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Faraday Rotation of Pulsed and
Continuous-wave Light in

Atomic Vapour

Paul Siddons

Abstract
The absorptive and dispersive properties of a Doppler-broadened vapour of
rubidium atoms is investigated. A detailed model of the atom-light interac-
tion is developed and found to be in excellent agreement with experiment in
the regime where the interacting light field is sufficiently weak such that it
does not significantly alter the medium through which it propagates. The
importance of using a weak beam to probe atomic systems is discussed, and
a method of characterising how weak such a beam has to be is provided. The
theoretical model is applied to both situations of illumination by continuous-
wave and pulsed light, the latter situation providing a demonstration of the
slow light effect. This phenomenon is a manifestation of the dispersive prop-
erties of the medium and is shown to exist over a particularly large fre-
quency range, compared to the absorption spectrum, in thermal vapours.
Off-resonant interactions are studied, in which incident laser-light is detuned
from resonance to such a degree that Doppler-broadening can be neglected.
We quantify the extent to which the light needs to be detuned to be in this
regime, and provide approximations to the line-shape function developed in
earlier parts of the thesis. The approximate line-shapes are much easier to
manipulate and allow a more intuitive understanding of the atom-light in-
teraction. In the second part of the thesis we study the Faraday effect and
related phenomena which are an expression of the birefringent properties of
the atom-light system. Beginning with a theoretical and experimental inves-
tigation of the Faraday rotation of a weak continuous-wave beam, we move
on to the consideration of pulsed light. Optically-induced birefringence via
the application of an intense continuous-wave pumping field is demonstrated
experimentally, and the theoretical plausibility of controlling the polarisation
state of a weak pulsed field mediated via intense pulsed light is shown.
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Chapter 1

Introduction

1.1 Motivation

The aim of this investigation is to study the interaction of laser light with

an atomic vapour, both from a theoretical and an experimental stand point.

Of particular interest is the Faraday effect, in which the polarisation state

of a transmitted probe beam is altered in a controlled manner by either an

applied magnetic field or by an additional optical beam.

1.2 Atom-light interactions in

an atomic vapour

We begin by offering a holistic description of the atom-light interaction and

explain why approximations to the complete picture are often necessary, and

more than likely unavoidable. Nevertheless, these approximations lead to

theoretical predictions which agree well with experimental measurements. A

complete description of the interaction between light and atoms treats both

entities using quantum mechanical formalism, namely the theory of quan-

tum electrodynamics [1]. Light is represented as a discrete set of travelling-

wave modes propagating through space-time, containing an integer number

of quanta, the photons. Atoms contain charge carriers in a set of quantised

energy states. Interactions proceed via the exchange of quanta between the

1
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states of the light field and atoms. The problem at hand is the interaction of

one or more laser beams with a multi-species atomic vapour contained within

a cell.

We deal not with a single photon interacting with a single atom, but with a

vast number of photons in numerous modes interacting with a large collec-

tion of atoms in various states of excitation. If we consider the conditions of

a typical experiment with a room temperature vapour of rubidium, we have

an atomic density of 1015 m−3. Inside an interaction volume of 1 cm3 we have

109 atoms. For a 1 mW beam of photons with energy 1.5 eV, and assuming

its intensity is uniform over the interaction volume, 1011 photons enter the

medium every second. Treating such a system by following the trajectory of

every single photon as it interacts with every single atom in every possible

way is unfeasible. It is advisable to look at the bigger picture and consider

the collective dynamics of the macroscopic system, by considering the sta-

tistical behaviour of the atom-light interaction. Thus we make an important

approximation: treating the laser light as a classical electromagnetic wave

and not as a field containing photons. This is an acceptable approximation

and gives accurate results in the limit that the number of photons in the

field is large. We then make a complementary approximation to the atomic

system, by considering the collection of atoms as a statistical ensemble. The

atomic ensemble takes the various degrees of freedom associated with indi-

vidual particles, such as velocity, position, energy state, and averages them

to produce distribution functions of these quantities. As with the light field,

the vast number of particles involved in the averaging process leads to pre-

dictions with a high degree of reliability. Hence we shall consider classical

electromagnetic fields, not photons, and atomic ensembles, not individual

atoms. There are some situations when it is necessary to have recourse to

the quantum theory of light, namely in dealing with spontaneous emission.

In this process, the vacuum field is a continuum of empty modes into which a

single photon is randomly emitted by an atom. The average behaviour can,

however, be described in a classical frame work by treating the process of

decay statistically. Hence we are free to use a classical field description at

the expense of information about individual emissive events.

Starting from the well-known Maxwell-Bloch equations [2, 3] which describe
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the interaction of macroscopic electric fields with an ensemble of atoms, we

develop a theoretical model able to handle the complexities of realistic atomic

systems. There are two broad classes of interaction we consider in this thesis.

The first is the attenuation and dispersion experienced by a weak beam as

it propagates through a medium. In this case the atoms, to a high degree

of accuracy, remain unperturbed during the interaction. The second class of

interaction we consider is the limit of strong excitation, where a beam has a

major effect on the state of the atoms. A medium prepared in such a way

can have a dramatic effect on the state of a weak beam which propagates

through the medium subsequently.

1.3 Weak-beam transmission spectra

We study the Doppler-broadened absorption of a weak monochromatic probe

beam in a thermal rubidium vapour cell on the D lines. A detailed model

of the susceptibility is developed which takes into account the absolute line-

strengths of the allowed electric dipole transitions and the motion of the

atoms parallel to the probe beam. All transitions from both hyperfine lev-

els of the ground term of both isotopes are incorporated. The absorption

and refractive index as a function of frequency are expressed in terms of the

complementary error function. The absolute absorption profiles are com-

pared with experiment, and are found to be in excellent agreement provided

a sufficiently weak probe beam with an intensity under one thousandth of

the saturation intensity is used. The importance of hyperfine pumping for

open transitions is discussed in the context of achieving the weak-probe limit.

Theory and experiment are shown to be in excellent agreement.

In alkali-metal atoms the D lines couple strongly to light, and from an ex-

perimental perspective rubidium and cesium are ideal species as they have

sufficient room temperature vapour pressure to yield large absorption (10-

50%) in cells of modest length (50-70 mm). In addition, for these atoms the D

lines occur at wavelengths where inexpensive and reliable diode laser sources

exist. These transitions are frequently studied in atomic physics; the D2

transition is used extensively in laser-cooling experiments [4–7], whereas non-

linear optical processes such as electromagnetically induced transparency [8]
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and chip-scale atomic magnetometers [9] are realised with the D1 transition.

Controlling the propagation of light through a medium by modifying its ab-

sorptive and dispersive properties is a flourishing area of research [10–12].

Having a model which calculates the absorption and refractive index of a

Doppler-broadened medium is useful for predicting the magnitude of relevant

pulse propagation properties. Such a model has a number of applications.

For example, in analysing EIT spectra [13, 14]. Absolute absorption spec-

troscopy can yield the number density of the sample being studied and has

many applications in physics, chemistry, metallurgy and industry [15, 16];

when applied to the measurement of different spectral lines the populations

of occupied levels are revealed, from which a temperature can be deduced

[17]. In addition, Rb and Cs spectroscopy is frequently used for generating

a signal used for frequency reference (“locking”) of a laser. Understanding

the evolution of the absorption profile aids in the decision of, for example,

which temperature to use to maximise the signal [18]. The importance of

using a weak probe in order to maximise the absorption will be highlighted.

Many laser-lock schemes have signals which have a non-trivial dependence

of signal amplitude on absorption, such as polarisation spectroscopy [19–21]

or the dichroic atomic vapour laser lock (DAVLL) [22–24]. The choice of

which probe power to use is a trade-off between two competing effects: a

weak probe beam ensures that the largest absorption is obtained, whereas

higher probe power gives a better signal-to-noise ratio.

1.4 The slow light effect

The phenomenon of reduced optical group velocity (slow light) is a topic of

burgeoning interest [25, 26]. In a slow-light medium, the group refractive

index, ng, (the ratio of the speed of light in vacuo to the pulse velocity) is

many orders of magnitude larger than the phase index, n. Hence an opti-

cal pulse propagates much more slowly than a monochromatic light beam.

Large group indices of ∼ 107 are achievable in resonant optical processes,

such as electromagnetically induced transparency (EIT), accompanied by a

refractive index that is of the order of unity [27]. The slow light effect relies

on the interaction between light and a suitable dispersive material such as
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optical fibres, photonic crystals, or hot atomic vapour cells. High temper-

ature atomic vapours are correspondingly highly Doppler-broadened, which

is usually an undesirable effect. However, there is particular interest in off-

resonant schemes as high dispersion is combined with low absorption and

low group velocity dispersion over a large bandwidth. The large group re-

fractive index associated with Doppler-broadened media has been utilised to

control the propagation of broadband optical pulses in experimental [28–30]

and theoretical studies [31]. In such systems, group indices of ∼ 103 are

achievable, with gigahertz pulse bandwidths. This broad bandwidth allows

large fractional pulse delays of up to 80 [29]. Delaying pulses by more than

their widths has applications in data synchronisation and qubit operations for

quantum computing [32]. Additional interesting applications of slow light in-

clude light storage [33–35] and interferometry. Slow-light interferometry has

been demonstrated using both monochromatic light sources [36, 37], where

the large dispersion associated with a slow-light medium results in greater

phase sensitivity; and polychromatic light, where the large pulse delays can

increase the resolution of a Fourier transform interferometer by orders of

magnitude [38].

1.5 The Faraday effect

The ability to probe quantum systems on fast timescales is central to the

advancement of quantum technology. In this thesis we show that this is

possible using an off-resonant dispersive probe. By applying a magnetic

field to an atomic vapour the spectra of the group index for left and right

circularly polarised light become displaced leading to a slow-light Faraday

effect which results in large dispersion and high transmission over tens of

gigahertz. This large frequency range opens up the possibility of probing

dynamics on a nanosecond timescale. In addition we show that the group

index enhances the spectral sensitivity of the polarisation rotation giving

large rotations of up to 15π rad for continuous-wave light. With respect to

pulsed light, we demonstrate dynamic broadband pulse switching, by rotating

a linearly polarised nanosecond pulse by π/2 rad with negligible distortion

and transmission close to unity.
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For the case of off-resonant atomic systems (where detuning from reso-

nance is more than two times the resonance linewidth, including inhomo-

geneous broadening) dispersive effects dominate over absorption. This arises

because the real part of the susceptibility is inversely proportional to de-

tuning, whereas the imaginary part is inversely proportional to detuning

squared. The frequency dependence of the dispersion also means that, in gen-

eral, a large bandwidth is available for dispersive effects, and consequently

off-resonance dispersive probes can achieve a fast time response. The off-

resonant Faraday effect can be used to separate the components of Raman

light with high fidelity [39], and can be used as a dispersive probe with

continuous-wave or pulsed light [40]. The non-invasive nature of off-resonant

dispersive probing could also be used as a read-out tool for quantum infor-

mation [41].

1.6 Optical control

In the latter chapters of this thesis we demonstrate controlled polarisation

rotation of an optical field conditional on the presence of a second field,

inducing large rotations with high transmission of the probing field. This

combination of large, controlled rotation and low loss is well-suited for the

manipulation of light pulses. The ability to manipulate optical pulses is cen-

tral to the advancement of information and communications technology [42].

All-optical switching [43] has the advantage that the optical information can

be processed without conversion to an electrical signal. An all-optical switch

is produced by using an optical control field to modify the refractive in-

dex or the absorption of the medium. For example, in electromagnetically

induced transparency (EIT) [44, 45] or off-resonance Raman resonances [46–

48] a strong control field is employed to reduce the absorption at a particular

frequency. Reducing the intensity of the control field to the single photon

level is of interest for certain quantum information protocols [49]. All-optical

switching at low light levels has been demonstrated using EIT [50], and also

using transverse optical pattern formation [51].

Polarisation rotation of a linearly polarised optical field has been studied

extensively in atomic systems. Such rotations may be induced by an applied
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magnetic field, i.e., the Faraday effect [40, 52, 53], by an applied electric

field [54], or by spin polarising the medium, i.e., the paramagnetic Faraday

effect [19, 55–57]. For optical switching, a rotation angle of π/2 rad is required

such that two orthogonal linear polarisation modes can be exchanged. An

EIT scheme reported by Li et al. provides rotations in the region of π/4 rad,

with ∼ 50% loss [58]. In this thesis we demonstrate larger rotations with

lower loss.

1.7 Thesis summary

The structure of the thesis is as follows:

Chapter 2 The Maxwell-Bloch equations which govern the inter-

action of electromagnetic radiation with atomic media are introduced.

Numerical solutions are shown for an ensemble of two-level atoms illu-

minated by a continuous-wave and pulsed light.

Chapter 3 Approximations to the Maxwell-Bloch equations are dis-

cussed with a view to solving atom-light interactions with realistic me-

dia, in which case a more computationally-efficient approach is required

to cope with the complexity added by moving beyond the two-level

atom.

Chapter 4 We apply the methods described in chapter 2 to de-

velop a theoretical model of weak-beam transmission through a vapour

cell containing atomic rubidium. Calculations are then compared to

experimental measurements. This chapter is based on the article [59].

Chapter 5With the theoretical model developed in chapter 3 we in-

vestigate the dispersive and absorptive properties of a rubidium vapour

interacting with off-resonant light. We note that in this regime Doppler

broadening can be neglected, and go on to validate this claim by com-

paring our calculations with experimental data. This chapter is based

on the article [60].

Chapter 6 The phenomena of slow light is considered in this chap-

ter, an effect in which the velocity of light pulses traversing dispersive
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media can be substantially slower than the speed of light in vacuo.

We take measurements of a nanosecond-duration pulse propagating

through rubidium vapour and compare our measurements with theory.

This chapter is based on the article [40].

Chapter 7 We introduce the Faraday effect, by which a magnetic

field applied to a medium changes the material’s response to the dif-

ferent polarisation components of interacting light. The Faraday effect

is shown to be particularly strong in a hot atomic vapour, where we

demonstrate the rotation of the plain of polarisation of a beam of many

π radians. This chapter is based on the article [40].

Chapter 8 The phenomena of the previous two chapters are com-

bined as we apply the Faraday effect to pulsed-light propagation. We

demonstrate experimentally that large rotations over a broad frequency

range (and thus a short time scale) are possible with the use of atomic

vapours. We also contrast the behaviour of continuous-wave and pulsed

light, showing that under certain conditions rather than under going

polarisation rotation pulsed light can be temporally separated into its

constituent polarisation components.

Chapter 9 In this chapter we demonstrate control of the Faraday

effect with the application of an intense optical field. Through prepa-

ration of the atomic vapour by a pumping field, the Faraday rotation

experienced by another, weaker beam is altered. We show this experi-

mentally and leave it until chapter 9 to investigate optical control from

a theoretical perspective. This chapter is based on the article [61].

Chapter 10 We return to the theoretical consideration of the

Maxwell-Bloch equations, this time investigating the regime where in-

teracting light of sufficiently high intensity can have a profound effect

upon the medium through which it propagates. We also demonstrate

the feasibility of inducing birefringence with an optical field, in analogy

to the Faraday effect.

Chapter 11 We draw our conclusions and give an outlook on the

future of the work presented in this thesis.
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Chapter 2

The Maxwell-Bloch equations

We require a set of equations which describe the light-atom interaction, and

by extension, the coupled evolution of the electromagnetic field and atomic

ensemble. As this problem is well known (see for example [2, 3]), it is suf-

ficient to provide the equations before proceeding to describe them. They

consist of the four Maxwell equations [62] governing the propagation and

creation of electromagnetic fields (represented by the electric and magnetic

fields E and B), and the optical Bloch equations of the atomic ensemble [63]

(represented by the density operator ρ̂). In a non-magnetic medium with no

free charges,

∇ · E = − 1

ǫ0
∇ ·P, (I)

∇ ·B = 0, (II)

∇× E = −∂tB, (III)

∇×B = µ0∂t(P+ ǫ0E), (IV)

∂tρ̂ =
i

~
[ρ̂,H ] + Γ̂. (V)

We refer to this set of expressions as the Maxwell-Bloch equations. Here, ∇
is the vector differential operator, and ∂t is the temporal differential operator;

ǫ0 and µ0 are, respectively, the permittivity and permeability of free-space;

H is the Hamiltonian of the system and Γ̂ the operator accounting for spon-

taneous decay. The polarisation density P provides the coupling between the

dynamics of the electromagnetic field and atomic ensemble. An isolated par-

ticle interacts with an external electromagnetic field via its bound charges.

11
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Subjected to such a field, the charge distribution of the particle is distorted,

creating a multipole moment. If the wavelength of light is much larger than

the distance of the electron from the nucleus, this moment is dominated by

the electric dipole d: neglecting all other terms of the multipole is known as

the electric-dipole approximation1. The dipole can be taken to be a classical

quantity or quantum mechanical operator. This provides a rather convenient

link between the behaviour of the classical electric and magnetic fields, and

the operator-based formalism underpinning the quantum mechanical Bloch

equations. Treated classically, a medium composed of Na particles per unit

volume has a macroscopic polarisation density P = Na〈d〉, i.e., the average

dipole per unit volume. As an operator, the expectation value shows its

relation to matrix elements of the density operator:

〈d〉 =
∑

m,n

ρmndnm. (2.1)

Under the dipole approximation, a medium interacts via the electric field

only, so it is prudent to eliminate the magnetic field from the Maxwell-Bloch

equations. This allows us to combine the four Maxwell equations into a

single electromagnetic wave equation, along with an equation describing the

source of these waves. Taking the curl of (III) and inserting the partial time

derivative of (IV) gives

∇(∇ · E)−∇2E = −µ0∂tt(P+ ǫ0E), (2.2)

where the vector identity ∇ × (∇ × E) ≡ ∇(∇ · E) − ∇2E has been used.

Substituting (I) and rearranging

(∂tt − c2∇2)E = − 1

ǫ0
(∂ttP− c2∇(∇ ·P)), (2.3)

where c = 1/
√
µ0ǫ0.

1The next most significant interaction terms are due to the electric quadrupole and the

magnetic dipole moments. Assuming the electron-nucleus distance is equal to the Bohr

radius (∼ 5× 10−11 m), and the light is in the visible region of the spectrum (wavelength

∼ 5 × 10−7 m), these terms are smaller than the electric dipole interaction by a factor

known as the fine-structure constant α ∼ 1/137. Thus the electric dipole dominates unless

the transition is dipole-forbidden. See reference [1].
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Throughout this work we are considering only the propagation of plane waves

in one dimension. A plane wave is defined as one in which points of con-

stant phase are confined to a plane perpendicular to the direction of the

phase velocity (see section 2.1.1). A realistic beam can be decomposed into

plane-wave components with individual propagation directions. A full three-

dimensional simulation of plane waves is required to account for diffraction

and multiple beams which are not co-propagating. However, this can be com-

putationally intensive and is not required to model many problems which can

be accurately simulated with a simpler, faster one-dimensional method. For

propagation in the z-direction, ∂xE = ∂yE = 0, and Ez = Pz = 0, hence we

arrive at the Maxwell Wave Equation (MWE)

(∂tt − c2∂zz)E = − 1

ǫ0
∂ttP. MWE

The left-hand side describes wave propagation of the electric field, with the

right-hand side showing a source which is proportional to the second time

derivative of the polarisation, i.e. accelerating charge creates electromagnetic

fields.

The atom-light interaction can be understood in the following manner. A

field enters a region of space containing an atomic medium. Energy is trans-

fered from the field to the medium, creating dipoles. In turn, these dipoles

radiate energy, creating new electric fields. Some of the energy may be trans-

fered back into the field which created the dipoles, in which case there is

interference between the newly created and original field. The modified field

then travels on to another region of space where it is able to interact with

the medium in a similar manner. The remainder of the energy may radiate

as a new field distinct from the original, or dissipate non-radiatively e.g. by

heating the medium.

2.1 Solving the Maxwell-Bloch equations

A natural starting point for finding solutions of the coupled atom-light system

is to examine the individual systems. Literature abounds in solutions to

Maxwell’s equations, in the presence and absence of source terms, and in

various media. There also exists extensive research into solutions of the



Chapter 2. The Maxwell-Bloch equations 14

Bloch equations (and related formalism) describing the evolution of material

systems under applied electric and magnetic fields. We will look first at

analytic solutions to the Maxwell equations. We then look at the Bloch

equations in more detail, but postpone solving them until we have chosen a

specific atomic system to model.

2.1.1 Maxwell’s equations

We seek classical plane-wave solutions to Maxwell’s equations in the ab-

sence of sources (P = 0). We have already come some way by deriving the

Maxwell wave equation (MWE). The source-free MWE is a one-dimensional

second-order partial differential equation which can be solved analytically

by a variety of methods, among them d’Alembert’s solution, via a Fourier

transform, or by separation of variables. Plane-wave solutions can be found

of the form

E(z, t) = E0e
i(k·z−ωt). (2.4)

This expression represents a travelling complex sinusoidal plane wave oscil-

lating temporally at angular frequency ω and spatially at angular frequency

k (usually referred to as the wavevector). The wave has a complex amplitude

E0, its magnitude determining the peak of the oscillation whilst its phase de-

termines the spatiotemporal point at which the oscillation begins. The wave

propagates at the phase velocity vp = ω/k in the direction of the wavevector2.

Inserting (2.4) into MWE gives a relationship between the angular frequency

and wavevector (the dispersion relation):

ω2 = c2(k · ẑ)2, (2.5)

where ẑ is a unit vector along the z-axis. This allows two values of the

wavevector: either k is kẑ (a forward-travelling wave) or −kẑ (a backward-

travelling wave). The speed of the wave is a constant c for all frequencies,

2The direction of wave propagation is more formally in the direction of energy trans-

portation, given by the Poynting vector. The wavevector points in a direction normal to

surfaces of constant phase, which travel at the phase velocity. In certain optical phenom-

ena the phase and energy velocities are not parallel; in isotropic media and free-space, the

wavevector and Poynting vector always point in the same direction. See reference [64] for

further discussion.
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and there is no attenuation, hence electromagnetic plane waves in vacuo are

self-regenerating and dispersionless3.

Note that as a physical quantity the electric field is a real-valued function, ob-

tained by taking the real part of the complex function given by equation (2.4).

Manipulating complex functions has certain mathematical advantages, such

as summing waves of different phase, so we will tend to keep the electric

field complex unless absolutely necessary. In typical experiments we mea-

sure the light not by its electric field, but rather by the energy it transfers to

a detector. This is characterised by the intensity of the light, I, the average

incident energy per unit area per unit time during an optical cycle 2π/ω.

The intensity of travelling plane-wave electromagnetic radiation is [65]

I = ncǫ0〈E2〉, (2.6)

where the angular brackets denote a time-averaged quantity, and n is the

refractive index of light (described in the next chapter). The phase of the light

can be measured by various phase-sensitive detection methods, for example

homodyne detection [66].

For wave propagation in interacting media, where P is non-zero, solutions to

Maxwell’s equations depend heavily on the form of the polarisation density,

and exact analytic expressions are difficult to obtain. AsP is inextricably tied

to the evolution of the atomic system, we will go no further in our discussion

of the electromagnetic field, and shift focus to the source polarisation density,

the Bloch equations.

2.1.2 Bloch equations

The Bloch equations (V) are a set of linear first-order ordinary differential

equations which, in a limited number of cases, can be solved analytically,

e.g., for an AC electric field of constant amplitude applied to an ensemble

of two-level atoms [67, 68]. Later on in this investigation, more complex

3The traditional use of the term ‘dispersion’ in optics denotes the phenomenon in which

phase velocity is dependent on frequency. More generally, the term encompasses a wide

range of phenomena related to phase irrespective of any frequency dependence, for which

see 3.2.
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forms of the field are considered, which require the use of numerical methods

to arrive at a solution of ensemble evolution. As such we will concentrate

our efforts on numerical analysis, and for the sake of brevity only solve the

full Maxwell-Bloch equations. In this section we expand upon the Bloch

equations and the source of the atom-light coupling.

The optical Bloch description of atom-light interaction is a semi-classical

theory, in which the atomic system is treated using quantum formalism of

wavefunctions and operators, and the field is treated classically. One limita-

tion of the semi-classical theory is that it cannot give a complete description

of spontaneous emission, but the treatment provided here is perfectly ade-

quate for the macroscopic systems which are considered in this work.

There are three basic ways in which the state of an isolated atom in an

external electromagnetic field can change: by absorption of a photon from

the field, and by either stimulated or spontaneous emission of a photon.

The first two processes involve the interaction of the atom with a photon in

the applied field; the third is the atom interacting with virtual photons in

the vacuum field. This relapse into quantum electrodynamics is necessary

to describe the fundamental processes that are happening at the quantum

level. To return to the regime in which the classical theory of light is valid,

the following heuristic argument can be used. When the number of photons

involved in an interaction is large then classical electrodynamics gives an

acceptable description of the process. Such is the case of an intense field

interacting with an atom. However, this is not the case for spontaneous

emission, where the vacuum field is a continuum of empty modes into which

a single photon is randomly emitted by an atom. The average behaviour can,

however, be described in a semi-classical frame-work by treating the process

of decay statistically. Hence we are free to use classical fields and atomic

ensembles at the expense of information about individual emissive events.

Momentarily excluding spontaneous emission, the evolution of an ensemble

of atoms which do not interact with each other is described by the master

equation [63]

∂ρ̂

∂t
=

i

~
[ρ̂,H ]. (2.7)

Here, the right-hand side is the Liouvillian operator, being the commutator
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of the density operator and the system Hamiltonian H . The Hamiltonian is

the sum of the bare-state atomic Hamiltonian Ha, and Hint, which describes

the interaction between the atomic states and external fields. The form of the

interaction Hamiltonian will be provided later (equation (2.12)); the atomic

Hamiltonian is given by

Ha =
∑

m

~ωm|m〉〈m|. (2.8)

Here ωm is the angular frequency of the state |m〉, which is related to the

state’s energy Em = ~ωm. Equation (2.7) is the density-matrix picture equiv-

alent of the time-dependent Schrödinger equation. The master equation

describes the population dynamics of a quantum state. With the specific

Hamiltonian given above, the effects of absorption and stimulated emission

on the atomic state are accounted for. To cover the effects of spontaneous

emission it is necessary to include the interaction between the atomic system

and the vacuum field, which results in decay from excited states to lower-lying

states. This is achieved by adding the Lindblad operator to the right-hand

side of (2.7), which is given by [69]

Γ̂ =
∑

n,m<n

σmnρ̂σ
†
mn − 1

2
{ρ̂, σ†

mnσmn}, (2.9)

where the double summation represents the fact that an excited state |n〉
can in general decay to any lower energy state |m〉, the curly brackets {}
denote the anticommutator, and σmn/σ

†
mn is the lowering/raising operator.

As the name suggests, the lowering operator mediates the transition from

state |n〉 → |m〉, given by

σmn = cmn

√

Γn|m〉〈n|, (2.10)

σ†
mn = σ∗

mn. (2.11)

These transitions happen at a rate given by the product of Γn, the total

decay rate out of state |n〉, and |cmn|2, the branching ratio. The branching

ratio expresses the fact that there is, in general, more than one state the

atom can decay to. The sum of transition probabilities out of a state |n〉 is
∑

m |cmn|2 = 1.

The first term of the Lindblad operator is diagonal and describes repopulation

of lower-lying energy states via spontaneous emission from excited states.
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The second term describes two types of decay: decay of diagonal terms of the

density operator (providing the mechanism for the process of repopulation);

and decay of the off-diagonal terms, which results in decoherence.

For an atomic ensemble initially found in a pure state, there is maximum

phase coherence between the atomic states (see appendix A). The interaction

of the ensemble with a coherent electric field preserves this phase coherence.

However, random processes on particles within the ensemble, such as colli-

sions and spontaneous decay, can alter an individual particle’s wavefunction

such that it is no longer in phase with other members of the ensemble. These

incoherent processes result in an ensemble which can no longer be described

by a pure state.

The electric multipole moment provides a means by which atomic states

evolve in response to an external electric field. Under the assumption that

the spatial variation of the field is sufficiently small such that field can be

taken to be constant over the extent of the atom, and that the multipole

moment is dominated by the dipole, then the interaction Hamiltonian is

Hint = −d · E, (2.12)

d =
∑

n,m<n

dmn|m〉〈n|+ dnm|n〉〈m|, (2.13)

where d is the dipole operator. The dipole operator has matrix elements

〈m|d|m〉 = 0, 〈m|d|n〉 = dmn, and as a hermitian operator the elements

dmn = d∗
nm. The diagonal elements evaluate to zero since d has odd parity

due to its vectorial nature. The left-hand side of (2.13) acts to lower the

atomic state from |n〉 to |m〉 i.e. stimulated emission, whilst the right-hand

side raises the state i.e. absorption.

2.2 Time-scale approximations

Before solving the Maxwell-Bloch equations, an important point must be ad-

dressed. The frequency of light in the visible region of the electromagnetic

spectrum is of the order of hundreds of terahertz, thus having a peak-to-peak

duration of a few femtoseconds. In this thesis we are interested in observing

gigahertz phenomena lasting up to a few microseconds. This large disparity
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in magnitude warrants a simplification to the Maxwell equations known as

the slowly-varying envelope approximation, and a related simplification to the

Bloch equations, the rotating-wave approximation. We make these approxi-

mations for two reasons. Firstly, the rapid oscillations in field average to zero

over the observation time-scale considered and so are justifiably neglected.

Secondly, without factoring out the high-frequency components our numeri-

cal model would require petahertz sampling frequency and sub-femtosecond

time resolution, leading to unfeasibly large computational memory allocation

and calculation time.

2.2.1 Slowly-varying envelope approximation

The electric field can be written as the product of a carrier wave and an

envelope function. The carrier takes the form of a single-frequency solution

to the MWE equation, with an angular frequency and wavevector of ωc and kc

respectively. The envelope, Ẽ(z, t), is a much more slowly-varying quantity

which acts to modulate the amplitude and phase of the carrier. The intention

behind factorising the electric field is that we are much more interested in

the slow time dependence, and by factoring out the rapidly-varying carrier

from the field we are also able to factor it out of the system of equations we

are required to solve.

Writing the electric field in terms of a forward-travelling carrier wave, with

angular frequency ωc and wavevector kc,

E = Re[Ẽei(kcz−ωct)] = 1
2
Ẽei(kcz−ωct) + 1

2
Ẽ∗e−i(kcz−ωct), (2.14)

where the field is the sum of positive and negative frequencies waves. Both

the negative and positive wave is fully determined by the other, so that it

is possible to consider the propagation of one wave in isolation. Henceforth

the negative wave is neglected from further consideration. Given that the

polarisation has its origins in the electric field, a similar decomposition can

be made:

P = P̃ei(kcz−ωct) + P̃∗e−i(kcz−ωct). (2.15)
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Substituting for the field and polarisation into MWE gives

[

(∂tt − i2ωc∂t)− c2(∂zz + i2kc∂z)− (ω2
c − c2k2c )

]

Ẽ =

− 2

ǫ0

[

∂tt − i2ωc∂t − ω2
c

]

P̃. (2.16)

The last term of the left-hand side evaluates to zero since the usual dispersion

relation applies to the carrier i.e. ω2
c = c2k2c . If the change of the envelope is

small over a distance of the order of the wavelength, then

|∂zzẼ| ≪ |kc∂zẼ|. (2.17)

Similarly, if the envelope doesn’t change significantly in a optical cycle

|∂ttẼ| ≪ |ωc∂tẼ|. (2.18)

Similar arguments can be made for the polarisation density, in which we can

also neglect the first-order time derivative. Making use of these inequalities

is known as the slowly-varying envelope approximation (SVEA) [70], and

reduces the second-order MWE to a first-order equation

(∂t + c∂z)Ẽ = i
ωc

ǫ0
P̃, (2.19)

which has solutions, in vacuo, of the form

Ẽ = E0e
i(∆kz−∆ωt), (2.20)

∆ω = ω − ωc, (2.21)

∆k = k − kc, (2.22)

where E0 is constant, and ∆ω and ∆k are the detunings from the carrier

angular frequency and wavevector, respectively. These solutions are the

monochromatic frequency elements of the envelope. With the definition of

the phase element (2.20), the expressions (2.17) and (2.18) shows that the

equalities |∆k| ≪ kc, |∆ω| ≪ ωc must be met for the envelope wave equation

to be valid. For an envelope composed of many monochromatic waves, this

condition amounts to the maximum frequency extent of the envelope (the

bandwidth) being much less than the frequency of the carrier.

The free-space dispersion relation obtained from (2.19) with envelope (2.20)

is ∆ω = c∆k, hence ω − ck = ωc − ckc. The right-hand side is equal to zero
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(by definition), and therefore ω = ck which is consistent with the forward

travelling wave solution. If instead a backward moving carrier wave was sub-

stituted into (2.19), by replacing kc → −kc in (2.22), the dispersion relation

no longer holds: the equation derived is valid for forward moving waves only.

This is in contrast to the MWE, which is valid for both forward and back-

ward moving waves. It is not surprising that only forward motion is possible,

since it was necessary to constrain the motion to one particular direction

and in this case a forward travelling carrier was chosen. This situation is

illustrated in figure 2.1, where for small detunings only the positive solution

to the dispersion relation is represented. Repeating the above analysis for

backward motion gives the envelope equation

(∂t − c∂z)Ẽ = i
ωc

ǫ0
P̃, (2.23)

which is simply the replacement ∂z → −∂z in the forward wave equation. The

loss of the backward travelling wave solution is only of significance in high

density media where reflections are important [71] or if counter-propagating

fields are created due to the nonlinear polarisation [72].

The light intensity under the slowly-varying envelope approximation can be

found from (2.6) by integrating over an optical cycle 2π/ωc, the duration of

which is sufficiently small that the magnitude and phase of the envelope are

effectively constant. This gives an intensity

I = 1
2
ncǫ0|Ẽ|2. (2.24)

2.2.2 Rotating-wave approximation

The slowly-varying envelope equation was made based on the fact that for a

small bandwidth envelope it is possible to separate the electric field into the

product of a slowly-varying envelope and a rapidly-varying carrier wave. In

this section a similar analysis is undertaken for the Bloch equations, which

is exactly equivalent to the approximation made upon Maxwell’s equations.

In this way, it is possible to follow the ensemble evolution due to the slow

dynamics of the envelope, ignoring the effects of the envelope’s carrier fre-

quency.
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Figure 2.1: The dispersion relation for light propagation in vacuo. The red

line (of gradient +c) denotes the forward-travelling branch, whilst the blue line

(of gradient −c) denotes the backward-travelling branch. The red(blue) inset axes

gives the detuning around the forward(backward)-travelling, positive-frequency

carrier wave.

Assuming for clarity a single atomic resonance, the carrier wave is detuned by

∆ = ωc−ω0 from resonance (here ω0 is the resonant frequency of the atom).

Introducing the slowly-varying electric field into the dipole interaction (2.13)

produces

d · E =1
2
d21 · Ẽe−iωct|2〉〈1|+ 1

2
d12 · Ẽ∗eiωct|1〉〈2|+ (2.25)

1
2
d12 · Ẽe−iωct|1〉〈2|+ 1

2
d21 · Ẽ∗eiωct|2〉〈1|. (2.26)

The first two terms represent, respectively, the excitation of an atom along

with absorption of light, and the de-excitation of an atom along with emission

of light. The last two terms are energy non-conserving processes, respectively

the de-excitation of an atom and simultaneous absorption of light, and atomic

excitation with emission of light. For light at a frequency close to resonance

the energy non-conserving processes have little effect on the ensemble dy-

namics. Thus we can neglect these terms in the Bloch equations. This is

known as the rotating-wave approximation. Further discussion can be found

in references [1, 2].

In addition to the rapidly-varying electric field, we saw in section 2.2.1 that

the polarisation density, and by implication the density matrix, also contains
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high-frequency components. Via the relations P = Na〈d〉, (2.1), and (2.15)

P = Na

∑

n,m<n

(ρnmdmn + ρmndnm) , (2.27)

= P̃e−iωct + P̃∗eiωct, (2.28)

implying that the coherence term ρnm is the product of a slowly-varying

envelope ρ̃nm and carrier e−iωct. Care needs to be taken when multiple fields

exist as there is no single carrier frequency ωc at which all coherence terms

oscillate.

2.3 A two-level atom ensemble subjected to

an electromagnetic field

We are now in a position to solve the Maxwell-Bloch equations. Consider

the following atom-light system [2]. The atom consists of two energy states:

the ground state |1〉 and the higher-energy excited state |2〉, separated in

energy by ~ω0. Decay out of the excited state happens at a rate Γ, and

all excited state population lost by this process returns to the ground state.

There are thus four density matrix elements: the populations of the ground

and excited states ρ11 and ρ22, respectively, and the coherence terms ρ12

and ρ12. Due to conservation of population ρ11 + ρ22 = 1. An external

electric field is applied with angular frequency ωc, which is blue-detuned

from resonance by ∆ = ωc−ω0. The atom-light coupling is expressed via the

dipole operator d = d0(|1〉〈2|+ |2〉〈1|). With this information inserted into

the master equation of (V), the following set of coupled differential equations

are obtained:

ρ̇22 = −Γρ22 − i
1

~
(d0 · E∗ρ21 − d0 · Eρ12) = −Γρ22 −

2

~
Im[d0 · Eρ∗21], (2.29)

ρ̇11 = −ρ̇22, (2.30)

ρ̇21 = −(1
2
Γ + iω0)ρ21 − i

1

~
d0 · E(ρ22 − ρ11), (2.31)

ρ̇12 = ρ̇∗21. (2.32)

We then make the slowly-varying envelope and rotating-wave approxima-

tions, replace ρ21 → ρ̃21e
−iωct and note that slowly-varying polarisation den-
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sity of the system is P̃ = Nad0ρ̃21. Hence the Maxwell-Bloch equations can

be formed by combining the above equations with (2.19):

(∂t + c∂z)Ẽ = i
Nad0ωc

ǫ0
ρ̃21, (2.33)

ρ̇22 = −Γρ22 − Im[Ωρ̃∗21], (2.34)

˙̃ρ21 = −(1
2
Γ− i∆)ρ̃21 − i1

2
Ω(2ρ22 − 1), (2.35)

where Ω = d0 · Ẽ/~ is known as the Rabi angular frequency of the transi-

tion (after I.I.Rabi [73]), and is the rate at which transitions are coherently

induced between atomic levels. Its significance is briefly dealt with in sec-

tion 2.3.2.

The numerical model used to solves the Maxwell-Bloch equations is described

in appendix B.

2.3.1 Results of continuous-wave propagation

We will begin by solving the Maxwell-Bloch equations for an electromagnetic

field designed to mimic the output of a laser operating in continuous-wave

mode, and observe the atom-light system as it achieves an equilibrium state.

Ideally, this would involve light of a single frequency instantaneously switch-

ing from zero to a constant amplitude and phase. Quite apart from the

impossibility of this situation from an experimental perspective, the numer-

ical scheme we use cannot model discontinuities in field4. To avoid this

problem we will consider a Gaussian switch-on so that the field begins at an

infinitesimally small value before smoothly reaching a constant peak ampli-

tude. Consider a real-valued electric field envelope at z = 0 linearly polarised

orthogonal to the z axis, of the form

Ẽ = A0 exp

[

−2ln2

(

t− t0
∆t

)2
]

for t ≤ t0,

= A0 for t > t0. (2.36)

4This is due to the so-called Gibbs phenomenon, in which attempts to interpolate a

function involving a discontinuity causes spurious oscillations, or ‘ringing’ around the

discontinuity.
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The turning-on stage of the envelope is governed by ∆t, which is twice the

time it takes for the intensity (I ∝ |Ẽ|2) to rise from half of its maximum

value to its peak. We will see later when we talk about pulsed light that ∆t

is the full-width at half-maximum of the Gaussian intensity profile. We refer

to the point t0 as the envelope front.

We use the following parameters (see appendix C) to represent light resonant

with the Rb D1 transition (in the absence of hyperfine structure): ωc = ω0 =

2π(377 THz), d0 = 5.182ea0x̂ (with the Bohr radius a0 = 5.292 × 10−11 m

and electronic charge e = 1.602 × 10−19 C), kc = k0 = 2π(795 nm)−1, Γ =

2π(5.75 MHz) (hence excited state lifetime 1/Γ = 27.7 ns). The medium, of

length L = 32 m has a number density of Na = 1011 m−3. The reason for

the medium being unrealistically long is that we are observing the atom-light

interaction over such a long duration (hundreds of nanoseconds). This issue

is solely due to the numerical scheme we use: see appendix B for discussion.

Results for the propagation of resonant (i.e. ∆ = 0), low-intensity light are

shown in figures 2.2 and 2.3. The incident intensity of light I0 ∝ A2
0 is

equal to 10−3Isat; the significance of the saturation intensity, Isat, will be

elaborated in section 2.3.2. The electric field has the temporal profile (2.36)

with ∆t = 0.55/Γ (15.3 ns). The normalised intensity I/I0 = |Ẽ|2/A2
0 is

shown in figures 2.2(a), 2.3(a). At t = 0 the envelope front enters the medium

and begins to interact with the ensemble. The front of the envelope passes

through the medium (at a speed close to that in vacuo) and re-enters free-

space at a small loss of amplitude; the main body is attenuated to a larger

degree. Eventually, after several excited state lifetimes, the intensity reaches

a time-independent state at each position inside the medium. The evolution

of the medium is shown in figures 2.2 and 2.3: part (b) shows the excited

state population whilst (c) shows the imaginary component of the coherence

(NB: the real part of the coherence is zero on resonance). It can be seen that

there is a small delay between the front of the envelope entering the medium

and the onset of transfer of population to the excited state, resulting in little

absorption of the envelope front. This is because the medium cannot respond

instantaneously to the electric field. As with the light, the ensemble tends

towards a steady-state.

The physical argument behind the atom-light interaction is as follows. As the
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Figure 2.2: Numerical solutions to the Maxwell-Bloch equations, shown versus

z in units of medium length L and t in units of the excited state lifetime 1/Γ. (a)

The normalised intensity of light I/I0, (b) the excited state population ρ22 × 104,

(c) the imaginary part of the coherence Im[ρ̃21]× 102. The horizontal dashed lines

delineate the extent of the medium; the dashed green line represents the trajectory

a wave travelling in free-space would take.
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Figure 2.3: Data shown in figure 2.2(a)-(c) versus t only. Dashed curves show

the data at the entrance to the medium (z = 0), solid curves at the exit (z = L).
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envelope enters the medium, its leading edge excites a polarisation (repre-

sented by the coherence ρ21) in a thin slice at the entrance. This polarisation

radiates an electric field π rad out of phase with the input electric field. The

π rad phase shift is a combination of two factors: the first π/2 lag is due

to a resonant wave driving oscillations of a single absorbing dipole; the sec-

ond π/2 lag comes from interference between all of the contributions from

a plane of dipoles. The summing of these contributions to reach the total

phase shift is essentially buried in the formalism of Maxwell’s equations: see

reference [74] for further discussion. As the dipole-radiated field is coherent

with the applied field they interfere destructively, and as such the field inci-

dent upon the next slice of the medium is attenuated. The energy lost by the

pulse is transfered to the medium in the form of an atomic excitation ρ22.

This excitation is not stable, and decay back to the ground state releases

this energy in the form of spontaneously emitted light, which is incoherent

with respect to the excitation field. Spontaneous emission also reduces the

degree of coherence between the ensemble and applied electric field. Eventu-

ally the rate at which electromagnetic energy is absorbed is balanced by the

rate at which light is spontaneously emitted, and at this point equilibrium

is achieved between the field and ensemble, which is the subject of the next

section.

2.3.2 Steady-state solutions of the Maxwell-Bloch equations

We saw in the last section that under constant illumination the atomic system

reaches a steady-state. This is a well known situation epitomised by the Rabi

problem [73] (with the inclusion of decay mechanisms), a solution to the

Bloch equations. In brief, the atoms cycle between the ground and excited

state at the Rabi angular frequency Ω, represented by the populations ρ11

and ρ22. The rate at which photons are absorbed by the medium is −Im[Ωρ̃∗21]

(see chapter 10), where ρ̃21 represents the atomic coherence. Decay from the

excited state removes photons from the system via spontaneous emission,

happening at the rate −Γρ22; decay also serves to damp the Rabi oscillations

by dephasing the coherence5 which happens at the rate −Γ
2
ρ̃21. Eventually a

5Additional dephasing mechanisms e.g. collisions can increase the coherence decay rate;

here the decay rate is simply the average decay rate of the excited and ground state
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time is reached at which the rate of absorption is equal to the rate of decay,

at which point the matrix elements of ρ̂ cease to change.

The equilibrium state of the Maxwell-Bloch equations differs from the steady-

state of the Rabi problem with respect to the electromagnetic field. In the

Bloch equations the magnitude of the electric field is time-independent and

thus begins in a steady state. In the Maxwell-Bloch equations the electro-

magnetic field propagates through space, so for a given slice of medium the

incident field is modified due to atom-light interaction. If absorption is sig-

nificant over a slice of medium the field seen by the next slice is different to

that of the first, and thus the medium sees a field varying in both space and

time. An equilibrium between the light and atoms is reached when the rate

at which energy is lost from the field is equal to the rate at which energy is

lost from the medium through spontaneous emission.

Steady-state solutions can be found by setting the time derivatives to zero

in equations (2.33)-(2.35). Then, rearranging the equations we arrive at

∂zẼ = i
Nad0ωc

cǫ0
ρ̃st21, (2.37)

ρst22 =
1
2

s

1 + s
, (2.38)

ρ̃st21 =
iΓ− 2∆

Ω∗ ρst22. (2.39)

Here the saturation parameter s has been introduced, where

s =
I/Isat

1 + 4(∆/Γ)2
, (2.40)

I/Isat = 2(|Ω|/Γ)2, (2.41)

Isat =
1
4
cǫ0(~Γ/d)

2, (2.42)

where the constant Isat is the saturation intensity of resonant light, the signifi-

cance of which is given below. We now have a set of coupled equations depen-

dent on z, though the situation is complicated by the fact the equations now

depend on the Rabi angular frequency Ω∗ ∝ Ẽ∗ and the intensity I ∝ |Ẽ|2.
Since we seek analytic solutions, we can simplify matters by looking at the

intensity rather than the electric field. From equations (2.24) and (2.37) we

1
2
× Γ + 1

2
× 0 = 1

2
Γ. See reference [63].
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can obtain the gradient in intensity using ∂zI = 1
2
cǫ0∂z|Ẽ|2 = cǫ0Re[Ẽ

∗∂zẼ].

Thus

∂zI = −Na~ωcΓρ
st
22, (2.43)

ρst22 =
1
2

s

1 + s
, (2.44)

|ρ̃st21| = 1√
2

√
s

1 + s
, (2.45)

where we have taken the magnitude of the coherence to get an equation

dependent on s.

Consider a thin slice of medium, of thickness dz, upon which light of intensity

I falls. Assuming the fraction of light leaving the slab, dI, is proportional to

its thickness,

dI = −βIdz, (2.46)

where

β =
α0

α0/α + I/Isat
, (2.47)

α =
α0

1 + 4(∆/Γ)2
. (2.48)

The factor β is intensity dependent, except for low light intensities in which

case α, which is known as the absorption coefficient, dominates the attenu-

ation of light. The constant α0 = Na~ωcΓ/2Isat is the resonant absorption

coefficient. The transmission through an extended medium is given by the

solution of the differential equation (2.46), which can be solved exactly in

the regimes of low and high saturation, respectively

I =

{

I0 exp[−αz] for s≪ 1, (2.49)

I0 − α0Isatz for s≫ 1. (2.50)

We have assumed that α0 is independent of displacement inside the medium,

z, which is true for a homogeneous material. Equation (2.49) is the well-

known Beer-Lambert law [16], demonstrating an exponential attenuation of

light with distance. The linear decrease of light expressed by equation (2.50)

is less familiar and leads to significantly higher transmission than the Beer-

Lambert law. It is a result of intense light saturating the absorbing material,

in which case the medium is said to be ‘bleached’.
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Figure 2.4: Steady-state of the light as a function of displacement through the

medium, for (a) a weak field of I0 = 10−3Isat and (b) a strong field of I0 = 100Isat.

The top panels show the numerical solution as a solid curve, with the dashed grey

curve showing the analytic prediction. The bottom panels shows the percentage

difference between the numerical and analytical curves.

The intensity profile of figure 2.2 as a function of displacement through the

medium, at equilibrium, is shown in figure 2.4(a). The exponential atten-

uation with distance expected by the Beer-Lambert law is in good agree-

ment with the numerical solution, with a resonant absorption coefficient of

α0 = 0.09 m−1. We also show the numerical solution at equilibrium for a

high intensity light field in figure 2.4(b). In contrast to the exponential de-

crease of weak light, strong light follows a linear decrease with distance, with

a characteristic absorption coefficient α0Isat/I0 = 0.0009 m−1. Discrepancy

between the numerical and analytic solutions is low, the most significant de-

viation being at the boundary of the medium. This is due to a discontinuity

in the gradient of the field between the medium and free-space, an artifact

of the numerical model (for which see appendix B).

With regards to the material properties in the steady-state, we see in equa-

tions (2.38) and (2.39) that the density matrix elements depend on light

intensity via the saturation parameter s. Using the fact that I and the ma-

trix elements of ρ̂ are functions of displacement, it is possible to map the

numerical solutions we have calculated for ρst22 and ρ̃
st
21 to a function of s. For

a number of different incident light intensities, a composite plot of the matrix
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Figure 2.5: Steady-state dependence of the excited state population (red curve)

and coherence (blue) on the saturation parameter s. Solid curves show numerical

solutions, dashed curves show the analytic solutions.

elements of ρ̂ versus s can be produced, giving figure 2.5. At s = 1 the ex-

cited state population is ρst22 = 1/4, and the coherence reaches a peak value of

|ρ̃st21| = 1/
√
8. As s→ ∞, the excited state population tends to one half, whilst

the coherence tends to zero: the incident field therefore saturates the transi-

tion. The physical explanation for the saturation phenomenon is dealt with

in reference [63], we only give a cursory treatment of it here. Close to reso-

nance, the electric field emitted by an atom is proportional its dipole moment

d. The average intensity 〈I〉 of this electric field is proportional to the excited

state population ρst22. We can make a distinction between the fraction of the

light which is coherent with the driving field 〈Icoh〉 ∝ |ρ̃st21|2, and the frac-

tion due to spontaneous emission which is incoherent 〈Iincoh〉 ∝ ρst22 − |ρ̃st21|2,
illustrated in figure 2.6. The coherent fraction is due to the radiation of the

mean dipole moment; the incoherent fraction is due to fluctuations around

this mean. For s ≪ 1, scattering is dominated by coherent light. At s = 1

the coherent fraction reaches a peak, and is equal to the incoherent fraction.

As s → ∞ the coherent fraction becomes negligible, whilst the incoherent

fraction tends to one half, becoming independent of the incident field. This

expresses the fact that the atom cannot emit more than Γ/2 photons per

unit time, because the atom spends on average half its time in the excited

state.
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Figure 2.6: Steady-state dependence of the emitted light intensity, showing the

coherent fraction (blue curve) and incoherent fraction (red) versus the saturation

parameter s. The dashed line at 0.5 marks the asymptotic limit of the incoherent

scattering process.

2.3.3 Results of pulse propagation

In this section we consider the propagation of electromagnetic fields which

have finite duration, switching from zero to a finite amplitude before re-

turning to zero. In contrast to the pseudo-continuous field we saw in the

last section, the atoms do not have enough time in which to reach equilib-

rium with the applied field. However, we shall see in section 2.4 that for

low-intensity fields there exists a quasi-static regime akin to the steady-state

achieved via constant illumination.

We use the same conditions as per the continuous-wave propagation in sec-

tion 2.3.1, the exceptions being the length (L = 16 m) and density (Na =

1.7×1011 m−3) of the medium, and of course the envelope of the electric field.

The envelope takes the form of a Gaussian, Ẽ = A0 exp[−2ln2((t− t0)/∆t)2],
with an amplitude such that the initial intensity I0 = 10−3Isat and full-width

at half-maximum (FWHM) ∆t = 0.74Γ (20.4 ns). From figures 2.7(a) and

2.8(a) we see the pulse traverses the medium in a similar manner to the

front of the continuous-wave envelope (of section 2.3.1), suffering moderate

absorption. A ‘tail’ is seen to emerge from the main peak, which is a well-

known consequence of a resonant pulse having a duration comparable to or

smaller than the excited state lifetime [75, 76]. In figure 2.7(b) (and 2.8(b))

we see transfer of population to the excited state, peaking after the main
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Figure 2.7: Numerical solutions to the Maxwell-Bloch equations, for pulsed

light. (a) The normalised intensity of light I/I0, (b) the excited state population
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the trajectory a wave travelling in free-space would take.
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Figure 2.8: Data shown in figure 2.2(a)-(c) versus t only. Dashed curves show

the data at the entrance to the medium (z = 0), solid curves at the exit (z = L).
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body of the pulse has passed through. After peaking, the excited state pop-

ulation decays away exponentially at a rate Γ. The coherence (figures 2.7(c)

and 2.8(c)) shows similar time dependence to the excited state population,

decaying away at a rate Γ/2. Towards the exit of the medium the coherence

becomes negative in response to the tail of the distorted pulse (for reasons

described below).

The physical interpretation of the pulsed atom-light interaction is slightly

different to that of continuous-wave light. The leading edge of the pulse

enters a slice at the medium’s entrance, creating a polarisation which radiates

a field π rad out of phase with respect to the input field. The dipoles excited

by the front of the pulse radiate for a time of order 1/Γ. If the trailing edge

of the incident pulse drops off faster than the coherence lifetime, then the

envelope of the pulse leaving the slice will drop to zero (due to destructive

interference) until the exiting pulse is solely due to the radiated field. The

resultant tail thus differs in phase by π rad with respect to the main body

of the pulse. The next slice of the medium will see a pulse whose main

body drops off faster than before and hence the tail will be added to. Over

significant distances, the π rad phased tail can beget further tails, leading to

several bands of field alternating between zero and π rad phase with respect

to the original pulse. Although energy is lost by the front of the pulse, a

fraction of the energy is returned to the trailing edge, the rest being lost

from the system during spontaneous emission of incoherent light.

2.4 Spectral dependence of the

Maxwell-Bloch equations

So far we have dealt with the Maxwell-Bloch equations exclusively in the time

domain, i.e. we have found solutions by looking at the time-dependence of the

atom-light interaction with no reference to their frequency-dependence. This

is in contrast to Fourier optics [77] where the equations are solved via Fourier

analysis, the essence of which is a transformation into the frequency domain

(spatial and/or temporal). We produce the electric field angular-frequency
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spectrum E(z, ω) via the transform

E(z, ω) =
1√
2π

∫ +∞

−∞
E(z, t)eiωtdt, (2.51)

and recover the time domain field E(z, t) via the inverse transform

E(z, t) =
1√
2π

∫ +∞

−∞
E(z, ω)e−iωtdω. (2.52)

The angular-frequency spectrum is a measure of how much each angular

frequency contributes to the pulse. The electric field at a point in space

is thus essentially the superposition of monochromatic wave elements, with

amplitude and phase given by E(z, ω).

As we did in section 2.2.1 we can make the slowly-varying envelope approxi-

mation. The Gaussian temporal envelope has the property that its angular-

frequency spectrum is also Gaussian. For an envelope at the entrance to the

medium Ẽ(z = 0, t), of constant zero phase, the initial spectrum Ẽ(0, ω) is

Ẽ(0, ω) =
A0∆t

2
√
ln 2

exp

[

− 1

8 ln 2
∆t2(ω − ωc)

2

]

, (2.53)

where the spectrum is centred at the carrier angular frequency ωc. The

relationship between the FWHM of the profile and spectrum is ∆t∆ν =

2 ln 2/π ≈ 0.441, where ∆ω = 2π∆ν.

By taking the Fourier transform (2.51) of the pulse envelope Ẽ(z, t) in sec-

tion 2.3.3, we obtain the angular-frequency spectrum Ẽ(z, ω) as a function

of propagation distance inside the medium. Figure 2.9 shows the intensity

spectrum I(z, ω) ∝ |Ẽ(z, ω)|2. It can be seen that the incident Gaussian

spectrum (of FHWM ∆ω = 3.8Γ) becomes attenuated heavily around its

peak (coincident with the resonant frequency of the medium). Fourier anal-

ysis provides another explanation of the tail seen to develop in the pulse

envelope, explained in section 2.3.3 to be the result of re-radiated light of a

pulse whose duration is shorter than the coherence lifetime. The spectrum

of such a pulse contains significant angular-frequency components outside of

the range of the absorptive response of the medium. The incident singular

peak of the spectrum evolves into twin peaks, due to greater attenuation

close to resonance. This causes an additional amplitude modulation in the

temporal envelope (cf. the phenomenon of acoustic beats).
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Figure 2.10: Frequency response of a single atomic resonance to low-intensity

light. (a) Transmission and (b) phase at the exit of the medium. Curves show

the numerical solution of a single pulse centred at ∆ = 0, and markers show

the numerical solutions of many continuous-wave envelopes at various detunings

(see text). The pulse and continuous-wave envelopes all have incident intensity

I = 10−3Isat.
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The spectrum of the pulse experiences the same exponential decay with dis-

tance as was observed for the steady-state solution of section 2.3.1. In fig-

ure 2.10 we compare the transmission and phase shift experienced by the

pulse of figure 2.9 to that of many individual monochromatic waves of dif-

ferent frequencies. The monochromatic waves are separate numerical simu-

lations of the continuous-wave envelope as performed in section 2.3.1, with

different detunings. After reaching equilibrium the Fourier transforms of

each wave are Dirac delta functions in the frequency domain, resulting in

the individual points (represented by markers) in figure 2.10. The agreement

between the pulse simulation and the monochromatic simulations show that

the pulse behaves as though it is composed of many frequency components

simultaneously interacting with the medium independently and unaffected

by each other. The reason for this is as follows. For low-intensity waves

the Maxwell-Bloch equations can be reduced to a set of linear equations. In

systems described using linear operators a linear combination of individual

solutions to the system is itself a solution: this is known as the superposition

principle.

The situation we observe for low-intensity light is what we call the quasi-static

regime: the state of the medium changes sufficiently slowly such that, to a

good approximation, the medium can be assumed to remain in equilibrium

with the interacting electromagnetic field. As the electromagnetic field in

this regime is by necessity weak, the medium can also be assumed to remain

in its initial state6. Thus the steady-state solutions of the Maxwell-Bloch

equations (section 2.3.2) provide a good approximation of the atom-light

interaction.

6Of course for the atom-light interaction to proceed the state of the medium must

change, but for low-intensity light the change is negligible.
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2.5 Discussion

In this chapter we have derived the Maxwell-Bloch equations which govern

the propagation of light through an atomic medium. Numerical solutions

were found, both for continuous-wave light in the steady state and for pulsed

light. At sufficiently low light intensities, the interaction with the medium is

linear with respect to the electric field. It is this ‘weak probe’ or quasi-static

regime which we will develop further over the next few chapters, during which

time we shall see that the simple, analytic solutions exist. By obviating the

need to solve light propagation with a computationally-intensive numerical

scheme we are able to model more complicated (and, conveniently from an

experimental view point, more realistic) atomic systems. In the final chapter

we shall make a return to the Maxwell-Bloch equations as we investigate

nonlinear atom-light interactions.



Chapter 3

Applying the Maxwell-Bloch

equations to realistic media

In the last chapter we found numerical solutions of the Maxwell-Bloch equa-

tions for a medium comprised of non-interacting, stationary, two-level atoms

illuminated by a plane-wave electromagnetic field. Our goal is to develop a

theoretical model able to handle the complexities of realistic atomic systems.

Including all of the necessary factors, such as multiple energy states, particle

motion and interaction, additional atomic species and additional light fields

would result in a computationally-intensive numerical scheme. Fortuitously,

a full treatment of the atom-light interaction is not always required. On some

occasions, for example, one is more concerned with the attenuation a light

beam suffers during its passage through a medium than how the atoms are

affected during this interaction. In this instance it may be possible to simplify

the problem by subsuming the medium parameters into the light propagation

equations. This is indeed the approach taken in considering the dynamics of

weak beam propagation. In counterpoint, there are situations where one’s

goal is to prepare a medium in a specific atomic state, in which case certain

circumstances allow the propagation of light to be ignored. These cases can

arise when considering a dilute medium which has only a minor effect on

the light beam. In this chapter we derive a set of equations applicable for

a low-intensity light field propagating through a medium close to a state of

equilibrium.

39
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3.1 Towards analytic propagation equations

The polarisation density P represents a source (or sink) of electric fields. If

we limit our discussion to the case where an electromagnetic wave is incident

upon an initially unpolarised medium1, then any subsequent polarisation of

the medium is solely due to the applied electromagnetic field. The polar-

isation at a given instant in time t is related to the electric field via the

medium’s electric susceptibility χ, expressed by the relation

P(t) = ǫ0

∫ ∞

−∞
χ(t′)E(t− t′)dt′. (3.1)

This has the form of a convolution, expressing the fact that the polarisation

at time t may depend upon the electric field at times other than t. The

electric susceptibility is generally field-dependent, leading to many interesting

nonlinear optical phenomena [78]. We will see later in this chapter that in

the field-independent case (the domain of linear optics), relation (3.1) can be

used to provide analytic solutions to the Maxwell wave equation (MWE).

It should be noted that in general the susceptibility is a tensor, so that vector

components of the polarisation can be induced that are not parallel to the

applied electric field. Also, the different polarisation states of the electric

field are able to interact with one another. The medium in this instance is

said to be anisotropic, that is to say it responds differently to the polarisation

states of an applied field [79]. We will investigate anisotropic media in the

second part of this thesis.

We can simplify the wave dynamics by working in the frequency domain.

We looked at this domain in section 2.4 in order to calculate the electric

field spectrum E(z, ω) of the numerical solutions to the Maxwell wave equa-

tion. Here we do so in order to find solutions to the wave dynamics via

other means. Working in the frequency domain allows us to utilise the con-

volution property of Fourier transforms, namely the Fourier transform of

a convolution is equal to the product of the Fourier transforms of its com-

ponent functions. Expressed mathematically, if P(t) = ǫ0χ(t)⊗ E(t), then

P(ω) = ǫ0χ(ω)E(ω). Here ω, the angular frequency, is the Fourier conju-

gate of the time variable. If we take the temporal Fourier transform of the

1We will meet situations where this is not true in chapter 10.
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Maxwell wave equation (MWE) (using the definition of the transform from

section 2.4) and substitute for the polarisation density, we obtain the one-

dimensional inhomogeneous Helmholtz equation

(

ω2 + c2∂zz
)

E(z, ω) = −ω2χ(z, ω)E(z, ω), (3.2)

where we have used the fact that the Fourier transform of the nth derivative

of a function is (−iω)n times the Fourier transform of the function. We will

make an assumption on the nature of the susceptibility (and implicitly on the

form of the medium) in order to arrive at simple solutions to equation (3.2).

We assume that the medium is such that the polarisation states of the applied

electric field do not affect each other, in which case the susceptibility tensor

is proportional to the identity matrix. With the aforementioned assumption

we can take the factor on the right-hand side of the equation to the left to

give
(

n2 (z, ω)ω2 + c2∂zz
)

E (z, ω) = 0, (3.3)

where n =
√
1 + χ is the refractive (or phase) index of the medium. This

equation has solutions of the form

E(z, ω) = E(0, ω)ei
∫
k·dz. (3.4)

Hence we have an equation relating the angular-frequency spectrum at a

point z in space to the spectrum at z = 0. Substituting this solution back

into equation (3.3) leads to a relation between the wavevector k and angular

frequency of the electromagnetic wave

n(z, ω)2ω2 = c2(k · ẑ)2, (3.5)

This equation bears a distinct resemblance to the dispersion relation of the

free-space plane-waves seen in chapter 2. The wavenumber k = nω/c differs

from the free-space wavenumber ω/c by the the refractive index n. This

angular-frequency dependent function governs the propagation of light in

dispersive media, describing both the propagation speed and attenuation a

monochromatic wave experiences upon interacting with the medium.

We saw in section 2.4 that in general the electric field of a pulse contains

many frequency elements. We return to the time domain by taking the
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inverse Fourier transform of the angular-frequency spectrum, and arrive at

the solutions to the electric field of the form

E(z, t) =
1√
2π

∫ +∞

−∞
E(0, ω)ei(

∫
k·dz−ωt)dω. (3.6)

Note that in general k is a function of field and thus equation 3.6 is transcen-

dental, which by all appearances has taken us farther away from finding a so-

lution than the numerical method used in chapter 2. We will however concen-

trate on atom-light interactions in which the wavevector is field-independent.

3.1.1 Propagation of monochromatic light

The angular-frequency spectrum of a monochromatic wave is given by the

Dirac delta function of amplitude E0, centred at angular frequency ω i.e.

E(0, ω′) = E0δ(ω
′−ω). Sustituting this into equation (3.6), we find solutions

in the time-domain of the form

E(z, t) = E0e
i(
∫
k·dz−ωt). (3.7)

This reduces to the free-space solutions found in section 2.1.1 for a

displacement- and frequency-independent refractive index of n ≡ 1.

To illustrate the propagation of a monochromatic wave, we take the forward-

moving solution (k · dz > 0) and substitute for the wavenumber k =

(nR + inI) k0, where nR and nI are, respectively, the real and imaginary parts

of the refractive index, and k0 = ω/c is the free-space wavenumber. Thus

E(z, t) = E0e
i(k0

∫
(nR+inI)dz−ωt),

= E0e
−k0

∫
nIdzei(k0

∫
nRdz−ωt). (3.8)

The real-valued exponential term shows that the amplitude of the electric

field decreases with distance for positive nI, and the imaginary-valued ex-

ponential term shows that the wave has an instantaneous phase velocity of

vp = c/nR.

Two important parameters characterising the transmitted wave are the op-

tical depth Ldepth and phase shift ∆φ measured on a detector at a position

z = L from the light source at z = 0. The optical depth is defined via
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I/I0 = exp[−Ldepth], where I and I0 are the transmitted and incident inten-

sity, respectively. The phase shift is the difference between the phase accrued

by the wave on its journey from source to detector and the phase experienced

by an equivalent wave travelling through free-space. The optical depth and

phase shift are

Ldepth = k0

∫ L

0

2nIdz (3.9)

∆φ = k0

∫ L

0

(nR − 1)dz. (3.10)

3.2 Electric susceptibility

We saw in the last section that the real part of the refractive index describes

the dispersive effects of the medium (phase shift, propagation velocity etc.),

whilst the imaginary part describes the absorptive properties. The real and

imaginary components of the refractive index are in fact inextricably linked:

knowledge of one implies knowledge of the other. This is a direct result of

the principle of causality, that no cause should be preceded by its effect.

We can illustrate the connection between causality and dispersion using the

following argument [80]. Suppose the input field E(t) in equation (3.1) is

zero for times t < t′. The angular-frequency spectrum of the input field is

such that its frequency elements destructively interfere to produce the zero

signal for times less than t′. Suppose we have a system which absorbs just

the single angular-frequency component ω, producing an output polarisation

P(t) ∝ E(t) − E0 cos(ωt). This signal does not vanish for t < t′, a contra-

diction of the principle of causality. Thus causality requires that absorption

of one frequency component must be accompanied by a phase shift in other

frequencies to produce the destructive interference necessary such that no

output precedes the input. The frequency-dependent phase shifts are pro-

vided by dispersion relations. A more detailed discussion on the connection

between dispersion and causality can be found in reference [81].

The condition that there be no polarisation before the applied electric field

means that χ(t′) = 0 for t′ < 0 and therefore the inverse Fourier transform
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of the susceptibility need be performed for positive t′ only:

χ(ω) =

∫ ∞

0

χ(t′)eiωt
′

dt′. (3.11)

Independently of each other, Kramers [82] and Kronig [83] found that this

form of χ(ω) implies a relationship between the real and imaginary parts of

the susceptibilty. These are the Kramers-Kronig relations [62]

Re[χ(ω)] =
2

π
P
∫ ∞

0

ω′Im[χ(ω′)]

ω′2 − ω2
dω′ (3.12)

Im[χ(ω)] = − 2

π
P
∫ ∞

0

ωRe[χ(ω′)]

ω′2 − ω2
dω′, (3.13)

where P denotes the Cauchy principal-value. The Kramers-Kronig relations

show that if the imaginary part of the susceptibility is known, e.g. via trans-

mission measurements of an electromagnetic wave, then it is possible to cal-

culate the phase shift experienced by the wave by calculating the real part

of the susceptibility.

3.2.1 Electric susceptibility & slowly-varying quantities

Under the slowly-varying envelope approximation (see section 2.2.1) we can

write the susceptibility, along with the polarisation density and electric fields,

in terms of a slowly-varying part along with a rapidly-oscillating carrier:

χ(t) = χ̃(t)e−iωct + c.c., (3.14)

P(t) = P̃(t)e−iωct + c.c., (3.15)

E(t) = 1
2
Ẽ(t)e−iωct + c.c.. (3.16)

From the wave equation governing the propagation of a forward moving en-

velope (equation (2.19)), we obtain the following expression for the electric

field envelope:

Ẽ(z, t) =
1√
2π

∫ +∞

−∞
Ẽ(0,∆ω)e

i(
∫
∆kdz−∆ωt)d∆ω, (3.17)

where the detunings ∆ω = ω − ωc and ∆k = k − kc are confined to a small

range about the carrier angular frequency ωc and wavevector kc, respec-

tively. The carrier wave is a solution of the free-space wave equation, thus its
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wavevector is the real-valued kc = ωc/c. Comparing the dispersion relations

of a forward moving wave in both the complete electromagnetic field and its

slowly-varying envelope we have

ck = ω
√

1 + χ(z, ω), (3.18)

c∆k = ∆ω + 1
2
χ̃(z,∆ω). (3.19)

In order for these two equations to be consistent (in a similar analysis to that

seen in section 2.2.1) it is required that (i) ω ≈ ωc, implying that |∆ω| ≪ 1;

and (ii)
√
1 + χ ≈ 1+ 1

2
χ, implying that |χ| ≪ 1. Both of these criteria satisfy

general requirements of the slowly-varying envelope approximation: the first

criterion satisfies the restriction that the pulse contains only frequencies in

a low-bandwidth clustered around the carrier frequency; the second fulfills

the requirement that the envelope does not change appreciably over a length

scale of the order of the wavelength of the carrier wave. In the limit of small

susceptibility, χ ≡ χ̃, that is to say close to the carrier angular frequency

there is no contribution of the negative-frequency electric field components

to the electric susceptibility. After transforming to the frequency domain

and only keeping terms close to the carrier angular frequency, P̃(∆ω) =
1
2
ǫ0χ(∆ω)Ẽ(∆ω). Thus for the two-level atom described in section 2.3 we

have an electrical susceptibility

χ(∆ω) = 2
d0Na

ǫ0

ρ̃21(∆ω)

Ẽ(∆ω)
, (3.20)

where d0 is the dipole matrix element of the transition, and ρ̃21 is the off

diagonal matrix element of the dipole operator.

In the steady state (section 2.3.2), we find a susceptibility

χ(∆) =
d20Na

~ǫ0

i1
2
Γ−∆

1
4
Γ2 +∆2 + 1

2
|Ω|2 , (3.21)

where ∆ = ωc − ω0 is the detuning of the carrier from the resonant angu-

lar frequency ω0. The presence of the square modulus of the Rabi angular

frequency Ω tells us that the susceptibility is dependent on intensity I. Its

presence in the denominator, however, allows us to expand to arbitrary pow-

ers of |Ω|2:

χ(∆) =
d2
0Na

~ǫ0

(

f − 1
2
f |f |2|Ω|2 + . . .

)

, (3.22)
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where f = i/(1
2
Γ − i∆). The zeroth order term is independent of intensity:

this is the regime we refer to as ‘weak’.

The imaginary component of the susceptibility takes the form of a Lorentzian

line-shape, whose FWHM (full-width at half-maximum) of Γ
√

1 + I/Isat is

intensity dependent, a situation known as power broadening [16]. In the

limit of low-intensity radiation (where I ≪ Isat, the saturation intensity of

the transition) χ is independent of intensity, and the decay rate out of the

excited state Γ provides the width of the line-shape.

3.3 Weak beam propagation

It is often the case that the electromagnetic wave is weak enough such that it

has little effect upon the medium through which it propagates: we arrived at

this conclusion in chapter 2. Assuming the atomic system begins in a stable

state (i.e. other mechanisms such as spontaneous decay will not significantly

alter the system during the time in which the atom-light interaction takes

place), the evolution of the atomic ensemble is linearly proportional to the

applied electric field. Then only the time-dependence of the field and its cou-

pling to the ensemble need be solved for. The solutions derived in section 3.1

are applicable in the general case irrespective of the intensity of the light.

The form of the susceptibility (representing the atom-light coupling) in sec-

tion 3.2 is applicable to the case of a two-level atom only. Two-level atoms

do not exist in reality, though under certain experimental conditions (see for

example reference [84]) atomic transitions can effectively be treated as such.

Under general experimental conditions there may be many close-lying tran-

sitions which can interact with the incident light, and for sufficiently high

intensity atomic population can be transfered to multiple excited states. In

contrast to saturation, in which population can only return to the state it was

excited from, atoms can decay into other states: a process known as optical

pumping [85]. Optical pumping has been shown to be a more efficient mech-

anism of altering the atom-light interaction than saturation [86]. With these

considerations in mind, modelling a multilevel system is best done in the

weak regime, since in this regime an atom remains in its initial, unexcited

state. Thus a collection of multilevel atomic resonances can be effectively
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modelled as a collection of independent two-level resonances.

In section 2.4 we calculated numerically the transmission and phase of both

monochromatic and pulsed light in the weak regime (see figure 2.10). In

figure 3.1 we compare the susceptibility calculated by taking the ratio of

the atomic coherence to the electric field spectrum (equation (3.20)), and

the susceptibility of the steady-state analytic function (equation (3.21)). We

see that both the pulsed and continuous-waved numerical solutions are in

excellent agreement with the analytic solution of the susceptibility. Thus in

the weak-field regime propagation can be simulated using the equation of

the electric field derived in section 3.1. The physical interpretation of this is

given in section 2.4.
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Figure 3.1: Normalised steady-state electric susceptibility in the weak-field

regime. The black (blue) curve shows shows the real (imaginary) component of the

susceptibility. Dashed grey curves show the values calculated with the numerical

scheme (see text) for a pulsed field of I = 10−3Isat; points show the numerical

solution for continuous-wave light.

3.4 Particle dynamics

We have so far taken the medium to be a dielectric composed of slices of uni-

form composition (we have allowed for the possibility of the density chang-

ing amongst slices). In a crystalline solid this may well be true, and for

amorphous solids averaging over macroscopic distances may result in our

treatment of the atom-light being a fair approximation of the actual situa-
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tion. We have essentially assumed that the solution for a slice of medium

is proportional to the density-matrix solution of the Bloch equations for a

single atom. In this section we address the issue of particle dynamics which

contribute to the non-uniformity of the atom-light interaction. Nevertheless,

under certain experimental conditions some of these factors will be found to

cause only slight deviation from the macroscopically-averaged solution.

In an atomic vapour the most important of these factors is particle motion,

the effects of which include Doppler shift, transit across the extent of the laser

beam, diffusion across medium slices, and collisions between each other and

the walls of the container. However, the first factor we will address are the

interactions between particles via dipolar electric fields and dipole-radiated

electromagnetic fields.

3.4.1 Local electric field effects

The polarisability of an atom, α, is defined as a single dipole’s receptiveness

to the local electric field, thus 〈d〉 = αElocal. It is essentially the microscopic

equivalent of the electric susceptibility χ. As with the electric susceptibility,

α is in general a tensor. The local field seen by a given dipole is the sum of

the applied electric field E and the contributing fields due to neighbouring

dipoles. The solution for uniformly distributed dipoles in a cubic lattice is the

well-known Clausius-Mossotti relation [87, 88], calculated by replacing the

lattice with its point-like dipoles with an equivalent dielectric solid of uniform

polarisation; the calculation has also been performed from a microscopic

perspective [89]. The Clausius-Mossotti relation gives

αNa =
3ǫ0χ

3 + χ
. (3.23)

For a low density medium, χ ≪ 1 and hence αNa ≈ ǫ0χ. Indeed, the field

due to a dipole decreases with the cube of distance, thus for a low density

dielectric the local electric field can be assumed to be identical to the applied

field. We will see in later chapters that under typical experimental conditions

used in this thesis, Na ≈ 1019 m−3 with a measured susceptibility χ ≈ 10−4.

The foregoing analysis is based on the interaction of stationary dipoles.

The trajectory of an atom in motion may take it sufficiently close to an-
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other such that the atom-light interaction is altered. Detailed examination

of the inter-atomic potentials involved in such encounters (see for example

the comprehensive study in reference [90]) predict dipole-dipole interactions

whose effect is to broaden the atom’s spectral line-width. An examination of

the process in Rb vapour cells at high number density (Na approximately

greater than 1019 m−3) is presented in reference [91]: it suffices here to

state that the additional broadening mechanism is Lorentzian in nature, and

thus we add a density-dependent term to the natural broadened line-width:

ΓTotal = Γ + βNa.

Though the static electric field of a dipole is relatively short range, a radiating

dipole can give rise to electromagnetic fields which by their very nature can

act farther afield. The radiated light which is coherent with the applied field

is accounted for in the Maxwell-Bloch equations; the contribution which

is incoherent is not. This incoherent light can propagate to other atoms,

undergoing repeated cycles of absorption/emission and thus its progression

through the medium is impeded, a process known as radiation trapping [92].

For an applied field of low intensity, the radiation emitted by the dipole is

mostly coherent (see section 2.3.2), so radiation trapping is unlikely to be of

much concern when we look at weak incident fields.

3.4.2 Particle motion

Motion is an important process in a thermal vapour as individual particles

are typically moving at hundreds of metres per second2, leading to phenom-

ena such as the Doppler effect (for motion parallel to the light beam axis) and

beam-transit effects (for transverse motion). Nevertheless, there are regimes

where some or all of these effects can be neglected. For example, if the dura-

tion of the atom-light interaction is short (nanoseconds or less for the room

temperature Rb), an atom does not move significant distances compared to

the size of the beam, so beam-transit effects can be ignored. Recent studies

of spectroscopy which take account of particle motion include references [93–

95]. For our part, we will neglect all but Doppler broadening in this thesis.

Nevertheless, we shall see in chapter 5 that for light with a frequency detuned

2For a vapour of 87Rb at room temperature the most probably velocity is 240 ms−1
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sufficiently far from resonance the Doppler shift is negligible compared to the

frequency range over which a stationary atom would interact.

With the inclusion of the Doppler effect, the susceptibility can be generalised

to

χ(∆) =
d20Na

~ǫ0
s(∆). (3.24)

The line-shape factor s(∆) is the convolution of f(∆), the homogeneous

atomic line-shape derived in section 3.2, and g(v), the distribution of lon-

gitudinal velocities v. For an atomic vapour close to thermodynamic equi-

librium (which is an excellent assumption for a sample illuminated by low-

intensity light) the atomic velocity components are described by the Maxwell-

Boltzmann distribution, which is Gaussian in form. This convolution is given

by:

s(∆) =

∫ +∞

−∞
f(∆− kv)× g(v)dv, (3.25)

where k is the wavenumber of the radiation, and

f(∆) =
i

Γ/2− i∆
, (3.26)

g(v) =
1

u
√
π
e−(v/u)2 . (3.27)

Here Γ is the FWHM of the homogeneous broadening, and u is the 1/e half-

width of the inhomogeneous broadening mechanism (and the RMS atomic

speed). The line-shape s(∆) is related to the Faddeeva function (which is

discussed in chapter 5). This function, w(iz), of complex argument z, is

related to the line-shape s(∆) via

s(∆) =
i
√
π

ku
w(iz), (3.28)

w(iz) =
i

π

∫ +∞

−∞

e−x2

iz − x
dx = ez

2

erfc(z), (3.29)

z(∆) =
1

2

Γ

ku
− i

∆

ku
, (3.30)

where the complementary error function erfc(z) is defined as

erf(z) =
2√
π

∫ ∞

z

e−t2dt. (3.31)

We now have a function s which describes the line-shape of atomic resonances

in a Doppler broadened medium.
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3.5 Discussion

In this chapter we have derived an equation for the electric field of a plane

wave propagating through an inhomogeneous dielectric, equation (3.6), along

with its slowly-varying envelope, equation (3.17). An equation relating the

electric susceptibility of the medium, i.e. the response of the medium to

the applied field, has also been derived based on the dynamics of a two-

level atom (equation (3.21)). In the regime where the light field is of low

intensity the medium remains in its initial state, thus obviating the necessity

of solving the dynamics of the atomic system. Only the dynamics of the light

needs to be considered, in contrast to the numerical analysis undertaken in

chapter 2. Thus we have a set of equations which can be used to solve

for light propagation, which we will use in the next chapter to compare a

theoretical model of the transmission of light through a vapour of rubidium

to experimental measurements.



Chapter 4

Transmission of a weak beam

through a Doppler-broadened

medium

In this chapter we develop a model that allows us to predict quantita-

tively the absorptive and dispersive properties of rubidium vapour probed

in the vicinity of the D lines (for an alkali metal atom the D2 transition

is n 2S1/2 → n 2P3/2 (where n is the principal quantum number of the va-

lence electron) and the D1 transition is n 2S1/2 → n 2P1/2). We apply the

weak beam theory of the two-level atom we have developed in the previ-

ous chapters to a multi-level, multi-species atomic system and compare the

predictions with an experimental study of the absolute Doppler-broadened

absorption spectrum. We begin by describing the process by which the ab-

sorption coefficients of an individual transition are calculated before going on

to describe the experimental methodology used to measure the transmission

spectrum. We then compare our predictions to experimental measurements.

52
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4.1 Calculating absorption coefficients

4.1.1 Atomic absorption cross-section

We calculated in both section 2.3.2 and 3.1.1 that the absorption of

monochromatic light as it propagates along the z-direction through a uniform

density atomic vapour is given by:

I(z) = I0e
−αz, (4.1)

where I(z) is the intensity of light at position z inside the medium with an

absorption coefficient α, and I0 is the beam intensity at the entrance of the

medium. In a dispersive medium the absorption coefficient is dependent on

the angular frequency, ω, of incident light. We assume that the probe beam

is sufficiently weak that the absorption coefficient is independent of intensity.

A full discussion of how weak the light has to be for this simplification to be

valid is given in section 4.4.1.

The transmission, T , of a beam through a medium of length L is defined as

T = I(L)/I0 = e−αL. (4.2)

In general, a medium consists of multiple species, each with multiple tran-

sitions. A beam of light will interact with all species, the total absorption

coefficient being the sum over all transition for each species.

The macroscopic absorption coefficient of the medium can be written [1]

in terms of σ, the microscopic atomic absorption cross-section and Na, the

number density of the atomic gas, α = Naσ. There are two reasons why the

medium’s absorption coefficient is temperature dependent: (i) the atomic

cross-section is influenced by the Doppler width, proportional to the square

root of the temperature; and (ii) the number density is a strong function

of temperature. Doppler broadening of the spectral lines is dealt with in

section 4.1.5, and the temperature dependence of the atomic density in ap-

pendix D.

We label each hyperfine state of the atom with the usual angular momentum

quantum numbers |Fg,mFg
〉 for the 2S1/2 term, and |Fe,mFe

〉 for the 2P3/2

or 2P1/2 term, where the subscript g(e) denotes the ground (excited) state.
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For a multi-level atom, such as rubidium, the calculation of the atomic cross-

section is in two parts: first, the relative line-strengths among the different

|Fg,mFg
〉 → |Fe,mFe

〉 transitions are calculated, then the absolute value is

deduced. These calculations are facilitated by initially assuming the atoms

are at rest, with the manifestation of atomic motion (Doppler broadening)

incorporated later. In this chapter we neglect pressure broadening. Gorris-

Neveux et al. measured the Rb-Rb collisional self-broadening to be of the

order of 10−7 Hz cm3 [96]; for the temperature range spanned in this work

the pressure broadening is at least four orders of magnitude less than the

natural broadening. For temperatures greater than approximately 120◦C the

self-broadening becomes comparable to the natural width and thus needs to

be accounted for [91].

4.1.2 Transition frequencies

In order to predict the absorption spectrum the relative spacing of the

hyperfine-resolved energy levels for both Rb isotopes (illustrated in Fig-

ure 4.1) are needed. The frequency of zero detuning for the D2 (D1) line is set

to be the centre of mass frequency of the 52S1/2 → 52P3/2 (52S1/2 → 52P1/2)

transition in the absence of hyperfine splitting, taking into account the nat-

ural abundance of each isotope. The atomic energy level intervals were ob-

tained for D2 from [8, 97, 98] and for D1 from [99]. The positions of the

atomic transitions relative to the centre of mass for D2 (384,230,426.6 MHz)

and D1 (377,107,407.299 MHz) are listed in table 4.1.

4.1.3 Relative line-strength factors

The strength of the interaction between an atom and near-resonant elec-

tromagnetic radiation is characterised by the dipole matrix elements. The

dipole matrix element of the transition between states
∣

∣Fg,mFg

〉

and |Fe,mFe
〉

is
〈

Fg,mFg
|erq|Fe,mFe

〉

. In order to calculate this matrix element, it is pos-

sible to factor out the angular dependence and write the matrix element as

a product of Wigner 3− j and 6− j symbols and a reduced matrix element
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Figure 4.1: A schematic showing the hyperfine structure and intervals of Rb

for the D spectroscopic lines. Due to the isotope shift, the P1/2 and P3/2 states

are offset by 77.701 MHz [99] and 80.1 MHz [97], respectively, and has been taken

into account for the calculated transition frequencies. Not to scale.

Table 4.1: Transition frequencies for the (a) D2 line, and (b) D1.

(a)

Line Detuning / MHz Fe

87Rb −2735.05 1

Fg = 2 → Fe = 1, 2, 3 −2578.11 2

−2311.26 3
85Rb −1371.29 2

Fg = 3 → Fe = 2, 3, 4 −1307.87 3

−1186.91 4
85Rb 1635.454 1

Fg = 2 → Fe = 1, 2, 3 1664.714 2

1728.134 3
87Rb 4027.403 0

Fg = 1 → Fe = 0, 1, 2 4099.625 1

4256.57 2

(b)

Line Detuning / MHz Fe

87Rb −3014.644 1

Fg = 2 → Fe = 1, 2 −2202.381 2

85Rb −1497.657 2

Fg = 3 → Fe = 2, 3 −1135.721 3

85Rb 1538.063 2

Fg = 2 → Fe = 2, 3 1900.087 3

87Rb 3820.046 1

Fg = 1 → Fe = 1, 2 4632.339 2
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[100, 101]. Thus,

〈Fg,mFg
|erq|Fe,mFe

〉 = (−1)2Fe+I+Jg+Je+Lg+S+mFg+1〈Lg||er||Le〉 (4.3)

×
√

(2Fg + 1)(2Fe + 1)(2Jg + 1)(2Je + 1)(2Lg + 1)

×
(

Fe 1 Fg

mFe
−q −mFg

){

Jg Je 1

Fe Fg I

}{

Lg Le 1

Je Jg S

}

.

Here F, I, J, L, S, and mF are the angular momentum quantum numbers,

and q is the integer change in mF during the transition. I, the nuclear spin,
has the value 5

2
and 3

2
for 85Rb and 87Rb respectively. S, the electron spin,

has the value 1
2
. The 3− j symbol is the term contained in the large round

brackets, and the 6− j in curly brackets. Note that the 3− j symbol is non-

zero for mFe
= mFg

+ q, according to the usual definition of q. 〈Lg||er||Le〉 is
the reduced matrix element, and can be expressed in terms of the wavelength

of the transition, λ, and the decay rate of the excited state, Γ. By calculating

the Wigner coefficients and prefactors, equation (4.3) reduces to

〈

Fg,mFg
|erq|Fe,mFe

〉

= cmF
〈Lg||er||Le〉 ≡ cmF

d, (4.4)

where cmF
is a coefficient that determines the transition strength of a par-

ticular transition, and is dependent on the initial and final states of the

transition.

The strength of a transition is proportional to the square of the transition

matrix element, thus the transition strength is c2mF
d2. Each hyperfine tran-

sition is degenerate in F (since we are assuming zero magnetic field). The

total transition strength of the hyperfine transition Fg → Fe is denoted by

C2
F , the sum of transition strengths c2mF

of each Zeeman transition in the

hyperfine manifold. These C2
F coefficients have been calculated for linearly

polarised light (q = 0), and are presented in table 4.2.
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Table 4.2: C2
F for the D2 line of (a) 85Rb, and (b) 87Rb; D1 line of (c) 85Rb,

and (d) 87Rb

(a)

Fe

1 2 3 4

Fg

2 1/3 35/81 28/81 0

3 0 10/81 35/81 1

(b)

Fe

0 1 2 3

Fg

1 1/9 5/18 5/18 0

2 0 1/18 5/18 7/9

(c)

Fe

2 3

Fg

2 10/81 35/81

3 35/81 28/81

(d)

Fe

1 2

Fg

1 1/18 5/18

2 5/18 5/18

4.1.4 Reduced dipole matrix element

The reduced matrix element, d, can be calculated using the expression for

the decay rate [1]

Γ =
ω3
0

3πǫ0~c3
2Jg + 1

2Je + 1
|〈Jg||er||Je〉|2. (4.5)

〈Jg||r||Je〉 can be written in terms of 〈Lg||er||Le〉 via the relation

〈Jg||er||Je〉 = (−1)Je+Lg+S+1〈Lg||er||Le〉 (4.6)

×
√

(2Je + 1)(2Lg + 1)

{

Lg Le 1

Je Jg S

}

.

The Wigner 6 − j coefficient and prefactor, both of which are independent

of the F and mF quantum numbers, can be calculated for the D2 line. Thus

〈Jg = 1/2||er||Je = 3/2〉 =
√

2

3
〈Lg = 0||er||Le = 1〉. (4.7)

Substituting (4.7) into (4.5) and rearranging,

d = 〈Lg = 0||er||Le = 1〉 =
√
3

√

3ǫ0~Γλ3

8π2
. (4.8)

For the D1 line a similar analysis leads to the same result as equation (4.8).

The reduced dipole matrix element for the fine structure splitting should
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be identical for the D lines. However, we have used experimentally mea-

sured values for the wavelength and decay rates: λ = 780.241 nm [102]

and Γ = 2π(6.065 MHz) [103] for D2, and λ = 794.979 nm [104] and

Γ = 2π(5.746 MHz) [103] for D1. This yields d = 5.177 ea0 for D2, and

d = 5.182 ea0 for D1, where a0 is the Bohr radius.

4.1.5 Including atomic velocity

The thermal velocity of atoms along the axis of the probe beam is given by the

well-known Maxwell-Boltzmann distribution. It is Gaussian in nature, with

a 1/e width of u =
√

2kBT/M , where T is the temperature, and kB is the

Boltzmann constant andM is the atomic mass. It is this longitudinal motion

that leads to Doppler broadening of the absorption spectra; on the Rb D line

at room temperature this broadening is ∼ 0.5 GHz, which is in general larger

than the excited state hyperfine splitting. Let the angular frequency of the

laser be ω, and that of an atomic resonance be ω0. The angular detuning,

∆, is defined as ∆ = ω − ω0. For an atom moving along the direction of

propagation of the probe beam we incorporate the Doppler effect by simply

replacing the detuning by ∆−kv, where k is the magnitude of the wavevector

of the light, and v is the atomic velocity. We assume that the experiment

is conducted in the weak-probe limit, i.e. the laser intensity is sufficiently

low that optical pumping processes which redistribute population amongst

the hyperfine levels of the ground term do not occur during the transit of

an atom across the finite beam width. The transverse motion of atoms can

therefore be neglected.

4.2 Electric susceptibility

The electric susceptibility of a medium, χ, describes the medium’s absorptive

and dispersive properties. For the case of an isolated resonance in a Doppler-

broadened atomic medium the susceptibility as a function of detuning from

resonance, ∆, is (3.24):

χ(∆) = c2mF

d2Na

~ǫ0
s(∆). (4.9)
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Here c2mF
is the transition strength factor for the transition

∣

∣Fg,mFg

〉

→
|Fe,mFe

〉, d = 〈Lg||er||Le〉 is the reduced dipole matrix element of the

|Lg〉 → |Le〉 transition, Na is the atomic number density of state
∣

∣Fg,mFg

〉

,

and s(∆) is the line-shape factor. The total susceptibility of the medium

is obtained by summing over all transitions which the light is stimulating.

The absorption coefficient is proportional to the imaginary part of the sus-

ceptibility, χI, and has the form of the well-known Voigt profile (which is the

convolution of a Lorentzian and Gaussian function). Dispersion results from

the real part, χR.

4.2.1 Absorption coefficients

The absorption coefficient can be obtained from the imaginary part of the

susceptibility, χ(∆), via

α(∆) = kχI(∆), (4.10)

where k is the free-space wavenumber of the probe beam. χI(∆) has the

form of a Voigt profile, sI(∆), multiplied by prefactors which depend on the

properties of the resonant transition.

The shape of the Voigt profile is characterised by a single parameter, a: the

ratio of the widths of the Lorentzian to the Gaussian profiles. The width

of the Lorentzian, Γ, is the full-width at half-maximum (FWHM) of the

hyperfine-free atomic transition. Γ is identical for all hyperfine transitions

and Zeeman sublevels within the hyperfine-free manifold, and is also equal

for different isotopes of an element. The width of the Gaussian profile is

proportional to the width of the Maxwell-Boltzmann distribution, u, and is

a function of temperature and isotopic mass. Considering all of the above, the

width of the absorption profile of every hyperfine transition for a particular

isotope is identical.

The height of the Voigt profile depends on two factors: the forms of the

Lorentzian and Gaussian functions, which are identical for all transitions for

a given isotope; and the transition strength of a particular transition.

All transitions for a particular isotope can be represented by a single Voigt

profile, which is then centred on the relevant transition frequencies, and

multiplied by the relevant transition strengths. Hence, recalling equa-
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tions (4.9) and (4.10), the absorption profile for a particular hyperfine tran-

sition Fg → Fe is

α(∆) = kC2
F

d2Na

~ǫ0

1

2(2I + 1)
sI(∆). (4.11)

Here, 2 (2I+1) is the degeneracy of the ground state of the particular isotope

(12 for 85Rb, 8 for 87Rb). The degeneracy appears as we are assuming that the

population is evenly distributed amongst the ground state Zeeman sublevels.

The expected transmission profile for the vapour cell can then be calculated

as a function of detuning.
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Figure 4.2: Plots of the transmission through a vapour cell of length 75 mm

as a function of linear detuning, ∆/2π. Plot (a) shows D2 at 20◦C, and (b)

shows D1 at 30◦C. The blue curves (i) show the transmission for the transitions

87Rb Fg = 2 → Fe, the magenta (ii) 85Rb Fg = 3 → Fe, the green (iii) 85Rb

Fg = 2 → Fe, and the orange (iv) 87Rb Fg = 1 → Fe. The solid curves show the

transitions between hyperfine states Fg → Fe = Fg + 1, dashed Fg → Fe = Fg,

and dot-dash Fg → Fe = Fg − 1. The black curve shows the total transmission

through the cell. Zero detuning corresponds to the weighted centre of the line.

Figure 4.2 shows the predicted transmission spectrum for rubidium vapour in

a 75 mm-long cell for (a) D2 at 20
◦C, and (b) D1 at 30

◦C. The contributions of

the individual Fg → Fe transitions are shown, in addition to their combined

total. For both D lines the ground state hyperfine splitting is larger than

the Doppler width of ∼ 0.5 GHz. For the D2 line, the excited hyperfine

splitting of both isotopes is smaller than the Doppler width; consequently
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Rb cell

ECDL

ND

BS

PD

Fabry-Perot

Figure 4.3: Schematic of the experimental apparatus. Light from an external

cavity diode laser (ECDL) impinges on a beam splitter (BS). A fraction of the

beam passes through a Fabry-Perot etalon onto a photo detector (PD). The beam

is further split into pump and probe beams which cross at a small angle in a Rb

vapour cell. The probe beam is incident on a photo detector, and neutral density

filters (ND) are used to give independent control over the pump and probe beam

powers

four composite lines are observed. For the D1 line, the excited state splitting

for 85Rb is smaller than the Doppler width, whereas the splitting for 87Rb is

larger; hence six composite lines are seen.

4.3 Experimental methods & results

4.3.1 Experimental apparatus

We now test the accuracy of the prediction experimentally. A schematic

of the experiment is shown in figure 4.3. External cavity diode lasers were

the source of light (Toptica DL100 at 780.2 nm and 795.0 nm for D2 and

D1 respectively). A fraction of the output beam was used as a probe beam

for rubidium vapour in a 75 mm cell. A portion of the light was also sent

into a Fabry-Perot etalon. Before the cell the beam had a 1/e2 half-width

of (2.00±0.05) mm. The cell could be heated to change the vapour pressure

of rubidium and hence the opacity. A thermocouple was used to measure

the approximate temperature of the cell. No attempt was made to null the

laboratory magnetic field. A pump beam generated sub-Doppler spectral

features to provide a frequency reference. The crossing angle between probe

and counter-propagating pump within the vapour cell was 6 mrad. Neutral

density filters were used to give independent control of the pump and probe
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powers. The Fabry-Perot etalon was used to assist with calibrating and

linearising the frequency scan. A plane-plane cavity was used, with a sepa-

ration of the mirrors of 250 mm, with a free-spectral range of 0.6 GHz. The

probe beam was incident on a photo detector comprising a simple current-

to-voltage circuit designed to output a voltage linearly proportional to the

incident power.

4.3.2 Scaling the frequency axis.

For the D2 line the frequency axis of the laser scans were linearised by use

of the etalon transmission peaks. In order to generate atomic frequency

markers on a scale narrower than the Doppler-broadened features pump-

probe spectroscopy was employed. By counterpropagating a pump beam with

the weak probe it is possible to generate sub-Doppler saturated-absorption

and hyperfine-pumping spectra [86, 105]. For each isotope ground state Fg,

three transitions Fg → Fe = Fg, Fg ± 1 are resolved, and so-called cross over

resonances are seen halfway between each resonance. In this way it is possible

to obtain 24 atomic resonances.
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Figure 4.4: (a) Deviation of the measured spectral line frequencies from their

expected positions for the D2 line before linearisation of the laser scan. The black

crosses mark the measured positions of the sub-Doppler spectra. (b) Linear fitting

of the expected to the measured frequency after linearisation. The red line shows

a linear relationship between the two axes, with a gradient of 1 and an intercept

of zero. The inset shows the deviation of the measured spectral line frequencies

from their expected positions. [Data taken by Chang Ge]
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Figure 4.4(a) shows a plot of the difference between the measured and ex-

pected detunings of the 24 atomic resonances before linearisation. The ex-

pected detunings were obtained from table 4.1a. The relatively large devi-

ations from zero are seen to have a polynomial relationship with expected

frequency. Figure 4.4(b) shows a plot of measured detuning of the atomic

resonances versus the expected detuning after linearisation. The solid line

has slope 1 and passes through the origin. The inset shows the deviation

between measured and expected frequency. It can be seen that each atomic

resonance is within 5 MHz of this ideal fit over a span of 8 GHz. The residual

deviations are a consequence of laser drift. If a better frequency fitting were

desired additional reference etalons could be used.

Figure 4.5 shows the pump-probe transmission features for the upper hy-

perfine level for each isotope; six sub-Doppler features are clearly seen, with

their positions being in excellent agreement with the predicted values.
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Figure 4.5: Experimentally measured transmission plots for D2 showing

saturated-absorption/hyperfine pumping spectra of (a) the 87Rb Fg = 2 line, and

(b) the 85Rb Fg = 3. The vertical reference lines show the expected peak positions.

[Data taken by Chang Ge]
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Figure 4.6: Transmission through the vapour cell, showing the role of hyperfine

pumping in absorption spectroscopy of (a) the D2 line at 25.4◦C [Data taken by

Chang Ge] and (b) the D1 line at 35.6
◦C. The solid red curve is the experimentally

measured transmission and the dashed black the predicted value. Beneath each

plot we provide the difference between theory and experiment. Note that the noise

in the data is of the order of the line thickness.

4.4 Experimental results

4.4.1 Effects of hyperfine pumping

Figure 4.6 shows transmission, T , versus linear detuning, ∆/2π for (a) D2

line, for a probe intensity at the centre of the beam of 1.6 µW/mm2, and

(b) D1 line, 1.5 µW/mm2. Both intensities correspond to I/Isat = 0.1 for

that particular line. The expected transmission is also plotted. Although the

temperature of the outside of the cell was measured using the thermocouple,

the temperature was treated as an adjustable parameter throughout this the-

sis, representing the fact that there is likely to be a temperature difference

between the cell wall and the atomic vapour contained within it. Neverthe-

less, it was only necessary to adjust the temperature by up to 0.1◦C in order

to obtain agreement between theory and experiment. For the D2 line, rea-

sonable agreement is obtained for transitions from the upper hyperfine level

of the ground term Fg = I + 1/2 → Fe (labelled i and ii), often referred
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to as the “laser cooling” transitions. Poor agreement is seen for transitions

from the lower hyperfine level of the ground term Fg = I − 1/2 → Fe (iii

and iv), often referred to as the “repump” transitions. For the D1 line, poor

agreement is seen across the whole spectrum.

Although the power of the beam is such that the intensity is less than the

saturation intensity, the assumption that the atomic population has not been

influenced by the propagation of the probe through the medium is obviously

invalid. The process by which an atom is excited from one Fg level and

is transferred by spontaneous emission into the other Fg level is known as

optical, or hyperfine, pumping. Allowing for transfer out of the two-level

system is known to modify the absorption process [106, 107].
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Figure 4.7: (a) The transmission at the centre of the four Doppler-broadened

absorption features for D2 is plotted against laser intensity [Data taken by Chang

Ge]. The data points correspond to the measured transmission, and the solid lines

show the transmission expected. The dotted lines are guides to the eye. The cell

was at 25◦C. (b) Similar for D1 where six Doppler-broadened absorption features

are observed. Here the cell was at 36◦C in order to make the minimum transmission

comparable to the D2 line.

To investigate this further a sequence of spectra were recorded for differ-

ent probe powers, for both D transitions. Figure 4.7 shows the line-centre

transmission for (a) the D2 transition in a room temperature cell, and (b)

the D1 transition in a cell heated to 36◦C. The laser intensity has been

normalised in terms of the saturation intensity [15]. Consider the closed
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hyperfine-resolved transition D2 line: Fg = I + 1/2 → Fe = I + 3/2. Ow-

ing to the ∆F = 0,±1 selection rule atoms excited into this state have to

decay to the ground state from which they started. These transitions have a

significantly larger oscillator strength than the two neighbouring transitions

Fg = I + 1/2 → Fe = I ± 1/2, found in the Doppler-broadened transi-

tions 87Rb, Fg = 2 → Fe (i) and
85Rb, Fg = 3 → Fe (ii). Consequently, the

agreement with the theory which neglects transfer into other ground states

is good. Notice in Figure 4.6(a) the agreement is excellent on the high-

frequency side of the resonance, where the closed transition is located, but

poor on the low-frequency side (this is most easily seen in the difference

plot). The presence of optical pumping not only reduces the peak absorp-

tion but also distorts the line-shape [93]. For the Doppler-broadened transi-

tions 85RbFg = 2 → Fe (iii) and
87RbFg = 1 → Fe (iv) there are two closed

transitions, Fg = I − 1/2 → Fe = I − 3/2. However these have similar

line-strengths to their neighbouring transitions, and hence do not dominate

the absorption profile. There are no such closed transitions in the D1 spec-

trum. The conclusion therefore is that great care has to be taken to ensure

that the probe beam intensity is sufficiently low that hyperfine pumping does

not occur during an atom’s transit through the beam - this places a far more

strict limitation on the upper intensity to be used in contrast to the condition

I < Isat valid for two-level atoms [108].

An alternative way to visualise the relative importance of optical pumping

is to plot the normalised absorption coefficient α(I)/α(0). This is done in

figure 4.8 for the two D2 repump transitions, and all D1 transitions. Also

included is the theoretical prediction for a Doppler-broadened medium con-

sisting of two-level atoms [15] of the form 1/
√

1 + I/Isat. It is apparent

that optical pumping reduces the absorption at intensities much weaker than

those necessary to saturate the transition. The large error-bars for small in-

tensities are a consequence of the very low light levels and consequently poor

signal-to-noise. The data are fit to curves of the form 1/
√

1 + β(I/Isat), with

β being a parameter that characterises the effective reduction in saturation

intensity. This is done as a guide to the eye, and care should be taken not

to over interpret this parameterisation. In this work the beams had a fixed

width and the intensity was varied by changing the probe power. It is pos-
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Figure 4.8: Normalised line-centre absorption of the D2 line showing the effects

of hyperfine pumping. The solid curve is the theoretical prediction for a Doppler-

broadened medium of two-level atoms. The dotted lines are guides to the eye.

Hyperfine pumping on open transitions is seen to be more effective at reducing the

line-centre absorption than saturation. [Data taken by Chang Ge]

sible to realise the same intensity with different power beams of different

radii; in this case the presence of optical pumping means that knowledge of

intensity alone is not enough to predict the absorption strength [108].

4.4.2 Comparison of experiment & theory

With knowledge of how weak the probe beam had to be, we performed a series

of experiments to test the agreement between our theory for the Doppler-

broadened absorption profile of rubidium vapour and experiment. The probe

intensity was 32 nW/mm2, corresponding to I/Isat = 0.002. Figure 4.9

shows transmission spectra at three different temperatures (16.5◦C, 25.0◦C

and 36.6◦C) for the D2 line. There is excellent agreement between theory and

experiment; the rms discrepancy is at the 0.2% level. Note that the measured

absorption is still slightly smaller than the predicted value. This could arise

due to the broad frequency pedestal of the emission from the laser, and also

the finite laser linewidth which is of the order of 0.1% of the Doppler width.
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Figure 4.9: D2 transmission plots for the comparison between experiment and

theory, at temperatures of 16.5◦C (top), 25.0◦C (middle), and 36.6◦C (bottom).

Red and black curves show measured and expected transmission respectively. Be-

low the main figure is a plot of the difference in transmission between theory and

experiment for the 16.5◦C measurement. [Data taken by Chang Ge]

4.5 Discussion

In summary, we have studied Doppler-broadened spectra for the Rb D lines.

A model was developed which allows the absorption profile and refractive

index to be evaluated in terms of tabulated functions. Excellent agreement

was found between theory and experiment for transmissions ranging from

5 to 95%. We showed that the effect of hyperfine pumping is significant

for open transitions, and outlined how to achieve the weak-field limit. The

weak-probe limit is only reached for I/Isat ≈ 0.001 for a beam width of 2 mm.

Our model allowing quantitative predictions of the absorption and dispersion

in alkali metal vapour will both aid the burgeoning field of controlled light

propagation [29, 30, 36] and in the understanding of the spectra obtained in

widely used laser locking schemes [18–24].



Chapter 5

Off-resonant interactions

The motivation behind this chapter is to investigate the relationship between

the absorption and dispersion experienced by off-resonant radiation inter-

acting with an inhomogeneously broadened atomic medium. Of particular

interest is the dispersive response of the medium when the detuning is larger

than the inhomogeneous linewidth. In this region scattering of photons is

reduced, but this does not necessarily mean that the dispersive atom-light

coupling suffers accordingly. We take the analytic results for the susceptibil-

ity developed early in this thesis, and investigate the domain of validity of

two approximations which facilitate the analysis of experimental data. These

simple analytic expressions allow us to predict where it is best to perform

dispersive experiments without having to consider the more numerically in-

tensive full solution to the susceptibility. For detunings larger than twice the

inhomogeneous linewidth we demonstrate that inhomogeneous broadening

may be neglected for both absorption and dispersion measurements.

The structure of this chapter is as follows. We begin by describing the func-

tion which governs the absorption and dispersion of a Doppler-broadened

medium, and go on to make approximations to this function. We then use

these analytic approximations to compare the absorptive and dispersive char-

acteristics of an atomic resonance. Finally, we compare the theoretical ex-

pressions to experimental measurements.

69
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5.1 Electric susceptibility

We have met the electric susceptibility, χ, previously in this thesis (see chap-

ter 3), but we will reiterate the salient features here for ease of reference.

Absorption is proportional to the imaginary part of the susceptibility, χI,

and we have shown in chapter 4 that our model of the susceptibility is in

excellent agreement with experimental data. Dispersive effects result from

the real part, χR, and it is this quantity (and its relationship to χI) which is

of interest in this chapter. The important expressions relating to the suscep-

tibility are

χ(∆) = c2mF

d2N
~ǫ0

s(∆), (5.1)

s(∆) = f ⊗ g =
i
√
π

ku
w(iz), (5.2)

w(iz) = ez
2

erfc(z), (5.3)

z(∆) = 1
2

Γ

ku
− i

∆

ku
. (5.4)

Here s(∆) is derived from convolution of the homogeneous line-shape f and

inhomogeneous line-shape g, and is related to the ubiquitous Faddeeva func-

tion w(iz). The associated widths are Γ, the FWHM of the homogeneously

broadened line, and ku, the 1/e half-width of the inhomogeneously broadened

line (here the inhomogeneous broadening mechanism is assumed to be purely

due to the Doppler effect with a Maxwell-Boltzmann velocity distribution).

5.1.1 Approximating the Faddeeva function

The line-shape given by the Faddeeva function appears in a number of ar-

eas in the physics community: in atomic spectroscopy [109], magnetic reso-

nance [110], and as the plasma dispersion function [111, 112]. The line-shapes

found in these fields are fundamentally related to the complex error function,

which was tabulated in 1954 by Faddeeva and Terent’ev [113, 114]. Given

the transcendental nature of the complex error function, and its ubiquity

in physics, extensive research has been carried out into finding analytic ap-

proximations to it [115, 116]. There have also been studies to produce fast

algorithms to compute the function numerically [117, 118].
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Equation (5.2) is the exact analytic line-shape of the Doppler-broadened sus-

ceptibility; unfortunately this exact result can be difficult to use. Although

algorithms exist for the Faddeeva and complementary error function erfc(z),

they are not easy to manipulate analytically, and can be time-consuming

to evaluate numerically. Also, manipulating numerical expressions makes it

difficult to gain any insight into the underlying physical processes [119]. Con-

sequently it is difficult to relate χ to z and the parameters of which they are

composed (namely the widths Γ and ku). This in turn makes it difficult to

see the relationship between the absorptive and dispersive properties. The

preceding reasons motivate our study of approximations to the analytic re-

sult by looking at the Faddeeva function in two regimes, named the Gaussian

and Lorentzian approximations for reasons that will become apparent.

5.1.2 The Gaussian approximation

We consider the situation where the broadening due to atomic motion is

much larger than natural broadening, which is the case for typical room

temperature alkali-metal atoms. For this approximation we therefore look

at the limit that Γ/ku → 0 in the derivation of the Faddeeva function.

Approximating the imaginary part of the homogeneous line-shape f = i/kuz

to a Dirac delta function,

f(z) ≈ −ku
∆

+ iπδ

(

∆

ku

)

, (5.5)

where the real part has been calculated using the Kramers-Kronig relations

(see section 3.2). With this expression substituted into the convolution inte-

gral of equation (5.2), the real and imaginary parts of the susceptibility are,

respectively

sR = −
√
π

ku
e−(∆/ku)2erfi(∆/ku), (5.6)

sI =

√
π

ku
e−(∆/ku)2 . (5.7)

The real part contains the imaginary error function erfi(z) which is similar

to the Faddeeva function in that it needs to be evaluated numerically. The

imaginary term is the convolution of a Gaussian and a Dirac delta function,
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and as expected evaluates to the Gaussian function responsible for Doppler-

broadening, with the FWHM Doppler width ∆ωD = 2
√
ln 2 ku.

In this approximation both sR and sI have a Gaussian detuning dependence,

whose exponential decrease means that it decays rapidly away from reso-

nance. The real part sR has an additional imaginary error function depen-

dence which increases rapidly with detuning; hence dispersion contains the

long-range characteristics associated with the Faddeeva function.

5.1.3 The Lorentzian approximation

In the Gaussian approximation we made the assumption that homogeneous

broadening was negligible compared to inhomogeneous broadening, based

on the ratio of their frequency widths. We will see that this is not true

far from resonance. In this section we will find regimes under which homo-

geneous broadening dominates the susceptibility. We begin by noting that

the complementary error function can be written in the form of a continued

fraction [120, 121]

√
π erfc(z) = 2

∫ ∞

z

e−t2dt =
2e−z2

2z + 2
2z+ 4

2z+ 6
2z+...

. (5.8)

For |z| ≫ 1 the continued fraction can be approximated to e−z2/z. This

requires either of the following conditions to be fulfilled:

(i) |∆| ≫ ∆ωD

(ii) Γ ≫ ∆ωD

The first condition is that the laser is detuned from resonance further than the

Doppler width and is essentially a property of the light source; the second is

that natural broadening dominates over Doppler broadening and is a property

of the medium. The Doppler width can be reduced by, for example, using cold

atoms at sub-milliKelvin temperatures [4–6]. Many experiments, including

the ones considered in this thesis, are conducted with alkali-metal atoms

on the D lines at room temperature (or hotter); the parameters of interest

are then Γ ∼ 2π(5 MHz), and ∆ωD ∼ 2π(0.5 GHz), thus Γ/∆ωD ∼ 10−2.

Therefore, for the limit |z| ≫ 1 to be valid, it is necessary to be detuned far

from resonance, |∆| ≫ ∆ωD.
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Substituting the approximated erfc(z) into (5.2) we get the result

s =
i

kuz
=

i

Γ/2− i∆
. (5.9)

Note that this is identical to the case for homogeneous broadening, e.g. an

ensemble of stationary atoms, or atoms at ultra-low temperatures for which

Doppler broadening is negligible [122]. The real part of the susceptibility

gives the dispersion function, and the imaginary part the Lorentzian function;

specifically

sR = − ∆

(Γ/2)2 +∆2
, (5.10)

sI =
Γ/2

(Γ/2)2 +∆2
. (5.11)

Furthermore, since |∆| ≫ ∆ωD ≫ Γ, these relations simplify further to

sR = −1/∆, and sI = Γ/2∆2 respectively. These detuning dependences are

discussed further in section 5.1.5.

The physical interpretation of the Lorentzian approximation is that the Gaus-

sian line-shape responsible for inhomogeneous broadening decreases exponen-

tially with detuning, whereas the homogeneous line-shape decreases much

more slowly in the wings. Hence the contribution to the overall line-shape

far from resonance is dominated by the Lorentzian function, and both ab-

sorption and dispersion will be well approximated.

5.1.4 Validity of the approximations

Figure 5.1 shows the line-shape, s, of the Faddeeva function and its Gaus-

sian and Lorentzian approximations, for a typical room temperature alkali-

metal atomic ensemble where the Doppler-broadening is two orders of mag-

nitude larger than natural broadening. It can be seen in figure 5.1(a) that

for |∆| < 1.5 × ∆ωD the imaginary part of the Faddeeva function is ade-

quately described by the Gaussian approximation, and for |∆| > 2∆ωD the

Lorentzian approximation holds. Therefore, close to resonance, Doppler-

broadening dominates the absorptive interaction; whereas natural broad-

ening dominates at large detuning. A similar situation for the real part

of the Lorentzian approximation is seen in figure 5.1(b), i.e. it is valid for
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Figure 5.1: Comparison of the Faddeeva function and its approximations. The

imaginary and real parts of the susceptibility line-shape, s, are shown in parts

(a) and (b), respectively. The horizontal axis is detuning, ∆, in terms of the

Doppler width, ∆ωD. The thick solid red curve shows s calculated using the

Faddeeva function (with Γ/∆ωD = 10−2), whilst the Gaussian and Lorentzian

approximations are shown as solid black and dashed blue curves, respectively.

|∆| > 2∆ωD. However, the Gaussian approximation is in good agreement

with the Faddeeva function over the whole spectral range. In appendix E we

investigate the Faddeeva function over a wider range of z values and show

the relative difference between it and its approximations.

5.1.5 Comparing absorption & dispersion

Figure 5.2 shows the ratio |χR/χI|, calculated using the Faddeeva function

and its Gaussian and Lorentzian approximations. It shows that the ratio

between dispersion and absorption continually increases with detuning, with

the asymptotic limit 2|∆|/Γ from the Lorentzian approximation (see equa-

tions (5.10) & (5.11)). Note, however, that dispersion also varies inversely

with detuning in this limit. Hence, any dispersive effects which require low

absorption are best performed far from resonance under conditions which

increase the atom-light interaction e.g. high atomic density [40] or stronger

coupling [57].
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Figure 5.2: The relative importance of dispersive and absorptive properties of

a Doppler-broadened atomic medium. The ratio |χR/χI| for a single transition

is shown as a function of detuning, ∆, in terms of the Doppler width, ∆ωD.

The thick solid red curve shows χ calculated using the Faddeeva function (with

Γ/∆ωD = 10−2), whilst the Gaussian and Lorentzian approximations to χ are

shown as solid black and dashed blue curves, respectively.

5.1.6 Hyperfine structure

We have shown that Doppler-broadening can effectively be ignored for de-

tunings |∆| > 2∆ωD. However, this situation is somewhat complicated due

to the presence of hyperfine structure. For alkali-metal atoms the hyperfine

structure is such that the ground state splitting, ∆ωhfs, is much larger than

the room temperature Doppler width. This is not the case for the excited

states, which tend to have intervals of comparable size to ∆ωD. Hence, in

order to calculate χ near to the line-centre, each individual hyperfine tran-

sition needs to be modelled individually, although for some purposes excited

state splitting can be ignored (for example, on the D2 lines of Rb [36] and

Cs [29]). Far from line-centre, at detunings larger than the ground state hy-

perfine splitting, it is possible to approximate all hyperfine transitions to a

single Lorentzian function. By performing this calculation we find that there

is a less than 5% error for |∆| > 3.5×∆ωhfs for the Rb D lines.
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5.2 Comparing theory & experiment

ECDL

ND

Rb cell & heating solenoid

PD

l/2PBS

B

Figure 5.3: Schematic of the experimental apparatus. The output of an external

cavity diode laser (ECDL) is passed through a polarisation beam splitter (PBS),

providing linearly polarised light. The beam is attenuated with a neutral density

filter (ND) before passing through a heated vapour cell. A half-wave plate (λ/2)

is used to control the polarisation angle of the light before it is analysed with a

PBS and collected on a differencing photodiode (PD).

In order to test experimentally the validity of the approximations to the Fad-

deeva function, the transmission of a probe beam on the D1 line of rubidium

was recorded. The experimental apparatus is shown in figure 5.3. The source

of laser light was an external cavity diode laser at 795 nm. The laser output

polarisation was made linear using a polarisation beam splitting cube, and

then attenuated to be less than 1 µW such that it is in the weak probe limit

(see reference [108]). The beam had a 1/e2 half-width of 2 mm. After passing

through a half-wave plate the beam was sent through a heated vapour cell,

based on the design of [18]. A solenoid1provided the heating and magnetic

field, when required (it was briefly switched off for measurements with zero

magnetic field). Upon transmission through the cell, the two orthogonal lin-

ear polarisations of the beam where separated with a PBS cube and sent to

the two ports of a differencing photodiode. For transmission measurements

under zero applied magnetic field the half-wave plate was rotated to max-

imise the signal incident upon a single detector port; for balanced detection

of beam rotation the wave plate axis was set such that equal amounts of light

were transmitted from the two PBS cube ports. The vapour cell used was a

75 mm 87Rb cell containing the Rb isotopes according to the ratio 87Rb:85Rb

of 99:1.

1Built and tested by Yifei Cai.
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5.2.1 Absorption
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Figure 5.4: Comparison between experiment and theory for the transmission of

a weak probe beam through a vapour cell (a) Experimental data are shown in red,

whilst the dashed black curve shows the transmission calculated using the Voigt

function. The Gaussian and Lorentzian approximations to the Voigt function are

shown as solid black and dashed blue curves, respectively. (b) The difference in

transmission between theoretical and measured data. The experimental data were

obtained with red-detuned light, but plotted against ∆′ = −∆. The origin of the

detuning axis is from the 87Rb Fg = 2 → Fe = 1 transition.

The solid curve in figure 5.4(a) shows the transmission measured at 132◦C

as a function of detuning from the weighted line-centre in units of Doppler

width, ∆ωD = 2π(584 MHz). Absorption in the region shown is due to the
87Rb Fg = 2 → Fe = 1, 2 transitions. Theoretical transmission (dashed

curves) was calculated using equations (5.2), (5.7) and (5.11) to model each

hyperfine transition involved. The transmission difference between theory

and experiment is shown in figure 5.4(b). It can be seen that the Faddeeva

function agrees with the measured data to within the noise level; any dis-

crepancy beyond this is due to the fitting of the frequency axis. Both the

Gaussian and Lorentzian approximations agree on resonance. This is because

the transition is optically thick so any variation between the two approxima-

tions is obscured. At a detuning of about one Doppler width the Lorentzian

is no longer at zero transmission and only matches with measured data again
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for detunings greater than two Doppler widths. Conversely, the Gaussian ap-

proximation matches the experiment up to about 1.5 Doppler widths before

differing significantly for larger detunings. It was stated in the derivation

of the Gaussian and Lorentzian approximations that Doppler broadening

dominates close to resonance, whilst natural broadening dominates far from

resonance. It can be seen that at around two Doppler widths absorption due

to the Gaussian line-shape rapidly decreases, and it is from this point that

the Lorentzian function becomes the dominant broadening mechanism.

The situation with the two approximations is similar to that seen in previous

experiments, where Gaussian fits to data are used when the line-centre is of

interest, e.g. in reference [93], and Lorentzian fits for off resonant behaviour,

e.g. in reference [29]. However, we have derived these line-shapes ab initio

and quantified their regime of validity.

5.2.2 Dispersion

Dispersion is more difficult to measure than the absorption of a medium

and, as such, most experimental studies have concentrated on absorptive

measurements. Absolute dispersive measurements generally require actively-

stabilised interferometry [123, 124] or beam deflection measurements [125].

However, the differential dispersion of a medium is easily probed via the

Faraday effect [40, 53]. We will give a more detailed explanation of the

Faraday effect later in this thesis (see chapter 7), suffice it to say here that

the Faraday effect produces a difference in the dispersion between left and

right circularly polarised light. This leads to rotation of the polarisation plane

for incident linearly polarised light. In a heated vapour this rotation can be

as large as tens of radians over a frequency range of many Doppler widths.

Using the technique described later in this thesis we measured the rotation

of light polarisation using a differencing signal in a balanced polarimeter.

Light transmitted through the vapour is sent through a polarisation beam

splitter and the resulting vertical and horizontal polarisations directed to a

differencing photodiode, where the intensities Ix and Iy are subtracted. An

important feature of this signal is that the positions of the zero crossings are

solely due to dispersion. These zero crossings correspond to a rotation angle,
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θ, of integer multiples of π/2.

2 3 4 5 6 7 8

0.5

0.25

1

2

4

∆′/∆ωD

|θ
|/

π
ra

d

−1

−0.5

0

0.5

1

(I
x
−

I y
)/

I 0

(a)

(b)

Figure 5.5: Comparison between experiment and theory for the polarisation

rotation of a weak probe beam through a vapour cell. (a) Balanced differencing

signal. Experimental data are shown in red, whilst the dashed black curve shows

the theoretical signal calculated using the Faddeeva function. (b) The rotation

angle of the beam’s plane of polarisation: red points are from the zero crossings

of the measured data, curves are calculated using the Faddeeva (thick solid red),

Gaussian (solid black) and Lorentzian (dashed blue) functions. The Doppler width

is ∆ωD = 2π(569 MHz).

Figure 5.5(a) shows the differencing signal for a temperature of 112◦C and

applied field of 200 G. The signal is normalised to the maximum intensity, I0,

received by one of the photodiodes in the absence of a magnetic field. Also

shown is the signal calculated by solving the complete Hamiltonian of the

system, with a Faddeeva line-shape. There is good agreement between the

two curves, the main difference being in the amplitude, which is due in part

to the differencing photodiodes not being perfectly balanced. Figure 5.5(b)

compares the Faddeeva function and its approximations to the rotation angle

experienced by the linearly polarised probe beam. Data points are taken from

zero crossings in figure 5.5(a). Excellent agreement is seen between measured

data and both the Faddeeva function and Gaussian approximation over the

whole spectral range, whilst the Lorentzian approximation only holds far

from resonance, in agreement with the conclusion of sections 5.1.2 and 5.1.3.
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5.3 Discussion

We have seen in the previous two sections that the Faddeeva function gives

a good fit to data over the whole frequency range, whereas the Lorentzian

approximation is only valid far from resonance. The Gaussian approxima-

tion, however, shows contrasting behaviour in its absorptive and dispersive

properties. With regard to absorption it is valid close to resonance only,

whilst the dispersive properties are accounted for over all detuning. The dif-

fering nature of the two approximations stems from the fact that only in the

Lorentzian approximation did we assume that |∆| ≫ ∆ωD.

The approximations to the electric susceptibility we have described facilitate

(i) the analytic manipulation of χ, allowing a comparison between the disper-

sive and absorptive properties of atomic media; and (ii) ease of computation

of properties of interest. In particular, we have seen that for a detuning

greater than two Doppler-broadened linewidths the fully analytic Lorentzian

approximation is valid. From this we have shown that off resonance dis-

persion increasingly dominates over absorption. Quantitative predictions of

dispersion were made and were found to be in excellent agreement with mea-

sured data.



Chapter 6

The slow-light effect

In chapter 4 our main concern was the development of a theoretical model

which could predict the transmission of a weak, continuous-wave beam

through an atomic vapour. Due to the inextricable link between absorption

and dispersion (epitomised in the Kramers-Kronig relations, see section 3.2),

our model also gives us some insight into the dispersion experienced by in-

teracting light. We briefly came across dispersion in chapter 5 when we

compared theoretical and experimental polarisation rotation of off-resonant

light, finding that our model accounts well for absorption and dispersion.

In this chapter we investigate another manifestation of dispersion, that of

slow light. This phenomenon is most readily observable in the propagation

of optical pulses through a hot atomic vapour.

6.1 Optical pulses & Fourier optics

So far in this thesis we have mostly concerned ourselves with monochromatic

waves. The electric field of these single frequency waves is of infinite tem-

poral and spatial extent and as such they are not physically realisable. The

loophole we used to justify our continued use of these waves is that after a

sufficiently long time under constant illumination a state of equilibrium of

the atom-light interaction is achieved1. We saw in sections 2.4 and 3.3 that

1We saw in chapter 2 that typically several excited state lifetimes is long enough for

the medium to ‘forget’ about its past state.
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even over short timescales a low-intensity wave will be in quasi-static equi-

librium with the medium through which it propagates, and in section 3.1 we

calculated the electric field of these weak waves. In this chapter we limit dis-

cussion to atom-light interactions in which the medium is unaffected by the

passage of light, allowing us to use the weak-field solutions to model pulse

propagation.

A superposition of many monochromatic waves can be formed such that the

resultant pulse is localised (either as a single disturbance, or many sequential

disturbances in the form of a ‘pulse train’). Consider the sum of N forward-

traveling plane waves all polarised in the same direction:

E(z, t) =
N
∑

j

E0je
i(kjz−ωjt). (6.1)

The waves interfere constructively and destructively due to relative phase dif-

ferences. For a sum of closely spaced frequencies, the resulting superposition

is the product of two components: a rapid temporal variation enclosed by a

slower, amplitude modulated envelope (cf. acoustic beats). As the number

of individual waves is increased in this sum, the distance between regions of

constructive interference (i.e. individual pulses) increases. In order to create

a single, well-defined pulse the discrete sum of wave frequencies above must

be replaced by a continuum of frequencies. This is then a Fourier integral:

E(z, t) =
1√
2π

∫ +∞

−∞
E(z, ω)e−iωtdω, (6.2)

where E(z, ω) = E(0, ω) exp[ik(ω)z] is the angular-frequency spectrum of the

pulse, where the initial spectrum is given by the inverse Fourier transform of

the electric field at z = 0,

E(0, ω) =
1√
2π

∫ +∞

−∞
E(0, t)eiωtdt. (6.3)

The angular-frequency spectrum is a measure of how much each angular fre-

quency contributes to the pulse. It is important to the propagation of pulses

through dispersive media because the wavevector k is frequency dependent:

each monochromatic wave comprising the pulse will behave differently inside

the medium. This will lead to distortion and attenuation of the pulse as each

angular-frequency component has its own velocity and absorption coefficient.
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For a sufficiently weak pulse, these single-frequency, or monochromatic, wave

components propagate unaffected by each other (via the superposition prin-

ciple of linear systems), at a phase velocity vp = c/n. In a non-dispersive

medium, where the refractive (or phase) index n is identical for all frequen-

cies, each phase element of a pulse is travelling at the same velocity and is

being attenuated by the same amount. The pulse velocity vg will be identical

to this. However, in media where n is frequency dependent phase elements

propagate with a range of velocities, and the superposition of these elements

give rise to a pulse which can travel at a vastly different speed.

As we did in section 3.2.1 we can make the slowly-varying envelope approx-

imation. The pulse envelope that will be considered in this investigation

is Gaussian, since it is easy to manipulate analytically and to a fair degree

it can be reproduced experimentally. The envelope has the property that

its angular-frequency spectrum is also Gaussian. For an envelope of unit

amplitude and zero phase at the entrance to the medium, Ẽ(z = 0, t), the

relationship between it and its initial spectrum Ẽ(0, ω) is

Ẽ(0, t) = exp[−1
2
(t/τ)2], (6.4)

Ẽ(0, ω) = τ exp[−1
2
τ 2(ω − ωc)

2], (6.5)

where the spectrum is centred at the carrier angular frequency ωc, and τ

is the half-width of the envelope’s intensity profile at |Ẽ(0, t)|2 = 1/e. τ is

related to the full-width at half-maximum (FWHM) of the intensity profile,

∆t, and intensity spectrum, ∆ω, via

∆t/τ = τ∆ω = 2
√
ln 2 ≈ 1.665. (6.6)

Hence the relationship between the FWHM of the profile and spectrum is

∆t∆ν = 2 ln 2/π ≈ 0.441, where ∆ω = 2π∆ν. Another useful quantity

describing the pulse is the bandwidth ∆ωband = 2π∆νband = 6/τ . This

describes the (angular-)frequency range in which the majority (99%) of the

pulse is contained.

To simulate weak pulse propagation through homogeneous media we first

calculate the spectrum at the entrance to the medium, Ẽ(0, ω), and then

multiply by the frequency dependent phase factor exp[ik(ω)z] to get the

spectrum at a point z inside the medium. The temporal electric field inside
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the medium, E(z, t), can then be calculated by taking the Fourier transform

of the spectrum.

6.2 Narrowband approximation

According to the previous section, calculating the electric field at a point in

space requires a Fourier integral to be performed, and given the complexity of

the wavevector k a numerical method is usually required to obtain solutions

(but see reference [64] for analytic solutions to some restricted cases of the

wavevector). In this section we make the narrowband approximation, that is,

we assume that the variation of the dispersive and absorptive properties of

the medium over the bandwidth of the pulse is small. This approximation

allows the use of a simplified wavevector, leading to analytic solutions of

pulse propagation for a Gaussian envelope. It is often the case in experiments

that we require the pulse to be transmitted with little distortion and only

moderate absorption, and in this regime the narrowband approximation is

perfectly justifiable.

A Taylor-series expansion of the wavevector (here assumed to be real-valued)

about the pulse carrier angular frequency, ωc, yields [10]

k(ω) = k(ωc) + (ω − ωc)
dk

dω

∣

∣

∣

∣

ω=ωc

+
1

2!
(ω − ωc)

2 d
2k

dω2

∣

∣

∣

∣

ω=ωc

+ . . . . (6.7)

The zeroth-order coefficient k = ωc/vp is inversely proportional to the phase

velocity of the carrier wave; the first-order coefficient is proportional to

dk/dω = 1/vg, which is the inverse of the group velocity. The group ve-

locity is given by the well-known expression [64]

vg =
c

n(ω) + ω dn(ω)
dω

∣

∣

∣

∣

∣

ω=ωc

=
c

ng

, (6.8)

where ng is the group refractive index. The time it takes for a pulse to

traverse a medium of length L is the transit time ttransit = L/vg = Lng/c.

The second-order coefficient depends on the term

d2k

dω2
=

1

c

dng

dω
, (6.9)



Chapter 6. The slow-light effect 85

which describes the dispersion of the group velocity. For non-zero group

velocity dispersion (GVD), points on the pulse profile move at different ve-

locities through a dispersive medium, and there will therefore be a spread in

transit times across the pulse. This spread, δttransit, can be approximated to

δttransit = δω(L/c)(dng/dω), where δω is a measure of the angular frequency

extent of the pulse.

If a pulse’s bandwidth is large, higher-order terms in (6.7) need to be con-

sidered. These higher-order dispersive terms cause the pulse to distort and

hence such a pulse will no longer bear much resemblance to its initial tempo-

ral profile. For a pulse to propagate through a dispersive medium and remain

close to its initial profile, it is necessary that the transit time spread be much

less than the initial temporal duration. This limits the pulse bandwidth, as

its frequency components must be within a spectral region where third-order

and higher terms in (6.7) vanish.

We will consider the analytic case of a Gaussian pulse propagating through

a medium in which dispersion leads to only group delay and broadening, in

addition to constant absorption over the pulse bandwidth. Thus the envelope

travels at the group velocity. For the pulse to remain essentially unbroadened

(and thus retain its initial width τ), the propagation distance must be less

than the dispersion length [126]

LGVD = cτ 2
∣

∣

∣

∣

dng

dω

∣

∣

∣

∣

−1

. (6.10)

The temporal pulse width increases with propagation distance through the

medium, z, by a factor [126]

η =
√

1 + (z/LGVD)2. (6.11)

Hence the dispersion length is the propagation distance at which the pulse

width is a factor
√
2 of the initial value. For propagation distances compa-

rable to or longer than LGVD, or shorter initial temporal width (and hence

larger frequency extent), the pulse broadens but retains its Gaussian profile

(in the absence of terms higher than second order in (6.7)).

The intensity of the Gaussian envelope as a function of distance is

I(z, t) = I0
e−αz

η
exp

[

−(t− z/vg)
2

(ητ)2

]

, (6.12)
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which is the input intensity profile shifted in time to a position z/vg and

broadened by a factor η. Loss of amplitude is the result of two factors. The

first, 1/η, represents the fact that the energy of the pulse (and hence area un-

der the intensity envelope) is conserved by the dispersive effect of GVD. The

second, exp[−αz], is the Beer-Lambert law transmission calculated with the

absorption coefficient α of the carrier wave, and taken to be the transmission

of the pulse as a whole.

6.3 Predicted delay & absorption of pulsed

light
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Figure 6.1: Theoretical group index (blue) and optical depth (red) in a 75 mm

long, 125◦C, 99% isotopically-pure 87Rb vapour cell. The grey region shows the

1 GHz bandwidth of a 1.5 ns Gaussian pulse, centred at a detuning of 0.14 GHz.

Detuning is with respect to the weighted line-centre (see chapter 4).

The time difference between a pulse traversing a medium and travelling in

free-space (or a medium with ng = 1) of equal length gives a convenient

measure of the slow-light effect, and is given by

tdelay =
L

c
(ng − 1). (6.13)
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Delaying a pulse by a time greater than its duration whilst experiencing

little in the way of absorption or distortion is the goal of many areas of

research [32, 127]. From the weak-field model we developed in chapter 4 we

are able to calculate the real and imaginary parts of the refractive index, and

thus able to predict the delay experienced by the pulse and optical depth,

Ldepth, of the medium (related to the Beer-Lambert law derived transmission

T = exp[−Ldepth]). Since we are interested in observing a pulse delayed by

more than its width, we look for regions in the spectrum which have high

group index, in order to provide large time delay and low absorption, so

that the pulse is not attenuated to such an extent that it is of no use to

us. Another consideration is how rapidly the group index and absorption

vary in the region of interest: a slow variation means we can have a greater

bandwidth within which to work and thus larger fractional time delays are

possible, i.e., delaying a pulse by many times its duration. A variation of

dispersion and absorption across the bandwidth may cause distortion of the

pulse.

Figure 6.1 shows the theoretical group index and optical depth experienced

by a D1-resonant beam travelling through a hot vapour cell2. A high temper-

ature is required so that there is sufficient vapour pressure (and hence atomic

density) so that ng ≫ 1. In the figure we can see that the requirement for

slow light is met away from atomic resonance. Also, for large detunings, both

quantities are approximately constant over hundreds of MHz, the bandwidth

of a pulse of around 1-10 ns. Of particular interest is the 1 GHz window

around zero detuning (highlighted in grey) in which the delay and optical

depth have a relatively constant frequency dependence. For a pulse whose

carrier wave is at 0.14 GHz detuning, we see a group index of 23 and an op-

tical depth of 0.26. From the narrowband approximation, a 1.5 ns Gaussian

pulse has a dispersion length of LGVD = 122 mm (compared to a propagation

distance L = 75 mm), so we expect a small degree of broadening of the pulse

by a factor η = 1.2. Hence the peak delay and transmission are predicted to

be around 5.5 ns and 64%, respectively.

2Note that on resonance, in addition to massive attenuation, a pulse will experience

a negative group index. This is the phenomenon of fast or superluminal light, which we

shall tacitly draw a veil over. For discussion on this topic see references [64, 128].
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6.4 Pulse propagation
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Figure 6.2: Transmission of a continuous-wave beam as a function of detuning

from the D1 line-centre, through a vapour cell at room temperature (black curve),

∼ 115◦C (blue), and ∼ 135◦C (red).

The experimental setup used to demonstrate the slow-light effect is almost

identical to the apparatus required to measure transmission spectroscopy

(see chapter 4, for example), except we now include a Pockels cell to produce

pulsed light. This device is based on the Pockels effect (after Friedrich Pock-

els, 1893 [129, 130]), in which an applied electric field produces birefringence

in a material. Application of a time-varying electric field can modulate the

polarisation of an incident optical field, and placing the Pockels cell between

two crossed polarisers can produce amplitude modulated optical pulses. We

use an EM508-TT Pockels cell with an applied voltage supplied by an FID

FDS 7-1NM driver (sold by Leysop Ltd). This apparatus produces optical

pulses with FWHM 1.5 ± 0.2 ns at a rate of 50 Hz. We begin by show-

ing the continuous-wave transmission spectrum through a 75 mm long, 99%
87Rb vapour cell for a few temperatures in figure 6.2(a). In contrast to the

D1 spectra seen in chapter 4 (where both naturally occuring isotopes were

present), at room temperature four absorption lines are seen, compared to the

six seen in a natural-abundance cell. Due to Doppler-broadening, at higher

temperature each pair of lines merge into one. The additional line appearing

between them is due to the presence of 85Rb in the cell; at a concentration

of 1% it is much weaker than the 87Rb transitions and hence not visible at

room temperature. Another important point to make about such high tem-
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Figure 6.3: Measured pulse propagation through a vapour cell at various temper-

atures. The black curve is a non-interacting reference pulse from which transmis-

sion and time delay are measured; group index is calculated using equation (6.13).

The subsequent curves (blue to red) show transmission for 110, 125, 135, 140, and

160◦C. Dashed curves show theoretical pulses calculated by solving the Fourier

integral (6.2), along with the line traced out by the theoretical pulse peaks.

peratures is that we are now in a regime at which the density of atoms is

sufficiently large that dipole-dipole interactions act to broaden the atom’s

spectral line-width. The additional broadening mechanism is Lorentzian in

nature, and thus we add a density-dependent term to the natural broadening

line-width ΓTotal = Γ + βNa [91].

The slow-light effect is measured in figure 6.3, where a pulse centred between

the two absorption lines (close to zero detuning) is delayed by more than

its width, as observed in previous work [28–30]. Commensurate with in-

creased absorption is increased delay and broadening of the pulse. Note also

the distortion of the pulse (most readily seen in figure 6.3 at temperatures

≥ 140◦C) which is a result of higher-order dispersive effects. Theory curves

are a result of solving the Fourier integral from section 6.1. Good agreement

is seen between experiment and theory (bearing in mind the measured in-

put pulse is not Gaussian) up to temperatures of 140◦C. The trend is most

easily seen if we plot the transmission and delay of the pulse peak versus

temperature, as is done in figure 6.4. The discrepancy between theory and

experiment becomes noticeable at 150◦C, and there is a marked difference at
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Figure 6.4: Measured temperature dependence on the transmission (circles)

and time delay (triangles) of the pulse peak. Solid red curves show the result

of solving the Fourier integral, whilst dashed blue curves show the narrowband

approximation to this theory (see text). Measurement errors are of the order of

the point size.

160◦C where the time delay of the pulse is half of what is expected by theory,

with four times the expected transmission. The likely explanation for this

disagreement is that the theoretical model assumes that the pulse is suffi-

ciently weak that it does not affect the medium as it propagates. However,

to get a good signal-to-noise ratio in detecting the pulse it was necessary

to use a light intensity of 3.82 mW/mm2. This high intensity results in the

pulse having an area of order unity, which we will see in chapter 10 means

there is high probability of the pulse affecting the medium. This likely causes

pumping of the atoms, particularly at higher temperatures when the atomic

density is sufficient large that a significant proportion of the atoms are close

to resonance with the pulse beam.3 Figure 6.4 also shows there is little dif-

ference between the numerical solution to the Fourier integral (6.2) and its

approximation (6.12), showing that the assumptions of small variation of

the dispersive and absorptive properties of the medium over the bandwidth

of the pulse are justified. In particular the predictions made for the 125◦C

medium in section 6.3 are borne out.

3Since the pulse is several gigahertz from an atomic resonance, it is unlikely to cause

optical pumping of atoms with zero longitudinal velocity. However it is possible to cause

pumping of sufficiently high velocity atoms which have been shifted into resonance via the

Doppler effect.
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Figure 6.5: Positions of the pulse front and back relative to the peak delay, tpeak.

Curves show theoretical broadening calculated from solving the Fourier integral

(solid red) and broadening by GVD (dashed blue). The horizontal dashed line

represents the width of the reference pulse.

The broadening and distortion of the pulse are investigated in figure 6.5.

Here we show the half-width at half-maximum of the front (negative values)

and back (positive values) of the pulse relative to the peak delay. Again

experiment and the numerical solution to the Fourier integral agree well below

140◦C. The approximate theory, calculated using equation (6.11), assumes

that the pulse envelope remains Gaussian and thus is symmetric around tpeak.

Comparing the two theory curves we see that the back broadens as expected,

but the front broadens to a lesser degree. This asymmetry in the Fourier

integral (and experimental data) demonstrate a deviation from the initial

Gaussian envelope, due to distortion by higher-order dispersive terms than

GVD.
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6.5 Spectral sensitivity of slow-light media

The large group refractive index responsible for the delay of pulsed light is

also of relevance to continuous-wave propagation. Here we derive an expres-

sion for the spectral sensitivity of the slow-light effect, i.e. the rate of change

of dispersion with frequency. We begin with a well-known result from the

interference of waves. If two waves (a and b) of angular frequency ω travel

along separate paths, upon meeting up they experience a phase shift ∆φ

which is proportional to the difference in length ∆L between the two paths.

This assumes that both waves are travelling at equal speed, i.e. in the case

of optical waves, the refractive index of the medium n is identical for both

paths. If we now consider paths of the same length L, the phase shift be-

tween two co-propagating waves is produced by a differing optical path length

L(na − nb) = L∆n, where ni is the phase index experienced by wave i, and

∆n is the relative refractive index. The phase shift between the two waves

is given by [78]

∆φ =
ω

c
L(na − nb) = L(ka − kb), (6.14)

The wavenumber, k = ωn/c, is introduced to simplify calculations later on.

As a further simplification, here both n and k are taken to be real.

In dispersive media, n is a function of ω. Changing the angular frequency by

an amount δω produces a change in relative phase δ∆φ given by

δ∆φ(ω, L) = ∆φ(ω + δω, L)−∆φ(ω, L) = L[∆k(ω + δω)−∆k(ω)]

= L[∆k(ω) +
d∆k(ω)

dω
δω +

1

2!

d2∆k(ω)

dω2
δω2 + . . .−∆k(ω)]

=
L

c
[∆ng(ω) +

1

2!

d∆ng(ω)

dω
δω + . . .]δω. (6.15)

Here ∆ng = na
g − nb

g is the relative group refractive index, and d∆ng/dω is

the relative group velocity dispersion.

In the limit that δω → 0, equation (6.15) becomes

d(∆φ)

dω
=

L

c
∆ng. (6.16)

A small change in angular-frequency thus produces a change in relative phase

proportional to the relative group refractive index. Thus the larger the dif-

ference in ng, the higher the spectral sensitivity.
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6.6 Discussion

We have shown that in a hot atomic vapour a pulse can be delayed by more

than its duration, and that the wavevector calculated for weak, monochro-

matic light in earlier chapters can be applied successfully to pulse propa-

gation. In particular the narrowband approximation, in which we model

propagation of a weak Gaussian pulse analytically, is shown to be accurate,

despite being a simple extension of the continuous-wave transmission model

developed in chapter 4.

In the second part of this thesis, we concern ourselves with the Faraday

effect. The Faraday effect arises due to the medium’s differing response to the

two orthogonal circular components of a linearly (or in general, elliptically)

polarised wave. Instead of two separate waves following different paths as

in the foregoing example (section 6.5), the two polarisation components co-

propagate through the medium. The relative phase between them manifests

itself as a rotation of the composite wave. Therefore, whilst ∆n determines

the magnitude of the rotation, ∆ng describes the spectral dependence of this

rotation. These quantities can vary by several orders of magnitude in a slow-

light medium, thus Faraday rotation is extremely sensitive to a variation in

frequency.



Part II

The Faraday effect
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Chapter 7

Faraday rotation of

continuous-wave light

The resonant Faraday effect and magneto-optical effects have been studied

extensively over the past century [52], but in line with chapter 5 we are here

more interested in the off-resonant characteristics of the interaction where ab-

sorption is negligible with respect to dispersive effects. While the off-resonant

Faraday effect has been used to probe semiconductor spin ensembles [131]

and quantum dots [132], in atomic systems it has mainly been studied in the

context of narrowband filtering [53]. In this chapter we develop techniques

that have found applications as a tunable Faraday dichroic beam splitter [39]

and as a laser frequency-stabilisation device [133].

7.1 Birefringence in an atomic medium

An isotropic medium responds identically to an applied electric field regard-

less of the field’s polarisation direction. Thus the interaction has one asso-

ciated refractive index used to describe the propagation of light. However,

there exist materials for which the interaction is anisotropic. First described

in Iceland spar by Erasmus Bartholin in 1669 [134, 135], the effect of bire-

fringence decomposes light into two components with separate indices of

refraction. This is most easily understood in solid state systems with crys-

talline structure, in which case spatial symmetry of the crystal structure can
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lead to a difference in refraction for light polarised parallel or perpendicular

to the crystal axis [77]. Commensurate with birefringence is dichroism, that

is, differing absorption between polarisation components.
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Figure 7.1: An illustration of energy level configurations leading to circular

birefringence. (a) The energies of the σ transitions are degenerate, and the states

are equally populated: no asymmetry is seen for circularly polarised light. (b) An

applied magnetic field lifts the degeneracy to such an extent that whilst the σ+

transition is close to resonance, the σ− is detuned farther away.

The Faraday effect, (after Michael Faraday, 1846 [136]) is a well-known

magneto-optical phenomenon in which a magnetic field applied parallel to

the direction of light propagation induces the medium to respond differently

to left and right circularly polarised light - an instance of circular birefrin-

gence. Circular birefringence produces a relative phase shift between circular

field components. In an atomic medium left (right) circularly polarised light

stimulates σ+ (σ−) optical transitions when the axis of quantisation is taken

to be in the direction of light propagation [137]. In the absence of a magnetic

field, no birefringence is seen, as illustrated in figure 7.1(a). The effect of a

magnetic field applied along the quantisation axis is to shift the energy levels

such that, for a particular frequency of light, the σ transitions are shifted

from resonance. If one of the σ transitions is closer to resonance than the

other, the probability of a σ+ or σ− transition happening are now differ-

ent. This is illustrated in figure 7.1(b). For incident linearly polarised light

(equal amounts of left and right circular polarisations), an asymmetry in the

refractive indices of the σ transitions results in a rotation of the plane of

polarisation, which is illustrated in 7.2.
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Figure 7.2: A representation of a linearly polarised electric field, propagating

from left to right along the z -axis. The other axes show the electric field mag-

nitudes Ex and Ey. The box marks the position of the vapour cell where the

magneto-optical effect occurs. The beam remains linearly polarised throughout

the interaction, as its polarisation angle rotates by almost 2π rad.

7.2 The effect of Faraday rotation on vapour

cell transmission

The transmission of a near-resonant, weak continuous-wave laser beam was

investigated earlier in this thesis. No attempt was made to shield those exper-

iments from the geomagnetic field which is, nevertheless, too weak to produce

energy-level shifts which are observable by the equipment used. However, the

effect produced by applying a modest magnetic field of tens to hundreds of

Gauss is dramatic. In addition to the light source (which produces a beam

with a 1/e2 half-width of (2.00 ± 0.05) mm of wavelength 795.0 nm) and

vapour cell (75 mm long, containing a mixture of the two naturally occur-

ring isotopes of Rb according to the ratio 87Rb:85Rb 99:1), we add two new

elements to the experimental set-up: polarisation-sensitive optics and a heat-

ing solenoid (figure 7.3). The polarisation beam splitter separates input light

into two orthogonal, linearly-polarised components. We work in the local co-

ordinate system (see appendix F) with the beam propagation direction and

quantisation axis along the z-direction. The output ports of a polarisation

beam splitter define the x- and y-axes, allowing us to identify the orthogonal

components as Ex and Ey. The intensity Ix(y) ∝ |Ex(y)|2 of each component
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is detected on separate photodetectors. The half-wave plate (λ/2) allows

the polarisation plane of linearly polarised light to be adjusted, controlling

the relative amount of light in each polarisation component. The solenoid

heating unit (based on the design of reference [18]) produces both the mag-

netic field and Joule heating required for the experiment1. The variation in

magnetic field along the cell is about 10%.

ECDL

ND

Rb cell & heating solenoid

PD

l/2PBS

B

Figure 7.3: The output of an external cavity diode laser (ECDL) is sent through

a polarisation beam splitter (PBS) in order to purify its initial polarisation, and is

then attenuated with a neutral density (ND) filter. The waveplate (λ/2) controls

the polarisation entering the vapour cell. The two orthogonal linear components

of the beam are collected on a differencing photodiode (PD).

In figure 7.4(a) conventional Doppler-broadened transmission spectroscopy is

shown, with a beam attenuated to 30 nW/mm2 such that it was in the weak-

probe limit (see chapter 4). Application of a magnetic field causes an energy

shift between the σ transitions. The total transmission, which includes all

polarisation components, is relatively unchanged by the field2. However, the

rotation between the x- and y-components is clearly visible, with the signals

oscillating between zero and a maximum value, here given by the total field

transmission. Even at detunings of many GHz the difference between the

transmissions of the x- and y-components is noticeable. The experimental

data are compared to predictions of the theoretical model (introduced in

chapter 4) in figure 7.4(b). The theoretical model assumes that the energy

shift between the σ transitions is proportional to the magnitude of the applied

magnetic field. In this regime the model predicts both the Doppler-broadened

line-shape, and the number and positions of the oscillations.

1Built and tested by Yifei Cai.
2The energy shift is too small to be resolved here: for the 87Rb ground states the shift

per field is ∼ 1 MHz/Gauss.
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Figure 7.4: Transmission of a continuous-wave beam through a 75 mm vapour

cell at 136◦C. Plotted are the transmissions of the x-component (red), y-component

(blue), and the total intensity of the light (black). The applied magnetic field is

∼ 50 G. (a) Experimentally measured data and (b) theoretical model. Detuning

is with respect to the D1 line-centre (see chapter 4).

7.3 Measuring the polarisation rotation

In this section we detail the method by which the angular rotation due to

the Faraday effect, θ, of the polarisation plane of probe light is measured.

In appendix G we give a more general account of the transmission signals

measurable in a circularly anisotropic medium; here we choose to present the

differencing signal, which is proportional to (Ix − Iy), as it conveys both the

birefringent and dichroic characteristics of the medium. The rotation angle

can then be extracted from this signal by looking at the zero crossings and/or

extrema.

For an input beam of linearly polarised light set at an angle of −π/4 rad

to the x-axis, of total intensity I0, the differencing and total signals are,

respectively,

(Ix − Iy)/I0 = sin(2θ)e−
1
2
(α++α−)L, (7.1)

(Ix + Iy)/I0 =
1
2
(e−α+L + e−α−L), (7.2)

where L is the length of the medium, and α± are the absorption coefficients

of the σ± transitions. The magnetically induced birefringence responsible for
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polarisation rotation thus also causes circular dichroism (polarisation depen-

dent absorption), both effects being strongest close to resonance. We saw in

chapter 5 that absorptive effects dominate the interaction close to resonance,

whilst far from resonance dispersive effects are more important. Hence at

large detunings the incident light retains its linear polarisation whilst being

rotated; near-resonant light experiences greater rotation at the expense of

becoming highly elliptical. The differencing signal of equation (7.1) is a sinu-

soidal function delineated by the transmission due to the average absorption

coefficient, whilst the total intensity signal of equation (7.2) is the average

transmission of the two circular polarisations.

Figure 7.5(a) shows a differencing signal produced by a hot vapour under

the influence of a large magnetic field, shown versus red detuning ∆′ from

the D1
87Rb Fg = 2 → Fe = 1 transition in units of Doppler width ∆ωD =

2π(585 MHz). We use this variable to emphasise the data close to resonance,

by way of a logarithmic scale. Many oscillations are seen in the signal,

the peaks of which become increasingly close together at smaller detunings.

The large number of oscillations observed arises from the same phenomenon

that enhances the spectral response in a slow-light interferometer [36]. A

powerful property of the polarimetry signal is that it allows a direct read-out

of the rotation angle experienced by the incident light. The signal tends to

zero at large detuning (not shown) and each subsequent zero corresponds

to a π/2 rad rotation. This rotation, θ, is plotted in figure 7.5(b). Note

that the first zero crossing (corresponding to a π/2 rad rotation) occurs at

∆ = 12 × ∆ωD (that is, ∼ −10 GHz from the D1 line-centre) where the

absorption is less than 1%. At temperatures of order 200◦C, the first zero

shifts out to beyond −50 GHz.
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Figure 7.5: (a) The differencing signal for a 75 mm long vapour cell at a tem-

perature of 135◦C and applied magnetic field of 230 G. The signal is normalised to

the total intensity of the input. (b) The rotation angle determined from the zero

crossing of the differencing signal. [Data taken by Nia C. Bell ]
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7.4 Discussion

For linearly polarised continuous-wave light the rotation plane of polarisa-

tion is highly frequency dependent and hence of interest in the fields of in-

terferometry and polarimetry. The Faraday rotation angle was seen to in-

crease from zero at large detunings to 15π rad close to resonance, over a

frequency range of ∼ 20 GHz. This rotation corresponds to a Verdet con-

stant of 3 × 10−2 rad G−1 cm−1, three orders of magnitude larger than in

typical commercial Faraday rotators [52]. Large rotations are also seen in

thin magneto-optical photonic crystals [138], but the effect in such a sys-

tem cannot be varied dynamically. The rotation in the atomic vapour is

temperature, magnetic-field and frequency dependent, therefore the effect

can be used as a tunable polarisation switch. In addition, we recall that

polarimetry provides a useful spectroscopic tool with applications in, e.g.,

laser frequency stabilisation [20, 133]. The large bandwidth of off-resonant

polarimetry could provide a useful technique to probe fast dynamics of Ry-

dberg states in a thermal vapour [14, 139] or atomic beam [140] in the high

density regime where interactions and hence novel non-linear optical effects

are significant.



Chapter 8

The slow-light Faraday effect

In chapter 6 we demonstrated the transmission of pulsed light through an

atomic vapour. Then in chapter 7 we investigated the Faraday effect and

its application to continuous-wave light. In this chapter we marry the two

concepts, showing increased spectral sensitivity of the Faraday effect due to

the slow-light effect, and demonstrate rotation of a nanosecond pulse.

8.1 Slow-light & relative dispersion

In this section we explore the effect that an applied magnetic field has on

media in which the group refractive index is large. We will assume that the

laser detuning, ∆ = ω − ω0 (laser angular frequency minus resonant angular

frequency), is greater than the Doppler-broadened linewidth ∆ωD. In this

case, as we have seem in chapter 5 the atomic resonance can be approximated

by a Lorentzian shaped distribution, with a natural linewidth Γ. Then for

∆ > 2×∆ωD > Γ the phase and group indices, can be approximated by

n− 1 = −C 1

∆
, (8.1)

ng − 1 = C
ω0

∆2
, (8.2)

where the constant C = Nd2/2~ǫ0 (see chapter 4 for discussion of these

parameters). In (8.2), the resonant angular frequency ω0 ∼ 2× 1015 rad s−1

for visible and near visible light. Consequently ng − 1 and n − 1 can differ

by several orders of magnitude.

103
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On application of a magnetic field, the degeneracy between σ+ and σ− tran-

sitions is broken and there is now an asymmetry in the interaction between

the medium and the two helical components of light (+ and −). The energy

states of the transitions are shifted away from each other. If we assume that

this shift is small such that it acts with equal magnitude, a, but opposite

sign on the σ transitions, we replace ∆ → ∆ ± a. The relative refractive

indices can then be approximated as

n− − n+ = −2C
a

∆2
, (8.3)

n−
g − n+

g = 4C
aω0

∆3
. (8.4)

Inspection of equations (8.2) and (8.4) shows that the ratio of the relative

group index to the group index is approximately 4a/∆; the energy-level shift

is typically hundreds of MHz for a field of hundreds of Gauss, so for a detuning

of a few GHz this ratio is > 0.1. Hence in a slow-light medium where ng is

large the relative group index can also be large.

We saw the effect that the relative phase index has on light propagation in

chapter 7: it is responsible for Faraday rotation. Essentially, the refractive

index of the individual helical components controls the velocity at which

they travel through the medium. After travelling through a distance L,

the light, which has a free-space wavevector k0, experiences a phase shift

∆φ = k0L(n
− − n+). This results in a rotation of the plane in which the

linearly polarised light oscillates by an angle θ = ∆φ/2. This speed of prop-

agation phenomenon is mirrored in the relative group index, in which case a

temporal shift leads to a separation of the pulse envelope of the helical com-

ponents. The effects of the slow-light Faraday effect on pulse propagation

are illustrated in figure 8.1. For a small relative group index the pulse re-

tains its shape, with its linear polarisation rotated by an amount dependent

on the relative phase index. If the relative group index is larger, the pulse

splits into two spatially (and temporally) separated circular components of

opposite chirality. By varying the relative refractive indices it is possible

to switch dynamically between split or rotated pulses (and also control the

magnitude of this rotation). We will show that this is possible by changing

a single experimental parameter.
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Figure 8.1: A representation of two pulsed electric fields, propagating from left

to right along the z -axis. The other axes show the electric field magnitudes Ex

and Ey. The box marks the position of the vapour cell where the magneto-optical

effect occurs. Both input beams are linearly polarised along the vertical axis. The

two cases correspond to different values of either the detuning, magnetic field or

atomic density. The red beam remains linear as its polarisation angle is rotated

on exiting the medium, whilst the blue beam is split into two pulses of left and

right circular polarisation.

8.2 Measuring the relative refractive indices

In chapter 7 we made a measurement of the rotation θ experienced by a

monochromatic probe beam in a hot atomic vapour. The relative phase shift

between the two circular components of light ∆φ is equal to 2θ, and from

section 8.1 we see that by measuring the rotation angle we have also made

a measurement of the relative phase index n− − n+. The relative phase

shift and index are plotted in figure 8.2(a), where we have used the rotation

measured in section 7.5. Similarly, the relative group index is determined

by the derivative of ∆φ and is shown in figure 8.2(b). The relative phase

and group indices are seen to differ by six orders of magnitude. Thus a

small difference in refractive index can still lead to a large difference in group

index. In section 6.5 we showed that the spectral sensitivity of dispersion,

characterised by the frequency dependence of the phase shifted, is related to

the relative group index.

In pulse propagation the light has a finite bandwidth. For example, the
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Figure 8.2: (a) Relative refractive index (left) calculated from the measured

phase (right). (b) The relative group index calculated from the gradient of the

phase. Points show measured data; curves are guides to the eye. Experimental

parameters are identical to those in 7.5, viz. 75 mm long vapour cell of 99% 87Rb

at a temperature of 135◦C under an applied magnetic field of 230 G.

one nanosecond (or thereabouts) pulse used throughout this thesis has a

bandwidth of one gigahertz. Recalling our simple illustration in figure 8.1,

it is obvious that close to resonance where the variation of phase is changing

rapidly with respect to frequency the slow-light Faraday effect will manifest

itself as pulse splitting because there is a large variation in phase over the

bandwidth of the pulse. In contrast, farther away from resonance where the

phase changes more slowly we will observe pulse rotation.

8.3 Propagation of optical pulses

The experimental setup used to demonstrate the slow-light Faraday effect is

almost identical to the apparatus described in chapter 7, except we now in-

clude a Pockels cell placed between two crossed polarisers to produce pulsed

light. An off-resonant pulse being delayed in slow-light medium is shown

in 8.3(a). In figure 8.3(b), we show the effect of applying a magnetic field

along the propagation direction. In this case the pulse is split into a double

pulse. By using a λ/4 waveplate it is possible to observe the magneto-optic

effect on the σ± transitions individually, shown in 8.3(c). Comparison of

these last two plots shows that the linearly polarised pulse is split into its
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two circular component as illustrated schematically in figure 8.1. This effect

was first observed by Grischkowsky (in reference [141]) in a 1 m long cell at

140◦C with an 8.5 kG pulsed magnetic field, who recorded a time separa-

tion of 26 ns, with the slowest pulse having a velocity of c/9 (compared to

our observations of 3.5 ns and c/37, respectively). Although Grischkowsky

achieved significant pulse separation (using a much longer cell and higher

field than our experiment) he did not investigate Faraday rotation of pulses.

In the next section we demonstrate that the large bandwidth available to

the off-resonant Faraday effect enables the rotation of broadband pulses (as

illustrated by the red beam in figure 8.1).
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Figure 8.3: Propagation of an input 1.5 ns pulse through a slow-light medium.

Transmission/delay are relative to a non-interacting reference pulse (dashed curve).

Pulse detuned to ∼ −6 GHz at a temperature of ∼ 165◦C. A magnetic field of

∼ 360 G is applied to the linearly polarised pulse in plot (b), resulting in pulse

splitting. In (c) we analyse the split pulse with a λ/4 waveplate, distinguishing

between light facilitating the σ− transition (green curve) and σ+ transition (blue).

Noise in the data is reflected by the line thickness.
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8.4 Broadband pulse rotation

We saw in figure 8.2 that far from resonance the relative index evolves

slowly with detuning, in particular for detunings greater than −8 GHz, where

|∆φ| < 2π. For a linearly polarised pulse centred in this region with GHz

bandwidth, the phase variation across its spectrum is sufficiently low that

the polarisation of the pulse as a whole can be rotated by a large angle.

Experimental measurements of broadband rotation are seen in figure 8.4,

where a 1 GHz bandwidth pulse polarised in the x -direction is rotated into

the y-direction by increasing an applied magnetic field from zero to 230 G.

This high-fidelity π/2 rotation is accompanied by low absorption (less than

2%) and negligible distortion since the pulse is detuned by many Doppler-

broadened linewidths from resonance.
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Figure 8.4: An input 1.5 ns pulse initial linearly polarised in the x -direction

(red) is delayed by 0.6 ns with respect to a non-interacting reference pulse (black),

in the absence of an applied magnetic field. The pulse is red-detuned from the

weighted D1 transition centre by ∼10 GHz. For a temperature of 135◦C and a

field of 80 G (green) or 230 G (blue) the pulse is rotated into the y-direction

whilst retaining its linear polarisation and intensity.

In figure 8.5 we demonstrate the magnetic field dependence of polarisation

rotation angle θ for the pulse. The data points are taken by measuring

the Ix and Iy components of peak of the transmitted pulse and calculat-

ing the rotation angle using cos2 θ = Ix/(Iy + Ix) = Tx, where Tx is the
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transmission of the x-component of the pulse. The curves are the result of

theoretical modelling with the Faddeeva function and Lorentzian approxima-

tion (see chapter 5). It can be seen that theory and experiment agree well

for the range of magnetic field considered (and in particular the Faddeeva

function and its approximation are indistinguishable). The experimental

pulse rotation as a function of magnetic field is a measurement of the Verdet

constant, V = θ/BL (where L is the length of the cell), for the medium

at a specific temperature and detuning. A linear fit to the data results

in V = (9.44± 0.08)× 10−4 rad G−1 cm−1, in excellent agreement with the

theoretical value of 9.45× 10−4 rad G−1 cm−1.

0 100 200 300
0

0.2

0.4

0.6

Magnetic Field / Gauss

|θ
|/

π
ra

d

Figure 8.5: Comparison between experiment and theory for the polarisation

rotation of a 1.5 ns pulse through a vapour cell at a temperature of ∼ 135◦C. The

measured rotation angle of the pulse as a function of applied magnetic field is shown

(red points) along with the theoretical rotation calculated using the Faddeeva

function (thick solid red) and Lorentzian approximation (dashed blue). The pulse

is red-detuned from the 87Rb Fg = 2 → Fe = 1 transition by ∼ 12∆ωD, where

∆ωD = 2π(585 MHz). Experimental uncertainty is of the order of the point size.
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8.5 Discussion

For broadband pulses, with spectral widths of hundreds of MHz to GHz, in

the wings of a resonance the Faraday effect manifests itself as an asymmetry

in the propagation of left/right circularly polarised light. If the linearly

polarised pulse’s bandwidth is narrow enough such that the relative phase

shift across it is essentially constant, the polarisation angle is rotated in the

same way as for cw light. Far from resonance, a GHz bandwidth pulse can

be rotated by π/2 rad with less than 2% loss and negligible distortion. Light

switching with such large bandwidth and with low loss/distortion has not

been observed previously using atomic ensembles. Pulses as short as 5 ns

have previously been rotated using self-induced transparency (SIT) [142].

However, this resonant technique requires intensities above saturation and

the near-resonant character of the process leads to higher-order dispersive

terms, resulting in considerable pulse distortion.

Increasing the phase variation across the pulse, e.g. by changing the applied

field or carrier detuning, changes a single rotated linear pulse to split circular

pulses in a dynamic way. Splitting a pulse into two components separated by

more than their temporal widths could be used for pump-probe experiments;

or for photon switching or atomic ensemble entanglement [56] in quantum

information applications. The time separation of the two pulses can be con-

trolled by varying the cell temperature or applied magnetic field.

At higher temperatures and magnetic fields, the available bandwidth of many

GHz make it possible for pulses of hundreds of picosecond duration to be

delayed and rotated with high transmission. Appropriate choice of atomic

species and laser wavelength opens up the possibility of communications at

the large bit rates required for rapid data transfer.



Chapter 9

Optical control of Faraday

rotation

We saw in chapter 7 that large polarisation rotations are possible in an atomic

vapour. This was achieved by application of a static magnetic field in or-

der to break the degeneracy of the σ+ and σ− transitions, thereby inducing

birefringence which manifests itself as a rotation of the plane of polarisa-

tion of linearly polarised light. In this chapter we make a move towards

light switching i.e. temporal control over the polarisation state of light, here

demonstrating high fidelity modulation of a probe field using optical con-

trol. By application of an optical control field we open up the possibility of

switching at shorter timescales than would be feasible using a magnetic field.

To achieve a large induced rotation with low loss, i.e., a high value of the

figure of merit, ∆χR/χI, we bias the rotation of the probe using the off-

resonant Faraday effect and employ a control beam to induce population

transfer to modulate around this bias. We demonstrate optical control of

the Faraday rotation due to both changes in the total number of atoms and

due to their spin distribution. For the probe field detuned by more than 5

times the inhomogeneous atomic linewidth we observe a phase shift of π/2

radians with a loss of less than 5%, corresponding to ∆χR/χI = 40π. This

combination of large dispersion and low loss is interesting in the context

of all-optical manipulation of light pulses. As a large rotation is achieved

off-resonance the process potentially can be operated at high bandwidth of

111
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order GHz [40]. In addition, by combining this technique with the dispersive

filtering properties of the Faraday effect [39, 53, 143] one could realise an

optically tunable narrowband filter.

9.1 Controlling birefringence in an atomic

medium
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Figure 9.1: An illustration of energy level configurations leading to circular

birefringence. (a) The energies of the σ transitions are degenerate, and the states

are equally populated: no asymmetry is seen for circularly polarised light. (b)

An applied magnetic field lifts the degeneracy to such an extent that whilst the

σ+ transition is close to resonance, the σ− is detuned farther away. (c) Whilst

both transitions have the same detuning from resonance, a population difference

is present, leading to birefringence.

We briefly alluded to the underlying cause of birefringence in chapter 7,

defining it as a medium’s tendency to discriminate between two orthogo-

nal polarisation states of light and responding accordingly. The Faraday

effect was held up as an example of circular birefringence, a process in which

left and right circularly polarised light are the eigenmodes of the atom-light

interaction. Here, a longitudinal magnetic field (i.e. parallel to the light

propagation direction) splits the degeneracy of the σ+ and σ− angular mo-

mentum transitions, which are affected by left and right circularly polarised

light, respectively (see appendix F). This is illustrated in figures 9.1(a) and

(b). Any method of altering the optical properties of a medium can induce
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birefringence. One such example is illustrated in figure 9.1(c). Here, the pop-

ulations of the transition ground states are altered, which causes birefringence

by changing the relative probability of a σ+ or σ− transition happening. The

redistribution of population among angular momentum states gives a net

spin polarisation to the medium, hence the name ‘paramagnetic Faraday ef-

fect’, though strictly speaking it is unrelated to the magneto-optic Faraday

effect since an applied magnetic field is not required. The spin polarisation

is achieved via optical pumping [56, 85]. Thus the polarisation of a probe

beam can be controlled by a pumping field.

9.2 Optical pumping

Although optical-induced birefringence has its advantages, as far as we are

aware rotations of the π/2 radians necessary to realise orthogonal polar-

isation channels have not been observed. However, magnetically induced

birefringence easily produces the required channels [39]. Optical control can

be introduced to the Faraday effect via optical driving. By transferring pop-

ulation among ground states coupled and uncoupled by the probe field, the

strength of the Faraday effect can be controlled. Here the static applied

magnetic field produces a rotation offset to the probe beam around which

the polarisation angle can be tuned via the optical control field.

In order to achieve and record optical control, we add another light field to

the experimental lay out used to measure polarisation rotation (see chapters 5

and 7). Figure 9.2 shows a schematic of the experimental apparatus along

with the energy level scheme used to observe the optically controlled Faraday

effect on the D1 transition of rubidium. As in early parts of this thesis, the

source of probe light was an external cavity diode laser (ECDL) at 795 nm,

the output beam having a 1/e2 half-width of 0.8 mm and a power less than

1 µW. The beam was sent through a 75 mm vapour cell containing the Rb

isotopes according to the ratio 87Rb:85Rb of 99:1, the heating of which was

provided by a solenoid (which also provided a magnetic field). The counter-

propagating control field is resonant with the D2 line at 780 nm. The control

beam was linearly polarised with a spot size of 2 mm (1/e2 half-width).
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Figure 9.2: Schematic of the experimental apparatus. A probe beam passes

through a polarisation beam splitter (PBS), providing linearly polarised light.

The beam is attenuated with a neutral density filter (ND) before passing through

a heated vapour cell. A half-wave plate (λ/2) is used to control the polarisation

angle of the light before it is analysed with a PBS and collected on a differencing

photodiode (PD). A control beam is linearly polarised and counter-propagated at

a crossing angle of ∼ 5 mrad. A small fraction of the beam is used to perform

sub-Doppler spectroscopy in a reference cell.

In figure 9.3 we demonstrate optical pumping to uncoupled, or ‘dark’ states.

Plotted is the transmission of a probe beam through a medium subjected to

a 9 mW counter-propagating control field tuned to a frequency between the

D2 Fg = 2 → Fe = 1 and 2 resonances. At the low-frequency side of the

plot (close to resonance with the D1 Fg = 2 → Fe transition) we see spikes of

increased transmission of probe laser light. Conversely, on the high-frequency

side of the plot (D1 Fg = 1 → Fe) enhanced absorption is seen. The pumping

scheme is illustrated in the inset to figure 9.3(a), which also helps to explain

the structure of the transmission spikes. In a thermal vapour there are a

distribution of velocities which each atom can have, the velocity component

along the axis of the laser beam being responsible for the Doppler effect. An

intense pumping field interacts strongly with those atoms Doppler-shifted

close to resonance. Of the three transitions allowed by the dipole selection

rules, pumping on the two open transitions D2 Fg = 2 → Fe = 1 and 2

results in population classes with a large fraction of population in the dark

state Fg = 1. However, the Fg = 2 → Fe = 3 transition is closed, so

that population transfered into the excited state can only decay back into

Fg = 2. When the probe and control beams are resonant with the same
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Figure 9.3: (a) Transmission of the probe beam in the vicinity of the D1 line

versus blue detuning ∆P, with (red curve) and without (black) the control beam

tuned to the 87Rb D2 Fg = 2 → Fe transition. The inset shows a schematic of

the laser coupling scheme (not to scale). (b) The difference in transmission, ∆T ,

between two curves in part (a). The 99% 87Rb cell is held at a temperature of

20◦C.

velocity classes, modification to probe transmission is seen. Hence in each

Doppler-broadened line-shape of the probe beam two prominent spikes are

seen, due to a combination of hyperfine pumping and saturation of the open

transitions, with only a small contribution due to saturation of the closed

transition1. The probe transitions with Fg = 2 as the ground state are less

populated and thus produce less absorption, and vice versa for Fg = 1.

1The fact that the Fg = 2 → Fe = 3 transition is farther detuned from the pump

laser frequency than Fg = 2 → Fe = 1 and 2 also affects its relative amplitude. For

completeness, appendix H shows the effect of pump detuning on the probe transmission

spectrum.
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9.3 Measuring the polarisation rotation
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Figure 9.4: (a) Probe signal produced by scanning the probe versus red detun-

ing, ∆′
P, from the D1

87Rb Fg = 2 → Fe = 1 transition in units of Doppler width

∆ωD = 2π(571 MHz). On the left axis, the red and dashed black curves show,

respectively, the measured and theoretical differencing signal. On the right axis,

the solid blue curve shows the theoretical total transmission through the cell in

the presence of the magnetic field, whilst the dashed blue curve shows the mea-

sured total transmission in the absence of the magnetic field (flipped vertically for

clarity). (b) The measured rotation angle (data points) and theoretical rotation

(curve). The temperature of the cell is 115◦C and the applied magnetic field is

204 G.

To observe the Faraday effect, only the probe beam and the applied magnetic

field need be present. Figure 9.4(a) shows a typical differencing signal in ru-

bidium vapour and the calculated theoretical signal obtained by diagonalising

the complete Hamiltonian (including the magnetic field interaction) of the

system. Good agreement with experimental data is seen: any discrepancy is

due to the different detectors used in the measurement of Ix and Iy. For the

differencing signal, as the probe detuning is increased, θ → 0 and thus the

signal tends to zero. As the light nears resonance, the rotation increases from

zero, and due to the signal’s sinusoidal dependence on θ oscillations in the
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differencing signal are observed. As can be seen by comparing figure 9.4(a)

and (b), zero crossings correspond to rotations of integer multiples of π/2

radians to the incident beam; extrema correspond to ±π/4 rad.

The familiar Doppler-broadened line-shape in the absence of magnetic field is

seen in figure 9.4(a). The total intensity signal in the presence of the magnetic

field is also shown, and is related to the dichroism of the medium. The total

intensity is unity far from resonance where there is little absorption, and

zero on resonance due to the large optical depth at the parameters for which

the signal is calculated. At detunings of greater than two Doppler widths,

the peaks of the differencing signal lie close to the total intensity signal. At

detunings closer to resonance circular dichroism becomes important, with the

shoulder indicating where one circular polarisation is absorbed significantly

more than the other. The light polarisation here is almost circular, hence the

differencing signal is zero. See appendix G for a more complete description

of circular birefringence/dichroism.

9.4 Spectral dependence of Faraday rotation

on the optical control field

In section 9.2 we saw that at room temperature optical pumping was highly

efficient close to resonance. Perversely, Faraday rotation requires a hot

vapour, which is likely to absorb the resonant pumping beam completely

as it enters the medium, leaving the remainder of the atoms unperturbed

from their original state. In this section we investigate the effect of scanning

the control field across the whole D2 spectrum. We fix the detuning of the

probe laser at a frequency where the polarimeter signal is close to zero (indi-

cated by the dot (•) in figure 9.4, at a red detuning of ∼ 2.9 Doppler widths,

or 1.7 GHz). Hence any effect caused by the control field will be seen in the

measurement of the probe differencing signal as a deviation from zero. In

figure 9.5 we show the response of the Faraday rotation signal as a function

of the blue detuning of the control field, ∆C. Figure 9.5(a) shows the probe

differencing signal for the same temperature and magnetic field as figure 9.4,

whilst figure 9.5(b) shows the transmission of the control beam through the
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Figure 9.5: (a) Differencing signal of the D1 probe versus D2 control field blue

detuning, ∆C. The power of the control field is 9 mW (red) and 30 mW (blue). The

experiment cell is at a temperature of∼ 115◦C, with a 204 G applied magnetic field.

In the absence of the control field, the differencing signal is given by the dashed

black line. (b) Transmission of the control field light through the room temperature

natural abundance reference cell (dashed black) and the 87Rb experiment cell with

(blue) and without (red) the magnetic field. Control detuning is with respect to

the weighted D2 line-center (see chapter 4).

experiment cell and a weaker beam through the reference cell. Between the

two 87Rb absorption lines the control field appears to have little effect on the

difference signal, but close to resonance and at greater detunings the effect of

optical control is significant. The maximum/minimum signal corresponds to

alignment with the x/y axis before folding back upon itself for greater rota-

tion angles. Increasing the control power increases the rotation angle whilst

retaining similar spectral dependence, hence the dips seen in the 30 mW

curve in figure 9.5(a) correspond to rotations beyond ±π/4 rad to the input

beam, most noticeable at points A and B. Repeating the experiment with a

circularly polarised control field (stimulating the σ transitions) changes the

differencing signal by ∼ ±30% over the whole D2 spectrum.

From figure 9.5(b) it can be seen that the control beam also experiences Fara-

day rotation (in tandem with dichroic absorption, which cannot be gleaned
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from this plot). This has implications for the optical pumping process as

both the intensity and polarisation state of the control beam vary over the

length of the cell, resulting in an inhomogeneously prepared medium. The

measured rotation of the probe is the average rotation it experiences upon

traversing the cell, so ideally the medium should be homogeneous.

9.5 Optical control of the probe differencing

signal
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Figure 9.6: D1 Probe differencing signal versus red detuning, ∆′
P. The dashed

black curve shows the experimentally measured signal in the absence of the D2

control field (from figure 9.4). Plots (a) and (b) illustrate the effect of optical

pumping on the probe signal when the 38 mW control field is fixed at detunings

A and B given in figure 9.5. Temperature and applied magnetic field are the same

as figure 9.4.

In section 9.4 we observed that the largest change to the birefringence of the

medium was at control detunings either side of the D2 transition. We now

wish to find the spectral dependence of birefringence for the probe beam by

scanning its frequency in a region red detuned from the D1 line. Figure 9.6

shows the resulting difference signal produced in the presence of the D2 con-

trol field. Plots (a) and (b) show the influence of the applied control field
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with its frequency fixed at the two points of maximum rotation shown in fig-

ure 9.5. From these plots we are able to take the absolute angular rotation,

θ, of the probe using the zero-crossings and extrema (which are independent

of absorption or dichroism). The measured rotations are shown in figure 9.7.

It can be seen that rotations of many π radians are possible with the Fara-

day effect, as observed in previous studies [40, 60]. For the rotation angle

of π/2 rad induced by the applied magnetic and optical fields, the change in

refractive index ∆n = 5× 10−6.
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Figure 9.7: The measured rotation angles, θ, versus red detuning, ∆′
P, of the

D1 probe. The angles are calculated from the zero crossings/extrema of figure 9.6

for no optical control (squares), a red-detuned control field (circles), and a blue-

detuned control field (triangles). The curves are from theory. Vertical bars show

the detunings at which π/2 rotations are possible by switching amongst the three

curves.

By taking the difference of the curves in figure 9.7 we can get an idea of

rotation attainable by switching amongst the three cases of no control field,

and red/blue detuned control. For π/2 rotation caused by switching between

control field on and off the transmission is ∼ 90%. The red- and blue-

detuned cases have opposite sign, so that the difference between these two

has a greater magnitude, achieving π/2 at ∼ 95% transmission. The figure

of merit, ∆χR/χI, is conveniently equal to the ratio of measurable quantities

2∆φ (twice the relative phase shift) and Ldepth (the optical depth). The figure

of merit is > 40π for probe detunings up to 5×∆ωD. This is more than an
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order of magnitude larger than previous work e.g. 1.4π in reference [58], and

π × 10−2 to π × 10−1 for other experiments [144–146]. The figure of merit is

essentially constant beyond two Doppler widths from resonance. This is ideal

for broadband light where large differential dispersion over the spectrum of

the pulse can lead to distortion [40].

In order to calculate the optically induced rotations we extended our steady-

state model used to generate the theory curve in figure 9.4 by setting the

populations of the atomic states as independent parameters. This model

quantitatively imitates the behaviour of the optical pumping which induces

the controlled Faraday rotation. Population transfer via a π polarised pump

(zero angular momentum transfer) is modeled as a change in the Fg state

populations; transfer by σ± pumping is modeled as an anisotropy in the

mFg
state populations, i.e. the paramagnetic Faraday effect. For the case

of no pumping, an equilibrium population produces an excellent fit to data

(black curve, figure 9.7). Decreasing the population of the 87Rb Fg = 2 by

2.5%, with an mFg
anisotropy such that there is an increased occupation of

the mFg
= −2,−1 states, reproduces the effect of a red-detuned control field;

increasing the population by 16%, with anmFg
anisotropy which increases the

occupation of themFg
= 2, 1 states, reproduces the blue-detuned control field

effect. The parameters used here on an ad hoc basis agree with the expected

pumping behaviour: the red-detuned beam pumps depletes the population

of the ground state being probed. As such the rotation is decreased with

respect to the equilibrium case. The opposite is true for the blue-detuned

beam. The mFg
anisotropy is due to the pump polarisation changing from

its initially linear state to being highly elliptical as it propagates through the

medium.

Unlike the paramagnetic Faraday scheme in which a large spin polarisation

in the population ofmFg
states is created, thereby inducing birefringence, the

dominant effect in the measured data is the optical pumping of population

into or out of the Fg state. Nevertheless, simulations show that only a small

amount of anisotropy need be created amongst the magnetic sublevels to pro-

duce rotations of the order seen for the pure Faraday effect. Tighter control

of the pumping scheme, such as σ-pumping on an isolated closed transition,

should allow true paramagnetic Faraday rotation without the magnetic field.
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9.6 Discussion

In summary, we have demonstrated controlled Faraday rotation of one optical

field due to the presence of another, with high transmission of both beams.

A continuous-wave field was used to incoherently pump atoms into a dark

ground state, a process which typically takes 0.1 − 1 µs [20]. Hence this

process could allow rapid switching, and has applications as a dynamic half-

wave plate.

There are a number of issues with the approach taken in this chapter. Firstly,

the required magnetic field to bias the Faraday signal has a large effect on the

control field, a situation which is not ideal. It is preferable to fix the control

field polarisation to limit the number of variables in the system. Another

issue is the inhomogeneity of the medium, brought about as a result of the

probe and control beams sharing the same propagation axis. This can be

rectified by setting the axes at right angles to each other and changing the

control beam’s aspect ratio such the medium is prepared homogeneously

along the probe axis (see figure 9.8).

In the experiment described in this chapter, a continuous-wave control field

was used to bring the medium into a steady-state whilst a weak continuous-

wave probe field simultaneously propagates through it. In the next chapter,

we will consider a pulsed control field coherently driving population into the

excited state, in a time less than the excited state lifetime.

(a) (b)

Figure 9.8: An illustration of preparation schemes. (a) Co-axial counter-

propagation (b) Orthogonal propagation. The gradient shading of the medium

represents the preparation efficiency of the control beam.



Chapter 10

Atom-light interactions in the

nonlinear regime

Throughout this thesis we have considered light propagation phenomena in

the regime where the atom-light interaction is linearly dependent on the ap-

plied electric field. In this weak regime, illuminated atoms effectively remain

in the ground state and are unaffected by the passage of light. In this chap-

ter we investigate the regime where the light has a significant effect on the

medium.

10.1 Population transfer & pulse area

We begin with a well-known concept of resonant interactions, the area of a

light field [147, 148]. In the Bloch equations of a two-level atom, the Rabi

angular-frequency Ω is the rate at which population is coherently transfered

between the ground and excited state. If the atom is initially in the ground

state, after a time τ = π/Ω the probability of finding the atom in the excited

state is equal to unity: the population is said to be inverted1. After a further

period τ the atom is now found back in its initial state. However, if the

Rabi angular-frequency is now taken to be dependent on time it no longer

has a clear physical significance. The concept of population transfer can be

1Assuming τ is much shorter than the excited state lifetime 1/Γ, in which case the

probability of spontaneous emission happening in this time is small.

123
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generalised to a time-dependent field via the envelope area, which is given

by

0(t) =

∫ t

−∞
Ω(t′)dt′. (10.1)

Here we assume that the Rabi angular-frequency has a constant phase (for

the effect of phase and frequency modulation see reference [2]). As a physical

pulse has a finite duration, by extending the integration limits over the whole

pulse we can assign an area to the pulse as a whole. For a pulse which has an

area of 0(+∞) = π rad, i.e. a π-pulse, the population is inverted in the same

manner as for constant illumination over a time τ (indeed the constant field

can be thought of as a sequence of adjoining square pulses of area π rad). A

2π-pulse returns the atom to its initial state.

For a Gaussian intensity envelope (for which see chapter 6) which has a

full-width at half-maximum (FWHM) ∆t and an initial peak Rabi angular-

frequency Ω0 the initial area of the pulse is

0(t) = Ω0∆t

√

π

2 ln 2

[

1

2
erf
(√

2 ln 2 (t/∆t)
)

+
1

2

]

, (10.2)

where erf(x) is the error function2. Taken over the extent of the pulse we

find an area of 0(+∞) = Ω0∆t
√

π/(2 ln 2).

Of course, when we consider the full Maxwell-Bloch equations we must take

account of how population transfer affects the pulse as it propagates through

an extended medium. Population transfer must be balanced by a transfer of

energy between the pulse and the medium. Consider the following heuristic

argument. The electromagnetic field contains a number of photons, of energy

~ωc, at a density Nγ traversing a medium composed of atoms at a density

Na. For a photon energy approximately equal to the energy of the atomic

excited state ~ω0, each atom has the capacity to store one photon (we are

assuming a two-level atom so we’ll ignore such effects as multiple photon

absorption).

In the limit Nγ ≪ Na, the medium can in principle remove all photons

2The error function is the integral of the Gaussian function:

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (10.3)
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from the field with only a small probability of a given atom being excited.

In the opposite limit Nγ ≫ Na, many photons can be removed from the

field without significantly altering it. In this limit however the medium can

experience large excitations, with an increased probability for a larger density

of photons.

10.2 Large-area pulse propagation

We will consider the cases of a π- and 2π-pulse propagating in a Doppler-free

medium of two-level atoms identical to the one considered in chapter 2. We

take an atomic density ofNa = 1.5×1016 m−3. Such a medium has a resonant

optical depth3 of Ldepth = 1.4 × 104 in the limit of weak incident light, and

as such we would expect a weak continuous-wave light to be absorbed in the

first millimetre.

The initial pulse envelope has a FWHM of ∆t = 0.71 ns (short in comparison

to the excited state lifetime of 27.7 ns) and thus a frequency of FWHM

∆ν = 624 MHz. For such an envelope, an nπ-pulse requires a peak Rabi

angular-frequency of Ω0 = n 2π(470 MHz), corresponding to a peak average

photon density4 Nγ = n2 8.9 × 1014 m−3. We are therefore in the regime

Nγ ∼ Na.

From figures 10.1 and 10.2 it can be seen that the π-pulse is absorbed heavily

as it enters the dense medium, accompanied by excitation of the atoms. The

pulse frequency width is much greater than the 5.75 MHz FWHM of the

resonance. Thus a significant proportion of the field is beyond the frequency

range of absorption; however, this portion is still within the range over which

dispersion acts. Thus much of the energy of the pulse survives, though the

envelope is heavily distorted. The pulse loses its identity and becomes an

oscillation alternating between negative and positive values (as we saw in

section 2.3.1). The resonant portion of the pulse is absorbed at the entrance,

leading to an excitation that remains after the pulse has passed (decaying

away with a lifetime of 27.7 ns). The excitation on the interior is transient,

3The optical depth is defined via I/I0 = exp[−Ldepth], where I and I0 are the trans-

mitted and incident intensity, respectively. See section 3.1.1.
4I = 1

2
cǫ0|Ẽ|2 = c~ωcNγ
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Figure 10.1: Propagation of a resonant π-pulse. (a) The magnitude of the pulse

envelope versus time and propagation distance. The green dashed curve shows the

trajectory a pulse in free-space would take. (b) The temporal envelope of the

incident pulse (dashed curve) and outgoing pulse (solid).
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Figure 10.2: Excitation by a resonant π-pulse. (a) The excited state population

against time and propagation distance. The green dashed curve shows the trajec-

tory a pulse in free-space would take. (b) Time dependence of the population at

the entrance (dashed curve) and exit (solid) of the medium.
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the energy stored in the atoms is repeatedly exchanged between the medium

and off-resonant light.

In contrast to the lower area pulse, the 2π-pulse is able to travel deeper inside

the medium (figures 10.3 and 10.4). The first half of the pulse acts to transfer

population to the excited state, becoming absorbed in the process. The

second half of the pulse gains this energy via stimulated emission, which can

have the effect of increasing the peak electric field (typified by the envelope at

35 mm). The cycle of absorption-emission successively holds the pulse back

from its expected trajectory, a demonstration of resonant slow-light with an

average velocity corresponding to a group refractive index of ng = 4.8. This

is due to the electromagnetic energy spending a significant amount of time

as an excitation in the immobile medium. The net transfer of energy to the

medium is close to zero and thus the pulse effectively ‘sees’ a transparent

medium, a transparency caused by the light itself in a process known as

self-induced transparency (SIT) [147, 148].
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Figure 10.3: Propagation of a resonant 2π-pulse. (a) The magnitude of the

pulse envelope versus time and propagation distance. The green dashed curve

shows the trajectory a pulse in free-space would take. (b) The temporal envelope

of the incident pulse (dashed curve) and successive pulses (solid) at displacements

35, 80, 110 and 150 mm inside the medium.
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Figure 10.4: Excitation by a resonant 2π-pulse. (a) The excited state popu-

lation against time and propagation distance. The green dashed curve shows the

trajectory a pulse in free-space would take. (b) Time dependence of the popula-

tion at the medium entrance (dashed curve) and at displacements 35, 80, 110 and

150 mm inside the medium (solid).
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10.3 Energy transfer & Poynting’s theorem

The interaction between atoms and light inevitably leads to an exchange of

energy between the two systems. In considering the energy of the system, we

must balance the energy flowing into a volume with the energy being stored

and dissipated within this volume. We begin by providing a completely

general expression of the rate of change of energy which can be applied equally

to the electromagnetic and atomic excitation (or indeed other forms of energy

such as thermal or mechanical) [149]:

−
∮

A

S · dA = ∂t

∫

V

UdV +

∫

V

RdV. (10.4)

The energy energy per unit time passing through a surface enclosing an

arbitrary volume V is given by the surface integral of the energy flux S

(having dimensions of energy per unit time per unit area). This is balanced

by the change in the energy density U (energy per unit volume) stored inside

the volume, and the rate at which energy dissipates R (energy per unit time

per unit volume). By dissipation we mean a process which transforms energy

from one form to another: of particular interest to us is the transformation

of electromagnetic energy to atomic excitation. A more convenient form of

the above equation can be derived by making use of the divergence theorem

to transform the surface integral into a volume integral, and by noting that

the volume is arbitrary. Thus we can move to a picture in which we consider

quantities at spatial points rather then over entire volumes. This leaves us

with the general statement of energy conservation in differential form

∇ · S+ ∂tU +R = 0. (10.5)

We will now look for equations having the form of this energy conservation

expression for the electromagnetic field and the medium through which it

propagates. Poynting’s theorem [150] provides the energy continuity equation

for electromagnetic fields [149]:

∇ · (E×H) + ∂t(
1
2
ǫ0E · E+ 1

2
µ0H ·H)

+ E · ∂tP+ µ0H · ∂tM+ E · J = 0, (10.6)

where H is related to the magnetic field via B = µ0(H + M). In a non-

magnetic medium we can neglect the magnetisation M, and if free charge
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carriers are absent then the free current density J = 0. The theory of electro-

magnetism is underpinned by the fact that the electric and magnetic fields

are inextricably linked. For plane waves propagating in the z direction, we

can simplify things by inserting the electric field calculated in section 3.1 into

the Maxwell equation III, i.e. ∇ × E = −∂tB. We find nk̂ × E = cB [62],

where k̂ is a unit vector in the direction of propagation, and n is the refractive

index5. Equation (10.6) then simplifies to

∂z(ncǫ0E
2) + 1

2
∂t
(

ǫ0
(

1 + n2
)

E2
)

+ E · ∂tP = 0 (10.7)

Comparing this to the general statement of energy conservation (10.5), we

can identify that the flux of electromagnetic radiation S, the energy density

Uem, and rate of dissipation Rem:

S = ncǫ0E
2, (10.8)

Uem = 1
2
ǫ0
(

1 + n2
)

E2, (10.9)

Rem = E · ∂tP. (10.10)

Averaging over an oscillation period we obtain the following in terms of

slowly-varying quantities (noting that the total electric field is in general

composed of multiple envelopes Ẽj centred at carrier angular frequencies

ωcj , for which see section 2.2.1):

〈S〉 =
∑

j

1
2
cǫ0|Ẽj|2, (10.11)

〈Uem〉 =
∑

j

1
2
ǫ0|Ẽj|2, (10.12)

〈Rem〉 =
∑

j

ωcj Im[Ẽ∗
j · P̃j], (10.13)

where we have used the fact that under the slowly-varying envelope approx-

imation |n− 1| ≪ 1. We have met the time-averaged flux previously in this

thesis, where we referred to it as the intensity I, being the average power per

unit area incident upon a surface.

An energy-conservation equation for the medium also needs to be derived.

Assuming the medium is stationary, there is no flow of particles and hence

5Note this relationship between the electric and magnetic fields is only strictly true for

an approximately monochromatic field. Fortunately the slowly-varying envelope approxi-

mation ensures this is the case.
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no flux of atomic energy out of the volume (we also exclude particle-particle

interactions). The rate of change of energy density in the atoms, ∂tUa, can

be found by considering the rate of change of population amongst the atomic

energy levels: this is provided by the Bloch equations. With Naρmm as the

number density of atoms in the state |m〉 of energy Em, the total rate of

change of the internal energy of the ensemble (assuming the energy of each

state remains constant) is

∂tUa = Na

∑

m

Em∂tρmm. (10.14)

As we saw in section 2.3 for the case of the two-level atom, the expression

for ∂tρmm has terms that contain the coherent interaction with the light

field ∼ d · E and incoherent decay/repopulation terms ∼ Γ. Needless to

say the full dynamics of the ensemble is specific to the particular system

under consideration, but we can derive some general results using heuristic

arguments (the following is based on the discussion found in [63]). Energy

is supplied via the electric field of the electromagnetic wave, which interacts

with the electron of each atom. Between t and t+δt the electron moves from

r to r+ δr, the field supplying an energy of δW = qE · δr in the process. The

power absorbed by the atom thus equals ∂tW = E·∂td, using the definition of

the electric dipole d = qr. On the assumption that the medium is composed

of Na atoms per unit volume which do not interact with each other, we may

look at the macroscopic power density by taking the average ∂tUa = E · ∂tP.

Unsurprisingly, this happens to be the rate at which electromagnetic energy

is dissipated we found earlier (10.10). Hence the negative of this is the rate

at which atomic energy is delivered to the electromagnetic wave.

The only other way for the medium to lose energy we consider is via radia-

tive decay to lower internal energy states, a process which transfers energy

into electromagnetic field modes distinct from the field leading to excitation.

These modes partake in no further interacting and hence energy dissipated

in this manner is removed from the atom-light system. The average rate at

which dissipation happens is

〈RΓ〉 = Na

∑

n,m<n

AnmΓnρnn (En − Em) . (10.15)

Here the outer sum represents the rate of energy dissipation from the state



Chapter 10. Atom-light interactions in the nonlinear regime 132

|n〉, with the inner sum taken over m < n representing the fact that some of

the energy of decay is gained by states of lower energy |m〉. The coefficient

Anm is the branching ratio of decay for the spontaneous transition |n〉 → |m〉;
population is conserved via the condition

∑

m Anm = 1.

We can then write the conservation equations

〈∇ · Sem〉+ 〈∂tUem〉+ 〈Rem〉 = 0, (10.16)

〈∂tUa〉 − 〈Rem〉+ 〈RΓ〉 = 0. (10.17)

Thus we have arrived at our objective of this section, to describe the flow of

energy between the atomic and electromagnetic systems. One of the impor-

tant implications is that energy can be stored in the medium, the ulterior

motive of our discussion of conservation equations.

10.3.1 Energy velocity

Transient storage of electromagnetic energy as atomic energy can lead to an

apparent slowing down of a light pulse. The energy per unit area passing

through a slice of medium of length δz in a time δt is δtS. The energy per unit

area contained in the medium during this time is δzU , where U = Uem + Ua

is the sum of atomic and electromagnetic energy. As energy is conserved we

can equate the two to give S = Uδz/δt. In the limit that the slice length

tends to zero, δz/δt → vE . This is the velocity at which energy propagates

through the medium, and is given by [65]

vE =
S

U
=

c/n

1 + Ua/Uem

. (10.18)

For the examples of the π-pulse seen in section 10.1, the speed of the pulse

rapidly decelerates from the speed of light in vacuo to close to zero. Indeed, it

is almost entirely absorbed by the medium: the resonant portion of the pulse

thus has zero velocity (since it is stored in the stationary medium), whilst

the off-resonant light is sufficiently weakly-interacting that it travels close

to the speed of light in free-space. The 2π-pulse behaves more ballistically

and hence the concept of a velocity is more meaningful in this case. Even

so, due to pulse reshaping the speed of the pulse varies between ∼ c/4 to
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∼ c/5.5, resulting in an average group index of ng = 4.8, in agreement with

the ‘time-of-flight’ method used in section 10.1.

In the limit of low intensity light and hence low excitation, we were able to

calculate an analytic form for the expected group velocity of pulse propa-

gation as detailed in chapter 6. In fact, the concept of energy velocity and

group velocity are identical in the limit of low excitation/absorption [65].

10.4 Energy storage

In light of our considerations into the transfer of energy between atoms and

optical fields, we will look at the feasibility of coherently storing and retriev-

ing energy. We look at the simplest case of the two-level atom, sending two

π-pulses into the medium one after another. The energy of the first pulse will

be stored as an atomic excitation, and during the interaction with the second

pulse this energy should be retrieved (though due to spontaneous emission

the energy available diminishes with time).

Figure 10.5 shows the electric field of two pulses separated by a time of two

nanoseconds. The first pulse is absorbed in the same manner as the single

π-pulse we saw in section 10.1, transferring population into the excited state

in the process (as seen in figure 10.6). When the second pulse arrives it

experiences a medium which is almost completely inverted and is able to gain

the energy stored inside the medium. The new pulse created in this way has

an area close to 2π rad and is thus able to burn a hole through the medium,

reaching deep into the interior. Note that it travels much more slowly than

the 2π-pulse considered previously, having a speed of ∼ c/50. This is due

to the pulse having a longer duration (the FWHM of the intensity profile

∆t ≈ 2 ns) and thus lower energy density; we saw in the previous section

that the relative energy densities of the atoms and medium determine the

energy velocity.

In figure 10.7 we examine the transfer of energy between the light and

medium, here expressed as the average dissipation rate of photon density

〈Rγ〉 = 〈Rem〉/~ωc. At the entrance to the medium the large positive rate of

dissipation marks the absorption of the first pulse. During the time between
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Figure 10.5: Storage and retrieval of a π-pulse. (a) The magnitude of the

electric field envelope versus time and propagation distance. The green dashed

curves show the trajectory both pulses would take in free-space. (b) The temporal

envelope of the incident pulses (dashed curve) and the resultant field 60 mm into

the medium (solid): note the field after 6 ns is the envelope of the created pulse.
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Figure 10.6: Atomic excitation during light storage and retrieval. (a) The ex-

cited state population against time and propagation distance. The green dashed

curves show the trajectory both pulses would take in free-space. (b) Time depen-

dence of the population at the medium entrance (dashed curve) and at a displace-

ment 60 mm inside the medium (solid).



Chapter 10. Atom-light interactions in the nonlinear regime 135

z
/m

m

0

50

100

150

〈R
γ
〉
×

10
−

2
5

−2

−1

0

1

2

t/ns

〈R
γ
〉
×

10
−

2
5

−2 0 2 4 6 8 10 12
−2

−1

0

1

2 (b)

(a)

Figure 10.7: The average rate of photon transfer between the field and atoms

during light storage and retrieval. (a) Transfer rate versus time and propaga-

tion distance. Blue tones represent transfer of energy from the light into the

medium, i.e. absorption; red tones represent transfer of energy into the light from

the medium, i.e. emission. The green dashed curves show the trajectory both

pulses would take in free-space. (b) Time dependence of the transfer rate at the

medium entrance (dashed curve) and at a displacement 60 mm inside the medium

(solid). A positive rate indicates absorption, a negative rate emission.

the two pulses only the field of the off-resonant fraction of the first pulse

is able to propagate and, due to its off-resonant nature, it is able to travel

deep into the medium. The cyclical positive-negative dissipation rate shows

energy is absorbed but soon returned to the light (though a small fraction

is lost due to spontaneous emission); this is the mechanism by which the

off-resonant frequency components of the pulse acquire shifted phase. The

arrival of the second pulse inside the medium is marked by a negative rate of

dissipation as stimulated emission puts energy back into the resonant optical

field. With its newly-acquired energy the second pulse is now able to burn

a hole through the medium. This process is clearly visible by the adjacent

bands of positive and negative dissipation leading away from the time at

which the second π-pulse entered.

In figure 10.8 we show the electric field envelope for several time separations

between the two π-pulses. The inherent complexity of pulse propagation
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Figure 10.8: Storage and retrieval of a π-pulse for various initial time separa-

tions. The magnitude of the electric field envelope for a separation of (a) 0 ns,

(b) 1 ns, (c) 2 ns, and (d) 3 ns. The field is normalised to the peak field of an

individual π-pulse.

in the high density medium makes it difficult to compare individual cases,

but some general trends are obvious. Clearly a separation of zero gives an

envelope indistinguishable from a single Gaussian 2π-pulse; a separation of

less than the pulse width is essentially a slightly deformed 2π-pulse. The

greater the initial separation the greater the amount of energy that is lost

due to spontaneous emission and dipolar radiation of off-resonant light (the

field of this off-resonant fraction has the same striated pattern as seen for

the single π-pulse in figure 10.1). The situation is made more complicated by

the fact that the second pulse leads to stimulated emission of both resonant

and off-resonant light which may propagate independently. Nevertheless, it

it clear that the created pulse is increasingly slower, broader and of a lower

amplitude with increasing time separation.

We have seen in this section that transfer of energy between pulses is possible

in a quick and dirty manner: the second pulse doesn’t actually take all of

the energy available to it, quite apart from the energy that has been lost due

to off-resonant interactions and excited state decay. Also the pulse loses its

original envelope, and due to distortion decelerates and may actually become

trapped inside the medium.
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10.5 Optically induced birefringence

In chapter 9 we saw that it is possible to alter the Faraday rotation experi-

enced by a weak beam via the application of an additional, higher-intensity

field. This additional field acts to drive ground state population into an

excited state from where it can decay into a multiplicity of lower-lying en-

ergy levels, in addition to the ground state from whence it came. We found

in the experiment that preparing a high-density medium with a field close

to resonance is inherently flawed as the pumping beam is heavily absorbed

during the procedure. Preparation schemes normally rely on specific field

amplitude and phase, and if these conditions are not maintained throughout

the medium, an inhomogeneous sample will be produced. Another disadvan-

tage of preparation schemes based on spontaneous emission is that it takes

many excited state lifetimes for a medium to reach its final state, which

substantially limits the speed of the operation. The preparation scheme sim-

ulated in section 10.4 does not rely upon spontaneous emission (indeed, in

the simulation decay from the excited state was positively avoided), but due

to the resonant nature of the field the scheme nevertheless suffers the same

problems as the experiment.

Taking stock of the situation, we want to control the polarisation state of

a weak probe beam using a medium which has been prepared optically in

such a way that the deleterious effects of spontaneous emission have mini-

mal influence. Ideally the medium should also be relatively homogeneous.

We have already extolled the virtues of working with an off-resonant probe

field (chapter 5), namely that dispersion dominates over absorption far off

resonance and that Doppler broadening can be neglected. We now note

that it is possible to work away from resonance with pumping fields as well.

Stimulated Raman adiabatic passage (STIRAP) is one such technique for the

highly efficient transfer of population between two non-degenerate metastable

states, facilitated via a stimulated two-photon transition involving an unsta-

ble intermediate state. We will not go over the details of STIRAP in this

thesis as it is a well-known phenomenon: for a review of previous studies see

reference [151]. Our interest in it is purely as a technique for altering the

birefringent properties of the medium by removing population from a subset
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of atomic states which is in turn probed by a weak field. STIRAP has been

investigated in situations were back action on the light from the medium is

taken into consideration, e.g. for optically thick media [152, 153]. Here evo-

lution of the fields as they propagate through the medium can result in the

break down of the conditions required for STIRAP, resulting in incomplete or

non-adiabatic population transfer. This is of particular concern for us as we

are required to work in the high-density regime to maximise the interaction

of the weak probe.

In chapter 9 the effect of pumping was to transfer population out of (or into)

one of the hyperfine F states of the Rb 2S1/2 state. This rather crudely

alters the dispersive properties of the medium by effectively reducing the

density of atoms interacting with the probing field. Ideally we should alter

the population distributed amongst the magnetic sublevels of the F state,

thereby inducing birefringence in the medium. STIRAP has been further

generalised to include the possibility of some or all of the three principal

energy levels being degenerate manifolds [154]. In this case adiabatic transfer

for any arbitrary pure or mixed initial ground state can be achieved under

certain conditions (for definitions of pure and mixed states see appendix A).

In this thesis we are not interested in complete transfer out of the ground-

state manifold, but rather removal of population from certain states of an

incoherent mixture which will lead to an increase in the coherence of the

ground state. By judicious choice of pumping fields an anisotropy can be

created in the medium which alters the polarisation state of a probe beam in a

predictable way. Thus, an initially isotropic medium can be made anisotropic

to a probe, and this anisotropy measured, on timescales which are not limited

by the rate at which population decays from intermediate states.

10.5.1 Atom-light system for observing birefringent control

We consider the energy level scheme shown in figure 10.9(a). This consists

of |g〉, a Jg = 1 ground state which is a manifold of degenerate magnetic

sublevels {|−〉, |0〉, |+〉}, an intermediate state |f〉 with Jf = 0, and an ex-

cited state |e〉. This three-level system is referred to as a ladder or cascade

system, in which the levels successively increase in energy. For simplicity
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Figure 10.9: (a) Energy level scheme. (b) Pulse sequence: the mutual inter-

action of the Stokes (S) and pump (P) pulses with the medium constitute the

preparation stage. The two pulses are separated in time by tsep, which may be

negative. The preparation stage is succeeded by the measurement stage, achieved

via a relatively weak Faraday pulse.

we do not consider the degeneracy of the excited state. The excited state

population decays at a rate Γe, a fraction of which reaches the intermediate

state. Similarly, the intermediate state population decays at a rate Γf , where

it is distributed equally among the ground state sublevels. As is typical for

the STIRAP process, the excited state population is relatively long-lived.

The ground-intermediate state coupling is via the pump electric field EP,

with associated slowly-varying envelope ẼP = Ẽ+ǫ+ + Ẽ−ǫ−. Here we have

written the polarisation state in the helical basis (see appendix F), where

the components Ẽ+ and Ẽ− stimulate the |−〉 ↔ |f〉 and |+〉 ↔ |f〉 transi-

tions, respectively. The Faraday field EF stimulates the same transitions as

the pump, but is of much lower intensity. Note that the remaining ground-

state sublevel |0〉 is only coupled to the other states via incoherent decay

processes. Intermediate-excited state coupling is via the Stokes field ES.

The strength of a particular pump/Faraday-mediated transition is defined

via the Rabi angular-frequency Ω± = cmJ
dgf · Ẽ±/~. Here dgf is a reduced

dipole matrix element (for the definition of which see chapter 4) describing

the dipole coupling strength of a particular |L〉 → |L′〉 transition; the coef-

ficients cmJ
are factors governing the strength of specific |J,mJ〉 → |J ′,m′

J〉
transitions. Likewise, the Stokes-mediated transition has a Rabi angular-

frequency ΩS = cmJ
dfe · ẼS/~. The pump (Faraday) fields are detuned from

resonance by ∆P(F) = ωP(F) − ωfg; the Stokes field is detuned from resonance

by ∆S = ωS − ωef .
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Having described how energy levels are linked via the applied fields, we obtain

the resultant atomic Hamiltonian, under the rotating-wave approximation,

of

HRWA = −1
2
~

(

Ω+|f〉〈−|+ Ω−|f〉〈+|+ ΩS|e〉〈f|

+ 2∆P|f〉〈f|+ 2(∆S +∆P)|e〉〈e|
)

+H.c. (10.19)

Once combined with the operators describing atomic-state decay, we can

form the master equation of population dynamics (for which see chapter 2),

represented by the time-dependence of the density operator ρ̂, in exactly the

same manner as for the two-level system. We then use this master equation

in the Maxwell-Bloch equations to describe the evolution of the three applied

fields, the pulse sequence of which is shown in figure 10.9(b).

To give an explicit example, we choose to model the 5S1/2(F = 1) →
5P3/2(F = 0) → 5D5/2 transition found in 87Rb. This system has an

intermediate-state decay rate of Γf = 2π(6.065MHz), all of the atoms de-

caying out of state |f〉 ends up in the ground state. The excited state decays

at the rate Γe = 2π(0.66MHz); only a fraction (0.65) of the population de-

caying from |e〉 ends up in |f〉, the remaining fraction decays to other states

not included in our five-level system. The reduced dipole matrix element

of the pump transition dgf = 5.177ea0 (appendix C), with transition co-

efficients cmJ
= 1/3 for the three transitions {|−〉, |0〉, |+〉} ↔ |f〉; for the

Stokes transition the reduced dipole element and transition coefficient are

dfe = 1.262ea0 [155] and cmJ
= −

√

3/10 (here e is the magnitude of the charge

of an electron, a0 is the Bohr radius). The Gaussian pulses have a full-width

at half-maximum (FWHM6) δt = 1 ns, with a 15π area for both components

of the pump pulse and the Stokes pulse. The pump is initially linearly po-

larised at −π/4 rad to the x-axis, and has a detuning ∆P = 2π(10 GHz) from

resonance. We assume two-photon resonance between the Stokes and pump

fields, requiring that ∆P +∆S = 0. The Faraday pulse has an area of 10−3π,

is initially right-circularly polarised and is 5 GHz detuned from resonance.

The medium has an atomic density of Na = 1020 m−3 (corresponding to a

vapour temperature of ∼ 150◦C).

6Note this is the FWHM of the electric field envelope, which is related to the FWHM

of the intensity profile, ∆t, via δt = ∆t
√
2
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10.5.2 Preparation of the medium

Before simulating the preparation stage of the atom-light interaction, we

first examine the effect of quantum interference [156] in the system. The two

competing paths to the excited state |−〉 → |f〉 → |e〉 and |+〉 → |f〉 → |e〉
lead to quantum interference: a well-known phenomena in the interaction

of multi-state systems with coherent light, see for example the review arti-

cle [11]. It is instructive to transform the bare-atom set of basis states in

to a new set which takes into account the interaction with the light fields.

We reformulate the ground state manifold {|−〉, |0〉, |+〉} using the Morris-

Shore (MS) transformation [157] to {|b〉, |0〉, |d〉}. The new basis states (the

so-called dressed-atom states [63])

|b〉 = 1

Ω∗
P

(Ω∗
+|−〉+ Ω∗

−|+〉), (10.20)

|d〉 = 1

ΩP

(Ω−|−〉 − Ω+|+〉), (10.21)

are, respectively, coupled and uncoupled from the state |f〉; the magnetic

sublevel |0〉 remains uncoupled. For simplicity we take the polarisation state

of the pump to be fixed throughout the experiment, and thus the dressed

states also remain fixed. The Hamiltonian of the transformed system

H
′
RWA = −1

2
~

(

ΩP|f〉〈b|+ ΩS|e〉〈f|+ 2∆P|f〉〈f|+ 2(∆S +∆P)|e〉〈e|
)

+H.c.,

(10.22)

shows that the transition |b〉 ↔ |f〉 is mediated by the Rabi angular-frequency

|ΩP| =
√

|Ω+|2 + |Ω−|2. This tells us that the atomic state |b〉 is associated
with the polarisation state of the pump field EP; similarly, the uncoupled

state |d〉 is associated with a field orthogonal to EP, the magnitude of which

is zero in the preparation stage. We discuss the implications of this later.

If we begin with an atomic ensemble in a mixed state, the initial ground state

density operator in the MS transformed basis is ρ̂initial =
1
3
(|d〉〈d| + |0〉〈0| +

|b〉〈b|), i.e. the three possible states are evenly populated and there is no

coherence amongst them. The effect of the preparation fields is to affect a

two-photon transition between the states |b〉 and |e〉. The final ground state

density operator is then ρ̂final =
1
3
(|d〉〈d| + |0〉〈0| + δ|b〉〈b|), where δ → 0

for complete population transfer. Examining the form of the dressed-atom
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states in equations 10.20 and 10.21 we see that they are orthogonal and

are coherent superpositions of the bare-atom states |−〉 and |+〉. Therefore

asymmetry in the populations of the dressed states leads to an increase in

the coherence of the ground-state subsystem {|−〉, |+〉}. The aim of the

preparation process is to create a partially coherent ground state and the

efficiency of the preparation stage can be parameterised as the degree of co-

herence p+− = |ρ+−|/√ρ++ρ−−, which takes a value from zero (an incoherent

mixture) to the maximum allowed value of unity (a pure state).

Figure 10.10 shows the results of pulse propagation in the preparation stage.

In parts (a)-(d) the field envelopes are plotted. The peak of the Stokes

pulse enters the medium at t = 0 ns, followed by the pump at t = 0.6 ns.

This pulse spacing amounts to a time separation of one 1/e width, which is

the optimal separation for STIRAP using Gaussian envelope functions [151].

The front of the Stokes pulse is seen to traverse the medium at close to the

speed of light without distortion, due to there initially being no population

on the Stokes transition. As the pump arrives, the two-photon transition can

now be affected, leading to strong coupling of the Stokes and pump fields to

each other and to the atoms. Back action on the light distorts the coupled

fields as they travel deeper inside the medium. The initial field parameters

were chosen based on the naive assumption that the relationship between the

envelopes of the two preparation pulses remains (relatively) stable. Unless

the atom-light interaction is balanced to maintain the required conditions,

the consequence of heavy field distortion is that the STIRAP process is likely

disrupted, which is indeed what is seen in figure 10.10(e). Here we show the

coherence of the subsystem {|+〉, |−〉}. In the first 2 mm the STIRAP process

is carried out with high preparation efficiency, and after the beams have gone

(t > 1.5 ns) the coherent state is of high purity (p+− >0.95). Deeper into

the medium, the efficiency is steadily reduced (ignoring the transient ‘ridge’

which is influenced by pulse distortion). Despite the limited range, STIRAP

fares better than preparation via resonant processes (such as inversion via

π-pulses). Simulations show that during resonant processes the preparation

fields are absorbed in the first few tens of microns inside the medium.

Preparation of a ground-state coherence in optically thick media has been

studied previously in reference [153]. There, a non-degenerate lambda system
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was used, i.e. the final state |e〉 is lower in energy than state |f〉, in which case

the Stokes transition is formally a gain resonance. Thus in an optically thick

medium where back action on the light is significant, energy is transfered

from the pump into the Stokes field; this is in contrast to the results of the

cascade system seen in this thesis where both pump and Stokes fields are

absorbed.
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Figure 10.10: Preparation of the medium. The normalised magnitude of (a)

the Stokes and (b) the pump electric field envelopes versus time and displacement

inside the medium. The dashed green line shows the hypothetical position of the

peak if the pulse were propagating at the speed of light in vacuo. (c) The Stokes

field magnitude versus t, at z = 0 (dashed curve) and z = 22.5 mm (solid curve);

(d) shows the same information for the pump field. (e) The degree of coherence

p+− between the ground state sublevels |−〉 and |+〉, including its projections at

t = 5 ns (blue curve) and z = 0 mm (red).
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10.5.3 A simple model of polarisation rotation

After the STIRAP preparation stage we are left with a medium possessing

a ground-state subsystem prepared to a high degree of coherence which is

stable against decay (we ignore particle-particle interactions such as collisions

which may serve to dephase the partially coherent state). The rest of the

atomic population is found in the metastable excited state from where it will

eventually filter back to the ground state, but only over a timescale longer

than the duration of the experiment. To a fair degree of accuracy we can then

treat the medium as if it were in a stable state. In the measurement stage,

we apply a weak probing field to the medium. We know from chapters 3

and 4 that for a weak enough probe beam the medium is unaffected by the

passage of the field, which leaves us free to assume quasi-static conditions.

Working in the frequency domain we have a polarisation density of P̃ =
1
2
ǫ0χ̂Ẽ = Na〈d̃〉, where χ̂ is the susceptibility tensor. We can write the field

and expectation value of the dipole operator as column vectors, giving the

expression

χ̂

(

Ẽ+

Ẽ−

)

= 2
Nad0
ǫ0

(

ρ̃stf−

ρ̃stf+

)

. (10.23)

Here the dipole matrix element d0 is equal to the reduced dipole matrix

element dgf multiplied by cmJ
, the relative coefficient of the {|−〉, |+〉} → |f〉

transitions. Note that the magnitude of cmJ
is equal for both transtions (due

to the symmetry of the electronic wavefunction [100]). The steady-state

values of the coherence terms can be derived from the Bloch equations, and

are found to be

ρ̃stf− =
id0
2~

Ẽ+ρ
st
−− + Ẽ−ρ̃

st
+−

Γf/2− i∆F

(10.24)

ρ̃stf+ =
id0
2~

Ẽ+ρ̃
st
−+ + Ẽ−ρ

st
++

Γf/2− i∆F

, (10.25)

assuming that the population of the intermediate state ρstff ≈ 0. Substituting

these steady-state solutions of the coherence into equation (10.23), we can

express the susceptibility tensor as

χ̂ =
Nad

2
0

~ǫ0

i

Γf/2− i∆F

(

ρst−− ρ̃st+−

ρ̃st−+ ρst++

)

. (10.26)
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In the absence of a coherence between states |−〉 and |+〉, the susceptibil-

ity tensor is diagonal and thus the field components Ẽ− and Ẽ+ propagate

independently of one other. However, in the presence of a coherence this is

not the case and there will be interference between the two field components.

The normal modes of the field, i.e. the field polarisations that propagate inde-

pendently of each other, can be found by diagonalising χ̂. However, we noted

in section 10.5.2 that during the STIRAP process the polarisation state of

the pump field defines the coupled dressed state |b〉 (and the orthogonality

condition determines the uncoupled state |d〉). The fields associated with the

states |b〉 and |d〉 are the normal modes of the medium.

A convenient visual representation of light polarisation is the Poincaré sphere

(appendix I). Points in this three-dimensional space correspond to the column

vector7, S = (S1 S2 S3)
T, the components of which are, respectively, the

intensity difference between linearly polarised light in the x and y directions,

the intensity difference between linearly polarised light at an angle +π/4 and

−π/4 rad to the x-axis, and the intensity difference between left and right

circularly polarised light. Note that orthogonality is represented by antipodal

points. A light field with temporally and spatially varying polarisation is

generally described by a surface. The vector/surface is often normalised by

the total light intensity, and for fully polarised light each point lies on a

sphere of unit radius. The evolution of the polarisation vector is implicit in

the Maxwell-Bloch equations, but to aid the interpretation of the numerical

solution to theses equations, we note that the torque equation of motion

provides a simple analogy of birefringence [79, 158]. The equation describes

the spatial evolution of the polarisation vector S in response to the anisotropy

of the medium, represented by the birefringence vector a:

dS

dz
= a× S. (10.27)

The geometric interpretation on the Poincaré sphere is that a provides the

instantaneous rotation axis and rotary power for the evolution of S. Note the

limitations of this simple picture, however, in that it assumes monochromatic

waves in a time-independent medium with zero losses.

The birefringence vector points in the direction of the preponderance of atoms

7Here T denotes the transpose operation.
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in the |d〉 state. The Stokes parameters of the anisotropy vector can be

related to the density matrix elements of the ground-state subsystem via the

expression [159]

a =
(

−2Re
[

ρ̃st+−
]

2Im
[

ρ̃st+−
]

ρst−− − ρst++

)T
. (10.28)

Note the third element in this vector which is due to an imbalance in the

populations of the states |−〉 and |+〉. This is the cause of the traditional

paramagnetic Faraday effect, which is described in chapter 9, and is a mani-

festation of circular birefringence. If the populations are equal and a ground-

state coherence exists, the medium will be linearly birefringent i.e. will re-

spond differently to two orthogonal linearly polarised field components. In

the general case the medium is elliptically birefringent.

We compare the results of the numerical simulation and torque equation in

the next section.

10.5.4 Results of polarisation rotation

In consideration of the complications of the STIRAP process seen in fig-

ure 10.10, a 2 mm long medium will be used to ensure a relatively homoge-

neous sample for the measurement stage. In this stage, the Faraday pulse

interacts with the medium after the preparation fields have exited: this is

to avoid further coherent field coupling. The pulse is sufficiently weak that

it does not perturb the medium as it propagates. As the pulse is detuned

far off resonance, it suffers little attenuation/distortion but does experience

dispersion, leading to polarisation rotation. Rotation of the Faraday pulse

for different medium parameters is seen in figure 10.11. In figure 10.11(a)

the medium is prepared under the same conditions as used in figure 10.10.

The Faraday pulse is initially right-circularly polarised, having a polarisation

vector (0 0 −1)T. As it propagates through the medium it becomes linearly

polarised as it crosses the equator of the Poincaré sphere, before becoming

left-elliptically polarised. The polarisation rotates anticlockwise around an

axis in the (0 1 0)T direction, which is to be expected because the medium has

population balanced in favour of the state |d〉, which is associated with the

field polarised at π/4 rad. However, the pulse doesn’t rotate as a single en-

tity, rather the variation of dispersion over its bandwidth leads to differential
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Figure 10.11: Birefringence induced by atomic coherence. (a)-(c) Poincaré

sphere representation of the Faraday pulse polarisation state, showing the magni-

tude of the electric field envelope, |ẼF|, as the surface on a unit sphere. The black

arrow represents the initial polarisation state (right-circularly polarised); the red

arrow represents the birefringence vector of the medium; the red circle is the path

the polarisation state would trace according to the torque model. (d)-(f) polarisa-

tion ellipse representation of polarisation, showing the x and y components of ẼF

at the entrance (black circle) and exit (blue ellipse) of the medium. The red line

shows one of the normal modes of birefringence. Arrows represent the circulation

of the electric field over one optical period.
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rotation. Thus for each position inside the medium the Stokes vector varies

in time. This manifests itself upon the Poincaré sphere as the spreading out

from a single point. Figure 10.11(d) shows the field on the polarisation el-

lipse. Here the polarisation state corresponding to the peak of the pulse is

shown at the entrance and exit of the medium, along with one of the normal

modes of the medium (the other mode is orthogonal to this).

We have previously considered the regime in which the ground state is stable

against dephasing mechanisms which have the tendency to lessen the degree

of coherence of the atomic subsystem we are interested in. To model the

effects of dephasing we now add a 27 MHz dephasing term to the master

equation (this rate is chosen so as to significantly affect the coherence during

the few nanoseconds that is the duration of the simulation). Dephasing

causes the sublevel coherence to decay towards an incoherent mixture and

thus the rotary power of the birefingent medium decreases with time, though

the axis of rotation remains pointing in the same direction of the Poincaré

sphere. The Faraday pulse thus rotates to a lesser degree than the case where

dephasing mechanisms are ignored, as seen in figure 10.11 parts (b) and (e).

Finally, we consider the effect of an energy difference between the two sub-

levels involved in the coherence. This simulates an applied magnetic field

used in Faraday rotation. The energy difference causes precession of the

atomic spin, analogous to the Larmor precession of magnetic moments around

an applied magnetic field [160]. The degeneracy of the levels is broken to such

an extent that the partially coherent state precesses at a rate of 27 MHz. By

the time the Faraday pulse enters the medium, the birefringence vector has

rotated to a new direction, as observed in figure 10.11(c) and (f).

10.5.5 Effect of varying the pump-Stokes pulse separation

time

It is well known that the overlap of the Stokes and pump envelopes plays a

part in the efficiency of the STIRAP process [151]. Figure 10.12(a) shows

the population transfered to the excited state versus the separation time

between the peaks of the incident Stokes and pump pulses. For positive tsep,

the Stokes pulse precedes the pump, which is the correct order for adiabatic
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population transfer. This can be seen from the trough in figure 10.12(b),

where transfer to the intermediate state is at a minimum. Note that due to

the pump beam being detuned off resonance, the intermediate state is only

transiently populated during the preparation stage. The asymmetry isn’t

mirrored in figure 10.12(a) because by carrying out the transfer faster than

the decay rate we are less harshly punished for going on an excursion to the

intermediate state. Figure 10.12(c) shows both the rotation experienced by

the peak of the Faraday pulse, and the length of the birefringence vector a,

the two of which are clearly linked.
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Figure 10.12: Effect of time-separation of the pump & Stokes pulses on the STI-

RAP process. (a) Population of the excited state upon completion of the prepa-

ration stage, shown against the separation time between the Stokes and pump

pulses. (b) The maximum population seen in the intermediate state. The asym-

metry around tsep = 0 and the trough on the positive side is the signature of the

STIRAP process. (c) Rotation of the Faraday pulse is show (left axis, solid line),

overlaid with the magnitude of the birefringence vector (right axis, data points,

the number of which has been reduced for clarity).
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10.6 Discussion

We have investigated the nonlinear interactions of short pulses in optically

thick media, showing the storage and retrieval of energy. We have demon-

strated a theoretical method for the preparation and measurement of a

ground-state coherence, using gigahertz bandwidth pulses. With the use

of realistic parameters, our method is readily amenable to experimental in-

vestigation.



Chapter 11

Conclusions & outlook

Here we provided a brief summary of the work investigated in this thesis, and

look to the future of the project. Our main concern throughout this thesis

was the comparison of experimental data with theoretical calculations. Our

sine qua non of the investigation, the rubidium vapour cell, provided both

an oft-used ingredient in many atomic experiments, and a system to which

a number of gross approximations can be made which nevertheless result in

an accurate theoretical representation. A model of the Doppler-broadened

spectrum of the Rb D lines was developed which allows the absorption profile

and refractive index to be calculated. Excellent agreement was found between

theory and experiment. Our model allows quantitative predictions of the

absorption and dispersion in alkali metal vapour, both under illumination by

continuous-wave and pulsed light.

The Faraday effect and related birefringent phenomena were studied. The

rotation of the plane of polarisation was shown to be highly frequency-

dependent in hot atomic vapour, and thus of interest to the fields of interfer-

ometry and polarimetry. The Faraday rotation angles measured were seen

to be many π radians over a frequency range much farther-reaching than the

absorptive properties of the medium. The rotation in atomic vapour is tem-

perature, magnetic-field and frequency dependent, therefore the effect can be

used as a tunable polarisation switch. Our work has already provided a use-

ful spectroscopic tool with applications in laser frequency stabilisation [133]

and as a tunable Faraday dichroic beam splitter [39].
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Controlled Faraday rotation of one optical field due to the presence of another

was experimentally demonstrated, with high transmission of both beams.

One of the as yet unrealised goals of this thesis is the rotation of nanosecond

pulsed light by other similarly short-duration control fields. This was shown

to be feasible in Doppler-free atomic vapour via theoretical calculations, so it

is reasonable to assume that a future experimental investigation will observe

such large-bandwidth high-speed phenomena1.

1The assumption of a Doppler-free medium is valid provided that the experiment is

carried out with off-resonant light.



Appendix A

The density operator

In quantum mechanics, a particle is described by a wavefunction |ψ〉 in a

orthonormal basis set given by

|ψ〉 =
∑

m

am|m〉, (A.1)

with the complex amplitudes am following the probability conservation rule
∑ |am|2 = 1. An equivalent representation of the system is provided by the

density matrix picture. The density operator is defined as the projection of

the wavefunction on itself:

ρ̂ = |ψ〉〈ψ| =
∑

m,n

ρmn|m〉〈n|, (A.2)

where the density operator matrix elements ρmn = 〈m|ρ̂|n〉. The diagonal

matrix elements ρmm = |am|2, and hence give the probability of the parti-

cle occupying a particular state. Conservation of probability requires that

Tr[ρ̂] = 1. Consider the expectation value of an operator Â for the state

|ψ〉 = a↓| ↓〉+ a↑| ↑〉, viz. 〈Â〉 = |a↓|2A↓↓ + |a↑|2A↑↑ + 2Re[a∗↓a↑A↓↑]. The

first two terms are the product of the probability of the particle occupying

the state in question and the respective expectation value. The third term

containing the cross term represents the extent to which the two states can

interfere, in the parlance of wave mechanics the degree of coherence. Hence

the off-diagonal terms in (A.2) ρmn = ama
∗
n are known as the coherence

terms. They represent the degree to which the individual probabilities of

finding a particle in either the state |m〉 or |n〉 are linked. A useful definition
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in the density matrix formalism is that the expectation of an operator A is

〈Â〉 = Tr[ρ̂Â].

The advantage of density operator formalism over wavefunction formalism

is that it allows one to treat an ensemble of many particles statistically. If

the number density of particles in state |ψi〉 is Ni, with the total density of

particles Na, the density operator of the statistical mixture is

ρ̂ =
∑

i

pi|ψi〉〈ψi|, (A.3)

where pi = Ni/Na is the classical probability of a particle being in the state

|ψi〉. If all particles are in the same state, the system is fully determined

by a single wavefunction and is said to be in a pure state. Else the sys-

tem is described as a mixed state, which cannot be represented by a single

wavefunction.

Consider the following problem: what is the difference between a pure ensem-

ble represented via the wavefunction |ψ〉 = 1√
2
(| ↑〉+ | ↓〉), in which all atoms

are simultaneously half up and half down, and mixed ensemble represented

by the density operator ρ̂mixed = 1
2
(| ↑〉〈↑ |+ | ↓〉〈↓ |), where half the atoms

are in the up state and the other half are in the down state? Both have pop-

ulations ρ↑↑ = 1
2
, ρ↓↓ = 1

2
, and so in this respect they are indistinguishable.

However, by inspecting the ensembles’ respective density matrices

ρ̂pure =
1
2

(

1 1

1 1

)

and ρ̂mixed = 1
2

(

1 0

0 1

)

,

it can be seen that the off-diagonal terms, the coherences, give a means of

discriminating between mixed and pure ensembles. The mixed state has

zero coherence because there is no relationship between the probability of a

particle being found in its up state and the probability of being in its down

state.

In general, a mixed ensemble may contain some degree of coherence. A new

mixed state can be produced by combining the two ensembles considered

above, which has a density operator ρ̂new = 1
2
(ρ̂pure + ρ̂mixed). Here it is

assumed that the process doesn’t result in any changes of state. The new
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density matrix is

ρ̂new = 1
4

(

2 1

1 2

)

which clearly shows a diminished degree of coherence compared to that of the

pure ensemble, and is never the less none zero. It is possible to distinguish

between the new ensemble and the pure ensemble via the inequality |ρ↓↑|2 ≤
ρ↓↓ρ↑↑ (and, equivalently, Tr[ρ̂2] ≤ 1), with the equality holding for a state

of maximal coherence i.e. a pure state.



Appendix B

Numerical methods

In order to solve the Maxwell-Bloch equations we need to find a way of rep-

resenting the coupled atom-light system in such a way that it is amenable

to a numerical scheme. The atomic system is represented by the den-

sity operator ρ̂(z, t); the electromagnetic system is represented by the en-

velope of the electric field Ẽ(z, t). We have the set of coupled equations

∂tẼ(z, t) = g(z, t, Ẽ, ∂zẼ, ρ̂) and ∂tρ̂(z, t) = h(z, t, Ẽ, ρ̂). The aim of this ap-

pendix is to describe a way of solving first-order partial differential equations

of the form ∂tf(z, t) = g(z, t, f, ∂zf).

The numerical scheme involves the discretisation of z, t and f , and the finding

of approximations to the derivatives ∂zf and ∂tf . Physically, we can consider

an extended medium to be composed of many adjacent slabs of thickness δz

(which is large compared to the wavelength of incident radiation in line with

the dipole approximation made in section 2.2.2). The Bloch equations (the

solutions of which are the matrix elements of the density operator ρ̂(z, t))

depend only upon local quantities i.e. values at the slab position z. Therefore

each slab evolves independently of each other. However, the electric field

contained in the slab depends on the field in the adjacent slabs at z − 1
2
δz

and z+ 1
2
δz, this being evident from the presence of the spatial derivative of

the field.

In numerical analysis, a function f(z, t) needs be defined by a finite number of

elements along some interval in the variables z ∈ [z0, zL] and t ∈ [t0, tM ]. This

is achieved by discretising the variables zℓ, tm, where ℓ,m are the indices. In

157
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this work the time variable is decomposed into evenly spaced elements with a

separation δt, giving tm = t0 +mδt, for m = 0, 1, 2, . . . ,M . For reasons that

with becomes clear subsequently, the spatial variable is unevenly spaced.

The numerical scheme we utilise is a pseudo-spectral time-domain (PSTD)

method [161, 162] which is, in a sentence, a method that uses the spatial

frequency spectrum of f at a time t to calculate the function at a later time

t+ δt. A function can be approximated by the sum of L+ 1 basis functions

φℓ(z):

f(z) ≈
L
∑

ℓ=0

Fℓφℓ(z), (B.1)

which of course will ultimately need to be discretised. The coefficients Fℓ

make up the discrete spectrum of the function. Calculating these coefficients

is the heart of the pseudo-spectral method. The reason for using this method

is that it can be straightforward to evaluate a derivative in the spatial fre-

quency domain if there is a simple relationship between φℓ(z) and ∂zφℓ(z).

As an example, consider the Fourier transform of a function, F [f(z)] = F (k).

This transformation gives the spectrum F (k) of orthogonal sinusoidal basis

functions eikz required to reconstruct f(z) in the space domain:

F (k) =
1√
2π

∫ +∞

−∞
f(z)e−ikzdz, (B.2)

f(z) =
1√
2π

∫ +∞

−∞
F (k)eikzdk, (B.3)

where k is the spatial frequency. Due to the simple relation between the

Fourier basis functions and their derivatives (namely ∂ze
ikz = ikeikz), the

derivative property of the Fourier transform can be defined:

F [f (n)(z)] = (ik)nF (k), (B.4)

where f (n) denotes the nth spatial derivative of f . Hence a derivative of

f is readily calculated by finding its spectrum and then taking the inverse

transform of (B.4).

The Fourier transform is the most often used spectral transform, but the

related Chebyshev transform is used in this work. The main reason for this

is that the Fourier transform is periodic, whereas the domain over which the
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spectrum is required to be taken is not. The Chebyshev basis functions are

φℓ(cos θ) = cos ℓθ. (B.5)

From this, the relationship with the Fourier transform can be gleaned by not-

ing that the complex exponential of the Fourier transform basis functions can

be expressed in terms of sines and cosines. Hence with the co-ordinate trans-

form z = cos θ the Chebyshev transform is the Fourier transform containing

only cosine functions, in which case the derivative can be dealt with accord-

ingly. This Chebyshev basis functions exist in the interval [-1,1] (which can

be scaled so that z ∈ [z0, zL]) and the variable θ is discretised as an evenly

spaced grid according to θℓ = πℓ/L, for ℓ = 0, 1, 2, . . . , L. Note that this

results in an unevenly spaced zℓ variable.

The spatial derivatives has been disposed of, leaving the temporal derivative

which can, in principle, be solved in exactly the same manner. However, it

is more efficient computationally to treat this derivative by time-marching

the variable in even steps. The partial derivative of a function f(z, t) with

respect to variable t is defined as the limit

∂tf(z, t) = lim
δt→0

f(z, t+ δt)− f(z, t)

δt
. (B.6)

It is clear from this definition that the differential is readily amenable to

discretisation. The derivative at a time t is proportional to the difference

between the function evaluated at this point and a time δt later. By treating

δt not as an infinitesimal but as a small, finite quantity, we obtain the finite

difference method. At a time t+ δt the function can be approximated by

f ℓ
m+1 = f ℓ

m + δt g(zℓ, tm, f
ℓ
m, ∂zf

ℓ
m). (B.7)

Equation (B.7) is known as the explicit forward Euler equation [163], as

the function at t+ δt is determined using expressions at earlier times which

have already been calculated. Given f(z, t) and g(z, t, f, ∂zf) at the time

t = t0, it is possibly to calculate f(z, t) at successive times by time-stepping

at intervals of δt. It turns out that this simple treatment of the derivative

is not used often due to its inaccuracy, the error at each step is proportional

to the step size δt. In addition to this error, a global error is accumulated

between during each successive iteration [163].
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A scheme which is more accurate than the Euler equation described above

is the widely used fourth-order Runge-Kutta (RK4) method [163], which

accumulates an error proportional to (δt)4. It is similar to the explicit forward

Euler in that it uses the function and derivative at a point to estimate the

function at a later time. However, it averages several of these estimates to

reduce errors associated the Euler method. Thus

f ℓ
m+1 = f ℓ

m + 1
6
δt(h1 + 2h2 + 2h3 + h4), (B.8)

where

h1 = g(zℓ, tm, f
ℓ
m, ∂zf

ℓ
m), (B.9)

h2 = g(zℓ, tm + 1
2
δt, f ℓ

m + 1
2
δt h1, ∂z(f

ℓ
m + 1

2
δt h1)), (B.10)

h3 = g(zℓ, tm + 1
2
δt, f ℓ

m + 1
2
δt h2, ∂z(f

ℓ
m + 1

2
δt h2)), (B.11)

h4 = g(zℓ, tm + δt, f ℓ
m + δt h3, ∂z(f

ℓ
m + δt h3)). (B.12)

The discretisation of the spatial variable onto an unevenly spaced grid in the

interval [z0, zL] means that spacing around the edges δz ∼ π2∆z/4L2, whilst

towards the centre the grid points are less closely spaced at δz ∼ π∆z/2L

(here ∆z = zL − z0). This implies that the most rapidly varying spatial

function that can be represented on the grid is limited by the spacing at the

grid centre, the maximum spatial frequency in this case being kmax = πL/∆z.

For reasons of numerical stability (see references [161, 162]), it is required

that the spacing along the temporal grid is approximately δt < π2∆z/4cL2

(where c is the speed of light in free-space), hence we have a relation between

the indices M and L of

M =
4

π2

(

c∆t

∆z

)

L2, (B.13)

where ∆t = tM − t0 = Mδt. The number of points along the temporal grid

M+1 is thus related to the square of the number of points on the spatial grid

L+ 1. From the factor in parentheses, more temporal points are required to

solve for a grid such that ∆z < c∆t, hence the scheme is computationally

more intensive (in terms of memory usage and computation time) in this

regime. Physically this means studying the evolution of the Maxwell-Bloch

equations for a small length of medium over a long duration is more intensive

than the opposite case of a long medium observed over a small timescale.
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In summary, we have outlined a numerical scheme which can be used to solve

for the coupled evolution of the electric field and density operator, describing

possible limits of the scheme including possible sources of uncertainty and

computational complexity. This scheme was used extensively to obtain the

results found in chapters 2 and 10.



Appendix C

Rubidium atomic &

spectroscopic data

Table C.1: Atomic data for (a) 85Rb, and (b) 87Rb.

(a)

Atomic Number Z 37 [164]

Atomic Mass M 84.911 789 732 (14) u [165]

Nuclear Spin I 5/2

Relative Natural Abundance NA 72.17(2)% [165]

Groundstate Degeneracy 2(2I + 1) 12

(b)

Atomic Number Z 37 [164]

Atomic Mass M 86.909 180 520(15) u [165]

Nuclear Spin I 3/2

Relative Natural Abundance NA 27.83(2)% [165]

Groundstate Degeneracy 2(2I + 1) 8
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Table C.2: Spectroscopic data for (a) D2, and (b) D1.

(a)

Wavelength (vacuum) λ 780.241 368 271(27) nm [102]

Frequency ν 384.230 406 373(14) THz [102]

Decay Rate Γ 2π(6.066 66(18) MHz) [103]

Reduced Dipole Matrix Element d 5.177 ea0 (4.8)

(b)

Wavelength (vacuum) λ 794.979 014 933(96) nm [104]

Frequency ν 377.107 385 690(46) THz [104]

Decay Rate Γ 2π(5.750 0(56) MHz) [103]

Reduced Dipole Matrix Element d 5.182 ea0 (4.8)



Appendix D

Vapour Pressure and Number

Density

Naturally occuring rubidium exists in two isotopes: 85Rb (relative atomic

mass M85 = 84.911789732(14) u) and 87Rb (M87 = 86.909180520(15) u),

with a natural abundances of 72.17(2)% and 27.83(2)% respectively [165].

The vapour pressure (in Torr), p, for solid rubidium is given by the following

equation [166]:

log10p = 2.881 + 4.857− 4215

T
, (D.1)

and for liquid rubidium is given by

log10p = 2.881 + 4.312− 4040

T
. (D.2)

Using this vapour pressure the number density Na of rubidium atoms can be

calculated,

Na =
133.323× p

kBT
, (D.3)

and is plotted in figure D.1. This model is quoted as having an accuracy

of better than 5% in a temperature range 298-550 K. The melting point of

rubidium is 39.31◦C. The factor of 133.323 converts the vapour pressure from

Torr to Pa. Since there are two isotopes present in a vapour cell, the number

densities need to be calculated separately according to their abundance.
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Figure D.1: Rubidium number density versus temperature. The vertical dashed

line at 39.31◦C marks the transition between solid and liquid phases.



Appendix E

Approximating the Faddeeva

function

Here we generalise our analysis of the Faddeeva function by accounting for

the ratio of the widths of the Lorentzian and Gaussian functions which com-

prise the Faddeeva line-shape. The natural broadening mechanism provides

a Lorentzian-profiled resonance, of full-width at half-maximum (FWHM) Γ.

For a thermal vapour with a Maxwell-Boltzmann distribution of atomic ve-

locities, the Doppler effect leads to an additional broadening line-shape in

the form of a Gaussian profile with a FWHM of ∆ωD. For alkali metals,

Γ/2π is 100 to 101 MHz, and for temperatures in the region of 20 to 200◦C

∆ωD/2π is 102 to 103 MHz (see reference [7]). Thus Γ/∆ωD ∼ 10−2 in the ex-

periments performed in this thesis. However, mechanisms exist which can be

used to alter this ration by several orders of magnitude. The Doppler width

can be reduced by cooling to extremely low temperatures [4–6], essentially

nullifying the atomic motion responsible for the Doppler effect. Additional,

Lorentzian-like broadening mechanisms can increase γ such as dipole-dipole

interactions and collisions [91].

Both the Faddeeva and complex Lorenztian functions are functions of the

complex variable z = 2
√
ln2 [(Γ/2∆ωD)− i (∆/∆ωD)], hence in the complex

plane
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Relative difference =

∣

∣

∣

∣

Faddeeva− Approximation

Faddeeva

∣

∣

∣

∣

, (E.1)

where we have taken the modulus so that it can be displayed on a logarithmic

scale.

Figure E.1 shows the relative difference between the Faddeeva function and

its approximations. Figure E.1(a) and (b) are, respectively, the relative dif-

ference for the real and imaginary parts of the Lorentzian; Figure E.1(c)

and (d) are the same quantities for the Gaussian function. From inspection

of the colour scale, red denotes a relative difference of >1 (the values plot-

ted have been capped at just above 1 for clarity), thus representing regions

of poor approximation. Yellow denotes values from roughly 0.07 to 0.11,

demarcating regions of fair approximation, whilst errors of <0.05 are seen

from green to white. Thus the Lorentzian approximation is excellent many

Doppler widths from resonance or when it dominates the Faddeeva function,

i.e., for |z| ≫ 1. The Gaussian approximation is preferable close to resonance

so long as the Lorentzian width is comparatively small. Note the real part of

either is a good estimate sufficiently far from resonance. By multiplying the

relative difference for the Lorentzian and Gaussian approximations together,

we have a rough guide to the regions in which neither of the approximations

are adequate, as shown in Figure E.2.
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Figure E.1: Relative difference of the Faddeeva function and its approximations,

shown versus detuning ∆ and Lorentzian HWHM Γ/2 scaled by the Doppler width

∆ωD. Comparison to the Lorentzian approximation’s real and imaginary compo-

nents are shown in (a) and (b) respectively; comparison to the Gaussian approxi-

mation’s real and imaginary components are shown in (c) and (d). The grid-lines

are concentric circles of constant |z| (appearing square due to the logarithmic scale

used on both axes).

Γ
/
2
∆

ω
D

∆/∆ωD

0.1 1 10

0.001

0.01

0.1

1

10

∆/∆ωD

0.1 1 10
0.001

0.01

0.1

1

(b)(a)
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imations leads to a good estimate of the Faddeeva function, for (a) the real and

(b) the imaginary component.



Appendix F

Vector bases & polarisation

states of plane waves

Various algebraic basis are used in this thesis, in reference to the vectorial

nature of light polarisation, in addition to properties such as spin and po-

larisation density associated with atomic media. In line with the rest of this

thesis, we treat the light as a classical plane wave (see for example refer-

ences [62, 77]). An electromagnetic plane wave has an electric field vector E

confined to infinite parallel planes, orthogonal to the direction in which the

field propagates. Hence the polarisation can be described by two orthogonal

vectors such that ǫ1 × ǫ2 = k̂, where k̂ is a unit vector in the direction of

propagation. Making the slowly-varying envelope approximation (see chap-

ter 2), the electric field is the real part of the product of an envelope, Ẽ, and

a scalar carrier wave, Ec. In terms of unit vectors, the envelope is given by

Ẽ = Ẽ1ǫ1 + Ẽ2ǫ2 = |Ẽ|ǫ (F.1)

ǫ = cos(θ0)e
iφ1

ǫ1 + sin(θ0)e
iφ2

ǫ2. (F.2)

Here, ǫ is a unit vector in the direction of the electric field, the relative

amounts of its two components expressed by the angle θ0 = arctan(|Ẽ2|/|Ẽ1|).
The phase of each component, φ1 and φ2, allows for the fact that the envelope

is, in general, complex. The carrier wave varies sinusoidally in time and space.

The implication of a complex envelope is that the electric field generally

oscillates out of phase with the carrier. As for a phase difference between

the vectorial component of the envelope, this implies that the component are
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oscillating out of phase with one another.

Table F.1: Vectorial bases.

system basis ǫ1 ǫ2 ǫ3

optical linear ǫH ǫV k̂

rotated linear ǫ+π
4

ǫ−π
4

k̂

circular ǫL ǫR k̂

helical ǫ+ ǫ− k̂

atomic spin ǫ+ ǫ− ǫ0

common local ǫx ǫy ǫz

A table of bases used in this thesis is provided in table F.1. A basis in the

optical system refers to a two-state plane-wave basis used to describe the

light polarisation (bearing in mind that for a plane wave there is no electric

field component in the direction of propagation). The linear basis has com-

ponents in the horizontal (H) and vertical (V) planes. The rotated linear

basis has components at +π/4 and −π/4 rad to the horizontal plane. The

circular basis has basis vectors which rotate (as a function of time) around

the direction of propagation. By convention [77], a left (L) polarised wave

rotates anticlockwise around the axis, looking towards the source; a right

(R) polarised wave rotates clockwise. In addition to linear momentum, re-

lated to the wavevector k, plane waves have associated angular momentum.

This is represented in the helical basis, which has angular momentum par-

allel (+) and antiparallel (−) to the direction of propagation1. The atomic

system refers to bases associated with atomic quantities e.g. projection of

quantum numbers, polarisation density, electric dipole vector etc. The spin

basis has as its basis vectors the projection of spin parallel (+), antiparallel

(−), and orthogonal (0) to the quantisation axis. The direction of the local

magnetic field is the natural choice of quantisation axis (the projection quan-

tum numbers are defined relative to a magnetic field, and as such choosing

the quantisation axis to be parallel to the field makes the maths easier). In

the absence of a magnetic field, any arbitrary direction can be taken as the

1The helical basis is formally equivalent to the circular basis, i.e. ǫL ≡ ǫ+, ǫR ≡ ǫ
−

but unambiguously provides the sign of the angular momentum carried by the wave.
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quantisation axis as the system is degenerate. The system common to both

light and atoms is a local, linear basis using the cartesian basis vectors x, y

and z. Typically the z-direction is chosen to coincide with the quantisation

axis of the atomic system.

Given that both optical and atomic systems are described in terms of their

own bases which are characterised by a propagation direction and quantisa-

tion axis, respectively, it is important that we use the correct basis for each

separate atom-light interaction. For example, left circularly polarised light

can stimulate both σ+ and σ− transitions, depending on the relative orien-

tation of the light propagation direction and atomic quantisation axis [137].

This is clear if we remember that a σ± transition is characterised by a transfer

of ±1 unit of angular momentum (measured in units of ~) along the direction

of the quantisation, and that left circularly polarised light has +1 unit of

angular momentum in the direction of propagation.

In order to transform between linear and circular optical bases, apply the

following transformation:

(

ẼL

ẼR

)

=
1√
2

(

−1 i

1 i

)(

ẼH

ẼV

)

, (F.3)

(

ẼH

ẼV

)

=
1√
2

(

1 −1

1 1

)(

Ẽ+π
4

Ẽ−π
4

)

, (F.4)

(

Ẽ+π
4

Ẽ−π
4

)

=
1√
2

(

e−i 3π
4 e−iπ

4

e−iπ
4 e−i 3π

4

)(

ẼL

ẼR

)

. (F.5)

Bearing in mind the circular basis vectors are complex, take note that

ǫL · ǫ∗L = 1 and ǫL · ǫ∗R = 0. Transforming between circular and helical bases

is straightforward: ǫL → ǫ+, ǫR → ǫ−.



Appendix G

Circularly anisotropic media

A circularly anisotropic medium interacts with light via the circularly-

polarised components of the electromagnetic field. Here we work in the local

coordinate system (see appendix F), with the quantisation axis in the z-

direction. Thus a field linearly polarised at an angle θ0 to the x-axis can be

described by the components Ẽx0
= Ẽ0 cos(θ0) and Ẽy0 = Ẽ0 sin(θ0). After

propagation through a medium of length L, the helical components Ẽ+ and

Ẽ− experience a phase shift of φ± = k0n
±L and transmission e−

1
2
α±L, where

ni (αi) is the refractive index (absorption coefficient) of the particular transi-

tion, and k0 is the free-space wavevector. We are working towards the Stokes

parameters of the system (see appendix I), so we use the transformations

given in appendix F to find the output electric field in the three relevant

bases, which are:

(

Ẽ+

Ẽ−

)

=
Ẽ0√
2

(

−ei(φ
+−θ0)− 1

2
α+L

ei(φ
−+θ0)− 1

2
α−L

)

, (G.1)

(

Ẽx

Ẽy

)

=
Ẽ0

2

(

ei(φ
+−θ0)− 1

2
α+L + ei(φ

−+θ0)− 1
2
α−L

ei(φ
+−θ0+

π
2
)− 1

2
α+L − ei(φ

−+θ0+
π
2
)− 1

2
α−L

)

, (G.2)

(

Ẽ+π
4

Ẽ−π
4

)

=
Ẽ0

2

(

−ei(φ
+−θ0− 3π

4
)− 1

2
α+L + ei(φ

−+θ0−π
4
)− 1

2
α−L

−ei(φ
+−θ0−π

4
)− 1

2
α+L + ei(φ

−+θ0− 3π
4
)− 1

2
α−L

)

. (G.3)
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Using the definition of the intensity I = 1
2
cǫ0|Ẽ|2, the output intensities are

(

I+

I−

)

=
I0
2

(

e−α+L

e−α−L

)

, (G.4)

(

Ix

Iy

)

=
I0
4

(

e−α+L + e−α−L + 2 cos(2ϕ)e−
1
2
(α++α−)L

e−α+L + e−α−L − 2 cos(2ϕ)e−
1
2
(α++α−)L

)

, (G.5)

(

I+π
4

I−π
4

)

=
I0
4

(

e−α+L + e−α−L + 2 sin(2ϕ)e−
1
2
(α++α−)L

e−α+L + e−α−L − 2 sin(2ϕ)e−
1
2
(α++α−)L

)

. (G.6)

Hence we arrive at the Stokes parameters of the transmitted light:

S0 = I+ + I− = I0
1
2
(e−α+L + e−α−L), (G.7)

S1 = Ix − Iy = I0 cos(2ϕ)e
− 1

2
(α++α−)L, (G.8)

S2 = I+π
4
− I−π

4
= I0 sin(2ϕ)e

− 1
2
(α++α−)L, (G.9)

S3 = I+ − I− = I0
1
2
(e−α+L − e−α−L), (G.10)

Here the light is assumed to be completely polarised (hence the total intensity

S0 can be taken to be the sum of the intensity components in any of the three

bases) with initial intensity I0 =
1
2
cǫ0|Ẽ0|2. The angle ϕ = 1

2
(φ−−φ+)+θ0 =

θ + θ0 is the angle at which the plain of polarisation of the light is rotated

with respect to the x-axis. For balanced polarimetry our convention is to

take the initial rotation angle θ0 equal to −π/4 rad, such that S1 → 0 when

θ → 0.

Figure G.1(a) shows the Stokes parameters calculated for a Doppler-

broadened medium of hot 87Rb atoms in a magnetic field. Far from reso-

nance absorption and dispersion are negligible. As the light comes closer

to resonance dispersion is the dominant interaction mechanism, leading to

birefringence. S1 and S2 begin to vary. At around 2.3 Doppler line-widths

from resonance absorption begins to increase. Dichroism also starts to ex-

press itself here resulting in a change in S3, the Stokes parameter sensitive

to dichroism, which peaks around 1.8 Doppler widths. From figure G.1(b),

which shows the absorption coefficients of the interaction, it is clear that

the σ+ transition is at a higher red-detuning than the σ− transition. Thus

the circular component of positive helicity is almost completely absorbed 1.6

Doppler widths from resonance. S1 and S2 cease to vary as there is little
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linear characteristic to the polarisation. The medium is optically thick to

both polarisations around one Doppler width from resonance.
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Figure G.1: (a) Theoretical Stokes parameters for a typical experimental, show-

ing S0 (black curve), S1 (red), S2 (blue), S3 (green). (b) The absorption coefficients

α− (red) and α+ (black). (c) The rotation due to birefringence θ (blue), along with

phases φ− (red) and φ+ (black). The 75 mm long medium contains 87Rb atoms

at a temperature of 100◦C, subjected to a 200 G magnetic field. Red detuning ∆′

from the D1
87Rb Fg = 2 → Fe = 1 transition is in units of the Doppler width

∆ωD = 2π(560) MHz.

Figure G.1(c) shows the birefringence-induced rotation experienced by the

incident light, which is proportional to the difference between the phase shifts

experienced by the individual helical components. A measurement of the

rotation angle which is independent of dichroism can be made via the ratio

S2/S1 = tan(2ϕ), requiring the simultaneous measurement of the x- and

y-components along with the +π/4- and −π/4-components. This can be

achieved by first splitting the beam with a polarisation-conserving optical

device. One of the output beams is sent through a polarisation beam splitter,

separating the x- and y-components which are then sent to the two ports of a

differencing photodiobe. The other output beam is sent through a half-wave

plate followed by a polarisation beam splitter. This creates the necessary
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π/4 rad rotation required to separate the +π/4- and −π/4-components. In

practice, however, noise will be introduced at each optical element, adding

to the experimental uncertainty of the rotation angle. In this thesis we

choose to present S1 (which is referred to throughout as the differencing

signal) as it conveys both the birefringent and dichroic characteristics of

the medium. The rotation angle is extracted from this signal by looking

at the zero crossings and extrema, whose positions are independent of the

magnitude of the measured signals.

P
′

P

S1

S3

S2

Figure G.2: Poincaré representation of the light polarisation. The initial polar-

isation P = (0,−1, 0) follows the red path as the light comes into resonance.

Figure G.2 considers the same situation seen in figure G.1, this time in the

Poincaré representation (for which see appendix I). We have normalised the

Poincaré vector to emphasise the rotation and ellipticity angles, losing in-

formation about the total transmission in the process. P shows the initial

polarisation state, namely linearly-polarised at an angle −π/4 rad to the hor-

izontal. As the light comes into resonance its polarisation initially remains

linear whilst experiencing rotation (vector P′). Closer to resonance the light

becomes highly elliptical, becoming almost purely circularly polarised (with

negative helicity) before being completely absorbed by the medium.



Appendix H

Optical pumping of D-line

transmission spectroscopy

Here we present companion plots to figure 9.3, where we investigate pump-

probe spectroscopy of the D line in a 99% 87Rb vapour cell. We restrict

ourselves to pump and probe transitions from the 5S1/2 Fg = 2 ground state.

In figure H.1 we show the transmission difference of the D1 probe, the fre-

quency range is such that it encompases transitions to the 5P1/2 Fe = 1 and

2 states separated by 812 MHz. Both of these transitions contain a substruc-

ture of three spikes due to optical pumping by the D2 control beam. These

are (from left to right) transitions to the 5P3/2 Fe = 1, 2 and 3 states, having

spacings of 157 MHz and 267 MHz, respectively. The effect of changing the

detuning of the control beam is seen in figure H.2.
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Figure H.1: Change in transmission ∆T of a probe beam in the presence of

an intense control beam, shown versus probe detuning ∆P from the D1 Fg = 2 →
Fe = 1 transition. Vertical lines show the expected positions of the D2 transitions

(see text). For experimental parameters see chapter 9.
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Figure H.2: Change in transmission versus probe detuning ∆P from the D1

Fg = 2 → Fe = 1 transition and control detuning ∆C from the D2 Fg = 2 → Fe = 1

transition.



Appendix I

Stokes parameters & Poincaré

representation

The polarisation state of light can be fully represented via the Stokes parame-

ters (after George Stokes, 1852 [167]), which are based on combinations of the

intensities of various polarisation components. As the intensity is an observ-

able quantity, they are readily measured [168]. The Stokes parameters are

S0; total intensity of the light field,

S1 = IH − IV; intensity difference between linearly polarised light in

the horizontal and vertical directions,

S2 = I+π
4
− I−π

4
; intensity difference between linearly polarised light at

an angle +π/4 rad and −π/4 rad to the horizontal axis,

S3 = IL − IR; intensity difference between left- and right-circularly

polarised light.

The total intensity of light reaching the detector, S0, includes both polarised

and unpolarised light. Since we are only interested in the polarised light,

we define the Poincaré vector P = (S1, S2, S3), the magnitude of which is the

total intensity of polarised light. Conveniently this vector can be represented

in three-dimensional space, as shown in figure I.1, where we present a gen-

eral normalised Poincaré vector (sin 2ϑ cos 2ϕ, sin 2ϑ sin 2ϕ, cos 2ϑ). When

normalised like this, the vector connects the origin to a point on what is

known as the Poincaré sphere. The angle ϑ is a measure of the ellipticity

and chirality of the polarisation: the north (ϑ = 0) and south (ϑ = π/2)

poles denote left- and right-circularly polarised light, respectively, whilst the
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P
2ϑ

2ϕ

S2

S3

S1

Figure I.1: Illustration of the Poincaré sphere

equator (ϑ = π/4) denotes linear polarisation. Between these values the light

is elliptically polarised with the chirality of the hemisphere it resides in. ϕ

denotes the angle between the major axis of the ellipse and the horizontal

axis; for linearly polarised light this is simply the rotation angle. Note that

in this vector space orthogonality is represented by antipodal points, i.e., P

is orthogonal to −P.



Bibliography

[1] R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University Press,
2000). 1, 12, 22, 53, 57

[2] L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley,
1975). 2, 11, 22, 23, 124

[3] P. R. Berman and V. S. Malinovsky, Principles of Laser Spectroscopy and
Quantum Optics (Princeton University Press, 2010). 2, 11

[4] S. Chu, Nobel Lecture: The manipulation of neutral particles, Rev. Mod.
Phys. 70, 685 (1998), 10.1103/RevModPhys.70.685. 3, 72, 166

[5] C. N. Cohen-Tannoudji, Nobel Lecture: Manipulating atoms with photons,
Rev. Mod. Phys. 70, 707 (1998), 10.1103/RevModPhys.70.707.

[6] W. D. Phillips, Nobel Lecture: Laser cooling and trapping of neutral atoms,
Rev. Mod. Phys. 70, 721 (1998), 10.1103/RevModPhys.70.721. 72, 166

[7] C. S. Adams and E. Riis, Laser cooling and trapping of neutral atoms, Prog.
Quantum Electron. 21, 1 (1997), 10.1016/S0079-6727(96)00006-7. 3, 166

[8] E. Arimondo, Coherent Population Trapping in Laser Spectroscopy, Prog.
Opt. 35, 257 (1996), 10.1016/S0079-6638(08)70531-6. 3, 54

[9] P. D. D. Schwindt et al., Chip-scale atomic magnetometer, Appl. Phys. Lett.
85, 6409 (2004), 10.1063/1.1839274. 4

[10] R. W. Boyd and D. J. Gauthier, “Slow” and “fast” light, Prog. Opt. 43,
497 (2002), 10.1016/S0079-6638(02)80030-0. 4, 84

[11] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Electromagnetically
induced transparency: Optics in coherent media, Rev. Mod. Phys. 77, 633
(2005), 10.1103/RevModPhys.77.633. 141

[12] P. W. Milonni, Controlling the speed of light pulses, J. Phys. B: At. Mol.
Opt. Phys. 35, R31 (2002), 10.1088/0953-4075/35/6/201. 4

[13] S. D. Badger, I. G. Hughes, and C. S. Adams, Hyperfine effects in electro-
magnetically induced transparency, J. Phys. B: At. Mol. Opt. Phys. 34, L749
(2001), 10.1088/0953-4075/34/22/107. 4

180

http://dx.doi.org/10.1103/RevModPhys.70.685
http://dx.doi.org/10.1103/RevModPhys.70.707
http://dx.doi.org/10.1103/RevModPhys.70.721
http://dx.doi.org/10.1016/S0079-6727(96)00006-7
http://dx.doi.org/10.1016/S0079-6638(08)70531-6
http://dx.doi.org/10.1063/1.1839274
http://dx.doi.org/10.1016/S0079-6638(02)80030-0
http://dx.doi.org/10.1103/RevModPhys.77.633
http://dx.doi.org/10.1088/0953-4075/35/6/201
http://dx.doi.org/10.1088/0953-4075/34/22/107


Bibliography 181

[14] A. K. Mohapatra, T. R. Jackson, and C. S. Adams, Coherent Op-
tical Detection of Highly Excited Rydberg States Using Electromagnet-
ically Induced Transparency, Phys. Rev. Lett. 98, 113003 (2007),
10.1103/PhysRevLett.98.113003. 4, 102

[15] A. Corney, Atomic and Laser Spectroscopy (Oxford University Press, 1977).
4, 65, 66

[16] W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation,
2nd ed. (Springer-Verlag, 1996). 4, 29, 46

[17] A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species
(Overseas Publishers Association, 1996). 4

[18] D. J. McCarron, I. G. Hughes, P. Tierney, and S. L. Cornish, A heated vapor
cell unit for dichroic atomic vapor laser lock in atomic rubidium, Rev. Sci.
Instrum. 78, 093106 (2007), 10.1063/1.2785157. 4, 68, 76, 98
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[22] B. Chéron, H. Gilles, J. Hamel, O. Moreau, and H. Sorel, Laser fre-
quency stabilization using Zeeman effect, J. Physique III 4, 401 (1994),
10.1051/jp3:1994136. 4

[23] K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman,
Frequency-Stabilized Diode Laser with the Zeeman Shift in an Atomic Vapor,
Appl. Opt. 37, 3295 (1998), 10.1364/AO.37.003295.

[24] A. Millett-Sikking, I. G. Hughes, P. Tierney, and S. L. Cornish, DAVLL
lineshapes in atomic rubidium, J. Phys. B: At. Mol. Opt. Phys. 40, 187
(2007), 10.1088/0953-4075/40/1/017. 4, 68

[25] T. F. Krauss, Why do we need slow light?, Nature Photon. 2, 448 (2008),
10.1038/nphoton.2008.139. 4

[26] R. W. Boyd et al., Slow Light and Its Applications, J. Opt. Soc. Am. 25,
SL1 (2008), 10.1364/JOSAB.25.000SL1. 4

[27] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Light speed reduction
to 17 metres per second in an ultracold atomic gas, Nature 397, 594 (1999),
10.1038/17561. 4

http://dx.doi.org/10.1103/PhysRevLett.98.113003
http://dx.doi.org/10.1063/1.2785157
http://dx.doi.org/10.1103/PhysRevLett.36.1170
http://dx.doi.org/10.1088/0953-4075/35/24/315
http://dx.doi.org/10.1103/PhysRevA.73.062509
http://dx.doi.org/10.1051/jp3:1994136
http://dx.doi.org/10.1364/AO.37.003295
http://dx.doi.org/10.1088/0953-4075/40/1/017
http://dx.doi.org/10.1038/nphoton.2008.139
http://dx.doi.org/10.1364/JOSAB.25.000SL1
http://dx.doi.org/10.1038/17561


Bibliography 182

[28] H. Tanaka et al., Propagation of optical pulses in a resonantly absorbing
medium: observation of negative velocity in Rb vapor, Phys. Rev. A 68,
053801 (2003), 10.1103/PhysRevA.68.053801. 5, 89

[29] R. M. Camacho, M. V. Pack, J. C. Howell, A. Schweinsberg, and R. W.
Boyd, Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Us-
ing Slow Light in Cesium Vapor, Phys. Rev. Lett. 98, 153601 (2007),
10.1103/PhysRevLett.98.153601. 5, 68, 75, 78

[30] M. R. Vanner, R. J. McLean, P. Hannaford, and A. M. Akulshin, Broadband
optical delay with a large dynamic range using atomic dispersion, J. Phys.
B: At. Mol. Opt. Phys. 41, 051004 (2008), 10.1088/0953-4075/41/5/051004.
5, 68, 89

[31] R. N. Shakhmuratov and J. Odeurs, Off-resonance slow light, Phys. Rev.
78, 063836 (2008), 10.1103/PhysRevA.78.063836. 5

[32] D. J. Gauthier, A. L. Gaeta, and R. W. Boyd, Slow light: from basics to
future prospects, Photon. Spectra 40, 44 (2006). 5, 87

[33] M. Fleischhauer and M. D. Lukin, Dark-state polaritons in electro-
magnetically induced transparency, Phys. Rev. Lett. 84, 5094 (2000),
10.1103/PhysRevLett.84.5094. 5

[34] C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, Observation of coherent
optical information storage in an atomic medium using halted light pulses,
Nature 409, 490 (2001), 10.1038/35054017.

[35] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D.
Lukin, Storage of light in atomic vapor, Phys. Rev. Lett. 86, 783 (2001),
10.1103/PhysRevLett.86.783. 5

[36] Z. Shi, R. W. Boyd, R. M. Camacho, P. K. Vudyasetu, and J. C. Howell,
Slow-Light Fourier Transform Interferometer, Phys. Rev. Lett. 99, 240801
(2007), 10.1103/PhysRevLett.99.240801. 5, 68, 75, 100

[37] G. T. Purves, C. S. Adams, and I. G. Hughes, Sagnac interfer-
ometry in a slow-light medium, Phys. Rev. A 74, 023805 (2006),
10.1103/PhysRevA.74.023805. 5

[38] Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, Enhancing the
spectral sensitivity of interferometers using slow-light media, Opt. Lett. 32,
915 (2007), 10.1364/OL.32.000915. 5

[39] R. P. Abel, U. Krohn, P. Siddons, I. G. Hughes, and C. S. Adams, Faraday
dichroic beam splitter for Raman light using an isotopically pure alkali-metal-
vapor cell, Opt. Lett. 34, 3071 (2009), 10.1364/OL.34.003071. 6, 95, 112,
113, 152

http://dx.doi.org/10.1103/PhysRevA.68.053801
http://dx.doi.org/10.1103/PhysRevLett.98.153601
http://dx.doi.org/10.1088/0953-4075/41/5/051004
http://dx.doi.org/10.1103/PhysRevA.78.063836
http://dx.doi.org/10.1103/PhysRevLett.84.5094
http://dx.doi.org/10.1038/35054017
http://dx.doi.org/10.1103/PhysRevLett.86.783
http://dx.doi.org/10.1103/PhysRevLett.99.240801
http://dx.doi.org/10.1103/PhysRevA.74.023805
http://dx.doi.org/10.1364/OL.32.000915
http://dx.doi.org/10.1364/OL.34.003071


Bibliography 183

[40] P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, A gigahertz-
bandwidth atomic probe based on the slow-light Faraday effect, Nature Pho-
ton. 3, 225 (2009), 10.1038/nphoton.2009.27. 6, 7, 8, 74, 78, 112, 120,
121
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