New Continuous Flow Oxidation Methodology

MCPAKE, CHRISTOPHER C.

How to cite:

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.
Durham University

A Thesis Entitled

New Continuous Flow Oxidation Methodology

Submitted by

Christopher McPake

Ustinov College

Department of Chemistry

A Candidate for the Degree of Doctor of Philosophy 2011
The work presented in this thesis was carried out at Durham University between the period of October 2007 and December 2010. This thesis is the work of the author, except where acknowledged by reference and has not been submitted for any other degree. The copyright of this thesis lies solely with the author and no quotation from it should be published without prior written consent and information derived from it should be acknowledged.

To date, part of this work has been the subject of the following:

and has been presented at:

- 10th RSC Symposium for Fluorine Chemistry, Durham, 2010
- Organic Chemistry Seminar, Durham University, 2010

Statement of Copyright

No part of this thesis may be reproduced by any means, nor transmitted, nor translated into any machine language without written permission of the author,
Acknowledgements

The thirty nine months I have spent at Durham University studying towards my PhD has without a doubt been some of the most enjoyable times of my working career and, whilst many people at have contributed towards this, some of those deserve special mention.

First and foremost, I would like to especially thank my supervisor, Graham Sandford, for his fantastic support, guidance and encouragement throughout the course of my research and, also, for giving me the opportunity to work on such an exciting research project. For this, I will always be indebted to him.

With this in mind, I would also like to thank AnneMarie O’Donoghue, whom I have always felt was instrumental in bringing me to Durham University.

For technical support and guidance, I would like to thank Chris Murray of AWE, all the members of the Durham Fluorine Group and all of the analytical and support staff.

I have also made many friends over the past three years, all of which have made my time at Durham such an enjoyable one; whilst naming all of these is not possible, special mention must to go to Ian Wilson, Katharine Linton, Matt Cargill, Anita Lindsay, Peter Harrisson, Jessica Breen, Graham Sandford and Harriet Teare.

Lastly, but by no means least, I would like to thank my girlfriend, Julie, and the rest of my family and friends for their continuous support throughout all of my studies.
Contents

Declaration i
Acknowledgments ii
Contents iii
Abstract vii

Chapter 1 - Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

1.1 Introduction ... 2-3

1.2 Elemental Fluorine ... 4-9
 1.2.1 Brief History 4-5
 1.2.2 Preparation
 1.2.2.1 Electrochemical Preparation 5-6
 1.2.2.1.1 Anhydrous Hydrogen Fluoride 7
 1.2.2.2 Chemical Preparation 7-8
 1.2.3 Properties
 1.2.3.1 Physical Properties 8
 1.2.3.2 Chemical Properties 9

1.3 Elemental Fluorine and Organic Synthesis 10-25
 1.3.1 Direct Fluorination of Using F₂
 1.3.1.1 Radical Perfluorinations 11-12
 1.3.1.2 Electrophilic Fluorinations 13-15
 1.3.2 F₂ as a Reagent for Non-Fluorinated Compounds
 1.3.2.1 Introduction 16
 1.3.2.2 Creating Alkenes at un-reactive Sites 16-17
 1.3.2.3 Bromination and Iodination of π-Centers
 1.3.2.3.1 Halogenation of Deactivated Olefins 18
 1.3.2.3.2 Bromination of Aromatic Compounds 19-20
 1.3.2.3.3 Iodination of Aromatic Compounds 20-21
 1.3.2.4 Hypofluorites
 1.3.2.4.1 Acetyl Hypofluorite 22
 1.3.2.4.2 Alkyl Hypofluorites 22-24
 1.3.2.5 Hypofluorous Acid 24-25
1.4 The HOF.MeCN Complex as a Powerful Oxidant 26-48
 1.4.1 Introduction to Oxidation in Organic Chemistry 26
 1.4.1.1 Definition .. 26
 1.4.1.2 Conventional Oxidants .. 26-27
 1.4.2 Generation of HOF.MeCN and General Reaction Procedure 27-28
 1.4.3 HOF.MeCN Oxidations ... 28
 1.4.3.1 Epoxidation of Olefins ... 28-31
 1.4.3.2 Tertiary Hydroxylation of C-H Bonds 31-32
 1.4.3.3 Oxidation of Secondary Alcohols to Ketones 32-33
 1.4.3.4 Baeyer-Villiger Oxidations ... 33-34
 1.4.3.5 Amine Oxidations ... 34
 1.4.3.5.1 Aniline Oxidations .. 34-35
 1.4.3.5.2 Aliphatic Amines ... 36-37
 1.4.3.5.3 Vicinal Di-Amino Compounds 37-38
 1.4.3.5.4 Amino Acids .. 38
 1.4.3.5.5 Tertiary Nitrogen oxidations 39-42
 1.4.3.6 Azide Oxidations .. 42
 1.4.3.6.1 Aliphatic Azides .. 42-43
 1.4.3.6.2 Aromatic Azides ... 43-44
 1.4.3.7 Sulfur Oxidations .. 44
 1.4.3.7.1 Di-alkyl Sulfide Oxidations ... 44-46
 1.4.3.7.2 Electron Deficient Sulfide Oxidations 46-47
 1.4.3.7.3 Thiophene Oxidations .. 47-48
 1.4.4 Concluding Remarks on Rozen’s HOF.MeCN Complex 48

Chapter 2 - Introduction to Continuous Flow Reactors

2.1 Introduction .. 50-51
 2.1.1 Terminology ... 51
 2.1.2 Reactor Classification ... 51

2.2 Benefits ... 51-55
 2.2.1 Control .. 52-53
 2.2.2 Safety ... 54
 2.2.3 Scale-out for Mass Production .. 54-55
 2.2.4 Batch vs. Flow ... 55-56

2.3 Miniaturized Total Analysis Systems (µ-TAS) 56-57
Contents

2.4 Gas-Liquid Reactors ... 58-69
 2.4.1 The Falling Film Reactor .. 58-60
 2.4.2 The Microbubble Reactor .. 60-61
 2.4.3 Durham Continuous Flow Reactors
 2.4.3.1 Horizontal Reactors .. 62-66
 2.4.3.2 Vertical Reactors .. 67-69

Chapter 3 - New Continuous Flow Oxidation Methodology

 3.1 Aims ... 71

 3.2 Handling of Elemental Fluorine and Hydrogen Fluoride 72-74
 3.2.1 Associated Hazards ... 72
 3.2.2 Fluorine Handling Apparatus ... 72-74
 3.2.2.1 Passivation .. 74

 3.3 Continuous HOF.MeCN Synthesis and Batch Oxidation 74-81
 3.3.1 Variables ... 75
 3.3.2 Initial Tests ... 76
 3.3.3 HOF.MeCN Optimization ... 77-80
 3.3.4 Variation of Setup .. 81

 3.4 Continuous HOF.MeCN Synthesis and Oxidation 82-97
 3.4.1 Initial Tests and Calibration .. 83-87
 3.4.2 Scale-up of the Continuous Process 87-88
 3.4.3 Continuous Flow Oxidations ... 89-92
 3.4.4 Variation of Setup .. 92-95
 3.4.4.1 Thermodynamics .. 94-95
 3.4.5 Freezing of HOF.MeCN .. 95-96

 3.5 Summary ... 97

Chapter 4 - Oxidations at Nitrogen

 4.1 Introduction and Aims .. 99-100

 4.2 Aliphatic Nitro Compounds .. 100-106
 4.2.1 From Aliphatic Amines ... 100-102
 4.2.1.1 Continuous Flow Synthesis 102-105
 4.2.2 From Aliphatic Azides .. 106
 4.2.2.1 Continuous Flow Synthesis 106
<table>
<thead>
<tr>
<th>Chapter 4: Aromatic Nitro Compounds</th>
<th>107-109</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Continuous Flow Synthesis</td>
<td>107-109</td>
</tr>
<tr>
<td>Chapter 4: Nitrogen Heteroaromatic Derivatives</td>
<td>109-117</td>
</tr>
<tr>
<td>4.4.1 Pyridines</td>
<td>110-114</td>
</tr>
<tr>
<td>4.4.2 Diazines</td>
<td>114-117</td>
</tr>
<tr>
<td>Chapter 4: Difluoramines</td>
<td>117-123</td>
</tr>
<tr>
<td>Chapter 4: Summary</td>
<td>123</td>
</tr>
<tr>
<td>Chapter 5 - Synthesis of Starting Materials and C-F Activation</td>
<td></td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>125</td>
</tr>
<tr>
<td>5.2 Synthesis of Perfluoroaromatic amine derivatives</td>
<td>125-132</td>
</tr>
<tr>
<td>5.2.1 Nucleophilic Substitution of Polyfluorinated Aromatics</td>
<td>125-128</td>
</tr>
<tr>
<td>5.2.2 Synthesis of polyfluoro benzene, pyridine and pyrimidine systems</td>
<td>128-133</td>
</tr>
<tr>
<td>5.3 Palladium Catalyzed C-F Bond Activation</td>
<td>133-140</td>
</tr>
<tr>
<td>5.3.1 Introduction</td>
<td>133-136</td>
</tr>
<tr>
<td>5.3.2 Palladium catalyzed vinyl coupling reactions</td>
<td>136-140</td>
</tr>
<tr>
<td>5.4 Summary</td>
<td>141</td>
</tr>
<tr>
<td>Chapter 6 - Conclusion and Next Steps</td>
<td>143-147</td>
</tr>
<tr>
<td>Chapter 7 - Experimental</td>
<td></td>
</tr>
<tr>
<td>7.1 General</td>
<td>149-150</td>
</tr>
<tr>
<td>7.2 Experimental to Chapter 3</td>
<td>150-156</td>
</tr>
<tr>
<td>7.3 Experimental to Chapter 4</td>
<td>156-171</td>
</tr>
<tr>
<td>7.4 Experimental to Chapter 5</td>
<td>172-187</td>
</tr>
<tr>
<td>Chapter 8 - References</td>
<td>189-197</td>
</tr>
</tbody>
</table>
Abstract

The HOF.MeCN complex, formed from the reaction of elementary fluorine with aqueous acetonitrile, was discovered by Shlomo Rozen in 1987 and, in a series of publications, he demonstrated that the complex is a uniquely effective electrophilic oxygen transfer agent. However, it is estimated that the HOF.MeCN complex has a half life of a few hours at 0ºC and thus, must be produced and used immediately when required. In addition to this, highly exothermic, rapid oxidation processes can be problematic with reaction control and safety when reagents are added into an excess of a highly oxidizing medium. Consequently, scale-up of oxidations to a larger industrial level using the HOF.MeCN complex in batch processes would not be possible.

In recent years, continuous flow reactors using microchannels have been viewed as a viable method for avoiding many of the problems encountered when a laboratory process is scaled-up. The low chemical inventory of such reactors means that even highly reactive reactions can be performed safely and, with the application of multiple reaction channels in parallel, large quantities of product can be easily obtained.

In this thesis we present new continuous flow methodology for the \textit{in situ} generation of HOF.MeCN and, without isolation, immediate substrate oxidation in a two-step process. The continuous process, therefore, provides a genuine method for oxidizing large quantities of material, without the problems associated with batch oxidations. Scale-up oxidations of various amines, alkenes, and anilines are also presented along with a safe and accurate method for calibrating HOF.MeCN amounts.
Chapter 1 - Introduction to Elemental Fluorine as a Reagent in Organic Synthesis
1.1 Introduction

The importance of selectively introducing fluorine atoms into organic molecules is exemplified by the sheer scale of commercial and industrial organofluorine compounds available. Pesticides, anaesthetics, pharmaceuticals(i), refrigerants, lubricants, surfactants, and many more consumables1-3 all make use of organofluorine compounds but, since only a select few naturally occurring compounds contain fluorine4(ii), all fluoroorganic compounds available today are ‘man made’.

The development of industrial organofluorine chemistry began in 19315(iii) with the availability of anhydrous hydrogen fluoride in commercial quantities and it was in this decade that fluoromethane systems were developed as refrigerants and PTFE was discovered.

It was not until 1954, when Fried and Sabo demonstrated the enhanced biological activity of fluorocortisone (I) (scheme 1) compared to its parent compound6, that fluoroorganic chemistry began to flourish. The late 1950’s and early 1960’s then experienced a surge in civilian applications of fluoroorganic compounds7.

(i) It is estimated that 30% of the leading blockbuster drugs and 20% of prescribed pharmaceuticals contain fluorine8

(ii) It is noteworthy that fluorine is the 13th most abundant element in the earth’s crust, existing largely as the fluorite minerals calcium fluoride, CaF2 (fluorspar) and Na3AlF6 (cryolith)4

(iii) Anhydrous hydrogen fluoride was first isolated in 1845 by Frémy, who heated KHF2 (Frémy’s salt) to produce KF and HF; whilst this method is still used to produce ‘small’ quantities in the lab, quantities were not being produced on a large scale until 19315
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

However, of the thousands of publications over this time covering the synthesis of fluoroorganic systems, elemental fluorine was rarely used as a fluorinating agent, with scientists opting to use sources such as HF or metal fluorides\(^9\). The underutilization of elemental fluorine is a result of years of the general opinion that the element is too reactive, and also, too dangerous to be controlled in reactions\(^9\).

Over the past 40 years, a select few research groups have been working to overturn the negative view towards elemental fluorine, with some useful progress\(^10\). Although there are still only a small number of research institutions that have the facilities to work with F\(_2\), the growing number of publications demonstrate that the viability of F\(_2\) as a selective fluorinating reagent is undeniable\(^10\). Fluorouracil (3), the popular chemotherapy agent and precursor, is synthesized from uracil (2) using elemental fluorine (scheme 2).

![Scheme 2: Synthesis of Fluorouracil using F\(_2\)](image)

Although the use of elemental fluorine for selective fluorinations is now more widely used, its use as a reagent for fluorine-free organic compounds is relatively un-researched\(^9\). Shlomo Rozen is a pioneer in this field, and sections 1.3 and 1.4 are devoted to reviewing his research progress in this area.

Before these reactions are discussed, the next section will review some important aspects about elemental fluorine.
1.2 Elemental Fluorine

1.2.1 Brief History

The synthesis and isolation of elemental fluorine in 1886 by Henri Moissan is a feat not to be taken lightly. Its closest counterpart, chlorine, was isolated more than 100 years earlier by Scheele in 177411, and both other non-radioactive halogens were isolated within the next 50 years (iodine by Courtois, \textit{ca.} 1811, and bromine by Balard, \textit{ca.} 1824)11. However, given the extreme reactivity of fluorine, the highly toxic nature of the reactants involved, and the apparatus available at the time, the isolation of fluorine was by far the most prestigious and also the most tragic.

Initial attempts to isolate fluorine date back some 72 years prior to Moissan taking up the challenge, when, in 1812, Humphrey Davy investigated the action of chlorine on red hot metal fluorides and also the electrolysis of hydrogen fluoride11. Apart from experiencing the toxic effects of concentrated hydrogen fluoride, in which he reported ‘prolonged and excruciating pain to the fingers and eyes’, his efforts were not successful11.

More unfortunate than Davey’s encounters with hydrofluoric acid were some whom followed his attempts. In the 1930’s, G. Knox permanently lost his voice due to inhalation of the toxic gas and worse still, are the reported fatalities of P. Louyet and F. Nicklès11.

Even though many scientists were discouraged by these reports, there were still those who attempted to synthesize and isolate fluorineiv, with, according to British fluorine chemist H. J. Emeléus, ‘often partial success in actually generating fluorine, but only failing in its isolation’11.

It was not until 1884 that Moissan took up the challenge, and, on the 28th June 1886, using the apparatus shown in \textit{figure 1}, he successfully declared the isolation of fluorine \textit{via} electrolysis of anhydrous hydrogen fluoride containing small amounts of potassium fluoride12 (v).

Not only was this an astonishing accomplishment for its time, and one which gained him the Nobel Prize in 1906, but it is also considered by many to be ‘one of the most important discoveries of the last centuries’13.

iv Published efforts were made by: G. Aimé (1833), M. Faraday (1834), E. Frémy (1854, 1856), T. L. Phipson (1861), H. Kammerer (1862), J. P. Prat (1867), P. Cillis (1868), G. Gore (1869, 1870, 1871), L. Varenne (1880), O. Loew (1881), B. Brauner (1881), and H. B. Dixon (1883)

v Similar attempts of electrolysis were made by Davy, the Knox brothers and Gore and Frémy, but were either carried out at temperatures too high or using hydrated substances11
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

1.2.2 Preparation

1.2.2.1 Electrochemical preparation

With credit to Moissan, industrial generation of \(\text{F}_2 \) still uses a variation of his original procedure, namely the electrolysis of KF.xHF, in which the fluoride ion is oxidised at the anode to liberate fluorine gas. However, over the course of time, the materials used, along with the electrolyte composition and the equipment, have all been modified to increase product efficiency and prolong equipment life\(^{14}\).

Although many slight modifications have been made to the cells, for the purpose of this review, these modifications can be broadly classed into three types; the ‘low’, ‘medium’ and ‘high’ temperature cells\(^{14}\).

Moissan’s cell was classed as a low temperature cell (15-50°C) and used KF.xHF as the electrolyte and, with only minor adjustments, this was successfully used to create \(\text{F}_2 \) for more than 30 years\(^{14}\).

The next major change came in 1919 when Argo, Mathers, Humiston and Anderson introduced the high temperature cell (239-310°C), which used KF.HF as the electrolyte. In 1925, Lebeau and Damiens then introduced the medium temperature cell (70-130°C), which used KF.2HF as the electrolyte\(^{14}\).

Intensive studies carried out on all three types concluded that the medium temperature cell was the most practical source of \(\text{F}_2 \). This type has the advantage of lower corrosion of components,
combined with a low vapour pressure of HF over the electrolyte. Higher variations of electrolyte composition can also be tolerated.

Due to these benefits, the medium temperature cell was the main choice of cell to be scaled up for industrial manufacture from the pre 1940’s laboratory production.

Today, large scale fluorine cells are used to produce the majority of industrial and commercially available fluorine and fluorine products. A cross-section view of the cell currently used by F2 Chemicals Ltd. is shown in figure 2, which is operated using an electrolyte temperature of 80-90°C and a current of 5 kA to produce 3.3 kg h⁻¹ of fluorine. The fluorine cell room at F2 Chemicals Ltd. is shown in figure 3.

Figure 2: Fluorine cells used for large scale production of F₂

Figure 3: Fluorine cell room at F2 Chemicals Ltd., Preston
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

1.2.2.1 Anhydrous Hydrofluoric Acid

Anhydrous hydrogen fluoride (AHF) is the main precursor for the production of fluorine and, its large scale availability was a major attributing factor to the production of fluorine on an industrial scale\(^{(vi)}\). Whilst AHF is still produced in the laboratory using Frémy’s salt (KHF\(_2\)), commercially it is produced by the treatment of calcium fluoride, CaF\(_2\), with concentrated sulfuric acid (scheme 3)\(^{5}\):

\[
\text{CaF}_2 + \text{H}_2\text{SO}_4 \rightarrow 2\text{HF} + \text{CaSO}_4
\]

Scheme 3: Production of AHF

1.2.2.2 Chemical preparation\(^{(vii)}\)

Many early pioneers including Davey, Frémy, Moissan and Ruff, attempted the chemical synthesis and isolation of elemental fluorine but all to no avail\(^{16-20}\). The difficulty in obtaining elemental fluorine purely by chemical means, although sound in theory, is that the decomposition of fluorine compounds to liberate F\(_2\) is thermodynamically very unfavourable.

Although trace amounts of fluorine were generated in several attempts, including those by Steel in 1959\(^{21}\), the first practical synthesis was reported by Christie in 1986\(^{22}\). This approach was based on the anionic stabilization of high oxidation state transition metal (M) fluorides (scheme 4 [1]), and the subsequent displacement of a weak Lewis acid (MF\(_4\)), from a stronger Lewis acid (SbF\(_5\)) (scheme 4 [2]). The liberated MF\(_4\) is thermodynamically unstable so spontaneously decomposes with the evolution of F\(_2\) (scheme 3 [3]).

\[
\text{MF}_4 \text{ (unstable)} \rightarrow \text{MF}_6^{2-} \text{ (stable)} \quad [1]
\]

\[
\text{K}_2\text{MF}_6 + 2\text{SbF}_5 \rightarrow 2\text{K}_2\text{SbF}_6 + \text{MF}_4 \quad [2]
\]

\[
\text{MF}_4 \rightarrow \text{MF}_3 + \text{F}_2 \quad [3]
\]

Scheme 4: Chemical production of F\(_2\)

\(^{(vi)}\) The F2 Chemicals Ltd. design (figure 2) typically uses 39-42 % w/w HF concentration, which is also quite typical of other operating cells\(^{5}\)

\(^{(vii)}\) Chemical preparation refers to means excluding electrolysis or photolysis discharge or without the use of elemental fluorine to synthesise starting materials
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Christie successfully demonstrated this using manganese as the metal (*scheme 5*)

\[
\text{K}_2\text{MnF}_6 + 2\text{SbF}_5 \rightarrow 2\text{KSbF}_6 + \text{MnF}_3 + \frac{1}{2} \text{F}_2
\]

Scheme 5

1.2.3 Properties

1.2.3.1 Physical properties

Only one isotope, \(^{19}\text{F}\), is found in nature, although the \(^{18}\text{F}\) isotope, which has a half-life of 109.7 mins, can be synthesized and is often used as a radio tracer. An overview of the physical properties of fluorine (both diatomic and atomic), along with those of the other non-radioactive halogens for comparison, are summarized in *Table 1*.

Table 1 – Physical properties of atomic and diatomic halides

<table>
<thead>
<tr>
<th>Property</th>
<th>Fluorine</th>
<th>Chlorine</th>
<th>Bromine</th>
<th>Iodine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular properties (X<sub>2</sub>)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melting point (°C)</td>
<td>-218.6</td>
<td>-101.0</td>
<td>-7.3</td>
<td>114.0</td>
</tr>
<tr>
<td>Boiling point (°C)</td>
<td>-188.1</td>
<td>-34.0</td>
<td>59.5</td>
<td>185.0</td>
</tr>
<tr>
<td>Density of solid (g cm<sup>-3</sup>)</td>
<td>1.3</td>
<td>1.9</td>
<td>3.4</td>
<td>4.9</td>
</tr>
<tr>
<td>Heat of vaporisation (kJ mol<sup>-1</sup>)</td>
<td>6.5</td>
<td>20.4</td>
<td>29.6</td>
<td>41.6</td>
</tr>
<tr>
<td>Heat of dissociation (kJ mol<sup>-1</sup>)</td>
<td>158.8</td>
<td>242.6</td>
<td>192.8</td>
<td>151.1</td>
</tr>
<tr>
<td>Atomic properties (X)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covalent radius (Å)</td>
<td>0.71</td>
<td>0.99</td>
<td>1.14</td>
<td>1.33</td>
</tr>
<tr>
<td>Ionisation potential (kJ mol<sup>-1</sup>)</td>
<td>1681</td>
<td>1250</td>
<td>1139</td>
<td>1007</td>
</tr>
<tr>
<td>Electron affinity (kJ mol<sup>-1</sup>)</td>
<td>-328.0</td>
<td>-348.8</td>
<td>-324.6</td>
<td>-295.3</td>
</tr>
<tr>
<td>Electronegativity (Pauling)</td>
<td>4.0</td>
<td>3.0</td>
<td>2.8</td>
<td>2.5</td>
</tr>
</tbody>
</table>
1.2.3.2 Chemical properties

Fluorine, which is strictly univalent, is the most reactive element of the Periodic Table. This is not surprising given the weak diatomic bond of F₂ in comparison to its bonding strength with other elements (particularly carbon and hydrogen). Table 2 shows some of the bond energies of fluorine with other common elements.

Table 2 – Bond energies of fluorine

<table>
<thead>
<tr>
<th>Bond</th>
<th>Bond dissociation energy (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-F</td>
<td>565</td>
</tr>
<tr>
<td>Si-F</td>
<td>565</td>
</tr>
<tr>
<td>C-F</td>
<td>485</td>
</tr>
<tr>
<td>P-F</td>
<td>490</td>
</tr>
<tr>
<td>N-F</td>
<td>283</td>
</tr>
<tr>
<td>O-F</td>
<td>188</td>
</tr>
<tr>
<td>F-F</td>
<td>155</td>
</tr>
</tbody>
</table>

The weak bond in F₂ is due to its small covalent radius combined with its relatively high nuclear charge which causes a decrease in overlap between bonding orbitals. The increased repulsion between the non-bonding orbitals reduces the bond strength of diatomic fluorine even further.

Fluorine, therefore, reacts with all the other elements (except nitrogen and some of the lighter noble gasses), often quite energetically (see section 1.3.1.1). It reacts with hydrogen with extreme violence to produce HF and also produces HF when reacted with water (along with oxygen and oxygen difluoride). Inter-halogen compounds are formed upon reaction with other halogens and all metals are corroded at room temperature upon exposure to high concentrations of fluorine.
1.3 Elemental Fluorine and Organic Synthesis

Although elemental fluorine can play an important role in direct fluorination of organic molecules, the main purpose of this review is to cover its use as a general synthetic organic tool. However, whilst the reader is directed to the references cited herein for a more comprehensive review27-30, it is still important to briefly discuss the role that elemental fluorine has to play as a fluorinating reagent.

Moission was the first to carry out fluorinations using neat fluorine on compounds such as CH\textsubscript{4}, CHCl\textsubscript{3} and CCl\textsubscript{4}, although he had little success and only observed a ‘burning of the substrate with frequent explosions’31.

Carbon tetrafluoride was the first perfluorocarbon to be made with fluorine and was isolated and characterised in 1926 by Lebeau and Damiens32, and also in the same year by Ruff and Keim33.

The first selective fluorination came in 1933, when Bockemueller discovered that high dilution and low temperatures were the key to unlock the selective potential of elemental fluorine and proceeded to demonstrate this with the selective fluorination of aliphatic carboxylic acids34.

Yet at the end of the 1960’s, only a very limited literature of selective fluorinations using F\textsubscript{2} existed, upholding the current view that ‘it cannot be considered a useful method’35. This however, is not accurate and by taking certain steps to avoid perfluorination, selective fluorination using elemental fluorine can be achieved. Before selective fluorination methods are discussed, perfluorination methods will be briefly discussed.

1.3.1 Direct Fluorinations using F\textsubscript{2}

Direct fluorination of organic molecules proceeds via two routes, either a free radical or an electrophilic process36. In general, radical reactions are more rapid, less controlled, and usually unselective. In comparison, electrophilic reactions are slower, more controlled, and are directed by charge interactions36. Promotion of the electrophilic route will therefore increase control and selectivity.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

1.3.1.1 Perfluorination (Radical Process)

Forming strong C-F and C-H bonds from weak F-F bonds is a highly exothermic process, which has led to the belief that fluorination generally proceeds via a free radical process (scheme 6)27.

\[\Delta H (kJ \text{ mol}^{-1}) \]

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction</th>
<th>(\Delta H) (kJ \text{ mol}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1 Initiition</td>
<td>(F_2 \rightarrow 2F^*)</td>
<td>+159</td>
</tr>
<tr>
<td>Step 2 Propagation</td>
<td>R-H + F* → R* + H-F</td>
<td>-131</td>
</tr>
<tr>
<td></td>
<td>R* + F_2 → R-F + F*</td>
<td>-314</td>
</tr>
<tr>
<td>Step 3 Termination</td>
<td>R* + F* → R-F</td>
<td>-472</td>
</tr>
<tr>
<td>Overall</td>
<td>R-H + F_2 → R-F + H-F</td>
<td>-430</td>
</tr>
</tbody>
</table>

Scheme 6: Free radical fluorination process

The highly exothermic propagation and termination steps are said to offset the endothermic \(F_2 \) bond cleavage in the initiation step27. However, the dissociation of \(F_2 \) requires quite high temperatures (only ~1 % of fluorine is dissociated at room temperature), and this has led to the suggestion of an alternative initiation mechanism (scheme 7), in which the radical species is generated by the reaction of fluorine with a C-H bond27.

\[\Delta H (kJ \text{ mol}^{-1}) \]

<table>
<thead>
<tr>
<th>Step</th>
<th>Reaction</th>
<th>(\Delta H) (kJ \text{ mol}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiation</td>
<td>RH + F_2 → R* + F* + HF</td>
<td>+28</td>
</tr>
</tbody>
</table>

Scheme 7: Alternative initiation process for free radical fluorinations

The uncontrolled nature of radical fluorination processes on organic molecules makes them much more suited to perfluorination reactions, an overview of which can be seen in scheme 827. These include perfluorinations of ethers (4), polyethers (5), haloalkanes (6), ketones (7), esters (8), alkanes (9), and sulfur (10) and nitrogen containing (11) compounds.
Conditions: (i)-(v) F2/N2, aerosol process\(^{(viii)}\), (vi)-(viii) F2/N2, -78°C-rt, LaMar process\(^{(ix)}\)

Scheme 8: Radical Perfluorinations performed using F2

\(^{(viii)}\) The ‘aerosol’ fluorination process, developed by Adcock in 1982, works by absorbing the substrate as an aerosol onto the surface of airborne sodium fluoride particles in the fluorination apparatus\(^{28}\).

\(^{(ix)}\) The ‘LaMar’ fluorination process developed by Lagow and Margrave in 1979, works by condensing the substrates at low temperatures into a tube packed with copper turnings. Diluted fluorine is initially passed through the tube followed by higher concentrations of fluorine and an increase of temperature. This process is carried out over several days\(^{28}\).
1.3.1.2 Selective Fluorination (Electrophilic Process)

Selectivity can be increased in fluorinations but, in order to do this, certain measures have to be taken to inhibit the ‘unselective’ radical process. This can be partially achieved by effective cooling of the reaction, use of diluted substrates and diluted fluorine, and by carrying out reactions without the presence of light\(^9\).

However, as was discovered by Rozen when \(F_2\) was bubbled through a solution of protected 4-methyl cyclohexanol (12), these steps alone are not enough. A fast radical reaction took place resulting in the formation of a black tar (scheme 9\(i\))\(^9\). On changing the solvent however, from the non-polar trichlorofluoromethane to the more polar mixture of trichlorofluoromethane and chloroform, Rozen discovered that selective substitution of the tertiary hydrogen at the C-4 position occurred (13) (scheme 9\(ii\)). Selective substitution at the C-4 position was also found to occur in other polar solvents\(^9\).

![Scheme 9: Selective fluorination of methyl cyclohexanol](image)

Scheme 9: Selective fluorination of methyl cyclohexanol

Due to retention of configuration of the substituted fluorine compound (13), Rozen suggested that this was an electrophilic substitution at the C-H \(\sigma\) bond, with a mechanism similar to that previously suggested by Olah\(^30\), involving a non-classical three centre, 2-electron transition state (scheme 10)\(^9\).

![Scheme 10: Transition state suggested for the fluorination of methyl cyclohexanol](image)

Scheme 10: Transition state suggested for the fluorination of methyl cyclohexanol
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Ab initio calculations on the fluorination of methane supported the theory of an electrophilic substitution, along with the fact that neither products of elimination, nor products of rearrangement, were observed\(^{(29)}\). Further evidence of an electrophilic route was the observation that the reactions exhibited a very close parallel to electrophilic fluorination reactions using Selectfluor\(^{®}\)\(^{(x)}\).

It was proposed that the polar solvent not only encourages polarization of the fluorine molecule, therefore making it more susceptible to nucleophilic attack, but also, acts as an acceptor for the development of a F\(^{-}\) counterion through H bonding (*scheme 11*)\(^{29}\). It is also thought to serve as a good radical scavenger\(^{29}\).

\[
\begin{align*}
F—F & \rightarrow \delta^+ \quad \delta^- \\
F—F & \rightarrow F—F—\cdots—X \\
F—F & \rightarrow F—F—\cdots—H—Y
\end{align*}
\]

Scheme 11

Selective electrophilic fluorinations have since been successfully carried out on a number of different compounds, *scheme 13* overleaf\(^{27}\), which have included steroids (14), alkenes (15) and (16) [addition across the double bond], 1,3-dicarbonyl systems, (17) nitrogen containing compounds including, nucleosides (18), guanines (19), and other pyridine derivatives (20), and also benzenoid compounds (21).

Evidence suggests that electrophilic fluorinations at unsaturated carbon proceed *via* nucleophilic attack on the fluorine, *scheme 12*\(^{27}\).

\[
\text{Nu:} + F—F—\cdots—H \rightarrow \text{Nu—F} + F—H
\]

Scheme 12: Nucleophilic attack on fluorine

\(^{(x)}\) Selectfluor\(^{®}\) is a common electrophilic fluorinating reagent and has the structure:

\[
\text{ClH}_{2}C—\text{N}—\text{N}—F \quad \text{2(BF}_{4})^{—}\]
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Conditions: (i) F₂, -78°C, CFCl₃, CHCl₃ (ii) F₂, -78°C, CFCl₃ (iii) F₂, -78°C (iv) F₂, 10°C, HCOOH (v) F₂, rt, EtOH, Et₄OH⁻ (vi) F₂, -78°C, CHCl₃, CFCl₃, EtOH (vii) F₂, -78°C, CF₂Cl-CFCl₂ (viii) F₂, 10°C, HCOOH

Scheme 13: Selective Electrophilic fluorination reactions performed using elemental fluorine

15
1.3.2 F_2 as a Reagent for Non-Fluorinated Compounds

1.3.2.1 Introduction

Shlomo Rozen, a pioneer in this field, suggested that there are two driving forces for elemental fluorine to be utilized as a reagent for non-fluorine containing organic molecules. The first is the generation of fluorine-containing intermediates which can easily eliminate H-F. The second is based on the *in-situ* generation of fluorine reagents which utilize the electronegative fluorine in some way. As this ‘secondary fluorinated’ reagent is made *in situ*, its isolation is not required and these reactions, which start and finish as fluorine free products, can be classed as ‘one pot’ reactions.

Section 1.3.2.2 describes the use of the HF elimination procedure, whilst the remaining sections all concern the *in situ* generation of fluorine reagents. The *in situ* fluorine reagents discussed are BrF or IF (section 1.3.2.3), acetyl, methyl, and t-butoxyhypofluorite (section 1.3.2.4) and hypofluorous acid (section 1.3.2.5). The hypofluorous acid reagent forms the basis of our research and will be covered in detail in section 1.4.

1.3.2.2 Creating alkenes at un-reactive sites

Steroids are good examples of compounds which have saturated carbons remote from any activating groups, and fluorine has been shown to be able to generate an alkene at tertiary C-H bond by fluorination followed by elimination. Thus, the fluorination of 3,17-androstandione (22) (scheme 14) gave the 9α-fluoro derivative (23), which eliminates H-F to give the alkene derivative (24).

Scheme 14: Use of F_2 to create alkenes at un-reactive sites in steroids
Similarly, this process has been used to create a double bond at the difficult 4 position of 4-alkyl-cyclohexanol systems (25) (scheme 15)\(^{39}\). Fluorine substitutes the tertiary hydrogen at the 4 position (26), and is eliminated along with hydrogen to give the alkene (27).

\[
\begin{align*}
\text{OR}^' & \quad \text{F}_2/N_2 \quad \text{OR}^' \quad \text{OR}^' \quad -\text{HF} \quad \text{R}' = \text{p-O}_2\text{N}_6\text{C}_6\text{H}_4\text{CO} \\
\text{R} & = \text{Me} \quad (63 \%) \quad = \text{t-Bu} \quad (80 \%)
\end{align*}
\]

Conditions: (26) generated using 5% F\(_2\), (27) generated at 10\(^\circ\)C from a solution of (26) in benzene

Scheme 15: Use of F\(_2\) to create alkenes at un-reactive sites in 4-alkyl-cyclohexanol derivatives

The high degree of selectivity of these fluorination reactions has also been demonstrated using the menthol derivative (28) (scheme 16). The selectivity of the fluorine was sensitive enough to differentiate between the three tertiary hydrogen atoms, which, according to calculations, the hybridization of each lies in the order of C1-H sp\(^{2.7}\), C4-H sp\(^{2.8}\) and C8-H sp\(^{2.9}\). This was experimentally proven to be the case with fluorination of the 8 position (29) being predominant, and only 10 % of the fluorinated 4 position molecule being isolated\(^{39}\).

\[
\begin{align*}
\text{H} & \quad \text{F}_2/N_2 \quad \text{H} \quad \text{H} \quad \text{R}' = \text{p-O}_2\text{N}_6\text{C}_6\text{H}_4\text{CO} \\
\text{H} & \quad \text{H} \quad \text{H} \quad \text{H} \quad (60 \%)
\end{align*}
\]

Conditions: (29) generated using 5% F\(_2\), alkene product generated at 10\(^\circ\)C from a soln. of (29) in dry benzene

Scheme 16: Use of F\(_2\) to create olefins at un-reactive sites in menthol derivatives

Acidic (BF\(_3\)OEt\(_2\) or AHF) and basic (NaOH) dehydrofluorinating reagents can be used in the above two schemes, although, by using basic reagents the E2 mechanism is encouraged, therefore, avoiding carbocationic rearrangements encountered if acidic reagents are used.
1.3.2.3 Bromination and Iodination of π-Centers

1.3.2.3.1 Halogenation of Deactivated Alkenes

The reagents BrF and IF, in which the bromine and iodine are strong electrophiles, were prepared in situ by Rozen by reacting F₂ with Br₂ or I₂ at -78°C. Initially they were used to convert carbonyl groups to CF₂ moieties\(^{40-41}\) and to carry out halofluorinations of deactivated double bonds\(^{45}\) and, in both applications, they presented a particular benefit over other methods.

More applicable though is when the halogen is attached to a position with an acidic hydrogen, such as the reaction of XF with progesterone (30) to form the addition product -CX-CF₂ (31)\(^{42}\). Gentle heating removes the fluorine via elimination of HF to give the non-fluorinated product (32) (scheme 17)\(^{42}\). BrF was also applied to other electron poor alkenes (scheme 18)\(^{42}\) which gave the brominated product via elimination of HF.

\[
\begin{align*}
\text{(30)} & \quad \text{XF} \\
\text{X} = \text{I} & \quad (70\%) \\
\text{X} = \text{Br} & \quad (60\%)
\end{align*}
\]

Conditions: XF generated using a suspension of the halogen and F₂ (10 %) at -78°C in CFCl₃ for 10 h; (41) generated with XF at -78°C for 10 h (not isolated)

Scheme 17: Halogenation of deactivated alkenes

\[
\begin{align*}
\text{(33)} & \quad \text{BrF} \\
\text{Br} & \quad (90\%)
\end{align*}
\]

Conditions: XF generated using a suspension of the halogen and F₂ (10 %) at -78°C in CFCl₃ for 10 h; fluoro-bromo compound generated with XF at -78°C for 10 h (not isolated)

Scheme 18: Bromination of deactivated alkenes
1.3.2.3.2 Bromination of Aromatic compounds

Although activated aromatic compounds are easily brominated in certain solvents with just the halogen present, bromination of deactivated aromatic systems requires a strong Lewis acid catalyst such as AlCl$_3$, usually in stoichiometric amounts. This creates environmental and cost issues and also their use requires anhydrous conditions. Generally the processes are also quite lengthy, require high temperatures, produce relatively low yields and due to the generation of HBr, have a lowered atom efficiency43.

Alternative routes either employ the use of NaOBr, which has the required electrophilic bromine but is not very soluble in organic solvents, or the use of an aniline derivative for bromo-diazotisisation, which requires lengthy reaction times43.

However, Rozen’s use of BrF for electrophilic bromination and dibromination offers much shorter reaction times, mild conditions, improved yields and no metal catalyst. Scheme 19 summarizes some of the deactivated aromatic compounds (34-37) that have been brominated44.

![Diagram of Bromination of deactivated aromatics](image)

Conditions: BrF generated at -78°C in CFCl$_3$ using 10 % F$_2$; reactions carried out at -40°C in CFCl$_3$:CHCl$_3$:(i) 1.45 mol. equiv. BrF, 15 mins; (ii) 1.5 mol. equiv. BrF, 120 mins; (iii) 7 mol. equiv. BrF, 45 mins; (iv) 1.7 mol. equiv. BrF, 120 mins

Scheme 19: Bromination of deactivated aromatics

A further advantage of the BrF reagent was that it is not a strong oxidising agent, therefore making it suitable for brominating compounds such as benzaldehyde (34) (scheme 19) without affecting the aldehyde moiety44.

Activated aromatics such as (38-41) (scheme 20) were brominated within 15 mins44.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Of all the aromatic halogenations, iodinations pose the greatest challenge. The versatility in methodology is much less than exists for both bromination and chlorination\(^\text{45}\).

Due to the low electrophilic strength of iodine, direct aromatic iodination requires a strong oxidising agent such as HNO\(_3\) or liquid SO\(_3\) and can only be carried out on strongly activated aromatic rings\(^\text{46}\). The indirect method converts an appropriate aniline derivative to the corresponding diazonium salt, which is then quenched with iodine or KI. Use of a Friedel Crafts catalyst is also not generally efficient as these cannot sufficiently increase the electrophilicity of iodine enough to halogenate deactivated aromatic rings\(^\text{45}\). Suitable polarization of iodine is still not obtained using the usual iodinating agents such as the N-iodo compound, silver salts of iodine or mercury derivatives\(^\text{46}\).

However, even though the IF molecule is much less reactive than its BrF counterpart, it is still sufficiently polarized to accomplish aromatic iodinations, even with mildly deactivated rings\(^\text{46}\).

Scheme 21 summarizes some of the aromatic iodinations carried out by Rozen using IF.
Due to the decreased reactivity of IF, only mono-iodinations were achieved on the more deactivated rings and in comparison to the brominations, all required extended reaction times and increases in temperature46.

As with the BrF reagent, IF was not sufficiently strong enough to oxidise the sensitive aldehyde group in benzaldehyde and also, no signs of iodination were observed on the ester or acetyl moieties46.

\begin{scheme}
\begin{center}
\includegraphics[width=\textwidth]{Scheme21.png}
\end{center}
\end{scheme}

Scheme 21: Iodination of activated and de-activated aromatics

Conditions: IF generated at -78°C in CFCl\textsubscript{3}; reactions carried out in CFCl\textsubscript{3}:CHCl\textsubscript{3}; (i) -78°C, 24 h; (ii) -20°C, 3 h; (iii) 25°C, 1 h; (iv) -20°C, 0.5 h; (v) 25°C, 16 h; (vi) 25°C, 3 h; (vii) 25°C, 16 h; (viii) -78°C, 4 h
1.3.2.4 Hypofluorites

1.3.2.4.1 Acetyl Hypofluorite

In 1981 Rozen synthesized acetyl hypofluorite by passing fluorine through a suspension of sodium acetate and applied it extensively to fluorinations of various compounds.

More appropriate to this review is when the AcOF was applied to pyridine systems. Apart from the Chichibabin reaction, nucleophilic substitution of the pyridine ring is very difficult, generally requiring harsh conditions and producing poor yields. The most practical method for introducing an oxygen atom at the 2-position was to prepare the N-oxide and carry out a rearrangement by prolonged heating with acetic anhydride or SbCl₅.

The fluorine in AcOF is attacked by the pyridine’s nitrogen creating a positively charged N-fluoropyridinium intermediate (50) (scheme 22) which, in the absence of other nucleophiles, reacts with the acetate ion. HF elimination and restoration of aromaticity then take place to give the 2-acetoxypyridine (51)

\[
\text{Conditions: (31) generated at -78°C using 15% } F_2
\]

Scheme 22: Activation of pyridines using AcOF

1.3.2.4.2 Alkyl Hypofluorites

Until 1991 it was thought that compounds possessing a fluoroxy group bonded to an alkyl group were too un-stable to be synthesized. This is because the hydrogen and fluorine atoms are too close to prevent the spontaneous elimination of HF. However, in an analogous reaction to his
synthesis of hypofluorous acid (section 1.3.2.5), Rozen was able to synthesize and isolate methyl hypofluorite (MeOF) by passing fluorine through a mixture of methanol and acetonitrile.¹⁵⁵

Due to its bonding with the more electronegative fluorine atom, the oxygen molecule is unique in that it possess a methoxilyium species (MeO⁺) therefore leaving the fluorine bound to the oxygen nucleophilic.

Like the acetyl hypofluorite, MeOF can be used as an electrophilic fluorinating reagent, adding across many types of double bonds to give fluorinated methoxy adducts. Of more relevance to this review however, are its reactions with electron rich alkene centres such as enol derivatives. Enol acetates, silylenol ethers and methyl enol ethers of tetralone (52), 1-indanone (53) and acetophenone (54) all reacted with methyl hypofluorite to give the corresponding α-methoxy carbonyl (55) in reasonable to good yield (scheme 23).

Scheme 23: Electrophilic Methoxylation of Enol Ethers

$$\text{R} = \text{Ac, Me or SiMe}_3$$

(52) \(n = 2\)

(53) \(n = 1\)

(54) \(n = 0\)

Aliphatic methyl enol ethers (56)-(57) were also successfully methoxylated using methyl hypofluorite (scheme 24).¹⁵⁷

Scheme 24: Electrophilic Methoxylation of the Aliphatic Methyl Enol ethers

$$\text{(56)}$$

$$\text{(57)}$$
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

t-Butyl Hypofluorite (tBuOF) was synthesised by Rozen two years later\(^{58}\) using tert-butyl alcohol in acetonitrile and undergoes similar reactions to methyl hypofluorite, adding across many types of double bonds to give fluorinated butoxy adducts\(^{58}\) and creating the \(\alpha\)-t-butoxy ketones (58) (scheme 25)\(^{58,59}\) of silyl, acetetyl and methyl enol ethers, without the use of the usually required heavy metal catalysts\(^{60,61}\).

\[
\begin{align*}
\text{OR} & \quad \text{t-BuOF} \\
\text{(CH}_2\text{)}_n & \quad \text{F}^- \quad \text{OR} \quad \text{Or-Bu} \\
\end{align*}
\]

\(R = \text{Ac, Me and SiMe}_3\)
\(n = 1\)
\(n = 2\)

\[
\begin{align*}
(58) & \quad (59)
\end{align*}
\]

\textit{Scheme 25: Electrophilic Butoxylation}

A major difference between the \(t\)BuOF reactions and the analogous MeOF reactions are the difference in size of the electrophilic substrate. The bulky \(t\)-butyl group requires longer reaction times, which, results in some radical decomposition of the reagent whose half-life is about 1 hour at room temperature. Therefore, not only are the yields of the \(t\)-butoxy analogues lower for all reactions, but small amounts of side products (59) were also obtained\(^{58}\).

1.3.2.5 Hypofluorous Acid as an Oxygen Transfer Agent

Hypofluorous Acid (HOF) was first prepared by Nobel and Pimental in 1967, by photolysis of \(\text{F}_2\) and water in a solid nitrogen matrix; however, the highly unstable nature of the acid means it decomposes at temperatures above \(-100^\circ\text{C}\)\(^{62}\). Owing to its instability and the complex apparatus required for its synthesis, HOF was thought to have little practical use in organic synthesis\(^{62}\).

However, in 1986, Rozen and co-workers discovered a way to stabilize HOF; by passing \(\text{F}_2\) through an aqueous solution of acetonitrile, at \(0^\circ\text{C}\), the fluorine and water react to form HOF which complexes with the acetonitrile. The HOF,MeCN complex is much more stable than HOF itself and has a reported half life of up to two hours at room temperature\(^{62}\).
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

HOF is unique as it possesses an oxygen which, because it is attached to the only element which is more electronegative, possesses a permanent positive dipole which therefore makes it the ideal candidate as an electrophilic oxygen transfer agent.

Rozen subsequently investigated the oxidising capabilities of the complex on a wide variety of substrates and discovered that HOF.MeCN is a very powerful oxidising agent, capable of oxidising a wide variety of functional groups, some of which were previously un-oxidizable, in very short reaction times and at ambient conditions.

As the main scope of this thesis is based upon the generation and use of hypofluorous acid, the following section will be devoted to discuss in detail the functional groups that, to date, HOF.MeCN complex has been used to oxidise.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

1.4 The HOF.MeCN Complex as a Powerful Oxidant

1.4.1 Introduction to Oxidations in Organic Chemistry

1.4.1.1 Definition

Oxidation in organic chemistry is regarded as ‘the loss of electron density at a carbon centre’, which is achieved by increasing the bonding of a carbon atom to a more electronegative heteroatom, such as oxygen, nitrogen or a halogen. With this in mind, a functional group is said to be oxidised if the carbon atom carrying the functional group increases the number of bonds it has to a heteroatom, with the compound that has donated the heteroatom being the oxidant. For the purpose of this review, oxidation will always infer that the heteroatom is ‘oxygen’, and that the oxidising agent is therefore an ‘oxygen transfer agent’.

As oxygen is the second most electronegative element, its addition to any element (other than fluorine) will decrease the electron density around that element and, therefore, nitrogen and sulfur are both oxidised by the addition of oxygen.

1.4.1.2 Conventional Oxidants

The purpose of this section is to briefly outline some of the current oxidants used in organic chemistry and the hazards associated with using them. Mechanistic detail will not be covered as a vast literature already exists.

The majority of oxidations in organic chemistry are either carried out using substances bearing the peroxo moiety (R-O-O-R) or metal oxides and, for the purposes of this review, these will be referred to as ‘conventional oxidants’

Peroxy oxidising agents, examples of which are shown in figure 4, make use of the electronegativity of oxygen to induce a small positive dipole on the adjacent oxygen, thus making it sufficiently electrophilic for nucleophilic attack. This is made more favourable by the resonance stabilisation of a leaving carboxylic group such as a peroxy acid, as in mCPBA, or relief of strain of a small dioxirane ring, as in DMDO.
Peroxides, however, are usually quite dangerous. One of the strongest and most common peroxy oxidising agents, hydrogen peroxide, is, depending on concentration, highly flammable, explosive, corrosive, and toxic (particularly if ingested). Their highly reactive nature also means particular care must also be taken for safe disposal. The oxides of metals are also commonly used as oxidising agents, examples of which are given in figure 5.

Metal oxidising agents, however, are particularly harmful to the environment and their disposal requires more specialist and costly methods. They are also generally quite toxic and carcinogenic. For the purposes of this review, comparisons, when available, will be made with conventional oxidants to exhibit the benefits of HOF.MeCN.

1.4.2 Generation of HOF.MeCN and General Reaction Procedure

Conditions for all of Rozen’s reactions (F₂ amounts, reaction times and temperatures) when available are shown in each reaction scheme. However, the general procedure for each reaction reported by Rozen was as follows: the required concentration of HOF.MeCN was generated in a glass vessel by passing F₂ (diluted to 10-15 % in nitrogen) at 400 mL min⁻¹ through a 9:1 mixture of acetonitrile:water (-10°C). The oxidant was then added to a temperature controlled solution of the substrate (4-10 mmol) in CH₂Cl₂ (20-50 mL) and mechanically mixed. After an appropriate time the reaction was quenched using a saturated NaHCO₃ solution and then
worked up using standard extraction procedures. Variations, if any, of this general procedure will be stated in the appropriate section.

1.4.3 HOF.MeCN Oxidations

1.4.3.1 Epoxidation of Alkenes

Of all the functional group oxidations using HOF.MeCN that Rozen has carried out, epoxidation of alkenes has received the most attention.

Some activated alkenes epoxidized by Rozen are shown in scheme 26, which includes di- (60-63), tri- (64-66) and the more crowded tetra-substituted (67) alkenes. All were easily oxidised to their corresponding epoxide, usually within minutes, and in very good yields.65-66.

Scheme 26: Oxidation of activated alkenes using HOF.MeCN

Conditions: (i)-(vii) 1 min, 0°C, mol. equiv. HOF.MeCN; (xiii) 5 sec, -35°C, mol. equiv. HOF.MeCN
However, due to the powerful oxidizing capabilities of the HOF.MeCN complex, even strongly deactivated alkenes, such as those in scheme 27, are easily epoxidized.

Conditions: All molar equivalents refer to HOF.MeCN (i) 1 min, 0°C, 1.1 mol. equiv. (ii) 15 mins, rt, 15 mol. equiv. (iii) 10 mins, 0°C, 5 mol. equiv. (iv) 5 mins, rt, 3 mol. equiv. (v) 15 mins, 0°C, 2 mol. equiv. (vi) 30 sec, 0°C (vii) 5 mins, 0°C, 2 mol. equiv. (viii) 30 sec, 0°C

Scheme 27: Oxidation of deactivated alkenes using HOF.MeCN
Epoxidation of the deactivated and sterically hindered enones (68) and (69), have never been reported and treatment by Rozen with H$_2$O$_2$, mCPBA and DMDO, in all cases, gave less than a 10% yield67. Treatment with HOF.MeCN gave the corresponding epoxides in less than a minute, and in yields of 92% and 85% respectively.67.

The very stable aromatic ketone tropone (72), had never been directly epoxidized and the only existing method for the preparation of its tri-epoxide requires five steps, over 94 hours, and using a number of different oxidising agents. Tri-epoxidation of tropone (72) using HOF.MeCN took only 15 minutes67. Similarly, the four double bonds of cyclooctatetraene (73) were all epoxidized on treatment with HOF.MeCN, this time in just 30 seconds. To carry this out using DMDO requires 17 days67.

Treatment of the weakly nucleophilic bond in the very oxygen rich tetramethylbicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylate (75) with mCPBA and DMDO resulted in zero epoxide formation. However, using HOF.MeCN, the corresponding epoxide was obtained in just 1 minute67.

The HOF.MeCN complex also exhibits greater chemoselectivity than conventional oxidants of the alkene in unsaturated acids or alcohols, which react with the sensitive carboxy and hydroxyl functional groups to produce the peroxide68. Thus, previous attempts to epoxidize linoleic acid (76) (Scheme 28) gave a yield of just 35%68, whereas HOF.MeCN successfully epoxidized (76) in just 3 minutes with a 90 % yield68. Citronellol (77) (Scheme 28) was used to demonstrate the HOF.MeCN complexes ability to cope with unsaturated alcohols and the corresponding epoxide was obtained in 90% yield68.

![Scheme 28: Oxidations of alkenes in the presence of acids and alcohols](image)

Polyfluorinated alkenes are also too deactivated for direct electrophilic epoxidation, which is therefore carried out via indirect methods. Attempts by Rozen to epoxidize the electron deficient double bond in polyfluorohexene (78) using mCPBA or trifluoroperacetic acid were un-successful, even with extended reaction times69. Although reaction times of 2 hours were
required, along with an increased temperature of 25°C, the action of HOF.MeCN on polyfluorohexene (78) and polyfluorooctene (79) (scheme 29) was successful in epoxidizing the alkene69.

\begin{equation}
\begin{array}{c}
\text{C}_9\text{F}_9 \\
(78)
\end{array}
\xrightarrow{\text{HOF.MeCN, 5 mol. equiv., 3h, 25°C}}
\begin{array}{c}
\text{C}_9\text{F}_9 \text{O} \\
(70\%)
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{C}_{10}\text{F}_{13} \\
(79)
\end{array}
\xrightarrow{\text{HOF.MeCN, 5 mol. equiv., 3h, 25°C}}
\begin{array}{c}
\text{C}_{10}\text{F}_{13} \text{O} \\
(80\%)
\end{array}
\end{equation}

\textit{Scheme 29: Oxidation of polyfluorinated hexene}

1.4.3.2 Tertiary Hydroxylation of C-H Bonds

In molecules that do not possess double bonds, the bonds most susceptible to electrophilic attack are those with the highest \(p \)-orbital contribution and usually, these are the tertiary C-H bonds situated far away from any electron withdrawing groups70.

Rozen discovered that tertiary C-H bonds of compounds (80) and (81) could be hydroxylated using HOF.MeCN in good yields (scheme 30)70.

\begin{equation}
\begin{array}{c}
\text{H} \\
(80)
\end{array}
\xrightarrow{\text{HOF.MeCN, 10 mol. equiv., 0°C}}
\begin{array}{c}
\text{H} \text{O} \\
(80\%)
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{H} \\
(81)
\end{array}
\xrightarrow{\text{HOF.MeCN, 10 mol. equiv., 0°C}}
\begin{array}{c}
\text{H} \text{O} \\
(80\%)
\end{array}
\end{equation}

\textit{Scheme 30: Hydroxylation of tertiary C-H bonds}
If heteroatoms are present in the starting material, the tertiary C-H bond is practically immune to hydroxylation using peroxy reagents70, but, with HOF.MeCN, the previously inaccessible hydroxylated compounds (82) and (83) (scheme 31) were obtained, albeit in quite low yields70.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{scheme31.png}
\caption{Scheme 31: Hydroxylation of tertiary C-H bonds in the presence of electron withdrawing groups}
\end{figure}

1.4.3.3 Oxidation of Secondary Alcohols to Ketones

Chemoselective oxidation of secondary alcohols to ketones is usually carried out using a solution of chromium trioxide71 (i.e. from sodium or potassium dichromate) which raises disposal and environmental issues. This procedure also requires dilute H\textsubscript{2}SO\textsubscript{4}, which can reduce yields of acid sensitive systems71.

HOF.MeCN is able to oxidise a wide variety of secondary alcohols (84-87) (scheme 32) to their corresponding ketones, in very high yields and short reaction times72.

\begin{figure}[h]
\centering
\includegraphics[width=0.7\textwidth]{scheme32.png}
\caption{Scheme 32: Oxidation of secondary alcohols}
\end{figure}

Conditions: All reactions were carried out at 0°C using 2-3 mol. equiv. HOF.MeCN (i) 30 mins, (ii) 2 mins, (iii) 5 mins, (iv) 30 mins
The oxidation of the steroid (88) (scheme 33) was also achieved in good yield

![Scheme 33: Oxidation of secondary alcohols in steroids](image)

1.4.3.4 Baeyer-Villiger Oxidations

Classical Baeyer-Villiger reactions with peracids usually require high temperatures and extended reaction times (i.e. >24 hours)

However, these reaction conditions can be greatly improved by using HOF.MeCN, as was demonstrated using ketones (89) and (90) (scheme 34), which were both oxidised at 0°C in 3 and 4 hours respectively

![Scheme 34: Baeyer-Villiger Oxidations using HOF.MeCN](image)

Rozen proposed that the reduced reaction time required by HOF.MeCN to complete the Baeyer-Villiger oxidations is due to the difference in reaction mechanisms between the two reagents

The peracid mechanism was deduced by Doering using ketones labelled with the 18O isotope. Doering showed that the original ketone provided the carbonyl oxygen of the product and that the peracid provides the etheric oxygen atom.
The mechanism of the HOF.MeCN oxidation is proposed to be similar to that postulated by Baeyer and Villiger themselves\(^7\), which is that via a dioxirane ring formation (92) (scheme 35). The dioxirane mechanism would lead to scrambling of the oxygen atoms and Rozen proved this to be the case by using radio labelled H\(^{18}\)OF.MeCN and \(\tau\)-butylcyclohexanone (91)\(^7\). The resulting carbonyl and etheric oxygen of the lactone were composed of both the \(^{18}\)O and \(^{16}\)O in equimolar amounts.

![Scheme 35: Baeyer-Villiger Oxidations using radio labelled HOF.MeCN to determine reaction mechanism](image)

1.4.3.5 Amine Oxidations

1.4.3.5.1 Anilines

Oxidation of anilines to the corresponding nitro group, whilst generally more efficient than aliphatic amines, still requires quite harsh conditions, particularly for electron poor anilines. Electron rich anilines are usually oxidised using peracetic acid, DMDO or sodium perborate, whilst electron poor anilines require stronger oxidants such as peroxytrifluoroacetic acid or peroxydisulphuric acid\(^7\).

HOF.MeCN is capable of oxidising electron poor anilines such as 4-aminoacetophenone (93) and 4-nitroaniline (94), and electron rich anilines such as 2-methoxyaniline (95) and 4-aminoacetanilide (96) (scheme 36), all in very high yields and very short reaction times\(^7\).

The use of HOF.MeCN also allows oxidations to be carried out in the presence of a hydroxy group without affecting the hydroxyl moiety. Thus, 4-aminobenzoic acid (97) and 3-aminophenol (98) (scheme 36) were converted to their corresponding nitro derivatives without formation of the respective perbenzoic acid or quinine compound\(^7\).
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Scheme 36: Aniline oxidations using HOF.MeCN

Rozen discovered that an excess of 3 molar equivalents of HOF.MeCN were required to oxidize each amine, which led him to postulate the following reaction sequence (figure 6)\(^76\).

Figure 6: Amine oxidation sequence using HOF.MeCN

Electron deficient anilines were also successfully oxidized using HOF.MeCN by Tour et al., who, after failed attempts to oxidize the amine group of compound (99) using sodium perborate and DMDO, used HOF.MeCN to selectively oxidize the amine without affecting the alkyne moiety (scheme 37)\(^77\).

Scheme 37: Oxidations performed by Tour et al. using HOF.MeCN

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-NH₂ → R-NHOH</td>
<td>R-NO₂</td>
<td>(100%)</td>
</tr>
<tr>
<td>(93) R = 2-CO₂Me</td>
<td>(94) R = 4-NO₂</td>
<td>(95) R = 2-OMe</td>
</tr>
</tbody>
</table>

(100%), (95%), (82%), (80%), (80%), (71%)
1.4.3.5.2 Aliphatic Amines

Oxidations of aliphatic amines generally pose a greater challenge than aromatic amines and many methods require multistep reactions or metal containing catalysts. HOF.MeCN was able to oxidise amines (100-105) in scheme 38 within 15 mins, all in excellent yields.

Conditions: All reactions carried out at -15°C for 15 mins using 3 mol. equiv. HOF.MeCN (per NH₂) containing 5g NaF (added to minimise the effect of HF on the amines)

Scheme 38: Aliphatic amine oxidations using HOF.MeCN
Aliphatic amines are stronger bases than aniline by about 6-7 pKa units and Rozen discovered that the HF which is formed as a by-product of HOF.MeCN, would react with the amines and therefore suppress the reaction. To counteract this, NaF was added to the HOF.MeCN mixture and allowed to stir for 10 minutes. Whilst this had very little effect on the HOF.MeCN complex, it did bound most of the HF as NaHF₂, allowing efficient oxidation of the amine⁷⁶.

1.4.3.5.3 Vicinal Di-Amino Compounds

Oxidations of aliphatic vicinal di-amino compounds usually requires the use of the very toxic N₂O₄, because the use of peroxy oxidation reagents results in C-C bond cleavage. Fragmentation also occurs due to the high temperatures and prolonged reaction times that are required⁷⁸, and previous oxidation of 1,2-diaminopropane (106) using propene and N₂O₄ afforded a yield of only 20% of the vicinal di-nitro compound⁷⁹. HOF.MeCN was capable of nitrating both of the amine groups of vicinal di-amino compounds (106-108) (scheme 39) to give the corresponding vicinal di-nitro compounds in excellent yields and, the mild conditions required to oxidize these compounds meant that no fragmentation of the carbon-carbon bond occurred. The reactions also proceeded with retention of stereochemistry.

![Scheme 39: Oxidation of aliphatic vicinal amines](image)

The oxidation also proceeded well with aromatic diamines to produce the vicinal dinitro compounds (109-111) (scheme 40) in very good yields⁸⁸. The electron withdrawing group on the aromatic ring of compound (111) did reduce the nucleophilicity of the amine groups and therefore gave a lower yield of the di-nitro compound.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

As the presence of a carboxylic acid group does not interfere with the oxidative capability of HOF.MeCN (see section 4.3.1 scheme 28) to form the acid, the amine group of amino acids could also be selectively oxidised. Hence, a number amino acids (112-120) scheme 41, were oxidised to their corresponding α-nitro derivatives, in very short reaction times and at room temperature\(^8\). Also, by minimizing reaction times, the aromatic ring of (118) and (119), and the hydroxyl moiety in (120) were all unaffected\(^8\).

\[
\text{R}^\text{NH}_2 \xrightarrow{\text{HOF,MeCN}} \text{R}^\text{COOR'} \quad \text{R}^\text{NO}_2
\]

<table>
<thead>
<tr>
<th>Scheme 41: Amino acid oxidations to the corresponding α-nitro compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>(112) R = H; R' = Et</td>
</tr>
<tr>
<td>(113) R = CH₃; R' = CH₃Ph</td>
</tr>
<tr>
<td>(114) R = i-Pr; R' = Me</td>
</tr>
<tr>
<td>(115) R = i-PrCH₂; R' = Me</td>
</tr>
<tr>
<td>(116) R = MeOOCCH₂; R' = Me</td>
</tr>
<tr>
<td>(117) R = MeOOC(CH₂)₂; R' = Me</td>
</tr>
<tr>
<td>(118) R = PhCH₂; R' = Me</td>
</tr>
<tr>
<td>(119) R = p-HOC₆H₄CH₂; R' = Me</td>
</tr>
<tr>
<td>(120) R = HOCH₂; R = Et</td>
</tr>
</tbody>
</table>
1.4.3.5.4 Tertiary Nitrogen Atoms

Tertiary N-oxides are very important compounds with a wide variety of applications such as fibre preparation, hair products, pharmaceuticals and solvents\(^{81}\). They are also of great interest to the energetic materials industry\(^{82}\).

Rozen showed that the N-oxides of various pyridines (121-125) could be easily obtained using HOF.MeCN, again under very mild conditions and short reaction times (scheme 42). Even those with electron withdrawing groups attached to the pyridine ring (123) gave excellent yields\(^{83}\).

Of particular interest were those which contained functional groups that would compete for oxidation. Thus, oxidation of 4-vinylpyridine (124) gave none of the epoxide and only the ring nitrogen was oxidized in 4-(dimethylamino)pyridine (125)\(^{83}\).

![Scheme 42: Pyridine oxidations](image)

Using varying amounts of HOF.MeCN Rozen was also able to obtain the mono- and di-N-oxide of 4,7-phenanthroline (126) (scheme 43)\(^{83}\).

![Scheme 43: Mono- and di- N-oxidations](image)

Repeated attempts to synthesize 1,10-phenanthroline \(N,N'\)-dioxide (129) by conventional methods had been unsuccessful for over 50 years, with chemists only able to prepare the mono-
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

N-oxide (128)$^{84-85}$. The difficulty of di-oxidation is due to the aromatic planar structure of 1,10-phenanthroline (127), which does not have the space to accommodate two oxygen atoms without forcing the rings out of planarity. However, Rozen showed that HOF.MeCN was powerful enough to oxidize both nitrogen atoms to give the N,N'-dioxide (129) (scheme 44)86.

![Scheme 44: Synthesis of 1,10-phenanthroline N,N'-dioxide](image)

Rozen then followed this work up by making the N,N'-dioxides from a number of 1,10-phenanthroline derivatives (130-134) (scheme 45)87.

![Scheme 45: Synthesis of 1,10-phenanthroline N,N'-dioxide derivatives](image)

Quinoxoline N,N'-dioxides are not reported in the literature because oxidation of one of the nitrogen atoms makes the diazine less reactive towards electrophilic substitutions. This effect is even more profound if electron withdrawing groups are introduced on to the diazine ring. Consequently, whilst the synthesis of haloquinoxoline N-oxides is difficult, haloquinoxoline N,N'-dioxides were thought to be impossible using conventional oxygen transfer agents88.

40
Rozen showed that not only were the N,N'-dioxides available from the corresponding quinoloxines (135-140) (scheme 46) using HOF.MeCN, the N,N'-dioxides could also be synthesized from the electron poor halo derivatives (141-142).

\[
\text{Scheme 46: Synthesis of quinoloxine N,N'-dioxides using HOF.MeCN}
\]

In comparison to conventional oxidants, treatment of (141) and (142) with \(\text{K}_2\text{S}_2\text{O}_8 \) with \(\text{H}_2\text{SO}_4 \) gave only the mono-N-oxide in low yields, and with 30 % \(\text{H}_2\text{O}_2 \) with HOAc, only starting material was recovered from (142) and 6 % of the mono-N-oxide from (141). mCPBA could also only achieve the mono-N-oxide of (141) with a 63 % yield over 72 hours.

Exceptionally strong oxidants such as peroxydichloromaleic acid and 90 % \(\text{H}_2\text{O}_2 \) were also only able to produce the mono-N-oxide of the perhalogenated 2,3,6,7-tetrachloroquinoloxine (143). Whilst oxidation with the HOF.MeCN complex required a large excess of oxidant and 40 minutes, the \(N,N' \)-dioxide was obtained in 40 % yield (scheme 47).
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

\[
\begin{align*}
\text{HOF.\text{MeCN}} & \quad \xrightarrow{14 \text{ mol equiv.}} \\
\text{(143)} & \quad \xrightarrow{} \quad \text{(40\%)} \quad \text{(55\%)} \\
\end{align*}
\]

\textit{Scheme 47: Oxidation of 2,3,6,7-tetrachloroquinoxaline using HOF.\text{MeCN}}

HOF.\text{MeCN} has also been successfully applied to the oxidation of tertiary aliphatic amines (144-146) (scheme 48)93.

\[
\begin{align*}
\text{HOF.\text{MeCN}} & \quad \xrightarrow{3 \text{ mol equiv.}} \\
\text{(144)} & \quad R = R' = R'' = \text{Bu} \quad \text{(82\%)} \\
\text{(145)} & \quad R = R' = \text{C}_8\text{H}_{17}; \quad R'' = \text{Me} \quad \text{(95\%)} \\
\text{(146)} & \quad R = R' = \text{Me}; \quad R'' = \text{Me} \quad \text{(95\%)} \\
\end{align*}
\]

\textit{Scheme 48: Tertiary aliphatic N-oxidations using HOF.\text{MeCN}}

1.4.3.6 Azide oxidations

1.4.3.6.1 Aliphatic azides

With the exception of Corey’s multistep method, the oxidation of azides to the corresponding nitro compound is practically unknown93. Corey converts the azide to the phosphine amine (RN=PR\textsubscript{3}) which has to be isolated and then oxidized using ozone. The nitro derivatives obtained (40-70 % yield) were also accompanied by the corresponding phosphine oxide along with the aldehyde.

HOF.\text{MeCN} was able to oxidize a range of aliphatic azides (147-158) (scheme 49), which were made from the corresponding alkyl bromide, in excellent yields and in just a few seconds93.

The HOF.\text{MeCN} complex again exhibits good selectivity in oxidation of the azide over other functional groups. Thus, the three tertiary hydrogen atoms of 1-azidoadamantane (150) were not
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

oxidized, nor was the primary alcohol moiety of 11-azidoundecanol (154), the aromatic ring of benzyl azide (155) or the ester moiety of 5-azidopentyl acetate (151).

\[
\begin{array}{cccc}
R^+Br & \xrightarrow{NaN_3} & R^-N_3 & \xrightarrow{HOF,MeCN, 3 \text{ mol equiv.}} R^-NO_2 + N_2 \\
& & & 0^\circ C, 5 \text{ secs} \\
(147) & R = C_{10}H_{21} & (98\%) \\
(148) & R = \text{cyclo-C}_9H_{11} & (95\%) \\
(149) & R = \text{cyclo-C}_4H_{9} & (90\%) \\
(150) & R = & (95\%) \\
(151) & R = \text{AcO(CH}_2)_{5} & (90\%) \\
(152) & R = \text{CH}_2\text{COOEt} & (75\%) \\
(153) & R = \text{CH}_3\text{(CH}_2)_{2}\text{CHCOOEt} & (70\%) \\
(154) & R = \text{(CH}_2)_{11}\text{OH} & (65\%) \\
(155) & R = \text{PhCH}_2 & (96\%) \\
(156) & R = \text{PhCOCH}_2 & (90\%) \\
(157) & R = \text{(CH}_2)_{6}\text{Cl} & (87\%) \\
(158) & R = \text{(CH}_2)_{6}\text{CN} & (80\%) \\
\end{array}
\]

\textit{Scheme 49: Aliphatic azide oxidations using HOF,MeCN}

α-Nitro acids have great synthetic value, but their synthesis is characterized by long reaction times and low yields. Thus, Rozen was able to selectively oxidize the α-azido esters (152) and (153) to the corresponding α-nitro ester, which could then be easily converted to the α-nitro acid93.

The speed of these oxidations led Rozen to attempt them with conventional oxidants. Thus, methylene chloride solutions of 1-azidodecane (147) were treated with 8 mol equivalents of mCPBA for six hours and 14 mol equivalents of DMDO for three hours, but in both cases only starting material was recovered93.

1.4.3.6.2 Aromatic azides

Oxidation of aromatic azides to the corresponding nitro compound was also successful with HOF,MeCN94, but as the carbon bound nitrogen of the aromatic azides is not as nucleophilic as in the aliphatic substrates, the reactions are much slower. Thus it took 60 minutes to oxidize azidobenzene (159), and only starting material was obtained from the oxidation of 4-nitro
azidobenzene (161). However, the reaction times could be shortened by increasing electron density on the ring and 4-methyl azidobenzene (160) was oxidized in 10 minutes (scheme 50)³⁴.

\[
\text{R}^+\text{N}_3 \xrightarrow{\text{HOF.MeCN}} \text{R}^+\text{NO}_2 + N_2
\]

(159) \(R = \text{Ph} \)
(160) \(R = 4\text{-MeOC}_6\text{H}_4 \)
(161) \(R = 4\text{-O}_2\text{NC}_6\text{H}_4 \)

no reaction

Conditions: All reactions carried out in CHCl₃; (159) 10 mol.equiv. HOF.MeCN at rt; (160) 10 mol.equiv. HOF.MeCN at 0°C; (161) 10 mol.equiv. HOF.MeCN at rt;

Scheme 50: Aromatic azide oxidations using HOF.MeCN

During the aromatic oxidations Rozen observed the blue/green colour of the nitroso compound appeared and quickly faded away just before the reaction came to completion. This led him to suggest a two-step reaction mechanism (figure 7)³⁴, with the first step, formation of the nitroso compound, being the rate limiting step.

Figure 7: Two Step Reaction Mechanism for Azide Oxidation with HOF.MeCN

1.4.3.7 Sulfur Oxidations

1.4.3.7.1 Di-alkyl Sulfide Oxidations

Although quite a few methods exist for oxidising sulfides to sulfones, these usually involve lengthy treatment with peroxy oxidants or polluting heavy metals at high temperatures. HOF.MeCN was able to carry out the oxidation of a range of di-alkyl sulphides (162-167) scheme 51, in very high yields and short reaction times³⁵, including sterically hindered sulphides (167) and those attached to strongly electron withdrawing groups (164). Di-oxidation of 2-methyl-1,3-dithiane (168) was also achieved with 4 molar equivalents of HOF.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

Scheme 51: Dialkyl sulphide oxidations

HOF.MeCN also showed good chemoselectivity of sulfides over other functional groups known to be oxidized by the complex. Thus, the weakly aromatic double bonds of furfurylsulfide (169) (scheme 52), the hydroxyl group of thiochroman-4-ol (170) and the alkenes of di-allylsulfide (171), were all selectively oxidised at the sulfur atom without an excess of HOF.MeCN.

Scheme 52: Sulfide oxidations in the presence of other oxidizable groups

The sulfoxide can be obtained by using one mole of the HOF.MeCN complex, although protic solvents such as methanol and water must be added. When the reaction is carried out in aprotic
solvents, the sulfoxide forms clusters with the HOF via H-bonding (figure 8), which, due to their close proximity, favour the formation of the sulfone (scheme 53i).

![Scheme 53: Oxidation of dibenzyl sulfide with HOF-MeCN in different solvents](image)

The addition of the protic solvent provides additional centres for the HOF to hydrogen bond to, reducing the sulfoxide-HOF clusters and therefore allowing more of the HOF to react with the sulfide starting material (scheme 53ii)\(^95\).

![Scheme 53: Oxidation of dibenzyl sulfide with HOF-MeCN in different solvents](image)

1.4.2.7.2 Electron Deficient Sulfide Oxidations

Many reagents exist for the oxidation of sulfides, however, there are practically none for the efficient oxidation of electron deficient ones. Even potent oxidants such as chromic anhydride or \(\text{H}_2\text{O}_2 \) in trifluoroacetic anhydride are not very efficient\(^96-97\).

Even though a large excess of HOF-MeCN was required along with longer reaction times, a number of electron depleted sulphides (172-176) were successfully oxidized to the corresponding sulfones in good yields (scheme 54). Rozen attempted to oxidize the highly electron deficient sulphides (175-176) with mCPBA for 18 hours at room temperature and with 30 % \(\text{H}_2\text{O}_2 \) in boiling acetic acid, but in each case, only traces of the sulfoxide and near quantitative amounts of the starting material were obtained.
Chapter 1.0: Introduction to Elemental Fluorine as a Reagent in Organic Synthesis

47

Conditions: All reaction carried out at room temp. \((172-175)\) 4.5 mol. equiv. HOF.MeCN for 20 mins; \((176)\) 7.0 mol. equiv. HOF.MeCN for 30 mins

Scheme 54: Oxidation of electron deficient sulphides using HOF.MeCN

1.4.3.7.3 Thiophene Oxidations

Thiophene dioxide compounds are somewhat undeveloped because of the opposing factors involved in their oxidation. The high temperatures and prolonged reaction times that are required to overcome the aromatic stabilization, result in the non-aromatic \(S,S\)-dioxide being sensitive to Diels-Alder and other ene and diene reactions\(^{95}\).

The high reactivity of the HOF.MeCN complex, even under very mild conditions, meant that thiophenes could be readily oxidized without further reactions taking place \(\text{(scheme 55)}^{95}\). Attempted oxidations by Rozen using peracids or DMDO on the highly electron depleted thiophenes \((179)\) and \((182)\) were un-successful\(^{95}\).

Conditions: All reactions carried out at room temp. using 4.5 mol-equiv. HOF.MeCN; \((177)\) 20 mins; \((178-182)\) 30 mins

Scheme 55: Formation of \(S,S\)-dioxides from thiophenes using HOF.MeCN
However, for efficient oxidation of thiophenes using HOF.MeCN, substituents on both sides of the ring are required\(^{95}\). This is to prevent the unsubstituted double bond taking part in a Diels-Alder reaction or being epoxidized. Thus, oxidation of 2-cyanothiophene (183) and 3-bromothiophene (184) gave only unidentifiable dimeric products, whilst 2,3-dibromo thiophene (185) produced a mixture of the \(S,S\)-dioxide along with the undesired epoxymothiophene \(S,S\)-dioxide (186) (scheme 56).

\[
\begin{array}{ccc}
\text{R}^1 & \text{R}^2 & \text{HOF,MeCN} \\
\text{R}^1 & \text{R}^2 & 4.5 \text{ mol. equiv.} \\
rt & & \\
\text{(183)} & \text{R}^1=\text{CN}; \text{R}^2=\text{H} & \text{no clean reaction} \\
\text{(184)} & \text{R}^1=\text{H}; \text{R}^2=\text{Br} & \text{no clean reaction} \\
\text{(185)} & \text{R}^1=\text{R}^2=\text{Br} & (40\%) \\
\end{array}
\]

\text{Scheme 56}

1.4.4 Concluding Remarks

Rozen’s work has shown that the HOF.MeCN complex offers a very convenient way for organic oxidations to be carried out. Its extreme versatility and the exceptional ease in which a range of functional groups can be oxidised, undoubtedly make this a very appealing reagent and could well offset a prejudice retained by many of using elemental fluorine.

However, whilst the complex has proven to offer many benefits for small scale laboratory batch oxidations, its relatively short half-life would be a major inhibiting factor should it be required for batch scale-up.

Therefore, for the complex to be considered useful on an industrial scale, a process would be required in which the complex is used as it is generated and the use of continuous flow reactors offers a potential solution to this problem.
Chapter 2 - Introduction to Continuous Flow Reactors
2.1 Introduction

Mass scale up of a laboratory designed chemical process is often the major stumbling block in successful commercialisation of potentially marketable products. Although there are a number of important issues to be taken into account, including throughput capabilities, waste and energy minimisation, cost, and environmental issues, two of the most problematic issues are often process control and safety\(^\text{(98-99)}\).

Increasing the scale of a reaction often decreases the control over the process and amongst other factors, this is largely due to the increased difficulty of mass and heat transfer of the reactants over larger volumes\(^\text{(98-99)}\). Consequently, a reaction may proceed perfectly well on a laboratory scale, but problems can be encountered if the reaction vessel and reactants are proportionally increased in size or ‘scaled-up’.

Further scale-up problems are often encountered due to the vast differences between conventional laboratory equipment\(^\text{(x)}\) and industrial equipment and bridging this gap to gain control of a reaction, is something that is often very costly and time consuming.

There are also a number of safety issues that can arise during scale-up of a reaction. Safe working exposure limits of toxic reagents are often exceeded during scale-up and for highly exothermic process such as rapid oxidations, the scaled-up process may be highly energetic and unstable.

However, continuous flow ‘micro-channel’ reactors, which have excellent mass and heat transfer capabilities and a very low chemical inventory, offer a genuine solution to improving the control and safety issues faced during reaction scale up. Flow reactors can also be used for both laboratory research and mass scale production, therefore providing a solution to the differences between laboratory and large scale industrial equipment. The work in this thesis concerns the use of continuous flow equipment for HOF.MeCN oxidation processes and so a brief overview of flow systems for gas-liquid processes will be presented here.

\(^{(x)}\) For the purpose of this review, conventional laboratory equipment will refer to reaction vessels such as beakers and round bottomed flasks and stirring devices such a magnetic stirrer bars
2.1.1 Terminology

Although there are many types of ‘continuous flow reactors’ such as packed column, spinning disk/tube and hex reactors, the ones used for our research and therefore those that will be reviewed, are microchannel reactors. These are reactors that are used to carry out chemical reactions in a continuous process on a sub-millimetre level. Although many of these systems are often sub-categorized to macro (mm), micro (µm) and nano (nm) channels, for the purpose of this review, the term will refer to all reaction channels typically less than 1000 µm.

2.1.2 Microchannel Reactor Classification

Of the hundreds of variations of flow reactors that have been invented, they can be broadly classified into four different types; ‘liquid phase’, ‘gas phase’, ‘gas-liquid phase’, and ‘liquid/gas-solid phase’.

Liquid phase and gas phase reactors are by far the most investigated systems and although the interest in continuous flow technology is still relatively in its infancy, a vast literature covering numerous designs and hundreds of reactions exist for each.

Solid phase reactors refer to those in which the solid (usually a catalyst) is embedded onto the surface of the reaction channel. Insoluble solid reagents often cause blockage of the microchannel and likewise, solid by-products formed during a reaction can cause similar problems, so, in general, reaction involving these types of reagents are usually avoided in continuous flow reactors.

Gas-liquid continuous flow type reactions are the least investigated and relatively few practical designs exist for such processes. However, before these are discussed, the benefits of using continuous flow systems will be outlined.

2.2 Benefits

Continuous flow chemistry in microchannels is ideally suited to overcoming problematic issues faced during scale up, because they provide an excellent means of both process control and safe operation.
2.2.1 Control

To control the selectivity of a reaction and hence obtain high yields of the desired product, the mass and heat transfer of the reaction must be carefully controlled. The main feature of continuous flow microchannel reactors, in comparison to conventional chemical reactors, is their high surface area to volume ratio100,105. Whereas traditional chemical reactors generally have specific surface areas of about 100 m2 m-3, those of the micro reaction channel typically lie between 10,000 and 50,000 m2 m-3, which allows for improved heat and mass transfer100,105.

2.2.1.1 Mass Transfer

Conventional stirring in classical reactors is severely limited to the laminar flow fields that can be created by the stirring device. Flow fields are more concentrated in the reaction mixture that is close to the stirring device, but are severely dampened as the distance from the stirrer is increased105. Visual studies using the mixing of dyes have shown that these inhomogeneities produce convective ‘dead zones’, which, depending upon the concentration and viscosity of the reactants, can persist for hours105.

Fluid behaviour in micro channel systems is dominated by non-convective laminar flow and, therefore, mixing is primarily dependent upon diffusion between reagents. However, due to the low surface area-volume ratio, diffusion in micro channels is often generally reported to be much more rapid than in conventional batch reactors100,105, which means that only small reaction path lengths of the channel are often required.

It should be noted that the absence of turbulence in plug or laminar flow often means that sufficient mixing in the microchannel is not generated by diffusion alone and, in such cases, micromixing must be achieved via other methods106. Many methods have been devised to improve mixing in microchannels, which are categorized into two groups; passive micromixing, where no external forces are applied other than pumping, and active micromixing, where external forces are applied106. Passive micromixing includes methods such as pre-mixing devices (ranging from Y-type addition pieces to various multi-lamellae micro channel arrangements), segmented flow and chaotic advection, and active micromixing includes methods such as periodic flow switching and micromPELLars.

To aid investigation into the mixing in microchannels, two dimensionless quantities are often used to provide an insight into the expected performance of a particular mixing design106. The Reynolds number (Re) and the Peclet number (Pe) are commonly used to characterise mixing in
Part 2.0: Introduction to Continuous Flow Reactors

microfluidic systems106. Reynolds number (Re) represents the ratio of convective to viscous forces and is given as:

\[
Re = \frac{Ud}{v}
\]

where \(U\) is the average velocity, \(d\) the hydraulic diameter of the microchannel and \(v\) the kinematic velocity. Reynolds number gives an estimate of whether or not flow is laminar (<2100 for cylindrical systems). The Peclét number (Pe) represents the ratio of mass transport due to convection and that of diffusion and is expressed as

\[
Re = \frac{Ud}{D}
\]

where \(D\) is the diffusion coefficient.

\subsection*{2.2.1.2 Heat Transfer}

Uncontrolled heating and cooling in a reaction can lead to very slow reactions (requiring heat), or runaway reactions (requiring cooling). Control of heating over larger batches is much more difficult, which leads to a much broader temperature profile for the reaction, thus allowing multiple reaction pathways and reducing yields of the desired product105. Poor heat transfer also leads to the formation of ‘hot-spots’ in the reaction mixture, which is another attributing factor to the formation of by-products105.

Since the heat transfer coefficient is inversely proportional to the channel diameter, values in the order of 10 kWm-2 K-1 are obtained in microchannels, resulting in a much narrower temperature distribution. This is reported to be up to 10 times higher than that of conventional reaction vessels105, resulting in the formation of fewer by-products and increased yields of the desired product.

\textit{Figure 9} compares the temperature distributions in batch and microchannel reactions to the kinetic energy needed to access a by-product forming pathway107.
Left - Temperature distributions for a hypothetical ideal reaction (black), an actual batch reaction (blue) and a continuous flow microchannel reaction (red). Right - Comparison of the temperature distributions to two product forming pathways; the broad distribution of the batch reaction allows formation of the undesired product C, whereas the narrow temperature distribution of the microchemical system restricts the reaction to formation of the desired product B.

Figure 9: Temperature distributions of continuous and batch reactions107

2.2.2 Safety

Due to the nature of continuous processes in microchannels, the reagent inventory of a reaction at any one time is very low, therefore minimizing the potential risks associated with mixing larger amounts of reactive chemicals. This makes continuous flow processes ideally suited to highly exothermic reactions such as oxidations, where increasing the volume of powerful oxidants in a batch reaction vessel could potentially be dangerous.

Continuous flow processes also require reactants to be added mechanically, using devices such as mechanical pumps for liquids and gas cylinders for gasses, which greatly reduces user exposure limits.

2.2.3 Scale-out for Mass Production

The benefits offered by continuous flow reactors would not appeal to industry if they could not be applied to the mass production of chemicals. However, by simple arithmetic ‘scale-out’ (also referred to as ‘numbering up’)108, continuous flow reactors can be very easily used for mass scale production, therefore avoiding the problems associated with simply scaling up the size of a batch vessel100.
Switching from a single channel reactor to multichannel reactor (a triple channel reactor will be used to exemplify this) the output is tripled ([figure 10] [i]); but the optimised conditions for the reaction are unaffected and the operator simply has to add three times more reagent. Further scale-out can then be achieved by running numerous reactors in parallel to each other ([figure 10] [ii]), once again without affecting the optimised conditions of the reaction.

[i] 3 × process throughput by switching from a single channel reactor to a triple channel reactor

[ii] 6 × process throughput by multiplying reactors

Figure 10: ‘Scale-out’ of Continuous Flow Reactors

2.2.4 Batch vs. Flow

Whilst it is widely accepted that many of the cited advantages of performing chemical reactions in microchannels are true, claims of microreactor systems routinely accelerating organic reactions (via better mass diffusion) and increasing desired yields (via improved heat transfer properties), are often thought to be overzealous. In a recent publication by Blacker and co-workers\(^\text{109}\), a critical analysis of ‘flask vs flow’ was undertaken on single-phase homogeneous reactions to investigate such claims.

Note that the work described in this thesis use reactions involving multiphase (gas-liquid) processes and so this analysis may need to be adapted to be fully relevant.
2.2.4.1 Molecular Diffusion

The claims of improved molecular diffusion are often based upon mathematical calculations and compare diffusion in microfluidic channels to those in reaction flasks. Such calculations reveal that a molecule in the centre of a microfluidic device can take microseconds to reach the wall of the channel (due to the large surface area-volume ratio) compared to hours in a flask.\(^{109}\)

The argument against this is that the time it actually takes for a molecule to move to the reactor wall is irrelevant if the wall does not participate in the reaction (as it would do if immobilized reagents or catalysts were used) and that in a homogenous solution, where solvent molecules make up greater than 90% of the reactor contents, the driving force of molecular diffusion actually displaces a molecule the same distance, in the same time, regardless of the type of container it is in.\(^{109}\)

However, for a gas-liquid process, a much higher gas-liquid interface in microchannels aids molecular diffusion.

2.2.4.2 Heat Transfer

It is claimed that in a homogenous solution, where reactants encounter each other solely by molecular diffusion, heat produced in an exothermic reaction can be dissipated more efficiently in a microchannel, due to the greater surface area-volume ratio. Therefore, the improved heat dissipation of reactions performed in microchannels allows them to be conducted at higher temperatures than in flasks, because a better thermal profile can be maintained.\(^{109}\) However, Blacker and co-workers used theoretical calculations of an organocatalyzed aldol reaction performed at 60°C in a microchannel and showed that carrying out the same reaction in a flask would give, at maximum, a 1.3°C rise in temperature. Experimentally this was also shown to be the case and organocatalyzed aldol reactions performed in both ‘flask and flow’ were shown to give similar reaction rates at 60°C.\(^{109}\)

2.3 Miniaturized Total Analysis Systems (µ-TAS)

The benefits of micro-chemical processing have been exploited for both process intensification and improved safety, however, two potential drawbacks to using such devices as stand-alone systems are ‘offline analysis’ for quantification and ‘off-line’ purification. Halting the continuous process to perform either of these tasks will undoubtedly slow down the process. To
avoid these potential timely procedures, various methods have been devised to include ‘in-line analysis’ for accurate quantification110-116 and ‘in-line’ purification, so that the continuous process can be performed without isolation of intermediates117-119. Such continuous systems that include analysis and purification of products are known as ‘miniaturized total analysis systems’ or \(\mu\)-TAS.

Although it is important to mention the importance and benefits of such developments, the focus of this section is briefly outline the benefits of continuous flow reactions in microchannels and, therefore, specific details of each technique will not be explained.

2.3.1 In-line Analysis

Continuous flow processes allow for rapid optimization of reactions by investigation of parameters such as time, flow rates and stoichiometry and thus, large numbers of samples can be generated per day. With such a large number of samples, time consuming off-line analysis for quantification is often the bottle neck during the optimization procedure and, therefore, in-line analysis techniques offer the advantage of immediate qualitative information.

In-line analysis is most often achieved using optical sensors, which are integrated into the flow system to monitor reactions. Techniques such as UV110, IR111 and Raman112 spectroscopy have all been utilized as well as in-line NMR113, mass spectroscopy114, laser induced fluorescence115 and HPLC116 analysis.

In-line monitoring of continuous flow reactions is also very desirable if kinetic information about a flow process is required.

2.3.2 Continuous Product Separation

Separations are central to synthetic chemistry and therefore another potential bottle neck to a continuous flow process, particularly for a multi-step synthesis, would be the need for off-line purification. Although continuous flow multi-step reactions have been performed without intermediate separation117, this is often not feasible and therefore it is much more desirable if intermediates can be separated in flow, without isolation.

Continuous distillation118 and continuous extraction119 methods are two of the most widely exploited separation techniques to be incorporated in \(\mu\)-TAS.
2.4 Gas-Liquid Reactors

2.4.1 Falling Film Reactor

The falling film reactor is one of the most widely recognized gas-liquid reaction devices and was developed at the Institut für Mikrotechnik (IMM) in Germany. The reactor consists of four components (figure 11); the bottom plate [A], which houses the liquid inlet/outlet valves and integrated heat exchanger, the reaction plate [B], a contact zone mask [C] and the top plate [D], which is the gas chamber and houses the gas inlet/outlet valves.

![Left - disassembled Falling Film Reactor [A] bottom plate (with heat exchanger and liquid inlet/outlet slits) [B] reaction plate [C] contact zone mask and [D] top plate (with window and gas inlet/outlet valves); Right - assembled Falling Film Reactor](image)

Figure 11: The Falling Film Reactor

The main component is the reaction plate [B] which is a stainless steel plate with multiple micro channels fabricated onto the surface. Depending on the plate, these range from widths of 100-1200 µm and depths of 100-600 µm. Each channel has an inlet hole at the top, which aligns to the liquid inlet slit of the bottom plate [A]. Therefore when the liquid is injected through the slit, it is evenly distributed into each reaction channel and flows down the channels via gravity. The end of the reaction channels are aligned to the liquid outlet slit of the bottom plate.

The top (gas chamber) plate [D] is placed over the reaction channels and the gas is injected through a diffuser at the bottom of the chamber, which ensures the gas is distributed throughout the chamber homogeneously. The gas flows in an upward motion over the falling liquid film where a reaction takes place and excess gas is released through the outlet gas valve at the top of the reactor (figure 12).
Part 2.0: Introduction to Continuous Flow Reactors

The falling film reactor is capable of producing liquid films with a depth of just 15 µm, which corresponds to a specific phase interface of 20,000 m2 m$^{-3}$. This is approximately ten times that of other commercial gas-liquid systems such as the jet reactor and the laboratory bubble column120.

Initial experiments using this flow reactor were carried out in separate research institutions by Jähnisch, Hessel and Gruber, who demonstrated that toluene (187) could be selectively mono-fluorinated with elemental fluorine in the ortho, meta and para positions (scheme 57) with yields up to 28 %121. These were benchmarked against the laboratory bubble column, which gave, at best, yields of 8 % mono-fluorination.

\[
\begin{align*}
\text{C}_7\text{H}_8 & \xrightarrow{\text{F}_2, \text{MeCN}} \text{C}_7\text{H}_7\text{F} + \text{C}_7\text{H}_6\text{F}_2 + \text{C}_7\text{H}_5\text{F}_3 + \text{others} \\
\text{(187)} & \quad \text{Ratio:} \quad 5 \quad 3 \quad 1
\end{align*}
\]

Scheme 57: Direct fluorination of toluene using the falling film reactor

By fabricating a quartz window into the device, photochemical reactions can also be performed using this reactor. Jähnisch reported the photooxidation of cyclopentadiene (188)122 and the

![Figure 12: Drawing of the Falling Film Reactor](image-url)
selective chlorination of toluene-2,4-diisocyanate (189) (scheme 58)123, both of which gave improved selectivity of the desired product over the batch process.

\[
\begin{align*}
\text{C}_8\text{H}_8\text{NCO} & \xrightarrow{\text{O}_2, \text{hv}} \text{C}_8\text{H}_7\text{NCO} & (60 \%) \\
\text{C}_8\text{H}_8\text{NCO} & \xrightarrow{\text{Cl}_2, \text{hv}} \text{C}_8\text{H}_6\text{NCO} & (80 \%) \\
\end{align*}
\]

\textit{Scheme 58: Photochemical reactions performed using the falling film reactor}122-123

\subsection*{2.4.2 The Microbubble Reactor}

The microbubble reactor was also developed by IMM and their collaborators, although unlike the falling film reactor, the microbubble reactor is operated horizontally. It consists of four components (figure 13), the top and bottom plates [A and B] which have integrated heat exchangers, the microdispersion gas/liquid inlet unit [C] and the reaction plate [D].

\textbf{Figure 13: The Microbubble Reactor}

\textbf{Left} - disassembled Microbubble Reactor [A] top housing plate [B]microdispersion unit [C] bottom housing plate [D] reaction channel plate; \textbf{Right} - assembled Microbubble Reactor
The central components of this reactor are the static microdisperser unit [C] and the reaction channel plate [D]. The microdisperser unit is made of a nickel/copper alloy through which the gas and liquid are added at opposing ends of the unit. Uniform distribution of the reactants is achieved by the small size of the inlet micro dispersion channels, which are no larger than 5 µm for the gas and 20 µm for the liquid.

The microdispersion unit [C] sits vertically in the reactor and attached, perpendicular to this, is the stainless steel reaction channel plate [D] with 64 reaction channels of 20 × 600 µm fabricated onto it. The gas and liquid reactants are fed into the reaction channels via the microdispersion unit (figure 14).

![Figure 14: Drawing of the Microbubble Reactor](image)

The reaction plate and microdispersion unit are locked between the top and bottom housing plates [A] and [B], which are also the heat exchangers. The bottom plate also houses the reactant outlet slit to collect the reactants.

This reactor is designed for rapid reactions (in the order of 1 second and below) and by varying the gas and liquid superficial velocities, other flow regimes such as slug, annular and spray flow can be obtained.

Direct fluorinations of toluene experiments were also carried out using this microreactor and although the conversion and yields was not as good as the falling film reactor, they still gave an improvement over the standard liquid bubble column121.
2.4.3 Durham Continuous Flow Reactors

2.4.3.1 Horizontal Reactors

In 1999, the Durham Fluorine Group published the design of a reactor specifically constructed for the manipulation of elemental fluorine124.

The reactor consists of three parts (figure 15); a solid block of nickel metal (120 mm × 27 mm × 5 mm) with a 100 mm long, 500 µm diameter reaction channel etched onto its surface [A]. Attached to the surface of the nickel channel is a transparent solid polychlorotrifluoroethylene (PCTFE) block (120 mm × 27 mm × 5 mm) [B] which is held in place via a bolted stainless steel block (120 mm × 27 mm × 2 mm) [C]. The PCTFE block has 3 holes (1000 µm diameter) drilled into it which align to the reaction channel and allow stainless steel tubing (1000 µm external diameter and 800 µm internal diameter) to be inserted into the PCTFE block, which sit just above the reaction channel. This allows the gas and liquid reactants to be added and the product to be collected. Temperature of the reaction block is controlled via a copper channel which is threaded through the nickel block and attached to a cryostat.

Elemental fluorine is added to the first inlet and is mixed with the liquid reagent which is added to the second inlet. Products and excess reagents are then collected in a catch pot via the outlet tube (figure 16). Mixing in the reactor proceeds by the preferred annular or ‘pipe’ flow (as appose to intermittent or ‘slug’ flow) (see section 3.4.4) which also ensures increased heat transport from the reaction zone to the nickel block.
To demonstrate the reactor’s capabilities, it was initially used to selectively fluorinate ethyl acetoacetate (190) and chloro-ethyl acetoacetate (191) (scheme 59)124, giving excellent conversions and yields in each case. A range of 1,3-dicarbonyl compounds were also selectively fluorinated, also in excellent yields125, and always providing the same, if not better conversion and yields compared to the same reactions using conventional batch techniques110,126.

\begin{equation}
\begin{array}{c}
\text{O} \quad \text{O} \\
\text{C} \quad \text{OEt} \\
\text{F}_2 (10\%), \text{HCO}_2\text{H}, 5^\circ\text{C} \\
\text{(99% conv.)} \\
\text{O} \quad \text{O} \\
\text{F} \quad \text{OEt} \\
\text{(73%)}
\end{array}
\end{equation}

\begin{equation}
\begin{array}{c}
\text{C} \quad \text{O} \quad \text{O} \\
\text{C} \quad \text{OEt} \\
\text{Cl} \\
\text{F}_2 (10\%), \text{HCO}_2\text{H}, 5^\circ\text{C} \\
\text{(90% conv.)} \\
\text{C} \quad \text{O} \quad \text{O} \\
\text{Cl} \quad \text{F} \quad \text{OEt} \\
\text{(62%)}
\end{array}
\end{equation}

Scheme 59: Selective fluorinations of 1,3-dicarbonyl compounds using the single channel reactor

(xi) Conventionally, fluorinations in batch are performed in a sealed glass reaction vessel which allows fluorine to be passed through the reaction and safely vented. Mixing is carried out using an overhead paddle stirrer.
The single channel reactor was also used to synthesize sulfur pentafluoride derivates from sulfur trifluorides (192) (scheme 60)124.

![Scheme 60: Synthesis of a sulfur pentafluoride using the single channel reactor](image)

By fitting an additional heating device to the outlet of the reaction channel, perfluorination reactions could also be performed on substrates such as (193-194) (scheme 61)124,126.

![Scheme 61: Perfluorinations using the single channel reactor](image)

In 2003, the Durham Fluorine Group, continuing their oxidation work using F\textsubscript{2} and anhydrous acetonitrile127, demonstrated that their flow reactor could also be used to perform these oxidations128. Thus, secondary alcohols (195-196) and Baeyer-Villiger oxidations previously carried out in batch127, were mirrored in the single channel reactor (scheme 62).
Part 2.0: Introduction to Continuous Flow Reactors

Scheme 62: Continuous flow oxidation of secondary alcohols and cyclic ketones

Scale out of the horizontal flow reactor was then demonstrated by constructing a triple channel reactor (figure 17). The principle of this reactor is much the same as the single channel reactor, although reservoirs are required at the gas and liquid inlets to provide equal distribution of reagents to each channel.

Figure 17: The Triple Channel Reactor

The triple channel reactor was successfully used to repeat the 1,3-dicarbonyl fluorinations shown in scheme 59125 and was also used to perform selective fluorinations of deactivated aromatic compounds (198-199) (scheme 63)125.

65
2.5.3.2 Vertical Reactor

To perform further scale-out of continuous reactions, the Durham Fluorine Group designed and manufactured a gas-liquid vertical flow modular reactor system which allows many reaction channels to be supplied from single reservoir sources129.

The reactor consists of 5 parts (figure 18), which are placed together in the following order:

[A] A steel reservoir block (250 mm × 96 mm × 50 mm)
[B] Nickel base plate (250 mm × 96 mm × 0.5 mm)
[C] Stainless steel channel plate (250 mm × 96 mm × 0.5 mm)
[D] PTCFE sealing block (250 mm × 96 mm × 6 mm)
[E] Top window plate (250 mm × 96 mm × 2 mm)

The steel block [A] has two substrate reservoirs (40 mm and 30 mm diameter for the gas and liquid respectively) cut through the width of the top end of the block, and a collection reservoir (20 mm diameter) at the bottom of the block. These have slits cut along their width which emerge at the surface of the block. The nickel base plate [B] also has slits cut into it which exactly align to the steel block slits and provides the base of the reaction channel.
Part 2.0: Introduction to Continuous Flow Reactors

The actual channels themselves, typically 500 µm wide, are cut into a stainless steel plate. The depth of the channels are therefore, dictated by the thickness of the plate, which is also typically 500 µm. Channel plates have 9, 18 or 30 channels cut into them.

A transparent PTCFE block is then placed onto the reaction plate which completes the reaction channel, and a top window plate is bolted onto the base plate which keeps the whole unit together. The window allows the flow of the reaction channels to be viewed.

The reactants are added to the reservoirs of the nickel block [A], which once filled, flow through the slits to the surface of the block and down the channels (figure 19). The volume of the reservoirs is substantially greater than the sum of the volumes of the channel paths, therefore ensuring equal fluid distribution into each individual channel. Upon entry to the channels, the gas and liquid flow down the reactor and the reaction takes place and at the end of each channel, the product flows into the product reservoir slit, which can then be collected through an exit tube.

Figure 18: The Vertical Continuous Flow Reactor
As with the horizontal reactors, piping threaded through the reaction block can be connected to a cryostat to allow for thermal control of the reaction.

Fluorination experiments performed on ethyl acetoacetate (200) demonstrated that with optimized conditions, excellent conversions and yields could be obtained of the mono-fluorinated product using a 9-channel reactor (scheme 64). Continuous operation over an extended time period of 150 hours has been performed with no loss of yield or conversion and with each channel able to synthesize ca. 0.3 g of product per hour, approximately 220 g of product can be synthesized per day using the 30-channel reaction plate.

\[
\begin{align*}
\text{O} & \quad \text{O} \\
\text{C} & \quad \text{C} \\
\text{O} & \quad \text{O} \\
& \quad 10\% \text{F}_2 \text{HCO}_2\text{H}, 20^\circ\text{C} \\
(94\% \text{ conv.}) & \quad \rightarrow \\
(200) & \quad \text{F} \\
& \quad \text{(79\%)}
\end{align*}
\]

Scheme 64: Selective fluorination of ethyl acetoacetate in the vertical flow reactor

A number of 1,3-ketoesters and 1,3-diketones were then selectively mono-fluorinated using the 9-channel vertical reactor, often with near quantitative yields, and the selective mono fluorination of the deactivated aromatic compounds (201-208) was also performed using the 9-channel reactor (scheme 65).
The following chapter describes how gas-liquid continuous flow techniques developed at Durham University, were utilized to overcome the limitations of Rozen’s powerful oxygen transfer agent that arise when it is used in batch oxidation reactions.
Chapter 3 - New Continuous Flow Oxidation Methodology
3.1 Aims

Two important points made in the introduction were that:

A) The labile and highly reactive nature of Rozen’s HOF.MeCN complex prevents it being used for the scale-up of batch oxidation reactions

B) The continuous means of operation of flow reactors provides easy access to scale-up of reactions and their low chemical inventory offers safe operation of highly exothermic reactions

Therefore, if Rozen’s HOF.MeCN complex could be synthesized in a continuous fashion and, without isolation, be used to oxidize a substrate in a continuous flow device, the instability of the complex would not be an issue, nor would the safety implications that would arise from batch scale-up. The high oxidative power of the HOF.MeCN reagent would not be limited to small scale laboratory batch oxidations and could be applied to industrial scale processes.

The initial aims of the project were:

1. To utilize the gas-liquid continuous flow techniques developed at Durham University and apply them to the continuous synthesis of HOF.MeCN and subsequent reagent oxidation reactions in a two step process
2. Optimization of the process to ensure that no fluorine remains in the reaction channel when the substrate is added, therefore, avoiding competing substrate fluorination
3. Develop a means of accurately measuring the HOF.MeCN concentration, therefore avoiding the necessity for using iodimetric titrations
4. Demonstrate the practicality of the process by oxidation of a range of substrates
5. Demonstrate scale-up of reactions via increased reaction run-times and the use of higher concentrations of HOF.MeCN

Before the specific details of our flow processes are discussed, the hazards associated with the use of elemental fluorine and the apparatus and techniques involved in its safe handling will be described. As one mole of hydrogen fluoride is generated with each mole of HOF.MeCN, the hazards associated with HF will also be outlined.
3.2 Handing of Elemental Fluorine and Hydrogen Fluoride

3.2.1 Associated Hazards

The highly reactive nature of elemental fluorine means that at a sufficiently high concentration, it will corrode all exposed tissues. Due to its reactive nature, an emergency exposure limit of 150 ppm over 10 mins has been suggested and comprehensive studies have determined the lethal concentration limit (LC$_{50}$) in rats to be 3500 ppm over a 5 min exposure133.

One of the keys to successfully applying elemental fluorine to organic reactions is dilution, which also makes working with the gas much safer. The fluorine gas used throughout this work is supplied as 20 % F$_2$ (diluted in nitrogen) and for all experiments this was further diluted to 10 % in nitrogen. Whilst dilution of the element reduces its reactivity and therefore its toxicity, it is still very easily detectable at levels as low as 20 ppb133.

Anhydrous hydrogen fluoride (AHF) is also very corrosive and causes severe irritation upon exposure. AHF has a threshold limit value of 3 ppm (over 8 hours), but like fluorine, it is also detectable at concentrations as low as 20 ppb134.

Hydrofluoric acid (aqueous hydrogen fluoride) can easily migrate through the lipid layers of skin cells and is, therefore, capable of extremely deep burns and even permanent bone damage. In small quantities, this can occur without surface tissue damage or even irritation, so any detrimental effects may be delayed. Reaction with the body’s calcium inside cells can also cause a cardiac arrest. Spills of over just 2.5% of the body’s surface area have been reported to be fatal134, therefore the Durham University HF safety course is compulsory and calcium gluconate (HF antidote gel) is available in all labs.

3.2.2 Fluorine Handling Apparatus

Based on a previous design, the apparatus (or ‘rig’) used for the safe handling of fluorine, which was purposely built for this research project, is shown in figure 20.

The apparatus consists of a permanent fluorine storage cylinder [A] which connects to the 20 % fluorine cylinder$^{(xiii)}$ and also a nitrogen cylinder and is filled from these two cylinders using the operating board [B].

$^{(xiii)}$ The 20 % fluorine cylinder is housed in its own extracted fume hood and is fitted with its own safety cut off valve, regulator and exhaust valve.
Chapter 3.0: New Continuous Flow Oxidation Methodology

A second operating board [C] then controls the safe passage of fluorine from the storage cylinder [A] through our desired reaction setup [D], the flow of which is controlled by a calibrated gas mass flow controller (MFC) [E]. The flow valve of the gas MFC is operated by the control unit [F] which has a maximum flow capacity of 100 mL min⁻¹.

Figure 20: Fluorine handling apparatus used at Durham University
The outlet of the reaction set-up is attached to a ‘soda lime scrubber’. This is a metal cylinder filled with 75% calcium hydroxide which reacts with any excess elemental fluorine or HF gas from the reaction, thus preventing both atmospheric and fume hood emissions. All of the operating boards can also be opened to the soda lime scrubber via a central ‘scrubber line’, so excess fluorine in all parts of the rig can be safely discharged.

The valves and connections of the rig are made from stainless steel, as is the majority of tubing. Teflon tubing is used in parts of the rig that are frequently moved or adjusted (i.e. those attached to the reaction vessel), and the reaction vessel itself is also made of Teflon. All tubing is connected by Swagelok® fittings.

3.2.2.1 Passivation

Although fluorine reacts with all metals, its reaction with some alloys forms a protective metal-fluoride coating on the surface of the alloy, which prevents further corrosion. This forms the basis of a technique called ‘passivation’, and allows fluorine to be handled without severe deterioration of the rig. Therefore, all parts of the rig, including mass flow controllers and flow reactors, are passivated before being used. Passivation is performed by slowly passing fluorine through the metal at different concentrations, starting with the lowest, to allow a fluoride coating to gradually form on the surface of the metal, thus creating the protective barrier.

3.3 Continuous HOF.MeCN Synthesis and Batch Oxidation

Successful completion of our aims not only relied upon the ability to synthesize the HOF in a flow reactor, but also that the HOF would complex to acetonitrile so it would be sufficiently long lived to carry out oxidations. To investigate this, the reaction set-up shown in figure 21 was used.

Fluorine, supplied at a known rate, was added into the flow reactor via inlet 1 and the water and acetonitrile were added together at a known flow rate to inlet 2. Any HOF.MeCN complex formed could then be collected in the ‘catch pot’ and tested with known concentrations of a suitable reagent.
3.3.1 Variables

A number of variables need to be considered to optimize the generation of the HOF complex using this system:

1. Flow rates of the fluorine and aqueous acetonitrile
2. Ratio of the acetonitrile:water (v/v) mixture
3. Temperature and reaction path length of the reactor
4. Catch-pot contents and temperature
5. Substrate concentration

The flow rate of the elemental fluorine is obviously a major variable and one which, due to the nature of the gas MFC, changes with time. MFC’s use the thermal properties of the gas to directly measure its flow rate and are calibrated to the required gas concentration. The thermal properties are measured using a sensor which is attached to the gas flow range via a small capillary by-pass. However, due to the gradual build up of fluorides to the inner surface of the MRC over time, the diameter of the passivated capillary becomes smaller, which in turn affects the sensor reading and therefore the flow rate. Therefore, once optimized HOF.MeCN synthesis conditions have been established, an accurate calibration procedure is also required so that any variation of the flow control units could be detected.
3.3.2 Initial Tests

As no real time method was available to analyze reactions, work-up of each reaction would be required to show if oxidation had occurred. Therefore the substrate chosen for initial testing and optimization must fulfil the following criteria:

1. It should be very easily to oxidize using one molar equivalent of HOF.MeCN
2. It should also react rapidly with fluorine, thus allowing excess of fluorine to be monitored (only applicable for continuous substrate oxidation)
3. It should produce no unstable intermediates during its oxidation, thus limiting the possibility of side products
4. The proton NMR shifts of the oxidized and un-oxidized peaks should be easily identifiable, enabling quick and quantitative identification of starting material and product
5. It should have a reasonably high molecular weight so manageable quantities could be used at low concentrations
6. The starting reagent and product must be insoluble in water and have a low vapour pressure, enabling easy work up via aqueous extraction
7. The product must be stable to base, thus allowing HF or excess HOF.MeCN to be quenched with NaHCO$_3$

1-Dodecene and trans-stilbene and their corresponding epoxides fulfil all of these criteria.

Initial tests carried out by Chris Murray (AWE secondment to Durham University, Oct-Dec. 2006) demonstrated that HOF.MeCN could be synthesized and collected using this apparatus and then be used to oxidize 1-dodecene. Murray showed that a ratio of 1:4 water:acetonitrile gave higher quantities of HOF.MeCN than the 1:9 ratio used by Rozen and that a cooled reaction channel was not required.

Following on from Murray’s work, our next aim was to optimize the amount of HOF.MeCN generated so that higher yields of the epoxide could be obtained. All subsequent tests, unless otherwise stated, were performed using the 1:4 ratio of water: acetonitrile and a reaction channel at room temperature.

It was also initially established that an acetonitrile collection pot was required to keep the HOF.MeCN complex stable long enough to carry out the batch oxidations and that if the HOF.MeCN was collected in water it was too labile. So in all of the batch oxidation reactions, 20 mL of acetonitrile was used to collect the HOF.MeCN complex.
3.3.3 HOF Optimization

To optimize the HOF-MeCN amounts, a number of experiments were performed using the flow apparatus in figure 21 with increasing amounts of fluorine, whilst keeping the water:acetonitrile flow rate constant at 5.0 mL h⁻¹ (results table 1). For all experiments, only starting material and epoxide were obtained.

Results table 1:

<table>
<thead>
<tr>
<th>Expt.</th>
<th>F₂ flow rate (mL min⁻¹)</th>
<th>H₂O:MeCN flow rate (mL h⁻¹)</th>
<th>1-dodecene mmol</th>
<th>1-dodecene mixing (mins)</th>
<th>Alkene</th>
<th>Epoxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.0</td>
<td>5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>16</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>6.5</td>
<td>5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>13</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>7.0</td>
<td>5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>4</td>
<td>7.5</td>
<td>5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>5</td>
<td>95</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>5.0</td>
<td>2.0</td>
<td>2.0</td>
<td>5</td>
<td>95</td>
</tr>
</tbody>
</table>

The fact that there was no increase in epoxide yield in experiment 5 indicates that the optimal fluorine flow rate is 7.5 mL min⁻¹, however, the presence of starting material is also an indication that insufficient water is being added to the reaction for full conversion of fluorine to HOF. Therefore the tests were repeated but with increased levels of 10.0 mL h⁻¹ of water and acetonitrile (results table 2). Proton NMR for these experiments are included in figure 22 with the alkene peaks highlighted red and epoxide peaks blue.

Results table 2:

<table>
<thead>
<tr>
<th>Expt.</th>
<th>F₂ flow rate (mL min⁻¹)</th>
<th>H₂O:MeCN flow rate (mL h⁻¹)</th>
<th>Alkene mmol</th>
<th>Alkene mixing (mins)</th>
<th>Alkene</th>
<th>Epoxide</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6.0</td>
<td>10.0</td>
<td>2.0</td>
<td>2.0</td>
<td>15</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>6.5</td>
<td>10.0</td>
<td>2.0</td>
<td>2.0</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td>8</td>
<td>7.0</td>
<td>10.0</td>
<td>2.0</td>
<td>2.0</td>
<td>6</td>
<td>94</td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>10.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>8.0</td>
<td>10.0</td>
<td>2.0</td>
<td>2.0</td>
<td>0</td>
<td>100</td>
</tr>
</tbody>
</table>
Figure 22: Proton NMR used to optimize the HOF.MeCN synthesis conditions
Figure 22 (cont): Proton NMR used to optimize the HOF.MeCN synthesis conditions.
Figure 22 (cont): Proton NMR used to optimize the HOF.MeCN synthesis conditions

The results showed that with the increased water level of 10.0 mL h\(^{-1}\) and 7.5 mL min\(^{-1}\) of fluorine, at least 2.0 mmol of HOF.MeCN can be generated so that 2.0 mmol of 1-dodecene can be quantitatively converted to its epoxide.

Once it was established that the HOF.MeCN could be generated in the flow reactor, the next step towards completing our aims was to determine if the substrate could be oxidized using continuous flow methodology.

Continuous addition of the substrate will also allow the substrate to react with excess fluorine (if any) therefore providing information as to whether all of the fluorine is being used to form HOF in the reactor or if an excess of fluorine is being generated. By a means of back calculation, this will also provide a method of accurately calibrating the actual fluorine flow rates.
3.3.4 Variations on Setup

During the initial testing and optimization stage, frequent blockages were occurring in the reactor at the fluorine:aqueous acetonitrile interphase of the reactor (figure 23). There also seemed to be slight corrosion of the channel close to this inlet.

![Fig 23: Blockage of the flow reactor at the fluorine:aqueous acetonitrile interface](image)

To prevent blockages and possible channel corrosion, the reactor design was modified slightly so that the H$_2$O:MeCN solution was added to a Swagelok® T-piece attached to the fluorine inlet (figure 24), therefore, any corrosion would occur in the replaceable T-piece and not the nickel block. Calibration tests using the slightly modified design showed that the revised set-up gave the same results as those in results table 2.

![Figure 24: Revised HOF.MeCN continuous synthesis and collection set-up](image)
3.4 Continuous HOF.MeCN Synthesis and Continuous Oxidation

Continuous addition of the substrate was performed by using a PCTFE mixing T-piece attached to the outlet of our HOF.MeCN flow reactor, which has a length of PTFE attached through which the reagent could be continuously added (using a mechanical syringe pump) at a known concentration per hour (figure 25).

The substrate:HOF.MeCN T-piece used was specifically designed and constructed from PCTFE so that the internal diameter of the actual mixing channel was as small as possible (800 µm), thus hopefully providing more efficient mixing than that of a Swagelok® T-piece.

Figure 25: Apparatus for the continuous HOF.MeCN synthesis and substrate oxidation
3.4.1 Initial tests and Calibration

It has already been determined that 10.0 mL h\(^{-1}\) of the aqueous acetonitrile is required for 2.0 mmol h\(^{-1}\) of HOF.MeCN to be generated, so the optimized experimental flow rates from the batch oxidation process were applied directly to the new full continuous flow process (results table 3). As previously stated, the alkene can now react with any excess fluorine in the reaction, thus allowing the detection of excess fluorine in the reaction.

\[\text{Results table 3:} \]

<table>
<thead>
<tr>
<th>Expt.</th>
<th>F(_2) flow rate (mL min(^{-1}))</th>
<th>H(_2)O:MeCN flow rate (mL h(^{-1}))</th>
<th>1-dodecene (mmol h(^{-1}))</th>
<th>NMR Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alkene</td>
</tr>
<tr>
<td>15</td>
<td>6.0</td>
<td>10.0</td>
<td>2.0</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>6.5</td>
<td>10.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>17</td>
<td>7.0</td>
<td>10.0</td>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>7.5</td>
<td>10.0</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>8.0</td>
<td>10.0</td>
<td>2.0</td>
<td>0</td>
</tr>
</tbody>
</table>

The results obtained (in results table 3) demonstrated that 1-dodecene can be continuously oxidized in an extremely efficient reaction. The traces of alkene that remained in experiment 17 show that 7.0 mL min\(^{-1}\) of fluorine is not quite enough to generate 2.0 mmol h\(^{-1}\) of HOF.MeCN, whilst the trace of fluorinated alkene obtained from experiment 19 (the NMR of which is shown in figure 26) meant that the flow of fluorine is slightly higher than 2.0 mmol h\(^{-1}\). The quantitative epoxide yields obtained from experiment 18 indicates that 7.5 mL min\(^{-1}\) of fluorine is enough to generate 2.0 mmol h\(^{-1}\) of HOF.MeCN and that all of the fluorine is being quantitatively used for this. We can therefore say with some accuracy that at the present time, a MFC flow rate read-out of 7.5 mL min\(^{-1}\) of 10 % fluorine, equates to 2.0 mmol h\(^{-1}\) of fluorine\(^{\text{(xiv)}}\). This provided us with a method of accurately calibrating both the amount of HOF.MeCN generated per hour and the flow rate of fluorine.

\(^{\text{(xiv)}}\) This is based on the assumption that all excess fluorine reacts with the alkene. However, slight mixing inefficiencies will result in a very small amount of un-reacted fluorine passing through the flow setup.
Due to the possible deterioration of the mass flow controller, these calibrations were performed at regular intervals throughout the course of the three year research period.

Figure 26: Fluorine NMR for Expt. 19 showing trace amounts of fluorinated starting material

To test the repeatability of our process, the optimization and calibration tests were performed on *trans*-stilbene (*results table 4*). Proton NMR spectra for these reaction have been included with alkene and epoxide peaks highlighted red and blue respectively (*figure 27*).

Results table 4:

<table>
<thead>
<tr>
<th>Expt.</th>
<th>F₂ flow rate (mL min⁻¹)</th>
<th>H₂O:MeCN flow rate (mL h⁻¹)</th>
<th>Stilbene (mmol h⁻¹)</th>
<th>NMR Yields (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alkene</td>
</tr>
<tr>
<td>20</td>
<td>6.0</td>
<td>10.0</td>
<td>2.0</td>
<td>15</td>
</tr>
<tr>
<td>21</td>
<td>6.5</td>
<td>10.0</td>
<td>2.0</td>
<td>10</td>
</tr>
<tr>
<td>22</td>
<td>7.0</td>
<td>10.0</td>
<td>2.0</td>
<td>5</td>
</tr>
<tr>
<td>23</td>
<td>7.5</td>
<td>10.0</td>
<td>2.0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>8.0</td>
<td>10.0</td>
<td>2.0</td>
<td>0</td>
</tr>
</tbody>
</table>
Chapter 3.0: New Continuous Flow Oxidation Methodology

Figure 27: Proton NMR used to optimize the full continuous HOF.MeCN synthesis and substrate oxidation conditions

Ratio \(1.5 : 8.5 \)
Figure 27 (cont): Proton NMR used to optimize the full continuous HOF.MeCN synthesis and substrate oxidation conditions
Results from the proton and fluorine NMR spectra show that very similar results to that obtained for 1-dodecene, were obtained using trans-stilbene, thus confirming the accuracy of our calibration process. Due to the fact that the flow rate of the control unit \([F]\) (figure 20 page 73) is subject to variation, the calibrated fluorine flow rate will be quoted for the remainder of this thesis as oppose to the control unit read-out.

3.4.2 Scale-up of the Continuous Process

Using the calibrated fluorine flow rates and optimized conditions required for the synthesis of 2.0 mmol h\(^{-1}\) of HOF.MeCN, these were applied to maximize the amount of HOF.MeCN that could be generated and continuously used to epoxidize 1-dodecene.

The fluorine flow rate was increased to 8.0 mmol h\(^{-1}\) and using 10.0 mL h\(^{-1}\) of the \(\text{H}_2\text{O}:\text{MeCN}\) mixture, equimolar amounts of the alkene were added continuously per hour. However, 10.0 mL h\(^{-1}\) of the aqueous acetonitrile mixture was not high enough to produce 8.0 mmol h\(^{-1}\) of HOF.MeCN and therefore, only 71% of the epoxide was obtained (results table 5); the remainder was either starting material or fluoroalkane by-products. An increased flow rate of 20.0 mL h\(^{-1}\) of the \(\text{H}_2\text{O}:\text{MeCN}\) mixture was required to provide enough water to synthesize 8.0 mmol h\(^{-1}\) of HOF.MeCN and, therefore, give quantitative yields of the epoxide.

Results table 5:

<table>
<thead>
<tr>
<th>Fluorine (mmol h(^{-1}))</th>
<th>8.0 mmol h(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{O}:\text{MeCN (1:4)}) (mL h(^{-1}))</td>
<td>10.0</td>
</tr>
<tr>
<td>(^1)H NMR results (epoxide:SM/fluoroalkanes) (%)</td>
<td>71:29</td>
</tr>
</tbody>
</table>

A similar situation arose when the fluorine flow rates were increased to 10.0, 12.0 and 14.0 mmol h\(^{-1}\) to give the equimolar amounts of HOF.MeCN. Quantitative amounts of alkene could be continuously oxidized, but in each case, the water flow rate had to be increased to accommodate the extra fluorine and therefore, give quantitative amounts of HOF.MeCN.
The following graph shows how much water is required to quantitatively transform fluorine to HOF.MeCN.

To put the increased HOF.MeCN amounts into perspective, oxidation of 14.0 mmol h\(^{-1}\) of dodecene equates to the production of 2.4 g of the epoxide per hour. Continuous operation of the single channel reactor over one day would equate to 57.6 g, and scale-out using the 9-channel dual reactor would give over 1 Kg of epoxide per day.

Once the optimized water flow rates for the higher levels of fluorine were established, our calibration procedure was also applied to each HOF.MeCN level (8, 10, 12 and 14 mmol h\(^{-1}\)) to investigate if there was a significant difference of epoxide yields at higher flow rates. Very little variation was experienced which confirmed that our calibration procedure is also accurate at higher HOF.MeCN levels.
3.4.3 Continuous Flow Oxidations

Our two-step continuous flow epoxidation methodology was applied to a range of different alkenes (209-215) (scheme 66)135, including those which were both deactivated and hindered. All epoxidation reactions shown were very efficient and produced no un-wanted side products.

\textit{Scheme 66: Alkene epoxidations performed using the continuous flow apparatus shown in figure 25}
Similar to Rozen’s batch oxidation of the quinone (216) (scheme 67), only one of the deactivated double bonds of duroquinone (215) were epoxidized, however, a yield of just 38% was obtained. An attempt to improve this yield was carried out by increasing the oxidation reaction path length from 30 cm to 60 cm, which increased the epoxide yield to 48%.

![Scheme 67: Rozen’s batch oxidation of a quinone](image)

The poor yield obtained for the oxidation of duroquinone was an early indication that oxidation path length could be an issue for substrates that require longer reaction times for complete oxidation with HOF.MeCN. To investigate this, oxidation of these types of substrates was attempted in our continuous process.

Rozen reported a reaction time of 30 mins for the oxidation of adamantane (217) to adamantanol (218) (80%) and 4 hours for the Bayer-Villiger oxidation of 2-methylcyclohexanone (219). In our hands, similar times were required to obtain yields of 80% of adamantanol using our continuous-batch oxidation of adamantane and 4 molar equivalents of HOF.MeCN. However, attempts to oxidize each of these compounds in a full continuous fashion were less successful, giving only starting material upon oxidation of 2-methylcyclohexanone and low yields of 1-adamantanol (218) (scheme 68). Increasing the reaction path length from 100 cm to 300 cm did not improve either reaction, nor did using increased amounts of HOF.MeCN.
Chapter 3.0: New Continuous Flow Oxidation Methodology

Scheme 68: Continuous oxidation of adamantane and 2-methylcyclohexanone

Similar results were obtained with other compounds that required longer reaction times to be oxidized. Rozen reported that thiophenes which contained electron withdrawing groups such as 2,5-dibromothiophene (220) and 2,3,4,5-tetrabromothiophene (221) both required mixing times of 30 minutes (scheme 55, section 1.4.3.7.3) to give the corresponding sulfone. In our hands 30 minutes was sufficient to give comparative yields of both sulfone products. However, continuous oxidation of these compounds using a 3 m path length gave lower yields of the corresponding sulfone (scheme 69), although the reactions were still very efficient and other than the sulfone, only starting material was obtained. Using a 100 cm oxidation path length gave lower yields of each sulfone.

Scheme 69: Batch and continuous oxidation of electron deficient thiophenes

Conditions: 2.0 mmol of substrate added continuously over 1 h at rt; 100 cm oxidation path length used; *Product was not isolated and the yield is taken from proton NMR spectra

Continuous oxidation conditions: 2.0 mmol of substrate added continuously over 1 h at rt; 300 cm oxidation path length used; *Products were not isolated and yields are taken from quantitative carbon NMR spectra
The more electron rich sulfur atoms of 2,5-dimethyl thiophene (222) and diphenyl sulphide (223) were both easily oxidized to the corresponding sulfone using the continuous flow apparatus in excellent yields (scheme 70).

\[
\text{F}_2(10\%) \xrightarrow{\text{H}_2\text{O}:\text{MeCN (1:4)}} \text{HOF:MeCN (2.0 mmol h}^{-1}) \xrightarrow{100\% \text{ conversion}} \text{PhS-Ph} \xrightarrow{\text{PhSO}_2\text{Ph}} \text{PhSO}_2\text{Ph}
\]

Conditions: 2.0 mmol of substrate added continuously over 1 h, at rt, using 100 cm oxidation path length. Both yields are isolated.

Scheme 70: Other sulfur continuous oxidations

3.4.4 Variation of Setup

We revised our current continuous process so that the oxidations were carried out in a second reactor instead of PTFE tubing (figure 28) which more accurately replicates scale-out for the oxidation reactions in the vertical reactor shown in section 2.4.3.

Figure 28: Dual flow reaction set-up to perform oxidations in a nickel reaction channel

Performing reactions in a second reactor would allow oxidation reactions to be cooled if necessary and the nickel block also provides improved heat transfer capabilities over PTFE. However, unlike the PTFE tubing, the reaction path length is fixed in the flow reactor.
Chapter 3.0: New Continuous Flow Oxidation Methodology

Calibration tests using 1-dodecene and trans-stilbene were performed using the dual reactor device, which gave similar results to those obtained in the PTFE tubing device. The substrate range was then extended to include thiophenes and later on (see chapter 4) aliphatic and aromatic amines, all of which gave results that were comparable to those obtained in the PTFE oxidation channel.

However, no significant improvement was gained by oxidation of the substrates in a second reactor, even for reactions in which cooling of the oxidation channel may reduce decomposition products (see chapter 4).

The following set-up (figure 29) was assembled to investigate if the HOF.MeCN complex be synthesized in PTFE tubing as appose to the flow reactor, and a number of oxidations were performed on various substrates.

![Figure 29: Flow apparatus designed to synthesize HOF.MeCN in PTFE tubing](image)

Oxidation reactions performed using a device entirely fabricated from PTFE tubing, however, were much less efficient and resulted in high amounts of either starting material, or fluorinated material. The poor results obtained using this set-up are attributed to the different flow regimes observed for the gas-liquid reactions in the different reaction channels\(^{(sv)}\). Mixing of the gas-liquid reagents in the PTFE tubing proceeds by an intermittent ‘slug’ flow (figure 30), which is a much less efficient method of mixing than the preferred annular ‘pipe’ flow (figure 30) observed when the fluorine and water are mixed in the flow reactor.

\(^{(sv)}\) The transparency of both reaction channels allows the flow patterns to be observed
Chapter 3.0: New Continuous Flow Oxidation Methodology

The flow mixing regimes of the liquid-liquid (second step) oxidations proceeded by an intermittent flow in both the flow reactor and PTFE tubing, which explains why similar yields of products are obtained when the oxidation reactions are carried out in either the nickel reactor and PTFE tubing.

3.4.4.1 Thermodynamics

Calculation of the enthalpy of the reaction of water and fluorine also reveals that the reaction is not very exothermic which indicates that the reaction would not really benefit from cooling of the microchannel.

\[
\text{F-F} + \text{H-O-H} \rightarrow \text{H-O-F} + \text{H-F}
\]

\[\Delta H (\text{kJ mol}^{-1})\]

<table>
<thead>
<tr>
<th>Bond</th>
<th>Energy (kJ mol(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breaking of F-F bond</td>
<td>+159</td>
</tr>
<tr>
<td>Breaking of O-H bond</td>
<td>+493</td>
</tr>
<tr>
<td>Formation of H-F bond</td>
<td>-569</td>
</tr>
<tr>
<td>Formation of O-F bond</td>
<td>-180</td>
</tr>
<tr>
<td>Enthalpy of reaction</td>
<td>-97</td>
</tr>
</tbody>
</table>
To investigate whether the synthesis of HOF.MeCN depended upon the ability of the PTFE microchannel to dissipate heat from the reaction (PTFE is a good heat insulator whereas nickel is known to readily dissipate heat), experiments involving cooling of the PTFE channel were performed. However, we found that cooling of the PTFE channel gave no performance increase and the reactions were equally inefficient.

It should be noted that no kinetic data for the formation of HOF is recorded in the literature, so it is unsure if the process is so rapid that it is an adiabatic one\(^{(xvi)}\). However, the differences in data we obtained between the nickel microchannel and the PTFE microchannel suggest that HOF synthesis does not occur rapidly in the T-piece.

3.4.5 Freezing of HOF.MeCN

Not all research institutions have the facilities to work with elemental fluorine and many researchers still hold a prejudice towards working with the gas. Therefore, if the HOF.MeCN complex could be frozen and still retain its activity, this would allow the frozen HOF.MeCN complex to be transported at low temperature and, therefore, be made available to other research institutions.

Frozen HOF.MeCN would limit the complex to small scale oxidations as it could only be used in batch process, but this could be a valuable tool for trial oxidations of certain compounds before deciding upon acquiring the facilities for continuous scale-out oxidations.

To test the feasibility of freezing HOF.MeCN, the continuous-batch process was used to generate 10.0 mmol h\(^{-1}\) of HOF.MeCN and collected in acetonitrile in the usual way (see section 3.3). The HOF.MeCN solution was then divided into two equal portions, and its activity tested using equimolar amounts of 1-dodecene (results table 6):

- **Portion 1** - Stored at room temperature for a set period of time
- **Portion 2** - Stored at -78°C for the same period of time as portion 1

\(^{(xvi)}\) An adiabatic process is a thermodynamic process in which the net heat transfer to or from the working fluid is zero. Such a process can occur if the process happens in an extremely short time, so that there is no opportunity for significant heat exchange.
The results show that the un-frozen sample lost half of its reactivity over a period of one hour, but when frozen for one hour and then used, the frozen sample retained 95% of its activity. The frozen HOF.MeCN complex retained 89% of its activity after 5 days, demonstrating that the complex could be frozen and transported at low temperature (-78°C).

The oxidation capabilities of the HOF.MeCN complex after it had been frozen were also tested on diphenyl sulphide, and after 5 days it was shown to have retained 87% of its activity (scheme 71).
3.5 Summary

To summarize the chapter, we have successfully devised a continuous flow system for the synthesis of HOF.MeCN and subsequent substrate oxidation in a continuous flow process. Up to 14.0 mmol h\(^{-1}\) of substrate has been oxidized continuously over a period of five hours with no loss of performance, therefore providing a genuine method to scale-up the use of HOF.MeCN without encountering any stability or safety issues.

An accurate and safe method for the calibration of F\(_2\) flow rates and HOF.MeCN concentration has also been devised, so any problems associated with the fluctuation of mass flow controllers can easily be avoided and accurate experiments can be carried out without having to use iodimetric titrations.

The flow process has been successfully demonstrated to oxidize a variety of different compounds, most of which proceed with excellent efficiency and yields. The HOF.MeCN complex does exhibit similar properties in flow as it does in batch, so compounds which were not efficiently oxidized in batch were also poor in our flow system. Also, compounds which required extended batch reaction times such as hydroxylations, were only partially oxidized because of low residence times in the flow system.

We have also shown that the HOF.MeCN complex can be frozen for up to 5 days without major loss of its oxidative capabilities, therefore proving a means of transporting the complex.

The apparatus built for our research has been used without problems or leaks, and thus fluorine is rarely detected. The oxidation step has been shown to proceed in an equally efficient manner when performed using a flow reactor, and a proposed variation of our vertical flow scale-out reactor which could be used for our two-step processes shown in chapter 6.0.
Chapter 4 - Oxidations at Nitrogen
4.1 Introduction and Aims

Polynitro aromatic systems are particularly important to the energetic materials industry, but, because of their electron deficient nature, techniques such as electrophilic aromatic substitution or direct amine oxidation can be unsuitable for synthesizing such compounds136.

Nitroheteroaromatic compounds are also of increasing importance to the energetic materials industry and over the past two decades they have received a great amount of interest, because, in general, they have higher heats of formation, density and oxygen balance over their carbocyclic counterparts136. Oxidation of the tertiary ring nitrogen also offers another method to increase the density and oxygen balance of the system. However, electrophilic aromatic substitution of electron deficient heteroaromatic systems can also be problematic and although there are many reagents that exist for the synthesis of N-oxides, they are not suited to electron deficient heterocycles136. Thus, potentially energetic materials such as PZDO (scheme 72) are currently inaccessible137.

![Scheme 72: Oxidation of ANPZ-i to give PZDO is currently not possible](image)

The HOF MeCN complex could offer a potential solution to the problem of forming polynitro and N-oxide heteroaromatic derivatives and our continuous flow system would also provide a safe and scalable process. Following on from the development and application of the oxidation flow methodology135 described in the previous chapter, our aims were therefore to investigate the feasibility of using our flow oxidation process for the synthesis of these types of systems, in particular:

1. The synthesis of nitro aliphatic derivatives from the corresponding amine and azide compounds
2. The synthesis of electron deficient nitro benzene compounds from their corresponding anilines
3. The oxidation of a range of electron deficient nitrogen heterocycles, including:
a) Those without an amine moiety attached to the ring so ring nitrogen oxidation can be investigated without competing reactions
b) Those with an amine moiety attached to the ring so that the selectivity of the HOFMeCN reagent can be examined

4.2 Aliphatic Nitro Compounds

4.2.1 From Aliphatic Amines

Aliphatic nitro compounds are another class of compounds with potential value to the energetic materials community, but, very few methods exist for the efficient synthesis of such compounds, in particular those with an alkane chain greater than 6 carbon atoms. Murray reported the oxidation of primary aliphatic amines using DMDO and showed that short chain amino alkanes (224-226) and aliphatic cage/cyclic amino compounds (227-230) could be oxidized in very good yields, but those with slightly longer chains (231) gave very poor yields (scheme 73)\(^{138-139}\). Oxidation of aliphatic amines with DMDO also requires reaction times in excess of 24 hours.

\[
\text{R-NH}_2 \xrightarrow{\text{DMDO}} \xrightarrow{\text{acetone, rt.>24h}} \text{R-NO}_2
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(224) n-butylamine</td>
<td>84%</td>
</tr>
<tr>
<td>(225) sec-butylamine</td>
<td>87%</td>
</tr>
<tr>
<td>(226) tert-butylamine</td>
<td>90%</td>
</tr>
<tr>
<td>(227) Cyclohexylamine</td>
<td>95%</td>
</tr>
<tr>
<td>(228) 1-Aminoadamantane</td>
<td>95%</td>
</tr>
<tr>
<td>(229) 1,4-diaminocubane</td>
<td>81%</td>
</tr>
<tr>
<td>(230) 1,3,5,7-tetramino-adamantane</td>
<td>91%</td>
</tr>
<tr>
<td>(231) 1,6-diaminohexane</td>
<td>20%</td>
</tr>
</tbody>
</table>

Scheme 73: DMDO oxidation of aliphatic amines

Later Crandall reported the oxidation of longer chain aliphatic amines (232-233) (scheme 74) with DMDO, but still only moderate yields of the nitrated systems were obtained\(^{140}\).

\[
\text{R-NH}_2 \xrightarrow{\text{DMDO}} \xrightarrow{\text{acetone, 5\textdegreeC, 17h}} \text{R-NO}_2
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(232) R = C(7)H({15})</td>
<td>60%</td>
</tr>
<tr>
<td>(233) R = C({10})H({23})</td>
<td>51%</td>
</tr>
</tbody>
</table>

Scheme 74: Oxidation of longer chain aliphatic amines using DMDO
Improved yields of longer chain aliphatic nitro compounds such as nitrododecane\(^{234}\) could be synthesized from the corresponding amine using silver nitrate (scheme 75), but these reactions required reaction times of up to 96 hours and also disposal of the expensive metal by-products\(^{141}\).

\[
\text{Scheme 75}
\]

We expected that oxidation of aliphatic amine compounds using HOF.MeCN in our continuous flow set-up to be more problematic than the alkene oxidations because, unlike the epoxidation of alkenes, the oxidation of amines proceeds via reactive intermediates (scheme 76), which could give rise to the possibility of side reactions and unwanted by-products. In particular, the nitroso group is very nucleophilic and, therefore, available for reaction with both the hydroxylamine and the starting material to give the corresponding diazo compound (scheme 77).

\[
\text{Scheme 76: Intermediates involved during the oxidation of amines using HOF.MeCN}
\]

Also, as was explained in section 1.4.3.5.2, the basicity of the starting material means that it is vulnerable to protonation from hydrogen fluoride, rendering it un-reactive to HOF.MeCN (scheme 78). To counteract this in batch oxidations, Rozen mixed a base (NaF) into the solution of HOF.MeCN to neutralize the HF, but this would not be possible in our continuous flow process.

\[
\text{Scheme 77: Possible formation of a diazo side product}
\]

\[
\text{Scheme 78: Protonation of the amine renders the compound un-reactive towards HOF.MeCN}
\]
The amine group is also very reactive towards fluorine in polar solvents such as acetonitrile, so strict calibration of our flow process was required to ensure no excess fluorine was available to react with the amine in a competing process (scheme 79).

\[\text{Scheme 79: Fluoramine formation} \]

4.2.1.1 Continuous Flow Synthesis

Despite the more intrinsic nature of these reactions, we were able to apply our continuous flow oxidation methodology, the apparatus of this is shown again in figure 31, to synthesize a range of aliphatic nitro derivatives, including short chain, long chain, cyclic and cage structures, from the corresponding amines (scheme 80). These were very efficient reactions and in most cases, near quantitative weights of the nitro compound were obtained. Proton NMR spectra for some of the crude aliphatic nitro products have been included (figure 32) to show how clean these reactions were. Also, unlike batch oxidations of aliphatic amines using HOF.MeCN, no base was required to achieve high yields of the nitro compounds.

\[\text{Figure 31: Apparatus for the continuous HOF.MeCN synthesis and substrate oxidation} \]
Chapter 4.0: Oxidations at Nitrogen

<table>
<thead>
<tr>
<th>Conditions: 100 cm oxidation reaction path length, 30-60 mins run time, water collection pot; all yields isolated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 80: Continuous synthesis of aliphatic nitro compounds from the corresponding amines</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>F2 (10%) → H2O2/MeCN (1:4) Continuous addition, 10.0 mL h⁻¹, 1 h, rt</td>
<td>HOF/MeCN (3 mol. equiv. h⁻¹)</td>
<td>Aliphatic amine (in DCM) Continuous addition (100 cm), 1.0-2.0 mmol h⁻¹, 0.5-1 h, rt</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>80%</td>
<td>95%</td>
<td>60%</td>
</tr>
</tbody>
</table>

Figure 32: Crude ¹H NMR spectra of 1-nitrotridecane obtained from the oxidation of the corresponding amine
Initially the oxidation of the aliphatic amine compounds gave un-identifiable side products, particularly for reactions involving the shorter chain amines such as aminohexane and the cyclic amines. It was difficult to explain why these reactions were less efficient than their longer chain counterparts, and numerous experiments were performed, varying conditions such as flow rates and channel temperature, none of which gave any improvements on the initial optimized conditions. Proton NMR spectra for one such reaction performed on aminohexane is shown in figure 33, and GC confirmed the presence of multiple products. It was later discovered that the aq. NaHCO$_2$ in the collection-pot was reacting with the aliphatic nitro compounds as they were collected, thus giving the un-wanted by-products. The aq. NaHCO$_2$ in the collection-pot was replaced with water which prevented the problem of side reactions.
Figure 33: Crude 1H NMR spectra of 1-nitrohexane to show impurities when collected in a basic catch pot

Scale-up was demonstrated using aminohexane(235) and cycloaminohexane(236) as substrates by increasing the reaction flow times to 5 hours. These extended reaction flow times provided no problems to either reaction and near quantitative weights of the corresponding aliphatic nitro compound were obtained for each (scheme 81).

Scheme 81: Scale-up continuous flow oxidations of aliphatic amines
4.2.2 From Aliphatic Azides

Prior to Rozen demonstrating that the HOF.MeCN complex could be used to oxidize an azide group to a nitro group in one step\(^3\), the only other method to directly perform this functional group interconversion was Corey’s multistep synthesis\(^3\). Due to the synthetic value of this process, particularly to the energetic material industry, we also attempted to oxidize aliphatic azides using HOF.MeCN in our continuous flow process.

4.2.2.1 Continuous Flow Synthesis

The aliphatic azides tested were again chosen to include short chain, long chain, cyclic and cage structures, and were either commercially available or synthesized from a standard literature procedure\(^14\). Although the oxidation of azides also proceeds via reactive intermediates, we were able to apply our continuous flow process to oxidize a range of aliphatic azides to their corresponding nitro compounds (scheme 82). Similar to the oxidation of aliphatic amines, the oxidation reactions of aliphatic azides were very efficient and for all of the reactions near quantitative weights of the aliphatic nitro compound were obtained.

\[
\begin{align*}
F_2 (10\%) & \xrightarrow{\text{H}_2\text{O:MeCN (1:4)}} \text{HOF.MeCN (3 mol. equiv. h}^{-1}) & \xrightarrow{\text{Aliphatic azide (in DCM)}} \text{Aliphatic nitro compound} \\
\text{Continuous addition,} & \text{10.0 mL h}^{-1}, 1 \text{ h, rt} & \text{Continuous addition (100 cm),} & 1.0-2.0 \text{ mmol h}^{-1}, 1 \text{ h, rt,}
\end{align*}
\]

\[
\begin{align*}
\text{NO}_2 & 95\% \quad \text{NO}_2 & 95\% \\
\text{NO}_2 & 95\% & \text{NO}_2 & 95\% \\
\text{NO}_2 & 95\% & \text{NO}_2 & 95\%
\end{align*}
\]

Conditions: 100 cm oxidation reaction path length, 60 mins run time, water collection pot; \textit{all yields isolated}

\textit{Scheme 82: Continuous synthesis of aliphatic nitro compounds from the corresponding azides}
4.3 Aromatic Nitro Compounds

Our next aim was to investigate the feasibility of using our flow methodology to oxidize a variety of aniline derivatives. However, due to the potentially explosive materials that could be obtained by oxidizing nitroanilines, for example, oxidation of 3,5-dinitroaniline to give the explosive 1,3,5-trinitrobenzene, these types of compounds could not be treated with HOF.MeCN. Instead, fluorinated anilines were used to provide us with suitable electron withdrawing analogues in which to mimic the electron deficient aromatic ring of polynitro aromatic derivatives, but which would be safe to handle upon oxidation. The fluorinated aniline compounds are also easily synthesized via nucleophilic aromatic substitution of fluorinated benzenes (see chapter 5 for synthesis of starting materials).

Direct oxidation of compounds such as pentafluoroaniline(237) has been attempted using dihydrogen peroxide and trifluoroacetic anhydride, but the reactions required heating under reflux and gave poor yields of the nitro compound (scheme 83)144. They are also not suitable for scale-up.

![Scheme 83: Peroxide oxidation of pentafluoroaniline](image)

4.3.1 Continuous Flow Synthesis

To provide a comprehensive overview of the oxidation capabilities of the HOF.MeCN complex on electron deficient anilines, a number of fluoroanilines, each with different electron environments, were oxidized using our flow process. The oxidation of all the anilines proceeded reasonably efficiently and, thus, the following range of nitro benzene derivatives were obtained in moderate to good yields (scheme 84)142.
100% conversion of the aniline was observed in all reactions and the NMR of the crude product showed near quantitative yields of the nitrobenzene. The lower isolated yields of the nitrobenzene derivatives indicate that product decomposition occurred in each reaction, which was probably caused by side reactions of the reactive intermediates.

The more nucleophilic electron rich anilines are more reactive and, therefore, give more decomposition products which lead to lower yields of the desired nitrobenzene compounds.

The position of the ring fluorine atoms also affects the yields of nitrobenzene, which is possibly due to substitution of the nitro group once it is formed. In the presence of nucleophiles, polyfluoronitrobenzene systems can undergo nucleophilic substitution at the nitro position, but kinetic studies have shown that due to the un-favourable Meisenheimer complex, the site of nucleophilic attack is deactivated by a fluorine para to this position\(^{(xvii)}\) (Scheme 85). The reasons for this effect are explained in Chapter 5.

\(^{(xvii)}\) Fluorine atoms ortho and meta to the nucleophilic position actually activate the fluorobenzene to nucleophilic attack. This effect is explained in detail in Chapter 5.0.
Chapter 4.0: Oxidations at Nitrogen

Therefore, it is postulated that the slightly lower yields of the nitrobenzene that were obtained in all compounds which do not possess a fluorine atom para to the nitro group are possibly due to substitution of the nitro group of these compounds. Evidence to suggest this was obtained by GC-MS, in which small amounts of the coupled product (239) was detected after the oxidation of 2,3,5,6-tetrafluoroaniline (238), but could not be isolated.

Scheme 86

4.4 Nitrogen Heteroaromatic Derivatives

Once we had established that the HOF.MeCN complex could oxidize the amine group of an electron deficient ring system in a continuous flow process, our next aim was to establish:

a) If oxidation of the ring nitrogen of electron deficient nitrogen heteroaromatic compounds was possible

b) If the HOF.MeCN complex exhibited any selectivity towards either the ring nitrogen or the amine group of amino nitrogen heteroaromatic compounds

The batch process described in section 3.3 was initially used for all oxidations. Reactions that did not produce high amounts of tar and were considered of practical use, were then scaled-up using the full continuous flow oxidation process (figure 31).

The water soluble nature of N-oxide compounds also posed a problem in accurately assessing the products of the crude material. Using the standard aqueous work-up procedures that had
previously been used for the work in this thesis was not possible, because the water soluble N-oxide would remain dissolved in the water layer and thus make the quantitative comparison of products very difficult. To overcome this problem and quantitatively measure the products of each reaction, the crude product of all batch reactions was extracted from the acetonitrile catch pot by removing the acetonitrile under vacuum and the residue was quantitatively assessed using NMR and ASAP-MS.

4.4.1 Pyridines

Pyridine analogues, as appose to diazines, were chosen to begin our investigations so that oxidation of the ring nitrogen atom could be assessed without a competing reaction with a second ring nitrogen atom. Once again, fluorinated analogues were used to provide a suitable electron deficient environment (figure 34).

Figure 34

Oxidation of the ring nitrogen of pentafluoropyridine (240) to give pentafluoropyridine-N-oxide, has previously been impossible due to the fluorine atoms in the 2- and 6- positions, which renders the ring nitrogen almost non-nucleophilic. Although the HOF.MeCN complex has been shown to be able to oxidize compounds that previous oxidants could not, the complex was unable to oxidize pentafluoropyridine and thus, quantitative amounts of starting material were obtained upon work-up (scheme 87).

Scheme 87: Attempted oxidation of pentafluoropyridine using HOF.MeCN
Oxidation of the amine group of the three perfluoropyridine systems[241-243] was possible using HOF.MeCN, although only the nitro pyridine was obtained (scheme 88) and no oxidation of the ring nitrogen was observed. These reactions were very efficient and gave excellent yields of the corresponding nitro compound so they were scaled-up in our oxidation flow process.

The lower yields of the 4-nitropyridine are caused by slight product decomposition which is thought to be caused by nucleophilic substitution of the nitro group. This is due to the fact that the nitro group at the 4-position is much more susceptible to nucleophilic attack caused by the activating effect of the para ring nitrogen. The position γ to the ring nitrogen is also activated towards nucleophilic substitution by the ortho and para fluorine atoms (see chapter 5).

Scheme 88: Batch and continuous oxidations of electron deficient aminopyridines using HOF.MeCN
So that a comparison could be made with the corresponding electron rich pyridines, those shown in figure 35 were also treated with HOF.MeCN. To provide an accurate assessment of selectivity of the HOF.MeCN complex, the amino pyridines were tested with just one molar equivalent of HOF.MeCN and also 5 molar equivalents.

![Figure 35](image)

Pyridine (244) was oxidized to give the corresponding N-oxide in near quantitative amounts (scheme 89).

![Scheme 89: Oxidation of pyridine using HOF.MeCN](image)

4-Amino pyridine (245) also gave an excellent yield of the amine-N-oxide with one molar equivalent of HOF.MeCN, indicating high selectivity of the ring nitrogen over the amine (scheme 90).

![Scheme 90: Oxidation of 4-aminopyridine using HOF.MeCN](image)

*Products not isolated and yields obtained from 1H NMR
Chapter 4.0: Oxidations at Nitrogen

However, even with 5 molar equivalents of HOF.MeCN, only low yields of the nitro-N-oxide were obtained. The difficulty in oxidizing the amine group of 4-aminopyridine (245) is possibly due to the stabilizing effect that the positive charge of the N-oxide has on the amine when it is delocalized at the 4-position (figure 36).

![Figure 36: Positive charge delocalized onto the amine which makes it less nucleophilic](image)

The amine group of 2-aminopyridine (247) is also stabilized by the carbocation intermediate, however, higher yields of the nitro-N-oxide were obtained than with the oxidation of 4-aminopyridine (scheme 91). It appears that the N-oxide adjacent to the carbocation intermediate inductively reduces the contribution of the positive charge in the 2-position and therefore the amine group is less stabilized by the carbocation and more available for oxidation (figure 37). Treatment of (247) with HOF.MeCN also gave high amounts of tar, so the reaction was not considered to be preparatively useful.

![Scheme 91: Oxidation of 2-aminopyridine using HOF.MeCN](image)

Figure 37: Less contribution of the carbocation intermediate at the 2-position reduces amine stabilization so more of the nitro compound is formed

Products not isolated and yields obtained from 1H NMR with referenced to an internal standard.
The amine of 3-amino pyridine-\(N\)-oxide(246) is not stabilized by an adjacent positive charge and therefore the ring nitrogen readily undergoes oxidation, giving much higher yields of the nitro-\(N\)-oxide with both equimolar amounts of HOF.MeCN and a fivefold excess (scheme 92). This reaction however, also gave high amounts of decomposition products and is not considered preparatively useful.

\[
\text{NH}_2 \quad \text{HOF.MeCN} \quad \text{NH}_2 \quad \text{NO}_2 \quad \text{tar formation}
\]

(246) 1 eq. HOF*
(19%)
(30%)

(246) 5 eq. HOF*
(12%)
(36%)

*Products not isolated and yields obtained from \(^1H\) NMR with referenced to an internal standard

\textbf{Scheme 92: Oxidation of 3-aminopyridine using HOF.MeCN}

Attempts were made to reduce the amount of tar formation upon treatment of 2-amino pyridine (247) and 3-amino pyridine (246) with HOF.MeCN by varying reactions conditions such as flow rates and channel temperature, including performing the oxidations in a cooled nickel flow reactor, but these reactions gave similar yields of decomposition products.

\subsection{4.4.2 Diazines}

The basicity of diazines is reduced, relative to pyridine, because the second electronegative heteroatom reduces the capacity of the diazine to tolerate the positive charge\(^{145}\). Diazines are also correspondingly more reactive towards nucleophilic substitution than pyridine systems, due to the additional electron withdrawing effect of the second ring nitrogen\(^ {146}\). Both of these factors are accentuated by the addition of electron withdrawing groups such as fluorine.

So that we could extend our investigations to the study of oxidation reactions of electron deficient diazines, the perfluoropyrimidine derivatives shown in figure 38 were synthesized (see chapter 5) and treated with various concentrations of HOF.MeCN in our batch oxidation process.
However, much like pentafluoropyridine \((240)\), the fluorine atoms of tetrafluoropyrimidine \((248)\) render the ring nitrogen atoms non-basic so that synthesis of the \(N\)-oxide was not possible using HOF.MeCN \((\text{scheme 93})\). Extended mixing of 30 minutes and a six fold excess of HOF.MeCN were not able to oxidize the ring nitrogen atoms.

The amine group of 4-aminotrifluoropyrimidine \((249)\) is less nucleophilic in nature, compared to perfluoropyridine compounds, because of the extra electronegative ring nitrogen and, therefore, treatment of compound \((249)\) with HOF.MeCN gave relatively high amounts of the starting material \((\text{scheme 94})\). The reaction also produced high amounts of tar, which are likely to be caused by substitution of the \(N\)-oxide once it is oxidized. This is because sites \(\alpha-\) and \(\gamma-\) to the ring nitrogens are very activated towards nucleophilic attack, so the nitro group is easily substituted by either starting material or water and, therefore, subject to further oxidations.

Products not isolated and yields obtained from \(^1\text{H}\) NMR with referenced to an internal standard
Similar results were obtained upon treatment of 2,5-difluoropyrimidine-4,6-diamine(250) with HOF.MeCN. Only starting material and tar products were recovered and neither reaction is considered practically useful.

So that a comparison could be made with electron rich systems, pyrimidine(251) was treated with the HOF.MeCN complex. Treatment with one equivalent of HOF.MeCN gave the pyrimidine 1-oxide, however, this seems to render the second tertiary ring nitrogen almost non-basic because treatment with two equivalents of HOF.MeCN gave only 3% of the 1,3-dioxide (scheme 95). Extended mixing of 30 minutes only slightly improved the 1,3-dioxide yield to 5%, and an excess of HOF.MeCN gave only 6%.

\[
\text{Scheme 95: Oxidation of pyrimidine using HOF.MeCN}
\]

Slightly higher amounts of the 1,3-dioxide were obtained from the oxidation of 2-aminopyrimidine(252) (scheme 96) and this is possibly due to the electron donating influence of the attached amine group.

However, upon treatment of 2-aminopyrimidine with HOF.MeCN, none of the nitro pyrimidine derivatives were detected, either by NMR or ASAP-MS, and these reactions also produced high amounts of tar. It is therefore likely that the tar products formed in these reactions are caused by oxidation of the amine group to the corresponding nitro compound(s) and that these undergo further reactions to give the decomposition products.
2.5 Difluoramines

Due to its decomposition to form HF, the difluoramino group (-NF₂) is quite energetic and interest in this functional group has been predominantly due to their potential as energetic materials.¹⁴⁷

Two of the most widely used approaches to the synthesis of difluoramines are the electrophilic difluoroamination using N,N-difluorohydroxylamine-O-sulfonyl fluoride (F₂NOSO₂F) (scheme 97)¹⁴⁷ and the formation of geminaldifluoramino groups by reacting ketones with difluoramine in fuming sulfuric acid (scheme 98)¹⁴⁷ and these two methods have been used to synthesize two interesting energetic materials DFAP and HNFX.

Scheme 97
Although elemental fluorine has been reported for the synthesis of difluoramines, very few examples appear in the literature147 and only one refers to the synthesis of difluoramino benzenes148. However, an accidental increase in fluorine flow rates when we first attempted to oxidize 4-amino-2,3,5,6-tetrafluorobenzonitrile253 led us to a serendipitous discovery. The fluorine NMR not only gave the two expected aromatic fluorine peaks corresponding to the desired nitrobenzene (figure 39blue), but also showed three more peaks, of equal but lower intensity (figure 39red). Two of these were in the aromatic region and the third peak was at 63.8 ppm, which corresponds to fluorine bonded to nitrogen. This indicated to us that some of the difluoramine compound had been formed.

\textit{Figure 39: NMR obtained from the oxidation of 4-cyanotetrafluorouaniline with accidental increased fluorine flow rate}
The two compounds were separated via silica column chromatography, and the molecular ion of the difluoramine was characterized by ASAP-MS.

Following successful characterization of the difluoramine, direct synthesis of these compounds was attempted in our continuous flow setup using elemental fluorine. To accomplish this, the water was omitted from the water: acetonitrile mixture so that no HOF. MeCN was formed for the amine to react with.

Our initial investigation of 4-amino-2,3,5,6-tetrafluorobenzonitrile (253) with 3.0 molar equivalents of 10 % fluorine did give the corresponding difluoramine, but the $^{19}\text{F} \text{NMR}$ spectra of the crude product also showed significant amounts of starting material (scheme 99).
Decreasing the flow of (253) to a sixth of the molar fluorine rate (scheme 100) gave much higher conversion to the difluoramidie and only traces of starting material were obtained.

Scheme100: Difluoramidine synthesis with NMR

Purification was carried out using a silica column to give the difluoramidine in good yield, and identification was carried out using \(^{19}\)F NMR spectral data and ASAP-MS.

Upon applying the reaction to other variousfluoroanilines wediscovered that only those with electron withdrawing groups other than fluorine were sufficiently reactive enough to react with elemental fluorine. Therefore, anilines (253-256)(figure 40) all gave the difluoramidie when treated with fluorine in our flow system, whilst pentafluoroaniline(237)did not react and gave only starting material upon work-up.
Of the perfluoroanilines that would react with fluorine to give the corresponding difluoramine, the reactivity of each differed greatly and those with stronger electron withdrawing groups attached to the ring, were much more reactive towards fluorine. Thus, although full conversion of each substrate was possible, 2,3,5,6-tetrafluoro-4-nitroaniline (254) and 2,3,4,5-tetrafluoro-6-nitroaniline (255) required only 3.0 molar equivalents of fluorine for full conversion, whereas 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (256) required 12 equivalents of fluorine (scheme 101).

Scheme 101: Difluoramine synthesis using the continuous flow apparatus
Chapter 4.0: Oxidations at Nitrogen

Scheme 101 (cont): Difluoramine synthesis using the continuous flow apparatus

This supports a radical mechanistic theory proposed by Coon et. al.148 as opposed to an electrophilic one, because the radical intermediate would be stabilized by the stronger EWG’s (scheme 102). If the mechanism was electrophilic in nature, electron withdrawing groups would reduce the reactivity of the amine group towards electrophiles and the reactivity of the five fluoroanilines would be reversed.
In order to compare the physical properties of the difluoramine compounds with their amine analogues, differential scanning calorimetry (DSC) experiments were attempted on both sets of compounds. However, the labile nature of the difluoramine compounds meant that no suitable DSC data could be obtained.

4.6 Summary

To summarize, our new continuous flow oxidation methodology has been applied to successfully oxidize a range of aliphatic amine and aliphatic azide compounds to their corresponding nitro compounds in near quantitative yields.

We have also demonstrated that our HOF.MeCNflow system can be used to oxidize amines of electron deficient and electron rich aniline compounds.

The amine of electron deficient nitrogen heteroaromatic compounds was easily oxidized to give excellent yields of the corresponding nitro compounds, although the oxidation of the ring nitrogen of such systems was not possible.

Oxidation was possible on the more electron rich nitrogen heteraromatic compounds; however, the HOF.MeCN complex is not suitable for complete oxidation of electron rich nitrogen heteroaromatic compounds with an amine group attached because in general, treatment of these types of compounds gave high amounts of tar products.

We have also demonstrated that our flow system can be applied to the synthesis of difluoraminebenzenoid compounds.
Chapter 5 - Synthesis of Perfluoroaromatic Amine Derivatives and Palladium Catalyzed C-F Bond Activation Processes
Chapter 5.0: Synthesis of Starting Materials and C-F Bond Activation

5.1 Introduction

The object of this chapter is to discuss some of the more general synthetic work that has been carried out throughout the course of this thesis. The first section (5.2) discusses the synthesis of polyfluoroaminobenzene, pyridine and pyrimidine systems, which were used as starting materials for the continuous flow oxidation process reported in chapter 4.0. As these were all made using nucleophilic aromatic substitution processes of perfluoro systems, an explanation of this chemistry is briefly introduced.

The second section (5.3) relates to research into the palladium catalysed C-F bond activation of polyfluorinated nitrobenzene systems for Suzuki cross coupling reactions. The Durham Fluorine group has recently published the first examples of such reactions and demonstrated that the nitro group has an ortho directing influence of the haloaryl coupling partner. The work included in this section relates to extending the functionality of the polyfluorinated nitrobenzene systems using this methodology.

5.2 Synthesis of Perfluoroaromatic Amine Derivatives

5.2.1 Nucleophilic Substitution of Polyfluorinated Aromatics

Due to the high electronegativity of fluorine, highly fluorinated aromatic compounds are particularly electron deficient and are, therefore, susceptible to nucleophilic attack. As the majority of starting materials that were used as precursors for our oxidation reactions were synthesized using nucleophilic aromatic substitution, it is important to explain some the features that govern this type of chemistry.

Nucleophilic aromatic substitution of a fluorine atom in fluorinated systems proceeds via a two stage mechanism (figure 1) in which the first stage, attack by the nucleophile, is the rate limiting step.

![Figure 41](image-url)
The positions of the fluorine atoms play an important role with regards to the site of nucleophilic attack. Kinetic studies on poly-fluoroaromatic systems have determined that a fluorine atom \textit{para} to the site of attack is slightly deactivating, whereas those \textit{ortho} and \textit{meta} to the site of attack are activating, with respect to a hydrogen atom of the same position (table 3)152,154.

\textit{Table 3: Comparison of }k_F/k_H\textit{ using }CH_3O^-\textit{ } \\

<table>
<thead>
<tr>
<th></th>
<th>Ortho</th>
<th>Meta</th>
<th>Para</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene Derivatives</td>
<td>57</td>
<td>106</td>
<td>0.43</td>
</tr>
<tr>
<td>Pyridine Derivatives</td>
<td>79</td>
<td>30</td>
<td>0.33</td>
</tr>
</tbody>
</table>

The electron distribution of the Meisenheimer complex can explain the observed substitution patterns in fluorinated aromatic species, of which there are two situations to consider:

- fluorine attached adjacent to the carbanion centre \(\Theta C\cdots C\cdots F\)
- fluorine attached directly to the carbanion centre \(\Theta C\cdots F\)

In the first situation, the carbanion is highly stabilized due to the I\(\sigma\) electron withdrawing effect149,155-156.

\[\Theta C\cdots C\cdots F\]

Therefore, the activating effect of a fluorine atom \textit{meta} to the site of attack can be explained by examining the Meisenheimer intermediate, in which the negative charge is delocalised adjacent to the carbon-fluorine bond (figure 42).

\[\text{Figure 42: Fluorine atoms meta to the site of substitution stabilize the adjacent carbanion}\]
In the second situation there are two opposing factors to consider: the electron withdrawing effect (Iσ) and electron pair repulsion (Iπ) and the dominant factor determines the effect of a fluorine atom upon the carbanion. The electron withdrawing (Iσ) effect (figure 43) is strongly carbanion stabilizing\(^{149,155-156}\), however, the electron pair repulsion that arises due to interaction of the carbanion lone pair and the lone pairs of electrons of the fluorine atom (figure 44) is strongly destabilizing\(^{149,155-156(xviii)}\). The latter effect dominates, resulting in an overall destabilization of the carbanion.

Therefore, by considering the stability of the Meisenheimer intermediates, a fluorine atom para to the site of attack gives an intermediate that is destabilized. The same effect would be expected for a fluorine atoms ortho to the site of attack, however, the activating effect of an ortho fluorine atom is caused by the polar influence (Iσ) on the initial state, which enhances the electrophilic character of the carbon atom under attack\(^{149,155-156}\). This inductive effect (figure 45) activates the initial state such that it effectively compensates for the deactivating influence of the adjacent negative charge of the Meisenheimer complex.

Replacing a fluorine atom with an electron withdrawing group that is not capable of pi donation (Y), for example, in hexafluorobenzene, would therefore activate the position para to itself towards nucleophilic aromatic substitution (figure 46) because this group would no longer destabilize the carbanion intermediate.

\(^{(xviii)}\) This only includes fluorine atoms adjacent to sp\(^2\) carbanions; in sp\(^3\) carbanions, the angle of the p orbital bearing the negative charge and the fluorine atom is greater, so these systems have a stabilizing effect.
5.2.2 Synthesis of polyfluoroamino benzene, pyridine and pyrimidine systems

A range of amino benzene and heterocycles were required for the oxidation studies discussed in chapter 4.0 and so S₈Ar reactions using ammonia and a range of polyfluoroaromatic derivatives was carried out.

Due to the directing effects discussed above, when compounds (257-260) were treated with ammonia (scheme 103), nucleophilic substitution of the amine occurred solely at the position para to the non-fluorine substituents, because this position is activated by the α-, β- and γ-positions. Although bromine is capable of pi donation, the lone pairs of bromine are in a higher energy orbital and, therefore, pi donation is less effective and the inductive effect of bromine dominates.
The nitrile group stabilizes the carbanion intermediate by a mesomeric electron withdrawing effect (figure 47) which is much more stabilizing than the inductive effect of the CF$_3$ group or the bromine atom. The position para to the nitrile group of compound (257) is, therefore, more activated towards nucleophilic substitution than the position para to the bromine and CF$_3$ group of compounds (258-260). This reactivity is reflected in the lower temperature that was required to synthesize the aminobenzene from compound (257).

Scheme 103 (cont): Synthesis of polyfluoroaniline derivatives

Figure 47: Mesomeric stabilization of the carbanion
A carbanion intermediate with a nitro group attached is also strongly stabilized by a mesomeric withdrawing effect, so it was expected that nucleophilic substitution of ammonia on pentafluoronitro benzene (252) to also occur solely at the para position. However, experimentally, this was not the case and substitution of the amine occurred at the ortho and para positions to the nitro group (scheme 104), resulting in three products (261-263). These were separated and isolated by column chromatography.

![Scheme 104](image)

The reason ammonia also attacks the carbon ortho to the nitro group, even though this position is deactivated by a para fluorine atom, is due to interaction of the nitro group with the ammonia by hydrogen bonding, which directs the amine into the ortho position (figure 48).

![Figure 48: Ortho directing effect of the nitro group](image)

Polyfluoro-nitrogen-heteroaromatic systems are all activated, relative to the corresponding benzenoid compounds, towards nucleophilic substitution and this is due to the activating effect of the ring nitrogen (figure 49).
The site of nucleophilic attack is, therefore, governed by a combination of directing effects of the ring nitrogen and the activating/deactivating effects of the fluorine atoms151-152. So in the case of pentafluoropyridine, the ring nitrogen would be expected to direct a nucleophile ortho and para to itself, but due to the fluorine atoms in the 3 and 5 positions, the position para to the ring nitrogen is most activated and substitution occurs exclusively at the 4 position. Reaction of ammonia with pentafluoropyridine (264) gave only 4-aminotetrafluoropyridine (265) in excellent yield (scheme 105).

To synthesize a perfluoropyridine compound with an amine in the 2- and 3- position, pentafluoropyridine would initially have to be reacted with a nucleophile to block the 4-position. A suitable nucleophile must not be electron donating because this would deactivate the ring and the nucleophile must also not react with the HOF.MeCN in the subsequent oxidation process. Consequently, sodium benzenesulfinate was used to synthesize 2,3,5,6-tetrafluoro-4-(phenylthio)pyridine (266), which was reacted with ammonia to give a mixture of 3,5,6-trifluoro-4-(phenylthio)pyridin-2-amine (267) and 2,5,6-trifluoro-4-(phenylthio)pyridin-3-amine (268) (scheme 106), which were separated and isolated. X-ray crystallography was used to verify the position of the amine group.
Synthesis of tetrafluoropyrimidine (271) was achieved via the fluorination of the commercially available tetrachloropyrimidine (269) using potassium fluoride at high temperatures in an autoclave reaction vessel (scheme 107). Initially a temperature of 360°C was used, however, this produced only small amounts of (271) and gave large amounts of 5-chlorotrifluoropyrimidine (270); increasing the temperature of the autoclave to 480°C resulted in higher amounts of the desired tetrafluoropyrimidine (271), which was isolated via distillation.

Scheme 106

\[
\begin{align*}
\text{F} & \quad \text{F} \\
\text{N} & \quad \text{N} \\
\text{F} & \quad \text{F}
\end{align*}
\]

(264) $\xrightarrow{\text{Na}^+ \text{PhSO}_2}$ (266) (88%) $\xrightarrow{\text{NH}_4\text{OH}}$ (267) (35%) + (268) (44%)

Scheme 107

\[
\begin{align*}
\text{Cl} & \quad \text{N} & \quad \text{Cl} \\
\text{Cl} & \quad \text{N} & \quad \text{Cl}
\end{align*}
\]

(269) $\xrightarrow{\text{KF}}$ (271) (75%) + (270) (not isolated)
Chapter 5.0: Synthesis of Starting Materials and C-F Bond Activation

The positions γ to the ring nitrogen atoms of tetrafluoropyrimidine (271) are the most activated towards nucleophilic substitution because these positions are activated by an ortho and meta fluorine atom and also, ortho and para ring nitrogen atoms. Substitution was therefore expected to occur solely in these positions when (271) was reacted with ammonia (scheme 108), because the other two positions (2- and 5-) are deactivated by para fluorine atoms. Experimentally this was not the case, and the reaction also yielded 5,6-difluoropyrimidine-2,4-diamine (274). All three compounds were separated and characterized.

\[\text{Scheme 108} \]

5.2 Palladium Catalyzed C-F Bond Activation

5.2.1 Introduction

Metal catalyzed cross coupling reactions are very important because of the wide variety of synthetically useful carbon-carbon bond forming reactions that may be achieved.

The oxidative addition step of the catalytic cycle is believed to be the rate limiting step for many cross coupling reactions and the rate of this step depends on both the nucleophilicity of the metal centre, and the reactivity of the electrophilic aryl halide species. Generally the order of reactivity of the aryl halide is dependent upon the strength of the carbon-halogen bond and, therefore, the haloaromatic species of many metal catalyzed processes is most frequently an aryl iodide and bromide. In contrast, the higher bond strength of the carbon-chlorine bond means chlorides are much less reactive and are subsequently used much less often as electrophilic coupling partners. For the same reason, analogous reactions involving metal catalyzed C-F activation are rarer still.

Although there are reported examples of palladium being used as the catalyst for cross coupling reactions using aryl fluorides, the majority of literature reports related to these processes make use of nickel(0) based catalysts. However, nickel catalysts are very air sensitive and generally
difficult to use for organic synthesis, so the development of this type of chemistry using commercially available and robust catalysts such as palladium systems would be advantageous.

Kim and Yu reported the palladium catalyzed C-F activation of monofluorinated nitrobenzene derivatives (275) under standard Suzuki-Miyaura conditions using conventional palladium catalysts (scheme 109)159 and it was suggested that the nitro group, in addition to its activating electron withdrawing properties, directs the palladium catalyst towards the adjacent ortho C-F bond (figure 50), thereby lowering the activation energy for the oxidative addition step159.

\begin{center}
\includegraphics[width=0.5\textwidth]{reaction_diagram.png}
\end{center}

\textit{Scheme 109}

The Durham Fluorine group found that highly fluorinated nitrobenzene derivatives, such as pentafluoronitrobenzene, could be sufficiently activated towards nucleophilic oxidative addition by a palladium catalyst and the presence of a nitro group on the aromatic ring, directs the aryl group to the adjacent ortho position to provide new positions of functionality158.

Initial studies on the direct arylation of pentafluoronitrobenzene employed similar reaction conditions that were used by Kim and Yu with tetrakis(triphenylphosphine)palladium(0) as the catalyst, cesium carbonate as the base and DMF as the solvent. Although the reaction gave a high yield of the desired biaryl compound (276) (scheme 110), 11% of 2,3,5,6-tetrafluoro-4-nitrophenol (277) was also isolated from the reaction. It was suggested that the phenol by-
product was formed from nucleophilic attack of water (present in small quantities in the hygroscopic base) or direct attack of the Cs$_2$CO$_3$ and its subsequent decarboxylation158.

![Scheme 110](image)

To avoid formation of the un-wanted phenol, the cesium base was replaced with potassium fluoride, therefore, any reaction of the base with (252) would not affect the starting material. KF on alumina was used and the biaryl coupled product was obtained in high yields (scheme 111) and without the phenol derivative. This represented the first example of a palladium catalyzed Suzuki cross coupling reaction of polyfluorinated aromatic substrates158.

![Scheme 111](image)

Tetrafluoronitrobenzene and trifluorobenzene derivatives are significantly less reactive towards palladium catalyzed arylation than (252) which reflects the lower number of activating fluorine atoms present in these substrates. Although more forcing conditions were required, such substrates (1,2,3,5-tetrafluoro-6-nitrobenzene (278) is shown as an example) were also shown to be sufficiently activated towards arylation using a palladium catalyst (scheme 112)158.

135
5.3.1 Palladium catalyzed vinyl coupling reactions

Our aim was to extend the functionality of the palladium catalyzed Suzuki coupling reactions of polyfluoronitrobenzene derivatives by using vinylation process.

The highly fluorinated nitrobenzene systems that were synthesized using our oxidation processes were used to investigate the vinylation processes and the optimized conditions determined for the aryl coupling reactions were initially applied. However, the vinyl pinacol ester (281) was found to be less reactive than phenyl boronic acid (280) and much lower yields of the vinyl benzene (282) were obtained (scheme 113).

* (282) was not isolated and 19F NMR spectra was used to obtain conversions
To increase the yield of (282), an increase in reaction time and temperature was required (scheme 114). The regioselectivity of the vinyl group was determined using 19F NMR spectra resonance and coupling values and corresponds to the 19F NMR data obtained for (276).

![Scheme 114](image)

A similar pattern of reactivity between the two boron coupling reagents (280) and (281), was observed when they were reacted with 1,2,4,5-tetrafluoro-3-nitro-6-(trifluoromethyl)benzene (283) in the Suzuki reaction. Using the same conditions as those in scheme 113, the vinyl benzene (285) was formed in lower yields than the biaryl compound (284) (scheme 115).

![Scheme 115](image)

* These compounds were not isolated and 19F NMR spectra was used to obtain conversions.
Similar to the reaction of pentafluoronitrobenzene (252) (scheme 114), increasing the reaction time and reaction temperature for the Suzuki reaction of (283) with (281) improved the conversion of the reaction (scheme 116).

![Scheme 116](image)

The lower reactivity of 2,3,5,6-tetrafluoronitrobenzene (286) towards palladium catalyzed cross coupling reactions meant that, even with the increased reaction temperature and time, only 50 % of starting material was converted to the vinyl benzene (287) (scheme 117) which was isolated in an 80 % yield. Once again, the regioselectivity of the vinyl group was determined using \(^{19}\text{F}\) NMR spectra resonance and coupling values and corresponds to the \(^{19}\text{F}\) NMR data obtained for the corresponding biaryl compound.

![Scheme 117](image)
Chapter 5.0: Synthesis of Starting Materials and C-F Bond Activation

The reactivity of 2,4,5-trifluoronitrobenzene (288) towards palladium catalyzed cross coupling reactions is lower still, compared to tetrafluoronitrobenzene derivatives, so the reaction of (288) with the vinyl boronic ester (281) under the same conditions as those in scheme 117, gave only starting material. To obtain a suitable conversion of starting material to the coupled product (289), an increase in reaction time and catalyst amount were required along with a more polar solvent. The Suzuki cross coupling reactions performed on (288), along with the NMR ratios of starting material and product, are summarized in results table 7.

Results Table 7

<table>
<thead>
<tr>
<th>Expt</th>
<th>Temperature (°C)</th>
<th>Time (mins)</th>
<th>Catalyst loading (%)</th>
<th>Solvent</th>
<th>Ratio (%) (288)</th>
<th>Ratio (%) (289)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>150</td>
<td>30</td>
<td>5</td>
<td>DMF</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>60</td>
<td>10</td>
<td>DMF</td>
<td>78</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>150</td>
<td>60</td>
<td>10</td>
<td>DMSO</td>
<td>44</td>
<td>56</td>
</tr>
</tbody>
</table>

All ratios determined using 19F NMR. Only (289) of experiment 3 was isolated and regioselectivity of the vinyl group was determined using 19F NMR spectra resonance and coupling values and, corresponds to the 19F NMR data obtained for the analogous biaryl compound.

Although trifluoronitrobenzene derivatives are much less reactive towards palladium catalyzed cross coupling reactions, the position of the fluorine atoms are very important in determining the reactivity of the nitrobenzene system. The activating/deactivation effects of the ring fluorine atoms that are described in section 5.2.1, also apply to the electrophile in palladium catalyzed Suzuki cross coupling reactions. In the reaction of (288) (results table 7), the fluorine in the 5 position deactivates the C-F bond α to the nitro group, so only low yields of the vinyl benzene (289) were obtained. However, the C-F bond α to the nitro group of 2,3,4-trifluoro-1-nitrobenzene (290) is not deactivated by a para fluorine atom, so the reaction of (290) under the same reaction conditions in experiment 3 (results table 7), gave 100 % conversion of starting material and a high isolated yield of the vinyl benzene (291) was obtained (scheme 118).
Difluoronitrobenzenes are not electrophilic enough for the palladium catalyzed Suzuki reactions and therefore when 2,4-difluoro-1-nitrobenzene \((292)\) and 2,5-difluoro-1-nitrobenzene \((293)\) were reacted under forcing conditions with the vinyl boronic ester, only starting material was retrieved for each reaction (scheme 119).
5.4 Summary

To summarize, S$_N$Ar reactions have been successfully utilized for the synthesis of various polyfluoro amino aromatic compounds using procedures similar to those documented in the literature.

We have also demonstrated that highly fluorinated nitro aromatic systems are suitable substrates for the palladium catalyzed C-F bond vinylation reactions. Similar to the arylation reaction performed by Sandford et al^{58}, vinylation occurs $ortho$ to the nitro group which is a result of the directing influence of the nitro group.
Chapter 6 - Conclusions and Next Steps
6.1 Conclusions and Next Steps

The main aim of this project was to develop new methodology to incorporate Rozen’s highly versatile and powerful oxygen transfer reagent, HOF.MeCN, into a continuous process, so that the reagents limitations could be avoided and it could be used on an industrial scale. To accomplish this, we have successfully devised a two-step continuous process, in which the HOF.MeCN is generated in the first step (using wet acetonitrile and elemental fluorine) and, without isolation, the oxidant is used to continuously oxidize the chosen substrate (figure 51).

\[
\begin{align*}
F_2(10\%) & \quad H_2O:MeCN (1:4) & \quad \text{HOF.MeCN} \\
\text{Continuous} & \quad \text{addition, rt} & \quad \text{Substrate} \\
\text{addition, rt} & \quad \text{Oxidized substrate}
\end{align*}
\]

Figure 51

Due to the highly reactive nature of elemental fluorine, the process required careful optimization of reagent flow rates in order to prevent excess fluorine from reacting with the substrate. Safe and effective HOF.MeCN calibration methods have also been devised for our process, which, using simple calculations, can be used to accurately calibrate fluorine flow rates.

Scale-up of the process has been demonstrated by carrying out the reactions for extended time periods and, by scaling up the amounts of HOF.MeCN generated. The next steps with regards to scale-up would be to ‘scale-out’ the process, by transferring it into the Durham multichannel vertical reactor. To accomplish this, slight modification to the Durham vertical reactor design would be required, so that a second reagent could also be added to the reactor. A proposed variation of the vertical flow reactor is shown in figure 52 (page 140).

Our continuous flow process has been successfully used to perform a variety of oxidations for the synthesis of compounds such as epoxides135, thiophene S,S-dioxides, aliphatic and aromatic nitro compounds142, N-oxides and alcohols. However, one drawback to our process is the limited scope for oxidizing compounds which require longer reaction times. For example, Beayer-Villiger oxidations performed by Rozen using HOF.MeCN in batch required reaction times of up to four hours, however, the reaction path length in our continuous process is too short for these types of oxidations to be performed.
Oxidations performed on nitrogen compounds were geared around those which may be of benefit to the energetic materials industry, such as the synthesis of aliphatic and aromatic nitro compounds. Highly fluorinated compounds were used to mimic the electron deficiency that many energetic compounds possess, which did not affect the HOF.MeCN complexes ability to oxidize the amine moiety of such systems (scheme 120).
However, ring nitrogen oxidation of electron deficient heterocyclic compounds such as pentafluoropyridine and tetrafluoropyrimidine was not possible using HOF.MeCN. Therefore, whilst it was thought that the complex would be a strong enough oxidant to synthesize previously un-accessible heterocyclic N-oxide derivatives, such as PZDO (Scheme 121), our data suggests that this would not be the case.

\[
\begin{align*}
\text{ANPZ-}\overset{\text{i}}{\text{I}} & \xrightarrow{[O]} \text{PZDO} \\
\end{align*}
\]

\textit{Scheme 121: Our current data suggests synthesis of PZDO would not be possible using HOF.MeCN}

To further investigate the possibility of synthesizing PZDO using HOF.MeCN, as suitable analogue of this would be to use the currently unknown 3,6-difluoropyrazine-2,5-diamine (294), a proposed synthetic route of which is shown in scheme 122.

\[
\begin{align*}
\text{293} & \xrightarrow{\text{DMF, 50°C}} \text{295} & \xrightarrow{\text{H}_2\text{N-NH}_2} \text{294} \\
\end{align*}
\]

\textit{Scheme 122: Proposed synthesis of 3,6-difluoropyrazine-2,5-diamine}

\textbf{(294)} cannot be synthesized using direct ammonolysis of tetrachloropyrazine (293), because disubstitution of (293) tends to give either the 2,6- or 2,3- isomers. However, in a process described by Barclay et al., the Gabriel synthesis is employed to give 2,5- diamino substitution of tetrachloropyrazine160, which should be a viable option for the synthesis of \textbf{(294)}.}
We have also demonstrated that our continuous flow process can be applied to the synthesis of novel difluoramino benzene derivatives (scheme 123).

Scheme 123

To extend this area of research, the synthesis of pyridinium difluoramine compounds was attempted, with, what appears to be some initial success. Results indicated that our attempts to synthesize difluoramine compounds from aminopyridine derivatives such as 2,5,6-trifluoro-4-(phenylsulfonyl)pyridin-3-amine (242), were successful (scheme 124), although these compounds were not isolated and characterized. Further investigation into these types of reactions would be very interesting and could give access to some interesting energetic materials.

Scheme 124: Pyridine difluoramine synthesis with NMR (proposed difluoramine peaks shown in red)
Chapter 6.0: Conclusions and Next Steps

And finally, continuing on from the palladium catalyzed Suzuki arylation of highly fluorinated nitrobenzene compounds158 described in chapter 5.0, the functionality of such systems has been extended to include palladium catalyzed Suzuki vinylation processes, such as those shown in \textit{scheme 125}.

\begin{center}
\includegraphics[width=0.5\textwidth]{suzuki_vinylation_process}
\end{center}

\textit{Scheme 125: Palladium catalyzed Suzuki vinylation process}

Whilst the boronic ester (281) was shown to be less reactive than phenyl boronic acid (280) and, therefore, required slightly more forcing conditions for suitable conversion of starting material to the coupled product, the reactivity of the polyfluoronitrobenzene derivatives did mirror those reported by Sandford \textit{et al.}

In terms of extending this work, this should include extending the substrate scope to include more tetra- and tri-fluoro nitrobenzene isomers.
Chapter 7 - Experimental Section
7.1 General

NMR: Proton, carbon and fluorine nuclear magnetic resonance spectra (\(^1\)H NMR, \(^{13}\)C NMR and \(^{19}\)F NMR) were recorded on either a Varian Mercury 400, Bruker Advance 400 or a Bruker 400 Ultrashield (\(^1\)H NMR, 400 MHz; \(^{13}\)C NMR, 126 MHz; \(^{19}\)F NMR 376 MHz) or a Varian Inova 500 (\(^{13}\)C NMR, 126 MHz) or a Varian VNMRS-700 (\(^{13}\)C NMR, 126 MHz) spectrometer with solvent resonance as the internal standard (\(^1\)H NMR, CHCl\(_3\) at 7.26 ppm; \(^{13}\)C NMR, CDCl\(_3\) at 77.36 ppm; \(^{19}\)F NMR, CFCl\(_3\) at 0.00 ppm). \(^1\)H, \(^{13}\)C and \(^{19}\)F spectroscopic data are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, b = broad), coupling constant (Hz) and assignment.

Mass Spectrometry: GC-MS analysis was performed on a Trace GC-MS device (Thermo-Finnigan Corporation) operating in electron impact ionization (EI) mode or chemical ionization (CI) mode. Accurate mass analysis was achieved with a Xevo QtoF mass spectrometer (Waters Ltd, UK) equipped with an accurate solids analysis probe (ASAP).

Elemental Analysis: C, H, and N analysis was collected with an Exeter Analytical CE-440 Elemental Analyser.

Infra Red Analysis: Infra-red (IR) spectra were recorded on a Perkin Elmer 1600 Series FTIR fitted with an ATR attachment.

X-Ray Analysis: Crystallographic data was recorded with a Rigaku R-Axis SPIDER IP diffractometer equipped with a Cryostream (Oxford Cryosystems) low temperature device at 120 K.

Melting Point Analysis: Melting points (mp) were measured with a Gallenkamp apparatus at atmospheric pressure and are uncorrected.

Microwave reactions: All microwave irradiated reactions (MW) were heated in a Biotage Initiator Sixty Microwave.

Chemicals and Solvents: Unless otherwise stated, commercially available reagents were used without purification. An Innovative Technology Inc. Solvent Purification System was used for all dry solvents other than DMSO, which was purchased from Sigma Aldrich. All flash column chromatography was carried out using Silicagel LC60A (40–63 micron) purchased from Fluorochem.
Diagram of Flow Apparatus

7.2 Experimental for Chapter 3.0

7.2.1 Experimental for the Epoxidation of Alkenes

General Procedure

Under a flow of F₂ (10 % in N₂) of 2.0 mmol h⁻¹, MeCN : H₂O (4:1) was added to inlet 1 at a rate of 10.0 ml h⁻¹ (110.0 mmol h⁻¹ water) to give HOF.MeCN at a calibrated rate of 2.0 mmol h⁻¹. The alkene (in a 1:1 mixture of DCM : MeCN) was added to inlet 2 at a rate of 2.0 mmol h⁻¹, and the reaction was allowed to run for continuously for either 30 mins or 60 mins, over an oxidation path length of 30 cm. All reaction fluids were collected in a stirring pot of sodium bicarbonate solution (50 mL), whilst excess gasses were vented through a soda lime scrubber. The reaction mixture was then added to another 25 mL of sodium bicarbonate solution, washed with DCM (3 × 75 mL), dried over MgSO₄ and filtered. The organic solvent was removed under reduced pressure to yield the epoxide

2-decyloxirane

Using dodec-1-ene (0.18 g, 1.07 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded 2-decyloxirane (0.195 g, 99 %) as a pale yellow oil, with no further purification required; νₒₓ (cm⁻¹) 2954, 2823 (sp³ C-H), 916, 833 (C-
O-C); δH (400 MHz, CDCl3) 0.86 (3H, t, 3JHH 6.4, -CH2CH3), 1.17–1.36 (16H, m, 8 × -CH2-), 1.36–1.55 (4H, m, 2 × -CH2-), 2.44 (1H, dd, 3JHH 5.1, 3JHH 2.7 H1)δC (100 MHz, CDCl3) 14.0 (1C, s, C12), 22.6 (1C, s, C11), 25.9 (1C, s, C4), 29.3, 29.4, 29.5, 29.6, 31.9 (5C, s, C5-9), 32.4 (1C, s, C10), 32.5 (1C, s, C3), 47.0 (1C, s, C1), 52.3 (1C, s, C2); m/z (EI) 184 (M⁺, 2 %), 169 (M⁺-CH3, 100 %), and as compared to literature data.

trans-2,3-diphenyloxirane

Using trans-stilbene (0.36 g, 2.0 mmol) as the alkene, this was added continuously over a period of 60 mins, after which time the reaction yielded **trans-2,3-diphenyloxirane** (0.39 g, 99 %) as a yellow solid, mp 65–66 ºC (lit. 65–66 ºC), with no purification required; νmax (cm⁻¹) 2989 (sp³ C-H), 1493 (Ar-H), 846 (C-O-C); δH (400 MHz, CDCl3) 3.95 (2H, s, OC-H), 7.27–7.54 (10H, m, Ar-H); δC (100 MHz, CDCl3) 61.1 (2C, s, C2), 123.8 (4C, s, C2'), 126.6 (2C, s, C4'), 126.9 (4C, s, C3'), 135.4 (2C, s, C1'); m/z (EI) 196 (M⁺, 38 %), 195 (M⁺-H, 52 %), and as compared to literature data.

cis-2,3-diphenyloxirane

Using cis-stilbene (0.18 g, 1.00 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded a mixture of 3 products (confirmed by GC) (0.19 g) as a red oil, which included starting material and **cis-2,3-diphenyloxirane** (0.16 g, 81 %); νmax (cm⁻¹) 2984 (sp³ C-H), 1497, (Ar-H), 848 (C-O-C); δH (400 MHz, CDCl3) 4.38 (2H, s, OCH3), 7.15–7.25 (10H, m, Ar-H); δC (100 MHz, CDCl3) 59.8 (2C, s, C2), 126.9 (2C, s, C2'), 127.5 (2C, s, C4'), 127.8 (4C, s, C3'), 134.4 (2C, s, C1'); m/z (EI) 196 (M⁺, 44 %), 195 (M⁺-H, 64 %), and as compared to literature data.

161 The coupling constant for geminal protons of an oxirane ring are reported to be in the region of 5-6.5.
1,5-dioxatricyclodecane

Using 1,5-cyclooctadiene (0.11 g, 1.02 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded 1,5-dioxatricyclodecane (0.13 g, 94 %) as a clear oil with no purification required; \(\nu_{\text{max}} \) (cm\(^{-1}\)) 2926 (sp\(^3\) C-H), 925, 838 (C-O-C); \(\delta_H \) (400 MHz, CDCl\(_3\)) 1.73–2.05 (8H, m, 4 × -CH\(_2\)-), 2.92–2.97 (4H, m, OCH\(_2\)); \(\delta_C \) (100 MHz, CDCl\(_3\)) 21.9 (4C, s, C2), 56.0 (4C, s, C1); m/z (EI) 141 (MH\(^+\), 26 %) 140 (M\(^+\), 34 %), and as compared to literature data\(^{166}\)

1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene

Using 1,2-dihydronaphthalene (0.13 g, 1.00 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded a mixture of mixture of 6 products (confirmed by GC) (0.15 g) as a dark red oil, which included starting material and 1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene (0.12 g, 82 %); \(\nu_{\text{max}} \) (cm\(^{-1}\)) 2950, 2926 (sp\(^3\) C-H), 1491 (Ar-H), 1246, 784 (C-O-C); \(\delta_H \) (400 MHz, CDCl\(_3\)) 1.79 (1H, td, \(^3J_{\text{HH}} \) 14.0, \(^3J_{\text{HH}} \) 5.6, H3), 2.43 (1H, dd, \(^3J_{\text{HH}} \) 15.5, \(^3J_{\text{HH}} \) 5.5, H4), 2.82 (1H, td, \(^3J_{\text{HH}} \) 14.8, \(^3J_{\text{HH}} \) 6.4, H3), 3.76 (1H, t, \(^3J_{\text{HH}} \) 3.2, H2), 2.44 (1H, dm, \(^3J_{\text{HH}} \) 14.4, H4), 3.88 (1H, d, \(^3J_{\text{HH}} \) 4.2, H1), 7.13 (1H, d, \(^3J_{\text{HH}} \) 7.3, H6), 7.19–7.33 (2H, m, H7,8), 7.42 (1H, dd, \(^3J_{\text{HH}} \) 7.2, \(^4J_{\text{HH}} \) 1.3, H9); \(\delta_C \) (100 MHz, CDCl\(_3\)) 21.8 (1C, s, C3), 24.4 (1C, s, C4), 52.8 (1C, s, C2), 55.1 (1C, s, C1), 126.1 (1C, s, C9), 128.4 (1C, s, C8), 128.5 (1C, s, C7), 129.6 (1C, s, C6), 132.6 (1C, s, C10), 136.7 (1C, s, C5); m/z (EI) 148 (MH\(^+\), 1 %) 147 (MH\(^+\), 10 %), 146 (M\(^+\), 77 %), 131 (MH\(^+\)-O, 10 %), 115 (M\(^+\)-CH\(_3\)O, 33 %), 104 (100 %), 91 (M\(^+\)-C\(_3\)H\(_4\)O, 16 %), and as compared to literature data\(^{167}\)
ethyl 2-(3-ethyloxiran-2-yl)acetate

Using ethyl trans-3-hexenoate (0.14 g, 0.98 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded ethyl-2-(3-ethyloxiran-2-yl)acetate (0.15 g, 97 %) as a clear oil, with no further purification required; ν_max (cm⁻¹) 2973 (sp³ C-H), 1734 (C=O), 1462 (Ar-H), 1180, 1027 (C-O), 1253, 887 (C-O-C); δ_H (400 MHz, CDCl₃) 1.00 (3H, t, J_HH 7.5, H1), 1.28 (3H, t, J_HH 7.1, H8), 1.60 (2H, q, d, J_HH 7.5, J_HH 5.6, H2), 2.55 (2H, q,d, J_HH 16.2, J_HH 5.9, H5), 2.74 (1H, t,d, J_HH 5.5, J_HH 2.2, H3), 3.05 (1H, t,d, J_HH 5.9, J_HH 2.2, H4) 4.18 (2H, q,d, J_HH 7.1, J_HH 0.9, H7); δ_C (100 MHz, CDCl₃) 9.7 (1C. s, C1), 14.1 (1C, s, C8), 24.8 (1C, s, C2), 37.8 (1C, s, C5), 53.7 (1C, s, C4), 59.6 (1C, s, C3), 60.8 (1C, s, C7), 170.4 (1C, s, C6); m/z (EI) 159 (MH⁺, 2 %), and as compared to literature data.¹⁶⁸

Methyl 3-ethyl-2-methyloxirane-2-carboxylate

Using methyl trans-2-methyl pentenoate (0.14 g, 1.09 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded methyl 3-ethyl-2-methyloxirane-2-carboxylate (0.16 g, 99 %) as a clear oil, with no further purification required; ν_max (cm⁻¹) 2974 (sp³ C-H), 1729 (C=O), 1179, 1022 (C-O), 1252, 881 (C-O-C); δ_H (400 MHz, CDCl₃) 1.04 (3H, t, J_HH 7.6, -CH₂CH₃), 1.49 (3H, s, CCH₃), 1.56 (2H, m, CH₃CH₂-), 3.11 (1H, t, J_HH 6.3, -CH₂CH₂H), 3.72 (3H, s, OCH₃); δ_C (100 MHz, CDCl₃) 10.2 (1C, s, C1), 13.3 (1C, s, C4), 21.4 (1C, s, C2), 52.5 (1C, s, C7), 57.5 (1C, s, C5), 63.4 (1C, s, C3), 172.0 (1C, s, C6); m/z (EI) 144 (M⁺, 14 %), and as compared to literature data.¹⁶⁹
1,3,4,6-tetramethyl-7-oxabicyclo[4.1.0]hept-3-ene-2,5-dione

Using duroquinone (0.32 g, 1.95 mmol) as the alkene, this was added continuously over a period of 60 mins, after which time the reaction yielded a mixture of 2 products (0.34 g) (confirmed by GC) as yellow crystals which contained starting material and 1,3,4,6-tetramethyl-7-oxabicyclo[4.1.0]hept-3-ene-2,5-dione (0.13 g, 38 %); δH (400 MHz, CDCl3) 1.6 (6H, s, -OCCH2), 1.97 (6H, s, -C=CCH3); δC (100 MHz, CDCl3) 11.7 (2C, s, C1), 13.5 (2C, s, C5), 63.3 (2C, s, C4), 141.1 (2C, s, C2), 194.5 (2C, s, C3); m/z (EI) 165 (M+-CH3, 8 %), and as compared to literature data170

2-(phenoxymethyl)oxirane

Using allyloxybenzene (0.13 g, 1.00 mmol) as the alkene, this was added continuously over a period of 30 mins, after which time the reaction yielded a mixture of products (confirmed by GC) (0.15 g) as a clear oil, which included starting material and 2-(phenoxymethyl)oxirane (0.12 g, 84 %); δH (400 MHz, CDCl3) 2.79 (1H, dd, 3JHH 4.9, 3JHH 2.7, H3), 2.91–2.95 (1H, m, H3), 3.38 (1H, ddt, 3JHH 5.6, 3JHH 4.1, 3JHH 3.0, H2), 3.99 (1H, dd, 2JHH 11.0, 3JHH 5.6, H1), 4.24 (1H, dd, 2JHH 11.0, 3JHH 3.0, H1), 6.95 (2H, d, 3JHH 8.0, H2'), 7.0 (1H, tt, 3JHH 7.3, 4JHH 0.9, H4'), 7.32 (2H, t, 3JHH 8.6, H3'); 44.7 (1C, s, C3), 50.1 (1C, s, C2), 68.6 (1C, s, C1), 114.6 (2C, s, C2'), 121.2 (1C, s, C4'), 129.5 (2C, s, C3'), 158.4 (1C, s, C1'); MS (ASAP) 151 (MH+, 14 %), 150 (M+, 56 %) and as compared to literature data171
7.2.2 Experimental for the Oxidation of Sulfur Compounds

General Procedure

Under a flow of \(\text{F}_2 \) (10 % in \(\text{N}_2 \)) of 4.0 mmol \(\text{h}^{-1} \), \(\text{MeCN} : \text{H}_2\text{O} \) (4:1, 10.0 mL) was added to inlet 1 at a rate of 10.0 ml \(\text{h}^{-1} \) (110.0 mmol \(\text{h}^{-1} \) water) to give HO\(F \).\text{MeCN} at a calibrated rate of 4.0 mmol \(\text{h}^{-1} \). The thiophene or sulfide (in DCM, 10.0 mL) was added to inlet 2 at a rate of 2.0 mmol \(\text{h}^{-1} \), and the reaction was allowed to run for continuously for 60 mins, over an oxidation path length of either 100 cm or 300 cm. All reaction fluids were collected in a stirring pot of sodium bicarbonate solution (50 mL), whilst excess gasses were vented through a soda lime scrubber. The reaction mixture was then added to another 25 mL of sodium bicarbonate solution, washed with DCM (3 \(\times \) 75 mL), dried over Mg\(\text{SO}_4 \) and filtered. The organic solvent was removed under reduced pressure to yield the crude product.

2,5-dibromothiophene-1,1-dioxide

Using 2,5-dibromothiophene (0.48 g, 2.0 mmol) as the thiophene and 4.0 mmol \(\text{h}^{-1} \) HO\(F \).\text{MeCN}, workup yielded a mixture of 2 products (0.54 g) which were identified by \(^1\text{H} \text{NMR} \) as starting material (7 %) and **2,5-dibromothiophene-1,1-dioxide** (0.51 g, 93 %); \(\delta \)\(_{\text{H}} \) (400 MHz, CD\(\text{Cl}_3 \)) 6.84 (2H, s, H3); \(\delta \)\(_{\text{C}} \) (100 MHz, CD\(\text{Cl}_3 \)) 119.57 (2C, s, C3), 128.36 (2C, s, C2); \textit{m/z} \(\text{EI} \) 276 (M\(^+\), 1 \(\times \) \(^{79} \text{Br} \), 1 \(\times \) \(^{81} \text{Br} \), 100 %) and as compared to literature data\(^{172} \)

2,3,4,5-tetrabromothiophene-1,1-dioxide

Using 2,3,4,5-tetrabromothiophene (0.80 g, 2.0 mmol) as the thiophene and 4.0 mmol \(\text{h}^{-1} \) HO\(F \).\text{MeCN}, workup yielded a mixture of 2 products (0.83 g) which were identified by \(^1\text{H} \text{NMR} \) as starting material (54 %) and **2,3,4,5-tetrabromothiophene-1,1-dioxide** (0.40 g, 46
\%); δ_C (100 MHz, CDCl$_3$) 119.93 (2C, s, C3), 127.97 (2C, s, C2); m/z (EI) 432 (M$^+$, 1 \times 79Br, 1 81Br, 62 %) and as compared to literature data173

\[\text{2, 5-dimethylthiophene-1,1-dioxide} \]

Using 2,5-dimethylthiophene (0.22 g, 2.0 mmol) as the thiophene and 4.0 mmol HOF.MeCN, workup yielded \textbf{2, 5-dimethylthiophene-1,1-dioxide} (0.23 g, 80 %) with no purification required; δ_H (400 MHz, CDCl$_3$) 2.04 (6H, s, 2 \times CH$_3$), 6.27 (2H, s, H3); δ_C (100 MHz, CDCl$_3$) 9.47 (2C, s, -CH$_3$), 123.13 (2C, s, C3), 139.47 (2C, s, C2); m/z (EI) 144 (M$^+$, 57 %) and as compared to literature data174

\[\text{Sulfonyldibenzene} \]

Using diphenylsulfane (0.37 g, 2.0 mmol) as the sulfide and 4.0 mmol HOF.MeCN, workup yielded \textbf{sulfonyldibenzene} (0.41 g, 95 %) with no purification required; δ_H (400 MHz, CDCl$_3$) 7.51 (2H, t, 3J$_{III}$ 7.7, H3'), 7.57 (1H, t, 3J$_{III}$ 7.3, H4'); 7.95 (2H, d, 3J$_{III}$ 7.4, H2'); δ_C (100 MHz, CDCl$_3$) 127.9 (4C, s, C2'), 129.5 (4C, s, C3'), 133.4 (2C, s, C4'), 141.4 (2C, s, C1'); and as compared to literature data175

7.3 Experimental for Chapter 4.0

7.3.1 Experimental for the Oxidation of Aliphatic Amines

\textbf{General procedure}

Under a calibrated flow of F$_2$ (10% in N$_2$) of 6.0 mmol h$^{-1}$, MeCN:H$_2$O (4:1) was added via inlet 1 at a rate of 15.0 mL h$^{-1}$ (165.5 mmol h$^{-1}$ water) to generate the HOF.MeCN complex at a calibrated rate of rate of 6.0 mmol h$^{-1}$. The aliphatic amine (dissolved in either MeCN or DCM)
was added via inlet 2 at a rate of 10.0 mL h\(^{-1}\) (1.0-2.0 mmol h\(^{-1}\)) and the reactants were allowed to run continuously for a fixed period of time over a reaction path length of 100 cm. All liquid products were collected in a vessel containing distilled water, whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using DCM, which was then dried over MgSO\(_4\), filtered, and evaporated in vacuo to yield the crude product.

1-nitrohexane

Using 1-aminohexane (0.20 g, 2.0 mmol, in 10 mL of MeCN) as the aliphatic amine and 15 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 60 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrohexane (0.21 g, 80 %) as a pale yellow oil; \(\nu_{\text{max}}\) (cm\(^{-1}\)) 2929 (sp\(^3\) C-H), 1549 and 1380 (NO\(_2\)); \(\delta_H\) (400 MHz, CDCl\(_3\)) 0.89 (3H, t, \(^3\)J\(_{HH}\) 6.6, CH\(_2\)CH\(_3\)), 1.24–1.45 (6H, m, 3 × CH\(_2\)), 2.00 (2H, qn, \(^3\)J\(_{HH}\) 6.8, CH\(_3\)CH\(_2\)), 4.38 (2H, t, \(^3\)J\(_{HH}\) 7.0, CH\(_2\)NO\(_2\)); \(\delta_C\) (100 MHz, CDCl\(_3\)) 13.8 (C6), 22.3 (C5), 25.9 (C2), 27.3 (C3), 31.0 (C4), 75.7 (C1); m/z (EI) 132 (MH\(^+\), 8%), 102 (MH\(^+\) - NO, 54 %), 88 (100 %), 84 (MH\(^+\) - NO\(_2\), 59 %); and as compared to literature data\(^{176}\)

1-nitrodecane

Using 1-aminodecane (0.16 g, 1.0 mmol, in 5 mL of DCM) as the aliphatic amine and 7.5 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 30 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrodecane (0.11 g, 60 %) as clear oil with no further purification required: \(\nu_{\text{max}}\) (cm\(^{-1}\)) 2922 (sp\(^3\) C-H), 2850 (sp\(^3\) C-H), 1550 and 1382 (NO\(_2\)); \(\delta_H\) (400 MHz, CDCl\(_3\)) 0.89 (3H, t, \(^3\)J\(_{HH}\) 6.9, CH\(_3\)CH\(_2\)), 1.08–1.43 (14H, m, 7 × CH\(_2\)), 2.01 (2H, qn, \(^3\)J\(_{HH}\) 7.2, CH\(_2\)CH\(_2\)NO\(_2\)), 4.39 (2H, t, \(^3\)J\(_{HH}\) 7.1, CH\(_2\)NO\(_2\)); \(\delta_C\) (100 MHz, CDCl\(_3\)) 14.3 (C10), 22.9 (C9), 26.4 (C2), 27.6 (C3), 29.0 (C4), 29.4 (C7), 29.5 (C6), 29.6 (C5), 32.1 (C8), 75.9 (C1); m/z (EI) 188 (MH\(^+\), 1%), 170 (MH\(^+\) - H\(_2\)O, 26%), 152 (100%), 140 (MH\(^+\) - NO\(_2\), 42 %) and as compared to literature data\(^{177}\)
Chapter 7.0: Experimental Section

1-Nitrododecane

Using 1-aminododecane (0.19 g, 1.0 mmol, in 5 mL of DCM) as the aliphatic amine and 7.5 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 30 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrododecane (0.19 g, 95 %) as a clear oil with no further purification required: ν_{max} (cm$^{-1}$) 2924 (sp3 C-H), 2854 (sp3 C-H), 1552 and 1381 (NO$_2$); δ_H (400 MHz, CDCl$_3$) 0.89 (3H, t, $^3J_{HH}$ 6.9, CH$_2$CH$_3$), 1.20–1.43 (18H, m, 8 × CH$_2$), 2.01 (2H, qn, $^3J_{HH}$ 6.8, CH$_2$CH$_2$NO$_2$), 4.39 (2H, t, $^3J_{HH}$ 7.1, CH$_2$NO$_2$); δ_C (100 MHz, CDCl$_3$) 14.3 (C12), 22.9 (C11), 26.4 (C2), 27.6 (C3), 29.1, 29.4, 29.5, 29.7, 29.8, 29.8 (C4-C9), 32.1 (C10), 76.0 (C1); m/z (EI) 198 (MH$^+$ - H$_2$O, 3%), 180 (MH$^+$ - H$_2$O, 8 %); and as compared to literature data 178

1-Nitrotridecane

Using 1-aminotridecane (0.20 g, 1.0 mmol, in 5 mL of DCM) as the aliphatic amine and 7.5 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 30 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrotridecane (0.21 g, 95 %) as a clear oil with no further purification required: ν_{max} (cm$^{-1}$) 2923 (sp3 C-H), 2854 (sp3 C-H), 1552 and 1381 (NO$_2$); δ_H (400 MHz, CDCl$_3$) 0.89 (3H, t, $^3J_{HH}$ 6.9, CH$_2$CH$_3$), 1.20–1.45 (20H, m, 10 × CH$_2$), 2.01 (2H, qn, $^3J_{HH}$ 7.2, CH$_2$CH$_2$NO$_2$), 4.39 (2H, t, $^3J_{HH}$ 7.1, CH$_2$NO$_2$); δ_C (100 MHz, CDCl$_3$) 14.3 (C12), 22.9 (C11), 26.4 (C2), 27.6 (C3), 29.1, 29.4, 29.5, 29.7, 29.8, 29.8 (C4-C9), 32.1 (C10), 76.0 (C1); m/z (Cl) 213 (M - H$_2$O, 7 %), 200 (MH$^+$ - NO, 100 %), 198 (50 %); and as compared to literature data 179
Chapter 7.0: Experimental Section

1-nitrocyclohexane

Using aminocyclohexane (0.2 g, 2.0 mmol, in 10 mL of MeCN) as the aliphatic amine and 15.0 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 60 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrocyclohexane (0.25 g, 95 %) as a pale yellow oil with no further purification required: \(\nu_{\text{max}} \) (cm\(^{-1}\)) 2940 (sp\(^3\) C-H), 1538 and 1377 (NO\(_2\)); \(\delta_{\text{H}} \) (400 MHz, CDCl\(_3\)) 1.17–1.46 (3H, m, 1 × CH\(_2\), 1 × CH), 1.60–1.73 (1H, m, 1 × CH), 1.76–1.96 (4H, m, 2 × CH\(_2\)), 2.10–2.31 (2H, m, 2 × CH), 4.37 (1H, tt, \(^3\)J\(_{HH} \) 10.7, \(^3\)J\(_{HH} \) 4.0, CHNO\(_2\)); \(\delta_{\text{C}} \) (100 MHz, CDCl\(_3\)) 24.3 (C4), 25.0 (C3), 84.9 (C1); m/z (EI) 83 (M\(^+\) -NO\(_2\) 98%), 55 (100 %), 41 (78 %); and as compared to literature data\(^{180}\)

trans-1,2-dinitrocyclohexane

Using trans-1,2-diaminocyclohexane (0.11 g, 1.0 mmol, in 10 mL DCM) as the aliphatic amine and 15.0 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 60 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded trans-1,2-dinitrocyclohexane (0.16 g, 95 %) as a white solid; mp 45–46°C (purified product value 45.5–46.5°C); \(\nu_{\text{max}} \) (cm\(^{-1}\)) 2955 (sp\(^3\) C-H), 1542 and 1390 (NO\(_2\)); \(\delta_{\text{H}} \) (400 MHz, CDCl\(_3\)) 1.44–1.52 (2H, m, 2 × CH), 1.71–1.87 (2H, m, 2 × CH), 1.93–2.07 (2H, m, 2 × CH), 2.59–2.72 (2H, m, 2 × CH), 4.94–5.10 (2H, m, CHNO\(_2\)); \(\delta_{\text{C}} \) (100 MHz, CDCl\(_3\)) 23.9 (C4), 30.9 (C3), 84.2 (C1); m/z (EI) 127 (MH\(^+\) -NO\(_2\) 8 %), 97 (MH\(^+\) -NO, 18 %), 81 (MH\(^+\) - 2 × NO\(_2\), 100 %); and as compared to product data which was purified via silica flash column chromatography (using dichloromethane : hexane 7:3 as the eluent): Found: C 41.41, H 5.74, N 16.05%; C\(_6\)H\(_{13}\)NO\(_2\) Requires: C 41.38, H 5.79, N 16.09 %
cis-1,2-dinitrocyclohexane

Using cis-1,2-diaminocyclohexane (0.061 g, 0.54 mmol, in 5.0 mL DCM) as the aliphatic amine and 7.5 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 30 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded cis-1,2-dinitrocyclohexane (0.09 g, 95 %) as a clear oil with no further purification required: ν_{max} (cm⁻¹) 2955 (sp³ C-H), 1547 and 1390 (NO₂); δ_H (400 MHz, CDCl₃) 1.48–1.75 (4H, m, 2 × CH₂), 2.20–2.27 (2H, m, 2 × CH, H4 and H3) 2.54–2.62 (2H, m, 2 × CH, H4 and H3), 4.94–4.96 (2H, m, CHNO₂); δ_C (100 MHz, CDCl₃) 23.9 (C4), 30.7 (C3), 84.2 (C1); m/z (EI) 127 (MH⁺ -NO₂, 8 %), 97 (MH⁺ -NO, 18 %), 81 (MH⁺ - 2 × NO₂, 100 %); and as compared to product data which was purified via silica flash column chromatography (using dichloromethane : hexane 3:1 as the eluent): Found: C 41.38, H 5.79, N 16.13; C₆H₁₂NO₂
Requires: C 41.38, H 5.79, N 16.09 %

1,7-dinitroheptane

Using 1,7-dinitroheptane (0.08 g, 0.6 mmol, in 5 mL DCM) as the aliphatic amine and 7.5 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 30 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1,7-dinitrohexane (0.11 g, 95 %) as a clear oil with no further purification required: ν_{max} (cm⁻¹) 2933 (sp³ C-H), 1545 and 1383 (NO₂); δ_H (400 MHz, CDCl₃) 1.41 (6H, m, 3 × CH₂, H1 and H2), 2.03 (4H, qn, ³J_{HH} 6.8, 2 × CH₂, CH₂CH₂NO₂) 4.40 (4H, t, ³J_{H3C}7.0, CH₂NO₂); δ_C (100 MHz, CDCl₃) 26.2 (C4), 27.4 (C3), 28.3 (C2), 75.7 (C1); m/z (CI) 192 (MH²⁺, 2%), 174 (MH²⁺ -H₂O, 36 %), 127 (MH²⁺ -H₂O -NO₂, 100%), 125 (70%), 112 (18%) and as compared to literature data¹¹
7.3.2 Experimental for Aliphatic Azide Oxidation

General procedure

As per the oxidation of aliphatic amines except a reaction path length of 100 cm was used.

1,12-dinitrododecane

![1,12-dinitrododecane structure]

Using 1,12-diazidododecane (0.25 g, 1.0 mmol, in 10 mL of DCM) as the aliphatic azide and 15.0 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 60 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1,12-dinitrododecane (0.26 g, 99 %) as clear oil with no further purification required: ν\text{max} (cm-1) 2931 (sp3 C-H), 1542 and 1380 (NO\textsubscript{2}); δ\text{H} (400 MHz, CDCl\textsubscript{3}) 1.18-1.45 (16H, m, 8 × CH\textsubscript{2}, H3-H10), 1.98 (4H, qn, 3J\text{HH} 7.1, 2 × CH\textsubscript{2}CH\textsubscript{3}, H2 and H11), 4.36 (4H, t, 3J\text{HH}7.1, 2 × CH\textsubscript{2}CH\textsubscript{3}, H1 and H12); δ\text{C} (100 MHz, CDCl\textsubscript{3}) 26.1 (C2), 27.3 (C3), 28.7 (C4), 29.1 (C5), 29.2 (C6), 75.7 (C1); m/z (EI) 244 (MH2+ - H\textsubscript{2}O, 19 %), 152 (100%); 216 (MH2+ - NO\textsubscript{2}, 31 %) and as compared to literature data181

1-nitrooctane

![1-nitrooctane structure]

Using 1-azidoctane (0.31 g, 2.0 mmol, in 10 mL of DCM) as the aliphatic azide and 15.0 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 60 minutes and all liquid products were collected in distilled water (25 mL). Work-up yielded 1-nitrooctane (0.31 g, 99 %) as clear oil with no further purification required: ν\text{max} (cm-1) 2920 (sp3 C-H), 1550 and 1384 (NO\textsubscript{2}); δ\text{H} (400 MHz, CDCl\textsubscript{3}) 0.84 (3H, t, 3J\text{HH} 6.9, CH\textsubscript{3}CH\textsubscript{2}), 1.18–1.38 (10H, m, 5 × CH\textsubscript{2}), 1.96 (2H, qn, 3J\text{HH} 7.2, CH\textsubscript{2}CH\textsubscript{2}NO\textsubscript{2}), 4.35 (2H, t, 3J\text{HH}7.1, CH\textsubscript{2}NO\textsubscript{2}); δ\text{C} (100 MHz, CDCl\textsubscript{3}) 14.1 (C8), 22.7 (C7), 26.5 (C2), 27.2 (C3), 28.3 (C4), 29.3 (C5), 31.9 (C6), 75.5 (C1); m/z (EI) 161 (MH+, 3%), 143 (MH+ - H\textsubscript{2}O, 32%), 115 (MH+ - NO\textsubscript{2}, 47 %); and as compared to literature data182
7.3.3 Experimental for Aromatic Amine Oxidations

General procedure

Under a calibrated flow of F₂ (10 % in N₂) of 6.0 mmol h⁻¹, MeCN:H₂O (4:1) was added via inlet 1 at a rate of 15.0 mL h⁻¹ (165.5 mmol h⁻¹) to generate the HOF:MeCN complex at a calibrated rate of rate of 6.0 mmol h⁻¹. The amino benzene or amino pyridine (dissolved in MeCN) was added via inlet 2 at a rate of 10.0 mL h⁻¹ (2.0 mmol h⁻¹) and the reactants were allowed to run continuously over a fixed period of time. All liquid products were collected in a vessel containing distilled water (50 mL), whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using DCM, which was then dried over MgSO₄, filtered, and concentrated under reduced pressure to yield the crude product.

1-nitrobenzene

Using aniline (0.93 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via distillation to yield nitrobenzene (0.75 g, 61 %) as a pale yellow oil; bp 209–210°C (lit. value 209–210°C)\(^{183}\); ν\(_{max}\) (cm\(^{-1}\)) 3076 (sp\(^2\) C-H), 1518 and 1343 (NO\(_2\)), 1478 (Ar C-C); δ\(_{H}\) (400 MHz, CDCl\(_3\)) 7.55 (2H, tm, \(^3J_{HH}\) 7.4, H3), 7.70 (1H, tt, \(^3J_{HH}\) 7.4, \(^4J_{HH}\) 1.2, H4), 8.23 (2H, dd, \(^3J_{HH}\) 8.8, \(^4J_{HH}\) 1.2, H2); δ\(_{C}\) (126 MHz, CDCl\(_3\)) 123.7 (1C, s, C4), 129.5 (2C, s, C3), 134.9 (2C, s, C2), 148.4 (1C, s, C1); m/z (EI) 123 (MH\(^+\), 74 %), 77 (MH\(^+\)-NO\(_2\), 96 %), 51 (100 %); and as compared to literature data\(^{184-185}\)
Chapter 7.0: Experimental Section

1,2,3,4,5-pentafluoro-6-nitro-benzene

Using 2,3,4,5,6-pentafluoroaniline (1.83 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via distillation to yield 1,2,3,4,5-pentafluoro-6-nitro-benzene (1.55 g, 73 %) as pale yellow oil; bp 160–162°C, (lit. value 160–161°C)

\[
\nu_{\text{max}} (\text{cm}^{-1}) 1557 \text{ and } 1353 (\text{NO}_2), 1506 (\text{Ar C-C}); \delta_{\text{C}} (126 \text{ MHz, CDCl}_3) 126.5–127.2 (1\text{C}, \text{ m}, \text{ C6}), 137.9 (2\text{C}, \text{ dm}, \text{i}_{\text{CF}} 263.2, \text{ C1/2}), 141.3 (2\text{C}, \text{ dm}, \text{i}_{\text{CF}} 267.1, \text{ C2/1}), 144.1 (1\text{C}, \text{ dt}, \text{i}_{\text{CF}} 263.5, \text{^2i}_{\text{CF}} 13.3, \text{^1i}_{\text{CF}} 4.1, \text{ C3}); \delta_{\text{F}} (376 \text{ MHz, CDCl}_3) -145.5 (2\text{F}, \text{ d}, \text{^1J}_{\text{FF}} 16.6, \text{ F1}), -146.2 (1\text{F}, \text{ t}, \text{^3J}_{\text{FF}} 21.4, \text{ F3}), -158.0 (2\text{F}, \text{ t}, \text{^3J}_{\text{FF}} 19.8, \text{ F2}); m/z (\text{EI}) 214 (\text{MH}^+, 2 \%), 213 (\text{MH}^+, 34 \%), 183 (\text{MH}^+ - \text{NO}, 18 \%), 167 (\text{MH}^+ - \text{NO}_2, 24 \%), 117 (90 \%); and as compared to literature data

1,2,4,5-tetrafluoro-3-nitrobenzene

Using 2,3,5,6-tetrafluoroaniline (1.65 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) to yield 1,2,4,5-tetrafluoro-3-nitrobenzene (1.19 g, 61 %) as a yellow oil; \(\nu_{\text{max}} (\text{cm}^{-1})\) 3055 (sp2 C-H), 1557 and 1352 (NO$_2$), 1511 (Ar C-C); \(\delta_{\text{H}} (400 \text{ MHz, CDCl}_3)\) 7.35 (1H, tt, \text{i}_{\text{HF}} 9.4, \text{^4J}_{\text{HF}} 7.0, \text{ H6}); \(\delta_{\text{C}} (126 \text{ MHz, CDCl}_3)\) 109.7 (1C, t, \text{i}_{\text{CF}} 22.5, \text{ C6}), 131.5 (1C, t, \text{i}_{\text{CF}} 12.9, \text{ C3}), 140.31 (2C, ddd, \text{i}_{\text{CF}} 263.1, \text{i}_{\text{CF}} 17.0, \text{i}_{\text{CF}} 4.8, \text{ C2}), 146.3 (2C, ddd, \text{i}_{\text{CF}} 254.2, \text{i}_{\text{CF}} 11.6, \text{^3J}_{\text{CF}} 5.8, \text{ C1}); \delta_{\text{F}} (376 \text{ MHz, CDCl}_3) -134.8–-135.0 (2\text{F}, \text{ m}, \text{ F1}), -146.6–-146.8 (2\text{F}, \text{ m}, \text{ F2}); m/z (\text{EI}) 195 (M$^+$, 70 \%), 165 (M$^+$ -NO, 52 \%), 149 (M$^+$ -NO$_2$, 77 \%), 99 (100 \%); and as compared to literature data
Chapter 7.0: Experimental Section

1,2,4-trifluoro-5-nitrobenzene

Using 2,4,5-trifluoroaniline (1.49 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via vacuum distillation to yield 1,2,4-trifluoro-5-nitrobenzene (1.31 g, 74 %) as pale yellow oil; bp 78–79°C, 15 mbar (lit. value 80–81°C 15 mbar)\(^{188}\); \(\nu_{\text{max}}\) (cm\(^{-1}\)) 3081 (sp\(^{2}\) C-H), 1508 (Ar C-C), 1538 and 1346 (NO\(_2\)); \(\delta_{\text{H}}\) (400 MHz, CDCl\(_3\)) 7.21 (1H, td, \(^{3}J_{\text{HF}}\) 9.7, \(^{4}J_{\text{HF}}\) 6.3, H3), 8.01 (1H, dd, \(^{3}J_{\text{HF}}\) 16.5, \(^{4}J_{\text{HF}}\) 7.7, H6); \(\delta_{\text{C}}\) (126 MHz, CDCl\(_3\)) 108.2 (1C, dd, \(^{3}J_{\text{CF}}\) 26.3, \(^{4}J_{\text{CF}}\) 22.1, C3), 115.1 (1C, dt, \(^{3}J_{\text{CF}}\) 23.1, \(^{4}J_{\text{CF}}\) 2.3, C6), 133.0 (1C, s, C5), 145.9 (1C, dd, \(^{1}J_{\text{CF}}\) 252.0, \(^{3}J_{\text{CF}}\) 13.5, \(^{4}J_{\text{CF}}\) 4.0, C4), 152.1 (1C, ddd, \(^{1}J_{\text{CF}}\) 265.9, \(^{3}J_{\text{CF}}\) 16.5, \(^{4}J_{\text{CF}}\) 13.2, C1), 153.8 (1C, ddd, \(^{1}J_{\text{CF}}\) 263.2, \(^{3}J_{\text{CF}}\) 14.1, \(^{4}J_{\text{CF}}\) 11.0, C2); \(\delta_{\text{F}}\) (376 MHz, CDCl\(_3\)) -116.1–116.4 (1F, m, F4), -120.6–120.9 (1F, m, F1), -137.2–137.4 (1F, m, F2); \(m/z\) (EI) 178 (MH\(^{+}\), 4 %), 177 (M\(^{+}\) -NO, 20 %), 146 (M\(^{+}\) -NO\(_2\), 48 %), 119 (38 %), 81 (100 %); and as compared to literature data\(^{188}\).

![1,2,4-trifluoro-5-nitrobenzene](image)

2,4-difluoro-1-nitrobenzene

Using 2,4-difluoroaniline (1.29 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via vacuum distillation to yield 2,4-difluoro-1-nitrobenzene (1.10 g, 69 %) as a yellow oil; bp 73–74°C, 15 mbar (lit. value 85–86°C)\(^{189}\); \(\nu_{\text{max}}\) (cm\(^{-1}\)) 3092 (sp\(^{2}\) C-H), 1530 and 1345 (NO\(_2\)); \(\delta_{\text{H}}\) (126 MHz, CDCl\(_3\)) 106.5 (1C, dd, \(^{3}J_{\text{CF}}\) 26.6, \(^{3}J_{\text{CF}}\) 24.3, C3), 112.2 (1C dd, \(^{3}J_{\text{CF}}\) 23.1, \(^{4}J_{\text{CF}}\) 4.1, C5), 128.2 (1C dd, \(^{3}J_{\text{CF}}\) 11.0, \(^{3}J_{\text{CF}}\) 1.9, C6), 134.1 (1C s, C1), 156.7 (1C, dd, \(^{1}J_{\text{CF}}\) 267.8, \(^{3}J_{\text{CF}}\) 13.2, C4), 165.7 (1C, dd, \(^{1}J_{\text{CF}}\) 260.2, \(^{3}J_{\text{CF}}\) 11.2, C2); \(\delta_{\text{F}}\) (376 MHz, CDCl\(_3\)) -97.4–97.7 (1F, m, F2), -110.8–111.0 (1F, m, F4); \(m/z\) (EI) 159 (M\(^{+}\), 54 %), 129 (M\(^{+}\) -NO, 42 %), 113 (M\(^{+}\) -NO\(_2\), 61 %), 101 (45 %), 63 (100 %); and as compared to literature data\(^{190}\).
1,4-difluoro-2-nitrobenzene

\[
\begin{array}{c}
\text{NO}_2 \\
\text{F} \\
\text{F} \\
\end{array}
\]

Using 2,5-difluoroaniline (1.29 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via vacuum distillation to yield **1,4-difluoro-2-nitrobenzene** (0.94 g, 59 %) as a yellow oil; bp 74–75°C, 10 mbar (lit. value 74–75°C)\(^{191}\); \(\nu_{\text{max}}(\text{cm}^{-1})\) 3088 (sp\(^2\) C-H), 1534 and 1347 (NO\(_2\)), 1496 (Ar C-C); \(\delta_\text{H} \) (400 MHz, CDCl\(_3\)) 7.27–7.42 (2H, m, H5 and H6), 7.79 (1H, dd, \(^4\)\(J_{\text{HH}}\) 7.6, \(^3\)\(J_{\text{HH}}\) 3.1, H3); \(\delta_\text{C} \) (126 MHz, CDCl\(_3\)) 113.0 (1C, dd, \(^2\)\(J_{\text{CF}}\) 28.3, \(^3\)\(J_{\text{CF}}\) 2.5, C5), 119.8 (1C, dd, \(^2\)\(J_{\text{CF}}\) 23.5, \(^3\)\(J_{\text{CF}}\) 8.2, C6), 122.8 (1C, dd, \(^2\)\(J_{\text{CF}}\) 23.9, \(^3\)\(J_{\text{CF}}\) 8.5, C3), 137.2 (1C, s, C2), 151.9 (1C, dd, \(^1\)\(J_{\text{CF}}\) 263.3, \(^4\)\(J_{\text{CF}}\) 3.2, C4), 157.4 (1C, dd, \(^1\)\(J_{\text{CF}}\) 248.2, \(^4\)\(J_{\text{CF}}\) 3.1, C1); \(\delta_\text{F} \) (376 MHz, CDCl\(_3\)) -114.3–-14.4 (1F, m, F1), -122.4–122.6 (1F, m, F4); \(m/z \) (EI) 159 (M\(^+\),75 %), 129 (M\(^+\) -NO, 24 %), 113 (M\(^+\) -NO\(_2\), 92 %), 101 (71 %), 63 (100 %); and as compared to literature data\(^{192-193}\)

1,2,4,5-tetrafluoro-3-nitro-6-(trifluoromethyl)benzene

Using 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (1.42 g, 6.0 mmol, in 30 mL MeCN) as the amino benzene and 45 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 180 minutes. The crude product was purified via vacuum distillation to yield **1,2,4,5-tetrafluoro-3-nitro-6-(trifluoromethyl)benzene** (0.98 g, 62 %) as yellow oil; bp 68–69°C, 5.0 mbar (lit. value 74–75°C)\(^{187}\); \(\nu_{\text{max}}(\text{cm}^{-1})\) 1560 and 1358 (NO\(_2\)), 1500 (Ar C-C); \(\delta_\text{C} \) (126 MHz, CDCl\(_3\)) 113.5 (1C, qt, \(^3\)\(J_{\text{CF}}\) 35.9, \(^2\)\(J_{\text{CF}}\) 12.8, C6), 120.2 (1C, qm, \(^1\)\(J_{\text{CF}}\) 277.2, CF\(_3\)), 133.0 (1C, tm, \(^2\)\(J_{\text{CF}}\) 13.7, C3), 140.5 (2C, ddd, \(^1\)\(J_{\text{CF}}\) 265.2, \(^2\)\(J_{\text{CF}}\) 16.3, \(^3\)\(J_{\text{CF}}\) 6.2, C1), 144.8 (2C, dd, \(^1\)\(J_{\text{CF}}\) 267.8, \(^2\)\(J_{\text{CF}}\) 12.7, C2); \(\delta_\text{F} \) (376 MHz, CDCl\(_3\)) -57.0 (3F, t, \(^3\)\(J_{\text{FF}}\) 22.2, CF\(_3\)), -135.6 (2F, dq, \(^2\)\(J_{\text{FF}}\) 22.1, \(^3\)\(J_{\text{FF}}\) 10.0, F1), -144.1–144.3 (2F, m, F2); \(m/z \) (EI) 263 (M\(^+\), 76 %), 233 (M\(^+\) -NO, 4 %), 217 (M\(^+\) -NO\(_2\), 74 %), 167 (46 %); and as compared to literature data\(^{187}\)
2,3,5,6-tetrafluoro-4-nitrobenzonitrile

Using 4-amino-2,3,5,6-tetrafluorobenzonitrile (2.11 g, 10.0 mmol, in 50 mL MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via silica flash column chromatography (using a mixture of hexane : ethyl acetate 9:1 as the eluent) to yield 2,3,5,6-tetrafluoro-4-nitrobenzonitrile (1.54 g, 70 %) as colourless crystals; mp 76–77°C (lit. value 79–81°C)\(^{193}\); \(\nu_{max} (\text{cm}^{-1})\) 1553 and 1346 (NO\(_2\)), 1493 (Ar C-C); \(\delta_{C}\) (126 MHz, CDCl\(_3\)) 98.2 (1C, tt, \(^2\)J\(_{CF}\) 17.0, \(^1\)J\(_{CF}\) 1.9, C1), 105.9 (1C, t, \(^3\)J\(_{CF}\) 3.4, -CN), 134.1 (1C, t, \(^2\)J\(_{CF}\) 13.4, C4), 140.3 (2C, ddd, \(^1\)J\(_{CF}\) 266.9, \(^2\)J\(_{CF}\) 14.9, \(^3\)J\(_{CF}\) 5.9, C2), 147.8 (2C, ddm, \(^1\)J\(_{CF}\) 266.8, \(^2\)J\(_{CF}\) 11.7, C3); \(\delta_{F}\) (376 MHz, CDCl\(_3\)) -126.9–127.0 (2F, m, F3), -142.6–142.7 (2F, m, F2); \(m/z\) (EI) 220 (M\(^+\), 4 %), 190 (M\(^+\)-NO, 2 %), 174 (M\(^+\)-NO\(_2\), 14 %), 124 (44 %); and as compared to literature data\(^{193}\)

1-bromo-2,3,5,6-tetrafluoro-4-nitrobenzene

Using 4-bromo-2,3,5,6-tetrafluoroaniline (2.44 g, 10.0 mmol, in 50 mL of MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via silica flash column chromatography (using hexane : ethyl acetate 4:1 as the eluent) to yield 1-bromo-2,3,5,6-tetrafluoro-4-nitrobenzene (1.40 g, 51%) as yellow crystals; mp 53–54°C (lit. value 50–51°C)\(^{195}\); \(\nu_{max} (\text{cm}^{-1})\) 1548 and 1349 (NO\(_2\)), 1489 (Ar C-C); \(\delta_{C}\) (126 MHz, CDCl\(_3\)) 105.8 (1C, t, \(^2\)J\(_{CF}\) 22.3, C1), 130.0 (1C, t, \(^2\)J\(_{CF}\) 14.0, C4), 140.6 (2C, ddd, \(^1\)J\(_{CF}\) 270.8, \(^2\)J\(_{CF}\) 21.5, \(^3\)J\(_{CF}\) 2.2, C2), 145.4 (2C, ddm, \(^1\)J\(_{CF}\) 255.6, \(^2\)J\(_{CF}\) 13.8, C3); \(\delta_{F}\) (376 MHz, CDCl\(_3\)) -128.0–128.2 (2F, m, F3), -144.9–145.0 (2F, m, F2); \(m/z\) (EI) 275 (M\(^+\), 1 × \(^79\)Br, 1 × \(^81\)Br, 32 %), 245 (M\(^+\)-NO, 1 × \(^79\)Br, 1 × \(^81\)Br, 24 %), 228 (M\(^+\)-NO\(_2\), 1 × \(^79\)Br, 1 × \(^81\)Br, 18 %), 148 (100 %); and as compared to literature data\(^{195}\)
1,3-dibromo-2,4,5-trifluoro-6-nitrobenzene

Using 1,3-dibromo-2,4,5,6-tetrafluorobenzene (3.1 g, 10.0 mmol, in 50 mL of MeCN) as the amino benzene and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via vacuum distillation to yield 1,3-dibromo-2,4,5,6-tetrafluorobenzene (2.08 g, 62 %) as a yellow oil; bp 84–85°C, 0 mbar; Found: C 20.83, H 0.0, N 4.0 C

2,3,5,6-tetrafluoro-4-nitropyridine

Using 2,3,5,6-tetrafluoropyridin-4-amine (1.66 g, 10.0 mmol, in 50 mL MeCN) as the amino pyridine and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. The crude product was purified via distillation to yield 2,3,5,6-tetrafluoro-4-nitropyridine (1.53g, 78 %) as yellow oil; bp 152–154°C (lit. value 152–153°C)106; δ_C (126 MHz, CDCl_3) 135.1 (2C, dddd, J_{CF} 275.7, J_{CF} 34.5, J_{CF} 14.0, J_{CF} 4.2, C2), 138.4–139.2 (1C, m, C4), 143.9 (2F, dm, J_{CF} 251.7, C3); δ_F (376 MHz, CDCl_3) -83.1 (2F, t, J_{FF} 15.8, F2), -146.5 (2F, quintet, J_{FF} 15.8, F3); m/z (EI) 196 (M⁺, 78 %), 150 (M⁺-NO₂, 36 %) and as compared to literature data106
2,3,6-trifluoro-5-nitro-4-(phenylsulfonyl)pyridine

Using 2,5,6-trifluoro-4-(phenylsulfonyl)pyridin-3-amine (2.88 g, 10.0 mmol, in 50 mL MeCN) as the amino pyridine and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. Work-up yielded 2,3,6-trifluoro-5-nitro-4-(phenylsulfonyl)pyridine (3.00 g, 95 %) as a yellow solid with no purification required; mp 130–131°C; (Found: C 40.40, H 1.72, N 8.31; C_11H_9F_3N_2O_4 Requires: C 41.52, H 1.58, F 17.91, N 8.80, O 20.11 %); νmax (cm⁻¹) 1356 and 1557 (NO₂), 1164, 1450; δH (400 MHz, CDCl₃) 7.70 (2H, t, 3JHH 7.8, H3'), 7.83 (1H, t, 3JHH 7.8, H4'), 8.13 (2H, d, 3JHH 8.4, H2'); δC (126 MHz, CDCl₃) 127.8–128.2 (1C, m, C5), 129.16 (2C, s, C2'), 130.1 (2C, s, C3'), 136.3 (1C, s, C4'), 137.3 (1C, s, C1' or C4), 137.4 (1C, s, C4 or C1'), 139.5 (1C, ddd, 1JCF 272.6, 3JCF 27.7, 4JCF 6.9, C2), 146.8 (1C, ddd, 1JCF 254.9, 4JCF 12.2, 5JCF 3.8, C6), 149.4 (1C, ddd, 1JCF 259.8, 2JCF 18.3, 3JCF 12.6, C1); δF (376 MHz, CDCl₃) -73.23 (1F, dd, 4JFF 22.7, 5JFF 10.7, F6), -76.85 (1F, dd, 3JFF 28.8, 5JFF 10.7, F3), -134.17 (1F, dd, 3JFF 28.8, 4JFF 23.1, F2), m/z (ASAP) 319 (MH⁺, 100 %), 242 (MH⁺-Ph, 18 %)

2,3,5-trifluoro-6-nitro-4-(phenylsulfonyl)pyridine

Using 3,5,6-trifluoro-4-(phenylsulfonyl)pyridin-2-amine (2.88 g, 10.0 mmol, in 50 mL MeCN) as the amino pyridine and 75 mL of the aqueous acetonitrile mixture, the reaction was allowed to run continuously for 300 minutes. Work-up yielded 2,3,5-trifluoro-6-nitro-4-(phenylsulfonyl)pyridine (3.00 g, 95 %) as a yellow solid with no purification required; mp 112–114°C; (Found: C 40.96, H 1.74, N, 8.38; C_11H_9F_3N_2O_4 Requires: C 41.52, H 1.58, F 17.91, N 8.80, O 20.11 %); νmax (cm⁻¹) 1355 and 1557 (NO₂), 1164, 1230, 1459; δH (400 MHz, CDCl₃) 7.69 (2H, t, 3JHH 7.9, H3'), 7.81 (1H, t, 3JHH 7.4, H4'), 8.13 (2H, d, 3JHH 7.9, H2'); δC (126 MHz, CDCl₃) 128.7 (2C, s, C2'), 130.1 (2C, s, C3'), 133.9 (1C, ddd, 3JCF 17.1, 2JCF, 11.7, C3), 136.1
(1C, s, C4'), 136.6–137.4 (1C, m, C6), 138.6 (1C, s, C1'), 145.3 (1C, dm, \(J_{\text{CF}} 256.6 \), C2 or C3 or C5), 145.4 (1C, dm, \(J_{\text{CF}} 255.2 \), C2 or C3 or C5), 145.9 (1C, dm, \(J_{\text{CF}} 285.2 \), C2 or C3 or C5); \(\delta_F \) (376 MHz, CDCl\(_3\)) -80.18 (1F, dd, \(J_{\text{FF}} 31.2 \), \(J_{\text{FF}} 24.0 \), F3), -118.7 (1F, dd, \(J_{\text{FF}} 23.9 \), \(J_{\text{FF}} 4.7 \), F5), -119.1 (1F, dd, \(J_{\text{FF}} 31.2 \), \(J_{\text{FF}} 4.6 \), F2), m/z (ASAP) 319 (MH\(^+\), 100 %)

7.3.4 Experimental for Difluoramine Compounds

![Image of difluoramine molecule]

2,3,5,6-tetrafluoro-4-nitro-1-difluoramine

Under a calibrated flow of F\(_2\) (10 % in N\(_2\)) of 6.0 mmol h\(^{-1}\), MeCN was added via inlet 1 at a rate of 10.0 mL h\(^{-1}\), and 2,3,5,6-tetrafluoro-4-nitroaniline (0.21 g, 1.0 mmol, in 5.0 mL DCM) was added via inlet 2 at a rate of 10.0 mL h\(^{-1}\) (2.0 mmol h\(^{-1}\)), and the reactants were allowed to run continuously over a period of 30 minutes. All liquid products were collected in a vessel containing distilled water (25 mL), whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using 3 × 25 mL DCM, and the organic extract was then dried over MgSO\(_4\), filtered, and concentrated under reduced pressure to yield the crude product as an orange oil. TLC and fluorine NMR indicated no starting material remained. Purification via flash column chromatography (using a mixture of hexane : DCM 4:1 as the eluent) yielded **2,3,5,6-tetrafluoro-4-nitro-1-difluoramine** as a yellow oil (0.16 g, 65 %); \(\delta_C \) (126 MHz, CDCl\(_3\)) 128.3 (1C, t, \(J_{\text{CF}} 9.7 \), C4), 133.0–133.4 (1C, m, C1), 140.4 (2C, ddd, \(J_{\text{CF}} 266.0 \), \(J_{\text{CF}} 14.8 \), \(J_{\text{CF}} 6.1 \), C3), 142.9 (2C, ddd, \(J_{\text{CF}} 270.0 \), \(J_{\text{CF}} 12.9 \), \(J_{\text{CF}} 6.8 \), C2); \(\delta_F \) (376 MHz, CDCl\(_3\)) 64.2 (2F, t, \(J_{\text{FF}} 10.0 \), NF\(_2\)), -138.8–-139.3 (2F, m, F2), -143.8–-144.1 (2F, m, F3); m/z (ASAP) 247 (MH\(^+\), 25 %), 217 (100 %), 194 (M\(^+\)-NF\(_2\), 33 %), 84.0 (81 %)

169
Chapter 7.0: Experimental Section

2,3,4,5-tetrafluoro-6-nitro-1-difluoramine

Under a calibrated flow of F₂ (10 % in N₂) of 6.0 mmol h⁻¹, MeCN was added via inlet 1 at a rate of 10.0 mL h⁻¹, and 2,3,4,5-tetrafluoro-6-nitroaniline (0.63 g, 3.0 mmol, in 15.0 mL DCM) was added via inlet 2 at a rate of 10.0 mL h⁻¹ (2.0 mmol h⁻¹), and the reactants were allowed to run continuously over a period of 90 minutes. All liquid products were collected in a vessel containing H₂O (40 mL), whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using 5 × 40 mL DCM. The organic extract was then dried over MgSO₄, filtered, and concentrated under reduced pressure to yield the crude product as an orange oil. TLC and fluorine NMR indicated no starting material remained. Purification via flash column chromatography (using a mixture of hexane : DCM 2:1 as the eluent) yielded **2,3,4,5-tetrafluoro-6-nitro-1-difluoramine** as a pale yellow oil (0.44 g, 59 %); δC (126 MHz, CDCl₃) 124.2–124.5 (1C, m, C6), 132.1–132.9 (1C, m, C1), 140.3 (1C, ddd, J₁CF 264.5, J₁CF 13.8, J₁CF 5.7, C2/5), 143.4 (1C, dt, J₁CF 265.0, C 3/4), 143.7 (1C, dm, 270.0, C2/5), 144.4 (1C, dt, J₁CF 268.5, C 3/4); δF (376 MHz, CDCl₃) 64.2 (2F, t, J₁FF 10.0, NF₂), -136.1--136.9 (1F, m, F2/5), -141.6 (1F, tm, J₁FF 20.6, F3/4) -145.2 (1F, ddd, J₁FF 21.7, J₁FF 9.2, J₁FF 5.4, F5/2), -145.6 (1F, td, J₁FF 20.5, J₁FF 5.3, C4/3); m/z (ASAP) 247 (MH⁺, 27 %), 217 (M⁻ - NO, 100 %), 194 (M⁺-NF₂, 44 %), 84.0 (70 %)

![2,3,4,5-tetrafluoro-6-nitro-1-difluoramine](image)

4-(difluoroamino)-2,3,5,6-tetrafluorobenzonitrile

Under a calibrated flow of F₂ (10 % in N₂) of 6.0 mmol h⁻¹, MeCN was added via inlet 1 at a rate of 10.0 mL h⁻¹, and 4-amino-2,3,5,6-tetrafluorobenzonitrile (0.283 g, 1.50 mmol, in 15.0 mL DCM) was added via inlet 2 at a rate of 10.0 mL h⁻¹ (1.0 mmol h⁻¹), and the reactants were allowed to run continuously over a period of 90 minutes. All liquid products were collected in a vessel containing H₂O (40 mL), whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using 3 × 40 mL DCM. The organic extract
was then dried over MgSO₄, filtered, and concentrated under reduced pressure to yield the crude product as an orange oil. TLC and fluorine NMR indicated no starting material remained. Purification via flash column chromatography (using a mixture of hexane : DCM 2:1 as the eluent) yielded 4-(difluoroamino)-2,3,5,6-tetrafluorobenzonitrile as a clear oil (0.24 g, 71 %); δₒ (126 MHz, CDCl₃) 98.9 (1C, tt, ²J_FF 17.1, ³J_CF 2.1, C1), 106.1 (1C, s, CN), 130.1 (1C, t, ²J_CF 8.9, C4), 142.5 (2C, dddd, ¹J_CF 267.9, ³J_CF 14.3, ⁴J_CF 8.1 C2), 147.7 (2C, ddm, ¹J_CF 268.0, ²J_CF 12.6, C3); δ₋₁ (376 MHz, CDCl₃) 63.8 (2F, t, ⁴J_FF 10.3, NF₂), -129.3 (2F, ddm, ³J_FF 20.8, ⁴J_FF 10.4, F3), -140.2 (2F, ddm, ³J_FF 20.3, ⁴J_FF 10.3, F2); m/z (ASAP) 227 (MH⁺, 5 %), 207 (100 %), 191 (40 %), 160, (17 %)

2,3,5,6-tetrafluoro-4-(trifluoromethyl)difluoramine

Under a calibrated flow of F₂ (10 % in N₂) of 6.0 mmol h⁻¹, MeCN was added via inlet 1 at a rate of 10.0 mL h⁻¹, and 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (0.06 g, 0.25 mmol, in 2.5 mL DCM) was added via inlet 2 at a rate of 5.0 mL h⁻¹ (0.5 mmol h⁻¹), and the reactants were allowed to run continuously over a period of 30 minutes. All liquid products were collected in a vessel containing H₂O (25 mL), whilst excess gasses were vented through a soda lime scrubber. The reactants were extracted from the aqueous layer using 3 × 25 mL DCM. The organic extract was then dried over MgSO₄, filtered, and concentrated under reduced pressure to yield the crude product as an orange oil. TLC and fluorine NMR indicated no starting material remained. Purification via flash column chromatography (using a mixture of hexane : DCM 2:1 as the eluent) yielded 2,3,5,6-tetrafluoro-4-(trifluoromethyl)difluoramine as a clear oil (0.04 g, 54 %); δ_c (126 MHz, CDCl₃) 95.1 (1C, tt, ²J_CF 17.0, ³J_CF 3.8, C1), 103.1 (1C, m, CF₃), 129.0 (1C, t, ²J_CF 9.4, C4), 143.8 (2C, ddd, ¹J_CF 262.0, ²J_CF 20.5, ³J_CF 14.0, C2), 147.7 (2C, ddm, ¹J_CF 268.0, ²J_CF 12.3, C3); δ₋₁ (376 MHz, CDCl₃) 64.0 (2F, t, ⁴J_FF 10.2, NF₂), -57.1 (3F, t, ²J_FF 22.3, CF₃), -137.7 (2F, ddm, ³J_FF 22.1, ⁴J_FF 9.4, F2), -141.8 (2F, ddm, ³J_FF 19.3, ⁴J_FF 9.7, F3); m/z (ASAP) 270 (MH⁺, 18 %), 217 (M⁺ -NF₂, 53 %)
7.4 Experimental for Chapter 5.0

7.4.1 Aniline Synthesis

4-amino-2,3,5,6-tetrafluorobenzonitrile

\[
\begin{array}{c}
\text{F} \\
\text{NH}_2 \\
\text{F} \\
\text{F} \\
\text{F} \\
\text{CN}
\end{array}
\]

\[4\text{-amino-2,3,5,6-tetrafluorobenzonitrile}\] (4.41 g, 74 %) as white crystals; mp 95–96 °C (lit. value 95–96°C)\(^\text{197}\); ν\(_{\text{max}}\) (cm\(^{-1}\)) 3228, 3358 and 3476 (NH\(_2\)), 2236 (CN), 1168, 1315, 1506 and 1640; δ\(_\text{H}\) (400 MHz, CDCl\(_3\)) 4.64 (2H, b, N\(_\text{H}_2\)); δ\(_\text{C}\) (176 MHz, CDCl\(_3\)) 80.4 (1C, tm, \(^2\)J\(_\text{CF}\) 17.6, C4), 109.0 (1C, t, \(^3\)J\(_\text{CF}\) 3.6, -CN); 132.6 (1C, tt, \(^2\)J\(_\text{CF}\) 13.4, \(^3\)J\(_\text{CF}\) 4.6, C1), 135.6 (2C, dddd, \(^1\)J\(_\text{CF}\) 242.0, \(^2\)J\(_\text{CF}\) 14.4, \(^3\)J\(_\text{CF}\) 6.0, \(^4\)J\(_\text{CF}\) 3.9, C3), 147.9 (2C, dddd, \(^1\)J\(_\text{CF}\) 256.4, \(^2\)J\(_\text{CF}\) 10.0, \(^3\)J\(_\text{CF}\) 5.8, \(^4\)J\(_\text{CF}\) 3.7, C2); δ\(_\text{F}\) (376 MHz, CDCl\(_3\)) -135.5--135.6 (2F, m, F2), -160.7--160.9 (2F, m, F3); m/z (EI) 190 (MH\(^+\), 100 %), 162 (M - CN, 20 %), 143 (24 %), 124 (18 %); and as compared to literature data\(^\text{198}\)
2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline

Octaflorotoluene (3.0 g, 12.72 mmol) was weighed into a Radleys Flask (100 mL), which was then sealed and purged with argon. To the flask, ammonium hydroxide (4.0 mL, 40 mmol) and MeCN (10 mL) were added, and the solution was refluxed for 17 hours. After this time, fluorine NMR indicated that approximately 75 % of the starting material still remained, so a further 8.0 mL of ammonium hydroxide was added (in increments of 2.0 mL) and refluxed for a further 48 hours until both fluorine NMR, and TLC indicated that no starting material remained. The reaction mixture was quenched with 40 mL water and extracted with 3 × 40 mL DCM. The organic extract was then washed with 120 mL water and 120 mL of brine, dried over MgSO₄ and concentrated under reduced pressure to give the crude product. Purification via silica flash column chromatography (using a mixture of hexane : ethyl acetate 4:1 as the eluent) yielded 2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (1.43 g, 48 %) as a clear orange oil; \(\nu_{\text{max}} \) (cm\(^{-1}\)) 3600 and 3428 (NH₂), 1127, 1330, 1506 and 1654; \(\delta_{\text{H}} \) (400 MHz, CDCl₃) 4.38 (2H, b, NH₂); \(\delta_{\text{C}} \) (176 MHz, CDCl₃) 97.0 (1C, qt, \(^2\text{J}_{\text{CF}} \) 34.8, \(^2\text{J}_{\text{CF}} \) 21.6, C4), 121.8 (1C, qm, \(^1\text{J}_{\text{CF}} \) 272.7, CF₃), 130.2 (1C, tt, \(^3\text{J}_{\text{CF}} \) 13.9, \(^3\text{J}_{\text{CF}} \) 4.4, C1), 136.3 (2C, ddm, \(^1\text{J}_{\text{CF}} \) 240.0, \(^2\text{J}_{\text{CF}} \) 16.0, C3), 144.9, (2C, dm, \(^1\text{J}_{\text{CF}} \) 255.3, C2); \(\delta_{\text{F}} \) (376 MHz, CDCl₃) -55.3 (3F, t, \(^4\text{J}_{\text{FF}} \) 21.1, CF₃); -144.0--144.3 (2F, m, F3), -162.0--162.2 (2F, m, F2); \text{m/z} (EI) 234 (MH⁺, 4 %), 233 (M⁺, 42 %), 214 (82 %), 183 (64 %), 117 (34 %), 69 (100 %); and as compared to literature data¹⁹⁹

4-bromo-2,3,5,6-tetrafluoroaniline

1-bromo-2,3,4,5,6-pentafluorobenzene (3.0 g, 12.0 mmol) was weighed into a clean, dry microwave vial (10-20 mL), which was then sealed and purged with argon. NH₄OH (3.6 mL, 36 mmol) and then MeCN (10 mL) were then added and the vial irradiated at 160°C for 2 hours. After this time fluorine NMR indicated a 100 % conversion of starting material. The reaction
mixture was quenched with 40 mL water and extracted with 3 × 40 mL DCM. The organic extract was then washed with 120 mL water and 120 mL of brine, dried over MgSO₄ and concentrated under reduced pressure to give the crude product. Purification via silica flash column chromatography (using a mixture of hexane : DCM 3:1 as the eluent) yielded 4-bromo-2,3,5,6-tetrafluoroaniline (2.2 g, 75 %) as a white solid; mp 59–61ºC (lit. value 59–61ºC)²⁰⁰, νₘₐₓ (cm⁻¹) 3381 and 3471 (NH₂), 835, 922, 1100, 1172, 1493, 1648; δ_H (400 MHz, CDCl₃) 4.08 (2H, b, NH₂); δ_C (176 MHz, CDCl₃) 85.5 (1C, t, J_CF 23.0, C1), 125.9 (1C, tt, J_CF 14.2, J_CF 3.4, C4), 136.8 (2C, dm, J_CF 241.3, C2), 144.9 (2C, ddt, J_CF 243.7, J_CF 13.1, J_CF 4.5, C3); δ_F (376 MHz, CDCl₃) -136.2––136.4 (2F, m, F3), -160.0––160.2 (2F, m, F2); m/z (EI) 245 (MH⁺, 100 %), 164 (MH⁺ - Br, 83 %), 144 (66 %), 138 (100 %); and as compared to literature data²⁰⁰

2,4-dibromo-3,5,6-trifluoroaniline

1,3-dibromo-2,4,5,6-tetrafluorobenzene (3.0 g, 10.0 mmol) was weighed into a clean, dry microwave vial (10-20 mL), which was then sealed and purged with argon. NH₄OH (3.0 mL, 30 mmol) and then MeCN (10 mL) were then added and the vial irradiated at 170ºC for 2 hours. After this time fluorine NMR indicated a 95 % conversion of starting material. The reaction mixture was quenched with 40 mL water and extracted with 3 × 40 mL DCM. The organic extract was then washed with 120 mL water and 120 mL of brine, dried over MgSO₄ and concentrated under reduced pressure to give the crude product. Purification via silica flash column chromatography (using a mixture of hexane : DCM 2.5:1.5 as the eluent) yielded 2,4-dibromo-3,5,6-trifluoroaniline as white crystals (2.50 g, 82 %) mp 36–38ºC; (Found: C 23.85, H 0.61, N 4.49 ; C₆Br₂F₃N₂H₂ Requires: C 23.64, H 0.66, Br 52.41, F 18.69, N 4.59 %); νₘₐₓ (cm⁻¹) 3494 and 3389 (NH₂), 868, 1454, 1482 and 1626; δ_H (400 MHz, CDCl₃) 4.46 (2H, b, NH₂); δ_C (176 MHz, CDCl₃) 85.3 (1C, dd, J_CF 27.9, J_CF 22.4, C4), 91.6 (1C, ddd, J_CF 26.9, J_CF 3.8, J_CF 2.8, C1), 134.7 (1C, dt, J_CF 12.4, J_CF 4.1, C4), 136.2 (1C, ddd, J_CF 242.7, J_CF 16.4, J_CF 4.1, C6), 147.5 (1C, ddd, J_CF 246.3, J_CF 13.1, J_CF 5.8, C5), 152.7 (1C, dd, J_CF 241.2, J_CF 4.2, C3); δ_F (376 MHz, CDCl₃) -103.9 (1F, d, J_FF 8.3, F3); -130.6 (1F, d, J_FF 21.1, F6); -158.7 (1F, dd, J_FF 21.1, J_FF 8.3, F5); m/z (EI) 305 (M⁺, 1 × ⁷⁹Br, 1 × ⁸¹Br, 100 %), 226 (M⁺ - ⁷⁹Br, 20 %), 224 (M⁺ - ⁸¹Br, 26 %), 145 (M⁺ - 2Br [1 × ⁷⁹Br, 1 × ⁸¹Br], 37 %)
2,3,5,6-tetrafluoro-4-nitroaniline

and 2,4,5-trifluoro-6-nitrobenzene-1,3-diamine

and 2,3,4,5-tetrafluoro-6-nitroaniline

1,2,3,4,5-pentafluoro-6-nitrobenzene (2.3 g, 10.8 mmol) was added to a clean, dry Radleys Flask (100 mL), which was then sealed and purged with argon. To the flask, ammonium hydroxide (1.1 mL, 11 mmol) and THF (20 mL) were added, and the reaction mixture was mixed at room temperature for 20 hours. After this time, fluorine NMR indicated that approximately 72 % of the starting material still remained, so a further 1.0 mL of ammonium hydroxide was added and mixed at room temperature for a further 8 hours until both fluorine NMR, and TLC indicated that no starting material remained. The reaction mixture was quenched with 40 mL water and extracted with 3 × 40 mL DCM. The organic extract was then washed with 150 mL water and 150 mL of brine, dried over MgSO₄ and concentrated under reduced pressure to give the crude product as a dark red oil. This was purified via silica flash column chromatography (using a mixture of hexane : ethyl acetate 2:1 as the eluent) to yield 2,3,5,6-tetrafluoro-4-nitroaniline (0.37 g, 15 %) as yellow crystals; mp 105–106 °C (lit. value 106–108°C)²⁰¹; δH (400 MHz, CDCl₃) 4.62 (2H, b, NH₂); δC (176 MHz, CDCl₃) 119.6–120.2 (1C, m, C1), 131.2 (1C, tt, 2JCF 13.9, 3JCF 4.1, C4), 135.3 (2C, ddm, 1JCF 243.6, 2JCF 14.2, C3), 142.1 (2C, dddd, 1JCF 260.6, 2JCF 13.4, 3JCF 4.0, 4JCF 2.6, C2); δF (376 MHz, CDCl₃) -147.6--147.8 (2F, m, F2); -161.6--161.8 (2F, m, F3); m/z (El) 211 (MH⁺, 4 %), 210 (M⁺, 80 %), 180 (M⁺ - NO, 67 %), 164 (M⁺ - NO₂, 57 %), 144 (42 %), 137 (100 %); and 2,3,4,5-tetrafluoro-6-nitroaniline (0.85 g, 37 %) as red crystals; mp 45–46 °C (lit. value 43–44°C)²⁰²; δH (400 MHz, CDCl₃) 5.87 (2H, b, NH₂); δC (176 MHz, CDCl₃) 120.7–121.1 (1C, m, C6), 132.12 (1C, dddd, 1JCF 245.6, 2JCF 16.5, 3JCF 13.7, 4JCF 2.9, C2), 132.3 (1C, ddd, 2JCF 13.2, 3JCF 3.8, 4JCF 1.9, C1), 136.2 (1C, dddd, 1JCF 243.2, 2JCF 12.5, 3JCF 5.5, 4JCF 2.3, C5), 143.7 (1C, ddt, 1JCF 262.4, 2JCF 12.8, 3JCF 4.7,
C3 or C4), 144.2 (1C, dtd, $^{1}J_{CF}$ 260.2, $^{2}J_{CF}$ 13.9, $^{3}J_{CF}$ 4.6, C4 or C3); δ_{F} (376 MHz, CDCl$_3$) - 145.5 (1F, dt, $^{3}J_{FF}$ 22.6, $^{4}J_{FF}$ 8.9, F3 or F4), -147.5 (1F, td, $^{3}J_{FF}$ 21.4, $^{4}J_{FF}$ 8.9, F3 or F4), 160.5 (1F, ddd, $^{3}J_{FF}$ 20.6, $^{4}J_{FF}$ 8.9, $^{5}J_{FF}$ 5.9, F2 or F5), (1F, td, $^{3}J_{FF}$ 22.4, $^{4}J_{FF}$ 5.8, F2 or F5); m/z (EI) 208 (MH$^+$, 5 %), 207 (M$^+$ - NO, 50 %), 177 (M$^+$ - NO$_2$, 58 %), 161 (M$^+$ - NO$_3$, 58 %), 134 (100 %); and 2,4,5-trifluoro-6-nitrobenzene-1,3-diamine (0.42 g, 19 %) as yellow crystals; mp 145–147 ºC (lit. value 147–148ºC)201; δ_{H} (400 MHz, CDCl$_3$) 4.48 (2H, b, C3-N); δ_{C} (176 MHz, CDCl$_3$) 113.6–113.9 (1C, m, C3), 131.8 (1C, ddd, $^{1}J_{CF}$ 34.8, $^{2}J_{CF}$ 14.0, C2); δ_{F} (376 MHz, CDCl$_3$) -93.81 (2F, s, F2), -164.6--164.9 (2F, m, F3); m/z (EI) 166 (M$^+$, 100) and as compared to literature data204

7.4.2 Amino Pyridine Synthesis

2,3,5,6-tetrafluoropyridin-4-amine

![2,3,5,6-tetrafluoropyridin-4-amine](image)

Pentafluoropyridine (4.0 g, 23.7 mmol) was added to a 100 mL Radleys flask, which was then sealed and purged with argon. Ammonium hydroxide (2.3 mL, 23.0 mmol) and MeCN (20 mL) were added, and the solution was stirred at room temperature for 17 hours. After this time, TLC and fluorine NMR indicated that no more starting material remained. The reaction mixture was quenched with 40 mL of distilled water, and extracted with 3 × 40 mL DCM. The organic extracts were added together and washed with 120 mL distilled water and then again with 120 mL brine, then dried over MgSO$_4$ and concentrated under reduced pressure to give the crude product as white crystals. Purification via re-crystallization from DCM yielded 2,3,5,6-tetrafluoropyridin-4-amine as white crystals (3.34 g, 85 %); mp 83.0–83.5ºC (lit. value 83–84ºC)204; δ_{H} (400 MHz, CDCl$_3$) 4.72 (2H, b, NH$_2$); δ_{C} (176 MHz, CDCl$_3$) 131.9 (2C, dd, $^{1}J_{CF}$ 242.3, $^{2}J_{CF}$ 34.8, C3), 137.6 (1C, m, C4), 144.0 (2C, dt, $^{1}J_{CF}$ 235.3, $^{2}J_{CF}$ 14.0, C2); δ_{F} (376 MHz, CDCl$_3$) -93.81 (2F, s, F2), -164.6--164.9 (2F, m, F3); m/z (EI) 166 (M$^+$, 100) and as compared to literature data204
Chapter 7.0: Experimental Section

2,3,5,6-tetrafluoro-4-(phenylsulfonyl)pyridine

Sodium phenylsulfinate acid (7.6 g, 45.0 mmol) was weighed into a 100 mL Radleys flask, which was then sealed and purged with argon. To the flask, pentafluoropyridine (2.6 mL, 47.4 mmol) and DMF (40 mL) were added, and the solution was refluxed for 17 hours. After this time, TLC and fluorine NMR indicated that no more starting material remained. The reaction mixture was cooled to room temperature, poured onto cold water (250 mL) and the precipitated solid was filtered off to give the crude product as an off white solid. Purification via re-crystallization from ethyl acetate gave 2,3,5,6-tetrafluoro-4-(phenylsulfonyl)pyridine as white crystals (11.5g, 88 %); mp 148–149°C (lit. value 148–149°C)\(^{204}\); \(\delta\)\(_\text{H}\) (400 MHz, CDCl\(_3\)) 7.67 (2H, tm, \(^3\)J\(_\text{HH}\) 7.8, C3’), 7.79 (1H, tt, \(^3\)J\(_\text{HH}\) 7.8, \(^4\)J\(_\text{HH}\) 1.8, C4’), 8.13 (2H, d, \(^3\)J\(_\text{HH}\) 7.4, C2’); \(\delta\)\(_\text{C}\) (176 MHz, CDCl\(_3\)) 128.7 (2C, s, C3’), 130.2 (2C, s, C2’), 133.3 (1C, t, \(^2\)J\(_\text{CF}\) 12.7, C4), 135.9 (1C, s, C4’), 138.7 (2C, dm, \(^1\)J\(_\text{CF}\) 272.4, C2), 139.4 (1C, s, C1’), 144.2 (2C, dm, \(^1\)J\(_\text{CF}\) 251.6, C3); \(\delta\)\(_\text{F}\) (376 MHz, CDCl\(_3\)) -86.1–-86.4 (2F, m, C2), -137.4–-137.6 (2F, m, C3); m/z (EI) 291 (M\(^+\), 71 %), 141 (M\(^+\) -C\(_2\)F\(_3\)N, 84 %), 77 (M\(^+\) - C\(_3\)F\(_4\)NSO\(_2\), 100 %); and as compared to literature data\(^{204}\).
3,5,6-trifluoro-4-(phenylsulfonyl)pyridin-2-amine

and 2,5,6-trifluoro-4-(phenylsulfonyl)pyridin-3-amine

2,3,5,6-tetrafluoro-4-(phenylsulfonyl)pyridine (3.0 g, 10.3 mmol) was weighed into a 100 mL Radleys flask, which was then sealed and purged with argon. Ammonium hydroxide (2.5 mL, 25.0 mmol) and MeCN (20 mL) were added, and the solution was refuxed for 24 hours. After this time, TLC and fluorine NMR indicated that no more starting material remained. The reaction mixture was quenched with 40 mL of distilled water, and extracted with 3 × 40 mL DCM. The organic extracts were added together and washed with 120 mL distilled water and then again with 120 mL brine, then dried over MgSO₄ and concentrated under reduced pressure to give the crude product as yellow crystals. Purification via silica flash column chromatography (using a mixture of hexane : ethyl acetate 2:1 as the eluent) yielded 3,5,6-trifluoro-4-(phenylsulfonyl)pyridin-3-amine as a yellow solid (1.26 g, 44 %); mp 102–104ºC; νmax (cm⁻¹) 3327 and 3476 (NH), 1160, 1248, 1498; δH (400 MHz, CDCl₃) 5.65 (2H, b, NH₂) 7.60 (2H, tm, JHH 7.8, C3'), 7.73 (1H, tt, JHH 7.5, JHH 1.8, C4'), 8.05 (2H, d, JHH 8.5, C2'); δC (176 MHz, CDCl₃) 121.1 (1C, dd, JCF 13.6, JCF 5.0, C3 or C4), 127.3 (2C, s, C2'), 129.6 (2C, s, C3'), 130.8 (1C, dd, JCF 31.1, JCF 4.9, C4 or C5), 134.9 (1C, s, C4'), 136.3 (1C, ddd, JCF 238.8, JCF 18.7, JCF 12.4, C6), 139.2 (1C, ddd, JCF 258.4, JCF 28.1, JCF 6.4, C6), 140.9 (1C, s, C1'), 143.3 (1C, ddd, JCF 243.9, JCF 10.6, JCF 3.0, C2); δF (376 MHz, CDCl₃) -85.2 (1F, dd, JFF 30.8, JFF 14.8, F5), -105.9 (1F, dd, JFF 21.9, JFF 14.8, F2), -141.5 (1F, dd, JFF 30.8, JFF 21.9, F6); m/z (EI) 290 (MH⁺, 3 %), 289 (MH⁺, 7 %), 288 (M⁺, 50 %), 223 (88 %), 77 (100 %) 51 (72 %) and as compared to product data which was purified via silica flash column chromatography (using hexane : ethyl acetate 2:1 as the eluent): Found: C 45.73, H 2.47, N 9.73; C₁₁H₇F₅N₂O₂S Requires: C 45.84, H 2.45, N 9.72 %; and 3,5,6-trifluoro-4-(phenylsulfonyl)pyridin-2-amine as a yellow solid (1.0 g, 35%); mp 160–162ºC; νmax (cm⁻¹) 3328 and 3476 (NH₂), 1160, 1249, 1450; δH (400 MHz, CDCl₃) 4.75 (2H, b, NH₂) 7.61 (2H, tm,
Chapter 7.0: Experimental Section

$^3J_{HH} 7.8, C3'$, 7.73 (1H, tt, $^3J_{HH} 7.5, ^4J_{HH} 1.8, C4'$), 8.10 (2H, d, $^3J_{HH} 7.8, C2'$); δ_C (176 MHz, CDCl$_3$) 128.2 (2C, s, C2'), 129.1-129.4 (1C, m, C2 or C4), 129.6 (2C, s, C3'), 131.8 (1C, dd, $^1J_{CF} 261.1, ^2J_{CF} 31.7, C5$), 135.0 (1C, s, C4'), 137.8 (1C, ddd, $^1J_{CF} 263.2, ^3J_{CF} 5.0, ^4J_{CF} 2.1, C3$), 1401 (1C, s, C1'), 142.1-142.4 (1C, m, C4 or C2), 146.1 (dd, $^1J_{CF} 239.3, ^2J_{CF} 16.6, ^4J_{CF} 3.3, C6$); δ_F (376 MHz, CDCl$_3$) -89.6 (1F, dd, $^3J_{FF} 32.3, ^4J_{FF} 24.6, F5$), -139.4 (1F, dd, $^3J_{FF} 32.3, ^5J_{FF} 11.1, F6$), -153.8 (1F, dd, $^4J_{FF} 24.6, ^5J_{FF} 11.1, F3$); m/z (EI) 290 (MH$^2^+$, 6 %), 289 (MH$^+$, 12 %), 288 (M$^-$, 72 %), 223 (8 %), 77 (100 %) 51 (77 %) and as compared to product data which was purified via silica flash column chromatography (using hexane : ethyl acetate 2:1 as the eluent):

Found: C 45.22, H 2.43, N 9.62; C$_{11}$H$_7$F$_3$N$_2$O$_2$S Requires: C 45.84, H 2.45, N 9.72 %

To confirm connectivity, a small amount of 3,5,6-trifluoro-4-(phenylsulfonyl)pyridin-3-amine was re-crystallized from hexane to afford light yellow crystals to obtain a crystal structure:
7.4.3 Amino Pyrimidine Synthesis

Tetrafluoropyrimidine

A stainless steel, oven dried autoclave (0.5 dm3) was charged with flame dried potassium fluoride (this was also put under vacuum for 1 h) (200 g, 3.4 mol) and tetrachloropyrimidine (50 g, 0.23 mol). The air was evacuated from the autoclave using a high pressure pump, and then it was heated to 480ºC for 19 hours. After this time, the autoclave was allowed to cool to 200ºC and the gaseous fluorinated products were removed under reduced pressure and condensed into a Young’s tap-equipped vessel. The crude product (yellow oil) was purified via distillation to yield tetrafluoropyrimidine (25.8 g, 75 %) as a colourless oil; pb 80–81ºC (lit. value 80–81ºC); δ_C (176 MHz, CDCl$_3$) 132.6 (1C, dtd, $^1J_{CF}$ 249.0, $^2J_{CF}$ 24.0, $^4J_{CF}$ 10.2, C5), 154.1 (1C, dtd, $^1J_{CF}$ 222.0, $^1J_{CF}$ 21.2, $^4J_{CF}$ 5.0, C2), 162.3 (2C, dm, $^1J_{CF}$ 256.0, C4); δ_F (376 MHz, CDCl$_3$) - 47.15 (1F, m, F2), -73.6 (2F, m, F4), -171.4 (1F, m, C5); m/z 152 (M$^+$, 100 %), 133 (28 %); and as compared to literature data205

2,5,6-trifluoropyrimidin-4-amine

2,5-difluoropyrimidine-4,6-diamine

5,6-difluoropyrimidine-2,4-diamine

Tetrafluoropyrimidine (2.0 g, 13.2 mmol) was weighed into a 100 mL round bottomed flask, which was then sealed and purged with argon. Ammonium hydroxide (6.0 mL, 60.0 mmol) and THF (20 mL) were added, and the solution was mixed at room temperature for 22 hours. After
this time, 19F NMR indicated starting material was still present. The reaction mixture was refluxed for 2 hours, after which time 19F NMR indicated no starting material remained. The reaction mixture was quenched with 20 mL of distilled water, and extracted with 3 × 20 mL DCM. The organic extracts were then dried over MgSO$_4$ and concentrated under reduced pressure to give the crude product as yellow solid. Purification via silica flash column chromatography (using a mixture of hexane : ethyl acetate 1:1 as the eluent) yielded 2,5,6-trifluoropyrimidin-4-amine (0.52 g, 27 %) as a white solid; mp 182–184°C (lit. value 156–157°C); ν_{max} (cm$^{-1}$) 3205 and 3382 (NH$_2$); δ_H (400 MHz, CD$_3$OD) 4.81 (2H, b, NH$_2$); δ_C (176 MHz, CD$_3$OD) 127.26 (1C, ddd, $^1J_{CF}$ 249.3, $^2J_{CF}$ 22.5, $^4J_{CF}$ 8.5, C5), 154.9 (1C, ddd, $^1J_{CF}$ 214.5, $^3J_{CF}$ 21.6, $^4J_{CF}$ 3.1, C2), 156.4 (1C, ddd, $^1J_{CF}$ 243.9, $^2J_{CF}$ 20.0, $^4J_{CF}$ 10.2, C4), 158.4–158.8 (1C, m, C6); δ_F (376 MHz, CD$_3$OD) -51.6 (1F, d, $^3J_{FF}$ 24.9, F5), -90.8 (1F, $^4J_{FF}$ 16.5, F1), -182.3 (1F, dd, $^3J_{FF}$ 24.9, $^4J_{FF}$ 16.5, F4); m/z (EI) 150 (MH$^+$, 14 %), 149 (M$^+$, 100 %); and 2,5-difluoropyrimidine-4,6-diamine (0.65 g, 34 %) as a white solid; mp 225–227°C (lit. value 232-233°C); ν_{max} (cm$^{-1}$) 3145 and 3303 and 3485 (NH$_2$); δ_H (400 MHz, CD$_3$OD) 4.92 (2H, b, NH$_2$); δ_C (176 MHz, CD$_3$OD) 127.5 (1C, ddd, $^1J_{CF}$ 232.7, $^2J_{CF}$ 6.9, C5), 153.1 (2C, ddd, $^3J_{CF}$ 19.6, $^1J_{CF}$ 12.5, C4), 156.4 (1C, ddd, $^1J_{CF}$ 207.5, $^4J_{CF}$ 2.3, C2); δ_F (376 MHz, CD$_3$OD) -54.7 (1F, d, $^5J_{FF}$ 12.0, F1), -185.2 (1F, d, $^3J_{FF}$ 12.0, F5); m/z (EI) 147 (MH$^+$, 15 %), 146 (M$^+$, 53 %), 119 (100 %); and 5,6-difluoropyrimidine-2,4-diamine (0.31 g, 16 %) as a white solid; mp 142–144°C; 3184 and 3341 and 3422 and 3528 (NH$_2$); δ_H (400 MHz, CD$_3$OD) 4.85 (2H, b, NH$_2$), 5.41 (2H, b, NH$_2$); δ_C (176 MHz, CD$_3$OD) 125.2 (1C, ddd, $^1J_{CF}$ 239.8, $^2J_{CF}$ 24.4, C5/6), 158.2 (1C, ddd, $^1J_{CF}$ 237.5, $^2J_{CF}$ 10.5, C5/6), 159.1 (1C, ddd, $^1J_{CF}$ 10.3, $^2J_{CF}$ 6.8, C1), 159.7 (1C, ddd, $^3J_{CF}$ 21.3, $^3J_{CF}$ 5.5, C4); δ_F (376 MHz, CD$_3$OD) -92.8 (1F, d, $^3J_{FF}$ 22.4, F5/6), -192.8 (1F, dd, $^3J_{FF}$ 22.4, F5/6); m/z (EI) 147 (MH$^+$, 9 %), 146 (M$^+$, 64 %), 119 (100 %) and all as compared to literature data.
7.4.4 C-F Bond Activation

1,2,3,4-tetrafluoro-5-nitro-6-vinylbenzene

1,2,3,4,5-pentafluoro-6-nitrobenzene (0.1 g, 0.47 mmol), KF alumina (0.08 g, 1.30 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.024 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMF (2.0 mL) and then 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.09 mL, 0.52 mmol) were then added and the vial irradiated at 150ºC for 30 minutes. After this time fluorine NMR indicated a 100 % conversion of starting material. The reaction mixture was placed through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure to give the crude product as a yellow liquid (still with DMF). Purification via silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) to give 1,2,3,4-tetrafluoro-5-nitro-6-vinylbenzene as a pale yellow oil (0.071 g, 68 %); (Found: MH\(^+\) 222.0171, C\(_8\)H\(_3\)F\(_4\)NO\(_2\), Requires: MH\(^+\) 222.0133); δ\(^H\) (400 MHz, CDCl\(_3\)) 5.80 (1H, d, \(^3\)J\(_{HH}\) 11.7, H8), 5.95 (1H, d, \(^3\)J\(_{HH}\) 17.8, H8), 6.44 (1H, dd, \(^3\)J\(_{HH}\) 17.8, \(^3\)J\(_{HH}\) 11.7, H7); δ\(^C\) (176 MHz, CDCl\(_3\)) 116.8 (1C, ddd, \(^2\)J\(_{CF}\) 15.1, \(^4\)J\(_{CF}\) 4.5, \(^4\)J\(_{CF}\) 1.0, C6) 122.0 (1C, d, \(^4\)J\(_{CF}\) 2.1, C8), 126.3 (1C, dd, \(^3\)J\(_{CF}\) 8.9, \(^4\)J\(_{CF}\) 1.3, C7), 134.3–134.7 (1C, m, C5), 139.5 (1C, dm, \(^1\)J\(_{CF}\) 259.5, C-F), 140.7 (1C, dddd, \(^1\)J\(_{CF}\) 259.5, \(^2\)J\(_{CF}\) 13.4, \(^3\)J\(_{CF}\) 4.7, \(^4\)J\(_{CF}\) 2.8, C-F), 142.5 (1C, dddd, \(^1\)J\(_{CF}\) 260.2, \(^2\)J\(_{CF}\) 17.1, \(^2\)J\(_{CF}\) 12.3, \(^3\)J\(_{CF}\) 3.2, C-F), 145.2 (1C, dddd, \(^1\)J\(_{CF}\) 255.5, \(^2\)J\(_{CF}\) 11.6, \(^3\)J\(_{CF}\) 4.7, C-F); δ\(^F\) (376 MHz, CDCl\(_3\)) -139.0 (1F, ddd, \(^3\)J\(_{FF}\) 21.7, \(^4\)J\(_{FF}\) 3.9, \(^4\)J\(_{FF}\) 11.3, F1 or F4), -148.2 (1F, ddd, \(^1\)J\(_{FF}\) 21.7, \(^4\)J\(_{FF}\) 3.9, \(^4\)J\(_{FF}\) 11.3, F1 or F4), -150.4 (1F, td, \(^3\)J\(_{FF}\) 20.6, \(^4\)J\(_{FF}\) 5.3, F2 or F3), -153.2 (1F, td, \(^3\)J\(_{FF}\) 21.0, \(^4\)J\(_{FF}\) 4.6, F3 or F2); m/z (EI) 222 (MH\(^+\), 1 %), 221 (M\(^+\), 8 %), 204 (M\(^+\) - H\(_2\)O, 60 %), 191 (M\(^+\) - NO, 100 %), 176 (M\(^+\) - NO\(_2\), 44 %)
2,3,4,5-tetrafluoro-6-nitro biphenyl

1,2,3,4,5-pentafluoro-6-nitrobenzene (0.1 g, 0.47 mmol), KF alumina (0.09 g, 1.3 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.034 g, 0.024 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMF (2.0 mL) and then phenyl boronic acid (0.061 mL, 0.52 mmol) were then added and the vial irradiated at 120°C for 15 minutes. After this time fluorine NMR indicated a 100% conversion of starting material. The reaction mixture was placed through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure to give the crude product as a dark oil (still with DMF). Purification via silica flash column chromatography (using a mixture of hexan:DCM 4:1 as the eluent) to give 2,3,4,5-tetrafluoro-6-nitro biphenyl as an off white solid (0.10 g, 80%).

1,2,5-trifluoro-3-nitro-4-vinyl benzene

1,2,4,5-tetrafluoro-3-nitrobenzene (0.1 g, 0.51 mmol) KF alumina (0.08 g, 1.40 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.026 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMF (2.0 mL) and then 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.09 mL, 0.56 mmol) were then added and the vial irradiated at 150°C for 30 minutes. After this time fluorine NMR indicated a ratio of 1:1 product : starting material. The reaction was then irradiated for another 30 minutes at 150°C, which did not give any more conversion of starting material. The reaction
mixture was placed through a silica plug using acetone as the eluent, which was then concentrated under reduced pressure to give the crude product as a yellow liquid (still with DMF). Purification via silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) to give 1,2,5-trifluoro-3-nitro-4-vinylbenzene as a pale yellow oil (0.05 g, 49 %); (Found: M⁺ 203.0183, C₈H₄F₃NO₂, Requires: M⁺ 203.0194); δ_H (400 MHz, CDCl₃) 5.72 (1H, d, J_HH 11.7, H₈), 5.90 (1H, dd, J_HH 17.8, H₈), 6.42 (1H, dd, J_HH 17.8, J_HH 11.7, H₇), 7.15 (1H, td, J_HF 9.7, J_HF 6.5, H₆); δ_C (176 MHz, CDCl₃) 108.0 (1C, dd, J_CF 28.8, J_CF 20.8, C₆), 116.2 (1C, ddd, J_CF 18.7, J_CF 4.8, J_CF 1.9, C₄), 122.5 (1C, s, C₈), 125.0 (1C, dd, J_CF 9.0, J_CF 4.8, C₇), 139.6 (1C, m, C₃), 139.8 (1C, ddd, J_CF 257.2, J_CF 16.2, J_CF 4.8, C₂), 148.8 (1C, dm, J_CF 256.5, C₁), 155.1 (1C, ddd, J_CF 253.7, J_CF 9.7, J_CF 3.5, C₅), δ_F (376 MHz, CDCl₃) -113.5 (1F, ddd, J_FH 14.0, J_FF 4.4, J_FF 9.9, F₅), -131.0 (1F, ddd, J_FH 9.9, J_FF 4.4, J_FF 14.0, J_FF 9.9, F₁), -151.7 (1F, ddd, J_FF 4.4, J_FF 9.9, J_FF 14.0, J_FF 9.9, F₂); m/z (EI) 203 (M⁺, 17 %), 186 (M⁺ - H₂O, 42 %), 174 (M⁺ - NO, 72 %), 158 (M⁺ - NO₂, 36 %), 145 (100 %)

1,2-difluoro-4-nitro-5-vinylbenzene

1,2,4-trifluoro-5-nitrobenzene (0.1 g, 0.56 mmol), KF alumina (0.09 g, 1.54 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.028 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMSO (2.0 mL) and then 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.09 mL, 0.56 mmol) were then added and the vial irradiated at 150°C for 60 minutes. After this time fluorine NMR indicated a ratio of 1.0 : 0.8 (product : starting material). The reaction mixture was placed through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure to give the crude product as a yellow oil. Purification via silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) gave 1,2-difluoro-4-nitro-5-vinylbenzene as a pale yellow oil (0.054 g, 52 %); (Found: M⁺ 185.0251, C₈H₄F₂NO₂, Requires: M⁺ 185.0288); δ_H (400 MHz, CDCl₃) 5.55 (1H, d, J_HH 10.9, H₈), 5.70 (1H, d, J_HH 17.3, H₈), 7.18 (1H, ddm, J_HH 17.3, J_HH 10.9, H₇), 7.42 (1H, dd, J_HH 10.6, J_HH 7.6, H₃/6), 7.90 (1H, dd, J_HH 9.7, J_HH 7.2, H₆/3); δ_C (176 MHz, CDCl₃) 115.1 (1C, dd, J_CF 21.8, J_CF 2.2, C₃/6), 117.3 (1C, d, J_CF 9.6, C₅), 120.5 (1C, s, C₈), 131.5 (1C, s, C₇), 132.2 (1C, dd, J_CF 21.8, J_CF 2.2, C₆/3), 142.8–143.2 (1C, m, C₄), 149.1 (1C, dd, J_CF 254.8, J_CF
14.0, 1C(2), 153.4 (1C, dd, 1JCF 258.8, 2JCF 12.7, C2/1); δF (376 MHz, CDCl3) -127.9 (1F, ddd, 2JFF 21.3, 3JFH 10.4, 4JFH 7.4, F1/2), -134.5—134.5 (1F, m, F2/1); m/z (EI) 185 (M+, 5 %), 168 (M+ - H2O, 78 %), 156 (M+ - NO, 86 %), 140 (M+ - NO2, 38 %), 127 (88 %), 101 (100 %), 63 (94 %)

1,2-difluoro-4-nitro-3-vinylbenzene

1,2,3-trifluoro-4-nitrobenzene (0.1 g, 0.56 mmol), KF alumina (0.09 g, 1.54 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.03 g, 0.28 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMSO (2.0 mL) and then 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.09 mL, 0.56 mmol) were then added and the vial irradiated at 150ºC for 30 minutes. After this time fluorine NMR indicated a 100 % conversion of starting material. The reaction mixture was place through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure to give the crude product as a dark red oil. Purification via silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) gave 1,2-difluoro-4-nitro-3-vinylbenzene as a pale red oil (0.077 g, 74 %); (Found: M+ 185.0239, C8H5F2NO2, Requires: M+ 185.0288); δH (400 MHz, CDCl3) 5.80 (1H, dm, 3JHH 11.7, H8), 5.86 (1H, ddt, 3JHH 17.8, 5JHF 2.2, 4JHF 0.8, H8), 6.77 (1H, dd, 3JHH 17.8, 3JHH 11.7, H7), 7.20 (1H, dd, 3JHF 16.4, 3JHH 8.9, H6), 7.77 (1H, ddd, 3JHH 9.2, 4JHF 4.5, 5JHF 2.1, H5); δC (176 MHz, CDCl3) 115.4 (1C, d, 2JCF 19.0, C3), 120.3 (1C, s, C8), 121.4 (1C, dd, 3JCF 7.9, 4JCF 4.4, C5), 127.5 (1C, d, 3JCF 18.0, C6), 133.7 (1C, s, C7), 140.1–141.0 (1C, m, C4), 147.2 (1C, ddd, 1JCF 252, 2JCF 13.8, C-F), 152.0 (1C, ddm, 1JCF 258, 2JCF 14.0, C-F); δF (376 MHz, CDCl3) -127.5 (1F, ddd, 2JFF 20.0, 3JFF 8.5, 4JFF 4.5, F1), -136.2 (1F, dd, 3JFF 20.0, 4JFF 4.5, F2); m/z (EI) 185 (M+, 5 %), 168 (M+ - H2O, 64 %), 156 (M+ - NO, 80 %), 140 (M+ - NO2, 46 %), 127 (74 %), 63 (100 %)
2,4,5-trifluoro-6-nitro-3-(trifluoromethyl)biphenyl

1,2,4,5-tetrafluoro-3-nitro-6-(trifluoromethyl)benzene (0.25 g, 0.95 mmol), KF alumina (0.15 g, 2.62 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.055 g, 0.048 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMF (2.0 mL) and then phenyl boronic acid (0.09 mL, 0.56 mmol) were then added and the vial irradiated at 120ºC for 30 minutes. After this time fluorine NMR indicated a 100 % conversion of starting material. The reaction mixture was place through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure at 100ºC to give the crude product as a dark red oil. Purification *via* silica flash column chromatography (using a mixture of hexane : dichloromethane 4:1 as the eluent) gave **2,4,5-trifluoro-6-nitro-3-(trifluoromethyl)biphenyl** as yellow crystals (0.21 g, 70 %) (Found: C 48.62, H 1.57, F 35.49, N 4.29, O 9.72; requires: C 48.94, H 1.88, F 35.14, N 4.29, O 9.96 %); δ₃ (400 MHz, CDCl₃) 7.37 (1H, tt, 2J₃H₃ 7.3, 4J₃H₃ 1.2, H₄'); 7.47 (2H, t, 3J₃H₃ 7.6, H₃'), 7.62 (2H, dd, 3J₃H₃ 8.3, 4J₃H₃ 1.2, H₂'); δₐ (176 MHz, CDCl₃) 111.4–112.5 (1C, m, C3), 120.7 (1C, dm, 1J₉CF 277.2, CF₃), 121.5 (1C, ddd, 2J₉CF 23.4, 3J₉CF 5.1, 4J₉CF 1.8, C1), 126.4 (1C, s, C1'), 129.3 (1C, s, ArC), 129.4 (1C, s, ArC), 130.6 (1C, s, ArC), 140.1 (1C, ddd, 1JCF 260.6, 2JCF 16.0, 3JCF 5.3, C4/5), 141.9–142.6 (1C, m, C6) 147.9 (1C, ddm, 1JCF 273.7, 2JCF 16.0, C4/5), 152.4 (1C, dm, 1JCF 260.2, C2); δₜ (376 MHz, CDCl₃) -57.2 (3F, t, 4J₉F 23.1, CF₃), -113.4 (1F, qd, 4J₉F 14.1, 3J₉F 22.2, F4/2), -130.8 (1F, p, 4J₉F 23.4, F2/4), -148.7 (1F, dd, 3J₉F 21.5, 5J₉F 14.1, F5); m/z (EI) 322 (MH⁺, 3 %), 321 (M⁺, 25 %), 304 (M⁺ -H₂O, 22 %), 292 (100 %), 276 (M⁺ -NO₂, 28 %), 265 (64 %), 206 (84 %)
Chapter 7.0: Experimental Section

1,2,4-trifluoro-6-nitro-3-(trifluoromethyl)-5-vinylbenzene

1,2,4,5-tetrafluoro-3-nitro-6-(trifluoromethyl)benzene (0.10 g, 0.38 mmol), KF alumina (0.06 g, 1.05 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.044 g, 0.038 mmol) were all weighed into a clean, dry microwave vial (2–5 mL), which was then sealed and purged with argon. Degassed, dry DMSO (2.0 mL) and then 4,4,5,5-tetramethyl-2-vinyl-1,3,2-dioxaborolane (0.06 g, 0.42 mmol) were then added and the vial irradiated at 150ºC for 30 minutes. The reaction mixture was placed through a silica plug using acetone as the eluent, and the organic extract was then concentrated under reduced pressure to give the crude product as a dark red oil. Purification via silica flash column chromatography (using a mixture of hexane : dichloromethane 19:1 as the eluent) gave 1,2,4-trifluoro-6-nitro-3-(trifluoromethyl)-5-vinylbenzene as a pale yellow oil (0.057 g, 54 %); (Found: M^+ 271.1301, C8H3F4NO2, Requires: M^+ 271.0068); δ_H (400 MHz, CDCl3) 5.81 (1H, d, 3J_HH 11.8, H7); δ_C (176 MHz, CDCl3) 109.4–111.0 (1C, m, C3), 119.4 (1C, dm, 1J_CF 270.8, CF$_3$), 120.9 (1C, ddm, 2J_CF 22.7, 3J_CF 4.9, C1), 125.3 (1C, s, C1'), 129.7 (1C, s, ArC), 130.8 (1C, ArC), 131.3 (1C, s, ArC), 141.0 (1C, ddm, 1J_CF 270.1, 2J_CF 16.0, C2/4/5), 141.5–142.0 (1C, m, C6), 145.3 (1C, dm, 1J_CF 264.4, C2/4/5), 150.9 (1C, dm, 1J_CF 263.2, C2); δ_F (376 MHz, CDCl3) -57.3 (3F, t, 4J_FF 22.3, CF$_3$), -114.0 (1F, qd, 4J_FF 13.8, 3J_FF 22.4, F2), -131.2–-131.5 (1F, m, F1 or F4), -149.1 (1F, dd, 4J_FF 13.8, 3J_FF 21.4, F1), m/z (EI) 271 (M$^+$, 2 %), 154 (MH$^+$ - H$_2$O, 44 %), 242 (MH$^+$ - NO, 86 %), 140 (MH$^+$ - NO$_2$, 38 %)
Chapter 8 - References
Chapter 8.0: References

18. H. Moissan, *Compt. Rend.*, 1886, 102, 1543

Chapter 8.0: References

191
83 S. Dayan, M. Kol, S. Rozen, Synthesis, 1999, 1427
91 A. Pollak, B. Sket, M. Zupan, Synthesis, 1973, 495
93 M. Carmeli, S. Rozen, J. Am. Chem. Soc., 2003, 125, 8118
98 D. G. Jones, Chemistry and Industry, Claredon Press, 1967;
102 K. F. Jensen, R. L. Hartman, Lab Chip, 2009, 9, 2495
126 R. D. Chambers, J. Hutchinson, G. Sandford, *J. Fluorine Chem.*, 1999, 100, 63
J. Trmčič, PhD Thesis, University of Durham, 2005
R. D. Chapman, *Struct. Bond.*, 2007, 125, 123
Chapter 8.0: References

188 Weygand et al., *Chem. Ber.*, 1951, 84, 101
197 Savchenko et al., *J. Org. Chem. USSR*, 1979, 15, 909

