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ABSTRACT 

Propofol is a general anæsthetic used for long-term sedation.  Currently, propofol 

is administered intravenously and dosage is determined by patient weight.  In rare cases, 

patients under long-term treatment can develop propofol infusion syndrome, which may 

result in death.  While sensitive, current detection methods for plasma concentrations of 

propofol are too slow.  Faster detection methods for point of care testing need to be 

developed, and electrochemical methods may be the solution.  Various electrochemical 

methods for the detection of propofol are explored.  Detection by facilitated transport at 

the interface between two immiscible electrolyte solutions is shown to have potential as 

a detection method.  Various chemically modified glassy carbon electrodes are also 

explored for propofol detection.  A sensor for propofol was not developed, but this 

exploratory study suggests that an electrode modified by a combination of carbon 

nanotubes and methylene blue may prove to be an effective sensor. 
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CHAPTER 1 : LITERATURE REVIEW 

INTRODUCTION 

 Propofol (2,6-diisopropylphenol) is a general anæsthetic used for both the 

induction and the maintenance of anæsthesia.  Rapid onset and reversibility of sedation 

has led to propofol as a popular sedative so that it is commonly administered to patients 

under intensive care.1  Unfortunately, adverse effects are known to be associated with the 

administration of propofol, referred to as propofol infusion syndrome (PRIS).  PRIS is 

strongly associated with a high dosage over an extended period of time (>4 mg kg-1 hr-1, 

48 hr), and has a high mortality rate.  Currently, the mechanism of PRIS remains 

unknown and no treatment has been established.2,3 

 

Currently, propofol is administered based on various patient parameters, as determined 

by pharmacokinetic and pharmacodynamic modelling.4  Computer operated target 

controlled infusion (TCI) pumps are commonly used and several models exist which 

administer propofol based on patient age, height, sex, and body weight.  There are many 

physiological factors which these models cannot account for, and, so accuracy is limited, 

particularly in children and elderly patients.5  Therefore, there is a need for timely and 

accurate measurements of propofol plasma concentration that can be coupled with TCI 

systems for more accurate and safer administration of propofol. 

 

Progress is being made towards point-of-care testing for propofol.  This review will 

briefly cover the chemical background of propofol before examining the analytical 

methods already developed for propofol detection.  This will provide a context for the 

work laid out in this thesis. 



D.G. Rackus 2011 

-2- 
 

CHEMICAL BACKGROUND 

Propofol is a double substituted phenol with two isopropyl groups situated ortho 

to the hydroxyl group and has a molecular weight of 178.27 g mol-1 (see Fig. 1.1).  It is a 

tan-yellow oil at room temperature, but freezes at 18 °C. 

 

 

Fig. 1.1 Chemical structure of propofol.  

Propofol is highly lipophilic (logP=4.16), accounted for by its benzene ring and isopropyl 

side chains.  The hydroxyl group is weakly ionisable with a reported pKa of 11.  As a 

result, propofol is not very water soluble and has a miscibility of 150 µg L-1 (841 µM).1   

 

Because of its highly lipophilic nature, propofol is administered as an emulsion.  The 

most common, Diprivan®, is available as a 1 or 2% propofol emulsion with 10% soybean 

oil, 1.2% lecithin, and EDTA as an antimicrobial additive.1,6 

 

DETECTION METHODS  

Chromatographic methods 

The most common analytical method employed to evaluate plasma concentrations of 

propofol is separation by high performance liquid chromatography (HPLC) coupled with 

various different detectors.  Detection methods include fluorimetric assays,7 

derivatisation followed by colorimetric detection,8 and electrochemical detection.9,10 
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Fluorimetric assays 

Fluorometric detection of propofol is relatively straightforward.  It is a technique used 

throughout the literature whereby, after separation, propofol is detected by excitation at 

276 nm and emission at 310 nm after separation by HPLC.7,11  Quantification requires the 

use of an internal standard by which to compare the signal corresponding to propofol.  

Chromatograms showing propofol and an internal standard are given below in Fig. 1.2.  

Interference of propofol metabolites can be eliminated through extraction by 

cyclohexane.  Improvements to the technique really only come by modifications to the 

sample preparation step, as this is the most tedious and time consuming, taking at least 

30 min.11 

 

Fig. 1.2 Chromatograms of blood samples with (A) as a control, (B) spiked with propofol, and (C) 
propofol as administered to a patient.  Peak 1 is the internal standard thymol and peak 2 is 

propofol.  Taken from Plummer7, with permission. 
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Colorimetric detection 

Propofol in and of itself absorbs in the UV at 276 nm.  However, it has a low molar 

absorptivity, rendering direct UV detection ineffective at clinically relevant levels.8  

Derivatisation with Gibbs reagent can be used to enhance the molar absorptivity. 

 

The presence of phenols can be detected and quantified using Gibbs’ method, which was 

originally described in 1927.12  Quinonechloroimides react with para-unsubstituted 

phenols to produce quinoneimine dyes.  The reaction with propofol under basic 

conditions, which results in a rich blue indophenol, is given below in Fig. 1.3. 

 

Fig. 1.3 Reaction of 2,6-dichloroquione-4-chloroimide with propofol under to produce a 
quinoneimine and hydrochloric acid.  

 

The blue dye rapidly converts to a colourless form under the acidic conditions and has a 

higher absorbance at 276 nm.  The indolphenol is not stable and has a decomposition 

half-life of approximately 30 min.8  Combined with HPLC, a detection limit of 25 ng ml-1 

(1.4 ×10-7 M) is achievable. 

 

Electrochemical detection 

Despite the relative ease and advantages electrochemical detection methods offer, there 

has been very little written on the electrochemical detection of propofol.  However, the 

electrochemical detection of other phenols, most notably Δ9-tetrahydrocannabinol (the 
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active ingredient in cannabis) has been achieved by adapting the Gibbs reaction.  For work on 

blood or serum, electrochemical methods, to date, are dependent on chromatographic 

separation techniques.9,10  

 

An early instance of coupling electrochemical detection with chromatography was 

reported by Uebel et al.  In this work, porous in-line graphite electrodes were coupled 

with column chromatography.  Detection was in amperometric mode, with the two 

electrodes held at constant potentials, one for the oxidation of propofol and one for the 

oxidation of the internal standard.  The method required an internal standard, and was 

comparable to other detection techniques, with a limit of detection of 80 ng ml-1 (4.48 × 

10-7 M).9  Although not as sensitive as fluorimetric detection techniques, this method 

shows the advantages and ease of electrochemical detection.  Coupling with 

chromatography, however, still requires extensive sample preparation. 

 

Further work coupling electrochemical detection with chromatographic separation has 

led to increased sensitivities.  Like other phenolic compounds, propofol has been shown 

to oxidise at a lower potential under alkaline conditions.  As the pH of the solution is 

raised above the pKa of propofol, the phenolic proton is lost.  The propofol anion thus, has 

a lower oxidation potential.  Additionally, in reversed phase HPLC, ionic species elute 

faster than non-ionic species.10 

 

Pissinis et al. were able to show that propofol, like other phenolic compounds, will 

polymerise upon oxidation.10,13  This can be detected by CV with an oxidation peak for 

propofol on the forward scan and the appearance of a second oxidation peak at a lower 

potential indicative of the polymer (or dimer) product during subsequent scans.  This is 
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shown in Fig. 1.4.  Repetitive cycling leads to fouling of the electrode with a propofol 

polymer that is adsorbed to the electrode surface.10,14 

 

Fig. 1.4 CV response of 500 µM propofol in a buffer-ACN mixture (90:10 v/v) at pH 3.  Scan rate 
40 mV s-1.  Peak I is indicative of propofol oxidation, whereas peak III corresponds to the 

oxidation of the propofol dimer.  Taken from Pissinis et al. (2007)10, with permission. 

 

When coupled with chromatographic separation, electrochemical detection is a powerful 

and accurate technique.  However, this is a method that still requires trained personnel, 

expensive equipment, and most importantly time.  Time is actually the most important 

parameter to consider in testing, given that a bolus injection of propofol sedates a patient 

for 4-6 min, but quantification by HPLC takes at least 5 min.15  Point of care testing, 

requiring minimal or no sample preparation, thus, is an attractive goal, and 

electrochemical methods are currently being developed for such use.14,16 

 

Interfering species in blood necessitates sample preparation or a means of increasing 

selectivity and reducing fouling.  An alternative approach is to sample other body fluids, 

such as urine.  Thiagarajan et al.16 have shown that propofol can be measured in urine by 

using pre-anodised screen printed carbon electrodes (SPCE).  SPCE can be anodized by 
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repetitive cycling in 0.5 M H2SO4 solution.  The pre-anodisation modifies the electrode 

surface by oxidising it, introducing carbonyl, carboxylic, and hydroxyl functional groups.  

This oxidised surface offers a catalytic advantage in oxidising propofol, and has been 

shown to aid in discrimination between dopamine, ascorbic acid, and uric acid—

interfering species expected in urine.  This method has a reported detection limit of 

8 × 10-8 M, which is still higher than detection limits achieved with chromatographic 

separations.16 

 

One of the largest concerns with electrochemical detection of propofol, as previously 

mentioned, is the formation a polymeric layer that can foul the electrode surface.10,14  

Costetin et al.17 suggest that the electrochemical dimerization of phenols in aqueous 

solvents proceeds in a concerted manner.  That is, both proton and electron transfer 

occur in the same step.  In conjunction with cathodic stripping voltammetry, the product 

of propofol oxidation can be related to the concentration of propofol in a solution.  Rather 

than measuring the concentration of propofol in solution, the reduction of the oxidised 

product is used.  This occurs at a potential where the effect of interfering species should 

be limited.  However, this technique is not consistently reproducible.14 

 

Another concern regarding the electrochemical detection of propofol is the orientation of 

adsorbed phenol on the electrode surface.  Phenols have been shown to change 

orientation on gold surfaces in a voltage dependent manner.  At lower potentials, phenols 

lay flat along the electrode surface and are bonded through their π-system.  At higher 

potentials, they orientate themselves in a vertical manner and can bond covalently 

through the lone pair of the oxygen atom.18  This becomes a concern because bonding 

energy will affect the coulometric charge required to strip off the adsorbate.19 
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Alternatively, Langmaier et al.14 have suggested limiting the potential window of the 

working electrode for better detection of propofol.  The reason being that as the product 

of propofol oxidation is reduced, it adsorbs more strongly to the electrode surface.  

Avoiding the potential at which the oxidation product is reduced prevents the film from 

obstructing the signal corresponding to propofol that has not been oxidised.14,20 

 

Currently, the literature does not contain any means of directly measuring the 

concentration of propofol in blood by electrochemical means. 

Gas phase detection 

Because of the volatility of propofol, it can be detected in exhaled breath.21  It is estimated 

that the levels of propofol in expired breath are of the order of parts-per-billion.21  This 

has proven to be an attractive approach for measuring patient propofol levels.  The 

majority of methods utilise mass spectrometry,22-25  while optical detection for gas phase 

detection has recently been developed.21  Optical detection methods are simpler than 

separation and quantification by gas chromatography and mass spectrometry, and have 

the potential of being incorporated into small devices for use at a patient’s bedside.  The 

challenge with optical detection in the gas phase comes from interfering species, 

particularly acetone, water, and CO2.  Laurila et al.21 have shown that, using a 

photoacoustic setup, propofol can be measured between 260-280 nm, where possible 

interfering species are not detected.  This technique can achieve detection limits of 0.12 ± 

0.22 ppb.21 

 

Molecularly imprinted polymers  

Molecularly imprinted polymers (MIPs) are a promising means for propofol detection 

and devices have been developed that use this technology for clinical measurements.  
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MIPs have been described as artificial antibodies due to their ability to discriminate 

between molecules.  Unlike antibodies which require aqueous working environments 

and an optimal pH, MIPs do not.  MIPs are created by mixing monomer and a desired 

analyte together.  Polymerisation is then induced and usually involves crosslinking 

agents.  What results is a polymer structure laced with the analyte.  An extraction of the 

analyte leaves a polymer with cavities specific to the shape of the analyte.  The polymer is 

then exposed to a solution containing the desired analyte, where it binds to the 

cavities.15,26  The polymer can then be moved to another solution where the analyte is 

extracted and then measured, as described in Fig. 1.5. 

 

 

Fig. 1.5 Preparation of a MIP and its use in detection. 

 

MIPs for propofol detection have been developed and studied by Miruna Petcu, and MIPs 

are now being employed by different groups for propofol detection.  Petcu et al.24 

developed MIPs using propofol or the derivative propofol (4-vinylphenyl) carbonate.  

Covalent imprinted polymers were prepared using the propofol derivative, which had to 

be hydrolysed prior to extraction.  These MIPs offered very low cross-reactivity in the 

presence of cresols and exhibited non-specific binding of 2%, both desirable traits for a 

sensor.26 
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When MIPs are synthesised on a support such as a membrane or glass, they can be 

controlled in terms of surface area and shape.  This can lead to an increase in selectivity 

and sensitivity.  Coupled with colorimetric tests (i.e. Gibbs reagent), propofol can be 

detected in blood samples down to concentrations between 0 and 2 µg ml-1.15  MIPs 

prepared on cyclic olefin copolymer have been used to create a biochip for propofol 

detection.  The olefin copolymer offers the advantage that it is transparent so optical 

detection of propofol can be done through the substrate and MIP layer.  When coupled 

with a microfluidic setup, automation can be achieved, although the same steps of loading 

the MIP with the analyte, removing the sample, and exposing the MIP to Gibbs reagent 

are still required.27 

 

The use of MIPs in sensing is not restricted to colorimetric tests, such as Gibbs reagent, 

but can also be coupled with electrochemical methods.  Electropolymers such as poly-

(3,4-ethylenedioxythiophene) (PEDOT) are ideal as the MIP can be prepared directly on 

an electrode through eleyctropolymerisation.  PEDOT alone has been shown to increase 

the sensitivity of amperometric sensors for morphine by acting as a catalyst for 

morphine oxidation.  When formed into a MIP, this catalytic advantage is combined with 

the selectivity afforded by the MIP.  Even in the presence of the structurally related 

molecule codeine, which differs from morphine by an OH/MeO, PEDOT MIPs are able to 

selectively bind morphine.28 

 

MIP coated gold electrodes for the detection of propofol have also been developed, but 

unfortunately do not show the desired benefits as expected from MIP based sensors.  The 

introduction of a MIP layer to a gold electrode has been shown to decrease the 

amperometric signal 10-fold.  Additionally, the problem of electrode fouling is not 
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eliminated by the use of MIPs.29  This renders MIPs still unsuitable for in-flow analysis 

applications. 

 

CONCLUSIONS 

The detection methods of propofol that have been reviewed here have been summarised 

in Table 1.1.  The clinically relevant range for propofol detection is 5-50 ×10-6 M.  All the 

detection methods have limits that fall within that range, yet there is not a technique fast 

enough to provide results in real-time for a point-of-care situation. 

 

Table 1.1 Summary of propofol detection methods 

 Method Detection Sample Limit of Detection Ref. 

1 HPLC + Gibbs Reagent 
 

Blood 1.4 × 10-7 M [8] 

2 HPLC + Fluorometric 
 

Blood 1.1 × 10-8 M [7] 

3 HPLC + Electrochemical 
 

Blood 4.5 × 10-7 M [9] 

4 Photoacoustic 
Spectroscopy 
 

Gas 0.12 ppb [219] 

5 Preanodised SPCE 
 

Urine 8 × 10-8 M [16] 

6 Carbon Electrodes 
a)Stripping Voltammetry 
b)Limited Potential 
Window 
 

Lab Sample  
3.2 × 10-6 M 
5.5 × 10-6 M 

[14] 

7 Microfluidic MIPs + Gibbs 
Reagent 
 

Lab Sample 0.25-10 ppm [27] 

8 Microfluidic MIPs + 
Electrochemical 
 

Lab Sample <5 × 10-6 M [29] 
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CHAPTER 2 : ELECTROCHEMICAL TECHNIQUES  

THREE ELECTRODE SETUP 

For voltammetric experiments, a three electrode setup is used.  This consists of a 

working electrode (WE), reference electrode (RE), and a counter electrode (CE).  The 

working electrode is made from inert materials that are good electron conductors (e.g. 

gold or platinum) or semiconductors (e.g. p-GaP).  It is at the working electrode where 

the electrochemical reaction of interest occurs.  The reference electrode is necessary in 

order to provide a stable and accurate potential to be used as a reference voltage.  A 

typical three electrode setup is portrayed in Fig. 2.1.  The electrochemical cell can be 

controlled by an external potentiostat. 

 

Fig. 2.1 Typical three electrode electrochemical cell.  

When only small currents are being measured such as in microelectrode studies, a 

working electrode and reference electrode are sufficient.  However, for the use of 

macroelectrodes and larger currents, the system becomes more complicated.  Assuming a 

working and reference electrode with a finite current flowing between them, 
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  (     )     (       ) Eq. 2.1 

where the potential is described as the sum of three terms and φ refers to the Galvani 

potential.  The first term, (φm-φs) refers to the potential difference between the electrode 

and the solution, which describes the electrolysis at the working electrode.  The second 

term, iR, is often referred to as the Ohmic drop and is due to the resistance of the solution 

between the two electrodes.  The third term, (φs-φref) is the potential drop at the 

reference electrode and is determined by the chemical composition of the reference 

electrode.  With small currents, iR is negligible and (φs-φref) is constant.  However, when 

large currents are used—characteristic of large electrodes, (φs-φref) does not remain 

constant.  To remedy this problem, a counter electrode is used to avoid large 

destabilising currents between the working and reference electrodes.1,2 

 

CYCLIC VOLTAMMETRY 

Cyclic voltammetry (CV) is a powerful electrochemical technique and the most 

widely used.  In this technique, the current is measured as a function of the applied 

potential.  As a potential sweep technique, the potential is swept from an initial potential, 

E1, to a vertex potential, E2.  This is done at a constant rate, with respect to time, and is 

referred to as the scan rate, ν.  Upon reaching E2, the scan is reversed, at the same rate, 

and the potential is swept back to E1.  This creates a triangular waveform, as described in 

Fig. 2.2.  In reality, many modern instruments are digital, and thus scan in a staircase 

fashion of minute increments.  Provided that the increments in potential are minute, 

stepwise scanning is equivalent to a linear sweep, but larger increments will result in a 

shift in peak potentials.3 
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Fig. 2.2 Triangular waveform of a cyclic voltammogram.  Potential is swept from E1 to E2 back to 
E1 for one cycle.  This can be repeated n times. 

Given the redox active species, R which oxidises to O,  

 (  )   (  )   ( )
  

as the potential at the working electrode reaches the oxidation potential, R will oxidise to 

O and an exponential increase in current will occur.  Replenishment of R at the electrode 

from the bulk solution is limited and so as R becomes depleted at the electrode surface, 

the current increases less exponentially and eventually a maximum peak current, ip, is 

reached.  As the scan is reversed and more reducing potentials are achieved, the opposite 

occurs as O is reduced to R.  This results in a cyclic voltammogram as depicted in Fig. 2.3. 

 

Fig. 2.3 A typical cyclic voltammogram for a reversible reaction showing oxidation and reduction 
peaks. 
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In a reversible (Nernstian or fast electron-transfer kinetics) electron transfer process, 

Epred and Epox are separated by 
  

 
 mV at 298K where n is the number of electrons 

transferred per mole of reagent.  The peak currents, ipox and ipred, can be described by the 

Randles-Sevčik equation (Eq. 2.2). 

              (
    

  
)

 
 

 

 

Eq. 2.2 

Where n is the number of electrons transferred in the redox process, F is the Faraday 

Constant in C mol-1, A is the area of the electrode in cm2, C is the concentration in mol 

cm-3, D is the diffusion coefficient in cm2 s-1, R is the ideal gas constant, T is the 

temperature, and ν is the scan rate in V s-1.  For experiments at 298 K, the expression 

simplifies to  

          
   

 
    

 
   

 
  

 

Eq. 2.3 

Therefore, the magnitude of the peak current is dependent on scan rate and is directly 

proportional to the concentration.  Thus, CV can be used as a quantitative analytical 

technique.1,2,4 

 

The kinetics of CV are governed by electron transfer and mass transfer, as outlined in 

Fig. 2.4.  The electron transfer step occurs at the electrode surface and is governed by the 

energies of the electrode (Fermi Level) and the redox species in solution.  The mass 

transfer step is determined by the diffusion of the redox species from the bulk solution.1 
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Fig. 2.4 Kinetic processes governing electrochemical experiments.  The terms ka and kc are the 

rate constants for the electron transfer step and the terms kd,R and kd,O are the rate constants for 
diffusion between the electrode surface and the bulk solution (mass transfer). 

 

As well as a concentration gradient, an electrical field gradient is established as a result of 

a difference in charge between the electrode and the solution.  The layering and gradient 

are described by the electrolyte double layer model, which is depicted in Fig. 2.5. As a 

result of charge separation, the double layer acts as a capacitor and is responsible for the 

capacitive current, which is recorded along with the Faradaic current. 

 

Fig. 2.5 The electrolyte double layer.  IHP is the inner Helmholtz plane, and OHP is the outer 
Helmholtz place.  The orientation of the charges is  dependent on the charging of the electrode.  
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Because the Faradaic current is imposed upon the capacitive current, it is necessary to 

correct for this when measuring ipox and ipred.  This can be done simply by subtracting out 

the current measured in a background scan.4  The capacitive current can also be reduced 

by decreasing the electrode surface area or by employing pulse techniques. 

 

CHRONOAMPEROMETRY 

Chronoamperometry (CA) is the simplest of all step techniques, and in fact, one of 

the simplest electrochemical techniques.  In CA, the potential is initially set below the 

potential at which the intended reaction occurs.  After a given time, the potential is then 

instantaneously stepped up to the potential at which the reaction is kinetically driven 

(mass-transfer control).  Initially, a large current is recorded, which decays over time as 

controlled by diffusion to the electrode surface, as depicted in Fig. 2.6.  Theoretically, this 

current spike should be infinite, but due to instrumental limitations, this is not seen. 

 

Fig. 2.6 CA potential waveform (black) and current response (red) with respect to time.  
Eventually a steady state current is achieved.  

DIFFERENTIAL PULSE VOLTAMMETRY 

In differential pulse voltammetry (DPV), the potential waveform used is a combination of 

pulses imposed on a staircase, as shown in Fig. 2.7.  The current is measured before the 
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start of the pulse and before the pulse is finished.  The difference in current is then 

plotted with respect to potential. 

 

Fig. 2.7 DPV waveform, with parameters labelled as used in experiments reported here.  P H is 
pulse height, PW is pulse width, ST is step time, and SH is step height.  The green points indicate 

where the current is measured with respect to each step , where ΔI=I(2)-I(1). 

The peak current is given by the expression 

   
    

 
  

(   )
 
 

(
   

   
) 

 

Eq. 2.4 

where 

   
(
  
  
 
  
 
)
 

 

Eq. 2.5 

and tm is the pulse duration and ΔE is the pulse amplitude.1,4 

 

The advantage to using DPV is that it eliminates the capacitive current, and only Faradaic 

current is recorded.  Additionally, DPV is capable of achieving detection limits of the 

order of 10-8 M. 
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CHAPTER 3 : FACILITATED DETECTION AT THE 
LIQUID-LIQUID INTERFACE 

INTRODUCTION 

Electrochemistry at the interface between two immiscible solutions (ITIES) and 

its applications have been extensively reviewed and discussed.1-3  The information herein 

is to provide background knowledge for understanding electrochemistry at the ITIES and 

micro ITIES. 

 

When two immiscible solutions contain electrolytes, a Galvani potential difference at the 

interface between them can form as a result of the differential transfer of the ions 

present.4  This potential difference means that the interface can be controlled by an 

external potential, and, thus the interface can be used to study electron transfer reactions 

(like at a solid electrode) as well as ion transfer across the interface.3,4  It is in the study of 

ion transfer that electrochemistry at the ITIES proves most useful and this will be 

discussed here. 

 

For ion transfer between water (w) and oil or organic (o) phases, the Gibbs energy of 

transfer (            
     ) must be given to the ion in order for it to transfer from one phase 

to the other.  This is achieved by the application of a potential to the interface, polarising 

it so the Galvani potential difference is defined as 
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         Eq. 3.1 

At equilibrium, the Nernst equation for ion transfer reactions is then given as 

  
     

   
  

  

   
  (

  
 

  
 ) 

Eq. 3.2 

where ai is the activity of ion i, and zi is the charge.  The Gibbs energy of transfer is 

related to the standard potential of transfer   
   

  in its definition 

  
  

            
     

   
 

  
       

    

   
 

Eq. 3.3 

 
The control of the potential at the interface can be achieved by a four-electrode system.  

A pair of counter and a pair of reference electrodes are used, with one each phase of the 

system.1  Typically, the reference electrodes are connected to the system via Luggin 

capillaries, with tips proximal to the interface, as described in Fig. 3.1 below. 

 

Fig. 3.1 Scheme for four-electrode controlled electrochemical cell for polarisation of the ITIES.  o 
and w denote oil and water phases; RE reference electrode; CE counter electrode.  

 



D.G. Rackus 2011 

-24- 
 

This cell (Fig. 3.1) has three major components along with the reference electrodes and 

can be described by 

RE|RX(w’)|SY(o)||RX(w)|RE  Eq. 3.4 

Phase boundaries exist between the aqueous reference [RX(w’)] and the oil (SY), and 

between the oil and the aqueous phase (RX).  A typical setup for studying the transfer of 

the tetraphenylborate ion (TPB-) would be as follows 

Ag|AgCl|LiCl(aq)|TBATPB(o)||TBACl(aq)|AgCl|Ag Eq. 3.5 

 

Just as in the case of solid electrodes, when voltammetric techniques are applied, the 

peak currents, relating to ion transfer, are governed by the Randles-Sevčik equation.  

Additional terms are incorporated, however, to describe the nature of ion transfer and 

not electron transfer.  And like solid electrodes, minimising the area of the interface 

eliminates capacitive current.  For a micropipette system, the current is governed by  

                Eq. 3.6 

where all terms retain their meanings from the Randles-Sevčik equation except D is the 

diffusion coefficient of the species in the outer solution.5  Additionally, with 

micropipettes, because the current flowing between the electrodes is so small, the need 

for counter electrodes is eliminated. 

 

Kinetically, ion transfer can be described in three phases.  First there is mass transfer to 

the interface, which is predominantly by diffusion.  Second is the ion transfer reaction as 

the ion crosses the interface.  Finally, there is the mass transfer in the other phase away 

from the interface.  The dynamics of transfer can be modified by the use of ligands which 

facilitate ion transfer across the interface.3 
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Facilitated transfer of ions across the ITIES involves the use of a neutral ligand to aid ion 

transfer across the interface.  There are many ways possible in which this could be 

achieved and depends on the relative concentrations and where the ligand is located.  

Facilitated ion transfer reactions, however, can be described by one of four mechanisms.  

These mechanisms depend primarily on where complexation occurs in reference to the 

interface—either at the interface, or within one of the two phases.3 

 

Mechanisms in which the complexation occurs in one of the two phases are aqueous 

complex transfer (ACT) and transfer followed by organic phase complexation (TOC).  In the 

former case, the ion complexes with the ligand in the aqueous phase and is then 

transferred to the organic phase as a complex.  In the latter, the ligand is located in the 

organic phase and so the ion transfers from the aqueous phase to the organic phase and 

then complexes with the ligand.3,6 

 

The mechanisms in which complexation occurs at the interface are transfer by interfacial 

complexation (TIC) and transfer by interfacial dissociation (TID).  The TIC mechanism 

describes a process where the ion complexes with the ligand at the interface and is then 

transported to the other phase as a complex.  The TID mechanism is the opposite, where 

the ion is transported to the interface as a complex and then dissociates at the 

interface.3,6 

 

Ligands used for assisted transfer can range from macromolecules to proteins.3,5,7,8  

Popular macromolecular ligands include crown ethers, such as dibenzo-18-crown-6, as 

well as cyclodextrins.8  Cyclodextrins are an interesting class of ligands, particularly 

because of the variety available.  They are macromolecules containing six, seven, or eight 

glucose molecules and are classed as α-, β-, and γ-cyclodextrins, respectively.  
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Structurally, β-cyclodextrins can described as a toroid structure with a highly 

hydrophobic inner core, as depicted in Fig. 3.2.9 

   

Fig. 3.2 Chemical and physical structures of β-cyclodextrins. 

 

The class of β-cyclodextrins are of particular interest to this work as propofol is known to 

complex with these sugar macromolecules, and their interaction has been well 

characterised.10  Propofol forms a 1:1 complex with β-cyclodextrins in solution.  The 

stability constant of the complex, K1:1, has been reported as 3439 M-1 for a complex of 

propofol and 2-hydroxypropyl-β-cyclodextrin at 25 °C and pH 6.5 and it has been shown 

that β-cyclodextrins can increase the aqueous solubility of propofol from around 840 µM 

to concentrations over 260-fold greater.11   There even exist formulations of the drug for 

delivery which use β-cyclodextrins to help solubilise the propofol.12  Electrochemistry at 

the µITIES could, therefore be a powerful tool, capitalising on this drug-ligand interaction 

for the detection of propofol. 

 

However, ligand facilitated transfer at the ITIES of propofol is not as straightforward as 

one might think.  In the literature, ITIES has only been used to study ionic analytes.  The 

challenge with propofol is that propofol is not easily ionisable, and, therefore must be 

treated as a neutral molecule.  The question that then arises is, can the transfer of a non-

ionic species at the ITIES be controlled and detected electrochemically?  The hypothesis 
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used to try to answer this question relies on the reversal of the conventional ion-ligand 

facilitated transfer system.  Rather than using a neutral ligand to facilitate the transfer of 

a charged ion, it is proposed that a charged ligand could be used to facilitate the transfer 

of a non-charged molecule.  The system used to test this hypothesis uses propofol as the 

neutral molecule and the phosphated β-cyclodextrin sodium salt C42H70O47P4Na4 

(NaPβCD) as the charged ligand. 

METHODS 

 To study the transfer of propofol at the µITIES, an electrochemical cell consisting 

of a glass micropipette and a U-tube was used, as described in Fig. 3.3.  Micropipettes 

were fashioned from borosilicate glass capillaries (Harvard Apparatus, Ltd., UK) with an 

outer diameter of 1.5 mm and an inner diameter of 1.17 mm by means of a Model P-97 

Flaming/Brown micropipette puller (Sutter Instrument Co., USA).  The parameters used 

were H: 480, V: 25, and T: 250. 

 

Fig. 3.3 U-tube setup for studying propofol transfer at the µITIES.  Propofol was added to the 
organic phase and cyclodextrins were added to the aqueous phase filling solution in the 

micropipette. 
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Unless otherwise stated, all reagents used were provided by Sigma-Aldrich, UK.  The 

supporting aqueous phase was a 10 mM solution of tetrabutylammonium chloride 

(TBACl) ≥97%.  The supporting electrolyte was also layered on top of the organic layer to 

prevent any evaporation.  The organic phase contained the electrolyte 

tetrabutylammonium tetraphenylborate (TBATPB) ≥99% at a concentration of 10 mM 

and was consistently measured out to 300 µL.  The micropipette was filled by syringe 

with 10 mM LiCl(aq) solution.  This is the same electrochemical cell as describe by Eq. 3.5.   

When used, propofol was dissolved in the organic phase and the β-cyclodextrin in the 

aqueous phase of the micropipette.  Cycloheptaamylose was purchased from Sigma-

Aldrich, UK and the phosphated β-cyclodextrin NaPβCD was purchased from CycloLab, 

Hungary.  These were both the simplest charged and uncharged β-cyclodextrins 

available.  The reference electrodes were prepared by immersing two Ag wires in 

saturated KCl solution and applying potentials of 2.0 V and -2.0 V for 15 minutes each.  

 

For experiments with cycloheptaamylose, the cell was controlled by an AUTOLAB 

PGSTAT12 potentiostat (Windsor Scientific, UK).  For experiments with NaPβCD, the cell 

was controlled by a VMP Multichannel Potentiostat (Perkin Elmer Instruments).  CV and 

DPV were used to study the system.  CVs were conducted at varying scan rates, and the 

parameters for DPV experiments are as follows: PH=2.5 mV, PW=100 ms, SH=5 mV, 

ST=500 ms. 

 

UV spectroscopy was used to investigate whether or not propofol is able to cross the 

ITIES without the application of an external potential.  An aqueous layer of 10 mM LiCl 

and 10 mM of NaPβCD was stratified on top of an organic layer of 10 mM TBATPB and 50 

mM propofol.  Samples of the aqueous component were analysed by a UV-Vis 

spectrophotometer (Unicam UV2) before stratification and after 30 minutes.  
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RESULTS & DISCUSSION 

Cycloheptaamylose as a ligand for propofol transfer 

Cyclic voltammograms of the background cell (Eq. 3.5) show a potential window 

from 0 to 0.5 V, as seen in Fig. 3.4.  Upon addition of 50 mM of propofol to the system, 

there were no significant differences apart from the intensity of the measured currents.  

Given the high lipophilicity of propofol, this is likely due to an increase in resistance at 

the interface.  The lack of any current peaks indicates that there is no transfer across the 

interface within the given potential window. 

 

Fig. 3.4 CV taken at 100 mV s -1 of the background system (dashed) and 50 mM of propofol in the 
organic phase (solid).  

 

Upon the addition of 10 mM of the uncharged β-cyclodextrin cycloheptaamylose, the CV 

profile changed dramatically, suggesting some sort of transfer process, as shown in 

Fig. 3.5.  However these results were not consistently reproducible.  Rather than being 

indicative of transfer, the increase in current around 0.4 V could be indicative of 

complexation at the interface, but not necessarily transfer. 
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Fig. 3.5 CV taken at 100 mV s -1 of 50 mM propofol opposed by 10 mM cycloheptaamylose at the 

µITIES. 

 

Charged cyclodextrins for facilitated transfer 

With propofol in the organic phase, it was able to be detected by DPV as a change in the 

current corresponding to the transfer of NaPβCD.  This is shown in Fig. 3.6.  Fig. 3.7 gives 

the peak currents as a function of propofol, and from it, it can be argued that there is a 

positive correlation between current and propofol concentration in the organic phase.  

This trend only exists up to equimolar concentrations, suggesting that the system is 

controlled by propofol as it facilitates the transfer of NaPβCD.  Clearly, more repetitions 

are required and a broader range of concentrations should be used before any conclusive 

remarks can be made. 
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Fig. 3.6 Baseline corrected DPVs showing the effect of propofol on the transfer of  
10 mM NaPβCD. 

 

Fig. 3.7 Absolute difference in δI plotted against the concentration of propofol.   Error bars ±5%. 

 

UV spectroscopy 

In an aqueous solution of 10 mM β-cyclodextrin, propofol should be soluble up to a 

concentration of 5 mM, according to calculations based on data from Trapani et al.11  This 

is nearly six times the normal solubility of propofol in an aqueous solution.  Given the 

large difference in propofol concentration across the boundary (i.e., 5-20 mM versus 0 

mM) and the increased capacity of the cyclodextrins containing aqueous solution to 

dissolve propofol, it is possible that propofol could diffuse between the two phases.  If 



D.G. Rackus 2011 

-32- 
 

propofol can diffuse from the organic to the aqueous phase without an external potential, 

then it could be suggested that the system is governed by the ACT mechanism, as shown 

in Fig. 3.8A.  UV spectroscopy did not identify a change in absorbance for propofol at 276 

nm before and after 30 minutes of exposure of the aqueous layer to the propofol 

containing organic layer.  This would confirm that complexation between NaPβCD and 

propofol occurs at the interface.  The two models are described in Fig. 3.8. 

 

Fig. 3.8 Two models for transfer at the ITIES involving propofol and NaPβCD.  In model A, 
propofol is able to diffuse from a high concentration in the organic (yellow) phase across the 

ITIES to the aqueous phase (blue) where it complexes with the cyclodextrins.  When a potential 
is applied, the complex crosses the interface.  Its increased mass (compared to the cyclodextrins 
on its own), results in a decreased current.  In model B, propofol cannot enter into the aqueous 

phase.  Upon the application of a potential, propofol complexes with NaPβCD at the interface and 
the complex is transferred.  
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CONCLUSIONS 

Although further investigation is required, it was demonstrated that propofol 

affects the transfer of NaPβCD at the µITIES.  It may be that a charged ligand can be used 

for the detection of a non-charged analyte at the µITIES.  The mechanism by which 

propofol and NaPβCD transfer and complex is most likely the TIC mechanism, but more 

thorough analysis is required.  Experiments studying the ratio of diffusion coefficients of 

propofol and the complex in the organic phase as well as a better understanding of the 

solubility of the complex in both organic and aqueous phases are required to conclusively 

determine by which mechanism facilitated transfer is occurring.  In doing so, the 

geometries of the diffusion fields will need to be taken into account.6  Additionally, a 

greater range of concentrations of propofol should be used when the cyclodextrin is kept 

in excess.  The reverse process (the transfer of the ligand from the complex to the 

aqueous phase) would also shed light on the process. 
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CHAPTER 4 : MODIFIED CARBON ELECTRODES  

INTRODUCTION 

Chemically modified electrodes (CMEs) offer an approach to electrode systems 

leading to considerable utility and functionality.1  Modifying an electrode surface can 

offer advantages such as an increased surface area, a platform to investigate surface 

coatings, new chemical functionality—including selectivity and catalytic functionalities—

or to add a biological activity.2  Modifications can include physically adsorbed surface 

coatings,3 monolayers,4 covalently bound modifiers,5 and electrochemical pre-treatment 

and pre-conditioning.6,7  This introduction will look at the use of carbon nanotubes 

(CNTs), β-cyclodextrins, electrochemical pre-treatment and pre-conditioning, and redox 

catalysts as electrode modifiers as a context for CME for propofol detection. 

 

Carbon nanotubes 

Since their re-discovery in 1991,8 carbon nanotubes have garnered much interest 

amongst the scientific community and have been put to use in a variety of applications.  

Structurally, CNTs can be described as rolled sheets of graphene, and come in two 

varieties—single-wall carbon nanotubes (SWNT) and multiwall carbon nanotubes 

(MWNT).  Both types of CNTs have two different reactive sites—edge-plane sites and 

basal-plane sites.  Edge-plane sites are found at tube ends and are akin to the edge of a 

sheet of paper, whereas basal-plane sites can be likened to the surface of a sheet of paper.  

It has been shown by Banks et al9. that it is the edge-plane site (i.e., the ends of the CNT) 

or similar defects on the CNT surface that offer an electrocatalytic advantage.  This 

electrocatalytic effect is similar to that seen by using edge-plane pyrolytic graphite 

electrodes, but their nanostructure makes them suitable for specific applications.9  CNTs 
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have found popular use in electrochemical applications, particularly in sensor and 

biosensor development.10  

 

Electrodes modified by CNTs have been used in various sensing applications, such as the 

detection and discrimination of neurotransmitters.  Glassy carbon electrodes (GCE) 

modified with MWNTs were shown to have an electrocatalytic effect on the oxidation of 

dopamine and serotonin, leading to an increased oxidation peak and decreased oxidation 

overpotential.11  Investigations into the oxidation of NADH by Wang’s group12 showed 

that CNT coated electrodes were also shown to have an improved signal and decreased 

oxidation overpotential, but the CNT modification was also shown to decrease fouling.12  

Fouling, in the case of NADH, results when NAD+, the oxidised form of NADH, dimerises at 

the electrode surface.13  Computer simulations combined with electrochemical 

experiments suggest that electrode passivation is reduced due to the high surface area 

afforded by CNTs.14  As this is a similar case with propofol, CNT modified electrodes 

might reduce surface fouling by the electrooxidation of propofol. 

 

Apart from being used as surface modifiers, CNT paste electrodes have been reported in 

the literature.15  CNT paste electrodes offer the versatility and customisation of a paste 

electrode in conjunction with the electronic properties of CNTs. 

 

β-cyclodextrins 

Cyclodextrins, as mentioned in Chapter 3, are cyclic macromolecular sugar molecules.  

The class of β-cyclodextrins consist of seven 1,4-linked D(+)-gluocopyranose molecules, 

with a hydrophobic core and a hydrophilic exterior.  When bound to an electrode surface, 
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cyclodextrins can be used for electroanalytical investigations based on the formation of 

an inclusion complex between the hydrophobic inner core and a hydrophobic analyte.  

Electrochemical detection can occur in one of two ways.  Either the analyte has its 

electroactive region exposed or the cyclodextrins has been modified with a mediator, 

such as ferrocene, to relay the electron transfer to the electrode surface.  Electrodes can 

be modified by cyclodextrins in a number of ways.  These include adsorption to the 

electrode surface, incorporation into a polymeric film, and immobilisation through 

covalent linkages.16 

 

Thiolated β-cyclodextrins have been synthesised for their immobilisation onto gold 

electrodes.  Self-assembled monolayers of β-cyclodextrins were shown to form well-

defined layers and only allow the gold electrode to oxidise species that can enter the 

hydrophobic cyclodextrins cavity.5  This effectively creates a lipophilic barrier for 

electron transfer discriminating against any hydrophilic electroactive species.17 

  

Electrochemical pre-treatment and pre-conditioning 

Pre-treatment and pre-conditioning of an electrode surface may be necessary to observe 

certain electrochemical behaviour.  Pre-treatment involves applying certain potentials 

for a defined amount of time to the electrode immediately prior to an experiment.  Pre-

conditioning involves the repeated cycling between voltages and can be undertaken at 

any point in the electrode’s history.6  Electrochemical pre-treatment is known to increase 

the hydrophobicity of the glassy carbon electrode.18,19  It is understood that this is the 

result of the introduction of carbonyl, carboxyl, and hydroxyl functionalities to the 

electrode surface.7 
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Pretreated electrodes for the detection of propofol have previously been discussed in 

Chapter 1.  Work by Thiagarajan et al.7 suggests that the introduction of oxygen 

containing functional groups to the surface of the electrode imputes an electrocatalytic 

effect for the electrooxidation of propofol, but no specific mechanism has been 

suggested.7  It has been shown, however, that oxygen-containing surface functional 

groups reduce the adsorption of phenols to carbon surfaces.20-22 GCE surfaces consist of 

sp2 hybridised carbon structures, which have delocalised electrons on the surface that 

aid in phenolic adsorption.23  This surface naturally contains oxygen containing function 

groups, as depicted in Fig. 4.1.  Experiments on graphite and boron-doped graphite by 

Mahajan et al.21 suggest that the introduction of oxygen-containing surface functional 

groups localises the free electrons of the carbon basal plane, thus reducing the adsorptive 

capacity of the surface.21 

 

Fig. 4.1 Polished GCE surface (A) and GCE surface with additional oxygen containing functional 
groups (B). 

 

A B 
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Redox catalysts 

Redox catalysts can also be used to modify an electrode, with the aim of catalysing the 

oxidation of the analyte in question.  Various redox dyes have been shown to act as 

artificial electron donors and acceptors and such dyes can undergo 

electropolymerization.24  One such dye, methylene blue (MB) (see Fig. 4.2), has been used 

as an electron mediator in the development of biosensors for NADH based on NADH-

dehydrogenase.25-27 

 

Fig. 4.2 Methylene blue 

 

Because the electrooxidation of NADH occurs in two single-electron transfer steps, NADH 

can dimerise and foul the electrode.27  After the first electron transfer step, which is 

widely separated in potential from the second, dimerisation with another free radical, 

protonation, or adsorption to the electrode surface can occur.28  It has been shown that 

MB electropolymerised to gold and glassy carbon electrodes both reduces the oxidation 

overpotential and couples the two single-electron transfer steps into one two-electron 

transfer.25,27   

 

Methylene blue, as a photosensitiser can produce singlet oxygen (1O2) in the presence of 

O2 and light.  Propofol is known to react with 1O2 to form the diquinone shown in Fig. 4.3.  

If the diquinone is formed, then dimerisation or polymerisation of propofol will not 

procede.  Thus, MB modified electrodes may reduce electrode fouling through 1O2 

production. 
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Fig. 4.3 Proposed reaction between propofol phenoxyl radical and singlet oxygen to produce a 
diquinone. 

EXPERIMENTAL METHOD 

Unless otherwise mentioned, all materials and reagents were purchase from 

Sigma Aldrich (UK).  GCEs and modified GCEs were used as the working electrode, a 

platinum flag was used as the counter electrode, and a Ag/AgCl bare wire was used as the 

reference electrode.  A VMP Multichannel Potentiostat (Perkin Elmer, UK) was used to 

control the electrodes.  Various solutions of propofol were used and are identified where 

used.  These include a solution of propofol prepared in phosphate buffer (PBS) and 

acetonitrile (ACN) (90:10 v/v) and propofol solutions in just PBS. 

 

Glassy carbon electrodes 

GCEs were polished with 0.05 µM alumina polish on a chamois surface for 2 min before 

being sonicated in methanol for 15 min followed by sonication in deionised water for 15 

min. 

 

CNT modified electrodes 

GCEs were modified with multiwalled carbon nanotubes (MWNTs).  MWNTs were 

dispersed in N,N-dimethylformamide (DMF) (2 mg/mL) solution by ultrasonic agitation 

for about 1 hour.  GCE were modified by pipetting 6 µL of the MWNT-DMF suspension the 
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electrode surface of the GCE and allowed to dry.  This was repeated.  After modification, 

the electrode was rinsed in deionised water to remove any MWNTs that did not adhere. 

 

CNT paste electrodes 

CNT paste electrodes were prepared from 60% MWNTs and 40% mineral oil, by weight.  

The paste was then packed in the end of a poly(methyl methacrylate) tube with a 

diameter of 2 mm and a depth of 2 mm.  Copper wire was used to connect the paste to the 

leads connecting to the potentiostat.  This is illustrated below in Fig. 4.4.  The electrode 

was polished on filter paper in order to pack the CNT paste and achieve a smooth surface. 

 

Fig. 4.4 Construction of CNT paste electrode.  

 

β-cyclodextrin modified electrodes 

To the surface of a polished GCE, 6 µL of a 2% (w/v) solution of heptakis-(2,3,6-tri-O-

acetyl)-β-cyclodextrin in DCE was added.  The hydrophobic cyclodextrin was used so it 

would not dissolve when exposed to an aqueous sample.  The solvent was allowed to 

evaporate overnight. 

Pre-anodisation 

Pre-anodisation was attempted by applying CV to a polished GCE in 0.5 M H2SO4 between 

0 and 2 V at 100 mV s-1. 
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Methylene Blue 

Solutions of 100 µM methylene blue and 400 µM propofol were prepared in 0.1 M PBS, 

pH 7.  CV was conducted on a 50 µM solution of MB with a restricted potential window as 

to avoid electropolymerisation.  This was repeated, but with 200 µM of propofol. 

 

MB was then electropolymerised following the procedure reported by Karyakin et al.24  A 

0.02 M borate buffer was prepared from solutions of boric acid and sodium tertraborate 

and had a pH of 9.14.  0.1 M of KCl was used as a supporting electrolyte.  A 1 × 10-3 M 

solution of MB was prepared in the borate buffer and a polished GCE was cycled 

from -0.4 to 1.2 V for 30 cycles.  PolyMB coated electrodes were the used in CV and 

amperometric studies of propofol.  

RESULTS & DISCUSSION 

Glassy carbon electrode 

Initially, the electrochemical properties of propofol were studied with a bare GCE.  

Cyclic voltammetry, displayed in Fig. 4.5 and Fig. 4.6, shows that propofol is oxidised at 

around 0.5 V (vs Ag/AgCl).  The formation of a polypropofol product (possibly a 

diphenol) is evident by a second oxidation peak at 0.25 V (vs Ag/AgCl) present in cycles 

subsequent to the first one.   
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Fig. 4.5 CVs of progressive cycles of 500 µM propofol in PBS/ACN (90:10 v/v).  
Scan rate 100 mV s-1. 

 

The continually increasing shift between anodic and cathodic peak currents indicates 

that the kinetics of the electron transfer process are slowing with each successive scan.29  

This is most likely due to the formation of a film on the electrode surface which impedes 

electron transfer.  Prior to CV experiments, the polished GCE has a shiny, reflective 

appearance.  After use in propofol containing solutions, the electrode loses its lustre and 

appears darker, suggesting the deposition of a film on its surface. 
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Fig. 4.6 CVs of the first (dotted), second (solid), and eleventh (dashed) cycles from Fig. 4.5. 

 

A mechanism by which propofol radicals dimerise has been suggested by Heyne et al.30 is 

given below in Fig. 4.7.  The electron and proton transfer is believed to occur in a 

concerted manner.31 

 

Fig. 4.7 Mechanism of propofol dimerisation.  

 

The GCE was used to detect propofol quantitatively by chronoamperometry.  The 

calibration plot in Fig. 4.8 below gives a detection limit of 14 µM and a sensitivity of 

3.3 × 10-3 µA µM-1. 
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Fig. 4.8 Calibration plot for GCE used in amperometric mode.  E=0.25 V.  Background corrected.  
Error bars = ±5% 

 

β-cyclodextrin modified GCE 

GCEs modified with the hydrophobic cyclodextrins heptakis-(2,3,6-tri-O-acetyl)-β-

cyclodextrin were briefly investigated.  The hypothesis was that an electrode surface 

modified by cyclodextrins would be more selective to propofol and the cyclodextrins 

would reduce the interference of the signals associated with surface fouling.  Fig. 4.9 

demonstrates how this might be achieved.  If the electrode surface were covered with 

adsorbed β-cyclodextrins, then access to the electrode surface would only be through the 

hydrophobic inner core of the cyclodextrins.  Propofol fits inside this cavity,32 and so the 

oxidised intermediate would be restricted from reacting with other propofol molecules. 
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Fig. 4.9 Model showing how β-cyclodextrins can restrict access to the electrode surface.  

 

A background scan in PBS from -0.4 V to 1.0 V (Fig. 4.10) showed that the β-cyclodextrin 

on the electrode surface has no significant interference on the measurements. 

 

Fig. 4.10 CV of 0.1 M PBS by GCE modified with heptakis -(2,3,6-tri-O-acetyl)-β-cyclodextrin.  

Scan rate 10 mV s-1. 

 

When the modified GCE was introduced to a solution of propofol, CV gave different 

results compared to an unmodified GCE.  These results are given in Fig. 4.11.  On the first 

cycle, an oxidation peak at 0.4 V indicated the oxidation of propofol, as expected.  

However, upon continuous cycling, this peak reduced in current but a second peak 

corresponding to the oxidation of a polypropofol product, did not appear.  The decrease 

in current corresponding to propofol oxidation with subsequent scans suggests that the 
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available concentration of propofol at the electrode surface decreases.  This could be 

because as propofol is oxidised, it dimerises or polymerises, as per usual.  As propofol is 

known to complex with β-cyclodextrins,32 it can still be oxidised at the electrode surface, 

despite the presence of the β-cyclodextrin layer.  However, the oxidation of this 

polypropofol product is not visible because the β-cyclodextrin discriminates against it 

based on size.  This is due to the inclusion of propofol into the interior of the 

cyclodextrins cavity.  Once could probably calculate the kinetics of the complexation, but 

fundamental studies were not part of the initial exploratory studies. 

 

Fig. 4.11 CV of 500 µM propofol in PBS/ACN (90:10 v/v) by GCE modified wi th heptakis-(2,3,6-
tri-O-acetyl)-β-cyclodextrin.  Scan rate 10 mV s -1.  Cycles are indicated by numbers.  

 

To test this theory, surface studies of the modified GCE surface would be necessary.  

Understanding the surface coverage and orientation of the β-cyclodextrin molecules 

would suggest whether this theory is reasonable.  Alternatively, experiments where the 

cyclodextrin layer is tethered to the electrode surface, as in references 5 and 33, would 

ensure a consistent orientation. 

 



D.G. Rackus 2011 

-48- 
 

CNT modified GCE 

GCEs modified with MWNTs were investigated for propofol detection.  It was found that 

the MWNT modification lowered the oxidation potential, but did not affect surface 

fouling.  The oxidation overpotential was decreased to approximately 0.25 V (vs 

Ag/AgCl).  The adsorption of the polypropofol product is evident in Fig. 4.12. 

 

Fig. 4.12 CV of 500 µM propofol in PBS/ACN (90:10 v/v) by GCE modified MWNTs.  
Scan rate 10 mV s-1. 

 

A calibration plot for the MWNT modified GCE is given in Fig. 4.13.  Although the MWNT 

modified GCE has a limit of detection of 18.9 µM, which is slightly higher than that of the 

bare GCE, it has a higher sensitivity than a bare GCE (1.02 × 10-2 µA µM-1 versus 3.3× 10-3 

µA µM-1). 
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Fig. 4.13 Calibration plot for MWNT modified GCE used in amperometric mode.  E=0.25 V.  

Background corrected.  Error bars = ±5% 

 

CNT paste electrodes 

Because of the reported benefits of using CNTs to modify electrodes, namely  decreases in 

oxidation overpotential11 and surface fouling,12 an electrode made out of CNTs was 

considered for propofol detection.  A CV of the CNT paste electrode did not exhibit any 

oxidation or reduction of the MWNTs themselves and gave a relatively flat background.  

The background CV (Fig. 4.14) shows that there is a capacitve current of approximately 

3.2 µA.  This is considerably higher than that of the GCE (0.62 µA) and may be accounted 

for by the mineral oil used to bind the MWNTs. 
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Fig. 4.14 CV of 0.1 M PBS with CNT paste electrode at 10 mV s -1. 

 

The CNT paste electrode also showed a good response with electroactive species.  CV of 

10 mM K3Fe(CN)6 (Fig. 4.15) shows reversible oxidation and reduction of Fe2+/3+, with a 

difference in cathodic and anodic peak potentials of 80 mV. 

 

Fig. 4.15 CV of 10 mM K3Fe(CN)6 with CNT paste electrode at 10 mV s-1. 

 

When used to study propofol, the CNT paste electrode only displayed one of its two 

expected advantages.  The oxidation potential was reduced to 0.25 V, compared to 0.5 V 
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for the GCE.  From Fig. 4.16 it can be seen that product of propofol oxidation is still 

present and fouling occurs.  This is likely due to only partial coverage of the electode 

surface by the CNTs. 

 

Fig. 4.16 CV of 50 µM propofol in PBS/ACN (90:10 v/v) at 10 mV s -1.  Cycle 2 (solid) shows the 
appearance of the polypropofol product.  

 

Pre-anodised GCE 

The pre-anodisation of GCEs was attempted in 0.5 M H2SO4 as reported by Thiagarajan et 

al.7  It was reported that an increasing cathodic peak at 1.6 V (vs Ag/AgCl) was indicative 

of the pre-anodisation process.  This was not evident in any electrode preparations, and 

so the method was abandoned.  Pre-anodised GCEs have been reported elsewhere in the 

literature,6,7,18 so the failure to achieve this was unusual. 

 

Methylene Blue modified GCE 

In the same way that polyMB has been shown to decrease the oxidation overpotential of 

NADH and reduce surface fouling,25 the electropolymerisation of MB on a GCE was 

investigated to see if it might offer a similar catalytic advantage.  First, exploratory 
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studies were conducted in solution.  Fig. 4.17 shows the CV of a 50 µM solution MB at pH 

7 in PBS in the potential range -0.7 to 0.8 V.  Its oxidation and reduction is evident by the 

peak currents around -0.4 V.  The low ΔE of the anodic and cathodic peaks (44.1 mV) 

suggests that there might be some adsorption to the electrode surface.  The switching 

potential was kept below 1.0 V in order to avoid any electropolymerisation. 

 

Fig. 4.17 CV of 50 µM MB in 0.1 M PBS, pH 7.  Scan rate 10 mV s -1. 

 

Upon the introduction of 200 µM propofol (Fig. 4.18) to the system, peak currents are 

evident at 0.29 and -0.35 V (vs Ag/AgCl).  This is a decrease in the oxidation potential by 

approximately 0.2 V compared to propofol electrooxidation at an unmodified GCE, and is 

similar to the effect of MB in other systems (e.g. NADH biosensors).  This lowering of the 

oxidation potential is later maintained in the use of a polyMB film on a GCE (Fig. 4.20).  

Additionally, the anodic and cathodic peak potentials of MB appear to shift even closer 

together (15.9 mV). 
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Fig. 4.18 CV of 200 µM propofol and 50 µM MB in 0.1 M PBS, pH 7.  Scan rate 10 mV s -1. 

 

MB was next electropolymerised onto the surface of a GCE.  The electropolymerisation is 

recorded in Fig. 4.19.  Polymerisation of MB occurs best under basic conditions and the 

progressive increase in the redox couple peaks indicate that electropolymerisation has 

occurred. 

 

Fig. 4.19 Electropolymerisation of MB. 1 mM MB in 0.02 M borate buffer pH 9.08, 0.1 M KCl. 

30 cycles.  Scan rate 50 mV s-1. 
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The effect of polyMB films on the electrochemical detection of propofol was next 

investigated.  Fig. 4.20 compares background scans and CV in 200 µM solution of 

propofol.  Only one scan is shown for each because subsequent scans were 

indistinguishable.  The electrooxidation of propofol is indicated by an arrow in Fig. 4.20B.  

Only one peak was observed on the first and subsequent cycles, suggesting that the 

polypropofol product is either not formed or cannot be detected. 

 

Fig. 4.20 CVs using a polyMB modified GCE.  Both measurements taken in 0.1 M PBS pH 7 with A 

as a background and B in the presence of 200 µM propofol.  Propofol oxidation is indicated by 
the arrow and a and a’ indicate the anodic and cathodic currents of the polyMB film, 

respectively.  Scan rate 10 mV s -1. 

 

CV conducted at pH 12 (i.e., pH > pKa) where propofol is easily ionisable, show a similar 

profile.  From the CV in Fig. 4.21, the oxidation peaks of polyMB and propofol are the 

same as at a neutral pH.  Additionally, the peak current for the oxidation of propofol 

continues to remain the same through progressive scans. 
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Fig. 4.21 CV of 100 µM propofol in borate buffer pH 12 with polyMB coated GCE. Scans 2-4 are 
almost indistinguishable.  Scan rate 100 mV s -1. 

 

Amperometric measurements were made, but were not consistently reproducible, nor 

was any correlation between current and propofol concentration evident. 

CONCLUSIONS 

Many different modifications to the GCE were investigated.  Calibration curves 

and limits of detection were calculated for two methods—an unmodified GCE and a GCE 

with MWNTs adsorbed to the surface.  It was found that the MWNT coating did not 

increase the detection limit for propofol, but greatly increased the electrode’s sensitivity. 

PolyMB coated GCEs did, however, show a decrease in electrode fouling by the 

polypropofol product as did those coated with β-cyclodextrin.  This is advantageous 

because it means that electrodes can be reused, rather than having to be replenished 

from measurement to measurement.  The β-cyclodextrin coated electrode, however, 

exhibited a decrease in propofol oxidation current with progressive cycles of CV. 
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As the MWNT coated GCEs showed the highest sensitivity and all the modifications that 

were tested quantitatively had detection limits of the same order, MWNT coated GCEs 

should be further developed and studied for their use as electrochemical sensors for 

propofol. 
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CHAPTER 5 : CONCLUSIONS & FUTURE WORK 
The aim of the project was to develop an electrochemical sensor for propofol that 

would be optimal for point of care testing.  While this initial aim was not realised, many 

different approaches to the electrochemical detection of propofol were explored.  These 

include the use of facilitated transfer at the µITIES and the use of modified GCEs. 

 

Of all the methods employed, detection of propofol by facilitate transfer at the µITIES was 

the most complicated but also  the most  interesting means of detecting and quantifying 

propofol.   More experimentation and research  in  this area should be conducted as  it  is 

the first time a charged carrier was used with a µITIES setup to detect a neutral molecule. 

 

The most promising detection methods were  those where modifications  to a GCE were 

made.    Modifiying  GCEs  with  MWNTs  proved  to  be  the  most  effective  modification, 

however  it  did  not  appropriately  deal with  the  effects  of  electrode  fouling.    Perhaps  a 

combination of methods would prove to make an ideal sensor.  There are reports in the 

literature of MWNT based electrodes that have been modified with redox dyes that show 

reduced electrode surface fouling.1,2 
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APPENDIX I 

Attended Talks & Summaries 
 
Synthetic Biology to Interface Cells with Machines and Materials 
Daniel Frankel, Newcastle University 
  

The main thrust of Dr Frankel’s talk was centred on what he refers to as 

“cyberplasm”—hybrid bio/machine robots.  This was a captivating talk which looked 

specifically at a collaborative project where his team are working to develop a “synthetic 

lamprey”.  This system was chosen because it is very simple, essentially consisting of a 

head that senses and controls connected to a body that moves the “creature”. 

 

The challenges associated with trying to develop this bio/machine hybrid are numerous.  

The one specific aspect Frankel has chosen to focus on is sensing.  The ability to 

chemically sense the environment and then relay that as an electrical signal is vital for 

any autonomous bio-hybrid device.  The way in which Frankel chose to attack this 

problem was quite interesting.  The general strategy employed relies on using receptors 

on a biological cell that are specific for the analyte of interest.  This results in a signal 

cascade within the cell that can be programmed through genetic engineering to produce 

a desired result.  One example is the production of a chemical that is secreted and can 

then be electrochemically detected outside the cell.  In this step, the signal is converted 

from its chemical and biological nature to an electrical signal. 

 

On the whole, the Cyberplasm project appears to be “fairytale science” with significant 

wow-factor and little realisation.  However, to its credit, the problems associated with 

this project are valuable contributions to science and technology.  In particular, getting 

biology to interface with machines may have a host of applications. 
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Green Chemistry and Supercritical Fluids 
Prof. Martyn Poliakoff 
 
 Green chemistry is a growing field mainly focused on process development 

improvements that minimise the environmental impact of large scale chemical syntheses.  

A large portion of research in this area investigates using supercritical CO2 to replace 

environmentally hazardous organic solvents.  A major advantage of chemistry in 

supercritical fluids is the ease of separation of the product from the solvent.  Separation 

simply involves decreasing the pressure and the gaseous solvent evaporates from the 

product.  The gaseous solvent can then be returned to the reaction chamber and reused. 

 

Supercritical fluids are simply gases that exist beyond the critical point (as determined 

by temperature and pressure) and combine the properties of gases and liquids.  Work in 

Prof. Poliakoff’s group focuses on continuous reactions with on-line analysis and covers 

various areas including hydrogenation, acid catalysis, and photo-oxidation. 

 

Hydrogenation reactions in scCO2 have gone from the simple hydrogenation of 

cyclohexene to more complex reactions such as the hydrogenation of isophorone over a 

palladium catalyst to trimethylcyclohexanone.  It was the latter reaction that was 

researched in conjunction with and implemented by Thomas Swan & Co.  The challenge 

with this reaction was the possibility of the production of over-hydrogenated by-

products.   

 

Solid acid catalysis is another area of research within Prof Poliakoff’s group and a 

significant amount of work is focused on the dehydration of alcohols to form ethers.  

Photo-oxidation was another interesting area of research.  The advantage that 

supercritical fluids offer in this area is that 1O2 has a longer lifetime in scCO2. 
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All Departmental Seminars attended 

Dr Karen Edler Mesostructured Polymer-Surfactant Films 
 

27/10/10 

Prof Martyn Twigg Controlling Emissions From Cars 
 

10/11/10 

Dr Ed Tate Getting a Chemical Handle on Protein 
Modification 

8/12/10 

Prof Andrew de Mello High-Throughput Chemistry & Biology 
 

19/01/11 

Dr Andrew Goodwin Local Structure & Dynamics in Functional 
Framework Materials 

26/01/11 

Prof Franstisck Hartl Spectroelectrochemical Studies of CO2 reducing 
systems 

2/02/11 

Prof Martyn Poliakoff Green Chemistry & Supercritical Fluids 
 

23/02/11 

Prof Joachim Spatz Cellular Response at the Nanoscale 
 

3/03/11 

Dr Daniel Frankel Synthetic Biology to Interface Cells with 
Machines and Materials 

03/03/11 

Prof Molly Stevens Bio-Inspired Materials for Regenerative 
Medicine and Biosensing 

03/03/11 

Prof Neil Champness Molecular Organisation: Working with 
Molecules on the Nanoscale 

09/03/11 
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