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Abstract

This thesis describes contributions made as part of the EPSRC-funded
project Age Concern: Crystallographic Software for the Future. Work
has been done in various areas of small molecule crystallographic soft-
ware development, both within the smtbx (Small Molecule Toolbox)
and the Olex2 software.

Chapter 2 details the work that was done towards the smtbx-based re-
finement that was developed as part of the “Age Concern” project.
A framework was created enabling the inclusion of observations of
restraint in the refinement, and new restraints on geometry and
anisotropic displacement parameters were added. Refinement of

(pseudo-)merohedrally twinned structures was implemented.

In Chapter 3 a description of the determination of absolute structure
by various methods is given. The methods of Hooft et al. [2008] and
Flack [1983] have been implemented, and a quantitative comparison

made between the two methods.

Chapter 4 discusses the method of van der Sluis and Spek [1990] for the
refinement of structures containing severely disordered regions. This
method has been implemented and a modification designed to give
improved results when one or more low angle reflections are missing is

proposed and tested, and shown to be beneficial.

Chapter 5 introduces a new module, iotbx.cif, which has been added
to the cctbx (Computational Crystallography Toolbox), providing a
comprehensive set of tools for the manipulation of Crystallographic
Information Files (CIFs).
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Chapter 1

Introduction

1.1 Age Concern: Crystallographic Software for
the Future

The work described in this thesis is part of a larger software project between
groups in Durham and Oxford funded by the EPSRC of the UK!, with the title
Age Concern: Crystallographic Software for the Future. The background to this
project, and also the aims and objectives as outlined in the grant proposal, are
described in detail by Howard and Watkin [2009] and Dolomanov et al. [2009b].
They highlight that whilst in previous decades (1960s, 1970s, 1980s) there was
healthy competition amongst a wide variety of actively developed crystallographic
systems, in recent years only relatively few are still under active development and
commonly used within the small molecule community. They noted that many
of the authors of significant programs are approaching retirement, with no clear
indication of who would take their place, either through continued development of
the existing programs, or by development of a new generation of crystallographic
software.

Much of the computer code currently used in small molecule crystallography
has its foundations in code written up to 40 years ago, using older programming
languages and techniques. Consequently, it is frequently difficult for such code

to be extended significantly, or reused in a different context, in particular by

'EPSRC Grant EP/C536274/1



developers other than the original authors. Nonetheless, there is a huge amount
of knowledge and experience that is coded within these programs, which any new
software should strive to incorporate.

In contrast to the small molecule crystallographic community, there currently
exist two substantial multi-author efforts within macromolecular crystallography
that coordinate the software developments of multiple groups of programmers,
namely CCP4 [Potterton et al., 2004] and PHENIX [Adams et al., 2010].

In view of the massive advances both in computer hardware and programming
techniques since those long-standing programs were first conceived, it was proposed
to provide a new crystallographic software framework implemented in modern
programming languages and written in a style designed to maximise extensibility
and reusability of code. In addition to providing much of the functionality of the
software in common use, this new framework should ensure that new ideas and
algorithms in crystallographic computing can be developed rapidly and effectively,
and made available to the wider crystallographic community with minimal effort.

A reference application would be developed which would at the same time serve
as a test-application for the development of the newly created framework, whilst
also providing the crystallographic community with a fully functional, single crys-
tal refinement application with unprecedented functionality, flexibility, customis-
ability and extensibility.

It was decided that the crystallographic software framework would be based
upon the pre-existing cctbx (Computational Crystallography Toolbox) which is
described in §1.3. A new small molecule toolbox, the smthx, would provide a set
of algorithms dedicated to small molecule crystallography, whilst tools developed
in the course of the project that are more generally applicable to the whole of
crystallography would be added to the cctbx itself, thus contributing back to the
wider crystallographic software community as a whole.

The reference application mentioned in the proposal became the software Olex2,
which would provide access to the new tools developed within the smtbx as they

became available.



1.2 Olex2

A more comprehensive overview of the Olex2 software and its design and im-
plementation is given by Dolomanov et al. [2009a]. The core of the program is
written using the C++ programming language and is highly optimised for excel-
lent graphical performance. The program is designed as a set of libraries which can
be re-used to build applications with minimal dependencies. Separate libraries are
concerned with core functionality, crystallographic operations, input/output and
graphical display. As a result, a command line version of the Olex2 executable
exists in addition to the graphical user interface (GUI). The graphical display of
the model uses the OpenGL [Khronos Group] library. Extended functionality of
the Olex2 core is achieved in two ways: through the use of a built-in macro lan-
guage; or through the provision of an embedded Python interpreter. The control
panel section of the GUI is written using extended HTML which is displayed us-
ing wxWidgets. This provides a set of GUI controls which support event-driven
execution, allowing the creation of a clearly laid out and easy-to-follow workflow
path.

Much of the overall workflow (especially with regard to structure solution,
refinement, and report preparation stages) is written in Python/HTML. Functions
or macros provided by the Olex2 core can be accessed either through the command
console, which is part of the OpenGL window, or through functionality provided
by the GUI.

The Python layer allows the integration of the cctbx (Computational Crys-
tallography Toolbox) and its subpackage, the smtbx (Small Molecule Toolbox).
This vastly extends the functionality available through Olex2, including tools for
structure solution and refinement.

In addition to the structure solution and refinement methods provided through
the smtbx, Olex2 also supports the SHELX suite of solution and refinement pro-
grams [Sheldrick, 2008]. Plugins have also been developed by interested users
providing access to a range of external programs including PLATON [Spek, 2003],
the structure solution program SUPERFLIP [Palatinus and Chapuis, 2007] and
the SIR9x-SIR20xx range of structure solution programs [Burla et al., 2007].

The latest installers for Windows, Mac and Linux are included on the DVD



accompanying this thesis. Details regarding their installation can be found in

Appendix D.

1.3 Computational Crystallographic Toolbox

The Computational Crystallographic Toolbox (cctbx) is an open source code li-
brary originally developed as the open source component of the PHENIX system
[Adams et al., 2010] for macromolecular structure determination. It features an
object-oriented, highly modular design, which encourages code reuse across many
different applications. The cctbx is written using a combination of two modern
programming languages, Python [Python Software Foundation] and C++, which
provides the flexibility of using an interpreted language (Python) at the same time
as the performance benefits gained through using a statically typed, compiled lan-
guage (C++). Python bindings for C++ code are written using the Boost.Python
library. The cctbx code is extremely portable, and is known to compile on a
large range of hardware and platforms. The writing of regression tests is actively
encouraged, contributing to the stability of the cctbx.

The foundation of the cctbx is the scitbx module, which provides a large number
of tools for general scientific computing. Built upon this is the cctbx module, a
set of libraries for general crystallographic applications. The iotbx (input/output
toolbox) provides libraries for reading and writing most common crystallographic
formats. For an in-depth discussion of the design of the cctbx the reader is referred
to Grosse-Kunstleve et al. [2002] and the several cctbx articles in the newsletters
of the IUCr Commission on Crystallographic Computing, in particular the very
first one [Grosse-Kunstleve and Adams, 2003].

The latest cctbx source code bundles are included on the DVD accompanying
this thesis. Details regarding their extraction and compilation can be found in

Appendix D.



1.4 Small Molecule Toolbox

The Small Molecule Toolbox (smtbx) is an extension of the cctbx with a partic-
ular emphasis on the provision of algorithms and tools that are specific to small
molecule crystallography. Currently it provides ab initio structure solution using
the charge flipping algorithm [Oszldnyi and Stito, 2008], full matrix least squares
refinement of crystal structures with constraints and restraints on parameters, an
implementation of the BYPASS algorithm for treating severely disordered solvent
in structure refinement [van der Sluis and Spek, 1990], and tools for the determi-

nation of absolute structure.

1.4.1 Outline

Chapter 1 describes work carried out as part of the development of the least squares
refinement program, smtbx-refine. §2.1 describes the framework that was imple-
mented to allow the inclusion of restraints on anisotropic displacement parameters
and geometry in the refinement. The addition of refinement of (pseudo)merohedrally
twinned crystal structures is described in §2.2, and §2.3 details the calculation of
errors on derived parameters.

§3.1 contains a discussion of the various methods for the determination of
absolute structure, along with a description of the implementation of two of those
methods within the smtbx. A quantitative comparison is made between the two
methods. A description of the various graphs for the analysis of reflection statistics
that have been implemented using the cctbx is given in §3.2. The graphs are made
available using the new graph plotting tool implemented in Olex2.

Chapter 4 contains a description of the procedure of van der Sluis and Spek
[1990] for dealing with severely disordered solvent. The procedure has been imple-
mented within the smthx and a modification is proposed in §4.2.2 that is intended
to give improved results for the procedure when some low angle data are missing.
Several test cases and applications of the procedure are given.

A new module has been added to the cctbx providing extensive support for the
Crystallographic Information Framework (CIF); a description of the implementa-

tion and capabilities of the new module is given in Chapter 5.



Chapter 2
Least Squares Refinement

A crystal structure X-ray diffraction experiment yields a set of intensities of
diffracted X-ray beams which contain information about the electron density dis-
tribution in the unit cell. The Fourier transform relationship between the electron

density, p(x), and the structure factors, F'(h), is given by:

p(x)=V"1 Z |F'(h)| exp(i¢n) exp(—2mih - x) (2.1)
h
and
F(h) = /” p(x) exp(2mih - x) dz, (2.2)

where h is a column vector of the Miller indices for a Bragg reflection.
The electron density is usually interpreted in terms of an atomic model and

the structure factors can then be calculated according to

atoms

F(h) ~ Z £,T(h) exp(2mih - x), (2.3)

where f; is the scattering factor calculated for an atom at zero Kelvin and x =

(x,y, z) are the atomic coordinates. The Debye-Waller factor, T'(h), is given by
T'(h) = exp(—27*h'U*h), (2.4)

where U* is a symmetric second-rank tensor whose elements are dimensionless



mean-square displacements. U* is one of several definitions of the anisotropic
displacement parameters (ADPs) [Grosse-Kunstleve and Adams, 2002].

Once an atomic model is proposed, the parameters of the model can be varied
in order to obtain the best possible model given the experimental data. In small
molecule crystallography, this is usually achieved by least squares refinement of

the structural parameters.

2.1 Restrained Least Squares Refinement

A small molecule structure refinement typically minimises the weighted least squares

function

L= wn(Yops(h) = kYoare(h))? (2.5)

where Y, are the X-ray observations, either F,p, or F2 . and Y. are similarly

obs?
| Fealc| or |Fca1c\2 where F,. are the structure factors calculated from the current
structure model according to equation 2.3, and k is an overall scale factor that
places Y., on the same scale as Y,,s. Each observation is given an appropriate
weight, wy, based on the reliability of the measurement. These may be pure
statistical weights, w = 1/0%(Yops), where o is the estimated standard deviation
of the Yg,s, although more complex weighting schemes are usually used.

Since the minimisation function introduced above is not linear, the minimisa-
tion is non-linear least squares, which requires that we calculate the gradients of
Y.ae with respect to each parameter. For a small molecule structure with a high
data to parameter ratio, such unconstrained minimisation as defined by equation
2.5 may well be sufficient. However, as the structure becomes larger, or the data
to parameter ratio worsens, unconstrained minimisation may not be well-behaved,
or result in some questionable parameter values. These X-ray observations can be
supplemented with the use of ‘observations of restraint’, as suggested by Waser
[1963], where additional information, such as target values for bond lengths, angles

etc. is included in the minimisation. This now gives the minimisation function

L = Z wh(}/obs(h) - kYLalc(h))2 + Z w(Tobs - Tcalc)2 (26)

restraints



where T, is the target value for our restraint, and 7., is the value of the target
function calculated using the current model (see, for example Giacovazzo et al.
[2002]; Watkin [2008]). With the use of appropriate weighting of the restraints the
minimisation is gently pushed towards giving a chemically sensible and hopefully
correct structure.

Using the notation of Watkin [2008], the observational least squares equations

can be written

W. A 6x=W-AY, (2.7)

with the weight matrix and the vector of residuals, AY, where each row is given
by Yobs(h) — kYeae(h). The elements of the matrix of derivatives, A, are given by
0Y:(hy)

Ay = =20 (2.8)

The shifts, 0x, in the values of the refined parameters are obtained wia the

solution of the normal equations,
AT - W-A . 6x=AT W.AY. (2.9)

If we allow the repameterisation of the model by use of constraints, the vector
of parameters, x is expressed as a function of a smaller vector of parameters, y,

in a non-linear fashion. The linearisation of that relationship reads
ox = Moy (2.10)

where M is the matrix of constraint, usually known to mathematicians as the
Jacobian matrix of the transformation y — x.

Since the normal matrix, AT - W - A is symmetric, it can be inverted using
the Cholesky method. A naive approach to solving these equations would start
by first of all constructing the matrix of derivatives, A. This is not feasible, since
the design matrix is of size m X n,, for m observations, and n, crystallographic
parameters. In a typical small molecule crystal structure determination, the data
to parameter ratio, m/n, is typically in the range 10 — 30. In contrast, the normal

matrix, AT- W - A is symmetric, with dimensions n, x n,. With the common use



of constraints, particularly with respect to those on the parameters of hydrogen
atoms, the ratio n,/n, can be as large as 2, meaning that the most efficient, both
in terms of storage and floating point operations, would in fact be to construct
directly the normal matrix for the independent parameters, MTAT . W . AM.

Whilst the part of the design matrix derived from the observations is relatively
dense, that coming from the equations of restraint is sparse, with each restraint
typically only involving a few crystallographic parameters. Therefore, it is now
feasible to compute and store the design matrix for the restraints independently,
and then use sparse matrix techniques to compute the contribution of the restraints
to the overall normal equations.

It would be desirable to place the weights of the restraints on the same scale as
the typical residual, such that a restraint will have a similar strength for the same
weight in different structures. Giacovazzo et al. [2002] suggest the normalization

factor

Wrestraints — th(nbs(h) - ki/c:alc<h))2/ (m - ny) ) (211)

where for m observations and n, independent parameters. This is better known
as the square of the goodness of fit, x*>. Ths normalising factor also allows the
restraints to have greater influence when the fit of the model to the data is poor
(and the goodness of fit is greater than unity), whilst their influence lessens as the
fit improves [SHELX manual, Sheldrick, 1997].

2.1.1 Geometry Restraints

Possible restraints on the stereochemistry or geometry of atomic positions include
restraints on bond distances, angles and dihedral angles, chiral volume and pla-
narity. These restraints are used extensively in macromolecular crystallography,
and hence were already implemented within the cctbx as part of the macromolec-
ular refinement program pheniz.refine [Adams et al., 2010]. With the exception
of the bond distance restraint, these restraints were not able to accept symmetry
equivalent atoms. Since this is more frequently required in small molecule crys-
tallography, these restraints have now been extended to allow for symmetry. We

have also implemented other restraints commonly used in small molecule struc-



ture refinement, such as a bond similarity restraint, and restraints on anisotropic
displacement parameters (ADPs) including restraints based on Hirshfeld’s ‘rigid-

bond’ test [Hirshfeld, 1976], similarity restraints and isotropic ADP restraints.

2.1.1.1 Restraints involving symmetry

Given a restraint, f(x), involving a site x which is outside the asymmetric unit
and which is related to the site y within the asymmetric unit by some symmetry

transformation M, such that x = My, the gradient is transformed as

Vy (f (@) = M"V, (f ()
= M7V, (f (My)) (2.12)

since M is a space group symmetry operation and is therefore an orthogonal trans-
formation (i.e. one which preserves distances and angles), which means that,
MT = M1

2.1.1.2 Bond similarity restraint

The distances between two or more atom pairs are restrained to be equal by
minimising the weighted variance of the distances, where the least squares residual,

R, is defined as the population variance biased estimator

R(ry,...ry) = Dic Wilri — ()" (2.13)

As discussed above, since our minimisation is non-linear, we need the derivatives of
the residuals with respect to the least squares parameters. It is easier to compute

the derivatives by using the alternative form of the residual

R=(r*) = (r)°
_ Lol (M)Q (2.14)

10



The derivative of the residual with respect to a distance r; is then

8_R . ijrj ij Z?:l w;T;
oy Do w (D i wi)?
= zn— (7“j —(r)). (2.15)

Given that

where for a pair of atoms, a and b,

u=(z,— 901;)2 + (Yo — yb)2 + (24 — Zb)2,

the derivative of r; with respect to the Cartesian coordinate x, is then

%_%&L  (wq — 1)

or, Oudr, T (2.16)
Therefore, the derivative of the residual with respect to x, is
OR _ OR Or;
or, Orjoz,
_ 2wj(rj — () (@a — ) (2.17)

T i Wi
2.1.2 Restraints on Atomic Displacement Parameters

There appears to be very little in the literature with regard to restraints on ADPs,
and in particular the details of their implementation in refinement programs. It
was therefore necessary to devise our formulae for the equations of restraints and
derive their gradients with respect to the least squares parameters. The analytical
gradients were confirmed to be correct by testing against gradients determined
by the finite differences method. The residuals were also tested for frame invari-
ance (i.e. for a given Uy, the least squares residual should be unchanged after

transformation of U,y by an arbitrary rotation matrix).
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2.1.2.1 Rigid-bond restraint

In a ‘rigid-bond’ restraint the components of the anisotropic displacement param-
eters of two atoms in the direction of the vector connecting those two atoms are
restrained to be equal. This corresponds to Hirshfeld’s ‘rigid-bond’ test [Hirshfeld,
1976] for testing whether anisotropic displacement parameters are physically rea-
sonable [see SHELX manual, DELU restraint, Sheldrick, 1997] and is in general
appropriate for bonded and 1,3-separated pairs of atoms and should hold true for
most covalently bonded systems.

We therefore minimise the mean square displacement of the atoms in the di-

rection of the bond. The weighted least squares residual is then
R= w(ZZ,B - 2123,A)27 (2.18)

where in the Cartesian coordinate system the mean square displacement of atom

A along the vector E , zi B, 1s given by

T

2 r Ucart,Ar
_ I" Yeart,Al 2.19
R (219

where

TaA— TR x
r=|ya—ys | =1y, (2.20)

ZA — 2B z

r’ is the transpose of r (i.e. a row vector) and [|r|| is the length of the vector AB.
The derivative of the residual with respect to an element of Ucgrea, Uayj is

given by (using the chain rule)

OR OR 023 p

= 2.21
8UA7ij 8212473 8UA7Z-]- ( )

_ 2 2 823173
- Qw(zA’B — zB’A>8UA - (2.22)
71‘7

The matrix multiplication in obtaining 23 5 can be evaluated as follows (re-
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membering U, is symmetric):

Un U U X
I‘TUcart,AI'Z(ﬂU Y Z) Uia Usy Uss Yy (2‘23)
Uis Uss Uss z

= Ull .’13‘2 + U22 y2 + U33 22 —+ 2U12 Ty -+ 2U13 Tz + 2U23 yz (224)

It then follows that

02,24,3 a? 82,24,3 y? az,%l,B 2’ (2.25)

Uy ]|’ Uy |[r]|?’ OUss — [r]|?’ .
and

023 p _ 2my 023 p 2wz 023 p 2z (2.26)

U |Ir|?’ ol |Ir|?’ Uz |z '

These can be combined with eqn (2.22) to give us the derivatives with respect to

each U;; component.

2.1.2.2 ADP similarity restraint

The anisotropic displacement parameters of two atoms are restrained to have the
same U;; components. Since this is only a rough approximation to reality, this
restraint should be given a smaller weight in the least squares minimisation than
for a rigid-bond restraint and is suitable for use in larger structures with a poor
data to parameter ratio. Applied correctly, this restraint permits a gradual increase
and change in direction of the anisotropic displacement parameters along a side-
chain [Sheldrick, 1997]. This is equivalent to a SHELXL SIMU restraint [Sheldrick,
1997]. The weighted least squares residual is defined as

R=w

)

(Uaij — Ugij)?, (2.27)

3
= 1

3

1

which, denoting AU = U, — Up the matrix of deltas, is the trace of AUAUT.

This expression! makes it clear that it is invariant under any rotation R, since it

IThis is known to mathematicians as the square of the Frobenius norm of the matrix AU.
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transforms AU into RAURT. Since U is symmetric, i.e. U;; = Uy, this can be

rewritten as

3
R=w (Z(UA’” - UB7ii)2 + QZ(UA’ij — UBJ']')Q) . (228)

i=1 i<j

Therefore the gradient of the residual with respect to the diagonal element Uy

is then

OR
OU 4.i;

Similarly the gradient with respect to the off-diagonal element Uy ;; is

OR
6UA7Z‘]‘

= 4w(UA’Z'j — UB,ij)- (230)

2.1.2.3 Isotropic ADP restraint

Here we minimise the difference between the Cartesian ADPs, U.,:, and the
isotropic equivalent, U.,. Again, this is an approximate restraint and as such
should have a comparatively small weight. A common use for this restraint would
be for solvent water, where the two restraints discussed previously would be inap-
propriate [Sheldrick, 1997]. As in §2.1.2.2, we must remember that we are dealing
with symmetric matrices, and we can therefore define the weighted least squares

residual as

R=w <Z(UZ - Ueq7ii)2 + QZ(UZ] — Ueq7ij)2> s (231)

i=1 1<j
where
Uiso 0 0
Ug=| 0 Uw 0 [, (2.32)
0 0 Uso
and
Uiso = 5tt(Ucart)- (2.33)
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We expand the summation of the residual as follows

R=w (U1 — Uis)* + (Una — Usso)® + (Uss — Uiso)* + 2U7y + 2U7; + 2U3;) -
(2.34)
We can now see by inspection that the derivatives of the residual with respect to

the off-diagonal elements are

OR
OUiji<j

The derivatives of the residual with respect to the diagonal elements can be gen-

eralised as
= 2w(U;; — Uisp). 2.36

2.1.3 Implementation

Some of the differences between typical macro-molecular and full matrix least
squares cycles have been described by Bourhis et al. [2009]. Figure 2.1 illustrates
the steps involved with building the normal equations. With the inclusion of

observations of restraint in the minimisation target function
L= Ldata + erestraint87 (237)

where using a least squares minimiser

2

Ldata = th (Fo(h)2 —k ‘Fc<h)|2) ) (238)

and
Lrestraints = Z w(Tobs - Tcalc)2 (239)

restraints

Due to the extremely large number of parameters in a typical macro-molecular
refinement compared to that for the typical small molecule refinement, it is usually
prohibitive to construct the normal matrix and solve the observational equations
via the Cholesky method. As a result, there is only the need for a single array

storing the gradient of the target function (equation 2.37) with respect to each
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parameter. The gradients V Lqata and V Lyestraints can be calculated separately be-
fore combining their sum to obtain VL which is to be passed to the minimiser.
Note that it is possible to, for example, calculate the gradients of the restraints
with respect to the sites in Cartesian coordinates (which is generally easier, es-
pecially for the geometrical restraints), and only at the very end transform the
gradients back to fractional coordinates (it is usually fractional coordinates which
are refined) before combining with the gradients from the experimental data. This
also means that it is possible to make certain optimisations for the handling of
restraints involving symmetry. In contrast, for full matrix least squares refine-
ment the gradient for each restraint must be transformed to fractional coordinates
individually (i.e. for each row of the design matrix).

One further complication due to the differences between using restraints in
a macromolecular compared to a full matrix least squares context is that the

minimisers require different gradients. For a restraint

L=w(Tops — Teate)’ (2.40)

then a minimiser such as the LBFGS minimiser, as used in the macromolecular
refinement program pheniz.refine [Adams et al., 2010], requires the gradient of L

with respect to the parameters

oL OT a1
% = 2w (Tobs - Tcalc) ﬁu (241)
. . . 8Tca o
whereas full matrix least squares requires simply “z2ic.
In order to make the restraints function with either minimiser, it was necessary

to provide access to both g—i and % (of course, the former can be calculated as

a by-product of the latter).

The route taken to add restraints into this framework was to build indepen-
dently those rows of the design matrix associated with the equations of restraint.
Since the restraints largely involve relatively few of the crystallographic parame-
ters, it can be efficient to store this part of the design matrix as a sparse matrix.
This allows the restraints to be built up without any knowledge of the constraint

matrix, and only after the contribution of the data to the normal matrix has been
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computed, the contribution of the restraints can be added efficiently with the use
of sparse matrix techniques. The restraints framework was designed in such a way
that it would be easy to add further restraints (e.g. the quotient restraints sug-
gested by Parsons and Flack [2004]). All that is required is the array of derivatives
of the restraint with respect to the parameters (one row of the design matrix), the
restraint delta, Thps — Teare, and the weight, w, of the restraint.

As described by Grosse-Kunstleve et al. [2004], the restraints are split into three
levels. The restraint class performs all the basic computations needed for gradient-
driven refinement. A restraint proxy class holds all the information about the
restraint that does not change during the refinement (e.g. the sequence ids® of the
scatterers involved in the restraint, any target values for the restraint, the weight,
etc.). At the highest level, there is a ‘shared’ proxy which is an array of proxies
of a particular type. These shared proxies can then be passed to the appropriate
function to calculate the residuals and gradients, and other information as and
when it is required at each refinement cycle. The ADP restraints were designed in
the same way as the pre-existing geometry restraints classes.

The SHELXL SIMU, ISOR and DELU instructions for restraints on anisotropic
displacement parameters automatically set up the appropriate restraints for ad-
jacent pairs of atoms (and 1,3- pairs in the case of DELU), using the atomic
connectivity table or simply the proximity of a pair of atoms [SHELX manual,
Sheldrick, 1997]. This can be done for all atoms in the structure, current residue,
or given list of atoms. A Python class was implemented to emulate each of these
SHELXL instructions and create the appropriate shared proxy arrays for each re-
straint type. These were tested and compared against structures refined using
SHELXL to confirm that both programs setup the same restraints.

It was necessary to add the ability to create the smtbx atomic connectivity
table by taking into account the covalent radii of the atoms when deciding whether
any two atoms are bonded or not. Previously it was only possible to discriminate
bonded from non-bonded by means of a general distance cutoff value. Functionality
was also added to take into account disorder when calculating the connectivity
table. Conformer indices (equivalent to positive values of the PART instruction
in SHELXL) are used to denote that bonds should not be generated between

Li.e. the index into the array of scatterers for a given scatterer.
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atoms with different conformer indices (atoms with index equal to zero belong to
the major part of the structure and are bonded to atoms of all other indices that
are within the bonding distance for the designated scattering types). Symmetry
exclusion indices are used to suppress generation of bonds to symmetry equivalent
atoms, such as when a molecule is disordered over a special position. Further
functionality was added to allow fine-tuning of the connectivity table by manual
insertion and deletion of individual bonds. The connectivity table is also essential

in the initialisation of the geometrical constraints.

2.1.4 Applications
2.1.4.1 Bond similarity restraint

A crystal structure of an Iridium-containing complex contained a disordered mix-
ture of chloroform and hexane solvates refined to an Rl-factor of 2.77%. In some
positions there was observed same-site disorder of the solvents. Two of these sites
were modelled with a hexane and chloroform molecule sharing the same site in a
60 : 40 ratio. The bond lengths of the hexane molecule varied substantially, and a
bond similarity restraint was applied. In the resulting restrained crystal structure,
less variation in the hexane bond lengths was observed (see Table 2.1). Decreasing
the estimated standard deviation associated with the restraint (i.e. increasing the
weight of the restraint) resulted in the variation in bond lengths being further
reduced. The following output of the program lists the deltas associated with each

bond as well as the overall residual for the restraint.

delta sigma weight rms_deltas residual

bond C1-C2 0.020 2.00e—02 2.50e+03 3.84e—02 1.47e—03
C2—-C3 0.003 2.00e—02 2.50e+03
C3—-C4 —0.073 2.00e—02 2.50e+03
C4-C5 0.056 2.00e—02 2.50e+03
C5—C6 —0.005 2.00e—02 2.50e+03
C6—C1 —0.002 2.00e—02 2.50e+03
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Bond Length (A)

free c=0.02 o¢=0.01
Cl C6 1.485(12) 1.487(10) 1.490(8)
Cl C2 1.512(9) 1.509(8) 1.503(7)
C2 C3 1.506(13) 1.492(11) 1.487(8)
C3 C4 1.371(16) 1.416(13) 1.455(9)
C4 C5 1.564(12) 1.544(11) 1.521(8)
C5 C6 1.480(12) 1.484(10) 1.489(8)

Table 2.1: The C-C bond lengths for a disordered hexane molecule modelled with
and without bond similarity restraints.

2.1.4.2 ADP similarity restraints

In a crystal structure containing two phenyl rings, the ADPs of some of the carbon
atoms on one of the rings were elongated in a direction perpendicular to the plane
of the ring (Figure 2.2a). In this case a rigid bond restraint would have little
effect, since a such a restraint only has an effect along the bond vector. ADP
similarity restraints were placed upon the six carbon atoms of the phenyl ring with

an estimated standard deviation of 0.01, resulting in more conventional looking
ADPs (Figure 2.2b).
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(a) After unrestrained refinement the ADPs of C15 and C16 are elongated in
a direction perpendicular to the plane of the ring.

(b) After refinement with ADP similarity restraints there is less variation in
the ADPs of the carbon atoms C11-C16.

Figure 2.2: Demonstration of the effective use of ADP similarity restraints.
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2.2 Twinning

A twinned crystal consists of two or more crystals of the same species that are
joined together and related by some symmetry operation. The resulting observed
diffraction pattern is a superposition of the diffraction pattern of each component
after application of the appropriate symmetry operation for each twin component.
Problems can sometimes arise in solving structures in the presence of twinning, and
it is essential to include the contribution of any twin components in the refinement
of the structural parameters in order to get the best possible result.

Each twin component is defined by a rotation matrix (fwin law) which defines
the relative orientation of the twin component to the major component, and the
fractional contribution of that component to the total crystal volume.

Twinned crystals can be grouped into four distinct types [Herbst-Irmer and
Sheldrick, 1998]:

(a) Twinning by merohedry: The crystal posseses lower symmetry than the
crystal system. The twin law belongs to the crystal system, but not to the crystal
point group. As a result, the diffraction patterns from the crystal components
overlap exactly, and the observed diffraction pattern may appear to have higher
symmetry than is actually present. Racemic twinning, where both “hands” of a
non-centrosymmetric structure are present is a special case of this subset, from
which follows the definition of the Flack parameter [Flack, 1983, §3.1.4].

(b) Twinning by pseudo-merohedry: The metric symmetry is higher than the
crystal system of the structure. This kind of twinning is essentially the same as
for (a), except that the twin law belongs to a higher symmetry crystal system
than the structure. Common examples of this type of twinning include monoclinic
structures where 8 = 90° , or a = b.

(¢) Twinning by reticular merohedry: Similarly to types a and b, the diffraction
patterns are exactly superimposed, however the symmetry is such that some of the
reflections of one component overlap with the systematic absences of the others
and wice versa. As a result, it may be possible to attempt structure solution
using those reflections that contain a contribution from one component only. For
examples of the treatment of such twins, see Herbst-Irmer and Sheldrick [2002].

(d) Non-merohderal twinning: The previous types of twinning all require that
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the symmetry operator belongs to some crystallographic point group, and can be
indexed on a single lattice. In contrast, the components of a non-merohedral twin
are related by some arbitrary operator, and each component is indexed on a dif-
ferent lattice with a different orientation matrix. Some reflections may happen to
overlap exactly, or be otherwise indistinguishable, while the majority of reflections
can be identified as belonging entirely to one twin component. This type of twin-
ning is observable directly in the diffraction pattern and can lead to problems with
unit cell determination and indexing, however diffractometer software is becoming
increasingly sophisticated in dealing with non-merohedral twinning.

For the first three cases outlined above, where the reciprocal lattices are ex-
actly superimposed, the observed diffracted intensity can be given as the sum over
the intensities for all miller indices that contribute to a particular point in the

diffraction pattern:
F}=> aiFL, (2.42)

where «; is the fractional contribution of twin component i to the crystal. Since
the sum over all the fractional contribution must be equal to one, n — 1 of them
can be refined, whereas the last one is expressed as a function of those n — 1

independent parameters,
n—1
a=1-> a (2.43)

For certain applications it may be necessary to obtain a set of observations that
contain only the contribution from the major component. This is essential when
calculating an electron density map, and may occasionally be necessary in order
to solve a structure successfully. In addition, many early twinned structures were
refined against such detwinned datasets [Britton, 1972; Grainger, 1969; Murray-
Rust, 1973].

In the simplified case of hemihedral twinning, two reflections combine in the

following way

Il = (1 — Oé)Jl + OéJQ (244)
12 = OéJl + (1 — Oé)JQ, (245)
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where [; and I, are the observed intensities produced by the superposition of the
untwinned intensities, JJ; and J; with twin fraction a.

This can be solved algebraically [Britton, 1972; Grainger, 1969; Zachariasen,
1965] to give

(0%

1 -2«
«a

1 -2«

Jr=15+

(I, — Iy) (2.46)

J2 - IQ - ([1 - [2) (247)
These equations become singular as the value of o approaches 0.5, however it
is possible to detwin the data using the proportionality of related intensities as

calculated from the model

F}(1-a) N F?a
F2(1—a)+ Ffa  Fla+ F2(1—a)

where F? and F}? are the calculated intensities of reflections related by the twin
law. This method has the drawback of being more biased towards the model, and
it may be better to use the algebraic method if possible.

Alternatively the data can be reduced to the ‘prime’ twin component by

FF(1—a)

Jp=1T
TR (1) + FRa

(2.49)

which is the equation used for Fourier map calculations for twinned structures
in JANA [JANA98 manual, Dusek et al., 2001; Petiicek and Dusek, 2000] and
SHELXL [SHELX manual, Sheldrick, 1997]. This formula is more trivially ex-
tended to multiply twinned crystals.

Several methods have been described for estimating the twin fraction based
purely on the statistics of the observed intensities [Britton, 1972; Murray-Rust,
1973]. This approach is impossible as the value of o approaches 0.5, since the
separation of intensities in that case relies on equation 2.48 and the calculated
intensities are not known in the absence of a structural model. In addition, co-
variance of the twin fraction with any other least squares parameters is ignored.

Most commonly used crystallographic refinement software [CRYSTALS, SHELXL,
etc. Betteridge et al., 2003; Sheldrick, 2008] use the twin refinement method of
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Jameson [1982] and Pratt et al. [1971], where the original, unaltered, observed

intensities are used, whilst the F? are calculated according to equation 2.42. Tt is

this method of twin refinement that has been implemented within smtbx-refine.
The derivatives of the squared structure factors with respect to the model

parameters are calculated as

OF?2 il oF2 ! o2
c — (1% ¢ N G 2.50
: ( Z ) Op; = Op; (250)

and the derivatives with respect to the twin fractions, oy, given by

OF?

—C =F?-F?. 2.51

aai c; Cn ( )
Figure 2.3 outlines the general steps involved in building the normal equations,

with the inclusion of twinning.

2.2.1 Testing

As part of the regression test cases that are standard procedure in the cctbx, a
simple test case was created from the coordinates of a known small structure (11
atoms, hall symbol P 3 -2¢). Synthetic intensities were created based on the exist-
ing crystal structure and scaled by a random scale factor, and using unit weights.
A twinned dataset was then computed using the pre-existing cctbx hemihedral
twinning/detwinning tools [Zwart et al., 2005], using a random twin fraction and
the twin law k, h, —I. The atomic coordinates and ADPs were shaken with random
displacements and a shift of +0.1 was applied to the 'true’ twin fraction to provide
starting values for the refinement.

After refinement with a maximum of 10 cycles, it was confirmed that the twin
fractions had successfully refined to the original randomly generated values and

that the final least squares objective was equal to zero.
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2.3 Errors on derived parameters

For a function, f, of a set of atomic parameters, p;, its variance is given by [Sands,

1966]
1) =5 (52) (52 ) covw) (2.52)

ihj

Derived parameters such as bond lengths and angles are a function of both the
least squares atomic parameters and the unit cell parameters. As such, the error in
a derived parameter is likewise a function of both the atomic and unit cell param-
eters. If the errors in atomic parameters are considered to be totally uncorrelated
with the errors in the cell parameters (i.e. their covariance is zero), then the error
in a derived parameter can be considered as comprising two independent sources

of errors:

o*(f) = oean(f) + 022 (), (2.53)

where 0,,.(f) is the part coming from the errors in the least square estimates
of the positional parameters, and o..;(f) comes from the errors in the unit cell

parameters,

of o
() = 3 o heou i), (2.54)

where i, = {a,b,¢,a, 8,7}

This necessitates the calculation of the derivatives of the function with respect
to the unit cell parameters. In order to do so, it is easier to calculate separately
the derivative of the function with respect to the elements of the metrical matrix,
and also the derivative of the metrical matrix with respect to the cell parameters.
The former must be evaluated for every function, whereas the latter is constant

for a given unit cell.

of _ Of Ogjk
i~ g 0i

Now we consider the application of equation 2.52 to determine the estimated

i = a? b7 C? a? /677 (2‘55)

error in the length of the vector u, in fractional coordinates. The length, D, of
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the vector u is given by

D = (u"Gu)z, (2.56)

where G is the metrical matrix.
The derivative of the distance, D, with respect to the elements of the metrical

matrix, G, is given by

oD 1u?
=_—= 2.57
dgii 2D (2:57)
and (given the metrical matrix is symmetric)
oD uiu]- . .
= , for all i < 7. 2.58
o (2.58)

Similarly, for the angle between two vectors in fractional coordinates, u and v,
where the angle is defined as
u’Gv

0 = 2.
arccos T Gul[[vIGv] (2.59)

or

r'a ' I'p

, (2.60)
[ralllrsl]

6 = arccos

where ra and rg are the Cartesian equivalents of u and v. The derivative of the

angle, 6, with respect to the elements of the metrical matrix, G, is given by

00 1 u? cos 0 20, v? cos b
_ . 4 oo (2.61)
0g;  2sinf \ [[rall [rallllrsll  lrsll
and
% _ _1 (“i“j 0029 U F U Uiy ‘3026) , foralli <j.  (2.62)
dgi;  sinf \ ||rall [rallllrsl [rs]|

The derivative of the metrical matrix with respect to the unit cell parameters,
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needed in order to apply equation 2.55, are given below:

g1
—(2 2.
5oy = (20:0.0,0,0,0) (2.63)
0922
=(0,2b
Ocell (0,26,0,0,0,0)
0933
=(0,0,2¢,0,0,0
Ocell (0,0,2¢,0,0,0)
0
aé:lzl = (bcosvy,acos,0,0,0, —absin~y)
9913 = (ccosf3,0,acos 3,0, —acsin 3,0)
Ocell T o 7
092 = (0, ccosa, bcos a, —acsin 3, 0,0)
Ocell ’ ’ ’ T

2.3.1 Symmetry

The variance-covariance matrix that is obtained from the inversion of the least
squares normal matrix contains the variance and covariance of all the refined pa-
rameters. Frequently, it is necessary to compute functions that involve parameters
that are related by some symmetry operator of the space group to the original
parameters. Sands [1966] suggests that the symmetry should be applied to the
variance-covariance matrix to obtain a new variance-covariance matrix for the
symmetry generated atoms. Alternatively, and it is this method that is used here,
the original variance-covariance matrix can be used if the derivatives in 2.52 are
mapped back to the original parameters.

Let the function f depend on the Cartesian site y. that is generated by the

symmetry operator R, from the original Cartesian site x., i.e.

Y. = Rex, (2.64)
= ORfF[L‘C,

where F and O are the fractionalisation and orthogonalisation matrices respec-
tively, with R. and R the symmetry operator in Cartesian and fractional coordi-

nates respectively.
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Then the gradient with respect to the original site can be obtained by

Ve (ye) = REV,, f(ye) (2.65)
=O07"R;'0"V,, f(y).

The variance-covariance matrix that is used in this case should be the one
that is transformed to Cartesian coordinates. The variance-covariance matrix for
Cartesian coordinates can be obtained from that for fractional coordinates by the

transformation

V,.=0V,;0", (2.66)

where O is the orthogonalisation matrix, such that
x. = Oxy (2.67)

The transformation matrix needed to transform the entire variance-covariance
matrix in one operation would be block diagonal, with the 3 x 3 orthogonalisa-
tion matrix, O, repeated at the appropriate positions along the diagonal. This

transformation can be computed efficiently using sparse matrix techniques.

2.3.2 Discussion

There have been recent attempts in the literature to absorb the errors in the unit
cell parameters into the covariance matrix [Haestier, 2009; Schwarzenbach, 2010].
Methods have been developed which are capable of absorbing into the covariance
matrix the errors in the unit cell lengths a, b, ¢, however complications arise for
atoms related by symmetry operations involving translations, so the advantage of
this method is unclear. Schwarzenbach [2010] showed that a similar scheme for the
standard uncertanties in the unit cell angles «, 3, is not possible. Furthermore,
Schwarzenbach [2010] concludes the safest course remains to explicitly calculate all
derivatives and, since computer time has become cheap, this is also the method to
be preferred. 1t is the author’s opinion that given that the derived parameters of

interest are relatively few and the availability of computer algebra tools such as
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Mathematica [Wolfram Research, Inc., 2010], it is not particularly onerous to code
the required derivatives explicitly for each of the functions of interest.
Dolomanov et al. [2009a] have found that the use of numerical differentiation
techniques, as implemented in the Olex2 software, give similar results to using
analytical techniques, without the need for calculation of explicit derivatives, with

no significant penalty in computing time.
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Chapter 3

Reflection Statistics

3.1 Absolute Structure

3.1.1 Anomalous Scattering

Friedel’s law [Friedel, 1913] states that for a reflection, hkl, its intensity will be
equal to the reflection related by inversion, hkl. This is a direct result of the

Fourier transform of a real function:
F(h) = / f(z) exp(—ih - z)dzx. (3.1)

If f(z) is real, then:
F(h) = F*(~h), (3.2)

where h and —h (or in alternative notation, hkl and hkl) are termed Friedel pairs.
The observed intensity is proportional to the square of the amplitude and, as a

result, is centrosymmetric:

[F)* = [F(~h)]". (3:3)
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The phases of the two inversion-related reflections are equal in magnitude but

opposite in sign:

F(h) = | F(b)| exp(i6)) (3.4)
F(~h) = | F(b)| exp(~iy) (3.5)

An important consequence of the strict application of Friedel’s law is that the
diffraction pattern is centrosymmetric regardless of whether the crystal symmetry
is centrosymmetric or not. This means that it is impossible to distinguish a non-
centrosymmetric crystal structure from its inversion-related image if the atomic
scattering factor, f;, is real. Fortunately, in reality, this is only approximately true
and the atomic scattering factor usually contains a real and imaginary anomalous
(or resonant) scattering contribution that is a result of absorption in the scattering

of photons by electrons (inelastic scattering):

fi=fo+ f+if” (3.6)

This phenomenon causes small deviations from Friedel’s law; these differences
are commonly referred to as Bijvoet differences. Unlike the term coming from
elastic scattering, the inelastic term is wavelength, as well as element, dependent.
In general, the effect increases with both atomic number and wavelength, although
the largest effect is observed close to an absorption edge, which can be obtained
with tuneable radiation, such as that found at synchrotrons. It is these small
differences in intensities of inversion-related reflections that have led to numerous
techniques for distinguishing non-centrosymmetric crystal structures from their
inversion-related images.

The first demonstration of the inversion-distinguishing power of anomalous
scattering with X-ray diffraction by Coster et al. [1930] was followed by the first
recorded absolute-configuration determination of an organic compound by Bijvoet
et al. [1951]. Using Zr Ko« radiation close to the K-absorbtion edge of rubid-
ium, they observed differences in the intensities of reflections related by Friedel’s
law. From analysis of these differences (“Bijvoet differences”) they were able to

confirm the absolute configuration of (+)-tartaric acid. Lutz and Schreurs [2008]
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recently asked the question “Was Bijvoet right?” when they revisited the absolute-
configuration determination of sodium rubidium (+)-tartrate tetrahydrate using

modern equipment and up-to-date techniques. Their answer: an unequivocal ‘yes’.

3.1.2 Hamilton’s Ratio Test

Hamilton [1965] advocated the application of his R-factor ratio test for the de-
termination of absolute structure. He suggested using the ratio, R~/R™, of the
R-factors calculated using the inverted coordinates, —x and the refined coordi-
nates, +x. Alternatively, the same effect can be obtained by reversing the signs of
the ¢ f]'-' and keeping the coordinates intact. In the presence of anomalous scatter-
ing different values should be obtained for R™ and R~, and Hamilton’s ratio test
could be used to determine whether the difference in the R-factors is significant

and the absolute structure can be reliably determined.

3.1.3 Rogers n Parameter

Rogers [1981] highlighted numerous potential difficulties with Hamilton’s method,
as well as providing examples of misunderstandings and abuses of the method.
Problems include overestimation of the probability of correct assignment caused by
selective application of dispersion corrections only for the atoms with the strongest
anomalous scattering, statistically illusory or even suspect enhanced ratios ob-
tained from comparison of two dispersion-refined models, and difficulties in cor-
rectly estimating the correct value for N, the number of degrees of freedom.

As a result, he introduced a parameter, 7, to be refined along with the rest of
the least squares parameters, a precision for which can be readily computed. The
variable 7 is introduced as a multiplicative factor into the imaginary anomalous
dispersion terms to give f;. Refinement of 1 should give values that converge
close to +1, indicating a correct assignment of absolute structure, or to —1, im-

plying that inversion of the structure is necessary.

3.1.4 Flack  Parameter

Flack [1983] showed the Rogers n parameter to be inadequate under certain condi-
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tions in that the value of  determined in a least squares refinement would depend
on its starting value. In addition, for structures that are nearly centrosymmet-
ric, the n parameter can give over-precise estimates of the absolute structure. He
suggested a new least squares parameter, x, which addressed these faults and
converges more rapidly than 7. The definition of the x parameter is based on
anomalous scattering from twin components related by a centre of inversion (see

§2.2 for further details on refinement of twins):

[F(h,2)" = (1—2) |[F(h)]* + 2| F(~h)[*. (3.7)

With the correct absolute structure, the parameter refines to a value of 0, whereas
a value of 1 indicates incorrect assignment of absolute structure. This definition of
the parameter allows for the possibility of an inversion twin fraction of anywhere
in the range 0 — 100%, where the crystal contains 100(1 — x)% of the component
whose coordinates are refined in the least squares procedure and 100x% of its
image by inversion. The faster convergence of the x parameter is due to x being
a linear function and 7 a quadratic function of |F|>. With its implementation in
(amongst others) the widely used SHELXL refinement program [Sheldrick, 2008],
the Flack = parameter has since become the de facto method of absolute structure
determination.

Flack and Bernardinelli [2000] published some guidelines on interpreting the
Flack x parameter and its associated standard uncertainty u. Under the assump-
tion that the errors are drawn from a Gaussian distribution (for remarks on whether
this is in fact always the case, see §3.1.5), for reliable assignment of the absolute
structure they require that the value of the Flack x parameter is within three
standard deviations of zero. Of equal importance is the size of the standard un-
certainty: in the general case, they require that u < 0.04; in the event that the
formation of inversion twins can be discounted (such as in the crystallisation of an
entantiopure compound) then this requirement can be relaxed to u < 0.1.

In addition, whilst the Flack x parameter can be calculated outside of a full
matrix least squares refinement, this can lead to inaccurate values of x if it deviates
significantly from zero and an underestimation of its uncertainty by a factor of up

to 3. As a consequence, they recommend that the published Flack x parameter
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should always be obtained via full matrix least squares refinement where x is varied
along with all other parameters.

Parsons and Flack [2004] recently proposed a method of obtaining improved
estimates of the Flack x parameter by careful measurement of selected pairs of
Friedel opposites in such a way that the systematic errors are the same for both

measurements. The ratios

I(h) — I(~h)
I(h) + I(—h)

[F) — [F(-h)*
[F(W)]” + |F(~h)[”

1

Daps = (1—22) (3.8)

are then used as additional observations of restraints in a conventional least squares
refinement. They found this led to improvements of up to a factor of 3 in the
precision of the absolute-structure determination.

Dittrich et al. [2006b] demonstrated that improvements in both the value and
standard uncertainty of the Flack x parameter could be obtained with the use of
ashperical scattering factors, or ‘invarioms’, instead of normal spherical scattering

factors.

3.1.5 Hooft y Parameter

Hooft et al. [2008] introduced a new probabilistic approach to absolute-structure
determination based on intensity differences between Bijvoet pairs. For each Bi-
jvoet pair of reflections, h and —h, we can define the Bijvoet differences A,(h) =
|F,(h)]> = | F,(=h)|* and similarly A.(h) = |F,(h)|* = |F.(=h)[*. If the coordinates
of the refined structure are of the correct hand, then the signs of each observed
and calculated Bijvoet difference should be matching. Conversely, if the wrong
hand was used in the refinement, then the signs would be opposite. This can be
generalised to allow for the possibility of twinning by inversion by replacing the

change of sign with a continously variable parameter, ~.

o 7Ac(h) - Ao(h)
= )

(3.9)
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If the variable xp,(7) follows a Gaussian distribution, then

plan(1) = s exp(-mi()) (310)

We can calculate the probability of observing the measured data given ~:

p (observations | v) = Hp(xh('y)) (3.11)
h
For numerical stability, we will calculate log(p) and hence:

1
log p(observations | ) ~ —3 E zh(7)? (3.12)
h

From Bayes’ theorem for probability densities, the posterior probability density

function for 7 given the observations is

p(observations | v)p(v)

_ . 3.13
J=- p(observations | v)p(vy)dy (8.13)

p(v | observations) =

Since the probability density p(~y) is unknown, Hooft et al. [2008] propose to use
a uniform probability density for v, however a uniform probability is only defined
for a finite interval. We note that, both in theory and in practice, large positive or
negative values of v are unrealistic and therefore propose to restrict v to a more

realistic interval, —I' <~ < I'. Equation 3.13 can be given as

p(observations | )

p(7y | observations) = 3.14
ol ) ijF p(observations | y)d~y (3.14)
where the mean and variance of v are given by
f+F .
1 yp(observations | )dy
G=) =" : , (3.15)
| p(observations | v)dy
+T :
— G)?p(observations | v)d
o(G)? = vary = Jor (11“ )*p( | 7)dy (3.16)

S p(observations | y)dy

37



Since p(observations | ) is a rapidly falling normal distribution, the denom-
inator is approximately equal to the integral between —oco and +o0o and we can
safely use I' = oo in the above equations, giving

O — ffooo ~p(observations | v)dy

o g 3.17
|~ p(observations | v)dy (3.17)

IS (v — G)*p(observations | v)dy

o(G)? = (3.18)

[=%_ p(observations | v)dy

The calculated values of log p(observations | =) are usually very small and

therefore we use instead the probability density function
pu(y) = exp (log p(observations | v) — log p(observations | 7)) , (3.19)

where log p(observations | 7p) is a large value of the probability density function
given in equation 3.12. This then results in equations (23) and (24) of Hooft et al.
2008]

oo pa()dy
“- S Pu(y)dy (3:20)
and
2(G) = S5 0 = GPp()dy (3.21)

ffooo Pu (7)d7

As suggested by Hooft et al. [2008], the values G' and ¢%(G) can be computed

by numerical integration within suitable bounds. However, by introducing

2

A(h)? Ac(h)A A, (h)?
A= ;(h) B=)Y (WAR) g(h> (3.22)
g g
: Ao(h) n TA.n)

n T80
equation 3.12 can be rewritten as

1 B\* 1, B
log p(observations | y) ~ —§A ( — —) + 50 - (3.23)
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The terms not involving v will appear in all calculated values of log p(observations |

) and hence will cancel, meaning that equation 3.21 can be now be written

I va(v)dy
[oa(y)dy

q(7) = exp (—%A ( — §)2> : (3.25)

1

It is clear that ¢(v) follows a normal distribution with p = % and 0 = A7z,

Therefore G and o(G) are equal to p and o respectively and can be calculated

G = (3.24)

where

directly without computing the full probability distribution p, (7).

The value of the parameter G behaves in much the same way as the Rogers n
parameter, in that a value close to 1 indicates correct absolute structure assignment
whilst a value close to -1 indicates that inversion is necessary. A simple change
of variable results in a new y parameter which is comparable with the Flack x

parameter:

y=(1-G)/2 (3.26)

and
o, =0¢/2 (3.27)

Hooft et al. [2008] use the version of Bayes’ theorem for probabilities to give

b ti 2 2
p(7; | observations) = p(observations | 7:)p(v:) (3.28)

o Zj p(observations | v;)p(7;)

for the discrete set of values, v1,7, ..., V,. Similarly to the case of a continuous
distribution, they suggest the use of a discrete uniform distribution for p(y;), i.e.
p(;) = 1/n. In this form, two sets of probabilities are calculated. The first,
p2(true), is the probability for a two-hypothesis model: the sample can assumed
to be enantiopure and hence the absolute structure is either right or wrong. Us-
ing a three-hypothesis model (additionally allowing for the possibility of a 50%
inversion twin), the three probabilities p3(true), p3(twin) and p3(false) are calcu-

lated. It should be noted that Bayes’ theorem as employed in equation 3.28 only
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strictly applies to probabilities, yet here it is applied to the probability density

p(observations | 7;).

3.1.5.1 Treatment of Outliers

The implementation of the procedure that is available within the current version
of the software PLATON [Spek, 2003] uses an outlier cutoff that rejects observed
Bijvoet differences that are significantly larger than the maximum calculated dif-
ferences. With the default cutoff factor of £ = 2, only the reflections where
|A,(h)| < k& x max (J]A.(h)|) are used in the calculation. When the inversion-
distinguishing power is weak, the standard deviations for some of the Bijvoet
differences may be of the same order of magnitude as the differences themselves.
In such a case, a large percentage of the Bijvoet pairs may be rejected using such
an arbitrary outlier cutoff, which may in turn significantly skew the result of the
analysis. Figure 3.1 shows how the probability distribution is shifted towards v = 0
when a significant number of pairs are rejected using an outlier cutoff. This can
be understood by considering the relation G = % Under the assumptions that for
the rejected Bijvoet pairs |A,(h)| are larger than |A.(h)| and that the structure
is of the correct hand (i.e. the observed and calculated differences have the same
sign), then G will tend towards zero since B will approach zero at a faster rate
than A.

3.1.5.2 Probability plots

The use of probability plots as a method of assessing errors in crystallography
was first suggested by Abrahams and Keve [1971]. A plot of the ordered statistic
xp(y = 1) against the ordered theoretical quantiles of the normal distribution can
be used to verify that the errors in the Bijvoet differences do indeed follow a normal
distribution. A plot that deviates significantly from linearity indicates that the
errors do not follow a normal distribution, whilst a slope for the least squares line
of best fit that departs from unity can indicate a misestimation of the assigned
standard deviations of the data.

In practice, it is frequently observed that the observations do not closely follow

a normal distribution, with values with high deviations being observed with much
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Figure 3.1: The probability density function of p,(y) with and without rejection
of 348 (23%) Bijvoet differences outliers. With rejection of outliers the probability
density is shifted towards v = 0, giving G = 1.2(11) compared to G = 1.5(10)
without such outlier rejection. The probability plot slopes were 0.544 and 0.754
respectively.
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higher frequency than would be expected [Hooft et al., 2009]. Figure 3.2a shows
the normal probability plot [Abrahams and Keve, 1971] of the Bijvoet differences
in such a case. Large tails are observed in the distribution and the least squares
line of best fit has a slope significantly above 1.0 and a poor linear correlation
coefficient is obtained for the probability plot.

As described by Hooft et al. [2010], a more robust approach may be to use
a Student’s ¢-distribution [Hooft et al., 2009; Student, 1908] of the errors. Fig-
ure 3.2b shows that the same data more closely fits a Student’s ¢-distribution with
v =2..

3.1.5.3 Student’s t-distribution

The Student’s t-distribution is a continuous probability distribution that, sim-
ilarly to the normal distribution, is symmetric and bell-shaped, but has larger
tails. The distribution has one parameter, v, which is often referred to as the
degrees of freedom, that can be used to control the shape of the distribution. As v
approaches zero the tails of the probability density function become increasingly
pronounced. At the limit of v = oo the distribution is indistinguishable from the
normal distribution.

The value of v for the Student’s t¢-distribution is chosen as the one which
maximises the linear correlation coefficient of the probability plot [Hooft et al.,
2009].

To determine the absolute structure using a Student’s ¢-distribution, equations
3.10 and 3.12 can be replaced by

or(w) 223 (412
P ) = oy (1 N 7'1) (3.20)

and

1
log p(observations | ) =~ ! -|2—y) Zlog (25 +v) (3.30)
h

respectively.

Figure 3.3 shows the distribution of equation 3.19 for two structures, one where
the absolute structure is well defined (G = 1.6(7)) and one where it is not (G =
1.02(2)). As can be seen clearly from the Figure, the expected value, G, is a
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(a) A normal probability plot of the Bijvoet differences showing significant

deviations from a normal distribution of the errors. The least squares line of

best fit has a slope of 2.21 and the probability plot has a linear correlation
coefficient of 0.9416.
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(b) A Student’s ¢-distribution probability plot of the same data, with v = 2.5.
The least squares line of best fit has a slope of 1.348 and the probability plot
has a correlation coefficient of 0.9994.

Figure 3.2: A comparison of a normal distribution and Student’s ¢ fit of the same
set of Bijvoet differences.
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Figure 3.3: The probability density function of p,(7y) for two structures with G =
1.6(7) and 1.02(2) respectively.

measure of the location of the distribution and o(G) a measure of the width?.
The structure with G = 1.02(2) the entire area of the probability density closely
surrounds v = 1 (indicating the correct absolute structure), leading to values for p2
and p3 indicating the correct assignment of the absolute structure. In contrast, the
structure with G = 1.6(7) has a broad curve for the probability density function,
reflected in the values of p2(false) = 0.003, p3(false) = 0.003 and p3(twin) = 0.119.

3.1.5.4 Applications

Comparisons between the Flack x parameter and the analysis of Hooft et al. [2008,
2010] were made for a set of 134 routine in-house data sets for non-centrosymmetric
crystal structures. Of the 134 data sets, 99 were in chiral space groups and 3

were measured using copper radiation (the remaining using molybdenum radia-

'For a normal distribution the inflection points are situated at = p + 1o.
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tion). Fach data set was refined as an inversion twin (i.e. refinement of the Flack
x parameter) to convergence using smtbx-refine. The twin fraction was refined
alongside all other structural parameters so as to take into account any possible
correlation between parameters. A Bayesian analysis of the Bijvoet differences
was carried out using both the Gaussian and Student’s t-distributions. The value
of v for the Student’s t-distribution was determined by an automatic procedure
that finds the value that maximises the linear correlation coefficient of the Bijvoet
differences probability plot, searching over the range 1 < v < 300. Scaling of the
standard deviations of the Bijvoet differences based on the slope of the probability
plot was performed for the Student’s ¢-distribution fits, however this was not used
when using Gaussian statistics (since in general it isn’t a true fit). The complete

data recorded are included in Appendix A.

3.1.5.5 Results

Unless stated otherwise, the text below refers to the Student’s t-distribution fit.

Using the criteria of Flack and Bernardinelli [2000], it was possible to reliably
determine the absolute structure of 63 of the structures analysed using the criterion
u < 0.04 (strong inversion-distinguishing power), or 92 with the criterion u < 0.1
(enantiopure-sufficient inversion-distinguishing power) for both the Flack x and
Hooft y parameters, where u = o(z) or o(y). Using the Hooft y parameter alone
(i.e. only the Hooft y need satisfy the criteria), these numbers could be improved
by a further 22 and 2 for u < 0.04 and u < 0.1 respectively.

Of the 94 structures where the absolute structure was reliably assigned accord-
ing to the criteria above (u < 0.1), there did not seem to be a systematic pattern
as to whether the Hooft y parameter was closer to zero, or lower in value than,
the Flack x parameter (43 and 45 structures respectively).

Hooft et al. [2008] recommend that a probability plot linear correlation coeffi-
cient of at least 0.999 is required in order to establish if the error model used for
the data is sufficient. 88 structures meet this requirement for the normal probabil-
ity plot, whilst a total of 129 structures satisfy the requirement using a Student’s
t-distribution to model the errors. In all but two cases the Student’s ¢-distribution

model gives at least the same or better value of the linear correlation coefficient
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for the probability plot when compared to 4 significant figures. This indicates that
the automatic optimisation procedure produces values of v (ranging from 2.4 to
300) that are appropriate models of the error distribution.

The Bijvoet statistics procedure was run both with and without outlier rejec-
tion as described in §3.1.5.1. With rejection of outliers it was frequently observed
that slope of the probability plot deviated significantly from unity, usually closer
to zero. In one case where almost 93% of the reflections were rejected using the
criteria of §3.1.5.1 a slope of 0.067 resulted. In contrast when all data were used
the probability plot slope was usually much closer to unity, indicating a better fit
of the error model. This is the case for 31 out of the 32 structures where more
than 10% of the reflections were rejected using an outlier cutoff. The value of v
that was determined when using all data was lower compared to when using a
cutoff for 35 out of 43 structures where more than 1% of the reflections were above
the cutoff. It is postulated that this analysis demonstrates that the use of the
Student’s ¢-distribution is a more robust approach than the use of an abritrary
cutoff to reject outliers.

In order to compare the values of the Flack = and Hooft y parameters that were
obtained, a total least squares fit of a straight line was attempted using the or-
thogonal distance regression module of the SciPy scientific tools library for Python
[SciPy]. Table 3.1 shows the calculated lines of best fit, whilst Figure 3.4 plots the
values obtained for the Flack x and Hooft y parameters using the Student’s ¢ dis-
tribution. The slope of the straight line is within 20 (slope) of unity for the normal
distribution, and 3o (slope) for the Student’s ¢ distribution. The vast majority of
the data points in Figure 3.4 are either along the line of best fit, or the best fit
line passes within the error bars. There is an obvious outlier at (—0.605,0.299)
which was identified as structure code 07srv401. On further examination a prob-

able explanation is the poor Bijvoet pair coverage of only 15% for this data set.

3.1.6 Implementation

The Flack x parameter is determined by refinement of an inversion twin along

with the rest of the parameters. See §2.2 for further details on the refinement of

46



Distribution Slope Intercept
Normal 0.9874(70) 0.0040(10)
Student’s ¢ 0.9855(72) 0.0042(10)

Table 3.1: The total least squares lines of best fit for a plot of the Flack x parameter
against the Hooft y parameter and the associated errors.

Hooft y parameter
(@)

-1 0 1
Flack x parameter

Figure 3.4: A plot of the Flack x parameter against the Hooft y parameter calcu-
lated using the Student’s t distribution for the error model. The straight dashed
line is the total least squares line of best fit of the data, y = 0.985x + 0.007. The
grey error bars indicate the standard uncertainty in the calculated values of the
Flack x and Hooft y parameters respectively.

47



twins within smtbx-refine.

The Bayesian statistics analysis of the Bijvoet differences as described above
is implemented in the smtbx.absolute structure module. A command line tool
was also developed that runs the procedure automatically for a given structure file
and /or reflection file, or alternatively for all non-centrosymmetric structures of the
given file type that are found in a recursive search in the directory provided.

In the software Olex2 [Dolomanov et al., 2009a] the procedure is run by de-
fault after every refinement for non-centrosymmetric structures regardless of the
refinement program used and a warning printed if it is suspected that inversion of
the structure is necessary, or refinement of an inversion twin may be needed. A
more complete output of the analysis can be obtained when viewing the Bijvoet
differences probability and scatter plots that are available through the reflection
statistics section of the Olex2 GUI. Here the user may choose between using the
normal and Student’s ¢-distributions and also choose to use an ’.fcf’ file (such as can
be output by SHELXL) as the source of F? instead of using internally-calculated
structure factors. The plots are displayed using the graph tools that have been
developed within Olex2 (see also §3.2; an example of a Bijvoet differences scatter

plot is shown in Figure 3.5).

3.2 Reflection Statistics in Olex2

A new tool has been developed within Olex2 for visualisation of the reflection
data. Various common plots of the reflection data have been implemented, which
frequently can be useful in identifying potential issues with the data and/or model.
The framework has been designed in such a way that new graphs can be easily
added into the existing framework and exposed to the user through the GUI with
minimal effort. The graphs are displayed in Olex2 using custom graph plotting
code (see for example Figures 3.5 and 3.6). Optionally a comma-separated values
(csv) file can be output for all graphs to enable plotting of the data in external
software (as was used for many of the graphs in this chapter).

In addition to the plots that are discussed in more detail below, other plots
that have been implemented within Olex2 include plots of scale factor, R1-factor

and % vs. resolution, normal probability plots [Abrahams and Keve, 1971] and
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Bijvoet differences scatter plot
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Figure 3.5: An example of a Bijvoet differences scatter plot as displayed in Olex2.

Wilson plots [Giacovazzo et al., 2002].

3.2.1 Cumulative Intensity Distribution

As described by Howells et al. [1950], the cumulative intensity distribution can be
useful in distinguishing between centrosymmetric and non-centrosymmetric struc-
tures. Stanley [1972] extended the method to aid in the identification of twinned
structures.

The data are sorted and grouped into bins by resolution. For each intensity,
z = I/(I), the fraction of the intensity over the average intensity for the given bin
is calculated. Use of z rather than I compensates for the decrease in (I) with sin 6
that is caused by thermal motion and the decrease in the atomic scattering factors.
The fractions, N(z), of the reflections whose intensities are less than or equal to
z are then plotted against z, as shown in Figure 3.6. The calculated distribution
can then be compared against the theoretical distributions for centric and acentric
structures:

1
Ncentric(z) = erf(é'z) s (331)

NI
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Cumulative Intensity Distribution
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Figure 3.6: An example of the presence of twinning being indicated by the cumu-
lative intensity distribution.

and
Nacentric(z) =1- eXp(—Z) (332)

where erf is the ‘error function’. The theoretical distribution for a twinned acentric

structure as determined by Stanley [1972] is given by

N(z) =1— (14 22)exp(—22). (3.33)

3.2.2 F, vs. F. Plot

A plot of F, vs. F. can indicate problems with the current model and/or data.
Figure 3.7a shows a plot of F, vs. F, for a twinned structure that also required
refinement of an extinction parameter. Figure 3.7b shows the effect on the plot
when extinction is neglected; since extinction primarily affects the strong reflec-
tions at low angles, the points deviate from the line y = x at larger values of F,.

In Figure 3.7c¢ twinning is not accounted for, resulting in a larger spread of the
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data points. A F, vs. F_. plot can also be used to identify individual outlying
reflections that may be omitted from the refinement (e.g. a low angle reflection
that was partially occluded by the beam stop and hence the measured intensity

was much lower than it should be).

3.2.3 Data Completeness

A plot of the data completeness binned by resolution can give some insight into the
quality of a data collection, or give indications of potential problems. For example,
whilst not necessarily having a detrimental effect on the least squares refinement,
missing low angle reflections can have a significant impact in an electron density
map calculation. For procedures such as that discussed in §4 it is important to be
aware of such missing reflections.

Another example could be an indication that the data were collected assum-
ing higher crystal symmetry than was actually the case. Furthermore, a plot of
data completeness against resolution could be instructive in choosing an appro-
priate value for the CIF data item _diffrn_reflns_theta_full, which is in turn used
in computing the value of _diffrn_measured fraction_theta_full. The definition of
_diffrn_reflns_theta_full specifies the theta angle (in degrees) at which the measured
reflection count is close to complete. According to this definition and by inspection
of Figure 3.8, a value of ~ 27.5° would be appropriate for this data set. It is also
evident from inspection of the plot that there is at least one low angle reflection
missing, which could be important if it was necessary to use the solvent masking
procedure described in §4. A list of the missing reflections sorted by resolution is

also output by the routine.
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y = x is plotted as a dashed line.
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Chapter 4

A New Solvent Masking

Procedure

4.1 Introduction

The number of new crystal structures deposited in the Cambridge Structural
Database (CSD) [Allen, 2002] that contain disorder of some description appears
to be increasing both in real terms and as a proportion of the total number of
structures deposited (Figure 4.1). As more than a quarter of crystal structure
depositions now contain some form of disorder, it is evident that the correct treat-
ment of disordered crystal structures is more important than ever.

A crystal structure determination is a time and space-averaged picture of the
electron density, i.e. an average of every unit cell in the crystal, and averaged
over the time of the diffraction experiment. Two kinds of disorder are possible:
positional, when an atom/fragment/molecule can occupy two or more similar ori-
entations or positions, and substitutional, when two or more atoms or molecules
can occupy the same site in different unit cells. Positional disorder can be subdi-
vided into dynamic and static, where the former describes real motion in the solid
state, and the latter is simply different orientations in different unit cells.

At this point, it is apposite to recall that the very nature of the Fourier trans-

form relationship between the electron density and the structure factors relates
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Figure 4.1: New structures deposited with CSD per year that are disordered, or
have used the SQUEEZE routine.
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every point in the unit cell to every structure factor:

p(z) =V |Fy| exp(igy) exp(—2mih - x) (4.1)

F(h) = / pla)exp(2rin - a) do. (4.2)

The crystallographic model is simply an interpretation of the measured electron
density, usually in terms of an atomic model. Therefore, any deficiencies in the
model can adversely affect the parameters of the ordered part of the model, as
their values change to compensate for deficiencies elsewhere in the least squares
minimisation. This can affect both the geometry of the molecule and also the
calculated standard uncertainties of refined and derived parameters. It is therefore
evident that it is important to account for any disorder in the best possible manner
during the process of crystal structure determination.

Orientational disorder is most commonly modelled with two or more overlap-
ping fragments, often requiring the extensive use of restraints and/or constraints
to keep the model chemically reasonable. When appropriate, a somewhat more
elegant alternative may be to model atoms as continuously disordered along some
special figure, such as a line, a ring or the surface of a sphere, as featured by the
program CRYSTALS [Schroder et al., 2004].

However, there are often cases where extensive disorder or unknown solvent
composition is such that neither approach is appropriate. Van der Sluis and Spek
[1990] suggested a method whereby the contribution to the calculated structure
factors of the disordered solvent area is calculated via a Fourier transform of that
area. This solvent contribution can then either be added to that calculated from
the ordered part of the structure, or alternatively subtracted from the observed
data before further cycles of refinement. This method has been made widely pop-
ular by the SQUEEZE routine available through the software PLATON [Spek,
2003]. As can be seen in Figure 4.1 it appears that this method is becoming in-
creasingly accepted as an appropriate method to deal with cases of severe disorder,

with, at the time of writing!, a total of over 4500 structures in the CSD where the

LCSD V5.32 database, November 2010 update
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SQUEEZE routine has been applied, with over 1100 in 2009 alone.

4.2 Theory

The total calculated structure factor, F*¢, can be considered as being composed
of two parts, that from the ordered atomic model of the structure, F;"°%! and the

diffuse solvent! contribution, F,ihf ! These are related according to
Fﬁalc _ F;Lnodel + F}Cthf (43)

The diffuse solvent contribution can be calculated from the discrete Fourier

transform of the electron density difference map over the solvent area

F;Liiff =, Z Ap(xj) exp(2mih - xj), (4.4)

a:jGS

where V} is the volume per grid point and S is the set of grid points z; that define
the solvent area.

This difference map is in turn calculated according to

Ap() =V 3 s [ explis )
4 (4.5)
. ’anodel| eXp(inZlOdel)] exp(—2ﬂ'ih : I),

where s is the overall scale factor,

F ,‘;bs| is the observed structure factor, ¢! is
the phase of Fjmodel ¢¢ale the phase of Ff4¢ and V is the volume of the unit cell.
We can optimize the diffuse scattering contribution, F,‘fif ! , by iteratively ap-
plying equations 4.5 and 4.4. Given the initial structure model, ¢ and the true
scale factor, s, are unknown. In the first cycle the true values are substituted with
p5le = ¢model and the scale factor obtained from the starting model is used. In
subsequent cycles, the phases and scale factor calculated using the provisional sol-
vent contribution from the previous cycle are used to provide an improved estimate

of the true values.

'The term “solvent” is used rather loosely throughout this chapter to include anions and
cations, which could also be treated in the same way.
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By examining equation 4.2 it is possible to see that when substituting A for
the 000 reflection, the resulting structure factor, Fj is equal to the integral of the
electron density over the whole unit cell, i.e. the total electron count of the unit
cell. The average density level of the difference map is zero and a summation of

the electron density over the solvent area gives the value

Fy= Y V,Ap(x)). (4.6)

T es

where the count over the region outside the solvent area is equal to — Fj.
The average density of the difference map can be raised to such a level that
a summation over the points outside the solvent area gives zero, enabling an ap-

proximation of the number of electrons in the solvent region to be given by
= RV/(V = V), (4.7)

where V; is the volume of the solvent region and V is the unit cell volume. A con-
tribution of Fi'// /V is added to Ap(x;) before the next iteration of the procedure.

4.2.1 Refinement

Once the diffuse solvent contribution to the calculated structure factors has been
determined, it is then necessary to include this contribution in the refinement of the
ordered part of the structure. The most straightforward way of doing this would
be to refine against the total calculated structure factor as defined by equation 4.3.
This would be the preferred method if the desired refinement program is capable
of accepting fixed contributions to the structure factors, which is the case with our
own refinement program, smtbx-refine [Bourhis et al., 2011].

In order to use the method with the refinement program SHELXL [Sheldrick,

2008], an alternative approach is used to modify the observed structure factors:

F* = s |Fg*| exp(igpo) — Fi7 (4.8)
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4.2.2 Incomplete Data

It is well known that the low angle data contain much of the large-scale electron
density variation throughout the unit cell, whilst the high angle data encode the
fine details of the electron density. This can be clearly demonstrated in the use
of high-pass and low-pass filters on the Fourier transforms of two-dimensional
images as shown in Figure 4.2 [See also Figure 8 of Aubert and Lecomte, 2007].
Figure 4.2b is obtained from the Fourier transform in Figure 4.2e where only the
data close to the origin (centre of the Fourier transform), and it is clear that,
whilst the details in the buildings are lost, the large-scale intensity variation in
the original image remains. When the data close to the origin (low angle data)
are excluded (Figure 4.2f), the image is now mostly even in intensity across the
image, however the image retains the details in the buildings (Figure 4.2¢).

If some of the low angle data are missing (for example, obstructed by the beam
stop), then this can have a detrimental impact on the iterative procedure outlined
above. A key step involves adding a contribution, Fai W7 that is calculated by a
summation of the electron density over the solvent area. It is evident that if missing
low angle data causes the overall levels of the electron density to be incorrect, these
errors will propagate through the procedure and eventually lead to an incorrect
electron count. In our experience just one missing low angle reflection can be
enough to cause significant errors in the estimation of the electron count in the
solvent region.

With this in mind, we propose a modification to the above procedure that can
be used to compensate for such missing data. At the beginning of each cycle, before
the application of equation 4.5, the missing observed amplitudes are substituted
by the |F.u.| obtained as a result of the previous cycle. As such, the missing
amplitudes are allowed to float freely throughout the procedure, from the initial
starting point of those amplitudes calculated from the ordered part of the model.
It is expected that this modification will lead to a more accurate estimate of the
diffuse contribution and the electron count within the solvent region than would
be obtained by essentially including the contribution of the unobserved amplitudes

as Zero.
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(d) (e) (f)

Figure 4.2: An image of the Chicago skyline (a) and its Fourier transform (d);
(b) is the image reconstructed after application of a low-pass filter to the Fourier
transform (e); (c) is the image reconstructed after application of a high-pass filter
to the Fourier transform (f). Fourier transforms calculated using the FTL-SE
software [JCrystalSoft, 2010].
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4.2.3 Twinned Data

In order to obtain a correct electron density map in the case of twinned data, it is
necessary to first deconvolute, or ‘detwin’, the data. Detwinning of intensity data
and methods of doing so, are discussed in detail in §2.2. Regardless of the method
used to detwin the data, it is necessary to know the twin fraction(s) sufficiently
accurately in order to obtain a reasonable estimate of the untwinned intensities.
In our experience the twin fraction obtained through least squares refinement of
an incomplete model does not usually lead to a sufficiently accurate difference

electron density map for the solvent masking procedure to work well.

4.2.4 Standard Uncertainties

In the case of using a solvent mask as an alternative to modelling the solvent with
a disordered model and under the assumption that the model of the disorder is a
good fit to the data (at least comparable to that attained with the use of a solvent
mask), then it is to be expected that the standard uncertainties on the refined

parameters will be artificially reduced. The standard uncertainty for parameter p;

N ) 1/2
o(p;) = ((A*»-]-M> (4.9)

is given by

N-—-P

where A~! is the inverse least squares normal matrix, w;A? are the weighted
residuals, for N observations and P parameters.

Under the assumption that the value of (A™!);; is unchanged and that the fit
of the model to the data is identical in both cases, it is evident that the value of
the denominator will increase as the number of parameters decreases, thus causing
the standard uncertainty of the refined parameters to be underestimated.

Consider a hypothetical data set for which there are 4000 unique reflections
after merging with 316 parameters refined for the ordered part of the model. A
dichloromethane molecule is disordered over 3 orientations and each part is mod-
elled anisotropically for each atom (this is unlikely considering a 3 part disor-
der) and the positions of the hydrogen atoms are refined using riding constraints

[Watkin, 2008]. This gives a total of 27 parameters for each part (3 site param-
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eters and 6 anisotropic displacement parameters per non-hydrogen atom). An
occupancy parameter is refined for each disorder component (with a restraint that
the sum of the occupancies is equal to unity), giving a total of 84 parameters to
model the disorder. From equation 4.9 a reduction in the standard uncertainties
of 1.15% would be expected after using the solvent masking procedure, taking into
account only the difference in the number of parameters. More realistically, only
the major disorder component is refined anisotropically, giving a total of 54 pa-
rameters required to model the disorder. Now a reduction of 0.74% in the standard
uncertainties would be expected. Since the number of data is usually much greater
than the number of parameters!, the reduction in the standard uncertainties due
to a change in the number of parameters is expected to be small.

It is important to remember, however, that the solvent masking procedure
is not intended as a replacement for correct atomic models of solvent disorder,
but rather as a complementary technique for the cases when an atomic model is
insufficient, or would lead to chemically nonsensical results. In such a case it is
expected that a significantly better fit of the model to the data can be obtained
using a solvent mask and hence the standard uncertainties would decrease by a
much greater amount than would be caused purely by the reduction in number of

refined parameters.

4.3 Method

The first step is to identify the areas of the unit cell that are accessible to solvent
molecules. A grid is set up where the grid step is chosen relative to the high
resolution limit, usually by a factor of 1/4. Initially all the grid points are set
to be 1. All points within a distance of r; from atom ¢, where r; is the sum of
the van der Waals radius and the solvent probe radius, 7o, are set to 0. All
grid points with the value 0 are then tested to see if they are within a distance
Tshrink Of @ grid point marked 1 and are themselves set to 1 if this is the case. The

grid points marked 1 are thus the solvent accessible region. This two-step process

!The current recommendation of the IUCr journals is for a data/parameter ratio > 10 for cen-
trosymmetric and > 8 for non-centrosymmetric structures for a ‘quality structure determination’
(http://journals.iucr.org/services/cif /checking /platon.html).

62


http://journals.iucr.org/services/cif/checking/platon.html

has the effect of smoothing the surface area of the solvent region relative to just
including all points that are outside the van der Waals radii of the atomic model.
The search for solvent accessible voids uses the procedure originally developed for
the cctbx bulk-solvent and scaling module [Afonine et al., 2005].

The above procedure acts in the space group P 1, however it can be optimised
by taking into account the space group symmetry. All atoms are moved to the
standardised asymmetric unit and this is expanded with symmetry equivalents
within a buffer region equivalent to the sum of the maximum van der Waals radius
and the solvent probe radius. Solvent accessible volumes are then carried out as
described previously and the space group symmetry is applied to the resulting map
to yield all the solvent regions in the unit cell. This approach gives substantial
speed increases for higher symmetry space groups and large unit cells.

Independent voids are then identified using a simple flood fill! algorithm and,
for each void, a centre of mass and moment of inertia is calculated. Each void is
labelled with a sequential integer. The solvent accessible volume constitutes all
grid points with value greater than zero.

The solvent contribution to the structure factors is calculated following the

iterative procedure outlined in section 4.2.

4.4 Implementation

4.4.1 Computational Crystallography Toolbox

The procedure outlined above is implemented as part of the Small Molecule Tool-
box (smtbx) which is part of the Computational Crystallography Toolbox (cctbx)
[Grosse-Kunstleve et al., 2002].

The high-level code controlling the flow of the program is written in Python,
whilst the computationally intensive calculations (Fast Fourier Transform, void
search, structure factor calculations, etc.) are written using C++, which is exposed
to Python using the Boost.Python Library (http://www.boost.org/).

This combination allows for rapid prototyping of new ideas, whilst maintaining

the performance benefits of a compiled language.

http://en.wikipedia.org/wiki/Flood _fill
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4.4.2 Olex2

The procedure is integrated within the Olex2 software package [Dolomanov et al.,
2009a/, which can be used for visualisation of the calculated solvent accessible voids
and F; ffif I and F, ale electron density maps. Once calculated, it is straightforward
to include the solvent mask in the refinement of the ordered part of the structure,
either with our own refinement program, smtbx-refine [Bourhis et al., 2011] or
alternatively with SHELXL [Sheldrick, 2008].

The details of the calculations and subsequent refinement are seamlessly prop-

agated into the CIF output by Olex2 ready for publication.

4.5 Test Structures

There are a number of tests that can be carried out to test the validity of the
procedure. In the first instance, a crystal structure can be taken where the solvent
content is both known and ordered. The procedure can be carried out using both
the original observed data and using structure factors calculated from the model,
and with and without prior least squares refinement. The electron count estimated
by the procedure should be close to that expected for the solvent that is omitted
from the model and the subsequent least squares procedure should give a similar
outcome to that obtained with an atomic model of the solvent.

The completion of missing data can be tested similarly using a test case with
ordered solvent, where one or more low angle reflections are missing (or manually
omitted) and the results of the procedure can be compared with and without
using the set completion technique. The amplitudes of the omitted reflections can
be followed throughout the iterations, in order to observe whether their values
converge close to the true values.

The outcomes of the procedure obtained for several test structures and appli-
cations are tabulated in Table 4.1. Analysis of the differences in geometry after

the procedure is presented in Table 4.2.
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Compound I

I-methyl-3-phenyl-7,8-dimethoxy-3H-pyrazolo(3,4-c)isoquinoline acetonitrile sol-
vate [Bogza et al., 2005, CSD code YAKRUY], space group P1, a = 7.086(1),
b = 10.791(3), ¢ = 12.850(2) A, a = 104.16(2)°, B = 105.87(2)°, v = 95.86(1)°,
containing one acetonitrile molecule per asymmetric unit.

A synthetic data set was created from the full atomic model to dyim = 0.7 A
with 100% completeness. The acetonitrile solvate molecule was then discarded
from the model with the solvent masking procedure used in place. An electron
count of 43.4 was found for a single void per unit cell, with volume 174 A, The
structure refined to R1 = 0.88% using unit weights. The 001 reflection was then
discarded and the procedure repeated, with the resulting electron count of 40.5 and
R1 = 1.81%. The procedure was run once more, this time using the set completion
technique, giving an electron count of 43.4 and R1 = 0.89%.

To test the technique more extensively, approximately 5% of the reflections were
discarded at random, resulting in a completeness of 95.3% (Figure 4.3). Without
the use of the set completion technique, an electron count of 34.5 was obtained
and R1 = 5.20%. Using the set completion technique gave an electron count of
43.4 and R1 = 0.89%. The amplitudes of three of the omitted low angle reflections
were followed at each iteration. From the results shown in Figure 4.4 it can be
seen that in each case the amplitude of the reflection converges close to the ‘true’

value.

Compound II

1(2,5)-Thiophena-3,7-dioxa-2,8-dioxo-5(5,57)(9,10-bis(4-methyl-1,3-dithiol-2-

ylidene)-9,10-dihydroanthracena)cyclo-octaphane dichloromethane solvate
[Godbert et al., 2001, CSD code QIPZEU], space group P2;/¢, a = 11.407(5),
b =17.160(8), ¢ = 15.607(7) A, 3 = 99.83(2)°. The asymmetric unit contains one
dichloromethane molecule which is disordered over two orientations, modelled
with 50% occupancy for each position. The refinement converges to R1 = 7.15%
for 2901 reflections where I > 2u(/). Bond similarity restraints on the C-Cl
distances were required in order to keep the geometry of the dichloromethane

molecule chemically reasonable. Alternatively a solvent mask was used instead
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of modelling the dichloromethane atomically. Two symmetry-related voids were
found in the unit cell, each with a volume of 235 A’ and an estimated electron
count of 79.7 per void. Refinement using the solvent mask gave a slightly reduced
R1 = 6.99%. Although the completeness was high (99.98%) to 20 = 50°, it was
noted that the (100) reflection was not measured. The solvent masking procedure
was repeated using the set completion technique, giving an estimated electron
count of 84.8 and a marginally lower R1 = 6.95% after refinement to convergence.
Although there was not a significant change in the Rl-factor, the estimated
electron count obtained using the set completion technique was much closer to

the expected value for two dichloromethane molecules (2 x 42~ = 84e™).

Compound III

9-(4-chlorophenyl)-5,6-dimethoxy-10,11,19-triazatetracyclo[9.8.0.038.013:18]
nonadeca-1(19),3(8),4,6,13(18),14,16-heptaen-12-one  acetone  solvate [Bat-
sanov, 2000], space group C2/c, a = 20.085(5), b = 7.717(1), ¢ = 28.907(3) A,
f = 97.77(1)°. The asymmetric unit contains half an acetone solvate molecule
sited on a special position. Refinement of the full atomic model converges to
R1 = 5.03%. The acetone molecule was then discarded in the model and the
solvent masking procedure was used in its place. Four voids were found per unit
cell, each with a volume of 124 A and an estimated electron count of 25.9 and
R1 = 5.11%. It was noted that the (002) reflection was missing and therefore the
procedure was repeated using the set completion technique, giving an electron
count of 32.9 and R1 = 5.00%.

Compound IV

Tetrachloro-(1,2-bis(diphenylphosphoryl)ethane-O,0’)-tin(iv)  acetone solvate
[Batsanov et al., 2009, CSD code QOZQAY], space group P1, a = 9.796(2),
b =11.497(1), ¢ = 16.171(3) A, o = 99.91(1)°, 8 = 102.85(1)°, v = 110.81(1)°.
The structure contains one acetone molecule per asymmetric unit, which is
disordered over two parts in the ratio 80:20. With the use of bond similarity
restraints, the refinement converges to R1 = 2.64% for 7533 reflections where

I > 2u(l). When a solvent mask was used instead of the atomic model of
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the disordered acetone, one void was found in the unit cell with a volume of
309 A® with an estimated electron count of 63.6 electrons per unit cell. This is
comparable to the expected count for two acetone molecules (2 x 32e~ = 64e™).

Refinement using the solvent mask converged to R1 = 2.47%.

4.6 Applications

Compound V

1,13(1,4)-Dibenzena-7,19(2,6)-bis(9,10-bis(4,5-bis(methylthio)-1,3-dithiol-2-
ylidene)-9,10-dihydroanthracena)-3,6,8,11,15,18,20,23-octaoxa-2,12,14,24-
tetraoxotetracosaphane dichloromethane hexane solvate [Christensen et al.,
2001, CSD code QOSDIL], space group P1, a = 14.525(2), b = 15.647(2),
c = 18238(2)A, a = 88.59(2)°, B = 86.97(2)°, v = 79.82(2)°. The
dichloromethane and hexane molecules are severely disordered along chan-
nels through the unit cell. In the original publication the disorder was modelled
with arbitrary chlorine and carbon atoms, with R1 = 7.63%. Five of the six
largest residual electron density peaks (0.6 — 0.65e~ A_S) are found within the
solvent region. After application of the solvent masking procedure, R1 = 6.73%
and the highest residual electron density peak (0.64e~ Afs) is close to one of
the sulphur atoms, with no significant residual electron density peaks within the
solvent region. A single void was found that runs along a channel parallel to the
b-axis, with volume 596 A? and an estimated electron count of 143.5 electrons per

unit cell.

Compound VI

2-(3’-(t-Butyldimethylsiloxy)-1’-oxo0-1’,3’-dihydroisoindol-3’-yl)-1,2’-propano-1,2-
dicarba-closo-dodecaborane pentane solvate [Batsanov et al., 2001, CSD code
QOYXOR], space group PI1, a = 14.448(1), b = 14.680(1), ¢ = 16.137(1) A,
a = 101.58(1)°, = 90.07(1)°, v = 96.13(1)°. The pentane solvent is severely
disordered along channels through the unit cell. In the published structure the

disordered solvent is modelled with arbitrary carbon atoms of varying fixed
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occupancy, with R1 = 8.35%. The ten largest residual electron density peaks
(0.65 —0.79e~ A_S) are found within the solvent region. After application of the
solvent masking procedure (electron count = 117.7), R1 = 6.15% and there are
no significant residual electron density peaks within the solvent region. However,
it was noted that there were several missing low angle reflections, (001), (100),
(010), (—101) and (101). The procedure was repeated using the set completion
technique, resulting in a significantly larger electron count of 235 and R1 = 5.57%.

Compound VII

Space group R3, a = 27.065(3), b = 27.065(3), ¢ = 24.318(3) A [Batsanov,
2009]. Hexane solvent molecules are severely disordered along the 3-fold axis.
After refinement with no attempt made to model the solvent, an R1-factor of
9.24% was achieved. The 15 largest residual electron density peaks (in the range
0.5—13e” Afg) are all in the channel parallel to the c-axis (Figure 4.5a). The
solvent masking procedure found 3 symmetry equivalent voids parallel to the c-
axis, giving a total solvent accessible volume of 3687 x’ per unit cell (24% of the
unit cell volume) and an estimated electron count of 866 electrons per unit cell.
Figure 4.6 shows the electron density map for F%/f as displayed in Olex2. A
much improved R1-factor of 4.60% was obtained for 2564 reflections I > 2u(I).
No significant residual electron density was observed in the voids and the highest
residual electron density peaks (< 0.4e” Afg) were in the vicinity of the atomic
model (Figure 4.5b).

4.7 Discussion

It is encouraging that for Compound I the set completion technique gives much
improved results for the cases where there are missing reflections. Almost identical
results are obtained compared to the complete data set, even for the case where
almost 5% of the reflections are missing. Compounds II and III demonstrate that
the set completion technique gives estimated electron counts closer to the expected
value when used with original data sets where one or more low angle reflections are

unobserved. From Table 4.2 it can be seen that only relatively small decreases in
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(a) The 15 highest residual electron density peaks are all found within the

channel parallel to the c

-axis.

(b) After the use of a solvent mask there are no significant residual electron

density peaks within the solvent channels.

axis for compound VII. The peaks

Figure 4.5: The view of the unit cell down the c

-brown spheres.

in the difference electron density are displayed as transparent light
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(a) The view down the c-axis.

(b) The view perpendicular to the ab vector.

Figure 4.6: Two alternate views of electron density map for F%// for compound
VII.

71



Atomic model Mask Set completion
Compound  Solvent R1(%) e”  R1(%) e”  R1(%) e VS(A)3 Vs(%)
I CH3CN 0.00 44 0.88 43.4 - - 186 20.6
If CH3CN 0.00 44 1.81 40.5 0.89 43.4 186 20.6
& CH3CN 0.00 44 520  34.5 0.89 43.4 186 20.6
II CH-Cl, 7.15 84 6.99 T79.7 6.95 84.8 479 15.6
111 (CH3)QCO 5.04 128 5.11 103.6 5.00 131.6 497 11.2
v (CH3)2CO 2.64 64 2.47 63.6 - - 309 19.4
Vv CH5Cly, CgHyy 7.63 - 6.73 143.5 - - 596 14.6
VI CsHio 8.35 - 6.15 117.7 5.57 235 1103 33.1
VII CeHig 9.24 - 4.60 865.8 - - 3844 24.9

Table 4.1: Comparisons of the results obtained using the solvent masking pro-
cedure with and without the set completion technique and the original atomic
models. V; is the total solvent accessible volume per unit cell.
the solvent accessible volume as a percentage of the unit cell volume. The 001
reflection was rejected. *Approximately 5% of the reflections were discarded.

Also given is

Bond lengths (A)

Bond Angles (°)

Compound RMS deltas s.u. % decrease RMS deltas  s.u. % decrease
I 0.00328 5.7 0.24015 5.5
111 0.00099 1.7 0.07437 1.9
v 0.00068 6.7 0.03596 7.1
\Y% 0.00507 18.1 0.27379 17.0
VI 0.00416 37.5 0.14702 37.0
VII 0.01527 56.8 0.78640 54.4

Table 4.2: The root mean square (RMS) differences in bond lengths and angles,
and the percentage decrease in their standard uncertainties after application of the

solvent masking procedure.
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the standard uncertainties of the geometrical parameters are observed compared
to those obtained when using an atomic model. Whilst for these test compounds
a full atomic model of the solvent is undoubtedly the correct approach to take, the
results show that the solvent masking procedure can give comparable results.

All three applications show significant improvements after the use of the pro-
cedure and larger decreases in the standard uncertainties are observed, ranging
from 17% for Compound V to > 50% for Compound VII. After the use of the set
completion technique to compensate for several missing low angle reflections, the
estimated electron count obtained for Compound VI is significantly larger with an
improved least squares fit. This difference in electron count could be significant
when attempting to estimate the solvent composition of the crystal. Compounds
V and VI were both published before the method of van der Sluis and Spek [1990]
was popularised (Figure 4.1) and consequently arbitrary atoms of varying types
and occupancies were used to model the severely disordered solvents. Given that
the current procedure gives demonstrable improvements in both the least squares
fit and the geometry of the ordered part of the structure whilst also giving further
information in terms of the estimated electron count which may be useful in identi-
fying the solvent composition (in conjunction with ancillary information), it is the
author’s opinion that it is more meaningful to use the solvent masking procedure

in such cases, provided the use and outcomes of the procedure are clearly reported.
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Chapter 5

The Crystallographic Information
Framework (CIF)

5.1 1otbx.cif

5.1.1 Introduction

The CIF (Crystallographic Information File) syntax [Hall et al., 1991] has become
firmly established [Brown and McMahon, 2002] as the file format for deposition
and archiving of small molecule crystal structures, and increasingly their structure
factors. Whilst the PDB is still the preferred file format for deposition of macro-
molecular crystal structures, the CIF format is nonetheless important to macro-
molecular software through their extensive use of the PDB chemical components!
and REFMAC monomer libraries [Vagin et al., 2004]. The IUCr maintain CIF dic-
tionaries for describing the results of powder diffraction [Toby, 1998] and electron
density studies [Mallinson, 2003], and for describing incommensurately modulated
crystal structures [Madariaga, 2002]. The Crystallography Binary Format (CBF)
and Image-supporting Crystallographic Information File (ImgCIF) [Hammersley
et al., 2003] are extensions to the CIF format to support inclusion of binary data
in the CIF, in particular raw experimental data from area detectors. The CIF is

probably one of the most well known file formats within the field of chemistry,

Thttp://www.wwpdb.org/ccd.html
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since it is predominantly the form in which synthetic chemists receive the results
of a crystal structure analysis carried out on their behalf.

Evidently the CIF is intrinsically involved in a wide variety of crystallographic
applications from data collection to publication and archiving of the outcomes of
crystallographic studies. In addition there is a wealth of crystal structure coordi-
nates and reflection data freely available in the CIF format through the Crystal-
lographic Open Database (COD) [Grazulis et al., 2009] and the large quantity of
data available as supplementary material for papers published in IUCr journals,
for which many possible uses can be imagined. As such it is vital for a crystallo-
graphic library such as the cctbx to provide high quality tools for reading, creation
and manipulation of CIFs, and extraction of crystallographic data from them.

Several CIF programming libraries have been developed for various languages,
including FORTRAN [Hall and Bernstein, 1996], C [Ellis and Bernstein, 2001;
Westbrook et al., 1997], Objective C [Chang and Bourne, 1998], .NET [Lin, 2010],
Perl [Bluhm, 2000] and Python [Hester, 2006]. For some time PyCIFRW [Hester,
2006] has been distributed with the cctbx source code bundles, however there was
only limited support within the cctbx for PyCIFRW. Since the parsing of CIF
files in PyCIFRW occurs using an interpreted language (Python [Python Software
Foundation]), parsing of extremely large CIFs (e.g. reflection files, dictionary files)
can be considerably slower than when using comparable compiled parsers. As a
result there existed several partial CIF parsers within the cctbx, each hand-crafted
to suit the specific task in hand (separate tools for reading the PDB chemical
components and REFMAC monomer libraries; as part of the phenix.cif as mtz
tool; for reading fcf reflection files as output by SHELXL [Sheldrick, 2008]).

During the development of the tools described in earlier chapters within the
context of the smtbx and Olex2, it became apparent that the CIF format would
play a central part in presenting the results of the procedures developed, in addition
to a need for providing an interface for managing the contents of the CIF within
Olex2. Therefore it was decided to implement a new CIF framework within the
iotbx (input/output toolbox) module of the cctbx.

Given the availability of a clearly defined formal grammar for the CIF syntax®,

it was decided to use the ANTLR parser generator [Parr, 2007] for generation of a

Thttp://www.iucr.org/resources/cif/spec/version1.1/cifsyntax
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lexer and parser from a formally defined grammar. ANTLR was chosen because of
its support for multiple programming languages, in particular its support of Python
and C/C++. In addition, the associated ANTLRWorks GUI development envi-
ronment features a number of tools that aid the development of grammars, such
as visualisation of syntax diagrams and rule dependency graphs. This enabled the
majority of the development to be focused on the design of the internal represen-
tation of the CIF model, whilst ensuring that the resulting parser closely follows
the formal CIF grammar. The code is structured in such a way that the parser is
quite distinct from the model, meaning an alternative representation of the model
could be used with the same parser, and conversely a different parser could be used
to populate the existing iotbx.cif model. The CIF grammar in ANTLR format is
included in Appendix B. This grammar is suitable for generating CIF parsers in
any of the programming languages supported by ANTLR (including C, C#, Ob-
jective C, Java, JavaScript, Python, Ruby). Figure 5.1 shows a simplified rule
dependency graph generated for the CIF grammar using the ANTLRWorks GUI.

5.1.2 Using iotbx.cif

Developers familiar with the built-in dictionary type of the Python programming
language [Python Software Foundation| will be immediately at home with the
syntax of the iotbx.cif representation of the CIF model.

The top level object is iotbx.cif.model.cif, which is the type equivalent to a
full CIF file. This contains zero or more data blocks, which are accessed by data
block name using the traditional Python dictionary square brackets notation for
accessing a dictionary by key. Using a valid data block name, this returns a
CIF data block of the type iotbx.cif.model.block. A CIF data block consists of a
sequence of data items and associated values. A data item can be associated with
either one value, or a list of values (as part of a CIF loop), and a given data item
can only be found once per data block. These values can in turn be accessed using
the square bracket notation to retrieve the value(s) associated with a specified data

item (tag).
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Figure 5.1: A simplified rule dependency graph for the CIF grammar.




import iotbx.cif
cif_model = iotbx.cif.reader(file_.path="myfile.cif’).model()
cif_block = cif_-model [ ’my_block_name’ ]

hall_symbol = cif_block[’_space_group_name_Hall’]

Then:
>>>print hall_symbol
—P 2yn
Looped items are stored by columns, and the full list for a given looped item
can be accessed by the data name as shown below.

>>>sym_ops = cif_block [’ _space_group_symop_operation_xyz ]
>>>for sym_op in sym_ops:
print sym_op

X,Y,%2
—x+1/2,y+1/2,—2+1/2
—X,7Y,— %2

x—1/2,—y—1/2,2—1/2

The full loop object can be extracted by the name of the loop. The name of
the loop is taken to be the longest common substring starting with an underscore
character, and followed by (but not including) an underscore (in the case of DDL1
CIFs) or point (in the case of DDL2 CIFs) character separator. This follows the
IUCr guidelines for reserved prefixes for local dictionary extensions®. Once a loop
has been extracted, this can then be used to iterate through by rows, or to add
further rows or columns to the loop. The following example demonstrates the

creation of a CIF loop describing the given distance restraints.

loop = model.loop (header=(
7 restr_distance_atom _site_label_ 17,
” _restr_distance_atom_site_label_27,
” restr_distance_site_symmetry_27 ,
” restr_distance_target”,
” restr_distance_target_weight_param?”
7 _restr_distance_diff”))
for proxy in proxies:
restraint = geometry_restraints.bond (

unit_cell=unit_cell ,

Thttp://www.iucr.org/resources/cif /spec/ancillary /reserved-prefixes
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sites_cart=sites_cart ,
PIrOXy=proxy )

loop .add_row ((
site_labels [proxy.i_seqs [0]],
site_labels [proxy.i_-seqs [1]],
space_group_info.cif symmetry_code (proxy.rt_mx_ji),
restraint .distance_ideal ,
math.sqrt (1/restraint . weight ),
restraint . delta))

cif _block .add_loop (loop)

5.1.2.1 CIF output

CIF objects (model.cif, model.block, model.loop) can be exported in several ways.
The simplest way is using the Python ”print” statement as follows:

f = open(’myfile.cif’, 'w’)
print >> f, my_cif_model

f.close ()

The show() method of the CIF objects allows more fine-tuning of the output,
including the amount of indentation used for looped data and the width of the
data name field. For more advanced formatting, a Python formatting string can
be provided to control the output of individual loops (in contrast to the default
behaviour where items are single space-separated). The following example demon-
strates the use of the tools provided by iotbx.cif to output reflection data in a
format similar to that output by SHELXL using the ‘LIST 4’ instruction:

f = open(’myfile. fcf’), 'w’)

cif = iotbx.cif.model. cif ()

mas_as_cif_block = iotbx.cif.miller_arrays_as_cif_block (
f_calc_sq , array_type=’calc’)

mas_as_cif_block.add _miller_array (f_obs_sq, array_type=’meas’)

cif [’my_block_name’] = mas_as_cif_block.cif_block

format_string="%4i %3 + "%—12.2f %2 + *%—10.2f"

cif .show (out=f, loop_format_strings={’_refln’:format_string})

f.close ()

Below is an example of part of the _refln_* loop generated by this short script.
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loop-
_refln_index_h
_refln_index_k
_refln_index_1
_refln_F _squared_calc
_refln_F _squared_meas

_refln_F _squared_sigma

0 0 1 129.73 59.30 3.63
0 1 0 157.87 157.99 4.45
0 1 1 176.00 185.32 3.75
1 0 0 142.63 141.28 2.62
0 -1 1 2024 .44 2010.97 30.75

5.1.3 Validation of CIF's against data dictionaries

Successful parsing without errors of a given CIF indicates only that it is syntac-
tically correct. CIF dictionaries allow for a machine-readable formal description
of allowed data items, and for possible restrictions on the attributes of their as-
sociated values. A collection of application-specific dictionaries are maintained by
the Committee for the Maintenance of the CIF Standard (COMCIFS), and can
be used to validate the contents of a given CIF. The CIF data dictionaries abide
by the CIF syntax, with two distinct dictionary definition languages (DDL1 and
DDL2) currently in use.

In the context of iotbx.cif, once loaded, a CIF can be validated as follows:

from iotbx.cif import validatation

cif _dic = validation.smart_load_dictionary (name=’cif_core.dic’)

cif_model.validate (cif_-dic , show_warnings=True)

The smart_load_dictionary function allows for a dictionary to be loaded from a
variety of sources, including a locally stored version, downloaded from an arbitrary
URL, or via lookup in a cif dictionary register! allowing use of the most up-to-date
version of the dictionary. A list of potential errors and warnings found during the

validation is output by the procedure. The error handling is designed such that it

le.g. ftp://ftp.iucr.org/pub/cifdics/cifdic.register
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is possible for an application making use of iotbx.cif to override the default error

handler with one specific to the needs of the application.

5.1.4 Interconversion with cctbx crystallographic objects

An essential part of any crystallographic library or software is a means to easily
export/extract crystallographic information to/from the CIF format. As such, two
key crystallographic objects in the cctbx, namely xray.structure and miller.array,

have methods enabling easy interconversion of either object with a CIF.

from cctbx import miller , xray

xray_structure = xray.structure.from_cif(file_path="my. cif’)

xray_structure .show_summary ()

miller _arrays = miller.array.from _cif(file_path="my. fcf”)
f_calec_sq = miller_arrays |’ _refln_F_squared_calc’]
f_obs_sq = miller_arrays [’ _refln_F_squared_meas’]

f_obs_sq.show_comprehensive_summary ()

Tools have been developed in order to support output of the requisite struc-
tural information for publication of a structure determination. This includes the
export of an xray.structure into CIF format, and also the inclusion of geometrical
features such as bonds and angles. Optionally the covariance matrices for the re-
fined parameters and for the unit cell parameters can be provided to enable the
calculation of standard uncertainties for both refined and derived parameters (see
also §2.3).

Support was recently added for the new restraints CIF dictionary [Brown and
Guzei, 2011] which is intended to allow for the description in CIF format of the

restraints and constraints used in a least-squares refinement.

5.1.5 Performance

Since the program uses a compiled parser rather than a pure Python parser, it is
expected that parsing would be of sufficient speed to make handling of large CIF
files acceptable, particularly for the case of reading in files containing structure

factors. To test the performance of the parser and the procedures extracting
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File ext. No. files Build errors Parsing errors CPU time (s) Average (ms)

cif 136405 - 3 2409 18
cif 136405 1943 3 3549 26
hkl 13738 - 21 1845 134
hkl 13738 83 21 2121 154

Table 5.1: Performance of iotbx.cif when tested on the Crystallography Open
Database (COD) using a server with 4 times AMD 12-core Opteron™Processor
6174, 2.2GHz, running Fedora 14.

File name File size Read time (ms) Write time (ms) Validation time (ms)

(kB) (a) (b) (3 () (3 (b)
fg3210.cif 25 26 34 20 25 41 47
fg3210CPsup2.hkl 84 43 51 117 150 48 58
4hhb.cif 705 733 891 1830 2309 2023 1955
cif_core_2.4.1.dic 469 125 191 78 102 254 298
mmecif_std_2.0.09.dic 1717 729 1057 356 461 1549 2018

Table 5.2: Execution times on (a) Intel®Core™?2 Duo E6750 PC, 2.66 GHz,
3GB RAM running Windows Vista, and (b) Server with 4 times AMD 12-core
Opteron™Processor 6174, 2.2GHz, running Fedora 14.

crystallographic information, a short script was run over all the CIF files in the
Crystallography Open Database (COD) [Grazulis et al., 2009].

A total of 136405 CIF files were parsed in 2409 seconds of CPU time, at an
average of 18 ms per file. 3 files were found to contain syntax errors; the remain-
ing all parsed successfully. The procedure was repeated constructing instances of
xray.structure; a total of 134462 instances were successfully constructed in 3549
seconds of CPU time, at an average of 26 ms per file. Table 5.1 also gives the results
obtained when the procedure was run over 13738 CIF format reflection files found
in the COD. The average parsing time for a reflection file was 134 ms, increasing to
154 ms when construction of a miller.array was attempted after parsing. Table 5.2
gives the performance of iotbx.cif tools on typical small molecule and protein data
files and two selected dictionary files.!

The results show good performance for both the parser and the procedures
extracting crystallographic information from the CIF model. With the increasing

availability of multi-core processors, it is clear that, in conjunction with the large

14hbb.cif was downloaded from the PDB website [Fermi et al., 1984]; fg3210.cif and
fg3210CPsup2.hkl were obtained from the ITUCr website [Yufit and Howard, 2011].
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number of tools provided by the cctbx, the iotbx.cif is suitable for performing
large-scale analyses of crystal structures, since the overhead of reading structures
from CIFs is minimal.

The performance of CIF output for files containing loops with a large number of
values can be improved significantly by using the advanced loop formatting option
described in §5.1.2.1, since each value will no longer be checked individually to

determine if quoting of the value is necessary.

5.1.6 Common CIF syntax errors and error recovery

As a result of comprehensive testing of the iotbx.cif parser a number of commonly
encountered syntax errors were identified, some of which are listed below. Among
the sources of CIF files used are the Crystallography Open Database (COD), a
selection of CIFs obtained from the websites of IUCr journals, the PDB chemical
components library, the REFMAC monomer library and an in-house database of

crystal structures.

1. Missing starting or closing quotes.
2. Missing starting and closing quotes for a string containing whitespace.

3. Some text prepended to CIF but not using CIF comment format (e.g. Check-
CIF output).

4. Mismatching semicolons.

5. More than one data value per tag.

6. Missing data value for a tag.

7. Incomplete CIF - e.g. missing data block heading

8. Intended data block heading contains whitespace or illegal character(s). This
can happen if a program uses the file name as the data block heading when
creating a CIF but does not remove/substitute whitespace or illegal charac-

ters.
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9. Non-ASCII characters - data values have been “copy and pasted” from other

sources, for example, this could be an author’s name or place name.
10. Unquoted string with ’[" as the first character.

11. Wrong number of values for loop.

Item 10 was the syntax error most commonly observed in the publicly available
databases (i.e. excluding the in-house database). The CIF grammar explicitly
forbids the characters ‘[" and ‘]" from being the first character of an unquoted

string’:

Matching square bracket characters, ’[” and ’]’, are reserved for possi-
ble future introduction as delimiters of multi-line data values. At this
revision of the CIF specification a data value may not begin with an
unquoted left square bracket character ’[’. (While not strictly neces-
sary, the right square bracket character ’|” is restricted in the same way

in recognition of its reserved use as a closing delimiter.)

It appears that the syntax checking routines used by the IUCr and the COD,
and also CheckCIF/PLATON do not currently consider this a syntax error, which
is in conflict with the formal definition of the CIF grammar.

The most commonly encountered syntax error for CIF format reflection files is
item 11, although this error can affect any CIF containing a loop. The number
of values in a loop must be an exact multiple of the number of tags in the loop
header and it is an error if this is not the case. This is probably the hardest error to
diagnose since it is not associated with a specific line number, only the particular
loop, which may be many thousands of lines long in the case of reflection data, and
hence the entire loop is rendered invalid. Frequently this error can be attributed to
manual editing of the file resulting in one or more value being accidentally deleted.
More worryingly, it is occasionally the result of a program outputting the data in
fixed-field format when one of the values takes up the full width of its fixed field,
losing a whitespace separator in the process. One such example can be found on
line 3708 of the file sk1436Isup2.hkl which can be obtained from the supplementary

materials accompanying Picard et al. [2001]:

Thttp://www.iucr.org/resources/cif /spec/versionl.1/cifsyntax#general
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line 3708: 0 0 42 40917268.00 43615084.002105532.75 o

This highlights one of the dangers of attempting to combine fixed-width formatting
with a whitespace separated file format such as the CIF.

Some of the syntax errors outlined above are to varying extents recoverable
parsing or lexing errors. Missing quotes potentially can be detected and miss-
ing tokens inserted when an end-of-line (EOL) character is encountered, since a
quoted string can not extend past an EOL character. For errors such as multiple
values for a tag that is not part of a loop, or a tag with no value given, the parser
may recommence parsing at the next valid token it finds, discarding those invalid
tokens. For invalid characters (items 9 and 10) the invalid characters can either
be accepted, or the offending tag-value pair can be discarded (the current imple-
mentation does the latter). The most dangerous error is that of a missing closing
semicolon for a semicolon text field, since the rest of the file up until the end-of-file
(EOF) character is consumed as part of the semicolon text field. Upon reaching
the EOF character an error is emitted by the lexer, but recovery from this error
is not possible.

On the one hand, it may be desirable for a program to be as accommodating
of errors as possible on input whilst ensuring that the output is as correct as
possible. On the other hand, there are clear advantages in having software that
raises clear errors when syntax errors are encountered, as this would discourage the
proliferation of incorrectly formed CIFs. Indeed, one would not expect a computer
code compiler to be accepting of errors, syntax or otherwise, in source code files.

The syntax errors observed generally fall into two categories: either as the re-
sult of manual editing of the CIF introducing some error; or some bug or oversight
on behalf of the crystallographic software used to create or manipulate the CIF in-
troduces a syntax error. The latter category of error can be fixed easily if software
authors are aware of any potential pitfalls in CIF output. It should be the aim of
every crystallographic program that creates CIFs to ensure that they are syntac-
tically correct. Errors that are introduced by manual editing can be eliminated if
there exists software that provides the means to manage the information output in
the CIF with minimal effort. The following section describes the steps that have
been made to address both of these issues within Olex2. If further editing of the
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CIF is required, it would be preferable to use a dedicated tool such as enCIFer
[Allen et al., 2004] or publCIF [Westrip, 2010] instead of manual editing of the file
since these provide comprehensive syntax and dictionary validation in addition to

many other tools to aid preparation of the final CIF.

5.1.7 Discussion

With the addition of the iotbx.cif module, the cctbx module now comprehensively
supports most major small molecule and macromolecular crystallographic file for-
mats (SHELX ins/res and hkl, CIF, PDB!, CCP4 maps?, X-PLOR format3, MTZ
format? and others).

The iotbx.cif module is now used heavily in the Olex2 software, as described
in the following section. Additionally, the tools provided by the iotbx.cif module
are currently being used extensively, in conjunction with the COD as a source
of structural models and associated reflection data, in the evaluation of different
approaches to minimization, including full-matrix, conjugate gradient, Ibfgs and

new algorithms under development [Grosse-Kunstleve, 2011].

5.2 CIF as a publication and archiving format

Publication of a small molecule crystal structure usually requires the submission
of the results of the structural determination in a CIF format file, with increas-
ingly the structure factors also required in CIF format. In addition, publication
within an [UCr journal usually requires the use of the IUCr full validation suite
(checkCIF/PLATON?), which performs a large number of consistency checks to
highlight any potential errors in the structure determination or reporting of the
results [Spek, 2009].

A published CIF will contain information from numerous sources at various

stages of the crystal structure determination process: data collection, data pro-

thttp:/ /www.wwpdb.org/documentation /format32/v3.2.html

http:/ /www.ccpd.ac.uk/html/maplib.html
3http://psbll.snv.jussieu.fr/doc-logiciels/msi/xplor981/formats.html
“http://www.ccpd.ac.uk /html/mtzformat.html
Shttp://journals.iucr.org/services/cif /checking /checkfull.html

86


http://www.wwpdb.org/documentation/format32/v3.2.html
http://www.ccp4.ac.uk/html/maplib.html
http://psb11.snv.jussieu.fr/doc-logiciels/msi/xplor981/formats.html
http://www.ccp4.ac.uk/html/mtzformat.html
http://journals.iucr.org/services/cif/checking/checkfull.html

cessing, structure solution, structure refinement and molecular graphics software,
to name but a few. Tools for aggregating information related to the structure at
hand were developed within the Olex2 software and are available as part of the
Report module. Relevant information is automatically extracted from experimen-
tal files present in the working directory (e.g. numerous Bruker-specific output
files, Agilent *.cif_od, Rigaku CrystalClear.cif). Further information can be en-
tered through the GUI where there are sections containing fields relevant to the
diffraction, crystal and publication sections of the CIF. Details entered during
the report stage about authors, journals and diffractometers are stored locally, to
avoid having to input the same data repeatedly for different structures (as most
people tend to collaborate with the same people regularly, and only have access to
a limited range of diffractometers).

A complete list of data items extracted and managed by Olex2 can be viewed in
CIF format using an internal text editor, where items can be edited or removed, or
new CIF items added, with Olex2 storing the changes, before merging with the CIF
file generated by the refinement program. Both the information harvested from
the experimental files and that entered manually by the user are stored separately
to the CIF from the refinement, meaning that if it later becomes necessary to
re-refine or even re-solve a particular structure, all the information can still be
merged with the final CIF.

After refinement using smtbx-refine within Olex2, a CIF is created using the
tools described in §5.1 containing structural information as detailed in §5.1.4 and,
also details of the intensities recorded and details regarding the refinement of
the structural parameters. A CIF format reflection file can also be output after
refinement if required.

If the solvent masking procedure (see §4) was used in the refinement, details
of the procedure are also included into the final CIF.

In summary, we aim to ensure a CIF file output by Olex2 is as complete
and correct as possible and ready for publication and/or archiving with minimal
effort. The iotbx.cif plays a central role in this, both in the tools it provides for
exporting crystallographic information from the cctbx, and in the role it plays in

the management of CIF items within Olex2.
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Chapter 6

Concluding Remarks

Described within this thesis are numerous contributions that have been made in
various areas of crystallographic computing as part of the EPSRC-funded project,
Age Concern: Crystallographic Software for the Future. Tools have been imple-
mented within the smtbx (small molecule toolbox), and made available to crystal-
lographic users through the Olex2 software [Dolomanov et al., 2009a).

As part of the new full matrix least squares refinement program being developed
within smtbx/Olex2 under the project, a framework was implemented enabling
the inclusion of observations of restraints in the refinement. Pre-existing cctbx
restraints were adapted to conform with the new framework, and new restraints on
geometry and anisotropic displacement parameters were added. The geometrical
restraints were extended to allow for symmetry equivalent atoms. Support was
added in the new iotbx.cif module for inclusion of the restraints in CIF format
according to the recently created CIF restraints dictionary.

Calculations of errors on derived parameters such as bond lengths and angles
is an essential part of the preparation of a small molecule crystal structure for
publication. In conjunction with the iotbx.cif module, tables of bond lengths
and angles and their associated errors are now included in the CIF output after
refinement with smtbx-refine in Olex2.

Refinement of (pseudo-)merohedrally twinned structures was implemented, which
also enables the refinement of the Flack x parameter as part of the determination
of absolute structure.

In §3.1 a brief outline was given of the evolution of methods for the determi-
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nation of absolute structure through the use of anomalous scattering. The prob-
abilistic approach to absolute structure determination developed by Hooft et al.
[2008] was implemented, both using the Gaussian distribution and Student’s ¢-
distribution to model the experimental errors. It was shown that it is preferable
to use the Student’s t-distribution as the error model, rather than an arbitrary
outlier cutoff which can bias the results of the procedure.

134 non-centrosymmetric structures were analysed in order to compare the
results obtained using the new probabilistic procedures with those obtained from
the refinement of the Flack = parameter [Flack, 1983]. It was shown that the
Hooft y parameter usually gives comparable values to the Flack x parameter, but
frequently has a lower standard uncertainty, which may increase the confidence
with which a conclusion on the absolute structure can be made.

The determination of absolute structure by both methods is now automatically
carried out after refinement of non-centrosymmetric structures in Olex2. Also
discussed were the new graphs for analysis of reflection statistics that have been
implemented and made available through Olex2.

The procedure of van der Sluis and Spek [1990], intended for improved re-
finements of crystal structures affected by severely disordered solvent, was im-
plemented in the smtbx. A fast void search routine is used which can lead to
significant speed improvements for large, high symmetry structures. A modifica-
tion to the procedure was proposed and implemented, which had demonstrable
improvements on the results obtained when one or more low angle reflections were
missing. Several test cases were used to verify that the procedure gave results
comparable with those obtained with a standard atomic solvent model, and three
applications of the procedure showed the significant improvements that were ob-
tained in the refinement of the ordered part of the structure for cases where severe
disorder meant that an atomic solvent model was not possible.

Finally, a new library was added to the cctbx to provide an interface between
the cctbx and the Crystallographic Information Framework (CIF) file format. A
fast parser was created from the formal definition of the CIF grammar using the
ANTLR parser generator. Interconversion between cctbx crystallographic objects
and the CIF format was added, and also validation of CIFs against CIF data

dictionaries. A discussion of the commonly encountered syntax errors gave several
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examples and pointed out potential reasons why errors may appear in published
CIF files. The iotbx.cif is now relied upon heavily by the Olex2 software, and is
actively being used to aid the development of new minimisation algorithms.

As a whole, the “Age Concern” project has provided a solid foundation for
future developments in small molecule crystallographic computing. In the smtbx
we have developed a modern and extensible framework for the solution and refine-
ment of small molecule crystal structures that provides much of the functionality
of commonly-used refinement programs [Betteridge et al., 2003; Sheldrick, 2008].
We have implemented some of the latest ideas and algorithms in the literature,
including the charge flipping algorithm for structure solution [Oszldnyi and Siito,
2008], and probabilistic approach to absolute structure determination of Hooft
et al. [2008, 2010]. We have also added further tools in the cctbx which we hope
will prove useful to the wider crystallographic software developer community. The
code is open source and hosted on SourceForge!, which we hope will encourage
contributions from other developers in the future.

In Olex2 we have provided a reference application that allows new developments
to be made available rapidly to a wide audience. In combination with the structure
solution and refinement tools provided by the smtbx we have a program that
can take a crystal structure determination from structure solution and refinement
through to publication of the results.

Whilst a considerable amount has been achieved by the project, there is a much
greater area of crystallographic computing that has thus far been unexplored by
the project. Potential areas for future work range from small projects, which
could include adding support for the quotient restraints suggested by Parsons
and Flack [2004] for improved absolute structure determination or support for
refinement against multiple datasets, to much larger projects, such as the addition
of aspherical form factors both for use with a library of multipole parameters
[Coppens and Volkov, 2004; Dittrich et al., 2006a] or charge density refinement
[Hansen and Coppens, 1978|.

Thttp://cctbx.sourceforge.net/

90


http://cctbx.sourceforge.net/

Appendix A

Absolute Structure Results

91



7 “abpd JTIU U0 SINULIUO)) ;

¥666°0 €.8°0 9170 8¢0°0 9660 870°0 8¢¢E 0 L68T1°0 ¥9¢AIS90
9666°0 ¥4L°0 ¥4¢°0 1€0°0 G1.°0 170°0 L2870 gcec0- £€9¢AI1590
€666°0 €00°T 0 0 T 0 LLT0°0 €0€T0 EVEAIS90
¢666°0 66L°0 L9€°0 LEE0 96¢°0 €90 6916°0 ¥609°0 TPcAIs90
€€66°0 9¢6°0 0 0 ! 0 01200 VI8T0 0€¢AIS90
L6660 10T 0 0 1 0 €€00°0 6100°0 LGCAIS90
9.66°0 €el'T 0 0 ! 0 8ETT 0 80¥0°0- CGCAIS90
86660 8860 0 0 T 0 1800°0 €v€0°0- 02cAIS90
86660 ¥76°0 creo ¢10°0 970 9¢0°0 06¥7¢0 qnall 16TAIS90
1L66°0 ¢e80 0¢0-HCO'T | L80-HC6V | T 280-He6'V | ¥8¥0°0 ¢veno GR8TAIS90
6866°0 ¢180 0 0 1 0 1¢10°0 gcr0'0- V8TAIS90
¢666°0 TLL°0 0 0 ! 0 99€0°0 0890°0- 6LTAIS90
¢666°0 ce6'0 0 0 T 0 9¢10°0 96700~ 8LTAIS90
18660 c89'1 T 0 0 0 G960°0 G9¢y°0 GGTAIS90
86660 €101 0 0 1 0 9670°0 1¥2¢0°0 TGTAIS90
¢866°0 180°T 0 0 1 0 €6€0°0 €800°0 8V TAIS90
6€86°0 ¢80 0 0 1 0 16600 G¢€co'0- VETAIS0
6€86°0 ¢80T S00°0 0 G660 0 0¥61°0 LIGT°0- GG0AIS90
€666°0 ¢a0'l 0 0 T 0 G8T0°0 Ga10°'0 ¢r0AIS90
9666°0 8¢0'T 89T-H6V'G | O ! 0 18T0°0 €€00°0- Ggoar9(
66660 9960 TTT-dv€¢ | 0 ! 0 €¢c00 1¥00°0- ¢E9AR9(0
86660 086°0 L6T-HVES | O 1 0 6GT0°0 ¢cco0 612490
¥666°0 28670 90€°0 690°0 ¢c9°0 10 16950 €¢I 0- 8124890
9666°0 JAYAN! 0 0 T 0 6710°0 ¥4v0°0- LT2489()
86660 1T0°T L6T°0 Gco'0 8LL°0 1€0°0 €V65°0 66T1.L°0- 9124890
86660 L66°0 0 0 1 0 9€¢0°0 I810°0 €194.9(0
9666°0 92,80 0 0 1 0 91100 37100 20°4%9()
26660 69L°0 0 0 ! 0 V€TI0 0 0800°0- 9024890
| "peop 10p [ odorg [ (wmp)eq | (aspf)ed | (onap)ed | (esp[)ea | (fi)o | fi ooy | amyonng

‘uoryerpel roddoo Jo osn oY) sejesIpul
YSLIDISe UY  "SOIISIPRIS URISSNRL) SUIST SOIN)ONIIS DLIJOUINIASOIJUD-UOU F¢T I0J sisA[eur Ired 100Al1g 1y o[qR],

92



9bd JToU U0 SINULUO,)

66660 9¢6°0 0 0 T 0 9€¢0°0 910°0 0LTAISL0
16660 06470 0 0 T 0 €0T0°0 1200°0- LI9TAISLO
0€66°0 e€rel T 0 0 0 0¥¢0°0 1¢€7°0 T9TAISLO
6,660 €180 0 0 1 0 €600°0 9¢€0°0 LGTAISLO
66660 G€e6'0 2070 LLY7°0 9110 7080 LLLYO 9¢¢8°0 GYTAISLO
86660 680 0 0 T 0 6.00°0 GT10°0- 6CTAISL0
¢666°0 ¥16°0 0 0 T 0 €TT0°0 8€¥0°0- 00TAISL0
G8¥6°0 G90°T €050 60°0 90¥°0 ¢81°0 665¢°0 €50¢°0 ¥60A1SL0
06660 SOT'T 0 0 ! 0 G8%0°0 6€¢0°0 06041820
86660 0€0°T 0 0 T 0 7900°0 18¢0°0- 6,0418L0
96660 G680 760°0 100°0 G06°0 100°0 6¢€€°0 814¢ 0" L20A18L0
86660 6€8°0 0 0 T 0 ¢v00°0 8¢00°0- €L0418L0
86660 7960 €420 6100 £0L°0 L20°0 6¥8¢°0 1¢€0°0- L90A15L0
G966°0 L60°T 10T°0 0 668°0 0 GITIT°0 95610 ¢904I18L0
748670 7941 0 0 1 0 €0¢0°0 65000 €V0AISL0
¢866°0 6.8°0 0 0 T 0 G600°0 ¢Lc00- cv0AISL0
91¥6°0 0Tc'e 0 0 T 0 1€00°0 €EYT0 07041820
G866°0 1¢L°0 GEE0 9120 ¢Sv°0 €260 0GeT'T 8€90°T- 6£0415L0
96660 G180 0 0 T 0 1600°0 ¥1€0°0- GT0AISL0
66660 €8L°0 0 0 1 0 1,00°0 1600°0- L8EAISY0
09660 ¢86°0 0 0 T 0 7600°0 ¥0c0°0- 08€A1890
96660 1160 T 0 0 e/u €500°0 ¢84¥°0 LLEAIS90
81660 c6e'1 G000 0 G66°0 0 60810 1860°0- 0L€41890
66660 ¢lo'l T 0 0 v/u 0010°0 76250 79€AIS90
66660 G001 0 0 ! 0 9.¢0°0 680070~ 6561890
96660 1201 0 0 T 0 €7€0°0 I91°0 6CEAIS90
46660 0101 €650 GET'0 GL20 vce0 VI€E0 061%°0 GceAIs90
¥¥66°0 690°T €8¢-Hee'e | 0 T 0 TT10°0 8680°0 % 1CEAISO0
8€66°0 16€°T 0 0 T 0 €TT0°0 6¢€0°0 x0CEAIS90
66660 €10l 0 0 ! 0 8610°0 60€0°0- 06241890
9866°0 G86°0 0 0 1 0 64¢0°0 66¢0°0- ¥LEAIS90
(p.1u00) (pyu0d) | (puod) | (pu0d) | (pguo0d) | (pjguod) | (pguod) | (pgu0d) |  (pjuoo)
‘goo) 1100 | adolg (uanp)eg | (espf)eqd | (enup)ed | (espwf)ed | (A)o fi 9300 | 2InjoNIG

93



9bd JToU U0 SINULUO,)

€866°0 €9C'1 0 0 T 0 ¢4c0'0 €910°0 6041880
9466°0 L1CT 0 0 T 0 6¥10°0 ¥sv0°0- TGOAISR0
66660 €980 0 0 T 0 1.00°0 6¢10°0- 87041880
86660 ¥06°0 0 0 1 0 6€10°0 8GG0°0- €¢041580
96660 0680 0 0 T 0 2800°0 8T10°0- €TGAISL0
66660 €¢6°0 0 0 T 0 9.00°0 L0¥0°0 067AISL0
66660 7€9°0 0 0 T 0 ¥¥00°0 Gce0'0 68741540
86660 169°0 0 0 T 0 ¢G00°0 €990°0 V87AISLO
66660 €880 0 0 ! 0 GL10°0 Sy10°0- 9971820
7666°0 8290 0 0 T 0 9600°0 8¢¢0°0 09721820
46660 8LL°0 9%0°0 0 75670 0 €98¢°0 L9¥¢°0- LGYAISLO
66660 108°0 0 0 T 0 G900°0 L1070 0EVAISL0
6V.L6°0 ¥6¢°¢C 0 0 T 0 v€10°0 18¢0°0 GCyAISL0
1686°0 ¢98°0 8€0°0 0 ¢96°0 0 ¢91¢0 724070~ TOPAISLO
1666°0 8680 6700 0 166°0 0 16€C°0 VLL0°0- L8EAISLO
96660 116°0 9.¢°0 Gc00 669°0 7€0°0 68070 1090°0- 6L€AI8L0
96660 7€6°0 T 0 0 T €0€0°0 009<°0 9L€AI18L0
66660 6¢8°0 0 0 T 0 9%00°0 8L¥0°0 €964I18L0
¥866°0 ¢€8°0 18¢-HGLG | O T 0 LET0°0 ¢800°0 9PEAISLO
66660 9601 1 0 0 e/u 0¥00°0 91970 GyEAISLO
86660 9¢6°0 0 0 T 0 7€¢0°0 1160°0 TEEAISLO
7916°0 LL0°T 1€€°0 99¢°0 €070 86¢°0 Ly9e'e 800¢ - CTEAISLO
46660 088°0 T 0 LS8T-HLV'C | 0 ¢900°0 6,20 0TEAISLO
06660 680°T G1c 0 170°0 €V.L0 €500 1¢8L°0 089¢°1- 66¢AISL0
66660 6€6°0 0 0 ! 0 9.¢0°0 €v81°0 G6¢AISL0
69660 6.8°0 10T°0 100°0 1680 100°0 G¥ce0 060¢°0- 88¢AISL0
€666°0 €96°0 T 0 0 v /u 2900°0 96¢y°0 GLGAISLO
G866°0 €LT’1 0 0 T 0 ¢Lc0°0 L€10°0- 8GCAISL0
16660 968°0 0 0 T 0 0€c0°0 08L0°0 YyeAIsLO
86660 €96°0 0 0 ! 0 8%00°0 6600~ G0CAISL0
€666°0 0.8°0 ¢0€°0 90T°0 G650 ¢ST°0 V180 11%9°0- GLTIAISLO
(p.1u00) (pyu0d) | (puod) | (pu0d) | (pguo0d) | (pjguod) | (pguod) | (pgu0d) |  (pjuoo)
‘goo) 1100 | adolg (uanp)eg | (espf)eqd | (enup)ed | (espwf)ed | (A)o fi 9300 | 2InjoNIG

94



9bd JToU U0 SINULUO,)

66660 1160 T 0 0 0 v.10°0 €8L¢°0 09121860
66660 av6°0 6¥¢0 9670 G100 86°0 ¢6.€°0 LT90°T 0V 121860
86660 G9.°0 0 0 T 0 9%00°0 91¢0°0 LETAISG0
L6660 €06°0 1 0 0 0 ¢S10°0 161€°0 6¢1AIS60
87660 19270 G6¢€°0 60170 9670 8T°0 04870 GEYT0 €L041560
€666°0 7180 9610 800°0 1680 600°0 Gvero 678¢°0- TLOAIS60
66660 G06°0 0 0 T 0 ¢Lc0°0 1960°0 45041860
66660 8€8°0 0 0 T 0 LET0°0 6750°0 82041560
¢666°0 G680 0 0 ! 0 8TT10°0 9€10°0- 9¢041560
1L66°0 VLT 0 0 T 0 8800°0 ¢9€0°0- 0L¥A1880
67660 jignt 20070 0 €66°0 0 0TTe 0 9¢61°0- | x6EFAIS80
46660 096°0 0 0 T 0 6.00°0 ¢800°0- TEPAIS80
66660 7060 0 0 T 0 V11070 8L€0°0 9€€AI1S80
€666°0 G780 43N 88¢°0 8¢€°0 1€7°0 GL8G'G €¢61°8- €06A1880
86660 8880 0 0 1 0 0800°0 G¢c00 06¢A1S80
8L96°0 656°0 G66°0 0 G000 9€0°0 0v€T°0 cIyyo L8¢AIS80
66660 L16°0 T 0 0 e/u 78000 ¥8L7°0 V.¢AI1880
7666°0 9v6°0 87770 9110 LEV°0 60¢°0 09¢7°0 684¢°0 69241580
¢€66°0 ¢le'l 0 0 T 0 ¥¥10°0 0v10°0 T9¢AIS80
96660 668°0 1 0 0 1 8.¢0°0 Geceo GGCAIS80
16660 986°0 0 0 T 0 €200°0 G9€0°0- 1GCAIS80
1266°0 808°0 0 0 T 0 6€€0°0 6¢€0°0 8T¢AIS80
1886°0 640 0 0 T 0 8TT0°0 6V10°0 89TAIS80
18L6°0 960°T 86¢°0 Gar'o Ly40 1¢¢°0 €8LE°C GE19'9- GYTAIS80
06660 668°0 8760 vve o 80770 v.LE0 CLET'T V910" GETAISE0
€086°0 9€8°0 Gee o GLV°0 61°0 V1L 0 81901 LTeq'1 8CTAIS80
¢666°0 7680 0 0 T 0 2990°0 8T€0°0 70TAIS80
06660 ¥.L°0 0 0 T 0 9€00°0 ¢v00°0 16041580
1266°0 6V.L°0 19¢-d7S7 | 0 T 0 9900°0 6.61°0 96041580
L666°0 Geg80 0 0 ! 0 60T0°0 €1€0°0- 88041580
6666°0 L96°0 6C0-HY9'V | LTT-H8L'G | T LTT-H8L'G | L&¥0°0 ¢¢l10°0 L80AIS80
(p,qu02) (p,qu02) | (p 4u02) (p,qu02) (p,qu02) (p,qu02) (p,qu02) | (p,4u05) (p,qu02)
‘goo) 1100 | adolg (uanp)eg | (espf)eqd | (enup)ed | (espwf)ed | (A)o fi 9300 | 2InjoNIG

95



02%6°0 10T°T 0 0 T 0 €¢01°0 G8T0°0 98¢AIS60
¥666°0 G16°0 960°0 100°0 77670 100°0 6¢07°0 €899°0- 08€AIS60
7666°0 7080 0 0 T 0 2200°0 0€€0°0 9G€AIS60
16660 106°0 0 0 T 0 08000 ¢800°0 €TEAIS60
66660 676°0 ¢lE0 661°0 6¢¥°0 L1€°0 99120 Ly01°0 88¢AIS60
66660 0¢6°0 E€V0-H6C'S | LLT-H69L | 1 LLT-H69°L | 77€0°0 1610°0 LLCAIS60
9966°0 G06°0 0 0 ! 0 €6€0°0 Ly10°0- VScAIS60
¢L66°0 809°0 18€°0 88¢°0 GeE0 G9%°0 0¥LL°0 ¢S1v'o 8ECAIS60
16660 ¢s6°0 9v€0 G9¢°0 68¢°0 G0¥°0 080€°T 6VS1°0- TECAIS60
86660 ¢c6°0 0 0 T 0 160T°0 667070~ 0€¢AIS60
0000°T ¢16°0 0 0 T 0 0€T0°0 96¢0°0- GCeAIs60
86660 G780 6L¢-Hc6'9 | 0 ! 0 9€10°0 G€10°0 0TZAIS60
8666°0 9€8°0 0 0 1 0 75000 18€0°0- GITAIS60
(p.1u00) (pyu0d) | (puod) | (pu0d) | (pguo0d) | (pjguod) | (pguod) | (pgu0d) |  (pjuoo)
‘goo) 1100 | adolg (uanp)eg | (espf)eqd | (enup)ed | (espwf)ed | (A)o fi 9300 | 2InjoNIG

96



7 “abpd JTIU U0 SINULIUO)) ;

166670 ¢80 9°0¢ 16€°0 1100 26970 61070 e8¢0 €¢81°0 ¥9¢AIS90
86660 L8L°0 ¢'9¢ 611°0 €00°0 6.8°0 €00°0 20L€°0 010€°0- £9¢AI1590
0000°T S¥6°0 L'6T 0 0 T 0 08T0°0 CGET0 E€VcAIs90
66660 LvL0 0°¢T1 GLE0 VIvo 1120 €99°0 L6¢L°0 €6468°0 1PeAIs90
06660 0080 09 0 0 1 0 ¢020°0 €902°0 0€¢AIS90
86660 ¢86°0 ¢'9¢ 0 0 ! 0 ¥€00°0 1¢00°0 LCTCATIS90
6666°0 6660 701 0 0 T 0 ¢8¢10 2860°0- ¢GCAIS90
66660 696°0 997 0 0 T 0 0800°0 €7€0°0- 02¢AIs90
66660 ¢e6°0 8°GL ¢S50 900°0 L7°0 €10°0 GGee o 619¢°0 16TAIS90
86660 6¢L0 8L T1€0-H9V°¢ | CIT-HLGC | T CIT-H.LG°¢C | 61700 8100°0- G8TAIS90
6666°0 €620 '€l 0 0 ! 0 ¥010°0 90¥0°0- V8TAIS9Q
6666°0 0.0 0°G1 0 0 ! 0 68¢0°0 226070~ 6LTAIS90
66660 ¢L8°0 L'61 0 0 T 0 61T0°0 9¢70°0- 8LTAIS9(
66660 0€9'T Lcl ! 0 0 0 €060°0 GLCY'0 GGTAIS90
0000°T 086°0 0°6¢ 0 0 1 0 ¥050°0 Gcc00 TGTAIS90
66660 9.6°0 701 0 0 ! 0 cevoo 70100 8V TAIS9(
86660 7790 ev 0 0 L 0 1870°0 ¥600°0- VETAISOQ
66660 0€8°0 9y 600°0 0 166°0 0 S¥12°0 9¥81°0- GG0AIS90
0000°T 656°0 L'6T 0 0 T 0 68T0°0 Y7100 Cy0AIS90
66660 066°0 €¢e IGT-HOC'T | O 1 0 88T0°0 GG00°0- Ggoaeg(
66660 6G6°0 G041 6TT-HEC'L | O 1 0 91¢0°0 91000~ ¢E21e9(0
0000°T 0660 V'8¢ 00CHLG'T | O ! 0 9G610°0 ¢ac00 6124890
66660 0€6°0 L°61 ¥8¢°0 9600 99°0 8L0°0 17960 8L8¢°0- T2AR9(
96660 Gao't gL 0 0 T 0 1810°0 €€€0°0- L194%€9(0
66660 €86°0 V'8¢ 961°0 Gc0'0 6LL°0 1€0°0 ¢c09°0 81G6L°0- 9124%9(
66660 ¥2¢6°0 0°6¢ 0 0 1 0 28200 ¥610°0 £124%90
66660 7780 ¥'¥e 0 0 ! 0 €010°0 ¥710°0 20°4%9(0)
0000°T 040 V€T 0 0 ! 0 ¥010°0 8.00°0- 9024890
| "peop 110p [ edorg [ 4 | (wnpeq | (oswfled | Gnaneq | (Gspf)ed | (A)o | fi ooy | emyponng

‘uoryerpel roddoo Jo osn oY) sejesIpul
YSLIDYSR WY "SOIPSIIRYS 7 S JUOPN)S SUISN SOINJONIIS OLIPUUIASOIJUSI-UOU F¢] I0] sisATeur 1red 100Al1g :7°y 9[qR],

97



9bd JToU U0 SINULUO,)

6666°0 ¢c6°0 0°00¢ 0 0 T 0 2670°0 ¥910°0 0LTAISL0
1666°0 LyvL0 0°00¢ 0 0 T 0 2200°0 8¢00°0- L9TAISLO
9666°0 €eT'T 6°G ! 0 0 0 17€0°0 €V97°0 T9TAISLO
66660 0€L°0 ¥ 01 0 0 1 0 ¥.00°0 04200 LGTAISLO
0000°'T 12670 T°ETT G190 ¥8¥°0 10T°0 1280 99%7°0 61180 CVIAISLO
86660 G180 6'1¥ 0 0 T 0 ¢L00°0 80T0°0- 6CT1AISL0
66660 8680 791 0 0 T 0 60100 6¢¥0°0- 00TAISL0
1666°0 790 9°¢ 8LT°0 9000 9180 20070 €99¢°0 88GT°0- 7604150
0000°T Gc0'1 0°€T 0 0 1 0 8¥40°0 Gcroo 0604150
66660 0101 L0y 0 0 T 0 9900°0 6.¢0°0- 6041820
66660 €980 €'¢C¢ €50°0 0 Lv6°0 0 G96¢°0 ¥84¢ 0~ 22041820
66660 9180 7'8¢ 0 0 T 0 G€000 8¢00°0- €L0418L0
66660 6g6°0 G LL 9¢°0 G10°0 GcL 0 ¢00 GILE 0 L2€0°0- 2904180
96660 9660 0L 6€0°0 0 196°0 0 VLIT0 ¢191°0 G90AI8L0
16660 0ce'1 LS 0 0 T 0 G6¢0°0 1600°0 €V04I18L0
66660 V180 6°0T 0 0 T 0 6800°0 ¢ve00- cr0AISL0
7666°0 6vET q'c 0 0 T 0 6900°0 1€¢T°0 070418L0
8666°0 ¢99°0 01 ¥6¢°0 ¢ro 98¢0 LT°0 6960°T oviv'1- 6€0415L0
0000°T 182°0 ¢'1e 0 0 ! 0 220070 ¢ce0°0- GT0AISLO
66660 €6L°0 661 0 0 1 0 GG00°0 GG00°0- L8EAISY0
66660 8780 () 0 0 T 0 46000 99¢0°0- 08€A1590
66660 0¥6°0 v'ce T 0 0 v/u ¢500°0 LLG7°0 LLEAIS90
66660 6ST'T 01 6€0°0 0 196°0 0 00¥¢°0 10¢1°0- 0L€41890
L666°0 086°0 ¥'8¢ T 0 0 v/u ¢0T10°0 €6¢9°0 79641890
66660 986°0 g¢cs 0 0 ! 0 6.¢0°0 ¢600°0- 65621590
66660 686°0 L 0 0 T 0 LG€0°0 G9GT1°0 6¢EAIS90
66660 7560 L61 12670 611°0 1€°0 8.¢°0 18€€°0 G06¢€°0 GgeAIS90
G666°0 6¢6°0 6°G 681-HGS'C | 0 T 0 ¢ET00 G8L0°0 x [CEAISO0
66660 12T T LS 0LT-HeSV | 0 T 0 091070 06¢0°0 x0CEAIS90
0000°T 000°T 8°GL 0 0 ! 0 ¢0¢0°0 80€0°0- 06241590
G866°0 086°0 0°00¢ 0 0 1 0 6ge0°0 §¢c0°0- V.cAI890
(p,qu02) (p,qu02) | (p,au02) | (p,qu02) (p,qu02) (p,qu02) (p,qu02) (p,qu02) | (p,4u02) (p,qu02)
‘geo) ‘1100 | adolg i (uving)eg | (espf)ed | (enup)ed | (s f)zd | (A)o fi 1JooH | enjonig

98



9bd JToU U0 SINULUO,)

96660 GLT'T 80T 0 0 T 0 Gce00 6€T0°0 6041580
9666°0 Ge0'T1 'L 0 0 T 0 18T0°0 €€€0°0- 1GOAIS80
66660 0480 8°GL 0 0 ! 0 1900°0 6¢10°0- 87041580
66660 1880 €€y 0 0 1 0 9¢10°0 L860°0- €¢041580
0000°'T 8180 €'€C 0 0 T 0 7.00°0 6¢10°0- €19AI8L0
0000°T 906°0 0'vs 0 0 T 0 040070 00¥0°0 0674180
66660 1€9°0 0°00¢ 0 0 T 0 8¢00°0 Gce00 6874150
66660 8190 9°G¥y 0 0 T 0 9€00°0 8690°0 V8¥AISLO
66660 8.8°0 0°00¢ 0 0 1 0 GS10°0 ¥¥10°0- 9974180
86660 7790 L61 0 0 T 0 7900°0 20200 09¥A18L0
8666°0 0620 ¢'le 110°0 0 686°0 0 €8¢¢0 ¢LIT0- LGPAISLO
66660 16L°0 8°G. 0 0 T 0 ¢500°0 v.10°0 0EVAISL0
1666°0 0vL'T 9¢ 0 0 T 0 96¢0°0 L6G0°0 GCVAISLO
8€66°0 8€9°0 Ve 650 1¢0°0 68¢°0 6500 1¢LS0 L86¢°0 TOPAISLO
66660 9080 L61 00 0 86°0 0 €10¢°0 0490°0- L8EAISLO
66660 9980 L61 9¢°0 9100 GcL0 120°0 1vL€0 €LE0°0- 6LEAISL0
66660 668°0 €'¢C¢ T 0 0 T ¥8¢0°0 12690 9164180
6666°0 9180 8°G. 0 0 T 0 8€00°0 L.70°0 €9€AI18L0
L666°0 TLL0 8T 0 0 ! 0 GT10°0 99000 9PEAISLO
66660 L6670 6°0¢ 1 0 0 v/u ¢v00°0 €197°0 GyEAISLO
66660 806°0 LTy 0 0 T 0 L120°0 92500 TEEAISL0
91660 €990 q'c v€€0 66¢°0 19€°0 6¥7°0 1689°€ ¢L8C'C- CTEAISLO
66660 7€8°0 L61 T 0 TGT-HO6'T | O 65000 GLL20 0TEAISL0
66660 TT0°T 6°¢l 8¢0 60°0 €9°0 ¥e1'0 ¢698°0 GCL6°0- 66¢A1SL0
66660 0880 L61 0 0 ! 0 642070 G981°0 G6¢AISL0
L666°0 9.0 01 6¢0°0 0 12670 0 ¢c6c 0 ¥0G€°0- 88¢AISL0
86660 6060 L61 ! 0 0 v/u 790070 05¢y'0 GLGAISLO
6666°0 E€8T'T g0t 0 0 T 0 16€0°0 Gc00°0- 8GCAISL0
8666°0 0480 ¥'8¢ 0 0 T 0 60c0°0 0400 VPeaIsL0
66660 ¥¥6°0 ¥'6¢ 0 0 ! 0 9¥00°0 1¢€0°0- G0CAISLO
6666°0 9180 L61 6€¢°0 6¥0°0 €1.°0 ¥90°0 GGlL 0 ¥648°0- GLTAISLO
(p.1u0o) (puod) | (pyuod) | (puod) | (puod) | (puod) | (pyuod) | (pyuod) | (puod) | (puod)
‘geo) ‘1100 | adolg i (uving)eg | (espf)ed | (enup)ed | (s f)zd | (A)o fi 1JooH | enjonig

99



9bd JToU U0 SINULUO,)

6666°0 796°0 8°G. T 0 0 0 047070 ¢6L€°0 09121560
66660 1€6°0 0°00¢ 8¢¢'0 ¢9L°0 10°0 886°0 TLG€°0 GLSO'T 0711860
66660 6€L°0 0°8¢ 0 0 ! 0 G€000 €1¢0°0 LETAISG0
0000°T 6980 ¢9¢ 1 0 0 0 LET0°0 L0ce0 6¢1AIS60
7666°0 €990 6°G 8¢€0 G0°0 129°0 GL0°0 68770 £200°0- €L041560
66660 ¢c80 L61 ¥60°0 ¢00°0 706°0 ¢00°0 98L€°0 886¢°0- TLOAIS60
8666°0 106°0 0°00¢ 0 0 T 0 9¥¢0°0 €950°0 65021860
66660 7€8°0 0°00¢ 0 0 T 0 GT10°0 8750°0 82041560
66660 8680 L61 0 0 1 0 G0T10°0 9¢10°0- 92041560
€666°0 2991 ¥01 0 0 T 0 €910°0 ¢EE00- 0L¥A1880
96660 666°0 8°G ¥50°0 0 9¥6°0 0 ¢6€C 0 G9L0°0- | x6EFAIS80
66660 ¥¢6°0 v'1c 0 0 T 0 910070 §900°0- TEyAIS80
66660 168°0 8°G.L 0 0 T 0 ¥010°0 LL€0°0 9€€AIS80
96660 9180 ¥'1e 1€€°0 v.c0 G6¢°0 170 L896L°V 1698 L- €0€AI580
66660 7980 ¥'8¢ 0 0 1 0 1,00°0 8¢¢0°0 06241580
98660 6990 €€ T 0 0 9890 6611°0 0STS0 18¢AIS80
66660 ¢16°0 0°00€ T 0 0 e/u 2200°0 ¥8.7°0 V.cAI1880
6666°0 ¢68°0 L61 997°0 vIT'0 4l €120 9907°0 €¥8¢°0 69241580
G666°0 L0€°T 6°G 0 0 ! 0 0¢c0°0 00100 T9¢AIS80
66660 G980 L'C¢ 1 0 0 1 16¢0°0 L¢cS0 GGGAIS80
66660 166°0 9°L¢ 0 0 T 0 ¢L00°0 €8€0°0- 1ECAIS80
86660 ¥cl0 701 0 0 T 0 6L¢0°0 18¢0°0 8T¢AIS80
86660 G19°0 vy ¢8¢H96°6 | 0 T 0 €1710°0 9¥10°0 89TAIS80
06660 6v.°0 €¢ €ce0 9¢¢’0 167°0 €€¢0 6v¢c'e GT69'9- Gy TAIS80
L666°0 1780 (g 9aveo €1¢0 1wy o Gce 0 9¢10°T 00$¢ 0~ GETAISE0
¢666°0 6€9°0 9¢ 99¢°0 70 ¥¥eo 129°0 G¥86°0 89160 8CTAIS]0
66660 7€8°0 gyl 0 0 T 0 G650°0 89500 70TAIS80
0000°T ¢el’0 0°GT 0 0 T 0 1200°0 6¢00°0 26041580
06660 €690 6°TT 08¢-H9¢¢ | 0 T 0 1600°0 G661°0 96041580
66660 €280 G'€e 0 0 ! 0 ¥600°0 €0€0°0- 88041580
6666°0 €960 0°00¢ 1€0-H6¥'S | 7elI-HIC¢C | T VeI-HI¢'c | €170°0 0¢10°0 18041580
(p,qu02) (p,qu02) | (p,au02) | (p,qu02) (p,qu02) (p,qu02) (p,qu02) (p,qu02) | (p,4u02) (p,qu02)
‘geo) ‘1100 | adolg i (uving)eg | (espf)ed | (enup)ed | (s f)zd | (A)o fi 1JooH | enjonig

100



GG66°0 18970 ¥'e 0 0 ! 0 6611°0 ¢6€0°0- 986AIS60
L666°0 G880 ¢'0¢ 9¢0°0 0 V.60 0 669¢°0 68€L°0- 08€AIS60
66660 9620 L61 0 0 T 0 1900°0 Gv€0°0 9G€AIS60
1666°0 1680 0°00€ 0 0 T 0 080070 0800°0 €TEAIS60
66660 0¥6°0 €68 GLEO 88170 LEV°0 10€°0 86.9°0 00TT0 88CAIS60
66660 G16°0 €'40¢ 0S0-H8T'T | L0c-HICE | T L0c-dT1EEe | LTE00 06T0°0 LLEAIS60
86660 L8L°0 VL 0 0 ! 0 8¢€0°0 8¥10°0 VG¢AIS60
66660 6€4°0 01 Gsv°0 pray 6Lc0 G670 v6v 0 8V67°0 8ETAISE0
0000°T 21670 (X 4e 8€€°0 ¢c'0 44l €€¢°0 8IVe'T 1¢LS°0- TECAISE0
8666°0 21670 0°00¢ 0 0 T 0 200T°0 L670°0- 0€¢AIS60
0000°T 906°0 G 0sT1 0 0 T 0 611070 09¢0°0- GeeAIs60
86660 0€8°0 9°6¢ 0 0 ! 0 911070 1€10°0 0T¢AIS60
00001 608°0 ¥'8¢ 0 0 1 0 G¥00°0 18€0°0- GITAIS60
(p.1u0o) (puod) | (pyuod) | (puod) | (puod) | (puod) | (pyuod) | (pyuod) | (puod) | (puod)
‘geo) ‘1100 | adolg i (uving)eg | (espf)ed | (enup)ed | (s f)zd | (A)o fi 1JooH | enjonig

101



2bDd JToU U0 $INUUO))

9684°0 ¢LEE0 00T L8V1 1¢ 1¢ 1¢ d SN A 7TIH €TD 79¢AIS90
g¥69°0 ¢6vc’0- | 00T 9¥G1 I¢ 1¢ 1¢ d SN 4 9TH 1D | €9¢AIS90
¥9¢0°0 CLETO 96 1678 Td| ¢ Gd §°00 N 94 €1D €LH G¥8D | €¥¢AIs90
VIv6'¢ 60¢€°0- | 66 ¥0¢e I¢®od O 0€H 72D T7cAIs90
8¢0°0 G0c¢°0 96 679¢€ Tceud ¢d N °d ¢[D T€H G€D | 0€¢AIS90
¢900°0 GL00°0 00T 94T 1¢ 1¢ 16 d g 6TH 71D LGCAIS90
8¢0€°0 LTT°0- 0L 168¢ 21D ¢O T 6TA IV 6CH ¢ED CGCAIS90
¥710°0 ¢L€0°0- | 00T Sove I¢1¢1¢ d S Pd O €N VIO GCH 92D 0¢cAIS90
66650 €16°0 00T Lv0v 1¢1¢ 1¢c d d 0Td L96°8TH V1D 16TAIS90
G680°0 9€50°0- | 86 449\ 121D S 8H ¥ID | S8TAIS90
9710°0 ¢8€0°0- | 66 018¢€ ITcTd S Pd O €N ¢ID T€H S¢O P8TAIS90
T0S0°0 €L€0°0- | 00T €86¢ wd S Pd O €N ¢ID TEH SCO 6LTAIS90
¥910°0 Lg¥0°0- | 00T PAGSS T1CTd ¢S ¢Pd PN VIO S8VH ¢vD | 8LTAIS90
96110 L6€°0 16 i ¢®qd €d 8ID ¢IV 6¢H 82D | G4TAIS90
8G80°0 80200 00T 98€¢ Tceud IS €O ¥€H 0€D TGTAIS90
¢190°0 €600°0- | I8 0981 ITTcT d S ¢N 7¢H 12D 8V TAIS90
1€50°0 9€60°0- | 00T ¢L8S ITecTd S O €N T€H S¢D VETAIS0
8TTE0 G1€0°0- | 66 L29L T1CTd O €d LVH €€D | G5041590
67€0°0 ¢800°0 66 1€€€ T¢ Tec 1¢ d 0TID 0Td OTH ¥ID | ¢¥0AIS90
¥8¢0°0 200°0- 00T 1¥8¢ I¢ 1¢ Te d LL 7O N 6€H 12D Ggoar9(
€.20°0 7€00°0- | 00T CL6E I¢Tc 1¢ d LL 7O ¢N 0SH 8¥D ¢E9AR9(0
20200 ¥0€0°0 L6 92¢€9 1¢ 1¢ 1¢ d LL 7O ¢N ¢ID 09H €9D 612490
8.00°T T800°0- | 86 LTI8T I¢1¢1¢ d ¢O N L¢H 91D 8T2AB9()
€.20°0 L100°0 19 VLSV T1¢cTd LL ¥O ¢N 99H 69D 1124890
TL86°0 €60€°0- | 66 S¥0¢ 1¢1¢ 1ec d ¢O N LZH 12D 9124890
98200 11200 00T Yv6¢ I¢ 1¢ T¢c d LL 7O ¢N 0SH ¢€D €124%90
96¢0°0 1€00°0 36 RS 1¢ 1¢ 1¢ d LL 7O ¢N ¢ID 8VH 62D 20°4%9()
¢0c0°0 ¢600°0 66 9007 I¢1¢1¢ d LL 7O ¢N 0SH ¢¥D 90°4€90
[ (z)o | xperg | (%) o8ereaoo ared 100altg | sired jpooalg oN | dnois eoedg | RIULIO] | 0InjonIlg

‘uoryerpel roddoo Jo osn oY) sejesIpul
MSLIO)Se WY  “SOIMIONIIS DLIJOWTASOIJUD-UOU FET 10 UOIJRULIOIUT SNOQUR[[QOST pue Iojowrered yoe[q €Y O[qR],

102



9bd JToU U0 SINULUO,)

79.0°0 €C10°0 66 9¢4¢ 1161d S O EN IE€H 9¢D | 0LTAISL0
7800°0 GT00°0- | 00T 7481 T¢ 1 1 d d DMV STH 8TD | L9TAISLO
L620°0 ¢€Cs0 00T 6v¢S Tgouwd SFIO PIN 23V 6LH 89D | T9TAISLO
€200°0 9€¢0°0 LL €69¢ 121D 1d ¢d ¢N ¢EH 0VD | LSTAISLO
981270 9189°0 98 €97¢ I1121d 7O N € 8¢H €2D | GPIAIsL0
9€70°0 65000~ | 96 197¢ ¢lcIvd ¢S ¢Pd ¢O 9N 91D 79H G¥D | 6CIAISLO
1610°0 €€0°0- 00T 7289 1161d ¢S ¢Pd €0 9N ¥ID C¢9H #¥D | 00TAISLO
6ELV'0 GTL0°0- | 00T L0V¢ Terud O ENCA TTH 8D | ¥604ISL0
780°0 9010°0 66 9€0¢ IT1c1d IS LO €N 6CH 61D | 0604ISL0
70100 87100~ | 6 L09¢ IT1e1d S Pd ¢O €N CID SGE€EH 9D | 6L0AI8L0
6gc9'0 92€T’0- | 00T 4z9! ¢ 1 12 d 7O N € 8TH 60 | LL0AISLO
¢v00°0 6200°0- | 00T 4 T¢ 1 1 d Ad ¢d SIO STH 9O | €L0AISL0
6989°0 TL1T°0- | 00T 9971 T1¢ 1 1 d 7O N | 0¢H 01D | L90AI8L0
€T6T°0 999¢°0 €¢ 6.6 121D VIS GO 0SH ¥¢D | ¢90AISL0
Lvv0°0 6v€0°0 18 V8 IT1e1d ¢S ¢Pd ¢O 9N 8ID 99H 97D | €V0AISLO
7810°0 | Lg00'0- | 00T 078 121 12 d ¢S ¢Pd ¢'VO 9N LID V' LLH ¥SD | GP0AISLO
9.00°0 V4ET0 16 129¢ Td €0 N #89°01d ¢TH LD | 0¥0AISLO
€TL9°T 6€50°T- | 00T GvL T¢ 1 1 d O S8H TID | 6€0AISLO
9¢¢0°0 €6¢0°0- | 00T 1€28 1¢ 1¢ 1¢ d | ¢S ¢Pd ¢O 9N T'TTID 9°L9H 8°L¥D | ST0AISL0
V1100 €700°0- | 06 T190T IT1e1d S Pd O €N T6°CIO T€H §'GCD | L8EAISYO
6710°0 00~ 66 €LIE I1121d €O N o1 d VEH €D | 08EAIS90
7800°0 V970 00T LLLY 1¢1D 3d ¢d 7O ¢N SIO SVH GL'9€D | LLEAISYO
GTGG°0 | L6LT°O- | 96 9909 I°21d ¢O d €€H 16D | 0LEAIS90
1020°0 9L£9°0 00T 9¢LT T¢ 1 1 d 96'TO I ¢6'9H 86'GD | ¥9EAIS90
L£50°0 ¢vc00- | 00T 90€¢ T¢c Tc 1ec d S d 6cH ¢cD | 696AI590
¢e60°0 1660°0 00T €402 1¢Tc 12 d IS 8CH 61D | 6¢EAIS90
786°0 1€€0°0 00T 160T 121 12 d SO N TTH 01D | GceaIs90
G1v0'0 | LL80°0 c6 008T ¢ 11 d S 80 €N CIO 6¢H 06D | x16EAIS90
1€0°0 G610°0 6 ¢LIT T¢ 1 1 d S G680 €N ¢ID T€H 62D | +x08EAIS90
96¢0°0 89100~ | 78 4554 T¢c Tc 1¢c d S Pd O €N ¢ID T€H 92O | 06841890
€2L0°0 61¢0°0 00T LS. ¢lcivd ¢S ¢O 8TH 61D | ¥L¢AIS90
(p.uoo) | (pyuod) | (p,quoo) (p.u0o) (p.u0o) (p.yu0d) | (p.juoo)
(z)o z el | (%) o8e1on0o 1red j00altg | sired j00altg ‘oN | dnoid eoedg B[NULIO | 9IN}ONIIG

103



9bd JToU U0 SINULUO,)

7€90°0 8780°0 98 9611 leced S ¢O 9TH 1D | 6L04IS80
€9¢0°0 G8¢0°0- | 66 VLSV 1161d Yy ¢d ¢O ¢vH 19D | 19041880
1¢10°0 9610°0- | 00T 9L69 IT1e1d S Pd O €N PIID LEH 0FVD | 8V0AIS80
6e0'0 g870°0- | 00T 00¢¢ T¢c Tc 1ec d S L0 PN 23V FTH VID | €20A1S80
76100 ¢ce00- | 00T L11eT TCTI|€ESEPd €0 6N 8TIIO 6T78H L'TLD | €1GAISL0
LTT0°0 | L6€0°0 8L 6012 Tceod Pd ¢d ¢O 1D €L¢VH 79D | 067AISL0
2€00°0 10€0°0 96 V8.1 T¢ 1 1 d 4d ¢d ¢ID 9¢H T1D | 68PAISLO
L£00°0 STv0°0 96 689¢ Tutrd 4d ¢d ¢O 94 ¢ID ¢CH 91D | ¥8PAISLO
6¥70°0 70200~ | 00T 6€9¢ T¢c Tc 1ec d d VNIV 9VH L8D | 99PAISLO
71100 §q10°0 66 6L8T 121D LO EN I 9TH 1D | 097AISL0
€ETT0 89¥%°0- | 00T 078T ¢ 1 12 d CO N €4 O0TH 8TD | LG¥AISL0
€T10°0 98T0°0 88 6,9¢ leced SI1d¥cH ¢cd | 0€7AISL0
v0¥0°0 | L€90°0 LL 685¥ Td S ¢d ¥eH 9¢D | ¢echAIsL0
460¢°0 ¢509°0- | 4T 4%y Teceod SOCN VIH ¥ID | TOPAISLO
897€°0 GECT'0- | 66 126 I121d O PN A LTH 81D | L8€AISL0
979T'1 160€°0- | 6 e€vel IT1¢1Td O OTH 91D 6LEAISL0
7990°0 §2cs0 00T 98.¢ 121D €d IO TV 6CH CTD | 9LEAISLO
Gg00°0 8970°0 66 Vivy Teeod 4d ¢d €10 6CH 1D | €9EAISLO
19200 | 2900°0- | 00T evey IT1e1d S ¢Pd O €N ¢ID LEH 68D | 9VEAISLO
¢IT0’0 | L9970 68 4444} Teeud ¢S Pd ¥d ¢°d ¥1D 9SH 690D | SPEAISLO
L9€0°0 §7¢0°0 1L 1894 I1121d ¢S d O €10 CEH 0€D | TEEATSLO
8LLE'E GLVV'E- | €6 L¥81 1161d GO PN 9¢H 0D | <TIEAISL0
7900°0 VLLT0 L6 0€9¢ T¢ 1 1 d 4d ¢d SIO TE€H €1D | 0TEAISLO
692€°C €6T0°T- | 00T 0€¢c 121D ¢O PN 0€H ¢¢D | 66¢AISL0
€€90°0 v91°0 L6 90L& 121D €d SIO IV T€H €TD | S68AISL0
11,670 799¢°0- | 00T JARSS I1161d 7O ¢N OVH G20 | 88GAISLO
1810°0 6¢7°0 86 68¢T ¢2v 1 6d IN ¢N ¢E€H 91D | GLGAISLO
6€90°0 71070 €6 ¢61¢ 1161d IS GO N §¢H V1D | 84¢AISLO
1780°0 1€60°0 00T 8CST 121D CONIO g €cH 11D | ¥¥ealsL0
¢010°0 €€0°0- g6 9¢6¥ T¢c Tc 1¢c d S Pd O €N 71D LCH €20 | S0¢AISLO
7866°0 | LI80'T- | 68 VLLT 11c1d LO 9€H 9¢D | CTLIAISL0
(p.uoo) | (pyuod) | (p,quoo) (p.u0o) (p.u0o) (p.yu0d) | (p.juoo)
(z)o z el | (%) o8e1on0o 1red j00altg | sired j00altg ‘oN | dnoid eoedg B[NULIO | 9IN}ONIIG

104



9bd JToU U0 SINULUO,)

€870°0 899¢€°0 76 €192 ¢lc1vd d ¢N 71D TV 0ZH ¥¢D | 09TAIS60
7626°0 ¢607°0 96 969¢€ T¢ 1 1 d O €N GEH €D | 0¥IAIS60
8700°0 8¢10°0 96 GLET T¢ T 1¢c d M TO ¢N €D 6¢H ¢ID | LETAIS60
vL10°0 1,2€°0 86 €799 I1e1d ¢Ud 9d 7O ¥9H 8¢D | 6C1AIS60
906T'T T€87°0- | 00T G911 Tgeud OCN VA 8H 11D | €L0AIS60
6948°0 16€L°0- | 00T 0,62 1161d ¢O 9 6¢H 92D | 1L0AIS60
8090°0 79070 00T G98T T¢ 1 1 d d O 6TH LID | ¢S04IS60
910°0 8050°0 4y ¢10¢ Td 7S Ud €d IO 9SH 7O | 8c0AIS60
¢0c0°0 GLEOO- | 6 €799 T¢c Tc 1ec d ¢S YUY ¢d N 9VH G€O | 92041560
azd] 1,€0°0- | 66 L68¥ Tec®od gy d €0 9N ¢ID 9 9€H 6€D | 0LPAIS80
8€8G°0 §eetT’o 16 680T leeuad N 6TH 22D | «6EVAIS80
6010°0 €€00°0- | 66 Ly1g T¢ 1 1 d ¢d N °od LVH €50 | TGPAIS80
T€T0°0 Gve0°0 00T G691 T1¢ 1 1 d d ¢d S1d GTH 9D | 9€EAIS80
29509 68607~ | 00T €eL TWwrIrD ¢N 9TH #¢D | €0EAIS]0
9800°0 §600°0 00T 9T1¥ T¢c T 1e d 4d ¢d SID €9H 62D | 068AIS80
12€T°0 GveS 0 L6 ¢ele Tceod S O ENEIH €1D | L8¢AIS80
LT10°0 708%°0 96 0492 T 1 1 d uS ¢d 91D 9¢H 0TD | ¥.LEAIS80
G000°T 1760°0- | 96 9LET T¢ 1 1 d GO SN VIH ¢1D | 69821880
9.v0°0 7€00°0 g6 709€ Tereud S ¢O ¢d 9€H 8¢D | T9gAISR0
90500 | LVES0 66 1974 Tec®od 7S GO CIN 74 9 3V 6GH 99D | TTTAIS80
G810°0 7€50°0- | 00T 1802 16 Tc 12 d SdOENIIVEIH €TD | TTTAIS|0
970°0 940°0 86 €509 Td S O €N LCH €¢D | 8I¢AIS80
GET0'0 G100 00T V.81 Tc®eod N 1d LTH €¢D | 8914180
GEV9'C 8¢0¥'G- | 98 106 121D O ¢N 8H 6D | S¥PIAIS80
Ge0e'e ¢98¢°0 8L 060T I1e1d ¢N ¢TH V1D | <GETAISR0
L61T'T G880°0- | 96 66T I1161d 0TO PN 9TH ¢ID | 8cIAIs80
90T°0 120°0 78 €91¢ 1C11 IS7O N 62H 91D | ¥0TAIS80
8€00°0 92000~ | 96 09¢V1 1161d ¢O 9N ¢1I 7 G8'9€TH CCTD | L60AIS]0
€400°0 VL6T°0 g6 I80TT 1161d ¢O IN ¢ ¥7IH 661D | 96041580
6S10°0 | 4200~ 00T 697V€ T¢c Tc 1¢c d S Pd O €N 71D LCH €20 | 880AIS80
9¥50°0 GL¢0°0 00T ¥6.L¢ ¢lcar d ¢S ¢Pd €0 9N 21D GLH G°GLD | L80AISR0
(p.uoo) | (pyuod) | (p,quoo) (p.u0o) (p.u0o) (p.yu0d) | (p.juoo)
(z)o z el | (%) o8e1on0o 1red j00altg | sired j00altg ‘oN | dnoid eoedg B[NULIO | 9IN}ONIIG

105



1911°0 17€0°0- | 66 09T Tereud S €O N €4 9TH STID | 98€AIS60
8T¥8°0 9¢1°0- 00T 1281 T¢c Tc 1ec d ¢O d €¢H 91D | 08€AIS60
9800°0 6¢0°0 00T 7L0T 16 Tc 12 d ¢O 1d 6H 6D | 95€AIS60
L10°0 9100°0 86 8¢T¢ 2181~ d Y ¢d ¢O ScH 11D | €TE€AIS60
g4t 17200 00T 76¢€¢ Tereud €0 EN STH S1D | 88¢AIS60
gv0'0 6L10°0 66 0v1e T¢ 1 1 d GO ¢N €4 ¢ID STH 91D | LLTAIS60
G990°0 88€0°0- | 66 7991 I1e1d SCO SN €4 LH TID | PScAIs60
7ELG0 G0€0°0- | 00T L6TY IT1e1d N O0TdA 9TH TSD | 8ETAIS60
45aré 67480~ | 00T ¢ele Tgceud O EN TPH 8€D | T1€¢AIS60
vOorT°0 G6C1°0- | 96 961¢ Ic®d d EN 0€H 9€D | 0€¢AIS60
1610°0 8L¢0°0- | 00T G902 T¢ 1 1 d ¢Pd ¢d ¢O 91D 9SH 99D | GTcAIs60
6¢0°0 1,00°0 g6 [4unt T¢c Tc 1¢c d COTITD8H VD | 0TgAIS60
6800°0 S¥P0°0- | 96 G018 ced 9S Pd ¢d 94 LEH €VD | TYTIAISE0
(p.uoo) | (pyuod) | (p,quoo) (p.u0o) (p.u0o) (p.yu0d) | (p.juoo)
(z)o z el | (%) o8e1on0o 1red j00altg | sired j00altg ‘oN | dnoid eoedg B[NULIO | 9IN}ONIIG

106



7 “20Dd JTIU UO $INULIUO)) ;

86660 696°0 €€ 661T°0 0STS°0 §666°0 694°0 0'1¢ 6880°0 L2950 L8¢AIS80
6866°0 8LL°0 ¢'1¢ €8¢c0 ¢cL1T 0" 06660 2960 0°00€ L261°0 €L60°0 LGPAISL0
66660 6,80 70T ¢C6¢0 709€°0- 96660 G490 1°¢c 9,720 ¥481°0- 88CAISL(
66660 G160 ¢'0g ¢69€°0 68€L°0- || 66660 G89°0 0101 9¥1€0 189%°0- 08€AIS60
0000°T 7.8°0 L6T 98L€°0 886€°0- || 66660 899°0 8°GL 902€°0 6181°0- 12041560
86660 ¥4L0 ¢'9¢ 20L€°0 0TOE0- || 866670 1750 0°00€ 00T€0 0460°0- €9¢A1890
66660 11670 L'61 17L€°0 €L€0°0- ¢866°0 ¢L9°0 Vo1 80G¢€°0 92,200 6LEAISL0
L666°0 G68°0 €¢e G96¢°0 ¥84¢0- L6660 1790 0°00€ VeEVe o 168¢°0 LL0AISL0
86660 0.8°0 L61 GclL’0 76G8°0- || 9266°0 L8690 701 8.89°0 LETS0- GLIAISLO
96660 G90°'T 9'¢ €99€°0 88GT°0- || 96660 8LG°0 0°00¢ 9¢Lc0 €291°0- 760AISL0
86660 0T0°T L6T 18€E°0 §06€°0 8866°0 969°0 L0T 77620 €VLE0 GeeAIs90
86660 676°0 €68 86.9°0 00TT°0 8666°0 9170 0°00€ 0965°0 ¢199°0 88¢AIS60
¢666°0 891 Lcl €060°0 GLey0 €666°0 8T0°T 0°00€ ¥290°0 02Ly0 GGTAIS90
1666°0 976°0 L'61 990%°0 €¥8C0 96660 ¢€9°0 1°6€ 6GE€E0 96960 69¢AIS80
G666°0 G€6°0 T'€TT 99770 61180 96660 88G°0 0°00¢ 6¢S€0 8Tcv0 GVTIAISLO
7666°0 186°0 L6T 17950 8L8¢°0- || 96660 ¥84°0 0°00€ 6607°0 08%°0- 8T2ABI(
1666°0 1¢L°0 V01 6960°T OVIv'1- || 166670 86€°0 0°00€ 66180 9L18°0- 6€0AISL0
G666°0 ¢v6°0 0°00¢€ TLGE0 GLG0°T G666°0 €94°0 ey 229¢°0 86940 07 TAIS60
¢866°0 9€8°0 9€ G¥86°0 89.6°0 €866°0 €Ve0 0°00€ 88160 ¥,9¥°0- 8CTAISR(
76660 668°0 [ 9€T10°T 006¢°0- || ¥666°0 vsr0 8°GL ¢L69°0 088.°0 GETAISR0
€866°0 809°0 ¥0T1 ¥67°0 8¥67°0 ¥866°0 8120 0°00€ ¢94¢°0 08480 8ECAISE0
06660 TT0°T V'8¢ ¢c09°0 8TGL0- || 886670 68€°0 0'1¢ 1430 9¥80°0 9124890
9866°0 ¢S6°0 (xeé 8IV¢'T 1¢LS°0- || 9866°0 L8¢°0 0°00€ 6€65°0 LLLY 0" T€CAIS60
68660 960°T €€ 67¢C€ G169°9- 68660 18T°0 8°GL 6C8T'T L89¢°T- Gy TAIS0
06660 680°'T 6¢l 6980 ¢CL6°0- 16660 6¥¢°0 0°00¢€ 1vse0 G290 668A1SL0
G866°0 G780 ¥'1e LG6L°Y 1¢G8°L- || ¥866°0 L0T°0 1°L¢ GI6G°T 8I8€0 €0€AISZ0
€866°0 20T q'c L689°€ GL8C'C- || €866°0 2900 0°00€ 6070°T 60LT°T GIEAISL0
‘peop 1oy | edolg | a1 | (A)o | figooy [ "peop “110p | adorg | | (f)o | fi yjooy || emjonng
Jono oN POInO IOIINQ

‘uoryerpel roddoo Jo osn oY) sejesIpul
YSLIDISe UY  "SOIISIPR)S URISSNRL) SUIST SOINJONIIS DLIJOUINIASOIJUD-UOU F¢T I0J sisA[eur Ired 100Al1g :Fy o[qR],

107



9bd JToU U0 $INUUO))

L6660 9¢6°0 09 ¢0c0'0 | €902°0 9566°0 16L°0 02 1020°0 1902°0 0€¢AIS90
6666°0 668°0 L'ce 16200 | Lges0 9666°0 798°0 1've 16200 | 902s0 GGGAIS80)
66660 ¢€6°0 L'61 6110°0 | 9€70°0- || 1666°0 698°0 06T 61100 | ¥¢v0'0- 8LTAISH0
0000°T L1eT gL I810°0 | €€€0°0- || L666°0 1201 Gve 00¢0°0 | 6700°0- LT9ARY(
46660 L1e'T gL I1810°0 | €€€0°0- || 8966°0 ¥60'T L'L I810°0 | 80€0°0- 16041880
66660 ar80 e 1870°0 | #500°0- || €486°0 G790 &y 08700 | ¥010°0- VETAIS90
8666°0 6560 0°00€ L00T°0 | L670°0- || 8666°0 €16°0 0°00€ €10T°0 | ¥910°0- 0€¢AIS60
8666°0 €11 6°G 1ve0’0 | €797°0 6€66°0 €el'l €9 6€€0°0 | SV9T°0 191AISL0
96660 €901 80T Gge0’0 | 6€T0°0 386670 TLT'T 901 ¥¢e0'0 | 697070 6L0AI880
66660 9¢6°0 0°00¢ L6¥0°0 | ¥910°0 66660 8160 0°00€ 66700 | 0700 0LTAISLO
L666°0 clg'1 6°G 0¢c0°0 | 00100 0¥766°0 0621 ¢'9 61200 | L1100 19¢AIS80
6666°0 €10°T 0'6& 7050°0 | 9600 8666°0 €L6°0 7'8€ 00500 | 8€€00 19T1AI890
0000°T GOT'T 0'€l 8750°0 | 9¢10°0 3666°0 1¢0'1 06T €v50°0 | ¢L10°0 060AI8L0
66660 €LCT gor1 1¢€0°0 | 920070~ || 4866°0 0LT'T 80T 87€0°0 | ¢v00°0 8GGAISLO
76660 76¢°C 9'¢ 96600 | L6G0°0 098670 691 &y G6¢0°0 | 88900 GGVAISLO
86660 768°0 gV G690°0 | 8950°0 06660 9¢8°0 Lel 76500 | 89L0°0 POTAISZ0
8666°0 €CT'T 701 G8eT'0 | L8G0°0- || 986670 600°T 0Tt 791’0 | ¢0€0°0- GGEAIS90
6666°0 7v6°0 8'GL GGeCc’0 | 619270 6666°0 868°0 0°00€ 9822’0 | ¢81C0 T6TAIS90
0000°'T 808°0 701 6L20°0 18¢0°0 9666°0 vEL0 v'ee €9¢0°0 | €870°0 8TCAISE0
86660 10T°T Ve 661T°0 | ¢6€0°0- || €066°0 09L°0 &y GeIT'0 | LEVOO- 98EAIS60
76660 ¢98°0 Ve Tcle'0 | L8630 66660 6€L°0 0°00€ GeIT’0 | ¥690°0 10VAISLO
96660 L60°T 0L PLIT'0 | ¢I9T°0 08660 816°0 701 8EIT'0 | ¢L61°0 G90AISL0
6666°0 19L°0 6'G 687%°0 | LLOO'0- || €466°0 109°0 L'L GOTV'0 | 9687°0- €L0A1860
8666°0 Wit 8'G G6€C°0 | ©9L0°0- || ¢¥66°0 1880 LG 11620 | €780°0 x6EVAIS]0
66660 e68'1 701 00¥20 102T°0- || €666°0 L0T'T L6T 99620 | ¢9€T°0 0L€AI890
86660 €L8°0 9'0¢ GE8T’0 | €T8T°0 06660 6€L°0 6'¢cl 1L92°0 164170 79¢AI1890
0000°T ¢80T v Gric’o | 9¥8T°0- || 0666°0 8VL°0 6°¢1 VIST'0 | 4870°0- GG0AIS90
6666°0 661°0 0°GT LScL’0 | €998°0 €666°0 199°0 L61 6089°0 TLG0'T TreA1890
6666°0 796°0 G'LL GILED | LCEO'0- || 666670 7080 0°00€ Ggee’0 | 60920 L90AI8L0
66660 848°0 L'61 €T02°0 | 0290°0- || 8666°0 3690 7'8€ Gg8T'0 | 81920 L8EAISL0
(p.1u00) (pu0d) | (puod) | (pyuod) | (p.guoo) | (p.4u0d) (p.4u0d) | (pyu0d) | (puoo) | (p.yu0d) (p.1u02)
‘gooy 110 | adolg a (f)o fi yyooy || "pgeon 1100 | adolg i (f)o fi yoo || emyonig

Joino oN

Pomd LIINQ

108



0000°T ¢I80 ¢'1e LL00°0 | ¢g€0°0- || 96660 18L°0 0'¢e LL00°0 | 81€0°0- GT0AISLO
0000°T 9€8°0 ¥'8¢ G700°0 18€0°0- || 86660 608°0 7'8€ Gv00°0 18€0°0- GITAIS60
6666°0 9€0°'T 6°0¢ G000 | €197°0 G666°0 966°0 ¢'1e 00’0 | €197°0 GrEAISLO
66660 9¢6°0 LTy L1200 | 9¢50°0 86660 8060 0'er L1¢0°0 | 0¥S0°0 TE€EAISLO
0000°T ¢e0'1 L'61 68100 | ¥P10°0 €666°0 6960 L'61 68100 | €VI0°0 Gr0AIS90
66660 1LL°0 0°¢r1 68600 | LLG0°0- || T666°0 61L°0 971 68200 | GLS90°0- 6L1AIS90
6666°0 L56°0 0'6& L2200 | ¥610°0 8666°0 7¢6°0 0'6¢ L2200 | 8610°0 €194B90
6666°0 L1670 8'GL 0LT0°0 | ¢6L€°0 6666°0 €96°0 6°69 0L10°0 16L€°0 091AIS60
66660 1080 8'GL ¢800°0 | ¥ATO0 66660 G6L°0 8'€0T ¢G00°0 | 7LT0°0 0EPAISLO
66660 €88°0 0°00¢ GS10°0 | ¥¥PI0°0- | 0000°T 8L8°0 0°00€ ¢S10°0 1710°0- 99PAISLO
86660 968°0 7'8e G0c0'0 | 0LL0°0 L6660 698°0 v'se 60200 | 0LL0°0 VVeAISLO
0000°T €06°0 ¢'9¢ LET0°0 | L0T€0 L6660 898°0 G'9¢ LETO'0 | G0CE0 6CTAIS60
6666°0 €10°T 8'GL ¢0c0°'0 | 80€0'0- || 66660 866°0 8'GL ¢0c00 | €L20°0- 06241890
6666°0 6€6°0 L61 659¢0°0 | ¢981°0 4666°0 6.8°0 L61 659¢0°0 | 99810 G66AISL0
76660 8VL'T 701 €9T0°0 | ¢€€0'0- || 0466°0 ¥9¢'T 701 €910°0 | ¢1€0°0- 0L7AI880
1666°0 7991 LG 46200 1600°0 €486°0 L1e'T LG G6¢0°0 | 96000 €V0AISLO
0000°T €001 L'61 08100 | ¢cec’0 46660 6760 L'61 08100 | L€€C0 €VEAIS90
8666°0 G06°0 0°00€ 9¥c0’0 | €950°0 6666°0 006°0 0°00€ 9vc00 | 98500 GS0AIS60
8666°0 G06°0 7L 8¢€0°0 | 8V10°0 9966°0 L8L°0 Ve 8¢€0°0 1610°0 7SCAIS60
66660 G001 g'cs 6,600 | ¢600°0- || 66660 7860 ¢6¥ 8L¢0°0 | €L00°0- 64€AI890
48660 G860 0°00¢ GGe0'0 | $cc00- || 9866°0 8160 0°00€ 66200 | 9020°0- VLEAI890
66660 7€6°0 €'Cc 78¢0°0 | LLGSO 96660 868°0 9'1¢ 78200 | 6,890 9LEAISLO
6666°0 L20'T v'1c L8€0°0 | 999T°0 9666°0 986°0 6°¢o 99€0°0 | €09T°0 6CEAIS90
66660 8€8°0 0°00€ GT10°0 | 8¥7S0°0 6666°0 €80 0°00€ GIT10°0 | L¥S0°0 8¢0AIS60
86660 180°T 701 ¢eV0'0 | ¥0T0°0 7866°0 6660 70T 1€¥0°0 | STT0°0 8V TAIS90
(p.1u00) (pu0d) | (puod) | (pyuod) | (p.guoo) | (p.4u0d) (p.4u0d) | (pyu0d) | (puoo) | (p.yu0d) (p.1u02)
‘gooy 110 | adolg a (f)o fi yyooy || "pgeon 1100 | adolg i (f)o fi yoo || emyonig

Joino oN

Pomd LIINQ

109



Appendix B

CIF Grammar

A grammar for the CIF syntax in the format required for the ANTLR [Parr, 2007]
parser generator. Lexer rules (i.e. those that generate tokens during lexing) are
denoted with upper case rule names. Parser rules are denoted with lower case

names.

/%% CIF Version 1.1 Working specification grammar

Translated from the grammar defined at

http://www. iucr.org/resources/cif/spec/versionl .1/ cifsyntax#bnf
*/

grammar cif ;

options {

language=C;
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VES
* PARSER RULES
*/

s
k-

// The start rule

parse
cif (EOF | ’\u00la’ /«Ctrl-Zx/) ;

VES
*+ BASIC STRUCTURE OF A CIF
*/

L
-

cif
(COMMENTS)? (WHITESPACE)
( data_block ( WHITESPACEx data_block )x (WHITESPACE)x )?

loop_body
value ( WHITESPACE+ value)x ;

save_frame

: SAVEFRAME HEADING ( WHITESPACE+ data_-items )+ WHITESPACE+ SAVE

data_items

: TAG WHITESPACE+ value | loop_header WHITESPACEx loop_body

111



data_block
: DATA BLOCK HEADING ( WHITESPACE+ ( data-items

loop_header
: LOOP. ( WHITESPACE+ TAG )+ WHITESPACE

save_frame ) )x

VES
* TAGS AND VALUES

i
-

inapplicable

y 0,
. )

unknown

7?7 ;

value

) )

inapplicable | unknown —7 | char_string | numeric| text_field

integer

( ’+’ | =’ )? UNSIGNEDINTEGER ;

number

integer | FLOAT ;
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numeric

number | ( number ’(’

char_string

: CHARSTRING ;

text_field

: SEMI.COLON_TEXT_FIELD ;

(UNSIGNED_INTEGER) +

b

)7)

)

VES
* LEXER RULES

S
k-

* CHARACTER SETS

*

fragment EOL

(- An? | P\r7 | Ao’

fragment DOUBLE QUOTE

79 )
)

fragment SINGLE_.QUOTE
7\ ) ;

fragment ORDINARY_CHAR
7! 9 | 7%7 | 7&7 | 7( 9
?/7 | ( 70 ’.. 797 )

)
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fragment NON_BLANK_CHAR_
: ORDINARY_CHAR | DOUBLEQUOTE | SINGLE.QUOTE |

7#7 | 7$7 | ) ) | 7[7 | 7]) ‘ Y.
- )

fragment TEXT LEAD CHAR
: ORDINARY_.CHAR | DOUBLEQUOTE | SINGLE.QUOTE |

7#7 | 7$’ | 777 | 7[7 | ’]7 ‘ 9 ) | 7\t’

fragment ANY_PRINT_CHAR
. ORDINARY,CHAR | 7#7 | 7$’ | ?77 | 7[7 I 7]7 | ) ) ‘ 7\t7 | 7;7

TAG : ’_’ (NONBLANK CHAR.)+ ;

/%
+ RESERVED WORDS — define these after semicolon text field
. 5

fragment DATA_
( 7D7 | ’d? ) ( 7A’ | 7a7 ) ( ’T7 | Vt’ ) ( 7A’ | ?a7 ) 777 ;

fragment SAVE_
( 7S7 I ’S’ ) ( ’A’ | 7a,’ ) ( 3V7 | 7V’ ) ( 7E’ | ?e7 ) 77? ;
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( 7L’ I ’17 ) ( ’O? | 70’ ) ( ’O?
GLOBAL.

( 7G’ I ’g7 ) ( 7L’ | 717 ) ( ’O?

( 7A7 | ?a7 ) ( 7L7 | 717 ) 777
STOP_

( ’S) | ’S’ ) ( 7T7 | ’t? ) ( ’O’

* SPECIAL KEY WORDS

e
k-

DATA BLOCK_HEADING
: DATA. (NONBLANK CHAR)+

SAVE FRAME HEADING
. SAVE. (NONBLANK CHAR)+

SAVE
: SAVE_ ;

x NUMERICS

*

115



fragment DIGIT
70 7. . ’9 ) ;

fragment EXPONENT

CCle? [ 7E) [ (e | TEN)C ] =T ) )

fragment INTEGER
( '+ | =2 )7 (DIGIT)+ ;

FLOAT

. INTEGER EXPONENT | ( ( '+’ | '= )? ( (DIGIT)x*

| (DIGIT)+ .’ ) (EXPONENT)?

UNSIGNED_INTEGER
(DIGIT)+ ;

/%

*.> (DIGIT)+)

* CHARACTER STRINGS AND FIELDS

*-
*-

fragment UNQUOTED_STRING
(({ GETCHARPOSITIONINLINE() > 0 }?=> 7;’)
| ORDINARY_-CHAR ) (NONBLANK CHAR.)=*

// a single quoted string such as ’a dog’s life’

fragment SINGLE_.QUOTED_STRING
: SINGLE_QUOTE
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( ( (SINGLE.QUOTE NON_BLANK_CHAR)=>SINGLE.QUOTE )
| ANY_PRINT_.CHAR | DOUBLE.QUOTE )=
SINGLE.QUOTE

fragment DOUBLE.QUOTED.STRING
. DOUBLE.QUOTE
( ( (DOUBLEQUOTE NONBLANK CHAR )=>DOUBLE.QUOTE )
| ANY_PRINT.CHAR | SINGLE.QUOTE )
DOUBLE.QUOTE

CHAR STRING

: UNQUOTEDSTRING | SINGLE.QUOTED_STRING | DOUBLE.QUOTED-STRING;

SEMI_COLON_TEXT_FIELD
( { GETCHARPOSITIONINLINE () = 0 }?=> ;)

( ( ANY_PRINT_.CHAR | SINGLE.QUOTE | DOUBLE.QUOTE )+ EOL
( (TEXT.LEAD.CHAR

( ANY_PRINT.CHAR | SINGLE.QUOTE | DOUBLEQUOTE )x )? EOL)* )

v .0
9

Ve
x+ WHITE SPACE AND COMMENTS

.
k-

COMMENTS

( ( '#’ (ANYPRINT.CHAR | SINGLE.QUOTE | DOUBLEQUOTE )x
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( EOL | \{ LA(1) = EOF \}? ) )+ )
\{ $channel = HIDDEN; \}

// Redefine this as non—fragment so can be seen by the parser
NON_BLANK CHAR
: NON_BLANK_CHAR. ;

WHITESPACE
( \t’ | >’ | EOL | ’\u000C’ )+ ;
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Appendix C

Additional Information

Courses Attended

e 03/2008 BCA PCG Rietveld Refinement School, Durham University, UK.
e 08/2008 Kyoto Crystallographic Computing School, Japan.

e 03/2009 12th BCA /CCG Intensive Teaching School in X-Ray Structure Anal-
ysis, Durham University, UK.

Conferences Attended

04/2008 British Crystallographic Association Spring Meeting, University of
York, UK.

08/2008 XXI Congress and General Assembly of the International Union of
Crystallographers, Osaka, Japan.

04/2009 British Crystallographic Association Spring Meeting, Loughborough
University, UK.

08/2009 25th European Crystallographic Meeting, Istanbul, Turkey.
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11/2009 CCG Autumn Meeting, University of Newcastle-Upon-Tyne, UK.

04/2010 British Crystallographic Association Spring Meeting, University of
Warwick, UK.

07/2010 American Crystallographic Association Annual Meeting, Chicago,
IL, USA.

11/2010 CCG Autumn Meeting, The Royal Society of Edinburgh, UK.

Posters and Oral Presentations Outside Durham

University

e 04/2008 Oral Olex2: The New Molecular Tool. Young Crystallographers
session of the BCA Spring Meeting, York.

e 04/2008 Poster History and metadata in Olex2. BCA Spring Meeting, York.

e 08/2008 Poster Workflow and metadata in Olex2. IUCr Congress, Osaka,

Japan.

e 04/2009 Poster Harnessing the Power of the cctbx with Olex2. BCA Spring
Meeting, Loughborough.

e 08/2009 Poster Harnessing the Power of the cctbx with Olex2. 25th ECM,
Istanbul, Turkey.

e 07/2010 Oral A New Solvent Masking Procedure. ACA Annual Meeting,
Chicago, 1L, USA.

e 08/2010 Oral Small Molecule Software for the 21st Century. Lawrence
Berkeley National Laboratory, CA, USA.
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Publications

e O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H.
Puschmann. OLEX2: a complete structure solution, refinement and analysis
program. Journal of Applied Crystallography, 42(2):339-341, Apr 2009.

e L. J. Bourhis, R. J. Gildea, O. V. Dolomanov, J. A. K. Howard, and H.
Puschmann. Small molecule toolbox. Newsletter of the IUCr Commission
on Crystallographic Computing, 10:19-32, 2009.

e O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H.
Puschmann. Olex2. Newsletter of the IUCr Commission on Crystallographic
Computing, 10:46-49, 20009.
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Appendix D

Supplementary Electronic

Materials

D.1 cctbx source code

Source code bundles are provided. The latest source code bundles and instal-
lation instructions can be obtained from http://cci.lbl.gov/build/all.html, where

instructions for accessing the SVN repository can also be found.

Self-extracting cctbx sources for Unix

Under Unix, if Python 2.3 through 2.7 is pre-installed on the target platform,
the smaller cctbx_bundle.selfx can be used. However, in general it will be best
to use the cctbx_python 271 _bundle.selfx file because the installation script will
automatically install a recent Python before proceeding with the installation of
the cctbx modules.

The Unix bundles include a file cctbx_install script.csh. This script is known
to work with:

- Linux: any gcc > 3.2 - Mac OS 10.4 or higher with Apple’s compiler

Other Unix platforms will most likely require adjustments of the build scripts.
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Run the following command in any new, empty directory:

perl cctbx_bundle. selfx

This installs all cctbx modules from scratch. Python 2.3 or higher must be pre-
installed on the target machine. The first python on PATH is used. To install
with a different, specific python, add the full path to the command line, e.g.:

perl cctbx_bundle.selfx /usr/local/bin/python

Manually building from sources under Windows 2000 or

higher

The cctbx installation requires Visual C+4 8.0 (Visual Studio .NET 2005) or
higher.

To install Python under Windows it is best to use a binary installer from the
Python download page, http://www.python.org/download/. The default choices
presented by the installation wizard are usually fine.

Recent self-contained cctbx sources are available in the self-extracting file

cctbx_bundle.exe. To unpack this file in a new, empty directory enter

cctbx_bundle . exe

This creates a subdirectory cctbx_sources. The installation procedure should

be executed in another directory, e.g.

mkdir cctbx_build
cd cctbx_build

C:\python27\python.exe ..\ cctbx_sources\libtbx\configure.py smtbx iotbx

The last command initializes the cctbx_build directory and creates a file set-
paths.bat (among others). This file must be used to initialize a new shell or process

with the cctbx settings

setpaths . bat

To compile enter
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libtbx .scons

On a machine with multiple CPUs enter

libtbx .scons —j N

where N is the number of CPUs available.
Note that libtbx.scons is just a thin wrapper around SCons. The SCons docu-
mentation applies without modification.

To run some regression tests after the compilation is finished enter::

setpaths_all.bat
libtbx . python %SCITBX DIST%\run_tests.py
libtbx . python %CCTBXDIST%\run_tests.py ——Quick

The output should show many OK. A Python Traceback is an indicator for

problems.

D.2 Olex2 binaries

Current development builds of Olex2 are provided for Windows, Mac and Linux

platforms.

Windows installation

Run installer.exe alongside the olex2.zip or olex2-x64.zip file to perform offline
installation of the development version of Olex2. The default installation folder
is in in the C:\Program Files\ directory, but you can change that to another
location if you prefer or don’t have access to that area. The different versions will
install into sub-folders called Olex2-1.1, Olex2-1.1-beta etc. Different versions of

Olex2 can be installed next to each other and will operate entirely independently.
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Mac OS X installation

Unzip the file mac-intel-py26.zip into a new folder, and edit the start script to
point it to the right location of the olex2.app. Then use this start script to launch
Olex2.

Linux installation

The binaries provided should be compatible with most Linux distributions (but
may not be optimised for your machine architecture). We provide Suse 10.1 bina-
ries, which you can find in susel01x32-py26.zip and susel01x64-py26.zip. Unzip
the correct file for your machine and modify the start script inside olex2 folder, to
point to the right location of the executable.

Linux RPMs for several Fedora and Centos versions are kindly provided by
Dr. John Warren. Further information on installing these can be obtained at

http://www.olex2.org/content /folder-linux.
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