
Durham E-Theses

Sketching-based Skeleton Extraction

ZHENG, QINGZHENG

How to cite:

ZHENG, QINGZHENG (2011) Sketching-based Skeleton Extraction, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3249/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3249/
 http://etheses.dur.ac.uk/3249/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

1

Sketching-based Skeleton Extraction

Qingzheng Zheng

Submitted for the degree of Doctor of Philosophy

School of Engineering and Computing Science

Durham University

July 2011

2

Abstract

Articulated character animation can be performed by manually creating and rigging a skeleton

into an unfolded 3D mesh model. Such tasks are not trivial, as they require a substantial amount

of training and practice. Although methods have been proposed to help automatic extraction of

skeleton structure, they may not guarantee that the resulting skeleton can help to produce

animations according to user manipulation. We present a sketching-based skeleton extraction

method to create a user desired skeleton structure which is used in 3D model animation. This

method takes user sketching as an input, and based on the mesh segmentation result of a 3D mesh

model, generates a skeleton for articulated character animation.

In our system, we assume that a user will properly sketch bones by roughly following the

mesh model structure. The user is expected to sketch independently on different regions of a

mesh model for creating separate bones. For each sketched stroke, we project it into the mesh

model so that it becomes the medial axis of its corresponding mesh model region from the current

viewer perspective. We call this projected stroke a “sketched bone”. After pre-processing user

sketched bones, we cluster them into groups. This process is critical as user sketching can be done

from any orientation of a mesh model. To specify the topology feature for different mesh parts, a

user can sketch strokes from different orientations of a mesh model, as there may be duplicate

strokes from different orientations for the same mesh part. We need a clustering process to merge

similar sketched bones into one bone, which we call a “reference bone”. The clustering process is

based on three criteria: orientation, overlapping and locality.

Given the reference bones as the input, we adopt a mesh segmentation process to assist our

skeleton extraction method. To be specific, we apply the reference bones and the seed triangles to

segment the input mesh model into meaningful segments using a multiple-region growing

3

mechanism. The seed triangles, which are collected from the reference bones, are used as the

initial seeds in the mesh segmentation process. We have designed a new segmentation metric [1]

to form a better segmentation criterion. Then we compute the Level Set Diagrams (LSDs) on each

mesh part to extract bones and joints. To construct the final skeleton, we connect bones extracted

from all mesh parts together into a single structure.

There are three major steps involved: optimizing and smoothing bones, generating joints

and forming the skeleton structure. After constructing the skeleton model, we have proposed a

new method, which utilizes the Linear Blend Skinning (LBS) technique and the Laplacian mesh

deformation technique together to perform skeleton-driven animation. Traditional LBS

techniques may have self-intersection problem in regions around segmentation boundaries.

Laplacian mesh deformation can preserve the local surface details, which can eliminate the self-

intersection problem. In this case, we make use of LBS result as the positional constraint to

perform a Laplacian mesh deformation. By using the Laplacian mesh deformation method, we

maintain the surface details in segmentation boundary regions.

This thesis outlines a novel approach to construct a 3D skeleton model interactively, which

can also be used in 3D animation and 3D model matching area. The work is motivated by the

observation that either most of the existing automatic skeleton extraction methods lack well-

positioned joints specification or the manually generated methods require too much professional

training to create a good skeleton structure. We dedicate a novel approach to create 3D model

skeleton based on user sketching which specifies articulated skeleton with joints. The

experimental results show that our method can produce better skeletons in terms of joint positions

and topological structure.

4

Declaration

The work in this thesis is based on research carried out in the School of Engineering and

Computing Sciences, University of Durham, England, UK. No part of this thesis has been

submitted elsewhere for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text. My contribution is that we have designed a new skeleton

extraction system which makes use of user sketching as input to construct the articulated skeleton.

Selected Publications:

Gary K. L. Tam, Qingzheng Zheng, Mark Corbyn, Rynson W. H. Lau, "Motion Retrieval

Based on Energy Morphing," Ninth IEEE International Symposium on Multimedia (ISM

2007), pp. 210-220, 2007

Q.Z., Zheng, F.W.B., Li, R.W.H, Lau, “Sketching-Based Skeleton Extraction,” Ubi-media

Computing (U-Media), 2010 3rd IEEE International Conference, pp. 179-186, 2010.

Q.Z., Zheng, F.W.B., Li, “A Mobile Environment for Sketching-based Skeleton Extraction”,

Journal in World Wide Web :Internet and Web Information Systems, 2010.

Copyright© 2011 by Qingzheng Zheng

“The copyright of this thesis rests with the author. No quotations from it should be published

without the author’s prior written consent and information derived from it should be

acknowledged”.

5

Acknowledgements

With my deepest respect, I am especially indebted to my supervisor Dr. Frederick Li and Prof.

Rynson Lau. Especially thanks for Dr. Frederick Li due to his patient on my research guidance.

Their insightful remarks and guidance have expanded my view to my research study. This thesis

would not be completed without their patience and endless support. I would also like to thank the

two examiners Prof. JianJun Zhang and Dr. Ioannis Ivrissimtzis for their valuable and

constructive comments on my thesis.

I would thank Mr Christopher Watson for his help on my thesis proofreading. Besides, I

would thank Dr. Yonghong Xiang for his help in teaching me how to do the proofreading on my

thesis. I would thank Dr. Gary Kwok-Leung Tam for his friendship and guidance at the beginning

of my research study. Also thanks to Dr. Wei Lu, Dr. Yan Zhuang and Miss Fan Yang for their

friendship.

Most of all, my wholehearted thanks go to my father, my mother, my brother for their

unconditional love and support. And my deepest thanks go to my wife Ms Hongwei Li for her

love, encouragement and understanding.

6

Table of Contents

ABSTRACT .. 2

DECLARATION .. 4

TABLE OF CONTENTS .. 6

LIST OF FIGURES .. 11

1. INTRODUCTION ... 15

1.1. MOTIVATION ... 16

1.2. BASIC DEFINITION AND NOTATIONS ... 17

1.3. RESEARCH PROBLEMS... 18

1.4. PROPOSED SOLUTIONS... 19

1.5. THESIS ORGANIZATION ... 20

2. LITERATURE REVIEW .. 22

2.1. INTRODUCTION ... 22

2.2. RELATED WORK IN SKETCHING ANALYSIS ... 24

2.2.1. Interactive Sketching technique in 3D Modeling ... 25

2.2.2. Sketching in Model Editing and Deformation .. 26

2.3. SKELETON EXTRACTION FROM VOLUMETRIC MODELS ... 27

7

2.3.1. Thinning Process ... 28

2.3.2. Distance Transform Based Methods .. 32

2.3.3. Summary .. 34

2.4. SKELETON EXTRACTION FOR SURFACE-TYPE MODELS ... 35

2.4.1. Mesh Contraction .. 35

2.4.2. Interior Point Computation .. 37

2.4.3. Surface Feature Point Extraction based methods .. 39

2.4.4. Summary .. 42

2.5. SEGMENTATION BASED SKELETON EXTRACTION METHODS ... 43

2.5.1. Introduction ... 44

2.5.2. Geometric Distance Based Methods .. 45

2.5.3. Semantic-Oriented Methods ... 52

2.5.4. Summary .. 55

2.6. INTRODUCTION TO ANIMATION RELATED WORK ... 56

2.6.1. Linear Blend Skinning Method .. 56

2.6.2. Laplacian Mesh Deformation .. 57

2.6.3. Summary .. 61

8

3. RESEARCH GOALS, CHALLENGES AND PROPOSED SOLUTIONS 62

3.1. GOALS AND CHALLENGES ... 62

3.2. PROPOSED SOLUTIONS .. 63

3.3. EVALUATION METHOD ... 68

4. SKETCHING ANALYSIS ... 70

4.1. INTRODUCTION ... 70

4.2. DERIVING SKETCHED BONES .. 71

4.2.1. Problems Analysis in Deriving Sketched Bones ... 71

4.2.2. Solutions to Derive Sketched Bones ... 75

4.2.3. Sketched Bone Smoothing .. 78

4.3. TOPOLOGY CHECK BY USING DOUGLAS-PEUCKER ALGORITHM .. 79

4.4. PROBLEM ANALYSIS ON REFERENCE BONE CONSTRUCTION .. 82

4.5. SUMMARY ... 84

5. MESH SEGMENTATION .. 86

5.1. INTRODUCTION ... 86

5.2. BACKGROUND AND RELATED WORK ... 87

5.3. SEGMENTATION METRIC ... 89

9

5.4. OUR SEGMENTATION METHOD ... 93

5.4.1. Curvature and Distance based Segmentation .. 93

5.4.2. Segmentation Analysis and Optimizations ... 102

5.5. EXPERIMENT RESULTS .. 110

5.6. DISCUSSION AND SUMMARY ... 114

6. SKELETON EXTRACTION .. 117

6.1. INTRODUCTION ... 117

6.2. SKELETON EXTRACTION IN OUR WORK .. 118

6.2.1. Method Overview ... 118

6.2.2. Bone Extraction Methodology ... 119

6.2.3. Skeleton Construction .. 123

6.2.4. Skin Mapping ... 126

6.3. EXPERIMENT RESULTS AND DISCUSSIONS .. 132

6.4. DISCUSSION IN THE SKELETON EVALUATION .. 138

6.4.1. Related Work.. 138

6.4.2. Method in Skeleton Evaluation .. 141

6.5. COMPARISON WITH THE EXISTING SKELETON EXTRACTION METHOD 146

10

6.6. SUMMARY ... 151

7. CONCLUSIONS .. 152

7.1. APPLICATIONS .. 152

7.2. CONCLUSION ... 155

7.2.1. Our Method .. 155

7.2.2. Advantages ... 156

7.2.3. Disadvantages .. 157

7.3. FUTURE WORK .. 158

REFERENCES ... 160

11

List of Figures

FIGURE 2-1 AN EXAMPLE OF VOXEL-BASED MODEL FROM [48] ...27

FIGURE 2-2 THINNING METHOD FROM [50] ...28

FIGURE 2-3 SHRINKING PROCESS FROM WANG’S WORK FROM [24] ..31

FIGURE 2-4 ONE OF THE MESH MODEL EXAMPLE IN OUR EXPERIMENT ..35

FIGURE 2-5 MESH CONTRACTION METHOD FROM AU [17]..36

FIGURE 2-6 RADIO BASIS FUNCTION BASED METHOD FROM [63] ..37

FIGURE 2-7 MAT BASED METHOD ..38

FIGURE 2-8 EXAMPLE OF REEB GRAPH FROM [22] ..40

FIGURE 2-9 CRITICAL POINTS IN A REEB GRAPH FROM [22] ..42

FIGURE 2-10 DUAL GRAPH ..46

FIGURE 2-11 FUZZY CLUSTERING METHOD EXAMPLE FROM [65] ...49

FIGURE 2-12 SEGMENTATION RESULT USING RANDOM WALK METHOD [88]53

FIGURE 2-13 SEGMENTATION RESULT USING ISOPHOTIC METRIC [87] ..55

FIGURE 2-14 DIFFERENTIAL COORDINATES FROM [6] ...60

FIGURE 3-1 METHOD OVERVIEW ...66

FIGURE 4-1 SKETCHED LINE PROJECTION..72

12

FIGURE 4-2 OUR PROJECTION METHOD ...74

FIGURE 4-3 PROJECTION PROBLEM ..74

FIGURE 4-4 PROJECTION OPTIMIZATION ..76

FIGURE 4-5 VIEWPOINT EXAMPLES ...77

FIGURE 4-6 SMOOTH OPERATION ..78

FIGURE 4-7 DOUGLAS-PEUCKER ALGORITHM PROCEDURES [97] ..80

FIGURE 4-8 DP ALGORITHM IN SKELETON CONSTRUCTION ..81

FIGURE 4-9 DIFFERENT RELATIONSHIP AMONG SKETCHED BONES ..82

FIGURE 5-1 SEGMENTATION RESULT FROM POTTMANN’S METHOD ..90

FIGURE 5-2 SEGMENTATION RESULT FROM JI’S METHOD ...92

FIGURE 5-3 POTTMANN’S RESULT VS JI’S RESULT ..96

FIGURE 5-4 EXAMPLE OF ADDING SKETCHED BONE CONSTRAINT ..98

FIGURE 5-5 LEVEL 1 - SEGMENTATION RESULTS FOR SIMPLE MESH MODELS100

FIGURE 5-6 LEVEL 2 - SEGMENTATION RESULTS FROM FINE MESH MODEL................................100

FIGURE 5-7 LEVEL 3 – SEGMENTATION RESULTS FOR COMPLEX MODELS101

FIGURE 5-8 IMPORTANCE OF LENGTH AND NORMAL CONSTRAINTS ..103

FIGURE 5-9 ORIENTATION RELATIONSHIP BETWEEN BONE AND SURFACE NORMAL105

FIGURE 5-10 SEGMENTATION DIRECTIONS ..105

13

FIGURE 5-11 LOCAL BOUNDARY CURVATURE CHECK ..107

FIGURE 5-12 SEGMENTATION RESULT FROM EQ-(5.4.6) ..108

FIGURE 5-13 KNOT TUBE SHAPE ...110

FIGURE 5-14 CAMEL ..112

FIGURE 5-15 RAPTOR ..112

FIGURE 5-16 MAN ...113

FIGURE 5-17 WOMAN ..113

FIGURE 5-18 RESULT COMPARISON OF EQ-(5.4.1) AND EQ-(5.4.6) ...114

FIGURE 6-1 MESH PART TYPES..121

FIGURE 6-2 SEGMENTATION BOUNDARIES ..121

FIGURE 6-3 OPEN-END BOUNDARY PROBLEM ...122

FIGURE 6-4 LSD METHOD ...123

FIGURE 6-5 SKELETON SMOOTHING ..125

FIGURE 6-6 SKELETON CONSTRUCTION PROCESS ..126

FIGURE 6-7 SKIN MAPPING IN MULTIPLE-END PART ...127

FIGURE 6-8 SKIN MAPPING RESULT ..130

FIGURE 6-9 3D DONUT ..132

FIGURE 6-10 RHINO & FROG ...132

14

FIGURE 6-11 MAN & GIRL ...133

FIGURE 6-12 RAPTOR ..133

FIGURE 6-13 HAND ..134

FIGURE 6-14 DOG & CAMEL ..135

FIGURE 6-15 WOMAN ..135

FIGURE 6-16 ARMADILLO MONSTER ...136

FIGURE 6-17 DRAGON & STANFORD BUNNY ...137

FIGURE 6-18 SKELETON ISSUE FROM [85] ...141

FIGURE 6-19 CONCEPT OF BONE EVALUATION ..145

FIGURE 6-20 SKELETON EVALUATION RESULTS COMPARISON ...145

FIGURE 6-21 RESULTED SKELETON FROM THE GIRL MODEL ...147

FIGURE 6-22 RESULTED SKELETON FROM THE ARMADILLO MODEL ...148

FIGURE 7-1 KUNG FU GIRL..152

FIGURE 7-2 ARMADILLO MONSTER ...153

FIGURE 7-3 KUNG FU MAN ...153

FIGURE 7-4 SELF-INTERSECTION PROBLEM ...153

FIGURE 7-5 LAPLACIAN DEFORMATION WITH LBS RESULT AS CONSTRAINTS154

15

Chapter 1

1. Introduction

Nowadays, the 3D mesh model can be obtained from the Internet freely. Thus, it is interesting

convenient to make use of those models to teach amateurs the animation concept with the help of

skeleton-driven manipulations. Thus, given some existing mesh models which contains lot

number of triangles and vertices, how to create skeletons using those models is an interesting

research topic. In computer graphics, a mesh is a representation of 3D models. Mesh M [2] is

defined as a pair of (,)K V , where K is a simplicial complex representing the connectivity of the

vertices, edges, and faces, thus determines the topological type of the mesh;
1{ ,..., }nV v v

describes the geometric position of vertices in
3R .

Free Form Deformation (FFD) technique [3] is a representative mesh deformation method in

early days. Later, multi-resolution editing approaches [4, 5] have been developed for either detail-

preserving based purpose or reconstructed mesh optimization purpose. In the past few years,

differential coordinates mesh deformation techniques [6-11] have been developed for detail-

preserving based deformation purpose.

Skeleton-driven based methods [12-15] manipulate the skeleton (either created manually or

automatically from some skeleton extraction methods) instead of the mesh model. A skeleton

contains many bones which are connected by joints. Each bone is associated with a set of surface

vertices from the mesh model. The vertices position is controlled by their associated bones. To

perform animations, some mature software like Maya or 3D studio has been developed. However,

a user has to be trained for a long time before they can construct well-behaved skeletons. Then

16

one can make use of the generated skeleton to produce animations. Also the animation quality

relies on the skeleton quality. Researchers have developed many skeleton extraction methods [16-

27] to produce skeleton for mesh models. Some methods require a user to create a skeleton

manually, which require a user to be trained, such as methods in Maya software. To liberate a

user from long term training, we propose an easy way to generate skeletons which have well-

positioned joints specifications.

1.1. Motivation

There are two types of skeleton extraction methods: manual construction methods and automatic

extraction methods. Manual skeleton construction methods are widely adopted in professional

software like Maya or 3D Studio. The manual construction methods build up skeleton based on a

user's manipulations. However, the user has to be trained before performing skeleton construction.

Also there are lots of post-work to be done in skeleton-driven animation, like skinning and weight

setting for animation, which are tedious and time-consuming. For these reasons, automatic

skeleton extraction has been well studied in recent years. But most of the exiting works focus on

1D curve skeleton extraction which does not consider calculating the joint positions. This

limitation narrowed the application the skeleton can be applied.

We want to combine the advantages of manual construction methods and automatic

extraction methods together to build a semi-automatic skeleton extraction system. In the system,

we allow a user to draw freely on a mesh model. Then we perform a mesh segmentation process

based on the sketched lines as input. Finally we extract bones from each mesh part and connect

them together to construct the final skeleton. The users do not need to be trained to use our

system.

In summary we have the following objectives:

17

1. Simplify the skeleton generation process. Traditional manually creation methods

require a user to be trained before performing skeleton creation tasks. Our method

requires only simple sketches from the user.

2. Construct skeleton model based on the user’s specification. The skeleton should contain

joint specification, and can also be used to distinguish different parts of the mesh model.

3. Evaluate the quality of our skeleton from two aspects: the topology features and the

skin mapping quality.

4. Build a real-time animation framework to let a non-trained user perform skeleton-

driven animations.

1.2. Basic Definition and Notations

In this thesis, we proposed a novel approach to generate the skeleton from a given mesh model

and user’s sketching activities. We target at amateur users such as children or students which are

interested in the animation related work.

 In our work a bone is defined as a set of sequential nodes, in which the two end nodes are

called joints. The bone is represented as:

 0 1 1{ , ,..., , }nB J d d J (1.2.1)

where 0J and 1J are two joints and id (1 i n ) is the node inside a bone. n indicates the

number of nodes within bone B . 1{ ,..., }nd d represents a ordered set of nodes, we also use a

vector plist to store those nodes. So, we also use 0 1{ , , }B J plist J to describe the data

structure of bone.

18

The node is the basic element which describes a geometric location of a point. The joint is a

special node which is associated with one or more bones whereas the node is associated with one

bone only. To visualize the bones in our system, we connect the sequential nodes and joints

together to form a poly-line. And our skeleton is a bone graph, which is connected by joints.

1.3. Research Problems

To achieve the above objectives, we have to solve the following problems:

1. Sketching analysis problem. A user may have duplicate drawings, or a sketched line

may contain great curvature changes, which means that this sketched line needs to be

divided into several parts. We need a method to clarify a user’s intention by analyzing

his/her drawings.

2. Skeleton extraction problem. Most of the existing 1D curve skeleton extraction methods

do not specify well-positioned joints. We need a method to generate well-positioned

joints which connect two or more bones in a skeleton. Also to distinguish different parts

of a mesh model, we expect the bones inside a skeleton should have a mapping between

mesh model parts and their correspondent bones.

To extract a user’s intention from his/her drawing, we need to solve two issues: multiple

sketched lines matching, which is used to cluster similar sketched lines into one group and single

sketched line analysis, which is used to analyze the topology feature of a single sketched line. By

investigating the existing skeleton extraction methods, we notice there are several issues which

haven’t been solved. Some of the methods are sensitive to the surface details, such as the Medial

Axis Transform (MAT) base methods [28]. Some of the methods can only produce shrunken

skeleton, such as the thinning method in [24]. Some of the skeleton extraction methods make use

19

of the geometric information to construct the skeleton, which do not consider the semantic

meaning of the topology. Thus the result from those methods may contain wrong topological

structure from the user’s point of view.

To obtain a semantically meaningful skeleton structure, some work [29] has introduced the

feature point concept to construct a skeleton manually. Most of the feature points are the starting

points to extract the skeleton. But the existing methods do not specify well-positioned joints in

their skeleton due to the lack of measurements to detect those joints. Although some of methods

[17, 25] can generate good results with regard to the topological representation, the existing

methods focus on 1D curve skeleton extraction and do not consider the importance of joints in

animation applications. Besides the joint issue in the existing work, there is no benchmark to

evaluate the correctness of the skeleton. We investigate the property of the animation based

skeleton, and design a metric to evaluate the skeleton’s quality.

1.4. Proposed solutions

To extract a user’s intention from his/her drawing, we need to solve two problems: single

sketched line analysis and multiple sketched lines matching. In the single sketched line checking

process, we need a method to check the topology feature for any new sketched line. If a sketched

line contains large curvature changes, we need to divide the sketched line into several parts. In

multiple sketched lines matching process, we need to identify whether a new sketched line

represents a new topological feature or a duplicate sketching, which is similar to the existing

sketched lines.

With regards to the skeleton extraction issue, we have the following requirements:

20

1. The skeleton should contain important joints specifications, which are used to

distinguish different components of a skeleton model.

2. For the usage of animation, a skeleton should contain a direct mapping between bones

and its correspondent mesh parts.

Based on these requirements, we adopt a segmentation based skeleton extraction method in our

system. Our method is inspired by the concept of minima rule [30, 31], which is widely used in

several part-type segmentation methods. The minima rule states that human vision tends to define

areas of minimum negative curvatures, i.e., concave shape areas, as interfaces separating between

mesh model parts [1]. This is a good criterion in mesh decomposition, where the centers of

decomposition boundaries define the natural location of well-positioned joints. However, the

minima rule based methods can only be used in the concave region based decomposition. For

models like tube-bar structure, it is hard to define the final decomposition positions using minima

rule strategy only. Thus we designed a new segmentation criterion, which satisfies both the

minima rule and the definition from user sketching. We adopted the Level Set Diagram (LSD)

method [32, 33] to extract bones from each segmentation part. Finally we combined those bones

together to construct the skeleton for a given mesh model.

1.5. Thesis Organization

This thesis is organized as follows: In Chapter 2, we give a brief literature review in sketching

related work and skeleton extraction methods. We then discuss our research goals, the challenges

and proposed solutions in Chapter 3. In Chapter 4, we discuss the sketching analysis method that

we used in our system to extract user’s intention from their sketched lines. In Chapter 5, we talk

about the segmentation method that we proposed to divide the mesh into several meaningful parts.

In Chapter 6, we discuss the skeleton extraction method that we have adopted in our skeleton

21

extraction system. In Chapter 7, we give a conclusion on our research work and discuss the

possible future work.

22

Chapter 2

2. Literature Review

2.1. Introduction

Our target is to create an interactive skeleton extraction platform, which considers user sketched

lines as input and creates a skeleton for a given mesh model. To achieve this target, we studied

the following areas: interactive sketching, skeleton extraction and skeleton evaluation. We allow

users to draw freely on the screen and our system depicts the topology definition of their desired

skeleton from their drawings. With regards to the skeleton extraction, we have the following

requirements:

1. The skeleton should have well-positioned joint specifications. The well-positioned

joints are used to distinguish different parts of a mesh model.

2. The skeleton should represent the topology features of its corresponding mesh model.

3. The skeleton should contain the mapping between bones and mesh surface elements (i.e.

triangles or vertices on the mesh model).

A lot of skeleton extraction methods have been proposed in recent years. But none of them

seem to fit in all the requirements that we have listed above. In this chapter, we will discuss the

existing methods which are closely related to our requirements. We divide the skeleton extraction

problem into mesh segmentation problem (see Chapter 5) and skeleton extraction problem (see

Chapter 6).

23

To understand the existing techniques used in sketching analysis, we studied the existing

works which make use of sketched lines as input in the 3D model creation and manipulation areas.

We will give a survey in section 2.2. With regards to skeleton extraction, there are two major

methodologies: voxel-based methods and surface-type methods. Voxel is the basic element in

volume-based models. “Voxel” is short for “Volumetric Pixel”, or more correctly, “Volumetric

Picture Element”, which is a volume element, representing a value on a regular grid in 3D space.

On the other hand, surface-type models make use of polygon mesh to represent the model

structure. Usually, a polygon mesh is a collection of vertices, edges and faces that defines the

shape of a polyhedral mesh model in 3D computer graphics. There are many representations of

faces, in which triangles and quadrilaterals are the most two common representations. In our work,

we make use of triangle-based models only.

Volumetric-based methods make use of different shrinking or thinning strategies to extract

the topology feature from a voxel-based model. Most of the existing methods are divided into two

classes: thinning based methods and distance transform based methods. A thinning algorithm is a

kind of “boundary peeling” process, where the voxel-based model is iteratively peeled layer-by-

layer. Distance field is used as the constraint of the thinning process. Most of existing thinning

processes make use of different distance metrics to check the priority of a voxel during the

boundary peeling process. Surface-type methods contain many different ways to construct the

skeleton. We classified the surface-type skeleton extraction methods as:

1. Mesh contraction based method,

2. Interior point computation based method,

3. Surface feature point based method ,

4. Segmentation based skeleton extraction method.

24

Mesh contraction methods perform iterative shrinking process to the inverse of a mesh

model’s surface normal direction while preserving some feature point positions to maintain the

whole topological structure. Interior point computation based methods compute some interior

points which have different radius to measure the volume of a mesh model as the skeleton points.

Surface feature point based methods make use of some feature points as the starting points to

extract a skeleton. Usually such a method makes use of geometric distance to compute a set of

topology contour lines to construct the skeleton. Segmentation methods decompose a mesh model

into several parts and then extract bones for each part. The segmentation boundaries are used to

connect all parts together to form the final skeleton. We summarized the first three types of

methods in section 2.4, whereas we isolate segmentation based methods in section 2.5. In the end,

we also give a survey on Linear Blend Skinning method as well as the Laplacian mesh

deformation technique in section 2.6. We have combined those two methods to perform our

skeleton-driven animation.

2.2. Related Work in Sketching Analysis

Freehand sketching is a natural and efficient way of expressing certain ideas. This technique has

been widely used in modeling and editing approaches [34-36]. Some 3D modeling tools [37, 38]

make use of user’s interactive sketching as input to create 3D polygonal surfaces or parametric

surfaces. Besides the model construction applications, sketching can also be used as manipulators

in different sorts of areas. For example sketch-based deformation tools [9, 39, 40] utilize sketched

lines as manipulators to deform 3D models into different poses.

We focus on “user-centered” techniques to provide more intuitive interfaces and interactive

tools which allow a user to create a skeleton easily and intuitively without too much professional

knowledge of 3D background. We allow users to sketch freely on the surface of the mesh model.

25

And the system will generate their desired skeleton model from their drawing. Based on this

expectation, we explore the most recent work and try to find an ideal solution to fit in our need.

Most of the existing sketch-based related works assume the sketched lines are correct. However,

when a user sketches on the screen, it is hard to construct the 3D structure for a given 2D

sketched line, as there are many possible solutions. Also the user's drawing may not be accurate

and may even contain mistakes. For example a user might draw a single line which contains large

topology changes or a user might draw some duplicate lines within the same region. We need a

method to eliminate those mistakes before using those sketched lines in our skeleton extraction

system.

2.2.1. Interactive Sketching technique in 3D Modeling

A typical procedure for geometric modeling is to start with a simple primitive such as a cube or a

sphere, and gradually build a more complex model through successive transformations or a

combination of multiple primitives. Also people make use of several deformation techniques to

create a wide variety of smooth and complex models by interactively manipulating control points

or 3D widgets. The sketch-based methods are used to identify some built-in model construction

commands, which will be performed in a rapid model construction process.

Zeleznik [41] defines a set of primary gestures. He proposed an application [41] to create 3D

scenes by defining primary gestures to perform the 3D model construction. The built-in gestures

are a set of sequential strokes which correspond to important visual features. The strokes are

those sketched lines which are projected on the screen. For example drawings of three non-

collinear line segments which meet at a point imply a corner. By retrieving the sketched gesture a

system is able to identify the task to be performed in the model construction process. By

designing some “inflation” operations which converted a closed curve in the plane into a 3D

26

shape whose silhouette from the current view was that curve on the view plane, Igarashi built an

intuitive model construction system in [38]. Karpenko [42] made use of variational implicit

surfaces as a representation in a free-form 3D model construction. Rather than considering

sketched lines as silhouette, Das [43] made use of the connected network lines as the 3D shape

outline to construct a 3D model. Such a 3D modeling development was based on the use of

computer vision, human perception and new interactive techniques (such as different gesture

operations).

2.2.2. Sketching in Model Editing and Deformation

On top of sketch-based applications user sketching can support various mesh model editing

operations: such as cutting, extrusion and erasing. To allow more complicated shape editing,

Nealen et al. let a user to specify the region of interest (ROI) on a mesh model and express how to

modify the shape of this ROI by sketching [9]. They then applied the mesh Laplacian operator on

the ROI which could create the deformed mesh model whilst preserving the local mesh features.

By introducing the sketching activity a user can specify the region where he wants to modify

directly.

In fact sketching is a typical way for animators to express mesh model motions quickly [44].

Kara [45] proposed an application, which made use of sketched lines and template model to

modify and design new models. Davis [46] proposed a method to take user sketched 2D skeleton

model as input and create some possible character poses for animation generation. Chang [47]

proposed an interface between 3D meshes and 2D sketching with the inference of two sketched

lines which were marked as reference curve and target curve. The reference curve was used to

define the ROI region to be deformed, whereas the target curve defined the constraints for the

ROI, which gave guidance on how the ROI will be deformed. The sketch-based method can

27

easily specify the ROI. Also by considering the sketched lines as target curve, one can easily

deform the shape of ROI into the new pose as the target curve defined. Similar to the facial

animation, Kho and Garland adopted sketched lines as manipulators in [40]. In their system, a

user has to draw two lines to perform deformation task. One line is considered as a reference

curve which defines the region where the user was interested in. Another line is considered as a

target curve, which defines the deformation constraints, such as the rotation matrix for vertices

inside the ROI. The sketching activities in sketch-based deformation light up the motivation of

our research work on sketch-based skeleton extraction. To our knowledge, there is no published

work to allow users to create skeleton based on sketching.

2.3. Skeleton Extraction from Volumetric Models

Volume-based skeletonization promises to be an efficient method for compact shape description.

Figure 2-1 shows an example of a voxel-based model, as is illustrated in Wolfire’s Blog [48] .

Figure 2-1 An Example of Voxel-based Model from [48]

A voxel is the smallest unit cube in the volume, with its eight vertices taking values of zero

or one. A voxel is defined as an inside voxel if all its vertices take a value of one. If all its

vertices take a value of zero, we call it an outside voxel (background voxel). Otherwise, the voxel

is considered as a boundary voxel. Both boundary voxels and inside voxels are called mesh model

28

voxels. Given a voxelized representation, to produce a skeleton, one may remove boundary

voxels [49] or pull interior voxels together [24] while maintaining the mesh model topology to

shrink the volumetric model. The 3D voxel based model is represented by a 3D array { }ijkF f ,

when i , j and k are integers such that 1 i M  , 1 j N  ,1 k L  (M , N and L are the

dimension size for the 3D array), and
ijkf represents a density value at the i-th row, j-th column

and the k-th plane. If 1ijkf  , the voxel is a known as an object voxel (also called black voxel),

which is visible, if 0ijkf  , the voxel is known as a background voxel (also called white voxel),

which is invisible.

2.3.1. Thinning Process

Thinning method was first used in 2D image processing, such as fingerprints recognition,

scanned-in letters or DNA
1
 structures and human organs etc. Figure 2-2 is an example of

thinning procedure which comes from [50].

Figure 2-2 Thinning Method from [50]

1
 As described in Wikipedia, DNA is short for Deoxyribonucleic acid which is a nucleic acid that contains

genetic instructions used in development and functioning of all known living organisms.

29

A thinning algorithm is a kind of “boundary peeling” process, where the voxel-based model

is iteratively peeled layer-by-layer. During the peeling process, each boundary voxel is tested

against a set of topology preserving conditions and possibly removed. The algorithm only needs

to preserve those voxels which are the key elements on the topology presentation of the model.

One widely used condition is the connectivity check among voxels. Shrinking is a processing that

replaces a deletable inside voxel by a boundary voxel while preserving topology. In a shrinking

algorithm, all deletable voxels are deleted while in a thinning algorithm only parts of deletable

voxels are really deleted [51].

One example of the topological property check is denoted as the connectivity of voxels.

Given a voxel p , there are three types of neighborhood between p and its adjacent voxels. If

two voxels share one face, the neighborhood type is defined as 6-neighborhood (6-n), which is

denoted as 6 ()N p . Similarly, if two voxels share one face or one edge, we call 18-neighborhod

(18-n), which is denoted as 18()N p , if two voxels share one point or one edge or one face, we

call 26-neighborhood (26-n), which is denoted as 26 ()N p . According to the definition from [52],

two voxels P and Q are said to be 6-connected (6-c), (18-connected(18-c), 26-connected(26-c)),

if a sequence of voxels 0P P , 1P ,…, nP Q exists, such that each iP is in the 6-n (18-n, 26-n)

of 1iP (1 i n ) and all iP ’s have the same density value as P and Q .

Morgenthaler described the “simple point” in [53], which was widely used in many thinning

algorithms. A simple point is a mesh model voxel that can be removed without changing the

topology of the mesh model (see [54] for a complete review of digital topology). By monitoring

the Euler number of the voxel model, one can detect the topological change during the voxel

removal process (see [52] for details). One of the most properties of simple points is that they can

30

be identified locally. Namely, one can determine if a voxel is a simple point or not by inspecting

its local neighborhood, which makes the thinning algorithm more efficient in skeleton extraction.

Based on the selection of simple points, Cornea categorized the thinning algorithms into

three types: directional thinning methods, subfield sequential thinning methods and full parallel

algorithms in [50]. Directional thinning methods remove boundary voxels only from one

particular direction (i.e. up, down, east, west). These methods are sensitive to the order in which

the different directions are processed, and the resulting skeleton may not be located in the center

of the mesh model. Subfield sequential thinning methods divide the discrete space into subfield.

At each sub-iteration, only voxels belonging to one of subfields are considered for deletion. Full

paralleled algorithms consider all the boundary points for deletion in a single thinning iteration.

To preserve skeleton topology a voxel's neighborhood must be inspected to decide whether the

voxel is deletable.

The boundary elimination process cannot provide accurate topology description without

adding more constraints to the peeling process. Wang introduced a shrinking process [24] to

provide such constraints which makes the result more smooth and accurate on the shape structure.

Their shrinking process was an iterative least square optimization process. In their work, they

defined two energy terms: boundary constraint
bE and edge contraction QE . The boundary

constraint was used to preserve the model’s geometry, whereas the edge contraction was used to

maintain the shape of the mesh model. They attempt to reduce the edge lengths to shrink a model.

To maintain the shape, the contraction amount for different edges varies. Wang made use of the

boundary constraints to find the contraction amount for boundary edges.

 Wang defined two energy terms as:

31

1 2

1 1 2 2

(,)

| |

| () () () | , v V

t t

b b b

t t t t t

Q i j ij i j

i j E

E v v

E v v p v v



 



   

     


 (2.3.1)

where
bv is the boundary voxel and t indicates the steps of thinning iteration.

1/t t t

ij ij ijp l l  is the

contraction ratio and
t

ijl ,
1t

ijl 
are the length of

t t

i jv v and
1 1t t

i jv v  respectively,
t t

i jv v defines

an edge for two adjacent voxels
t

iv and
t

jv .

Figure 2-3 Shrinking Process from Wang’s Work from [24]

Figure 2-3 is a demonstration of the shrinking concept from [24]. Figure 2-3.a is the result of

the voxelization process. Figure 2-3.b is an example of homogeneous shrinking result without

boundary constraints. Figure 2-3.c is the illustration of the boundary constraints which are used to

preserve the original geometry of the model. And Figure 2-3.d is the result of Wang's method

which uses boundary constraints as the forcement to preserve the geometry of the model.

The shrinking pre-processing makes the skeleton result more accurate compared to those

thinning processes which have no pre-processing. However, the shrinking process makes the

skeleton result even smaller than the real skeleton model size (see Figure 2-3.d as illustration).

This is because the thinning algorithm cannot guarantee the full topology preservation. Also the

32

created skeleton has no mapping relationship with the existing model, which further limited the

application usage of the thinning based method in deformation related regions.

2.3.2. Distance Transform Based Methods

Besides the thinning algorithms, researchers notice that they are able to reduce the iteration

process and get a smooth skeleton by using some distance functions. Distance field [27] may be

applied to define a distance transform for each interior point of a mesh model and detect ridges of

the field to obtain candidate voxels for connecting them to generate a skeleton. Such method is

not robust due to the “noise”
2
 data appeared on the mesh model. In 3D model processing area,

lots of metrics (such as the normal variation or curvature changes) have been designed to find out

some feature points. Those feature points are critical in many applications, such as mesh

segmentation, skeleton extraction etc.

For each interior point P of a 3D mesh model O , the distance field is defined as the

smallest distance from that point to the boundary ()B O of the mesh model:

()

() min((,))
P O Q B O

D P d P Q
 

 (2.3.2)

where Q is the boundary mesh model of O , and (,)d P Q is a distance function.

Most of the distance field-based methods use the following steps to extract the final skeleton:

1. Find out ridge points (i.e. local maxima, saddles points).

2
 During the feature extraction process, some other points may be captured as the feature points but would

result in bad outcomes.

33

2. Pruning remains voxels.

3. Connect the voxels to build up the final skeleton.

Distance field was used as the constraint of the thinning process. Most of existing thinning

processes made use of different distance metrics to check the priority of a voxel during the

boundary peeling process. For example some methods [55-57] make use of Euclidean distance to

define the priority of the voxels candidates selection. Gagvani and Silver proposed a parameter

controlled thinning mechanism [58] to determine the priority of removable voxels, which

involved comparison between voxel and the average distance field of its neighborhoods. Similar

to this concept, Bitteret proposed a gradient searching algorithm [59] to detect boundary voxels

for removal, which involved detecting neighborhoods of non-uniform gradient. Bouix made use

of divergence calculation as the priority function together with a user-defined threshold to find

the removal voxel candidates in [60]. Combined with a distance-from-a-source field, Zhou

proposed a voxel coding approach [27] to create a set of critical voxels.

After running the thinning process, the size of remaining voxels is still large. To reduce the

size of the voxels, several methods have been applied to optimize the final skeleton, such as

sphere coverage of a path tree in [23], boundary visibility from candidate voxels in [61], thinning

criteria in [33] or clustering criteria in [62].

After the pruning step, the remaining voxels are usually disconnected and the final step

involves reconnecting them to product the final 1D curve skeleton. Most algorithms make use of

minimum spanning trees [62, 63], shortest paths [23, 33, 61] or other graph algorithm to connect

the remaining voxels.

The distance field based methods can also be used to create the medial surface. But they

cannot generate a 1D curve skeleton without additional techniques to prune the medial surface.

34

The main advantage of the distance field based method is the low computation cost in the

algorithm.

2.3.3. Summary

Volumetric based skeleton extraction methods cannot guarantee the smoothness of a skeleton.

Such methods produce 1D curve skeleton which has no joints been specified. Usually the

smoothness of a curve skeleton is defined as the variation of the curve tangent direction as one

move along the curve skeleton. More precisely, the smoothness can be measured as the angles

variation between tangent directions at successive locations along the curve skeleton. During the

extraction process, the extracted skeleton is smaller than the real topology features [24] or it

contains undesired branches which require pruning to eliminate those branches. Thus the thinning

or shrinking processes cannot preserve the exact geometry information which makes the extracted

skeleton is always smaller than the real model. In general volumetric methods may not guarantee

producing good results due to information loss from discretization.

Also the extracted skeleton from volumetric based methods is only 1D curve skeleton which

only describes the topology features. Those 1D curve skeletons can be used in mesh model

matching, feature tracking or even model reconstruction. However, such skeleton does not

suitable for animation related purpose. There are two problems which prevent us from using such

kind of methods. First, the skeleton contains no well-positioned joints specification, which is

useful in articulated animation area. Second, the thinning algorithm destroyed the structure of

model. To make use of skeleton in animation, one has to build up correspondent mapping

between skeleton and the original model.

35

2.4. Skeleton Extraction for Surface-type Models

In our research work, we make use of triangulated surface model as the benchmark model. Figure

2-4 is an example of triangulated surface model.

Figure 2-4 One of the Mesh Model example in Our Experiment

In this section, we will discuss the following three types of skeleton extraction methods:

1. Mesh contraction based methods

2. Interior points computation based methods

3. Surface feature points extraction based methods

2.4.1. Mesh Contraction

Model contraction based method [17] tried to extract skeleton from an iterative contraction

process by adding some position constraints to prevent the homogeneous shrinking. Interior

distance function based methods [28, 64] also tried to simulate the shrinking process, which made

use of gradient flow and surface normal to estimate the interior skeleton positions. The radial

basis function [64] and the MAT technique [28] were the most two common examples for the

interior distance function based methods. Surface distance function based methods [22, 29, 32]

tried to construct contour lines from some feature points on the surface of a mesh model. Reeb

36

graph or Level Set Diagram was the traditional technique using this strategy. Some other methods

[65-67] tried to segment the mesh model first and then construct the skeleton from the

segmentation result, which is also the choice of this thesis.

Au et al. contracted the mesh geometry into a zero-volume skeletal shape using implicit

Laplacian smoothing algorithm with global positional constraints in [17]. Then by applying face

removal operations via edge collapse operations, the contracted mesh was converted into 1D

curve skeleton. The mesh model was contracted via a discrete Laplacian equation solver, which

was introduced to mesh editing area by Sorkine et al. in [6]. In order to achieve mesh contraction

while preserving the topological features of the mesh model, Au proposed two types of

constraints: contraction constraints and attraction constraints. The contraction constraints were

used to shrink the mesh model whereas the attraction constraints were used to preserve the

geometric features for some feature points such as the tips of fingers or tips of feet etc.. The

contraction constraint was defined by applying Laplacian smoothing operations on mesh vertices,

which forced the vertices of the mesh model moving to its curvature flow normal (inward)

direction. The attraction constraints were defined via selected positional constraints, which were

described as anchors in [68].

Figure 2-5 Mesh Contraction Method from Au [17]

Figure 2-5 is an example from Au's work. This method creates 1D curve skeleton. In

addition to producing a curve skeleton, the method produces other valuable information about the

model's geometry. For example all the collapsed vertices can be used for segmentation purpose.

37

2.4.2. Interior Point Computation

There are two types of interior point computation strategies: radial basis function based method

and MAT based method. Radial basis function based method can be considered as one special

case of distance function. In this function a 3D mesh model can be transformed into an implicit

surface, which has the following form:

 ()f x h (2.4.1)

where x is a point in
3R and h is a level value of a designated surface. Usually, 0h 

indicates the mesh model surface. It will return a higher value when the input data x gets deeper

away from the surface. Combine with the techniques such as gradient descend and active contour

model, one can extract the skeleton from implicit surface of a 3D model.

Figure 2-6 Radio Basis Function based Method from [64]

The skeleton extraction process using radial basis function can be revealed from the

following description: Let
o be a connected bounded domain in

3R . A point p on the surface

S can be denoted as p S . If there is an existing distance function ()sD x that calculates the

distance between point x and surface S , a gradient operator ()sD x can be applied and for

p S we can apply the gradient descent
0 1() : , ()n n n

sG p p p p p D p   . If

38

() 0n

sD p  ,
1np 

is a local maximum and
1() nG p p  . The local maximum

im M is a

representative of the set () { | () }i j j ip m p G p m  . The skeleton is constructed by linking local

maximum pair
im and

jm if  ip m and  jp m are adjacent [64].

Figure 2-6 is the demonstration of the radial basis function based skeleton extraction method.

It includes three steps: construct implicit surface (as shown in Figure 2-6.a), compute the interior

point using gradient descent method (as shown in Figure 2-6.b) and link adjacent interior points

(as shown in Figure 2-6.c).

MAT technique is another interior point based skeleton extraction method. It is widely used

in image skeletonization process. The medial axis of a mesh model is the set of all points which

have more than one closest point on the mesh model's boundary. Originally, it was introduced by

Blum [69] as a tool for biological shape recognition. In mathematics the closure of the medial

axis is known as the cut locus.

Figure 2-7 MAT based Method

The medial axis together with the associated radius function of the maximally inscribed

circle is called the MAT. MAT in 3D is the locus of the inscribe spheres inside a model. Each

point of a MAT based skeleton is associated with a radius function, which is the radius of the

maximal ball around any given point on the skeleton. MAT based skeleton can describe the mesh

model surface precisely and is widely used in surface reconstruction based applications.

39

Figure 2-7 is an example of MAT based skeleton extraction method. The circles represents

the radius function for each point on the skeleton, whereas the green line and black line are the

skeletons inside a mesh part.

2.4.3. Surface Feature Point Extraction based methods

Geometric computation based methods apply a function directly over a mesh model surface to

extract and link critical points inside the mesh model to form a skeleton structure. Most of the

geometric based approaches study the properties of real valued functions which are computed

over triangulated surfaces. And those functions are provided by the application context, such as

scientific data analysis [70, 71].

Morse and Reeb graph theories [72, 73] based skeleton extraction methods can preserve the

topological properties of the model with the help of some predefined critical feature points

(maxima, minima and saddle points). Morse theory can be thought of as a generalization of the

classical theory of critical points of smooth functions on Euclidean spaces. Morse theory states

that for a generic function defined on a closed compact manifold (e.g. a closed surface) the nature

of its critical points determines the topology of the manifold. Reeb graph represents the

configuration of critical points and their relationship and provides a way to understand the

intrinsic topological structure of a model. Thus it has been used in many applications such as

shape matching [74], shape coding[75] and surface description and compression[21, 48].

Reeb graph Definition: Let ()r x be a real-valued function on a compact manifold M . The

Reeb graph of r is the quotient space of the graph of r in M by equivalence relation “  ”

defined as 1 1 2 2(, ()) (, ())x r x x r x , if
1 2() ()r x r x and

1x ,
2x are in the same connected

component of
1(())r r x .

40

The two pairs 1 1(, ())x r x and 2 2(, ())x r x are represented as the same element in the Reeb

graph is the function values are the same and if they belong to the same connected component of

the inverse image of 1()r x or 2()r x . Normally the real value function ()r x can be considered as

a height function, thus points which have the same height values are located in the same contour

line. By sampling the height values, one can obtain several contour lines for a mesh model. By

connecting the center of each contour line, one can obtain a curve skeleton.

2.4.3.1. Mapping Function

Mapping function definition depends on what is expected to be revealed [22]. For example

researchers notice that height functions [51, 75] will present critical points over hills and valleys,

providing consequently an appropriate topological description for terrain modeling. They use the

height function (the z-coordinate), relatively to a given orientation of the mesh model to define

their diagram. By defining the critical points from a given model, they can construct the Reeb

graph as shown in Figure 2-8.

Figure 2-8 Example of Reeb Graph from [22]

However, the height function based methods are not rotation invariant, which make the user

have to set up a proper coordinate before starting the skeleton extraction. Lazarus and Verroust

41

[32] introduced a geodesic distance function, which was used to compute the shortest path

between vertices, from a source vertex to any other vertex in the mesh model. Compared to the

height function based method, the geodesic distance function based method has two advantages.

First, the algorithm is invariant to geometrical transformations. Second, it is robust against

variations in model pose. Nevertheless, as the Morse theory described, the skeleton structure is

defined by the critical points on the mesh model. In order to get an accurate topological structure,

the Reeb graph based method requires the user to specify the critical points manually. Otherwise,

the noise points, which have similar curvature and normal features within some local regions,

may affect the final skeleton structure.

Dey proposed a medial geodesic function to extract the skeleton for a mesh model, which

can describe the intrinsic property of the mesh model surface as well as its embedding in 3D

space in [76]. The Voronoi diagram was also used to enhance both the computational

performance and the robustness. The skeleton from Reeb graph is in 1D structure, which nodes

are critical points of a real-value function defined on the mesh model surface, for encoding the

topology of a mesh model [77]. The choices of the real-value functions may also include geodesic

function [74] and harmonic function [18]. After obtaining a Reeb graph, coordinates information

should be determined for all nodes to turn a Reeb graph into a skeleton. In general, geometric

methods are sensitive to noise appearing over the mesh model surface. Additional treatment, such

as re-meshing, is needed for generating a better skeleton.

2.4.3.2. Critical Point Selection

Critical points are mesh vertices, which are located on extremities of prominent components [65].

Mortara [78] proposed to use Gaussian curvature as the metric to define the critical points. In

their work, they predefined a threshold to collect vertices whose Gaussian curvature exceeds the

threshold. Tierny proposed differential topology tools to extract feature points in [29].

42

With regards to the critical points extraction, one major problem is to eliminate the “noise”

vertices. The “noise” vertices are those vertices that have similar curvature features but are

located in local regions. Figure 2-9 is an example of the critical points in a hand model. The green

points on the finger tips are the critical points that we need in our Reeb graph construction,

whereas the red point is the source point to compute the distance used in a Reeb graph. However,

in some local regions, “noise” vertices have similar curvature features. In [29], they proposed two

geodesic based mapping functions to remove the “noise” vertices by performing cross analysis on

the two geodesic based mapping functions. However, the cross analysis cannot guarantee the rest

features vertices have no “noise” vertices, especially for those “noise” vertices which are very

close to the feature points that we need.

Figure 2-9 Critical Points in a Reeb Graph from [22]

2.4.4. Summary

By fixing some feature point positions, mesh contraction method can produce 1D curve skeleton.

However, such a method requires high computation to extract the final skeleton. Also the skeleton

contains no well-positioned joint information, which is important in animation related tasks.

Besides, this method destroys the mesh model after the contraction process, which makes it is

impossible to use the skeleton directly to the mesh model.

43

The topological feature of a skeleton from using the radial basis function is insensitive to the

surface noise. But it is a time consuming process due to an iterative computation of gradient

descent. Also this type of skeleton contains no joint information either. The MAT skeleton always

lies in the center of mesh model. However, the skeleton result is too sensitive to the surface

details, which makes the MAT based skeleton contains too many undesired branches (see the

dark line in Figure 2-7). To deduce a reasonable skeleton structure, the users have to remove the

noisy branches by using some pruning methods.

Reeb graph (or LSD) based method extracts a skeleton from some critical feature points,

such as the end of an articulated branches. However, such a method suffers from the “noise” data

problem, which means the skeleton structure depends on the quality of feature point selection.

2.5. Segmentation based Skeleton Extraction Methods

The skeleton from some automatic methods [17, 25] is insensitive to the surface noise. However,

the skeleton generated from those automatic methods has no joint specification. The joint

specification of a given skeleton describes the topological structure from semantic point of view.

Those joints can be used in animation purpose, i.e. the applications in Inverse Kinematic solvers,

which make use of joint to compute different rotation or transformation matrix for bones. Some

researchers notice that segmentation results can be used to construct skeletons. For example Katz

and Tal proposed a control skeleton extraction algorithm by using their segmentation method in

[66]. The boundary between each pair of segmentation parts can be considered as the joint

positions. This is the initial concept of segmentation based skeleton methods.

44

2.5.1. Introduction

Mesh segmentation has become an important research problem in computer graphics. Many

applications have the need to segment a 3D model. For example in modeling [79], compression

[80], simplification [81], 3D shape retrieval [67], collision detection [82], texture mapping [83,

84], geometry-image creation [85] and skeleton extraction[86].

There are two main types of methods: surface-type and part-type methods. Surface-type

methods use geometric properties, such as planarity or curvature, to create surface patches. In

general, surface patches are topologically equivalent to a disk and do not necessarily possess any

semantic meaning. Our work adopts mesh segmentation to construct bones and joints for a

skeleton structure, which relies on the semantic meaning of each mesh parts. Hence, surface-type

methods do not fulfill our need. In this chapter, we only discuss the related research work in part-

type based segmentation methods.

More generally, the segmentation can be interpreted either in a purely geometric sense,

where some distance measures (i.e. Euclidean distance or geodesic distance) are used as

segmentation metric, or semantic-oriented manner. For the first type, a mesh is segmented into

parts with respect to some uniform features, like curvature or distance to a fitting plane. On the

other hand, semantic-oriented methods focus on the identification of meaningful parts which

describes the local feature of the mesh model.

Semantic-oriented methods are rooted in the study of human perception for producing

semantically meaningful mesh parts. Most of the semantic-orientated methods are based on the

minima rule (see description in section 1.4) concept, which makes use of curvature variation to

distinguish different parts of a mesh model.

45

To segment a mesh model into meaningful pieces, there are two import issues to be solved:

 How to define the clustering criteria to generate meaningful parts?

 How to define the number of meaningful parts?

The first question reveals the requirement for the segmentation criterion which is able to

produce geometrical meaningful result such as the meaningful boundary definition. The second

question indicates the requirement to define the semantically meaningful parts from the

segmentation process. We analyzed the most widely used techniques in segmentation area with

their strengths and weaknesses. And then based on our requirements, we propose a new solution

to segment a mesh model into meaningful parts. We will discuss the details of our solution in

Chapter 5.

2.5.2. Geometric Distance Based Methods

2.5.2.1. Fitting Primitives based Segmentation

Attene et al. proposed a clustering scheme in [67] which made use of different primitives as

metric to decompose a mesh model into parts. The algorithm was a variation of the hierarchical

face clustering (HFC) method which was fully described in [87]. The HFC algorithm was used to

cluster the polygonal surface in a hierarchical structure. By introducing different sorts of

predefined shape primitives (i.e. fitting plane, fitting sphere, fitting cylinder), Attene's algorithm

divided the mesh model into several parts.

The general procedures of HFC algorithm are described as follows:

1. Constructing the dual graph of a mesh model. In the dual graph, each node will

correspond to a face cluster, which is a connected set of faces that have been clustered

46

together. For the initial dual graph, each cluster contains a single face of the mesh

model. And these clusters will form the leaves of the hierarchy.

2. Performing an edge contraction in the dual graph (see Figure 2-10) which merges two

dual nodes into one. Repeat this step until only one node left, which can be viewed as

the root the hierarchical structure. In order to construct a complete hierarchy, each dual

edge is assigned with a “cost” of contraction. And the system will iteratively contract

the dual edges of least cost.

Figure 2-10 Dual Graph

There are many different HFC algorithms which vary in different edge contraction metrics.

Garland et al. adopted planarity as the primary criterion in [87]. They proposed three distance-

metrics, which are Plane Fitting metric, Orientation Bias metric and Compact Shape Bias metric,

to define the criteria in the dual edge contraction process.

First, they made use of Least Squares Fitting
3
 to find out the best fit plane for a given set of

cluster. Assume the best fit plane for a cluster set is represented as (,)n d , where n indicates the

unit normal of the plane and d is a scalar value. The fit error metric is defined as:

3
 Least Squares Fitting is a mathematical procedure for finding the best-fitting curve to a given set of points

by minimizing the sum of the squares of the offsets of the points from the curve.

47

1

1
()

k
T

fit i

i

E n v d
k 

  (2.5.1)

where
T

in v d indicates the distance from point
iv to the plane.

In order to further improve the clustering accuracy, Garland et al. proposed an Orientation

Bias metric to distinguish local surface area, which may have dramatic normal change within a

local region. The Orientation Bias metric was designed as:

21

(1)T

dir i i

i

E w n n
w

  (2.5.2)

where
iw was the area of faces

if , and i

i

w w was the total area of the face cluster,
in

indicates the unit normal of each face. This metric was used to measure the average deviation of

the plane normal n from the surface normal
in .

They also proposed a Compact Shape Bias metric to reduce the irregularity of the clustered

shape, which aimed to improve the cluster to be as nearly circular as possible. Given a cluster

with area w and perimeter  , the irregularity of the cluster was defined as a ratio of its squared

perimeter
2 to its area w :

2

4 w





 (2.5.3)

The irregularity of a circle is 1  ; larger value of  correspond to more irregular regions.

The definition of irregularity is widely used in image processing [79]. Given two set of clusters

1c and
2c to be merged together, the Compact Shape Bias metric is defined as:

48

 1 2max(,)
1shapeE

 


  (2.5.4)

where  is the irregularity of the new cluster which is merged from
1c and

2c .
1 and

2 are the

two irregularities of
1c and

2c respectively.

Finally the distance metric used in HFC algorithm is defined as:

 1 2fit dir shapeE E E E    (2.5.5)

where
1 and

2 are constants which are used to evaluate the importance of different aspects.

These two values must be chosen by the user.

In general the metrics used in different HFC algorithms can only produce patch-based

segmentation results, rather than part-type segmentation results. Surface patch has no volume

information which cannot be used to define meaningful parts. Attene et al. further introduced

several fitting primitives (fitting sphere, fitting cylinders) as references in part-type segmentation.

However, there are some limitations in part-type segmentation using the predefined fitting

primitives. Firstly, the fitting primitive based method cannot determine the exact number of

meaningful parts. There is no such detection process in HFC related work. Second, although

some new fitting primitives were introduced, such as spheres or cylinders, the segmentation

boundary is normally irregular which does not fit in the shape structure in the local regions.

2.5.2.2. Fuzzy Clustering

Katz et al. proposed the fuzzy clustering algorithm in [66], which produced hierarchical tree

structure segmentation result from coarse to fine. Each node in the hierarchy tree was associated

49

with one part of the mesh, which was constructed by several smaller patches. And the root node

was associated with the whole mesh model.

A key idea of the algorithm is to find out meaningful components while keeping the

boundaries between the components fuzzy. Then the algorithm focuses on the small fuzzy areas

to determine the exact boundaries which go along the features of the mesh model. In the

recognizing of fuzzy components process, the condition that every face should belong to exactly

one patch is relaxed, and fuzzy membership is allowed. In essence, this is equivalent to assigning

each face a probability of belonging to each patch.

The fuzzy clustering algorithm contains four stages:

1. Constructing a dual graph (see Figure 2-10) from the existing triangle faces and

computing the distance for all pair of faces in the mesh.

2. Finding out the initial representative faces which define the number of parts to be

segmented. And then computing the probability for each face that belongs to each part.

3. Computing a fuzzy decomposition by refining the probability values using an iterative

clustering scheme.

4. Constructing the exact boundaries between each part.

Figure 2-11 Fuzzy Clustering Method Example from [66]

50

Figure 2-11 is an example of fuzzy clustering algorithm. Figure 2-11.a displays the

probability distribution over a cat model. Figure 2-11.b is the fuzzy decomposition result, where

the red region is uncertainty region. Figure 2-11.c is the final result after region merging and

boundary extraction.

Katz made use of geodesic distance as metric to compute the probability for each face. The

geodesic distance between any two adjacent faces (,)i jDist f f was defined as the geodesic

distance of the centers of mass in two faces. Regards to the dual graph of the mesh model, which

was constructed in the first step of Katz's algorithm, the geodesic distance between two adjacent

faces can be considered as the arc which connected the dual vertices (two adjacent faces in the

mesh model) in the dual graph.

Assume there are two representative faces:
AREP and

BREP , which define the number of

patches. By defining the initial representative faces in the second step of the algorithm, one can

compute two geodesic distances (,)
if i Aa Dist f REP and (,)

if i Bb Dist f REP , for each face

if . The probability of
AREPif  is defined as:

(,)

()
(,) (,)

i

i i

f i A
A i

f f i A i B

a Dist f REP
P f

a b Dist f REP Dist f REP
 

 
 (2.5.6)

For two patches only based clustering, the probability that face
i Bf REP is1 ()A iP f .

It is difficult to find out how many parts that a mesh model should be decomposed to. Katz

et al. made use of derivative variation to detect the number of parts for mesh decomposition. The

method was proposed as follows:

51

1. Step 1: For each face
if in the mesh, assign a distance value (,)i j id Dist f f ,

where
jf is the rest face candidate in the mesh model.

2. Step 2: At the beginning, take the face
if , which has the minimum distance value, as

the representative face. This is done in order to represent the main “body” of the mesh

model.

3. After step 2, the algorithm runs iteratively to add new faces as the new representatives.

But only the face which has the largest distance value is added.

A new function () min ((,))k i k k iG f Dist REP REP was proposed to detect the minimum

distance between the new added representative and the previous located representatives.

Obviously, this function decreases as more representative faces are added. By monitoring the

derivative variation of the function ()kG f , Katz observed that the number k is the proper position

when the correspondent ()kG f has the maximum derivative value.

The fuzzy clustering algorithm tries to decompose a mesh model hierarchically. However,

this method only divides the mesh model based on the geometric information. It cannot define the

semantically meaningful parts by using this mechanism. Take the human leg segmentation For

example considering the geodesic distance only cannot guarantee the segmentation boundary lies

in the foot ankle region. The time complexity for the shortest path between any two faces
if and

jf computation is
3()O n . The preprocessing takes too much time which makes the algorithm is

inefficient for large models.

52

2.5.3. Semantic-Oriented Methods

To get meaningful pieces segmentation result, the concept of minima rule is used as the criteria in

semantic-oriented methods [30, 88, 89]. The minima rule states that human vision tends to define

areas of minimum negative curvatures, i.e., concave shape areas, as interfaces separating between

mesh model parts [31]. Based on this concept, surface curvature is used as one property of some

distance metric in clustering based segmentation.

Many research works have been done to produce meaningful segmentation result, such as

region growing methods [70, 88, 89], iterative clustering method [90], spectral clustering [71] and

feature point-based clustering [65, 72]. Semantic-oriented methods take special care on the

variation of the surface curvature change.

Probability metric was widely used in many applications. Lai proposed a clustering scheme

[89] which was extended from image processing [73], in his random walks algorithm. For a given

face
if , and its neighbors ,i kf where [1,2,3]k  , a function:

 1 , ,(,) (1 cos((,)))i i k i i kd f f diheddral f f  (2.5.7)

 is used to measure the curvature between two triangles. The overall difference between
if and

,i kf is computed as:

1 ,

,

(,)
(,)

i i k

i i k

d f f
d f f

d
 (2.5.8)

where d is the average edge length of face
if .

Given this difference function on hand, the probability distribution is computed as:

53

,

, ,

(,)
| | *exp

i i k

i k i k

d f f
p e



 
  

 
 (2.5.9)

where
,| |i ke is edge length of the correspondent shared edge between face

if and
,i kf . And  is a

threshold to control the variation of probability via the difference function. The difference

function
,(,)i i kd f f can be considered as the implementation of minima rule.

Figure 2-12 is a segmentation result example from [89]. The black dots in each part are the source

points which are used to compute the probability for each part. This picture shows that the

probability metric is useful in part-type segmentation. However, regards to the implementation of

minima rule, the result still need further improvement. For example the boundaries among

different legs are not properly defined (see Figure 2-12). Because the segmentation result does

not follow the curvature property of the mesh model, it is very hard to use this segmentation

result to generate skeleton due to the inaccuracy problem. Also in Lai's work, the convex and

concave distance is manually assigned with different weights, which is not a natural way to define

the difference between two adjacent faces. Besides, according to the segmentation results

comparison, we notice that the segmentation result is sensitive to the location selection of seed

points.

Figure 2-12 Segmentation Result using Random Walk method [89]

54

Pottmann introduced the isophotic metric in [1]. The isophotic metric was widely used in

surface-type segmentation. This is because the length of a surface curve is not just dependent on

the curve itself, but also on the variation of the surface normal along it. Pottmann considered the

field of unit normal vectors ()n x attached to the surface points x S as a vector-valued image

defined on the surface. One can map each surface point x to a point (,)fx x wn in
6R where

w denotes a non-negative weight, whose magnitude regulates the amount of feature sensitivity

and the scale on which one wants to respect features [88]. Thus S is associated with a 2-

dimensional surface
6

fS R .

According to Pottmann’s definition, the isophotic metric distance between two points p and

q on a surface is depended on the path , which connects these two points on the surface. And

the isophotic metric is defined as the arc length differential as:

*

*(,)d p q ds w ds
 

   (2.5.10)

where ds is the arc element of  ,
*ds is the arc element of

* ,which is the Gaussian image of

 , and 0w  is the weight of the isophotic components.

Ji [88] further extended the isophotic metric as:

*

* *(,) ()Dd p q ds w ds w f k ds
  

     (2.5.11)

where Dk is the normal-section curvature in the direction tangent to the path  , f is a function

of curvature and
*w is the weight of the curvature metric. The curvature component in Ji's metric

can be considered as an implementation of minima rule over the surface domain.

55

Based on the sketched line guidance, Ji [88] made use of this metric to segment the mesh

model into two parts. He defined a segmentation algorithm to divide a mesh model into two parts.

One part was considered as the background, whereas another was considered as foreground. More

precisely, it is a clustering process, which measures the surface curvature changes to decide

whether a surface triangle is selected into foreground group or background group. Figure 2-13 is

an example of the segmentation result. As shown in Figure 2-13.a, Ji sketched two lines: a green

line, which is a foreground reference, and a red line, which is a background reference. The finger,

which is painted in purple, is the isolated foreground part. Also Ji applied a snake algorithm to

smooth the boundary, which is shown in Figure 2-13.b. The yellow curve is a reference, which is

used to indicate the region where the snake algorithm will be used. Figure 2-13.c is the final

segmentation result of a hand model.

Figure 2-13 Segmentation Result using Isophotic Metric [88]

2.5.4. Summary

Segmentation based methods are used to decompose a mesh model into meaningful parts.

Geometric distance based segmentation methods, such as [67] or [66], do not consider the surface

curvature features, which may result in undesired segmentation results. Later, the minima rule is

introduced in surface-type segmentation [30]. But those segmentation methods are too sensitive

56

to the surface curvatures, which may result in over-segmentation problem too. To obtain

meaningful parts, Lai et al. proposed a part-type segmentation method in [89]. By considering the

surface curvature features, such as the dihedral angle between surface triangles, Lai et al.

obtained meaningful segmentation parts. We notice that the segmentation result is sensitive to the

selection of seeds. Ji et al. also proposed a surface segmentation method, which utilize the

minima rule to decompose surface mesh. In order to obtain meaningful segmentation parts, which

are used to construct skeleton, we need to come up with a segmentation method which can avoid

over-segmentation issue and also be able to generate smooth segmentation boundaries.

2.6. Introduction to animation related work

2.6.1. Linear Blend Skinning Method

Traditional hand-drawn animation requires drawing each frame of an animation explicitly.

Computers may be used to reduce the labor work by providing a degree of automation. Animating

characters, such as human or animal models, is a particularly demanding area. This is because

that most of the existing movies or cartoons require lots of human or animal motions to describe a

story. A convenient way of specifying the motion of characters is through the movement of an

internal articulated skeleton from which the movement of surrounding polygon mesh may then be

deduced. With regards to the animation framework, there are two major technologies:

1. Linear skinning techniques,

2. Mesh deformation techniques

There are many different linear skinning techniques, such as Skeletal-Subspace Deformation

(SSD) [13], Animation Space [15] and Multi-Weight Enveloping (MWE) [91]. Jacka et al. [14]

proposed a survey to discuss the difference among those methods. In our implementation, we just

adopted the original Linear Blend Skinning (LBS) method to perform skeleton-driven animation.

57

LBS technique is the simplest and most widely used method for calculating animations in real-

time. It was not originally published but is described in papers [13, 15, 92, 93] that look to extend

and improve it. The LBS method defines the final position of a point in a mesh model as a

weighted linear combination of the initial state of the point projected into several moving

coordinates frames, one frame for each bone[94]. The position of a point
'p after deformation

can be written as:

'

1

n

k k

k

p w pM


 (2.6.1)

where p is the initial position of a point,
kM is a transformation matrix that transforms bone k

from its initial position to current new position,
kw is the weight of point p relative to bone k ,

and n is the number of bones which are associated with point p . To obtain reliable deformation

result, careful choice of weights
kw is needed; otherwise, self-intersections might occur near

joints located regions.

2.6.2. Laplacian Mesh Deformation

The LBS technique suffers from the self-intersection problem. We adopted a differential

coordinates based deformation system to ease the self-intersection problem. The differential

coordinates system is an approach for detail-preserving deformation. The differential coordinates

are defined by a linear transformation of the vertices in the mesh. This allows the reconstruction

of the edited surface by solving a linear system that satisfies the reconstruction of the local details

in least square sense. There are many approaches based on differential coordinates system. One

approach is by using Laplacian coordinates [6, 7]; one is based on Poisson equations [8]. Also

58

harmonic field analysis been proposed in [95] for surface deformation. Here is a general

definition of differential setting:

2u f  (2.6.1)

If 0f  , the equation is Laplace equation; If 0f  , the equation above is called Poisson

equation.

Differential surface deformation was inspired by gradient domain image manipulation. It has

been noticed that the gradients of image intensity function contains important visual information

that humans are sensitive to; many image techniques exploit this fact by applying certain

manipulations to the input image gradients g I , and then reconstruct the resulting image by a

global optimization process that looks for an image 'I whose gradients are as close as possible to

the modified gradients 'g :

2

'

' arg min ' '
I

I I g dxdy


   (2.6.2)

where  denotes the domain of the image manipulation.

The simplest form of differential coordinates is the Laplacian coordinates. The powerful

properties of local frames have been exploited in recent years. Taubin [96] derives a discrete

mesh fairing operator that is applied to model smooth surfaces. Karni and Gotsman [76] take

advantage of this extension of spectral theory to arbitrary 3D mesh structures for progressive and

compressed geometry coding. Lipman [7] proposed a Laplacian coordinates representation of

mesh, which lead to efficient, interactive and intuitive shape modeling include local control and

detail preservation.

59

The basic definition of the mesh Laplacian operator is described as follows: Let

(, ,)M V E F be a given triangle mesh with n vertices, where V denotes the set of vertices, E

denotes the set of edges and F denotes the set of faces. Each vertex i M is conventionally

represented using absolute Cartesian coordinates, denoted by (, ,)i i i iV x y z .

First, the differential or coordinates  of
iv is defined to be the difference between the

absolute coordinates of
iv and the center of mass of its immediate neighbors in the mesh.

()

1
(, ,)x y z

i i i i i i

j N ii

v v
d

   


    (2.6.3)

where { | (,) }iN j i j E  and ()id N i is the number of immediate neighbors of i (the

degree of valence of i). See Figure 2-14 for illustration.

In Figure 2-14, the vector of the differential coordinates at a vertex approximates the local

shape characteristics of the surface: the normal direction and the mean curvature.

()

1
()i i jj N i

i

v v
d




  is a discretization of the curvilinear integral:
1

() ()
| |

i
v

v v dl v
 



where  is a closed simple surface curvature around v (as shown in the circled region in the right

side of Figure 2-14) . iv is the red point as shown in the left side of Figure 2-14, and jv are vertex

which share one edge with vertex iv .

According to Sorkine’s explanation in [68], it is known from differential geometry that

| | 0

1
lim () () ()

| |
i i i

v
v v dl v H v n

  
   (2.6.4)

60

where ()iH v is the mean curvature at iv and in is the surface normal. Therefore, the direction of

the differential coordinate vector (the left yellow arrow in Figure 2-14) approximates the local

normal direction (the right yellow arrow in Figure 2-14). And the magnitude approximates a

quality proportional to the local mean curvature. Thus, the differential coordinates encapsulate the

local surface shape.

Figure 2-14 Differential Coordinates from [6]

Given the differential coordinates , ,x y z   of the mesh, the absolute coordinates of the

mesh geometry can be reconstructed by solving the system
xMx  (the same goes for y and z

coordinates). The procedure of using Laplacian operator to achieve mesh deformation can be

classified into the following steps:

1. The Laplacian coordinates are constructed through Eq-(2.6.3). According to the mesh

connectivity, adjacent matrix A and diagonal matrix D are constructed first, where

1, (i,j) E

0, otherwise
ijA


 


 (2.6.5)

And
iiD is the valence of each vertex i in the mesh. We get relative coordinates from

the following formula
1L D A  or Ls D A  .

61

2. When we get L or Ls matrix, we compute the coordinates  for x, y, z

respectively, through the following formula:

()xLx  (2.6.6)

3. Since we get the coordinates  , we add constrained vertices positions into L

matrix, and deformed value for x, y, z to the right side of  vector. The computation

of x, y, and z is carried on through the following formula:

()

1:| 0

x

m m m

L

I C



 

   
   

   
 (2.6.7)

The weight  is used to tweak the importance of the positional constraints.
1:mC

indicates the handle vertices value in corresponding direction (i.e. x, y or z).

2.6.3. Summary

In this section, we introduce two deformation methods that we will adopt in our skeleton

extraction system. The LBS based method is fast and efficient, which is widely used in real-time

animation applications. However, the deformation results may have self-intersection problem. To

handle this issue, we further introduce a Laplacian mesh deformation framework to perform the

deformation tasks. The Laplacian mesh deformation method preserves the surface details in the

deformation process. However, such a method cannot preserve volume information during the

deformation process. Thus to maintain rigid deformation result, we make use of LBS result as the

positional constraints to get our desire deformation results.

62

Chapter 3

3. Research Goals, Challenges and Proposed Solutions

3.1. Goals and Challenges

Our target is to design an interactive skeleton extraction system. Within this system, a user can

draw freely on a mesh model, and the system will generate the skeleton automatically according

to his/her sketched lines. After the skeleton extraction, we also allow the user to make use of

sketching as manipulators to perform skeleton-driven animation task. The key idea is to let non-

professional users produce animation easily.

To achieve those goals that we mentioned above, there are several challenges that we need to

overcome. First, we need to extract user’s intention from their drawings. As we allow a user to

draw freely on the mesh model, it is not a good idea to make use of those sketched lines directly.

The reason is that a user’s drawing may contain duplicate sketched lines or the sketched lines

have unclear topology specification, such as a sketched line may contain great curvature changes.

If a sketched line contains some large curvature changes, we need to divide this line into several

line segments from those positions where large curvature changes occurred. In general, we need

an algorithm to analyze the user's input and clarify the user's intention. With regards to the user’s

intention extraction, we have to solve the following problems:

1. Sketched line projection issue: To construct a sketched line in 3D, we need to detect the

intersection regions between an orthogonal projection line and the mesh parts. However

the intersection regions are sensitive to the selection of view point. Inappropriate view

63

point may result in wrong intersection region selections. We need a method to guarantee

the projection quality.

2. Similarity check for duplicated drawings: If the new sketched line is similar to some

existing sketched lines, we cluster the new sketched line with the existing similar lines

together. If we do not merge similar sketched lines together, and make use of the

triangles as the independent seed triangles, we cannot obtain correct segmentation

results.

3. Topology check for sketched lines: If the sketched lines contain large curvature changes,

we need to break apart the sketched lines. Large curvature changes indicate the

topological changes for a sketched line. If we do not divide the sketched lines into parts,

we cannot get the right segmentation result. Thus our skeleton may lack joint

specifications in the regions where this sketched line is located.

Second, we need to find out a solution to create a skeleton from both a user’s drawing and

the mesh model itself. The skeleton should contain meaningful topological structure and well-

positioned joint position specification. So, in our skeleton extraction solution, we need to find a

way to calculate the joint positions. After the skeleton extraction, we also need to verify the

correctness of the skeleton. We need to find out a metric to measure the correctness of the

skeleton with the help of its correspondent mesh model.

In our method, we have proposed two metrics to measure the quality of a skeleton: the

smoothness of all bones, which reflects the curvature quality of the skeleton; the quality of skin

mapping, which is used to check the quality of a skeleton in the animation aspects.

3.2. Proposed Solutions

This thesis divides the whole problem into three major categories:

64

1. Sketching Analysis, which is used to analyze the user’s input and find out the user’s

intension from his drawing.

2. Skeleton Extraction, which is used to create the skeleton.

3. Skeleton Validation, which is used to evaluate our result.

We allow the user to sketch freely on the mesh model. Thus the user’s drawings are

inevitable to contain mistakes, such as some lines may contain large curvature change, which

should be divided into several shorter lines. We need a system to reduce those mistakes and

collect the user’s real intention on the topological definition of the skeleton. We proposed to

handle those issues using the Douglas-Peuck (DP) algorithm. We use this algorithm to detect the

curvature change and break sketched lines into several parts.

In our system, we assume that a user will properly sketch lines by roughly following the

mesh model structure. The user is expected to sketch independently on different regions of a

mesh model for creating separate bones. For each sketched stroke, we project it onto the mesh

model so that it locates inside the correspondent mesh region from the current viewer perspective.

We call this projected stroke a sketched bone.

Skeleton extraction is much more complicated than the sketching analysis part. We need to

create a skeleton based on the guidance of the user’s drawing. The skeleton should contain well-

positioned joints specification, which defines the topological bone connection relationship.

Furthermore, we want to specify the geometric position of the joints clearly via a segmentation

preprocessing. To extract the topology feature of a mesh model, it is worth to divide the mesh

model into several meaningful pieces. Also we notice that the minima rule has already been

applied in several surface-type segmentation methods [30, 88]. The minima rule states that human

divides 2D shapes into parts at negative minima of the principal curvatures; it divides 3D shapes

into parts at negative minima of the principal curvatures. The boundaries from minima rule based

65

segmentation methods locate at those regions which have negative principal curvatures. Those

boundaries divide a mesh model into meaningful pieces, and we can use the center of those

boundaries as the joints positions of our skeleton model.

A sketched bone provides important information: the triangles, which come from the

sketched bone associated surface, and the topology feature of the sketched bones. We divide the

sketched bones, which contain large curvature changes, into several line segments; we merge the

sketched bones, which have similar topology features, to be one single line. We will give full

description in Chapter 4. After these processing, the rest of the sketched bones are called

reference bones. The number of reference bones defines the number of parts to be decomposed.

The triangles from each reference bone define the initial seeds for mesh segmentation purpose.

Also the reference bone is used to guide the clustering process.

To construct a skeleton for a mesh model, we need to solve two problems:

1. Mesh segmentation

2. Bone Extraction

We propose to segment a mesh model into meaningful parts. Then we extract bones from

each part and combine those bones to construct the final skeleton for a given mesh model. To

segment the mesh model into meaningful parts, we adopt a region growing based algorithm, in

which the sketched bones and its associated surface information are considered as input in our

algorithm. We extract the bone structure for each part by using LSD method. Finally we merge

the bones from each part and smooth the skeleton to finalize our result.

We use Figure 3-1 to describe the overview of our proposed solutions. The whole skeleton

extraction process contains 6 steps which are described as follows:

66

Figure 3-1 Method Overview

1. Deriving sketched bones – We allow a user to sketch freely on a mesh model. When a

user sketches on the screen, we are able to select the projected
4
 mesh triangles from the

surface by using the function provided by OpenGL.

2. Sketched bones clustering – The sketched bones may contain repeat drawing, or need to

be divided into several straight bones. We need a process to analyze the sketched bones.

Based on the orientation, locality and overlapping properties among sketched bones, we

need to cluster them into different groups.

3. Reference bone construction – We propose to divide a mesh model into several

meaningful parts, the clustered bones need to be merged into one reference bone.

During this process, we need to keep two important factors: the topology feature of

4
 The selection may involve redundant surface data. For example, the project function may pick more than

two set of data during the penetration based selection. We only need the first one or two set of surface

triangles. This can be done by filtering the triangles with some depth value, in which the depth value are

recorded from the screen to the selected triangles.

67

reference bone and the seed triangles which are associated with all the clustered

sketched bones.

4. Mesh segmentation – We take the reference bones and seed triangles as the input and

perform a multiple-region growing segmentation algorithm to segment a mesh model

into parts. Each region is defined by a reference bone and its associated seed triangles.

5. Skeleton extraction – We make use of LSD method to extract bones for each part. Each

segmentation part contains a set of segmentation boundaries. The center of those

boundaries is the ideal position for a joint. For each boundary, we use the center of a

boundary as the starting point to compute a set of level set diagrams. By linking the

center of those level set diagrams together, we construct a bone from one boundary.

6. Skeleton construction – We connect all the bones together if any two bones share the

same boundary. And the joints are those which are located in the boundary regions. The

bone that we extracted from using LSD method may contain distortions due to the

surface details variation. We also need to smooth the extracted bones. If there are many

boundaries in a segmentation part, we need to merge bones together to construct the

final skeleton structure within one segmentation part.

We make use of the following picture to describe the process of our system:

Figure 3-2 Skeleton Generation Process

68

When a user sketches several stokes on the mesh model, our system will first cluster the sketched

bones and merge each group to construct reference bones. Each reference bone is marked with

one unique index number. From each reference bone, we collect a set of triangles as segmentation

seeds, those triangles are indexed with different group number which is the same as their

correspondent reference bone number. We perform region growing algorithm from those seed

triangles. After the segmentation process, we extract bones from each segmentation part and

connect them together to create the final skeleton. During the skeleton extraction process, we also

include bone smoothing operations to eliminate the distortions from the LSD algorithm.

3.3. Evaluation Method

Cornea et al. described a set of desirable curve-skeleton properties in [50]. They have considered

the following properties: invariant under isometric transformations, reconstruction, thinness,

centeredness, reliability, smoothness, component-wise differentiation, robustness, efficient to

compute and hierarchic. Most of those properties are analyzed based on discrete 3D model. And

these properties are summarized from a number of different applications of curve-skeletons in

computer graphics and visualization.

We try to evaluate our method by doing some quality and quantity analysis on our skeleton

results. As we mentioned, Cornea et al. have summarized 11 types of properties in the evaluation

of discrete model based curve skeleton. Our skeleton model is constructed from segmentation

result which has the well-positioned joint specifications. We want to evaluate the properties

which are highly related to animations. We expect to evaluate the correctness of a skeleton from

the following aspects: Smoothness of bones and Skin mapping

Smoothness: The smoothness of a bone will affect the skeleton-driven animation result. For

example an unsmoothed bone will result in large distortion in a bending process.

69

Skin mapping: this property reflects the relationship between bones and mesh model

surface information. Irregular skinning association will result in bad animation result because of

the undesired distortion on the mesh model. We build up a mapping relationship between surface

data (triangles or vertices) and the joints inside a bone by clustering vertices or triangles to their

nearest joints.

There are some properties that we can analyze, such as the centeredness. However, such

properties are hard to represent in mathematical manner. We can still discuss those features of our

skeleton. But more importantly, we are interested in the quality analysis of the animation relation

aspects. Also there are some other properties that we do not consider in our skeleton evaluation

criteria. This is because that some of the criterions are defined for special purposes, such as the

criteria for reconstruction purpose; some of the criterions are defined to method dependent such

as the criteria to check the thinning quality some of the features have no problem in surface mesh

based skeleton extraction methods. For example by using LSD method with geometric distance

computation, our skeleton is always invariant under isometric transformations.

70

Chapter 4

4. Sketching Analysis

4.1. Introduction

In this chapter, we will discuss our sketching related work. It includes three major processes:

1. Deriving sketched bones

2. Sketched bones clustering

3. Reference bone construction

It is difficult to allow a user to draw 3D lines directly in a model. A user can only sketch on

a 2D screen. We make use of projection technique to derive the 3D sketched bones from his 2D

sketched lines. However, the user’s drawing may contain duplicated sketched bones or some

sketched bones may need to be divided into several parts. To clarify the user’s intention, we need

an algorithm to cluster similar sketched bones into one group. Within a sketched bone group, we

create a reference bone, which is a combination of all the sketched bones in the group. Also we

need to collect all the surface associated data (we use triangles in our experiment) for each group.

We will use those triangles as seeds in our segmentation process, which will be discussed in

Chapter 5.

We allow the user to draw freely, which is used to express the topological structure from the

user's point of view. We provide skeleton modeling and real time editing during the sketching

process. The major contributions of this part of the thesis are listed as follows:

1. We introduced a new algorithm to derive sketched bones in 3D space. By analyzing the

71

surface normal variation of sketched region and the distance variation between

projections, we can create stable sketched bones.

2. We proposed a smoothing algorithm to eliminate the distortions from both user

sketching and incorrect surface projection.

3. We proposed an algorithm to detect the user's drawing topology. This algorithm can

detect whether we need to break down the sketched bone into several bones due to the

topology property change.

4. We made use of three properties to cluster the sketched bones into different groups.

They are the locality, the orientation and the overlapping. Based on those properties, we

clustered the sketched bones into different groups.

4.2. Deriving Sketched Bones

Our work is challenging because we take non-trained user sketching as input. Hence, the input

may contain mistakes. In addition, although many methods have been developed to produce

suitable joints when performing automatic skeleton extraction, a perfect solution is still not

available. A typical way to address this problem is by applying local minima together with certain

distance constraints [21] to build the skeleton, but the result is sensitive to local features or noise.

Recently, [18] adopts the Harmonic function to produce better joints. However, it relies heavily

on the existence of mesh model symmetry.

4.2.1. Problems Analysis in Deriving Sketched Bones

A sketched bone represents the topology feature within the mesh part that the sketched bone is

located at. Thus a sketched bone should be smooth, and roughly like a straight line segments. To

get such a sketched bone, we need to solve the following problems:

72

1. Projection problem

2. Topology problem

3. Smoothness problem

A user can roughly draw some strokes on a 2D screen. In order to get 3D sketched bones, we

need to project those 2D strokes into 3D space. Also some strokes may contain large curvature

changes; we need to check those sketched bones whether we need to divide those bones into

several parts. To eliminate the distortions from projection process, we also need to perform

smooth operations to the final sketched bones.

We project user’s strokes into a mesh model to construct sketched bones. An example of

such method can be found in [47], in which sketched bones were created from two projected

layers of a given mesh model. The sketched bone was created by linking an ordered set of points

which were the center points of back and front layers as shown in Figure 4-1.

Figure 4-1 Sketched Bone Projection

Figure 4-1 describes the way to create a sketched bone inside a mesh model. From the

viewpoint, a user sketched a stroke on the screen, which is indicated using green dots. During the

projection, each green point will pass through a mesh model with two interaction area, which is

marked as the blue line segments. For each projection, we can obtain a central point is . By

73

linking those ordered points{ | 1,..., }is i n , we finally create a sketched bone inside the mesh

model. Point a and point b are the two end points for a sketched bone.

We make use of orthogonal projection to construct sketched bones. Figure 4-2 is an example

of using orthogonal projection method to construct a sketched bone. A user sketches a 2D line

(the red line at the bottom of Figure 4-2). This line contains a set of points, which is marked as

green dots. We project each green dot inside the mesh part. Each projection contains two

intersection regions, which are marked by blue line segments. The middle point (red points) of

these two intersection regions is one of the joints which are used to construct a sketched bone.

However, we cannot guarantee the result due to some regions like the projected region is irregular

or the viewpoint is not set properly. Figure 4-3 is an example of unstable result, where the

sketched bone is created using two interaction areas. Thus for each projection, we also store the

distance d between two intersection regions. This distance is used to monitor the quality of the

projection. Given a list of d , if the value contains great change in some position, we need to

remove those projections. The reason is obvious, if the projection contains large distance change,

it means that the topology has great change within that region. We use Figure 4-3 to illustrate this

situation.

74

Figure 4-2 Our Projection Method

Figure 4-3 Projection Problem

Figure 4-3.a displays the projection result for a single stroke. The green color indicates the

intersection region on the surface. And Figure 4-3.b is the enlarged picture for the front

intersection region. The red region in Figure 4-3.c is another intersection region, which is behind

the view of a user. To display the intersection region behind the view, we view the intersection

result from the viewpoint above the shoulder. The black line is constructed by using a set of

75

ordered points (see the red points in Figure 4-2). The point is the center of two intersection

regions (see the blue line segments in Figure 4-2). If we do not monitor the distance (see the

dotted green line in Figure 4-2) between the two intersection regions, we may get a wrong

projection as shown in the black line in Figure 4-3.c.

4.2.2. Solutions to Derive Sketched Bones

To handle the problem as illustrated in Figure 4-3.c, we designed an algorithm to eliminate wrong

projections in the sketched bone construction process. For each point p in a sketched bone, we

store a distance d (see the virtual green lines in Figure 4-4) between the two intersection regions

(see the blue line segments at the end of each dotted green line in Figure 4-2) which are used to

create p . We compute an average distance d from all the points in a sketched bone
5
. Given a

point p , if the distance d d , we remove the back-layer (the red line segment in Figure 4-4)

from point p , and recomputed the location by using the front layer and the distance d .

5
 We summarize the length of all the virtual green lines in Figure 4-4 and then divide by the number of

points in the sketched bone to obtain the average distance length d .

76

Figure 4-4 Projection Optimization

We depict the 3D drawings from the following steps:

1. First, we let the user to choose a suitable view coordinate to display the mesh model.

The “suitable view coordinate” that we described here is the one which can display the

maximum topology information in the view windows. See Figure 4-5.a for illustration.

2. Second, we propose an algorithm to compute the sketched bones in 3D. When a user

sketches on the 2D screen, the sketched line contains a set of ordered points (see the

green dots in the bottom of Figure 4-4). For each green dot, we use orthogonal

projection to find a proper position (the red dots in Figure 4-4) inside the mesh model.

After collecting the surface information (the intersection regions which are marked by

blue line segments) from each projection, we compute the middle point of the surface

information which makes the created point lies in the center of two intersection regions.

We connect all the points in sketched order to construct the final 3D line (the brown line

in Figure 4-4).

3. The sketched bone that we construct from last step cannot guarantee the correctness of

77

the sketched bone in 3D (see Figure 4-3). The projection selection from one view point

coordinates may not reflect the real shape structure. In our system, we developed an

algorithm to solve the problem. We monitor the distance variation between the two

intersection regions which are collected from each projection (see the blue line

segments in Figure 4-2). We remove the second layer from those projections whose

distance between two layers is larger than average distance value (see the red line

segments in Figure 4-4).

The sketch projection is sensitive to the viewpoint. We assume a user can find out the most

suitable viewpoint to display the mesh model. Figure 4-5.a is a result of suitable viewpoint,

whereas Figure 4-5.b is a result of non-suitable viewpoint. We assume the user can choose a

suitable viewpoint which can display full topology features for a given mesh model.

Figure 4-5 Viewpoint Examples

We use the following steps to find a suitable distance:

1. Given a list of distance value []ds n , we initialize a list []ref n , which is used to record

the number of similar distance for each value []ds i , 0 i n  .

78

2. For each []ds i , we first set a reference value []i

refd ds i  , where  is a threshold to

represent the error tolerance in the distance picking. if
i

ij refM d  , we increase the

number of []ref i .

3. By checking the index of the largest value in []ref n , we find out a suitable distance to

eliminate the error projections.

4.2.3. Sketched Bone Smoothing

Our sketched bone has the following data structure:

 { , , }s h tL p plist p (4.2.1)

where
1{ ,..., }nplist p p is an ordered list of points,

hp ,
tp are the two ends of the sketched bone

sL .

We make use of an iterative way to smooth the extracted bones. During the smoothing process, we use

two features, namely angle and distance, to measure the smoothness at position i .

Figure 4-6 Smooth Operation

79

Figure 4-6 describes the basic concept of our smoothing algorithm. For each point
iv in the

plist of
sL , we measure the angle a , which is constructed by the red lines in Figure 4-6, against

a predefined angle tolerance threshold  . If a , we need to move point
iv along the direction

of the dotted green line (as shown in Figure 4-6) with a distance d  , where  is a scalar value

to determine how much a point
iv will be moved, and d is the Euclidean distance from

iv to line

1 1i iv v  . Besides the angle constraint, we also considered the absolute distance constraint in our

smoothing operation. To eliminate local distortions, we check the distance d against a predefined

threshold . For each point
iv , if d  , we perform the smoothing operation at point

iv again.

To avoid unnecessary computation, we also limit the smoothing iteration to 400 times.

4.3. Topology Check by Using Douglas-Peucker Algorithm

Our sketching analysis algorithm contains two independent processes: topology checking process

and similarity checking process. The topology checking process is used to verify the sketched

bone itself whereas the similarity checking process is used to make comparison with existing

sketched bones.

Although a single freehand stroke generally corresponds to one sketched bone, as we allow a

mesh model to be in any arbitrary posture, user sketching sometimes may become ambiguous.

Particularly, a user may sometime sketch a roughly straight stroke on a bended mesh model

region to create a sketched bone as this region may appear straight to the user from his/her view.

In this case, the resultant sketched bone will be bent and should correspond to more than one

piece of bone. On the other hand, as we tolerate imprecise sketching, we accept that a user may

draw a single stroke across some bended regions of the mesh model to express more than one

piece of bone. Hence, we further process the derived sketched bones to resolve the ambiguity

80

problem. At this early stage, we do not intend to analyze the mesh model structure. We merely

take user sketching as the prime factor to trace out separate bones. By doing this, we may also

generate more accurate seeds to the mesh segmentation process to be described in Chapter 5.

Figure 4-7 Douglas-Peucker Algorithm Procedures [97]

We run the Douglas-Peucker (DP) algorithm [98] to process a sketched bone to detect major

curvature changes on the bone. Given that a sketched bone is a polyline with two end points
sp

and
ep , DP identifies point p of the sketched bone which is located furthest from line s ep p and

measure angle
s ep pp . If this angle is smaller than a predefined threshold ang , it divides the

sketched bone into two parts at point p . DP is then run recursively on these two parts. This

method is good at identifying major global curvature changes at any points of a line while minor

curvature changes are ignored. Our objective here is to identify topologically meaningful separate

bones while withstanding minor user errors. We have noted that a user may perceive a mesh

model region comprising separate parts if it bends at an angle roughly equal to or less than 90

degree. To keep this part of preprocessing simple, we use 100ang  as the curvature threshold to

run the DP algorithm. From our experiments, this threshold appears to work well on our tested

81

mesh models. Figure 4-7 is an example of running DP algorithm, which comes from [97]. The

idea of using DP algorithm is to detect great curvature change globally, which provides

suggestion on whether we need to divide the sketched bones.

Despite the usage in sketched bone checking, we can use this method in our skeleton

optimization process. If one bone contains large curvature change, we can use this method to

divide one bone into several parts.

Figure 4-8 DP Algorithm in Skeleton Construction

We use Figure 4-8 to describe the functionality of our DP algorithm. Figure 4-8.a describes

the user sketching process, where the yellow lines are depicted from user’s drawings. Base on the

reference bones (yellow lines in Figure 4-8.a), we segment
6
 a mesh model into several parts. By

running the DP algorithm, we detect that the bones in ankle regions (see Figure 4-8.c region 2,

which is located in red circle region) should be divided into two parts, which is shown in Figure

4-8.c. However, the DP algorithm cannot be used to detect semantic changes such as the problem

in region 1 part of Figure 4-8.c, which is located in blue circle region.

6
 The segmentation process will be discussed in Chapter 5.

82

4.4. Problem Analysis on Reference Bone Construction

We designed a sketching analysis algorithm to extract the user's intention from his/her drawing.

In contrast to most of the existing sketch-based platforms, which provide button-based interface

to perform editing process, we allow a user to modify their drawing by placing a duplicated

drawing. And our system will merge those duplicated drawings to be one sketched bone.

Based on the location of sketched bones, we classified sketched bones into three different

types: adjacent neighborhood, overlapping neighborhood and fake adjacent neighborhood. The

adjacent neighborhood type refers to sketched bones which define a connection relationship (see

Figure 4-9.a). The overlapping neighborhood refers to sketched bones which indicate the same

topology definition within the same region (see Figure 4-9.b). The fake adjacent neighborhood

type refers to sketched bones which are close to each other in geometric locations but logically

indicate two different regions (see Figure 4-9.c).

Figure 4-9 Different Relationship among Sketched bones

Our sketching analysis algorithm is critical as user sketching can be done from any

orientation of a mesh model. Such flexibility is provided to allow user sketching to be done on a

mesh model with any arbitrary posture, as the user may perceive the mesh model much better by

83

altering the mesh model orientation, e.g., revealing an occluded mesh model part. In addition,

sketched bones are prone to user mistakes. For example a user may produce multiple sketched

bones, which may in some cases overlap each other, to represent the skeleton bone for a particular

region of the mesh model.

The clustering process is done based on three criteria: orientation, overlapping and locality,

which are described as follows:

• Orientation: We first cluster sketched bones into the same group if they form an acute

angle (i.e. 45 ) with each other. This can be done by computing their dot products. In

our experiment, we connect the two joints to form a straight line, and the orientation

difference is measured by the angles between such two straight lines.

• Overlapping: For each cluster, we check if any sketched bones overlap each other from

certain orientation in the 3D space. The exact evaluation function may involve complicated

transformation operations, which are expensive. To simplify the computation, given two

sketched bones, we treat one as the base bone, and the other one as the active bone. We

then identify the closest points on the base bone to the two ending-points of the active line.

If the distance between these two closest points is equal to or larger than 50% of the length

of either line, then we consider the two lines overlapped. This 50% threshold is set based

on our experiments to avoid either over- or under-estimation of overlapped sketched bones.

• Locality: This criterion is a measure to determine whether certain sketched bones logically

correspond to the same region of the mesh model. Here, a simple distance metric is not

applicable, as two closely located sketched bones may correspond to different regions of

the mesh model. To determine the locality for each pair of overlapped sketched bones, we

first extract the middle point of the projected overlapping segment of each of the two

84

sketched bones. For each sketched bone, we create a cutting plane based on this middle

point and the sketched bone direction. By evaluating the intersection between the cutting

plane and the mesh model, we collect a list of neighboring mesh triangles on the mesh

model to the middle point. If the triangle-lists of the two sketched bones have triangles in

common, the two sketched bones are assigned to the same group.

4.5. Summary

In this chapter, we have discussed our method of extracting the reference bones from user

drawings. It involves the followings steps:

1. Deriving sketched bones, which is used to project 2D sketched lines into 3D space;

2. Topology analysis, which is used to check the topology feature of a sketched bone;

3. Reference bone construction, which is used to cluster sketched bones into different

groups.

In deriving sketched bones process, we proposed a projection refinement method to

eliminate the projection errors. To clarify the topology feature of a sketched bone, we also

designed a line smoothing method. As we allow a user to sketch freely on the mesh model surface,

it is inevitable to get some sketched bones which contain large curvature change. We adopted a

DP algorithm to detect the global curvature change for a sketched bone. If there is some large

curvature change in the sketched bone, our method divides the sketched bones into several parts.

To extract a user’s intention from his/her drawings, we also proposed a clustering method to

collect sketched bones which have similar topology features together. We have defined three

features to distinguish different sketched bones. They are namely: orientation, overlapping and

locality. By checking these three features, we are able to cluster the sketched bones into different

85

groups. Thus for each group, we can merge those bones together to construct a reference bone.

Given a group of sketched bones, we pick up two bones for merging which result into a new bone,

and then we pick up one bone from the rest of sketched bones to merge, until only one bone left

in the group. The merging step is straightforward. Assume there are two bones 1b and 2b to be

merged. We find out the overlapping regions 1ov and 2ov for each bone. For each node insides

the overlapping region 1ov , we compute the nearest node in 2ov . We construct a new node by

using the average position of such two nodes. We replace the old two nodes with is new one and

merge the rest of nodes together to form a new sketched bone.

The major objective in sketching analysis part is to clarify user’s intention from their

drawings. In this step, we proposed a set of procedures to construct the reference bones, which

are used in our segmentation process. There are two important elements: the seed triangles and

the geometric locations of reference bones. The seed triangles are those triangles which are

associated with the reference bones. Each reference bone contains a set of triangles which are

collected in the sketching process (see the green and red regions of Figure 4-3). Those seed

triangles are the initial triangles in our segmentation algorithm. The geometric locations of the

reference bones are used to define the distance constraint for our segmentation algorithm.

86

Chapter 5

5. Mesh Segmentation

5.1. Introduction

With regards to the animation purpose, a skeleton should have two major features: well-

positioned joint specifications among different components of a mesh model and reasonable

mapping relationship between joints and surface data (triangles or vertices). The well-positioned

joint specifications can be used to create reliable skeleton-driven animations. For example joint

positions can be used to compute different rotation matrix or translation matrix, which are used in

LBS (Linear Blend Skinning) based animation system. However wrong mapping relationship

between bones and surface data could produce undesired animation results. To avoid undesired

animation results which contain distortions, we need to make sure the mapping relationship

between joints and surface data are correct.

Based on the requirements that we have discussed above, a segmentation based method fits

our needs. First, by running a segmentation process, a mesh model can be decomposed into

several parts. We can extract one bone from a segmentation part such as the leg or arm parts. Or

we can extract multiple bones from one part such as the main body of a human model. The joints

are located at the center of the segmentation boundaries. Because each bone is extracted from one

part only, the mapping relationship between joints and surface data is limited within a

segmentation part. The only problem is to design a segmentation metric which has the ability to

generate meaningful parts.

87

In this chapter, we will discuss the mesh segmentation method that we have adopted in our

skeleton extraction platform. Our segmentation method takes the reference bones, which are

deduced from the algorithm that we have discussed in Chapter 4, as input to decompose a mesh

model.

In order to extract articulated skeleton, we adopt a multiple-region growing segmentation

method to segment a mesh model into parts. Then we use the segmentation boundaries to extract

bones. In this multiple-region growing segmentation method, we make use of reference bones and

the triangles from each reference bone as the input to segment a mesh model into meaningful

parts. Minima rule is a criterion to decompose a mesh model into meaningful parts. By computing

the curvature change between any adjacent triangles, we are able to find the segmentation

boundaries which are used to divide the mesh model into meaningful pieces. However, there are

two problems in the existing minima rule implementations. First, the minima rule is based on the

surface curvature features, which means that the minima rule based segmentation method is

sensitive to the surface curvatures. As a result, the segmentation result may be incorrect due

surface curvature distortion. Second, for those regions which do not have concave features, it is

hard to get the correct segmentation result. This is because there is no criterion to segment a mesh

model in the regions which have no concave features. In this chapter, we will discuss our

segmentation method. The major contribution of our work is that we designed a new

segmentation metric which can produce high quality segmentation results. Thus we can make use

of those segmentation results to extract a well-positioned bone structure for a mesh model.

5.2. Background and related work

Mesh segmentation is a technique for partitioning a mesh model into mesh parts. There are two

types of methods: surface-type and part-type methods. Surface-type methods make use of

88

geometric properties, such as planarity or curvature, to create surface patches, i.e. segments, from

a mesh model. Applications include texture mapping [84], building charts [83] and geometry-

image creation [85]. In general, surface patches created are topologically equivalent to a disc and

do not necessarily possess any semantic meaning.

Part-type methods are rooted in the study of human perception for producing semantically

meaningful mesh parts. A typical method is region growing [99], which uses geometric criteria to

cluster mesh polygons around some selected seed polygons locally. The segmentation results

from such method are significantly affected by the local feature of a mesh model and the choice

of the seeds. To offer better results, hierarchical clustering method [87] treats each mesh polygon

as a separate cluster initially and merges neighboring clusters based on certain criteria recursively.

Alternatively, interactive clustering method [90] searches for the best segmentation for a given

number of segments by allowing iterative seed updating to be performed based on the changes in

cluster characteristics during clustering construction. This explicitly addresses the seed selection

problem. In general, to allow a part-type method to generate much meaningful mesh parts, the

selection of segmentation seeds and segmentation criteria must be done very carefully.

Katz et al. proposed a hierarchical based segmentation method [66] to segment mesh model

into parts. The hierarchical method decomposes the mesh model by computing the probability of

a vertex to different patches which are predefined in their system and then decomposing a mesh

model based on some fixed thresholds. The thresholds are used to define fuzzy regions among

different parts. Based on some predefined distance metric, the fuzzy regions are further divided

into their nearest patches. So the segmentation result depends on the threshold which is used in

their decomposition process.

Lee et al. proposed a segmentation method in [30] which was based on minima rule and part

salience. This method performs well on surface-type segmentation. However, large mesh models

89

usually contain lots of details on the mesh surface, which also known as local features. The

segmentation result using minima rule and salience curvature is highly sensitive to the surface

details. Thus it cannot guarantee the result is semantically meaningful.

Similar to Lee’s work, Ji et al. made use of minima rule to perform surface-type

segmentation in their easy mesh cutting framework [88]. As we notice, there are two important

factors which affect the segmentation result. The first one is the reference seed selection, and

another is the distance metric design. The reference seeds are used to define the number of parts

for a mesh model whereas the distance metric defines the priority for all the segmentation

elements (such as triangles or vertices) in a segmentation process. Ji’s method can only be used in

surface-type segmentation. Rather than performing surface-type segmentation, we prefer to

segment a mesh model into parts.

5.3. Segmentation Metric

Pottmann et al. introduced the isophotic metric [1]. The isophotic metric distance between two

points p and q is defined as:

*

*(,)
 

  d p q ds w ds (5.3.1)

where  is the path between point p and q on the surface, and
* is the Gaussian image of  ,

and
*ds is the arc element of

* whereas ds is the arc element of  . w is the weight for the

Gaussian image of  . A segmentation result, which makes use of this isophotic metric, is shown

in Figure 5-1.

90

Figure 5-1 Segmentation Result from Pottmann’s Method

Pottmann’s metric can distinguish the boundaries which have large curvature changes, such

as the neck region and the waist region shown in Figure 5-1. However, there are some over-

segmentation problems (see segmentation result for leg regions). So, one requirement in the part-

type segmentation is to avoid over-segmentation. We need to limit the segmentation process

within some predefined regions, such as the femur region or fibula region in Figure 5-1.

By considering the curvature in the direction tangent on the path  , Ji et al. proposed an

improved isophotic metric as:

*

* *(,) ()Dd p q ds w ds w f k ds
  

     (5.3.2)

where the Dk is the normal-section curvature in the direction tangent to the path  . f is a

function of curvature, and
*w , w are the weights for the curvature metric and normal metric.

As the minima rule specified, all negative minima of the principal curvatures (along their

associated lines of curvature) form boundaries between perceptual parts. Ji et al. created an

91

augment function ()Df k to enlarge the effect of negative curvature in the improved isophotic

metric. The function is defined as:

, k 0,

()
(| |), k 0,

D D

D

D D

k
f k

g k


 


 (5.3.3)

where ()g x is an augmentation function (i.e.
2()g x x or () xg x e).

The improved isophotic metric from Ji et al. makes use of normal curvature and tangent

curvature information to detect the segmentation boundaries of a mesh model. By augmenting the

negative curvatures, the improved isophotic metric can distinguish the concave regions clearly.

However, it only suitable for surface-type model isolation, where a model is divided into two

parts, based on the surface curvature features. When we use the existing isophotic metric to

handle multiple-region based segmentation, we notice that the existing isophotic metric cannot

produce reasonable segmentation results. There are two problems in using the above metric:

 Local curvature noise, which may affect the segmentation results.

 Uncontrollable result to smooth regions which have no concave curvatures.

92

Figure 5-2 Segmentation Result from Ji’s Method

The segmentation result
7
 from Ji’s metric has some improvement with regards to the over-

segmentation problem. But the over-segmentation issue is not solved properly. From Figure

5-2.b and Figure 5-2.c, we can see that Ji’s metric distinguishes the parts clearly on the region

where large curvature variation occurs. However, if the region between any two mesh parts

contains smooth or flat feature (such as the region between two hands in Figure 5-2.e), the

segmentation boundary is irregular and uncontrollable. This is because those smooth regions will

result in over-segmentation results due to the lack of criteria to limit the segmentation process.

From the segmentation result, we notice another requirement for part-type segmentation metric:

the boundaries for each part should be reliable. If there are concave regions, the boundary should

7
 In the experiment, to make a fair comparison, we have selected a set of proper parameters. (In Ji’s work,

we set the weights for normal and curvature to 0.2 and 0.8).

93

locate in the concave regions. If there is no great curvature change between any two adjacent

parts, the boundary should be reliable.

5.4. Our Segmentation Method

We designed our segmentation metric based on two requirements:

1. The segmentation metric should avoid the over-segmentation issue.

2. The segmentation metric should generate smooth and reliable boundaries.

To avoid the over-segmentation problem, we have let the user to define the number of mesh

parts via his/her sketched bones. We also introduce a distance metric to limit the segmentation

process within some regions, so that we can obtain reliable mesh parts. We make use of the

reference bones for each region as the reference positions to control the segmentation process.

However, the boundary for each mesh part may be not smooth or even contains large variations

for some mesh parts which have smooth regions between any two adjacent regions. Thus to

obtain reliable boundaries, we also consider the boundary curvature change in our distance metric

design.

5.4.1. Curvature and Distance based Segmentation

Before introducing our segmentation metric, let us recall the basic steps of our segmentation

scheme:

1. Defining the source points. Each source point defines a mesh part, which finally

becomes one segmentation part.

94

2. Collecting candidate points and computing the distance for each candidate to the source

points, choose the mesh part which has the minimum distance between each candidate

to its source point as the target mesh part.

3. Sorting the candidates based on the distance value, and performing the segmentation

operation for the candidate which has the minimum distance.

4. Repeat Step 2 and Step3 until all points are processed.

In our experiments, we notice that Ji’s metric cannot generate reasonable result for flat

regions which have multiple branches, such as the waist region of a human model. This is

because there is no criteria to define the segmentation for those regions which have multiple

branches.

On the other hand, the boundary of some semantically distinct segments of a mesh model

may not possess any clear trait to allow them to be distinguished. An example is the thighs and

the legs of the human model used in our experiments, where the knees located between these two

limb parts do not possess clear traits to differentiate the connecting thighs and legs. Consequently,

a direct adoption of the isophotic metric may cause either over- or under-segmentation, leading to

inaccurate skeleton bone extraction. This is because that the metric does not consider the

segmentation situation between two smooth regions (see Figure 5-2.d and Figure 5-2.e).

To address this problem, we modify the isophotic metric [86] as follows:

 1 2 3 4(,) ()N Bd l w ds w D ds w Cds w D l ds
   

        (5.4.1)

where ND is a function to compute the normal vector variation on the surface. C is a function to

evaluate the curvature change along the tangent direction of the surface, which is guided by

region growing direction. ()BD l is a function to measure the distance from the reference bone l ,

95

which helps determine the relevance of a mesh model vertex to a user sketched bone.
iw are

application dependent weights to adjust the contribution of each function in Eq-(5.4.1) where

4

1

1i

i

w


 . ds
 defines the distance between the source region and the element to be clustered.

In our segmentation algorithm, we use triangles as the basic element. Assume
iS is one mesh

part, and t is a triangle which is one of the boundary triangles to be clustered into
iS . ds



defines the distance between triangle t and segmentation set
iS . It is clear that, to obtain a

reasonable segmentation result, we will include the triangle t which has the minimum distance to

its neighbor cluster.

Figure 5-3 is a segmentation result comparison between Pottmann’s method and Ji’s method.

Figure 5-3.a is the result of Pottmann’s method, which only considers ds
 and ND ds


8
. Figure

5-3.b is the result of Ji’s method
9
, in which a horizontal curvature constraint is added. Ji’s method

has some improvements on the over-segmentation issue. However there are two problems which

have not been solved properly. First, over-segmentation issue is still not solved which makes it is

impossible to get a reasonable skeleton from the segmentation result. Secondly, the boundaries

within a high curvature change regions may not correct (see Figure 5-2.b for illustration, where

the boundary is highly affected by the curvature change on the mesh surface).

8
 According to our experiment, we set the weights for ds

 and ND ds
 as 0.3 and 0.7 respectively to

get a better segmentation result. However, the segmentation result is still unacceptable.

9
 To get reasonable result, we set the weights for normal variation and curvature variation as 0.2 and 0.8

respectively.

96

Figure 5-3 Pottmann’s Result vs Ji’s Result

Ji et al. put more emphasis on the curvature issue, so that the segmentation can distinguish

the boundaries which have large curvature changes. However, for smooth regions, where no

sudden curvature changes, there is no criterion to define the clustering orders. As a result, the

segmentation result is uncontrollable (see the arm and leg regions in Figure 5-2). To define the

clustering order in such a situation, we defined a distance constraint ()BD l . If two mesh parts

meet in a smooth region, the curvature and normal changes for the elements to be clustered are

quite small. The distance constraint ()BD l defines the priority of the segmentation for each

element to be clustered into different groups. The element, which has the shortest distance, has

the highest priority in the clustering process. We can see the effect of adding this term in Figure

5-4.a.

We consider the boundary problem as the most important issue. To address this problem, we

apply a modified isophotic metric on the mesh triangle level using the following discrete form of

the equation:

97

 1 2 3 4(, ,) | | (| |) ((,)) (,)p q Bd p q l w p q w Aug n n w Aug C p q w D q l      (5.4.2)

In the equation, we have two triangles p and q . p is a triangle inside one mesh part S ,

whereas q is a boundary triangle outside of S . p and q share one edge. | |p q denotes the

Euclidean distance between p and q , which is computed from the center of those two adjacent

triangles. | |p qn n is the normal vector different between p and q . iw 10
(1 4i ) is the weight

for different components, and
4

1

1i

i

w


 . () xAug x e is an augment function, which is applied

on top of the normal vector variation and the curvature change functions to exaggerate their

effects, since these two factors are critical to our method in order to obtain a better segmentation

result. (,)C p q computes the curvature change between triangles p and q , considering if these

triangles are located in a concave or a salient region. If they are located in a concave region, the

normal vector of either triangle will form an angle of less than 90 degree with the line

connecting the two triangles. In contrast, such an angle will be larger than 90 degree if it is

located in a salient region. (,)C p q is computed as:

 (,) p c cC p q n p q  (5.4.3)

where pn is the normal vector of triangle p .
cp and

cq are the centers of triangles p and q

respectively. c cp q is the normalized vector from cp and
cq . We use (,)BD q l to measure the

shortest distance between triangle q and reference bone l .

10
 In our experiment, the weights are set as 1 3 4 0.2w w w   and 2 0.4w  .

98

Figure 5-4 is a result of Eq-(5.4.1). Figure 5-4.a is an overview of the segmentation result.

Although the boundaries look fine, especially in the regions around leg joints and arm joints there

are still some problems. Figure 5-4.b and Figure 5-4.c are two examples of these problems. In

Figure 5-4.b, the segmentation boundary of the arm is located in the region where large curvature

variation occurs. The segmentation result is highly affected by the surface curvature. In Figure

5-4.c, the boundary between two legs is irregular, that’s why Ji et al. proposed a snake algorithm

to smooth the boundary. By adding the distance constraint to reference bones we are able to

segment the region which multiple branches, such as the waist region in Figure 5-4.c. However,

the segmentation boundary still contains large curvature changes. This is because that we do not

have a criterion to monitor the smoothness of the boundaries during the segmentation process.

Figure 5-4 Example of Adding Sketched Bone Constraint

We use different models to evaluate the correctness of our proposed metric. We test our

segmentation metric with three different groups:

1. Simple mesh models (see Figure 5-5) – In this group we use two low resolution models

to perform our segmentation task. The rhino model (Figure 5-5.a(i)) contains 2835

99

vertices and 6012 triangles; the hand model (Figure 5-5.a(ii)) contains 349 vertices and

679 triangles.

2. Fine mesh models (see Figure 5-6) – In this group we use two models which have high

resolutions on the surface to perform our segmentation task. The camel model contains

16984 vertices and 33964 triangles, whereas the horse model contains 5229 vertices and

10454 triangles. These two models contain fine level of local surface details, such as the

concave regions around the upper leg regions in Figure 5-6.a(i) and Figure 5-6.a(ii).

3. Models (see Figure 5-7) which have lots of surface details, or complex poses. Figure

5-7.a(i) is an armadillo monster which has lots of surface details. Also some regions

have no curvature features to distinguish two parts of the mesh model, such as the

region between an arm and the main body region which is shown in Figure 5-7.b(i).

Figure 5-7.a(ii) is another example which has complex pose. Such a model may hide the

curvature feature between two parts of a mesh model, such as the region between the

upper arm and the main body region as shown Figure 5-7.d(ii).

For mesh models which have low resolution, it is hard to segment them into low-level parts.

For example there is no concave curvature in each finger in Figure 5-5.a(i) or Figure 5-5.a(ii) .

We can only segment them into obvious parts as shown in different colors of fingers. In Figure

5-5.a(i), we cannot distinguish the upper and lower legs due to the low-resolution problem in the

Rhino model. It is obvious that a mesh model is easy to be decomposed into several meaningful

parts (as shown in Figure 5-5.a(i), Figure 5-5.b(i) and Figure 5-5.c(i)) by using the curvature and

distance constraint from reference bones. There is no over-segmentation issue in this low-level

group. This is because we include a distance constraint (distance from surface triangles to

reference bones) to limit the segmentation process.

100

We notice that the horse model in Figure 5-6 is divided into reasonable parts despite the

unsmoothed boundaries as shown in the blue mesh part of Figure 5-6.b(i). The Camel model in

Figure 5-6.a(i) has an over-segmentation issue as shown in the blue leg region. According to our

investigation, most of the over-segmentation occurs at a region which contains smooth surface

features. Figure 5-7.b(i) shows the problem again, where the boundary between the upper arm

region and the main body region of the monster model is inaccurate. This is because that there is

no constraint to limit the segmentation within a region in the segmentation process.

Figure 5-5 Level 1 - Segmentation Results for Simple Mesh Models

Figure 5-6 Level 2 - Segmentation Results from Fine Mesh Model

101

Figure 5-7 Level 3 – Segmentation Results for Complex Models

We tested our segmentation metric against two models (See Figure 5-7): an Armadillo

monster which has lots of irregular surface details and a woman which has a complex pose. The

main problem is that the metric from Eq-(5.4.1) cannot solve over-segmentation issue for models

which have complex poses such as Figure 5-7.a(ii), or models which have lots of curvature

variations on the surface, as shown in Figure 5-7.a(i). As shown in Figure 5-7.b(i) , Figure 5-7.c(i)

and Figure 5-7.d(i), there are some over-segmentation results in those figures. Again, the same

problem occurred in Figure 5-7.b(ii), Figure 5-7.c(ii) and Figure 5-7.d(ii).

As we notice that there is no over-segmentation issue in the elbow region or knee region of

the above two models in Figure 5-7. The results in those two regions indicate that our distance

constraint, which is measured by the Euclidean distance between a triangle and a reference bone,

performs well in the regions which have tube-bar shape. However, we also notice that there are

some over-segmentation results in the shoulder joints regions as shown in the two models of

Figure 5-7. The over-segmentation problem indicates that our distance metric cannot handle the

102

over-segmentation issues in such regions. The major reason is that the Euclidean distance cannot

be used to determine the semantic segmentation in such regions.

5.4.2. Segmentation Analysis and Optimizations

By adding a new distance constraint, which is illustrated in Eq-(5.4.1), we solved the over-

segmentation issue. But this only works for smooth mesh models which have topological

specification. When it comes to complex model, such as the two models in Figure 5-7, the

segmentation result is not as good as we expected. The major problem is that some of the

semantic topology features are not clear and the distance constraint does not work well in such

regions. An example of such a situation can be found in Figure 5-7.b(i). Also the segmentation

result is highly affected by the curvature changes on the surface. An example is illustrated in

Figure 5-4.b, where the boundary between arm and the main body is affected by the local

curvature. To get a better segmentation result, we further explored the factors which may affect

the final segmentation result.

The normal variation is used to measure the curvature change perpendicular to the surface.

But our segmentation process is a multiple-region growing segmentation process, in which we

only need to monitor the surface variations which are tangent to the surface of the model. And the

curvature change Cds
 can distinguish both the concave region and the convex regions clearly.

Theoretically, the neighbor distance length ds
 computes the distance between the region

source point and the destination points. However, in our multiple-region growing segmentation

process, the region source points are the boundary points. The boundary points are dynamically

103

changed during the segmentation process, and the length is not an accumulative length
11

 which is

computed from the source point to the boundary point. In this case, we removed two terms: the

normal variation ND ds
 and the neighbor distance length ds

 .

Figure 5-8 Importance of Length and Normal Constraints

Figure 5-8 describes the segmentation result comparison between metric using Eq-(5.4.1)

and metric without length and normal constraints. Figure 5-8.a(i) describes the segmentation

result from Eq-(5.4.1), whereas Figure 5-8.a(ii) describes the segmentation result without length

and normal constraints. Some boundaries are smooth and reasonable such as the boundaries in the

knees region, or the boundaries around elbow regions. Some of the boundaries are affected by the

local curvatures, such as the boundary shoulder regions (as shown Figure 5-8.b(i) and Figure

11
 This is because that every time, the distance is computed only based on two points: one is boundary point

and another is the candidate point to be clustered.

104

5-8.c(i)). We also obtained a well-defined boundary in the hip region as shown in Figure 5-8.d(i)

and Figure 5-8.e(i).

According to our experiments, most of the fine mesh models have very small distance

variation between any two adjacent triangles. Figure 5-8.a(ii) is a segmentation result which does

not consider the adjacent triangle length and the normal variation. The normal variation cannot

distinguish the difference between concave and convex change. However, the curvature variation

can distinguish both. So, the normal term which is used to detect the surface variation, actually

decreases the sensitivity of the curvature changes. The segmentation boundary in Figure 5-8.b(ii)

and Figure 5-8.c(ii) are similar to the results in Figure 5-8.b(i), c(i). The segmentation results

from hip region are also similar (see Figure 5-8.d(i), e(i) and d(ii) and e(ii)).

5.4.2.1. The Segmentation Direction

We notice that some segmentation results are highly affected by the surface curvatures, which

may result in wrong segmentation, such as the example in Figure 5-10.c. Figure 5-10.c is the

segmentation result in the upper arm region. The region within a yellow circle is segmented to the

wrong group, which means it should belong to the main body part rather than the upper arm part.

It is easy to imagine that for tube-shape model, the skeleton which lines in the central axis of such

tube-shape should perpendicular to most of the surface triangles, despites the two end regions.

We use Figure 5-9 to describe this concept. In Figure 5-9, we use a dotted red line to represent a

skeleton whereas the dotted blue line with an arrow is the surface normal for a triangle on the

cylinder mesh model.

105

Figure 5-9 Orientation Relationship between Bone and Surface Normal

Figure 5-10 Segmentation Directions

 Given a triangle T on a mesh surface, we use an angle
1 (see Figure 5-10.a) to measure

the correctness of the segmentation. In Figure 5-10.a, the blue dot is a triangle T in the mesh

surface, and the dotted line with an arrow is the normal vector which is perpendicular to the

surface. For each triangle T , we find the nearest joint J , we link them together to construct

another dotted line which is used to measure the angle 1 . If the angle 1 is around 180degree

(see the figure in Figure 5-10.b), the triangle T is segmented in the right group. Otherwise, if the

angle
1 is around 90 degree (see the figure in Figure 5-10.a), which means the segmentation

result is incorrect, such as the yellow circle region in Figure 5-10.c.

106

To eliminate the wrong segmentation, we set up the segmentation priority based on the

following equation:

1 1(cos())f aug  (5.4.4)

where
1 is an angle between the normal of a triangle , which is to be clustered into a mesh part,

and the line which links  to the nearest joint in the reference bone l , as shown in Figure 5-10.a.

5.4.2.2. The Local Boundary Smoothness in Each Segmentation Step

Our segmentation algorithm is performed on triangles. When we add a new triangle to one group,

the boundary of the current group is modified due to the new added triangle. To reduce the

irregularity of the final boundary, we introduced a new metric to evaluate the boundary angles for

each triangle.

Every time when we add a new triangle to one group, we either modify the curvature of an

existing boundary vertex, or we change the boundary curvature by introducing a new vertex. We

notice that there are three types of curvature changes, which are shown in Figure 5-11. In Figure

5-11, the blue region indicates the existing mesh part. The triangle, which is marked as red, is the

candidate triangle to be clustered. The orange triangles are the neighbors of red triangle, which

have already been clustered into the blue region group. We use an angle to represent the curvature

change on vertex V . When we add a new triangle, we check the angle for vertex V , which is

marked as green point in Figure 5-11. There are three kinds of changes:

1. New vertex added (see Figure 5-11.a).

2. Curvature change on the existing vertex by merging one neighbor triangle (see Figure

5-11.b).

107

3. Curvature change on the existing vertex by merging two neighbor triangles (see Figure

5-11.c).

Based on the cosine value, we set up the segmentation priority for the triangles to be

clustered. The triangle angle represents the smoothness of the boundary. Large angle indicates

that the boundary is not sharp, which will finally result in smooth boundary after the

segmentation process. The triangle containing the smallest value for the angle has the highest

segmentation priority. To enlarge the effect, we make use of an augmentation function to set the

priority value:

 2 (cos())f aug  (5.4.5)

where  is the angle of a boundary vertex v, which is shown in Figure 5-11.

Figure 5-11 Local Boundary Curvature Check

Finally our segmentation metric is defined as:

 1 2 3 1 4 2(,) ()Bd l w Cds w D l ds w f w f
 

      (5.4.6)

108

where C is a function to evaluate the curvature change along the tangent direction of the surface,

which is guided by region growing direction. ()BD l is a function to measure the distance from

the reference bone l , which helps determine the relevance of a mesh model vertex to a user

sketched bone.
1f and

2f are two priory functions to determine a triangle  to be clustered. iw

12
 are application dependent weights to adjust the contribution of each function in Eq-(5.4.6),

where
4

1

1i

i

w


 .

Figure 5-12 Segmentation Result from Eq-(5.4.6)

12
 In this experiment, our weights are adjusted as 1 0.4w  , 2 3 4 0.2w w w   .

109

Figure 5-12 is the segmentation result using our new segmentation metric as shown in Eq-

(5.4.6). In the overview, Figure 5-12.a decomposes the monster model into meaningful pieces,

especially in arm regions and the leg regions. Figure 5-12.b describes the segmentation details in

the arm region, where no over-segmentation occurred. Figure 5-12.c describes the segmentation

details in the leg region, where the segmentation boundaries isolate two legs in the right positions.

We also do not have the over-segmentation issue in the hand region. The ear regions also have no

over-segmentation issue as shown in Figure 5-12.e.

5.4.2.3. Segmentation Algorithm

In mesh segmentation, we adopt a multiple-region growing segmentation method
13

, in which we

apply both the reference bones and the seed triangles as mentioned in Chapter 4 as the seeds of

the initial mesh parts.

We summarized the steps of our approach as follows:

Input: Triangular mesh M , a set of reference bones
nB .

Output: Segmented mesh, which has n number of parts.

Step 1: For each triangle
14

 t which is associated with one reference bone
ib , where

0  i n , mark t as selected and store in selected triangle seeds set S . Also mark the rest of

triangles in the mesh model as unselected.

13
 In our algorithm, the new metric from Eq-5.4.6 was used and the weighting scheme is the same as

discussed in this equation.

14
 Each reference bone contains a set of triangles which are collected in the sketching process.

110

Step 2: Pick out the triangles from S , whose neighbors contains unselected triangles and

store in a new set
eS . For each  et S , store the neighbor triangles, which are unselected, in

a set
cS .

Step 3: Based on our segmentation metric, we compute a distance for each triangle in
cS and

sort the triangles based on this distance.

Step 4: Pick the triangle t which has the minimum distance and mark t as selected. The

segmentation distance is computed between t and
roott .

roott is the neighbor of t which is

marked as selected. We assign t to the same segmentation set as
roott belongs to. If t has

unselected neighbor, save t in
eS and compute the distance for t ’s neighbors and insert its

neighbors into
cS .

Step 5: Repeat Step4, until there is no unselected triangles left.

5.5. Experiment Results

Here are some segmentation results.

Figure 5-13 Donut Tube Shape

111

Figure 5-13 describes the advantage of our new segmentation method. Figure 5-13.a and

Figure 5-13.b are the same model from two different views. Compared to methods which make

use of curvature and geodesic distance to compute the segmentation, our method considered two

extra terms (as shown in Eq-(5.4.4) and Eq-(5.4.5)) to perform the segmentation task. As you can

see from Figure 5-13, the boundaries, which are directly obtained from our segmentation method

without any extra smoothing operations, are reliable and smooth.

Even with complex pose model, our method still gives reliable result. Figure 5-17.a is the

front view of our segmentation result, whereas Figure 5-17.b and Figure 5-17.c are the results

captured from left and right side of the Woman model. The segmentation boundaries are fit into

the right positions so that our skeleton maintains well-positioned bone structure. See the root of

the arm regions in Figure 5-17.d and Figure 5-17.e and the waist region as shown in Figure 5-17.b

and Figure 5-17.c. This is because the two new terms that we introduced in Eq-(5.4.6), controlled

the segmentation process by checking both the segmentation boundary angles (see Eq-(5.4.5))

and the orientation of boundary triangles (see Eq-(5.4.4)).

To specify the difference between Eq-(5.4.1) and Eq-(5.4.6), we look deeply into the local

details as shown in Figure 5-18. As we can see, the segmentation metric from Eq-(5.4.6) performs

better than the one from Eq-(5.4.1). This is because we have two major improvements in this

metric. First, we add a new constraint to reduce the over-segmentation issue (see Eq-(5.4.4)) in

some regions which have no clear topology changes. Second, we introduced a boundary

smoothness constraint, which is used to reduce the irregularity of the segmentation boundary (see

Eq-(5.4.5)). For example by monitoring the angle change (see Figure 5-10) between surface

triangles and reference bone’s joints, we eliminate the over-segmentation issue (see the

comparison in Figure 5-18.b(i) and Figure 5-18.b(ii)). We avoid the over-segmentation issue in

the head region (see the comparison pictures in Figure 5-18.e(i) and Figure 5-18.e(ii)). Besides

112

the angle constraints as illustrated in Eq-(5.4.4), we use a segmentation boundary angle constraint

(see Figure 5-11) to limit the segmentation process, which also produces better segmentation

results (see the comparison pictures in Figure 5-18.c(i) and c(ii)).

Figure 5-14 Camel

Figure 5-15 Raptor

113

Figure 5-16 Man

Figure 5-17 Woman

114

Figure 5-18 Result Comparison of Eq-(5.4.1) and Eq-(5.4.6)

5.6. Discussion and Summary

Our segmentation method plays an important role in our skeleton extraction system. From our

segmentation process, we obtained two important factors which are closely related to our skeleton

extraction. They are namely the segmentation boundaries and the segmentation parts. We make

use of the segmentation boundaries to create well-positioned joints for our skeleton. Thus to

guarantee the quality of our skeleton, we need to find a segmentation method which can produce

reliable segmentation results. The data from segmentation parts is used to build the mapping

relationship between bones and surface data in the skin mapping process, which also plays an

important role in the animation related work.

Literally, there are many part-type segmentation methods, such as [65, 67, 89, 90, 100, 101].

However, there are some limitations for those existing methods, which prohibit us from using the

existing methods directly. The K-means method [90] made use of accumulative distance to

115

segment a mesh model into the predefined number K parts, which cannot preserve the shape

features. Attene [67] et al. tried to decompose mesh into parts based on some predefined

primitives such as cylinder, plane or sphere etc. This method works in mesh parts which have

large topology changes. However, it cannot guarantee the reliability of the boundary which is

used to distinguish different parts. For example with regards to a leg region, it is easy to isolate

the whole leg as a cylinder shape. However, because that they have similar shape features, it is

hard to distinguish the difference between upper leg and lower leg.

Katz et al. [65] proposed a hierarchical decomposition algorithm which transfers the mesh

vertices into a pose-insensitive representation using multidimensional scaling method. And then

by extracting some feature points and the core part, Katz et al. decomposed a mesh model

hierarchically into several parts. The advantage of transferring a mesh model into a pose-

insensitive representation is that the result gives clear topology feature specification. However,

such process also destroys the curvature details of the original mesh. The segmentation result

cannot be guaranteed due to the distortion of those curvatures on the mesh surface.

Shapira et al. [101] proposed a “Shape Diameter Function” (SDF) to segment a mesh model,

which was a measure of the diameter of a mesh model’s volume in the neighborhood of a point

on the surface. However, we notice that there are two limitations: the partition number problem

and the segmentation problem. First, Shapira et al. made use of mathematical analysis to define

the number of final parts for the decomposition which might be different from user’s expectation.

Second, the segmentation parts are affected by its part volume, such as one part which contains

large volume change (i.e. legs like a cone shape) may be divided as two parts.

Lai et al. proposed the Random walk method [89] to segment a mesh model into a user

specified number of parts. For a mesh model, a user needs to specify a number of faces as the

initial seeds. Each seed defines a region that one part belongs to. For the rest of triangles, each

116

triangle is assigned with a probability to the nearest seed. In [89], surface dihedral angle is used

to determine such probability. The result of this method depends on the selection of seeds.

Rather than using some existing methods, we proposed a new solution. This is because we

have two special requirements: reliable segmentation boundary and reliable components

recognition. Most of them make use of surface geometry attributes, such as curvature [88, 99],

geodesic distance [102, 103], planarity and normal direction [67, 81], to segment a mesh model.

However, those segmentation methods, which rely on those surface geometry attributes only, may

generate wrong segmentation results due to local surface feature changes or model pose changes.

By analyzing the possible factors which may have great impact in the segmentation process,

we notice the basic four elements: the curvature, the distance constraint to the referenced bone,

the boundary curvature and the segmentation orientation. According to the experiment, we show

that the above four elements have great impact on the segmentation results.

Also we do find some limitations on this research work. First, the user’s drawing will affect

the segmentation result. This is because that our multiple-region growing segmentation method

requires some pre-defined seeds. In our experiment, we adopt the selected triangles which come

from the reference bone as the seeds. If the seeds are not defined correct, the result is not

guaranteed. To avoid this, we have defined the alignment process which is described in Chapter 4.

As we introduced a distance constraint, which is related to the reference bone, our segmentation

results rely on the quality of this reference bone.

117

Chapter 6

6. Skeleton Extraction

6.1. Introduction

Skeleton can be created either manually or automatically. In typical commercial modeling

software, such as Maya or 3D studio Max, skeleton construction requires a user to define joints

precisely and bones as well as their hierarchical relationship on an unfolded mesh model. Such

task is time consuming and requires user to be trained. To alleviate this problem, research has

been conducted to develop methods for automatic skeleton construction.

Our object is to create skeleton for a given mesh model, so that the skeleton can be used for

animation purpose. We prefer to extract the skeleton from mesh model directly without

modifying the mesh model. A skeleton should have well-positioned joints specification, in which

the joint positions define the connection relationship between bones. The joint position will affect

the quality of the mesh animation. For example given a leg model, if the knee joint position is not

well-defined, the deformation result will contain large distortion due to the inappropriate joint

position setting. However, most of the existing skeleton extraction methods produce skeleton in

1D curve format only, which have no joint information at all. Although they can specify joint

positions manually after creating the skeleton, they have to use post-processing to map surface

vertices to bones or joints. This mapping process requires large computation time.

To get the specification of joint positions, and the connection relationship among different

mesh parts, we first segment a mesh model into different parts. If we can segment a mesh model

into meaningful parts, we can obtain reasonable joint positions which are located in the center of

118

the segmentation boundaries from each part. These joints also define a better skeleton structure

with regards to the joint positions. Given the mesh parts that we have obtained from our mesh

segmentation algorithm which has been discussed in Chapter 5, we use the LSD method (see

discussion in section 2.4.3) to create bones for each part of the mesh model. After extracting the

bones from each mesh part, we connect them together to construct the final skeleton.

6.2. Skeleton Extraction in Our Work

6.2.1. Method Overview

Our skeleton extraction system contains three major steps:

1. Bones extraction operation

2. Bones smoothing operation

3. Mapping between bones and mesh model

We propose a LSD algorithm to extract bones from each mesh part which is obtained after

the segmentation process. The center of a segmentation boundary is the starting point of a bone.

Starting from this central point, we compute the geometric distance from all vertices in the mesh

part to the central point. We sample the longest distance with a predefined number n that defines

the number of joints within the extracted bone, reflecting the quality of topology features for an

extracted bone. After the sampling process, we have n groups of surface vertices. We create a

joint for each surface vertices group. The joint is central point of a surface vertices group. We

also build up the initial mapping relationship between joint and surface vertices group from the

sampling process. Each joint is mapped with the surface vertices group which is used to compute

the joint itself. We will give full description in section 6.2.2. The bones that we extracted from

each part contain distortions. This is because that the skeleton that our bone extraction method is

119

highly sensitive to the surface details. We proposed a line smoothing algorithm to remove the

distortions from the surface details.

Besides the bone smoothing operations, we also introduce a mapping process to reconstruct

the mapping relationship between joints and the mesh model. The existing mapping relationship

between joints and mesh model is inaccurate due to the surface details distortions.

6.2.2. Bone Extraction Methodology

Our bone structure is the same as the reference bone structure which is discussed in section 4.2.3.

The bone structure is defined as:

 { , , } h tB J plist J (6.2.1)

where
hJ and

tJ are two well-positioned joints and plist contains a set of ordered nodes. The

two well-positioned joints
hJ and

tJ are used to connect more than one bone, whereas the nodes

in plist are used to describe the geometric positions for different parts of a bone. The joints and

nodes in a bone are similar in the data structure, which both contain a set of surface vertices. The

major difference between joint and node is that a joint is used to connect one or more bones

whereas a node is used to describe the geometric position for part of a bone.

The joints (,h tJ J) are located at the two ends of a bone, which are used to connect more

than one bone. We call those joints as tip-joints. The tip-joints are important in skeleton-driven

animations. Many people make use of this kind of joints to compute rotation or translation matrix.

The nodes are located inside the plist of a bone, which are used to represent the geometric

positions for different parts of a bone.

120

After mesh segmentation, the mesh model is divided into semantically meaningful segments. We

can now extract a bone from one mesh part in two steps:

1. Identify the segment boundaries of each mesh part. According to the number of

boundaries found, we determine the type of each mesh part. Note that a segment

boundary is a boundary between two connected mesh parts.

2. Compute a LSD for each segment boundary of a mesh part and extract the medial axis

from the LSD of a mesh part to form one bone. If there is more than one segment

boundary within a mesh part, we need to merge those bones from all the boundaries

together and construct the skeleton structure.

There are three main operations involved in the above two steps. They are explained as

follows:

Mesh part types: We define three types of mesh parts. As shown in Figure 6-1, a 1-end, 2-

end and multiple-end mesh parts comprise one, two or multiple segment open-end boundaries,

respectively.

In order to determine the number of boundaries attached to a mesh part, all triangles forming

the mesh part are checked, such that triangles that connect to either an open-end or another mesh

part are isolated. Figure 6-2 shows the segment and open-end boundaries obtained from the

human model used in our experiment. The grouping operation explicitly tells the number of

boundaries that a mesh part has, as well as the types of these boundaries. Note that the

implementation of the above process is easy and it is efficient, as when we segment the input

mesh model, we store an identifier to each mesh model triangle to indicate which mesh part that it

will be assigned to. Hence, the whole process becomes a simple table look up and a grouping

operation.

121

Figure 6-1 Mesh Part Types

Figure 6-2 Segmentation Boundaries

Also to avoid the distortion from the mesh model itself, we check the perimeter of an open-

end boundary against a pre-defined threshold. If the perimeter is smaller than a given threshold,

we will ignore this boundary. If we do not eliminate small open-end boundaries, the topology

structure will be affected. Figure 6-3 describes the difference in the skeleton extraction. Figure

122

6-3.a describes the skeleton result which does not consider the open-end boundary issue. Figure

6-3.b is the bone structure for the head part. There are two extra bones within the head part. This

is because the eyes regions have two open-end boundaries. During the skeleton extraction process,

those boundaries are considered as starting point of bones. Figure 6-3.d is another skeleton result,

which ignored the open-end boundaries. Figure 6-3.c is the head region, which has a clear

topology feature for head part.

Figure 6-3 Open-end Boundary Problem

Bones: To extract bones from a mesh part, a source point is first assigned to the center

position of each segment boundary shown in Figure 6-1. Based on this source point, we build up

a set of contour lines by evaluating the shortest distance of each mesh vertex from the source

point as shown in Figure 6-4. We use the shortest distance to obtain the LSDs because it is

insensitive to noise or fine local mesh features but can describe the topological structure of a

mesh part well. The LSDs generated from source points of different mesh part types are

illustrated by the contour lines as shown in Figure 6-4. We then take the medial axis of each

contour line (depicted by the dotted color lines in Figure 6-4) to form a skeleton bone, which

comprises a list of connected vertices.

123

Figure 6-4 LSD Method

Junction joint: Multiple bones may be extracted from a multiple-end mesh part. We create a

joint at the junction joint of the bones, which has the minimum distance to all the bones, to

connect all the bones within the mesh part. To connect a skeleton bone to this joint, we assign the

segment of the bone, which is located between the source point of the skeleton bone and the

junction joint, to this joint, and remove the unassigned bone segment. After we have connected all

bones of the mesh part to the junction joint, we obtain a net of bones, where the joint forms the

center of the net.

6.2.3. Skeleton Construction

To construct the final skeleton, we connect bones extracted from all mesh parts together into a

single structure. There are three major steps involved:

1. Optimizing and smooth bones

2. Generating joints and nodes

3. Forming the skeleton structure

124

We use the same technique as we did in section 4.2 to smooth the bones. The joints are those

final joints which connect the bones into graph.

Optimizing and smoothing bones: As the bones are evaluated based on the mesh geometry

of a mesh model, it is unavoidable for a skeleton bone to be distorted by local mesh features of its

corresponding mesh part. We address this problem in two stages. First, we applied the line

smoothing operation, which is similar to the one that we have adopted in section 4.2.3, to

eliminate the distortions caused by minor local mesh features. The difference between this

smoothing algorithm and the one in section 4.2.3 is that we add one constraint to limit the

smoothing operations. Each joint/node is associated with one closed contour line (see Figure 6-4).

So during the smoothing operation, we need to make sure that the position of a joint/node after

bone smoothing should not be relocated outside of the mesh model. The reason to add such a

constraint is that the bone should be embedded inside a mesh model. This is a kind of

centeredness requirement for a bone. An example of such an effect is shown in Figure 6-5. Figure

6-5.a(i) shows this problem while Figure 6-5.a(ii) shows the result of the smoothing operation.

Figure 6-5.c(i) describes the extracted bone which contains large distortions. The main reason is

that the LSD based method is sensitive to surface details (see the ankle region of the foot in

Figure 6-5.c(i)). After the smoothing operation, we obtain a smooth bone in which the distortions

are eliminated (see Figure 6-5.a(ii)). Second, we detect major curvature changes of a skeleton

bone as mentioned in section 4.3 to partition the skeleton bone into topologically separate bones

and insert new joints between each pair of these new bones. After the above operations, the

resultant bones will be more suitable for use in animation.

Generating joints: In our work, we have two different types of joints: tip-joint and node. A

tip-joint is located at one end of a skeleton bone which is used to connect one or more bones. It

corresponds to the source point that we have generated for each segment boundary on a mesh part.

125

A node is located inside a mesh part, which is used to describe the geometric position for part of a

bone.

Forming the skeleton structure: we connect bones from different mesh parts at their

corresponding joints to form the final skeleton. Figure 6-6 illustrates the whole process for

skeleton construction. We first allow the user to sketch bones on the input human model. As

shown in Figure 6-6.a, the sketched bones can be very rough. The model is then divided into

mesh parts, and bones and joints are generated. By connecting them, we obtain the final skeleton.

Note that skeleton joint generation is still an open problem. In our work, we adopt user sketching

and employ our modified isophotic metric. It allows us not only to generate joints at typical

model traits, such as joint 1 in Figure 6-6.c, where they can be identified by typical minima rules

and part salience rules. We can also generate semantically meaningful joints (e.g., joint2 at a knee

of the human model), where those rules cannot help.

Figure 6-5 Skeleton Smoothing

126

Figure 6-6 Skeleton Construction Process

6.2.4. Skin Mapping

During the bone extraction process, we have set up the mapping relationship between joints/nodes

and surface vertices within a mesh part. In our bone extraction process, the mapping relationship

127

is defined from each segmentation boundary, and the geometric distance to the boundaries, which

is affected by the local features. The mapping relationship between a bone and the surface

vertices are defined as a collection of all the joint/node mapping relationship within a bone. In

multiple-end part, the mapping relationship between bones and the mesh model contains errors.

This is because each bone is mapped with the whole multiple-end part, which may result in the

wrong mapping relationship. We also used a combination step to merge skeletons which lie in the

same mesh part together, which further increased the mapping problem. We make use of

Figure 6-7 to describe the mapping problem in multiple-end part.

Figure 6-7 Skin Mapping in Multiple-end Part

In Figure 6-7, we have four pictures to describe the skin mapping result within a multiple-

end type mesh part. Each picture describes one skin mapping result between one bone and the

mesh part. Different colors are used to indicate the skin mapping results for joints/nodes within a

bone and surface vertices. Those points with different colors are the surface vertices. The surface

128

vertices, which have the same color, belong to a single joint/node within a bone. Figure 6-7.a and

Figure 6-7.b describe the skin mapping results for a purple bone and a green bone within a

multipe-end type mesh part respectively, whereas Figure 6-7.c and Figure 6-7.d describe the skin

mapping results for the yellow bone and the light blue bone respectively. However, the skinning

mapping result between a bone and the mesh part is incomplete. Especially, in Figure 6-7.a and

Figure 6-7.b and Figure 6-7.c, there are many light/dark blue vertices which have the same color

and distributed everywhere over a mesh part (the same happens to the red vertices in Figure

6-7.d). This is because that those vertices are mapped to the junction joint inside the mesh part.

This junction joint connects four bones, and the vertices come from all those four bones.

Those vertices with the same color reflect the skin mapping result between a junction joint

and the surface vertices. For a multiple-end type mesh part, when we merge all the bones together

after the bone extraction process, we also merged the mapping results for the junction joint. That

is why even in this dispersed situation, those vertices are still belonging to one joint only.

Obviously, it is not correct. This is because that after extracting bones from a multiple-end type

mesh part, we have to combine all bones within this mesh part, in which we have to find out a

junction joint to connect all bones together and remove the bone segment between the junction

joint and the end joint
eJ of a bone B . When we create a junction joint, we need to merge all the

skin mapping results from a joint which has the minimum distance to this junction joint for each

bone inside a mesh part, which result in the wrong mapping results for this junction joint. To

address this problem, we make use of the Euclidean distance to reset the mapping relationship

between bones and surface vertices. Our solution is designed as follows:

1. We collect all the joints/nodes within a mesh part and stored in a list []js n , where n is

the number of joints/nodes inside the mesh part. And we collect all the vertices within a

129

mesh part and stored in a list []vs m , where m is the number of vertices inside the mesh

part.

2. For each vertex []iv vs m , we compute the distance | |ij i jd v J  , where
jJ is a

joint/node in []js n and 0 j n  , 0 i m  and m is the total number of vertices

within this mesh part. We store the joint/node
jJ , which has the minimum distance to

iv ,

for vertex
iv .

 We have discussed the mapping problem in multiple-end type mesh part. There is no

mapping problem in one-end type mesh part. This is because that there is no junction regions in

one-end type mesh part. There is a tiny mapping problem in two-end type mesh part, which is

occurred in the junction joint region (remember that we need to merge bones from all the

segmentation boundaries to construct a net of bones.). The time complexity of the skin mapping

process is ()m n  . To speed up the computing, we make use of multiple-thread technique to

compute the distance for each vertex
iv within one mesh part. For each vertex within a mesh part,

we need to identify the nearest joint/node, which is used to set up the mapping relationship. The

computation process can be performed simultaneously, which gives us the hint to use multiple-

thread technique to speed up the mapping process.

130

Figure 6-8 Skin Mapping Result

Figure 6-8 describes the mapping result of our method. Figure 6-8.a and Figure 6-8.b

describe the green bone mapping results and red bone mapping results respectively. Figure 6-8.c

and Figure 6-8.d describe the light blue bone mapping result and purple bone mapping result

within this multiple-end type mesh part. We make use of different color to represent the skin

mapping results for joints/nodes within a bone. Each color represents one mapping relationship

between a set of surface vertices and a joint/node inside a bone.

Traditionally the skin mapping is defined by the mapping relationship between surface

vertices and bones inside a skeleton. Each bone is associated with a group of surface vertices

from the mesh model. Each vertex can also be associated with multiple bones and have a blend

weight for each bone. The easiest way to compute such weights is by computing the distance

between a surface vertex and its associated bones. And based on the distance to its associated

bones, one can set the weights for each bone. When the bones are transformed, each bone

transformation is applied to the vertex position, scaled by its corresponding weights. This kind of

131

algorithm is also called matrix palette skinning, because a set of bone transformations form a

palette for the vertex to choose from. However, such kind of mapping cannot be used to achieve

soft bending effect, such as the snake movement for tails.

To obtain robust control on skeleton-driven animations, we make use of mapping between

joints/nodes and surface vertices instead of mapping between bones and surface vertices. We

limit the number of vertices which have multiple bone association by using the joint/node

mapping instead of bone mapping. In our skin mapping design, each surface vertex is associated

with one joint/node only. However, each joint may connected to one bone or more bones. We can

still perform matrix palette skinning for those vertices which are connected with more than one

bone. For the rest of vertices, each vertex is only associated with one joint/node which belongs to

one bone only. Thus we reduced the computation of weight for each vertex in the matrix palette

skinning algorithm. This is one advantage of our skin mapping method.

Also the existing matrix palette skinning cannot be used to achieve realist muscle

movements, skin motions or soft bending effects for special bones such as animal tail movement.

In our skin mapping design, we could achieve robust control over a bone by assigning a

transformation matrix for each joint/node. Thus the LBS equation is changed to:

'

1


n

j j

j

p w pM (6.2.2)

where n is the number of neighbors for node pj ,which is the associated joint of vertex p . For a

node inside the plist of a bone, there are only two neighbor nodes: the succeed node and the

predecessor node. jw is the weight for each neighbor joint and jM is the rotation matrix for each

neighbor joint.

132

6.3. Experiment Results and Discussions

We use different models to test the quality of our skeleton extraction algorithm. In the experiment,

we test our algorithm using 13 different models which have different topology structures. The

results show both the advantages and disadvantages of method. We divide our results into three

groups to demonstrate different properties of our method.

Table 6-1 Model Groups

Group1 (perfect results) Donut, Rhino, Frog , Man, Girl, Raptor, Hand

Group2 (results contain minor errors) Dog, Camel, Woman and Armadillo Monster

Group3 (bad results) Dragon and Stanford Bunny

Figure 6-9 3D Donut

Figure 6-10 Rhino & Frog

133

Figure 6-11 Man & Girl

Figure 6-12 Raptor

134

Figure 6-13 Hand

The above 7 models belong to group 1, which all give good skeleton results. For a mesh

model which has articulated structure (i.e. human body), our method can produce skeleton which

has well-positioned joint specification, such as the skeleton in Figure 6-11, both Figure 6-11.a(i)

and Figure 6-11.a(ii) have meaningful well-positioned joints. Especially, we make use of Figure

6-13 to illustrate the advantage of our skeleton generation method. Most of the existing work can

generate 1D curve skeletons for a hand without joint specification, but our method can generate

well-positioned joints in a hand skeleton. The joint positions are specified from the boundaries of

our segmentation result. By considering the surface curvature change, user’s guidance and region

boundaries’
15

 curvature changes, we obtained such reasonable segmentation boundaries to define

our joint positions.

15
 Our segmentation method is multiple-region growing method; each region contains one or more

boundaries.

135

Figure 6-14 Dog & Camel

Figure 6-15 Woman

136

Figure 6-16 Armadillo Monster

The above four models belong to the second group. Each model contains a minor error in the

skeleton structure, such as the multiple-branch error in the head or foot region of the dog model

(knee region of the camel model) in Figure 6-14, or the head region of the woman model in

Figure 6-15 or the missing topology feature in the head region of the Armadillo model in Figure

6-16. By analyzing those minor errors, we notice that there are two problems which are not

solved in our skeleton extraction system.

First, our method is sensitive to the mesh model structure. If a mesh model has open-end

boundaries, our method will construct a skeleton from those boundaries. This feature has both

advantages and disadvantages. Figure 6-13 shows an example of the advantage of considering

open-end boundary as guidance in our skeleton extraction. By considering the open-end boundary

at the bottom of palm region, we constructed an extra skeleton (the red line in the palm region of

Figure 6-13) to specify the full topology structure of the hand model. However, some of the open-

137

end boundary may destroy the skeleton structure, such as the loop problem in Figure 6-17-

dragon.b.

Figure 6-17 Dragon & Stanford Bunny

Second, for some parts which have complex shapes, our skeleton extraction method may

ignore some major topology feature. The head region of Figure 6-16 demonstrates this problem.

As you can, the topology feature for nose part is ignored in the Armadillo Monster model.

The above two pictures in Figure 6-17 are the last group, which illustrate another problem

that our skeleton extraction method cannot handle. Our method cannot create correct skeleton

structure for any model which contains squeezed regions, such as the dragon leg region in Figure

6-17.b(i), or the main body region in the Stanford Bunny model in Figure 6-17.b(ii). This is a

limitation of using boundary to extract the skeleton structure. In the future, we need to solve this

problem.

138

Table 6-2 Average Running Time In Different Models

Model

Name

Vertex

Size

Triangle

Size

Bone

Size

Segmentation

Time (sec.)

Skeleton

Extraction

Time (sec.)

Skinning

Redistribution

Time (sec.)

3D Donut 23040 46080 11 20.20 34.61 275.77

Rhino 2835 6012 7 2.81 2.70 11.12

Frog 17480 34956 23 12.21 20.23 198.05

Man 20000 39994 14 14.65 28.33 195.84

Girl 6012 12016 12 4.31 7.12 36.92

Raptor 9882 19604 27 11.32 16.44 86.32

Hand 4976 9884 15 3.59 10.22 33.55

Dog 10561 20808 16 7.55 25.33 88.04

Camel 16984 33964 16 11.70 27.88 160.83

Woman 7578 14999 12 5.55 13.07 47.61

Monster 5229 10454 15 3.83 6.08 29.02

Table 6-2 describes the run time for segmentation, skeleton extraction and skinning

redistribution steps in different models. All the experiments are performed on a Desktop PC with

Pentium 4 CPU (3.0 GHZ) and 2 GB RAM.

6.4. Discussion in the Skeleton Evaluation

6.4.1. Related Work

Most of the existing skeleton extraction methods focus on 1D curve skeleton generation. We

focus specifically on well-positioned skeleton extraction which is used to perform animation tasks.

The skeletons are used as manipulators to create different animation postures. In this case, we

want to evaluate the quality of the skeletons for the animation related usage.

Cornea et al. analyzed the properties of curve skeletons in [50]. The major contribution of

that work is the systematic analysis of the existing skeleton extraction methods, where they give a

taxonomy of those methods based on a list of properties from many existing applications. The

properties summarized by Cornea et al. are listed as: “Homotopic, invariant under isometric,

transformations, reconstruction, thinness, centeredness, reliability, smoothness, component-wise

139

differentiation, robustness, efficient to compute and hierarchic.” These properties are

semantically summarized from different applications.

We did not consider all those properties in our skeleton evaluation criteria. This is because

that some of the criteria only suitable for discrete 3D model based process, such as the

reconstruction, reliable and thinning properties; some of the features have no problem in surface

mesh based skeleton extraction methods. For example by using LSD method with geometric

distance computation, our skeleton is always invariant under isometric transformations. We

summarized the importance factors for a skeleton as follows:

 Joints location and its associated boundaries

 Centeredness of bones

 Smoothness of bones

 Skin mapping

Joints location and its associated boundaries: This aspect is inspired by the skeleton

result from [86] (see Figure 6-18). This property refers to the correctness of the segmentation

result of a mesh model. The segmentation boundaries define the joint positions of bones.

However, some of mesh boundaries are affected by local curvatures (as shown in Figure 6-18.b).

To get well-positioned joint positions, we have to improve the quality of our segmentation

method. We have done the improvement in section 5.4.2.

Centeredness of bones: A bone does not need to be located exactly in the center of a mesh

parts. MAT method can guarantee the centeredness of a bone. But such a method also suffers

from the distortion of mesh surface details. By using LSD method, we also guarantee the

centeredness of the bones. However, the smoothing process, which is used to eliminate the

surface distortions, destroys the centeredness of the bones. We think the centeredness property

140

does not need to be embedded as the center of locus of a mesh model but do need to be embedded

inside the mesh model. Thus we considered this requirement as the constraint of our bone

smoothing algorithm.

Smoothness of bones: There are two aspects in the smoothness that we need to take care:

curvature changes of the bone and the joints distribution. The smoothness of the curvatures will

affect the deformation result. For example if we use one curve bone to represent the

human vertebral column, unsmoothed bone bending will result large distortion on the mesh model

surface. Also the joints distribution reflects the skin mapping of the bone, which also has

influence to the deformation result.

Skin mapping: this property reflects the relationship between joints and mesh model surface

information. Irregular skinning association will result in bad animation result because of the

undesired distortion on the mesh model. Generally, each bone of a skeleton describes the

topology feature for a mesh part. A bone should perpendicular to its associated surface, despite

the two end joints associated surface region. We need an error metric to measure the difference

between bones orientation and its associated surface information.

We use Figure 6-18 to describe the problems in the existing work. Figure 6-18.a is a skeleton

example from [86]. Figure 6-18.b describes the skin mapping problem, where some parts of

surface is clustered into the wrong parts, such as some parts of blue region should be clustered

into yellow region (Figure 6-18.b root of arm region). We had solved this problem by using a new

segmentation metric, which had been discussed in section 5.4.2. Figure 6-18.c describes the

smoothness problem for articulated bones. Figure 6-18.d is another example of the smoothness

problem, where the joints are not distributed evenly. This is because the joint position is defined

from the surface of the mesh, which may result in distortions due to the irregularity of the surface

details.

141

Figure 6-18 Skeleton Issue from [86]

6.4.2. Method in Skeleton Evaluation

To evaluate the quality of a skeleton, we implement two metrics to validate the correctness of a

skeleton from several aspects. We measure the smoothness of a skeleton by monitoring the

curvature change for each joint in a bone. The smoothness of a skeleton plays an important role in

skeleton-driven animation. Unsmoothed skeleton may result in large distortions in a deformation

process. Also the skin mapping quality has important impact to the deformation process. So, we

proposed a metric to evaluate the quality of the skin mapping.

142

6.4.2.1. Smoothness Error Metric

To measure the smoothness of a skeleton, we compute the curvature value for each joint inside a

bone. To detect large curvature change, we use an augment function to enlarge the curvature

values. Given a bone, our smoothness error metric is defined as:

 1

| (cos() (cos()) |
n

i

i
smo

f f

E
n

 







 (6.4.1)

where f is an augment function to enlarge the curvature values and
i is an angle between two

line segments 1i ij j  and 1i ij j  .
ij is a joint inside a bone and i is a index of joint

ij inside the

plist 16

of bone.  indicates the ideal straightness situation where the angle between 1i ij j  and

1i ij j  is 180 .

Table 6-3 Smoothness Error Results

Model Error Result before Smoothing Error Result after Smoothing

Girl 0.335535 0.004439

Horse 0.101076 0.004240

Camel 0.095717 0.004356

3D Donut 0.138169 0.003622

Frog 0.216922 0.004448

Monster 0.184602 0.004592

Man 0.111819 0.004147

Woman 0.248719 0.004626

Hand 0.297429 0.004053

Rhino 0.222870 0.004858

Raptor 0.114235 0.004332

16
 For the definition of plist , please see section 4.2.3 or section 6.2

143

Based on this metric, we defined our skeleton smooth algorithm to optimize the skeleton

structure. We have discussed this issue in Figure 6-5.

6.4.2.2. Skin mapping Error Metric

The quality of skin mapping is also one aspect in skeleton evaluation. This is because the skin

mapping will affect the animation result, especially for LBS based method. We make use two

vectors to measure the quality of skin mapping. The concept of our method can be revealed using

Figure 5-9, in which a bone should perpendicular to most of its associated surface vertices. Our

bone is constructed by a set of ordered joints. So the difference between joint’s orientation and

the central axis of its associated surface vertices can be used to measure the distribution quality of

surface vertices.

Our metric is designed as follows:

_

1

1
|| ||

n
i i

ori ori ori s

i

E mv mv
n 

  (6.4.2)

where
i

orimv is the bone curvature at joint i , which is computed as the average math vector of the

two adjacent bone segments connected by joint i .
_

i

ori smv is the orientation that we computed

from the surface of the mesh model which is associated with joint i . We compute the central axis

_

i

ori smv of joint i from its associated surface. Each joint i is associated with a set of triangles

which is collected from LSD based skeleton extraction. We take this vector as the candidate to

measure the correctness of bone orientations at joint i .

144

The axis of joint i should perpendicular to its associated vertices on the surface. To compute

this central axis X , we have to solve the following least square problem: Given a set of vertices

vS , each vertex
iv has an average normal

iN which is an outgoing normal perpendicular to the

mesh surface. We need to find out the norm X which is perpendicular to most of those normal

iN . Thus we have the following equation:

2

1

() || ||
n

i

i

f X N X


  (6.4.3)

where
iN is the average normal for each vertex

iv , and X is the joint normal .

In order to reflect the skin mapping quality, we also introduced another function:

' 2

1

() || ||
n

i

i

f X N X


  (6.4.4)

where
'

iN is a normal vector which starts from joint i to the surface vertex
iv . If

iv is tight

around joint i , the normal
'

iN should also perpendicular to the joint normal X .

We combine the above two equations together to compute X . We solve these equations

with constraint || || 1X  , which is used to indicate the unit length of the central vector of joint i ,

and () 0f X  to represent the least square sense.

145

Figure 6-19 Concept of Bone Evaluation

Figure 6-19 is an example to explain our skin mapping error metric. In this figure, the yellow

dot iJ is a joint inside a bone. The red dot
iV is a vertex on the surface, in which the green line

iN with arrow is the average normal of
iV . The red line

'

iN is another normal vector which has

the direction from joint
iJ to vertex

iV . If a vertex is far away from joint
iJ , such as the block

dot
'

iV , we cannot get the right normal direction (see the dotted black line near the joint) for joint

iJ .

Figure 6-20 Skeleton Evaluation Results Comparison

146

Figure 6-20 describes the comparison of our skin mapping
17

 quality. In this figure, there are

two groups of bones. Group a is our skeleton with skin remapping process, whereas group b is the

skeleton result without skin remapping process. The short green lines are the normal vectors for

each joint inside a bone. As we can see, in Figure 6-20.a(i), b(i) and c(i), the joint normal vectors

are similar to the bone orientation. However, in Figure 6-20.a(ii), b(ii) and c(ii), there are large

difference between bone orientation and joint normal vectors. These large differences indicate

that there are skin mapping problem.

6.5. Comparison with the Existing Skeleton Extraction Method

Au et al. [17] proposed a mesh contraction based skeleton extraction method which extracts the

skeleton automatically from a given mesh model. This method is a representative automatic

skeleton generation method in recent years. To evaluate our method, we compared this method

with our method. Figure 6-21 displays the resulted skeleton from [17] and our method. The

skeleton in Figure 6-21a(i) is generated from mesh contraction method [17] whereas the skeleton

in a(ii) is the result from our method. Traditional skeleton extraction methods [17, 29] need to

compute feature points before extracting the skeleton from a mesh model. Those feature points

are the starting points for skeleton extractions. For example, by computing the normal

differentiation, one can identify the finger tips as feature points. Thus, thin and tiny bones like

finger skeleton can be extracted from those feature points. However such a step is also prone to

the “noise” problem, which may lead to incorrect topological structure for skeleton generation.

This is because some non-featured local model details may be identified as features. An example

of such a case can be found in Figure 2-9.

17
 See Figure 6-7 and Figure 6-8 for details.

147

Au’s method may generate incorrect skeleton due the “noise” point selection problem. The

problem can be eliminated by manually selecting feature points before performing a skeleton

extraction task. Figure 6-21 b(i) is an example of such a situation due to the inappropriate

selection of feature points. There are several branches in b(i), which is obviously incorrect to the

skeleton structure. Our skeleton structure is constructed from a group of model segments. We

select the center of each segmentation boundary as feature points to eliminate the “noise” point

selection problem. This can maintain correct topological and geometrical features of the

generated skeleton, since the segmentation process helps define semantically meaningful skeleton

parts for the mesh model and the segmentation boundaries define the connection relationship for

different parts. For example, the head part has only one segmentation boundary, thus we have one

single bone in the head region as shown in b(ii). Figure 6-21 d(i) illustrates another example of

the “noise” problem at the foot region. Our method does not have such a problem (see d(ii)).

Figure 6-21 Resulted Skeleton from the Girl Model

148

Figure 6-22 Resulted Skeleton from the Armadillo Model

Besides the “noise” problem, the joint positions may not be placed correctly. Figure 6-21c(i)

shows this problem. As we can see the joint in the waist region which is connected by three bones

are not placed correctly. On the contrast, we have a better position for this kind of joint (see c(ii)).

Also, the bones are not located at the center of mesh body (see the right leg of c(i)). This is

because that the centeredness of the skeletons cannot be guaranteed during the mesh contraction

process.

Figure 6-22 is another comparison using the Armadillo model. Figure 6-22 a(i) displays the

resulted skeleton from Au’s method and a(ii) displays the resulted skeleton from our method. The

major difference is that our method generates better result than Au’s method (see Figure 6-22 b(i)

and b(ii) for comparison) in terms of topology structure. In the major body part (see b(ii)), we

have a star-type skeleton in which one central joint is used to connect bones for two arms and one

neck and one waist region. However from Au’s result (as shown in b(i)), the neck bone is

connected with the right arm which is inappropriate to our skeleton recognition. This is because

that our method did not modify the mesh model during our skeleton extraction process, whereas

Au’s method changes the vertices’ positions during the mesh contraction process. Such kind of

149

modification would destroy the connection relationship among different parts (see the result in

b(i)).

MAT based method [25] guaranteed the centeredness of the skeleton which provides smooth

1D skeleton curve. However, the skeleton result is highly affected by surface local details. An

example of such situation is discussed in section 2.4.2 with Figure 2-7, where unnecessary

branches may occur in salience regions. Compare with the existing methods [22, 25, 29, 64, 75],

our method is able to generate well-positioned joints. This is because we have adopted a new

segmentation method, which divides a mesh model into meaningful pieces, in our skeleton

generation system. Our segmentation method generates reliable segmentation boundaries for

skeleton construction usage.

Aujay et al. [18] applied Reeb graph to capture the topological structure of a mesh model,

where mesh model symmetry and joint type heuristics were applied additionally to align the

bones and joints more correctly. This method emphasizes on generating topologically adequate

skeleton structure. However, it may only be applicable to mesh models with reliable topological

structures; and more importantly, mesh model symmetry exists. Besides, the treatment of this

method is restricted, as the Reeb graph generation is merely with a single direction from a user

chosen (or automatically generated) source point. If complicated or irregular mesh model

structure exists around such a direction, the topology of the generated skeleton structure may be

problematic. In contrast, our work can handle mesh models with irregular structures. This relates

to our way of skeleton structure generation, in which we consider all connecting boundaries on a

mesh part and generate bones in different directions from these boundaries. In addition, [18] may

generate meaningful joints if one is connecting to multiple bones due to joint type heuristics are

applied. Our work does not have such a restriction, as we generate joints based on topological

parts’ boundaries and skeleton bone traits.

150

Tierny [29] et al. adopted a Reeb graph (which is also called LSD) construction method to

construct mesh skeleton. This is similar to our method, where LSD is adopted in our skeleton

construction process. Rather than using the center of segmentation boundaries as the starting

points, Tierny et al. proposed a feature extraction method to selection feature points on the

surface of a mesh model as the starting points. However, this method suffers from three problems.

First, the feature points from mesh surface may contains noise due to the local details variation,

which will affect the skeleton construction. Second, skeleton constructed from using feature

points may lack of joint specifications in some articulated regions, such as the knee regions. Last,

the connection relationship is not well defined in regions which have multiple branches. By

considering the problems that we mentioned above, we utilize the segmentation boundaries to

produce joints first and then apply LSD method to construction bones for each part.

Wu et al. [25] proposed a method to identify main joints from an input mesh model,

including some from major medial axes and some prong-feature points, which were then

connected to form a temporary skeleton structure. A snake model was thereafter applied

iteratively to each segment of the skeleton structure to modify its shape for matching with the

mesh model’s topological structure. Extra joints were therefore introduced. Although this method

may produce a topologically pleasing skeleton structure, its quality cannot be guaranteed; as

running the snake model is too time consuming that the method has to limit the number of

iterations and cannot impose any quality control. In addition, the joints generated are too many

and do not necessarily possess any semantically meaning. Similar to [25], our work aims to

match the mesh model’s topological structure. We satisfy this criterion by using user sketching to

lead the skeleton structure generation process; and use our segmentation metric to interpret such

topological structure more accurately. In addition, as we generate joints based on topological

parts’ boundaries and skeleton bone traits, our resultant joints are semantically more plausible.

151

We also implemented two metrics to evaluate the quality of our skeleton. The first metric is

smoothness metric. Based on this guidance of this metric, we have designed a skeleton smoothing

method to optimize our skeleton. We also proposed a metric to evaluate the quality of skin

mapping. Rather than using data to tell the difference, we use a Figure 6-20 to describe the effect

of our metric. To describe the advantages of our method, we compared with the mesh contraction

based skeleton extraction method [17].

6.6. Summary

In this chapter, we proposed a skeleton extraction method which makes use of the center of

segmentation boundaries as the starting points to extract bones. By analyzing different skeleton

results from previous section, we have found out the both the strengths and weaknesses of our

skeleton extraction method.

Strengths: Our skeleton contains well-positioned joints. Our segmentation metric defines

the segmentation boundaries from four aspects to produce reasonable segmentation results. They

are namely, the horizontal surface curvature variation, the distance to reference bones, the region

boundary curvature variation and the normal difference between a reference bone and the

triangles’ normal. Besides, our skeleton has reasonable mapping between the surface vertices and

joints (or bones). This property is very useful in skeleton-driven animation.

Weaknesses: Using boundary as the starting point to extract a skeleton is not always correct.

Especially, if a boundary is a wrong structure from the mesh model itself (such as the open-end

boundary as described in Figure 6-3) rather than been generated from our segmentation method,

we cannot deduce a good result. Also even the boundary comes from our segmentation method;

we still cannot guarantee the correctness of our skeleton structure. Normally, such a situation

occurs when we extract a skeleton from a squeezed model, such as the models in Figure 6-17.

152

Chapter 7

7. Conclusions

7.1. Applications

We use MViewer [104], which is open source mesh display interface, as our GUI to display 3D

models. We adopted the LBS technique in our system to perform skeleton-driven animation tasks.

A user needs to select bones and then sketch on the screen to define different poses. Because each

bone contains the mapping between joints and vertices on the mesh model, it is easy to apply LBS

algorithm to achieve skeleton-driven animations.

Figure 7-1 describes the animation result which comes from our skeleton-driven method. In

our system, we allow a user to change to skeleton pose by manipulating any bones inside the

skeleton. When we select one bone, we define two joints: the root joint (the green point) and the

tip-joint (the yellow point). The root joint is a fixed joint whereas the tip-joint is used to rotate

around the root joint. When we select one bone, the root joint divides all the bones into two parts:

fixed bones and dynamic bones. Fixed bones keep unchange whereas the dynamic bones change

the positions when a user rotation the tip-joint. Each dynamic bone contains a rotation matrix. We

make use of those matrices to perform a LBS algorithm.

Figure 7-1 Kung Fu Girl

153

Figure 7-2 Armadillo Monster

Figure 7-3 Kung Fu Man

Figure 7-4 Self-Intersection Problem

Figure 7-2 and Figure 7-3 are the animation results for another two different models. Our

skeleton-driven animation is intuitive and easy to use. However, there are some disadvantages of

using LBS method, such as the self-intersection problem in large rotation regions. We use Figure

154

7-4 to illustrate this problem. In Figure 7-4.a, the green point is the root point whereas the yellow

point is the manipulator point. When we rotate the selected bone with a large angle, some region

may have serious self-intersection problem (as shown in Figure 7-4.b, and Figure 7-4.c is the

transparent display of Figure 7-4.b region).

To avoid such kind of self-intersection problem, we merged the traditional LBS method with

Laplacian surface mesh deformation [6] to create reasonable animation results. The reason that

we merge those two methods is that LBS method is fast and result in rigid shape transformation

and Laplacian surface deformation can preserve local details which will also reduce the self-

intersection problem from using the traditional LBS method.

When we select a bone to perform skeleton-driven animation, our system will first create a

Laplacian matrix by using all the vertices within a selected Region of Interest (ROI). In our

implementation, all the transformed vertices are considered as positional constraints. And we

make use of CHOLMOD [105, 106], which is a set of ANSI C routines for sparse Cholesky

factorization, to compute the updated positions for all the vertices in the ROI.

Figure 7-5 Laplacian Deformation with LBS result as constraints

155

Figure 7-5 shows the result of using Laplacian mesh deformation technique in our animation

process. The self-intersection problem is eliminated by using Laplacian mesh deformation

technique. Laplacian mesh deformation technique is able to preserve local details, which means

that the local surface curvature is preserved. Especially, for those segmentation boundary regions,

by preserving the local details, we can eliminate the self-intersection problem.

7.2. Conclusion

7.2.1. Our Method

Our research work contains two major aspects: the analysis of user sketching and the skeleton

extraction. In the sketching analysis process, we proposed two methods to extract reference bones,

which are used in the skeleton extraction process, from user sketched bones. The first algorithm is

used to check each sketched bone from user’s sketching. We proposed a DP algorithm to detect

large curvature changes for each sketched bone. If there are some large curvature changes, we

will divide the sketched bone into several parts. The second algorithm is used to cluster similar

sketched bones into one group, so that we can create a reference bone by combining all the bones

in the same group together. Our purpose is to clarify a user’s intention from his/her sketching. By

merging similar sketched bones or dividing sketched bones which contain large curvature, we

divide the sketched bones into several groups and construct a reference bone for each group. The

number of reference bones defines the number of mesh parts.

We divide the skeleton extraction process into three parts: mesh segmentation, bone

extraction and skeleton combination. In mesh segmentation process, we adopted the reference

bones as input to perform a multiple-region growing based segmentation process. To obtain

meaningful parts and avoid over-segmentation issue, we designed a new segmentation metric.

Based on this metric, we can divide a mesh model into several parts which have reliable

156

segmentation boundaries. This is because we have designed four different factors to limit the

segmentation process within a specified region
18

. Despite the minima rule that we adopted in our

segmentation metric, we also introduced the distance constraint to reference bones, and the

normal difference between a surface triangle and the reference bone. Then we utilize the

segmentation boundaries to perform bone extraction process. We proposed a LSD method to

extract bones for each part. Starting from the center of each boundary, we computed the

geometric distance for each vertex in a mesh part. Based on this distance, we created a set of

contour lines to construct a bone. Afterwards, we designed line smoothing algorithm to eliminate

the distance distortions due to the local details variations. Finally we connected those bones

which shared the same boundaries to construct the final skeleton.

We also introduced a skin remapping process to eliminate the wrong mapping result from

the LSD method
19

. To evaluate the quality of our skeleton, we proposed two set of metrics to

evaluate the smoothness of a skeleton and the skin mapping.

7.2.2. Advantages

Compared with the existing methods, our method has the following advantages:

1. Easy to use – we allow a user to sketch freely on the mesh model, which means that the

user does not need to be trained to use the skeleton extraction system.

18
 The specified regions are those surface patches which are associated with each reference bone.

19
 During the LSD based bone extraction process, each joint is associated with a set of surface vertices. So,

the correspondence between the surface vertices and the joint defines the mapping relationship.

157

2. Well-positioned joints specification – we use segmentation method to define the joint

positions. To get reasonable segmentation boundaries, we designed a new segmentation

metric.

3. Well-defined skin mapping – the skeleton from our method contains reasonable

mapping relationship between bones and surface data (such as triangles or vertices).

7.2.3. Disadvantages

However, we do notice that there are some problems in our research work. We summarized those

problems as follows:

1. The quality of our skeleton depends on the segmentation result. It is hard to obtain a

reasonable skeleton structure from mesh models which have no clear topology

specifications, such as the Stanford bunny model etc..

2. We introduce a global distance constraint in our segmentation metric. The global

distance metric is defined by using the Euclidean distance between surface vertices and

the reference bones. Thus the problem is that the segmentation result is affected by the

position of user sketched bones.

3. Besides, if a user missed some parts in the sketching process, our segmentation method

cannot generate the skeleton with well-positioned joints. To correct this problem, we

have introduced a DP algorithm to divide those bones into several parts. By monitoring

the curvature change of a bone, we can identify some critical joints which have large

curvature changes. Those critical joints divide a bone into several new bones, which

also divide the mesh part into several new mesh parts (each new mesh part contains one

new bone). However, such method only works on tube based shape. It does not work on

mesh parts which have multiple connection relationship regions.

158

7.3. Future Work

First, we need to solve the problem that we have mentioned in section 6.3. With regards to

models without clear topology specifications, the segmentation boundaries are not suitable for

skeleton extraction. We need a method to approximate the topology features for those mesh parts.

In this case, we want to utilize the existing automatic methods which can recognize the structure

of a mesh part to deduce a better skeleton result in those regions which have no clear topology

features.

We have proposed two metrics to evaluate the quality of a skeleton from two aspects:

smoothness and skin mapping. Cornea et al. have discussed several properties for the 1D curve

skeleton evaluation, such as the thinness, centeredness etc.. Most of properties were analyzed

from their correspondent methods features. And there is no unique metric to evaluate those

features mathematically. Although we have implement two metrics to evaluate the smoothness,

centeredness and skin mapping features, there are lots of work to be done in the skeleton

evaluation area.

We can make use of our skeleton result to deduce different poses for an articulated model.

We have shown example in Figure 7-1, Figure 7-2 and Figure 7-3. But the animation work needs

to be done manually. In the future, we want to achieve automatic skeleton-driven animation

results with some existing motion data. This involves some skeleton retrieval [97] and skeleton

projection issue for two different skeleton structures. Also because we have built the mapping

relationship between joint and surface vertices, such as vertices or triangles, we can utilize this

feature to perform skeleton-driven model editing tasks.

Another possible research direction is the automatic skeleton-driven animation process. For

example in action movies or games, fighting motions are the most common scenarios. There are

159

lots of motion capture data, such as a person plays Kung Fu. We can utilize those existing motion

data as the input to create some correspondent motion sequences, so that the fighting sequence

needs not to be completed with two actors. Besides, there is a lot of existing motion data with

some predefined skeleton structure on the Internet. In order to utilize the existing motion data, we

need to convert our skeleton structure to the predefined skeleton structure. So how to adapt our

skeleton structure to some similar skeleton structure is an interesting field to be explored.

160

References

[1] H. Pottmann, et al., The isophotic metric and its application to feature
sensitive morphology on surfaces vol. 3024: Springer, 2004.

[2] H. Hoppe, et al., "Mesh optimization," presented at the Proceedings of the
20th annual conference on Computer graphics and interactive techniques, Anaheim, CA,
1993.

[3] T. W. Sederberg and S. R. Parry, "Free-form deformation of solid geometric
models," SIGGRAPH Comput. Graph., vol. 20, pp. 151-160, 1986.

[4] D. Zorin, et al., "Interactive multiresolution mesh editing," presented at the
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques, 1997.

[5] L. Kobbelt, et al., "Interactive multi-resolution modeling on arbitrary
meshes," presented at the Proceedings of the 25th annual conference on Computer
graphics and interactive techniques, 1998.

[6] O. Sorkine, et al., "Laplacian surface editing," in Proceedings of the
Eurographics 2004/ACM SIGGRAPH symposium on Geometry processing, Nice, France,
2004, pp. 175-184.

[7] Y. Lipman, et al., "Differential Coordinates for Interactive Mesh Editing," in
Proceedings of the Shape Modeling International 2004, 2004, pp. 181-190.

[8] Y. Yu, et al., "Mesh editing with poisson-based gradient field manipulation,"
ACM Trans. Graph., vol. 23, pp. 644-651, 2004.

[9] A. Nealen, et al., "A Sketch-based Interface for Detail-preserving Mesh
Editing," presented at the ACM SIGGRAPH 2005 Papers, Los Angeles, California, 2005.

[10] J. Huang, et al., "Subspace gradient domain mesh deformation," ACM Trans.
Graph., vol. 25, pp. 1126-1134, 2006.

[11] K. Zhou, et al., "Direct manipulation of subdivision surfaces on GPUs," ACM
Trans. Graph., vol. 26, p. 91, 2007.

[12] S. Capell, et al., "Interactive Skeleton-driven Dynamic Deformations," in
Proceedings of the ACM SIGGRAPH 2002, 2002, pp. 586-593.

[13] J. P. Lewis, et al., "Pose Space Deformation: a unified approach to shape
interpolation and skeleton-driven deformation," presented at the Proceedings of the
27th annual conference on Computer graphics and interactive techniques, 2000.

161

[14] D. Jacka, et al., "A comparison of linear skinning techniques for character
animation," presented at the Proceedings of the 5th international conference on
Computer graphics, virtual reality, visualisation and interaction in Africa, Grahamstown,
South Africa, 2007.

[15] B. Merry, et al., "Animation space: A truly linear framework for character
animation," ACM Trans. Graph., vol. 25, pp. 1400-1423, 2006.

[16] Andrei Sharf, et al., "On-the-fly Curve-skeleton Computation for 3D Shapes,"
Computer Graphics Forum, vol. 26, pp. 323-328, 2007.

[17] O. K.-C. Au, et al., "Skeleton extraction by mesh contraction," ACM Trans.
Graph., vol. 27, pp. 1-10, 2008.

[18] G. Aujay, et al., "Harmonic Skeleton for Realistic Character Animation,"
presented at the Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on
Computer animation, San Diego, California, 2007.

[19] J.-H. Chuang, et al., "Skeletonization of Three-Dimensional Object Using
Generalized Potential Field," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, pp. 1241-
1251, 2000.

[20] L. Kobbelt, et al., "Skeleton Extraction of 3D Objects with Visible Repulsive
Force," presented at the In Computer Graphics Workshop 2003, 2003.

[21] P.-C. Liu, et al., "Automatic Animation Skeleton Construction Using Repulsive
Force Field," presented at the Proceedings of the 11th Pacific Conference on Computer
Graphics and Applications, 2003.

[22] J. Tierny, et al., "Enhancing 3D mesh topological skeletons with discrete
contour constrictions," Vis. Comput., vol. 24, pp. 155-172, 2008.

[23] L. Wade and R. E. Parent, "Automated generation of control skeletons for
use in animation," The Visual Computer, vol. 18, pp. 97-110, 2002.

[24] Y.-S. Wang and T.-Y. Lee, "Curve-Skeleton Extraction Using Iterative Least
Squares Optimization," IEEE Transactions on Visualization and Computer Graphics, vol.
14, pp. 926-936, 2008.

[25] F.-C. Wu, et al., "Domain connected graph: the skeleton of a closed 3D
shape for animation," Vis. Comput., vol. 22, pp. 117-135, 2006.

[26] Y. Zhou, et al., "Three-dimensional skeleton and centerline generation based
on an approximate minimum distance field," The Visual Computer, vol. 14, pp. 303-314,
1998.

162

[27] Y. Zhou and A. W. Toga, "Efficient skeletonization of volumetric objects,"
Visualization and Computer Graphics, IEEE Transactions on, vol. 5, pp. 196-209, 1999.

[28] N. Amenta, et al., "The power crust," presented at the Proceedings of the
sixth ACM symposium on Solid modeling and applications, Ann Arbor, Michigan, United
States, 2001.

[29] J. Tierny, et al., "3D Mesh Skeleton Extraction Using Topological and
Geometrical Analyses," in 14th Pacific Conference on Computer Graphics and
Applications (Pacific Graphics 2006), 2006, pp. 85-94.

[30] Y. Lee, et al., "Mesh scissoring with minima rule and part salience," Comput.
Aided Geom. Des., vol. 22, pp. 444-465, 2005.

[31] D. D. Hoffman and W. A. Richards, "Parts of recognition," Cognition, vol. 18,
pp. 65-96, 1984.

[32] F. Lazarus and A. Verroust, "Level set diagrams of polyhedral objects,"
presented at the Proceedings of the fifth ACM symposium on Solid modeling and
applications, Ann Arbor, Michigan, United States, 1999.

[33] A. Telea and A. Vilanova, "A robust level-set algorithm for centerline
extraction," presented at the Proceedings of the symposium on Data visualisation 2003,
Grenoble, France, 2003.

[34] Curvy3D, "http://www.curvy3d.com/," ed.

[35] SketchUp, "http://sketchup.google.com/," ed.

[36] VRMesh, "http://www.vrmesh.com/," ed.

[37] S. Owada, et al., "A sketching interface for modeling the internal structures
of 3D shapes," presented at the ACM SIGGRAPH 2006 Courses, Boston, Massachusetts,
2006.

[38] T. Igarashi, et al., "Teddy: a sketching interface for 3D freeform design,"
presented at the Proceedings of the 26th annual conference on Computer graphics and
interactive techniques, 1999.

[39] A. Nealen, et al., "FiberMesh: designing freeform surfaces with 3D curves,"
ACM Trans. Graph., vol. 26, p. 41, 2007.

[40] Y. Kho and M. Garland, "Sketching mesh deformations," presented at the
Proceedings of the 2005 symposium on Interactive 3D graphics and games, Washington,
District of Columbia, 2005.

http://www.curvy3d.com/,
http://sketchup.google.com/,
http://www.vrmesh.com/,

163

[41] R. C. Zeleznik, et al., "SKETCH: an interface for sketching 3D scenes,"
presented at the Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques, 1996.

[42] O. Karpenko, et al., "Free-form Sketching with Variational Implicit Surfaces,"
ed, 2002.

[43] K. Das, et al., "Sketching Free-form Surfaces Using Network of Curves,"
presented at the EUROGRAPH-ICS Workshop on Sketch-based Interfaces and Modeling,
2005.

[44] P. Blair, Cartoon Animation Walter Foster Publishing, 1994.

[45] L. B. Kara, et al., "Pen-based styling design of 3D geometry using concept
sketches and template models," presented at the Proceedings of the 2006 ACM
symposium on Solid and physical modeling, Cardiff, Wales, United Kingdom, 2006.

[46] J. Davis, et al., "A sketching interface for articulated figure animation,"
presented at the Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation, San Diego, California, 2003.

[47] E. Chang and O. C. Jenkins, "Sketching Articulation And Pose For Facial
Animation," presented at the Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Vienna, Austria, 2006.

[48] Wolfire, "http://blog.wolfire.com/2009/11/Triangle-mesh-voxelization," in
Wolfire Blog, ed.

[49] C.-M. Ma, et al., "Three-Dimensional Topology Preserving Reduction on the
4-Subfields," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, pp. 1594-1605, 2002.

[50] N. D. Cornea, et al., "Curve-Skeleton Properties, Applications, and
Algorithms," Visualization and Computer Graphics, IEEE Transactions on, vol. 13, pp.
530-548, 2007.

[51] J. Toriwaki and H. Yoshida, Fundamentals of Three-Dimensional Digital
Image Processing, 2009.

[52] J. Toriwaki and T. Yonekura, "Euler Number and Connectivity Indexes of a
Three Dimensional Digital Picture," Forma, vol. 17, pp. 183-209, 2002.

[53] D. G. Morgenthaler and A. Rosenfeld, "Surfaces in three-dimensional digital
images," Information and Control, vol. 51, pp. 227-247, 1981.

[54] T. Y. Kong and A. Rosenfeld, "Digital topology: introduction and survey,"
Comput. Vision Graph. Image Process., vol. 48, pp. 357-393, 1989.

http://blog.wolfire.com/2009/11/Triangle-mesh-voxelization,

164

[55] M. Couprie and R. Zrour, "Discrete Bisector Function and Euclidean
Skeleton," in Discrete Geometry for Computer Imagery. vol. 3429, E. Andres, et al., Eds.,
ed: Springer Berlin / Heidelberg, 2005, pp. 216-227.

[56] N. Gagvani and D. Silver, "Animating volumetric models," Graph. Models, vol.
63, pp. 443-458, 2001.

[57] C. Pudney, "Distance-ordered homotopic thinning: a skeletonization
algorithm for 3D digital images," Comput. Vis. Image Underst., vol. 72, pp. 404-413, 1998.

[58] N. Gagvani and D. Silver, "Parameter-controlled volume thinning," CVGIP:
Graph. Models Image Process., vol. 61, pp. 149-164, 1999.

[59] I. Bitter, et al., "Penalized-Distance Volumetric Skeleton Algorithm," IEEE
Transactions on Visualization and Computer Graphics, vol. 7, pp. 195-206, 2001.

[60] S. Bouix and K. Siddiqi, "Divergence-Based Medial Surfaces," in Computer
Vision - ECCV 2000. vol. 1842, ed: Springer Berlin / Heidelberg, 2000, pp. 603-618.

[61] T. He, et al., "Reliable Path for Virtual Endoscopy: Ensuring Complete
Examination of Human Organs," IEEE Transactions on Visualization and Computer
Graphics, vol. 7, pp. 333-342, 2001.

[62] H. Sundar, et al., "Skeleton Based Shape Matching and Retrieval," presented
at the Proceedings of the Shape Modeling International 2003, 2003.

[63] M. Wan, et al., "Distance-field based skeletons for virtual navigation,"
presented at the Proceedings of the conference on Visualization '01, San Diego,
California, 2001.

[64] W.-C. Ma, et al., "Skeleton Extraction of 3D Objects with Radial Basis
Functions," presented at the Proceedings of the Shape Modeling International 2003,
2003.

[65] S. Katz, et al., "Mesh segmentation using feature point and core extraction,"
The Visual Computer, vol. 21, pp. 649-658, 2005.

[66] S. Katz and A. Tal, "Hierarchical mesh decomposition using fuzzy clustering
and cuts," ACM Trans. Graph., vol. 22, pp. 954-961, 2003.

[67] M. Attene, et al., "Hierarchical mesh segmentation based on fitting
primitives," The Visual Computer: International Journal of Computer Graphics vol. 22, pp.
181-193, 2006.

[68] O. Sorkine, "Differential Representations for Mesh Processing," Computer
Graphics Forum, vol. 25, pp. 789-807, 2006.

165

[69] H. Blum, "A Transformation for Extracting New Descriptors of Shape," in
Models for the Perception of Speech and Visual Forms, ed: MIT Press, 1967, pp. 362--380.

[70] A. P. Mangan and R. T. Whitaker, "Partitioning 3D Surface Meshes Using
Watershed Segmentation," IEEE Transactions on Visualization and Computer Graphics,
vol. 5, pp. 308-321, 1999.

[71] R. Liu and H. Zhang, "Segmentation of 3D Meshes through Spectral
Clustering," presented at the Proceedings of the Computer Graphics and Applications,
12th Pacific Conference, 2004.

[72] Y. Zhou and Z. Huang, "Decomposing Polygon Meshes by Means of Critical
Points," presented at the Proceedings of the 10th International Multimedia Modelling
Conference, 2004.

[73] L. Grady, "Random Walks for Image Segmentation," IEEE Trans. Pattern Anal.
Mach. Intell., vol. 28, pp. 1768-1783, 2006.

[74] W. L. Winston, Introduction to Mathematical Programming: Applications
and Algorithms, 2 ed.: International Thomson Publishing, 1995.

[75] Y. Shinagawa and T. L. Kunii, "Constructing a Reeb graph automatically from
cross sections," IEEE Comput. Graph. Appl., vol. 11, pp. 44-51, 1991.

[76] T. K. Dey and J. Sun, "Defining and computing curve-skeletons with medial
geodesic function," presented at the Proceedings of the fourth Eurographics symposium
on Geometry processing, Cagliari, Sardinia, Italy, 2006.

[77] V. Pascucci, et al., "Robust on-line computation of Reeb graphs: simplicity
and speed," ACM Trans. Graph., vol. 26, p. 58, 2007.

[78] M. Mortara, et al., "Affine-Invariant Skeleton of 3D Shapes," presented at
the Proceedings of the Shape Modeling International 2002 (SMI'02), 2002.

[79] Y. Rubner, et al., "A Metric for Distributions with Applications to Image
Databases," presented at the Proceedings of the Sixth International Conference on
Computer Vision, 1998.

[80] Z. Karni and C. Gotsman, "Spectral compression of mesh geometry,"
presented at the Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, 2000.

[81] D. Cohen-Steiner, et al., "Variational shape approximation," ACM Trans.
Graph., vol. 23, pp. 905-914, 2004.

[82] X. Li, et al., "Decomposing polygon meshes for interactive applications,"
presented at the Proceedings of the 2001 symposium on Interactive 3D graphics, 2001.

166

[83] B. Lévy, et al., "Least squares conformal maps for automatic texture atlas
generation," ACM Trans. Graph., vol. 21, pp. 362-371, 2002.

[84] E. Zhang, et al., "Feature-based surface parameterization and texture
mapping," ACM Trans. Graph., vol. 24, pp. 1-27, 2005.

[85] P. V. Sander, et al., "Multi-chart geometry images," presented at the
Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, Aachen, Germany, 2003.

[86] Q. Zheng, et al., "Sketching-Based Skeleton Generation," Proceedings of IEEE
International Conference on Ubi-media Computing, pp. 179-186, 2010.

[87] M. Garland, et al., "Hierarchical face clustering on polygonal surfaces,"
presented at the Proceedings of the 2001 symposium on Interactive 3D graphics, 2001.

[88] Z. Ji, et al., "Easy Mesh Cutting," Computer Graphics Forum, vol. 25, pp. 283-
291, 2006.

[89] Y.-K. Lai, et al., "Fast mesh segmentation using random walks," presented at
the Proceedings of the 2008 ACM symposium on Solid and physical modeling, Stony
Brook, New York, 2008.

[90] S. Shlafman, et al., "Metamorphosis of Polyhedral Surfaces using
Decomposition," Computer Graphics Forum, vol. 21, pp. 219-228, 2002.

[91] X. C. Wang and C. Phillips, "Multi-weight enveloping: least-squares
approximation techniques for skin animation," presented at the Proceedings of the 2002
ACM SIGGRAPH/Eurographics symposium on Computer animation, San Antonio, Texas,
2002.

[92] P.-P. J. Sloan, et al., "Shape by example," presented at the Proceedings of
the 2001 symposium on Interactive 3D graphics, 2001.

[93] A. Mohr, et al., "Direct manipulation of interactive character skins,"
presented at the Proceedings of the 2003 symposium on Interactive 3D graphics,
Monterey, California, 2003.

[94] H.-B. Yan, et al., "Shape Deformation Using a Skeleton to Drive Simplex
Transformations," IEEE Transactions on Visualization and Computer Graphics, vol. 14, pp.
693-706, 2008.

[95] R. Zayer, et al., "Harmonic Guidance for Surface Deformation," Computer
Graphics Forum, vol. 24, pp. 601-609, 2005.

167

[96] G. Taubin, "A signal processing approach to fair surface design," presented
at the Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, 1995.

[97] G. K. L. Tam, et al., "Motion Retrieval Based on Energy Morphing,"
presented at the Proceedings of the Ninth IEEE International Symposium on Multimedia,
2007.

[98] D. H. Douglas and T. K. Peucker, "Algorithms for the Reduction of the
Number of Points Required to Represent a Digitized Line or Its Caricature,"
Cartographica: The International Journal for Geographic Information and
Geovisualization, vol. 10, pp. pp. 112-122, December 1973 1973.

[99] G. Lavoué, et al., "A new CAD mesh segmentation method, based on
curvature tensor analysis," Comput. Aided Des., vol. 37, pp. 975-987, 2005.

[100] A. Golovinskiy and T. Funkhouser, "Randomized cuts for 3D mesh analysis,"
ACM Trans. Graph., vol. 27, pp. 1-12, 2008.

[101] L. Shapira, et al., "Consistent mesh partitioning and skeletonisation using
the shape diameter function," Vis. Comput., vol. 24, pp. 249-259, 2008.

[102] Y. Xiao, et al., "Topological Segmentation of Discrete Human Body Shapes in
Various Postures Based on Geodesic Distance," presented at the Proceedings of the
Pattern Recognition, 17th International Conference on (ICPR'04) Volume 3 - Volume 03,
2004.

[103] Y. Xiao, et al., "A Discrete Reeb Graph Approach for the Segmentation of
Human Boday Scans," in Fourth International Conference on 3D Digital Image and
Modeling, Banff, Alberta, Canada, 2003, pp. pp. 378-385.

[104] H. Cantzler and T. Breckon. http://mview.sourceforge.net/.

[105] Y. Chen, et al., "Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky
Factorization and Update/Downdate," ACM Trans. Math. Softw., vol. 35, pp. 1-14, 2008.

[106] T. A. Davis and W. W. Hager, "Dynamic Supernodes in Sparse Cholesky
Update/Downdate and Triangular Solves," ACM Trans. Math. Softw., vol. 35, pp. 1-23,
2009.

http://mview.sourceforge.net/

