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Lattices of Generalized Skyrmions

Jorge Iván Silva Lobo

Abstract
Generalized Skyrme systems are those which include both the Skyrme and
the Skyrme-Faddeev models through an interpolating parameter α ∈ [0, 1];
the former corresponds to α = 0 and the latter to α = 1. Our numerical
and analytical investigations centre around the α = 0 Skyrme crystal, its de-
formations, and its behaviour and symmetries as a function of α, called the
generalized Skyrme crystal. We show that a double square lattice emerges
when the Skyrme crystal is deformed in a certain limit; we compare its energy
with the one corresponding to a double hexagonal lattice and show that it
has a lower energy-per-charge than its hexagonal counterpart. On the other
hand, vortex-like structures with two 1-vortices (vortices of order 1) and two
1-antivortices, denoted V+AV+V+AV, appear when the Skyrme crystal is
deformed in a different limit, as well as when the generalized Skyrme crystal
is taken close to the Skyrme-Faddeev limit. This leads us to the study of
generalized V+AV and V+AV+V+AV configurations, as a function of α. We
show that when these configurations are stacked in the axial direction, they
exhibit some winding and linking properties as they are taken close to the
Skyrme-Faddeev limit, where the V+AV+V+AV configurations appear to be
more stable than their V+AV counterparts. Finally, the study of such config-
urations led to the discovery of two crystalline solutions whose properties are
investigated in some detail: a 2-vortex/2-antivortex pair, denoted 2V+2AV,
and a “multi-sheet” solution, both of which have a lower energy-per-charge
than the V+AV+V+AV solution, in the Skyrme-Faddeev limit.
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Introduction
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Chapter 1

Background

1.1 Historical background

The study of solitons is generally regarded to have begun in 1834, with an

observation made by a Scottish naval engineer named John Scott Russell, who

recounts in the 14th Meeting of the British Association for the Advancement

of Science [5]:

I was observing the motion of a boat which was rapidly drawn

along a narrow channel by a pair of horses, when the boat sud-

denly stopped–not so the mass of water in the channel which it

had put in motion; it accumulated round the prow of the vessel in

a state of violent agitation, then suddenly leaving it behind, rolled

forward with great velocity, assuming the form of a large soli-

tary elevation, a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without

change of form or diminution of speed. I followed it on horse-

back, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original figure some thirty feet

long and a foot to a foot and a half in height. Its height gradu-

2



Chapter 1. Background 3

ally diminished, and after a chase of one or two miles I lost it

in the windings of the channel. Such, in the month of August

1834, was my first chance interview with that singular and beau-

tiful phaenomenon which I have called the Wave of Translation,

a name which it now very generally bears; which I have since

found to be an important element in almost every case of fluid

resistance, and ascertained to be the type of that great moving el-

evation of the sea, which, with the regularity of a planet, ascends

our rivers and rolls along our shores.

The key words here being “large solitary elevation” and “preserving its origi-

nal figure”. The number of subjects under which solitons have been studied

has greatly increased over the years from the original Fluid Dynamics, which

Russell studied, to subjects as varied as Biology (apparently occurring in

proteins [6]), Fiber Optics, Quantum Field Theory, Atomic and Molecular

Physics (occurring in Bose-Einstein Condensates), Condensed-Matter The-

ory, and Classical Field Theory, which is the field that concerns us here.

However, the properties of the “Wave of Translation” that Russell originally

noticed: being localized, having permanent form, and the fact that two or

more of these are unchanged after an interaction (an observation he made

later), are still the main features of solitons studied across all fields.

Within Field Theory lies the subject of Topological Solitons. The most

prominent examples of solitons studied in this field, in increasing number of

dimensions, are: kinks (1D), lumps and vortices (2D), monopoles, skyrmions,

and hopfions (3D), and instantons (4D), which also appear in other dimen-

sions. There are two ingredients which essentially give rise to their stability:

a set of boundary conditions for the fields, producing a non-trivial homotopy

group, preserved by the relevant differential equations, whose solutions fall

under homotopy classes generally indexed by an integer, called the topolog-

ical charge. The other ingredient is an energy whose terms, under spatial
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rescalings, scale in opposite ways. This phenomenon, which has a balanc-

ing effect on the size of the soliton, can be satisfied provided the theory has

terms with the appropriate order in derivatives included. Note that this can-

celling effect between the terms is similar to the cancellation of nonlinear and

dispersive effects which gives rise to Russell’s “Wave of Translation”.

Here, we will be dealing with a skyrmion-hopfion “hybrid” – the solution of

a model that interpolates between the Skyrme and Skyrme-Faddeev Models.

In particular, our goal is to study lattices of such solitons.

1.2 Thesis summary

In Chapter 2, we give a general overview of the topics that form the basis

for the numerical and analytical investigations which have been carried out.

These are: the Skyrme and Skyrme-Faddeev models, the model of generalized

Skyrme systems, which interpolates between the first two, and the Skyrme

crystal.

In Part II, we shall focus on the Skyrme model limit of the generalized Skyrme

systems. In Chapter 3, we deal with deformations of the Skyrme crystal,

where the periods in all three directions are changed from their optimal,

minimal-energy, values. We investigate the structures that emerge in differ-

ent limits by looking at the energy-density isosurfaces, after deforming the

periods of the Skyrme crystal and, subsequently, numerically minimizing the

energy using a conjugate-gradient method. We see that, in one limit, a pair

of square sheets are formed and, in a different limit, a series of four parallel,

vortex-like, structures emerge. In Chapter 4, we investigate several proper-

ties of the square sheets and compare them with hexagonal sheets (similar to

those investigated in [7]). More specifically, we determine the energy of the

square and hexagonal 2-wall configurations and we investigate their stability

as well as the stability of the hexagonal 4-wall, noticing along the way that
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the latter tends to be more unstable than the former pair of configurations.

The parameter α ∈ [0, 1], from the model of generalized Skyrme systems,

interpolates between the Skyrme and Skyrme-Faddeev models, reproducing

the former at α = 0 and the latter at α = 1; in Part III, we take α ∈ [0, 1].

In sec. 5.1, we generalize Manton’s geometrical explanation of the Skyrme

model, which is introduced in sec. 2.2, by considering the metric of a squashed

3-sphere rather than a 3-sphere. In sec. 5.2, we investigate the symmetries

of the generalized Skyrme crystal energy density by analyzing its differences

when certain isospin and chiral transformations are applied to the fields;

we also study the isometries of the system. Finally, in sec. 5.3, we look

at the behaviour of the Skyrme crystal as a function of α by analyzing its

energy density isosurfaces. We notice that 4 parallel vortex-like structures

appear as α → 1 (akin to one of the limits of the deformed Skyrme crystal

at α = 0), denoted V+AV+V+AV. We also notice that there exist other

configurations (local energy minima) with lower energy-per-charge, such as

a vortex-antivortex pair of degree 2 (2V+2AV) as well as a “multi-sheeted”

structure, which turns out to have the lowest energy-per-charge of those we

investigated. Furthermore, we look at an ansatz, whose fields are very similar

to the multi-sheeted structure, and compare its energies and optimal periods

with those of the multi-sheet solution.

In Chapter 6, we investigate the stability and energy density isosurfaces

of vortex configurations when they are stacked multiple times in the

z−direction, as a function of α. In sec. 6.1, besides looking at these fea-

tures for the V+AV case, we provide a description of the inter-vortex force

as a function of α (a generalization of the discussion of the inter-vortex force

in the Skyrme Model, presented in [8]), and in sec. 6.2 we take a look at

the V+AV+V+AV case. We notice that twisted and braided vortex struc-

tures appear for both cases at certain α values, although these do not exactly

overlap. Finally, in Part IV, we present our concluding remarks.



Chapter 2

The Skyrme and Skyrme-Faddeev

models, an interpolating model,

and Skyrme crystals

2.1 The Skyrme model

The Skyrme model was originally proposed by Tony Skyrme in 1961 [9]. It

is a theory of nuclear matter in which the fundamental building blocks are

pion fields. It is a nonlinear, classical field theory in (3+1)-dimensions and

its Lagrangian L and associated static energy E are given by [10]:

L =

∫ {
F 2
π

16
Tr(∂µU∂

µU †) +
1

32e2
Tr([∂µUU

†, ∂νUU
†][∂µUU †, ∂νUU †])

}
d3x ,

(2.1)

E =
1

12π2

∫ (
−1

2
Tr(MiMi)−

1

16
Tr([Mi,Mj][Mi,Mj])

)
d3x , (2.2)

where Fπ and e are parameters which have been scaled away in eq. (2.2) by

rewriting the Lagrangian in terms of the following energy and length units: Fπ
4e

and 2
eFπ

, the field U is an SU(2)-valued scalar field, “Tr” refers to the trace of

6
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the object inside the brackets,Mi = U−1∂U/∂xi, xi = (x, y, z) are the spatial

coordinates, and we make use of the notation ∂µU∂µU = (∂0U)2 − ∂iU∂iU ,

where repeated latin indices are summed over i = {1, 2, 3}. In eq. 2.2 we

have also included a “normalization” factor, which simplifies the expression

for an inequality, which we shall mention shortly.

The second term in eqs. (2.1, 2.2) is called the Skyrme term. A term of

degree four or higher in the derivatives of the field must be included in order

to evade Derrick’s Theorem [11], which is a non-existence theorem for static

solutions of the field equation under spatial rescalings x 7→ µx. Under a

spatial rescaling of this sort, the energy becomes

e(µ) = µ−1E2 + µE4 , (2.3)

where E2 and E4 are the terms in eq. (2.2) involving two and four derivatives,

respectively. One can see that (2.3) has a minimal value for non-zero µ, as

each term scales in opposite ways. Derrick’s Theorem states that if one has

a static soliton, then it must be a stationary point of (2.3).

The solutions to the Euler-Lagrange equation that can be derived from the

Lagrangian (2.1) are known as skyrmions. In fact, the Skyrme Model can

be regarded as a low-energy approximation to QCD, which becomes more

accurate in the large Nc-limit, where Nc is the number of quark colours

[12, 13].

The pions in the Skyrme Model can be encapsulated in the field U(xi) as

follows:

U = Φ4 · 1+ iΦiσi , (2.4)

where Φi is the triplet of pion fields, σi is the triplet of Pauli matrices, and Φ4

is an additional scalar field determined through the constraint: 1
2
Tr(U †U) =

ΦβΦβ = 1. For a skyrmion centred at the origin, we impose the following

boundary conditions: U(xi)→ −1 as |xi| → 0 (i.e. Φi(x
i)→ 0 and Φ4(xi)→
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−1, as |xi| → 0) and U(xi)→ 1 as |xi| → ∞ (i.e. Φi(x
i)→ 0 and Φ4(xi)→ 1,

as |xi| → ∞).

The scalar field U is a map from R
3, compactified at infinity1, to S3, the group

manifold of SU(2). Skyrme identified the degree of this map, a topological

invariant, with the baryon number. One can use homotopy groups to see

where this number comes from, as follows: The map is given by U : S3 → S3,

where the domain is R3 ∪ {∞}. Therefore, the homotopy group is given by

π3(S3), which is an integer Z. This means that maps from three-spheres to

three-spheres fall into homotopy classes indexed by an integer, which is given

by [10]:

Q =

∫
Q dx dy dz , (2.5)

where

Q = − 1

24π2
εijkTr(MiMjMk) (2.6)

is the topological charge density. It is worth mentioning at this point that

the energy from eq. (2.2) satisfies the Faddeev-Bogomolny lower bound [14]

E ≥ |Q|.

There has been a great deal of time and effort spent in the study of the struc-

ture and symmetries of low- and high-charge skyrmions (see e.g. [15–22]). To

sum up, the charge density isosurfaces of Skyrmions (minimal-energy solu-

tions) of charge Q = 1, 2, 3, 4 have Platonic symmetries: spherical, toroidal,

tetrahedral, and cubic symmetries, respectively. Skyrmions of higher charge

have more complicated structures, with symmetries generally falling within

the dihedral group (Dn), the extended dihedral groups (Dnh and Dnd), or

the highly symmetric icosahedral group (Ih). It has been noted [19] that

the charge density structure of Skyrmions follows a Geometric Energy Mini-

mization (GEM) rule, with the number of faces F , vertices V , and edges E

given by: F = 2(Q − 1), V = 4(Q − 2), and E = 6(Q − 2). For Q ≥ 7,

these conditions can be satisfied with trivalent polyhedrons formed from 12
1The reason one must compactify at infinity is to keep energies finite as |x| → ∞.
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pentagons and 2(Q-7) hexagons. With this in mind, the similarities between

these structures and fullerenes (from carbon chemistry) was identified, call-

ing such structures “fullerene-like”, and a conjecture has been stated that

Skyrmions of any charge Q ≥ 7 will have the same symmetries as a fullerene

from the family C4(Q−2) (called the “fullerene hypothesis”). The most striking

example is theQ = 17 Skyrmion, which has the same structure as the famous,

icosahedrally symmetric, C60 fullerene, which has recently been detected in

space [23].

2.2 The Skyrme model: a geometrical perspec-

tive

In [24], Manton gave a description of the Skyrme model from a geometri-

cal perspective. One of the main ideas in the paper is that the energy of

Skyrmions depends on the geometrical distortion produced by a map from

a domain manifold S to a target manifold Σ. An obvious choice for a map

that produces the least possible amount of distortion would be one that is

an isometry, which is what we have considered so far (a map from the unit

3-sphere to the unit 3-sphere: S3 7→ S3). However, one can learn a great

deal about the stabilities of maps and about the symmetries of the Skyrme

model when one considers the domain manifold to be a 3-sphere of radius R,

S3
R, rather than just a unit 3-sphere.

A way of measuring the geometrical distortion produced by a map π is to

consider the strain tensor D. To define the strain tensor, we first need to

define coordinates on the domain and target spaces. Let πα and pi be normal

coordinates on the target space Σ and domain space S, respectively. The Σ

coordinates can be expressed as functions of the S coordinates πα(p1, p2, p3)

and the strain tensor is then given by: Db
a = gjk(∂π

c

∂pj
)Hac(

∂πb

∂pk
), where gjk and

Hac are the metrics on the manifolds S and Σ, respectively.
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The energy density E = E2 + E4 of the map would then be given by: E2 =

κ2Tr(D) ≡ κ2(λ2
1 + λ2

2 + λ2
3) and E4 = κ4

2
[(TrD)2 − Tr(D2)] ≡ κ4(λ2

1λ
2
2 +

λ2
2λ

2
3 + λ2

3λ
2
1), where λ2

1, λ2
2, and λ2

3 are the eigenvalues of the strain tensor

and κ2 and κ4 are constants, which for now2 we take to be κ2 = κ4 = 1. A

map that is an isometry, which produces no distortion, would correspond to

the eigenvalues of the strain tensor all being unity (i.e. the strain tensor is

the unit matrix). Therefore, one can see the amount of distortion produced

by the map by looking at how much the eigenvalues differ from unity. In the

case of the Skyrme model, the Skyrmion is a minimal energy solution.

The energy of a map π is given by:

E =

∫
S

(λ2
1 + λ2

2 + λ2
3 + λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1) dS . (2.7)

Eq. (2.7) can be rewritten as follows:

E =

∫
S

[(λ1−λ2λ3)2 +(λ2−λ3λ1)2 +(λ3−λ1λ2)2] dS+6

∫
S

λ1λ2λ3 dS . (2.8)

It is easy to see from eq. (2.8), since the first three terms are ≥ 0, that:

E ≥ 6

∫
S

λ1λ2λ3 dS , (2.9)

which is a topological invariant. To see this, note that det(D) = λ2
1λ

2
2λ

2
3.

Therefore, λ1λ2λ3 = (det(D))1/2 ≡ (det(JJT ))1/2 = det(J), where Jαi is the

Jacobian Jαi = ∂πα

∂pi
. The determinant of the Jacobian turns the integration

measure on S to the integration measure on Σ, so eq. (2.9) becomes:

E ≥ 6(deg π)(Vol Σ) , (2.10)
2A formal definition will be given in sec. 2.4.
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where deg π is the degree of the map π.

Note that the topological bound, eq. (2.9), is achieved when λ1 = λ2 = λ3 =

1. In other words, when there is no distortion (i.e. whenever we have an

isometry), the lower bound is attained. However, for the Skyrme model, the

map is from flat 3-space topologically compactified at infinity, to the unit

3-sphere (for which there is no isometry), so this topological bound cannot

be attained.

There is a stronger bound than eq. (2.10) when one considers a target

manifold that is isotropically bigger than the domain manifold. That is,

Vol Σ = σ3Vol S, where σ > 1. The new bound can be derived by mini-

mizing the energy, eq. (2.7), with the use of a Lagrange multiplier and the

constraint:
∫
λ1λ2λ3 = Vol Σ. After taking these into consideration, one

finds that λ1, λ2, and λ3 must be equal to the same constant σ, and the new

constraint is given by:

E ≥ 3

(
1

σ
+ σ

)
Vol Σ , (2.11)

which reduces to eq. (2.10), when σ = 1 and deg π = 1.

2.3 The Skyrme-Faddeev model

In 1975, L.D. Faddeev proposed a theory of solitons whose Lagrangian L and

associated static energy E we take to be [4, 25–28]:

L =
1

32π2

∫ {
∂µ ~ψ · ∂µ ~ψ −

1

4
(~ψ · ∂µ ~ψ × ∂ν ~ψ)(~ψ · ∂µ ~ψ × ∂ν ~ψ)

}
d3x , (2.12)

E =
1

32π2

∫ {
∂i ~ψ · ∂i ~ψ +

1

4
(~ψ · ∂i ~ψ × ∂j ~ψ)(~ψ · ∂i ~ψ × ∂j ~ψ)

}
d3x , (2.13)

where ~ψ = {ψ1, ψ2, ψ3} ≡ ψa is a unit vector [(ψa)2 = 1] that has its

domain in R
3; note that we have included a “normalization” factor, which
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simplifies the expression for an inequality (as in the Skyrme Model), which

we shall mention shortly. The unit vector is a map ~ψ : R3 7→ S2. As

with the Skyrme model, we assume a compactification at spatial infinity,

where ~ψ(∞) = {0, 0, 1}. This means that, topologically, the map is given

by ~ψ : S3 7→ S2 (also known as the Hopf map) and these maps fall into

homotopy classes indexed by an integer: π3(S2) = Z, as was the case with

the Skyrme model. The crucial difference here is that these integers, called

the Hopf Charge, do not have the interpretation of the degree of the map

from a 3-sphere to a 2-sphere, since these manifolds do not have the same

dimension. Rather, the Hopf charge has the following definition [10]:

N =
1

4π2

∫
S3

f ∧ a , (2.14)

where f is the pull-back under the map ~ψ of the area 2-form εabcψ
adψbdψc and

a is a 1-form, such that f = da. Note that the integral (2.14) is independent

of the choice of a.

Recall that the Skyrme charge Q is given the interpretation of the baryon

number, in a sense counting the number of skyrmions in a system. The Hopf

charge is entirely different. Points on the target manifold S2 correspond to

Hopf solitons. The preimages of these can be visualized as circles3 , which

can be linked any number of times - this number being the Hopf charge.

The string-like solutions of the Skyrme-Faddeev Model (called Hopf solitons

or hopfions), which are generally linked and knotted for high enough values

of N , have been studied extensively (see e.g. [26–28, 30–39]). As with the

Skyrme model, there is a lower bound on the energy given in terms of the

topological charge. However, it is very different in nature and does not arise
3Note that the Hopf map can be visualized as a 3-sphere embedded in C2. The set

of lines that pass through the origin in C2 : Aw + Bz = 0, where A and B are complex
numbers not both equal to zero, produce circles when they intersect the 3-sphere. The
ratio of complex numbers A : B corresponds to different points of the base manifold S2

and the circles we mentioned earlier are the fibers of this so-called Hopf fibration (see e.g.
[29]).
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from the usual Bogomolny-type argument, as it involves a fractional power

of the charge [27, 40, 41]: E ≥ |N |3/4.

Hopfions can be visualized by depicting the curve in space corresponding to

the preimage of the vector ψ3 = −1, which is antipodal to the vacuum value

of ψ3 = 1. In practice, one takes a value of ψ3 close to −1 (a circle of vectors

where ψ3 is close to −1), which has the effect of thickening the position

curve of the hopfion. Note that the Skyrme-Faddeev Model has a global

O(3) symmetry but, by specifying the point ψ3 = 1 to be the vacuum, this is

broken to O(2), whose elements rotate the {ψ1, ψ2} components of the field.

One way the charge of a hopfion can be determined is to take two points:

one corresponding to the position of the hopfion and some other point, and

looking at the number of times their preimages (the position curve and the

linking curve) link with each other – this being equal to the hopf charge.

A catalogue of minimal-energy hopfions, up to N = 16, has been compiled in

[38]. Some notable examples include the hopfions with charge N = 1 (whose

position curve looks like a torus), N = 3 (a twisted torus), N = 5 (the first

example of a link with two disconnected components), and N = 7 (the first

example of a knot), with higher charges featuring a higher number of links

and twists. A way to determine the charge of a linked hopfion is to add the

number of links to the charge of each individual component, then add this

result for all components. For example, the N = 8 hopfion consists of two

charge 3 components, which link once around each other. The charge is then

given by N = (3 + 1) + (3 + 1) = 8.

One important consequence of the fact that hopfion energies (as a function

of charge) closely follow the bound mentioned above is that it is energetically

preferable for them to be tightly bound, rather than being a conglomeration

of charge 1 hopfions. Moreover, if one normalizes the energy of the N = 1

hopfion, such that it coincides with the energy of the Q = 1 skyrmion (see

sec. 2.4), then as N and Q approach infinity, the tangled twists and loops of
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the hopfion system will be more tightly bound than the skyrme system, which

is thought to resemble the Skyrme crystal in this limit (see sec. 2.5). This can

be readily seen from their binding energy per charge4: ∆E/Q = E1−(E/Q),

where E1 is the energy of the Q = 1 or N = 1 soliton (see tables in [10, 38]).

2.4 Generalized Skyrme systems

2.4.1 Overview

It has been pointed out in [4] that the Skyrme and Skyrme-Faddeev models

summarized earlier are members of a family of generalized Skyrme systems,

parametrized by α ∈ [0, 1]. In this section we give a brief overview of the

results from [4] and in sec. 2.4.2 we give an outline of the steps involved in

getting these results. We shall be using the sign conventions from [4] through-

out this section as we shall be following it closely; these differ slightly for the

Lagrangian densities from secs. 2.1 and 2.3 (where we used the conventions

from [10]). However, the important expressions which we use extensively in

all subsequent chapters are the static energy densities. When these are ex-

pressed in terms of the fields Φβ or ~ψ, it is always the case that for all models

under consideration its terms are positive.

Since the Skyrme and Skyrme-Fadeev models feature fields which are maps:

S3 7→ S3 and S3 7→ S2 respectively, it would be useful to have a metric that

interpolates between S3 and S2. One such metric exists, corresponding to a

“squashed” 3-sphere S3
α, sometimes called the Berger sphere:

ds2 = dZ†dZ + α(Z†dZ)(Z†dZ) (2.15)

≡ G− αω ⊗ ω , (2.16)

where Z = (Z1, Z2)T is a complex 2-vector satisfying Z†Z = |Z1|2+|Z2|2 = 1.
4The energy needed to separate a Q−soliton into Q 1−solitons.
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Note that when α = 0, one has the regular 3-sphere metric and when α = 1,

one gets the standard 2-sphere metric, which is harder to see. It is easier

to see this if one thinks of a unit vector field ξj, which is obtained from the

1-form ω = −iZ†dZ through use of the 3-sphere metric G. It turns out [4]

that ξj is tangent to the fibers of the Hopf fibration and when α → 1, the

length of these vectors goes to zero, thus effectively producing a 2-sphere. In

other words, when α = 1, ξj becomes a zero eigenvector of the metric (2.15),

which therefore becomes degenerate. Otherwise, when 0 ≤ α < 1, the metric

is positive-definite.

The Lagrangian density of the generalized Skyrme system is given by [4]:

Lgen = L2 + L4 , (2.17)

L2 = κ2g
µν(Ma

µM
a
ν − αM3

µM
3
ν ) , (2.18)

L4 =
1

8
κ4g

µνgβγ[(1− α)Ka
µβK

a
νγ + αK3

µβK
3
νγ] , (2.19)

where, if we need to contract certain terms with the spacetime metric gµν ,

we take it to be flat with signature (+ − −−), and derivatives with respect

to the spacetime coordinates xµ are used in Mµ and Kµν as follows:

Mµ = iMa
µσa = U †∂µU , (2.20)

Kµν = iKa
µνσa = [Mµ,Mν ] , (2.21)

where σa ≡ σa are the triplet of Pauli matrices. Furthermore, U is a matrix

determined by the complex 2-vector Z as follows:

U =

 Z1 −Z∗2
Z2 Z∗1

 .

When the field Z(xj) is an identity map S3 7→ S3
α, the energy of the gener-
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alized Skyrme system is given by5:

E = 2π2(3− α)κ2 + 2π2(3− 2α)κ4 . (2.22)

The factors κ2 and κ4 in (2.18, 2.19, 2.22) are coupling constants, which can

be scaled as desired. For our purposes, we choose the following “geometrical”

choice, for which the identity map has unit energy for α ∈ [0, 1] (i.e. E2 =

E4 = 1
2
) [4]:

κ2 = 1/[4π2(3− α)] , (2.23)

κ4 = 1/[4π2(3− 2α)] . (2.24)

Moreover, with the geometrical choice, the energy of the 1-skyrmion on R
3

is approximately constant as a function of α (E ≈ 1.22).

When α = 0, the generalized Lagrangian reduces to the standard Skyrme

Lagrangian (2.1) and, in the α = 1 limit, if one replaces Z by the unit 3-

vector ψa = Z†σaZ (which is just another form of the Hopf map) then the

generalized Lagrangian becomes [4]:

LSF =
κ2

4
(∂µψ

a)2 +
κ4

32
(εabcψ

a(∂µψ
b)(∂νψ

c))2 , (2.25)

which is the Skyrme-Faddeev Lagrangian. Note that the squared terms here

(and for the rest of this section) imply repeated indices, which are assumed

to be contracted, e.g. through the use of a metric which, as stated earlier,

we assume to be flat with signature (+−−−).

We shall show in the next section how one can get to the following expression

for the generalized static energy density [1] from the generalized Lagrangian
5See sec. 5.1 for its derivation.
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(2.17)-(2.19):

E = κ2[(∂jΦβ)2 − α(Pj)
2] + κ4[2(1− α)(F j

βγ)
2 + α(Qj)2] , (2.26)

where

Pj = ΩβγΦβ∂jΦγ ,

F j
βγ =

1

2
εjkl(∂kΦβ)(∂lΦγ) ,

Qj = ΩβγF j
βγ ,

and where Ωβγ is a symplectic form, which has the following non-zero com-

ponents: Ω12 = −Ω21 = −Ω34 = Ω43 = 1.

2.4.2 Calculations

The origins of the generalized Lagrangian from the previous section, eqs. (2.18)

and (2.19), might seem mysterious. Therefore, in this section we will pro-

vide an outline of their derivation, starting from the Berger sphere metric,

eq. (2.15). Moreover, it is not entirely clear how one gets to the form of the

generalized energy density (2.26) in terms of the fields Φµ, from the gener-

alized Lagrangian. In the second part, we will provide an outline of this.

Finally, in the last part, we prove that the generalized Lagrangian in the

α = 1 limit is equivalent to the Skyrme-Faddeev Lagrangian, eq. (2.25).

Derivation of Generalized Lagrangian

The Berger sphere metric can be expressed as follows:

ds2 = Hjk dx
jdxk (2.27)

=
(
∂jZ

†∂kZδ
jk + α(Z†∂jZ)(Z†∂kZ)

)
dxjdxk (2.28)

≡ (∂jZ
†∂kZδ

jk − αξjξk)dxjdxk , (2.29)
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where we have used the symbol δjk to emphasize that the first term consists

of only diagonal components and we have defined ξj ≡ −iZ†∂jZ.

Recall from sec. 2.2 that the distortion tensor is given by:

Db
a = Gjk

(
∂πc

∂pj

)
Hac

(
∂πb

∂pk

)
≡ GjkHacπ

c
jπ

b
k , (2.30)

where now the metrics of the domain and target manifolds are given by the

unit 3-sphere metric Gjk and the squashed 3-sphere metric Hac, respectively:

Gjk = ∂jZ
†∂kZδ

jk, (2.31)

Hac = Gac − αξaξc . (2.32)

If we focus on the α = 0 case for the moment, one can see where theMa
i terms

come from. Using eq. (2.32) we have Hac = Gac and, given the distortion

tensor (2.30) and the fact that the spatial part of L2 is given by the static

energy density E2 = κ2Tr(D), one can almost immediately see that E2 =

κ2g
jkπaj π

a
k . This is of the form of the α = 0 term in eq. (2.18). Since the πaj

involve the derivatives of the fields πa, much like the Ma
j involve the spatial

derivatives of the fields U , we assume for now that they are equivalent objects:

πaj ≡Ma
j . We shall see that this assumption leads to certain expressions for

the energy and Lagrangian densities which are consistent with the Skyrme

Model, in the α = 0 limit, and with the Skyrme-Faddeev Model, in the α = 1

limit.

For α 6= 0, we need an expression for ξj in terms of the Ma
i ’s. For such
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purposes, we note that:

Mj ≡ U †∂jU (2.33)

=

 Z∗1 Z∗2

−Z2 Z1

 ∂jZ1 −∂jZ∗2
∂jZ2 ∂jZ

∗
1

 (2.34)

=

 Z∗1∂jZ1 + Z∗2∂jZ2 −Z∗1∂jZ∗2 + Z∗2∂jZ
∗
1

−Z2∂jZ
∗
1 + Z1∂jZ2 Z2∂jZ

∗
2 + Z1∂jZ

∗
1

 , (2.35)

which yields the following:

1

2
Tr(Mjσ3) =

1

2
(Z∗1∂jZ1 + Z∗2∂jZ2 − Z1∂jZ

∗
1 − Z2∂jZ

∗
2) (2.36)

= Z∗1∂jZ1 + Z∗2∂jZ2 (2.37)

= Z†∂jZ, (2.38)

where use of the identity ∂j(Z†Z) = 0 has been made to simplify the expres-

sion. Thus, we have:

ξj ≡ −iZ†∂jZ = − i
2
Tr(Mjσ3) =

1

2
Tr(Ma

j σaσ3) =
1

2
Tr
(
Ma

j (δa3 + iεa3cσc)
)

=
1

2
Tr(M3

j ) (since Tr(σc) = 0)

≡M3
j
′ (since M3

j ≡M3
j
′ × 1)

= Ma
j
′na, where na ≡ (0, 0, 1) . (2.39)

From now on we write Ma
j
′ as simply Ma

j . Therefore, ξj = Ma
j na ≡ Ma

j ξa,

where ξa are the (vector) components of ξj. We can now write the generalized

distortion tensor as follows:

Db
a = Gjk(Gac − αξaξc)M c

jM
b
k

= Gjk(Gac − αnanc)M c
jM

b
k . (2.40)
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The static energy density E2 is given by the trace of the distortion tensor:

E2 = κ2Tr(D) = κ2g
jk(Ma

jM
a
k − αM3

jM
3
k ) . (2.41)

Since E2 is taken to be the spatial part of L2, one can write the more general

Larangian as follows:

L2 = κ2g
µν(Ma

µM
a
ν − αM3

µM
3
ν ) , (2.42)

as in eq. (2.18).

We can now derive the rest of the terms in the Lagrangian by using the fact

that E4 = κ4
2

[(Tr(D))2 − Tr(D2)]:

(Tr(D))2 = gjkglm(δab − αnanb)(δcd − αncnd)Ma
jM

b
kM

c
lM

d
m

= gjkglm[δabδcd − α(δabncnd + δcdnanb) + α2nanbncnd]M
a
jM

b
kM

c
lM

d
m

= gjkglm[Ma
jM

a
kM

c
lM

c
m − α(Ma

jM
a
kM

3
l M

3
m +M c

lM
c
mM

3
jM

3
k )

+ α2M3
jM

3
kM

3
l M

3
m]. (2.43)

Tr(D2) = gjkglm(δac − αnanc)(δbf − αnbnf )M f
l M

a
mM

c
jM

b
k

= gjkglm[δacδbf − α(δacnbnf + δbfnanc) + α2nancnbnf ]M
c
jM

b
kM

f
l M

a
m

= gjkglm[Ma
jM

a
mM

b
kM

b
l − α(Ma

jM
a
mM

3
kM

3
l +M b

kM
b
lM

3
jM

3
m)

+ α2M3
jM

3
mM

3
kM

3
l ]. (2.44)

In what follows, we shall make use of the following notation:
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Ma
[kM

b
m] ≡

1
2
(Ma

kM
b
m −Ma

mM
b
k) = M

[a
k M

b]
m.

(Tr(D))2 − Tr(D2) = gjkglm[Ma
jM

b
l (2M

a
[kM

b
m])

− α
(
Ma

jM
3
l (2Ma

[kM
3
m]) +M b

lM
3
j (2M b

[mM
3
k])
)
]

= gjkglm[Ma
[jM

b
l]M

a
[kM

b
m] − α(Ma

[jM
3
l]M

a
[kM

3
m] +M b

[lM
3
j]M

b
[mM

3
k])]

= gjkglm[M
[a
j M

b]
l M

[a
k M

b]
m − α(M

[a
j M

3]
l M

[a
k M

3]
m +M

[b
j M

3]
l M

[b
k M

3]
m)]

= gjkglm[M
[1
j M

b]
l M

[1
k M

b]
m +M

[2
j M

b]
l M

[2
k M

b]
m +M

[3
j M

b]
l M

[3
k M

b]
m

− 2α(M
[1
j M

3]
l M

[1
k M

3]
m +M

[2
j M

3]
l M

[2
k M

3]
m)]

= 2gjkglm[M
[1
j M

2]
l M

[1
k M

2]
m +M

[1
j M

3]
l M

[1
k M

3]
m +M

[2
j M

3]
l M

[2
k M

3]
m

− α(M
[1
j M

3]
l M

[1
k M

3]
m +M

[2
j M

3]
l M

[2
k M

3]
m)]

= 2gjkglm[(1− α)(M
[1
j M

2]
l M

[1
k M

2]
m +M

[1
j M

3]
l M

[1
k M

3]
m +M

[2
j M

3]
l M

[2
k M

3]
m)

+ αM
[1
j M

2]
l M

[1
k M

2]
m]

=
1

4
gjkglm[(1− α)[Mj,Ml]

a[Mk,Mm]a + α[Mj,Ml]
3[Mk,Mm]3].

(2.45)

In the last line, we have defined the following: [Mj,Ml]
c ≡ −εabcMa

jM
b
l =

−2M
[a
j M

b]
l , where c is a fixed constant, and therefore, {a, b} take only two

values.

We now have:

E4 =
κ4

8
gjkglm[(1− α)[Mj,Ml]

a[Mk,Mm]a + α[Mj,Ml]
3[Mk,Mm]3] (2.46)

L4 =
κ4

8
gµνgβγ[(1− α)[Mµ,Mβ]a[Mν ,Mγ]

a + α[Mµ,Mβ]3[Mν ,Mγ]
3]. (2.47)

Derivation of Generalized Energy Density

We now look at how one can arrive at the expression of the energy density,

given in terms of the fields Φβ (eq. (2.26)), from the generalized Lagrangian,

eqs. (2.18, 2.19).
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In what follows, Greek indices (α, β, γ, ...) ∈ (1, 2, 3, 4) and Latin indices

(a, b, c, ...) ∈ (1, 2, 3) which, when repeated, should be thought of as being

contracted (or summed over). Furthermore, we shall make use of the follow-

ing definitions and identities:

σi =


 0 1

1 0

 ,

 0 −i

i 0

 ,

 1 0

0 −1

 ; (i)

[σi, σj] = 2iεijkσk , σiσj = δij · 1+ iεijkσk ; (ii,iii)

U = Φ4 + iΦiσi , U † = Φ4 − iΦiσi ; (iv,v)

U =

 Z1 −Z∗2
Z2 Z∗1

 =

 Φ4 + iΦ3 Φ2 + iΦ1

−Φ2 + iΦ1 Φ4 − iΦ3

 ; (vi)

ΦβΦβ = 1 , Φβ∂iΦβ = 0 ; (vii,viii)

Mi = iMa
i σa , M †

i = −Mi, (Ma
i )† = Ma

i , [Ma
i , σa] = 0 ,

(ix-xii)

where identities (x) and (xi) follow from MiM
†
i = −M2

i and from the Her-

miticity of Pauli matrices σa = σ†a, respectively.

To calculate E2 we first need to write down expressions for the Ma
i ’s in terms
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of the fields Φβ. We begin by writing down Mi as follows:

Mi = U †∂iU = (Φ4 − iΦjσj)(∂iΦ4 + i(∂iΦk)σk)

= Φ4∂iΦ4 + i(Φ4(∂iΦk)σk − Φj(∂iΦ4)σj) + Φj(∂iΦk)σjσk

= −i · i[Φ4∂iΦ4 + iΦ4((∂iΦ1)σ1 + (∂iΦ2)σ2 + (∂iΦ3)σ3)

− i∂iΦ4(Φ1σ1 + Φ2σ2 + Φ3σ3)

+ (Φ1σ1 + Φ2σ2 + Φ3σ3)((∂iΦ1)σ1 + (∂iΦ2)σ2 + (∂iΦ3)σ3)]. (2.48)

Using identities (iii) and (viii) on eq. (2.48) simplifies it considerably. We

can now write it down as follows:

Mi = i[Φ4((∂iΦ1)σ1 + (∂iΦ2)σ2 + (∂iΦ3)σ3)− ∂iΦ4(Φ1σ1 + Φ2σ2 + Φ3σ3)

+ (Φ1∂iΦ2)σ3 − (Φ1∂iΦ3)σ2 − (Φ2∂iΦ1)σ3

+ (Φ2∂iΦ3)σ1 + (Φ3∂iΦ1)σ2 − (Φ3∂iΦ2)σ1]. (2.49)

From eq. (2.49), we can read out the individual Ma
i ’s:

M1
i = (Φ4∂iΦ1 − Φ1∂iΦ4 + Φ2∂iΦ3 − Φ3∂iΦ2)× 1 (2.50)

=
i

2
(Z∗1∂iZ

∗
2 − Z1∂iZ2 + Z2∂iZ1 − Z∗2∂iZ∗1)× 1 , (2.51)

M2
i = (Φ4∂iΦ2 − Φ2∂iΦ4 + Φ3∂iΦ1 − Φ1∂iΦ3)× 1 (2.52)

=
1

2
(Z∗2∂iZ

∗
1 + Z2∂iZ1 − Z1∂iZ2 − Z∗1∂iZ∗2)× 1 , (2.53)

M3
i = (Φ4∂iΦ3 − Φ3∂iΦ4 + Φ1∂iΦ2 − Φ2∂iΦ1)× 1 (2.54)

= i(Z1∂iZ
∗
1 + Z2∂iZ

∗
2)× 1 . (2.55)

Note that eq. (2.55) does not seem to be real, but in fact it is. To see this, one

can use identity (vi) to expand it in terms of the fields Φβ and use identity
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(viii) to simplify it.

We can now calculate the α = 0 term of L2, eq. (2.18):

1

2
Tr(Ma

i )2 = (Φ2
2 + Φ3

2 + Φ4
2)(∂iΦ1)2 + (Φ1

2 + Φ3
2 + Φ4

2)(∂iΦ2)2

+ (Φ1
2 + Φ2

2 + Φ4
2)(∂iΦ3)2 + (Φ1

2 + Φ2
2 + Φ3

2)(∂iΦ4)2

− 2Φ1Φ4∂iΦ1∂iΦ4 − 2Φ2Φ3∂iΦ2∂iΦ3 − 2Φ2Φ4∂iΦ2∂iΦ4

− 2Φ1Φ3∂iΦ1∂iΦ3 − 2Φ3Φ4∂iΦ3∂iΦ4 − 2Φ1Φ2∂iΦ1∂iΦ2 (2.56)

= (∂iΦ1)2 + (∂iΦ2)2 + (∂iΦ3)2 + (∂iΦ4)2

− (Φ1∂iΦ1 + Φ2∂iΦ2 + Φ3∂iΦ3 + Φ4∂iΦ4︸ ︷︷ ︸
0 (from identity (viii))

)2 . (2.57)

Therefore6,

1

2
Tr(Ma

i )2 = (∂iΦβ)2 , (2.58)

1

2
Tr(M3

i )2 = (Φ4∂iΦ3 − Φ3∂iΦ4 + Φ1∂iΦ2 − Φ2∂iΦ1)2 ≡ P 2
i . (2.59)

We are now ready to write down the energy density7 E2:

L2 = −κ2((∂iΦβ)2 − αP 2
i ) = −E2 . (2.60)

To write down the terms in L4, eq. (2.19), in terms of the fields Φβ, we

develop some special notation which emphasizes the vectorial nature of the

terms involved: Φi ≡ ~φ, Φ4 ≡ φ0, Ma
µ ≡ ~mµ (i.e. Mµ = i~mµ · ~σ), and their

derivatives are given as subscripts (i.e. ∂µU ≡ Uµ, etc.). Using this notation,

we now write down some useful expressions:
6Note that, because the Ma

i ’s are proportional to 1, whenever we take the trace of
terms involving them, we must multiply by a factor of 1

2 – otherwise we end up double
counting the terms.

7Note that one can relate the energy density and the Lagrangian, through the energy-
momentum tensor T νµ , as follows: T νµ =

(
∂L
∂Φ,ν

)
·Φ,µ−L δνµ, where Φ,µ ≡ ∂µΦ. The energy

density is given by the T 0
0 component: E ≡ T 0

0 =
(
∂L
∂Φ̇

)
· Φ̇−L, where Φ̇ ≡ ∂tΦ. Since we

are dealing only with static fields, we have: L = −E .
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U = φ0 + i~φ · ~σ ≡ φ0 + Φ , U † = φ0 − i~φ · ~σ ≡ φ0 − Φ ; (xiii,xiv)

φαφα = 1 , φαφαµ = 0 ; (xv,xvi)

Mµ = U †Uµ = φ0Φµ − φ0
µΦ + iεijkφ

iφjµσk , ~mµ = φ0~φµ − φ0
µ
~φ+ ~φ× ~φµ ;

(xvii, xviii)

~mµ · ~mµ = (φαµ)2 , ~mµ · ~mν = φ0
µφ

0
ν + ~φµ · ~φν = φαµφ

α
ν . (xix,xx)

We now focus on the (1−α) term of eq. (2.19). First, we write down Kµν in

terms of the ma
µ’s (see eqs. (2.20,2.21)):

Kµν = [Mµ,Mν ] = [ima
µσa, im

b
νσb]

= −ma
µm

b
ν [σa, σb] = −2iεabcm

a
µm

b
νσc ≡ iKc

µνσc . (2.61)

Therefore,

Ka
µν = −2εabcm

b
µm

c
ν × 1 = −2(~mµ × ~mν) · 1 , (2.62)

1

8
Tr(Ka

µν)
2 = (~mµ × ~mν) · (~mµ × ~mν)

= (~mµ · ~mµ)(~mν · ~mν)− (~mµ · ~mν)(~mµ · ~mν) . (2.63)

Making use of the identities (xix,xx), we can also express the (1 − α) term
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of L4 in terms of the fields φαµ:

1

8
Tr(Ka

µν)
2 =

∑
α

(φαµ)2(φαν )2 − (φαµφ
α
ν )2 (2.64)

=
∑
α

[ (
(φα1 )2(φα2 )2 + (φα1 )2(φα3 )2 + (φα2 )2(φα3 )2

)
−
(
(φα1φ

α
2 )2 + (φα1φ

α
3 )2 + (φα2φ

α
3 )2
) ]
, (2.65)

where we have restricted ourselves to spatial derivatives in eq. (2.65).

The (1 − α) term of L4 can also be expressed in terms of the F j
βγ from

eq. (2.26), as follows (recall that summation over repeated indices is implied

throughout):

1

8
Tr(Ka

µν)
2 = (φαµ)2(φαν )2 − (φαµφ

α
ν )2

= φαµφ
α
µφ

β
νφ

β
ν − φαµφβµφανφβν

= φσµφ
γ
µφ

λ
νφ

κ
ν (δσγδλκ − δσλδγκ)

= 2φσµφ
γ
µφ

λ
νφ

κ
νδ
σ[γδλ]κ

= 2φσµφ
γ
[µφ

λ
ν]φ

κ
νδ
σ[γδλ]κ

= 2φγ[µφ
λ
ν]φ

σ
[µφ

κ
ν]δ

σ[γδλ]κ

=
1

2
(εijkφ

γ
jφ

λ
k)︸ ︷︷ ︸

≡2F iγλ

(εipqφ
σ
pφ

κ
q )︸ ︷︷ ︸

≡2F iσκ

δσ[γδλ]κ (2.66)

= 2F i
γλF

i
σκδ

σ[γδλ]κ

= F i
γλF

i
γλ − F i

γλF
i
λγ

= 2F i
γλF

i
γλ , as in eq. (2.26). (2.67)

Note that, in getting to eq. (2.66), we have restricted ourselves to spatial

indices only. We now move on to the α term in L4, which is proportional to

(K3
µν)

2. We write it down as follows (recalling that Ka
µν ≡ −2εabcm

b
µm

c
ν×1):



Chapter 2. The Skyrme and Skyrme-Faddeev models, an interpolating
model, and Skyrme crystals 27

K3
µν = −2ε3abm

a
µm

b
ν × 1 , (2.68)

(K3
µν)

2 = 4ε3abε3cdm
a
µm

b
νm

c
µm

d
ν × 1 , (2.69)

1

8
Tr(K3

µν)
2 = m1

µm
1
µm

2
νm

2
ν +m2

µm
2
µm

1
νm

1
ν −m2

µm
2
νm

1
µm

1
ν −m1

µm
1
νm

2
µm

2
ν

(2.70)

= (m1
µm

2
ν −m1

νm
2
µ)2

= [(φ0φ1
µ − φ0

µφ
1 + φ2φ3

µ − φ3φ2
µ)(φ0φ2

ν − φ0
νφ

2 + φ3φ1
ν − φ1φ3

ν)

− (µ↔ ν)]2 (2.71)
...

= [(φ1
µφ

2
ν − φ1

νφ
2
µ) + (φ0

µφ
3
ν − φ0

νφ
3
µ)]2 . (2.72)

To get from (2.71) to (2.72), one should expand the (squared) expression,

which simplifies considerably after using identities (xv,xvi).

Finally, to get this term into its final form, we make use of the symplectic

form Ωβγ corresponding to the almost-complex structure in R
4 ' C

2, with

non-zero components: Ω12 = −Ω21 = −Ω34 = Ω43 = 1. This allows us to

write the term as follows:

1

8
Tr(K3

µν)
2 =

(
Ωβγφ

β
µφ

γ
ν

)2
=
(
ΩβγF

i
βγ

)2 ≡ (Qi)2 , (2.73)

where, in introducing F i
βγ from eq. (2.66), we have restricted ourselves to

spatial indices.

Bringing together eqs. (2.67,2.73), we can write L4 as follows:

L4 =
κ4

8
((1−α)Tr(Ka

µν)
2+αTr(K3

µν)
2) = −κ4[2(1−α)F i

γλF
i
γλ+α(Qi)2] = −E4 .

(2.74)

Combining eqs. (2.60,2.74), we get the following expression for the generalized
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energy density:

E = E2 + E4 = κ2[(∂iΦβ)2 − αP 2
i ] + κ4[2(1− α)F i

γλF
i
γλ + α(Qi)2] , (2.75)

which reproduces eq. (2.26).

Skyrme-Faddeev Lagrangian from Generalized Lagrangian

For the final part of our calculation, we show that eq. (2.17) reduces to the

Skyrme-Faddeev Lagrangian, eq. (2.25), in the α = 1 limit. In this section,

we will write down the Lagrangian in terms of the field Z ≡ (Z1, Z2)T , from

identity (vi) in the previous section. We use the following notation for its

derivatives: ∂µZ ≡ (Zµ1, Zµ2)T and ∂µZ∗ ≡ (Z∗µ1, Z
∗
µ2)T . The corresponding

notation for the fields ~ψ (as defined in sec. 2.3) is given by: ∂µ ~ψ ≡ ∂µψ
a = ψaµ,

where again repeated roman indices run over {1, 2, 3}.

We start by writing the generalized Lagrangian, eq. (2.17), in the α = 1

limit, along with the Skyrme-Faddeev Lagrangian:

Lgen(α=1) = Lgen(α=1),2 + Lgen(α=1),4

= κ2g
µν(Ma

µM
a
ν −M3

µM
3
ν ) +

κ4

8
gµνgβγK3

µβK
3
νγ , (2.76)

LSF = LSF,2 + LSF,4 =
κ2

4
(~ψµ)2 +

κ4

32
(Gµν)

2 , (2.77)

where now Gµν ≡ ~ψ · (~ψµ × ~ψν). However, since we are dealing with spatial

indices only, the important terms that we should keep in mind are: the

Ma
i , which were defined in terms of Z in eqs. (2.51, 2.53, 2.55) and K3

ij =

−2ε3abM
a
i M

b
j × 1, as in eq. (2.68). We now write some useful identities:

Z†Z = 1 , Z†µZ + Z†Zµ = 0 ; (xxi,xxii)
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~ψ = Z†~σZ = (ψ1, ψ2, ψ3) , (ψa)2 = 1 , ψaψaµ = 0 ; (xxiii,xxiv,xxv)

ψ1 = Z∗1Z2 +Z∗2Z1 , ψ1
µ = Z∗µ1Z2 +Z∗µ2Z1 +Z∗1Zµ2 +Z∗2Zµ1 ; (xxvi,xxvii)

ψ2 = −iZ∗1Z2 + iZ1Z
∗
2 , ψ2

µ = −i(Z∗µ1Z2 − Z∗µ2Z1 + Z∗1Zµ2 − Z∗2Zµ1) ;

(xxviii,xxix)

ψ3 = Z∗1Z1 −Z∗2Z2 , ψ3
µ = Z∗µ1Z1 −Z∗µ2Z2 +Z∗1Zµ1 −Z∗2Zµ2 ; (xxx,xxxi)

(ψ1
µψ

2
ν − ψ1

νψ
2
µ) = 2i[Z1Z2Z

∗
µ1Z

∗
ν2 + |Z1|2Zµ2Z

∗
ν2 + |Z2|2Z∗µ1Zν1 + Z∗1Z

∗
2Zµ2Zν1

− (µ↔ ν)] ; (xxxii)

(ψ1
µψ

3
ν − ψ1

νψ
3
µ) =

(
(Z1)2 + (Z2)2

)
Z∗µ2Z

∗
ν1 + (Z∗1Z2 − Z1Z

∗
2)Z∗µ1Zν1

+
(
|Z1|2 + |Z2|2

)
Z∗µ2Zν1 + (Z∗1Z2 − Z1Z

∗
2)Z∗µ2Zν2

+
(
|Z1|2 + |Z2|2

)
Zµ2Z

∗
ν1 +

(
(Z∗1)2 + (Z∗2)2

)
Zµ2Zν1

− (µ↔ ν) ; (xxxiii)
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(ψ2
µψ

3
ν − ψ2

νψ
3
µ) = i

[ (
(Z1)2 − (Z2)2

)
Z∗µ2Z

∗
ν1 + (Z1Z

∗
2 + Z∗1Z2)Zµ1Z

∗
ν1

+ (|Z1|2 + |Z2|2)Z∗µ1Zν2 + (|Z1|2 + |Z2|2)Z∗µ2Zν1

+ (Z∗1Z2 + Z1Z
∗
2)Zµ2Z

∗
ν2 +

(
(Z∗1)2 − (Z∗2)2

)
Zµ1Zν2

− (µ↔ ν)
]
. (xxxiv)

We start by writing Lgen(α=1),2 in terms of the fields Z:

Lgen(α=1),2 =
κ2

2
Tr[(M1

µ)2 + (M2
µ)2] (2.78)

= −κ2

4
[(Z∗1Z

∗
µ2 − Z1Zµ2 + Z2Zµ1 − Z∗2Z∗µ1)2

− (Z∗2Z
∗
µ1 + Z2Zµ1 − Z1Zµ2 − Z∗1Z∗µ2)2] (2.79)

...

= −κ2

4
[−4|Z1|2|Zµ2|2 − 4|Z2|2|Zµ1|2

+ 4Z∗1Z2Zµ1Z
∗
µ2 + 4Z1Z

∗
2Z
∗
µ1Zµ2] (2.80)

= κ2(Z1Zµ2 − Z2Zµ1)(Z∗1Z
∗
µ2 − Z∗2Z∗µ1) , (2.81)

where all we have done in going from eq. (2.79) to (2.80) is to expand the

squares and cancel terms.

We now use identities (xxvii), (xxix), and (xxxi) to write down the term in

LSF,2:

(~ψµ)2 = (ψ1
µ)2 + (ψ2

µ)2 + (ψ3
µ)2

= (Z∗µ1Z2 + Z∗µ2Z1 + Z∗1Zµ2 + Z∗2Zµ1)2

− (Z∗µ1Z2 − Z∗µ2Z1 + Z∗1Zµ2 − Z∗2Zµ1)2

+ (Z∗µ1Z1 − Z∗µ2Z2 + Z∗1Zµ1 − Z∗2Zµ2)2 (2.82)
...

= 4(Z1Zµ2 − Z2Zµ1)(Z∗1Z
∗
µ2 − Z∗2Z∗µ1) , (2.83)
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where use has been made of identity (xxii) in going from eq. (2.82) to (2.83),

in order to cancel certain terms. This leads us to the following conclusion:

Lgen(α=1),2 =
κ2

4
(~ψµ)2 = LSF,2 . (2.84)

The last step is to relate LSF,4 to Lgen(α=1),4. We begin by writing (Gµν)
2 as

follows:

(Gµν)
2 = εabcεdefψ

aψdψbµψ
e
µψ

c
νψ

f
ν (2.85)

=
(
δad(δbeδcf − δbfδce)− δae︸︷︷︸

ψaψaµ=0

(δbdδcf − δbfδcd)

+ δaf︸︷︷︸
ψaψaν=0

(δbdδce − δbeδcd)
)
× ψaψdψbµψeµψcνψfν (2.86)

= (~ψµ)2(~ψν)
2 −

(
~ψµ · ~ψν

)2

(2.87)

= (ψ1
µψ

2
ν − ψ1

νψ
2
µ)2 + (ψ1

µψ
3
ν − ψ1

νψ
3
µ)2 + (ψ2

µψ
3
ν − ψ2

νψ
3
µ)2 (2.88)

= −4(Z†µZν − Z†νZµ)2 , (2.89)

where, in going from eq. (2.88) to (2.89), we have made use of the identities

(xxxii), (xxxiii), and (xxxiv) and, unless one has the stamina, a decent sym-

bolic manipulation software can be used to get to eq. (2.89), using identities

(xxi) and (xxii) as assumptions.

To make the connection with Lgen(α=1),4, we use (vi) to express the Z fields

in terms of the φ fields:

(Z†µZν − Z†νZµ)2 = −4[(φ1
µφ

2
ν − φ1

νφ
2
µ) + (φ0

µφ
3
ν − φ0

νφ
3
µ)]2 . (2.90)

Therefore,

1

16
(Gµν)

2 = [(φ1
µφ

2
ν − φ1

νφ
2
µ) + (φ0

µφ
3
ν − φ0

νφ
3
µ)]2 . (2.91)
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Finally, if we think ofK3
µν as a matrix with entries (µ, ν) then, from eqs. (2.69)

and (xviii), we have:

(K3
µν)

2 = 4ε3abε3cdm
a
µm

b
νm

c
µm

d
ν (2.92)

...

= 4[(φ1
µφ

2
ν − φ1

νφ
2
µ) + (φ0

µφ
3
ν − φ0

νφ
3
µ)]2 . (2.93)

We can now relate Gµν with K3
µν as follows:

1

16
(Gµν)

2 =
1

4
(K3

µν)
2 , (2.94)

1

32
(Gµν)

2 =
1

8
(K3

µν)
2 , (2.95)

which leads us to the following conclusion:

Lgen(α=1),4 =
κ4

8
(K3

µν)
2 =

κ4

32
(Gµν)

2 = LSF,4 , (2.96)

which brings us to the end of our calculation.

2.5 The Skyrme crystal

It turns out that there is a special way of arranging skyrmions in or-

der to obtain the smallest known value of the energy per baryon num-

ber seen so far [10], known as the Skyrme crystal. This is an infinite,

triply-periodic, arrangement of half-skyrmions [42–47]. In order to study

Skyrme crystals, we impose periodic boundary conditions on the Skyrme

field in all three directions, with periods (Lx, Ly, Lz) ≡ (L1, L2, L3) along the

(x, y, z) ≡ (x1, x2, x3) ≡ (x1, x2, x3) directions, respectively. The skyrmions

are therefore defined on a 3-torus T 3.

Skyrme crystals were originally proposed by Klebanov [42] as a model for

dense nuclear matter, such as that found in neutron stars. At the time,
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the behaviour of two well-separated skyrmions was already known [9] – an

important feature being that these are maximally-attracted when one is ro-

tated with respect to the other by 180◦ about a line perpendicular to the line

connecting them. Klebanov believed that an interesting extension of this

idea would be to have an array of skyrmions, where any skyrmion would be

attracted by its nearest neighbours. A graceful way of achieving this, Kle-

banov showed, would be to arrange the skyrmions in a simple-cubic lattice

with appropriate rotations applied to all the nearest neighbours of a chosen

skyrmion [42]. Moreover, if the skyrme fields are to have the correct period-

icity in all three directions, they must have symmetry elements that combine

both spatial transformations as well as isospin transformations acting on the

individual fields (more on this shortly).

Klebanov also showed that there is a minimum in the energy for a certain

value of the period L ≡ Lx = Ly = Lz, which in our units was first shown in

[46] to be L = 4.7. In other words, there is a preferred size of the fundamental

cell. Later, Goldhaber and Manton showed [43] that there is a phase tran-

sition from a low-density simple-cubic lattice of skyrmions to a high-density

body-centred lattice of half-skyrmions. However, it has since been shown by

Kugler and Shtrikman [46, 47] and by Castillejo et al. [45] that the low-

est energy per baryon configuration is that of a (high-density) half-skyrmion

phase corresponding to an initial (low-density) face-centred cubic (fcc) array

of skyrmions.

An fcc array is one in which skyrmions with standard orientation are placed

on the vertices of a cube and more skyrmions are placed on the face centres,

but this time rotated by 180◦ about an axis perpendicular to the face. Such

a configuration produces 12 nearest neighbours (to a particular skyrmion),

which are all in the attractive channel. If the origin is fixed at the centre of

one of the unrotated skyrmions and the skyrme fields are given by Φβ(x) =

(Φ1(x),Φ2(x),Φ3(x),Φ4(x)), then the fcc configuration would have spatial
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and isospin symmetries, as was alluded to above. The generators for these

symmetries are listed in Table 2.1 [10]:

Table 2.1: Symmetry generators of an fcc array of skyrmions

Transformation Name Spatial Transformation Isospin Transformation
R1 (x1, x2, x3)→ (−x1, x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,Φ2,Φ3,Φ4)
R3

1,− (x1, x2, x3)→ (x2, x3, x1) (Φ1,Φ2,Φ3,Φ4)→ (Φ2,Φ3,Φ1,Φ4)
R4

1,− (x1, x2, x3)→ (x1, x3,−x2) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ3,−Φ2,Φ4)
T1+,2+ (x1, x2, x3)→ (x1 + L/2, x2 + L/2, x3) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,−Φ2,Φ3,Φ4)

The transformations listed here are R1: a reflection in the x1−axis, R3
1,−:

a “negative” three-fold rotation about the diagonal that goes from the ori-

gin to the opposite corner of the cube (defined as “1”), R4
1,−: a “negative”

four-fold rotation about the x1−axis, and T1+,2+: a positive L/2−translation

in both the x1−axis and the x2−axis. Note that these are a subset

of the possible transformations that can be carried out on an fcc lat-

tice. For example, one can also have a “positive” three-fold rotation along

the same diagonal, R3
1,+, given by the transformation: (x1, x2, x3) →

(x3, x1, x2), (Φ1,Φ2,Φ3,Φ4) → (Φ3,Φ1,Φ2,Φ4). Another possible trans-

formation could also be a “positive” four-fold rotation about the x3−axis,

R4
3,+: (x1, x2, x3)→ (−x2, x1, x3), (Φ1,Φ2,Φ3,Φ4)→ (−Φ2,Φ1,Φ3,Φ4).

There is an additional symmetry unique to the high-density phase of half-

skyrmions. Its generator is given by:

Table 2.2: Additional symmetry generator of the high-density half-skyrmion
phase

Transformation Name Spatial Transformation Isospin Transformation
T1+ (x1, x2, x3)→ (x1 + L/2, x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,Φ2,Φ3,−Φ4)

Note that this transformation involves a chiral SO(4), rather than just isospin

SO(3) rotations displayed in Table 2.1 above and it can replace the T1+,2+

transformation since that can be achieved through successive applications of

T1+ and T2+.
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An analytic approximation for the fields of the Skyrme crystal was proposed

in [45]. It takes into account the SO(4) chiral symmetry as well as the SO(3)

isospin symmetries. The fields are expressed as follows:

Φ4 = c1c2c3 , (2.97)

Φ1 = −s1

(
1− s2

2

2
− s2

3

2
+
s2

2s
2
3

3

) 1
2

and cyclic permutations, (2.98)

where si = sin (2πxi/L) and ci = cos (2πxi/L). It is a good approximation

to the actual minimal-energy solution.

We will see that the field behaves in an interesting way as one changes the

period of the crystal in different ways, for different directions. For example,

if we start with the Skyrme crystal and then increase the period along all

three space dimensions in the same way, one gets the familiar picture of the

cubically-symmetric charge Q = 4 skyrmion. We also show that the energy

density of the Skyrme crystal displays certain similarities previously seen in

the context of Skyrme chains, provided we have large Lx,y (where Lx = Ly)

and small Lz values. Skyrme chains are solutions of the Skyrme model, which

are periodic in one space dimension. It has been shown [8] that soliton chains

generally have constituents in the form of vortex-antivortex pairs. These

emerge when the period is small compared to the natural soliton size - a

feature that we verify when the period in the z−direction is small compared

to the other two space directions. When the period increases, the constituents

tend to clump together, a feature that is also verified here.

A double Skyrme sheet [2], is also seen to emerge at small Lx,y and large

Lz values. It takes the form of a square lattice, an object analogous to

the hexagonal “Skyrme domain wall” solution [7]. However, our system is

periodic in all three directions, which means that the vacuum value on both

sides of the Skyrme sheets (±∞ in the z−direction) is unique.

Finally, we describe what happens as one increases the period simultaneously
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in all three directions, starting with the Skyrme crystal, and show that there

is a rapid transition between the Skyrme crystal and the Q = 4 skyrmion

with cubic symmetry. We show evidence which suggests that this is a second-

order phase transition with an order parameter given by the period Lx,y,z of

the configuration (where Lx = Ly = Lz).



Part II

Skyrme Lattices

37



Chapter 3

Skyrme crystal deformations

In sec. 2.5 we mentioned that the Skyrme crystal has been shown to have an

energy minimum for the period L = 4.7, which we call the “optimal period”.

Our goal in this chapter is to see what other structures emerge, aside from the

cubic lattice of eight approximately spherically-symmetric half-skyrmions,

when we move away from this optimal period in all three directions.

In what follows, we take periodic boundary conditions in all three space

directions - the periods will be specified in the relevant sections. The

lattice spacings in the x, y, and z directions are given by hx, hy, hz and

the number of lattice points are given by nx, ny, nz, yielding side-lengths

Lx,y,z = hx,y,z ∗ nx,y,z. We use a first-order finite-difference scheme and im-

plement a full 3-dimensional numerical minimization of the energy using the

conjugate gradient method (see e.g. [48]).

Note that there is a numerical error associated with the finite lattice spacing.

The way we approximate the errors in the energy, for a given configuration,

is by comparing its topological charge (using numerical methods) with the

“true” value of its charge (Q = 4). We assume the same errors in energy and

charge since similar finite-difference methods are employed in calculating

each of these values. As one would expect, larger lattice spacing gives larger

truncation error.

38
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The initial condition that we start with for minimization is the approximate

Skyrme crystal of eight half-skyrmions, namely (2.97) and (2.98). After being

minimized, the period in each direction for this initial configuration is then

changed in a certain way (described in the relevant section) and then re-

minimized.

3.1 From a 4-skyrmion to a square 2-wall

The first case is the one for which the period in all three directions is large for

the initial configuration and then the Lx,y periods are reduced gradually. The

initial period is given by Lx,y,z = 7.05 (see Fig. 3.1) and then reduce Lx = Ly

by 1 each time. As this is the first figure, we take the opportunity to mention

that, for all figures featuring energy density isosurfaces, each subfigure shows

a zoomed in version of the relevant isosurface and, therefore, the vertical and

horizontal scales change; this is done in order to make it easy for the reader’s

tired eyes to be able to discern all the features described in the text.

We start by increasing the periods Lx = Ly = Lz for the minimized Skyrme

crystal from Lx,y,z = 4.7 to 7.05 by increasing the value of nx,y,z, for a certain

value of hx,y,z, and thus producing Fig. 3.1 (a). Afterwards, nx,y,z is kept

constant and Lx,y,z is reduced by 1 each time.

One can see that the translation symmetries, Ti+/−, (where i = {1, 2, 3} and

in either direction +/−) of the high-density Skyrme crystal are broken in

Fig. 3.1 (a), which is the Q = 4 skyrmion, whereas all reflection symmetries,

Ri, three-fold rotations R3
1/2,+/−, and four-fold rotations R4

i,+/− remain un-

broken – characteristic of cubic symmetry. In Fig. 3.1 (b)-(f), T1+/− and

T2+/− symmetries are regained (possibly due to the fact that we are “squeez-

ing” the configuration in these directions), whereas T3+/− remains broken

only for Fig. 3.1 (b) and Fig. 3.1 (c), due to the fact that these figures are

not extended throughout the whole period in the z−direction. The reflec-
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Figure 3.1: Energy density isosurfaces with surface value given by 0.5 ∗ Emax,
where Emax is the maximum value of the energy density (all isosurfaces in
this chapter have the same surface value). The first isosurface corresponds
to the Q = 4 skyrmion for the periods Lx,y,z = 7.05. Each successive picture
has Lx,y reduced by 1 and Lz is kept constant at 7.05.
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tion symmetries Ri are unbroken and the three-fold rotations R3
1/2,+/− are

broken in Figs. 3.1 (b)-(f). The four-fold rotations R4
3,+/− remain unbroken

throughout, whereas R4
1/2,+/− are broken in Figs. 3.1 (b)-(f).

Note that a double Skyrme sheet configuration [2] emerges in Fig. 3.1 (d).

The separation between the sheets, which is calculated by measuring the dis-

tance between the energy density peaks as a function of z, remains constant

as Lx,y is reduced further and Lz is kept constant at Lz = 7.05. However,

the energy decreases from a value of E = 4.36 ± 0.09 at Lx,y,z = 7.05 down

to a minimum of E = 4.20 ± 0.05 at Lx,y = 4.05 and, finally, increases to

E = 5.25± 0.10 at Lx,y = 2.05.

The preferred configuration for this Skyrme sheet is to have Lx = Ly. For

instance, if we fix Ly = 4.05 and vary Lx away from this value in either

direction, we notice that the energy increases.

3.2 From square 2-walls to vortices

We now start with a large Lz period, which will be reduced, and keep Lx,y = 4

constant. The starting point is Lz = 7, which is then reduced by 1 each time.

In this section, nx = ny = nz are kept constant, producing different hz values

each time Lz is changed.

The initial condition (eqs. (2.97) and (2.98)) is first minimized for the periods

Lx,y = 4 and Lz = 7, producing the double Skyrme sheet configuration seen

in Fig. 3.2 (a). The only broken symmetries associated with this configura-

tion, which are seen to persist in Fig. 3.2 (b) and Fig. 3.2 (c), are R4
1/2,+/−

and R3
1/2,+/−. These are regained in Fig. 3.2 (d), which is a (non-minimal)

Skyrme crystal configuration. As the Lz period is decreased further, we

notice the appearance of vortex-like structures, which are periodic in the

z−direction (Fig. 3.2 (e) and Fig. 3.2 (f)). The symmetries associated with

these configurations are the same as those in Figs. 3.2 (a)-(c) and, in fact,
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Figure 3.2: Energy density isosurfaces corresponding to the Q = 4 double
Skyrme sheet configuration, where Lx,y = 4 remains fixed and where Lz = 7
is reduced by 1 in each successive picture, transforming the double skyrme
sheet into a (non-minimal) Skyrme crystal and thereafter into a parallel 4-
vortex structure.

the translation symmetry in the z−direction, T3+/−, becomes continuous for

Fig. 3.2 (f), since there is no longer any noticeable z−dependence. This ties

into the subject of Skyrme chains, which has been explored in [8].

The energy of the isosurfaces decreases from a value of E = 4.22 ± 0.05

at Lz = 7, down to a minimum of E = 4.17 ± 0.04 at Lz = 5 (where the

isosurfaces are still in the form of a double square wall), then back up to

E = 4.89± 0.05 at Lz = 2.
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3.3 From square 2-walls to vortices, via crystal

In this section, we show how one can transform a double Skyrme sheet config-

uration into the 4-vortex configuration discussed in the previous section, by

changing both Lx = Ly and Lz (rather than just Lz), and going through an

intermediate, minimal, Skyrme crystal state, as can be seen in Fig. 3.3. The

initial period is Lx,y = 2.7 and Lz = 10.7. The former is then increased by 1

and the latter decreased by 3, two consecutive times, producing Figs. 3.3 (b)-

(c). The changes in the periods are then swapped, increasing Lx,y by 3 and

decreasing Lz by 1, for two consecutive times, producing Figs. 3.3 (d)-(e).

Here, nx = ny = nz are kept constant, producing different hx = hy and hz

values, each time the periods are changed.

We start by minimizing the approximate Skyrme crystal (eqs. (2.97) and

(2.98)) for the periods Lx,y = 2.7 and Lz = 10.7, producing the double

Skyrme sheets discussed in the previous sections (with the same symme-

tries) in Fig. 3.3 (a). As the periods are changed, as described above, the

Skyrme sheets still persist in Fig. 3.3 (b), and change into the (minimal-

energy) Skyrme crystal in Fig. 3.3 (c) (with all its associated symmetries as

described in the introduction). As Lx,y increase and Lz decreases further,

the Skyrme crystal changes into a 4-vortex structure, Figs. 3.3 (d)-(e), which

have less of a z−dependence than the ones in Figs. 3.2 (e)-(f), respectively.

The Skyrme crystal has the minimum energy, with E = 4.13± 0.04, followed

by the square 2-walls at Lx,y = 3.7 and Lz = 7.7 with E = 4.26± 0.06. The

final picture, the 4-vortex configuration with the smallest Lz−value, has the

highest energy with E = 4.77 ± 0.17, which follows from the fact that (due

to the nature of this system) E → ∞ when any combination of the periods

(Lx, Ly, Lz)→ 0.

Thus far, we have changed the periods in the three space directions in dif-

ferent ways – by decreasing Lx,y (or keeping it constant) and keeping Lz
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a) Lx,y = 2.7, Lz = 10.7 b) Lx,y = 3.7, Lz = 7.7 c) Lx,y = 4.7, Lz = 4.7

d) Lx,y = 7.7, Lz = 3.7 e) Lx,y = 10.7, Lz = 2.7
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Figure 3.3: Energy density isosurfaces, which show a transition from a pair
of Skyrme sheets to a 4-vortex configuration. Subsequent pictures have Lx,y
and Lz changing in such a way that their values are swapped halfway through
the transition.
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constant (or decreasing it) or changing all three periods at different rates at

the same time. We now turn to the case where we increase (or decrease) all

three periods simultaneously at the same rate.

3.4 From the Skyrme crystal to the Q=4 skyrmion

It turns out that an interesting feature of the Q = 4 system is uncovered

when one starts from the minimal-energy Skyrme crystal configuration at

Lx,y,z = 4.7 and then increases the periods simultaneously until the individual

half-skyrmions coalesce.

These half-skyrmions clump in a sudden fashion when one perturbs the sys-

tem in a certain way. We perturbed it by removing one lattice site through

the middle of the configuration in all three directions, thereby “squeezing”

the half-skyrmions together in all directions. Therefore, in order to see them

coalescing, one needs to increase the periods very gradually. This appears to

happen in the range Lx,y,z = 6.07 − 6.09 as can be seen in Fig. 3.4, where

the first picture has periods Lx,y,z = 4.7 and the following three correspond

to the range just mentioned. Compare this with Fig. 3.5, where the periods

are increased in larger steps.

a) Lx,y,z = 4.7

z

y

x

z z z

y y y

x x x

b) Lx,y,z = 6.07 c) Lx,y,z = 6. 08 d) Lx,y,z = 6. 09

Figure 3.4: The energy density isosurface of the Q = 4 Skyrme crystal at
Lx,y,z = 4.7. The periods are then increased gradually from Lx,y,z = 6.07 to
Lx,y,z = 6.09.

The sudden merging of the half-skyrmions can be visualized in a different

fashion by taking the maximum value of the difference in the energy densi-
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a) Lx,y,z = 4.7 c) Lx,y,z = 7.05

x

y

z z z

y y

x x

b) Lx,y,z = 5.88

Figure 3.5: Fig. a) corresponds to the energy density isosurface of the Skyrme
crystal for the periods Lx,y,z = 4.7, Fig. b) has Lx,y,z = 5.88, and Fig. c) has
Lx,y,z = 7.05

ties of the fields E [Φβ(xj)] under a certain symmetry transformation, in this

case a translation of Lx/2 in the x−direction, which is half the size of the fun-

damental cell, and dividing by the maximum value of the energy density, i.e.

∆1 = (E [Φβ(xj)]−E [Φβ(xj
′
)])max/Emax, where xj

′
= xj−Lx/2. We then plot

this as a function of the period Lx,y,z - the reason we do this is that, as soon

as the half-skyrmions start to coalesce, they will no longer be Lx/2−periodic.

For the Skyrme crystal, this difference is seen to be essentially zero and it

then starts to increase as the half-skyrmions begin to coalesce as can be seen

in Fig. 3.6.

This jump in the asymmetries of the crystal is analogous to a phase transition

in thermodynamics. There is a sudden transition from a crystalline phase,

which has more symmetries, such as chiral SO(4) symmetries for the Skyrme

crystal, to a phase with less symmetries, such as SO(3) isospin symmetries

for the Q = 4 cubic-shaped skyrmion. We expect the transition to become

more pronounced as the number of lattice points increases – as can be seen

in Fig. 3.6, when nx,y,z is increased from 32 to 36, which starts to resemble

a step function. It should be noted that the ∆1 values are independent of

which Lx,y,z value one starts with, which hints to a lack of hysteresis in the

system. Extending the analogy with phase transitions, this lack of hysteresis
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Figure 3.6: Difference in the value of the energy density of the Skyrme fields
under an Lx/2−translation in the x−direction divided by Emax, for different
values of the period Lx,y,z. Note that as the number of lattice points nx,y,z
increases, the half-skyrmions coalesce more abruptly.

strongly suggests a second-order phase transition (see e.g. [49]), with no

latent heat, and with the period Lx,y,z as the order parameter.

To sum up, we have seen that by changing the periods of the Skyrme crystal,

one obtains qualitatively different energy density configurations, including

what appear to be vortex-like structures with little or no z−dependence,

when Lz is small compared with Lx,y, and square lattices when Lx,y is small

compared with Lz. Finally, by way of making contact with results obtained

by others, we should point out that there has recently been a conjecture by

Prof. Nick Manton1, which states that hexagonal lattices akin to graphene

(see e.g. [7] and Ch. 4) may emerge if one performs a stretch along a diagonal

of the Skyrme crystal, since a hexagonal symmetry is evident, should one look

along one of its diagonals.

1We have learned this through informal discussions.



Chapter 4

Square and hexagonal lattices

In this chapter, we present some material which is largely self-contained, even

though it was inspired by some of the results of Chapter 3. Recall from that

chapter that a Q = 4 skyrmion and a Skyrme crystal can be transformed into

a pair of square sheets by lowering their Lx,y periods (see sec. 3.1, Fig. 3.1 and

sec. 3.3, Fig. 3.3). We now wish to investigate some properties of these square

sheets, such as their energy and stability, and compare them to hexagonal

sheets. In sec. 4.1, we present an ansatz we shall be using as an initial

condition for such sheets in the Skyrme model. In sec. 4.2, we discuss the

techniques used in obtaining their optimal periods. Finally, in sec. 4.3, we

investigate the case where the number of sheets N > 2 and briefly discuss

their stability.

4.1 Ansatz

In this section, we shall be dealing with complex functions W (z). Therefore,

to avoid confusion, we denote the three spatial directions (x1, x2, x3) (as in

sec. 2.5) and the complex coordinate z ≡ x1+ix2. We can express the Skyrme

fields Φβ (where β = {1, 2, 3, 4}) in terms of complex functions W (z) ≡ W

48
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through the use of a unit vector n̂W , given by [7]:

n̂W ≡
1

1 + |W |2
((W +W ∗), i(W ∗ −W ), 1− |W |2)

=
1

1 + |W |2
(2Re(W ), 2Im(W ), 1− |W |2) . (4.1)

The fields Φβ can be encapsulated in a 2×2 matrix U , written in terms of the

unit vector n̂W and Pauli matrices σ ≡ {σ1, σ2, σ3} (defined in (i), sec. 2.4.2),

as follows:

U(x1, x2, x3) = exp(if(x3)n̂W · σ) (4.2)

= cos(f(x3)) · 1+ i sin(f(x3))

×
[(

2Re(W )

1 + |W |2

)
σ1 +

(
2Im(W )

1 + |W |2

)
σ2 +

(
1− |W |2

1 + |W |2

)
σ3

]
,

(4.3)

where f(x3) ≡ 2Narctan{exp(2[x3−L3/2])} and N is equal to the number of

sheets. Note that near the limits x3 = (0, L3), the function f is approximately

f(x3) ≈ (0, Nπ). Using the definition of U (see (vi), sec. 2.4.2), we can now

write the fields as:

Φ1 = sin(f(x3))

(
2Re(W )

1 + |W |2

)
, (4.4)

Φ2 = sin(f(x3))

(
2Im(W )

1 + |W |2

)
, (4.5)

Φ3 = sin(f(x3))

(
1− |W |2

1 + |W |2

)
, (4.6)

Φ4 = cos(f(x3)) . (4.7)

Recall that a skyrmion centred at the origin has the boundary conditions

Φ4(xi) → 1 as |xi| → ∞ and Φ4(xi) → −1 as |xi| → 0 (see sec. 2.1). A

skyrmion can therefore be thought of as a surface which divides space into

two regions with different vacuum values: Φ4 = ±1. Since Skyrme sheets
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are extended objects, which stretch out over the (periodic) (x1, x2)-plane, we

choose to define it as the surface which divides space in the x3−direction

into regions where the field Φ4 takes these different vacuum values. If one

looks closely at the expression for Φ4, eq. (4.7), one can see that it indeed

divides the lattice in the x3−direction, where x3 ∈ [0, L3], into regions where

the field Φ4 takes the values {+1, 0,−1}; the location of the sheets is defined

to be those values of x3 where Φ4 = 0. For example, in going from x3 = 0 to

x3 = L3, for N = 2, the field would take the values Φ4 = {+1, 0,−1, 0,+1}.

In order to write down the ansatz for the square and hexagonal sheets ex-

plicitly, all that is left for us to do is to identify the complex functions W (z).

It turns out that the functions which capture the properties of such lat-

tices most gracefully are the Weierstrass p-functions, denoted ℘(z). These

are doubly-periodic functions, with complex fundamental periods (ω1, ω2),

and therefore ℘(z) = ℘(z + aω1 + bω2), where a and b are integers. Due

to their periodicity, it suffices to study such functions in a fundamental pe-

riod parallelogram, which is defined on the complex plane and has vertices:

(0, ω1, ω2, ω1 + ω2). We shall now define the Weierstrass function and list

some identities and results which are relevant to our discussion of square and

hexagonal lattices – all of these can be found in [50].

The Weierstrass functions can be expressed as a Laurent series as follows:

℘(z) = z−2 +
∞∑
k=2

ckz
2k−2 , (4.8)

where

c2 =
g2

20
, c3 =

g3

28
, ck =

3

(2k + 1)(k − 3)

k−2∑
m=2

cmck−m , k ≥ 4 . (4.9)

We shall explain the significance of g2 and g3 shortly. The Weierstrass func-
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tions satisfy the following differential equation:

(℘′(z))2 = 4℘3(z)− g2℘(z)− g3 . (4.10)

The numbers g2 and g3 are called the “invariants” and are related to the

geometry of the lattice under consideration. One can also relate the values

of ℘(z) at half-periods, denoted by (e1, e2, e3) [i.e. ℘(ω1/2) ≡ e1, ℘((ω1 +

ω2)/2) ≡ e2, ℘(ω2/2) ≡ e3], to the invariants as follows:

e1 + e2 + e3 = 0 , (4.11)

e1e2 + e2e3 + e3e1 = −g2

4
, (4.12)

e1e2e3 =
g3

4
. (4.13)

It is worth mentioning that the derivative of the Weierstrass function vanishes

at the half-period locations, i.e. ℘′(ω1/2) = ℘′((ω1 + ω2)/2) = ℘′(ω2/2) = 0.

With this in mind, and using the Fundamental Theorem of Algebra, one can

write down eq. (4.10) as follows:

(℘′(z))2 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3) . (4.14)

The identities (4.11)-(4.13) are then obtained by equating like terms in

eqs. (4.10) and (4.14).

The invariants can be calculated, among other ways, using Jacobi’s theta

functions (see e.g. [50–52]). The theta functions, in turn, can be readily

calculated in most computer algebra systems and are denoted by θβ(z, q),

where the nome q = exp(iπτ) and the half-period ratio τ ≡ ω′2/ω
′
1 is given in

terms of the half-periods ω′1,2 ≡ ω1,2/2. In terms of the theta functions, the
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invariants are given by:

g2 =
π4

12ω′1
4 (θ2(0, q)8 − θ2(0, q)4θ3(0, q)4 + θ3(0, q)8) , (4.15)

g3 =
π6

432ω′1
6 (2(θ2(0, q)12 + θ3(0, q)12)− 3(θ2(0, q)4θ3(0, q)8 + θ2(0, q)8θ3(0, q)4)) .

(4.16)

One can calculate the periods (ω1, ω2) through the use of elliptic integrals.

The complete elliptic integrals of the 1st kind with parameter m, denoted

K(m) and K ′(m) = K(m1) ≡ K(1−m) are defined as follows:

K(m) =

∫ π/2

0

dθ√
1−m sin2(θ)

. (4.17)

These elliptic integrals can, in turn, be expressed in terms of hypergeometric

functions F (a, b; c; z), which have the following infinite series representation:

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (4.18)

We can now write down the elliptic integrals as follows:

K(m) =
π

2
F

(
1

2
,
1

2
; 1;m

)
, (4.19)

K ′(m) =
π

2
F

(
1

2
,
1

2
; 1;m1

)
. (4.20)

To calculate (ω1, ω2), the following expression is useful [51]:

z =

∫ ∞
℘(z)

dt√
4t3 − g2t− g3

. (4.21)

For example, if one knows the values of the invariants and half-period values

ei and one wants to calculate ω1, the following integral would have to be
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evaluated:

ω′1 =

∫ ∞
e1

dt√
4t3 − g2t− g3

. (4.22)

It has been shown [51] that for the case g2 = 0 and g3 > 0, which corresponds

to the hexagonal lattice (more on this shortly), integrals of the type (4.22)

can be expressed in terms of elliptic integrals K(m):

ω′1 =

∫ ∞
e1

dt√
4t3 − g3

=
2K(m)√
r + s

(g2 = 0, g3 > 0) , (4.23)

where r ≡ (
√

3− 3/2)(2g3)
1
3 , s ≡ (

√
3 + 3/2)(2g3)

1
3 , and parameter m given

by:

m =

√
r

r + s
(g2 = 0, g3 > 0) . (4.24)

Therefore, through eqs. (4.19, 4.23), one can express the period ω1 in terms

of hypergeometric functions F , for the case g2 = 0 and g3 > 0. Armed with

this information, one can look in a book which lists hypergeometric functions

with the appropriate values of the parameters (a, b; c;m) (e.g. [50]); these

are usually given in terms of gamma functions. We now discuss two different

cases, with particular values of the invariants g2 and g3.

The case where g2 = 0 and g3 = 4 (as in [7]) corresponds to the hexagonal

lattice, whereas the case where g2 = 1 and g3 = 0 corresponds to the square

lattice [50]. More generally, these lattices fall within the “equianharmonic”

and “lemniscatic” cases, respectively, which are defined in terms of the value of

the modular discriminant ∆ ≡ g3
2−27g2

3. The case where ∆ < 0 corresponds

to the equianharmonic (hexagonal) case, whereas ∆ > 0 corresponds to the

lemniscatic (square) case.

With these values for the invariants, one can determine the half-period val-

ues ei of the Weierstrass function using eqs. (4.11, 4.12, 4.13). We get the
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following values:

e1 =
1

2
, e2 = 0 , e3 = −1

2
(Square) (4.25)

e1 = 1 , e2 = −1

2
(1 +

√
3i) , e3 = −1

2
(1−

√
3i) (Hexagonal) (4.26)

Having determined the ei values, we can now obtain the value of the half-

period ω′1 and parameter m for the square lattice (and, more generally, for

∆ > 0):

ω′1 =
K(m)√
e1 − e3

, (4.27)

m =
e2 − e3

e1 − e3

. (4.28)

Note that the periods ω′2 for the hexagonal and square lattices are given in

terms of ω′1, as follows:

ω′2 = iω′1 (Square) (4.29)

ω′2 = ω′1e
iπ
3 (Hexagonal) (4.30)

Eqs. (4.24, 4.28) give the following values for the parameters m and m1:

m =
1

2
, m1 =

1

2
(Square) (4.31)

m =
1

2
−
√

3

4
, m1 =

1

2
+

√
3

4
(Hexagonal) (4.32)

We can now calculate the periods (ω1, ω2). Using eqs. (4.23, 4.27) for the half-

periods, with the aforementioned values of the invariants, half-period values

of the Weierstrass function (4.25, 4.26), and parameter values (4.31, 4.32),

together with eq. (4.19) for the elliptic integralsK in terms of hypergeometric
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functions, the periods are given by:

ω1 =
Γ2
(

1
4

)
2
√
π

(Square) (4.33)

ω1 =
Γ
(

1
3

)
Γ
(

1
6

)
2
√

3π
(Hexagonal) . (4.34)

Note that one might need to use certain properties of the gamma function in

order to get the periods in the form of (4.33, 4.34) – see e.g. [50].

We are almost ready to write down the complex functions W (z), used in the

expressions for the fields Φβ. There is just one more ingredient we need to

define: the Jacobian elliptic functions. These can be defined in terms of the

following integral:

z =

∫ φ

0

dθ√
1−m sin2(θ)

, (4.35)

where the angle φ is called the “amplitude”. We shall be interested in the

following functions, given in terms of the amplitude:

sn(z|m) = sin(φ) , cn(z|m) = cos(φ) , dn(z|m) =
√

1−m sin2(φ) .

(4.36)

The functions sn(z|m) and cn(z|m) can be expressed in terms of (x1, x2),

with z ≡ x1 + ix2, as follows [50]:

sn(x1 + ix2|m) =
sn(x1|m)dn(x2|m1) + i cn(x1|m)dn(x1|m)sn(x2|m1)cn(x2|m1)

cn2(x2|m1) +m sn2(x1|m)sn2(x2|m1)
,

(4.37)

cn(x1 + ix2|m) =
cn(x1|m)cn(x2|m1)− i sn(x1|m)dn(x1|m)sn(x2|m1)dn(x2|m1)

cn2(x2|m1) +m sn2(x1|m)sn2(x2|m1)
.

(4.38)

Note that the Jacobian elliptic functions (sn, cn, dn) are quite common and

are usually built into numerical computing programs. With this in mind,

we now write down the Weierstrass functions for the square (∆ > 0) and
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hexagonal (∆ < 0) lattices, in terms of these functions:

℘(z) = e3 +
e1 − e3

sn2(z|m)
(∆ > 0) (4.39)

℘(z) = e1 +H

(
1 + cn(z′|m)

1− cn(z′|m)

)
(∆ < 0) , (4.40)

where H2 ≡ 2e2
1 + e2e3 and z′ = 2

√
Hz.

It is worth noting that, due to the homogeneity properties of the Weier-

strass function, one can rescale both the function and its argument: W (z) =

λ℘(εz), where λ and ε are real constants.

Using the aforementioned values of ei for each lattice, we can now write down

the expressions for W (z) in the final form used for the ansatz (4.4)-(4.7):

W (z) = λ

(
−1

2
+

1

sn2(εz|m)

)
(Square) (4.41)

W (z) = λ

(
1 +
√

3

(
1 + cn(εz′|m)

1− cn(εz′|m)

))
(Hexagonal) . (4.42)

In order to express the fields Φβ as functions of the spatial coordinates

(x1, x2, x3), we use eqs. (4.37, 4.38) to express the functionsW (z) (4.41, 4.42)

in terms of (x1, x2). We shall be using a value of (λ, ε) = (1, 4K(m)/L1) for

the hexagonal lattice and (λ, ε) = (2, 2K(m)/L1) for the square lattice, with

the respective values of m for each lattice (4.31, 4.32). These values of ε yield

the fundamental domains: (x1, x2) ∈ [0, ω1/ε]× [0, ω1/ε] = [0, L1]× [0, L1] for

the square lattice and (x1, x2) ∈ [0, ω1/ε]× [0,
√

3ω1/ε] = [0, L1]× [0,
√

3L1]

for the hexagonal lattice. Note that, in order to make it easier for the pur-

poses of carrying out numerical calculations, we have chosen to work with

two fundamental parallelograms in the case of the hexagonal lattice (as in

[7]), which yields a rectangular fundamental domain. This means that, since

there is a double pole in each fundamental parallelogram, its charge (i.e. the

degree of the map) is Q = 4, and for N hexagonal sheets Q = 4N . Since

there is no need to do this for the square lattice, we use one fundamental
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parallelogram, and thus, Q = 2N for N square sheets.

4.2 Optimal periods

Now that we have an ansatz for both the square and hexagonal sheets, i.e.

the fields Φβ, eqs. (4.4-4.7), together with the corresponding functionsW (z),

eqs. (4.41, 4.42), we can begin to look for the optimal periods (L1, L2) in

the (x1, x2)−directions, respectively, with the period in the x3−direction re-

maining at a large constant value of L3 = 14. In particular, we shall focus

on the 2-wall (N = 2), for both the square and hexagonal lattices. This

exercise could easily be generalized to N > 2, provided one is careful with

the boundary conditions in the energy-minimizing code for the fields in the

x3−direction; these being periodic for even N and antiperiodic for odd N

(see [2]).

To find the optimal periods, we perform a full three-dimensional numer-

ical minimization of the fields using the conjugate-gradient method on a

triply-periodic lattice, with lattice spacing h1 = h2 = h3 ≡ h, number of

lattice points (n1, n2, n3), and periods (L1, L2, L3) = h · (n1, n2, n3) in the

(x1, x2, x3)−directions, respectively. The energy E (a discretized version of

the energy density (2.26), averaged along all three lattice directions) and

charge Q (eq. (2.5), discretized similarly) are calculated by using a second-

order finite difference method, with associated errors in the energy given by

the difference between the calculated value of Q and the “true” value, given

by Q = 4N for N hexagonal sheets and Q = 2N for N square sheets. We

define the normalized energy EN as the energy divided by the “true” value

of the charge for each type of lattice: EN ≡ E/Q.

We start by minimizing either the square or hexagonal lattice ansatz, with

a certain value of the periods (L1, L2), while at the same time being careful

about our chosen values of (n1, n2), such that the dimensions of the hexag-
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onal lattice obey (or approximately obey) L2 =
√

3L1. The periods are

subsequently increased by using the minimized ansatz as an initial condi-

tion, keeping h constant, and increasing (n1, n2), carried out by adding an

appropriate number of copies of the lattice sites at the (x1, x2) edges of the

configuration (with x3 ∈ [0, L3]) along the appropriate direction, minimizing

again, and recording the new values of the energy E and charge Q. This

procedure is then repeated, again using the minimized fields with the pre-

vious periods as an initial condition for minimization for the new periods,

increased using the procedure outlined above, until an energy minimum is

clearly seen. Since the behaviour of the energy as a function of the periods

is approximately parabolic, we proceed by fitting a second-order polynomial

to the three smallest E−values and obtaining its minimal value, along with

the associated, optimal, value of the period.

To obtain an accurate value of E and Q for the square and hexagonal 2-walls,

we scan through different values of L1 using the aforementioned method, for

three different values of the lattice spacing h = (0.1, 0.15, 0.2), each time

obtaining the minimal energy and associated values of the optimal periods

and charge. We plot the resulting minimal values of E, Q, and L as functions

of h2 and, since there is a linear dependence in each case, we fit a line

and read off their values at h = 0, i.e. we extrapolate h → 0, yielding

EN = 1.053 ± 0.001 and EN = 1.055 ± 0.001 for the square and hexagonal

cases, respectively. These extrapolation plots can be seen in Fig. 4.1 for the

square lattice and in Fig. 4.2 for the hexagonal lattice. It is worth noting that

even though we quote the same errors for the energy and optimal periods,

the latter are trickier to define as they generally correspond to shallow energy

minima. However, comparing these with results from other sources typically

shows that their difference is within about 1%. For example, in [2] the

optimal period for the square 2-wall is given by L1,2 = 4.47, which can be

compared with our own value of L1,2 = 4.42.
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Figure 4.1: Minimal energies E, associated charges Q, and optimal periods
L1,2 of the square 2-wall for lattice spacings h = (0.1, 0.15, 0.2), with linear
fits. The extrapolated values are: E(0) = 4.211 ± 0.003, EN(0) = 1.053 ±
0.001, Q(0) = 4.003, and L1,2(0) = 4.42± 0.003.
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Figure 4.2: Minimal energies E, associated charges Q, and optimal periods
L1,2 of the hexagonal 2-wall for lattice spacings h = (0.1, 0.15, 0.2), with linear
fits. The extrapolated values are: E(0) = 8.44±0.01, EN(0) = 1.055±0.001,
Q(0) = 8.01, and L1(0) = 4.65± 0.01.



Chapter 4. Square and hexagonal lattices 60

Before we move on to the topic of (N > 2) multi-walls, there are some im-

portant aspects of square and hexagonal 2-wall lattices, which we wish to

emphasize. In the course of experimenting with relative sign changes of the

walls’ fields Φi (more on this shortly), we noticed while looking at the associ-

ated energy density isosurfaces of the hexagonal walls that they were shifted

with respect to each other (in a case which turned out to have no relative

sign change); this was possibly due to an applied random perturbation, which

we use regularly before minimizing the energy each time, so as to prevent

the configuration from becoming “stuck” in the course of trying to reach its

energy minimum. We went on to investigate this in more detail by shifting

one of the parallel, unshifted, walls by various amounts and then minimiz-

ing its energy, to see what is the threshold beyond which the configuration

prefers to be shifted. It turns out that, even if one shifts one of the walls by

1 lattice spacing, the hexagonal configuration becomes shifted and its energy

is reduced by about 0.3%. This means that the hexagonal 2-wall is unstable

with respect to relative translations of its walls. For the square 2-wall, it is a

different story. Shifting one of the walls and then minimizing its energy sees

the configuration return to its original (unshifted) state, regardless of how

much one shifts one of the walls.

Another feature we investigated is related to the relative signs between the

fields of each wall. Recall that two well-separated Q = 1 Skyrmions attract

each other when one is rotated by π with respect to the other about a line

perpendicular to the line joining them. This is equivalent to changing the

sign of two of the fields Φi of one of the Skyrmions, where i = {1, 2, 3}. It has

been proposed (see e.g. [10]) that a similar effect occurs for two configurations

of higher charge Q, but it is not always the case that both configurations

can be made attractive through a suitable isospin transformation on one of

them, and if they can become attractive, there is no prescription for which

transformations to apply.
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For the square and hexagonal 2-walls, we experimented with this idea by

trying different configurations of sign changes for the fields Φi of one of the

walls. We found that changing the sign of any two of these fields has the effect

of further reducing the energy of the hexagonal walls by about 0.4%, besides

the reduction in its energy due to the relative shift between the walls. For the

square case, the combination of introducing a relative shift (even though the

walls end up minimizing to a parallel configuration), besides having a similar

sign change, reduces its energy by about 1%. Note that these techniques of

shifting the walls and changing the signs of two of the fields were employed

in the process of finding the minimal energies and optimal periods for the

square and hexagonal 2-walls, outlined above.

The attractive effect of the sign change on the hexagonal 2-wall can be seen

in the relative separation S between the walls, measured by calculating the

distance between the highest peaks in the energy density of the 2-wall con-

figuration at the origin, as a function of x3. If one does not introduce any

shifts and one has the signs unchanged, the parallel hexagonal walls have

S = 6.8, and with the sign change, the separation is S = 2.7. Interestingly,

with no shifts, the sign change has the opposite effect on the square 2-walls,

with S = 2.1 and S = 7.2 for unchanged and changed signs, respectively.

A perturbation, in the form of a relative shift between the walls, has the effect

of reducing the separation between the walls. With the signs changed, if one

introduces a shift before minimizing, their separation after minimizing goes

down to S = 2.1 (square case) and S = 2.4 (hexagonal case). This attractive

effect, along with the relative shift between the hexagonal walls, can be seen

in Figs. 4.3(a)-(d) and 4.4(a)-(d). These show the energy density isosurfaces

E for the square and hexagonal 2-walls, respectively, with the signs of the

fields (Φ1,Φ2) for one of the walls changed; the surfaces are at half of the

energy density maximum E = 0.5 ∗ Emax. Figs. 4.3(a), (b) and 4.4(a), (b)

depict the unshifted 2-walls, while Figs. 4.3(c), (d) and 4.4(c), (d) show the
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Figure 4.3: Energy density isosurfaces of the square 2-wall, with E =
0.5 ∗ Emax, and with the signs of the fields (Φ1,Φ2) changed. Figs. (a), (b)
show the unshifted walls, while Figs. (c), (d) show the effect on the 2-wall by
introducing a shift between the walls, which subsequently minimize to the
same parallel configuration, but with smaller separation.

Figure 4.4: Energy density isosurfaces of the hexagonal 2-wall, with E =
0.5 ∗ Emax, and with the signs of the fields (Φ1,Φ2) changed. Figs. (a), (b),
show the unshifted walls, while Figs. (c), (d), show the shifted walls with a
slightly smaller separation, produced by introducing a shift between the walls
before minimizing the configuration.

same configurations, but after introducing a shift.

4.3 Multi-wall solutions and stability

In the final section for this chapter, we wish to give a brief description of our

experience in dealing with (N > 2) multi-wall configurations. In particular,

we shall focus on the N = 4 hexagonal lattice configuration in order to com-

plement the findings of Prof. Richard Ward, which consist of unstable N = 3

hexagonal lattice configurations and stable N > 2 square configurations (see
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[2]).

With the dual goal of analyzing the stability of the hexagonal 4-wall as well

as finding out its optimal periods, we make use of two different methods, both

of which involve calculating the first-order energy E of the configuration for

different values of the periods (L1, L2), while keeping L3 fixed at a large

and constant value of L3 = 20. The first method is similar to the one used

in sec. 4.2, which involves scanning through different L1 values (with L2 =
√

3L1), while the second method involves scanning through different values of

(L1, L2) independently of each other (i.e. where the relationship L2 =
√

3L1

does not necessarily hold). The variation in the periods is carried out by

keeping the lattice spacing h fixed and changing the numbers of lattice sites

(n1, n2) along the edges of the configuration. This is done for three different

values of lattice spacing h = (0.1, 0.15, 0.2), in the hopes of performing an

extrapolation h→ 0 in the energy E and the period L1.

Our initial condition consists of stacking two copies, in the x3−direction, of

previously minimized hexagonal 2-walls. The constituent walls for each of

these copies have been shifted with respect to each other and have opposite

signs for the fields (Φ1,Φ2), so that they are in the attractive channel (see

sec. 4.2). This configuration is then minimized and its periods are subse-

quently increased in the manner outlined above.

In the process of carrying out the calculations using the first method, we

learned that the h = 0.2 case (for an unbeknownst reason) is rather unstable,

in the sense that the energy density isosurfaces no longer exhibit hexagonal

symmetry for certain L1 values. The periods that we scanned through are

given by: (L1, L2) = (4.4, 7.6), (4.6, 8.0), (4.8, 8.4), (5.0, 8.6), and (5.2, 9.0).

Note that since the number of lattice sites (n1, n2) are, by definition, integers

one cannot always satisfy the relation L2 =
√

3L1. Therefore, we have chosen

numbers of lattice sites, such that the corresponding values of the periods

approximately follow the aforementioned relation. Fig. 4.5 (a)-(e) shows the
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Figure 4.5: Energy density isosurfaces for a hexagonal 4-wall initial con-
dition (h = 0.2), with E = 0.5 ∗ Emax. Figs. (a)-(e) have the periods
(L1, L2) = (4.4, 7.6), (4.6, 8.0), (4.8, 8.4), (5.0, 8.6), (5.2, 9.0) and normalized
energies EN = 1.037, 1.034, 1.033, 1.030, 1.035, respectively.

energy density isosurfaces E = 0.5 ∗ Emax for the hexagonal 4-wall (h = 0.2)

initial condition mentioned earlier, with the quoted values of the periods

(L1, L2), in that order. Figs. 4.5 (a), (b) show the hexagonal 4-wall, while

Fig. 4.5 (c) shows a non-hexagonal configuration that has separated in the

x1−direction, but is still merged in the x2−direction, and in Figs. 4.5 (d), (e),

such a configuration has also merged in the x3−direction. As we minimize the

configuration for this set of periods we notice the energy has an approximately

parabolic behaviour, as was the case with the optimal period analysis of

sec. 4.2, with a minimum normalized energy of EN = 1.030 corresponding to

Fig. 4.5 (d).

We should emphasize that a similar exercise has shown that a hexagonal 4-

wall initial condition is stable for the lattice spacings h = (0.1, 0.15), keeping
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Figure 4.6: Different views of the energy density isosurface (E = 0.5 ∗ Emax)
of a hexagonal 4-wall with h = 0.1, EN = 1.047, and (L1, L2) = (4.6, 8.0).

its hexagonal symmetry throughout a similar range of periods. A represen-

tative example can be seen in Fig. 4.6, which shows three different views of

the energy density isosurface corresponding to the minimal-energy h = 0.1

configuration, with EN = 1.047 and (L1, L2) = (4.6, 8.0); the minimal-energy

configuration for the h = 0.15 case has EN = 1.041 and (L1, L2) = (4.65, 8.1).

Note that since we have no corresponding minimal-energy configuration with

hexagonal symmetry for h = 0.2 we cannot proceed with a reliable and ac-

curate linear extrapolation in h2 for E and L1, since we need at least three

points to make sure we have a linear dependence.

Even though we could have looked for a value of h 6= (0.1, 0.15, 0.2), with a

minimal-energy hexagonal 4-wall configuration, we decided this is not worth

pursuing since an application of the aforementioned second method shows

that the relation L2 =
√

3L1 is not the optimal one. Our second method

of stability analysis consists of finding the optimal values (L1, L2) by pick-

ing a range of values for each of these periods and scanning through them

independently of each other. This is done by fixing a value of L1, scanning

through the whole range of values of L2 and making a plot of the energy

values E vs L2 (which is usually approximately parabolic), then we change

the fixed value of L1 and repeat the process, until we have gone through our

chosen range of values of L1. This exercise was performed for the lattice

spacings h = (0.15, 0.2) and, since our original guess for the optimal periods
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was wrong, we ended up scanning through two different sets of values for the

periods, for both lattice spacings. Our results consistently show a tendency

for the lowest energy to correspond to the highest chosen values of L1 and

the lowest of L2; these being (L1, L2) = (4.8, 7.0) with EN = 1.032 for the

h = 0.2 case and (L1, L2) = (4.95, 7.5) with EN = 1.041 for the h = 0.15

case. Furthermore, since these periods are at the ends of our chosen range

of values, the optimal periods (L1, L2) are likely to be even closer together.

While the energy density isosurfaces corresponding to the lowest-energy val-

ues that we found still have hexagonal symmetry, it is likely that this will no

longer be the case for the optimal periods, should these end up being closer

together in value. The reason for this being that such a set of periods would

no longer conform to the relation satisfied by a lattice featuring hexagonal

symmetry.

There are two issues that we now wish to raise, as a way of concluding this

chapter. One is that more work needs to be done to find the optimal peri-

ods for the hexagonal (N > 2) multi-walls and to analyze the corresponding

energy density isosurfaces. The other is related to one of the motivations be-

hind the paper by Battye and Sutcliffe [7]; the idea being that one can think

of an N = 1 hexagonal lattice as the infinite limit of a shell-like skyrmion,

which contains hexagons and pentagons, provided one inserts an appropriate

number of pentagon defects. To be precise, the lattice would correspond to

the bottom portion of a shell-like skyrmion in this limit, since the vacuum

values on either side coincide with such a configuration – i.e. the region

below(above) the lattice corresponds to the outside(inside) of the shell with

Φ4 = +1(−1). If we stick with this idea, then our multi-walls (N > 1) would

correspond to skyrmions composed of nested shells, provided one has the

correct vacuum values on either side of the multi-wall configuration, which

would correspond to an odd number of walls. Our results, coupled with

the N > 2 square multi-wall and N = 3 hexagonal multi-wall results from

Prof. Ward [2], would therefore suggest that the square multi-wall config-
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uration would be the better “material” out of which one can build nested

shell-like skyrmions, since they have slightly lower normalized energy (for

N = 2) and are seemingly more stable (for N > 2).



Part III

Generalized Skyrme Lattices
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Chapter 5

The generalized Skyrme crystal

Up to now, we have been considering certain types of lattices in the Skyrme

model – Skyrme crystals, square, and hexagonal Skyrme “sheets”. It is now

time to discuss lattices in the context of generalized skyrme systems, moving

away from the α = 0 limit and letting α ∈ [0, 1). In this chapter, we present

triply-periodic (“crystalline”) solutions and, in Chapter 6, we shall be dealing

with multi-vortex configurations.

5.1 Geometrical considerations

We start this chapter by generalizing the discussion of sec. 2.2, which reviews

some of the results of Manton’s geometrical take on the Skyrme model [24], by

putting it in the context of Ward’s generalized skyrme systems [4]. In other

words, we want to incorporate the parameter α into the results. This can

be done by letting the domain and target manifolds, S and Σ, be squashed

3-spheres with parameters α and α′, respectively, rather than dealing with

standard 3-spheres.

The first task is to calculate the distortion tensor D, introduced in sec. 2.2,

for the case of the domain and target spaces having metrics Hab and H ′jl with

69
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parameters α and α′, respectively; note that HabHac = δbc.

Recall from sec. 2.4.2 that the distortion tensor is given by contracting the

indices of the domain and target metrics with the derivatives of the coordinate

maps π : S → Σ as follows:

Dk
j = HabH ′jlπ

l
aπ

k
b , (5.1)

where πla ≡ ∂πl

∂pa
and πl, pa are normal coordinates on Σ and S, respectively.

We start by expressing the Z fields in terms of the 3-sphere coordinates

(µ, φ1, φ2) as follows:

Z1 ≡ sin(µ)eiφ1 , Z2 ≡ cos(µ)eiφ2 , (5.2)

where µ ∈ [0, π/2] and φ1, φ2 ∈ [0, 2π]. Using eq. (2.32) for the Berger sphere

metric, together with Z1, Z2 from (5.2), we get the following Berger sphere

components:

Hab =


1 0 0

0 1
s2

+ α
1−α

α
1−α

0 α
1−α

1
c2

+ α
1−α

 , H ′jl =


1 0 0

0 s2 − α′s4 −α′s2c2

0 −α′s2c2 c2 − α′c4

 ,

(5.3)

where c ≡ cos(µ) and s ≡ sin(µ).

If we now consider πla and πkb as identity maps δla and δkb , respectively, we

can now calculate the distortion tensor using the metric components from

eq. (5.3), as follows:

Dk
j = HabH ′jlπ

l
aπ

k
b = HabH ′jlδ

l
aδ
k
b = H lkH ′jl (5.4)

=


1 0 0

0 1−αc2−α′s2

1−α
s2(α−α′)

1−α

0 c2(α−α′)
1−α

1−αs2−α′c2

1−α

 . (5.5)
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The eigenvalues of this matrix are: λ2
1 = 1, λ2

2 = 1, and λ2
3 = α′−1

α−1
.

With this information, we can now calculate the energy of the generalized

Skyrme system:

E2 = κ2Tr(D) = κ2(λ2
1 + λ2

2 + λ2
3) = κ2

(
2 +

α′ − 1

α− 1

)
, (5.6)

E4 =
κ4

2

[
(Tr(D))2 − Tr(D2)

]
= κ4

(
λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

3λ
2
1

)
= κ4

[
1 + 2

(
α′ − 1

α− 1

)]
. (5.7)

In order to calculate the energies E2 and E4 we first determine the volume

of the domain space (Vol S). This can be carried out through the use of the

domain space metric, with components Hjl from eq. (5.3), as follows:

Vol S =

∫ √
|H| dφ1 dφ2 dµ = 2π2

√
1− α , (5.8)

where |H| ≡ |det Hjl|. The equivalent expression for the volume of the target

space would be Vol Σ = 2π2
√

1− α′, which can be applied to the topological

bound (2.10) from sec. 2.2:

E ≥ 6(deg π)(Vol Σ) = 12π2(deg π)
√

1− α′ , (5.9)

where (deg π) refers to the degree of the map π. Coming back to the energies

E2 and E4, we can use eq. (2.7) to find:

E2 = κ2(Vol S)
(

2 +
α′ − 1

α− 1

)
= 2κ2π

2
√

1− α
(

2 +
α′ − 1

α− 1

)
, (5.10)

E4 = κ4(Vol S)

[
1 + 2

(α′ − 1

α− 1

)]
= 2κ4π

2
√

1− α
[
1 + 2

(α′ − 1

α− 1

)]
.

(5.11)

Note that the energy E = E2 + E4 reduces to eq. (2.22), when α = 0 and

α′ ≡ α, as was the case there.
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A different topological bound can be derived through the use of the virial

theorem1. Using E ≡ κ2E2 + κ4E4 together with eq. (5.9), we derive the

following bound:

E ≥ 3Q

√
(1− α′)

(3− α′)(3− 2α′)
, (5.12)

where Q = deg π is the baryon number and eqs. (2.23, 2.24) have been used

for κ2 and κ4.

Note that for the Skyrme model (α′ = 0) the inequality reduces to: E ≥ Q.

Recall that there is a stronger bound than the one given by eq. (2.10) (i.e.

eq. (2.11)) by considering a target manifold that is isotropically bigger than

the domain manifold. We have made attempts to apply this to generalized

skyrme systems, but it is a tricky enterprise, since the squashed 3-sphere is

not an object that is deformed isotropically as the parameter α is varied. If

the bound (5.12) can be improved, then it can be done perhaps by adding an

additional term such that it reduces to the Skyrme-Faddeev energy bound,

introduced in sec. 2.3, E ≥ |Q|3/4 when α = 1.

5.2 Symmetries

In an effort to learn more about the properties of generalized skyrme systems,

we have decided to look at how the generalized energy density, eq. (2.26),

and the components of the Berger sphere metric H, eq. (2.32), change under

the symmetry generators of the Skyrme crystal (Tables 2.1 and 2.2) as well

as other transformations. Note that, unlike in sec. 5.1, here we denote the

target space metric H and the domain space metric corresponds to that of

the standard 3-sphere (i.e. the fields Φβ are maps S3 7→ S3
α).

1Generally speaking, the virial theorem states that if E = aE2 + bE4, where a and
b are constants, then E ≥ (ab)

1
2M , where M is a minimum of the energy functional

E[φ] = E2[φ] + E4[φ], for some choice of the field φ.
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This was done using symbolic manipulation software by expressing both the

generalized energy density and the Berger sphere metric in terms of the fields

Φβ and their derivatives, yielding functions f(Φβ, ∂iΦβ). We then apply the

aforementioned transformations of the fields Φβ → Φ′β, producing trans-

formed functions f(Φ′β, ∂iΦ
′
β). Finally, we subtract the transformed functions

from the original ones: f(Φβ, ∂iΦβ) − f(Φ′β, ∂iΦ
′
β) ≡ g(Φβ, ∂iΦβ), using the

assumptions Φ2
β = 1 and Φβ∂iΦβ = 0. If g(Φβ, ∂iΦβ) = 0, then we know that

the symmetry has “survived” the transition to generalized skyrme systems.

In such a case, we write down a check mark next to that transformation in

Table 5.1. If it does not survive the transition, we write down a cross next to

it. The transformations that we checked for both the generalized energy den-

sity E and the Berger sphere metric components H, for α = 0 and α ∈ (0, 1],

are listed in Table 5.1 with the original state being (Φ1,Φ2,Φ3,Φ4).

Not all of the symmetries of the Skyrme crystal survived the transition to

the generalized Skyrme system. Assuming that the underlying spatial trans-

formations are the same as in the Skyrme crystal case, it is rather surprising

that reflection symmetries (xi 7→ −xi) (i.e. Φi 7→ −Φi) no longer hold in

generalized skyrme systems, producing functions g(Φβ, ∂iΦβ) that are pro-

portional to the parameter α in both the generalized energy density and in

some of the Berger sphere components, as is the case in all symmetries that

do not hold. However, note that we are considering generic fields Φβ. One

might have to explicitly substitute expressions for the fields into the functions

f(Φβ, ∂iΦβ) and f(Φ′β, ∂iΦ
′
β) in order to see if certain transformations, such

as reflections, really do survive the transition to generalized skyrme systems.

Something can be learned about generalized skyrme systems by looking at

the symmetries that do survive. These include π−rotations about each of

the 3 axes:

(Φ1,−Φ2,−Φ3,Φ4), (−Φ1,Φ2,−Φ3,Φ4), (−Φ1,−Φ2,Φ3,Φ4) ,
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as well as π/2−rotations about the z−axis, in both directions:

(Φ2,−Φ1,Φ3,Φ4), (−Φ2,Φ1,Φ3,Φ4) .

Note that a torus sitting on the (x, y)−plane, with the z−axis going through

its centre, would have these same symmetries. Perhaps these surviving sym-

metries also reflect the fact that the squashed 3-sphere is only squashed along

one direction.

If we think in terms of Skyrme crystal transformations, the other symmetries

that survive:

(−Φ1,Φ2,Φ3,−Φ4), (Φ1,−Φ2,Φ3,−Φ4), (Φ1,Φ2,−Φ3,−Φ4)

correspond to L/2−translations along each of the axes. The successive

application of these (i.e. a translation from the origin to the centre of a

cube with side length L) corresponds to the other surviving symmetry:

(−Φ1,−Φ2,−Φ3,−Φ4).

The remaining surviving symmetries that we list are harder to explain in

terms of three-dimensional space, as they involve transformations with the

Φ4 field (SO(4) rotations). Note that we only checked a few of these, so there

might be more symmetries that we do not list.



Chapter 5. The generalized Skyrme crystal 75

Table 5.1: Symmetries of Generalized Skyrme Systems

Transformation α = 0 α ∈ (0, 1]
H E H E

(−Φ1,Φ2,Φ3,Φ4)
√ √

× ×
(Φ1,−Φ2,Φ3,Φ4)

√ √
× ×

(Φ1,Φ2,−Φ3,Φ4)
√ √

× ×
(−Φ1,−Φ2,Φ3,Φ4)

√ √ √ √

(Φ1,−Φ2,−Φ3,Φ4)
√ √ √ √

(−Φ1,Φ2,−Φ3,Φ4)
√ √ √ √

(−Φ1,−Φ2,−Φ3,Φ4)
√ √

× ×
(Φ2,Φ3,Φ1,Φ4)

√ √
× ×

(Φ3,Φ1,Φ2,Φ4)
√ √

× ×
(Φ1,Φ3,Φ2,Φ4)

√ √
× ×

(Φ3,Φ2,Φ1,Φ4)
√ √

× ×
(Φ2,Φ1,Φ3,Φ4)

√ √
× ×

(Φ1,Φ3,−Φ2,Φ4)
√ √

× ×
(Φ3,Φ2,−Φ1,Φ4)

√ √
× ×

(Φ2,−Φ1,Φ3,Φ4)
√ √ √ √

(−Φ2,Φ1,Φ3,Φ4)
√ √ √ √

(−Φ2,−Φ1,Φ3,Φ4)
√ √

× ×
(Φ1,−Φ3,Φ2,Φ4)

√ √
× ×

(Φ1,−Φ3,−Φ2,Φ4)
√ √

× ×
(−Φ3,Φ2,Φ1,Φ4)

√ √
× ×

(−Φ3,Φ2,−Φ1,Φ4)
√ √

× ×
(−Φ1,Φ2,Φ3,−Φ4)

√ √ √ √

(Φ1,−Φ2,Φ3,−Φ4)
√ √ √ √

(Φ1,Φ2,−Φ3,−Φ4)
√ √ √ √

(−Φ1,−Φ2,Φ3,−Φ4)
√ √

× ×
(−Φ1,Φ2,−Φ3,−Φ4)

√ √
× ×

(Φ1,−Φ2,−Φ3,−Φ4)
√ √

× ×
(−Φ1,−Φ2,−Φ3,−Φ4)

√ √ √ √

(Φ1,Φ2,Φ4,Φ3)
√ √

× ×
(Φ1,Φ2,Φ4,−Φ3)

√ √ √ √

(Φ1,Φ2,−Φ4,Φ3)
√ √ √ √

(Φ2,Φ1,Φ4,−Φ3)
√ √

× ×
(−Φ2,Φ1,Φ4,−Φ3)

√ √ √ √

(Φ2,−Φ1,Φ4,−Φ3)
√ √ √ √

(−Φ2,−Φ1,Φ4,−Φ3)
√ √

× ×
(−Φ2,−Φ1,−Φ4,−Φ3)

√ √ √ √

(Φ2,Φ1,Φ4,Φ3)
√ √ √ √

5.3 Behaviour as a function of α

In this section, we investigate triply-periodic crystalline solutions of general-

ized skyrme systems. These efforts were originally motivated by the question:

what does the Skyrme crystal look like as a function of α? More specifically,

what are the qualitative features of its energy density isosurfaces and the

symmetries of the corresponding fields? As we shall see, when we approach

the Skyrme-Faddeev model (α → 1), the answer to this question is related

with vortex/antivortex configurations. This led us to explore such config-

urations, using a multi-vortex ansatz, in the context of generalized skyrme
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systems with a focus on large periods in the x− and y− directions (i.e. iso-

lated vortex configurations). A study of vortex configurations, in turn, led

to the discovery of two triply-periodic solutions, as we shall see in sections

5.3.2 and 5.3.3. However, even though they are inextricably linked, since the

purpose for this chapter is to discuss solutions which are not isolated but

rather triply-periodic, as was the original motivation for the Skyrme crystal

(see sec. 2.5), a detailed discussion of generalized vortex configurations has

been relegated to chapter 6.

5.3.1 The V+AV+V+AV solution

We start by describing the techniques used in obtaining triply-periodic so-

lutions to generalized Skyrme systems. As in Part II, we impose triply-

periodic boundary conditions in an nx× ny × nz grid; however, we now have

a non-zero value of the parameter α, which introduces extra terms in the

energy density (see sec. 2.4) and energy gradient. The latter is used in the

conjugate-gradient method of energy minimization, while the former is used

in determining the energy of the relevant fields at each step of the mini-

mization process. Moreover, for this section, we start each minimization

procedure with an initial condition given by an approximate triply-periodic

solution, which corresponds to the Skyrme crystal ansatz (eqs. (2.97, 2.98)),

and subsequently minimizing it.

Our goal is to find the optimal periods for different values of α, i.e. the

values of the periods in the x−, y−, and z−directions given by: Lx,ymin ≡

Lxmin = Lymin and Lzmin, which correspond to the periods at the minima of

the energy plotted as a function of Lx,y and Lz, respectively, for each value

of α. This could be done in a variety of ways. However, in this section, we

use a technique that is slightly different than that of sections 5.3.2 and 5.3.3.

It is one which takes somewhat more computer processing time, but yields

precise values for the optimal periods.
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We start with the α = 0 case. The procedure consists of starting with a

relatively low value for the periods. Since we know that the Skyrme crystal

has optimal periods Lx,y,z = 4.71 (see e.g. [47]), we start with a lower value

of Lx,y,z = 4.4 and increase it up to Lx,y,z = 5.0. This was done as a way

of verifying the results in the literature, while at the same time testing our

own procedure. We increase Lx,y,z ≡ hx,y,z ∗ nx,y,z (recall that hx,y,z is the

lattice size) by keeping hx,y,z constant and increasing the number of lattice

points in the x−, y−, and z−directions – carried out by adding a copy of

the lattice points along the edges of the grid in all three directions. We

proceed by minimizing the fields, and then calculating the energy E and

charge Q of the minimized fields using a first-order finite difference method.

This is repeated for the aforementioned range of Lx,y,z values and a plot

of the energy as a function of the period Lx,y,z is produced. We then fit a

second-order polynomial to the three lowest-energy data points (since such a

function is usually a good fit) and determine the minimum-energy value and

corresponding “optimal” period of the fit; we also determine the approximate

charge of the minimal-energy configuration by comparing the charges of two

configurations whose periods are closest in value to the optimal one and

interpolating. The optimal periods, charges, and energies are calculated for

three different values of lattice size: hx,y,z = 0.1, 0.15, 0.2 and we plot them

as functions of h2, since these are proportional to h2. Finally, we fit a line

through these points, extrapolate in h2, and read off their values at h = 0

(see Fig. 5.1). The extrapolated optimal periods (Lx,y, Lz) for α ≥ 0, along

with the associated energy (E) and normalized energy (EN ≡ E/4) are listed

in Table 5.2, where the error in EN is given by (Q− 4)/4, with Q calculated

at h = 0.

The procedure used in determining the optimal periods for α > 0 is slightly

different, since Lx,ymin and Lzmin are no longer necessarily equal to each other

– the main difference being that Lx,y is varied independently from Lz. That is,

we take a certain value of Lx,y, fix it, vary Lz, and make a note of the minimal
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Figure 5.1: Skyrme crystal (α = 0) optimal periods Lx,y,z with a blue linear
fit, charges Q with a red linear fit, and energies E with a green linear fit,
calculated with h2 = 0.01, 0.023, 0.038.



Chapter 5. The generalized Skyrme crystal 79

energy value E(Lzmin), along with the associated value of Lzmin, calculating

these by fitting a second-order polynomial, as in the α = 0 case. This is

then repeated for a range of Lx,y values, until we find that we have enough

information to also determine an optimal value of Lx,y. We then produce

a plot of the minimal-energy E(Lzmin) values for each value of Lx,y and fit

a polynomial to these points to find a “global” energy minimum E ′(Lz
′
min),

along with its associated optimal “global” Lz ′min value. Finally, to find the

associated “global” value of Lx,ymin, we interpolate by fitting a second-order

polynomial to a series of points on an Lx,y vs. Lzmin plot and determining

what the value of Lx,y ≡ Lx,ymin is for Lz ′min. This process is repeated for

hx,y,z = 0.1, 0.15, 0.2, as was done for the α = 0 case, and we determine the

optimal periods Lx,y, Lz, and minimal energies E, for different values of α,

by extrapolating h2 → 0. These, along with the normalized energies EN with

associated errors (as calculated for the α = 0 case) are listed in Table 5.2; we

plot these values as functions of α: Lx,y(α), Lz(α), and EN(α) in Figs. 5.2

and 5.3, respectively.

Table 5.2: Optimal periods, minimal energies, and normalized energies
(EN ≡ E/4) of V+AV+V+AV solution

α Lx,y Lz E EN

0 4.7123 4.7123 4.1523 1.0381 ± 0.0009
0.3 5.112 4.267 4.135 1.034 ± 0.001
0.6 5.761 3.776 4.046 1.011 ± 0.002
0.9 6.906 3.197 3.762 0.941 ± 0.004
0.95 7.514 3.015 3.672 0.918 ± 0.004

In Fig. 5.4, we plot the energy density E of the minimal-energy fields for

α = 0, 0.3, 0.6, 0.95, where E is 0.6 times the maximum value. Note that, as

α increases, the half-skyrmions of the Skyrme crystal merge pairwise in the

z−direction, becoming more homogeneous in the z−direction as α → 1. In

fact, in this limit, the fields can be described as vortices; more specifically, a

pair of vortices and a pair of antivortices. We now turn to a brief discussion

of vortex fields.
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Figure 5.2: V+AV+V+AV optimal periods Lx,y and Lz as a function of the
parameter α.
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Figure 5.3: V+AV+V+AV normalized energy, as a function of the parameter
α with a fitted polynomial of order 3.
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Figure 5.4: Energy density E of V+AV+V+AV solution, with E = 0.6∗Emax,
for α = 0, 0.3, 0.6, 0.95.

Vortices that are aligned in the z−direction have a pair of winding numbers:

one we call p corresponding to a winding of the fields in the (x, y)−plane at

z = c (independent of the constant c) and the other one, which we call q,

corresponding to a winding in the z−direction. Generic vortices with such

“charges” are dubbed “(p, q)− vortices”. Moreover, a vortex with q = 1 and

p > 0 we call a “p−vortex” (pV) and with q = −1 and p < 0 we call a

“p−antivortex” (pAV). The fields of a (p, q)−vortex near its core (located

along the z−axis) can be approximated as follows [1]:

Φ1 + iΦ2 ≈ (x+ iy)p = eiθp Φ3 + iΦ4 ≈ e
2πiqz
Lz . (5.13)

If we restrict ourselves to the plane z = c, where c is a constant, and we

make a Hopf projection2 of the fields Φβ (corresponding to the limit α→ 1)

using ψa = Z†σaZ, where Z ≡ (Z1, Z2)T ≡ (Φ4 + iΦ3, −Φ2 + iΦ1)T (see

sec. 2.4.1), we end up with a map ~ψ : T 2 → S2. The degree of this map

corresponds to the integer p. Note that, since it is a Hopf-projected field, we

must have p = 0 or, in the case of multi-vortices,
∑

j pj = 0. In other words,

multi-vortices can coexist as long as their p−charges add up to zero, which

means that we must have an equal number of vortices and antivortices. The
2If we restrict to so-called “algebraically-inessential” fields (see [37]), then the classifi-

cation of maps at α = 1, ψ : S3 → S2 (i.e. the Hopf charge) is still the single integer
Q ∈ Z, which is equal to the degree of Φ, so Q may denote either case.
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p−charges, coupled with the twists q in the z−direction are the factors which

give rise to the topological charge, given by the sum of the products of these

charges for each vortex: Q =
∑

j pjqj. The fields Φβ of a multi-vortex can

be approximated by generalizing eq. (5.13) as follows:

U

V
≡ Φ3 + iΦ4

Φ1 + iΦ2

=
d∑
j=1

e
2πiqjz

Lz

(wj)pj
, (5.14)

where d is the total number of vortices and antivortices and wj = (x− c1
j) +

i(y − c2
j); (x, y) = (c1

j , c
2
j) corresponding to the location in the (x, y)−plane

of the core of vortex j.

The α = 0.95 field surfaces Φβ are shown in Fig. 5.5, with Φβ = 0.7 shown

in blue and Φβ = −0.7 shown in green, for β = {1, 2, 3, 4}. This allows

us to easily determine the symmetry generators of the fields under certain

rotations, translations, and reflections – listed in Table 5.3. Note that they

correspond to the symmetries of a configuration consisting of two 1-vortices

and two 1-antivortices (as can be easily seen by looking at Φ4 from the

+z−direction, with 2 blue surfaces and 2 green surfaces on the (x, y)−plane),

and thus justifying the title for this section.

Table 5.3: Symmetry generators of the α = 0.95 V+AV+V+AV solution,
where j = {1, 2, 3}

Spatial Transformation Isospin Transformation
xj → xj + Lj/2 (Φj,Φ4)→ (−Φj,−Φ4)
x1 → −x1 + L1/2 (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,Φ2,Φ3,Φ4)
x2 → −x2 + L2/2 (Φ1,Φ2,Φ3,Φ4)→ (Φ1,−Φ2,Φ3,Φ4)

(x1, x2, x3)→ (x2,−x1, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ2,Φ1,Φ3,−Φ4)
(x1, x2, x3)→ (−x1, x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,Φ3,−Φ4)
(x1, x2, x3)→ (x1,−x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,Φ3,−Φ4)
(x1, x2, x3)→ (x1, x2,−x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,−Φ3,−Φ4)

To end this section, we present an α−dependent ansatz for the V+AV+V+AV

solution. It was motivated by an ansatz, proposed by Prof. Ward, for the

limiting case α→ 1 — given by writing α = 1 in the expressions below.
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Figure 5.5: Fields Φβ = 0.7 (blue surfaces) and Φβ = −0.7 (green surfaces)
of α = 0.95 V+AV+V+AV solution, with β = 1, 2, 3, 4.
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Our goal was to extend this to all values of α as follows:

Φ4 = c1c2c3 (5.15)

Φ1 = −s1

(
1− s2

2

2
− (1− α)

(
s2

3

2
− s2

2s
2
3

3

)) 1
2

(5.16)

Φ2 = −s2

(
1− s2

1

2
− (1− α)

(
s2

3

2
− s2

1s
2
3

3

)) 1
2

(5.17)

Φ3 = −s3

(
1−

(
α + 1

2

)
(s2

1 + s2
2) +

(
1 + 2α

3

)
s2

1s
2
2

) 1
2

, (5.18)

where si ≡ sin(2πxi/Li) and ci ≡ cos(2πxi/Li). Note that, in the Skyrme

limit α = 0, eqs. (5.15)-(5.18) reduce to the Skyrme crystal ansatz (2.97),

(2.98). In order to see how close this ansatz is to the V+AV+V+AV solu-

tion, we have determined the optimal periods, minimal energies, and nor-

malized energies for the ansatz at the α values previously mentioned for

the V+AV+V+AV solution, except for α = 0.95, which we have replaced

with α = (0.9, 1). We also calculated the percent difference in the normal-

ized energies between the ansatz and the V+AV+V+AV solution, given by

%∆ ≡ (EN ansatz−EN,V+AV+V+AV)/EN ansatz, where EN,V+AV+V+AV was deter-

mined with the same lattice spacing and finite difference method as EN ansatz ;

note that for α = 1, %∆ was calculated by using the EN,V+AV+V+AV for

α = 0.95. The minimal energies for each α were found by scanning through

a range of periods, calculating the energy for each period through a first-

order finite difference method, with lattice spacing h = 0.1, and picking the

minimal ones, which we list in Table 5.4 along with the associated periods

and %∆. Note that the ansatz works particularly well for intermediate val-

ues of α ≈ 0.3 − 0.6. The corresponding energy densities E are plotted in

Fig. 5.6, where E is 0.6 times the maximum value.
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Table 5.4: Optimal periods, minimal energies, and normalized energies of
V+AV+V+AV ansatz and its difference %∆ from V+AV+V+AV solution

α Lx,y Lz Eansatz EN ansatz %∆

0 4.7 4.7 4.2534 1.06 ± 0.01 0.03
0.3 4.9 4.2 4.1828 1.046 ± 0.002 0.02
0.6 5.2 3.8 4.0809 1.020 ± 0.005 0.01
0.9 5.6 3.2 3.8811 0.97 ± 0.01 0.04
1 5.7 2.8 3.8454 0.96 ± 0.01 0.05

Figure 5.6: Energy density E of V+AV+V+AV ansatz, with E = 0.6 ∗ Emax,
for α = 0, 0.3, 0.6, 0.9, 1.

5.3.2 The 2V+2AV solution

In trying to reproduce Prof. Ward’s optimal period results for the multi-sheet

solution, using its associated ansatz as an initial condition (see sec. 5.3.3 for

details) and a parameter of generalized skyrme systems given by α = 0.95, I

accidentally discovered a local minimum in the energy, which features a pair

of |p| = 2 vortices (see previous section for a discussion on the significance of

p), which we call from now on 2-vortices (2V) for p = +2 and 2-antivortices

(2AV) for p = −2. We now focused on investigating these solutions further

by finding their optimal periods, as a function of α. Fig. 5.7 shows the

energy density isosurfaces of the α = 0.6, 0.7, 0.8, and 0.99 solutions – the

reason we do not show the energy density isosurfaces for a lower value of α

is because using the aforementioned ansatz for these values minimizes to the

generalized skyrme crystal energy density isosurfaces of sec. 5.3.1. We have

come to the conclusion that we stumbled upon this solution, rather than the

multi-sheet solution, due to the sensitivity to the periods used as a starting
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Figure 5.7: Energy density isosurfaces, with E = 0.8 ∗ Emax, of 2V+2AV
solution for α = 0.6, 0.7, 0.8, 0.99.

point (Lx,y,z = 3) in scanning through a range of periods in order to find the

optimal one – it turns out that Prof. Ward and I used different initial periods.

This hints to a vast number of triply-periodic solutions to the field equations

of generalized skyrme systems, corresponding to different local minima in the

energy.

Note from Fig. 5.7 that the isosurfaces become more homogeneous in the

z−direction as α increases, becoming a 2-vortex and a 2-antivortex as α→ 1.

It is a simple exercise to determine the |(p, q)|−charges of a general con-

figuration consisting of vortices and antivortices through a careful exami-

nation of its fields. See, for instance, Fig. 5.8, which shows the field iso-

surfaces Φβ = 0.7 (coloured blue) and Φβ = −0.7 (coloured green) with

β = {1, 2, 3, 4}, for the 2V+2AV solution at α = 0.99. One can “read off”

the |p|−charge by looking at the Φ1,Φ2 isosurfaces and counting how many

times one goes through the “blue-green” cycle around an imaginary circle
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Figure 5.8: Field isosurfaces of the α = 0.99 2V+2AV solution with values
Φβ = 0.7 (blue) and Φβ = −0.7 (green), where β = 1, 2, 3, 4.

centred at either of the vertices’ cores ((x, y) ≈ (3, 7) and (7, 3)), yielding

|p1| = |p2| = 2. Similarly, one can read off the |q|− charge by looking at

the Φ3,Φ4 isosurfaces and counting the “blue-green” cycles over one period in

the z−direction at the location of the vortex cores, yielding |q1| = |q2| = 1.

Unfortunately, one cannot determine the signs of (p, q) – this can be deter-

mined, for example, by mapping the vortex fields to vector fields and looking

at their relative orientations. One can also analyze the (p, q)−charges nu-

merically (including relative signs), which we have done as well. However,

a discussion of this will be relegated to Chapter 6, where we delve into the

topic of “Generalized Vortices”. Field isosurfaces are also useful in investi-

gating their symmetries – Table 5.5 shows a list of the 2V+2AV symmetry

generators.

Table 5.5: Symmetry generators of the α = 0.99 2V+2AV solution

Spatial Transformation Isospin Transformation
(x1, x2, x3)→ (−x1,−x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,−Φ2,Φ3,−Φ4)
(x1, x2, x3)→ (−x2,−x1, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,−Φ2,Φ3,Φ4)
(x1, x2, x3)→ (x1, x2,−x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,−Φ3,Φ4)
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We now turn to the analysis of the optimal periods of the 2V+2AV solution,

as a function of α. The procedure used was to first vary Lx,y whilst keeping Lz

constant, scanning the (minimized) energies in the process. We then pick the

period that produces the lowest energy and keep it constant while this time

varying Lz and finding the one with minimal energy. For the α = 0.9, 0.95

cases, the periods Lx,y and Lz were varied by keeping nx,y and nz constant and

changing hx,y and hz, respectively. This was done to keep the minimization

from breaking down, as it tends to become unstable for α close to 1. For the

other α cases, the periods Lx,y and Lz were generally varied by keeping h

constant and varying the number of lattice points nx,y and nz, respectively,

with steps of ∆n = 3. These were usually increased to find the optimal

periods. To do this, we made a copy of the fields at the lattice points along

the edges of the fundamental cell and added them along each direction in

order to produce two exact surfaces of lattice points: the edge and the one

immediately preceding the edge.

Table 5.6 lists the optimal periods, the associated energies E and normalized

energies EN ≡ E/4, for the 2V+2AV configuration with different α values –

the normalized energies and corresponding periods are plotted as functions of

α in Fig. 5.9 and Fig. 5.10, respectively. The quoted values of energy E were

determined by using a second-order finite difference method, with h = 0.2.

Therefore, the periods are associated with even-numbered nx,y and nz values3.

The quoted normalized energy errors in Table 5.6 were obtained by taking

the difference between the associated second-order charges and Q = 4, then

dividing by 4. Note that we scanned through the different periods for each

α in big steps (∆L = 0.6). In order to get a better idea of where the “true”

optimal periods lie (in between these steps), we have fitted a second-order

polynomial to the three lowest-energy periods, for each α, and determined
3Note that the relatively large lattice spacing produces Lx,y and Lz vs. α curves that

are not as smooth as the ones for other solutions that we present (with lower lattice
spacing); the periods do, however, clearly show different behaviours as functions of α,
which is what we are interested in presenting.
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its minimum value. These minima correspond to the periods quoted in Table

5.7. Note that these values are just meant to give a rough idea of where

one might start looking for the “actual” optimal periods, if one is interested

in precision. For example, a period listed in Table 5.6 could be used as the

upper limit (if the corresponding period listed in Table 5.7 is smaller) or the

lower limit (if the period in Table 5.7 larger) of a list of periods that one

could scan through.

Note that there is a jump in the optimal periods, as a function of α, in the

range α = 0.4−0.6. Even though we do not know the reason for this feature,

it is worth pointing out that there is a transition taking place in the solutions

for these values of α, since their energy density isosurfaces look qualitatively

different. For α = 0.4, these look like the V+AV+V+AV solution from

sec. 5.3.1, and for α = 0.5, they look more like a 2V+2AV solution. In other

words, if one keeps the initial periods fixed, the possible solutions that one

obtains depends on the value of α, with a preference towards V+AV+V+AV-

like solutions for α ≤ 0.4 and 2V+2AV-like solutions for α ≥ 0.5.

Table 5.6: Optimal periods, minimal energies, and normalized energies
EN ≡ E/4 of 2V+2AV solution

α Lx,y Lz E EN

0 4.4 4.4 4.1568 1.039 ± 0.004
0.1 4.4 4.4 4.1568 1.039 ± 0.004
0.2 4.4 4.0 4.1610 1.040 ± 0.004
0.3 4.8 4.0 4.1352 1.034 ± 0.004
0.4 4.8 3.6 4.13 1.033 ± 0.005
0.5 4.4 4.0 4.0792 1.020 ± 0.004
0.6 4.8 3.6 3.9779 0.995 ± 0.004
0.7 4.8 3.6 3.8420 0.961 ± 0.004
0.8 5.2 3.2 3.6463 0.912 ± 0.005
0.9 7.2 2.8 3.3899 0.848 ± 0.008
0.95 8.0 2.6 3.1731 0.793 ± 0.008
0.97 8.0 2.4 3.0673 0.767 ± 0.009
0.99 8.8 2.2 2.9439 0.74 ± 0.01
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Figure 5.9: 2V+2AV normalized energy, as a function of the parameter α.
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Figure 5.10: 2V+2AV optimal periods Lx,y and Lz, as a function of the
parameter α.
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Table 5.7: Interpolated optimal periods of 2V+2AV solution

α Lx,y Lz

0 4.30 4.63
0.1 4.47 4.37
0.2 4.60 4.20
0.3 4.68 4.10
0.4 5.02 3.93
0.5 4.29 4.14
0.6 4.55 3.77
0.7 4.74 3.46
0.8 5.14 3.21
0.9 7.43 2.80
0.95 7.95 2.60
0.97 8.04 2.40
0.99 8.71 2.18

5.3.3 The multi-sheet solution

While working with Vortex-AntiVortex (V+AV) pairs (see next chapter) in

the range 0 < α < 1, we noticed a peculiar configuration with 2 holes facing in

the x−direction as well as in the y−direction. This configuration was noticed

at α = 0.5, after stacking two copies of optimal Lz−valued, merged V+AV

pairs, in the z−direction and introducing a perturbation by translating the

top copy by a distance of D = 0.5 with respect to the bottom copy, and then

minimizing to obtain Fig. 5.11. Prof. Ward used a similar-looking configura-

tion, at α = 0.8, as the initial condition to look for its optimal periods in the

x−, y−, and z−directions. In the process, a new periodic structure was seen

to emerge, with an E/Q value lower than any of the other configurations

previously seen. However, producing this new periodic structure turned out

to be a very convoluted process. This was one of the motivations in looking

for an ansatz that approximates the fields of the new periodic solution, which

we now call the “multi-sheet solution”. This ansatz was conceived by Ward

and is given by:

Φ1 = cos

(
2πy

Ly

)
sin

(
2πz

Lz

)
, Φ2 = sin

(
2πy

Ly

) ∣∣∣∣sin(2πz

Lz

)∣∣∣∣
Φ3 = sin

(
2πx

Lx

) ∣∣∣∣cos

(
2πz

Lz

)∣∣∣∣ , Φ4 = cos

(
2πx

Lx

)
cos

(
2πz

Lz

)
.

(5.19)
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Figure 5.11: Energy density isosurface, with E = 0.5 ∗ Emax, of an α = 0.5
V+AV 2-stack solution, with Q = 4 and E/Q = 1.0658± 0.0003.

It should be noted that omitting the absolute value signs in the expressions

for the fields Φ2 and Φ3 would cause them to cancel in such a way over the

course of one period to produce a configuration with zero charge; including

them produces the desired charge of Q = 4.

Expressions (5.19) were used as the initial condition for the conjugate-

gradient method of energy minimization, for several different values of α

in the range4 α = 0.6 to α = 0.99. Again, the goal here is to find the optimal

periods of the multi-sheet solution.

For this section, we have used a second order finite-difference scheme for both

E and Q, with a lattice spacing of h = 0.1. The procedure used in finding

the optimal periods is similar to the one used for the 2V+2AV solution from

sec. 5.3.2. The only exception to this procedure is for the α = 0.95, 0.98,

and 0.99 cases where the Lz values are reduced in order to find their optimal
4The reason we did not investigate the solutions for α < 0.6 was that, through discus-

sions with Prof. Ward, we had learnt that the energy of the multi-sheet solution for this
region is seemingly not any lower than the V+AV+V+AV solution and, therefore, was
deemed not important enough to investigate further.
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values since starting from low Lz values causes the configuration to become

unstable as it is being minimized. We also noticed that reducing Lz by

subtracting nz (i.e. deleting the top and bottom faces in the z−direction)

causes a significant decrease in the charge. Therefore, we decided to lower

Lz by decreasing hz, while keeping nz constant. Table 5.8 lists the optimal

Lx,y and Lz values, along with the minimal energies E and the normalized

energies EN ≡ E/4. The errors in the normalized energies were obtained by

calculating the difference of the charge obtained using a second-order finite

difference scheme with Q = 4, then dividing by 4.

Table 5.8: Optimal periods, minimal energies, and normalized energies of
multi-sheet solution

α Lx,y Lz E EN

0.6 4.0 5.0 4.0304 1.0076 ± 0.0003
0.7 3.8 5.4 3.8978 0.9745 ± 0.0003
0.75 3.6 5.6 3.8046 0.9512 ± 0.0003
0.8 3.4 6.0 3.6836 0.9209 ± 0.0004
0.85 3.2 6.4 3.5247 0.8812 ± 0.0005
0.9 3.0 7.0 3.3096 0.8274 ± 0.0005
0.95 2.6 7.8 2.9968 0.7492 ± 0.0008
0.98 2.0 8.4 2.7030 0.6758 ± 0.001
0.99 1.8 8.8 2.5583 0.6396 ± 0.002

Note that, since we have used a second-order finite-difference method here,

nx, ny, and nz must be even-valued, so as we varied the n values, the periods

varied by 0.2. Therefore, as in the previous section, in order to get a better

idea of where the optimal periods lie, we fit a second-order function to the

minimal Lx,y and Lz values listed in Table 5.8, as well as two other data

points to either side of these minima, and calculated the minimum of the fit

to find the interpolated values of the optimal periods as well as the associated

values of the energy, all of which are listed in Table 5.9. As before, these

values are meant to give a better idea of where the optimal values lie, rather

than give a precise value of the actual optimal periods.

Fig. 5.12 shows the energy density isosurfaces where E = 0.8 times its maxi-

mum value for α = 0.6, 0.8, 0.9, 0.99, using the corresponding optimal periods
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Table 5.9: Interpolated optimal periods, minimal energies, and normalized
energies of multi-sheet solution

α Lx,y Lz E EN

0.6 4.058 4.967 4.0301 1.0075 ± 0.0003
0.7 3.803 5.425 3.8978 0.9745 ± 0.0003
0.75 3.598 5.688 3.8043 0.9511 ± 0.0003
0.8 3.461 6.019 3.6831 0.9208 ± 0.0004
0.85 3.223 6.443 3.5246 0.8812 ± 0.0005
0.9 2.945 7.046 3.3095 0.8274 ± 0.0005
0.95 2.561 7.835 2.9966 0.7492 ± 0.0008
0.98 2.071 8.38 2.7021 0.6755 ± 0.001
0.99 1.738 8.833 2.5577 0.6394 ± 0.002

of Table 5.8. Note that at α = 0.6, the solution resembles a deformed version

of the V+AV+V+AV solution, but as α is increased, it transforms into a

series of parallel sheets orthogonal to the z−direction and with some x− and

y− dependence at α = 0.8, 0.9, but homogeneous at α = 0.99.

Fig. 5.13 shows the energy density as a function of z for the α = 0.99 solution,

which we singled out since it has the lowest energy-per-charge of any of the

solutions we have encountered so far. It clearly shows the location of the

sheets – corresponding to the peaks in the energy density curve. The curve

was obtained by integrating the energy density of the minimized solution

along the x− and y−directions, which is numerically equivalent to taking

the average of the energy density at each lattice site along these directions,

leaving an energy density which is just a function of z.

Finally, as in the previous section, to investigate the symmetries of the multi-

sheet solution we look at its fields. More specifically, we investigate the

isosurfaces where Φβ = ±0.8, for the α = 0.99 solution. Fig. 5.14 shows Φβ,

where β = {1, 2, 3, 4}, where the blue surfaces correspond to Φβ = 0.8 and

the green surfaces correspond to Φβ = −0.8.

It is not hard to conclude, by looking at the field isosurfaces in Fig. 5.14,

that the transformations listed in Table 5.10, corresponding to translations,

rotations, and reflections, are the symmetry generators of the α = 0.99 multi-

sheet solution.
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Figure 5.12: Energy density isosurfaces of multi-sheet solution for α =
0.6, 0.8, 0.9, 0.99, where E = 0.8 ∗ Emax.
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Figure 5.13: Energy density as a function of z for α = 0.99 multi-sheet
solution.
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Figure 5.14: Field isosurfaces of multi-sheet solution with values Φβ = 0.8
(blue) and Φβ = −0.8 (green), where β = 1, 2, 3, 4.



Chapter 5. The generalized Skyrme crystal 97

Table 5.10: Symmetry generators of the α = 0.99 multi-sheet solution

Spatial Transformation Isospin Transformation
(x1, x2, x3)→ (x1 + L1/2, x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,−Φ3,−Φ4)
(x1, x2, x3)→ (x1, x2 + L2/2, x3) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,−Φ2,Φ3,Φ4)
(x1, x2, x3)→ (x1, x2, x3 + L3/2) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,Φ2,Φ3,−Φ4)

(x1, x2, x3)→ (x2,−x1, x3 − L3/4) (Φ1,Φ2,Φ3,Φ4)→ (−Φ4,−Φ3,Φ2,Φ1)
(x1, x2, x3)→ (−x1, x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,Φ2,−Φ3,Φ4)
(x1, x2, x3)→ (x1,−x2, x3) (Φ1,Φ2,Φ3,Φ4)→ (Φ1,−Φ2,Φ3,Φ4)
(x1, x2, x3)→ (x1, x2,−x3) (Φ1,Φ2,Φ3,Φ4)→ (−Φ1,Φ2,Φ3,Φ4)

5.3.4 The multi-sheet ansatz

A more graceful way of writing the multi-sheet ansatz, introduced in (5.19)

in the previous section, was shown in [1]. It is given by:

Z1 := Φ1 + iΦ2 = sin(f)eiγ2by , (5.20)

Z2 := Φ3 + iΦ4 = cos(f)eiγ1ax , (5.21)

where (a, b) are real numbers, which we take to be (a, b) = (2π/Lx, 2π/Ly),

(γ1, γ2) = (±1,±1), and f = f(z) is a real function with the following values:

f(0) = 0, f(Lz/4) = π/2, f(Lz/2) = π, f(3Lz/4) = 3π/2, f(Lz) = 2π. Note

that, in order for the fields to be continuous and for the charge to be non-

zero, one has to flip the sign of the fields in a certain way, as a function of z.

In particular, we choose the following configuration:

(γ1, γ2) =



(1, 1) for z ∈ [0, Lz/4) ,

(−1, 1) for z ∈ [Lz/4, Lz/2) ,

(−1,−1) for z ∈ [Lz/2, 3Lz/4) ,

(1,−1) for z ∈ [3Lz/4, Lz) ,

which is analogous to using the absolute value signs in the form of the ansatz

given in eq. (5.19).

Looking at (5.20) and (5.21), one can see that a translation in either the

x−direction (x 7→ x + c) or the y−direction (y 7→ y + c) would leave half
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of the fields invariant. Such transformations, in that order, when acting on

fields Z ≡ (Z1, Z2)T , can be represented as follows:

 1 0

0 eiac

 or

 eibc 0

0 1

 . (5.22)

The suggestive form of the transformations (5.22) makes it apparent that

they correspond to a subgroup of U(2), which corresponds to the symmetry

group of the one-parameter family of generalized Skyrme systems.

This allows us to invoke the “Principle of Symmetric Criticality” [10], which

states that, for a certain field configuration which is: (i) invariant under

elements of a subset of the full symmetry group of the theory, and (ii) a

stationary point of the reduced action of the theory (corresponding to the

action, restricted to such field configurations); such a field configuration is

automatically a stationary point of the full action.

What this means is that, generally, whenever one has fields that have prop-

erty (i), the action reduces to a simpler, lower-dimensional one, and due to

the principle of symmetric criticality, one can claim that its stationary points

are also the ones for the full theory.

In our case, what this practically means is that the expression for the gen-

eralized energy density (2.26), using the fields (5.20) and (5.21), will reduce

to one which depends only on f(z) and df/dz. In particular, it can be put

in the following form:

E[f ] =

∫ (
A(f)(f ′)2 +B(f)

)
dz (5.23)

=

∫ (√
Af ′ ±

√
B
)2

dz ∓ 2

∫ √
AB df , (5.24)

where f ′ = df/dz. The associated Bogomolny bound and Bogomolny equa-
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tion is given by:

E[f ] ≥ 2

∫ √
AB df , (5.25)

f ′ =
√
B/A . (5.26)

The Principle of Symmetric Criticality guarantees that the fields which min-

imize the energy (5.23) (or the ones which saturate the Bogomolny bound

(5.25)) are also fields which minimize the full energy, which in our case is

given by integrating the energy density (2.26).

After substituting the fields (5.20) and (5.21) into the energy (2.26), we get

the following expressions for the energy density:

E2 = κ2[a2 cos2(f) + b2 sin2(f) + (f ′)2 − α(a2 cos4(f) + b2 sin4(f))] ,

(5.27)

E4 = κ4[(1− α)((f ′)2b2 sin2(f) + (f ′)2a2 cos2(f) + (a2b2 sin2(2f))/4)

+ (α/4)((f ′)2(a2 + b2) sin2(2f))] , (5.28)

where κ2 = 1/4π2(3− α) and κ4 = 1/4π2(3− 2α), as before.

Putting these expressions into the form (5.23), we find the following values:

A = LxLy[κ2 + κ4((1− α)(b2 sin2(f) + a2 cos2(f))

+ (α/4)(a2 + b2) sin2(2f))] , (5.29)

B = LxLy[κ2(a2 cos2(f) + b2 sin2(f)− α(a2 cos4(f) + b2 sin4(f)))

+ (κ4/4)(1− α)(a2b2 sin2(2f))] . (5.30)

Through our numerical investigations, we have concluded that the preferred

state is for Lx = Ly, so we can set a = b, which simplifies these expres-

sions considerably. With this in mind, we now wish to solve the differential
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equation (5.26), which can be done through separation of variables:

Lz(α, a) = 4
√

2

∫ π/2

0

√
2κ2 + κ4a2[2(1− α) + α sin2(2f)]

κ2a2[4(1− α) + 2α sin2(2f)] + κ4a4(1− α) sin2(2f)
df .

(5.31)

Note that on the limits, the integrand becomes:√
κ2 + κ4a2(1− α)

2κ2a2(1− α)
,

which is convergent in the range 0 ≤ α < 1 and divergent for α = 1. This

implies that, for α ∈ [0, 1), the bound (5.25) can be saturated and there

is an associated, minimal, Lz,min. On the other hand, when α = 1, the

bound cannot be saturated and the energy can be made arbitrarily small by

increasing Lz (or decreasing Lx = Ly, as one can see (with a bit of effort)

from E(α, a) below).

The associated expression for the energy (with a = b) is given by:

E(α, a) = 2L2
x

∫ π/2

0

[ (
4κ2 + κ4a

2[4(1− α) + 2α sin2(2f)]
)

×
(
κ2a

2[4(1− α) + 2α sin2(2f)] + κ4a
4(1− α) sin2(2f)

) ] 1
2
df .

(5.32)

The integrals (5.31) and (5.32) can be evaluated numerically. We calculated

E(α, a) for several different values of (α, a), where α ∈ [0.6, 0.99] and found

that there is indeed a minimal energy value associated with a certain value

of a ≡ amin, for each α, which we call Emin ≡ E(α, amin). We then evaluated

Lz(α, amin) ≡ Lz,min, for each α. Table 5.11 lists the values of Lx,y,min ≡

2π/amin, Lz,min, Emin, and EN ≡ Emin/4 obtained in this way, for each α.

Fig. 5.15 shows the energy density of the multi-sheet ansatz as a function
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Table 5.11: Optimal periods and minimal energies of multi-sheet ansatz

α Lx,y,min Lz,min Emin EN

0.6 3.4 7.4704 4.6501 1.1625
0.7 3.3 7.8368 4.3536 1.0884
0.75 3.2 8.0198 4.1759 1.0440
0.8 3.1 8.2665 3.9713 0.9928
0.85 3.0 8.6162 3.7303 0.9326
0.9 2.8 8.9895 3.4364 0.8591
0.95 2.4 9.3970 3.0507 0.7627
0.98 2.0 9.8947 2.7193 0.6798
0.99 1.7 10.0661 2.5618 0.6404
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Figure 5.15: Energy density plots as functions of z, for α = 0.6 to α = 0.99,
of multi-sheet ansatz.

of z, for different α values. Note that, as α increases, the sheets become

increasingly localized.

In Fig. 5.16, we compare the plots of the normalized energy EN as a func-

tion of α for the minimized fields, obtained through the conjugate gradient

method, and for the ansatz. We also compare their optimal periods Lx,y,min

and Lz,min as a function of α in Fig. 5.17.

Finally, as a way of summing up the work described in this section, Fig. 5.18

shows the normalized energies of the V+AV+V+AV, 2V+2AV, and multi-

sheet solutions, as functions of α. This clearly shows how the multi-sheet

solution ends up being the one with lowest energy EN as α→ 1.
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Figure 5.16: Normalized energy of multi-sheet solution and of ansatz, as a
function of α.
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ansatz as a function of the parameter α.
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Figure 5.18: Normalized energy of V+AV+V+AV, 2V+2AV, and multi-sheet
solutions, as functions of α.



Chapter 6

Generalized vortices

The investigation of vortices in generalized skyrme systems was originally

motivated by the solution observed when taking the Skyrme crystal to the

α → 1 limit, resulting in a configuration consisting of 2 vortices and 2 an-

tivortices (see sec. 5.3.1). This prompted us to study two different types of

configurations: a vortex and an antivortex (V+AV) in sec. 6.1 and a pair

of both vortices and antivortices (V+AV+V+AV) in sec. 6.2. The main dif-

ference between the solutions presented in this chapter and those presented

in the previous chapter is that here we study vortex solutions in their own

right and not as the result of certain processes under certain initial condi-

tions, such as starting with the Skyrme crystal and then varying α (obtain-

ing the V+AV+V+AV solution from sec. 5.3.1 in the process), or starting

with the multi-sheet ansatz for certain periods at certain α values (obtaining

the 2V+2AV solution from sec. 5.3.2 in the process). That is, we now use

a multi-vortex ansatz (introduced in sec. 5.3.1) or an alternative “product

ansatz” (introduced shortly) as an initial condition and we take the periods

in the x− and y−directions to be large and fixed at Lx,y = 10. In terms

of the x− and y−dependent vortex fields, if one introduces a factor that

increases exponentially with the distance from the vortex cores, these large

Lx,y periods would simulate isolated vortices in our triply-periodic lattice

104
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(assuming they are located near the centre of the fundamental cell), as these

fields would approach their asymptotic values exponentially quickly.

After introducing the product ansatz, in sec. 6.1.1 we present an analytical

calculation which determines the energy of a vortex-antivortex configuration

as a function of inter-vortex separation, in the context of generalized skyrme

systems. Afterwards, we show the results of some numerical investigations

that were carried out to provide a description of inter-vortex forces, where

α ≥ 0. Then, in sec. 6.1.2, we show a variety of V+AV N -stack solutions

(i.e. V+AV configurations stacked N times in the z−direction), for different

values of α. We shall see that braided structures emerge for certain values

of α and N , motivating a “Braided V+AV Ansatz”, which we present in

sec. 6.1.3, leading to a discussion of its usefulness in numerically calculating

the (p, q)−charges of V+AV configurations. Finally, in sec. 6.2, we present

solutions of V+AV+V+AV configurations for different values of α and N .

6.1 V+AV

We start by introducing an ansatz, called the “product ansatz” [8], that we

shall be using throughout most of this section as an initial condition for the

numerical minimization of multi-vortex fields. It consists of using a matrix

Uj for vortex j, given by:

Uj =

 Φ4,j + iΦ3,j Φ2,j + iΦ1,j

−Φ2,j + iΦ1,j Φ4,j − iΦ3,j

 , (6.1)

where, for this section, j = {1, 2} as we only deal with a vortex-antivortex

pair. The fields Φβ,j are given by:

Φ1,j + iΦ2,j = (wj)
pjeΛρj , (6.2)

Φ3,j + iΦ4,j = eiβqjz , (6.3)
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where β = 2π/Lz, Λ is a constant which determines how quickly Φ1,j and

Φ2,j reach their asymptotic values (we take Λ = Lx,y = 10), (pj, qj) are the

(p, q)−charges of vortex j (see sec. 5.3.1 for details), wj = (x−c1
j)+ i(y−c2

j),

with the core of vortex j at (x, y) = (c1
j , c

2
j), and ρj =

√
(x− c1

j)
2 + (y − c2

j)
2.

The product ansatz then consists of multiplying the U matrices for the vari-

ous vortices and obtaining their product, called U , consisting of fields Φβ:

U = U1 · U2 · · ·Ud =

 Φ4 + iΦ3 Φ2 + iΦ1

−Φ2 + iΦ1 Φ4 − iΦ3

 , (6.4)

where d is the total number of vortices and antivortices. We subsequently

normalize the fields: Φ′β ≡ Φβ/||Φβ||, where ||Φβ|| ≡ (
∑

β(Φβ)2)1/2, and use

Φ′β as an initial condition for the minimization procedure.

6.1.1 The inter-vortex force

It has been shown analytically [8] that in the Skyrme model the force between

a vortex and an antivortex, when separated by large distances, is an attractive

one. We now wish to see if this is still the case for generalized skyrme systems.

The vortex ansatz used in [8], for a vortex j located at the origin, is given

by:

Uj = exp [
1

2
(djθj − kjβz)iσ3] exp [fj(r)iσ1] exp [

1

2
(djθj + kjβz)iσ3] , (6.5)

where (r, θj) are polar coordinates in R2, β = 2π/Lz, dj, and kj are constants.

The boundary conditions are such that the profile function fj(r) satisfies

fj(0) = π/2 and fj(r) → 0 as r → ∞. Note that, for a vortex-antivortex

pair, we choose d1 = −d2 = 1 and k1 = −k2 = 1, as they wind in opposite

directions.

Using the product ansatz (6.4), the fields of a vortex-antivortex pair in the
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asymptotic region (i.e. where fj(r) ≈ 0) are given by:

U = U1 · U2 ≈

 ei(θ1−θ2) 0

0 e−i(θ1−θ2)

 ≡
 Z1 −Z∗2

Z2 Z∗1

 , (6.6)

where we have represented U in terms of (Z1, Z2) fields, as we did in sec. 2.4.1.

Note that Z2 = −Φ2 + iΦ1 = 0, so we can represent the vortex-antivortex

fields as the U(1) fields Z ≡ Z1 = Φ4 + iΦ3. Recall that the generalized

energy density is given by (2.26), which we reproduce here:

E = κ2[(∂jΦβ)(∂jΦβ)− αPjPj] + κ4[2(1− α)F j
βγF

j
βγ + αQjQj] , (6.7)

where

Pj = ΩβγΦβ∂jΦγ ,

F j
βγ =

1

2
εjkl(∂kΦβ)(∂lΦγ) ,

Qj = ΩβγF j
βγ ,

and where Ω12 = −Ω21 = −Ω34 = Ω43 = 1. However, note that for U(1)

fields, the terms of order 4 in derivatives vanish, since they are antisym-

metrized. Moreover, the terms (∂jΦβ)2 and (Pj)
2 are equal, as can be checked

by substituting the relevant fields Φ3,Φ4 and using the properties Φβ∂iΦβ = 0

and (Φβ)2 = 1. This leaves us with the following expression for the energy

density of a vortex-antivortex pair, in the asymptotic region:

E = κ2(1− α)(∂jΦβ)2 = κ2(1− α)||Z∗∂jZ||2 . (6.8)

In [8], the energy (i.e. the integral of eq. (6.8) over the asymptotic region) is

analytically calculated in quite an elegant fashion, as we now briefly explain.

The R2 plane is divided into three regions: two discs of radii C centred on

each of the vortices, which are separated by a distance of 2a, and the rest
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of the R2 plane. The distances C and a are such that a > C and C is large

enough so that one can make the approximation fj(r) ≈ 0 outside of the

discs. The plane is then stereographically projected onto the two-sphere S2,

which is allowed, as the energy is conformally invariant. The projection can

be chosen such that the two circles are now described on S2 by θ = γ and

θ = π−γ, where θ ∈ [0, π] is now a spherical coordinate (the other coordinate

given by φ ∈ [0, 2π)) and where sin(γ) = C/a. The asymptotic region is then

equivalent to the region on S2 given by θ ∈ [γ, π − γ] and φ ∈ [0, 2π]. The

energy is thus given by:

E = κ2Lz(1− α)

∫ 2π

0

∫ π−γ

γ

(||Z∗∂θZ||2 + sin−2 θ||Z∗∂φZ||2) sin(θ) dθ dφ ,

(6.9)

where an integral in the z−direction over one period Lz has been performed.

In [8], a Bogomolny argument was used to show that E is minimized by

Z(θ, φ) = exp [iφ]. Alternatively, one could use a variational method to find

functions Z that extremize the functional E(Z, ∂jZ), so that δE = 0. One

finds that such functions are given by Z(θ, φ) = exp [ig(θ, φ)], where g is a

function consisting of some linear combination of θ and φ. However, note that

in the asymptotic region Z does not depend on θ, leaving us with functions

g(θ, φ) = φ.

Performing the integral with Z(θ, φ) = exp [iφ] yields:

E = 4πLzκ2(1− α) log (cot (γ/2)) (6.10)

≈ Lz
π

(
1− α
3− α

)
log (cot (C/2a)) (6.11)

≈ Lz
π

(
1− α
3− α

)
log(a) , (6.12)

where we have used κ2 = 1/[4π2(3− α)], made the approximation γ ≈ C/a,

for a >> C, and picked out the leading log contribution to the energy.

Note that in [8] the “normalization” constant κ2 was not used. Therefore,
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to reproduce their result, one would have to take α = 0 in eq. (6.12) and

multiply by 12π2.

If we think of α as being fixed, what (6.12) tells us is that the energy of the

asymptotic region for a vortex-antivortex pair decreases when the distance

between the vortices decreases, which means that the inter-vortex force is

attractive. Moreover, what the multiplicative factor (1 − α) tells us is that

this is the case for α ∈ [0, 1), with the leading term becoming less pronounced

as α increases and vanishing altogether in the α → 1 limit. Our numerical

results for the V+AV+V+AV solution from sec. 5.3.1 (Fig. 5.2) show the

optimal Lx,y periods increasing for α → 1. This seems to suggest that the

vortices repel each other in this limit. However, this has yet to be proven

rigorously.

Numerical Results

In an effort to better understand the interactions between a vortex and an

antivortex in generalized skyrme systems, we have made some numerical

investigations of this system in a triply-periodic lattice at different values

of α with the introduction of certain perturbations, which we shall describe

shortly. However, we first start by describing an array of solutions obtained

at α = 0.5, by using different initial conditions.

Fig. 6.1 (a)-(d) shows the energy density isosurfaces E , where E is 0.5 times

its maximum value, for four different solutions of the V+AV system with α =

0.5. The quoted values of E/Q were obtained through a second-order finite

difference method, using a lattice spacing of h = 0.1, and with associated

errors calculated by taking the difference between the V+AV charge (Q = 2)

and the charge obtained numerically, then dividing by 2.

These solutions were obtained through different mechanisms. Figs. 6.1 (a),(b)

are local energy minima obtained by using the product ansatz (6.4) as an

initial condition, with vortex cores at (c1
1, c

2
1) = (Lx/4, 3Ly/4), (c1

2, c
2
2) =
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Figure 6.1: Energy density isosurfaces (E = 0.5 ∗ Emax) of V+AV solutions,
for α = 0.5 and Lx,y = 10: (a) Lumps (E/Q = 1.22 ± 0.02, Lz = 4.4),
(b) Merged Vortices (E/Q = 1.09 ± 0.01, Lz = 3.6), (c) Coaxial Torus
(E/Q = 1.16 ± 0.02, Lz = 3.6), (d) Vertical Torus (E/Q = 1.11 ± 0.01,
Lz = 4.4).

(3Lx/4, Ly/4), and (c1
1, c

2
1) = (Lx/4, Ly/2), (c1

2, c
2
2) = (3Lx/4, Ly/2), re-

spectively, and vortex charges (p1, q1) = (1, 1) and (p2, q2) = (−1,−1) for

both cases. Moreover, for Fig. 6.1 (a), a value of α = 0.5 was used and

for Fig. 6.1 (b) it was α = 0, and afterwards re-minimized with α = 0.5.

A range of Lz values were scanned for both configurations, monitoring

their energies in the process, and picking the minimal values, producing

the configurations displayed in Figs. 6.1 (a),(b). Fig. 6.1 (c) was obtained

by taking the field of Fig. 6.1 (a) as an initial condition and minimiz-

ing, after setting the energy gradient to zero at the edges of the funda-

mental cell and having the fields take the following values at the edges:

Φ1(0, y, z) = Φ1(Lx, y, z) = Φ1(x, 0, z) = Φ1(x, Ly, z) = 1 and Φ2,3,4(0, y, z) =

Φ2,3,4(Lx, y, z) = Φ2,3,4(x, 0, z) = Φ2,3,4(x, Ly, z) = 0 (more on this shortly).

Finally, Fig. 6.1 (d) was obtained by taking the field of the “merged vortices”

of Fig. 6.1 (b) as an initial condition, increasing Lz from 3.6 to 4.4, minimiz-

ing, and producing a “vertical torus” in the process. Note that its energy is

larger than the merged vortices and it keeps increasing if Lz is increased fur-

ther, so it is not a local energy minimum. Also note that the “coaxial torus”

(Fig. 6.1 (c)) is not a local energy minimum. Its energy decreases as Lz is

increased; the most likely explanation for this is that neighbouring coaxial
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tori stacked in the z−direction would repel each other, unless an appropriate

transformation is performed on the fields of one of them. A transformation

that could work might consist of flipping one of them by π about the x− or

y−axes. If such a transformation makes them attractive, then the tori would

subsequently merge, presumably producing a charge Q = 4 configuration

with cubic symmetry.

We should stress at this point that there are different ways of obtaining

the coaxial torus. For example, instead of imposing the asymptotic values

for the fields at the edges of the fundamental cell, as previously mentioned,

we take the fields of Fig. 6.1 (a) and introduce a perturbation by bringing

the “lumps” closer together by varying amounts. This is done by deleting

a varying number of vertical sheets of lattice sites (i.e. with z ∈ [0, Lz])

along the middle of the configuration in both the x− and y−directions and

adding the same number along the edges (by making a copy of the (y, z) and

(x, z) sheets at the edges and adding them along the x− and y−directions,

respectively), thereby keeping Lx,y = 10 the same. Surprisingly, only when

the number of deleted rows is > 20, corresponding to bringing them closer

by a distance D > 2 along the x− and y−directions (for h = 0.1), will the

lumps merge into a coaxial torus. Otherwise, they repel each other until

they are maximally separated, even when increasing Lx,y, which we checked

up to a value of Lx,y = 14. This leads us to conclude that there are edge

effects, removed by imposing a zero energy gradient at the edges as well as

imposing the asymptotic value for one of the (x, y)−dependent fields at the

edges. It is also worth noting that a torus is likely to exist for α ∈ [0, 1],

as was suggested in [4]. For example, if one starts at α = 0 with a charge

Q = 2 skyrmion, whose energy density isosurfaces resemble tori, and α is

subsequently increased (with the fields minimized for each value of α), one

is likely to end up with a family of tori for different α values. However, this

has yet to be investigated in detail.
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We now turn to an analysis of the energy density isosurfaces of merged vor-

tices as a function of α, which was carried out prior to obtaining the energy

minima of Figs. 6.1 (a),(b). Recall that, in order to obtain Fig. 6.1 (b), the

product ansatz was originally minimized with a value of α = 0. After-

wards, a range of Lz values were scanned and found that Lz = 4 is the

optimal one, coinciding with the results from [8]. To investigate the corre-

sponding field configurations for different values of α, we initially guessed

what the respective optimal values of Lz would be by comparing the α = 0

optimal value with our results from the V+AV+V+AV configuration (see

sec. 5.3.1) and claiming that the same difference would hold for other values

of α. Later, we looked for the optimal Lz values more carefully, which we

describe in the next section. The values of α and Lz used here are given

by α = {0, 0.5, 0.6, 0.7, 0.8, 0.9} and Lz = {4.0, 3.3, 3.2, 3.1, 3.0, 2.9}. The

minimized fields obtained for a certain value of α were used as an initial con-

dition for the next (higher) value of alpha, with a corresponding change in Lz.

Fig. 6.2 (a)-(f) shows their energy density isosurfaces, where E = 0.15 ∗ Emax

for Fig. 6.2 (a) and E = 0.5 ∗ Emax for Figs. 6.2 (b)-(f), and with errors as cal-

culated for Fig. 6.1. As with the V+AV+V+AV case, there is a tendency for

the vortex-antivortex pair to become more homogeneous in the z−direction

as α increases, having no noticeable z−dependence for α = 0.9. Moreover,

the distance between the vortices D, calculated by finding the distance be-

tween the maximum values of the energy density at z = Lz/2, was found

to increase as α increases: D = {1.5, 1.9, 1.9, 2.1, 2.5, 2.8}. This seems to

support our claim from the previous section that vortices repel each other

when α→ 1.

Further investigation of the V+AV configuration has been carried out by

investigating its stability for different values of α. This will be analyzed

in the next section by stacking multiple copies of the optimal Lz−valued

fields in the z−direction, but first, we describe the process of obtaining these

optimal values.
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Figure 6.2: Energy density isosurfaces (E = 0.15 ∗ Emax for Fig. (a) and
E = 0.5 ∗ Emax for Figs. (b)-(f)) of V+AV merged vortex solutions, for
Lx,y = 10: (a) α = 0 (E/Q = 1.15 ± 0.01, Lz = 4), (b) α = 0.5 (E/Q =
1.09± 0.01, Lz = 3.3), (c) α = 0.6 (E/Q = 1.07± .01, Lz = 3.2), (d) α = 0.7
(E/Q = 1.04 ± 0.01, Lz = 3.1), (e) α = 0.8 (E/Q = 1.00 ± 0.01, Lz = 3.0),
(f) α = 0.9 (E/Q = 0.95± 0.01, Lz = 2.9).
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6.1.2 V+AV multi-stack solutions

The techniques used in obtaining the optimal Lz values for the V+AV config-

uration, as a function of α, are similar to the ones used for the V+AV+V+AV

solution from sec. 5.3.1, which we summarize here. The technique consists of

scanning the energies of the V+AV configuration, using a first-order finite-

difference method, through a range of Lz values and fitting a second-order

polynomial through the three points with lowest energy and determining the

minimal Emin and Lz,min values of the fit; the associated charge Qmin is also

obtained through interpolation, by comparing the charges corresponding to

the points nearest to the minimum. These minimal values are obtained for

three different values of lattice spacing (h = 0.1, 0.15, 0.2), for different values

of α. Therefore, at each value of α, we fit a line through Emin(h2), Lz,min(h2),

and Qmin(h2) and extrapolate h2 → 0. The extrapolated values Emin(0) ≡ E,

Emin(0)/2 ≡ EN , and Lz,min(0) ≡ Lz, for α = {0, 0.2, 0.5, 0.7, 0.9}, are listed

in Table 6.1. The quoted errors for the normalized energies EN were calcu-

lated by taking the difference between Qmin(0) and the “true” charge Q = 2

and dividing by 2. Fig. 6.3 shows a plot of EN and Lz vs α. Note that the

pattern is similar to that of the V+AV+V+AV solution, whose values of EN

and Lz were shown to decrease as α increases.

Table 6.1: Optimal periods and minimal energies of V+AV configuration

α Lz E EN

0 4.03 2.317 1.159±0.002
0.2 3.77 2.284 1.142±0.001
0.5 3.48 2.196 1.098±0.002
0.7 3.3 2.094 1.047±0.002
0.9 3.06 1.920 0.960±0.004

We now wish to investigate the stability of the V+AV configuration by stack-

ing their minimal-energy fields N = {1, 2, 3, 4, 5} times in the z−direction.

Anticipating copious amounts of processing time in obtaining the mini-

mum energy fields for large N , we have decided to use a larger value

of the lattice spacing h = 0.2 for N > 2, while keeping h = 0.1 for
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Figure 6.3: Plot of minimal normalized energies EN and optimal periods Lz
vs. α for V+AV configuration.

N = (1, 2). The idea is to take a copy of the minimal-energy N = 1 fields,

for α = {0, 0.2, 0.5, 0.7, 0.9}, and place them on top of each other N times

with a slight perturbation and then minimize their energies. For N = 2,

the perturbation consists of shifting the top copy in the x−direction by 5

lattice sites (equivalent to a distance D = hx ∗ nx = 0.5) and for N > 2, it

consists of bringing the two vortices in the middle copies closer together by

D = 0.6. For the α = {0.5, 0.7} cases, this is done by deleting vertical sheets

of lattice sites (i.e. z ∈ [0, Lz]) along the middle of the configuration, with

the middle sheet approximately corresponding to x = Lx/2, and adding the

same number of sheets along the edges by taking a copy of the edge sheets,

and thus, keeping Lx = Ly constant. For the α = {0, 0.2, 0.9} cases, it is

worth noting that the initial condition consists of vortices located along a di-

agonal in the (x, y)−plane and, therefore, lattice sites are removed along the

middle of the configuration in both the x− and y−directions (while adding

the same number along the edges), in order to bring them diagonally closer

together by a distance D ≈ {0.6, 0.6, 0.9}, respectively. Since the optimal Lz
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values differ slightly for the h = 0.1 and h = 0.2 fields, we use different initial

conditions for the N = (1, 2) and N > 2 cases, corresponding to minimized

fields with Lz values closest to the optimal ones for which the corresponding

number of lattice sites in the z−direction is even, since we shall be using a

second-order finite difference method to determine the energy E and charge

Q for each configuration. The N = 1 (h = 0.1) fields, used for the N = {1, 2}

stacks, have Lz = {4, 3.8, 3.4, 3.2, 3.0} (for the aforementioned values of α),

and the N = 1 (h = 0.2) fields, used for the N = {3, 4, 5} stacks, have

Lz = {3.8, 3.6, 3.2, 3.0, 3.0}.

The result of minimizing the energy of these initial conditions can be seen in

Fig. 6.4, which shows their energy density isosurfaces. The rows correspond

to different N values, with N increasing downwards (from N = 1 to N = 5),

and the columns correspond to different α values, with α increasing to the

right (from α = 0 to α = 0.9). Note that the periods Lz for the N -stacks

are given by multiplying the aforementioned Lz values for the N = 1 fields

(with the appropriate values of h = 0.1 and h = 0.2) N times. The only

exceptions to this rule are the N = (3, 5) stacks for: α = 0 (Lz = 11.2, 19.2,

respectively) and α = (0.7, 0.9) (Lz = 9.2, 15.2). Moreover, the surface values

chosen in order to accentuate their features are given by E = 0.15 ∗ Emax

for the α = 0 N -stacks, E = 0.25 ∗ Emax for the α = 0.2 N -stacks, and

E = 0.5 ∗ Emax for the rest. Table 6.2 lists the corresponding normalized

energy values (EN = E/Q), with errors calculated as before, except that

we now use a value of Q = 2N . The EN values were calculated by using

a second-order finite difference method, with h = 0.1 for N = (1, 2) and

h = 0.2 for N = (3, 4, 5).

The V+AV N -stack solutions exhibit some peculiar features as α is changed,

as we now briefly describe. Starting with the α = 0 case, we see that the N =

1 and N = 2 stacks correspond to regular Skyrme chains (see [8]), whereas

the N = 3 and N = 4 solutions correspond to the standard Q = 6 skyrmion
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and the fullerene-like1 Q = 8 solution, respectively (see e.g. [10, 21]). This

suggests that Skyrme chains are unstable to clumping, as pointed out in [8].

However, note that we have not varied Lz for N ≥ 2, which leaves open

the possibility that Skyrme chains might exist for these (and possibly even

higher) N values. The N = 5 solution is a non-fullerene-like polyhedron,

consisting of 16 pentagons and two squares at both ends. The α = 0.2 case

is similar to the α = 0 case, except that it is even more unstable to clumping,

as the N = 2 stack collapses into the standard Q = 4 skyrmion with cubic

symmetry. The only other difference is the N = 5 solution, which is again

a polyhedron that is not fullerene-like, consisting of 16 pentagons and this

time two hexagons at both ends.

We start seeing qualitatively different solutions in the α = 0.5 case. The N =

2 solution consists of a surface that has two holes facing in the x−direction

and also in the y−direction. Recall that a similar-looking solution motivated

Prof. Ward to look for its optimal periods and eventually led to the discovery

of the multi-sheet solution (see sec. 5.3.3), but note that the value of α used

by him was different (α = 0.8). The N = 3 solution is the first example

of a braided V+AV pair, where each of the vortices braids once around the

other, winding by 2π in the z−direction. This is the case for the other

braided structures seen at α = 0.7, N = 3, 4, but not so for the α = 0.5,

N = 5 structure, where the vortices braid around each other twice, but

apparently preferring to do so along the diagonal in the (x, y)−plane. The

α = 0.5, N = 4 and α = 0.7, N = 5 solutions are the only examples of

isolated, twisted loops. One can imagine obtaining configurations like these

by holding a torus from one end and twisting the other end by 2π. For

the N = 1 solutions, we can see that the merged vortices at α ≤ 0.5 are

now separated at α = 0.7 and α = 0.9, which is still the case for N = 2,

but where now the vortices wind by 2π in the z−direction. The vortices at
1We adopt the definition from [21], which states that fullerene-like skyrmions are those

whose energy density isosurfaces resemble polyhedra consisting of 12 pentagons and 2Q-14
hexagons, for Q ≥ 7.
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α = 0.9 continue to be separated all the way up to N = 5, still winding

by 2π, but one can notice that the solutions no longer wind smoothly and

continuously in the z−direction for N ≥ 3.

To sum up, we have seen that the V+AV configuration for α ∈ [0, 0.9] is un-

stable to stacking in the z−direction, in the sense that they do not preserve

their shape. In the α = 0, 0.2 cases, the shapes are still intact up to N = 2,

but subsequently collapse into both fullerene and non-fullerene-like polyhe-

dra, possibly due to the type of perturbation that we use and the fact that

the vortices are closer together than for higher values of α. For α ≥ 0.5, the

V+AV configurations collapse into winding, braided, and twisted structures.

Perhaps it is not surprising to see such behaviour, as it is a well-known fact

that in the α → 1 limit, it is energetically favourable for Hopf solitons to

twist and link with each other as the value of the Hopf charge increases (see

e.g. [31, 38]).

In order to analyze the properties (such as the charge) of these winding and

braiding structures, we have made use of an ansatz which replicates their

dependence in the three Cartesian coordinates. We now turn to a description

of this ansatz as well as how we use it to analyze some of the fields featured

in Fig. 6.4.

Table 6.2: Normalized energies (EN = E/Q) of V+AV N -stack solutions
with associated errors.

α = 0 α = 0.2 α = 0.5 α = 0.7 α = 0.9

N = 1 1.1581± 0.0004 1.1414± 0.0003 1.0975± 0.0003 1.0465± 0.0003 0.9592± 0.0004
N = 2 1.1581± 0.0004 1.1074± 0.0003 1.0658± 0.0002 1.0382± 0.0002 0.9408± 0.0002
N = 3 1.107± 0.005 1.100± 0.005 1.044± 0.004 0.972± 0.004 0.944± 0.004
N = 4 1.095± 0.005 1.091± 0.005 1.060± 0.005 0.971± 0.004 0.940± 0.003
N = 5 1.099± 0.005 1.083± 0.004 1.041± 0.004 0.991± 0.006 0.915± 0.002
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Figure 6.4: V+AV N -stack energy density isosurfaces for N = (1, 2, 3, 4, 5)
and α = (0, 0.2, 0.5, 0.7, 0.9); the surface values used are: E = (0.15, 0.25) ∗
Emax for α = (0, 0.2), respectively, and E = 0.5 ∗ Emax for the rest.
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6.1.3 The braided V+AV ansatz

The ansatz for multi-vortices (5.14), from sec. 5.3.1, can be used to describe

the braided solutions in Fig. 6.4 if we modify it in such a way that the

locations of the vortex cores have a helical dependence, rather than being

stationary in the (x, y)−plane, as functions of z. This can be done as follows:

U

V
≡ Φ3 + iΦ4

Φ1 + iΦ2

=
e

2πiq1z
Lz

(w1)p1
+
e

2πiq2z
Lz

(w2)p2
, (6.13)

where (pj, qj) refer to the (p, q)−charges of vortex j, as before, and the wj

are now given by:

w1 = (x− aLx) + i(y − bLy) + (m+ ik)e
2πibz
Lz , (6.14)

w2 = (x− gLx) + i(y − hLy) + (d+ if)e
2πibz
Lz , (6.15)

where (a, b,m, k) and (g, h, d, f) are parameters which specify the locations

of the cores of vortices 1 and 2, respectively, and b is an integer we refer to

as the “braiding number” or “linking number” which specifies the number of

times the cores wind by 2π in the z−direction, over the period Lz, with its

sign depending on whether the vortices wind clockwise or counterclockwise.

By looking at the energy density isosurfaces of V+AV solutions, one can

estimate the location of the vortex cores, choose the appropriate parameters,

and (approximately) reproduce the path of the cores. Note that if we choose

(a, b) = (g, h) and (m, k) = −(d, f) we get vortex cores which revolve about

a common centre and are connected by a line passing through the centre (i.e.

they link with each other |b| times).

To get a feeling of how the charge Q of a V+AV system depends on the

braiding number b and the charges qj, we first numerically calculate the

charge Q of braided V+AV fields produced analytically, by using the ansatz

(6.13), for many different values of b and qj. After analyzing such a list
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of charges, we have come to the conclusion that they follow the following

formula, with |p1| = |p2| ≡ p:

Q = p(|q1|+ |q2|)− 2bp2 . (6.16)

Note that eq. (6.16) is only compatible for V+AV configurations that are

linked. An alternate method for calculating the charge of configurations that

are not linked will be discussed later on.

We now wish to verify eq. (6.16) by numerically calculating the (p, q1, q2)

charges of some of the linked V+AV N−stack solutions from Fig. 6.4. We

should stress that the linking number b is an artifact that we implemented to

try to analytically reproduce the energy density isosurfaces of such solutions,

so it is not information that is carried by the fields of those solutions and,

therefore, cannot be “measured” by carrying out certain operations on the

fields, such as those performed below to measure their (p, q1, q2)−charges.

However, the linking number is something that can be determined quite

easily for V+AV fields, whose charge we wish to calculate, by simply looking

at how many times their energy density isosurfaces link with each other over

the period Lz.

We start by describing a numerical method for calculating the q−charge

of a vortex (or antivortex). Recall from the single vortex (or antivortex)

ansatz (eq. (5.14), with d = 1) that q corresponds to a z−dependent winding

number:
U

V
≡ Φ3 + iΦ4

Φ1 + iΦ2

=
e

2πiqz
Lz

(w)p
, (6.17)

where w = (x − c1) + i(y − c2) and (x, y) = (c1, c2) specifies the location of

the core of the vortex in the (x, y)−plane. We can make use of this ansatz

to find an analytic expression that we can use to numerically determine the
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charge q, as follows:∣∣∣∣∂U∂z
∣∣∣∣2 =

(
∂Φ3

∂z

)2

+

(
∂Φ4

∂z

)2

=

(
2πq

Lz

)2

. (6.18)

Solving for |q| yields an expression involving the z derivatives of the fields

Φ3,Φ4. We are now ready to numerically determine the charge |q|. To do

this, we first identify the location of the vortex cores by using expressions

(6.14, 6.15), with parameters determined through trial and error – i.e. by

comparing the resulting curves with the energy density isosurface we wish to

study. Having done this, we measure the fields Φβ at each grid point along the

curve and take their approximate z−derivative by using a first-order finite

difference method. Finally, we make use of eq. (6.18) to determine the value

of |q| at each point along the curve and we take its average value. Fig. 6.5 (a)

shows the curves of the vortex-antivortex cores for the α = 0.5 V+AV 3-

stack solution; Fig. 6.5 (b) shows the value of |q| as a function of z for the

blue curve, with average value given by avg(|q|) = 1.8 (the red curve has

a similar value); Fig. 6.5 (c) shows the associated energy density isosurface,

with E = 0.5 ∗ Emax. The other solutions whose |q|−charges we measured

are: α = 0.7 V+AV 3-stack, with avg(|q|) = 2.0, and α = 0.7 V+AV 4-

stack, with avg(|q|) = 2.5 (we shall discuss this value later on). One should

note that the same average value of |q| is obtained for both the vortex and

the antivortex in each solution. We should stress that this method is not

exact, since it involves approximating the derivative of the fields as well as

the location of the vortex cores. The resulting average value of |q| has to

be rounded, as it is usually not an integer. Therefore, to double-check it,

we make use of an alternative method for calculating |q| and compare the

results. However, to do this, we first need to measure the charge p for the

braided V+AV configurations.

Recall from sec. 5.3.1 that the p−charge of a vortex corresponds to its wind-

ing number on the (x, y)−plane for z = c, where c is a constant. Re-
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Figure 6.5: Numerical calculation of the α = 0.5 V+AV 3-stack solution
q−charge. Fig. (a) shows the approximate location of the vortex-antivortex
cores; Fig. (b) plots the charge |q| as a function of z of the blue vortex
from Fig. (a); Fig. (c) shows the associated energy density isosurface, with
E = 0.5 ∗ Emax.

stricting ourselves to such a plane, the p−charge can be calculated by per-

forming a Hopf projection of the fields Φβ, given by ψa = Z†σaZ, where

Z ≡ (Z1, Z2)T ≡ (Φ4 + iΦ3, −Φ2 + iΦ1)T , and then calculating the “baby

skyrme” charge2 of the fields ψa over the half F of the plane occupied by one

of the vortices (recall that, under a Hopf projection, the p−charges must add

up to zero):

p =
1

4π

∫
F

~ψ · (∂1
~ψ × ∂2

~ψ) d2x . (6.19)

In our numerical calculations, we interpret the integral in eq. (6.19) as an

average of the values of the integrand over the region F , where the derivatives

are approximated using a first-order finite difference method and the value of

the lattice spacing depends on its value for the field being studied: h = 0.1

for the N = (1, 2) solutions and h = 0.2 for the N = (3, 4, 5) solutions. We

choose the plane z = c where the vortices are located in such a way that it

makes it easy for us to calculate the charge p in each half (i.e. two square

regions). The solutions whose p−charges we measured (p1 for the vortex

and p2 for the antivortex) are: α = 0.5 V+AV 3-stack (|p1| = |p2| = 0.90),
2The Baby Skyrme model is the two-dimensional analogue of the Skyrme model (see

e.g. [10]).
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α = 0.7 V+AV 3-stack (p1 = 0.95; p2 = −0.94), α = 0.7 V+AV 4-stack

(|p1| = |p2| = 0.96), α = 0.7 V+AV 2-stack (p1 = 0.97; p2 = −0.98), and

α = 0.9 V+AV 3-stack (p1 = 0.93; p2 = −0.94). These values, when rounded,

confirm the fact that we are dealing with 1V+1AV pairs.

Using the rounded value of |p| = 1, we can manipulate eq. (6.16) to obtain

|q1| + |q2| = Q + 2b. Since we have already noticed that |q1| = |q2| ≡ |q|,

we can further simplify this expression to get |q| = (Q + 2b)/2. Assuming

we know the value of Q (obtained numerically, for example), we can now

double-check our |q|−charge measurements. For the α = 0.5 and α = 0.7

V+AV 3-stack solutions, Q = 6, and for the α = 0.7 V+AV 4-stack, Q = 8.

Suppose we do not know the sign of b; since we know that the vortices wind

around each other once, we could try the values b = {−1, 1}, and simply

pick the one that yields the value of b that comes closest to the value we

measured earlier. Using these values of b for the α = 0.5 and α = 0.7 V+AV

3-stack solutions (Q = 6), we would get |q| = {2, 4}, and for the α = 0.7

V+AV 4-stack solution (Q = 8), we get |q| = {3, 5}. Recall that, for these

solutions, we measured avg(|q|) = {1.8, 2.0, 2.5}, respectively, and thus we

conclude that their charges are: |q| = {2, 2, 3}. Note that we have also tested

eq. (6.16) using (6.14, 6.15) to produce analytic fields for various values of

(b, p, q1, q2) and, subsequently, numerically measured their charge Q (with a

lattice spacing of h = 0.1); the resulting value of Q agrees with (6.16) in

every case.

Recall that eq. (6.16) only works for linked vortices, so we end this section by

discussing an alternate method used to obtain the charge Q for both linked

and unlinked V+AV configurations. We adopt the techniques presented in

[38], used to obtain the charge of Hopf solitons. Therefore, we need to perform

a Hopf projection of the fields Φβ to obtain the Hopf fields ~ψ – this time, no

longer restricting ourselves to a plane z = c as we did before to measure the

p−charges. To calculate the charge Q of a V+AV configuration we first have
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to determine the “winding number” of each vortex (or antivortex). This, in

turn, is given by the number of times the linking curve, which we take to be

the preimage of the point ψ1 = 1 on the target 2-sphere, winds around the

position curve of a vortex – defined as the preimage of the point ψ3 = −1,

which is antipodal to the vacuum value. Note that the point ψ1 = 1 is an

arbitrary choice. Any other point on S2, aside from ψ3 = 1, works equally

well as long as one can easily determine the winding number from the curves.

To calculate the charge Q of an unlinked V+AV configuration, one simply

adds the winding numbers of the vortex and the antivortex. On the other

hand, for a linked configuration, one adds 1 to each of the winding numbers

before adding them, due to the fact that the linking curve of the vortex also

winds around the antivortex, and vice versa. Fig. 6.6 (a)-(e) shows the linking

(blue) and position (green) curves for various different linked and unlinked

V+AV N−stack solutions with the following (α,N) values: (a) (0.5,3); (b)

(0.7,3); (c) (0.7,4); (d) (0.7,2); and (e) (0.9,3). For clarity, we have thickened

these curves by choosing a circle of vectors with the constant values ψ1 = 0.9

(blue curves) and ψ3 = −0.5 (green curves), with the exception of Fig. 6.6 (d),

where we use a value of ψ3 = −0.85. Note that we have numerically calcu-

lated the (p, q)−charges for the fields corresponding to Figs. 6.6 (a)-(c) and

Figs. 6.6 (d),(e) are examples of V+AV unlinked solutions. One can see,

with a bit of effort, that the vortices in Fig. 6.6 have the following winding

numbers: (a) 2; (b) 2; (c) 3; (d) 2; and (e) 3, which is consistent with the

aforementioned method for calculating Q. Recall that we had measured a

value of avg(|q|) = 2.5 for the α = 0.7 V+AV 4-stack solution (Fig. 6.6 (c)).

If one assumes the winding numbers represent the |q|−charges, then this is

further confirmation of the fact that the α = 0.7 V+AV 4-stack solution has

a |q|−value of 3.
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Figure 6.6: Hopf projection of various V+AV N−stack solutions with the
following (α,N) values: (a) (0.5,3); (b) (0.7,3); (c) (0.7,4); (d) (0.7,2); (e)
(0.9,3) and winding numbers: (a) 2; (b) 2; (c) 3; (d) 2; (e) 3. The green
isosurfaces ψ3 = −0.5 (ψ3 = −0.85 for (d)) correspond to the position curves
and the blue isosurfaces ψ1 = 0.9 correspond to the linking curves.
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6.2 V+AV+V+AV multi-stack solutions

In this (last) section we briefly discuss the V+AV+V+AV analogue of the

V+AV N−stack solutions from the previous section. Again, we make use of

the ansatz for multi-vortices (5.14), now applied to the case of two 1-vortices

and two 1-antivortices:

U

V
≡ Φ1 + iΦ2

Φ3 + iΦ4

=
4∑
j=1

e
2πiqjz

Lz

wj
, (6.20)

where q1 = −q2 = q3 = −q4 = 1 and the wj are given by:

w1 = AeΛ|A|2 , where A = (x− Lx/2) + i(y − Ly/2) + c , (6.21)

w2 = BeΛ|B|2 , B = (x− Lx/2)− i(y − Ly/2)− c∗ , (6.22)

w3 = CeΛ|C|2 , C = (x− Lx/2) + i(y − Ly/2) + c∗ , (6.23)

w4 = DeΛ|D|2 , D = (x− Lx/2)− i(y − Ly/2)− c , (6.24)

where Λ is a parameter that determines how quickly the fields reach their

asymptotic values away from the cores (we take Λ = 0.8) and c = 2 + 2i.

This places the j = {1, 3} vortex cores at (x, y) = (Lx/2− 2, Ly/2± 2) and

the j = {2, 4} antivortex cores at (x, y) = (Lx/2 + 2, Ly/2 ± 2) (i.e. the

distance D between diametrically opposite vortices is given by D = 4
√

2).

The fields are subsequently normalized: U ′ ≡ U/||U || and V ′ ≡ V/||V ||,

with ||U || = ||V || ≡
√
|U |2 + |V |2. Furthermore, we impose the following

boundary conditions: U(0, y, z) = U(Lx, y, z) = U(x, 0, z) = U(x, Ly, z) = 0

and V (0, y, z) = V (Lx, y, z) = V (x, 0, z) = V (x, Ly, z) = 1. This set-up is

used as the initial condition (i.c.) for minimization of the fields in the α = 0.3

case; these minimized fields are then used as the i.c. for the α = 0, 0.6 cases,

while for the α = 0.9 case, the minimized α = 0.6 fields are used as the

i.c. – explained in more detail below. Recall that we used similar boundary

conditions in the V+AV case, sec. 6.1.1, with the effect of causing the vortices
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to merge into a coaxial torus; otherwise, without these boundary conditions,

one needs to perturb them by bringing them close together in order for them

to merge.

Our goal here, as in the V+AV case of the previous section, is to analyze

the stability of the V+AV+V+AV configuration for α = {0, 0.3, 0.6, 0.9},

by stacking them N = {1, 2, 3, 4, 5} times in the z−direction. We shall be

using a lattice spacing of h = 0.2 and periods Lx,y = 10. The Lz opti-

mal periods of the N = 1 V+AV+V+AV solution (for h = 0.2) are given

by Lz = {4.55, 3.93, 3.49, 2.85} for the aforementioned values of α; these

were taken into account in the h → 0 extrapolation of Lz (see Table 5.2,

sec. 5.3.1). However, since we wish to use a second-order finite difference

method in determining the energies E and charges Q for each configura-

tion, we use Lz values that are associated with an even number of lattice

sites in the z−direction and are also closest to the optimal ones, given by

Lz = {4.4, 4, 3.6, 2.8}. For N > 1, we simply take these periods and mul-

tiply them by N ; the only exception is for the α = 0.9 case, where we use

Lz = {2.8, 6, 9.2, 12, 15.2}, for N =1-5.

We introduce different kinds of perturbations for the N = 2 and N > 2

cases. In the former case, we translate the top copy in the +x-direction by

3 lattice sites (i.e. by a distance D = 0.6), and in the latter case, the four

vortices (for the middle copies) are brought closer together by removing the

lattice sites along the middle of the configuration in the x− and y−directions,

corresponding to (x, y) ∈ [4.4, 5.6]. The fields are subsequently minimized

by flowing down the energy gradient. The local minima obtained can be

seen in Fig. 6.7, where the energy density isosurfaces are plotted for various

values of α and N . The surface values are given by: E = 0.15 ∗ Emax for

α = 0; 0.25∗Emax for α = (0.3, 0.6); 0.5∗Emax for α = 0.9, N = {1, 2, 4}, and

0.3∗Emax for N = {3, 5}. These are organized such that the aforementioned α

values increase to the right and N increases downwards. The corresponding
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normalized energies (EN = E/Q) with associated errors (Q − Qnum)/Q are

listed in Table 6.3, where Qnum is defined as the numerically calculated charge

and Q is now given by Q = 4N .

The differences between the V+AV+V+AV and V+AV N−stack solutions

are immediately apparent, as one can see from Fig. 6.7. First of all, exam-

ples of twisted and braided vortices now only occur at α = 0.9, whereas for

the V+AV case, they appeared at α = {0.5, 0.7, 0.9}; the N = 2 case corre-

sponding to twisting and unbraided vortices and theN = {3, 4, 5} cases corre-

sponding to two sets of braided vortices, all winding by 2π in the z−direction.

Furthermore, for the α = {0.3, 0.6} (N =1-5) cases, the V+AV+V+AV con-

figurations are now stable, under similar kinds of perturbations that were

used for the V+AV case, where one can see that the local minima consist of

simple concatenations in the z−direction of V+AV+V+AV configurations.

Finally, the α = 0 case is similar for both V+AV and V+AV+V+AV

N−stacks, in the sense that the configurations have collapsed under per-

turbations for N = {3, 4, 5}. This might be due to the fact that our per-

turbation, for N > 2, consists of removing part of the region between the

vortices for the middle copies of the V+AV+V+AV configuration, which are

again more closely merged in the α = 0 case than for other α values, and

therefore, the perturbation also has the effect of removing a significant chunk

of the vortices themselves. This is clearly seen in the N = 3 case, where the

chunk in the middle is triangular, rather than square-shaped; this configura-

tion has a total of 22 holes: 16 from the square-shaped ends and 6 from the

middle. The N = 4 and N = 5 configurations consist of (flattened) polyhe-

dral structures; in the former case, it has a total of 24 holes (12 hexagons, 12

pentagons) and, in the latter case, it has a total of 28 holes (13 hexagons, 15

pentagons). Note that these numbers show that these configurations do not

follow the “Geometric Energy Minimization” (GEM) rule, which states that

the isosurfaces contain 2(Q− 1) holes, and are also not “fullerene-like”, since
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they are not composed of 12 pentagons and 2Q − 14 hexagons (for Q ≥ 7)

[10]. Also note that the N = 5 configuration starts to merge with itself

across the boundary, in the x−direction, which might be a sign that the pe-

riods Lx,y = 10 are now small for such large configurations, in the sense that

they can no longer be considered isolated. The effect of our perturbations

can also be clearly seen in the large errors for N = {3, 4, 5}, which increase

with N .

Table 6.3: Normalized energy (EN = E/Q) of V+AV+V+AV N -stack solu-
tions with associated errors.

α = 0 α = 0.3 α = 0.6 α = 0.9

N = 1 1.084± 0.004 1.068± 0.004 1.031± 0.004 0.946± 0.007
N = 2 1.084± 0.004 1.068± 0.004 1.031± 0.004 0.915± 0.003
N = 3 1.00± 0.09 1.068± 0.004 1.031± 0.004 0.812± 0.002
N = 4 0.9± 0.2 1.068± 0.004 1.031± 0.004 0.819± 0.002
N = 5 0.8± 0.3 1.068± 0.004 1.031± 0.004 0.757± 0.005

An analysis of the (p, q)−charges of the twisted and braided vortices for the

α = 0.9 case could also be carried out, using the methods outlined in the

previous section, but we have decided to forgo this, as it is our belief that

such a task would not add any new and interesting results to our discussion.

On that note, we end our discussion of triply-periodic solutions of generalized

Skyrme systems. We now turn to our concluding remarks, where we summa-

rize our results and provide a short discussion of possible future avenues of

research.
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α = 0 α = 0.3 α = 0.6 α = 0.9

N = 1

N = 2

N = 3

N = 4

N = 5

Figure 6.7: V+AV+V+AV N -stack energy density isosurfaces for N =
(1, 2, 3, 4, 5) and α = (0, 0.3, 0.6, 0.9). The surface values used are: E =
0.15 ∗ Emax for α = 0; 0.25 ∗ Emax for α = 0.3, 0.6; 0.5 ∗ Emax for α = 0.9,
N = {1, 2, 4} and 0.3 ∗ Emax for N = {3, 5}.
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Summary

We have dealt with a one-parameter family of generalized Skyrme sys-

tems, which interpolate between the Skyrme model and the Skyrme-Faddeev

model. The parameter is given by α ∈ [0, 1], reproducing the Skyrme model

when α = 0 and the Skyrme-Faddeev model when α = 1.

The Skyrme model, whose solitonic solutions are called skyrmions, was origi-

nally proposed as a theory of pions and was later shown that it is a low-energy

approximation to QCD, in the limit where the number of colours goes to in-

finity. The Skyrme-Faddeev model features string-like solutions, which often

take the form of knotted solitons.

The Skyrme crystal, which consists of a maximally-attractive (cubic) ar-

rangement of skyrmions, was originally proposed as a model of dense nuclear

matter and is still the lowest energy-per-charge configuration of skyrmions

seen so far. To study the Skyrme crystal, which consists of an infinite number

of half-skyrmions, we constrain ourselves to a triply-periodic lattice of eight

half-skyrmions.

One of the themes we explored consists of the deformation of the Skyrme

crystal, at α = 0 [3]. This has involved varying the periods away from the

optimal (energy-minimizing) values, in all three directions. It was found that,

in the limit of large Lx,y periods and small Lz periods, vortex-like structures

appear. In the limit of small Lx,y periods and large Lz periods, a pair of

square “sheets” are seen to appear.

Subsequently, we made a detailed investigation of the energy of a pair (N =

2) of these square sheets, as well as a pair of hexagonal sheets, and found

that the latter “prefer” to be misaligned in the z−direction, in the sense that

their energy is smaller than when they are aligned. Moreover, we found that

a pair of (aligned) square sheets have a smaller energy-per-charge value than

a pair of misaligned hexagonal sheets. The hexagonal sheets were found to
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be highly unstable for N > 2 – for both Ly =
√

3Lx and Ly 6=
√

3Lx; in both

cases, we claim that the sheets tend to lose their hexagonal symmetry. The

N > 2 square sheet case has been explored further in [2], where it was found

that the energy-per-charge has a 1/N -dependence, with a value very close to

that of the Skyrme crystal in the limit N →∞.

Another of the themes consists of a numerical study of the Skyrme crystal

within the context of generalized Skyrme systems. The work has involved a

full three-dimensional numerical minimization of its energy, as a function of

α, and the subsequent analysis of its fields and energy density surface plots.

At α = 0, the resulting structure is the Skyrme crystal, but as α → 1, the

local minimal-energy solutions include arrays of vortices produced from the

pair-wise merging of the half-skyrmions (V+AV+V+AV solution) – akin to

the ones mentioned earlier, in the context of deformed Skyrme crystals; a

pair of vortices, each of which has charge |p| = 2 (2V+2AV solution); and

multi-sheeted structures. The local minimum obtained depends on both the

ansatz and the initial periods used: we have used the Skyrme crystal ansatz

[45] for the V+AV+V+AV solution and an ansatz featured in [1] for the

2V+2AV and multi-sheet solutions. The latter two are obtained by using

different initial periods.

Since vortices crop up in the deformations of the α = 0 Skyrme crystal

as well as in its α → 1 limit, we decided to investigate the stability of

V+AV and V+AV+V+AV configurations in generalized skyrme systems, by

using a multi-vortex ansatz. First, we made a generalization of the analytic

results in [8], which show that there is an attractive force between a vortex-

antivortex pair at large separation, and we found that the term that describes

this force vanishes in the α → 1 limit. This result, as well as an analysis

of the optimal periods of the V+AV+V+AV and 2V+2AV configurations,

suggest that vortices repel each other in this limit. Next, we studied the

stability of V+AV and V+AV+V+AV configurations for several different
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values of α by stacking N copies of such configurations in the z−direction

and introducing certain perturbations. We have shown that, under these

perturbations, the configurations tend to become unstable for N > 2, at α =

0, collapsing into polyhedric structures. Furthermore, twisting structures,

including both separated and braided ones, appear at α ≥ 0.5, with N ≥

2 (for the V+AV case), and at α = 0.9, N ≥ 2 (for the V+AV+V+AV

case). Finally, we have described a numerical method for calculating the

(p, q)−charges of the braided V+AV configurations and have shown that

these are consistent with an analytic expression for their charge Q, given in

terms of their (p, q)−charges.

Possible future directions

Note that the model of generalized Skyrme systems we have considered as-

sumes massless pions. However, there has been much recent work [53–56],

based on early studies [57, 58], where a pion mass term mπ has been added

to the Skyrme Model.

This has been done in order to make stronger connections between the

Skyrme Model and Nuclear Physics. Such a model has produced results

which are remarkably close to experimental observations. As stated in [55],

the shell-like fullerene structures present in the massless limit (at high charge

values) tend to collapse and form clusters of lower-charge components, mostly

of charge 3 and 4, when a pion mass is added, which is good news since it is

known that many nuclei can be described as configurations of alpha particles.

In [56], besides adding a pion mass, the skyrmions were quantized as rigid

bodies in space and isospace. The quantum states predicted by the model

reproduce experimental data of light nuclei (such as spin splittings, isobar

splittings, and moments of inertia) quite well, with correct spins and parities.

Since, for high mπ values, the shells are unstable and a Skyrme crystal-type
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configuration is preferred [53], it would be interesting to numerically study

the Skyrme crystal as a function of both α and mπ to see what kind of struc-

tures emerge and identify any possible connections with physical systems.

Such a connection has been established between the α = 1 limit and

condensed-matter systems [59], where it has been shown that the Ginzburg-

Landau-Gross-Pitaevskii (GLGP) model with two charged condensates has

both a hidden symmetry and allows for the formation of knotted solitons,

like the ones present in the Skyrme-Faddeev Model.

It was later shown (on a compact domain) that such condensed-matter sys-

tems also contain a field, which tends to destroy the topological stability of

the knotted solitons present in the theory [60]. However, this does not mean

that one cannot find a similar, stable, system since it might be possible to

add terms to the theory to stabilize it and/or to consider different physical

domains. We have also encountered certain instabilities in the α → 1 limit,

in the context of Skyrme crystals [1], which are not present for other values

of α. Therefore, there exists the possibility of finding stable solutions (with

mπ ≥ 0) for α ∈ (0, 1), which might have a connection with physical sys-

tems; the massive α = 1 case has been presented in [61]. With this in mind,

it would be interesting to carry out numerical and analytical studies of the

system considered in [59], but with α included.

Through discussions with Prof. Nick Manton, an idea has also emerged of

deforming the Skyrme crystal, as in Chapter 3 and [3], but this time by per-

forming a diagonal stretch. This diagonal stretch can be done by changing

the spatial metric tensor from the standard euclidean form in the expression

for the energy density (and its gradient), derived from the Lagrangian in

eq. (2.17), and implement it in the existing energy-minimizing code. The

motivation comes from looking at a Skyrme crystal along one of the diago-

nals. Given enough half-skyrmions, one can see hexagonal, rather than cubic,

symmetry. Therefore, the expectation is that a diagonal stretch might pro-
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duce parallel, hexagonal sheets, such as those studied in Chapter 4 and [7],

which are analogous to graphene sheets, or it can produce other structures.

This can be investigated with mπ ≥ 0.

Finally, as mentioned previously, there has been a substantial effort in quan-

tizing the Skyrme Model (α = 0), as well as the Skyrme-Faddeev Model

(α = 1) [37], so it would be interesting to look at quantum corrections for

α ∈ (0, 1). Such a task might be worth doing, as it might uncover previously

unseen phenomena, with possible interesting connections with nuclear and

condensed-matter physics.
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Appendix A

Numerical Methods

The main ingredients in our numerical calculations have consisted in using

the forward-difference approximation for the derivatives appearing in the

expression for the energy density of generalized skyrme systems, eq. (2.26),

and the trapezoid rule in evaluating its integral over a triply-periodic lattice,

both of which we now describe.

The forward-difference approximation for the derivative of a function f(x),

defined on a lattice with lattice spacing h, is given by:

df

dx
≈ f(x+ h)− f(x)

h
. (A.1)

The error in the approximation (A.1) can be gracefully described through a

Taylor series approximation of f(x+ h):

f(x+h) = f(x)+

(
df

dx

)
h+

1

2!

(
d2f

dx2

)
h2+

1

3!

(
d3f

dx3

)
h3+

1

4!

(
d4f

dx4

)
h4+· · · ,

(A.2)

which leads to

f(x+ h)− f(x)

h
− df

dx
=

1

2!

(
d2f

dx2

)
h+

1

3!

(
d3f

dx3

)
h2 +

1

4!

(
d4f

dx4

)
h3 + · · · .

(A.3)
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Looking at eq. (A.3) one can see that the error in the forward-difference

approximation, to leading order, is O(h) – called the “truncation error”.

The trapezoid rule is given by:

∫ b

a

f(x) dx ≈ 1

2

n−1∑
i=0

(xi+1 − xi)[f(xi) + f(xi+1)] , (A.4)

which calculates the integral by splitting the region under the curve f(x) into

n trapezoids, with upper corners touching the function f(x), and adding the

individual areas: width× height= (xi+1−xi)×(f(xi)+f(xi+1))/2. The error

in the approximation (A.4), to leading order, is O(h2), where h = xi+1 − xi
(see e.g. [62]).

Predicting the exact behaviour of the numerical error, given in terms of

the lattice spacing, is not a trivial task, especially for multi-dimensional

models, whose derivatives and integrals are approximated as above. In our

3-dimensional case, we have found it quite useful to simply evaluate the

energy of a certain configuration, for different values of the lattice spacing

h. That is, by applying the 3-dimensional extensions of the approximations

(A.1) and (A.4) to the integral of eq. (2.26) over a triply-periodic lattice, for

a certain field configuration Φβ(x) = (Φ1(x),Φ2(x),Φ3(x),Φ4(x)), and for

different values of h. One can then readily see the behaviour of the numerical

errors involved by plotting the energy as a function of h. We have found that

using the approximations detailed above, for generalized skyrme systems, the

errors are O(h2) as one can see from the linear behaviour in our plots of E

vs h2; see e.g. Figs. 4.1, 4.2, 5.1, where one can see a similar behaviour for

the charge Q and the periods Lx, Ly, and Lz. An important thing to note

from these figures is that one can extrapolate the charge Q to h = 0, where

its value gets very close to the actual topological charge, which is always an

integer. Therefore, we expect the extrapolated values of the energy and the

periods (which are derived from energy minima) to be similarly close to their

“actual” values. Since the same 3-dimensional extensions to (A.1) and (A.4)
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are applied to the expression for the charge, eq. (2.5), we expect a similar

numerical error; therefore, the errors quoted in the text for the energies are

given in terms of the difference between the numerical and actual charges,

for specified values of h.

Finally, we should clarify what we mean in the text by “second order finite-

difference” schemes. The energy (or charge), having an h2 dependence, can

be expressed as follows:

Eh = E0 + ch2 , (A.5)

where E0 is the value of the energy extrapolated to h = 0 and c is a constant.

If one also determines the energy by measuring it only at even-numbered

lattice sites, i.e. with a lattice spacing of 2h, then one would have the following

expression:

E2h = E0 + 4ch2 . (A.6)

Solving eq. (A.5) for c and substituting into (A.6), we get the following

expression for the extrapolated energy:

E0 =
4

3
Eh −

1

3
E2h . (A.7)

A similar calculation can be done for the charge Q.

Therefore, the second order finite-difference scheme involves calculating the

energy with two different values of lattice spacing: h and 2h, as opposed to

a first order finite-difference scheme, where only the value of h is used – this

is always specified in the text. Obviously, the smaller the value of lattice

spacing used, the closer the value of E0 will be to the “actual” value, but

the energy minimization procedure would take longer (if one is dealing with

minimized fields Φβ(x), as is usually the case here).
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