to which the impacts of a disaster can be reduced depends on the speed and 

effectiveness of managed response activities (Kerle & Oppenheimer, 2002). Different 

civil protection authorities, non-governmental organizations and international 

organizations have observed that there is a need for up-to-date spatial information to 

facilitate the management of disasters (i.e. floods) to help reduce their consequences and 

minimize the extent of affected areas in terms of material and human impact 

(Allenabach et al., 2005; Luscombe and Hassan, 1992). Remote sensing is a technology 

that is potentially well-suited to the provision of spatial information in a timely fashion 

that can assist disaster risk management. 

 

Mapping and monitoring hazards and disasters using remote sensing imagery has 

proven successful, with applications for a range of disaster types, including floods, 

earthquakes, volcanic activity, wildfire, landslides and urban heat islands (Joyce, et al., 

2009; Nichol, 2005; Tralli et al., 2005; Voigt et al., 2007). This success has been 

achieved as a result of a range of factors, such as improvements in spatial resolution; 

development in communication and networking for satellite-based disaster response; 

and the establishment of a number of international scientific and technical coordination 

bodies in the area of space-based information (Voigt et al., 2007). 

 

The potential of optical remote sensing for monitoring several of these applications with 

regard to different disasters is well known. However, one of the big limitations is cloud 

cover during flood events, which prevents the collection of optical data. Radar satellite 

systems operate independently of light and weather conditions, making radar systems 

more appropriate for operational monitoring of flood events (see Nico et al., 2000). 

However, the resolution constraint has limited the usefulness of SAR imagery in the 

monitoring and evaluation of flood events. A number of studies have been conducted 

into the use of SAR data for mapping water bodies and the extent of flood events; 

however those studies have in general been based on lower resolution SAR imagery. 

For example, Huda (2004) assessed Radarsat-1, ERS-1, and SIR-C data for mapping 

small water bodies in Bangladesh, and found that not all sizes of water bodies can be 

identified (the limit being  so-called jolas and beels, which have surface areas of 1000 

m
2
 or more). Therefore, and particularly in relation to the new availability of high 

resolution radar data (i.e. ultrafine Radarsat-2 and stripmap TerraSAR-X), previous 

studies based on lower resolution SAR systems are now not applicable. Accordingly, 
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there is a pressing need to evaluate the applicability of the new, high resolution SAR 

satellite data, and the associated image processing techniques, for supporting flood 

management.  

 

1.2 Aim and Objectives 

 

This study aims to evaluate the capabilities of high spatial resolution, space-borne 

Synthetic Aperture Radar data products in order to identify and accurately delineate 

water area extent. This will be accomplished by investigating the capabilities of 

Radarsat-2 and TerraSAR-X data products.  

 

The main objectives of the research are as follows: 

1. To investigate the capabilities of two satellite imaging radar sensors, namely 

Radarsat-2 (launched in December 2007) and TerraSAR-X (launched in June 

2007). High spatial resolution data products from these sensors have been 

studied to assess their potential application to water area mapping, and in 

particular to establish the most appropriate system characteristics (spatial 

resolution, frequency, polarizations, and incidence angles) for the mapping of 

flood inundation in South Asian floodplains. The assessment has been 

implemented using a test site in Bangladesh, where floodplains typically consist 

of a complex patchwork of agricultural field systems, settlements and a large 

number of natural and man-made water bodies with different sizes and shapes. 

Ground data has been collected from the test site simultaneously with the 

acquisition of SAR imagery. Each SAR instrument has its own system 

capabilities - spatial resolution, polarisation and other system parameters - that 

can be evaluated in terms of adjusting each parameter to arrive at the most 

appropriate system for flood detection. 

 

2. To determine effective image processing and spatial analysis methods for 

separating water bodies from other ground features. The study has applied 

different methods and techniques for pre-processing, enhancing, classifying and 

correlating ground truth data. This research process has been used to evaluate 

the most appropriate methods to delineate water surfaces in SAR imagery.  
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3. To perform a comparative empirical evaluation of Radarsat-2 and TerraSAR-X  

data products using imagery from both satellites acquired simultaneously (or at 

near simultaneous points) in order to establish which performs best for the 

detection of different water bodies by combining visual interpretation with 

ground-surveyed “truth” data.  

 

1.2 Research Questions 

 

The proposed research project has been implemented to answer the following indicative 

research questions: 

1. Is it possible to automate water body detection so that such techniques can 

be transferred for application in other areas and environments? 

2. What is the minimum size of water body or flood event that can confidently 

be identified from SAR imagery? 

3. What is the optimum image processing sequence for separating water bodies 

from other ground features? 

4. What are the effects of SAR system variations (e.g. polarization, spatial 

resolution and wavelength) for mapping water areas?  

5. What are the effects of environmental factors such as land cover type on the 

detection of water bodies? 

6. How precisely can flood extent (or area) be mapped using SAR data?  

 

1.4 Thesis Structure 

 

Chapter Two of the thesis presents an overview of the use of Earth observation 

techniques for flood risk management, and in particular the use of SAR remote sensing 

in the various phases of the flood disaster cycle (mitigation, preparedness, response, and 

recovery). Examples of initiatives that have used earth observation data for disaster 

management have been reviewed, including the international charter on space and major 

disasters and the United Nations platform for space-based information for disaster 

management and emergency response (UN-SPIDER). In the end of this chapter, the 

need for detailed flood area maps in local scale has been emphasized.  
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Chapter Three reviews the existing literature on the principles of mapping using 

synthetic aperture radar in terms of: 

 SAR system parameters; 

 Satellite image processing techniques for mapping hazards and disasters; 

 Mapping floods and water bodies; 

 SAR data interpretation; 

 Evaluation of SAR frequency and polarization; 

 Radarsat-2 and TerraSAR-X systems; 

 SAR data accuracy assessment. 

Chapter Four presents a detailed description of the study area. This includes a 

justification of the study area selection, geographic location, climate, floodplain and 

drainage network, hydrology and water resources, agriculture, and built-up areas. 

Chapter Five describes the methodology used in this study. The data used in this study, 

(Radarsat-2, TerraSAR-X, and dGPS field data) are described. This chapter also 

includes methods conducted for data preparation, flood mapping and accuracy 

assessment. The following chapter (Six) discusses the data preparation in terms of the 

data pre-processing and the SAR imagery texture analysis results. Results of the flood 

mapping are described in Chapter Seven, which includes four mean sections: flood 

mapping using backscatter density slicing; flood mapping using image classification; 

contextual analysis; and evaluation of SAR products and processing and area estimation 

and quantification of confidence intervals on water area mapping. Chapter Eight 

discusses the potential applications of the methods developed in this thesis for flood 

area mapping. Chapter Nine is the final chapter and presents the main conclusions and 

gives the recommended directions for future research. 
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Chapter Two: 

EARTH OBSERVATION FOR DISASTER RISK MANAGEMENT 

 

2.1. Introduction 

 

As disaster risk reduction is a global concern, the International Strategy for Disaster 

Reduction (ISDR) was adopted by United Nations (UN) member states in 2000. The 

ISDR aims to reduce disaster losses by coordinating international efforts through the 

implementation of the Hyogo Framework (2005–2015). The goal of the Hyogo 

Framework is to guide states and organizations to reduce disaster risk (UNISDR, 2005). 

Disaster risk reduction requires a continuous process to prevent or reduce the impacts of 

natural and technological disasters. This involves establishing and implementing 

strategies, policies and programmes, including structural and non-structural measures at 

all levels of government and non-government involvement, in all phases of the disaster 

cycle: mitigation, preparedness, response and recovery (UNISDR, 2002). 

 

Various attempts have been made to define disaster, but most definitions are either too 

broad or too narrow (Songer, 1999). However, the glossary of the UNISDR (2009) 

provides a comprehensive definition, where it is described as “a serious disruption of 

the functioning of a community or a society involving widespread human, material, 

economic or environmental losses and impacts, which exceeds the ability of the affected 

community or society to cope using its own resources”. The origin of natural disasters 

falls into two general types: geophysical disasters, such as earthquakes, landslides and 

volcanic eruptions; and climatic disasters, such as floods, droughts, cyclones and forest 

fires. 

 

The term “disaster management”, also known as “emergency management” (UNISDR, 

2009), can be defined as “the managerial function charged with creating the framework 

within which communities reduce vulnerability to hazards and cope with disasters” 

(FEMA, 2011a). The general goals of disaster management are to avoid or minimize 

losses from hazards; to provide urgent assistance to affected communities; and to assure 

short- and long-term recovery (GDRC, 2008). Although there is no tailored emergency 

management system appropriate for all countries, it is believed that specialist 
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knowledge and experience can guide authorities and organizations towards better 

solutions in managing emergencies (Unlu et al., 2010). 

 

Effective emergency management requires appropriate planning and an integrated 

emergency plan at all levels of government and non-government involvement. 

Emergency management planning is a process of establishing arrangements and 

strategies that enable risks to be managed effectively by governments, organizations and 

communities (Abrahams, 2001). The planning process should deal with several 

components, such as assessing the likely effects of hazards, vulnerabilities and risks on 

communities; preparing strategies in relation to mitigation, preparedness, response and 

recovery; understanding the roles and responsibilities of all agencies; and establishing a 

strong emergency management network and preparing a comprehensive plan 

(Abrahams, 2001). 

 

The most important aspect in emergency management, particularly in response and 

recovery planning, is a rapid and appropriate response to a disaster or crisis situation 

(Perry and Lindell, 2003). When planning for response operations, there must be a 

shared understanding in multiagency management of the concepts of command, control, 

coordination and communication (Abrahams, 2001). Command, which operates 

vertically within an organization, is defined as the direction of the organization‟s 

members and resources to perform specific tasks towards disaster management. Control 

relates to the responsibilities taken for tasks, and the horizontal coordinating activities 

across organizations, with the needs of emergency management activities. Coordination 

brings together all available resources and operates them vertically within the 

organization in order to ensure an effective disaster management response. 

Communication is essential for implementing command, control and coordination. A 

lack of communication often adversely affects the effectiveness of the response to 

disasters. Therefore, where appropriate communication should be strengthened in terms 

of better understanding roles and responsibilities and ensuring regular meetings are held 

between the personnel of all organizations that deal with disasters and participate in 

training and exercises (Abrahams, 2001). 
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Developing a policy for efficient emergency management requires an understanding of 

management principles. The International Association of Emergency Managers (IAEM) 

have proposed eight principles for emergency management (IAEM, 2007): 

 Comprehensive – taking into account all types of hazards and all phases of 

disasters. 

 Progressive – planning for mitigation and preparedness based on predicted 

future disasters. 

 Risk-driven – assigning priorities and resources according to risk analysis. 

 Integrated – focusing on unity of effort within all levels of government and all 

elements of a community. 

 Collaborative – creating and maintaining genuine relationships and 

communication among individuals and organizations. 

 Coordinated – harmonizing the activities of all relevant stakeholders. 

 Flexible – using creative approaches. 

 Professional – exploiting science and knowledge based on education, training, 

experience, ethical practice, public stewardship and continuous improvement. 

 

2.2 Flood Disasters 

 

A flood is the inundation of land that may cause damage, or loss of, land (WFP, 2011). 

Flood disasters impact on humans, infrastructure and the environment. As part of 

international efforts related to flood risk management, the International Flood Initiative 

(IFI) was launched in January 2005 during the World Conference on Disaster Reduction 

in Kobe, Japan. The overall aim of the IFI is to strengthen capacity in countries to better 

respond to floods and minimize the risks that result from floods by focusing on 

research, information networking, awareness, education, training and the provision of 

technical assistance and guidance (IFI, 2008). This recognises that flooding is a 

worldwide problem and is considered to be one of the most devastating natural hazards. 

Statistics from the Centre for Research on the Epidemiology of Disasters (CRED), as 

shown in Figure 2.1, compared to other natural disasters, demonstrate that floods have 

the largest impact on people. For example, the average annual number of affected 

people in the period 2000–2009 was more than 94 million, whilst in 2010 alone, flood 

disasters affected more than 178 million people (CRED, 2011). Moreover, the UN 
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predict that by 2050 two billion people will be vulnerable to floods; this figure is 

expected to double or more in two generations because of climate change and other 

factors (UNU, 2004). For these reasons, the emphasis of this thesis has been on 

evaluating new emerging remote sensing technologies for mapping areas inundated by 

water and also on assessing the extent to which SAR systems could provide reliable 

data in flood area inundation that could assist with disaster management given the day-

night all weather capabilities of SAR.  

 

 

                   

 

Figure 2.1: 2010 Human impact by disaster types compared to decade average (adapted 

from: CRED, 2011). 
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2.3 Earth Observation for Flood Disaster Management Cycle 

 

The rapid development of remote sensing over the last decade has allowed remote 

sensing to become an important tool for mapping and monitoring of natural hazards and 

disasters (Gillespie et al., 2007; Joyce et al., 2009; Tralli et al., 2005; Voigt et al., 2007). 

An effective operational spaceborne system for disaster management should have two 

components (Sarti et al., 2001): an appropriate satellite revisit time, along with an 

appropriate required time for product generation; and appropriate sensor-types, 

resolution and image coverage. Therefore, the use of a particular type of remote sensing 

sensor will vary according to the nature and situation of a hazard and disaster. Table 2.1 

gives examples of applications of different wavebands for disaster management. 

 

Table 2.1: Applications of different wavebands for disaster management (adapted with 

modification from Lewis, 2009). 

Wavelength Waveband Example applications Example sensors 

Visible 
0.4-

0.7mm 

Vegetation mapping SPOT; Landsat TM 

Building stock assessment 
AVHRR; MODIS; 

IKONOS 

Population density IKONOS; MODIS 

Digital elevation model ASTER; PRISM 

Near infrared 
0.7-

1.0mm 

Vegetation mapping 
SPOT; Landsat TM; 
AVHRR; MODIS 

Flood mapping MODIS 

Shortwave infrared 
0.7-

3.0mm 
Water vapour AIRS 

Thermal infrared 3.0-14mm 

Active fire detection MODIS 

Burn scar mapping MODIS 

Hotspots MODIS; AVHRR 

Volcanic activity Hyperion 

Microwave (radar) 
0.1-

100cm 

Earth deformation and 

ground movement 

Radarsat-2; TerraSAR-

X; TanDEM-X;  

COSMO-SkyMed; 
PALSAR 

Rainfall 
Meteosat; Microwave 

Imager (aboard TRMM) 

River discharge and volume 

Radarsat-2; TerraSAR-

X; COSMO-SkyMed; 

PALSAR; AMSR-E 

Flood mapping and 

forecasting 

Radarsat-2; TerraSAR-
X; COSMO-SkyMed; 

PALSAR; AMSR-E 

Surface winds QuikScat radar 

3D storm structure 
Precipitation radar 
(aboard TRMM) 
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Optical and microwave remote sensing instruments have been used for mapping and 

monitoring hazards and disasters such as floods, earthquakes, volcanoes, wildfires, 

landslides and the urban heat island. Each of these different types of hazards requires 

different remote sensing and data analysis techniques. Table 2.2 lists some current 

satellite sensors with a summary of their characteristics which may be used in mapping 

hazards and disasters. 
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Table 2.2: Characteristics of some current satellite sensors used in mapping and 

monitoring hazards and disasters (Joyce et al., 2009). 

Satellite Sensor Swath 

(km) 

Nadir spatial 

resolution (m) 

Revisit capability 

Worldview  Panchromatic  16.4  0.46  1.1 days 

 Multispectral  16.4  1.85  

QuickBird  Panchromatic  16.5  0.6  1.5–3 days 
 Multispectral  16.5  2.4  

Ikonos  Panchromatic  11  1  1.5–3 days 

 Multispectral  11  4  

RapidEye Multispectral  77 x 1500  6.5  1 day 

EO-1 ALI  60 30  Every 16 days  

 Hyperion   7.5  30  

Terra  ASTER  60 15,30,90 4-16 days 

Terra / Aqua  MODIS  2300  250,500,1000 At least twice daily for 

each satellite 

ALOS PRISM 35   4 Several times per year as 

per JAXA acquisition plan 
 AVNIR 70 10  

 PALSAR (Fine) 40-70 10  

 PALSAR 

(ScanSAR) 

250-350 100  

SPOT-4 Panchromatic 60-80 10 11 times every 26 days 

 Multispectral 60-80 20  

SPOT-5 Panchromatic 60-80 10  

Kompsat Panchromatic 15 1 2–3 days 

 Multispectral 15 1  

Landsat-5 TM Multispectral 185 30 Every 16 days 

 TM Thermal 185 120  

Landsat-7 ETM+ Panchromatic 185 15 Every 16 days 
 ETM+ Multispectral 185 30  

 ETM+ Thermal 185 60  

NOAA AVHRR 2399 1100 Several times per day 

Envisat MERIS 575 300 2–3 days 

Radarsat-2 Ultrafine 20 3 Every few days 

Radarsat-1/-2 Fine 50 8  

Radarsat-2 Quad-pol fine 25 8  

Radarsat-1/-2 Standard 100 25  

Radarsat-2 Quad-pol standard 25 25  

Radarsat-1 Wide 150 30  

Radarsat-1/-2 ScanSAR narrow 300 50  
Radarsat-1/-2 ScanSAR wide 500 100  

Radarsat-1/-2 Extended high 75 25  

Radarsat-1 Extended low 170 35  

ERS-2  100 30 35-day repeat cycle 

Envisat ASAR standard 100 30 36-day repeat cycle 

 ASAR ScanSAR 405 1000  

TerraSAR-X Spotlight 10 1 11-day repeat cycle 

 Stripmap 30 3 2.5-day revisit cycle 

 ScanSAR 100 18  

Cosmo-SkyMed Spotlight 10 <1 ~37 hours 

 Stripmap 40 3-15  

 ScanSAR 100-200 30-100  
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The use of Earth observing systems for flood disaster management involves using an 

integrated cycle of phases that include: pre-flood mitigation and preparedness; response 

to flooding; and post-flood recovery (Samuels, 1999; European Commission, 2004) – 

where one phase cannot be effective in isolation from the others (Petak, 1985; 

Quarantelli, 1997; Norman, 2004; Ronan & Johnston, 2005; Gregg & Houghton, 2006; 

GDRC, 2008). The disaster management cycle is shown in Figure 2.2.  

 

 

Figure 2.2: Disaster management cycle (Platzeck, 2009). 

 

The use of remotely sensed data for the pre-disaster phase of a flood event involves the 

systematic mapping of vulnerable land and resources in flood-prone areas. It is essential 

to have available detailed maps of flood plains that quantify existing water bodies, 

productive land, settlements and other land use types to assess the potential risk of 

flooding. 

 

The response phase entails the implementation of action plans. These actions will 

involve as soon as possible during or soon after floods occur by exploiting remotely 

sensed data.  Data from remote sensing for response activities can involve actions 

designed to assess the impact of the event as it happens and may involve multi-data 
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image capture to map and monitor flooded areas; implement flood damage assessment 

for evacuation and sheltering displaced disaster victims; and to deploy immediate 

emergency relief efforts to flood-affected communities. 

 

The goal of the recovery phase is to direct efforts after a flood disaster in terms of 

restoration and rehabilitation in the short term and long term until the community 

returns to normal. Examples of the use of remotely sensed imagery for this phase 

include the identification of appropriate locations and areas for establishing temporary 

housing, the assessment of flood damage for rebuilding infrastructures, and the 

restoration of business and community activities (Norman, 2004). 

 

2.4 Initiatives for Using Remote Sensing for Disaster Management 

 

Remotely sensed data can greatly assist operational activities in the aftermath of 

disasters during the response phase (Section 2.3). Although there have been many 

successful applications of remote sensing in supporting disaster management efforts, 

limitation of access to EO data within many less developed countries means that new 

solutions must be found. Several initiatives have therefore emerged for collaboration 

between international organizations and space agencies for data acquisition and delivery 

for countries affected by disasters. 

 

A number of international and regional initiatives in recent years have contributed to 

making it easier to access space-based information in order to support disaster 

management. Examples of international initiatives include the International Charter on 

Space and Major Disasters (Bessis et al., 2004) and the UN Platform for Space-based 

Information for Disaster Management and Emergency Response (UN-SPIDER) 

(UNOOSA, 2007). Regional initiatives include the Sentinel Asia (2011) initiative, led 

by the Asia-Pacific Regional Space Agency Forum, and the Services and Application 

for Emergency Response (SAFER, 2011) project of the Global Monitoring for 

Environment and Security (GMES) programme by the European Union. The 

membership of such initiatives is made up of governmental and non-governmental 

organizations and agencies. A brief review of the Disaster Charter and the UN-SPIDER 

as examples of the international initiatives is presented in the following sections. 
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2.4.1 The International Charter on Space and Major Disasters 

 

The International Charter on Space and Major Disasters, or the Disaster Charter, is a 

good example of the use of remote sensing in disaster management with activations that 

are global in scope. The Disaster Charter is an international agreement among space 

agencies to provide EO data to countries affected by disasters (Bessis et al., 2004). 

When a disaster occurs, a participating space agency activates the Disaster Charter to 

produce information ready for disaster-relief operations (Mahmood et al., 2002; Ito, 

2005). For example, the Disaster Charter was activated 152 times for flood disasters 

between November 2000 and February 2011 (Disaster Charter, 2011) to support relief 

operations with thematic maps on flood extent. 

 

The Disaster Charter, which started on 1
st
 November 2000, was the first international 

mechanism to universally share remotely sensed data and knowledge for disaster 

management. By calling a single number, an authorized user can request the 

mobilization of space resources and associated ground resources of member agencies to 

obtain data and information on a disaster occurrence (Mahmood et al., 2002). Table 2.3 

lists the current members and space resources of the Disaster Charter. 
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Table 2.3: Members of the Disaster Charter and available satellite resources (source: 

Disaster Charter, 2011). 

Members Acronym Country Space Resources 

European Space Agency ESA EU ERS, ENVISAT 

Centre National d‟Etudes Spatiales CNES France  

- Spot Image   SPOT 

- National Space Organization NPSO Taiwan Formosat 

Canadian Space Agency CSA Canada Radarsat 

Indian Space Research Organization ISRO India IRS 

National Oceanic and Atmospheric 
Administration 

NOAA USA POES, GOES 

Comisión Nacional de Actividades 

Espaciales 
CONAE Argentina SAC-C 

Japan Aerospace Exploration Agency JAXA Japan ALOS 

United States Geological Survey USGS USA Landsat 

- Digital Globe   Quickbird 

- GeoEye   GeoEye-1 

DMC International Imaging DMC   

- Centre National des Techniques 
Spatiales 

CNTS Algeria ALSAT-1 

- National Space Research and 

Development 
NASRDA Nigeria NigeriaSat 

- Tübitak-BILTEN/Space 
Technologies Research Institute 

UZAY Turkey BILSAT-1 

- British National Space Centre/Surrey 

Satellite Technology Limited 
BNSC UK UK-DMC 

- British National Space 
Centre/Qinetiq 

 UK TopSat 

China National Space Administration CNSA China 
FY, SJ, ZY satellite 

series 

German Aerospace Centre DLR German 
TerraSAR-X, 
TanDEM-X 

 

 

Although there is widespread confidence in the usefulness of the remote-sensing 

information obtained through the Disaster Charter for supporting disaster response 

efforts, there is a need to understand the effectiveness of such information in meeting 

user needs. For example, some end users stated in the 9th Annual Report (Disaster 

Charter, 2010) that they could not fully exploit the Disaster Charter products because of 

a lack of appropriate equipment or because of problems dealing with the data formats, 

particularly of SAR products. Other end users have required technical training for data 

processing and interpretation (Disaster Charter, 2010). A significant attempt has 

therefore been made to overcome these difficulties in accessing and using space-based 
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information by establishing the UN-SPIDER, which the following section briefly 

reviews. 

 

2.4.2 UN-SPIDER 

 

The UN Platform for Space-based Information for Disaster Management and 

Emergency Response (UN-SPIDER) was established by the UN General Assembly in 

resolution 61/110 on 14 December 2006 to help all countries and organizations to gain 

access to and use of space-based information to support disaster management activities 

(UNOOSA, 2007). The UN-SPIDER programme is intended as a gateway to 

information obtained from space technologies for all phases of the disaster management 

cycle. Its activities are therefore aimed to ensure that countries and organizations are 

aware of the importance of such information and to develop its capacity to use the 

information effectively to reduce losses in disasters (Selg, 2009; Epler & Leitgab, 

2011). The UN-SPIDER has agreements and cooperates with various mechanisms and 

initiatives for accessing the services of space-based solutions and facilitating 

coordination between users and existing initiatives. Examples of these on the 

international and regional level include the Disaster Charter, Sentinel Asia and the 

SAFER project of the GMES initiative (UNOOSA, 2010). 

 

2.4.2.1 UN-SPIDER Global Network and Activities 

 

The UN-SPIDER works on a global network through regional support offices and 

national focal points. Its regional offices aim to work closely with relevant regional and 

national centres of expertise in the use of space-based information for disaster 

management (UNOOSA, 2007). The regional offices help implement the UN-SPIDER 

work plan by providing expert technical advisory support, capacity-building and 

outreach (UNOOSA, 2010). Ten regional support offices have been created to date 

(Epler & Leitgab, 2011), and additional offices are currently being established. UN-

SPIDER National Focal Points (NFPs) are governmental institutions dealing with 

disaster management and/or space technologies. The NFPs are nominated by national 

governments to collaborate with the UN-SPIDER to access and use space-based 

information for emergency management and to support their countries in incorporating 
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space-based technologies for disaster management into their national policies and 

activities. 

 

UN-SPIDER support activities concentrate mainly on technical advisory support and on 

making it easier to access satellite data through its SpaceAid Framework. Its technical 

advisory support aims to provide technical advice to help national institutions to 

conduct assessments of their capacity with regard to access to and use of space-based 

solutions and to identify obstacles facing the use of space technology for managing 

disasters. This support is provided in a variety of forms such as meetings and remote 

computer desktop sharing, or technical advisory missions are carried out by experts 

from space and disaster management agencies in response to an official request from the 

respective member state (Epler & Leitgab, 2011). Another supportive activity of the 

UN-SPIDER is the SpaceAid Framework, which helps international and regional 

organizations to benefit from existing mechanisms and initiatives (i.e. Disaster Charter) 

during disasters by accessing space-based information to support the efforts of 

emergency response and recovery. Activation of the SpaceAid Framework can be 

triggered by the UN-SPIDER NFPs, UN-SPIDER regional support offices, UN 

organizations and authorized government agencies. A SpaceAid request includes all 

types of information provided by EO satellites, communication satellites and global 

navigation satellite systems. This can be implemented through a hotline on a 24 hours a 

day, seven days a week basis (Stumpf, 2010; UNOOSA, 2010). 

 

2.4.2.2 UN-SPIDER Knowledge Portal 

 

Since knowledge management is one of the main goals of the UN-SPIDER, it has 

established a web-based platform to provide people involved in disaster risk 

management with information, communication and shared experience in capacity-

building on the use of space-based information. The knowledge portal consists of 

various resources and guides on space technologies that provide an overview of the 

different satellite missions and guides on the procedures of disaster management and the 

use of satellite technology for healthcare support (Epler & Leitgab, 2011). The portal 

also allows users access to available space-based products and services. 
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Users of the knowledge portal can find guidance on applications of space technologies 

to disaster risk management by using the Space Application Matrix (Figure 2.3). The 

Matrix is an attempt to guide users interactively to employ space technology appropriate 

to the disaster type and phase of the disaster management cycle. It consists of three 

categories – space technology, cycle phase and disaster type – and is also supported by 

case studies authored by experts and practitioners on applications of space technology 

to various phases of the disaster management cycle (Stumpf, 2011). 

 

 

Figure 2.3: UN-SPIDER Space Application Matrix (adapted from: UN-SPIDER Portal, 

2011). 

 

2.5 The need for detailed flood area mapping 

 

In the event of a major flood, local and national authorities, including rescue and other 

emergency services, require timely and accurate information regarding the geographic 

extent of flood affected areas (Allenabach et al., 2005). It is widely acknowledged that 

remote sensing can provide invaluable information for monitoring and mapping flood 

events, and particularly for damage assessment (Sanyal & Lu, 2004). The need for 
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detailed damage assessment of the flooded areas is very important for identification 

evacuation routes, safe deployment of search and rescue services, and delivering aid and 

other support. For example, during the 2010 Pakistan flood detailed maps were needed 

to help identify damaged roads and bridges for accessing flood-affected communities 

and for providing immediate relief (e.g. see Figures 2.4 and 2.5).  Therefore, there is a 

clear need for high resolution imagery that can provide reliable maps during the event, 

and thereafter as the flood wave develops and moves through down the drainage basin, 

impacting communities.  Radar remote sensing is potentially the most important 

technology for large area mapping of floods when cloud cover obscures the ground 

from optical sensors. However, it is not until now that synthetic aperture radar sensors 

(e.g. Radarsat-2 and TerraSAR-X) have been able to offer the high resolution data that 

could be used for detailed impact assessment.  Because these data are new there is an 

urgent need to assess their capability for providing the detail needed for all phases of the 

disaster cycle: pre-flood, response and post-disaster.  

 

Although one would wish to evaluate SAR data during an actual flood, the dynamic 

nature of such an event make this almost impossible to combine with the systematic 

evaluation of water (flood) area detection. Therefore, this study focused on mapping 

static water features in a flood-prone landscape to investigate the relative accuracy of 

Radarsat-2 and TerraSAR-X sensors for detecting and mapping water compared to other 

land cover types, and to evaluate the accuracy of using SAR for quantifying water area 

extent. For that reason, Chapters 5, 6, and 7 discuss the technical assessment of SAR 

products for water body detection. It is anticipated that the methods developed could be 

suitably adapted and applied to operational flood disaster management. Chapter 8 

discusses the potential applications of the methods for mapping flood area in order to 

support flood disaster management. 
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Figure 2.4: an example of a damaged bridge - Pakistan flood-2010 (adapted from 

EPACHA, 2010). 

 

 

Figure 2.5: An example of houses surrounded by floods - Pakistan flood, 2010. 

(Adapted from: www. stamfordadvocate.com). 
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2.6 Summary 

 

In view of the fact that floods are considered to be one of the worst types of disasters in 

terms of their impact on people worldwide, it is surprising that the potential of new high 

resolution radar remote sensing data for flood mapping has not been systematically 

studied in a quantitative way until now. Although attempts and efforts have been 

implemented for accessing and delivering earth observation data to the areas affected by 

flood disasters by regional and international initiatives, there is still a need to provide 

applications of radar remote sensing information that are well integrated into the 

different phases of the flood disaster management cycle (i.e. pre-flood mitigation and 

preparedness, response to flooding, and post-flood recovery). These data contribute 

valuable information in more than just the response phase. 

 

There is a need to understand the full potential of the new SAR remote sensing data and 

to identify what processing methods are suitable for producing SAR products for flood 

disaster management applications. The following chapters outline a methodology that 

seeks to provide direct empirical assessment of two of the new generation of SAR 

systems (Radarsat-2 and TerraSAR-X) and uses high quality ground data on static water 

bodies in a major floodplain that is frequently flooded to investigate and quantify the 

potential of SAR for delivering high-quality reliable flood area mapping that can be 

applied to all phases flood disaster management. 
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Chapter Three: 

PRINCIPLES OF MAPPING USING SYNTHETIC APERTURE RADAR 

 

3.1 Background 

 

Remote sensing (RS) is the science, art and technology of obtaining information about 

physical objects or phenomena through the analysis and interpretation of imagery 

acquired by non-contact sensor systems (ISPRS, 2008; Lillesand et al., 2004). Remote 

sensing based disaster mapping has increasingly become an important data source for 

rapid response in terms of human relief and recovery (see chapter seven). It is an 

invaluable source of information for the detection, monitoring and analysis of several 

different types of natural hazards and disasters such as floods, earthquakes, wildfires, 

volcanic activity and landslides (Joyce et al. 2009). Satellite sensors consist of two main 

types: passive and active. Passive sensors record the emitted or reflected radiation from 

objects on the earth‟s surface. In most cases the source of radiation is the sun. These 

types of sensors capture or scan visible, near infrared, short wave infrared and thermal-

infrared wavelengths (Figure 3.1). Examples of passive sensors include Landsat TM, 

ETM+ Ikonos, NOAA AVHRR and SPOT HRV satellites. Active sensors, on the other 

hand, transmit and receive their own energy, such as laser light (i.e. LIDAR), or radio 

waves RADAR (Radio Detection and Ranging). The main focus of this study is 

RADAR. The basic concept of radar is that microwaves are emitted from an antenna 

that reflect off a distant surface, allowing strength and roundtrip time of the signals to 

be measured by a receiving antenna (JPL, 2008; Rees, 2001; Short, 2008; Szekielda, 

1988). Radar systems normally transmit and receive signals in the wavelength range of 

1 cm to 1 m, equivalent to a frequency of between 300 MHz and 30 GHz (Campbell, 

2002; Freeman, 1996; Globe SAR) (Figure 3.1).  
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Figure 3.1: The electromagnetic spectrum showing the Visible, Near IR, Middle IR, 

Thermal IR, and Microwave regions and the efficiency of atmospheric transmission 

(Lewis and Henderson, 1998). 

 

Whilst the development of radar systems was initially based on real-aperture side-

looking airborne radar (SLAR), improvements in azimuth resolution using Doppler 

shifts of the return signals favour the development of synthetic-aperture radar (SAR). 

Table 3.1 highlights of SAR history. 

 

SAR is an advanced technique used to reproduce the effect of  long antennae by 

combining the returned signals received by the radar during its along-track movement, 

while the aperture of SLAR is the opening of the physical antenna used to collect the 

returned signals (Freeman, 1996). Until SAR was developed, the ground resolution of 

radar systems was dependent upon the physical size of the receiving antenna. This made 

achieving high-resolution images almost impossible. Advances in SAR technology 

enable very high levels of ground range resolution to be obtained from space-borne 

instruments. Optical sensors are able to detect water bodies and flood extent through 

high-resolution imagery. However, clouds and other weather conditions limit their 

abilities. Radar systems provide the possibility to deliver data 24 hours per day and 

provide all-weather coverage because the radar pulse is capable of penetrating cloud 

cover. 
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Table 3.1: Highlights of SAR history – from radar to SAR technology (DLR, 2011; 

Jackson and Apel 2004; JPL, 2011; Lusch, 1999; UGS COSMO-SkyMed, 2011). 

1886 Heinrich Hertz discovers radio waves and finds that reflections can be received from 

objects. 

1903 Christian Hulsmeyer obtains the first patent for using radar to detect ships. 

1920 A.H. Taylor (US Naval Research Laboratory) develops a ground-based pulsed radar 

system. 

1930 The US Naval Research Laboratory team uses a ground-based radar system to detect 

and track ships and aircraft.  

1937 Sir Watson-Watt (UK) develops the first practical radar system for aircraft detection. 

1938 First airborne radar images show the reflections from ships at sea to a range of 10 

miles. 

1940s Independent and secret development in various countries of radar systems during 

WWII. 

1950s Real-aperture side-looking airborne radar (SLAR) developed. 

1952 The first operational SAR system developed. 

1953 The first airborne SAR image acquired. 

Late 1950s Goodyear Corporation and Ohio State University conduct research into 

measurements of terrain backscattering from static and airborne radars. 

1960s SLAR systems become commercially available.  

1970s Multichannel, airborne SAR systems are developed at the Environmental Research 

Institute Of Michigan, the NASA JPL and the Canadian Centre for Remote Sensing. 

1972 The first space-borne SAR system, the Apollo Lunar Sounder Experiment radar, 

flown around the Moon on Apollo 17. 

1978 SEASAT satellite, the first civilian SAR satellite with L-band SAR sensor, NASA 

(USA). 

1981 Spaceborne Imaging Radar series starts – SIR-A 

1984 SIR-B 

 1991  ERS-1, C-band, European Space Agency (ESA) 

1992 JERS-1, L-band, Japan Aerospace Exploration Agency 

1994 SIR-C 

April 1995 ERS-2 - C-band, European Space Agency (ESA)  

November 

1995 

Radarsat-1, C-band,  Canadian Centre for Remote Sensing 

2000 SRTM- C,X-bands. Shuttle Radar Topography Mission. NASA/DLR. 

March 2002 ENVISAT (ASAR), C-band, European Space Agency (ESA) 

January 2006 ALOS (PALSAR), L-band, National Space Development Agency of Japan 

June 2007 TerraSAR-X, German Aerospace Centre 

June 2007 COSMO-SkyMed X-band constellation (composed of four satellites), the first 

satellite of the constellation has been launched by the Italian Space Agency (ASI) 

December 

2007 

Radarsat-2, C-band,  Canadian Centre for Remote Sensing 

June 2010 TanDEM-X, the first bistatic SAR Interferometry mission (TerraSAR-X Add-on), 

the two satellites flying in a closely controlled formation with distances between 250 

and 500 m . German Aerospace Centre 
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Various studies have evaluated the potential of SAR data and verified its effectiveness 

in mapping flood extent. However, small flooded areas require further investigation: for 

example, Henderson (1995) found that the minimum water-body area that can be 

identified from 1:100.000 scale mapping is 8 ha. 

 

In recent years, researchers working on the application of RS for flood mapping have 

been increasingly interested in SAR (see Table 3.2 for examples of current and near 

future SAR instruments). Huda (2004) evaluated optical imagery in mapping water 

bodies in Southeast Asia but encountered problems with cloud cover and poor seasonal 

coverage, and the detection of small water bodies was consequently limited. He also 

found that data from ERS-1 and NASA‟s SIR-C displayed difficulties in detecting a 

water body with a spatial size of less than 1000 m
2
.  

 

Table 3.2: Current and near future commercial earth observation SAR sensors. 

Agency 
Satellite and 
Instrument 

Date of 
Launch 

Band 

European Space 

Agency (ESA) 

Earth Remote Sensing 

Satellite 2 ERS-2 
April 1995 C 

Canadian Centre 
for Remote 

Sensing (CCRS) 

Radarsat-1 
November 

1995 
C 

ESA 

ENVISAT Advanced 

Synthetic-Aperture 
Radar (ASAR) 

March 2002 C 

National Space 

Development 
Agency of Japan 

ALOS Phased Array 

Synthetic-Aperture 
Radar (PALSAR) 

January 2006 L 

German 

Aerospace Centre 

(DLR) 

TerraSAR-X June 2007 X 

Italian Space 

Agency (ASI) 

Cosmo-SkyMed 

(Constellation-4) 
June 2007 X 

CCRS Radarsat-2 
December 

2007 
C 

DLR TanDEM-X June 2010 X 

HISDESAT-

Spain 
PAZ Due 2012 X 

ESA, GMES Sentinal-1 Due 2013 C 

(CCRS) Radarsat constellation Due 2014 C 
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Although significant benefits have been achieved from applications of optical sensors, 

the SAR sensor has several advantages over optical satellite data: 

 It has its own illumination source in the form of micro waves, while optical 

Sensors rely upon the sun‟s illumination or thermal radiation. 

 SAR microwave energy can penetrate clouds and can be used at night and in all 

weather conditions. It may also, depending on polarization and frequency, 

penetrate, to some extent, vegetation, dry sand and snow. 

 It has all-weather synoptic views and is thus able to map large areas 

systematically.  

 Radar wavelengths are sensitive to the surface roughness and dielectric constant.  

 SAR images can be produced from different polarizations and may be operated 

at various frequencies.  

 

3.2 SAR System Parameters 

 

Although SAR imagery formed by microwave backscattering depends upon 

environmental variations (i.e. soil, vegetation, manmade features), it is also significantly 

influenced by SAR system parameters. These parameters, discussed in the following 

sections, include wavelength, polarization, spatial resolution, incidence angle, look 

direction, backscattering and speckle.  

 

3.2.1 SAR Frequency  

 

SAR instruments considered in this study are Radarsat-2, which uses C-band 

microwave (centre frequency 5.405 GHz), and TerraSAR-X, which uses X-band 

(frequency 9.65 GHz). The C-band and X-band are useful for imaging open water and 

flooding areas, while the L-band (e.g. PALSAR 1.27 GHZ) has a lower frequency and 

is more able to penetrate forest and vegetation canopies (Liew, 1997) (Figure 3.2). 

Table 3.3 shows the characteristics of current SAR satellite bands. 

 

The sensors investigated in this study use different wavelengths (C-band 5.6 cm, and X-

band 3.11 cm). Surface roughness in SAR imaging depends on the wavelength of the 

microwave. A land surface can appear smooth to a long-wavelength radar, while the 

same surface appears rough at a short wavelength.  If a SAR, with an L-band (15 to 30 
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cm wavelength) illuminates a surface with a roughness of the order of 5 cm, the surface 

will appear dark because of low backscatter. In contrast, in an X-band (2.4 to 3.8 cm 

wavelength), the same surface will appear bright because of high backscatter (Liew, 

1997).  

 

Table 3.3: Characteristics of some current SAR satellite bands. 

SAR Band Frequency (GHz) Wavelength (cm) 

X (TerraSAR-X) 9.65 3.11 

C (Radarsat-2) 5.405 5.6 

L (PALSAR) 1.27 23.6 

 

 

 

Figure 3.2: Short and long wavelengths reflected from a surface. Note that the long 

wavelength appears to be reaching through the canopy (adapted from Liew, 1997). 

 

3.2.2 Polarization and Spatial Resolution 

 

Polarization refers to the orientation of the electric field vector of the transmitted beam 

with respect to the horizontal direction (Yamazaki, 2007). If the beam is horizontally 

polarized, the vector oscillates along a direction parallel to the horizontal direction. On 

the other hand, if the oscillation of the electric field vector is along a direction 

perpendicular to the horizontal direction, the beam is vertically polarized (Liew, 1997). 
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When different polarizations are used, backscatter will also differ. Transmitting pulses 

from a SAR satellite can be polarized horizontally (H) or vertically (V) and can also be 

received in either H or V, or with a combination of HH, VV, HV or VH. The phase of 

the received pulses (HH and VV signals) in some SAR satellites can be measured. The 

correlation coefficient for the HH and VV can also be measured by determining the 

similarity of the HH and VV scatterers (Freeman, 1996). Multiple polarizations help to 

distinguish the physical structure of the scattering surface. Depolarization occurs 

because of the physical and electrical properties of ground features, such as roughness 

and volume scattering from non inhomogeneous media such as surface vegetation 

(Campbell, 2002). 

 

The spatial resolution of a SAR sensor has two dimensions: range and azimuth. The 

range resolution depends upon the length of the microwave pulse. The shorter the pulse 

length, the finer the range resolution. In each cell of the radar image the signal is 

averaged and recorded. If a target is smaller than the cell, it is not possible to distinguish 

it (Trevett, 1986). The range (cross-track) resolution is dependent on the length of the 

pulse. If the separation between two targets is greater than half the pulse length, it is 

possible for it to be determined in the range dimension. Moreover, the ground range 

resolution depends on the incidence angle (Yamazaki, 2007).  

 

3.2.3 Incidence Angle and Look Direction  

 

The incidence angle is the angle between the incidence radar signal and the direction 

perpendicular to the ground surface that the signal strikes (Campbell, 2002; Liew, 

1997). The incidence angle may be affected by topography (Figure 3.3). The SAR 

backscatter for a smooth surface is much less at a high incidence angle than that at low 

ones (Srivastava et al., 2009). Therefore, the smooth surface has higher differences 

between low and high backscatter while the rough surface has lower differences. When 

incidence angle is increasing, the contrast between water and land in SAR imagery is 

also increased, therefore, water detection is most successful with a high incidence angle 

(Solbo et al., 2003).  

 

Look direction is the direction in which the radar antenna is pointing when transmitting 

signals and receiving backscatter from the ground surface. Radar shadow tends to be 
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maximized when look directions are perpendicular to topographic position (Campbell, 

2002). Radar shadow extent depends on relief and the orientations of features relative to 

the flight path. Features positioned in the near range will have smaller shadows than 

those at the far-range edge of the image (Campbell, 2002; Globe SAR, 2008). To take 

account of this problem, the test site in the present research project was chosen for its 

very low relief.  

 

 

Figure 3.3: Schematic diagrams of geometry of radar image acquisition system and 

incidence angles. The incidence angle may be affected by planetary curvature. Local 

incidence angle may be affected by local topography (Henderson and Lewis, 1998). 
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3.2.4 Backscatter    

 

A SAR image is usually presented as a grey scale, with the intensity of each pixel 

representing the amount of energy returned from that area on the ground (Liew, 1997). 

Darker areas in the image indicate low backscatter or little energy was returned to the 

radar, while brighter features represent high backscatter or a high portion of returned 

energy (Freeman, 1996). In general, the higher the backscatter intensity, the rougher the 

surface being imaged (Liew, 1997). A rough surface scatters the radar pulse in all 

directions while part of the radar energy is scattered back to the radar sensor.  

The nature of backscattering from an area depends upon the SAR system and the 

environmental conditions. System parameters include the frequency and polarization of 

the radar pulses, the incidence angle of the radar beam and the look direction. 

Environmental variations comprise the types, sizes and shapes of features, the types of 

land cover (i.e. soil, vegetation or manmade features), the moisture content and 

geometric factors (i.e. roughness and slopes) (Freeman, 1997). Thus, when different 

frequencies are used, backscatter will also differ. The interaction between radar signals 

and the ground surface depends on the incidence angle of the radar pulse on the surface 

(Lillesand et al., 2004). Backscatter variations may result from the interaction of various 

roughnesses and incidence angles, as shown in Figure 3.4. 
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Figure 3.4: Typical radar backscatter curves for smooth, moderate and rough surfaces 

and different incidence angles (NASA, 1989, cited in Henderson and Lewis, 1998). 

 

The pixel intensity values and the backscattering coefficient are measured in decibel 

(dB) units ranging from +5 dB for very bright objects to −40 dB for very dark surfaces 

(Freeman, 1996). Backscatter is sensitive to the dielectric constant, which is a measure 

of the electrical properties of surface materials (Lillesand et al., 2004), meaning that 

radar sensors are sensitive to the state and amount of water. Dielectric properties are a 

measure of the rotation of polar molecules of water (Waring et al., 1995). Lower 

dielectric constant indicates increased amounts of incidence energy absorption, such 

that the object will appear to be dark on the image (CCRS, 2008).  

 

SAR can also assess variations in the state of water on land surfaces and within plants 

and soil. The smooth surface of water reflects all or most of the SAR signals away from 

the sensor. On the other hand, a water surface under a canopy of vegetation generates 

high backscatter because of interaction between the surface water and the trees, which 

enables flood mapping (Hess et al., 1990). 
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Vegetation can be a complicating factor as radar interaction depends strongly on the 

frequency and polarization of the microwave energy as well as the structure of the 

canopy (Figure 3.5). When water is smooth and calm it acts as a specular reflector to the 

radar signals (Figure 3.6). The returned signal will be at an angle equal to the incidence 

angle according to the law of specular reflection, which states that most of the energy is 

directed in a single direction. Thus the radar antenna receives low backscatter and the 

water appears dark in the radar imagery. Conversely, a rough water surface appears 

brighter in the SAR imagery. This aspect must be taken into account when monitoring 

flooded areas. When the radar pulse interacts with a target and is then returned to the 

sensor it may appear very bright in the image because of the corner-reflector effect or 

double-bounce effect (when a beam bounces twice off the surfaces back to the sensor). 

Figure 3.7 illustrates different types of surface and how they appear in a radar image 

(Campbell, 2002; Liew, 2001). These aspects of SAR backscatter intensity have been 

exploited in the detection of flooding (Dellepiane et al., 2000).  

 

Within the land use of Bangladesh‟s floodplain, backscatter characteristics can be 

outlined through four major trends (Hasan et al., 1998): settlement areas and forested 

terrain are likely to give high backscatter; water bodies and open flooding tend to give 

low backscatter and after inundation the amount of backscatter is reduced; backscatter 

then rises again with the recession of floodwater (Leeuwen et al., 1997).  

 

 

 

Figure 3.5: Radar energy scattering from different surfaces. Note that trunks of trees 

may cause the corner reflector effect (adapted from Globe SAR, 2008). 
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Figure 3.6: Backscatter from smooth surfaces (specular reflection) the angle of 

reflection is equal to the angle of incidence (adapted from Liew, 1997). 

 

 

Figure 3.7: Imaging different types of surface with radar. Note how surfaces appear in a 

radar image (adapted from JPL-Freeman, 1996). 

 

 

3.2.5 Speckle Filtering 

 

Speckle is the coherent interference of waves (which is manifest as a grainy salt-and-

pepper pattern in radar imagery) scattered from ground-surface elements (McCandless 

and Jackson, 2004). This causes random constructive and destructive interference in 

each resolution cell, resulting in random bright and dark areas in the radar images. 

Reducing speckle will enhance radiometric resolution, but at the cost of spatial 

resolution. Speckle noise in a digital image can be suppressed by the application of a 

speckle removal filter, which is necessary to improve classification and enhancement 

before image analysis (Liew, 1997; Lillesand et al., 2004). Speckle filtering will 

improve discrimination of scene targets and leads to easier automatic image 

segmentation with the use of non-adaptive and adaptive filters. Non-adaptive filters (i.e. 
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fast Fourier transform filters) consider the parameters of the whole image signal but not 

the local properties of the terrain backscatter or the nature of the sensor. Adaptive 

filters, such as the frost, lee, map gamma, local mean and local median filters, 

accommodate changes in local properties of the terrain backscatter. They should be used 

in preference to non-adaptive filters (Gagnon and Jouan, 1997; Globe SAR, 2008). If 

images are processed with a small number of „looks‟, distribution intensities will have 

inconsistencies due to speckle noise. Therefore, in this case multi-look processing is 

usually applied (Lillesand et al., 2004; SARMAP, 2007). 

 

3.3 Development in SAR Technology  

 

The development of radar satellite instruments is advancing rapidly. The advanced 

technology and capabilities incorporated into the SAR satellites range from higher 

resolution and variety of beam modes to fully polarimetric products, higher resolution 

SAR-interferometry and higher accuracy DEMs. Examples of new civilian SAR 

satellites include Radarsat-2, TerraSAR-X and COSMO SkyMed. Section 3.8 proposes 

brief details about the Radarsat-2 and TerraSAR-X SAR sensors as examples of the 

advanced remote sensing systems and highlights the advanced technical design of SAR 

sensors and its implication on application and operational flexibility.  

 

Enhancements in radar satellite imaging led to the production of  higher spatial 

resolution (from three metre to up to 1 a metre) images of surfaces when allows more 

land cover details to be identified and improves object detection. Improved object 

detection enabled various applications include mapping at scale of 1:20,000 (Staples, 

2005). The range of new imaging beam modes with various resolution swaths and 

incidence angles provide the opportunity for broad applications and strengthen the 

operational aspects. Examples of new beam modes incorporated into the recent SAR 

satellites include spotlight (1 m resolution) ultrafine and stripmap (3 m resolution) and 

Polarimetric-Fine Quad Polarization (8 m resolution) (for more details see section 3.8). 

Fully polaremetric (HH+VV+HV+VH) products enable more information to be 

extracted, better discrimination of various surface types and improved land cover 

classification (Staples, 2005). In addition to the SAR enhancements mentioned above, 

the higher resolution of SAR-Interferometry (InSAR) (Adam et al., 2008). The very 

high resolution SAR products enabled high accuracy deformation monitoring when 
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applying Persistent Scatterer Interferometry (PSI) technique (Gernhardt and Bamler, 

2010). Moreover, dvelopment of SAR products extended to produce high accuracy 

operational global DEM products with (absolute: <10m, 90%; relative: <2m, 90%) by 

TanDEM-X (TerraSAR-X Add-on for Digital Elevation Measurements). The TanDEM-

X DEMs are generated by using the bistatic InSAR stripmap mode which uses one 

satellite as a transmitter and the scattered signals are then received by both satellites 

simultaneously (Schulze et al., 2009).  

 

3.4 Mapping Floods and Water Bodies  

 

SAR imagery has shown essential benefits for various hydrologic applications, such as 

detecting and mapping lakes, water bodies, coastal wetlands, water levels and the extent 

of flooding. Because of the low backscatter associated with smooth water surfaces, and 

the high response from rough surfaces, most water bodies are visible on SAR imagery 

(Henderson and Lewis, 1998). However, monitoring and detecting the extent and timing 

of flooding is also vital for flood risk management. Applications of mapping water by 

SAR sensors focus on monitoring and detecting water bodies for resource management 

and monitoring the extent of flooding.  

 

The mapping and monitoring of flooded terrain are often difficult using remote sensing 

with visible or near-infrared imagery, for three main reasons (Bakimchandra, 2006): a) 

the difficulty in delineating the land/water interface in visible bands, b) water bodies are 

often covered by clouds and may also occur under cover of darkness, and c) the 

vegetation canopy can obscure the flood boundary. The ability of radar to operate 

during darkness and to penetrate clouds makes it the optimal sensor for flood 

monitoring and mapping (Henderson and Lewis, 1998). The significant contrast 

between backscatter helps to delineate flooded areas. The application of satellite data to 

floods can quickly and precisely provide an overview of flooded areas. This is helpful 

as a first step in formulating a flood response strategy, by identifying the areas most 

vulnerable to flooding. Hence, radar is potentially a key tool in providing synoptic 

coverage over a wide area and for flood monitoring which has been used operationally 

in many areas (Brisco et al., 2008, Sanyal and Lu, 2004). 
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Mapping the extent of flooded areas using SAR data can be undertaken using a range of 

approaches. One approach applies segmentation techniques to imagery acquired after 

the flood. Another compares two SAR images taken before and after the flood, through 

visual interpretation of change. A third approach uses coherence information inferred 

from a pair of SAR images (Nico et al., 2000). Fourthly, thresholding is one of the most 

frequently used techniques to delineate flooded from non-flooded areas in a radar image 

(Brivio et al., 2002; Sanyal and Lu, 2003). The radar backscatter value of threshold is 

set and a binary algorithm is used to determine whether or not a raster cell is flooded 

(Sanyal and Lu, 2003). However, the most common problem in identifying flood 

extents from SAR imagery is that accuracy may be affected by the relationship between 

the radar wavelength and the terrain roughness and water the body (Yang et al., 1999).  

 

There are several key studies of the application of radar for the detection of flooded 

areas. Brivio et al. (2002) used two ERS-1 images, one acquired one month before the 

studied flood, which occurred in the Piemonte region of Italy in November 1994, and 

the second one obtained three days after the event. They also used ancillary information 

to detect flooded areas such as digital topographic, aerial photographs to define ground 

truth areas, and maps of the actual inundated areas acquired from ground surveys for 

accuracy evaluation. The authors carried out a visual interpretation at the first stage and 

then applied two thresholding techniques. However, because of the time delay between 

the flood peak and the satellite overpass, they could detect only 20% of the flooded land 

during the satellite overpass. In order to overcome the limitation of this time delay, they 

developed a new procedure by integrating the flooded area from SAR imagery with 

digital topographic data from a GIS technique to estimate the flooded area at the peak 

time. The method they applied indicated inundated areas covering 96.7% of the peak 

flood area as determined from local government maps.  

 

Nico et al. (2000) carried out a comparison of SAR amplitude and coherence flood 

detection methods for flood delineation by adopting change detection techniques for a 

flood event at Bezier in southern France, 1996. Three approaches were adopted: a) a 

comparison between two SAR images of the same area, one taken before the flood and 

the other after; b) the use of interferometric coherence by isolating low-coherence 

regions; and c) a combination of these two approaches. The first approach was 

undertaken by comparing several images for the same area taken before and after the 
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flood. This technique is based on using the radar backscatter coefficient to determine 

temporal variations in the scatter behaviour of the surface. Thus, flooded zones 

appeared darker on the flooded image than on the unflooded image. The technique they 

used was multi-temporal image subtraction of one image value from the other on a 

pixel-by-pixel basis in order to isolate zones of low backscatter. The second approach, 

interferometric coherence change detection, involves the normalized cross-correlation 

coefficient between two images. The image taken after flooding shows a lower 

coherence than non-flooded areas because of changes in the dielectric constant and the 

surface roughness. Results show that the third approach which combines the two pieces 

of information into a single map is better and effectively able to isolate most of the 

flooded area in a homogeneous contour line and without the spurious patches. 

 

A comparison study was carried out by Komwong and Simking (2006) using Radarsat-1 

and ALOS PALSAR data to detect flood boundaries in Sukhothai in Thailand. The 

ALOS PALSAR image was acquired on 25 May 2006, while the Radarsat-1 image was 

acquired two days later. The comparison between the two SAR data was in terms of 

return signals as illustrated in Figure 3.8 and shows that the pattern graph appeared 

similar even though the reflectance value of both imagery were different (Komwong 

and Simking, 2006). Their study found that both images could map flash flooding 

accurately. 
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Figure 3.8: Reflectance significance comparison and flooding map using ALOS 

PALSAR and Radarsat-1 merged with a topographic map (A- SAR images, B-

reflectance pattern graph, and C-reflectance values) (adapted from Komwong and 

Simking, 2006). 
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A study using combined Radarsat-1 and ERS SAR images in flood detection was 

carried out by Chen et al. (1999) to monitor flooding using multi-temporal and multi-

platform data. In this study, eight Radarsat-1 and five SPOT5 multispectral optical 

images were used for the Mekong delta in Vietnam between June and December 1997. 

The SAR images were filtered, co-registered and calibrated, and the inundated areas 

were then extracted from the SAR images by applying thresholding methods. A 

comparison with SPOT multispectral images was applied as a ground truth. The results 

verified the effectiveness of using SAR data for flood monitoring by using 

multitemporal and multiplatform SAR data by applying thresholding methods.  

However, the problem is that ERS has a repeat (revisit) cycle of 35 days and, although 

this can be reduced to 17 days when taking into account both ascending and descending 

modes, it still has a limited temporal coverage compared to, for example, TerraSAR-X 

(which has a repeat cycle of 11 days). Therefore, another finding from this study was 

that the combined use of ERS and Radarsat-1 data would provide a high temporal 

frequency revisit capability, for applications such as flood monitoring.  

 

Another comparison study between Radarsat-1 and ERS data for mapping and 

monitoring floods was carried out by Hasan et al. (1998) in Bangladesh. The method 

they used consisted of two phases: first, pre-processing and second, information 

extraction. In the pre-processing stage, they made co-registration of image to image by 

shifting the image in the X and Y directions. They also evaluated a number of filters 

(mean, median, lee, lee sigma, gamma map, forest and local region) and found that the 

mean filter produced the best results. After that, they collected ground control points 

using an IRS-1D Panchromatic image and a Landsat-5 Thematic Mapper image as 

references. The SAR images were projected into the Bangladesh Transverse Mercator 

(BTM) projection system, and they found geo-referencing errors within ±10 and ±30 

metres for the SAR data. Information extraction included classification of the images 

into land-use and land-cover classes, which allowed identification of settlements, water 

bodies and seasonal variations in the vegetation features. They identified six major land-

use classes for the monsoon landscape in the study area (permanent water, seasonal 

water, rice, jute, sugarcane and settlements). The multi-temporal images were classified 

into 140 classes by adopting an unsupervised iterative self-organizing data analysis 

(ISODATA) clustering technique. They prepared two files: one for the 140-class image, 

and the second for the signature that contained mean digital number values of the 140 
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classes. Hasan et al. (1998) established a relationship between the ground data and 

signatures, and the signatures were then grouped according to land-use/land-cover 

types. Of the ground data, 70% was used to identify and label these types in the 

classified image, while the remaining 30% was used to assess the accuracy of SAR 

image classification.  

 

Various studies have attempted to find the best SAR imagery specifications for flood 

detection. For example, McMillan et al. (2006) investigated the optimal SAR imagery 

specifications for urban flood monitoring using Radarsat images taken over the study 

area in New Orleans, USA. They used a simple change detection technique by creating 

a preliminary RGB false-colour composite for each beam for the „before‟, „during‟ and 

„after‟ images. These facilitate identification of flooded areas. Low-pass and median 

filters were used to reduce speckle and to create coherent flood polygons. McMillan et 

al. (2006) found that the low-pass filter showed a more coherent flood extent and 

boundary. To validate SAR-derived flood extent against the flood estimation derived 

from optical imagery, two approaches were adopted: 1) a manually derived flood 

boundary-based approach, and 2) an area-based flood-detection approach. Regarding 

the boundary-based validation, manual flood vector delineation was implemented for 

the beam unfiltered difference images. The same delineation method was applied to the 

optical images. McMillan et al. (2006) compared the radar delineated flood boundaries 

with the optically derived boundaries by calculating: 

 the flood boundary lengths; 

 the lengths of the flood lines within each boundary (lines corresponding to the 

edge of the image extent were ignored); 

 the percentage of each flood boundary within a certain zone. 

 

Within the area-based flood detection approach, McMillan et al. (2006) created binary 

flood (1) and no-flood (0) classes. They masked out other land-cover types such as 

wetland and forest in order to display flood changes. The optically derived datasets were 

also passed through this mask to create a similar dataset. Saturated areas were then 

removed using a saturation threshold. The validation data was also rasterized and 

converted to class 1 or 0 for flood and no flood, respectively. The optical and radar 

layers were added to create four classes of contingency matrix image, showing areas of 

flood agreement and disagreement, false positives and negatives. The accuracy of the 
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area-based method was tested using user and producer accuracies and Kappa 

coefficients. The authors found that the most accurate results were obtained using 

descending mode of high incidence angle of the fine beam mode 5 Radarsat imagery. 

  

Very little literature is available on the automatic detection of water bodies from SAR 

imagery. Ahtonen and Hallikainen (2005) attempted the automatic detection of water 

bodies from SAR images by using a method divided into two stages: pre-processing and 

delineation. In pre-processing, the SAR images were calibrated and geo-coded before 

being de-speckled with a gamma-map filter using a 7×7 window. The SAR scene was 

thresholded to land and water classes. The active contour statistical snake technique was 

applied for flood delineation. The open water detection system was tested qualitatively 

with six ERS-2 SAR scenes (C-band, VV polarization). For quantitative accuracy 

validation, a high-resolution (2 m) image used from airborne imaging spectrometer for 

applications (AISA) and Radarsat-1 scene (25 m) were acquired. The thresholding error 

was below 12 AISA pixels and within 1 Radarsat-1 pixel. 

 

To validate SAR-derived flood extent against the flood estimation derived from optical 

imagery, two approaches may be adopted: 1) a manually derived flood boundary-based 

approach, and 2) an area-based flood-detection approach. These techniques can then be 

compared for flood boundaries by calculating boundary lengths, flood line lengths 

within each boundary and the percentage of each flood boundary within a certain zone. 

 

Multi-temporal TerraSAR-X data was adopted by Lu et al. (2009) for flood mapping. 

The study area was chosen to be in Lowa, USA, during the flood season in 2008. The 

authors applied mean shift filtering for image segmentation and k-means clustering for 

region merging.  A comparison between the proposed method and manual interpretation 

by ARCGIS and retrieval by texture on sub-blocks was performed to assess the 

accuracy of the proposed method. They found that the proposed procedure has better 

results and good edge for water body extraction compared with the method of retrieval 

by texture on sub-blocks with 5% improvement.   

 

Herrera-Cruz and Koudogbo, (2009) worked for an automated procedure for mapping 

flood extent using TerraSAR-X data based on two case studies: the flooding in the 

Mississippi River, USA, 2008 and the Gulf Country region in north Queensland, 
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Australia, 2009. Data used include TerraSAR-X stripmap for the Mississippi event 

while a ScanSAR scene was acquired for the Gulf Country. The authors used Definiens 

Developer for the development of the flood mapping procedure. Object-based 

classification was performed in three steps including segmentation, water mask 

extraction, and flood extraction and refinements. Results showed that the developed 

procedure is five times faster than that of the manual work and provides more details 

when compared to the manual digitization.   

 

From the above discussion, SAR flood monitoring appears to have limitations due to the 

time delay between flood peak and satellite overpass. Moreover, many studies have 

been widely based on non-high-resolution satellite SAR data for water and flood 

mapping. There are limited studies which tackle the very high spatial resolution for 

flood detection ( i.e. Herrera-Cruz and Koudogbo, 2009; Lu et al., 2009; Martinis et al., 

2009; Mason et al., 2010) due to the recent launch of the advanced SAR spacebornes, 

but still there is a gap for assessing the capability of those new SAR sensors‟ products 

for mapping floods. Therefore, the present research project is an attempt to bridge this 

gap by evaluating the capability of the new high-resolution SAR data products in the 

detection of flooding and water bodies.  

 

3.5 SAR Data Interpretation  

 

SAR image interpretation is dependent upon understanding the interaction between the 

radar waves and surface. Both sets of parameters of the system (polarization, incidence 

angle and frequency) and of the land surface (surface roughness, terrain geometry and 

surface and volume scattering) affect the appearance of the image (see Figures 3.3, 3.4, 

3.5, 3.6, and 3.7). Image interpretation factors such as tone, texture, shape, size, pattern 

and shadow can be used to analyse SAR imagery (Henderson and Lewis, 1998). 

Differences in the grey tones on an image occur because of changes in the radar 

backscatter from the terrain and are affected by a range of factors (such as moisture, 

surface roughness and slope). The rougher the surface being imaged, the higher is the 

backscatter intensity (Liew, 2001). 

 

Texture is related to the surface roughness (i.e. degree and homogeneity) and can be 

described as smooth or rough, salt-and-pepper, grainy and speckled. The contrast of the 
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component elements of texture on an image is affected by system and environmental 

parameters. Identification of the shape and size of individual features along with their 

texture and tone improves SAR image interpretation. Another approach in interpreting 

SAR imagery is contextual analysis, which can be conducted by examining a pixel or a 

group of pixels in the context of surrounding pixels or pixels in the whole scene 

(Henderson and Lewis, 1998). 

 

3.6 Limitations of Using SAR data to detect flooded areas 

 

Although SAR sensors have the ability to delineate water areas, there are limitations 

that might constrain its usefulness in some cases.  These include for example potential 

difficulties in differentiating between water, smooth surfaces, wet land (shallow water) 

and radar shadows. Hasan et al. (1999) found limitations in the analysis of the SAR 

image signature for floodplain land cover in Bangladesh, particularly smooth roads, 

which have a signature similar to that of permanent water. A study carried out by 

Oberstadler et al. (1997) examined the applicability of ERS-1 data for mapping flooded 

areas under operational conditions. An automatic classification based on evidence-based 

interpretation of satellite images (EBIS) was used, and it was found that: a) the actual 

timeframe of ERS-1 could not ensure the recording of flood events, and so operational 

use is rarely possible; b) where data are available mapping of the flood extent on arable 

land is possible with high accuracy, while in settlements and forests there was no 

definite outcome of the delineation. As a result, visual interpretation was found to be 

more accurate than the classification. Misclassification occurred in forested areas and 

wet arable land, which had similar signatures to inundated surfaces. High-resolution 

TerraSAR-X stripmap imagery for flooded urban areas detection was investigated by 

Mason et al. (2010) using HH polarization.  The study area was located in Tewkesbury, 

U.K., during the flood of July 2007. They used aerial photography for validation and 

LiDAR data to estimate regions of shadow and layover caused by buildings and taller 

vegetation. A statistical active contour model (or snake) was modified to be conditioned 

on both SAR and LiDAR data to reduce error of flood delineation. The accuracy of 

detecting rural flooding was estimated to be 80% while a 76% success rate was 

achieved for urban flooding areas excluding the shadow and layover regions. The flood 

detection accuracy included regions of shadow and layover was estimated to be 58%.  
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3.7 Evaluation of SAR Frequency and Polarization 

 

Most SAR systems transmit and receive pulses as different polarizations, which 

increases the information in SAR datasets. Polarization, as described in Section 3.2.2, 

can be helpful in distinguishing land surfaces. The choice of frequency (wavelength) is 

also important for assessing land features. Radar backscatter from terrain depends on 

frequency because of differences in the dielectric constant of water. Studies suggest that 

lower-frequency sensors are better suited to soil moisture estimation; Ulaby and 

Batlivala (1976) recommended a frequency of 4 GHz (C-band) for effective mapping of 

soil moisture. HH polarization in SAR C-band was found better than VV polarization 

for mapping wetlands (Baghdadi et al., 2001). 

 

Dobson et al. (1998) compared the expected accuracy of orbital SAR systems for land-

cover classification. They simulated various system configurations from SIR-C/X-SAR 

data and compared simulation data and results obtained from actual ERS-1/2 and the 

Japanese JERS-1 data of the same region. The evaluation was undertaken in terms of 

frequency and polarization for classifying land cover and estimating forest properties. 

SIR-C/X-SAR L-, C- and X-band data with VV polarization were acquired at various 

incidence angles. The best results were obtained when using multi-frequency data rather 

than multi-polarized data.  

 

Karszenbaum et al. (2004) evaluated HH and VV polarizations of ENVISAT ASAR 

data to understand the differences in radar backscatter in identifying the extent of 

standing water and related land-cover features in the delta of the Paraná River, 

Argentina. The data was modelled as a set of vertical cylinders (shoots), defined by 

radius, height, density and gravimetric moisture, on a normal flooded surface, and 

simulations were computed using a scattering model developed at Tor Vergata 

University, Italy. The data supported previous observations acquired through ERS2 and 

Radarsat-1 data in HH-VV polarizations with the same environmental conditions 

provided about the delta and showed considerable differences between HH and VV and 

the effects of the environmental parameters on radar backscatter. The results also 

indicated that C-band multi-polarized SAR is able to detect and distinguish between 

marsh species. 
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Baghdadi et al. (2008) examined the sensitivity of TerraSAR-X radar signals to surface 

soil parameters reflected by the roughest and the smoothest areas over agricultural 

fields, using HH polarization and various incidence angles (26°, 28°, 50°, 52°). Two 

study area sites were used: the first is in Villamblain, South of Paris and the second site 

is located at the Orgeval watershed, located to the East of Paris. Seven TerraSAR-X 

images were acquired in the spotlight mode with a spatial resolution of 1m during 

January and February 2008. Baghdadi et al. (2008) also analysed the potential of L-band 

of ALOS PALSAR images acquired in February 2008 with HH polarization at a 38° 

incidence angle and 6.25 m spatial resolution. A single ASAR image was also acquired 

in February 2008 with both HH and VV polarizations in the 1S2 mode (image swath) 

with 23° incidence and 12.5 m resolution. Ground truth measurements of soil moisture 

content, bulk density, and surface roughness were performed by collecting gravimetric 

soil moisture samples at depths in the range 0–5cm. They calculated the volumetric soil 

moisture by multiplying the gravimetric soil moisture by the dry soil bulk density.  Each 

training field estimated the backscattering coefficient σ° by averaging the linear value of 

σ° for all pixels related to a given field followed by converting results into decibels 

(dB). The study arrived at the following conclusions: 1) TerraSAR-X radar signal is to 

some extent more sensitive at high incidence angles to surface roughness,  2) sensitivity 

increases in the L-band (low frequency) with PALSAR/ALOS data, 3) the dynamics of 

radar signals for frozen or very wet soils is reduced based on the roughness parameter 

(rms), 4) under very wet soil conditions radar signals decrease at high or low incidence 

angles, and 5) soils with high water content appear darker in TerraSAR-X imagery. 

 

Multi-polarized ENVISAT ASAR data was evaluated for flood-mapping capabilities by 

Henry et al. (2006). The study used Image mode and Alternating Polarizations mode 

along with ERS-2 data acquired quasi-simultaneously, and an optical Landsat-7 ETM+ 

image as a reference. They extracted flood extents from each image and compared each 

result. The analysis indicated that HH polarization is more suitable for discriminating 

flooded areas than HV or VV. Moreover, HV improved the existing HH data, and VV 

polarized data was highly influenced by surface conditions. The study concluded that an 

Alternating Polarizations Precision image with like- and cross-polarization presents a 

better image for flood mapping than a mono-polarized image. 
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SAR frequencies and polarizations evaluation by different studies led to important 

results. The different SAR frequencies have various sensitivities to surface roughness in 

which sensitivity increases when using SAR data with low frequency (Baghdadi et al., 

2008).  The use of SAR Multi-frequency data performed better results for land cover 

classification (Dobson et al., 1998). Evaluation of polarization types indicated that there 

are differences between HH and VV on radar backscatter (Karszenbaum et al., 2004). 

HH polarization was found to be better in SAR C-band mapping wetlands than VV 

polarization (Henry et al., 2006; Baghdadi et al., 2001). Although some studies 

evaluated different SAR frequencies and polarizations they are very few, and most 

importantly there is a gap in the currently existing studies concerning evaluation of the 

capability of the new SAR satellite sensors (C- and X-bands) in particular. 

 

3.8 Radarsat-2 and TerraSAR-X SAR Remote Sensing Systems  

 

The development of SAR satellite systems in the last couple of years has achieved very 

high spatial resolution imagery from 3 metres down to one metre there have been built 

and launched by different international agencies. In this study, the assessment of SAR 

products and evaluation of their applicability for monitoring and detection of floods is 

based on the Radarsat-2 (Canadian Space Agency) and on the TerraSAR-X (German 

Aerospace Centre) SAR sensors. A brief description of these two SAR systems is in the 

following sections. 

 

3.8.1 Radarsat-2  

 

Radarsat-2, was jointly funded by the Canadian Space Agency and MacDonald, 

Dettwiler and Associates (MDA) and was built by the MDA.  It was launched in 

December 2007. Radarsat-2 is the C-band imaging radar follow-on mission to Radarsat-

1, which was launched in November 1995. Radarsat-2 has advanced technology over 

Radarsat-1 which includes: three metre high resolution; fully-polarimetric modes; 

enhanced ground system; routine left and right looking capability; increased geometric 

accuracy; and on-board solid state recorders (Staples, 2005). Radarsat-2 left- and right-

looking modes provide more revisits and up-to-date data which reduce planning lead 

times for data acquisition (CSA, 2007). The various advances in Radarsat-2 technology 

allow for many earth observation applications such as disaster management, agriculture, 
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cartography, forestry, geology, hydrology, marine surveillance, ice studies and coastal 

monitoring (CSA, 2007). Data from Radarsat-2 has been used in disaster responses such 

as floods, earthquakes, tsunamis, landslides, and forest fires. Table 3.4 lists some 

features of the Radarsat-2 system and their benefits. 

 

Table 3.4: Some features of Radarsat-2 and their benefits (CSA, 2007). 

Features Benefits 

 

Spatial Resolution: 3 to 100 meters 

 

- Suite of spatial resolution options 

accommodates a wide range of applications. 
-Ultrafine beam improves object detection and 

classification  

 
Polarization: HH, HV, VV and VH 

 

Better discrimination of various surface types 
and improved object detection and recognition  

Look Direction: Left- and right-looking 

imaging 

Decreases revisit time for greater monitoring 

efficiencies  

 
Onboard Recording Device: Solid-state 

recorders 

 

-Guarantees image acquisition anywhere in the 

world for subsequent downlinking 

-High capacity (300 GB) random access 

storage 
-Simultaneous reading and writing  

Onboard Location Accuracy Device:GPS 
receivers onboard 

-± 60-meter real-time position information 

-GPS-derived geometric accuracy, provides 
greater positional control for fast delivery 

products (no ground control)  

Attitude Control: Yaw steering 

Control of yaw steering for zero Doppler shift 

at beam centre facilitates accurate image 
processing  

 

 

3.8.1.1 Radarsat-2 Instrument System 

 

The spacecraft of Radarsat-2 is mainly composed of the Bus and the payload module 

along with the extendible support structure between the Bus and antenna structure 

(Figure 3.9) (CSA, 2007). Table 3.5 summarizes the spacecraft and Antenna general 

characteristics. The Bus provides the general support functions such as attitude 

measurement and control, telemetry and command, data storage and retrieval, power 

generation and storage, and thermal control. The synthetic aperture radar (SAR) payload 

consists of two major components, the sensor electronics subsystem and the SAR 

antenna, and support equipments such as timing and control of the payload, signal 

distribution, signal detection, thermal control, data storage, and X band downlink 

(Livingstone et al., 2005; Morena et al., 2004).  
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The radar transmitter and receiver operate through an electrically steerable antenna 

(MDA, 2009). The transmitted pulses generated by the antenna are of constant 

amplitude and phase modulated waveforms for each range resolution and up-converted 

to 5.405 MHz are sent to the Antenna subsystem for transmission (Livingstone et al., 

2005). The antenna has more than 10,000 radiating elements fed by 640 

Transmit/Receive modules. Polarization can be controlled by correcting timing of the 

signal from or to each radiating element pair to achieve H or V polarization on transmit 

and receive paths (GLOBSAR, 2008; Riendeau and Grenier, 2007). The subsystem 

diagram of the Radarsat-2 sensor electronics and the antenna are shown in Appendix 

3.1. 

 

Table 3.5: Radarsat-2 spacecraft and Antenna general characteristics (adapted from 

CSA, 2007). 

General characteristics 

Total mass at launch 2,200 kg 

Mission life 7 years 

SAR antenna dimensions 15 m x 1.5 m 

Solar arrays (each) 3.73 m x 1.8 m 

Bus 3.7 m x 1.36 m 

Antenna Characteristics 

Active Antenna C-Band T/R modules 

Centre Frequency 5.405 GHz 

Bandwidth 100 MHz 

Polarization HH, VV, HV, VH 

Polarization Isolation > 25 dB 

Aperture Length 15 m 

Aperture width 1.37 m 

Mass 750 kg 
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Figure 3.9: Radarsat-2 configuration (Adapted from GLOBSAR, 2008). 

 

 

3.8.1.2 Satellite Orbit  

 

Radarsat-2 has a sun-synchronous orbit (a dawn-dusk orbit) with the ascending mode at 

18:00 hours ±15 min local mean time and completes 14 orbits per day with a repeat 

cycle of 24 days. The average altitude of the orbit is 798 km with an inclination of 98.6° 

(CSA, 2007; Morena et al., 2004). Table 3.6 shows the orbit characteristics of Radarsat-

2.  

 

Table 3.6: Radarsat-2 orbit characteristics (NRCAN, 2007). 

Parameter Value 

Altitude (average) 798 km 

Inclination 98.6° 

Period 100.7 minutes 

Ascending Node 18:00 hrs 

Sun-synchronous 14 orbits per day 

Repeat Cycle 24 days 
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3.8.1.3 Beam Modes and Polarizations  

 

Radarsat-2 has all of the Radarsat-1 imaging modes plus the addition of new modes 

such as ultrafine, multi-look fine, fine quad-polarization and standard quad-polarization 

(Morena et al., 2004). Figure 3.10 illustrates the Radarsat-2 SAR beam modes of 

operation. The Radarsat-2 antenna directs the emitted signals in a narrow beam to the 

earth‟s surface where the elevation angle and the elevation profile of the beam can be 

adjusted to obtain the desired range of incidence angles (MDA, 2009). Each beam mode 

is characterized by a specific incidence angle and width, as shown in Figure 3.10. 

Additional details about imaging modes in terms of resolution, scene size, incidence 

angle, number of looks and polarization are shown in Table 3.7. 

 

The Radarsat-2 SAR sensor obtains data in three polarization configurations: single, 

dual, and quad polarization (see Table 3.7). Single polarization products can be obtained 

by operating the radar sensor with the choice of co-polarized HH or VV, or Cross-

polarized HV or VH. Dual-polarization products are obtained by the choice of HH and 

HV, or VV and VH. Quad-polarization means that four amplitude channels and the 

phase of information can be acquired including HH, HV, VH, and VV.  

 

 

Figure 3.10: Radarsat-2 SAR beam modes of operation (Adapted from MDA, 2007). 
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Table 3.7: Radarsat-2 beam modes and products (MDA, 2009). 

Beam Mode 
Resolution  

(m) 

Scene size 
(kmxkm) 

Incidence 
Angle (°) 

Number of 
Looks 

Polarization 

Spotlight 1 18x8 20-49 1x1 SSP 

Ultrafine 3 20x20 20-49 1 SSP 

Multi-look fine 8 50x50 30-50 2x2 SSP 

Fine 8 50x50 30-50 1x1 SSP or SDP 

Standard 25 100x100 20-49 1x4 
SSP or SDP 

Wide 30 150x150 20-45 1x4 
SSP or SDP 

Scan SAR Narrow 50 300x300 20-46 2x2 SSP or SDP 

Scan SAR wide 100 500x500 20-49 4x2 SSP or SDP 

Extended high 25 75x75 49-60 1x4 SP 

Extended low 25 170x170 10x23 1x4 SP 

Fine quad-pol. 8 25x25 18-49 1x1 QP 

Standard quad-pol. 25 25x25 18-49 1x4 QP 

Note: 

1. SP: Single polarisation - HH. 
2. SSP: Selective single polarisation - HH or HV or VV or VH. 

3. SDP: Selective dual polarisation - HH+HV or VV+VH. 

4. QP: Quad polarisation - HH+HV+VV+VH acquired (full polarimetric). 

 

The ultrafine beam mode products were selected for this study due to its high spatial 

resolution of three metres. In this mode the radar operates its highest sampling rate with 

a limited ground swath coverage to keep the data rate within the recorder limits (MDA, 

2009).  

 

3.8.2 TerraSAR-X 

 

The TerraSAR-X satellite was launched in June 2007 as a joint project between the 

German Aerospace Centre (DLR) and the German industry (ASTRIUM) and was 

equipped with active phased array antenna technology in X-Band (DLR, 2010). The 

TerraSAR-X system can provide a geometric resolution down to one metre in 2-D earth 

surface imaging and also a 3-D imaging with its partner the TanDEM-X (launched in 

June 2010) (Pitz and Miller, 2010). The advanced technology of the TerraSAR-X 
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system allows it to have several advantages; high radiometric accuracy, resolution up to 

1m; imaging 5 to 100 km swath width and up to 1500 km length; revisit time up to 2.5 

days and a repeat cycle of 11 days. The different SAR imaging modes of TerraSAR-X 

along with its high resolution and high operational flexibility allow it to support several 

applications. Examples of these applications include monitoring of urban environments, 

agriculture, forestry and environment; monitoring the sea ice and the volume of 

icebergs, monitoring of the oceans and coastal regions; and mapping and cadastre 

(DLR, 2009). TerraSAR-X products have been used for mapping hazard and damage 

assessment for different events such as floods, earthquake, tsunami, landslides, and 

wildfire. 

  

3.8.2.1 TerraSAR-X Instrument System 

 

TerraSAR-X is a side-looking X-band synthetic aperture radar (SAR) based on active 

phased array antenna technology. The active antenna allows not only the conventional 

stripmap imaging mode but additionally spotlight and ScanSAR mode (DLR, 2008). 

The system parameters of the platform and the SAR instrument are shown in Table 3.8. 

The satellite bus with a hexagonal cross-section has a length of 5 metres and a width of 

2.4 metres and is fitted with the electronic boxes of the SAR instrument. The radar 

antenna is fitted on one of the six sides of the bus and the solar generator, 5.25 square 

metres in size are fitted on other side. A downlink antenna for data recording has a 3.3 

meters long mast for avoiding interferences which may be caused by the radar antenna. 

Figure 3.11 illustrates the TerraSAR-X system components. The TerraSAR-X SAR 

antenna (4.80 metres long and 80 centimetres wide) can operate in two polarizations, H 

(horizontal) and V (vertical) and consists of 12 antenna panels, each equipped with 32 

slotted waveguide subarrays. Each subarray is fitted with a TRM, so that the whole 

antenna consists in total of 384 TRMs. The TerraSAR-X instrument functional block 

diagram and radar antenna panel are shown in Appendix 3.2 (DLR, 2009). 
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Table 3.8: TerraSAR-X system parameters (DLR, 2008). 

Parameter Value 

Satellite size 5 meters height by 2.4 meters diameter 

Satellite mass approx. 1,230 kilogram 

Radar carrier frequency 9.65 GHz 

Radiated RF Peak Power 2 kW 

Incidence angle range for stripmap / Scan- 
SAR 

20°– 45° full performance (15°-60° accessible) 

Polarizations HH, VH, HV, VV 

Antenna length 4.8 m 

Nominal look direction Right 

Antenna width 0.7 m 

Number of stripmap / ScanSAR elevation 
beams 

12 (full performance range) 

27 (access range) 

Number of spotlight elevation beams 91 (full performance range) 122 (access range) 

Number spotlight azimuth beams 229 

Incidence angle range for spotlight modes 20°– 55° full performance (15°-60° accessible) 

Pulse Repetition Frequency (PRF) 2.0 kHz – 6.5 kHz 

Range Bandwidth max. 150 MHz (300 MHz experimental) 
Operational life at least 5 years 

 

 

Figure 3.11: TerraSAR-X system components (DLR, 2011b). 
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3.8.2.2 Satellite Orbit  

 

The TerraSAR-X satellite is orbiting in altitude of around 514 kilometres, near-polar 

orbit. It flies in a sun-synchronous, dusk dawn orbit with an orbit repeat cycle of eleven 

days (see Table 3.9).  

 

Table 3.9: TerraSAR-X orbit and attitude parameters (DLR, 2008). 

Parameter Value 

Orbit type Sun-synchronous 

Nominal altitude at equator 514 km 

Orbits per day 15 2/11 

Orbit repeat cycle 11 days /167 

Inclination 97.44° 

Ascending mode equatorial crossing time 18:00 ± 0.25 h (local time) 

 

 

3.8.2.3 Beam Modes and Polarizations 

 

The TerraSAR-X operational modes include high resolution spotlight, spotlight, 

stripmap and ScanSAR. TerraSAR-X sensor modes of operation are given in Figure 

3.12. The high resolution spotlight mode has a resolution up to one metre and a scene 

size of 5 km by 10 km. The spotlight can image up to two metre resolution with a scene 

size of 10 km by 10 km. The stripmap mode can produce up to a 3m resolution product 

with a scene size of 20 km 30 km and can be extended to 1.500 km.  The ScanSAR 

mode resolution is around 18 metres and can produce a scene size of 100 km by 150 km 

with the capability to extend the scene length to 1.650 km (Table 3.10) (Infoterra, 

2011). 
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Figure 3.12: TerraSAR-X SAR modes of operation (source: DLR, 2009). 

 

 

Table 3.10: TerraSAR-X beam modes and products specifications (DLR, 2010). 

Note: 

1. SP: Single polarization - HH or VV 

2. DP: Dual polarization - HH/VV 

 

 

In this study, stripmap mode products were used from the TerraSAR-X sensor. This 

type of mode allows the ground swath to be illuminated with a continuous sequence of 

pulses while the antenna beam is pointed to a fixed angle in elevation and azimuth 

results which has constant image quality in azimuth (DLR, 2008). The acquisition‟s 

maximum length is limited by several factors such as battery power, memory and 

thermal conditions in the sensor. The characteristic parameters of stripmap mode are 

listed in Table 3.11. 

 

Beam mode Resolution (m) Scene size (km) 
Incidence Angle 

(°) 
Polarization 

High resolution 

Spotlight 

1.1 (SP) 

2.2 (DP) 
5 x 10 20 - 50 

SP 
or DP 

Spotlight 
1.7 (SP) 

3.4 (DP) 
10 x 10 20 - 55 

SP 

or DP 

Stripmap 
3.3 (SP) 

6.6 (DP) 

30 x50 

15 x50 
20 - 45 

SP 

or DP 

ScanSAR 18.5 100 x 150 20 - 45 SP 
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Table 3.11: Characteristic parameters of stripmap mode (DLR, 2008). 

Parameter Value 

Swath width (ground range) 30 km single pol., 15 km dual pol. 

Nom. L1b product length 50 km 

Full performance incidence angle range 20° - 45° 

Data access incidence angle range 15° - 60° 

Number of elevation beams 27 (12 full perf.) 

Azimuth resolution 3.3 m (6.6 m dual pol.) 

Ground range resolution 1.70 m-3.49 m (@ 45°.. 20° incidence angle) 

Polarizations 
HH or VV (single) 
HH/VV, HH/HV, VV/VH (dual) 

 

 

3.9 SAR Data Accuracy Assessment 

 

„No land cover classification project would be complete without an accuracy 

assessment‟ (Cihlar 2000). Accuracy assessment of remotely sensed data is a relatively 

new procedure for testing map accuracy. The accuracy of spatial data may be defined as 

“the closeness of results of observations, computations, or estimates to the true values or 

the values accepted as being true” (USGS, 1990). Accuracy assessment is an important 

factor in analysing SAR images (Banko, 1998). It is the identification and measurement 

of map error by comparing sites on a map against accurate reference data (Congalton 

and Green 2009). In other words, accuracy assessment is adopted to assess map errors 

in order to identify the quality of remotely sensed information. Figure 3.13 shows 

possible sources of error in remotely sensed data. Remotely sensed data is measured by 

positional accuracy and thematic accuracy. The first involves the accuracy of the 

location features on a map compared with land position. While the thematic accuracy 

measures whether the attributes of features on the map are different from those on the 

Earth‟s surface (Congalton and Green 2009). 
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Figure 3.13: Possible sources of error in remotely sensed data (adapted with 

modification from Congalton and Green 2009). 

 

The development of validation methods in remote sensing image classification have led 

to the move from using qualitative confidence-building assessment to the use of 

statistical measurements (Grenier et al., 2008). The accuracy of image classification 

methods can be measured statistically through two approaches: model-based inference 

and design-based inference (Hansen et al., 1983; Stehman, 2009). Model-based 

inference estimates the error of the classification process (or model) that generated the 

map, rather than estimating the accuracy of the thematic map. Design-based inference is 

an estimation of the accuracy of the thematic map based on statistical principles. A 

frequently used method is the error matrix (section 3.9.2) which compares reference 

information to samples of information on a map. This leads to a descriptive evaluation 

using statistical measurements of overall, producer‟s and user‟s accuracy (Congalton 

and Green 1998).  

 

Accuracy assessment has three basic components: 1) the sampling design used to select 

the reference sample; 2) the response design used to obtain the reference land-cover 

classification for each sampling unit; and 3) the estimation and analysis procedures 

(Stehman and Czaplewski, 1998; Strahler et al., 2006). 

• Acquisition 

• Data processing 

• Data analysis 

• Data conversion 

• Error assessment 

• Final product: Spatial error 
and Thematic error  

• Decision- making 

• Implementation 
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3.9.1 Sampling Design 

  

The sampling design (Stehman and Czaplewski, 1998) is the protocol that can be 

followed to select the reference sample units. Sampling design planning depends on the 

accuracy objectives and the sampling design criteria. Several design criteria should be 

taking into account when selecting a sampling design for accuracy assessment such as 

the following (Stehman, 2009):  

- The sampling design must correctly be implemented and analysed. 

- The sampling design must be cost effective. 

- The sample is spatially well distributed. 

- The variability of the sampling accuracy estimates should be small. 

- Ability to change the sample size during the implementation of the design. 

 

Depicting samples from a population can be implemented by a number of methods. The 

most common are simple random, stratified random, cluster, and systematic sampling 

(Stehman and Czaplewski, 1998).The selection of a sampling technique depends upon 

various issues such as the size of the study area, the type and distribution of land cover 

features, and the costs of acquiring verification data (Banko, 1998). There are several 

types of sampling units that the accuracy assessment process is dependent upon, which 

are individual pixels, clusters of pixels, or polygons.  

 

 

3.9.2 Accuracy Assessment Methods 

 

A common method used to assess classification accuracy is the error matrix or 

confusion matrix (Congalton, 1991). The error matrix, also known as a confusion 

matrix, is a method of calculating the accuracy of classified classes with respect to the 

reference data (Congalton and Green 2009). The matrix is presented as rows and 

columns of a square array of numbers that represent the number of sample units 

assigned to a specific category in a particular classification in relation to another 

classification that also consists of a number of sample units assigned to a specific 

category (Congalton and Green 2009). The error matrix is illustrated in Figure 3.14.  
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In Figure 3.14, the diagonal of the matrix (e.g.,     ,     ) summarizes those pixels or 

polygons that were assigned to the correct class. Errors in the classified images relative 

to the ground reference information is summarized in the off-diagonal cells of the 

matrix (e.g.,               ). The column and row totals around the margin of the matrix 

are used to compute errors of inclusion (commission errors) and errors of exclusion 

(omission errors). The outer row and column totals are used to compute producer‟s and 

user‟s accuracy. 

 

 
Ground Reference Test information 

 

Remote 

Sensing 
Classification 

Class 1 2 3 k 
Row 

total 

1                         

2                         

3                         

k                         

 Column 

total 
                N 

 

Figure 3.14: The Error Matrix (adapted from Ongsomwang, 2006). 

 

The reference data derived from collected data usually uses the columns in the matrix, 

while the rows usually display the classified data derived from remotely sensed data. 

The error matrix can compute errors present from an included area in an incorrect 

category (a commission error) and can also calculate the occurrence of error when an 

area is excluded from the category (an omission error). Moreover, from the error matrix 

it is possible to measure overall accuracy, producer accuracy and user accuracy. Overall 

accuracy is the sum of correctly classified sample units (major diagonal) divided by the 

total number of sample units in the entire error matrix, while producer accuracy (row 

category) and user accuracy (column category) are performed to compute individual 

category accuracies (Congalton and Green 2009). The user‟s accuracy represents the 

commission error, which is the percentage of pixels labelled in an incorrect class, while 

the producer‟s accuracy represents the omission error, which is the percentage of pixels 
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excluded from the class. In other words, the producer‟s accuracy is a measure of how 

well the situation on the ground can be mapped, while the user‟s accuracy measures 

how reliable the map is when comparing it with the real world. The general concept of 

producer‟s and user‟s accuracy is shown in Figure 3.15. 

 

 

Figure 3.15: The general concept of producer‟s and user‟s accuracy (based on Banko, 

1998). 

 

Another measure of map accuracy derived from the coefficient matrix is the Kappa 

Coefficient which is to accommodate for the effects of chance agreement (Foody, 

2002). It is a measure of overall agreement or accuracy based on the difference between 

the actual agreement in the error matrix and the chance agreement (Banko, 1998; 

Congalton and Green 2009). The Kappa coefficient reflects the agreement percentage 

between the classified image and the reference data, while the overall accuracy is an 

indication of the probability of the correctness of the classified image. 
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3.9.3 Accuracy Assessment Applications in SAR Remote Sensing 

 

Numerous papers on the classification accuracy assessment of SAR data are available. 

McMillan et al. (2006) investigated the optimal imagery specifications of Radarsat-1 

fine beam mode and standard beam mode images for urban flood detection in New 

Orleans, USA. An area-based validation method was applied by comparing radar-

derived flood classes with SPOT optical validation layers. Accuracy assessment showed 

producer accuracy of 74% and 85% and user accuracy of 64% and 90% for flooded and 

non-flooded classes, respectively, while the Kappa coefficient showed moderate 

agreement of 0.56. The study found that the most-accurate results were achieved using 

descending mode, high incidence angle and fine beam mode imagery, which were 

recommended for use in future detailed analyses of flooding. 

 

The effect of the incidence angle on classification accuracy was evaluated by Li et al. 

(2007). They examined the influence of Radarsat-1 incidence angle on the 

discrimination of wetlands in the Mer Bleue bog area in Ontario, Canada. They 

classified Landsat-7 with Radarsat-1 S1 and S5 images separately using a maximum-

likelihood classifier. Classification accuracy assessments were performed by randomly 

generating 200 validation samples and using aerial images as reference data. Results 

from classification confusion matrices with Kappa statistics showed that the 

classification accuracies of wetland classes were improved. The results indicated that 

the lower incidence angle Radarsat-1 is the optimal beam mode when used in 

combination with Landsat images for discrimination and classification of wetlands. 

 

Another study investigated the classification accuracy of class separability and per-pixel 

classification using a maximum-likelihood classifier (Mroz and Mleczko, 2008). They 

evaluated the potential of TerraSAR-X stripmap data in mapping agricultural crops in 

single- and dual-polarization mode. A confusion matrix and Kappa index of agreement 

were calculated for the classified data. Results of the Kappa index agreement were in 

the range 0.61–0.80 and the overall accuracy in the range 0.81–1.0.  

 

Martinez and Toan (2007) assessed the classification accuracy of a time series of JERS 

L-band images to map flooding compared with an individual image. The research 

methods were based on mean backscatter for land-cover classes and total change was 
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assessed by the absolute change estimator used for estimating landscape change. The 

accuracy assessment showed good results, with a Kappa value of about 0.8, with 

improved results over smooth surfaces compared with the accuracy of classification 

realized with an individual image. The study indicated a lower accuracy in 

discrimination between open water surfaces, bare soils and low vegetated areas, because 

of the lower sensitivity of L-band data to smooth surfaces.  

 

Accuracy has also been assessed in texture evaluation. Arzandeh and Wang (2002) 

investigated Radarsat-1 imagery for wetland mapping. They evaluated the use of texture 

analysis by classifying wetland and other land cover over a single-date Radarsat-1 

image in Walpole Island, Canada. For texture measurement, they used a grey-level co-

occurrence matrix, and for classification they employed a maximum-likelihood 

supervised classifier. Various combinations of texture feature were examined during the 

evaluation procedure, and classification results were compared for the Kappa coefficient 

and overall accuracy. The accuracies of the classification results were compared and 

analysed to select the preferred input parameters such as window size, inter-pixel 

distance and inter-pixel angle. A Z-pairwise statistical test was also performed to assess 

the differences between two classifications.  

 

A comparison of classification accuracies between fully polarimetric, dual-polarization 

and single-polarization SAR data was evaluated by Lee et al. (2001, cited in Lee and 

Pottier, 2009) for P-band, L-band and C-band using the JPL AIRSAR (airborne SAR) 

dataset of Flevoland, in the Netherlands, for crop classification. They performed a 

quantitative comparison to assess the classification capabilities of all combinations of 

polarizations for three frequencies. As a reference class map, training sets were used to 

evaluate classification accuracy. The study involved the following basic classification 

procedure: 1) select training sets from a ground truth map; 2) filter polarimetric SAR 

data; 3) apply maximum-likelihood classifiers to each individual polarization, to 

combinations of dual polarization, to combined sensors and to each individual sensor; 

and 4) identify the correct classification compared with the reference class map. The 

quantitative analysis showed that complex HH and VV polarizations is the preferred 

combination, and L-band polarimetric SAR data is more accurate for crop classification. 

The study also revealed that L-band complex HH and VV modes can attain 

classification rates that are almost as good as those for full polarimetric SAR data. 
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Gebhardt et al. (2008) evaluated two simple image-processing approaches for flood 

classification: a histogram-based method (a segmentation of an image histogram using a 

threshold) and a texture-based technique (separating homogenous from heterogeneous 

areas by thresholding the resulting image). Two TerraSAR-X stripmap images analysed 

for deriving inundation surface areas were acquired over the plain of reeds in the 

Mekong delta during the dry season in 2007 and the rainy season in 2008. For accuracy 

assessment, the study derived reference data from TerraSAR-X images because of a 

lack of field reference data. However, the water masks derived within five defined test 

areas were evaluated against the reference data. The overall accuracy for the whole 

classified images for the threshold and the texture-based approach during the dry season 

was found to be 96.8% and 91.6%, respectively. For the buffer zones, on the other hand, 

both approaches showed lower accuracies (80.8% and 70.6%, respectively). 

 

3.10   Conclusion  

 

considerable development at both levels, the SAR system technology and the SAR 

products application techniques has allows the significance of SAR remote sensing as a 

tool for mapping and monitoring of natural hazards and disasters to take a step forward. 

The emergence of new high spatial resolution SAR satellite sensors (i.e. Radarsat-2 and 

TerraSAR-X) will allow mapping of flood hazards in more details which will improve 

efforts of disaster relief at a local scale. Therefore, assessment of their ability and also 

identification of the optimum sensor system for flood detection are essential for 

maximum exploitation of their advantages.  

 

The principles of synthetic aperture radar (i.e. wavelength, polarization, spatial 

resolution, incidence angle, look direction, backscattering and speckle) as such briefly 

reviewed in this chapter along with the literature has discussed its applications 

particularly in mapping floods, are used as a theoretical basis to achieve the objectives 

of this thesis. The high incidence angle is appropriate for flood mapping (i.e. Baghdadi 

et al., 2008; McMillan et al., 2006; Srivastava et al., 2009). The HH polarization is 

better than VV polarization for mapping wetlands (i.e. Baghdadi et al., 2001; Henry et 

al., 2006). Understanding of new development specifications of the new SAR sensors as 
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reviewed in section 3.8 would allow appropriate selection of type products, processing, 

and image interpretation. 

 

Evaluation of SAR products for discrimination of surface water from other land cover 

would be incomplete without accuracy assessment. Therefore, reviewing procedures of 

the accuracy assessment of remotely sensed data for flood maps accuracy in terms of 

accuracy assessment methods, and sampling design along with the applications of the 

classification accuracy assessment of SAR data constitute the appropriate accuracy 

assessment procedures for this thesis. 

 

It is worth noting that although there are various studies which assessed different SAR 

sensors and products in a range of SAR system parameters, there are very few and this 

is considered as a gap in the assessment of the new advanced SAR satellite sensors (C- 

and X-bands) in particular. Therefore, the most important limitation and lack of studies 

are: 

 Lack of assessing high resolution SAR products and system parameters (i.e. 

polarization) for flood and water detection at a local scale which is certainly 

needed in order to support efforts of disaster management in terms of flood 

damage assessment and human relief on the one hand and water resource 

management on the other. Therefore, bridging this gap will assist in this domain. 

 Lack of evaluation of the image processing methods for the high resolution SAR 

products for flood detection and mapping small water bodies at local scale will 

inhibit better utilization of SAR data. 

 Lack of a comparison assessment between new SAR instruments working with 

different frequencies such as C-band (i.e. Radarsat-2) and X-band (i.e. 

TerraSAR-X) with regard to mapping flood extent and small water bodies might 

limit the maximum exploitation of their capabilities.  

 

For these reasons, an evaluation approach of the new high resolution Radarsat-2 and 

TerraSAR-X products for water body mapping will be discussed in the following 

chapters of this thesis. The approach will be based on appropriate methodologies to the 

nature of this research project concerning SAR data acquisition parameters, field data 

specifications, data processing, and accuracy assessment. The high resolution SAR 
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products available for this thesis will be obtained from the Radarsat-2 and TerraSAR-X 

instruments. Appropriateness of acquisition mode selection was based on better 

coverage and higher resolution. Thus, the most suitable SAR products for this study 

would be the stripmap (TerraSAR-X) and the ultrafine (Radarsat-2), using high 

incidence angles to decrease backscatter and thus increase the contrast between water 

and land surfaces. It is essential to select a topographically flat area to avoid radar 

layover and foreshortening effects that may occur with hilly areas.  

 

Since assessment of the mapping capabilities of SAR data for water body mapping is 

one of the objectives of this study, therefore it is important to define the polarization 

applicability with regard to the operational use for flood mapping. Therefore, a number 

of SAR images may be acquired in HH and VV polarization covering the study area 

where there should be contained many permanent water bodies with different sizes and 

shapes in order to ensure their availability during radar imaging. Verification and 

assessment of the results of radar interpretation are required by performing a field 

survey for mapping water bodies by using GPS equipment simultaneously with the SAR 

data acquisitions.  

 

Data processing methods in light of the previous studies can be based on textural 

analysis using a grey-level co-occurrence (i.e. Arzandeh and Wang, 2002; Gebhardt et 

al., 2008) and using a maximum-likelihood classifier for image classification (i.e. Li et 

al., 2007; Mroz and Mleczko, 2008). Beside the textural image classification it is 

important to strengthen the image interpretation procedure by taking into account other 

factors such as shape, size and pattern (Henderson and Lewis, 1998) and therefore, the 

object-based classification will be appropriate to exploit the contextual information of 

the SAR objects (i.e. water bodies) (see for example, Herrera-Cruz and Koudogbo, 

2009). The accuracy assessment of the flood maps compared with the dGPS ground 

truth data can based on the error matrix method using statistical measurements include 

overall, producer‟s, and user‟s accuracy (i.e. McMillan et al., 2006; Mroz and Mleczko, 

2008). Moreover, an accuracy comparison should be implemented between classified 

images of both Radarsat-2 and TerraSAR-X sensors in order to identify any differences 

in mapping floods.  
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Chapter Four: 

DESCRIPTION OF THE STUDY AREA 

 

4.1 Introduction 

 

The aim of this chapter is to describe the study area in terms of geographical location, 

climate, land cover and land use. In this project, the study area has been analysed in two 

phases. The first is the acquisition of the SAR satellite products over the study area, 

while the second is the fieldwork campaign. The fieldwork project provided essential 

information to support the research objectives in interpreting the SAR imagery and, 

most importantly, in ground truthing. 

 

The challenge was to select the most appropriate study area that can be used to achieve 

the research objectives and within the available time and resources. Several criteria 

were taken into account when selecting the area of study, an area at risk from freshwater 

flooding, the availability of a large number of water bodies during non flood periods, 

ease of access, requirements for logistics and fieldwork risk assessment and availability 

of suitable SAR imagery. The following section discusses the study area justification 

further. 

 

4.2 Justification of the Study Area 

 

Bangladesh is an alluvial deltaic plain divided into three main regions: hills, terraces 

and flood plains. It has an approximate total area of 147,570 km
2
. A large part of 

Bangladesh is densely populated, with a total population of about 140 million 

(Bangladesh Bureau of Statistics [BBS], 2006). Most of the land is located within the 

floodplains of the three rivers of the Ganges, the Brahmaputra and the Meghna and their 

regional rivers and channels (Cityriskpedia, 2001). The country is flood prone because 

of its low-lying deltaic plain location (Figure 4.1). Flooding is a normal occurrence in 

Bangladesh particularly the during monsoon season. However, the most severe floods 

have impacted large areas of the country and caused widespread disruption and loss of 

life and livelihood. Figure 4.2 gives an indication of the areas impacted during large 

events.  
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Figure 4.1: Flood prone areas of Bangladesh (Source: FAO, 2000). 
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Figure 4.2: Maximum flooded area in Bangladesh 1969–2009 (based on data from 

MoEF, 2009). 

 

 

Topographically, the study area is flat land. Low topography is useful for radar studies 

because it eliminates the need to deal with the topographic effects on backscattering. 

The study area was selected to include a range of land cover types including 

settlements, vegetation, crops and a large numbers of water bodies that persist outside 

the annual seasonal monsoon. The study area is large enough to assess the capability of 

high-resolution SAR data in delineating the sizes and shapes of a good range of water 

bodies. In summary, the study area was chosen for the following reasons: 

- A large number of water bodies are available with a range of sizes and shapes. 

- It is a region typical of the floodplains of Bangladesh. 

- It has low topography, which is useful for radar studies because it eliminates the 

effect of topographic features on backscattering. 

- It has a broad diversity of land use and land cover (for example, settlements, 

water bodies, vegetation, crops during dry and monsoon seasons). 

- There is ease of access for detailed ground-based mapping using dGPS. 

- Uniform alluvial soils. 

 

Besides the reasons listed above, several specific requirements were taken into account 

when selecting the test sites within the study area: 
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- A sufficient number of water bodies distributed within a small area in order to 

allow visits within a reasonable time. 

- Availability of water bodies located within varied land-cover and land-use 

surroundings. 

- Availability of water bodies of various sizes and shapes within a specific site. 

- Easy of access and within a reasonable distance from a city. 

- Ability to identify the water bodies in aerial imagery such as that available in 

Google Earth. 

 

4.3 Geographical Location of the Study Area 

 

The study area lies in the region of the eastern basin of the main rivers of Jamuna and 

Padma and their tributaries. It is located on the east and west banks of the regional 

Bangshi River and within three Upazilas (subdistricts), namely, Savar, Dhamrai and 

Singair. The three Upazilas are in the Dhaka district in the division of Dhaka 

(Banglapedia, 2011). The eastern part of the study area (eastern bank of the Bangshi) is 

within the administrative region of Savar Upazila. The western part of the study area 

(western bank) is located within two Upazilas: the north-western area is part of the 

Dhamrai Upazila, while the south-western area is part of the Singair Upazila (Figure 

4.3). 

 

In terms of administrative areas, the surveyed water bodies are located in various local 

regions within the study area: Choto-Ashulia, Demran, Tetulia, Panch Ghugudia, Genda 

and Bandi Mara. The study area covers approximately 204 km
2
 (17×12 km) and is 

located within the coordinates: NE corner 23°57'20"N – 90°17'45"E, NW corner 

23°57'12"N – 90°10'48"E, SE corner 23°47'57"N – 90°17'56"E and SW corner 

23°47'49N" – 90°11'0"E.  
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Figure 4.3: Location of the study area within Bangladesh. Note that it is located within 

Savar, Dhamrai and Singair Upazilas and lies in the Eastern and Western banks of 

Bangshai River. The water bodies in blue colour extracted from Radarsat-2 HH image 

density-sliced. Map of Bangladesh adapted from CIA, 2011. 

 

4.4 Climate 

 

Bangladesh has a tropical monsoon climate. Three distinct seasons may be recognized: 

a cool dry season (Winter), a pre-monsoon hot season (Summer) and a rainy monsoon 

season (Monsoon). The winter season is from November to February where the average 

temperatures vary from a minimum of 7–17°C in the north-eastern and north-western 

areas to 20–21°C in the coastal regions. The pre-monsoon hot season runs from March 

to May and has a temperature range from 27°C in the north-east to 30°C in the west 

central part of the country and may reach a maximum temperature of 40°C in some 

areas. Finally, the monsoon season is from June to October and has very high humidity 

with a temperature that ranges from 27°C in the south-eastern to 29°C in the north-
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western  regions ( see the climate map of Bangladesh in Figure 4.4 ) (Barry et al., 1998; 

BBS, 2006). 

 

 

Figure 4.4: Climate map of Bangladesh (Source: Rashid, 1991). 
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In the winter, the total rainfall comprises 2% to 4% of the total annual precipitation. 

During the pre-monsoon, when the hot season starts, the rainfall gradually increases and 

accounts for 10–25% of the total annual rainfall. During the rainy season the total 

annual rainfall increases by up to 70% in the eastern region of Bangladesh. In the south-

west it accounts for 80% and is over 85% in the north-west. In the west-central region 

there is an average of 60 rainy days. In contrast, this varies from 95 days in the south-

east to over 100 days in the north-east of the country. According to geographic 

distribution, the west-central region of Bangladesh accounts for 150 cm of the country‟s 

annual rainfall, while the north-east and the south-east account for more than 400 cm. 

The average monsoon annual rainfall of Bangladesh between June and September varies 

from 1429 to 4338 mm, which accounts for 80% of the total annual rainfall (Islam et al., 

2008). 

 

The climate of the study area is generally typical for north-central of Bangladesh. The 

fieldwork campaign and the acquisition of SAR products were undertaken during the 

dry season in January 2009 in order to identify and map each water body detected 

during interpretation and assessment of the SAR imagery. The dry season begins in 

mid-December in this part of Bangladesh and then advances towards the east and south. 

The dry winter season (November to February) has a temperature range from 5°C to a 

30°C. The temperature in the hottest season (April and May), as shown in Figure 4.5, 

exceeds 40°C.  
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Figure 4.5: Average temperature of the study area (SRDI, 1997, in Huda, 2004). 

 

The average rainfall of the study area varies during the year. It starts from less than 5 

mm during the dry season in December and January to reach more than 350 mm in July, 

then decreases until it is again less than 5 mm in December (Figure 4.6).  

 

 

Figure 4.6: Average mean monthly rainfall in millimetre of the study area (modified 

from SRDI, 1997, in Huda, 2004). 
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Wind may induce surface roughness on water bodies (CCRS, 2011). The wind speed in 

Bangladesh is generally lower in the dry winter season and higher in the hot season. The 

average wind speed in the north-central region where the study area is located is 

approximately 4 - 5 m/s (Khan et al., 2004) (Figure 4.7). Wind generally peaks in the 

daytime and tends to be at a lower speed in the evening. The SAR products studied were 

acquired during the winter season and in the evening when the wind speed is at its 

minimum. 

 

 

Figure 4.7: Average wind speed (m/s) in Bangladesh at surface level from January to 

December (adapted from Khan et al., 2004). 
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4.5 Floodplain and Drainage Network 

 

Floodplains in Bangladesh occupy 80 per cent of the land area (MoEF, 2009). The 

country, has a network of 230 rivers with a total length of about 24140 kilometres 

dominated by the Ganges, the Brahmaputra, the Meghna, the Padma, the Teesta, the 

Surma and the Karnaphuli (BBS, 2009; Garg et al., 2007). Run-off from higher levels 

forms natural drainage systems in most regions of the country (Huq, 2000). The 

drainage system of Bangladesh consists of four major networks: the Brahmaputra–

Jamuna river system, the Ganges–Padma river system, the Surma–Meghna river system 

and the Chittagong region river system (Figure 4.8). The drainage basins of the major 

rivers regularly experience high-magnitude floods (Islam & Sado, 2000). The annual 

discharge of the combined systems reaches 1,174 billion m
3
 (Khan, 1990; Rashid, 

1991).  

 

The elevation of the study area surface ranges between 2 and 4 m above sea level (Khan 

et al., 2004). The study area lies within the basin of the Brahmaputra–Jamuna and 

Padma rivers (see Section 4.3). Several regional rivers are distributed within this low-

lying area, such as the Bangshi, Dhaleshwari, and Buriganga (see Table 4.1 and Figure 

4.8). 
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Table 4.1: Regional Rivers and their lengths across areas of Bangladesh included Dhaka 

Division (the highlighted rivers are crossing the study area) (BBS, 1999). 

River 
Length 
(km) 

Area covered (km) 

Arial Khan 160 Faridpur (102) Barisal (58) 

Bangshi 238 Mymensingh (198) Dhaka (40) 

Betna-Kholpotua 191 Jessore (103) Khulna (88) 
Bhadra 193 Jessore (58) Khulna (135) 

Bhairab 250 Jessore, Khulna 

Bhogai-Kangsa 225 Mymensingh (225) 
Brahmaputra-Jamuna (Jamuna 207) 276 Rangpur (140) Pabna (136) 

Buriganga 27 Dhaka (27) 

Chitra 170 Kushtia (19) Jessore (151) 
Dakatia 207 Comilla (180) Noakhali (27) 

Dhaleshwari 160 Mymensingh, Dhaka 

Dhanu-Baulai-Ghorautra 235 Mymensingh (126) Sylhet (109) 

Donai-Charalkata-Jamuneshwari-
Karatoya 

450 Rangpur (193), Bogra (157), Pabna (100) 

Ganges-Padma (Ganges 258, Padma 

120) 

378 Rajshahi (145), Pabna (98), Dhaka and 

Faridpur (135) 
Gorai-Madhumati-Baleshwar 371 Kushtia (37), Faridpur (71), Jessore (92), 

Khulna (104), Barisal (67) 

Ghaghat 236 Rangpur (236) 
Karatoya-Atrai-Gur-Gumani-

Hurasagar 

597 Dinajpur (259), Rajshahi (258), Pabna (80) 

Karnafuli 180 Chittagong HT, Chittagong 

Kobadak 260 Jessore (80) Khulna (180) 
Kumar 162 Jessore, Faridpur 

Kushiyara 228 Sylhet (228) 

Little Feni-Dakatia 195 Noakhali (95) Comilla (100) 
Lower Meghna 160 from Chandpur to the Bay of Bengal 

Matamuhuri 287 Chittagong HT and Chittagong 

Mathabhanga 156 Rajshahi (16), Kushtia (140) 

Nabaganga 230 Kushtia (26) Jessore (204) 
Old Brahmaputra 276 Mymensingh (276) 

Punarbhaba 160 Dinajpur (80) Rajshahi (80) 

Rupsa-Pasur 141 Khulna (141) 
Sangu 173 Chittagong (80), Chittagong Hill Tracts (93) 

Surma-Meghna 670 Sylhet (290), Comilla (235), Barisal (145) 

Tista 115 Rangpur (115) 
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Figure 4.8: Main and regional rivers‟ map showing the location of the study area within 

a basin of rivers‟ network (Rashid, 1991; Wazed, 1991). 
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4.6 Soil 

 

The alternating seasonal wet and dry conditions are a key to soil formation. The soils of 

the study area are located in a low-lying floodplain consisting of alluvium deposited by 

the Brahmaputra–Jamuna river system. The topsoil is Non-calcareous Grey Floodplain 

Soils (Dewan et al., 2007; MoEF, 2009) (Figure 4.9). On this type of floodplain, the soil 

formation process is dominated by sediment deposition. Unlike the hill and uplifted 

terrace areas, the composition of the floodplain of the study area is 79% loam, 15% clay 

and 6% sand (FAO, 2011).  
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Figure 4.9: General soil map of Bangladesh (note the study area located within grey 

floodplain soils) (FAO/UNDP, 1986). 

 

4.7 Hydrology and Water Resources 

 

Bangladesh has eight distinct hydrological regions: north-east, north-central, north-west, 

south-east, south-central, south-west, eastern hills, and river and estuaries (Hossain, 

2003) (Figure 4.10). The study area is located within the north-central region. The main 
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sources of water in Bangladesh can be divided into two main categories: surface water 

and groundwater.  

 

Surface water in Bangladesh has different forms – transboundary flow of rivers, canals, 

streams and water bodies. During the monsoon (July–October) many floodplain areas 

become inundated from both local rainfall excess and huge transboundary flow of 

rivers. In addition to rivers, water is retained in natural or artificial reservoirs known as 

beels for use in the dry season. The average total volume of such standing water bodies 

is about 0.61 billion m
3 
(Ahmed & Roy, 2007). 

 

 

Figure 4.10: Hydrological regions of Bangladesh. Note that the location of the study 

area is within the NC region (Adapted from Hossain, 2003). 

 

4.7.1 Groundwater 

 

Groundwater storage reservoirs recharge from surface-water sources such as river-flow 

water, monsoon rainfall and floods, and standing water bodies (Huq, 2000). The 

unconfined aquifers found in most of Bangladesh have been formed from the 
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sedimentary alluvial and deltaic deposits of the three major rivers are mostly at depths 

varying from 0 to 20 m below the ground surface (Ahmed & Roy, 2003). 

 

During the dry season the consumption of groundwater increases for cultivation and rice 

production, which is irrigated artificially (Uchida & Ando, 2007; WFP, 2011). Irrigation 

from groundwater is conducted by mechanisms such as deep and shallow tubewells and 

by traditional groundwater devices such as hand tubewells, treadle pumps and dug wells 

(WFP, 2011). 

 

4.7.2 Floods in Bangladesh 

 

Floods in Bangladesh are of four types: rainfall flood, flash flood, river flood and flood 

due to cyclonic storm surges. In north-central Bangladesh, where the study area lies, 

rainfall floods are the dominant type. Many parts of the floodplain are inundated after 

heavy local rainfall. When water flows over the riverbanks, low-lying areas it may 

become a connected sheet of water (CEGIS, 2003). The population of Bangladeshis take 

simple and traditional measures to live with flood. Examples of these measures are 

building houses and other constructions on high mounds above the average flood level 

and building roads on embankments (Brammer, 1994, 1995). 

 

Floods in Bangladesh have an impact on people, crops and infrastructure and have 

several causes. These include a low floodplain, intense monsoon precipitation in the 

upstream country or in the mainland, drainage congestion and cyclonic storm surges 

snow glacier melt, El Nino Southern Oscillation (ENSO). (Tingsanchali & Karim, 2005; 

Mirza, 2003) (Figure 4.11). 
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Figure 4.11: Causes of floods in Bangladesh (Modified from Mirza, 2003). 

 

Therefore, Bangladesh is one of the countries most prone to extreme floods. It is the 

most vulnerable country in the world to tropical cyclones and the sixth most vulnerable 

country to floods (UNDP, 2004; MoEF, 2009). Two-thirds of Bangladesh area is less 

than 5 meters above sea level.  A quarter of the country is inundated in an average year. 

On average, Bangladesh has experienced at least one severe flood every couple of years 

that may affect more than 60 percent of the country and resulting in significant losses) 

people, crops, houses, and infrastructures (Dasgupta et al., 2011). Records shown that 

Bangladesh was affected by extreme floods in the last three decades (1980-2010) 

include floods of 1984, 1987, 1988, 1998, 2004, 2007 and 2009 where human loss and 

economic damage were enormous (MoEF, 2009). Table 4.2 shown impacts of the 

severe floods affected Bangladesh in the recent decades. 

 

 

 

 

 

 

 

 

 

 

 

 



             Chapter 4: Description of the Study Area 

 

 

84 

Table 4.2:  Bangladesh severe floods in the last three decades (MoEF, 2009). 

Year Impact 

1984 Inundated over 50,000 sq. km, estimated damage US$ 378 million 

1987 Inundated over 50,000 sq. km, estimated damage US$ 1 billion, 2,055 deaths 

1988 Inundated 61% of the country, estimated damage US$ 1.2 billion, more than 45 

million homeless, between 2,000-6,5000 deaths 

1998 Inundated nearly 1,000,000 sq.km, rendered 30 million people homeless, 

damaged 5000,000 homes, heavy loss of infrastructure, estimated damage US$ 

2.8 billion, 1,100 deaths 

2004 Inundated 38%, estimated damage US$ 6.6 billion, affected nearly 3.8 million 

people, deaths 700 

2007 Inundated 32,000 sq.km, over 85,000 houses destroyed and almost 1 million 

damaged, approximately 1.2 million acres of crops destroyed, estimated damage 

over US$ billion, 649 deaths 

2009 180 total deaths, 7153 people injured, 860200 family affected, 4825954 people 

affected, 609592 houses damaged, 318140 crops damaged. 

 

 

4.7.3 Water Bodies 

 

Bangladesh has a large number of water bodies with a range of sizes and shapes, either 

artificial or natural. The number of small water bodies in Bangladesh in 1989 was 

estimated by the BBS (1994) to total 1.95 million. The natural standing water bodies 

such as beels (lakes) are generally connected to rivers during the monsoon season (Huq, 

2000). Most of the small water bodies are manmade on the floodplains and result from 

the excavation of earth for building houses at elevations higher than the expected flood 

level (Huda et al., 2010).  

 

For every eight people in Bangladesh there is approximately one acre of water (Khan, 

2000). Water bodies range in size from 25–400 m
2
 (doba: ditch), 150–1000 m

2
 (pukur: 

perennial water source), >750 m
2
 (dighi: reservoir) and >1000 m

2
 (beel: saucer-shaped 

or an ox-bow lake) (Table 4.3). These small water bodies form an integral part of the 

rural economy in Bangladesh because they are used for a variety of functions, including 
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drinking water, bathing, washing, fisheries, aquaculture, irrigation, and cattle feeding 

(Khan, 2000). 

 

 

Table 4.3: Characteristics of various sizes of small water bodies (adapted from Huda, 

2004). 

Name Size (sq. metres) Characteristics 

Doba/Pagar (ditch) 25–400 
Manmade, retains water mainly in wet 

season. 

Pukur (pond) 150–1000 
Manmade or natural, retains water 

throughout the year. 

Dighi (reservoir) >750 
Manmade/natural retains water throughout 

the year. 

Beel >1000 

Natural, open inland water, saucer-shaped 

depression, generally retains water 

throughout the year. 
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Water bodies occur extensively in the study area, are of various sizes and shapes, and lie 

within a variety of land-cover/land-use locations (Figure 4.12). Generally, water bodies 

are located in an open area, surrounded by trees and adjacent to built-up areas. The 

depth of the surveyed water bodies ranges from 0.5 to 4 m. Water weeds often float on 

the water surface which may create a rough layer, that can diffuse the radar energy. 

 

 

 

Figure 4.12: Examples of typical water-body types of various sizes in rural Bangladesh. 
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Water bodies are important in everyday life in Bangladesh in a number of ways. They 

are used in fisheries, for irrigation, and in households (Figure 4.13). 

 

 

Figure 4.13: Importance of small bodies of water in everyday life in Bangladesh. A-Fish 

culture; B-Crop; C-Homestead purposes. 

 

4.8 Agriculture 

 

There are three growing periods for four main crops, where each type of crop needs 

particular seasonal and hydrological conditions. These periods differentiate the 

agricultural activities of Bangladesh: Kharif-1 (March–July), Kharif-2 (July–October) 

and Rabi (October–March) (Garg et al., 2007). The major crop during the monsoon 

season is deepwater rice, or floating rice (aman rice). During the Rabi (dry winter) 

growing period, specific types of crops are grown on land that has enough moist soil but 

drains quickly. Crops of the Rabi agricultural season are grown during the period 

between the end of the monsoon season in November and the end of March. The most 
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common Rabi (winter season) crops are rice, wheat, jute, mustard, maize, groundnut, 

sesame, potato, sugarcane and grass pea. 

 

Rice is the most widespread crop across cultivated areas in Bangladesh (Table 4.4). It is 

categorized into three types according to the season in which they are harvested. Aman 

is a class of rice harvested in December–January, boro is harvested during March–May 

and aush is harvested in July–August. Wheat is the second most important crop in 

Bangladesh after rice and is cultivated as a winter crop. Jute is the third most cultivated 

crop and is grown mainly in the low-lying areas of the Brahmaputra–Jamuna and Padma 

floodplains. The fourth important crop is mustard, which is also grown in the low-lying 

areas of Brahmaputra–Jamuna floodplains. Mustard crops and non-cereal crops are also 

cultivated in the Rabi season (FAO, 2011). 

 

The point that should be raised here is that the acquisition of SAR scenes were 

conducted in January during the dry season when many crops such as rice, wheat, jute, 

mustard and other winter crops are at a level of sufficient growth. Therefore, this type of 

land cover may appear to have a rough texture, as shown in the example in Figure 4.14. 

It should also be noted that many regions in the study area were undergoing irrigation at 

the time of the fieldwork campaign (Figure 4.15), such as rice field ploughing and new 

transplantation of rice fields and this may appear wet in the SAR imagery. This type of 

land-cover wetland should be taken into account during the SAR image interpretation.  

 

 

Figure 4.14: Crop fields during the fieldwork in January 2009. 
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Figure 4.15: Examples of two types of wetlands: (A) irrigated newly transplanted fields; 

(B) rice field ploughing. 

 

Table 4.4: Percentage of land area planted by crop in 2004–5 in Bangladesh 

(FAO/WFP, 2008). 

Crop Land area percentage 

Rice 79.4 

Vegetables >4.14 

Wheat 4.09 

Jute >2.86 

Pulses >2.80 

Potato >2.39 

Oilseeds >2.37 

Spices and condiments >2.21 

Fruits >1.36 

Sugarcane >1.15 

Tea >0.39 

 

 

Various types of trees are grown in the study area, often surrounding the water bodies 

(Figure 4.16). Examples include mango, bamboo, palm, guava, blackberry, mahogany, 

karai, eucalyptus and coconut. The average height of the trees varies from 10 to 20 m. 

Tall trees surrounding small water bodies may cause two types of confusion: first a high 

volume of backscattering due to canopy and trunk double-bounce reflection, which 

result in water appearing bright rather than dark in radar images; and second radar 

shadow, which appears dark, similar to water texture.  
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Figure 4.16: Some types of trees adjacent to water bodies. 

 

Aquatic weeds grow on the surfaces of a variety of water bodies. One of the most 

dominant aquatic weeds is water hyacinth (Figure 4.17). This type of weed is a free-

floating plant with its leaves above the water surface and its roots in the water. Hyacinth 

weeds are useful as food for fish and cattle and to give shelter to wildlife. The height of 

the plant and the length of its roots vary according to its type. Some types of hyacinth 

may grow to 45 cm with a root length of up to 90 cm (Reza, 2000). Water bodies 

covered partially with water weeds may need to be taken into account during SAR 

image analysis and interpretation in terms of backscattering and confusion between 

water weeds and dry land vegetation. 

 

 

Figure 4.17: Water hyacinth floating on a water body. 
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4.9 Built-up Areas 

 

The land use of the study area has geographically different categories. The eastern and 

south-eastern parts of the study area, especially Savar city, are extensively urbanized 

and highly populated. In contrast, the northern and eastern parts have low residential 

density and lesser built-up areas. 

 

The highly built-up areas include various urban built-up units, including settlements, 

industrial and commercial developments and road networks. Most buildings in this area 

are made of concrete, and some of their roofs are made of tin. In some parts of this area 

the urban built-up units are combined with water bodies. Rural villages are distributed 

over north-eastern and western parts of the study area, in which people carry out 

farming. The housing units are mixed: some are made of wood, while others are built of 

concrete with roofs made of wood or tin. Most houses in the rural areas are surrounded 

by trees. 

 

The road network of high-density built-up areas comprises main roads and minor roads, 

where most are made of asphalt. The rural roads connecting villages are narrow and 

made of asphalt, while roads connecting farms and village are mostly mud. Most of the 

roads have planted trees on both sides (Figure 4.18). Bridges are made of concrete and 

metal. 

 

Figure 4.18: Typical rural road made of asphalt, showing planted trees on both sides. 

 

Since radar energy interacts with the built-up areas differently from other land-cover 

types, special care has to be taken when interpreting SAR images. Built-up areas 
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according to radar remote-sensing principles usually appear bright in SAR imagery, 

because of corner reflections. Moreover, roofs made of tin may cause high backscatter 

when they are in a position facing the radar waves. Flat surfaces such as roads made of 

asphalt normally appear as dark areas in SAR imagery, since most of the incident radar 

energy reflects away from the SAR antenna. 

 

4.10 Synthesis 

 

This description of the study area emphasizes the importance of the chosen area for 

supporting the research objectives. It highlights the rationale for selection of the study 

area in terms of the fieldwork campaign and the acquisition of SAR satellite scenes. 

Understanding the climate characteristics of all seasons can help in making the right 

decision on when to carry out the fieldwork and the SAR image acquisition. In this way, 

the dry season was selected in order to identify standing water bodies. 

 

Land-cover and land-use types are significant parameters for SAR image analysis and 

interpretation. Most of the area is made up of cultivated fields and grassland, with 

sections of trees among built-up areas and along the sides of many roads. Wetlands 

mainly arise from the irrigation of newly transplanted fields. Settlements and built-up 

areas are concentrated in Savar city within the study area, while other parts have less 

built-up areas. A large number of small water bodies are distributed over the study area 

with varying shapes and sizes and can be found in open areas, surrounded by trees or 

near to buildings. The study area is typical of low lying alluvial floodplains in south 

Asia that had similar topography, soils, and land cover. 

 

Gathering information from the study area involved two main methods. First, the 

fieldwork campaign, which was based on two distinct approaches: gathering 

information about land cover/land use and identification of water bodies by using GPS 

equipment alongside understanding the water-body surrounding area. The second 

method involved programming the acquisition of the SAR imagery to coincide with the 

fieldwork. 
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Chapter Five: 

METHODOLOGY 

 

5.1 Introduction 

 

SAR data acquisition parameters and field data specifications require a number of 

decisions. Assessment of the high resolution SAR images for flood detection requires 

selecting a suitable study area (chapter three) which consists of different shapes and 

sizes of water bodies where should be permanent or at least exist long enough to allow 

ground survey and imaging of them by the SAR sensors. 

 

Appropriateness of acquisition mode selection was based on better coverage and higher 

resolution. However, dual and polarimetric acquisition modes were avoided due to their 

reduced resolution which are not suitable for this study.  Thus, stripmap (TerraSAR-X) 

and ultrafine (Radarsat-2) were chosen to cover the study area. A shallow incidence 

angle for SAR products acquisition was selected for mapping the water bodies as steep 

incidence angles which lead to stronger backscatter for open water thus reduce the 

contrast to land surfaces.  

 

The type of SAR data has a major influence on the selection of the processing methods. 

Since SAR imagery has a single band which is based on intensity of grey level formed 

from radar backscatter, texture is the main source of information used to study land 

cover and land use (Dekker, 2003) particularly water cover. However, texture is not the 

only source of image information: shape, size and relationship of image objects can also 

be obtained through the object-based analysis. Therefore, it has been decided to conduct 

both methods of texture and contextual analysis to achieve both benefits.  

 

Consequently, the research methods used in this study have been developed taking into 

account the availability and type of SAR products collected, suitability of the test sites 

and the remote sensing software available. A variety of approaches have been taken to 

achieve the aim and the research objectives listed in Chapter One. 
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5.1.1 Data collection methodology  

 

A data collection methodology was established for SAR image acquisition and field 

data collection. The major activities of data collection were the acquisition of SAR 

products using the Radarsat-2 and TerraSAR-X instruments. A number of SAR images 

were acquired during the dry and rainy seasons of the study area in HH and VV 

polarization.  

The gathering of ground data during the field campaign was performed using 

differential GPS (dGPS) equipment. The main aim of the survey was to map water 

bodies which are suitable for assessment and validation. Both SAR products and field 

data were obtained concurrently. 

 

5.1.2 Data Processing  

 

Data collected from SAR sensors and fieldwork were processed according to a data 

processing framework as shown in Figure 4.1. The pre-processing phase involved 

reprojection SAR products along with geometric correction using GCPs extracted from 

the dGPS data and then subset all images according to the size of the study area. The 

dGPS vector data were also reprojected and prepared for SAR geocorrection and 

randomly divided into training data and test data for classification processing.  

 

The textural analysis included density slice analysis for SAR images and evaluation 

texture measures. Following the identification of the appropriate texture measures, a 

supervised classification approach was then performed for flood map production. The 

contextual analysis was performed using object segmentation followed by contextual 

classification for the water bodies. 

 

5.1.3 Data Evaluation 

 

The data evaluation approach, focussed on assessing the accuracy of the SAR images 

compared with dGPS ground truth data and comparing the SAR products of the two 

SAR sensors (see Figure 5.1). The post classification analysis of each SAR image was 

performed using field test data for accuracy assessment of the produced maps of both 

sensors. An accuracy comparison between classified images of both polarizations (HH 
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and VV) was implemented for water delineation. The analysis of results of both 

Radarsat-2 and TerraSAR-X sensors were subjected to a comparison procedure in order 

to identify any differences in detecting the extent of flooding.  

 

Each phase of data input analysis involved a specific framework for data processing 

which will be explained and justified in the following sections.  

 

 

 

Figure 5.1: An overall workflow of the data processing methodology. 

 

 

5.2 Data Description 

 

Data for this study can be categorized under two headings: the SAR data and the dGPS 

data collected during the fieldwork along with methods of collecting field data. SAR 

images are the primary source of information in this study, whilst the dGPS data, which 

based on water body identification, is used as a benchmark for SAR product evaluation. 

In order to perform geometric correction, ground control points (GCPs) were extracted 

from the dGPS data.  
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5.2.1 SAR Data Description  

 

At the time this research began, Radarsat-2 and TerraSAR-X were the only 

commercially available high-resolution SAR products. Attempts were made to acquire a 

number of products of this type. However, the acquisition of multiple high-resolution 

SAR products is an expensive process. One SAR image may cost around £2700, and 

obtaining the required images was beyond the scope of the available research budget. 

Therefore, research proposals were prepared to obtain access to Canadian Space Agency 

Radarsat-2 and German Aerospace Centre (DLR) TerraSAR-X data. Upon approval for 

research purposes, a number of products from each of the sensors were then provided 

(Table 4.1). Two SAR products were acquired in different polarizations from each SAR 

sensor during the dry season in order to ensure that water bodies were not in a flooded 

condition, to achieve better detection rates, while the other two products were acquired 

during periods of flooding in order to identify flood extent. The parameters for the SAR 

products obtained are given in Table 5.1. 

 

Table 5.1: Parameters of SAR product acquisitions 
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5.2.2 Radarsat-2 Data  

 

Two Radarsat-2 products were obtained during the dry season in ultra-Fine beam mode. 

The products of a single polarization Horizontal-transmitted, Horizontal-received (HH) 

and Vertical-transmitted, Vertical-received (VV) were obtained on 6
th

 and 8
th

 January 

2009 respectively, with a ground range resolution of 3.4 m. Another ultrafine HH image 

was obtained on 21
st
 October 2009 (Table 5.1). The images were distributed by 

MacDonald, Dettwiler and Associates (MDA) via File Transfer Protocol (FileZilla 

software). An example of the Radarsat-2 product with HH polarization acquired for the 

study area is shown in Figure 5.2. 

 

 

Figure 5.2: Radarsat-2 product acquired with HH polarization for the study area before 

Geocorrection. 

 

The ultrafine resolution products cover a limited ground swath with nominal coverage 

of 20x20 km within the incidence angle range of 20° to 49°. Images were delivered in 

Geographic Tagged Image File Format (GeoTIFF), with the path image of the SAR 

Georeferenced Fine (SGF) with a standard pixel spacing, where the processing aligns 
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the scene parallel to the satellite track. The SGF images generated by MDA have 

standard ground coordinate pixel dimensions and a descending orbit (MDA, 2009).  

 

5.2.3 TerraSAR-X Data 

 

Images from TerraSAR-X were acquired with two stripmap HH polarization on 20
th

 

January and 11
th

 October 2009 with a 3.3 m ground resolution. A further product of 

each stripmap VV and spotlight HH polarization was acquired (see Table 5.1). The 

stripmap products have a ground swath of 30 km (width) by 50 km (length) within the 

full performance incidence angle range of 20° to 45°. The spotlight HH product was 

acquired on 7
th

 April 2009 with 1.5 m ground range resolution. TerraSAR-X products 

were generated by the DLR as Multi-look Ground-range Detected (MGD) products with 

Spatially Enhanced (SE) processing. The SAR products were ordered and obtained 

using the EOWB software on the DLR website. 

 

5.2.4 Field Data Description and Organization 

 

The aim of the fieldwork was to delineate a sufficient number of suitable water bodies 

to allow assessment of the accuracy of the SAR products. The field methodology was 

developed in the context of the research objectives and focused on mapping an 

appropriate number and sizes of water bodies. Secondary goals of the fieldwork were to 

determine the nature of land cover in the study area and to enable discussions with local 

people about the water bodies and flood impacts.  

 

In this study, field data was collected at the same time as the SAR images were 

acquired. In order to delineate suitable water bodies in the study area covered by the 

SAR satellite sensors, the entire area was inspected either by driving or walking. Most 

water bodies within the study area are owned by local people who request clarification 

about the aims of the visit in order for them to allow the survey. This task proved 

difficult, requiring the assistance of an interpreter.  

 

Surveying was undertaken using a dGPS in Real-Time Kinematic mode, which require 

a clear sky and may not work properly when surveying among dense trees. However, to 

overcome this problem and to avoid access limitation when walking along the edges of 
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some water bodies, a small local boat was used to carry the dGPS-Rover equipment in 

some cases (Figure 5.3). 

 

 

Figure 5.3: Using a small local boat carrying dGPS-Rover equipment to avoid access 

limitation and steep areas. 

 

5.2.4.1 GPS Equipment and Data Collection 

 

The main equipment used during the fieldwork was a dGPS Magellan ProMark3-RTK. 

Ancillary equipments were clinometers for measuring the heights of trees and buildings 

surrounding the water body, and a measuring tape for measuring the size of the water 

body. In order to obtain sufficient information about each water body, a digital camera 

was used to capture photos of each water body and its surrounding area. Data sheets 

were used to collect the information. 

 

The Magellan ProMark3-RTK positioning system has the capability to perform real-

time survey with centimetre accuracy. One of the receivers was used as base station and 

the other as a rover (Figure 5.4). The ProMark3-RTK, using a GPS+SBAS RTK 

algorithm, ensures quick initialization with single frequency receivers and takes full 

advantage of maximum satellite coverage from the dual constellation. RTK 

implementation in ProMark3-RTK relies on the use of a base/rover system with its 

licence-free radio data link. The base station broadcasts corrections through a radio data 

link. Magellan FAST Survey software was used to perform the survey. 
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Figure 5.4: ProMark3-RTK dGPS equipment - Base station (A) and Rover (B). 

 

5.2.4.2 ProMark3-RTK Base/Rover Configuration 

 

The ProMark3 equipment required setting up and configuring as follows. First, the base 

was set up with the radio at a site that offers the best possible GPS reception conditions 

(i.e. where the antenna has a clear view of the sky in all directions) (Figure 5.5). The 

survey processing was then started by launching the “FAST Survey” software, included 

in the ProMark3 equipment. Each water body was acquired by creating a new job in 

“FAST Survey”. 
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Figure 5.5: Setting up the ProMark3 equipment (base and rover) during fieldwork in 

Bangladesh. 

 

 

5.2.4.3 Water Body Information and Field Visits 

 

Ground data was used both for geometric correction and for accuracy assessment of the 

classified images. The ground data was collected during a field visit to the study area 

within Bangladesh which is located between latitude 23°57'20" and 23°47'57"N and 

longitude 90°11'00" and 90°17'56"E  (see Figure 5.6). 
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Figure 5.6: Study area extracted from Radarsat-2 HH image showing water bodies 

extracted from density slice analysis (Bangladesh map adapted from UNHCR, 2004). 

 

A fieldwork campaign was carried out from 12
th

 January to 4
th
 February 2009 in the 

study area. The fieldwork timetable is shown in Table 5.2. Within the study area, a 

number of water bodies occur in different sizes and shapes. During field visit period 69 

water bodies were delineated using dGPS equipment. Types and numbers of water 

bodies surveyed are shown in Table 5.3. Sampling methodology and field data 

preparation are outlined in section 6.2.1. 
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Table 5.2: Fieldwork timetable (from 13 January to 4 February 2009). 

Test site Number 

of WBs 

Date Duration/days Comments 

- - 12 Jan 1 Arrival in Bangladesh 

All test sites - 13–15 Jan 3 Setup dGPS + sites visit 

All test sites 69 16–29 Jan 14 Survey WBs 

selective 

sites 

All 30 Jan – 3 

Feb 

5 Revisit test sites +corrections + 

data organization - - 4 Feb 1 Departure from Bangladesh 

Total 69 - 24 - 

 

Table 5.3: Overview of water body (WB) numbers and sizes surveyed during fieldwork 

in Bangladesh. 

Type Size Number of 

WBs 

Doba (ditch) very small 14 

Pukur (pond) small 45 

Dighi (reservoir) medium 8 

Beel (small lake) large 2 

Total 69 

 

 

The focus of the fieldwork methodology was on:  

 delineating the boundary of each water body by kinematic dGPS equipment, and 

 collecting data about each water body in terms of the following aspects:  

o Photos from different angles by digital camera,  

o Size and shape by measuring tape,  

o The area percentage covered by water weeds, and  

o Surrounding features (i.e. trees, constructions and buildings) by 

measuring their distance from the boundary of the water body and their 

heights by using a clinometer. 
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A follow-up water body data sheet prepared for the fieldwork campaign can be seen in 

Appendix 5.1. An example of a water body captured by digital camera during fieldwork 

is shown in Figure 5.7. 

 

 

Figure 5.7: A water body (scale: 14mx24m) photographed during fieldwork. 

 

Fieldwork is essential to verify satellite data and to validate the ground truth. A 

predesigned field survey methodology for mapping water bodies was prepared before 

conducting the field visit. The collected field data of the water bodies from the test site 

ranged in size between 48 m
2
 to 12,540 m

2
. The focus of the fieldwork methodology 

was on the different shapes and sizes of water body selected, the percentage covered by 

water weeds and the surrounding features of each water body. 

 

5.2.4.4 Surveying Water Bodies  

 

The kinematic GPS was used to delineate the boundaries of each water body selected as 

samples for this study. To achieve this, the procedure involved walking along the 

boundary of each water body with the Rover to record the boundary of the water body at 

one metre intervals. For checking purposes, some data collected by ProMark3-RTK was 

converted to KML format and viewed in Google Earth in order to match its location. 

 

5.3 Remote Sensing and GIS Software Used 

 

Various software were used for data processing. Fieldwork data collected by GPS was 

processed in ArcGIS 9.2 software, whilst the SAR images were processed in three 

remote sensing packages (ERDAS Imagine 9.3, ENVI 4.7 and Definiens Professional 

5.0). 
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5.3.1 ArcGIS  

 

ArcGIS 9 is a set of tools for geographic analysis, data editing, data management, 

visualization and geoprocessing. ArcGIS 9 has three applications: ArcMap for map 

production and analysis, ArcCatalog for managing data and ArcToolbox for data 

conversion and analysis. In this study, mapping, visualization and editing tasks were 

conducted on the fieldwork data using ArcMap 9.2, while data management was 

performed through ArcCatalog 9.2. All GPS data was downloaded from the ProMark3-

RTK equipment to ArcGIS 9.2 in shapefile format and then transformed from polyline 

to polygons.  

 

5.3.2 ERDAS Imagine  

 

Earth Resource Data Analysis System (ERDAS) Imagine software has tools for image 

mapping, visualization, enhancement, geocorrection and reprojection, including remote 

sensing analysis and spatial modelling. Imagine 9.3 has two types of data format access 

– direct access and import and export – for many raster data formats, including 

Radarsat-2 and TerraSAR-X products used in this study. For this study, pre-processing 

SAR data was conducted in Imagine 9.3 with basic image manipulation tools, 

reprojection and geocorrection processing.  

 

5.3.3 ENVI  

 

Another software used in processing the data was the Environment for Visualization 

Images (ENVI) software. This is an Interactive Data Language (IDL)-based image 

processing package that enables users to access and work with images in multiple 

formats and sources. ENVI 4.7 was used for texture analysis with texture filters of 

occurrence and co-occurrence along with unsupervised and supervised classifiers. 

 

5.3.4 Definiens Professional (eCognition software) 

 

The image classification approach in Definiens involves the use of an object-oriented 

technique through a segmentation step rather than the classification of single pixels. In 



                   Chapter 5: Methodology 

 

 

106 

this study, the contextual classification phase was performed using Definiens 5.0 

software (see section 5.5.3). 

 

5.4 Data Preparation 

 

The methodology of data preparation involved both SAR products and field data. SAR 

data pre-processing was performed using Erdas and Envi software while field dGPS 

data was processed within ArcGIS environment. A general flow chart of the data 

preparation methodology can be seen in Figure 5.8.  

 

 

Figure 5.8: Methodology workflow of data preparation. 

 

5.4.1 Data Pre-Processing 

 

Data preparation was undertaken on the field data and SAR products acquired for the 

study area. The dGPS data was processed using ArcGIS software. The main pre-

processing procedure for the SAR data included georeferencing, resampling, and 

geometric correction by extracting GCPs from the fieldwork data of dGPS. Several 

filters have been proposed in the literature to reduce speckle noise in SAR images (i.e. 

Mean, Median, Lee, Lee Sigma, Gamma-map, Forest, Local region). Speckle in 

RADAR imagery decreases the capability of identifying fine details within the image 

(Matgen et al., 2007). A number of the above filters were tested on SAR images to 

evaluate effectiveness in improving visual appearance. Analysis of the results reveals 

that the original images are richer in detail regarding water bodies and more useful for 
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visual interpretation. Accordingly, no speckle removal filters were applied during the 

pre-processing data phase. 

 

Pre-processing techniques were applied to the raw data to generate a reliable image 

database. Geometric correction required the preparation of a map reference and the 

transformation of images to a specific map projection system. Satellite data may have 

different distortions and geometric errors. Thus, an understanding of the sensor 

geometric distortions of all satellite data in this study was required (Sandholt et al., 

2001). 

 

5.4.1.1 Georeferencing and Resampling 

 

Image rectification and georeference transformation were applied to process the SAR 

products within ERDAS Imagine software. Images from the Radarsat-2 sensor were two 

ultrafine images in HH polarization and two ultrafine images in VV polarization. The 

TerraSAR-X images were two stripmap images in HH polarization, two stripmap 

images in VV polarization and one spotlight image in HH polarization. 

 

SAR data were loaded into ERDAS Imagine 9.3 for data preparation and reprojection to 

Universal Transverse Mercator (UTM). The UTM was selected because of its simple x,y 

coordinates to image line, sample conversion (Logan et al., 1996). After setting the 

reprojection parameters within the ERDAS software, transformation was performed for 

resampling the SAR images. 

 

5.4.1.2 Geocorrection by dGPS Ground Control Points  

 

SAR products have some distortions due to satellite instability and the earth‟s rotation. 

This distortion requires geometric correction in order to increase the accuracy of the 

thematic maps generated from SAR images. A first-order polynomial transformation 

was therefore used to correct this SAR image distortion. A polynomial model is a 

traditional method for rectification particularly for flat terrain (Huang et al., 2004; 

Mather, 2004). Due to the lack of a reference map, GCPs were extracted from fieldwork 

dGPS data to be used as reference data for geocorrection processing. ERDAS Imagine 

9.3 was chosen for rectification of all SAR products. Geometric correction included the 
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use of a polynomial model before establishing a set of GCPs by extracting the 

geographic position of each GCP from the fieldwork dGPS data. When a satisfactory 

number of GCPs have been chosen, total root mean square (RMS) errors were 

calculated, and resampling then had to be performed. An example of a GCP extracted 

from dGPS data on a water body as reference and from SAR-input data is shown in 

Figure 5.9. 

 

 

Figure 5.9: An example of a GCP extracted from a water body for both dGPS-reference 

and SAR-input data. 

 

 

5.4.1.3 Geocorrection via Google Earth  

 

The SAR data used for water body mapping was geocorrected based on the dGPS data. 

Google Earth imagery was used to identify and evaluate the apparent accuracy of the 

dGPS data for SAR image geocorrection by overlaying the imagery with the data 

derived in the field using the dGPS. A number of GCPs were extracted from Google 

Earth by selecting a specific geographic position that is visually recognizable in both 

Google Earth and the SAR image (i.e. a corner of a building).  The first is treated as 

input data and the second as reference data within the ERDAS 9.3-GCP tool. The 

Google Earth geocorrection procedure and results are discussed in section 6.2.5. 

 

 

 

 

 

 

  

Input  GCP-SAR data Reference  GCP-dGPS 

data 
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5.4.2 Textural Analysis 

 

Texture refers to the spatial distribution and variation of grey value in an image. 

Textural analysis is based on statistical methods, for which there are two approaches. 

One is structure analysis, which is based on texture distribution; the other is statistical 

analysis, which is the analysis of texture according to statistical features. In this study, 

statistical analysis has been applied (Li and Shenghui, 2003). The ability of texture 

analysis to distinguish water from other types of feature had to be examined, and so 

each texture measure was studied to determine to what extent water can be identified 

clearly. In other words, all texture measures were calculated to observe which works 

best. One method is Grey-level Co-occurrence Matrices (GLCM), which is a second-

order texture measure because it considers the calculation of any two pixels with an 

interval in any direction (Li and Shenghui, 2003). 

 

Several texture filters can be computed from the GLCM (Haralick et al., 1973) based on 

occurrence measures or co-occurrence measures, which can be implemented in ENVI. 

Eight texture filters based on co-occurrence measures have here been applied: mean, 

variance, homogeneity, contrast, dissimilarity, entropy, second moment and correlation. 

Occurrence has five measures: data range, mean, variance, entropy and skewness. 

Texture calculations for occurrence measures use the number of occurrences of each 

grey value within a specific processing window. Various window sizes were examined 

for this study in order to determine the best window size for distinguishing flood extent 

from other land features. 

 

The co-occurrence measures calculate texture values by using a grey-tone spatial 

dependence matrix. The co-occurrence matrix shows the number of occurrences of the 

relationship between two specific neighbouring pixels. Co-occurrence is defined in four 

directions, 0°, 45°, 90° and 135°, for directional invariance in the calculation of the 

texture measure. The principle of shifting windows is used to create the co-occurrence 

matrix. The following example of matrices with a 3×3 window size and shift values of 

X=1, Y=0 (directions) shows how the co-occurrence texture filters measure the co-

occurrence value. It demonstrates how the pixels in the 3×3 base window and the pixels 

in a 3×3 window shifted by one pixel are used to create the co-occurrence matrix 

(Figure 5.10). 
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Figure 5.10: Co-occurrence matrix (Haralick et al., 1973). 

 

In this study, the selection of appropriate texture measures is based on the investigation 

of all texture measures available in ENVI 4.7. First, each texture measure was 

statistically examined using reflectance profile measurements and a density slice 

technique, and then visually compared with the original image. According to the results 

of the analysis, the best texture measures were then selected. 

 

5.4.2.1 Density Slicing 

 

Density slicing is a digital interpretation method that can be used for individual 

brightness bands in a SAR image. Density slicing is carried out by dividing the range of 

digital numbers (DN) of the grey levels in a SAR image into intervals, then assigning 

each interval to a specific colour (Campbell, 2002). The ENVI software offers functions 

for density slice analysis. The density slice technique was applied here for water 

classification in the SAR images. The process involves assigning a colour to the water 

class data range and masking the remaining data range with another colour. Thus, 

results of the threshold of the water bodies are shown in one colour in order to improve 

analysis. 
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5.5 Water body mapping 

 

Image classification is a process of classifying each individual pixel based on all 

existing information using the grey values and spatial information of an image. In this 

study, two common methods were used for classification: unsupervised and supervised 

(Lillesand et al., 2004). The unsupervised classification technique is an automatic 

process based on the numerical quantities of the input data and requires little user input 

apart from selection of an appropriate algorithm. It separates data into groups with 

clustering then classifies data into categories (classes). The user then has to make 

decisions on assigning a name to each class of data. During supervised classification, on 

the other hand, the user trains the image processing software by using training samples 

of known identity extracted from specified locations in the image to classify pixels of 

unknown identity. Figure 5.11 illustrates the general methodology flowchart for 

mapping flood. 

 

 

Figure 5.11: General methodology flowchart for mapping flood. 
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5.5.1 Unsupervised classification  

 

The unsupervised classification methods were applied and tested in terms of their 

applicability for mapping water bodies (see section 7.3.1). In this type of classification 

no extensive prior knowledge of the area is required. The unsupervised classifiers 

examine the unknown pixels in an image and aggregate pixels with the same or similar 

values into a number of classes. Unsupervised classification involves two common 

techniques: K-Means and the Interactive Self Organization Data Analysis Technique 

(ISODATA). The K-Means unsupervised classifier is a process of analysis and relocates 

clusters in the data, by an iterative process until a sufficient level of spectral separability 

is achieved. The objective of the ISODATA is to calculate class means equally 

distributed within the data then cluster the remaining pixels in an iterative procedure 

using a minimum distance technique. In ISODATA, an image is segmented into 

unknown classes then the interpreter labels those classes, resulting in a classified image. 

Thus, the output of the unsupervised classification process is the identification of 

separable spectral classes. In order to associate output classes with land cover types, 

knowledge of the area along with the ground truth data is required. 

 

5.5.2 Supervised classification  

 

In order to perform supervised classification, samples of a known identity were selected 

to classify pixels of unknown identity, where samples of known identity lie on training 

sites. Then, statistical evaluation of the training samples was achieved using error 

matrix. A set of training data collected from fieldwork on water bodies was used to train 

the computer for the water class. The training data for the water body class were 

converted from shapefile to region of interest (ROI) in ENVI, while training samples for 

other classes were extracted from the texture images as ROI samples. Four mean classes 

were identified: water body, wet area, vegetation and built-up area/trees.  

 

The process of supervised classification involves three main steps: training the system 

for land cover classes, undertaking classification and obtaining the output of the 

classified image. The process of training the system involves selecting areas as closed 

polygons in image that represent each unique class. To perform supervised 

classification on the SAR images, samples of known regions were selected to classify 
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pixels of unknown identity to be used as representative training data for each land cover 

class. Factors affecting classification performance include the use of a sufficient number 

of training samples and how well distributed these are in relation to the target class 

distribution. The second step in supervised classification involves undertaking the 

classification.  The third stage comprises presenting the results of classification for 

images from both sensors, discussed in the following sections. The main purpose of 

image classification in this study is to distinguish water class from other land cover 

types rather than to classify different types of land cover features. 

 

5.5.2.1 Maximum likelihood 

 

The supervised classification algorithm used in this thesis is the maximum likelihood 

(ML) classifier, one of the most popular methods of classification (Bailly et al., 2007; 

Jensen, 2005; Lillesand et al., 2004; Richard, 1999; Weng, 2002). The ML classifier 

assigns each pixel to the class with the highest probability. This classification process 

involves calculating the discriminant functions for each pixel in the image (Figure 5.12) 

(Richards, 1999). 

 

                      

 

 

           
     

   

 

            

Figure 5.12: Discriminant functions calculated for each pixel 

where:  

i = class 

x = n-dimensional data (where n is the number of bands) 

p(  ) = probability that class    occurs in the image and is assumed the same for all 

classes 

     
  = determinant of the covariance matrix of the data in class    

     
  = inverse matrix 

   = mean vector. 
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5.5.3 Object-Oriented Image Processing  

 

Object-based image processing has two approaches: segmentation and classification. 

Object-based image classification is not only based on spectral statistics but also on 

shape information and relationships to neighbouring objects. The classification of image 

objects is performed after segmentation. Definiens Professional 5.0 has tools that 

involve object-based processing. Classification within this software depends on a 

classification hierarchy file. The class hierarchy includes rules of classification for the 

image.  

 

The contextual classification does not classify single pixels (i.e. supervised 

classification), but rather image objects or segments. The supervised classification 

depends on the spectral reflectance of pixels, while the contextual classification with its 

knowledge base includes other attributes (i.e. shape, texture, relation to neighbouring 

objects) additional to the spectral information provided in an image. The contextual 

classification approach first involves image data segmentation, which segments the 

image into a network of homogeneous image objects. The second stage of contextual 

classification is object-oriented, whereby land cover classes are related to the segmented 

image objects.  

 

Contextual classification offers some advantages over traditional classification 

(eCognition User Guide, 2004): 

Image objects contain additional information for classification, such as shape, 

texture and the relational network of information. 

The segmentation process can separate adjacent objects that are textured or have 

noise. 

Segmentation can make classification work significantly faster, because it 

reduces the total number of elements needed to be handled for classification.  

Extracting homogeneous regions (segmentation) and then classifying them 

reduces salt-and-pepper noise in the classification results. 

 

Definiens Professional software was used for contextual classification of the water 

bodies and other land cover types within the study area. The schematic diagram in 

Figure 5.13 shows the methodology flow chart of the contextual classification. 
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Figure 5.13: Methodology flow chart of the contextual classification used for 

segmentation and object-oriented classification. 

 

 

5.6 Remote Sensing Data Accuracy Assessment  

 

Accuracy assessment is an important factor in analysing SAR images (Banko, 1998). It 

is the identification and measurement of map error by comparing sites on a map against 

accurate reference data (Congalton, 2009). In other words, accuracy assessment is 

performed to assess map errors in order to identify the quality of remotely sensed 

information. Possible sources of error are shown in Figure 3.13.  

 

5.6.1 Sampling Design for Mapping Accuracy Assessment 

 

The thematic accuracy verification procedure of the classified maps produced in this 

study will be as follows: 

 Identify the data to be verified and select the thematic criteria; 

 Identify the number of sample regions to be evaluated; 

 Use suitable sampling protocol and select samples; 

 Conduct sampling procedure. 
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The design criteria (Stehman, 2009) taken into account when selecting the sampling 

design of this study includes using spatially well distributed samples, performing and 

analysing sampling design correctly, obtaining different size samples, and determining 

variability of sampling accuracy estimate to be small. 

 

The (methodology) approach performed for accuracy assessment consists of three main 

components: response design, sample design, and analysis design (Stehman and 

Czaplewski, 1998). 

 

5.6.1.1 Response Design  

 

Response design deals with the protocols used to identify the reference data and to 

determine the agreement when comparing the map labels to reference labels (GOFC-

GOLD, 2010). In other words, it identifies the required rules for assigning each sample 

unit to a single land-cover class (Powell et al., 2004). The response design outlines the 

criteria used to validate the classified images obtained from Radarsat-2 and TerraSAR-

X SAR sensors based on the land cover classes established, (see Figure 7.11) namely 

water, wetland, grassland, and builtup area/trees. A class description for reference data 

evaluation protocol is shown in Table 5.4. The total land area is approximately 204 km
2
 

is illustrated in Figure 4.3.The most important aspect in response design is to use 

reference data to allow accuracy assessment focusing on water bodies classification 

since this is one of the study objectives. The other land classes‟ precision is also 

important since the water bodies are distributed among them and therefore distinct 

discrimination between each class is needed.  

 

Source of error can be reduced using appropriate protocols for validation and based on 

more precise data (Radoux et al., 2006). This protocol outlines two types of reference 

data used: 1) reference samples represent water class obtained from the dGPS; and 2) 

reference samples represent other classes mentioned above extracted from SAR 

imagery.  

 

The reference data used for verifying the SAR image derived water class were obtained 

from field data collected using dGPS equipment. The number of water bodies or 
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(polygons) delineated and used as reference data was 25 in a total of 2950 pixels (see 

section 6.2.1). The dGPS equipment used is the Magellan ProMark3-RTK which has the 

ability to survey with centimetre accuracy (see section 5.2.4.1). The ground field visits 

also provided excellent knowledge regarding the nature of the study area (section 5.2.4) 

by collecting data by other methods such as photographing water bodies and the 

surrounding areas and gathering land cover type/land use information by using data 

sheets. 

 

The validation samples of the land cover classes mentioned above were derived from 

the SAR imagery based largely on the several sources of information:  

- Familiarity with the study area gained from the fieldwork campaign and 

communication with local people;  

- The visual interpretation of the high resolution SAR images acquired from 

Radarsat-2 and TerraSAR-X;  

- The visual interpretation of the very high resolution (1 m) TerraSAR-X spotlight 

image acquired where it covered most of the study area and contains details 

about land cover and land use;  

-  The visual interpretation of the high resolution (0.61 m) QuickBird-Google 

Earth imagery captured on January 2009 during the same month of SAR data 

acquisition.  

 

The procedure used to collect reference data is based on the delineation of a block of 

pixels or polygons where all pixels in the polygon are used for the verification. All 

polygon samples related to each category or land cover type were grouped into a single 

layer (shapefile) and labelled. Each reference label is paired with the classified image 

class concerned in order to be used for the error matrix processing.  

 

In order to ensure that samples extracted have sufficient separation since boundaries 

between classes are ambiguous (Powell et al., 2004), they were evaluated using 

Jeffries–Matusita separability measure to find out how significant the classes are 

spectrally separated. Values greater than 1.9 indicate that the ROI pairs have good 

separation, while values of less than 1indicate very low separability (for more details 

see section 7.3.2.1).  
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Table 5.4: Class description for reference data evaluation protocol 

Class Criteria 

Water Open water surfaces such as ponds, lakes, and rivers 

Wetland very shallow water (i.e. irrigated fields) 

Grassland Short vegetation (i.e. grass and crop fields) 

Builtup area/Trees Settlements, industrial areas, and tall trees 

 

 

5.6.1.2 Sample Design 

 

The sampling design refers to the protocol followed to select the reference sample units 

(see section 3.9.1). The procedure focused on the selection of the best sample size for 

each land category. The study area is relatively small (17km×12 km) with various land 

cover/land use types distributed over the study area in different shapes and sizes. 

Therefore, the appropriate sampling strategy for this study area is random sampling. 

Verification polygon samples were selected randomly from each land cover type.  

Polygons are used where reference information is difficult to obtain (Radoux et al., 

2006). 

The classification of water class was validated by using the water-body dGPS dataset.  

The dGPS dataset was divided randomly into two layers independently, one was used 

for validation while the other was assigned for training. The validation data was used 

for assessing the maps produced from both the pixel-based and object-based 

classifications.  

 

For consistency, the selection of the polygon samples was based on several rules in 

order to reduce bias that may be caused during sample extraction from each land cover 

type in SAR imagery: 

- An in-depth visual interpretation is performed for the locations obtained from 

the SAR imagery using both the familiarity of the landscapes of the study area 

and the knowledge of the different types of the SAR backscatter;  

- Cross-checking is implemented with the information acquired from the field 

visit; 

- Cross-checking for the same locations is performed in QuickBird imagery; 



                   Chapter 5: Methodology 

 

 

119 

- Select sample areas related to a land type that are most observable and 

distinguishable;   

- Avoid ambiguous areas such as boundaries between different land classes.  

 

The random sampling strategy adopted uses sufficient sample size for each land class 

that will allow for the assessment of the map accuracy. Table 5.5 listed the number of 

polygons and size of pixels used for each class. 

 

Table 5.5: Specifications of validation data used 

Class name Number of polygons Size in pixels 

Water 25 2950 

Wetland 20 1526 

Grassland 20 3750 

Builtup/Trees 20 2354 

 

 

5.6.1.3 Analysis Design 

 

The analysis procedure for assessing map accuracy was implemented automatically 

using post classification evaluation in the ENVI software package.  Results were 

presented in an error matrix showing user accuracy, producer accuracy, overall 

accuracy, and Kappa coefficient of the classified maps (for more details about the error 

matrix see section 3.9.2).  

 

Precision of estimates for the SAR classified imagery is an essential issue. Therefore 

efforts should be focused on minimizing any bias that may occur in any phase of the 

sampling design strategy (i.e. sampling, or size and distribution of reference data). This 

can be done by repeating the sampling procedure with different sample sizes and 

locations and also performing qualitative assessment and manual verification using 

information discussed in section 7.3.2.1. 

 

The methodology (approach) used to develop sampling design for mapping accuracy 

assessment was implemented using field- and image-based validation methods. The 

verification quality of the produced maps is based largely on the dGPS water bodies 



                   Chapter 5: Methodology 

 

 

120 

data obtained from the field visits and also on the interpretation of very high resolution 

SAR imagery (3m and 1m resolution) and QuickBird-Google Earth imagery. Moreover, 

the study area field visits strengthen the knowledge of the land cover/land use types and 

nature. All these factors support the methodology of the accuracy assessment and 

consequently lead to high quality validation data.  

 

5.7 Conclusion 

 

Data processing and evaluation comprised four steps. The first step focused on data 

preparation and pre-processing for all SAR products and dGPS fieldwork data. The 

second step involved data processing, which included texture analysis. The third step 

dealt with contextual analysis, while in the fourth step the accuracy of each classified 

image was assessed and SAR sensor images are compared.  

The results of data pre-processing and data processing along with data evaluation are 

discussed in the following chapters.

  



           Chapter Six: Data Preparation 

 

 

 121 

Chapter Six: 

DATA PREPARATION 

 

6.1 Introduction 

 

This chapter discusses the preparation of data used in this study, since the objective at 

this stage is to process SAR data and field data in order to prepare them for water body 

mapping and consequently validate the optimum image processing and spatial analysis 

methods for separating water bodies from other ground features. A number of 

techniques were used for the preparation of data from SAR products and dGPS data 

from the field. All data was reprojected, and SAR products were processed for 

geometric correction. A methodology for delineating flooded from non-flooded areas 

was developed based on radar backscatter texture analysis. Several texture filters were 

based on co-occurrence, and occurrence measures were compared and evaluated for 

image texture analysis of water body scenes in order to improve image classification 

accuracy. A number of software packages were used for the data processing. Field data 

was processed within ArcGIS software, while SAR data was processed in ERDAS 

Imagine and ENVI software. A comparison of geocorrection and texture analysis results 

was performed between images from the two sensors. The methodology of the data 

preparation is illustrated in Figure 6.1. A follow-up table prepared for SAR data 

processing is shown in Appendix 6.1. 

 

 

Figure 6.1: Methodology flow chart of data preparation. 
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6.2 Data Pre-Processing 

 

6.2.1 Fieldwork Data  

 

The general aim of the fieldwork survey was to delineate a sufficient number of suitable 

water bodies with dGPS to establish ground truth, and to assess the accuracy of the SAR 

images. In Chapter Five, the methodology of the fieldwork campaign was discussed, 

including the methods used for gathering the data on each water body such as 

delineating each water body‟s boundaries, measuring its size, taking photographs of it 

and identifying its surrounding features.  

 

The data collected during fieldwork with dGPS-ProMark3-RTK for the study area was 

downloaded to a laptop, and a copy was saved in external data storage as a backup. 

Table 6.1 lists the number of water bodies collected during fieldwork according to type. 

In brackets in the table are local names in Bangladesh that often indicate each body 

type‟s size and how it is used. For example, dopa: human-made pit or ditch (approx. 

25–400 m
2
), and most are located close to homesteads. Pukur: larger than dopa, at 150–

1000 m
2
. Dighi: a small tank or reservoir, of over 750 m

2
. Beel: a saucer-shape 

depression, often an ox-bow lake, and vary in size from 1000 m
2
 to several km

2
 (Huda 

et al., 2010).  

 

Table 6.1: Number of water bodies surveyed by dGPS during fieldwork according to 

water body type. 

 

 

During delineation of the water bodies the ProMark3 polylines drew on points collected. 

The data collected was then converted to shapefile format within the ProMark3-RTK 

equipment. Back at the office in Durham University, fieldwork data was downloaded to 

ArcGIS 9.2 software for preparation and processing. All data was projected to a UTM-

WGS84-Zone 46N coordinate system. Since dGPS data was in the form of polylines, as 

mentioned above, the data needed to be converted to polygons. The problem was that 

some polyline shapes had minor inconsistencies such as dangling nodes or unclosed 

Ditch 
(Dopa) 

Pond 
(Pukur) 

Reservoir 
(Dighi) 

Ox-bow lake 
(Beel) 

Total 

14 45 8 2 69 
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polylines. It is important to clean a polyline layer before converting polylines to 

polygons (more details on how to clean polylines can be found in ArcGIS Desktop 

Help). Subsequently, dGPS data was merged into one layer. In order to obtain training 

and test data for SAR image processing and evaluation, the dGPS data was divided 

randomly into two datasets and each merged into two separate layers (Table 6.2). One 

layer was chosen to be used as training data for the classification process, while the 

second was selected for test data for validation purposes, as shown in Figure 6.2. 

 

 

 

Figure 6.2: An example of training data (blue) and test data (red) extracted from dGPS data 

layers. 

 

Table 6.2: Number and size of training and test data. 

Data type Number of water 

bodies 

Size in pixels 

Training 27 4,814 

Test 25 2,950 

  

When it was found that the dGPS data of delineated water bodies contained to some 

extent parts of the surrounding areas, a buffering step was then selected. This arose 

during the GPS surveys when attempting to avoid obstructions such as steep edges or a 

copse of trees adjacent to a water body. Each polygon of water body was buffered from 

inside 3 m from the edge, and the buffered areas were removed to ensure that each 

water body polygon included only areas of water, as demonstrated in Figure 6.3.  
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Figure 6.3: An example of the buffering process. 

 

 

6.2.2 Rectification of SAR Data  

 

Radarsat-2 products were generated by MacDonald, Dettwiler and Associates (MDA) in 

a format of SAR Georeferenced Fine (SGF) process with standard ground coordinate 

pixel dimensions (MDA, 2008). SGF georeferences are aligned with the satellite track 

but not on a map projection (more information about Radarsat-2 product specifications 

can be found in Radarsat-2 Product Format Definition, MDA, 14 March 2008). 

TerraSAR-X products were generated by the German Aerospace Centre (DLR) as 

Multi-look Ground-range Detected (MGD) products with Spatially Enhanced (SE) 

processing. MGD has reduced speckle and approximately square resolution cells on the 

ground. The image coordinates are oriented along the flight direction and the ground 

range. Geometric projection is in azimuth-ground range without terrain correction (more 

information about TerraSAR-X product specifications can be found in TerraSAR-X 

Basic Product Specification Document, DLR, 18 March 2009). 

 

The ERDAS Imagine package version 9.3 was used in this study for Radarsat-2 and 

TerraSAR-X products for rectification, geometric correction and obtaining data subsets. 

All SAR images (see Chapter Four) were georeferenced to the same coordinate system 

to achieve compatibility when using them in different software packages and with the 

dGPS vector data. Rectification transforms a SAR image from its sensor coordinate 

grids into a map projection. All SAR products were geometrically rectified to a 

Universal Transverse Mercator (UTM) projection using the Data Preparation Tool 
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within the ERDAS Imagine software. The projection was carried out by loading the 

SAR data in a Tiff file to ERDAS Imagine 9.3 and reprojecting them to UTM - WGS 84 

and to the UTM Zone of the study area – Bangladesh, which is North (46). Figure 6.4 

shows the study area before and after projection for Radarsat-2 and TerraSAR-X SAR 

images in HH polarization, along with their histograms. 

 

Radarsat-2_HH TerraSAR-X_HH 

 

 

 

 

                                        Before projection 

 

 

 

 

                                         After projection 

Figure 6.4: Radarsat-2 and TerraSAR-X in HH polarization with their histograms before 

and after projection. 

 

6.2.3 Geometric Correction  

 

The geocorrection process consists of two steps: rectification and resampling. Before 

SAR data processing such as texture analysis and classification, all SAR products have 

to be geometrically corrected. Geometric correction requires geographical features of 

known locations that are recognizable on images. Because of the lack of geocorrected 

images or registered maps for the study area, SAR images were rectified to a dGPS 
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vector file collected during the fieldwork. Ground control points (GCPs) can be used as 

a traditional method of resampling the pixel positions to the appropriate map projection.  

 

When geocoding a SAR image, fewer GCPs are required than an optical image, 

particularly in flat terrain as in this study area.  

 

6.2.4 Geocorrection by dGPS GCPs  

 

All SAR images were processed for geometric correction by applying a polynomial 

model and extracting GCPs as reference points from the dGPS data. The polynomial 

geometric model uses polynomial coefficients to map between image spaces and is 

applicable to flat regions (Mather, 2004) as with the area under study. Within ERDAS 

Imagine software the polynomial geometric model was selected from the Set Geometric 

Model dialog box in order to undertake polynomial calculations. The first-order 

polynomial was selected because it is suitable for edge detection such as a water body‟s 

boundaries (Lira-Chavez, 1995). ERDAS Imagine software allows GCPs to be matched 

on the dGPS vector shape file to the SAR image that needs geocorrecting. Locating the 

GCPs extracted from dGPS polygons on the SAR images can be challenging since the 

process aims to match the dGPS polygon point to the same location of the point on a 

water body on the SAR image. The ground points were mainly corners or borders of the 

water bodies extracted from the dGPS shapefile data. 

 

Reference points were collected via the GCP Tool dialog box, which allows the user to 

specify the source from which to collect the points. In all, 13 GCPs were extracted from 

the dGPS data and evenly distributed over the study area. These were then saved in a 

separate file in .gcc format to be loaded as reference points for the remaining SAR 

images. Figure 6.5 shows the locations of the GCPs and dGPS data distributed over the 

study area. 
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Figure 6.5: GCPs and dGPS data distributed over the study area. 

 

The input points for each SAR image were selected by matching the locations of 

features (water body) on the SAR image viewer with those on the dGPS shapefile 

viewer. After selecting all locations over a SAR image that matched those on the dGPS 

shapefile viewer, the total root mean square (RMS) error was calculated. A comparison 
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between the data of the two sensors was performed during data pre-processing and 

geocorrection by control point error (Table 6.3). 

 

Table 6.3: Comparison of control point error for Radarsat-2 and TerraSAR-X products 

based on dGPS data. 

Images X Y Total RMS error 

Rsat2_HH 1.53 1.86 2.41 

Rsat2_VV 1.71 1.60 2.34 

TSX_HH 1.42 1.68 2.21 

TSX_VV 1.55 1.31 2.03 

TSX_spotlight_HH 1.51 1.69 2.27 

 

 

The next step in the geocorrection process is to begin resampling using the nearest-

neighbour method to create a rectified image. Since the grid of pixels in the SAR image 

does not match the grid for the dGPS data, the pixels are resampled so that the new data 

file values for the output file can be calculated. In the nearest-neighbour method the 

value of the closest pixel is assigned to the output pixel. In other words, the pixel in the 

new grid has the value of the closest pixel in the old grid. This is the most suitable 

method because it is appropriate for thematic files, can be applied before classification 

and it transfers original data values (ERDAS Field Guide, 2009).  

 

Before geocorrecting the Radarsat-2 HH and TerraSAR-X HH products with GCPs, 

there was an approximate average of 46 m slight distortion to the west with the 

Radarsat-2 HH products. The TerraSAR-X HH products, however, were shifted only 

around 8 m on average, as shown in Figure 6.6, which illustrates this with an example 

of the shift extracted from the products of both sensors. 
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Figure 6.6: Radarsat-2 HH and TerraSAR-X HH products extracted before and after 

geocorrection (the dark area is a water body, while the yellow polygon is the dGPS 

data). Note Radarsat-2 has 46 m slight distortion while TerraSAR-X has only 8 m and 

both distortions are to the west. 

 

6.2.5 Geocorrection via Google Earth  

 

Google Earth satellite images, which are high resolution and regularly updated from 

satellites such as QuickBird, can be used for geocorrection by extracting GCPs directly 

from them for mapping process. In order to evaluate this in terms of geocorrection, 12 

GCPs were extracted from Google Earth within the study area and used as reference 

data for the SAR image (Figure 6.7). Although only 12 GCPs have been used, a visual 

assessment shows that these are of good quality. This might be due to the advanced 

onboard navigation and positional technology of the new SAR systems, which has 

improved geometric accuracy and provided greater positional control (CSA, 2007, 

DLR, 2011b). Moreover, the study area is topographically flat and also relatively small 

in spatial size (17 km x 12 km). Therefore, the new generation of SAR imagery (i.e. 

Radarsat-2) can be geocorrected with several accurate GCPs or even without GCPs 

when using geometric models e.g. hybrid Toutin‟s model (Cheng and Toutin, 2010).  

Radarsat-2 HH TerraSAR-X HH 

  

Before Geocorrection 

  

After Geocorrection 
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An example of results of the control point error is shown in Table 6.4. A visual 

comparison was performed to determine the accuracy of the Google Earth imagery 

available for the study area (Figure 6.8). It was found that there is only a small shift 

(approximately 3 m) in comparison with the dGPS data over the study area. The visual 

assessment (Figure 6.8) and the results of the total RMS error (Table 6.4) indicate good 

accuracy, and so the imagery may be used as reference data if up-to-date high-resolution 

imagery is available for the target area. 
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Figure 6.7: The spatial distribution of the GCPs over the study area (yellow rectangle) 

extracted from the Google Earth, 2010. An example of a GCP (inset in the white 

rectangle) shows its position in the corner of a building. 
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Table 6.4: An example of the total RMS error for Google Earth imagery. 

Data X Y Total RMS error 

Google 

Earth 
1.90 1.17 2.23 

 

 

Figure 6.8: Distance of distortion of a water body extracted from Google Earth, 2010, 

overlaid with dGPS data. Note the distortion measured approximately 3 metres. 

 

6.2.6 Spatial Subset for SAR Images  

   

All SAR images were subjected to subseting according to the size of the study area. 

This process was carried out within ERDAS Imagine software and using the Data 

Preparation Tool. Four corners of the study area (Figure 6.9) were specified for the 

output image.  

 

 

Figure 6.9: Image subset corners. 
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6.3 SAR Image Texture Analysis  

 

The principles of photo-interpretation can be used for radar imagery interpretation. In 

optical sensors, measurements for target detection are related to colour, chemical 

composition and temperature (ESA, 2008). However, the interpretation of radar images 

with respect to land surface parameters is based mainly on shape (the object‟s outline), 

tone (the average intensity of the grey level), object size and structure (the spatial 

arrangement of features throughout a region). Texture is a significant aspect in radar 

image interpretation; it consists of texture primitives (or elements) and can be described 

as fine, coarse, grained or smooth. Tone is based on pixel intensity properties in the 

elements, while structure represents the spatial relationship between elements.  

 

Radar image texture can be considered at various levels. (1) Micro-texture (i.e. speckle) 

occurs from the radar system and not from the scene; it arises from the interference of 

random scatterers within each resolution cell, and this speckle noise appears as grains or 

is noise-like and should be avoided (CCRS, accessed 2010). (2) Meso-texture or scene 

texture is spatially organized average grey tone on the scale of several resolution cells. 

(3) Macro-texture or structure corresponds to variations in radar backscatter levels 

within boundaries of relative homogeneity over many resolution cells; an example of 

this level of image texture is a smooth texture of water body and an adjacent grass area 

with a rough texture. Smooth or specular surfaces such as calm water appear as dark 

tones, and diffuse surfaces such as vegetation appear as intermediate tones. In contrast, 

metallic surfaces and corner or double-bounce reflectances appear as very bright tones. 

Various types of land surface imaging with RADAR sensor and corresponding features 

captured by digital camera during the fieldwork are shown in Figure 6.10. 
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Figure 6.10: Imaging SAR sensor-HH polarization for various types of land cover 

compared to the field digital photos. 

 

Texture analysis has been widely used for classification in remote sensing and can be 

assisted through the use of computer software such as texture features computed from 

grey-level co-occurrence matrices (GLCM). In other words, SAR image texture analysis 

computes texture features from the GLCM. The main aim of the texture analysis 

approach used in this study is to support the evaluation of SAR images in terms of their 

ability to discriminate water class from other features, and to improve the accuracy of 

image classification. Statistical analysis has been applied in this empirical study in order 

to analyse the texture features of SAR images on the basis of their statistical features. 

More details about the texture analysis approach can be found in Section 6.4.1. 

 

There are two types of texture measures: first-order (occurrence) and second-order (co-

occurrence). Texture filters based on co-occurrence and occurrence measures were 
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examined and analysed first individually and then with a combination of texture filters. 

In occurrence measures, texture calculations employ the number of occurrences of each 

level of grey tone within the processing window. Occurrence has five measures: data 

range, mean, variance, entropy and skewness. In co-occurrence measures, texture 

values are calculated using a grey-tone spatial dependence matrix. Eight texture filters 

based on co-occurrence measures were also examined: mean, variance, homogeneity, 

contrast, dissimilarity, entropy, second moment and correlation. A water body was 

selected for use as a test scene, shown in Figure 6.11, for texture analysis and for 

density slicing for the water and texture filters of the occurrence and co-occurrence 

measures. 

 

 

Figure 6.11: A water body used as test scene showing surrounding features captured by 

digital camera during the fieldwork. 
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6.3.1 Speckle Noise Reduction 

 

Analysis of the results of testing speckle removal filters such as Mean, Median, Lee, 

Lee Sigma, Gamma-map, Forest and Local region reveals that original SAR images 

show more detail concerning water bodies when no speckle filters are used. Therefore, 

no speckle removal filters were applied during this stage of the process. However, an 

enhancement filter consisting of convolution median filter from the ENVI software with 

a kernel size of 3 by 3 was applied to the texture filter images, but not to the raw SAR 

data. The median filter maintains edges larger than the kernel size when smoothing an 

image. 

 

SAR images used in this study are not extensively contaminated with speckle, because 

of advanced technology developed for the latest SAR systems and advanced processing 

software. However, many small black noise spots remained over the images that may be 

misinterpreted, particularly when interpreting regions with very small water bodies. In 

the ENVI software, enhancing filters can be used for smoothing SAR images. After 

testing all the filters, the median filter was found to work the best, particularly with 3×3 

windows. 

 

Applying a 3×3 window size smooths land features without a loss of information on 

very small objects (i.e. very small water bodies). In contrast, a window size of 5×5 or 

above smooths the backscatter signal too much to enable very small water bodies to be 

distinguished from the background. Figure 6.12 illustrates that the 3×3 window size is 

more suitable for this study than the window size of 5×5. The occurrence measure of the 

mean texture filter showed that very small water bodies (< 300 m
2
) are better 

distinguished by the use of an enhanced median filter with a 3 by 3 window size.  
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Figure 6.12: A comparison between 3×3 and 5×5 window sizes of enhanced median 

filter with an area of 238m
2
 – note that the 5×5 window size shows less intensity. 

 

6.3.2 Analysis of Texture Measures  

 

Based on Haralick‟s texture measures principle, the ENVI occurrence and co-

occurrence texture filters were exploited to create an image for each texture filter. 

Examining the various texture filters of occurrence and co-occurrence variables led to 

the selection of the most suitable texture measures for water identification. Each texture 

filter for the occurrence and co-occurrence measures was examined to decide which 

texture filter is better at discriminating water bodies from other land features.  

 

The method of assessing the texture filters was based on three approaches. The first 

involved visual analysis based on the fact that the area of water for each water body is 

mostly represented as a solid colour. Visual analysis was performed to identify the 

ability of each texture filter to differentiate water bodies from other land features. This 

process involved overlaying the dGPS data over the output image for comparison 

purposes. The second approach was to examine each texture filter within the ENVI 

software and to determine its signature by using reflectance profile measurements. This 

was carried out to identify the most appropriate texture filter for SAR image 

classification. Each raw SAR image was associated with each texture filter when 

processing the reflectance measurements to create spectral profiles. In the third 

approach, a density slice technique was applied to the water class for each texture filter. 

In other words, to improve analysis of the texture filters, each image created from a 
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texture filter was compared to the reflectance profile and to the density slice of the 

water class for the same texture image.  

 

Various pixel window sizes for occurrence and co-occurrence measures analysis were 

examined in order to select the appropriate window size for discriminating water bodies 

from other land features. From the results, it appears that processing pixel window size 

has a significant effect on separability between water and other land cover features. The 

3×3 pixel windows used to drive the texture values for water regions were found to be 

the most suitable window size to determine particular water bodies with very small 

spatial size.  

 

A pixel location within the texture of a water body was identified in a horizontal profile 

and then extracted from the products of both sensors in order to generate the reflectance 

profiles. The sample pixel was selected on the basis of the minimum reflectance and 

was then applied for all texture measures. Figure 6.13 shows the reflectance profiles of 

the original SAR images, which have zero values. For the Radarsat-2 image, the pixel‟s 

sample located at 215568.5 E, 2649542.5 N and is in sample 860 and line 799. The 

TerraSAR-X image sample pixel was extracted from sample 864 and line 807, located 

at 215580.5 E, 2649518.5 N. 
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Figure 6.13: Reflectance profiles of specific sample pixel for the original SAR images 

with no texture filter, along with extracted texture scenes smoothed by median 3×3 

window. 

 

6.3.2.1 Occurrence Measures 

 

Occurrence measures use the number of occurrences of each grey level within the 

processing window for the texture calculations. Radarsat-2 and TerraSAR-X products 

were analysed with occurrence measures. Assessment of occurrence measures was 

performed by testing each texture filter with Radarsat-2 HH and TerraSAR-X HH 

images, as shown in Figures 6.13, 6.14, 6.15, 6.16 and 6.17.  

 

 

 

 

 

 

 

 

 

 

 



           Chapter Six: Data Preparation 

 

 

 140 

a. Data Range 

Occurrence data range texture filter analysis is demonstrated in Figure 6.14 for the 

Radarsat-2 HH and TerraSAR-X images. The green spectrum represents the reflectance 

profile HH of the texture filter, while the white spectrum relates to the raw SAR image. 

This is because the data range texture feature characterizes the difference in values of 

pixels. Therefore, the results of the reflectance profiles in both SAR images suggest that 

the signatures are similar to those in the raw images. The water body in the texture 

scene has clear edge areas and can therefore be visually discriminated from surrounding 

features. The density slice water class of the data range filter for the Radarsat-2 image 

has texture values in the range 0.0–7000 in blue and 7000–65000 in yellow. With 

TerraSAR-X the values are in the range of 0.0–70 in blue and 70–15000 in yellow. The 

results of density slicing analysis for both SAR images indicate that the spatial size of 

the water body can also easily be identified. Consequently, the overall results of 

analysis show that the data range texture filter has the ability to distinguish the water 

feature and can therefore be used for image classification for both sensors. 

 

Radarsat-2 TerraSAR-X 

  

    

Data range Density slice Data range Density slice 

 

Figure 6.14: Reflectance profiles of occurrence data range texture measure with 

extracted texture scenes smoothed by median 3×3 window, along with density sliced 

scenes for Radarsat-2 and TerraSAR-X HH images. 
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b. Mean 

The mean texture filter, with its high contrast between water regions and other features, 

clearly distinguishes the water body, as shown in Figure 6.15. When looking at the 

reflectance plot of the occurrence mean texture filter in the figure for the images from 

both sensors, we find that the spectra are very similar to the raw SAR spectra. This is 

because the mean texture image appears much like the raw SAR image demonstrated in 

Figure 6.13. When visually comparing the spatial sizes of the water body within the 

density slice image and the dGPS polygon, a great deal of similarity can be observed. 

Values of the density slice of the Radarsat-2 mean-filter image range from 0.0 to 5000 

in blue and 5000 to 60000 in yellow, while the TerraSAR-X mean-filter image values 

range from 0.0 to 80 in blue and 80 to 4300 in yellow. This is because the water body in 

Figure 6.15 has a high level of spatial recognition alongside the spectra similarity. The 

occurrence mean-filter measure is therefore suitable for our image classification 

analysis.  

 

Radarsat-2 TerraSAR-X 

  

    

Mean texture Density slice Mean texture Density slice 

 

Figure 6.15: Reflectance profiles of occurrence mean texture measure for Radarsat-2 

and TerraSAR-X HH images with extracted texture scenes smoothed by median 3×3 

window, along with density slice scenes. 
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c. Variance 

The occurrence variance texture filter was tested with images from both sensors and 

was found to work with the images from Radarsat-2 but not with those from TerraSAR-

X, as illustrated in Figure 6.16. This is because there are no output texture signatures 

from the variance image of TerraSAR-X except for a solid black colour. Therefore, the 

spectrum appears similar to that of the raw image since the pixel‟s sample reflectance 

profile matches that of the raw image. Hence, the variance filter was excluded from the 

image classification process because of the absence of water texture signatures. The 

textural signatures of the variance filter for Radarsat-2 image are somewhat similar to 

the raw SAR image, as shown on the left of Figure 6.16. This can be observed in the 

reflectance plot and the density slice image, which has values ranging from 0.0 to 

5000000 in blue and 5000000 to 850000000 in yellow. As a result, the variance texture 

filter was used only for Radarsat-2 image classification. 

 

Radarsat-2 TerraSAR-X 

  

    

Variance texture Density slice Variance texture No density slice 

 

Figure 6.16: Reflectance profiles of occurrence variance texture measure with extracted 

texture scene for Radarsat-2 HH and TerraSAR-X images (note that there is no output 

texture signature for the TerraSAR-X image and accordingly no density slice). 
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d. Entropy 

The occurrence entropy filter has no output of water signatures other than a solid white 

colour, and as a result there is no density slice for water class. This appears in images 

from both SAR sensors, but with some black spots in the TerraSAR-X image, as shown 

in Figure 6.17. This explains why the spectrum in the Radarsat-2 plot appears as a 

horizontal straight line with a high brightness value of 1.0 on the y axis, since the raw 

SAR image has a value of zero. The reflectance profile of the TerraSAR-X plot 

generally appears as a horizontal straight line but with very small differences in values 

of between 0.8 and 1.0, represented as black spots in the texture image. This is because 

the entropy-filter grey-tone values of water texture are almost 1.0 on the y axis. 

Therefore, water texture is shown by the very bright region, similar to the high-

backscatter features. In this case entropy texture is not able to distinguish water from 

other features. 

 

Radarsat-2 TerraSAR-X 

  

    

No Entropy 

texture 

No density slice Entropy texture No density slice 

 

Figure 6.17: Reflectance profiles of occurrence entropy texture measure for Radarsat-2 

HH and TerraSAR-X HH images (note that there is no output texture signature other 

than a solid white colour, and as a result there is no density slice). 
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e. Skewness 

The skewness texture images for images from both sensors represent water texture in 

bright tones, unlike the other texture measures, as demonstrated in Figure 6.18. This is 

despite the texture of the water body having a less-homogeneous area. The reflectance 

profiles illustrate this unique texture, where values across the y axis range from −0.5 to 

1.0 with the Radarsat-2 image, while they range from −0.1 to 1.0 with the TerraSAR-X 

image. It is difficult to identify the density slice value range for the skewness texture of 

the SAR images in this study. It was found that the density slice values with the 

Radarsat-2 texture image range from −0.0 to 0.0, from which a density slice for water 

class could not be obtained. In contrast, density slice values of the TerraSAR-X texture 

image range from −0.0096 to 0.0001 in yellow and 0.0001 to 0.011 in blue. This is 

because the image of a water body with the skewness-filter has less homogeneity and 

contrast and is therefore not useful in discriminating water bodies from other land 

features. 

 

Radarsat-2 TerraSAR-X 

  

 
 

  

Skewness texture No density slice Skewness texture Density slice 

 

Figure 6.18: Reflectance profiles of occurrence skewness texture measure with extracted 

texture scenes for Radarsat-2 HH and TerraSAR-X images (note that there is no density 

slice range for the Radarsat-2 HH texture image since the value range is-0.00 to 0.00). 

 

After analysing occurrence texture filters it was found that water class could best be 

distinguished by data range, mean and variance texture filters with the Radarsat-2 
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products. The best-performing texture measures for the TerraSAR-X products were data 

range and mean. These texture filters were selected because they correlated with one 

another.  

 

6.3.2.2 Co-Occurrence Measures  

 

The second-order grey-level co-occurrence matrix computes the relationship between 

pairs of pixels that consist of the reference and the neighbouring pixel. The eight co-

occurrence measures available with the ENVI software were all used to determine 

which showed the best results. This type of texture filter requires the value of X and Y 

directions of the matrix calculation to be specified. In this study, various values of X 

and Y were examined for the SAR products, and it was found that altering these values 

has no effect on the results. Therefore, the default values of X=1 and Y=1 were used 

with the ENVI software.  

 

No output results were produced when co-occurrence measures were applied to the 

products of the TerraSAR-X single polarization 16-bit unsigned data type used in this 

study. This might be due to the 16 bit restrictions. An attempt was made to examine co-

occurrence measures with 8-bit unsigned compressed SAR products, although the 

texture filters worked with 8-bit of less pixel depth, but it was decided not to use the 8-

bit image. However, the 16-bit data type has more pixel depth than the 8-bit data and 

provides sufficient dynamic range with greater ability to conserve the rich textural 

information of the SAR product, and so is suitable for this study. Therefore, the co-

occurrence measures were applied to the Radarsat-2 products only. 
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a. Mean 

The mean filter measures the average of the area values for each GLCM. Figure 6.19 

shows that the co-occurrence mean texture filter provides results similar to those of the 

occurrence mean texture filter. This is because the co-occurrence mean filter averages 

the grey level in the local window. This principle can be observed in the intensity and 

the homogeneous area of the sample‟s water body shown at the bottom of the figure 

along with the density slice image. The ability of the co-occurrence mean filter to 

separate water regions from other land features means that it is among the best co-

occurrence texture filters for classifying water bodies. 

 

 

 

  

Mean texture Density slice 

 

Figure 6.19: Reflectance profile of co-occurrence mean texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 0.0–4 

(blue) and 4.0–60 (yellow). 
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b. Variance 

The co-occurrence variance texture filter calculates the dispersion of the difference 

between the pixels next to each other in the GLCM. Results of the co-occurrence 

variance-filter analysis are similar to those of the occurrence variance filter. The 

reflectance profile of the variance texture image shown in Figure 6.20 shows good 

similarity to the raw image reflectance. Moreover, the dGPS polygon spatial size of the 

water body when compared with both the texture image and the density slice image 

demonstrates that the variance filter is able to distinguish to a good level the water class 

from surrounding features. 

 

 

 

 

Figure 6.20: Reflectance profile of co-occurrence variance texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 0.0–5 

(blue) and 5–800 (yellow). 
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c. Homogeneity 

The homogeneity texture filter measures the smoothness of an image and assigns high 

values to uniform areas. This is why water texture within the water body in Figure 6.21 

is shown as grey levels of varying brightness. The homogeneity filter presents the 

specular surfaces in a bright tone, unlike the raw SAR image in which they are shown in 

dark tones. The difference in the brightness of the grey level is related to the difference 

in intensity between the pixels. Visually, the homogeneity texture filter appears to be 

suitable to some extent for water classification. However, the reflectance profile and the 

density slice results demonstrate that it performs less well than the mean and variance 

filters.  

 

 

 

  

Homogeneity Density slice 

 

Figure 6.21: Reflectance profile of co-occurrence homogeneity texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 0.0–

0.4 (yellow) and 0.4–0.8 (blue). 
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d. Contrast 

The contrast texture filter as illustrated in Figure 6.22 is the opposite of the 

homogeneity filter, where the contrast filter computes the amount of local variation in 

an image (Haralick et al., 1973). It resembles the variance texture filter but with small 

differences. This similarity can visually be identified when comparing the extent of the 

water body boundaries between variance and contrast. Therefore, the contrast variable 

appears to work well for water identification. 

 

 

 

  

Contrast texture Density slice 

 

Figure 6.22: Reflectance profile of co-occurrence contrast texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 0.0–

10 (blue) and 10–1800 (yellow). 
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e. Dissimilarity 

The dissimilarity texture filter calculates the difference between pixels of the co-

occurrence matrix and thus will assign high values to local regions with greater contrast. 

The dissimilarity filter is comparable to the contrast filter but shows greater contrast 

between water and other land cover, as shown in Figure 6.23. The high contrast of the 

dissimilarity filter results in better discrimination of water bodies but it displays less-

homogeneous intensities within the water body. Further analysis will be carried out 

during texture image classification (see Chapter Seven) in order to decide which of 

these two filters performs better. 

 

 

 

  

  Dissimilarity      Density slice 

 

Figure 6.23: Reflectance profile of co-occurrence dissimilarity texture measure filter for 

the Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 

0.0–2.5 (blue) and 2.5–39 (yellow). 
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f. Entropy 

The co-occurrence entropy texture filter measures the disorder of an image and assigns 

high values when the values of the pixels of the GLCM are high. In Figure 6.24 it can 

be seen that the reflectance profile of the entropy filter (in green) is very different from 

that of the raw SAR image, which is high and close to 1.0. Most of the texture image 

therefore appears as a high level of brightness. In this case, the entropy filter is not 

useful in this study for image classification.  

 

 

 

  

     Entropy      Density slice 

 

Figure 6.24: Reflectance profile of co-occurrence entropy texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges 0.0–2 

(blue) and 2–2.2 (yellow). 
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g. Second moment 

The second moment filter measures the local homogeneity of the image and assigns it 

high values (Haralick et al., 1973). The texture image of the water body in Figure 6.25 

represents some parts of the water body but in a bright white tone. The reflectance 

profile and the density slice image indicate that the second-moment filter is not suitable 

for distinguishing small water bodies. 

 

 

 

  

Second moment     Density slice 

 

Figure 6.25: Reflectance profile of co-occurrence second-moment texture measure filter 

for the Radarsat-2 HH image with extracted texture scene, and density slice in the 

ranges 0.0– 0.14 (yellow) and 0.14–0.4 (blue). 

 

 

 

 

 

 

 

 

 

 

 



           Chapter Six: Data Preparation 

 

 

 153 

h. Correlation 

The correlation filter measures the linear dependency of the grey level and assigns high 

values to their areas (Haralick et al., 1973). The spectral profile of the correlation filter 

assigns to the sample pixel very high values of around 35.0, as illustrated in Figure 6.26. 

The density slice image and the texture image of the correlation filter cannot provide 

specific statistical information for the water signatures.  

 

 

 

Figure 6.26: Reflectance profile of co-occurrence correlation texture measure for the 

Radarsat-2 HH image with extracted texture scene, and density slice in the ranges −25 

to −7 (blue) and −7 to 4 (yellow). 

 

6.3.3 Texture Analysis with a Combination of Texture Measures  

 

The next step in the texture assessment was to compute a combination of texture 

measures selected from the recommended texture filters. The process of combining 

texture filters was important for applying it to image classification and for identifying 

and evaluating its advantages in water detection. Three texture filters of occurrence 

measures of data range, mean and variance were applied to the Radarsat-2 images, 

while the two texture measures of data range and mean were used for the TerraSAR-X 

images. Occurrence texture analysis was undertaken for both single polarizations HH 

and VV for both sensors, as shown in Figure 6.27. A dGPS polygon was overlaid over 

the test water body for comparison of the spatial size of the water body. A combination 
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of co-occurrence measures of mean, variance and contrast was also used. Figure 6.28 

shows the results of texture analysis with the combined three co-occurrence measures 

for Radarsat-2 HH and VV polarizations. 

 

A visual comparison was performed first between HH and VV single polarizations for 

each SAR sensor. The results show that there is little difference between HH and VV 

polarizations in detecting small water bodies. A second comparison was implemented 

between the two sensors for HH and VV polarizations (Figure 6.27). Products of both 

SAR sensors show similarity when comparing images to the dGPS polygon. A third 

comparison was undertaken between occurrence and co-occurrence. Co-occurrence 

selected measures were tested and results compared to the occurrence measures to 

identify the advantages of each. The results of this evaluation show that there are almost 

no differences between occurrence and co-occurrence measures with regard to the 

detection of water bodies (Figure 6.29). Analysis of density slicing was also carried out, 

with the same results (Figure 6.30).  

 

 

  

 

 

Radarsat-2 

Data range+Mean+ 

Variance_HH 

Data range+Mean+ 

Variance _VV 

  

 

 

TerraSAR-X 

Data range+ 

Mean_HH 

Data range+ 

Mean_VV 

Figure 6.27: Texture analysis for products of both sensors with HH and VV 

polarizations with a combination of occurrence measures. 
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Mean+Variance+ 

Contrast_VV 

Figure 6.28: Texture analysis for products of Radarsat-2 HH and VV polarizations with 

a combination of co-occurrence measures. 

 

  

Occurrence Co-occurrence 

Figure 6.29: Comparison between occurrence and co-occurrence combined texture 

measures with Radarsat-2 HH. 
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Figure 6.30: Comparison between occurrence and co-occurrence mean texture measure 

using density slice technique with Radarsat-2 HH. 
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6.4 Conclusion  

 

This chapter has described the preparation of data used in this study. The dGPS field 

data will be used as training and validation data for flood classification images. Pre-

processing SAR images in terms of geometric correction and obtaining subset data is an 

essential stage for ensuring consistency when using the images for analysis and image 

classification. Analysis of occurrence and co-occurrence measures was performed to 

determine which texture filters perform well in water signature discrimination. The 

performance results for each texture filter varied. However, the best texture filters for 

Radarsat-2 products were data range, mean and variance, while for TerraSAR-2 

products, only the data range and mean texture filters showed good performance.  

 

The co-occurrence measures were applied only to Radarsat-2 products, because no 

output results were obtained when using them with TerraSAR-X products. Attempts 

were made to process it with an 8-bit image, and results showed that this worked better. 

Nevertheless, because of the low depth of the 8-bit image, this step was consequently 

omitted, as discussed in section 6.3.2.2. The co-occurrence texture measures of mean, 

variance, dissimilarity and contrast were found to show the best performance in 

calculating water texture regions for Radarsat-2. 

 

Results of applying co-occurrence measures as discussed previously demonstrate that 

there is no significant difference when comparing them to the occurrence texture 

measures. Results of texture analysis and evaluation of occurrence and co-occurrence 

texture measures will support the analysis of SAR products along with generating and 

evaluating water body mapping in the following chapter. The texture variables that 

showed better identification of water bodies in this analysis and are therefore 

recommended are the following: 

I. Occurrence variables of data range, mean and variance for Radarsat-2 products, 

but only those of data range and mean for TerraSAR-X products. 

II. Co-occurrence variables of mean, variance, dissimilarity and contrast for 

Radarsat-2 products only. 
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Chapter Seven: 

WATER BODY MAPPING 

 

7.1 Introduction 

 

This chapter provides an analysis of TerraSAR-X and Radarsat-2 SAR image products 

and image processing and spatial analysis techniques to discriminate between water 

bodies and other land cover features. Image processing of TerraSAR-X and Radarsat-2 

images include a range of techniques ranging from simple density slicing of backscatter 

signal to use of backscatter texture variables, polarimetric information and contextual 

classification.  

 

The image classification methodology used both per-pixel and object-oriented 

classification approaches in order to address the intrinsic difficulties of separating water 

bodies from other surfaces with similar backscatter properties. A workflow was 

developed to ensure that all SAR images were processed to a similar level to allow 

objective accuracy assessment with ground truth data and cross comparison among the 

available image products. Figure 7.1 illustrates the proposed methodology flow chart of 

water body mapping. 

 

Figure 7.1: Methodology flow chart of water body mapping and accuracy assessment. 
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7.2 Water Body Mapping Using Backscatter Density Slicing 

 

Density slicing is the process of converting the grey levels of an image into a series of 

discrete classes, each of which is equivalent to a data-range value. It provides a means 

of visually assigning classes to differences in radar backscatter or backscatter texture 

according to image brightness. Generally, a density slice is applied to a single variable 

by selecting data ranges and highlighting thematic classes or areas of interest by colour 

coding. The density slice technique was employed in this study to map water bodies by 

using single-band backscatter and texture of backscatter images using the algorithm in 

the ENVI software package. 

 

In the case of mapping water and non-water surfaces, density slicing assumes a 

threshold for identification of water bodies, since it is based on levels of brightness (or 

radar backscatter differences) where relatively smooth surfaces such as calm water 

appear in the radar image as dark tones. The approach assumes that water bodies appear 

in SAR imagery as areas of low backscatter, but low returns may also include pixels of 

smooth non-water regions. Nevertheless, the density slice technique has been used in 

this study to evaluate the performance of the products of each SAR sensor for water 

identification. 

 

In order to perform density slicing, a texture image with a single texture measure 

(variable) of occurrence or co-occurrence measures should be applied. The occurrence 

mean variable has been selected here for density slicing, according to the results of 

texture measures assessment discussed in Section 6.4.2.1. The mean texture variable is 

better able to provide a clear separation for the water bodies because of its high contrast 

between water regions and other land cover features. Availability of field data is 

essential in order to select the effective range of values of the Water class to be used for 

density sliced images. Therefore, a manual and interactive procedure was implemented 

to achieve the optimal data range by slicing the histogram according to the ground truth 

data. The density slice technique was applied to all SAR images to evaluate its 

performance in identifying water for the products of each SAR sensor. Density slice 

statistical results have been calculated using minimum, maximum, mean and standard 

deviation for each texture image. 
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7.2.1 Density Sliced Radarsat-2 Products 

 

Data-range values when applying the occurrence mean variable for the Water class to 

Radarsat-2 images are 0.0–5000.00. For co-occurrence those for the mean variable are 

0.0–4.00. Figures 7.2 and 7.3 illustrate the density slice ranges for Water class in the 

Radarsat-2 image in HH polarization with the co-occurrence and occurrence mean 

variable, along with an example of a water body extracted from the density sliced 

results. 

 

  

Occurrence mean variable Co-occurrence mean variable 

Figure 7.2: Defining density slice ranges for Water class using co-occurrence and 

occurrence mean variable - Radarsat-2-HH image. 

 

Results from the density slice technique show that the spatial size estimation of the 

water body illustrated in Figure 7.3 was around 3,381 m
2
 compared with 4,990 m

2
 

estimated from the ground truth data. This pond is used to illustrate results from 

different classification algorithms. Note that differences of water and non-water area in 

the middle left side of the water body between HH and VV occur because of the 

presence of trees (see left side of Google photo) facing the SAR antenna when HH 

descending orbit and caused strong backscatter and so the area appears dry, while in VV 

ascending orbit, the left side of the trees is facing the SAR antenna and result in radar 

shadowing where the right side appears dark similar to water. Statistical results show 

that mean and standard deviation of occurrence and co-occurrence Radarsat-2 HH gave 

very similar results (Figures 7.4 and 7.5). Percentages of water in the entire scene 

estimated with HH polarization for co-occurrence and occurrence are 15.66% and 
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20.16%, respectively. With VV polarization, these are 16.61% and 11.12% for co-

occurrence and occurrence, respectively.  

 

Figure 7.3: Example of density sliced results of co-occurrence and occurrence mean 

variable - Radarsat-2 HH and VV.  

  

 

 

Mean St. deviation Water area% 

1.84 0.36 15.66 

 

Figure 7.4: Statistical results of density slicing for water class with co-occurrence mean 

variable - Radarsat-2 HH. 

 



    Chapter 7: Water Body Mapping 

 

 

161 

 

 

Mean St. deviation Water area% 

1.80 0.40 20.15 

Figure 7.5: Statistical results of density slicing for water class with occurrence mean 

variable - Radarsat-2 HH. 

 

7.2.2 Density Sliced TerraSAR-X Products 

 

The data-range values used to density slice water class in TerraSAR-X images HH and 

VV polarizations for the occurrence texture mean variable are 0.0–80.00 Density slice 

ranges along with extracted results are shown in Figures 7.6 and 7.7. 
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Occurrence mean variable 

Figure 7.6: Defining density slice ranges for water class with occurrence mean variable 

- TerraSAR-X. 

 

Figure 7.7: Example of density sliced results of TerraSAR-X HH and VV occurrence 

mean texture variable.  

 

The area of water mapped from the test water body extracted from the density sliced 

image is 3,394 m
2
 compared to 4,990 m

2
 from the dGPS data. Statistical results 

demonstrate that the mean and standard deviation of density sliced TerraSAR-X HH 

images show close similarity to those of Radarsat-2 (Figure 7.8). The percentage of 

Water class for the entire scene for the TerraSAR-X HH occurrence mean texture 

measure was estimated to be 18.46%. 
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Mean St. deviation Water area% 

1.82 0.39 18.46 

 

Figure 7.8: Statistical results of density slicing for water class of TerraSAR-X HH 

occurrence mean variable. 

 

7.2.3. Comparison of Density Slice Assessment between the Two Sensors 

 

Table 7.1 compares the sizes of four water bodies between the two sensors. The larger 

example water bodies have sizes close to the dGPS and the areas mapped by the two 

radar sensors are very similar. While the relative differences in greater for smaller water 

bodies, the TerraSAR-X here appears closer to the ground-based dGPS mapping. Range 

of density values is different between the two sensors. Table 7.2 compares the density 

values and water area estimation of HH and VV between Radarsat-2 and TerraSAR-X. 

The range values of C-band Radarsat-2 products are between 0.0-5000 while the X-

band TerraSAR-X products are from 0.0-80. The absolute values are not directly 

comparable but it is possible that the sensors have different radiometric sensitivities that 

may in turn affect their ability to map low backscatter targets such as water bodies. 

However, the results show that water area estimation is almost similar between both 

sensors, with 20.16% and 18.46% of the study area mapped as water by HH polarization 

Radarsat-2 and TerraSAR-X respectively.  
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Table 7.1: A comparison of mapped area of four example water bodies extracted from 

Radarsat-2 HH and TerraSAR-X HH imagery compared with dGPS data. 

WB 

example # 

Radarsat-2_HH 

(m
2
) 

TerraSAR-X_HH 

(m
2
) 

dGPS data 

(m
2
) 

1 3381 3394 4990 

2 3067 3075 4209 

3 1244 1471 1838 

4 332 415 739 

 

 

Table 7.2: Comparison of Density values and water area estimation of HH and VV 

between Radarsat-2 and TerraSAR-X. 

   Water area estimation%  

  
Density 

values 
HH VV  

Radarsat-2 

Occurrence 0.0-5000 20.16 11.12 

Co-

occurrence 
0.0-4.00 15.66 16.61 

TerraSAR-X 

Occurrence 0.0-80 18.46 

25.3 

(beginning of 

wet season) 

Co-

occurrence 

No co-occurrence results (see section 

6.3.2.2) 

 

 

7.2.4 Analysis of Polarization  

 

A comparison of HH and VV polarizations of Radarsat-2 ultrafine images and 

TerraSAR-X Stripmap images was performed using density slicing occurrence texture 

filters. The results show that, when compared with dGPS data, both HH and VV with 3-

m ground-resolution products can detect water bodies with a spatial size of 4000 m
2
 to a 

high degree of accuracy (Figure 7.9). 
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Figure 7.9: A visual comparison of SAR sensor polarizations between Radarsat-2 and 

TerraSAR-X. 

 

7.3 Water Body Mapping Using Image Classification 

 

7.3.1 Unsupervised Classification  

 

The unsupervised classifiers, as described above, examine the unknown pixels in an 

image and aggregate pixels with the same or similar values into a number of classes. 

Unsupervised classification involves two common techniques: K-Means and the 

Interactive Self Organization Data Analysis Technique (ISODATA). The K-Means 

unsupervised classifier is a process of analysis and relocates clusters in the data, 

iteratively repositioning them until a sufficient level of spectral separability is achieved. 

The objective of the ISODATA is to calculate class means equally distributed within the 

data then cluster the remaining pixels in an iterative procedure using a minimum 

distance technique. In ISODATA, an image is segmented into unknown classes then the 

interpreter labels those classes, resulting in a classified image. Thus, the output of the 

unsupervised classification process is the identification of separable spectral classes. In 

order to associate output classes with land cover types, knowledge of the area along 

with the ground truth data is required. 

 

In the present study, four classes have been specified with both classifiers of K-Means 

and ISODATA. Adjusting the parameters of unsupervised classification through a 
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number of trial runs in order to separate Water class from other classes, results of 

ISODATA and K-Means for the Radarsat-2 and TerraSAR-X products were obtained 

(Figure 7.10). The results of the ISODATA classifier in products of both sensors show, 

to some extent, better separability for Water class over the K-Means classifier. 

Nevertheless, the results of unsupervised classification indicate some confusion 

between water bodies and some land cover types, which is a common result since the 

process is automated. Therefore, unsupervised classification is not sufficiently suitable 

to be used in this study for identifying very small water bodies in SAR data. 

 

 

Figure 7.10: Unsupervised classification ISODATA and K-Means comparison between 

RADASAT-2 and TerraSAR-X images (red indicates water); maps shown here cover a 

small portion of the study area. 
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7.3.2 Supervised Classification 

 

This section first discusses the evaluation of training classes used, followed by the 

analysis and comparison of results from supervised classified images of the SAR 

sensors. ENVI software image processing was used for supervised classification. The 

process of supervised classification involves three main steps: training the system for 

land cover classes, undertaking classification and obtaining the output of the classified 

image. The process of training the system involves selecting areas as closed polygons in 

the target image that represent each unique class. To perform supervised classification 

on the SAR images, samples of known regions were selected to represent training data 

for each land cover class. Factors affecting classification performance include the use of 

a sufficient number of training samples and how well distributed these are in relation to 

the target class distribution. 

 

The second step in supervised classification involves undertaking the classification. In 

this study, supervised classification has been performed with the maximum likelihood 

classifier (MLC), one of the most robust and widely used methods of classification 

(Bailly et al., 2007; Jensen, 2005; Lillesand et al., 2004; Weng, 2002). The MLC 

assigns a likelihood function to each pixel the class with the highest probability. The 

third stage comprises presenting the results of classification for images from both 

sensors, discussed in the following sections. The main purpose of image classification 

in this study is to distinguish Water class from other land cover types rather than to 

classify different types of land cover features. 

 

7.3.2.1 Analysis of Training Data 

 

Training and test datasets of Water class were extracted from the dGPS field data 

(Section 6.2.1). The water-body field data was divided randomly into two datasets: a 

training dataset (4841 pixels) to train the system, and a test dataset (2950 pixels) to 

validate the classifier. Both water training data and water test data were converted to 

Region-Of-Interest (ROI) in ENVI software and saved as two vector layers in order to 

use them for classification and post-classification. The remaining categories of training 

samples of land cover classes were derived from the SAR images. This step was 

performed by drawing ROIs using a polygon-based approach in the ENVI software. 
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From analysis of land cover types in the study area, four mean classes of information 

were established: Water, Wetland, Grassland, and Builtup/Trees (Figure 7.11). 

 

 

Water Wetland Grassland Builtup/Trees 

    

    

Figure 7.11: Land cover types with fieldwork photographs 

 

In the output maps e.g. Figure 7.12, blue depicts water bodies, cyan identifies wetland, 

green represents grassland and red is assigned to builtup/trees. The training samples of 

each class were selected from SAR images on the basis of two sources: field mapping 

and general knowledge of the scene area and high-resolution QuickBird images from 

Google Earth. Google Earth images over the study area were taken in January 2009, at 

around the same time that SAR image acquisition and the fieldwork campaign took 

place. To improve the classification performance, sufficient and representative training 

data for each class must be collected. 
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Water  

 

The water surface includes the water-body polygons extracted from the dGPS field data 

(Section 6.2.1). Water class represents all types of water bodies, such as ponds, lakes 

and rivers. Its signature appears as a very dark tone in the SAR backscatter imagery 

because of specular reflection. Water class is shown by the colour blue. 

 

 

Wetland 

 

Wetland is usually caused by irrigating cultivated fields or precipitation. It is very 

shallow water where water level may be raised just up to a few centimetres. This may 

cause less backscatter in SAR imagery and may be interpreted as a water body or 

flooding. This class was established to train the system to distinguish between water and 

wetland in order to avoid classifying wetland as water. Wetland class is shown by the 

colour cyan. 
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Grassland 

 

As no details of field data on different types of vegetation were available, all types of 

grassland cover were aggregated into a single class. Therefore, the Grassland class in 

this study represents all types of short vegetation, such as grass and crops, but not tall 

trees. Grass has higher backscatter compared with water and thus provides a moderate 

bright signature. Grassland class is shown by the colour green.  

 

Builtup areas/Trees 

 

Builtup areas and trees are treated as one class because trees were found among 

settlements. The Builtup/Trees class includes settlements that are a mixture of 

homesteads and are associated with tall trees and industrial areas. This class has very 

high backscatter because of roof reflection and double bounce reflection from building 

corners and tree trunks. Thus, this class appears clearer and more easily identifiable 

because of its high backscatter. This class is shown by the colour red.  

 

The spectral separability of the selected ROIs training samples was evaluated using 

Jeffries–Matusita distance to determine how statistically separate the selected classes 

are (Richards, 1993; Schmidt & Skidmore, 2003). The Jeffries–Matusita separability 

measure found values in the range of 0–2.0 (ENVI, 2005; Richards, 1999). Values 

greater than 1.9 indicate that the ROI pairs have good separability, while very low 

separability is signified when values are less than 1 (Richards, 1999; Ye, 2008).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V6V-47T2RXT-1&_user=121711&_coverDate=04%2F25%2F2003&_rdoc=1&_fmt=high&_orig=search&_origin=search&_sort=d&_docanchor=&view=c&_searchStrId=1620836914&_rerunOrigin=google&_acct=C000009978&_version=1&_urlVersion=0&_userid=121711&md5=c60a35f6be4ec78d12998c0bca97bcbe&searchtype=a#bbib40
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Results of the spectral separability evaluation between training samples in Radarsat-2 

HH, VV and TerraSAR-X HH, VV indicate that selected ROI training samples do 

separate (Table 7.3). In all HH images, values of Water and Grassland classes are 

greater than 1.9, indicating that these two classes have good separability. However, 

Water and Wetland have low separability of 0.55–1.27, which indicates that there is 

some confusion between these classes. The VV polarization data have low Jeffries–

Matusita separability between water and wetland in both sensors compared to HH. 

Confusion with VV may be due to the relative proportion of radar echo signal 

backscattered away from the SAR sensor because wetland areas may act as specular 

reflectors, which could be confused with open water bodies.   

 

Table 7.3: Jeffries–Matusita distance separability matrix of land cover training samples 

for pairs of classes of Radarsat-2 and TerraSAR-X data using occurrence data-range 

and mean and co-occurrence mean, variance and contrast texture variables. 

sensor 
Texture 

measures 

Water-

wetland 

Water-

grassland 

Water-

builtup/trees 
Polarization 

Radarsat-2 

Occurrence 
0.96 1.99 1.81 HH 

0.69 1.95 1.81 VV 

Co-

occurrence 
1.02 1.99 1.99 HH 

TerraSAR-X Occurrence 

1.27 2.00 1.95 HH 

0.55 1.77 1.78 VV 

 

 

 

7.3.3 Supervised Classification of Radarsat-2 Data  

 

Maximum likelihood supervised classification for Radarsat-2 HH and VV products was 

performed using occurrence and co-occurrence texture variables for image 

classification. The selection of all texture variables was based on the results of the 

evaluation discussed in Section 6.3.2. The recommended occurrence texture variables 

for Radarsat-2 products (Section 6.3.2.1) were data range, mean and variance. 

However, because variance did not lead to any output signature in the TerraSAR-X 

texture images, the variance variable has been excluded from the image classification in 

order to obtain a reliable comparison between the classified images of the two sensors. 
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The co-occurrence variables suggested in Section 6.3.2.2 were mean, variance, 

dissimilarity and contrast. Dissimilarity and contrast variables are very similar in terms 

of water-body identification. Therefore, both of these will be evaluated by combining 

each with mean and variance in a separate texture image for image classification in 

order to identify which performs better.  

 

The following sections present the results of occurrence and co-occurrence image 

classification for Radarsat-2 HH and VV polarizations. 

 

7.3.3.1 Classified Occurrence Texture Images 

 

7.3.3.1.1 HH Polarization 

 

Results of supervised classification for Radarsat-2 HH texture images with occurrence 

data-range and mean variables (Figure 7.12) show good discrimination between water 

bodies and other land cover types. A visual comparison between the supervised 

classification map and the texture image indicates that land classes in the classified 

image are more homogeneous and more uniform than the unsupervised classified 

images (Figure 7.10), particularly for the Water class. This highlights the importance of 

image texture variables in providing image classification with quantitative information 

to improve the quality of classified images. Moreover, the results indicate that 

supervised classification shows better performance than unsupervised classification, 

described in Section 7.3.1, in identifying flooding and small water bodies.  

 

The SAR images were classified twice, before and after employing an enhancement 

median filter 3×3 kernel size window in the ENVI software. The median 3×3 window is 

large enough to smooth anomalous signal while small enough to preserving the detail of 

very small water bodies (Section 6.3.1). The classification process was conducted with 

and without the median 3×3 window in order to examine the effect of the median 3×3 

filter on improving the quality of classification, particularly the Water class.  

 

 



    Chapter 7: Water Body Mapping 

 

 

173 

  
Texture image 

data-range and mean 

Radarsat-2 HH backscatter 

product 

  

Classified image  

Figure 7.12: Supervised classification of occurrence data-range and mean texture 

image for Radarsat-2 HH overlaid with dGPS data compared to the original SAR 

product and the texture image; maps shown here and subsequent maps cover a small 

portion of the study area. 

 

The quality of the supervised images was assessed for accuracy with the use of an error 

matrix method. The error matrix, also known as a confusion matrix, is a method of 

calculating the accuracy of classified classes with respect to the reference data 

(Congalton & Green, 2009) (Section 3.9.2). User accuracy, producer accuracy, overall 

accuracy and Kappa coefficient of the classified images were computed from the 

confusion matrix. The overall accuracy is an indication of the correctness of the 

classified image, where the Kappa coefficient reflects the agreement percentage 

between the classified image and the reference data. Producer accuracy is a measure of 

how well the classified image is produced and quantifies the omission errors of a class. 

User accuracy measures how well the pixels are assigned on the classified image and 

quantifies the commission errors on a class within the classified image. 

 

Supervised classification was employed with images smoothed by the median 3×3 

window to examine its effectiveness in improving the classification accuracy of land 

cover classes, particularly the Water class, and to verify the results of analysis discussed 

in Section 6.3.1. The error matrices of the classified images of Radarsat-2 HH texture 
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images with and without median 3×3 window are shown in Tables 7.4 and 7.5, 

respectively. The producer accuracy of the Water class that results from classifying 

texture image without a median 3×3 window is 88.31%, and the user accuracy is 

92.84%. The classified image of the texture image that used the median 3×3 window 

has a producer accuracy of 88.61% and a user accuracy of 94.30%. These results 

indicate an improvement in the quality of the classified images when using enhanced 

images. This means that the data that has been pre-processed with a median 3×3 

window provides better identification of water bodies. 

 

There is confusion of 14% between Water and Wetland (Table 7.4), which decreased to 

11.4% (Table 7.5) upon using the median 3×3 window. Many areas of wetland were 

found in the study area during the acquisition of SAR images and the fieldwork and 

most were caused by activities relating to irrigation of newly transplanted field. This 

confusion occurred because there was less backscatter due to the smoothness of the 

wetland surfaces (see Section 7.3.2.1 and Table 7.3). 

 

The results highlight the efficiency of the selected texture variables of data-range and 

mean backscatter, which were evaluated for water identification in Section 6.3.2.1. 

Therefore, supervised classification of Radarsat-2 HH texture images with at least two 

texture variables provides homogeneous and separable land cover classes and a high 

level of accuracy for Water classification. The high user accuracy of 94.30% for the 

Water classification emphasises the capability of Radarsat-2 HH ultrafine data for 

mapping water bodies. Table 7.5 shows that the confusion between Water and other 

classes is only with the Wetland class, where the overlap is estimated at 11.4% which 

reduced the producer‟s accuracy to 88.61%. 

 

 

 

 

 

 

 

 

 

 

 

 



    Chapter 7: Water Body Mapping 

 

 

175 

Table 7.4: Confusion matrix (percentage) of classified image of Radarsat-2 HH 

occurrence data-range and mean variables without median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 
Water 88.31 14 0.06 0.00 7.16 92.84 

Wetland 7.22 79.48 7.53 0.08 40.49 59.51 

Grassland 3.42 6.26 89.42 23.92 10.55 89.45 

Builtup/Trees 1.05 0.07 2.99 76.00 12.05 87.95 

Producer Acc. 88.31 79.48 89.42 76.00  

Omission 11.69 20.52 10.58 24.00  

Overall Accuracy: 85.90%; Kappa Coefficient: 0.7838 

 

Table 7.5: Confusion matrix (percentage) of classified image of Radarsat-2 HH 

occurrence data-range and mean variables with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 
Water 88.61 11.38 0.00 0.00 5.70 94.30 

Wetland 7.12 85.24 3.05 0.00 26.51 73.49 

Grassland 2.20 3.38 94.49 16.65 6.97 93.03 

Builtup/Trees 2.07 0.00 2.46 83.35 10.74 89.26 

Producer Acc. 88.61 85.24 94.49 83.35  

Omission  11.39 14.76 5.51 16.65  

Overall Accuracy: 90.41%; Kappa Coefficient: 0.8521 

 

 

7.3.3.1.2 VV Polarization 

 

The classified image of VV polarization compared visually with the texture image 

(Figure 7.13) reveals to some extent a separable Water class, but less so than with HH 

polarization (Figure 7.12). The VV error matrix in Table 7.6 shows lower overall 

accuracy (79.46%) compared to the HH polarization (90.41%) shown in Table 7.5. 

Although the user accuracy of the water class is high, there is a level of omission which 
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is quantified as 27% compared to 11% in HH. This strongly suggests that HH 

polarization is better than VV in the detection of water. 

 

  

 

Texture image 

Data-range and mean 

Classified image  

Figure 7.13: Supervised classification of occurrence data-range and mean texture 

image for Radarsat-2 VV compared to the texture image 

 

Table 7.6: Confusion matrix (percentage) of classified image of Radarsat-2 VV 

occurrence data-range and mean with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 

Water 72.47 14.51 0.00 0.00 7.29 92.71 

Wetland 14.03 83.94 0.36 0.00 30.07 69.93 

Grassland 10.95 1.12 94.84 22.15 35.76 64.24 

Builtup/Trees 2.54 0.43 4.80 77.85 12.87 87.13 

Producer Acc. 72.47 83.94 94.84 77.85  

Omission  27.53 16.06 5.16 22.15  

Overall Accuracy: 79.46%; Kappa Coefficient: 0.7144 
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7.3.3.2 Classified Co-occurrence Texture Images 

 

The recommended co-occurrence variables of mean, variance, contrast and 

dissimilarity in Section 6.3.2.2, which are better identifiers of water texture, were 

applied for supervised classification. The co-occurrence variables were divided into two 

combinations of texture images, and each texture image contained three variables for 

the image classification. The first classified image (A) was processed with mean, 

variance and dissimilarity, while the second one (B) was processed with mean, variance 

and contrast (Figure 7.14). This step was implemented to test which combination of 

variables shows more improvement for Water class classification. 

 

Visual analysis of the co-occurrence image classification results (Figure 7.14) 

demonstrates that the Water class has good homogeneity and can easily be distinguished 

from surrounding land cover features. Results of accuracy assessment for co-occurrence 

image classification also show a high overall accuracy of greater than 90% and a high 

Kappa coefficient of 0.8514 as presented in the error matrices (Tables 7.7 and 7.8). The 

accuracy assessment of the Water class classification is high, with a producer accuracy 

of greater than 87% and a very high user accuracy of greater than 95%. The confusion 

between Water and other land classes is almost zero, except for the Wetland class, 

calculated at 7–8%. A possible reason for this Water–Wetland confusion is the 

similarity of surface smoothness between water bodies and wetland areas, as explained 

in Section 7.3.3.1. 

  

Evaluation of the effectiveness of dissimilarity and contrast variables when used 

alongside the two variables of mean and variance (Figure 7.14 and Tables 7.7 and 7.8) 

revealed that dissimilarity and contrast worked well in identifying small water bodies. 

For co-occurrence with three variables, the image classification results of the overall 

accuracy and the Kappa coefficient, in particular user and producer accuracy of Water 

class, appear almost similar to those for occurrence with two variables, as shown in 

Table 7.9. This indicates that Water class can easily be delineated to a high level of 

identification either with selected occurrence or with co-occurrence variables. 
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mean, variance and 

dissimilarity 

Classified image (A) Radarsat-2 HH product 

  
 

mean, variance and 

Contrast 

Classified image (B)  

Figure 7.14: Supervised classification of Radarsat-2 HH produced after applying co-

occurrence variables of (A) mean, variance and dissimilarity, and (B) mean, variance 

and contrast overlaid with dGPS data 

 

Table 7.7: Confusion matrix (percentage) of classified image of Radarsat-2 HH with co-

occurrence mean, variance and dissimilarity with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

commission User Acc. 

Water 87.19 8.86 0.03 0.00 4.63 95.37 

Wetland 7.19 88.19 4.07 0.00 29.07 70.93 

Grassland 4.85 2.95 94.23 16.06 7.73 92.27 

Builtup/Trees 0.78 0.00 1.67 83.94 6.70 93.30 

Producer Acc. 87.19 88.19 94.23 83.94  

Omission  12.81 11.81 5.77 16.06  

Overall Accuracy: 90.36%; Kappa Coefficient: 0.8514 
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Table 7.8: Confusion matrix (percentage) of classified image of Radarsat-2 HH with co-

occurrence mean, variance and contrast with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 

Water 87.19 7.13 0.00 0.00 3.71 96.29 

Wetland 7.63 90.28 4.23 0.00 29.55 70.45 

Grassland 4.44 2.59 94.13 15.00 7.80 92.20 

Builtup/Trees 0.77 0.00 1.64 83.31 6.51 93.49 

Producer Acc. 87.19 90.28 94.13 83.31  

Omission  12.81 9.72 5.87 16.69  

Overall Accuracy: 90.39%; Kappa Coefficient: 0.8522 

 

 

Table 7.9: Comparison of accuracy assessment (percentage) between classified images using 

occurrence and co-occurrence variables for Radarsat-2 

Classes 

 

 

 

 

 

 

 

 Occurrence – two variables 

(Table 7.5)  

Co-occurrence – three 

variables (Table 7.8) 

Overall 

Accuracy 
90.41 90.39 

Kappa 

Coeff. 
0.8521 0.8522 

 Prod. Acc. User Acc. Prod. Acc. User Acc. 

Water 88.61 94.30 87.19 96.29 

Wetland 85.24 73.49 90.28 70.45 

Grassland 94.49 93.03 94.13 92.20 

Builtup/Trees 83.35 89.26 83.31 93.79 
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7.3.4 Supervised Classification of TerraSAR-X Data  

 

The image classification of TerraSAR-X HH Stripmap images was undertaken by 

applying the same occurrence variables of data-range and mean used for the 

classification of Radarsat-2 images. The TerraSAR-X images were classified before and 

after applying the enhancement median 3×3 window, in order to identify any 

differences, as also carried out for the Radarsat-2 texture images (see Section 7.3.3.1). 

 

7.3.4.1 Classified Occurrence Images  

 

7.3.4.1.1 HH Stripmap Polarization 

 

Results of the image classification of HH polarization (Figure 7.15) showed a high level 

of separability for land cover features. The Water class was identified with a high level 

of homogeneity and considerable separability. In order to assess the classified images 

quantitatively, an error matrix method was used to calculate accuracy. The confusion 

matrices of the classified images with and without using the median 3×3 window for 

TerraSAR-X HH Stripmap are shown in Tables 7.10 and 7.11, respectively. The 

classified image obtained using the median 3×3 window has an overall accuracy of 

91.52%, while the classified image without median 3×3 window has an overall accuracy 

of 87.25%. This indicates a considerable improvement in classification accuracy when 

using the median 3×3 window. Accuracy of water classification also improved from 

97.13% to 98.78% for user accuracy, and improvement in producer accuracy from 

92.98% to 93.12% was observed. This enhancement with the median 3×3 window in 

TerraSAR-X image classification and with the Radarsat-2 classified images (Section 

7.3.3.1) highlights the reliability of the median 3×3 window effectiveness. 

 

Regarding the classified image with the median 3×3 window, overall accuracy of the X-

Band TerraSAR-X HH Stripmap classified images reaches over 91% and has a Kappa 

coefficient of 0.8828. The Kappa coefficient indicates a high level of agreement of 

0.8828 between the classified image and the reference data. There is almost no 

confusion between Water and the other classes, except for Wetland, which was found to 

be very low, around 2.0%, which indicates a low level of bias and a very high user 

accuracy (98.78%). The water classification gave a producer accuracy of 93.12% and a 
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user accuracy of 98.78%. This is a very high level of user accuracy for the Water class 

and indicates that almost all the water pixels are correctly assigned. This result indicates 

that the X-Band TerraSAR-X 3-m resolution product has excellent potential to 

discriminate water from other land cover types and is very suitable for flood extent 

mapping. 

 

 

  

Texture image 

Data-range and mean 

TerraSAR-X HH product 

  

Classified image  

Figure 7.15: Supervised classification of occurrence data-range and mean texture 

image for TerraSAR-X HH Stripmap overlaid with dGPS data compared to the original 

SAR product and the texture image 
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Table 7.10: Confusion matrix (percentage) of classified image of TerraSAR-X HH 

occurrence data-range and mean with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 
Water 93.12 2.23 0.00 0.00 1.22 98.78 

Wetland 4.24 92.40 3.36 0.14 15.26 84.74 

Grassland 0.20 5.37 93.63 14.93 10.30 89.70 

Builtup/Trees 2.44 0.00 3.01 84.93 9.36 90.64 

Producer Acc. 93.12 92.40 93.63 84.93  

Omission  6.88 7.60 6.37 15.07  

Overall Accuracy: 91.52%; Kappa Coefficient: 0.8828 

 

Table 7.11: Confusion matrix (percentage) of classified image of TerraSAR-X HH 

occurrence data-range and mean with no median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 
Water 92.98 5.31 0.00 0.00 2.87 97.13 

Wetland 5.19 87.48 8.00 0.57 25.83 74.17 

Grassland 0.61 7.21 88.91 23.32 15.68 84.32 

Builtup/Trees 1.22 0.00 3.09 76.11 8.65 91.35 

Producer Acc. 92.98 87.48 88.91 76.11  

Omission  7.02 12.52 11.09 23.89  

Overall Accuracy: 87.25%; Kappa Coefficient: 0.8236 

 

7.3.4.1.2 VV Stripmap Polarization 

 

Close inspection of the supervised classification results of TerraSAR-X VV Stripmap 

polarization, presented in Figure 7.16, shows that land cover features have less 

homogeneity than those seen in the HH polarization classified images (Figure 7.15). 

The confusion matrix of the VV classified images is shown in Tables 7.12. The overall 
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accuracy of the classified image is 82.50% and the Kappa coefficient is 0.7558. There is 

a confusion of 11.44% between water and wetland which is higher than the results 

obtained from the HH as well as with the omission of the water class (see Table 7.11). 

This indicates that the choice of HH for discriminating water bodies from wetland areas 

is recommended. Although the producer‟s and user‟s accuracies 88.27% and 93.10% 

respectively are high, they are noticeably lower than the equivalent HH accuracy data 

(see Table 7.12). 

 

  

 

Texture image 

Data-range and mean 

Classified image  

Figure 7.16: Supervised classification of occurrence data-range and mean texture image for 

TerraSAR-X VV compared to the texture image. 

 

Table 7.12: Confusion matrix (percentage) of classified image of TerraSAR-X VV occurrence 

data-range and mean with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland Grassland Builtup/

Trees 

Commission User 

Acc. 

Water 88.27 11.44 0.24 1.32 6.90 93.10 

Wetland 1.97 87.10 0.00 0.78 4.91 95.09 

Grassland 1.19 1.19 96.84 48.10 41.42 58.58 

Builtup/Trees 2.03 0.26 2.92 49.81 13.59 86.41 

Producer Acc. 88.27 87.10 96.84 49.81  

Omission  11.73 12.90 3.19 50.19  

Overall Accuracy: 82.50%; Kappa Coefficient: 0.7558 
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7.3.4.1.3 HH Spotlight Image 

 

The texture image variables applied to the TerraSAR-X spotlight image product were 

occurrence data-range and mean. Five land classes were established for the high-

resolution spotlight according to visual analysis of land cover features in the study area. 

The classes used were Water, Wetland, TallGrass, ShortGrass and Builtup/Trees. The 

Grassland class is divided into two classes – ShortGrass and TallGrass – because 

noticeable backscatter differences were found between short and tall grass. The 

TallGrass regions appear with higher backscatter than the ShortGrass areas in the SAR 

image (Figure 7.17).  

 

Visual inspection of the classified image (Figure 7.17) shows that the spotlight image 

provides more detailed information regarding very small water bodies. The classified 

spotlight image appears to produce a more detailed map of water bodies but there are 

small patches of water appear within areas of wetland may be because of areas of 

standing water in rice paddy. Also areas of wetland within water bodies may be due to 

surface weed or wind induced surface roughness.  

 

Comparing the accuracy of the results of classified images before and after using the 

median 3×3 window reveals observable improvements in the overall accuracy and in 

user and producer accuracy for the Water class (Tables 7.13 and 7.14). The 

improvement in accuracy in the spotlight image after using the median 3×3 window is 

more obvious than that in the Stripmap imagery. According to Table 7.13, Water class 

shows a user accuracy of 97.04%. However, 10.07% of pixels are still misclassification. 

Table 7.14 also shows a high overall accuracy of 87.94% and a Kappa coefficient of 

0.8158. 
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Texture image 

Data-range and mean 

TerraSAR-X HH spotlight 

  

Classified image  

Figure 7.17: Supervised classification of occurrence data-range and mean texture 

image for TerraSAR-X HH spotlight overlaid with dGPS reference data in yellow 

compared to the original SAR product and the texture image 

 

Table 7.13: Confusion matrix (percentage) of TerraSAR-X spotlight HH occurrence 

data-range and mean texture image without median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland TallGrass ShortGrass Builtup/

Trees 

Commission  User 

Acc. 
Water 86.01 14.23 0.00 0.20 0.19 2.96 95.62 

Wetland 13.94 82.06 0.00 3.73 0.09 30.56 60.61 

TallGrass 0.00 0.00 78.29 12.11 22.54 21.17 74.67 

ShortGrass 0.05 3.71 19.65 83.96 0.47 20.31 70.93 

Builtup/Trees 0.00 0.00 2.06 0.00 76.71 3.07 96.70 

Producer Acc. 
 

86.01 82.06 78.29 83.96 76.71  

Omission 10.14 12.71 12.82 15.67 17.40  

Overall Accuracy: 83.50% Kappa Coefficient: 0.7503 
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Table 7.14: Confusion matrix (percentage) of TerraSAR-X spotlight HH occurrence data-range 

and mean texture image with median 3×3 window applied. 

 Reference Data  

Class Image Water Wetland TallGrass ShortGrass Builtup/

Trees 

Commission User 

Acc. 
Water 89.86 10.07 0.00 0.00 0.00 2.96 97.04 

Wetland 10.14 87.29 2.12 0.00 0.00 30.56 69.44 

TallGrass 0.00 0.00 84.33 10.70 17.44 20.31 79.69 

ShortGrass 0.00 2.64 13.61 87.18 0.00 21.17 78.83 

Builtup/Trees 0.00 0.00 0.00 2.06 82.60 3.07 96.93 

Producer 

Acc. 

89.86 87.29 84.33 87.18 82.60  

Omission 10.14 12.71 15.67 12.82 17.40  

Overall Accuracy: 87.94%; Kappa Coefficient: 0.8158 

 

 

7.4 Contextual Analysis 

 

The contextual classification does not classify single pixels (i.e. supervised 

classification), but rather image objects or segments. The supervised classification 

depends on the spectral reflectance of pixels, while the contextual classification with its 

knowledge base includes other attributes (i.e. shape, texture, relation to neighbouring 

objects) additional to the spectral information provided in an image. The contextual 

classification approach first involves image data segmentation, which segments the 

image into a network of homogeneous image objects. The second stage of contextual 

classification is object-oriented, whereby land cover classes are related to the segmented 

image objects.  

 

Contextual classification offers some advantages over traditional classification 

(eCognition User Guide, 2004): 

1. Image objects contain additional information for classification, such as shape, 

texture and the relational network of information. 

2. The segmentation process can separate adjacent objects that are textured or have 

noise. 
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3. Segmentation can make classification work significantly faster, because it 

reduces the total number of elements needed to be handled for classification.  

4. Extracting homogeneous regions (segmentation) and then classifying them 

reduces salt-and-pepper noise in the classification results. 

 

Definiens Professional software was used for contextual classification of the water 

bodies and other land cover types within the study area. The schematic diagram in 

Figure 7.18 illustrates the methodology and work flow of the contextual classification. 

 

 

 

Figure 7.18: Methodology flow chart of the contextual classification used for 

segmentation and object-oriented classification. 

 

7.4.1 Segmentation 

 

Image segmentation is a technique of bottom-up region merging that starts with 

merging smaller image objects into larger ones. In this technique an image is segmented 

into unknown classes, which are then labelled as particular classes, resulting in a 

classified image. The image segmentation algorithm is not only influenced by the pixel 

values but also by three parameters: scale, colour/shape and compactness/smoothness 

(Definiens, 2006). The scale parameter is set by the user to define the resolution of the 

image object level to obtain maximum change in pixel heterogeneity when merging 
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image objects. Adjusting the scale parameter value enables the user to control the sizes 

of the created image objects. The colour parameter is related to the percentage of the 

spectral value contribution of the image objects to the homogeneity composition in 

contrast to the percentage of the shape homogeneity (Mitri & Gitas, 2004). In other 

words, the colour parameter balances the colour of object homogeneity with its shape 

homogeneity. Image data with similar spectral values but of very different shapes is 

optimized with the compactness parameter, while very heterogeneous data is optimized 

with smoothness. Smoothness and compactness are used to define homogeneity of 

shape. Image objects with smoother edges can be achieved by increasing the 

smoothness parameter, where a more compact form of image objects can be generated 

by increasing compactness. The segmentation parameter specifications were set within 

the Definiens software after running trials of multi-resolution segmentation, i.e., 

different segmentations with different parameters were performed until the results were 

satisfactory. 

 

For this study a higher value was assigned to the shape parameter compared to the 

colour parameter in all SAR image segmentation, because it is more important to 

identify the different shapes of water bodies than the colour parameter. Values of the 

compactness parameter were set higher than smoothness to optimize the different 

shapes of water-body objects that have similar spectral values. Finally, the smoothness 

parameter was assigned lower values to reduce data heterogeneity. Because the 

segmentation scale in this study focuses on the water bodies, the process was conducted 

with level 1 segmentation. The segmentation and classification was conducted for two 

types of SAR images: images smoothed by median 3×3 window (see Section 6.3.1) but 

without using texture variables, and images with texture occurrence data-range and 

mean. This approach was performed to identify any improvements in the accuracy of 

the contextual classification results with or without the use of texture variables. 
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7.4.1.1 Radarsat-2 HH Image Segmentation 

 

The scale parameter for the Radarsat-2 HH texture image occurrence data-range and 

mean is defined as 50 to set the size of image objects for the segmentation process. The 

criterion for defining the scale parameter is based on the identification of the spatial 

sizes of very small water bodies. The value of 0.8 was found to work better for the 

shape parameter, while the colour value was automatically set to 0.2. The compactness 

parameter value of 0.7 was found to be the most suitable for water-body identification 

(Table 7.15). The segmented texture image is presented in Figure 7.19. Visual analysis 

of the segmented image showed that the water bodies appear well segmented, including 

the very small ones. Differences in homogeneity within the water body in the 

segmented image (Figure 7.19) may relate to texture roughness differences arising from 

wind or surface water weeds such as hyacinth, which is common in Bangladesh. 

 

Segmentation was also performed for the Radarsat-2 HH images without texture 

variables. This step was carried out to examine any difference that may have occurred 

when using the original SAR image compared to the segmented texture image. The 

scale parameter of 100 and values of 0.7 for shape and compactness were found to be 

the most suitable for this type of image (Table 7.16). A small area extracted from the 

segmented image is shown in Figure 7.20. Visual analysis of water-body identification 

within the segmented image demonstrated that each water body was segmented as a 

homogeneous object, as shown in the extracted area in Figure 7.20. This is one of the 

advantages of using segmentation for identifying bodies of water. 
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Table 7.15: Segmentation parameters for Radarsat-2 HH occurrence data-range and 

mean texture image 

Scale Level Scale 

Parameters 

Colour/Shape 

Factor 

Compactness/ 

Smoothness 

1 50 0.2/0.8 0.7/0.3 

 

 

Figure 7.19: Radarsat-2 HH texture image (data-range and mean) before and after 

segmentation 

 

Table 7.16: Segmentation parameters for Radarsat-2 HH non-texture image. 

Scale Level Scale 

Parameters 

Colour/Shape 

Factor 

Compactness/ 

Smoothness 

1 100 0.3/0.7 0.7/0.3 

 

 

 

Figure 7.20: Radarsat-2 HH original image (non-texture image) before and after 

segmentation 
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7.4.1.2 TerraSAR-X HH Image Segmentation  

 

Segmentation of the TerraSAR-X HH texture image was based on a scale parameter of 

10, which was found to be the most suitable scale for water-body object sizes. The 

shape value parameter was adjusted to 0.8 after running trials to obtain the best level for 

identifying the water bodies, while the colour value was automatically set to 0.2. The 

compactness/smoothness parameter for water identification was adjusted to values of 

0.7/0.3 (Table 7.17). Results of TerraSAR-X HH texture image segmentation show that 

the bodies of water are segmented with a high level of identification and are 

discriminated well from other objects. Figure 7.21 shows a part of the segmented image 

in which can be seen a well-segmented water body.  

 

Segmentation was also applied to a TerraSAR-X HH image without texture variables; 

this step was performed with the Radarsat-2 HH image so that the two results could be 

compared. The parameters of scale and composition of homogeneity were set to the 

same values as for those of the TerraSAR-X texture image presented in Table 7.17 

because they provided similar results. The segmented image produced from the original 

TerraSAR-X products indicates that the image is able to discriminate water bodies from 

other land cover features.  
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Table 7.17: Segmentation parameters of TerraSAR-X HH texture image (data-range 

and mean) variables 

Scale Level Scale 

Parameters 

Colour/Shape 

Factor 

Compactness/ 

Smoothness 

1 10 0.2/0.8 0.7/0.3 

 

 

Figure 7.21: TerraSAR-X HH texture image (data-range and mean) before and after 

segmentation 

 

 

Figure 7.22: TerraSAR-X HH original image (non-texture image) before and after 

segmentation 
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7.4.2 Image Object-Oriented Classification 

 

The object-based image classification approach based on the spectral and contextual 

information inherent in image objects generated from image segmentation process was 

discussed in section 7.4.1 (Malambo, 2009). Classification of the segmented objects is 

the second stage of the contextual analysis and takes full advantage of the information 

on the image objects (i.e. spectral values, shape and texture information). The „assign 

class‟ algorithm was used instead of class description, because active classes contain 

exactly one class. This step provides valuable classification results (Definiens, 2006). 

Each class was defined by a nearest-neighbour classifier. The nearest-neighbour 

classifier is based on given sample objects or training areas that are typical 

representatives of a class. The procedure of nearest-neighbour classification in the 

Definiens software is similar to that described for supervised classification (see section 

7.3.2).  

 

Four classes (Water, Wetland, Grassland and Builtup/Trees) were established for the 

nearest-neighbour classification and categorized similar to the classes of the maximum 

likelihood classification (Section 7.3.2.1). Prototype segment samples of training areas 

for each class were selected randomly from the image objects by using the sampling 

tool in the Definiens software. Selection of samples was based on knowledge of the 

study area and high-resolution images from Google Earth (Section 7.3.2.1). Samples 

were selected according to feature value and signature and were compared with other 

classes. Various tools were used to verify that the selected samples were the most 

suitable ones. For the samples of training signatures, separability can be visually 

verified in the sample editor. The separability of classes can be checked via the feature 

space plot to ensure a satisfactory level, as shown in Figure 7.23.  
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Figure 7.23: Checking signatures separability using Definiens 2D feature space plot for 

training classes 

 

After establishing the desired classes and assigning suitable samples to the classes, 

classification was performed. Object-oriented classification was implemented for the 

two SAR sensors using non-texture HH images and the occurrence data-range and 

mean texture images. Reasons for this selection were discussed in Section 7.3.2. 

Contextual classified images were subjected to an accuracy assessment with the use of 

an error matrix. The error matrix was based on reference samples selected randomly 

from the image objects. The user accuracy, producer accuracy, overall accuracy and 

Kappa Index of Agreement (KIA) of classified images were also computed. 

 

7.4.2.1 Object-Oriented Classification of Radarsat-2 HH and TerraSAR-X HH 

Images 

 

Visual examination of the object-based classification results for Radarsat-2 HH texture 

images (Figure 7.24) demonstrated that water bodies are distinguished well compared to 

other land cover types. Classified images of the texture image and the original image 

both identified water bodies very well. The classified images therefore appear similar to 

one another in terms of delineating the Water class with only very few differences. The 

statistical results presented in the error matrix in Table 7.18 used for the accuracy 

assessment show very high overall accuracy for both types of classified images. Results 

of the accuracy assessment of the classified image without texture variables show an 

overall accuracy of 92.3%, while with texture variables the overall accuracy improved 

to 94.2%. The KIA, which reflects the agreement percentage between the classified 
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image and the reference data, is 0.8881 and 0.9138 for the original and the texture 

images, respectively, indicating a very good classification (see Table 7.18). Producer 

and user accuracy of Water class for both classified images reached 100%, except for 

the original image, which has a user accuracy of 80%. These highly accurate results for 

water object classification indicate that the proposed approach of contextual 

classification for water bodies is suitable for water identification. Furthermore, the 

contextual analysis shows that the Radarsat-2 HH sltrafine original image without 

texture variables is capable of classifying Water class to a high level of accuracy.  

 

The classified images from the TerraSAR-X HH displayed very high discrimination 

between the land cover classes, particularly for the Water class. The homogeneity of 

water-body shape is well defined and distinguishable even with the classified single X-

band image (Figure 7.25). The object-oriented classification error matrix results indicate 

that the Water class is highly accurate (100%) in terms of producer and user accuracy 

when classifying both types of images (Table 7.19). The classified original image 

provided an overall accuracy of 90.9%, and upon classifying the texture image this 

improved to 97.2% (Table 7.19). The KIA of the classified original image computed an 

agreement of 0.8713, while with the classified texture image the KIA improved to 

0.9593. The very high accuracy of the classified images from the TerraSAR-X Stripmap 

along with the visual assessment results indicate that contextual classification is more 

credible than other traditional classification methods. Moreover, water body mapping 

can be implemented to very high accuracy by applying the proposed approach for the 

TerraSAR-X Stripmap imagery. 
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Classified original image        Classified texture image 

   

  

Segmented original image        Segmented  texture image 

Figure 7.24: Comparison of object-oriented classification between original image and 

texture image (occurrence data-range and mean) of Radarsat-2 HH, along with the 

segmented images 

 

Table 7.18: Confusion matrix comparison between texture image and non-texture image 

contextual classification - Radarsat-2 HH 

Classes 

 

 

 

 

 Original Image Texture Image 

Overall 

Accuracy 
92.3% 94.2% 

KIA 0.8881 0.9138 

 Prod. 

Acc.% 

User 

Acc.% 

Prod. 

Acc.% 

User 

Acc.% 

Water 100.00 80.00 100.00 100.00 

Wetland 50.00 100.00 100.00 100.00 

Grassland 100.00 100.0 100.00 100.00 

Builtup/Trees 94.44 100.0 94.21 100.00 
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Classified original image        Classified texture image 

   

  

Segmented original image           Segmented texture image 

Figure 7.25: Comparison of object-oriented classification between original image and 

texture image (occurrence data-range and mean) from TerraSAR-X HH, along with the 

segmented images 

Table 7.19: Confusion matrix comparison between texture image and non-texture image 

contextual classification - TerraSAR-X HH 

Classes 

 

 

 

 

 Original Image Texture Image 

Overall 

Accuracy 
90.9% 97.2% 

KIA 0.8713 0.9593 

 Prod. 

Acc.% 

Prod. 

Acc.% 

User 

Acc.% 

User 

Acc.% 

Water 100.00 100.00 100.00 100.00 

Wetland 100.00 100.00 100.00 100.00 

Grassland 100.00 100.00 100.00 100.00 

Builtup/Trees 80.00 100.00 94.21 100.00 
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7.5 Comparison between Radarsat-2 and TerraSAR-X  

 

A comparison between SAR sensors was conducted in order to demonstrate their 

relative advantages for flood mapping. The SAR images used in this study have no 

distortion before performing geocorrection other than a slight translational offset which 

occurred to the west direction. Results of geocorrection showed that Radarsat-2 images 

were shifted by 46 m and TerraSAR-X by 8 m. This means that improvements of 

TerraSAR-X raw images quality in terms of pixel position accuracy in relation to the 

map projection might help in reducing the efforts required for geocorrection. 

 

A visual assessment for spatial sizes of water bodies was conducted by measuring a 

number of water bodies with different sizes obtained from density sliced classification 

of the water class from both SAR sensors. The water body sizes were compared to the 

dGPS data in order to determine the degree of similarity. Table 7.1 shows 

measurements of the water body examples. From the comparison, both sensors give 

almost similar sizes of water bodies for sizes more than 3000 m² while water bodies less 

than 1300 m² the TerraSAR-X is better with around 100 m² compared to the same water 

body in the dGPS data. 

 

A visual comparison of the supervised classification images was performed between 

occurrence and co-occurrence within Radarsat-2 HH images and also between classified 

images of Radarsat-2 and TerraSAR-X classified images. The comparison between 

image classifications before and after applying the median 3×3 window filter indicates 

an improvement in image classification for the two sensors‟ images after using the mean 

filter (see Tables 7.4, 7.5, 7.10, and 7.11). Image classification with co-occurrence of 

three variables shows that water class can easily be delineated with a high level of 

identification similar to the occurrence of two variables (section 7.3.3.2) (Table 7.9).  

 

The visual comparison of the supervised classification maps between the two sensors 

indicates that Radarsat-2 HH has good homogeneity and discrimination in water class 

but the TerraSAR-X HH has better homogeneous appearance and identification of the 

water class over the Radarsat-2 (see Figures 7.12 and 7.15). Accuracy of water 

classification is high in both sensors. However, the user‟s accuracy of water class of the 

Radarsat-2 HH is 94.30% while TerraSAR-X HH image classification achieved higher 
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user‟s accuracy (98.78%) (See Table 7.25). The overall accuracy and Kappa Coefficient 

of the Radarsat-2 and TerraSAR-X are almost similar to each other with 90.41%  - 

0.8521 and 91.52%  - 0.8828 respectively. The user‟s accuracy of the other classes has 

much similarity except grassland class in Radarsat-2 computed better (93.03%) than 

TerraSAR-X (89.70%). The wetland class in TerraSAR-X computed better (84.74%) 

than Radarsat-2 (73.49%) (see Table 7.25). The water class has been confused with 

wetland class in both sensors‟ classified images. In Radarsat-2 the wetland confusion 

estimated 11.4% which might interpret the reason for the bias which occurred on the 

user‟s accuracy which decreased to 94.30%. This result is lower than that of the 

TerraSAR-X (98.78%) which has very low confusion around 2.0% (see Tables 7.5 and 

7.10). 

 

Image segmentation which is the first stage of the contextual classification was applied 

to SAR images. Segmentation parameters of each sensor‟s image vary. While the scale 

parameters of Radarsat-2 imagery is (100), it is (10) with images of TerraSAR-X for 

non-texture image. Parameters of colour/factor of both sensors were close to each other 

and found to be 0.3/0.7 and 0.2/0.8 for Radarsat-2 and TerraSAR-X respectively (See 

Tables 7.16 and 7.17). The object-based classification implemented in the e-cognition 

environment achieved very high accuracy for both SAR products (see Tables 7.18 and 

7.19). 

 

The comparison between Radarsat-2 and TerraSAR-X products shows that both sensors 

have to some extent similar capability for mapping floods. However, TerraSAR-X 

appears to be more effective in flood detection than Radarsat-2. One of the reasons for 

this difference might be because of the wavelength differences in which the contrast 

ratio between water and the land features is less with longer wavelength (Drake and 

Shuchman, 1974). Table 7.20 outlines some results of the comparison between the two 

sensors. 

 

 

 

 

 



    Chapter 7: Water Body Mapping 

 

 

200 

Table 7.20: A brief comparison between images of Radarsat-2 and TerraSAR-X for 

water detection using HH polarisation, 3m, and high incidence angles. 

 Radarsat-2 TerraSAR-X Reference 

Position accuracy of WB 

location 
46 m shifting 8 m shifting Figure 6.6 

Water volume scattering 

(visual comparison) 
Less More Appendix 8.1  

WB Spatial size delineation 

compared to dGPS 
Poorer Better Table 7.1 

Supervised classification 

(water user accuracy) 
94% 98% 

Sections 7.3.3 

and 7.3.4 

e-cognition classification 

(water user accuracy) 
1.0 1.0 Section 7.4 

 

 

7.6 Area Estimation 

 

An important aspect of flood extent mapping is to generate reliable estimates of the area 

affected. Despite this, many published mapping studies fail to include any quantitative 

assessment of the quality of flood area estimates. A study by Powell et al (2004) 

reviewed 26 per reviewed papers on mapping and concluded that only four included 

randomly selected reference data from high resolution imagery and/or field data but that 

three of these used fewer than 50 reference sample points and the fourth does not 

include an error matrix.  To help address such concerns and to quantify bias in water 

area estimation and to assess the precision of the area mapping, the validation data were 

aggregated into two classes water and non-water and presented in error matrix form for 

both Radarsat-2 ultrafine and TerraSAR-X Stripmap and spotlight imagery. The overall 

accuracy summarised by the prevalence statistic is greater than 0.928 or 93% agreement 

for all three sensors, see tables 7.21 to 7.23. This is a very high figure, better than one 

would expect from automated classification of optical multispectral remotely sensed 

data, and is almost certainly explained by the distinctive backscatter response of water 

compared with other floodplain surfaces.  
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Table 7.21 Error matrix for Radarsat-2 HH ultrafine Data 

Radarsat-2 
Image Class 

Reference Data 

Occurrence Water Non-water Total User Accuracy 

 
Water 2614 158 2772 94.30% 

 
Non-water 336 10705 11041 96.96% 

 
Total 2950 10863 13813 

 
Producer Accuracy 88.61% 98.55% 

 
96.42 % 

 

Table 7.22 Error matrix for TerraSAR-X Stripmap Data 

TerraSAR-X Image 

Class 

Reference Data 

Occurrence Water Non-water Total User Accuracy 

 
Water 2747 34 2781 98.78% 

 
Non-water 203 7352 7555 97.31% 

 
Total 2950 7386 10336 

 
Producer Accuracy 93.12% 99.54% 

 
97.71 % 

 

Table 7.23 Error matrix for TerraSAR-X spotlight Data 

TerraSAR-X –

spotlight 
Image Class 

Reference Data 

 

Occurrence 

Water Non-water Total User Accuracy 

Water 5866 179 6045 97.04% 

Non-water 662 5018 5680 88.35% 

Total 6528 5197 11725 
 

Producer Accuracy 89.86% 96.56% 
 

92.83 % 

 

The error matrix for the assessment of the Radarsat-2 HH ultrafine data (table 7.20) has 

a total of 13,813 sampled reference pixels giving a total of 105,525 m
2
 analysed. The 

study area is 204 km
2
 which represents approximately 0.18% of Bangladesh‟s 

floodplain land area. This means that 0.05% of study area is used as reference data 

divided among water bodies, wetland, woodland and urban area.  

 

The data from the error matrics are used to calculate bias and precision. Bias measures 

the difference between expected and actual map class and can be calculated from the 
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distribution of predicted positive and predicted negative pixels taken from the map and 

reference data. The precision of the area estimate can be calculated for a given 

confidence limit by calculating variance provided that there is a sufficiently large 

sample. The equations used to calculate bias and variance are given below. 

 

  = area to be estimated 

 

   = random sample element 

 

E  = Expected value 

 

                 
                                     

 
 

             
 

      
         

 

   

  

 

Foody (2010) discusses the impact of imperfect ground reference data and demonstrates 

the impacts it can have on reported Producer‟s accuracy. While this study does not 

allow an error value to be attributed to the reference data every effort was made to 

endure these are separate from the training data, selected randomly and collected as 

carefully as possible. 

 

7.6.1 Flood Area Estimates 

 

There are a number of ways that flood area can be estimated from remotely sensed 

image maps. The simplest is a probablity-based approach using a simple random 

sampling (SRS) estimator. The advantage of the SRS estimator is that it is simple, 

intuitive and unbiased. A variation on SRS that is used in forest area mapping and can 

be usefully applied for estimating flood area, uses a model-assisted difference estimator 

(McRoberts 2010). The estimate assumes that the sample is randomly selected and 

unbiased.  

The reference data described in the sampling design (section 5.6.1) is randomly sampled 

which allows a probability-based inference approach to be applied. This approach 

assumes (1) that samples are selected randomly; (2) that the probability of sample 
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selection can be estimated; (3) that the sampling fraction is proportional to the total 

population. Despite randomisation, there are several possible sources of bias that 

include: 

1. Selecting sample areas from the random sample for convenience or because of 

availability of suitable reference data; 

2. The reference data may be of variable quality and that quality may not be 

distributed randomly; 

3. Operator bias could be present either in the distribution of errors in the output 

maps and also in the selection and interpretation of the reference data.  

 

Although, the expectation is that probability-based estimators are unbiased, this cannot 

be assumed. An elegant approach that combines the advantages of simple random 

sampling with model-based estimators is the model-assisted difference estimator 

(McRoberts 2010; McRoberts et al. 2010a; McRoberts et al. 2010b). A model-assisted 

estimator uses map data to make an initial inference but uses the probability-based 

sample to validate the result. In this analysis the model-assisted difference estimator has 

been applied since the area of water can be calculated easily from the classified output. 

Bias and Variance are estimated from the probability-based sample ata presented in 

tables 7.20-7.22.  

  

7.6.1.1 Radarsat-2 HH Data and TerraSAR-X HH Data 

 

At the 95% confidence level, the estimate of water area, based on the model-assisted 

stratified sampling design is 34.58 ± 1.31 km
2
 for Radarsat-2 products and 35.98 ± 1.22 

km
2
 for TerraSAR-X. Since the water mapping was carried out when the country was 

not subject to flooding, it is possible to use the model-assisted estimator to predict the 

total land area of water in the country. Making the assumptions that the total land area 

of Bangladesh is 147,570 km
2
 and of that 110,678 km

2
 is floodplain similar in 

characteristics to the study area, then the model-assisted estimator predicts that 18,761 

km
2 
or 12.71 % of the country consists of water land cover with regard to the Radarsat-2 

data while it is 19,520 km
2
 or 13.23 % in terms of the TerraSAR-X data. This compares 

with a figure of 10,090 km
2 
or 6.8% taken from the Bangladesh Bureau of Statistics. 

This is a predicted estimation based on the results obtained from the study area by using 

the model-assisted difference estimator. Results of the estimation can be verified by 
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cross-checking it with new statistics, if available, from the Bangladesh Bureau of 

Statistics or other governmental authorities. Appendix 6.1 shows more details about 

water area estimation for Bangladesh using Radarsat-2 and TerraSAR-X data. 

Note the similarities and differences between the different data sets seen in the Tables 

7.24 and 7.25. 

 

Table 7.24: Summary of water area estimates for the 204 km
2 

study area comparing 

mapped areas and areas estimated from a model-assisted difference estimator 

Sensor Area in km
2
 

Confidence 

Interval (at 

95% CL) 
km

2 
 

%Water 

Radarsat-2 HH 34.58 1.31 16.95 

TerraSAR-X 35.98 1.22 17.64 

Difference 1.4 0.09 0.69 

 

The overall accuracy (prevalence) is very high which ranges from 92 %-97% of the 

pixel and object classification methods for both SAR sensors. At the 95% confidence 

limit, the Stripmap TerraSAR-X data has a confidence interval of 12.15 km
2
, the 

ultrafine Radarsat-2 13.13 km
2
 and the spotlight TerraSAR-X 20.18 km

2
. Therefore, the 

data product that provides the highest level of mapping precision is the HH polarized 

Stripmap data from TerraSAR-X, see table 7.25.  
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Table 7.25: Comparison of sensors for water area estimation 

 Radarsat-2 TerraSAR-X 

Date of 

acquisition 
30-01-2009 20-01-2009 

07-04-

2009 

Pixel size 3 m 3 m 1.5 m 

Incidence angle 39 degrees 39-41 degrees  

Look direction Right Right Right 

Polarization HH HH HH 

Product beam 

mode 

Ultrafine Stripmap VHR 

spotlight 

Frequency  C-band X-band X-band 

Mapping 

technique 

ENVI – 

per pixel 

Definiens – 

object-

based 

ENVI – 

per pixel 

Definiens – 

object-

based 

ENVI – 

per pixel 

Bias -0.01289 + -0.01635 + -0.04119 

Variance 2.589*10-6 + 2.218*10-6 + 6.118*10-6 

Producer‟s 

Accuracy 
0.886 1.0 0.931 1.0 0.899 

User‟s Accuracy 0.943 1.0 0.988 1.0 0.970 

Overall 

Accuracy 

(Prevalence) 

0.964 0.942 0.997 0.970 0.928 

Study area % 

Water 
16.95  17.64   

Based on 95 % 

CL Confidence 

Interval 

km
2
 

1.31 + 1.22 + 2.02 

+ Not reported by software 

 

7.7 Summary   

 

This chapter has proposed a methodology for texture and contextual analysis and 

presented results using Radarsat-2 and TerraSAR-X images using various mapping 

techniques. The density slice method based on levels of radar backscatter differences 

was used for mapping water bodies to assess the ability to identify water using different 

polarizations for the two SAR sensors. The results indicate that unsupervised 

classification using ISODATA and K-Means techniques appears to be unable to identify 

to a sufficient degree very small water bodies from the SAR data. Supervised maximum 

likelihood classification was used to successfully discriminate Water class from other 

land cover types using texture data with occurrence and co-occurrence variables. A 

median 3×3 window was applied to the texture images to ascertain any improvements it 
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may provide in water body area identification. The supervised classified images were 

assessed for accuracy with the use of a confusion matrix. Comparison of accuracy 

results of the classified images between Radarsat-2 and TerraSAR-X are summarised in 

Table 7.26. A contextual classification approach was used because its knowledge base 

includes shape, texture and the relational network of information in addition to the 

spectral information provided in an image. An error matrix was used for quantitative 

assessment of the contextual classified images.  

 

Table 7.26: Comparison of accuracy assessment (in percentage) of Maximum-

Likelihood classified image between both SAR sensors. 

Classes 

 

 

 

 

 

 

 

 RSAT-2HH TSX HH 

Overall 

Accuracy 
90.41 91.52 

Kappa 

Coeff. 
0.8521 0.8828 

 Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Water 88.61 94.30 93.12 98.78 

Wetland 85.24 73.49 92.40 84.74 

Grassland 94.49 93.03 93.63 89.70 

Built-up/Trees 83.35 89.26 84.93 90.64 

 

 

Textural and contextual analysis of the sensors‟ images using the proposed 

methodology provided a number of significant results: 

 

1. Both C-Band Radarsat-2 and X-Band TerraSAR-X have HH and VV 

polarization beam modes. A comparison of polarization shows that HH yields 

higher mapping accuracies for both sensors.  

 

2 Image texture variables provide additional quantitative information that helps to 

discriminate water bodies from other land cover types. Therefore, classified 

texture images achieved higher accuracy than images without texture variables. 



    Chapter 7: Water Body Mapping 

 

 

207 

Applying the median 3×3 window offers better identification and mapping of 

water bodies. Furthermore, water can easily be delineated to a high level of 

precision with the selected texture variables: occurrence data-range and mean 

for products of both sensors and co-occurrence mean, variance and contrast for 

Radarsat-2 products. 

 

3 C-Band Radarsat-2 and X-Band TerraSAR fine beam modes with a similar 

spatial and radiometric resolution of 3 m yield similar results with small 

differences, indicating that the SAR response of water is not strongly affected by 

radar frequency.  

 

4 Supervised statistical classification using at least two texture variables and HH 

polarized SAR data provides homogeneous and separable land cover classes 

with high accuracy. Note the main source of confusion occurs between water 

and wetland; other land cover classes are well separated from water. 

 

5 The classified image from the spotlight HH (1.5 m resolution) appears to 

provide more detailed information regarding very small water bodies compared 

to the Radarsat-2 ultrafine and TerraSAR-X Stripmap data. However, the 

spotlight imagery has a limited swath coverage of (5×10 km) that may limit its 

operational application during extensive flood events. Also, the area estimates 

from spotlight data are less precise than equivalent Radarsat-2 and TerraSAR-X 

Stripmap products.  

6 Contextual classification within Definiens software has the advantage of 

providing additional context information for defining a class, such as spectral 

values, spatial features and object shapes. Object-oriented classification with 

texture images is therefore well suited for mapping water bodies. However, the 

results also indicate that by using object-oriented classification with the original 

SAR images without texture variables, water bodies may also be mapped to very 

high accuracy. Consequently, the proficiency of object-oriented classification for 

non-textured SAR images may reduce the effort and time required for flood 

mapping. 
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7 Published water area estimates for Bangladesh suggest that approximately 

6.84% of the country is open water. The results from this study suggest that this 

figure may be an underestimate. In the floodplain area under study, Radarsat-2 

maps 16.95 % of the area as open water and TerraSAR-X maps 17.64 % as open 

water.  
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Chapter Eight: 

THE POTENTIAL APPLICATIONS OF NEW SAR DATA FOR FLOOD 

DISASTER MANAGEMENT 

 

8.1 Introduction  

 

The SAR data used in this study were acquired from the German TerraSAR-X and the 

Canadian Radarsat-2 satellites, which were launched in June 2007 and December 2007 

respectively at the outset of this research project. Since then a new era of high spatial 

resolution space-borne SAR systems has begun. The lack of assessments of the new 

high resolution radar satellite systems‟ products for mapping water areas necessitates 

the need for this type of study for better exploitation of such systems to support flood 

disaster management. Thus, this thesis is one of the first studies to attempt to perform an 

empirical assessment of the capabilities of high spatial resolution SAR imagery for 

water body mapping and to carry out a comparative evaluation between X-band 

TerraSAR-X and C-band Radarsat-2 systems in order to establish which performs best 

for mapping small water bodies. 

 

The evaluation of the high resolution Radarsat-2 and TerraSAR-X products conducted 

in this thesis, along with the optimal methods for SAR image processing for water body 

mapping developed (chapters 5, 6, 7), were aimed to be used for mapping flood area in 

order to support flood disaster management and ,for water management purposes. The 

methods allowed mapping with high accuracy the water extent (section 7.3). Selecting 

the right SAR system parameters in addition to the appropriate processing methodology 

and high accuracy classification procedure will certainly improve the quality of flood 

mapping products. 

 

Since using actual floods for assessing the accuracy of the high resolution SAR system 

for water extent detection is difficult (section 2.5), mapping small water bodies was an 

appropriate alternative investigation method for implementing the research objectives 

(section 1.2). As a result, the approaches used for water body mapping derived from this 

study might be applicable to flood area mapping. 
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8.2 Current Operational Applications of SAR Satellite Data for Flood Risk 

Management 

 

Applications of remote-sensing information have increasingly demonstrated its 

effectiveness in providing support in all phases of the disaster management cycle 

(Bessis et al., 2004; Adams & Huyck, 2005; Ito, 2005; Gitas et al., 2008; De Groeve & 

Riva, 2009; Joyce et al., 2009a; Guha-Sapir et al., 2011). Applications can take various 

types, including urban vulnerability assessment, preparation of damage maps for 

emergency impact areas, monitoring of potentially hazardous regions and dealing with 

disaster impacts (Verstappen, 1995). Well-documented examples demonstrate 

successful applications of remotely sensed data in supporting disaster management, 

particularly for response efforts (The Disaster Charter, 2010). Table 8.1 lists some 

potential ways of using remote-sensing data to support activities in the various phases of 

disaster management. 
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Table 8.1: Potential ways of using remote sensing to support disaster management 

phases (adapted from: Lewis, 2009). 

           Disaster       

Phase 
Mitigation Preparedness Response Recovery 

Cyclone 

Risk modelling; 

vulnerability 

analysis. 

Early warning; 
long-range 

climate 

modelling. 

Identifying 

escape routes; 
crisis mapping; 

impact 

assessment; 

cyclone 
monitoring; 

storm surge 

predictions. 

Damage 
assessment; 

spatial 

planning. 

Drought 

Risk modelling; 
vulnerability 

analysis; land 

and water 

management 
planning. 

Weather 

forecasting; 

vegetation 

monitoring; crop 
water requirement 

mapping; early 

warning. 

Monitoring 

vegetation; 

damage 

assessment. 

Informing 

drought 

mitigation 

strategies. 

Earthquake 

Building stock 

assessment; 

hazard mapping. 

Measuring strain 
accumulation. 

Planning routes 

for search and 

rescue; damage 

assessment; 
evacuation 

planning; 

deformation 
mapping. 

Damage 

assessment; 

identifying 

sites for 
rehabilitation. 

Fire 

Mapping fire-

prone areas; 

monitoring fuel 
load; risk 

modelling. 

Fire detection; 

predicting 

spread/direction 
of fire; early 

warning. 

Coordinating 

fire-fighting 
efforts. 

Damage 

assessment. 

Flood 

Mapping flood-
prone areas; 

delineating flood 

plains; land-use 

mapping. 

Flood detection; 

early warning; 

rainfall mapping. 

Flood mapping; 

evacuation 

planning; damage 
assessment. 

Damage 

assessment; 

spatial 
planning. 

Landslide 

Risk modelling; 

hazard mapping; 

digital elevation 

models. 

Monitoring 
rainfall and slope 

stability. 

Mapping affected 

areas. 

Damage 

assessment; 

spatial 
planning; 

suggesting 

management 

practices. 

Volcano 

Risk modelling; 

hazard mapping; 

digital elevation 
models. 

Emissions 
monitoring; 

thermal alerts. 

Mapping lava 
flows; evacuation 

planning. 

Damage 

assessment; 

spatial 
planning. 
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8.2.1 Current Capacity of Using SAR Satellites for Flood Disaster Management 

by Space-Based Initiatives 

 

Most important factors controlling the production of SAR flood maps are the reliability 

of the information content, the usability of the product, and the efficiency of the 

delivery of data in order to help manage the impact of events. The use of SAR systems 

for mapping floods is applicable to emergency planning; the identification of flood 

warning areas and evacuation routes, search and rescue; and the prediction of the 

impacts of changes on flood extents. The potential operational capacity of SAR systems 

has been demonstrated in a range of products used to map flood events by a number of 

space-based initiatives relevant to disaster management. For example, the Disaster 

Charter facilitates access to satellite data (i.e. SAR systems) for disaster management 

(i.e. floods) (see section 2.4). Satellite images obtained from Radarsat-2 and TerraSAR-

X have been made available via the Disaster Charter for a number of recent flood 

events.  

 

Every year the Disaster Charter has supported numerous activations responding to a 

range of major disasters (floods, earthquakes, landslides, wildfires, wind storms, 

volcanic eruptions, ocean storms and wave surges). For example, during 2009 the 

Disaster Charter was activated 18 times for flood disasters, which is the highest 

recorded number of activations for any type of disaster in that year. Figure 8.1 shows 

the number of activations by hazard type for 2009, highlighting the fact that flooding 

tends to be the most frequently occurring natural disaster. 
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Figure 8.1: Number of activations of the Disaster Charter by hazard type in 2009; note 

that the highest number (18) of activations occurred for flooding (adapted from: 

Disaster Charter, 2010). 

 

The remote-sensing imagery delivered for the Disaster Charter have been acquired from 

optical and radar sensors. For example, the total number of SAR data products delivered 

during 2009 was 362 (with 122 ex-archive and 240 new acquisitions) from the 

ENVISAT, Radarsat, ALOS and TerraSAR-X satellites (Disaster Charter, 2010) (Figure 

8.2). 

 

 

Figure 8.2: SAR data consumption during 2009 by quantity of archive and new-

acquisition data (adapted from: Disaster Charter, 2010). 
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An example of an activation of the Disaster Charter for supporting flood disaster is the 

2010 Colombia flood. Several days of continuous heavy rainfall caused widespread 

flooding in the country. According to official figures, 2.1 million people were affected, 

279 people died, several thousand homes were destroyed and 300,000 were damaged, 

and around 150,000 hectares of crops were destroyed (OCHA, 2010). The Colombian 

government declared a state of emergency and set up a Crisis Room to coordinate the 

emergency response activities with the cooperation of UN agencies to provide technical 

assistance (Reliefweb, 2010). 

 

The Disaster Charter was activated for data acquisition on 6 December 2010 (Disaster 

Charter call ID 347) by request from the Federal Emergency System of Argentina. The 

national space agency of Argentina (CONAE) worked as project management (Disaster 

Charter, 2010). A number of satellite images were provided by the Canadian Space 

Agency (CSA), Japan Aerospace Exploration Agency, China National Space 

Administration and the United States Geological Survey. A number of images were 

provided by the Radarsat-2, ALOS PALSAR, JERS-1 SAR and SPOT5 satellites, while 

data processing and the production of change detection maps were produced by 

CONAE (Disaster Charter, 2010). Figure 8.3 shows an example of a flood extent map 

of the affected region delivered for the flood-relief efforts and produced by CONAE. 

The map production was based on Radarsat-2 imagery acquired on 9 December 2010 

for flood detection and archived imagery from Radarsat-1 acquired on 7 April 2010 for 

the pre-flood situation, while LANDSAT Thematic Mapper imagery was used as 

reference, obtained on 29 January 2010. The flood map illustrated in the figure was 

produced in 1:350,000 scale using a change detection method to generate the map by 

applying colour composition. Blue denotes the Radarsat-1 image showing pre-flood 

water bodies, and red indicates the Radarsat-2 image displaying the flood extent.  
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Figure 8.3: Colombia flood 2010. Colour code: blue – water bodies, 7 April 2010 

(Radarsat-1); red – water bodies, 9 December 2010 (Radarsat-2) (source: Disaster 

Charter, 2010). 

 

Although, numerous space-based data can be delivered through international initiatives 

for disaster management, there are still problems encountered using SAR data.  These 

include image costs, satellite tasking, data acquisition, data processing and integration 
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to GIS for map generation, analysis, and interpretation. Lack of training in using SAR 

imagery is another issue to be overcome. The high costs of SAR imagery may limit its 

usefulness for a number of poor countries affected by disasters. Although the support 

given by the Disaster Charter for delivering free of charge space-based data, the 

Disaster Charter activation requests are only supplied for major disasters. Processing 

SAR products requires advanced skills for producing detailed flooded area maps with 

appropriate analysis and interpretation usable for the end-users. Agencies that cooperate 

with the Disaster Charter perhaps use simplistic methods for mapping flood extent. In 

addition, it is not always clear how data have been processed which calls into question 

the reliability of the resulting maps. 

 

High spatial and temporal resolution remotely sensed data is necessary for mapping and 

monitoring flood extent and flood damage assessment rapidly in order to support 

effective flood risk management and to assist in immediate efforts towards emergency 

response. A single satellite does not have the ability to provide imagery quickly enough 

to be of use for immediate response, because of insufficient overpass frequency. A 

solution to this problem is to acquire data from a constellation of satellites (Sarti et al., 

2001; Joyce et al., 2009a; Navalgund, 2009). Multiple SAR satellites travelling on the 

same orbital plane will increase the revisit rate and will be more supportive in flood risk 

management. Examples of constellations of satellites carrying radar sensors are the 

Italian X-band COSMO-SkyMed (COnstellation of small Satellites for Mediterranean 

basin Observation), the Canadian Radarsat mission, and the Sentinal-1 from European 

Space Agency (ESA). COSMO-SkyMed is composed of four small satellites equipped 

with high-resolution X-band SAR sensors. The COSMO-SkyMed supplies products for 

a variety of applications, some of which are for risk management (COSMO-SkyMed, 

2007). The Canadian C-band Radarsat Constellation Mission (RCM) includes three 

satellites planned to be launched in 2014 and 2015 and can be expanded to include 

additional satellites. Imaging modes and spatial resolution of RCM will be similar to 

those of Radarsat-2 (CSA, 2010). The Sentinel-1, planned for launch in 2013, is based 

on a constellation of two C-band SAR satellites (ESA, 2011). 

 

The need for rapid disaster response based on satellite remote sensing has initiated a 

number of research projects aimed at developing onboard image processing technology 

for extracting the required information from images (Yuhaniz and Vladimirova, 2009; 
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Yuhaniz et al., 2007). The onboard system is composed of two main image processing 

functions: image compression and autonomous image analysis and selection. Several 

experimental satellite missions with onboard image processors have been launched, 

such as UoSat-5, BIRD, PROBA, TiungSAT-1, FEDSAT, and Techsat21 (Yuhaniz et 

al., 2007).  Examples of possible onboard applications include detection of flooding, 

volcanic activity and fires. The onboard NASA EO-1 flood change detection algorithm 

using optical images was developed to downlink science data only when change occurs 

(Ip et al., 2006). Another onboard flood monitoring application using an automatic 

change detection system with multispectral images has been developed at the Surrey 

Space Centre (Yuhaniz et al. 2007). Based on tile-by tile change detection and a fuzzy 

logic inference algorithm, Yuhaniz and Vladimirova (2009) have developed an onboard 

system which achieved good accuracy for flood detection. Onboard processing 

technology developments have also extended to onboard UAVSAR investigations for 

disaster monitoring fire and hurricane induced disturbances over forests (see for 

example, Muellerschoen et al., 2008). 

 

8.3 The Potential Operational Applications of the Developed Methods in the 

Phases of Flood Disaster Cycle 

 

Maps and thematic analysis derived from space-based information, particularly SAR 

satellite imagery, can support those dealing with disasters during all phases of the 

disaster cycle (Voigt et al., 2007). SAR images can be considered to be a significant 

source of information in supporting flood disaster management in terms of identifying 

potential flood areas, rapid mapping and monitoring flood events and aiding flood 

damage assessment (Chesworth, 2006). Determining the most appropriate satellite data 

to use in terms of spatial resolution is very important, particularly in the response phase. 

For example, satellite imagery at low or medium spatial resolution with large area 

coverage is suited to providing a quick overview at the macro-scale of an area affected 

by widespread hazards such as flooding (Messner, 2007). In contrast, flood disaster 

assessment at the meso- and micro-scale requires high-resolution SAR satellite imagery 

for regional and local flood management that can provide more detailed data down to 

single buildings. The significant advantages of using satellite imagery for flood risk 

management can be extended to all phases of the disaster management cycle (see 
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Section 2.3) and according to the requirements of each phase, rather than focusing on 

one phase (i.e. response) (Joyce et al., 2009b). 

 

Therefore, the methods developed and used in this thesis using the high resolution 

Radatsat-2 ultrafine and TerraSAR-X stripmap products for mapping water bodies, can 

be used for operational applications in all the phases of the flood disaster management 

cycle. Two main types of data product might be produced from the new SAR imagery: 

1) detailed local-scale maps which may support the production of flood risk assessment 

maps, updating aspects of flood, vulnerability mapping and assisting with the 

hydrological assessment of flood plains; and 2) overview maps at the regional scale to 

better understand the general situation of the flood area extent and so identify areas at 

most risks for flooding. 

 

The following sections highlight how SAR satellite imagery can be used to support 

efforts in all phases of the disaster cycle: pre-flood mitigation and preparedness; 

response to floods; and post-flood recovery (Figure 8.4). 

 

 

Figure 8.4: Phases of flood disaster management cycle (Adapted from: Platzeck, 2009). 
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8.3.1 Pre-Flood Mitigation and Preparedness  

 

The potential applications of radar data in the phase of pre-flood mitigation and 

preparedness may take several forms. Mapping vulnerable land use and flood-prone 

areas is important for identification of flood hazards and updating vulnerability aspects 

of flood prone areas. During this phase SAR satellite images can be used for monitoring 

changes in river configuration and bank erosion based on the frequent satellite revisits, 

and multi-date satellite data can be used to map the poorly drained areas (Bhanumurthy 

et al., 2010). Accordingly, adequate measures for constructing flood defences and 

strengthening embankments can be identified. In addition, monitoring the progress of a 

flood from its inception by using SAR products derived from the proposed methods 

obtain from repeat-pass new SAR sensors can assist the development of early-warning 

systems. Moreover, the high accuracy of water body mapping derived from this research might 

support hydrologic models that can assist in predictions of potential flood extent and 

forecasting. 

 

Monitoring hydrological changes over time during the phase before a flood using the 

new high resolution SAR imagery will assist in flood forecasting and the potential flood 

risks. Mapping water bodies in this phase will also help during flood events in terms of 

differentiating actual floods from permanent or semi-permanent water bodies, necessary 

to assess the potential impact of events. For example, mapping water bodies showing 

the distribution of water bodies used for aquaculture, reservoirs or other purposes would 

allow the impact of a flood event to be properly evaluated. Figure 8.5 illustrates an 

example of the potential use of very high resolution spotlight TerraSAR-X HH for 

inventory of very small water bodies that might assist flood impact assessment during 

the phase of flood disaster response.  

 

Seasonality is another concern that must be considered when comparing before and after 

flood event imagery. Having good quality resource data on water bodies is very 

important to help differentiate established water bodies from floods. Figure 8.6 

illustrates an example application of the developed methods to differentiate water 

bodies from flooding. In addition to the information required about the extent of 

damage of the current disaster, the information about the risk associated with potential 

future disasters (i.e. water contamination) is also needed. In order to assess these risks, 
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it is often necessary to have detailed information about pre-existing water bodies (i.e. 

locations, sizes etc). Drinking water contamination, which is a major risk associated 

with flood events, can be minimized if the potential risk is well recognised (WHO, 

2005). In Bangladesh, for example, water bodies are important for drinking water, 

agriculture and for livestock. During a major flood, if the water is contaminated, then it 

might be possible to determine how many people might be affected based on population 

data. Floods may increase the potential for communicable diseases by contamination of 

the water bodies (Du et al., 2010). Therefore, mapping water bodies before flooding will 

also help assessment of water contamination (i.e. chemical or diseases) and the impact 

on people during flood that rely on static water bodies. This information may assist in 

providing immediate health needs for a flood affected community. 

 

 

Figure 8.5: Potential use of TerraSAR-X spotlight HH for mapping very small water 

bodies will assist during flood disaster in terms of flood impact assessment.  The 

example is extracted from the study area. 
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Figure 8.6: An example of discrimination between permanent water bodies and flooding 

extracted from TerraSAR-X HH imagery of the study area. In the zoomed in area (B) a 

permanent water body is shown in cyan and after flooding in red colour, showing the 

significance of the proposed methods. Blue (only before) and Grey (background). 

 

8.3.2 Response to Floods 

 

During the response phase delivering detailed and accurate remote sensing information 

of areas affected by floods can be essential in providing effective assistance for 

reducing the impacts of a flood disaster. Maps derived from SAR satellite images can be 

used for regional large-scale flood risk mapping, and detailed maps at the local scale for 

affected areas can be generated. Detailed-level flood maps include information about 

submerged buildings, roads and other physical infrastructures. These may take the form 

of, for example, mapping and monitoring flood extent, flood damage assessment and 

producing maps for evacuation and search and rescue operations.  

 

In order to provide rapid and accurate flood maps during flood disasters this thesis 

proposed a number of methods and procedures to assist with flood area mapping. These 

methods can be used by those who are working to deliver accurate and timely mapping 

derived from remote sensing information. Figure 8.7 illustrates an outline of the optimal 

water mapping methodology which can be specified in three main categories: SAR data 
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specifications; producing overview (regional scale) flood maps and detailed (local scale) 

flood maps. Acquisition of the appropriate SAR products is the first stage for mapping 

flood extent successfully. This does not exclude using other auxiliary data such as 

geographical information and optical data. The appropriate SAR data parameters are the 

HH ultrafine Radarsat-2 and HH stripmap TerraSAR-X with high incidence angle (i.e. 

39°-42°). Second, an overview flood map at the regional scale to enable disaster 

managers to achieve an overview of the situation required rapid processing and analysis 

of satellite imagery can be generated. Therefore, in this stage a backscatter density 

slicing technique should be performed with the use of mean texture filter and threshold 

value ranges 0.0-5000 for Radarsat-2 and 0.0-80 for TerraSAR-X products (e. g. using 

ENVI software packages). Third, a detailed flood map at a large scale (i.e.1:20,000) 

could be produced, based on image classification using a maximum likelihood 

supervised classification with occurrence texture filters of Data range and Mean for both 

SAR sensors. Object-based classification is another alternative method using e-

cognition software (i.e. Definiens) for segmentation parameters specification and 

contextual classification as illustrated in Figure 8.7 for both SAR sensors. 
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Figure 8.7: Outline of the water area mapping proposed methods for operational flood 

disaster applications for flat topography areas. 

 

An example of the application of flood extent map generation according to the outline 

methods mentioned above can be employed in a flood disaster. The pre-disaster imagery 

obtained from archived SAR data can be used to extract the water body class before the 

occurrence of the flood event. This layer of pre-disaster water bodies can then be 

overlaid with the flood extent map derived from the water classification. The new map 

product is a water surface change detection map derived from the post classification 

change detection method. Figure 8.8 shows an example of change detection flooding (in 

red colour) during the wet season in the study area while the water bodies before the wet 

season is in blue.  
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Figure 8.8: Changes detection using TerraSAR-X HH showing flooding in red. Colour 

code: Blue- WBs before; Red- WBs after; Cyan-no change; Grey- background.  
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In order to demonstrate the facilitation of stakeholder access to high quality information 

during a major flood event, a water class layer of the study area derived from image 

classification has been prepared to mash-up in Google Earth (Figure 8.9).  This shows 

how easily maps can be disseminated via web services, which may be used for flood 

operational applications. 

 

Figure 8.9: An example of water class layer of the study area (in red) produced from the 

developed methods and mashup in the Google Earth. Note the water body zoomed in 

(the white rectangle) showing the water layer in transparent red colour presenting the 

ability of the proposed water area mapping method. 
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8.3.3 Post-Flood Recovery  

 

During the recovery process remote-sensing data can be collected on multiple occasions 

in order to monitor post-flood restoration in terms of the identification of areas 

vulnerable to flood hazards, and accordingly, to carry out rehabilitation and reconstruct 

physical infrastructure. Acquiring SAR imagery regularly after a flood disaster will 

allow monitoring of recovery activities and restoration of damaged areas (Shibayama et 

al., 2008). Moreover, applications of SAR satellite imagery can be extended to assist 

activities for debris removal and strengthening and reconstructing flood defences. 

 

Flood damage assessment maps for the affected areas obtained from new SAR systems 

during the response phase can be used to support recovery planning and assist 

restoration infrastructural services for the short and long term. In the short term, the 

derived flood extent maps from SAR imagery will help in decision-making for 

identifying invulnerable sites for transitional shelters for re-housing people. While in 

the long term, permanent solutions for housing may be derived, allowing for example 

relocation of settlements that become vulnerable to the impact of future floods. 

Moreover, in the post-flood phase, sustained flooding may increase the potential of 

communicable diseases. Mapping flooded areas and the distribution of these areas 

particularly those among settlements might assist the healthcare planning. Furthermore, 

the usefulness of mapping flood area extent could be extended to be used for insurance 

and compensation purposes. Claiming for compensation due to areas affected by floods 

might be verified and supported by information derived from implementing the 

proposed methods due its high spatial accuracy. 

 

8.4 Summary  

 

The evaluation of the high resolution Radarsat-2 and TerraSAR-X products conducted 

in this thesis along with the optimal methods for SAR image processing for water body 

mapping developed were aimed to be used for mapping flood area in order to support 

flood disaster management. Since using actual floods for assessing the accuracy of the 

high resolution SAR system for water extent detection is difficult, mapping small water 

bodies was an appropriate alternative method for implementing the research objectives. 
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As a result, the developed methods used for water body mapping derived from this 

study might be applicable to be used for flood area mapping. 

 

Two main types of data product might be produced from the new SAR imagery: 1) 

detailed local-scale maps that may support the production of flood risk assessment 

maps, updating aspects of flood, vulnerability mapping and assisting with the 

hydrological assessment of flood plains; and 2) overview maps at the regional scale to 

better understand the general situation of the flood area extent and so identify areas at 

most risks for flooding. Applications of the developed methods can be used for 

operational applications in all the phases of the flood disaster management cycle: pre-

flood mitigation and preparedness; response to floods; and post-flood recovery 

 

During a pre-flood phase, monitoring the progress of a flood using multi-date SAR 

products derived from the proposed methods can assist the development of early-

warning systems. Mapping water bodies in this phase might assist in several aspects: 

- The support of hydrologic models that can assist in predictions of potential flood 

extent and forecasting. 

- The differentiation between actual floods and permanent or semi-permanent 

water bodies, to assess the potential impact of events.  

- The assessment of water contamination (i.e. chemical or diseases) and the 

impact on people during flood that rely on static water bodies.  

 

For the response phase and in order to provide rapid and accurate flood maps, an outline 

of the recommended optimal water mapping methods and procedures are as follows:   

- SAR products specifications: HH polarization of Radarsat-2 ultrafine and 

TerraSAR-X stripmap with high incidence angle. 

- For overview flood map of the affected area: using backscatter density slicing 

technique with texture image of mean texture filter and density range values of 

0.0-5000 for Radarsat-2 and 0.0-80 for TerraSAR-X data using the ENVI 

algorithm. 

- For detailed flood extent map in high accuracy: supervised classification using 

maximum likelihood classifier for a texture image with occurrence Data Range 

and Mean texture filters for both SAR sensors and also using as alternative 
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method the e-cognition object-based classification for the contextual 

classification. 

 

During the post-flood phase, the proposed methods can be applied for different 

applications such as:  

- Mapping flooded areas can assist strengthening and reconstructing flood 

defences and for debris removal during the post-flood phase. 

- Flood damage assessment maps obtained during the response phase can also be 

used to support recovery planning and assist restoration infrastructural services. 

- Mapping flooded settlements, which would assist the healthcare planning 

regarding the potential of communicable diseases. 

- Mapping flood area extent for the post-disaster phase, which could be to be used 

for insurance and compensation purposes. 
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Chapter Nine:  

CONCLUSIONS AND DIRECTIONS FOR FUTURE STUDY 

 

9.1 Conclusions 

 

This thesis investigates the potential use of high resolution SAR remote sensing for 

detecting small water bodies by using multiple sensors through the examination of the 

ability of Radarsat-2 and TerraSAR-X data to separate water from other land cover 

types.  There is extensive literature on SAR remote sensing and its applications in 

delineation of flooding. However, there is little documentation on the techniques 

associated with the applications of high resolution SAR remote sensing for detailed 

mapping and in particular for the detection of small water bodies. Mapping small water 

bodies is important for the potential of SAR for flood extent mapping. The importance 

of assessing high resolution SAR remote sensing data products with regard to the 

proposed research project is that, because flooding is an increasing problem, this 

technique will facilitate the use of the high resolution SAR data in the operational 

applications of flood risk management and water resource management.  

 

Findings of this study emphasized the effectiveness of the new SAR imagery to add 

new information not available from optical systems. Cost is an issue for routine (i.e. 

non-disaster situation) use of SAR imagery but this cost may be out weighted by the 

good quality of mapping and also it is a low cost when compared to ground survey or 

air photo survey as a per unit.  

 

Image texture variables from Radarsat-2 and TerraSAR-X provide valuable quantitative 

information that helps to discriminate water bodies from other land cover types. 

Therefore, classified texture images achieved higher accuracy than images without 

texture variables (improved from 86.9% to 90.4%-Radarsat-2 and from 87.3% to 

91.5%-TerraSAR-X). Applying the median 3×3 window filter offers better 

identification for water bodies. Furthermore, the bodies of water can easily be 

delineated to a high level of identification with the selected texture image via either 

occurrence or co-occurrence variables. 
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The most effective image processing technique for mapping appears to be supervised 

classification using at least two texture variables and HH polarized SAR data. This 

technique provides homogeneous and separable land cover classes and in particular high 

overall accuracy as summarised by the prevalence statistic for water classification (96.42 

%-Radarsat-2 and 97.71 %-TerraSAR-X). Results of object-oriented classification with 

texture images show very high accuracy (1.0- for both sensors) at mapping water 

bodies. However, the results also indicate that by using object-oriented classification 

with the original SAR images without texture variables, land covers may also be 

mapped to high overall accuracy (92.2%-Radarsat-2 and 91%-TerraSAR-X). 

Consequently, the proficiency of object-oriented classification for non-textured SAR 

images may reduce the effort and time required for flood mapping. A comparison of HH 

and VV polarization of both C-Band Radarsat-2 and X-Band TerraSAR-X beam modes 

shows that HH yields higher mapping accuracies for both sensors.  

 

Pre-flood assessment using Radarsat-2 and TerraSAR-X SAR imagery during monsoon 

period will better estimate aquaculture resources, help quantify impacts of flood events, 

and will assist in supporting flood risk and water resources management. Flood maps 

derived from this study are in high accuracy for water extent detection (i.e. 93%) and 

with detailed information (i.e. can detect water area down to 150 m ²), and can be easily 

disseminated via the web such as by Google Earth Mash-up. 

 

9.2 Main Findings 

 

The main findings derived from this research are the following: 

1. Radarsat-2 ultrafine and TerraSAR-X stripmap co-polarized data map 85-95% 

of man-made water bodies within the study area. 

2. The most suitable occurrence texture variables for Radarsat-2 products were 

data range, mean and variance, while for TerraSAR-X products, only the data 

range and mean texture filters showed good performance. The co-occurrence 

texture variables of mean, variance, dissimilarity and contrast were found to 

show the best performance in calculating water texture regions for Radarsat-2. 

3. C-Band Radarsat-2 and X-Band TerraSAR-X fine beam modes with a similar 

spatial and radiometric resolution of 3 m yield similar results with small 

differences, indicating that the SAR response of water is not strongly affected by 
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frequency. Moreover, results demonstrate that small water bodies, down to areas 

of 150m² can be identified routinely from ultrafine Radarsat-2 and stripmap 

TerraSAR-X beam modes backscatter and backscatter texture data. 

4. The overall accuracy of the water area estimation of the study area derived from 

the prevalence statistic is greater than 0.928 or 93% agreement for Radarsat-2 

ultrafine and TerraSAR-X stripmap products. This is a very high figure, better 

than one would expect from automated classification of optical multispectral 

remotely sensed data. 

5. The expected benefits of the thesis are: 

1. Improved rapid assessment of small water bodies that can easily be 

integrated into local and national planning processes; 

2. Assistance in supporting water resources management; and 

3. Helping to inform the choice of image products best suited for flood risk 

management and flood response. 

 

9.3 Directions for Future Study 

 

Since the aim of this study is to evaluate the ability of the high resolution SAR remote 

sensing data to accurately mapping water bodies and flood extent, and consequently 

interesting findings have been derived from this evaluation, however the research 

project is challenging.  The recent advance in SAR systems technology needs to be 

accompanied by studies to demonstrate applications in order to adequately exploit their 

capabilities and also direct the future SAR development particularly in the field of 

mapping water areas and flood disaster management. There are a number of 

recommendations for future research and applications. 

 

1. Operational application of the derived image processing in an actual flood event 

is important to understand its ability with regard to the actual time requirement 

for processing and delivering flood maps directly to the disaster response teams. 

This is essential in terms of understanding to what extent the proposed methods 

practically satisfied the end users requirements. 

 

2. Although the international disaster agencies play a significant role in facilitating 

delivering space-based data for disaster response, there are still problems 
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encountered achieving rapid and satisfactory satellite-based information. 

Therefore, looking at standardization of SAR image processing for mapping 

floods to become more routine and may be used by International disaster 

agencies (i.e. the Disaster Charter, UN-SPIDER) and the proposed methodology 

in this thesis may be useful in this area. 

 

3. Results derived from this study show high accuracy of water body maps without 

fusing other data with SAR imagery. However, integrating optical and SAR data 

for flood mapping along with DEMs data specifically the high resolution DEM 

products from TanDEM-X might add more information. For example, 

integrating high resolution DEMs with SAR data would help to mask regions in 

built-up areas in order to separate non-water dark areas from water bodies and 

also to identify water levels. 

 

4. Monitoring flood events (e.g. rainfall caused from monsoon) require data 

acquisition over several weeks. Therefore improving data processing workflow 

to allow SAR repeat coverage to keep pace with a flood as it develops is 

necessary in flood risk management. 

 

5. The potential of new polarimetric SAR data (i.e. Radarsat-2) on mapping floods 

needs to be investigated.  The cross-polarized data have different interactions 

with properties and land cover types. This might be useful for mapping floods 

particularly in vegetated and urban areas. 

 

6. Further studies are required to assess the accuracy of trees/woodland 

classification as a separate class using the new SAR systems, and more 

investigations are needed to identify how accurately trees/woodland among 

urban areas can be distinguished from buildings. 

 

7. The delay in delivering flood maps to the response teams in the ground may be 

due to a number of problems, such as tasking SAR sensors for data acquisition, 

time consuming when acquiring raw SAR data and then allocate data to 

operators and teams for image processing and water classification. Further 

research should be carried out to study the potential of onboard SAR satellite 
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image processing for flood change detection and testing the proposed methods 

of image processing for automatic flood mapping for rapid flood.  

 

8. The potential of UAVs (Unmanned Ariel vehicles) in disaster management need 

to be more exploited and countries may need to think about the potential of this 

technology. Further research need to be conducted to develop methods for 

operational use of UAVs particularly UAVs equipped with SAR sensors. The 

onboard image processing technology mentioned above needs also more 

investigations to be integrated in the UAVs (i.e. Muellerschoen et al., 2008). 

 

9. In order to support a timely access to earth observation data (i.e. SAR products), 

there is a need to an international Earth observation knowledge portal (i.e. UN-

SPIDER) offering a „one stop shopping‟ for using space-based data for flood 

disaster management. This can be done for example by providing the portal 

mentioned above the remote sensing products (i.e. SAR products) of specific 

flood disaster from agencies who have collaboration with the (i.e. UN-SPIDER). 

Therefore, teams of disaster management and humanitarian relief from 

authorities and organizations can easily and timely access to appropriate and 

value-added space-based products and flood risk maps without struggling with 

the bulk of non value-added satellite data uploaded to several websites. 
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Appendices 

 

Appendix 3.1:  

Radarsat-2 sensor electronics sub-system and antenna subsystem diagrams  

 

 

 

Radarsat-2 sensor electronics sub-system (adapted from Livingstone et al., 2005) 
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Radarsat-2 antenna subsystem (adapted from Livingstone et al., 2005) 
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Appendix 3.2:  

TerraSAR-X instrument functional block diagram and antenna panel 

 

 

TerraSAR-X instrument functional block diagram (Source: DLR, EADS) 

 

 

TerraSAR-X antenna panel (source: Miller et al., 2006) 
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Appendix 5.1:  

A follow-up water body data sheet 

 

 

 

 

 

 

 



                       Appendices 

 

 

260 

 

 

 

 



                       Appendices 

 

 

261 

Appendix 6.1: 

 Follow-up table for SAR data processing 

 

SAR sensor 

Texture 

analysis 

variables 

RADARSAT-2 TerraSAR-X 

Product 

 

HH(1) HH(2) VV HH(1) HH(2) VV 
HH 

spotlight 

Georeference 

transformation 
       

Geocorrection (dGPS)        

CP error        

Subset image        

T
ex

tu
re

 F
il

te
rs

 

Occurrence 

measures 

Data range               

Mean               

Variance               

Entropy               

Skewness               

Co-occurrence 

measures 

Mean               

Variance               

Homogeneity               

Contrast               

Dissimilarity               

Entropy               
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Second 

moment 
              

Correlation               

Training samples 

signature 

 

       

Unsupervised classification        

Supervised classification 

(texture) 
       

Object-based 

classification 

Segmentation        

Classification        

Accuracy assessment        

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                       Appendices 

 

 

263 

Appendix 7.1:  

Water area estimation for Bangladesh using Radarsat-2 and TerraSAR-X 

 

 

Bangladesh 

      Area in km2 147570 km2 from Bangladesh Bureau of Statistics  

Area of water in Bangladesh 10090 km2 from Bangladesh Bureau of Statistics  

Percent area of water in Bangladesh 6.837 % 

    Area prone to flooding all Bangladesh 110678 km2 from Wikipedia 

   

Radarsat-2 

      Mapped % of water in study area  16.95 % 

    Estimated area of water in Bangladesh 18761 km2 

    Estimated % area of water in 

Bangladesh 12.71 % 

     

TerraSAR-X 

      Mapped % of water in study area  17.64 % 

    Estimated area of water in Bangladesh 19520 km2 

    Estimated % area of water in 

Bangladesh 13.22 % 
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Appendix 8.1: 

 Visual comparison of WB volume scattering 

 

 

 
 

TerraSAR-X RADARSAT-2 

Visual comparison of WB volume scattering away of original SAR imagery HH 3m 

between TerraSAR-x and Radarsat-2 products. 

 

 


