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Abstract

Lars Nagel — Randomised Load Balancing

Due to the increased use of parallel processing in networks and multi-core architectures, it
is important to have load balancing strategies that are highly efficient and adaptable to specific
requirements. Randomised protocols in particular are useful in situations in which it is costly to
gather and update information about the load distribution (e.g. in networks).

For the mathematical analysis randomised load balancing schemes are modelled by balls-into-
bins games, where balls represent tasks and bins computers. If m balls are allocated to n bins and
every ball chooses one bin at random, the gap between maximum and average load is known to
grow with the number of balls m. Surprisingly, this is not the case in the multiple-choice process

in which each ball chooses d > 2 bins and allocates itself to the least loaded. Berenbrink et al.

Inln(n)
In(d) *

proved that then the gap remains

This thesis analyses generalisations and variations of the multiple-choice process. For a
scenario in which batches of balls are allocated in parallel, it is shown that the gap between
maximum and average load is still independent of m. Furthermore, we look into a process in
which only predetermined subsets of bins can be chosen by a ball. Assuming that the number and
composition of the subsets can change with every ball, we examine under which circumstances
the maximum load is one. Finally, we consider a generalisation of the basic process allowing the
bins to have different capacities. Adapting the probabilities of the bins, it is shown how the load

can be balanced over the bins according to their capacities.
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1 Introduction

Load balancing has become a very important subject in computer science. The increasing use of
distributed and parallel computing in networks and multi-core architectures make it desirable to
further optimise the distribution of workload over computers or processors.

Despite all efforts and research, the widespread use of parallel systems had for a long time
been impeded by the exponential growth in processing speed. “Moore’s Law” — that the number
of transistors on an integrated circuit doubles every two years [67] — turned out to be accurate:
Parallel architectures quickly became obsolete, supercomputers of the preceding decade were
suddenly outrun by desktop computers [41]]. The end of Moore’s Law was predicted several
times, but until today it has stubbornly prevailed for more than four decades.

Yet, now the voices are growing louder that the limit of downsizing chip components will
categorically be reached in the 2020s [41]. At some point it must inevitably come to an end
because the size of a transistor will certainly not fall below the size of an atom. An additional
obstacle is the increasing heat dissipation of processors [39]]. Possible solutions like quantum
computers or reversible computing appear far away and would drastically change the current
computing model [[70} 52} |5]].

Therefore, multi-core processors and computer clusters will dominate the (near) future, and in
fact they already dominate if one considers the widespread use of server clusters in the worldwide
web and the sales figures on the computer market. Most (desktop / laptop) PCs currently sold
have multiple CPUs and tablets and smartphones follow this trend [81]]. There remains a lack
of software, however, that makes use of several cores. For this, programs need to be split into
processes or threads which are then allocated to the different processors — a new challenge for
software developers.

As mentioned, another application area of efficient load balancing schemes are large networks
like the internet. Looking at the client-server model, the requirements have changed over the
years. Until the mid-90s a single server could handle all requests sent to a popular website while
nowadays “there are often dozens or hundreds of servers operating behind a single URL” [[16].

Any imbalance in the load distribution will affect the system’s throughput and latency.
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A further challenge is to find strategies that also cope with additional requirements. Load
balancing in distributed and cloud computing, for instance, may be complicated by the structure
of the network. If the computers are widespread over the network, the latency between client and
server or peers, respectively, is an issue.

The subject of this thesis is randomised load balancing. This type of load balancing can be
applied if there is not enough information available about the global state of the system or if it is
difficult or expensive to gather it. A lack of information is usually not a problem in multi-core
PCs so that deterministic load balancing schemes should be applied there. Nevertheless, this does
not necessarily imply that an optimal strategy can be found. In his famous paper “Reducibility
among combinatorial problems” Karp showed that deterministic load balancing of weighted tasks
is an NP-hard problem, even in case of only two processors (see PARTITION problem in [44]).

In networks, on the other hand, it can be costly to gain global information on the load of
each server or peer and keep it updated. It would bind resources and lead to a communication
overhead which should be avoided in networks. Even if the dispatcher reduced its load enquiries
to a minimum, it would still be a weak point in the system and could easily become a bottleneck.

The randomised allocation of requests to servers can help to overcome such difficulties and
communication overhead. The dispatcher or the client itself needs only a list of server addresses
from which it picks one at random. If the server structure is not too dynamic, this list can even be
stored locally so that the client does not have to retrieve it for every request. The crucial question
is whether random load balancing schemes do their job sufficiently well and whether they are
adaptable to additional requirements if necessary.

For the mathematical analysis load balancing schemes are modelled by balls-into-bins games.
Balls-into-bins games are also known as allocation processes or occupancy models and have a
long history in mathematics and natural sciences [40]. In the client-server scenario the servers
are represented by bins and the requests by balls. The allocation of the balls to the bins follows
a randomised protocol. The analysis focuses on the load distribution and often merely on the
maximum load.

Let m denote the number of balls and n the number of bins. In the most basic setting (i) all
balls and bins have unit size, (ii) balls are only added, but not deleted, and (iii) each of the m
balls simply chooses one of the n bins at random and allocates itself to it. It is well-known (see
e.g. [[74]]) that then the gap between maximum and average load grows with the number of balls
m. Surprisingly, if every ball has two random choices and selects the bin of lower load, the
number of balls above the average is O(Inln(n)) and, thus, independent of m [8].

The idea of allowing balls multiple choices was first described and analysed by Karp et al. [45]
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1 Introduction

and Azar et al. [3]]. Their work sparked new interest in balls-into-bins games and led to many
variations modelling diverse applications. Load balancing is only one of them.

The problem of the multiple-choice approach is that it is basically sequential. The allocation
of the current ball depends on the positions of the previous balls. Since many applications
modelled by balls-into-bins games — especially load balancing in networks — are in fact parallel,
several attempts were made to parallelise the algorithm [2} |61 82l [12} [I]l. In Chapter [5] we
will investigate how the standard multiple-choice algorithm performs in a parallel environment.
There we will assume that the balls arrive in batches of size n and that the balls of each batch are
allocated concurrently.

Another generalisation of the basic process assumes that the balls are weighted. Translated
into the client-server model, this means that requests can have varying sizes or running times.
Evidently, the same could hold true for the servers. When, for example, a cluster of servers
is extended by new machines, then the new servers will often have differing properties such
as memory size and processing speed. It is then desirable to assign more work to the better
computers. In Chapter [3] we will look into the related balls-into-bins game in which the bins
have different capacities. We will show how altering the bins’ probabilities helps to balance
the load.

While games with different bin capacities have previously not been analysed, there are a few
papers regarding allocation processes in which the bins’ probabilities are not uniform. Byers et
al. [17,[18]], for example, apply the multiple-choice paradigm to improve consistent hashing as it
is used in peer-to-peer networks like Chord, where some probabilities deviate from the average %
by a factor of In(n).

In Chapter ff] we will consider another scenario in which the bins’ probabilities are non-
uniform and dependent. In this model the servers are grouped in possibly overlapping clusters.
A request is not sent to a single bin, but to a random cluster which then allocates the ball to its
least loaded bin. We assume that the number and composition of the clusters can change with

every ball and show bounds on the maximum load.

1.1 Notation and Terminology

In this section we provide basic definitions and lemmas that will be used throughout the thesis.
More special notation will be given where it is needed in the individual chapters.

We assume that the reader is familiar with the basic concepts of combinatorics and probability
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1.1 Notation and Terminology

theory that are used in the analysis of randomised algorithms. Good introductions into this field

are [[78), 168, 160].

1.1.1 Basic Definitions

As customary we denote the real numbers with R and the positive real numbers including 0 with
Ri:={z|z € RAxz > 0}. Leta,b € R. The open interval is denoted with (a,b) := {z |z €
R Aa <z < b}, the closed interval with [a,b] :== {z |z € R A a < z < b} and the half-closed
intervals with [a,b) :== {z |z € RAa < z < b} and (a,b] := {z |z € RAa < z < b},
respectively. The set of natural numbers N contains all integer numbers strictly greater than 0.

For n € N, [n] denotes the set {1,2,...,n}.

In Definition and in Chapter 3] we will refer to normalised vectors:

Definition 1.1.1 (Normalised vector). Let v = (v1,...,v,) be any vector in R"™. Then the

normalised vector © = (01, ..., Up) consists of the elements of v in decreasing order.

In the analysis of the protocols we will use the big-O-notation (see e.g. [78l]).

Throughout the thesis we say that an event A occurs with high probability, or w.h.p., if
Pr[A] > 1 — n~ for some constant @ > 0, and it occurs with with very high probability,
orwv.h.p., if Pr[A] > 1—n~ for any constant & > 0.

Since the binomial distribution will be frequently used, the following lemma summarises a

few well-known properties (see e.g. [[78}166]):

Lemma 1.1.2 (Binomial distribution). Ler X;, i € [n], be binary random variables (or Bernoulli

experiments) that have the same success probability p := Pr [ X; = 1] and failure probability

1—p=Pr[X; =0]. Then X =Y.' | X, is binomially distributed, and we write X ~ B(n,p).
The expected value is E[X| = n - p, the variance Var[X] =n - p- (1 — p).

The probability for at least k successes is

Pr[sz}:Zn:(;‘).pj.(l_p)n_jg (Z) e (Cnn)

Jj=k

We will also make use of the following well-known lemmas:

Lemma 1.1.3 (Geometric series; see [30]], page 59). If x € R and |z| < 1, then

> 1
Zx’“: T

k=0
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1 Introduction

Lemma 1.1.4 (Property of the exponential function; see [50], page 111). For all x € R and

n >0,

Lemma 1.1.5. Forall x > 0,

1
P <In(x +1) —In(x) < o

Proof. Since In is a strictly concave function, it holds for i # 0 that

In(z +h) —In(z) < h-(In(z)) =h- é

(see e.g. [50], page 166). The first inequality follows from setting A = —1 and multiplying

by —1, the second inequality from setting h = 1. O

1.1.2 Graphs

Occasionally we will mention undirected graphs and hypergraphs. Only definitions relevant for
this thesis are given here; for a comprehensive introduction see [25} [78]]. Most of the definition
in this Section are based on [25]].

A (simple) graph G = (V, E) is an ordered pair of sets V and E where V is the non-empty
set of vertices and FE is the set of edges. An edge is a set {u,v} of two vertices u,v € V. If
{u,v} € E, then u and v are called adjacent. Define e := {u, v}, then we say that u and v are
incident to e. The order of a graph is the number of vertices, usually denoted by n := [V|. A
multigraph is an extension of the simple graph that allows for multiple edges; i.e., F is a multiset.

The neighbourhood N (v) of a vertex v € V is the set of vertices that v is adjacent to. The
degree d(v) of vertex v is the number edges v is incident to. In simple graphs the degree equals
the size of the neighbourhood. A graph G = (V, E) is called regular if all vertices v € V have
the same degree. In a A-regular graph all vertices have degree A.

G = (V',E') is a subgraph of G = (V,E)if V' C V, E/ C E and if {u,v} € FE’
implies u,v € V'. G’ is an induced subgraph if additionally {u,v} € F and u,v € V' imply
{u,v} € E'. A walk is an alternating sequence of vertices and edges, starting and ending with a
vertex, such that each edge connects the preceding vertex with the succeeding vertex. The length
of a walk is the number of edges in its sequence. A path is a walk in which the vertices (and
edges) are pairwise distinct. A cycle is defined as a path whose sequence is extended by an edge

that connects the start and end vertex of the path. Two vertices u,v € V are connected if there
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1.1 Notation and Terminology

exists a path between u and v. The distance between two vertices is the length of the shortest
path between them. A graph is connected if each two vertices are connected.

A tree is a cycle-free, connected graph. Vertices of degree 1 are called leaves; all other vertices
are inner vertices of the tree. If one fixed vertex of a tree is labelled as the root, then the tree is
also called a rooted tree. Consider the path from the root to any leaf and fix any vertex v on this
path. The vertex preceding v is called the parent of v, the parent’s parent the grandparent of v and
so on. The vertex succeeding v is a child of v, the vertex succeeding the child v’s grandchild, and
so on. As there is only one path from the root to v (otherwise the graph would not be cycle-free),
v has exactly one parent, unless v itself is the root (then it has no parent). On the other hand, v
can have any number of children. If v has no children, then v is a leaf. The depth of a vertex is
the length of the path from the root to this vertex. The height of a tree is the maximum depth in
the tree. A rooted tree is a k-ary tree if every inner vertex has exactly & children.

A graph is bipartite if the vertex set V' can be partitioned into two sets V; and Vs such that
the vertices of every edge {u,v} € F are in different sets. Thus, either v € Vj and v € V5 or

ue Voandv € V7.

A hypergraph G = (V, E) is a generalisation of a graph and specified by a set V' of vertices
and a set E of hyperedges. A hyperedge is a non-empty set of vertices whose size is not
restricted. Thus, it can connect any number of (distinct) vertices. Similar to multigraphs, in
a multi-hypergraph E is a multiset. A hypergraph or multi-hypergraph is d-uniform if every

hyperedge in E consists of exactly d vertices.

1.1.3 Randomised Algorithms

A randomised algorithm is an algorithm that makes decisions during its execution that depend
on random numbers (or bits). Therefore, these algorithms are non-deterministic in nature, and,
if run on the same input twice, their behaviour can differ. This can concern the sequence of
operations, the running time and, dependent on the type of algorithm, even the return value.

Ideally the random numbers are provided by a device or program that generates perfectly
random numbers without delay. Hardware solutions that generate random numbers from physical
processes approximate this idea. However, for the majority of applications pseudo-random num-
ber generators, implemented in software, are also sufficient. In the analytical sections we assume
perfect randomness, whereas the simulations described in Section have been implemented
and executed using the pseudo-random number generator “Mersenne Twister” [59].

A great advantage of randomised algorithms lies in their robustness against unfavourable in-
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1 Introduction

puts which leads to expected running times that are often much better than the worst case running
times of comparable deterministic algorithms. Even though the concept of randomisation appears
more complicated at first glance, randomised algorithms are often not only more efficient than
deterministic algorithms, but also easier to understand and to implement [68]. Unfortunately the
same does not hold for the analysis of these algorithms which may be more complicated than in
the deterministic case.

In the subsequent chapters we investigate randomised protocols for balls-into-bins processes
in which balls are randomly allocated to a set of bins. Here, we are not interested in running

times, but in the distribution of the balls over the bins.

1.1.4 Balls-into-bins Games

A balls-into-bins game is defined by a set of balls, a set of bins and a (randomised) protocol
that describes how the balls are allocated to the bins. Balls-into-bins games are also known as
occupancy models or allocation processes. The number of balls is denoted by m and the number
of bins by n. We will consider the basic setting first in which all balls and bins have unit size.
Further below we will explain processes with weighted balls and bins.

The load of a bin is the number of balls it contains. Assuming that balls are allocated
sequentially, a ball’s height or level is the load of the selected bin right after the allocation.
Thus, one can picture the bin as a stack of balls and every new ball is simply put on top of the
stack. If balls arrive at the same time, then we nevertheless assume that they are added to the
stack one after the other (in an arbitrary order) so that each ball has a unique height.

The load distribution describes how the balls are distributed over the bins. The load vector
of an allocation of balls into n bins is a vector L = ({1, ..., £, ) where ¢; is the load of bin i.
The normalised load vector L consists of the loads of L in decreasing order. This complies with
sorting the array and renaming the bins according to their new positions.

In the d-choice game each ball chooses d bins at random and commits itself to one of the least
loaded. In case d = 1, we will also speak of a single-choice game, in case d > 2, of a multiple-
choice game. As there can be more than one least loaded bin, a tie-breaking mechanism must be
defined. If not stated otherwise, we assume that bins are chosen independently and uniformly at
random (i.u.r) and that ties are broken arbitrarily. We call this the standard d-choice game and
the protocol GREEDY[d], following Azar e al. [3].

The access graph depicts the possible choices of the balls [12,|30]]: The bins are represented

by the vertices of the graph, the balls by the (hyper)edges, each connecting the d chosen bins of a
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1.1 Notation and Terminology

ball. The access graph is labelled if the vertices and edges are labelled with the IDs or properties
of the bins and balls, respectively. Otherwise it is unlabelled.

A protocol is sequential if one ball is thrown after the other and the loads are updated after
each ball. Different parallel models are described in the literature [2} 161}, 182} [12 |1, 29]. Some
of them assume that all balls arrive at the same time (static model), others that the balls arrive
in batches of a fixed size (dynamic model). Some of them allow for a possibly limited number
of additional communication rounds in which the balls and bins can exchange messages, others
do not. During a communication round every ball can send one message to each chosen bin, and
every bin can send one message to each ball it was chosen by. The permitted communication lines
are represented by the communication graph, a bipartite graph whose two vertex sets represent
the balls and bins, respectively, and whose edges connect balls with their chosen bins.

A distributed load balancing strategy is non-adaptive if all choices are made before any
communication takes place. A strategy is symmetric if all balls and bins run the same protocol
and if all choices are made i.u.x. It is asynchronous if a ball or bin does not have to wait for other
balls and bins to receive a message. A synchronous protocol has at least one synchronisation
point when all balls and bins have to wait for a round to finish. This implies some kind of
coordination, some notion of global time [2].

We speak of a finite or fixed time process if the number of balls is limited; otherwise it is
infinite 3| [1]. The finite process is analysed for a fixed time that is known in advance whereas
the infinite process performs arrivals and (possibly) deletions of balls over an infinite time line.
Note that the bins do not have to be empty at the beginning and that it can help during the analysis
to divide a process into finite sub-processes, especially if the balls are already grouped in batches.

The waiting time of a ball is the time (i.e., number of rounds) between its arrival in the system
and its processing / deletion. The service time defines how much time a bin needs to process /
delete one ball. Normally it takes one time step.

In the d-choice game, as we have described it, each bin has the same uniform probability % to
be the i-th choice of a ball, for all ¢ € [d]. (Naturally the bins’ probabilities to receive the ball are
different in the multiple-choice game because they depend on the current load distribution.) One
evident generalisation of the d-choice game allows for different probability distributions over the
bins.

Another variation of balls-into-bins game allows that the balls have integer weights. The load
of a bin is then defined as the added weights of the balls in it. As before, the height of a ball is
defined as the bin’s load immediately after the allocation.

In Chapter we will consider the game in which the balls have unit size, but the bins have
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1 Introduction

different integer capacities. The load of a bin with capacity c is the number of balls in the bin
divided by c. The probabilities of the bins will be adapted so that bins with higher capacities are

more likely to receive balls. For a more detailed description see Section[3.2]

1.2 Proof Techniques

For the analysis of balls-into-bins games several proof techniques have been employed. Most
of them are widely used in probability theory and computer science and certainly not restricted
to allocation processes. We give an overview and describe the ones in detail that we use in the

following chapters.

1.2.1 Tail Bounds

Parameters like the running time of a randomised algorithm or the maximum load in an allocation
process are random variables. In many cases it is desirable to prove that, w.h.p., a parameter
takes a value that is smaller or greater than a certain bound. Such results are possible because
very often the parameters are “concentrated” around their expected value. This means that, for a
parameter X, there exists an interval I with E[X] € I such that the probability Pr [ X € I] is
(very) high. This phenomenon is referred to as the concentration of measure [27].

Several tools have been developed to prove zail bounds, i.e., bounds on Pr [ X & T]. The tails
are the areas far from the expected value: If I = (a,b), then {z | z € R A x < a} is referred
to as the lower tail and {z | x € R A x > b} as the upper tail [80]. Accordingly, bounds on the
probabilities Pr [ X < a]and Pr[X > b] are called lower and upper tail bounds.

Among others available tools are Chernoff bounds and the inequalities of Markov, Chebyshev,
Hoeffding and Azuma (see e.g. [68,160]). Even though all these bounds are based on Markov’s
inequality, they have different requirements. The inequalities of Markov and Chebyshev are
relatively weak, but generally applicable. The other bounds are stronger, but restricted to mar-
tingales (Azuma), sums of independent and bounded random variables (Hoeffding) or sums of
independent (or negatively correlated [[72]) Bernoulli distributed random variables (Chernoff).

Tail bounds are frequently used in the analysis of balls-into-bins games; for instance, mar-
tingales in [[18]], Chernoff bounds in [3]] and Markov’s inequality in [9]. We will apply different

types of Chernoff bounds, also a variation for geometrically distributed random variables.
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1.2 Proof Techniques

Lemma 1.2.1 (Chernoff bounds; Theorem 4.4 and 4.5 in [66]). Consider n independent random
Bernoulli variables X1,...,X, with Pr[X;, =1] = p; and Pr[X, =0] = 1 — p; for all
1<i<n. Let X := Z?Zl X;and 1 :=E[X] = Zz;l pi. Then, for 0 < e <1,

66

PriX>(1+e¢ pu]< <W> < o3

and, for0 < e < 1,

—€

PriX<(l—e)p] < (u_ee)l_)” P

As mentioned before, the Bernoulli random variables do not have to be independent. It

suffices if they are negatively correlated.

Definition 1.2.2 (Negative correlation [72]). Let X1, ..., X, be binary random variables. They

are negatively correlated if

Pr

/\Xill <[[Prixi=1]

i€l i€l

Sforall T C [n).

Lemma 1.2.3 (Chernoff bounds, negative correlation [72]]). Let X1,..., X, be binary random
variables, let X := " | X; and p := E[X]. If X1, ..., X,, are negatively correlated, then, for
e€ (0,1),

eE

“w
PriX>(4+e) pul<—" ) <e w3
(X240 ul < (g ) <

The following lemma states a variant of Chernoff-type bounds for geometrically distributed

variables (see e.g. Theorem 3.2 in [36]]). For completeness we give the proof of this result.

Lemma 1.2.4 (Chernoff bounds for geometrically distributed variables, [27, 36]). Let
Y1,Ys, ..., Y, be a collection of t independent geometrically distributed random variables with

Pr|Y; =j] = (1 —p)?~' pand constant parameter p, 0 < p < 1. Then
Pr[Y > (146)-E[Y]]<e 275

where d >0andY =Y + Yo +---+ Y,
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Proof. Let X;, i € N, be binary random variables with Pr[X; = 1] = pand Pr[X; = 0] =

1 — p. It is well-known, see e.g. [27], that for all j € N,

t

Y Vi<

i=1

Pr =Pr

j
ZX,»zt] . (1.1)

=1

This will allow us to use Chernoff bounds.
. t 1+0)E[Y
The expected value of Y is E[Y]| = Y. E[Y;] = %. Let X = ZI(:l JEYIT X, Then
E[X] = [(1 +d)E[Y]] -p = (1 + 0) - t. Furthermore, let ¢ := 1 — g57. Then 0 < ¢ < 1 and
PriX <t]=Pr[X <(l1—¢)- E[X]]

Applying (T.T) and Lemma [I.2.T] we get:

Pr(Y > (1+06)-EY]] = Pr[X<(—e) E[X]]
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1.2.2 Coupling and Majorisation

In this thesis we will only consider balls-into-bins processes in which the allocation of a ball
depends on the current state of the load vector, but not on previous states. Therefore we can
regard these processes as Markov chain The state space is the set of load vectors, and the
probabilities of the transitions are given by the load balancing protocol.

The coupling of Markov chains is a technique to compare random processes with each other.
It has many applications in computer science and probability theory (broad expositions are given
in [53186]). We will couple allocation processes and compare their load vectors. In all instances
our aim is to show that the maximum load of one process is stochastically dominated by the

maximum load of the other process.

!'A Markov chain is a stochastic process (X¢) = {X; | t € N} in which the transition probabilities only depend on the
current state (see definitions given in 68 |66]).
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1.2 Proof Techniques

Definition 1.2.5 (Stochastic dominance). Let X and Y be random variables whose co-domain

is some topological space E on which a partial order is defined. Then X is stochastically

dominated by Y if E[f(X)] < E[f(Y)] for all monotonically increasing functions f : E — R.
In the special case that X and Y are real-valued random variables, X is stochastically

dominated by Y if Pr[X < a| < Pr[Y <a]lforalla € R

Definition 1.2.6 (Coupling, order-preserving coupling [54]]). A coupling of two Markov chains
(Xt) and (Y:) with state space S is a Markov chain (Z;) = ((X3), (Yz)) on the state space S x S

such that:

Pr(X,=2a'|Z = (z,y)] = Pr[X;=2"|X,=1]

Pr(Yipi =912 = (z,y)] = Pr[Yii=y|Yi=y]

Let <. be a partial order relation on S and let K := {(x,y) € S x S|z <. y}. Further,
let Pr, [ Z; € K] denote the probability for Z, € K given that (Z;) starts from z € K. The

coupling (Z;) is order-preserving if Pr, [ Z; € K| =1 forallt > 0.

After coupling (X;) and (Y;), both Markov chains behave exactly as before. The only
difference is that their random decisions are coupled. Regarded as randomised algorithms, it
is like using the same random number in both chains to determine the next step. Thus, in order
to define a coupling we only have to specify a bijective mapping between the random choices for

each pair of states. We will do this in Lemma [3.3.3]and Observation[4.3.4]

After establishing a method to couple allocation processes, we still need a method to compare
load vectors with each other. We will use majorisation [58]] which defines a partial order relation

on R™ based on the normalised representation of the vectors (Definition [T.1.T)):

Definition 1.2.7 (Majorisation >). Given two vectors p = (p1,...,pn) and q = (q1,-.-,qn)

in R™, we say that p majorises q if and only if forallk = 1,...,n

k k
Zﬁi 2 Z i
=1 i=1

where p; and q; are the i-th entries of the normalised vectors p and q, respectivelyE] We then

write p >~ q.

Observation 1.2.8. Ler L* and L? be the load vectors of the allocation processes A and B.

Then LA = LB implies that the maximum load in A is not smaller than the maximum load in B.

2Note: Our definition actually complies with the definition of weak majorisation in the literature. According to [58] ¢
is (properly) majorised by p only if additionally -7 ; §; = >_i- ;. We ignore this condition.
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1 Introduction
Observation 1.2.9. Majorisation is a partial order relation on R™.

Lemma 1.2.10 (by Kamae et al. [42,54]). Let (X;) and (Y;) be two Markov chains with state
space S where S is a partially ordered R™. Let (Z;) = ((X}), (Y:)) be a coupling starting from
z = (x,y) and =<, the partial order relation on S. If x =<, y and if (Z;) is order-preserving,

then X is stochastically dominated by Y; for all t > 0.

In the context of balls-into-bins games: (X;) and (Y}) are allocation processes, S = R™, and
x and y are the initial load vectors. If = is majorised by y and if (Z;) is order-preserving, then X
is stochastically dominated (under majorisation) by Y; for all £ > 0. In particular, this implies

that the maximum load is also stochastically dominated.

In Lemma we will use the following claim to show that a coupling is order-preserving.

Claim 1.2.11 (by Wieder, Claim 2.4 in [94])). Let x and y be two normalised integer vectors such
that v = y. If 1 < j then x + e; = y + e; where e; is the i-th unit vector and x + e; and y + ¢;

are normalised.

1.2.3 Layered Induction

Layered induction is a technique that was first used in [3] by Azar, Broder, Karlin and Upfal.

They consider the d-choice game in which n balls are thrown into n bins and show that the

maximum load is upper-bounded by hirlf(l((g) + O(1), w.h.p. In the proof they bound the number

1y, of bins that have at least & balls for all levels £ > 1 using an induction on k. The induction
base, for £ = 1,...,5, is easily established by setting the bounds to n. For the induction step

k — k + 1, they assume that the bound holds for 1, and use this to estimate fij1.

Later in [8} 63] this technique was termed layered induction. It was applied in [[19, 8, [18]. A

detailed description is given in [[63]].

1.2.4 Witness Trees

Witness trees are employed in different contexts. Concerning load balancing they are especially
useful in the analysis of d-choice balls-into-bins games in which each ball allocates itself to the
least loaded of d randomly chosen bins. Generally the technique embodies the following idea:
In order to show that a certain event does not occur or only occurs with low probability, one
proves that the event implies certain requirements and that it is impossible or unlikely that these

requirements are fulfilled. In our example the event is that the load of any bin exceeds a certain
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threshold /. It is then to show that such an event implies the presence of a witness tree and that
the probability for the existence of such a tree is small, given that ¢ is large enough.

Pursuing the example, we define a witness tree T to be a full d-ary rooted tree of height ¢ in
which each vertex represents a ball. Let b be any inner vertex. The d children of b are the topmost
balls of the d bins probed by b, i.e., the topmost balls before the allocation of b.

Given the event that one bin contains (at least) /41 balls, it is easy to show that such a witness
tree T exists: As the root b, we choose the (or a) ball on level ¢ + 1. The balls represented by
children of b, must have height at least £ because they were the topmost balls in their bins when b,.
was allocated and b, was thrown into the least loaded bin. Accordingly, the balls represented
by b,’s grandchildren must have height at least £ — 1, and so on. As the balls represented by the
leaves have height 1, this recursive argument yields that 7 has indeed height at least £.

While taking care of the dependencies, it remains to show that the probability for the existence
of a witness tree is small. Roughly, this is achieved by multiplying the number of all possible
witness trees with the probability that a particular tree exists. For a detailed analysis see [88}163]].

Witness trees were introduced in [60] by Meyer auf der Heide, Scheideler and Stemann.
Mitzenmacher et al. assess them as the most “challenging” technique, but also as the one that
tends “to provide the strongest results” [63]. Witness trees are used in [22, [19} 20| [88]. A

summary of examples and results is provided in [63].

1.2.5 Further Techniques

For the analysis of balls-into-bins games further techniques have been adopted. Beside layered
induction and witness trees Mitzenmacher er al. count fluid limits via differential equations
to “the three major techniques” [63]. Assuming n — oo, this technique aims to describe the
behaviour of the system by differential equations, to solve them and, so, to gain results — which

hopefully also hold for the finite case.

Another technique that is particularly useful in the analysis of load balancing schemes is the
Poisson approximation for binomially distributed random variables: The binomial distribution
plays a prominent role in d-choice balls-into-bins games. So is, for example, the number of
times that a fixed bin is probed binomially distributed. As for sufficiently small p and large n the
Poisson distribution is the limit of the binomial distribution, it can often be used instead and help
to avoid dependencies [66]. Good accounts of the Poisson approximation are given in [80} 66].
It is employed in [35} 2} 162} 23| 29], among other things for bounding the maximum load in the

single-choice balls-into-bins game [35] 162]]. (However, Raab and Steger claim in [[74] that the
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Poisson approximation can only be applied if “* is constant. They utilise the first and the second

moment method to derive tight bounds for the remaining cases.)

1.3 Thesis Overview

The subject of this thesis is randomised load balancing. Chapter 3 and 4 are based on research
papers [[7,16] while the results of Chapter 5 have not been published before. Each of these chapters
begins with an introduction that illuminates the context of the results and provides more specific
definitions not covered in Section[I.I] Open problems and summaries are given in a conclusion
at the end of each chapter.

Before the new results are discussed in the Chapters[3|to[5] Chapter[2] will provide an extensive
overview of the work published in this area. We will point out the key results that are relevant
for this thesis.

Chapter [3|considers a generalisation of the standard multiple-choice process in which the bins
have different capacities (or speeds) and their loads are defined as the number of balls divided
by the capacity. Although Wieder mentions such a game in [94] and suggests to choose the bins’
probabilities proportional to their capacities, this type of balls-into-bins game has previously not
been analysed.

The balls-into-bins game in Chapter ] assumes the bins to be clustered. A ball chooses one
random cluster of size d (instead of d single bins) and is then allocated to a bin of lowest
load within the cluster. The model was introduced by Godfrey in [34] and allows the cluster
set to change with every ball — provided that it fulfils certain requirements. We relax these
requirements, improve Godfrey’s results and simplify the proof.

Chapter [5] investigates GREEDY|d] in the dynamic parallel model. The difference to the
standard d-choice game is that the balls arrive in batches of size n and that the loads of the bins
are not updated before all n balls have been allocated. For m < poly(n) we show that, w.v.h.p.,
the maximum load above the average is O(In(n)) and therefore independent of the number of

balls.
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This chapter provides an overview of the related work and describes applications. We will focus
on balls-into-bins games in various settings and give an overview of their (recent) history. This
sums up the work that is related to the results in the subsequent chapters.

Like urn problems where balls are drawn from urns, balls-into-bins games belong to the urn
models. They are also known as allocation processes or occupancy problems and model the
random allocation of m balls into n bins under various conditions. These conditions include
different probability distributions over the bins as well as weighted balls or bins. In the following
sections we will describe a few of these modifications and extensions.

It is difficult to date back the origins of balls-into-bins games, but there are references in de
Moivre’s “Doctrine of Chances” as early as 1718 [24} 40]. As a model in theoretical physics
they were studied in more detail in the 19th century [40]. A combinatorial foundation for
urn models in general and balls-into-bins games in particular was provided by Whitworth and
MacMahon [93] 56]. In computer science balls-into-bins games were found to be a powerful
model to analyse hashing and load balancing strategies. In this context the aim is to find strategies
that balance the balls evenly over the bins and produce small maximum loads. Karp et al. [45]
and Azar et al. [3]] sparked new interest when they showed a considerable improvement in the
maximum load that is achieved by letting each ball choose two random bins instead of one and
allocate itself to the lesser loaded.

We will briefly describe urn problems, before we solely concentrate on balls-into-bins games.
Due to the results in the subsequent chapters the focus lies on the maximum load in multiple-
choice games. Most of all we are interested in weighted bins (Chapter [3), non-uniform probabil-

ities (Chapter [3|and ) and parallel settings (Chapter [3)).

2.1 Urn Problems

Urn models offer a natural and easy way of describing a great variety of random experiments

and processes. They are used in combinatorics and provide an instrument to develop probability
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theory, more flexible than dice, cards or coins [33]. We distinguish between urn problems and
occupancy models (or balls-into-bins games). The former cover all games in which (possibly
coloured) balls are drawn from urns, the latter all games in which balls are randomly allocated to
urns (or bins).

According to Heubeck [37/]] and Johnson and Kotz [40]], Huygens analysed urn problems as
early as 1665 [38]]. Occupancy problems were mentioned by de Moivre in 1718 [24, 40].

Urn problems are described by a set of coloured urns, each containing a set of coloured balls,
and a protocol that defines how balls are drawn from and placed into the urns. Balls (urns) of the
same colour are not distinguishable. Generally, when a ball is drawn from an urn that contains s
balls, each ball in this urn has the same probability % to be selected. Dependent on the model
balls are drawn from one or several urns, with or without replacement, dependent or independent
of previous balls. The colour of the current ball can, for instance, determine the next urn(s) from
which balls are drawn and the colour and number of balls that are (re)placed into the urn.

Johnson and Kotz [40] show how basic ideas of probability theory can be derived from urn
models and develop a distribution theory based on them. They also list applications in other
sciences like physics, chemistry and biology and describe in detail how the spread of contagious
diseases can be modelled by Pélya-Eggenberger distributions.

A well-known problem that can be expressed as a relatively simple urn problem is the birthday

paradox [91]] that is described in the following example.

Example 2.1.1. Suppose a year has exactly n = 365 days, and every day has the same probabil-
ity % to be the birthday of a randomly selected person. How many people need to be gathered
in one room so that there is a 50% probability that at least two of them share the same birthday?
A similar question is: What is the expected number of people needed so that at least two of them
share the same birthday.

Rewritten as an urn problem this problem reads: Suppose we have a single urn with n = 365
coloured balls which are pairwise distinct. Balls are drawn from the urn with replacement, that
is, the selected ball is immediately put back into the urn. How many balls need to be drawn so
that there is a 50% probability for at least one ball being chosen twice? What is the expected

number of samples until a ball is drawn that has been chosen before?
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2.2 Single-choice Balls-into-bins Games

2.2 Single-choice Balls-into-bins Games

The urn models we are actually interested in are the occupancy models or balls-into-bins games.
A balls-into-bins game is defined by a set of m balls, a set of n bins (or urns) and a protocol that
specifies how the balls are (randomly) allocated to the bins.

We classify the games by the number of choices per ball which we denote by d. In single-
choice games each ball chooses d = 1 bin i.u.r. and allocates itself to it. If d > 2, we speak
of multiple-choice games. Each ball looks at d randomly chosen bins, selects one of them and
allocates itself to it. Generally, for any d € N, we will also use the term d-choice game.

The birthday paradox [91] that we expressed as a classical urn model in Example 2.1.1] can
also be written as a single-choice balls-into-bins game. We identify the days with bins and the
persons with balls that are randomly allocated to the bins. If n = 365 is the number of bins, the
question is: What is the expected number of balls that need to be thrown, until one bin contains

two balls? We answer this question in the following lemma:

Lemma 2.2.1 (e.g. [32,148]). Let n € N be the number of bins and let X count the allocated

balls until one bin contains two balls. Then the expected value is

E[X]=1+Q(n) =O0(Vn)

Q(n)N\/”?;ﬂ/E...O(\/ﬁ)

is derived from Ramanujan’s ©-function [[75]76] 32)]. For n = 365 in particular,

where

E[X] =1+ Q(365) ~ 24.62.

All new results in this thesis that are related to balls-into-bins games target the load distri-
bution: Placing m balls into n bins according to a given protocol, how evenly will the balls be
distributed over the bins? What is the maximum load? Therefore, we will concentrate on these
questions in the remainder of this chapter.

In [35] Gonnet shows for the single-choice balls-into-bins game and m = n that, w.h.p.,

the fullest bin contains I'~*(n) - (1 +0 (m)) ball which implies a maximum load

of 111?1(17(17)1) - (1 4 o(1)) [74)). Mitzenmacher provides an easier proof for the less precise state-

IT'(n) is the gamma function which extends the factorial to non-integer arguments. For n € N it is defined as I'(n) =
(n—1)Lforz € Ry asT(z) = [;7t*~1 - e~tdt (see e.g. [50], pp. 342-348).
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ment © (hir]lr(f(?t)) and also shows that, in case m < g, the maximum load is © <1nl(r; 577)”))

w.h.p. [62].
Raab and Steger give a more elementary proof of Gonnet’s result in [7/4] and extend it to

all m > 3 They achieve very tight bounds by applying the first and second moment

__n
polylog(n

methoCﬂ

Theorem 2.2.2 (by Raab et al., Theorem 1 in [74]). Let M be the random variable that counts
the maximum number of balls in any bin, if we throw m balls independently and uniformly at
random into n bins. Then Pr[M > ko] = o(1) if a« > L and Pr[M > ko] = 1 —o(1) if

0 < a<1, where

In(n In In(21n0n)y . "
M'(lﬁ-a'ww Ucmﬁm«n-ln(n)

" (de — 14+ ) -1In(n) ifm=c-n-ln(n)
mta-y/2- 7 1In(n) ifn-In(n) < m < n- polylog(n)
w2 ) (1= 2 B s 0 1)

Here, c is a constant and d.. is the unique solution of

fe(x):=1+2-(In(c) —In(z) +1) —c=0

for which d. > c.

Single-choice balls-into-bins games with weighted balls are analysed in [[79} 51,110, [11]. As
we will only consider allocation processes with unit-sized balls in the following chapters, we

skip these results and continue with multiple-choice games.

2.3 The Power of Two Choices

Around 1990 researchers started to investigate how an increase in the number of choices d affects
the load distribution in allocation processes. The surprising discovery was that, compared to the
single-choice game, the maximum load in the 2-choice game is exponentially lower in the case
m = n. A further increase of d, however, yields only a constant improvement.

According to [63]], this effect was first observed by Eager, Lazowska and Zahorjan in [28]].
The first mathematical analysis appeared in [45]. There Karp, Luby and Meyer auf der Heide

investigate how a parallel random access machine (PRAM) with concurrent read / write oper-

2Most of the results were “folklore” though and known for decades; see references in [40, 49} [15].
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ations (CRCW) on shared memory can be simulated by a distributed memory machine (DMM)
where parallel access to the same memory module is not possible. The delay of such a simulation
is measured by the “time needed to simulate a parallel memory access of the PRAM” [45]]. The

authors suggest to store data in more than one memory module of the DMM (using several hash

functions) and show that the delay can be reduced from © (131(17(171)) to O(Inln(n) - In*(n)),

where 7 is the number of processors and memory modules. (In the context of PRAM simulations
this idea was further discussed in [26, 55} 122, 160].)

Azar, Broder, Karlin and Upfal [3 4] consider the standard d-choice balls-into-bins game.
They introduce the protocol GREEDY|[d] (see Section and the layered induction technique
to analyse it. For the general case m > n, they prove that the maximum load is (1 + o(1)) -

hirllr(lg;) + O () w.h.p. In particular this implies:

Theorem 2.3.1 (by Azar et al., Theorem 1.1 in [4]). Suppose that n balls are sequentially placed
into n bins. Each ball allocates itself to the least loaded of d > 2 bins that are chosen i.u.r. Then,

w.h.p., the maximum load is

Inln(n)
In(d)

o) @1

Berenbrink, Czumaj, Steger and Vocking [8, 9] improve on the result for m > n and show

that, w.h.p., the expected maximum load above the average * is independent of the number

of balls:

Theorem 2.3.2 (by Berenbrink et al., Corollary 1.4 in [9]). Suppose that m balls are sequentially
placed into n bins. Each ball allocates itself to the least loaded of d > 2 bins that are chosen

iu.r. Then, wh.p., the maximum load is

m  Inln(n)

n T Ind)

+0(1).

In the proof they first show that the result holds for m = poly(n) and then extend it by
applying a Short Memory Lemma. In Chapter [5| we will describe their approach.

In [3] Azar et al. also consider the infinite process assuming that in each step one ball is
allocated with GREEDY|[d] and one random ball is removed. They show that, if the game starts

with n. balls arbitrarily placed into the bins, the maximum load will be hirllr(‘fg) +O(1) w.h.p. after

arecovery time of c-n?-InIn(n) steps. The work was continued and extended in [23} 21, 20 19].

The multiple-choice game with weighted balls is addressed in [10} 85} [73]].
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2.3.1 Slight Modifications of the Multiple-Choice Game

The power of two choices paradigm was a breakthrough in randomised load balancing, but also
raised the question whether other small changes could possibly lead to better results.

A somewhat surprising improvement was presented in [88] by Vécking. For his GOLEFT[d]
strategy he assumes that the bins are partitioned into d sets of size ;. Every ball chooses exactly
one bin from each set i.u.r. and allocates itself to the least loaded. Contrary to GREEDY[d], ties
are not broken arbitrarily, but the ball chooses the leftmost of the least loaded bins.

For m = n, Vocking shows that, w.v.h.p., the maximum load is

Inln(n)

d-In(dg) T o) @2

where ®; = limy_, W < 2 and F(k) are the d-ary Fibonacci number [88]. Similar to
GREEDY/|d], this bound also holds for the gap between maximum and average load if m > n [9].
Note that, for all d > 2, is strictly better than . And simulations in [89]] suggest that
GOLEFT[d] results in better maximum loads in practice as well — seemingly independent of n.

Kenthapadi and Panigrahy add in [47] that, at least in case m = n, one can save random bits
during the process as they show that “such bounds can be achieved by making only two random
accesses and querying g contiguous bins in each access” [47]. More precisely, the n bins are
divided into 27" clusters of size g. Every ball chooses two clusters and places the ball into the
least loaded bin of the lesser loaded cluster. If the clusters have equal total load, then the tie is
broken to the left.

In [90] V6cking shows a matching lower bound of

Inln(n)

d-In(®g) o).

Interestingly this bound is valid for all multiple-choice strategies whose d choices are (possi-
bly) non-uniform and (possibly) dependent. In Section [2.5] and [2.6] we will review more such

processes, yet, processes that do not benefit from non-uniformity.

Mitzenmacher, Prabhakar and Shah consider in [65]] a 2-choice model that allows for reusing
one of the previous choices. As usual each ball allocates itself to the lesser loaded of two bins,
but only one of these two bins is newly chosen. The other bin is memorised by the system as the

lesser loaded bin of the previous round after the allocation of the ball.

3F,(k) = Ofork <0, Fy(1) = 1and Fy(k) = X% | Fa(k — i) for k > 2.
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For the maximum load the authors show the same upper bound as in Vocking’s approach, i.e.

[2.2) for d = 2.

2.4 Parallelisation

The disadvantage of GREEDY [d] is that it is a sequential algorithm — in which one ball is allocated
after the other — and that it loses its powers in a parallel setting. The single-choice protocol can be
run in parallel because the allocation of a ball does not depend on the positions of the other balls.
In the multiple-choice game, however, this is not the case as it is essential for the performance
that the loads are updated before the next ball is allocated. Since many applications like load
balancing and hashing assume a parallel environment, it is desirable to adapt GREEDY|[d] to
these settings.

Not long after the publication of GREEDY[d] and its analysis, different attempts were made to
parallelise it [2,161} 162} 182} 112 [1} [13]]. Most strategies involve additional rounds of communica-
tion, some are also adaptive and allow for rechoosing bins. Recently Even and Medina reviewed
these models and suggested corrections in [29} |30]]. In order to describe the models and results
we will use the vocabulary defined in Sectionwhich is adopted from [2} 182} |1}130]. In what
follows,  denotes the (maximum) number of communication rounds.

The first parallel multiple-choice protocols were introduced by Adler, Chakrabarti, Mitzen-
macher and Rasmussen in [2l]. Their algorithms PGREEDY, MPGREEDY and THRESHOLD
address the static model with m = n and allow parallel message exchange based on the commu-
nication graph. Stemann and Even et al. consider the same model and add the k-COLLISION and

the RETRY protocol, respectively [82] 29]. Most of these protocols achieve a maximum load of

.| In(n)
o ( lnln(n)) ' 2.3)

The algorithm PGREEDY[d] is based on GREEDY[d] and adds only one round of communica-

tion. After each ball has chosen and informed its d random bins, the bins send their current height
back, that is, the number of answered requests. Messages arriving simultaneously at the same
bin are processed one by one (in arbitrary order) so that each reply contains a different height. As
soon as a ball has received all d answers, it will commit to the bin of lowest height. PGREEDY/[d]
is symmetric, non-adaptive and asynchronous. The maximum load achieved equals for
r=2whp. [2].

The protocol MPGREEDY[d] works similar, but adds a number of communication rounds that
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is not fixed beforehand. When a ball informs the d chosen bins, it attaches its identification
number (ID), randomly chosen from a large enough set. These IDs are then used by the bins to
sort the list of requests. In every (synchronous) communication round each bin sends its current
load to the ball whose ID comes next in the list. If a ball receives at least one message, it will
allocate itself to a bin of lowest load and cancel all its remaining requests. MPGREEDY/|d] is also
symmetric and non-adaptive, but it is not asynchronous because, contrary to PGREEDY[d], a ball
cannot deduce on its own from the (number of) returned messages whether a round is complete.

According to [2], the expected maximum load as well as the number of communication rounds is

Inln(n)
In(d)

+2-d+0(1).

The synchronous protocol THRESHOLD[T'] diverges from GREEDY [d] more considerably as
it allows for rechoosing bins. In each round every ball not yet allocated chooses a random bin.
Each bin accepts up to 7" balls and rejects all balls above this threshold. If the balls include
their round numbers in their messages, this protocol works completely asynchronously. A bin
must only memorise how many balls it has already accepted from each round. Adler et al.
prove that, w.h.p., THRESHOLD(1] terminates after at most InIn(n) + O(1) steps which implies
that the maximum load is also at most InIn(n) + O(1). It approximately matches the maximum
load of GREEDY|[d] and is achieved in O(2(InIn(n))) asynchronous rounds whereas GREEDY [d]
requires n synchronous rounds. The authors show that THRESHOLD|T] terminates after » rounds
w.h.p. if the threshold T" equals (2.3). This implies a maximum load of 7 - 7" which is again 2.3)
if 7 is constant.

The k-COLLISION protocol (by Stemann [82], based on [26]]) has the same upper bounds as
THRESHOLD[T], with the difference that they hold for all » € O(Inln(n)). The protocol starts
with each ball choosing two bins. After all bins have received the requests (synchronisation
point), each bin checks if it has got at most k requests (where k equals (2.3)). If this is the case,
it sends acknowledgments back to the balls. Otherwise it waits until the number of requests drop
to k. When a ball receives at least one acknowledgment, it allocates itself to one of the according
bins and cancels all other requests. The k-COLLISION protocol is symmetric, non-adaptive and
almost asynchronous as it has only one synchronisation point. The loops can run asynchronously.

Adler et al. also provide a matching lower bound of

.| In(n)
Q( lnln(n)> 24
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for non-adaptive, symmetric protocols given that d and r are constant and that all decisions
are based on the unlabelled access graph [2]]. Berenbrink, Meyer auf der Heide and Schroder
generalise this lower bound to 7 < InIn(n) in [12]] matching Stemann’s k-COLLISION protocol.

However, in [29] Even et al. point out that the lower bound does not hold for PGREEDY[d]
and THRESHOLD|[T| as they base their decisions on loads or round numbers, respectively. The
access graph cannot be regarded as unlabelled because vertices (i.e. bins) with lower loads or
round numbers are preferred. In [29] they show explicit lower bounds for both algorithms, and
in [30] they generalise the lower bound of to all aforementioned algorithms by rendering
the symmetry assumption and some restrictions on the access graph unnecessary.

The first results for m > n appeared in [82]]. Allowing £2 (f&:;&%) rounds of communi-

cation, the k-COLLISION protocol achieves a maximum load of O(’}). Berenbrink et al. [12]
adapt the k-COLLISION protocols to weighted balls. The only change is that balls attach their
weights to their requests and that the threshold % is now compared to the sum of weights (instead
of the number of balls). If W4 and W™ are the average and maximum weight, respectively,

then the maximum load is shown to be

Inln(n)
In (% . (;:1‘/1{/[/]3 + 1))

rounds of communication. In case of uniform weights this result conforms to the bound in [82]].

+1

v - (%-WA—FWM) for

Besides the static model, Stemann [82] also investigates a finite dynamic model in which n
players have 7 = “* balls each and allocate them to n bins — one after the other, but without
waiting for other players. Message exchange is restricted to the communication graph and to
copies of the same ball. This so-called 7-ALLOCATION strategy lets a ball choose two bins and
send a copy of itself to each of them. Every bin has two queues, one for first copies, one for
second copies, and processes one ball from every queue per time step (provided that they are not
empty). When a ball is processed, its copy is removed from the system as well. The according
player is informed whereupon it initiates the allocation of the next ball.

The 7-ALLOCATION protocol is non-adaptive, symmetric and asynchronous. If 7 = In(n),
then, w.h.p., all balls will be allocated in time O(In(n)). The maximum waiting time is bounded
by O(Inln(n)).

Another finite dynamic model is the supermarket model that was introduced by Mitzenmacher
in [61]]. Even though the allocation of the balls follows GREEDY|[d] (or THRESHOLD[T]), the
model differs significantly from the standard process as the service times of the bins and the

arrival rate of the balls are not regular. The service times are exponentially distributed with
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mean 1, and the balls arrive in a Poisson stream with average arrival rate A < 1 which implies
that the intervals between the arrivals are also exponentially distributed. Assuming that all
balls base their decision solely on the bin loads (but not on the service times), Mitzenmacher
shows that the expected waiting time is constant for n — co. The maximum waiting time
is O(Inln(n)).

The supermarket model is further analysed in [62, (92} |64]].

Adler, Berenbrink and Schroder [1]] investigate the INFINITE ALLOCATION process in the
dynamic model. It is inspired by the infinite, sequential d-choice process [4, 23] as well as
Stemann’s 7-ALLOCATION protocol [[82]]. The authors assume that the balls arrive in batches of
size s and that each ball sends a copy of itself to d > 2 randomly chosen bins. The balls are
stored in FIFO queues and, thus, processed in the order of arrival, one ball per bin in every round
(unless the queue is empty). When a ball is processed, all its copies are informed and removed
from the queues.

The INFINITE ALLOCATION protocol is non-adaptive, symmetric and asynchronous. If s <
g, then the expected waiting time is constant and, thus, most of the balls are processed very

quickly. However, the maximum waiting time is hirllr(lt(i’)” + O(1) wv.h.p.

In Chapter [5| we will analyse the bare GREEDY|d] protocol in a dynamic model. The balls
arrive in batches of size n and each batch is allocated in parallel. This is modelled by updating
the bin loads only between the batches. We will show that, if m < poly(n), the gap between

average and maximum load is O(In(n)) and, thus, independent of the number of balls.

2.5 Non-uniform Probabilities

All load balancing schemes considered so far are based on the assumption that the probabilities
for bins to be probed are uniform; i.e., each bin has the same probability % In many appli-
cations, however, this cannot generally be assumed. One prominent example is load balancing
in distributed hash tables (see below). Byers, Considine and Mitzenmacher [[17, [18]] suggest to
apply the multiple-choice paradigm and analyse it for m = n. Wieder [94]] generalises their
approach to the heavily-loaded case m > n. In this section we describe their work and finish
with an outlook on Chapter 3]

We consider consistent hashing as it is used in some implementations of distributed hash
tables [43) [84]]. The task is to hash keys (items, requests, balls) to a set of peers (nodes,
computers, bins) in such a way that (i) the keys are sufficiently balanced over the peers and that

(ii) changes in the network structure do not overly affect the performance. In a basic approach,
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used in Chord [84], the peers as well as the keys are mapped to points on a one-dimensional ring.
Each peer is assigned all keys that are mapped to the arc bounded by itself and by the next peer
on the ring in clockwise direction. Whenever a peer leaves the network, its arc is simply added
to the arc of the predecessor (on the ring) which receives all the stored items. When a peer joins
the network, it is assigned a new arc and takes over all items from its predecessor that belong to
this arc.

The advantage of this hashing technique is that it behaves well in dynamic environments.
Compared to other strategies, the addition and removal of peers induce only a relatively small
number of relocations. The disadvantage of consistent hashing is the discrepancy in the arc
lengths that leads to a considerable imbalance in the load distribution. Let n denote the number
of peers. It can be shown that the maximum arc length is © (%) w.h.p. and, thus, about In(n)
times greater than the average arc length % [LL7]].

To solve this problem different solutions were developed (e.g. [83} 157, 14, [69]]). Stoica et
al. suggest to map every peer to r points on the ring instead of only one so that it receives all
keys mapped to the according r arcs [83] 46]. They call the additional points virtual peers and
recommend = O(In(n)). Even though this does reduce the deviation of the arc lengths, the
overhead due to the additional edges in the overlay graplﬂ and messaging costs is considerable
[83L117].

In [14] Bienkowski et al. introduce a protocol that achieves a constant deviation in the arc
lengths by allowing some redistribution of the intervals. Triggered by join and leave operations
a constant number of peers can migrate to other points on the ring. The obvious disadvantages
are the additional communication and the increased number of items to relocate.

Byers et al. point out in [[17] that the load would still be unbalanced even if all intervals had the

same length because this case would conform to the standard single-choice balls-into-bins game

and result in a maximum load of * + O (\ / mlz(”)> for m items and n peers (Theorem|2.2.2).

Hence, the authors suggest to apply the multiple-choice paradigm and to run GREEDY[d] on the
network: For each item that is to be allocated, d > 2 hash functions are used to choose d points
on the ring. The according peers send their current loads back and the item commits itself to the

peer of lowest load; ties are broken arbitrarily.

Surprisingly, for m = n the maximum load is shown to be at most lri:(l(%l) + O(1) wh.p. -
which is optimal because it matches the lower bound of the standard game (Theorem [2.3.1)).

In addition, simulations suggest that this strategy is superior to the virtual peers approach for

4The overlay graph describes how the peers are interconnected. The design of the overlay graph governs the search
time for items in the network. For details see [84].

35



2 Related Work

arbitrary m [17]. It is also remarkable that the running time for search operations does not
significantly increase with the number of hash functions. When an item is allocated, the other
d — 1 peers are provided with redirection pointers pointing to the peer that got the item. Thus,
when an item is requested, it suffices to call only one hash function and to follow the redirection
pointer.

In [18] the same authors extend the analysis to the case m > n. Based on [4], they show a

maximum load of O () 4+ O (ﬁ:{fﬁ) . Furthermore, they prove that their results hold even if

the one-dimensional ring is replaced by a two-dimensional torus. Here, the peers and items are
mapped to points in the torus, and the nearest peer is determined by the Euclidean distance.

The question — raised in [18]] — whether there exists a (significantly) stronger bound on the
maximum load for m > n and (fixed) d > 2 is negated by Wieder in [94]]. For the d-choice game
with uniform probabilities Berenbrink et al. [8] proved that the gap between maximum and
average load does not change with the number of balls m. But, as Wieder shows by example,
this result is not transferable to the consistent hashing scenario of [[17, [18]].

However, if d is allowed to slowly grow with the deviation in the probability distribution, then
it is possible to show such a result [94]. Let a distribution be (v, 3)-biased if for all probabilities
pi» © € [n], it holds that ﬁ <p; < g If the probability distribution over the bins is («, 3)-

biased and if

a-B—1
d>(1+e)- M

for € > 0, then, w.h.p., the maximum load is at most

m  Inln(n)

n  In(l+e)

The presented bounds are tight in such a way that, for any e < 0, there exists a («, 3)-biased
distribution that leads to a deviation of the load linear in m.

As a motivation for his paper [94]], Wieder considers balls-into-bins games in which the bins
have heterogeneous capacities. A bin with storage capacity (or speed) 3, for example, can store
(process) three times as many balls as a bin with capacity 1. Wieder assumes that such a game
can be reduced to a game with heterogeneous probabilities. In order to compensate for the
different abilities of the bins, he suggests to set the probabilities proportional to their capacities.

In Chapter [3| we will analyse this problem in detail and prove bounds on the maximum load.
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2.6 Graph-based Models

Further examples for balls-into-bins games with non-uniform choices are the (hyper)graph-based
models by Kenthapadi er al. and Godfrey [47.[34]. They provide the basis for Chapter [4]

In [47] Kenthapadi and Panigrahy study the standard 2-choice game (of Azar et al. [3]) with
the restriction that only pairs of bins can be chosen that are connected by an edge in an underlying
graph. Each edge in the graph has the same probability to be chosen. Given that the graph is

A-regular, the authors upper-bound the maximum load by

In(n)

Inln(n) + O (hl(A/w(n»

) +0(1)

w.h.p. and also provide a nearly matching lower bound. In particular, if the graph is n®-regular,
the maximum load is Inln(n) + O(e~1) + O(1) and, thus, not worse than in the standard game.

Godfrey [34] extends the model of [47] from graphs to multi-hypergraphs in which each
hyperedge connects d of the n vertices that represent the bins. The hypergraph is allowed to be
different for every ball. In order to allocate itself, each ball first chooses a hyperedge i.u.r. and
then a bin of lowest load within the hyperedge.

Assume d = c - In(n) for a suitable constant c. For the hypergraph of any ball j, let deg; (b;)

deg; (bi)
|E]-d

denote the degree of vertex (bin) b; and p;; := the relative frequency of b;. If, for all j,

n

the p;; are (3, §)-biased (or S-balanced as Godfrey terms it), then, after throwing m < 505

balls, the maximum load will be 1 w.h.p.
In Chapter [d] we will discuss Godfrey’s model and results in more detail. There we will im-
prove the bound for m, relax the notion of balancedness and present a simpler proof. Moreover,

we will show matching lower bounds and similar results for an extended model.
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In this chapter we consider a variant of the balls-into-bins game with multiple choices. In our
model the balls have unit size as usual, but the bins have different capacities. We consider
different probability distributions over the bins and analyse the load distribution.

Preliminary versions of some results presented in this chapter were published in:

[7] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into non-
uniform bins. In Proceedings of the 24th IEEE International Parallel and Distributed

Processing Symposium, IPDPS *10, pages 1-10. IEEE, 2010

The results are improved and new findings have been added.

3.1 Introduction

In the standard balls-into-bins game m unit-sized balls are allocated to n unit-sized bins. It
is assumed that every ball independently, uniformly and randomly chooses d bins and that it
commits itself to the least loaded bin. The goal of this strategy is to balance the load over the
bins and to minimise the maximum number of balls allocated to any bin.

In the variant of the game that we consider here, we assume that the bins are not uniform,
but that they come with an integer capacity ¢;. The load ¢; = T—: is defined as the ratio of the
number of balls m; assigned to it and the capacity ¢;. Again, every ball has d random choices,
and the goal is to minimise the maximum load.

Let C = Y I, ¢; be the sum of the capacities of all bins. The natural probability for a
bin to be chosen would be either %, that is uniform, or &, proportional to the bin’s capacity.

Analysing the latter case, we prove, for m = C and d = 2, that the maximum load is at most

hiir(lgb) +O(1) w.h.p. (Theorem|3.3.5)) and under certain conditions even constant (Theorem
and [3.3.6). Additionaly we investigate games with differing probability distributions and show
that significantly better results can be achieved in some cases (Theorem [3.3.9).

This generalisation of the standard d-choice game is especially valuable for load balancing

in heterogeneous networks because it allows for modelling computers with different speeds or
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storage capacities. In such scenarios it is desirable to assign more requests (balls) to the better
computers (bins with higher capacities). Our approach demonstrates how this can be realised by
adapting the probabilities — in theory and in practice as simulations suggest well-balanced load

distributions even for small n and large m (Section[3.4).

3.1.1 Related Work

Heterogeneous bin sizes have been considered in the related field of selfish load balancing [31]],
but to our knowledge nobody has analysed it for balls-into-bins games. Such processes are only
mentioned by Wieder in [94] to motivate his work about multiple-choice games with heteroge-
neous probabilities. He suggests to choose the bins’ probabilities proportional to their capacities.
In this chapter we will analyse this particular case and variations of it.

For a broader view of the related work see Chapter 2] Especially relevant for this chapter are

the Sections 2.3] 2.4] and 2.3}

3.1.2 Contributions

All previous results assume that each bin has capacity 1 and that the balls should be distributed
as evenly as possible. In contrast, we assume that the system consists of heterogeneous bins
where each bin b; can have an arbitrary integral capacity c¢; and where its load is defined as the
number of balls divided by c¢;. The objective is to balance the load over the bins according to
their abilities. If not stated otherwise, we assume that a bin’s probability to be chosen is Z where
C=3

In the analytical part of this chapter, we show that under these circumstances the maximum

load is at most lri:(lg) + O(1) wh.p. if d = 2 and m = C (Theorem [3.3.5). The maximum

load stays constant if C' > n? or if almost all bins have capacity Q(In(n)) (Theorem m
and [3.3.6). Provided that we can choose a different probability distribution over the bins, a
constant maximum load can be achieved even if there is only a constant fraction of O(InIn(n))-
sized bins (Theorem @]) The proof of this theorem uses Observation which states that,
if all bins have the same capacity ¢, the maximum load is bounded by 1 - (2 + O(InIn(n)))
w.v.h.p. This bound is based on [9] and holds even in the heavily loaded case (m > C).

Based on a simulation environment, we arrange and simulate bin arrays with varying param-
eters in Section [3.4]and compare our analytical results with the experiments. In this simulations

section, we also consider settings that we have not analysed, most notably the general heavily
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loaded case and systems with a small number of bins. The outcomes of the latter suggest the

practicability of the analytical results.

3.1.3 Motivation

One can look at the problem in three different ways: (1) The bin sizes and probabilities are fixed.
The task is to analyse the distribution of the balls in general and the maximum load in particular.
(2) The capacities of the bins are given and the aim is to find the probability distribution that
achieves the most balanced system. (3) The probabilities are fixed and the question is how to
alter the capacities in order to balance the load more evenly.

(1) The first approach is the one we mainly focus on, and we usually assume that the proba-
bilities are proportional to the bin sizes. This is a natural assumption: If there were actual bins
covering the floor and a ball was dropped from a random point above them, then this would be
the resulting probability distribution. Even though this approach does not (necessarily) result
in the optimal load distribution, it works fairly well and might, for instance, be the best choice
for a dynamic network that is frequently joined and left by servers (bins) of different speeds
(capacities). This way the revaluation of the probabilities and the alterations to the selection

algorithm could be kept simple.

(2) Computer networks, especially peer-to-peer (P2P) environments, are often heterogeneous
in terms of speed and storage capacity. In such a case it makes sense to prefer computers that
have faster processors or more memory and increase their probability to receive requests. What
is the optimal strategy to balance the load evenly? Special cases of this problem are examined
in Theorem [3.3.9] and in the experiment described in Section [3.4.4] but generally this question

remains open.

(3) The inverse scenario is also imaginable, an environment in which the non-uniform prob-
abilities are given, but not the capacities. P2P environments like Chord or CAN [84}, [77] are
examples in which the probabilities can considerably deviate from the average — though in such
dynamic systems the increase of a peer’s processing or storage capacity is not a good option.
A better application would be a static, widely distributed network of servers in which clients
tend to choose servers close-by. E.g., the network could be run by a company that offers music
or software to download. If certain servers were more frequented than others, then the overall

processing time could be balanced by enhancing their computing or storage capacities.
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3.2 Model and Definitions

Algorithm 1 Load Balancing Protocol
1: for all balls do
2:  Choose d bins i.u.r.
3:  Among the bins of lowest load place the ball in an arbitrary bin
4: end for

We assume bins to be non-uniform. All bins come with positive integer capacities (which
could also reasonably be referred to as speeds or compression factors). Denote the capacities of
the n bins as ¢y, ..., ¢, and the total capacity as C' := Z?:l c;. If not stated otherwise, then
we consider the process that allocates m = C' balls into n bins, each ball having d > 2 random

choices and committing itself to a bin of smallest load among the chosen bins. We say that, if

m; balls are allocated to a bin b; of capacity ¢; > 1, then this bin’s load is ¢; = 24

- ci

. Usually
we will assume that the probability of bin b; with capacity ¢; being chosen is & and therefore
proportional to ¢;. If we use other probability distributions, we will clearly point this out.

To make our proofs more accessible we will occasionally imagine that each bin of capacity ¢
does actually consist of ¢ many unit-sized slots (the protocol is entirely unaware of this). Hence,
the total number of slots equals the total capacity C' of the bins. For a fixed sloti € {1,...,C}
let b(7) denote the unique bin to which slot ¢ belongs. The height of a ball is the load of the bin it
is allocated to directly after its allocation. Thus, if a ball falls into a bin of load ¢; and capacity c;,
then its height will be £; + +.

The terms load vector L = ({4, ...,¢,) and normalised load vector L. = ({1, ...,(,) are
used as defined in Section [I.1.4] For (possibly) non-uniform bins with total capacity C' we also
define the slot load vector S = (S1,1,-++,51,c1,52,15++,52,c0r++>Sn,15- -+, Sn,c,) Where s; ;
is the j-th slot of the i-th bin. The load of a slot is the number of balls it contains. Let b be a
bin of capacity c containing r balls. We assume that slots are filled in a round-robin fashion and
therefore that b’s first (leftmost) » mod c slots contain one ball more than the remaining slots.
The normalised slot load vector is denoted by S. For convenience, we specify that, if two slots
contain the same number of balls, then the slot that belongs to the more loaded bin comes first.
(We may drop the two-dimensional indices and instead use 1,...,C as any correspondence of
position within S.)

If we allocate m balls into n bins, L; (L;, S;, S;) is defined as the load vector (normalised
load vector, slot load vector, and normalised slot load vector, respectively) after the allocation of

the ¢-th ball.
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3.3 Analysis

The structure of this section is as follows: The main contribution is Theorem [3.3.5] upper bound-
ing the maximum load of any bin in a system with bins of variable capacities. We start by proving
Observation that bounds the load of big bins as well as the height of balls that have at least
one big bin among their choices. Lemma 3.3.3]|shows that load distributions achieved by systems
with solely unit-sized bins dominate those achieved by systems with heterogeneous bins with
the same total capacity. This lemma will then be used to prove Theorem Theorem
analyses under which circumstances (that is, number of small bins vs. number of big bins) we
may achieve constant maximum load. Observation bounds the maximum load for uniform
bin arrays in the heavily loaded case. Finally, Theorem uses this observation to show
that much better results than Theorem are possible provided that one can choose the bins’

probabilities oneself.

Definition 3.3.1 (Big bin, By, By, ('ohe, (5502). A bin is called big if its capacity is at least
r - Iln(n) (where r > 2 is a constant), otherwise it is small.
With By, we denote the set of balls that have at least one big bin among their choices and with
(b)

B the remaining balls that probe only small bins. £y ( 65;2130 ) is the maximum number of balls

from By (Bs) in any bin.
First we bound 652211;:

Observation 3.3.2. Consider the 2-choice game in which m = C' = >, ¢; balls are thrown
into n bins with total capacity C'. Let k be a positive constant. If k < % -1 — 1, the load in every

big bin is at most 4 and Eﬁﬁ?m < 4 with probability at least 1 — n™F.

Proof. This is a simple application of Chernoff bounds. The probability that a ball commits to a
big bin b; is at most % = % The expected number of balls hitting the big bin b; after m balls
is at most 2 - ¢;. Let m; be the number of balls that have bin b; as one of their random choices.

Then, using Chernoff bounds (Lemma|[[.2.T|with € = 1), we obtain

Pr[mi > 4‘Ci] — Pr[m,; > (1 Jre) . 2~Ci] < 6762.2@/3 < 672-7‘~1n(n)/3

n=2r/3 < kel

Hence, for 7 chosen suitably, with probability at least 1 — n~ %=1 the bin is chosen by at

most 4 - ¢; many balls, which is certainly an upper bound on the total number of balls in the bin.
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W.h.p. the load is

Since there are at most n big bins, the probability that (at least) one of them exceeds load 4 is
bounded by n - n=F~1 = n=k,

Note that this observation still holds if all balls that choose a big bin are allocated to the big
bin. Since under these circumstances the maximum load of big bins is still w.A.p. at most 4, no

ball of BB, will choose a small bin unless its load is smaller than 4. Hence, no ball of /3, will have

a height of more than 4. This implies 65,2211 < 4. O

Lemma 3.3.3. Let A be a d-choice process on n non-uniform bins with total capacity C, and
let B be a d-choice process on C unit-sized bins. Then the maximum load in A is stochastically

dominated by the maximum load in B.

Proof. We show this result by coupling. Since the number of bins is different in both processes,
we define the state space as the set of slot load vectors (instead of load vectors). The slot load
vectors in A and B have equal length because the total capacity C' is the same in both processes.
We let the balls choose slots rather than bins setting the probability for each slot to % (Note
that the slot probabilities for a bin with capacity ¢ sum up to &.) However, the protocol stays the
same for each ball as we map its slot choices to the according bins and allocate the ball to the
best bin.

As the process starts with empty slot load vectors, S is majorised by S” in the beginning.
Lemma states that S4 will remain stochastically dominated by S if an order-preserving
coupling of the two processes exists. This would already imply the statement of the lemma —
that the maximum load £ in A is dominated by the maximum load /¥ in B — because /{* < 5!
and (P = 5P,

Let SJA and S JB denote the slot load vectors after the j-th ball. For the coupling we have to
show that for every ball j there exists a bijection between the random bin choices of A and B
such that SjA = SJB implies SjAJrl = Sf+1- Let b be any bin in process A that has capacity ¢ and
let iy, ..., 7. be the slots in 5”;4 that belong to b. Choose the order of the slots so that i, is the slot
that will get the next ball that is allocated to b. (This is possible because 7. must be among the
least loaded slots of b.) Then we couple the slots iy, ..., i. in SP with slot i, in S7.

Let by < ho < ... < hg be the d random slot choices in B. Each coupled slot in A has either
the same or a higher index. In both systems we choose the rightmost slot (or a slot with the same
properties so that we can swap it with the rightmost slot). Since the index of the rightmost slot

in A is not smaller than the one in B, it follows from Claim|1.2.11|that Sﬁrl < SJBH.
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3 Bins with Different Capacities

It remains to prove that we really choose the least loaded bin in system A by allocating the
ball to the rightmost slot: (i) Note that we compare the least loaded slots of the bins at question
and that the slots of a bin are filled in a round-robin fashion. Therefore, if one slot has a strictly
smaller load than another slot, then the same is true for the according bins. (ii) Recall that we
added to the definition of the normalised slot load vector that slots of the same load are ordered
by the loads of the according bins in decreasing order. Hence, even if two slots have the same

load, then the slot with the higher index belongs to the bin of lesser (or equal) load. ]

Lemma 3.3.4. Consider the d-choice game in which m = C balls are allocated into n bins with
total capacity C. Let c and h be positive constants and mg the total capacity of all small bins.
Then, for any constant k, E(,ﬁ?w € O(1) with probability at least 1 — n™" if either

(1) m > n? or

(2)m > h-n-In(n) and ms < c-(n-1In(n))?/3.

Proof. We will consider six cases, distinguished by different bounds on ms and m, and prove
for each of them that Es}iw € O(1). The first three cases imply statement (1), the last three cases
statement (2). Since the analysis of each case follows the same method, we outline the two steps
of this method before we insert any values. In two cases, step 1 will already suffice; in all other
cases we will carry out both steps.

Let s be the number of small bins in the system, and recall that 3, denotes the set of balls that

have all d choices among small bins.

Step 1: Bounding X := |B;|. The probability for a ball to be in B; is

e ()< ()"

For the number X, of such balls we obtain therefore

(LEID) se-m-p.\F m2\*
PrX,> k] =Pr(Bmp) >k < (“70) <(e ms)

k-m

We will choose k so that Pr[ X, > k] < n~® for any constant « (provided that n is large
enough). In two cases we will be able to choose k as a (small) multiple of o which already

implies a constant maximum load. In the other cases we continue with step 2.

Step 2: Bounding the maximum load. We assume X; < k (where k is taken over from

step 1). The remaining task is to bound the maximum load of the game in which k balls are
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3.3 Analysis

allocated into s small bins with a total capacity of m,. Lemma [3.3.3]states that the maximum
load of this process is dominated by the maximum load of the process P that allocates % balls
to m, unit-sized bins. Therefore, it is sufficient to show a constant bound for the maximum load
in P.

Let X . count the number of collisions, that is, the number of times in which a ball falls into a
non-empty bin. For each case, we will show that X is constant w.v.h.p. which already implies a
constant maximum load. Let X ;, ¢ € [k], denote binary random variables such that X ; = 1 if
the i-th ball collides with a previous ball and X ; = 0 otherwise. Observe that X, = Zle Xeji

The collision probability p. := Pr[X,.; = 1] for ball 7 is upper-bounded by

. d . 2 2
pCZPr[XC’i:jl]S(Z_l) S(Z_l) <(k> .
My Mg Mg

provided that i — 1 < my.

For the number of collisions X, we obtain

Pr(X,>A] < Pr[B(k,p.) > A

LELD (e kop.\* _ (e K A
= (5) < ()

The six cases. Now we apply the described method to bound ¢2). in six cases that are
specified by different bounds on m and m. (Note that a small bin has size less than r - In(n) and

that therefore ms; < n - r-1n(n).)

Case: m > n? and m, € [1,n%/4].

e m2\* e-nd/2\ " e \F
> < S < =
Pr[Xsk]<k~m> (knz) (k~n1/2>

From this we can directly derive that &(ﬁzw < X, <2-a= 0O(1) with probability 1 — n~ (for

any constant o > 2).

Case: m > n? and m, € [n/4,n.

We choose k = In(n).

e m2 In(n) e n2 In(n) .
Pr{X; >In(n)] < <1n(n) Sm) < <ln ) n2> — p—Inln(n)+1
e K3\ e-1n®(n) A
PriX.22] < ()\ m2 S(/\ n3/2>
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3 Bins with Different Capacities

Thus, X < In(n) holds with probability 1 — n~ for any given o and X, < A with probability

at least 1 — n~*. The maximum load is constant w.v./.p.

Case: m > n?and m; € [n,n - r - In(n)].

We choose k = (r - In(n))3.

2 (r-In(n))® 2 (rIn(n))®
3 e-m? e (n-r-In(n))
Pz eone) s (Goas) = (Tir
B e (rn(n))® _ n r3.1n%(n)
= = (,rln(n) ,nlnln(n)>
e kP \" < (< (r - In(n))? A
A-m2) — A n?

X, < (r-1In(n))? holds with probability 1 — n~® for any given e and X, < A with probability

IA

Pr[X.> \]

at least 1 — n—>. Therefore, w.v.h. p., the maximum load is constant.

Case: m > h-n-In(n) and m. € [1, (n-In(n))*/ 2.

k

Pr(X, > k] < (Z"j)k < (W) = (k.h.(n .eln(n))l/s)k

This immediately yields £\ < X, < 6-a = O(1) with probability 1 — n=< (for any

constant o).

Case: m > h-n-In(n) and m, € [(n-1n(n))>/*2, (n - In(n))™/1?.

We choose k = (n - In?(n))/S.

e-m;

n -1n*(n))1/6 . m

e-(n-1n(n))7/6 (rn® ()™ (e (n-In®(n))!/°
((n . 1n2(n))1/6 hen- 1n(n)> B ((ln(n))1/6 . h)
e- k3 \* e'(n-ln2(n)>1/2 A e-lnl/ﬁ(n) ’
Pr[XCZ)\]S(A.mg> S()\-(n~ln(n))5/6) =\ =

So, X, < (n-In*(n))'/® with probability 1—n~? for any given o and X, < 4-\ with probability

2 (nIn?(n))*/®
Pr{XSZ(n.lnz(n))l/G] < (( )

1 — n~>. Hence, the maximum load is constant w.v./.p.

Case: m > h-n-In(n) and m, € [(n-1In(n))"/*2 ¢ (n - In(n))?/3].
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We choose k = (n - In?(n))/3.

e-m;

(n-n?(n)V/3.m

nn2(n))1/3 n-1n2 1/3
( e-cz~(n~ln(n))4/3 )( In*(n)) B 0.2 ( (n))
(n-1n%(n))/3 - h-n-lIn(n) A\ (n) - h
A
e k*\" e-n-In’(n) A e-n®%(n)
PriX. >\ < <(—"7 | ="
r[XezAl< ()\-mg> - (A~(n~ln(n))7/6) A-nl/6

X, < (n-1n*(n))'/3 holds with probability 1 — n~ for any given a and X. < 7 - A with

) (neln? ()13
Pr{st(n-er(n))l/S} < ( )

probability 1 — n~*. This implies that, w.v./.p., the maximum load is constant. O

Theorem 3.3.5. Consider the 2-choice game in which m = C' balls are allocated into n bins

with total capacity C. Then, w.h.p., the maximum load is bounded by

Inln(n)
In(2)

+0(1).

In case m > n2, the maximum load is constant w.h.p.

Proof. Here we consider two cases for different values of m and n.

m > n2.  Observation states that the maximum load in big bins is constant w.h.p., and
from Observation [3.3.2]and Lemma[3.3.4] it follows that the same holds for the small bins since

U < 08, + 10 = 0(1).

max max

m < n?. Lemma compares the process in which m balls are allocated into n bins of
total capacity C' with the process that throws m balls into C' unit-sized bins and states that the
maximum load of the former is stochastically dominated by the maximum load of the latter. By
applying Theorem[2.3.T]on the standard game with m balls and m = C bins, we obtain a bound

on the maximum load that is also valid for the first process. W.A.p., the maximum load is

Inln(m) InIn(n?) Inln(n)
gmam > TN 1)< ——— = 1).
me) T =g TOW =g o0
O
The upper bound of lrirlf(lgl) + O(1) coincides with the upper bound for the standard multiple-

choice game (Theorem [2.3.1)) which is a special case of our problem. So, the matching lower

bound of lrirllr(lgl) — O(1) (Theorem ) is also valid for our problem.
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3 Bins with Different Capacities

The last theorem also shows that under certain conditions better bounds on the maximum load
are possible. In the following we will consider more such cases. The next theorem observes that

a constant maximum load is achieved if almost all bins are big.

Theorem 3.3.6. Consider the 2-choice game in which m = C' balls are allocated into n bins
with total capacity C. Assume that there are s small bins with total capacity mg and n — s
big bins with total capacity m — m,. If ms < ¢ - (n-1n(n))?3, then the maximum load is

constant w.h.p.

Proof. Again, we apply Observation [3.3.2] which states that, w.h.p., the height of all balls in By
is at most 4 so that the load of the big bins is constant. The small bins additionally receive balls
from B,. We will use Lemma [3.3.4] to estimate the extra load, but in order to apply it, we first

2/3

have to bound the total capacity m. Note that s < my < ¢ (n-1In(n))*/® = o(n) so that, for

any constant h < 7,

As there are at least n — s big bins, we obtain

m>(n—s)-r-In(n) > h-n-In(n).

The bounds on m and mg allow us to apply Lemma [3.3.4] which states that, w.v.A.p., the

maximum load due to balls from B; is also bounded by a constant. O

The next observation bounds the maximum load for arbitrary m and n, but it is only applicable

if all bins have the same capacity. The result is derived from [9].

Observation 3.3.7. Consider the game in which all bins have the same capacity ¢, m balls are
thrown into n bins and each ball comes with d choices. Then the maximum load equals the
maximum load of the standard game (in which all bins have capacity 1) divided by c.

In case d = 1 we can apply Theorem [2.2.2]that provides different bounds for different values
of m. If d > 2, we can apply Theorem[2.3.2]so that, w.v.h.p., the maximum load is

ol =

: (% +0(Intn(n)))

‘emax =

For m = C = n - ¢ in particular we obtain

O(In ln(n)).

gmam =

ol =

. (HTE + @(lnln(n))) =1+ z
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3.4 Simulations

Proof. Since all capacities are the same, the loads are computed in the same way for all bins and
every ball adds the same load to the total load regardless of where it is allocated. Therefore the
allocation process equals that of the standard game in which all bins have capacity 1. For the
number of balls in the fullest bin the bounds given in [[74} 9] can be applied. Finally, we get the

load by dividing by the bin’s capacity c. O

Corollary 3.3.8. Ifc € Q(Inln(n)) and if m = k - n - € for some arbitrary k, the maximum load

is k+ O(1), w.v.h.p.

Theorem 3.3.9. Let k and o (0 < « < 1) be constants. Consider the game in which o - n
bins have capacity q(n) and all other bins have capacity smaller q(n). If g¢(n) € Q(Inln(n)),
then there is a probability distribution over the bins such that the maximum load will be constant

w.v.h.p. after the allocation of m = k - C balls.

Proof. Assign probability ﬁ to all bins with capacity g(n) and probability 0 to all others.
Ignoring the bins with probability 0, we may consider this a game of m = k- C < k-n - g(n)

balls and « - n bins. Applying Observation[3.3.7) we obtain

Ly ogumn(a ) < —— - (B9 L o
s < s (Ot ) < s (K24 4 o)) )
< Z+(Wgz+0(1)=0(1).

O

The last result implies that in some cases much better results for the maximum load are

possible if one can choose the probabilities oneself.

3.4 Simulations

The purpose of the simulations in this section is two-fold. On the one hand we consider the
games analysed in the previous section and demonstrate that the asymptotic bounds behave well
in practice. On the other hand we look at special settings not covered previously in this chapter
and evaluate the performance of our approach.

Whereas the main focus is on the maximum load in the analytical section, we often consider
complete distributions here. In order to obtain more precise results and smoother curves, the
experiments are usually repeated 10,000 times and the values plotted the average values. If

not stated otherwise, the probabilities are proportional to the capacities and the number of balls
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3 Bins with Different Capacities

equals the total capacity. Each ball has two choices and allocates itself to the lesser loaded bin;

ties are broken arbitrarily.

35

T T
1-bins
2-bins -------
3-bins --------
4-bins B
8-bins ———-

Load

05

0 L L L L L L I L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bin

Figure 3.1: Uniform bins.

Among others we will present experiments indicating that our results also hold for a very

small number of bins, which is, of course, a setting important for many practical applications.

3.4.1 Uniform Bins

In the first experiment we consider the completely uniform case, that is, all bins have the same
capacity. We have n = 10,000 bins, and the capacities range around Inln(n) ~ 2.22. In
Figure 3.1 we plot the normalised load distribution of the entire bin vector for five different
capacities, ¢ = 1,2, 3,4, 8. (In the figure, “x-bins” refers to bins of capacity x.)

According to Observation the maximum load is 1 + M ford > 2and m =

C = c¢-n. And in fact in our simulations the maximum load is very close to 1 + W for
c=2,3,4,8 and close to lr;rll’(lg) for c = 1 (see Theoremﬂor Theorem .

In Figure[3.2on page[51|we consider uniform bins and observe how an increase of the number

of balls m affects the load distribution for different capacities, ¢ = 1,2, 3,4. The four plots in
Figure[3.2]show, left to right, top to bottom, the load distributions over the entire array of n = 32
bins, form = C,10 - C,100 - C, 1,000 - C' respectively.

Notice how the deviation from the average load °* remains constant. In fact the curves for
m = 10-C,100-C, 1,000 - C look identical and suggest that the deviation is independent of the

number of balls.
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Figure 3.2: Uniform bins, heavily loaded case, varying number of balls.

3.4.2 Distribution in Mixed Arrays

In this section we look at heterogeneous bin arrays. As before we assume that the number of balls
m equals the total capacity C and that the bins’ probabilities are proportional to the capacities.
Under these circumstances it seems plausible that an increase of the total capacity leads to a
decrease in the maximum load because the bigger bins draw balls and a ball in a big bin adds little
to the total load. We will present a few simulations that substantiate this assumption. Moreover,

we will analyse which type of bins are likely to hold the biggest load.

3.2

"max load
3

28
26
24

22

max load

2

18

1.6

1.4

1.2

1 I I I I
0 20 40 60 80 100

percentage of bins of size 10

Figure 3.3: Maximum load as a function of the total capacity.
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Figure 3.4: Maximum load as a function of the total capacity.

Figures [3.3and[3.4]show how the maximum load changes when the total capacity is increased.
In the first experiment (Figure [3.3) we mix small bins of capacity 1 with large bins of capacity
10. We maintain a fixed number of n = 1,000 bins and vary the fraction of large bins on the
x-axis from 0% to 100%. We can see clearly that, as expected, the maximum load decreases as
the proportion of large bins increases.

In the second experiment (Figure[3.4) we consider the maximum load as a function of the total
capacity, but the latter is not obtained by gradually increasing the fraction of large fixed-size bins.
Instead, we determine each bin’s capacity using a random process in which, for a desired total

capacity C' = c-n (with ¢ between 1 and 8) the size of each bin is determined by 1+ X where X is

c—

1
7

a binomially distributed random variable with X ~ B(7, ). Notice that the total capacity will
in general not be precisely equal to ¢ - n, but it can be shown, theoretically and experimentally,
that it will be very close to it with large probability. The result is very similar to the previous
experiment. While increasing the total capacity, the maximum load rapidly decreases.

Note that the slow decrease between 10% and 30% results from a typical effect happening in
standard balls-into-bins games (uniform balls and uniform bins) with multiple choices. In these
games the number of bins with maximum load of, say /¢, increases for a long time when the
number of allocated balls is increased. The maximum load increases by one only if a sufficient
number of bins with load ¢ exist. At first glance it does not seem to be right because the number
of balls grows with the number of large bins. But the maximum load is in the small bins (in the
settings between 0% and, say, 40%), and from the viewpoint of the small bins the number of
balls decrease due to the pull of the large bins.

The plots of Figure[3.5]and[3.6|on page[53]show load distributions for different ratios of small

bins and large bins. We consider two cases: In Figure[3.5]we have only 32 bins, and the bin sizes
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Figure 3.5: Load distributions, two distinct capacities.
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Figure 3.6: Load distributions, two distinct capacities.

are 1 and 2. In Figure [3.6] there are 10, 000 bins, and the bin sizes are 1 and 8. We observe in

both plots: The more large bins we have, the more even the load distribution becomes.

The experiment charted in Figure [3.7) and [3.8] on page [54] equals the one in Figure 3.6 as we
consider the same ratios of small and large bins; size 1 and 8 respectively. Yet, now we show
the results in two separate plots that complement each other. The left part shows only the bins
of size 8, the right part only the bins of size 1. (Notice that the curves do not generally span the
entire width of the figures as there are simply not in general n = 10, 000 bins of a given size
available.)

Observation [3.3.2] and Theorem [3.3.3] predict a constant load in the large bins and higher
loads in some small bins. We can observe that the asymptotical bounds behave very well in our
experiment.

Naturally it is almost impossible to draw any valuable conclusions from the (averaged) load
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Figure 3.7: Two distinct capacities 8 and 1, but only the bins of size 8 are plotted.

35

T T T

0x 8-bins, 10000x 1-bins
2500x 8-bins, 7500x 1-bins -------
5000x 8-bins, 5000x 1-bins --------
7500x 8-bins, 2500x 1-bins

Load

05 F : |
| |

i
0 L i L A L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Bin

Figure 3.8: Two distinct capacities 8 and 1, but only the bins of size 1 are plotted.

distribution in the experiment concerning the correctness of our theoretical results. The differ-
ence between the logarithmic and constant bounds is simply too small. Assuming whether a
value such as 2 is O(1), O(Inln(n)) or O(In(n)) would be daring. More significant results in
this respect would be possible by increasing n. The selected values in this section are a trade-off

between the accuracy and running time of the simulation programs.

We have already seen in Figure [3.7] and [3.8] that the bins with higher loads are likely to be
small bins. The experiment depicted in Figure [3.9) provides further indication. Again we have
two capacities, 1 and 10, and we consider different ratios on them. We want to see when the
maximum load is likely to be in a small or large bin. The total number of bins is n = 1, 000,

and the fraction of large bins varies from 0% to 100%. The plot shows, for each point on the
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curve, the fraction of 1, 000 independent runs in which a small bin of capacity 1 was among the

maximally loaded.

100

T
max load

80

60

20 |-

percentage of cases where a small bin has max load

| | |
0 20 40 60 80 100
percentage of large bins

Figure 3.9: Two distinct capacities, location of maximum load.

The maximum load is more likely to be in one of the small bins as long as the pull of the
big bins is not too strong. With about 45% large bins the fraction of small bins containing
the maximum load drops below 50%. Then the probability to choose a big bin is already

4500
45004550 > 0.89.

3.4.3 The Heavily Loaded Case

In Figure[3.2)on page[51] we have already seen an example for the heavily loaded case (m > C)
when we simulated the uniform game in which all bins have the same capacity. We observed
that, in accordance with Observation the difference between the maximum load and the
average load “* is independent of the number of balls m. In this section we find indication that
the same may hold if the bins have random capacities.

In the experiment that is depicted in Figure [3.10] on page [56] we fix n = 10,000 as well as
a total capacity C, a multiple of n. We then generate individual bin capacities such that the
(expected) total capacity is equal to the prescribed capacity C, using an approach similar to that
in Section [3:4.2] Figure [3.4] For each fixed value of C, we throw 100 - C' many balls into the
systems and at certain points throughout this process plot the current deviation of the maximum
load from the average load as a function of the number of balls currently in the system (that is,
we measure this quantity after the (¢ - C)-th ball for i = 1,2,...,100). The plot shows one
such curve for a variety of values of C. What we see is essentially a bundle of parallel lines,

indicating that indeed the deviation of the maximum load from the average does not grow with
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the number of balls thrown, apparently regardless of the underlying total capacity. The positions
of the lines also match our intuition and predictions as the lines get closer to zero as the total
capacity increases, meaning the maximum load approaches the average load for large capacities.
Notice that the curves slightly jiggle up and down. One might not expect such behaviour when
tracing a term depending on the maximum load (which ought to be monotonic). However, we
plot the deviation of the maximum load from the average and this quantity may well decrease

(somewhat).
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Figure 3.10: Heavily loaded case: Deviation of maximum from average.

3.4.4 Optimal Probability Distribution

So far the probabilities were chosen to be proportional to the capacities. This is a natural
approach and works well if the differences between the capacities are small. However, if this
is not the case, it might be beneficial to use another strategy and alter the probabilities. Theorem
3.3.9|shows, for instance, that in certain cases in which a constant fraction of all capacities is of
order Inln(n), a constant maximum load can be achieved by simply ignoring the low-capacity
bins.

Let us consider the following setting: The number of bins is n = 100, half of them have
capacity ¢; = 1 and the other half (integer) capacity ¢; = =, 2 < x < 14. The number of

Ct

ballsism = C' = " ¢;, and the probability of a bin that has capacity c is set to o where

C(t) = Z?:l Cf.
Note that the probabilities sum up to 1 and that bins with the same capacity have the same

probability. Since we have only two different capacities, all probabilities are fixed as soon as the
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probability for one bin is set. For this probability, however, we can choose any value in the open

interval (O7 %)[l

exponent
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T
optimal exponent

capacity of a big bin
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Figure 3.11: Optimal probability distribution: Optimal exponent in case of 50 1-bins and 50 z-

bins.
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Figure 3.12: Maximum load as a function of the exponent for different capacities.

The question is, given x, what is the optimal exponent ¢? The curve in Figure 3.T1|represents

our experimental results. In our experiments we simulate the random allocation according to

the altered probability distribution. For every capacity ¢ € {2,3, ..., 14} and every exponent

t € {1,1.005, ..., 3}, the maximum load is averaged over 1,000, 000 repetitions, and the best

values for ¢ are used in the plot. It shows that the optimal exponent can differ considerably

"Let p denote the probability for a bin with capacity ¢ € {1, z} where z € {2, 3, ...}. Since o

ct 2
. S 077
1+ at ( n)

in (0, 1), it follows:

Ti % can take any value

c 2
n
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from 1. For the array in which 50 bins have capacity 1 and 50 bins capacity 3, the optimal
exponent is about 2.1.

Figure [3.12) shows the resulting maximum loads as a function of the exponent for different
capacities x. Comparing the values for £ = 1 and for the optimal ¢, the difference in the maximum

loads is up to 0.2.

3.5 Conclusions and Open Problems

We have analysed the multiple-choice game with unit-sized balls and heterogeneous bins assum-
ing that a bin’s load is determined by the number of balls it contains divided by its capacity.

First we assumed that the probabilities of the bins are proportional to their capacities and that
the number of balls equals the total capacity of the bins. For the maximum load of the 2-choice
game we obtained a bound that is not worse than the one in the standard game [4] which is a
special case of our model (all capacities set to one). The generalisation to all d > 2 is still open.
The missing link is Observation [3.3.2) which was only shown for d = 2.

In case of uniform bins, that is, all bins have the same capacity, we also considered the heavily-
loaded case (m > C'). Based on [8]], we found that the deviation from the average load does
not grow with the number of balls. Simulations suggest that this might generally be the case for
arbitrary capacity distributions. Future work could address this problem analytically.

Other experiments indicate that the constants in the asymptotic bounds are small so that
our strategy can also be employed in applications with a small number of bins. Furthermore,
analytical and experimental results show that it can be beneficial to choose differing probability
distributions over the heterogeneous bins. It would be interesting to continue the work and obtain

more general results, but it seems difficult to analyse these games mathematically.
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Choices

We consider a multiple-choice balls-into-bins game in which the random choices are neither
uniform nor independent. We use Godfrey’s hypergraph-based model [34] and improve and
extend his results. The findings presented in this chapter have appeared in preliminary form in

the following paper:

[6] Petra Berenbrink, André Brinkmann, Tom Friedetzky, and Lars Nagel. Balls into bins
with related random choices. In Proceedings of the 22nd ACM symposium on Parallelism
in algorithms and architectures, SPAA ’10, pages 100-105, New York, NY, USA, 2010.

ACM

The propositions and proofs have been enhanced and new results have been added.

4.1 Introduction

In this chapter a variation of the balls-into-bins game is considered which has been introduced
by Godfrey [34]. In his model m < n balls have to be allocated into n bins with a maximum load
of one. In contrast to the standard multiple-choice game from [3]], he assumes that the choices
of the bins are not uniform and independent at random. Every ball comes with a set of clusters,
where each cluster is simply a set of bins. The ball will randomly pick a cluster and then commit
to one of the least loaded bins within that cluster. For every ball the probability that a fixed bin is
in the chosen cluster has to be roughly the same. Hence, the assignment of the bins to the clusters
can be arbitrary or even regular as long as every bin is in roughly the same amount of clusters.
We look at a generalisation of Godfrey’s model. Again, we assume that each ball comes with
a set of clusters and that it randomly picks a cluster and a least loaded bin within it. In contrast
to Godfrey, we only require that on average (the average is taken over the choices of all balls)

any bin will occur in not too many chosen clusters. This model is captured by what we will
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4 Balls into Bins with Related Random Choices

introduce in Definition #.2.2] and Definition 4.2.3] as one-sided probabilistic balancedness and
averaged balancedness, respectively. A further generalisation of the original model assumes that

the same cluster can be chosen in multiple successive steps.

4.1.1 Related Work

A detailed overview of the related work can be found in Chapter[2} Here we restrict our attention
to previous work that is relevant to the results presented in this chapter. That is, we concentrate
on protocols that achieve a constant maximum load and on settings where the balls’ choices of
bins are not (necessarily) independent or uniform.

The model used in this paper may be regarded as a generalisation of the d-choice model in
that a cluster represents the d choices of a ball. Applying the bounds for the multiple-choice
game stated in Section we obtain that the GREEDY|d] protocol of [3]] yields constant load
per bin for d = In(n) and the GOLEFT protocol of [90] for d = InIn(n).

Byers et al. [17, [18] consider a model in which the probability distribution over the bins
is not uniform. The motivation for this model comes from the properties of P2P networks like
Chord [84] which apply consistent hashing [43] to allocate items / requests (balls) to peers (bins).
In the basic scenario, the deviation from the average probability 2 becomes Q(In(n)) w.h.p.
Byers et al. show that this imbalance only leads to a small shift in the maximum load [18].
Wieder proves in [94] that the same holds true in the heavily loaded case (m >> n) only if the
number of choices d is allowed to grow (slightly) with the imbalance. (For a more detailed

description see Section[2.3])

4.1.1.1 Godfrey’s Model and Results

Most relevant to our results are the graph-based models of Kenthapadi and Panigrahy [47] and
Godfrey [34] in which the balls’ choices are not uniform and independent. The former consider
the 2-choice game and identify the bins with vertices in an underlying graph G. Each ball can
only choose pairs of bins that are connected by an edge in G. The surprising result is that,
compared to the standard 2-choice game in [3]], the bound on the maximum load is basically the

same if the graph is (almost) n-regular and if e is not too small. For € > 8'111;22()") , the maximum

load is Inln(n) + O(e71) + O(1) w.h.p. Generally, for A-regular graphs they show an upper

bound of InIn(n) + O (%) + O(1) which is nearly matched by their lower bound of
In(n

Inln(n) + ln(A)—l-(ln)ln(n)'

Godfrey [34] extends this model to d-uniform multi-hypergraphs in which each hyperedge
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4.1 Introduction

connects d of the n vertices representing the bins. Each ball comes with a possibly different
multi-hypergraph (called cluster set) and chooses one hyperedge (called cluster) i.u.x. In this
cluster it then allocates itself to a random bin among the least loaded. Note that the clusters are
allowed to overlap and that the number of clusters is not bounded. Yet, similar to [17, |18} 94],
Godfrey demands that the probabilities of the bins must not deviate too much or, more precisely,

that the bins are S-balanced:

Definition 4.1.1 (Definition 2.1 in [34]]). A random set of bins B is 5-balanced if, for all bins j,

R
B-n

<Pr[jeB|-E {|B||]€B}<ﬂ

The main contribution in his paper is the following theorem which upper bounds the number
of balls m such that, w.h.p., the protocol (Algorithm [2) succeeds in finding an allocation with

maximum load equal to one:

Theorem 4.1.2 (Theorem 2.1 in [34]). Let e > 0, 6 € (0,1), and suppose that for
each ball i, B; is -balanced and |B;| > 26 - % ‘In(n). Let 5/ = (1 + e+ 0(1)) - B and

=(1-4§)/[1- 1n(17(,8,1f(§/)(,8,271))]. Then with probability 1 — O(n~1), the maximum load

is one after placing m = « - n balls, and the maximum load is f | after placing m = n balls.
The upper bound on the maximum load in the case m = n follows from the first bound by

trivially running the original algorithm [ | times.

A simplified version of Theorem[4.1.2]is:

Corollary 4.1.3. Suppose that for each ball i, B; is 3-balanced and |B;| > ¢ - In(n) where ¢ is
a sufficiently large constant. Then with probability 1 — O(n~1), the maximum load is one after

placing m < 55 balls, where fe(B) € ©(B - In(B)) depends solely on 8 and c.

Proof. In order to prove the bounds on f.(8) = é, we take a closer look at the expression
=2 (from Theorem 4.1.2). For this we use that, for z > 0, 45 < In(z + 1) —In(z) < %
(LemmalT.1.3).
Upper bound:
1-9 In(5") In(5’)
= 1= — | = 1—
% r__ /7
In (1—75,2_1> 111( = 1)( )>
In(5") [ In(5")
B Y e R T
In (m> n n
[ In(B" +1) ] (L
= 1)-In(8' +1
(3 +1) — (8 [(B +1)-In(8"+1)]
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Lower bound:

(6" + 1)1

1-6 In(p’ +1) (L.C18) _
‘[ﬁw+n—mmw > [Fh

«
Therefore,

(8 -In(5"+1)]
1-90

[(B'+1)-In(8" +1)]
1-9

<fB=2<

Since § and € are constants and since 3’ = (1 + ¢ + o(1)) - 3, it follows that

fe(B) € ©(F - In(B)).

4.1.2 Contributions

Our contributions are the following:

e We improve Godfrey’s upper bound on the number of balls m from m to %

(Theorem [4.3.3). This is asymptotically optimal (/3 need not be constant) as we show in

Observation

e We enhance the original model by the concept of runs. In this new model, each ball ¢ tosses

a (biased) coin: With constant probability p, 0 < p < 1, it runs the protocol as described

above, but with the remaining probability it copies the previous ball’s choice B;_1, that

is, it reuses the previous cluster of bins. In Theorem we prove the same asymptotic

upper bound on m.

e We introduce relaxed definitions of balancedness (one-sided balancedness and averaged

balancedness) and show that our results hold for these models.

e Aside from the lower bound on the number of balls m, we also show an asymptotically

matching lower bound for the cluster size d in Observation[4.3.3

e We considerably simplify Godfrey’s original proof. Our proofs are essentially applications

of Chernoff bounds, where [34] employs a relatively complicated coupling argument.

While the concept of balancedness allows one to investigate the balls-into-bins model in

the presence of bounded dependencies, the runs, in addition to the obvious effect of saving on

randomness, are also of practical relevance (e.g. for cloud computing). We are not aware that this
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particular model introducing runs (with or without the concept of balancedness) has previously

been studied.

4.1.3 Motivation

With regards to the dependencies as mentioned above, consider, for example, the case where the
balls and the bins are distributed as points in R2. This is actually a relevant model, since when
designing and analysing e.g. peer-to-peer or cloud-based systems, it is frequently supposed that
the participants (peers in the former case, users and data servers in the latter) are embedded into
some geometric space. B; will then consist of the bins closest to ball ¢ w.r.t. the embedding and
a given distance metric. In this case, the distribution of bins in the set B; is not chosen i.u.r,
and the geographical distance between two bins may determine their probability to be in a joint
set B;.

As already hinted at, the model can be considered as being motivated by demands arising
in cloud and grid computing. If a cloud or grid provider accepts to run a job, it should place
this job as near as possible to the data being accessed by this job. Otherwise, access latencies
may substantially reduce the performance for this job. Nevertheless, the provider increases the
number of choices by either replicating frequently accessed data to different computing centres,
or by allowing to distribute the data over multiple data centres [71}87]. Translating back to our
scenario, none of these approaches will generally result in a perfectly uniform and independent
choice of bins for our balls. This model will be analysed in Section [4.3]

The cloud scenario includes an additional extension to the standard balls-into-bins games,
where the selection of bins may or may not depend on the choices of previous balls. It may be
presumed that there is a given probability that the peer accessing the cloud in step ¢ will also be
the peer accessing the network in step ¢ 4 1, and therefore, in our setting, that B;,; = B;. The
underlying process is that a new peer in a cloud environment typically moves multiple objects,
like big databases, into the cloud after entering it for the first time. After this initialisation step,
the allocated storage capacity typically stays relatively invariant. These runs are analysed in

Section4.4]

4.2 Models and Definitions

In this section we introduce notation used in the remaining technical sections. Balls are numbered
1,...,m and bins are denoted b1, ...,b,. Ball ¢ comes with a set of s; many clusters of bins

B; = {Bi,..., Bs,}. Each such cluster contains ¢ - In(n) many bins where ¢ = ¢(n) is chosen
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4 Balls into Bins with Related Random Choices

so that ¢ - In(n) is an integer. (In all results ¢ is lower-bounded by a constant and can be chosen
smaller than a constan) Each B; contains arbitrarily many such clusters, subject to it being
(-balanced (see Definitions [f.2.2] and[4.2.3). In a model with runs we assume that every ball i
has the choice between the cluster that was used by ball ¢ — 1 and a newly chosen one from
B; € B;. For details see Algorithm 3]

The load vector is defined as before. The load vector Lo of a cluster C' is the load vector

restricted to the bins in C.

4.2.1 Goodness of Balls

Let EMPTY (B) denote the number of empty bins in any given cluster B.

Definition 4.2.1 (Good and bad balls). Fori = 1,...,m, we call the i-th ball good if it finds
strictly more than half of its chosen cluster empty, that is, EMPTY(B;) > @ = 5 -In(n).

Otherwise we label it as bad.

The factor of % has been chosen for convenience; in principle any constant would do just as
well. (We do generally not attempt to optimise any constants.) Occasionally the goodness of
balls 1,. .., is referred to as the induction hypothesis for ball 7 + 1. Note that the induction base

is trivial.

4.2.2 ($-balancedness

Our definition of one-sided (3-balancedness is based on Definitiond.1.1] quoted from [34]. Since
we will assume that all clusters have the same size ¢ - In(n), we simplify the definition slightly.

More importantly, we are able to drop the lower bound ﬁ

Definition 4.2.2 (One-sided [3-balancedness). For B > 1, a set of clusters B; is B-balanced

if for all bins j and i.u.r. chosen B; € B;,
B-c-In(n)

Pr[je B <2
n

For the proofs in this chapter it is even sufficient if Pr[j € B;] < B%H(”)

on average,
where the average is taken over all balls. We call this generalisation of one-sided S-balancedness

averaged (B-balancedness:

UIf the only restriction on c is ¢ > ¢ for some constant & > 1, then we can choose c to be ¢ := ¢ - [EEEZ;] <2-¢

(provided that n > 2).

64



4.2 Models and Definitions

Definition 4.2.3 (Averaged [3-balancedness). For B > 1, a sequence of clusters By, ..., B,
of sets is averaged (-balanced if for all bins j and i.u.r. chosen By € B1,...,B,, € B,,,
m
-1
S PrljeBi]<m- 6@711(11)

: n
=1

The elimination of the lower bound and the relaxation of the upper bound make the model
much more practical. In particular, it is now feasible that every ball’s cluster set consists of
only one cluster. Then the bins’ probabilities in the cluster sum up to 1, whereas the remaining
n — d bins have probability 0. In Godfrey’s model on the other hand, every bin must have a
probability greater than 0 which implies that it must be in at least one cluster of every cluster set.

Additionally, its probability is upper-bounded by % for each ball.

4.2.3 Protocols / Models

Basic model. Similar to Godfrey’s paper [34], each ball i = 1,...,m runs the protocol
presented in Algorithm 2] It chooses a cluster i.u.r. and allocates itself to a randomly chosen bin

among the bins of lowest load within the cluster.

Algorithm 2 The simple protocol for ball i € {1,...,m}

1: i.u.r. choose a cluster of bins B; € B;
2: L.u.r. choose a bin b € B; of lowest load
3: allocate the ball to bin b

Compared to Godfrey’s results, the main difference is that our results hold for a larger number

of balls m and for averaged -balanced sequences of clusters (see Theorem and4.4.1).

Model with runs. In the extended model, allowing for runs, we consider the algorithm as
described in Algorithm [3] In contrast to Algorithm 2] each ball i reuses the previous cluster
B;_; with constant probability p € (0, 1). We assume that there is a randomly preselected set of

bins By.

Algorithm 3 The extended protocol for ball i € {1,...,m}
1: with constant probability p reuse cluster B;_1, with the remaining probability 1 — p choose
anew cluster B; € B; i.u.r; either way, let B denote the chosen cluster
2: i.u.r. choose a bin b € B of lowest load
3: allocate the ball to bin b
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4.3 Analysis of the Basic Model

4.3.1 Upper Bounds

To ease the analysis of the algorithms we will consider the following variant: For all balls j € [m]
we place a foken with label j into each bin b of cluster B;. Then, for all balls j € [m] we allocate
the ball into a least loaded bin i.u.7. chosen from the bins containing a token labelled with j. We

say a token with label j is redeemed if the corresponding bin receives ball j.

Lemma 4.3.1. Assume that we run the simple protocol (Algorithm[2)) and that the bin choices are
one-sided averaged [-balanced. Let g be a positive constant. If m < g% andc>3-g-(k+1),

every bin will receive at most %fl(") tokens with probability at least 1 — n™*.

Proof. Fix any bin b. Consider Bernoulli random variables X1,..., X,, with X, = 1if b
contains a token with label ¢, and X; = 0 otherwise. Let X = X; +...+ X, count the number

of tokens. Since the system is averaged -balanced, we get the expected value

n

. - = -1
E[X] = Z]E[Xq] = ZPr[Xq =1]= ZPr[be B, <m- Ln(”)
g=1 q=1
Define p = M Since m < %5, we have p < ¢ 1“(”) . Using Lemma- we obtain

Pr {X > “m(”)} < e T — 5 < (kD)
)

forc > 3-g- (k+ 1). Hence, with probability 1 — n~* no bin receives more than Zeln(n)

tokens. O

The following lemma relates the number of tokens per bin to the goodness of a ball.

Lemma 4.3.2. Assume that the simple protocol (Algorithm |2)) is run and consider any ball 1,

i € [m]. Let h > 6 be a constant. If all previous balls are good, if ¢ > 6 - h - k and if every bin

c: ln(n)

in B; has at most many tokens, then ball i will be good with probability 1 — n~

Proof. In order to prove that ball ¢ is good, we need to show that more than half of the bins in B;

are empty when we throw ball <.

c: ln(

Since every bin in B; has at most n) tokens, the total number of tokens in bins from B; is

(c:In(n))?
h

at most . This immediately gives us a bound on the number of times that bins from B;

can appear in previously selected sets B;, 1 < 7 < i

i—1 ) 2
> IBinB;| < (CI# 4.1)
j=1
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Define random variables Y; with Y; = 1 if a token in B; N B; is redeemed in step j and

Y; = 0 otherwise. The probability that a particular empty bin in 5; receives the ball (meaning

2

the token is redeemed) is at most —5—
c-In(n)

due to the induction hypothesis that all previous balls

have been good. Hence,

|EMPTY(Bi OBJ)| -2 < ‘Bl ﬁBJ‘ . 2

Pr(Y;=1]< ¢ In(n) ~ c-In(n)

4.2)

LetY := E;;ll Y; count the balls in B;. Using ll and (4.2), we can bound the expected

value by
it i1 9 i1
E] = ) EX]=) Pr(¥;=1]< o) BN 5|
Jj=1 j=1 J=1

2 (e In(n))>  2-c-In(n)
c¢-1n(n) h N h

IN

Notice that the Y} are not independent, but negatively correlated and, thus, satisfy the condi-

tions of Lemma We apply said lemma with p = L;(") and obtain

Pr {Y > (1 + ;) = 3%“”) < e TS e <k

which holds for every ¢ > 6 - h - k. This implies that with a probability of 1 — n~* there are at

most
3-c-1 1
CTH(”) <5 In(n)
many redeemed tokens in B; and that the ¢-th ball is good. O

Theorem 4.3.3. Letm < ﬁ and ¢ > 72 (k+2) where 8 > 1 and k is some positive constant.

Assume that the bin choices are one-sided (averaged) (3-balanced. After running Algorithm2]for

each ball, the maximum load is 1 with probability at least 1 — n™F.

Proof. Since the one-sided [-balanced system is a special case, it is sufficient to prove the
statement for an averaged [-balanced system. For i € [m], let &; denote the event that balls
1,...,4 are good. For i € [m], let F; denote the event that ball 7 is the first bad ball, that is,
Pr[F;] = Pr[ballibad|&;_1]. Let Fy denote the event that no ball is bad, i.e., Fo = &p,.

If we consider the probability space of all possible combinations of good and bad balls then
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{Fi}i=o,....m defines a partition. Therefore,

m

Pr[—\gm] ZZPI'[_‘ m|-7:i]'Pr[]:i]

PI‘[ﬁ ml]:o]'PI'[]:o}—i-ZPr[ﬁ ml}—z]Pr[]:z]

i=1

ZPI‘ —Em | Fi]- ZPI‘ = iPr[ballibad\&,l].

i=1

Fix any ¢ € [m]. In the following we will upper-bound Pr [ F; | = Pr [ball ¢ bad | £;_1 ]. For
this consider the variant of Algorithm |2} described at the beginning of this section, that places
tokens into the bins.

The number of tokens any bin receives can be bounded as follows: Define g := 24. Since

m <

<515 = ggandc>72-(k+2)=3-g-(k+2), wecan apply Lemma“and get that,

with probablhty 1 — n~*+1 no bin receives more than %n(") tokens.

Now we can use this bound to show that, w.v.h.p., ball ¢ is good. Define h := 12. Since
¢>72-(k4+2)=6"h-(k+2)and since every bin in B; has at most M = °'11;L(”) tokens,
we can apply Lemmam and get that ball 7 is good with probability at least 1 — n~(*+2),

Since this holds for all balls, the probability for (at least) one of the m balls being bad is

m

[— (k+2) o~ T _(k+2) —(k+1)
Em] ZPr Z < 515 n <n .

Both probabilities together imply that the probability for any bin receiving more than one ball

is bounded by

Ay + n~ (k4D <n7k.

4.3.2 Lower Bounds

We will provide lower bounds for the cluster size d as well as for number of balls m. In order
to prove the former we will use the following observation. Let G, denote an arbitrary game in
which the n bins are divided into the same % disjoint clusters of size d for every ball . Thus, all

B;, i € [m], are identical and 1-balanced.

Observation 4.3.4. Given the number of bins n, fix any integer d > 0 that divides n. Then, for
all d’ € [d — 1), there exists a game H g on n bins in which all clusters have size d', in which all

cluster sets are 1-balanced, and whose load vector majorises the load vector of game G.
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Proof. Assume that the bins in G4 and H 4 are numbered from 1 to n. We call a bin j, j € [n],
in one game the corresponding bin of bin j in the other game.

We define H 4 as follows: For every cluster C; in Gg we add d clusters C; ;, j € [d], of
size d’ to H . Let the bins in C; be numbered from 1 to d, then each cluster C; ; contains the
(corresponding) d’ bins from j to j + d — 1 (mod d). (Note that the cluster set is 1-balanced
since every bin is contained in exactly d’ clusters.)

We use a simple coupling that exploits the fact that the probability for choosing cluster C; in
game G4 equals the probability that any of the d clusters C; ; in game Hy is selected. Thus, we
can map the random choice of a cluster C; in game G to the random choices of the d clusters C; ;
in game H 4. Now, whenever cluster C; and any cluster C; ; are chosen, the ball in game G4 can
make the optimal choice among the d bins because it sees all of them. In the game H,-, however,
the ball can only select one of the d’ bins in C; ; which possibly leads to a worse choice. Since
the number of balls is identical in C; and |J; ¢4 Ci,; at all times, the load vector of cluster C'is
always majorised by the load vector of | J icldl C;,;, and since this holds for all clusters in G4, the

load vector of game G, is always majorised by the load vector of game H 4. O

The following observation provides an asymptotically matching lower bound for the cluster
size. It improves on Godfrey’s Theorem 3.1 in [34]] and, thus, answers his open question about a

better lower bound.

Observation 4.3.5. Fix the number of bins n. > 1,000 and ¢ = ¢(n) € [0.8, 1] in such a way
that ¢ - In(n) is an integer that divides n. If the number of balls is m > 0.4 - n, then, for any
d e {1,2,...,c-1n(n)}, there exists a 1-balanced distribution of clusters B; with | B;| = d such

that, wh.p., Algorithm 2 results in a maximum load greater than 1.

Proof. Because of Observation we only have to prove the case d = ¢ - In(n). For this we
consider the game G;.

Similar to Godfrey’s proof of Theorem 3.1 in [34], we can regard the selection of the clusters
as a single-choice balls-into-bins game with ¢ := % bins and m = k - n balls. We show that at
least one cluster receives strictly more than d balls if £ > 0.4 which implies £,,,4, > 1.

In the analysis we assume that & is a constant, but since the maximum load grows with the
number of balls, it follows that the observation holds for any k£ > 0.4.

Letr:=Fk- % and note that < 2 - k = O(1). The number of balls is

m=k-n=k-qg-d=k-q-c-ln(n)=k-q-c-ln(qg-d)=r-q-1In(q)
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Theorem states that then, with probability 1 — o(1), the maximum load £, in any

cluster is
bz > (dr — 1+ ) - 1In(q) (4.3)
where « can be any constant in (0, 1) and d,. is the unique solution of
fr(@):=1+2z (In(r) —In(z)+ 1) —r =0.
for which d,- > r. Let 0.99 < a < 1 and assume that d,- > 1.4. Then, due to n > 1, 000, we
obtain

¢ 1n(n) ¢-1n(n)
In(q) loax In(n) — In(c - In(n))

+001<14<d,

and finally

bz > (dr — 1+ @) - 1In(q) > In(n).

So, it only remains to show that d,, > 1.4 if k > 0.4. For the analysis we vary k, but fix n and
c. Note that then r grows with k and m = k - n. d,. should also grow with m because it governs
the lower bound on ¢,,,4, in (4.3). This can be more formally shown by analysing the function

fr(x) which, of course, can also be understood as a function of 7:
9:(r):=1+z-(In(r) —In(z) + 1) — r.
Assuming x > r > 0, it follows from the derivatives
fi(x)=(n(r) —In(z) +1) + = - <;> =In(r) —In(z) <0

and

1
g;(r):x-f—1:£—1>0
r r

that, in order to fulfil f,.(x) = 0, an increase in r has to go with an increase in x.
Now we can finish the proof by showing that » > ¢- k£ > 0.32 implies d,, > 1.4. Forr = 0.32

this follows from

fos2(1.4) =1+ 1.4+ (In(0.32) — In(1.4) + 1) — 0.32 > 0.013 > 0
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because only a greater « can reduce the function value. And as d, grows with 7, d,, > 1.4 will

also hold for any » > 0.32. O

The next observation provides a matching lower bound for the number of balls.

Observation 4.3.6. The result of Theorem is asymptotically tight in terms of the number of

balls m.

Proof. Consider the variation of game G4 in which the first cluster By has probablhty < to be
chosen. (Since we cannot simply set the probabilities, we increase the probability by adding SO
many copies of the first cluster B; until the probability for choosing one of the copies is 24 ) If

m > %, then the expected number of balls allocated to the bins of B; will be larger thand. [

4.4 Analysis of the Model with Runs

In this section we consider the model in which a cluster is reused by the next ball with constant

probability p (see Algorithm[3).

Theorem 4.4.1. Letk > 0,0 < p < 1l and ¢ > 216 - k+2 Assume that the clusters are one-

sided (averaged) 3-balanced and that m < -n. After running Algorzthm or each ball, the

72,@

maximum load will be 1 with probability at least 1 — n~*.

Proof. In order to show that all balls are good, we pursue the same approach as in the proof of
Theoremand consider the variant of Algorithmthat uses tokens. That is, each ball £ € [mn)
chooses a cluster of bins By (according to the protocol) and places a token with label ¢ into every
bin of By. Fix any ball i € [m]. In order to upper bound Pr [ball i bad | balls 1, ...,i — 1 good],
we first upper bound the number of tokens that a bin b € B; receives.

In each step j, Algorithm[3|decides by a (biased) coin toss whether to choose a fresh B; € B,
or to reuse B;_1. In the following we denote by a run a maximal sequence of steps k, k +
1,...,k" where the algorithm chooses a fresh By, € By, and then uses B;, throughout steps
k,k+1,...,k butnot k' + 1. We assume now that we have two different types of token. If the
algorithm chooses a new set (first step of a run) a blue token is used, otherwise (remaining steps

of a run) a red token is used. Then, for all balls j € [i], we allocate the ball into an i.u.7. chosen

bin among the least loaded bins containing a (red or blue) token labelled j.

Define g : . Since m < (1721’; * = Tzandc> HE - (k+2)=3-g-(k+2), wecan

apply Lemmaand get that, with probability 1 — n_(k“), no bin receives more than

~ 2-c-In(n) _ (1—-p)-c-In(n)
g 36
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4 Balls into Bins with Related Random Choices

blue tokens.

It remains to bound the number of red tokens. Fix any bin b and assume that b receives
t < tmae many blue tokens. Since, for every blue token, we will bound the number of red tokens
independently, a bound for the combined length of £,,,,, runs is certainly also a bound for ¢ runs.
In the following we can therefore use t,,,, instead of t.

For 1 < r < tm4q, let Y, denote the number of all (red and blue) tokens of the run that
starts with the r-th blue token. Then the Y., 1 < r < ,,,., are geometrically distributed random
variables with Pr [Y, = z + 1] = p*-(1—p) and E[Y;] = ﬁ. LetY :=Y1+---+Y;,,,, bethe
random variable that counts the red and blue tokens in bin b. Its expected value is E[Y] = tl"f“;

Applying Lemma|l.2.4|with § = 1, we obtain

e tmax 62 e tmam
xp | — . =exp | —
P 2 140 P 1

= exp (—(1 —p)-c ln(n)> <n~ OTFe < = (et2)

IA

Pr[Y > (146)-E[Y]]

4-36
Hence, with a probability of at least 1 — n~(*+1) — n . n=(k+2) 1o bin receives more than

5 ]E[Y]—Q'tmax _2-c-In(n) c-In(n)
 1-p 36 18

(red or blue) tokens.

Define h := 18. Since ¢ > 216 - ’1%”12) > 6 - h - (k+ 2) and every bin in B; has at most
% = %(”) tokens, we can apply Lemma and get that ball 7 is good with probability
at least 1 — n~(*+2)_ Since this holds for all balls, the probability that at least one of the m balls
is bad is

m ) < %:BP) e (E2) ()

The probability for the maximum load to exceed 1 is bounded by

n—(k+1) +n—(k+1) +n—(k+1) < n—k:.

4.5 Conclusions

In this chapter a variation of the standard balls-into-bins games has been considered in which the

bin choices are non-uniform and dependent. Each ball ¢ = 1, ..., m, in turn, runs the following
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4.5 Conclusions

protocol: (1) it i.u.r. chooses a cluster of bins B; € B;, and (2) it i.u.r. chooses one of the least
loaded bins in B; and allocates itself to it.
For this protocol we have shown that the maximum load is one with high probability provided

that (i) the cluster size d is roughly (ln(n)), (ii) the bin choices are averaged S-balanced (i.e.,

B-m-d

every bin should expectedly show up in no more than =

many of the m many chosen clusters),
and (iii) the number of balls m is upper-bounded by ﬁ.
Finally, we extended our results to a generalised model in which a cluster of bins is reused by

the next ball with a certain probability p. Again, if (i) and (ii) hold and if the number of balls m

(I-p)n
728

is bounded by , the maximum load is one with high probability.

n

Since we restricted our analysis to £,,,,, = 1 and m < CIOL it remains an open problem to

show tight bounds on the maximum load for m > %
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5 Load Balancing in a Parallel

Environment

In this chapter we investigate how GREEDY [d] performs in a parallel environment. In our model
the balls arrive in batches of size n and the loads of the bins are only updated between batches.
We show that the gap between maximum and average load is O(In(n)) and therefore independent

of the number of balls thrown.

5.1 Introduction

The major disadvantage of the multiple-choice strategy is that it unfolds its potential only in
sequential settings while many load balancing applications are parallel. To prove the bounds
for the standard multiple-choice game in [3| [8], for example, it is assumed that the m balls
are allocated one after the other and that the bin loads are immediately updated after each
ball. Different strategies have been developed for parallel environments to deal with concurrent
requests [2, 182} 161,12} [1]. They base their decisions on the number of new requests, allow extra
rounds of communication and in some cases let balls rechoose.

In this chapter we investigate how the bare GREEDY [2] protocol performs in a parallel envi-
ronment in which m > n balls are allocated into n bins. Thus, concurrent requests to the same
bin are answered with the same current load and no additional information like the number of
new requests. We model this by updating the bins only after every n-th ball and prove that the
gap between maximum and average load is still independent of the number of ball With high
probability, the gap is O(In(n)). We show this upper bound for m < poly(n). The generalisation
to arbitrary m is outstanding.

In a parallel environment the bare GREEDY [2] protocol naturally performs worse than the best
adapted strategies, but in some situations its simplicity and the avoidance of extra communication

may compensate for the increase in the maximum load.

'In the sequential setting the gap is known to be ©(InIn(n)) w.h.p. (Theorem .
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5.1 Introduction

5.1.1 Related Work

Balls-into-bins games are described in the introductory chapter. Results related to the multiple-
choice paradigm are summarised in Chapter[2] parallel strategies in particular in Section 2.4}

Here we give a brief overview of publications that analyse the heavily-loaded case in which
the number of balls m significantly exceeds the number of bins n. The first paper by Berenbrink
et al. [8] explains and applies the main approach which forms the basis of the analyses in [8, (94}
85]]. The approach is two-part in that the respective bounds on the maximum load are proven for
a polynomial number of balls first before the result is extended to arbitrary m.

The first part is shown by induction on the number of balls or rather batches, where a batch
consists of n balls. For every batch ¢, bounds on the distribution are proven based on the hypoth-
esis that such bounds hold for all previous batches 7 < ¢. In each step of this outer induction, an
inner induction is used to derive the bounds on the distribution. This inner induction is a layered
induction which, though a bit more involved, follows the concept described in Section

The second part applies a short memory lemma which states that two balls-into-bins processes
that start with the same number of balls and with a balanced and unbalanced load vector, respec-
tively, will be stochastically indistinguishable after a certain recovery timeﬂ In the case of the
standard game the recovery time is A-poly(n), where A denotes the maximal difference between
any two loads. The lemma is used to reduce the problem for general m to the case m = poly(n).

Following this approach, Berenbrink ez al. analyse the standard d-choice game for arbitrary
m > n and bound the gap between maximum and average load by O(Inln(n)). Wieder shows
in [94]] that this bound also holds for non-uniform probabilities if the imbalance in the probability
distribution is compensated by a slight increase in the number of choices d. Talwar ef al. apply
a short memory lemma to prove that even in case of weighted balls the gap is independent of m,

provided that the weight distribution fulfils “mild assumptions” [85].

5.1.2 Contributions

We consider a balls-into-bins game in which m balls are thrown into n bins. The process
essentially follows GREEDY[d], but we introduce explicit batches of size n and assume that all
balls within one batch are allocated concurrently. We restrict our analysis to the case d = 2, and
describe a somewhat surprising experimental observation regarding values d > 2 in Section

It appears that the larger d, the higher the maximum load.

2In 8] [941[83] the recovery or mixing time follows from the fact that the underlying Markov process is rapidly mixing,
that is, it rapidly converges to its stationary distribution — regardless of its initial state distribution (see definitions
in [68166]). This is shown by a coupling argument.
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5 Load Balancing in a Parallel Environment

It should be noted that [9]] uses the concept of batches as well, but that there it simply is a
technique used in the proofs, and that the actual process is unaware of the concept. Here, on
the other hand, the allocation itself uses batches, and each batch is allocated concurrently; that
is, load vectors are updated only every n many balls (an approach that would clearly reduce the
problem to a simple single-choice game if we were to look at only one batch, starting from an
empty system).

Similar to [9]], we wish to show that after throwing m balls into n bins the deviation of the
maximum load from the average load, 2*, is O(In(n)). However, we prove this upper bound

only for m < poly(n). The generalisation to arbitrary m is still outstanding.

5.1.3 Motivation

Due to the nature of load balancing and the number of participants involved, it is natural to
assume that most applications run in parallel environments. For this reason it is not surprising
that the first generalisations of the d-choice game aimed at parallelising the algorithm. The
strategies allow for additional communication between the balls and their chosen bins, where the
messages contain acknowledgments, rejections or just information about the current load and the
number of new requests. The balls base their decision on the returned messages and can also
choose new bins in some protocols.

Even though the number of communication rounds and the adaptations to the algorithm can be
kept quite low, we think it is interesting to see how the unchanged GREEDY [d] protocol performs
in a parallel setting. Naturally it cannot achieve as good a maximum load as the best parallel
strategies, but it may be sufficient in some cases or even superior if extra communication is

inadmissible.

5.2 Result and Outline

We analyse GREEDY|[d] in the case where the loads of the bins are only updated every n many
balls. As usual, m balls are placed into n bins, and we assume that the bins are initially empty.
The allocation at time t is given by the load vector directly after the ¢-th batch. The number of
balls is polynomial bounded in the number of bins, that is, m < n’ with § being an arbitrary
positive constant.

The main result is Theorem[5.2.1} It implies Corollary [5.2.2] which states that the gap between

maximum and average load is independent of the number of balls m.
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Theorem 5.2.1. Let § > 1 be an arbitrary constant. Suppose we allocate m < n® balls (in o
batches) to n bins using GREEDY([2]. Then the number of bins with load at least ™ + i + vy is

upper bounded by n - exp(—1i), w.v.h.p., where 7y denotes a suitable constant.

The theorem states that there exists a constant v > 0 such that the number of bins with load
at least ™ + i + «y is at most n - exp(—i) wv.h.p. If n < ng for some constant ng, then the
theorem is immediately satisfied with v = ng. This trivial observation will be used in various
places throughout the chapter, usually whenever certain inequalities hold only in the case n > ng
(for some suitably chosen ng).

We will prove the theorem by induction on ¢ showing that in each step the process maintains
various invariants with probability of at least 1 —n~*. Since there are no more than n’~! batches,

—Kk+6—1

with a probability of at least 1 — n the invariants hold throughout the process.

Corollary 5.2.2. Ifm < n’, the maximum load is > + O(In(n)) w.v.h.p.

The analysis closely follows the paper Balanced Allocations: The Heavily Loaded Case by

Berenbrink, Czumaj, Steger and Vocking [9]].

5.2.1 Definitions and Invariants

The average number of balls per bin at time ¢ is 7+ = % = t. We call bins with fewer than ¢
balls underloaded and bins with more than ¢ balls overloaded. Frequently we will refer to holes
in the distribution. For a given bin, the number of holes is defined to be the number of balls it is

short of the average load at that point of time.

We will prove that w.v.h.p. the following invariants hold:
e L(t): At time ¢, there are at most 0.7 - n holes.
e H(t): Attime t, there are at most 0.47 - n balls of height at least ¢ + 5.

In the proof we will assume that L(0), ..., L(¢ — 1) and H(0), ..., H(t — 1) hold. (Contrary
to [9], we do not need L(t) to show H(t).) We will analyse the underloaded and overloaded
bins separately, the corresponding analyses communicating only through the two invariants from
above. We will finally use invariant H to derive Theorem[5.2.1]

Throughout the analysis, we use the following notation:

Definition 5.2.3. Fori,t > 0, ozl(-t) denotes the fraction of bins with load at most t — i at time t

and ﬁi(t) the fraction of bins with load at least t - 1.
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5 Load Balancing in a Parallel Environment
5.2.2 Outline

The underloaded bins are analysed in Section [5.3] the overloaded bins in Section [5.4] Since
our analysis follows the outline of the proof of [9], we will refer to the corresponding results
whenever we state a lemma that is similar to its counterpart in [9]. We sometimes have to
use different parameters, and where that substantially changes the proof, the corresponding
statements are reproven. In the cases where that is not necessary, the proofs are omitted.

We should point out that our approach to bounding the overloaded bins is quite different from
that in [9]. In order to make that proof more accessible, several longish and mostly technical
lemmas are placed in separate sections and[5.4.4).

Finally, in Section [5.5] we present a simulation with a surprising outcome: As expected, the
2-choice algorithm performs better than the single-choice algorithm, but any further increase in d

results in a higher maximum load.

5.3 Analysis of the Underloaded Bins

In this section we analyse the distribution of the holes. We prove the following two invariants for

time ¢ > 0. Let ¢; and ¢ denote suitable constants with ¢; < ¢s.
e L1(t): Forl <i<c¢g-In(n), agt) <1.6-0.3%
e Lo(t): Fori > ¢y - In(n), ozl(»t) =0.
Invariants L1 (t) and Lo(t) imply L(t) as the number of holes at time ¢ is at most

lez-In(n))
Z 1.6 - 0.3min(ilern(m)D) < 07.
=1

for n large enough. We shall now prove that L, (¢) and Lo (¢) hold w.v.h.p. if d = 2.

Lemma 5.3.1 (Lemma 2.1 in [9])). Let £ be an arbitrary integer and assume that after batch t — 1
there exist (at most) ag - n bins with at most £ balls and (at most) ag_1 - n bins with at most £ — 1
balls. Suppose that b is a bin with load exactly £ after batch t — 1. Then for each ball of batch t

the probability to be placed into bin b by GREEDY 2] is (at least)

2—ap—ag—1
- )

The proof is similar to the one of Lemma 2.1 in [9].
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Observation 5.3.2 (Observation 2.2 in [9]]). The probability that a ball from batch t goes to any

fixed bin with load at most t — 4 is at least %, unless invariant L, (t — 1) fails.

Proof (copied and adapted from [9], page 1357). Applying invariant L;(¢—1), there are at most
agtfl) -n < 1.6-0.3° - n bins with load at most (t — 1) — i after batch ¢ — 1 forevery 1 < i < ¢; -
In(n). Since the load information is only updated between the batches, this upper bound holds
for all balls from batch ¢. Now, applying Lemma|[5.3.1]yields that the probability that a ball from

batch ¢ is assigned to a bin with load at most (¢ — 1) — i is at least

2oV ol Y 21603 —1.6-0.3+!
>

n n

For 4 > 3, this probability is larger than 179 O

This observation is used in the proof of the next lemma which upper bounds the size of the

deepest holes.

Lemma 5.3.3 (Lemma 2.3 in [9]]). Lett > 0. Suppose the probability that one of the invariants
L1(0), ..., L1 (t — 1) fails is at most ™" for ' > 1. For any fixed r. > 0, there exist constants

Co, C1, Co, C3 (solely depending on k) such that

e there are at most n - 1.6 - 0.3% bins containing at most t — i balls, for co < i < c¢1 - In(n),

and
e every bin contains at least t — ¢z - In(n) balls,
with probability at least 1 — n™" — n=, provided n > cs.

We omit the proof because it is almost identical to the proof of Lemma 2.3 in [9]. The only
detail changed is the bound for the number of bins with at most ¢ — i balls. It was 0.18 - 37¢+2
and is now 1.6 - 0.3%. Since the result of Observationcoincides with Observation 2.2 in [9]],
the major part of the proof is the same. Only in the last part, where we replace the old bound
with the new bound, we need to adapt ¢y and set it to ¢y = 390 which, however, does not change
the statement of the Lemma.

Lo(t) is already proven by the second part of Lemma|[5.3.3] The first part shows L (t), but
only for ¢ > c¢q. For the remaining cases 1 < ¢ < ¢g, we will use the recursive formula from the

®

next lemma to prove o; © < 1.6 - 0.3%. The lemma is similar to Lemma 2.4 in [9], but statement

and proof are easier because here the batches are not divided into sub-batches.

Lemma 5.3.4 (Lemma 2.4 in [9]). Let ¢ > 0 and let ¢ be a positive integer. Suppose for i =

0, ...,4 there are at most a; - n bins with load at most { — i at time t — 1. Then, at time t, the
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number of bins with load at most £ is at most g(0) - n, w.v.h.p., where the function g is recursively

defined by

g(i) =
(I+¢€)-(g(i+1)+ (a; —g(i +1))- E) otherwise,

where

B = exp(—(2— g(i +1) - a))).
We omit the proof because it is only a simplified version of the one in [9].

The recursive formula ¢(i) enables us to prove L;(t) for every ¢ € {1,...,co — 1}. First
assume i € {2,...,¢o — 1} and set (aq, ..., aq) = (aﬁtjl ...7a§f;31>) where az(-t:ll), ey agﬁ:gl)
are the bounds of invariant L;(t — 1). Choosing ¢ = 0.001 and running a C program that

implements ¢(7) and gets (ao, ..., a4) as input, we obtain
(t) N2t
a;” <g(0)<16-0.3

foralli € {1,...,co — 1}. Thus, invariant L(t) is shown for i > 2.

In the case ¢ = 1 we cannot apply this approach because ag would correspond to a(()t_l) and

would therefore not be covered by invariant L (¢ — 1). The next lemma provides an upper bound

on a(()tfl) based on invariant H (¢ — 1).

Lemma 5.3.5 (Lemma 2.5 in [9]).
Suppose H(t — 1) is fulfilled. Let (ag, ....,a4) := (a(()tfl), vy ayfl)). Then

a1+ as + a3z + ag — 0.47

G,()S].— 1

Proof (copied and adapted from Lemma 2.5 in [9]]). At any time 7 > 0, the number of holes at

time Tis A, = > i>1 a§T) -n. Since the number of balls above the average height is equal to the
number of holes, we can conclude that A, also corresponds to the number of balls with height at
least 7 4 1 at time 7. Now, suppose invariant H (7) holds. Then, there are at most B, = 0.47 - n
balls of height at least 7 + 5 at time 7. Combining these two bounds, the number of balls with
height 7 + 1, 7 + 2, 7 + 3 or 7 + 4 is lower-bounded by A, — B.. This implies that at least

(A; — B;)/4 bins contain more than 7 balls at time 7. As a consequence, the number of bins
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containing at most 7 balls is upper-bounded by n — (A, — B,)/4. Hence,

4 (m)
A, —B o’ —047
aéf).ngn_ﬂgn.@_zﬂl g >

4

(m)

Finally, setting 7 = ¢ — 1 and o;

= a; gives the lemma. O
Lemma 5.3.6. If L(0), ..., L(t — 1) and H(t — 1) hold, then L(t) holds w.v.h.p.

Proof (copied and adapted from [9|], page 1361). Since all other cases are already covered by
the previous results in this section, it remains to show L(t) fori = 1. The proof uses Lemma
and3.3.3

Again, using the C program, we verify ¢(0) < 1.6 - 0.3 for all choices of a; € [0,1.6 - 0.37],
1<4# <4,and gy € [0,1 — i - (a1 4+ a2 + a3z + a4 — 0.47)]. For this purpose we need to
discretise the domains of the a;’s. For the discretisation, we use the monotonicity of g(0): The
term g(0) is monotonically increasing in each of the terms ay, ..., a4. Therefore, it suffices to

check the parameters a1, ..., a4 in discrete steps of a suitable size § > 0 while assuming

_a1+a2+a3+a4—0.47—4-6

a():l 1

Choosing ¢ = 0.001 and 6 = 0.002, the C program confirms g(0) < 1.6 - 0.3 in all cases. O

5.4 Analysis of the Overloaded Bins

In this section we prove invariant H (¢) which concerns the overloaded bins. It states that there
are not more than 0.47 - n balls with height at least ¢ + 5. The proof is based on the induction
hypothesis that the invariants H(7) and L(7) hold for all 7 < t, especially L(t — 1). Thus, we
assume that there are at most 0.7 - n holes at time ¢ — 1 which implies that there at most 0.7 - n
balls above level ¢t — 1.

Almost all lemmas in this section are new. Yet, the framework of the proof is again similar
to [9]: We show two invariants H;(t) and H(¢) that imply H(t) and also Theorem In

order to formulate these invariants, we first define two functions h and f:

Definition 5.4.1 (Functions h and f; [9]], page 1362). Define
h(i) := 67 -0.34".

Let { denote the smallest integer i such that h(i) < n=99 and let o > 1 denote a suitable
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constant (that will be specified later). For i > 4, define:

h(?) ford <i</
fi) == max{h(i), 3 -n=0% fori=1¢
o-nt fori=0+1

The next observation summarises a few properties of f.

Observation 5.4.2.
(1) f(€) = h(e)

(2) f(i+1) =034 £(i) for 4
(3) f(L+1) < 0.34- f(0) = h(L+1) (for sufficiently large n)

Proof. Property (1), thatis f({) = maz{h(¢), 5 - n=%°} = h(¢), follows from

h(f) =0.34-h(£ —1) > 0.34-n7%9 > —09,

Wl =

Property (2): Due to (1) and the definition of f, f(i) = h(i) as well as f(i +1) = h(i + 1)

hold for all ¢ € {4, ..., — 1}. Therefore,
f(i+1)=67-0.34"" =67-0.34"-0.34 = 0.34 - f(i)

Finally, (3) holds (for sufficiently large n) because

f(g) N n70‘9 7 nO.l -0 3471
f+1) = 3.0-n"t 3.0 ’

The invariants H,(t) and Hy(t) are defined as follows:
o Hi(t): B < f(i)for5 <i <@,
H . (t) < L —1
o Hy(t): Xing B <o-n™

Invariant H(t) implies that the number of balls decreases exponentially with each level,
dropping below 7~ on level ¢ + £. Invariant Ho(t) addresses the balls above level ¢ + ¢ and

claims that their number is bounded by a constant o.
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Observation 5.4.3. Hy(t) and Hx(t) imply H(t).

Proof. The number of balls on level £ 4- 5 and higher is bounded by

0+1 (41 4
(0p.2.2) .
S f@)n < D k(i) n=mn-67-034°-) 0.34'
i=5 i=5 i=0
(LILL.3) 1
S67-0.34° ————— <047 -
< n-67-0.3 170'34<07n
for sufficiently large n. O

Observation 5.4.4. If L(t), Hy(t) and Hx(t) hold w.vh.p. for all t, then Theorem is
fulfilled.

Proof. First we show that the number of bins with load at least ”* + i + 5 is upper bounded by
n - e~%: From Definition and Observation it follows that, for i > 5, the fraction 5;
of balls on level i is upper-bounded by h(i). Thus, it suffices to show that e™* > h(k + 4) for
k>1:

1.08F>0.9 = ¢ 7.0347%">67-034" & e F > h(k+4)=67-0.34"

It remains to prove that this upper bound holds w.v.h.p. for all t < %6 = n%~1. This follows

directly from the statement that L(t), H;(t) and Hz(¢) hold w.v.A.p. for all ¢. O

We will prove that H;(t) and Hy(¢t) hold wvh.p. if H1(0),...,H1(t — 1), Ha(t — 1) and
L(t — 1) are fulfilled. The invariants for ¢ — 1 in particular provide us with properties of the load
distribution which all balls of batch ¢ base their decisions on. For convenience, the upper bounds
derived from L(t—1), H,(t—1) and Hy(t— 1) are bundled in the function f which is introduced
in Definition The subsequent Observation proves that f () indeed upper-bounds the

fraction of balls on level ¢ + 4, 0 < 7 < ¢, before batch ¢ is thrown.

Definition 5.4.5.
1 fori =20
f(l): Z(:_—?l for1 <i<A4

fli+1) for5<i<t

Observation 5.4.6. Assume that the induction hypothesis holds. Then, at time t — 1, the fraction

of bins on level t + i, 0 < i < £, is bounded by f(i).

Proof. For i = 0, the fraction of bins that have a ball on level ¢ 4 0 is trivially bounded by 1; i.e.

all bins could have a ball there.
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L(t — 1) implies that there are at most 0.7 - n balls above level ¢ — 1 at time ¢ — 1. From this
it follows that, for 7 > 0, there are at most 1'0-T71 - n balls of height at least ¢ + 7. In the definition
of f we use this bound for: =1, ..., 4.

Finally, for i = 5, ..., ¢, we simply use invariant H; (¢ — 1). O
f has the following properties:

Observation 5.4.7.
(1)2-fli—k)<k  forke{l,. .. i}andiec{2,.. 0}
2) fG@)<h(i+1)  forall i€{0,..,0}

Proof. (1) If k > 2, this statement is obviously true. Assume k£ = 1. If ¢ > 6, then
2. fi—1)<2-f(6-1)=2-f(6)=2-67-0.345 < 0.21 < 1

and if 2 < ¢ < 5, then

2. f(i—1)=2 %g%:0.7<1.
(2) We consider all cases:
f0) = 1<67-0.34
f@) = ZO+—71 < 67034 =h(i4+1)  forie {1,2,3,4}
f@) = fli+1)=h(i+1) fori e {5,...,.0 — 2}

fe—1) = o) CE2 p

flo) = fl+1)<=<n%2.034> <h(f+1) forn large enough

g
n

Throughout the proofs of H(t) and Hs(t) the following notation will be used.

Definition 5.4.8 (B, i, Zp; ). Forall k € {1,...,t + i}, we denote the set of bins that have
exactly t + i — k balls at time t — 1 with B, ;. B, o is defined as the set of all bins with at least
t + ¢ balls.

Forall k € {0, ...,t + i}, we define Zy, ; j, to be the random variable that is 1 if bin b € B, j,

receives at least k balls with batch t and 0 otherwise.
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5.4.1 Proof of H,(t)

In order to prove H;(t) we have to show Bi(t) < f(3) fori € {5,...,¢}. Fix any such ¢. Let Q
denote the number of bins that contain at least ¢ + ¢ balls at time ¢ — 1, and R the number of bins
that reach level ¢ + ¢ with batch ¢ for the first time. Observe that ﬁi(t) -n < @ + R. Thus, it

suffices to show Q + R < f(i) - n.
Observation 5.4.9. Q < 0.34- f(i) -nfor5<i </
Proof. Applying invariant Hy (¢ — 1), we obtain

_ (0BA3)
Q<BLY n<fli+1)n <034 f(i)n.

O

The more difficult task is to bound R. This will be done in Lemma In its proof we

will use the functions defined next.

Definition 5.4.10. We define

¢(-k).f(ik).<n>. 2 fli—k) \" e
TR W) \n—2fli-w) - 2es

k+1

and

Moreover, we define

ka
O (i) =y o(i k)

k=kq

so that we will be able to partition O (7).

The following lemma bounds R w.v.h.p. The lemmas needed to prove the bound will be

provided in Section

Lemma 5.4.11. Leti € {5,...,{} and let k be any positive constant. Then R < 0.66 - f(i) - n

holds with probability 1 — n™", provided that n is sufficiently large.

Proof. The number R of bins that have at least ¢ 4 ¢ balls after batch ¢ but not before can be

written as the sum
t+i

R=>">" Zyix

k=1beB, s
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Due to the linearity of expectation we obtain

t+1i t+1
ER =Y Y ElZyisl=> > Pr(Zyi,=1]
k=1b€B,; 1, k=1b€B;
(L[5227)

< ;wf(ik)~Pr{B<i~f(ik),n)zk]

S fi—k) = (n
= n- f(i) .
DG ¢
(LT 1.4) ) i A(z‘—k). n
< n - f(i) kzz:l 0 j_k<
2 A k
(L[.417) . i f(z‘—k). ny\ 2. f(i—k) . o—2-f(i—k)
< f(@) ]; f(@) <k’> —Q'f(i—k)> 1_2%};,6)
PED ) -0

(L[.4.19)

< - f() - max{®(5), B(6)}
PEED 1 1) - max{®(5) + 81(5), B1(6) + B3(6) + (6))
(L 521.19

n - f(i) - max{0.1583 + 0.1779,0.1897 + 0.0592 + 0.1628}

= n-f(i) max{0.3362,0.4117} = n- f(i) - 0.4117

Since the Z,; ;. are negatively correlated, Chernoff bounds (Lemma @) can be applied.
For every € € (0, 1],

Pr(R> (14¢) 04117 f(i)-n] < e OANTFOne/3 < o—04NTf(O)nc*/3
< e 0411707 "% ne?/9 - —0.0457-n° "¢
< n"

where the last inequality holds for any given x and € > 0, provided that 7 is sufficiently large.

We choose e = 0.6 and get Pr[R > 0.66 - f(i)-n] < n~". O
Corollary 5.4.12. Invariant Hy(t) holds w.v.h.p.

Proof. From Observation and Lemma 5.4.11]it follows for i € {5, ..., ¢} that

BY . n<Q+R<(0.3440.66)- f(i) -n=f(i)n
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5.4 Analysis of the Overloaded Bins

with the probability given in Lemma[5.4.T1] O

5.4.2 Proof of H(t)

In order to bound the number of balls above level ¢ + ¢, we will show that, w.v.A.p., no ball of
batch ¢ will have a height above this threshold. However, should this nevertheless happen, then

it is likely that the according bins will not receive many such balls.
Definition 5.4.13. Define the random variables

o X which is one if at least one ball of batch t is allocated to a level greater than t 4 {, and

zero otherwise;
o Y, which counts the number of balls from batch t that have height greater than t + ¢;

o X . (for any positive integer \) which is one if at least one bin with at most t + { — A

balls at time t — 1 reaches level t + £ + 1 or higher with the t-th batch;

o Y, ¢\ which counts the number of balls from batch t that fall into a bin with at least t4+-0—\

balls at time t — 1.

In the next two lemmas we will bound the probabilities for the events Y; o, > « (for

constant y), X; = 1 and X, ¢ » = 1. They will be used to prove H(t) in Lemma/5.4.16

Lemma 5.4.14. Let A\ > 1 be an integer constant (A < ) and let Y; ¢ x be the number of balls

that fall into bins with load at least t + ¢ — X\ at time t — 1. Then for any constant y:

Pr(Yien>7] <n 0™

Proof. The probability that any ball of batch ¢ falls into a bin of load at least £ + ¢ — X is bounded
by f (¢ — X\)2. The probability that at least + balls of the batch fall into such bins is therefore

bounded by
CEID  feon- fl+1-N2\" @EID (e.n [ n~09 \?)’
Pr[}/t,é,/\z')/] < f( ) < — "\ nan-1
vy vy 0.34
—0.8 ol v
_ e-n _ € 08 £ 0Ty
v+ 0.342(A-1) 7+ 0.342 (A1)
O
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5 Load Balancing in a Parallel Environment

Lemma 5.4.15.

For A > 2,

Pr [Xt’gﬁ)\ = 1] < p 08 AL

Proof. The probability for X; = 1, that any ball of batch ¢ will have height at least ¢t + ¢ + 1, is

bounded by the sum of the bins’ probabilities to receive a ball on this level.

t+4+1

PriX,=1]< Y > Pr(Zpe=1]

k=0 bEBerl,k

(Recall that B, contains all bins on level ¢ + ¢ 4+ 1 and higher at time ¢ — 1.)

The probability for X , » = 1, that a bin from level £ — X or lower receives enough balls with
batch ¢ to reach level £ 4 1, is bounded by the sum of the probabilities for the particular bins to
reach this level.

t4+04+1

Pr[Xt’g’,\Zl]S Z Z PI‘[Zb,g+1’k=1]
k=X bEBgi1

In both cases, applying Lemma[5.4.21] yields the results. O
Lemma 5.4.16. Invariant Hy holds w.v.h.p. over all batches.

Proof (copied and adapted from [9], page 1364). Lemma[5.4.T3|states that

Let A > 2 be an integer constant. Lemma [5.4.15]states that the probability that any bins from
level ¢ — X or lower reach level ¢ + 1 is at most n~9%*+1 and Lemma [5.4.14| states that the

probability that ~ balls fall into bins above level £ — X is at most n~%77. It follows that
Pr [Y’t Z ,y} S n—0.8'>\+1 + n—0.7""{

and therefore Y; = O(1), w.v.h.p.

Thus, we can assume that there exists a suitable constant j so that Y; < j. A violation of
H,(t) implies that the bins with load at least ¢ 4+ £+ 1 contain more than o balls of height at least
t + £ 4+ 1. Observe that these balls must have been placed during the last o rounds or one of the

invariants Ha(1), ..., Ho(t — 1) is violated. That is, if H(1), ..., H2(t — 1) hold, then a violation
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5.4 Analysis of the Overloaded Bins

t
T=t—0

t a/j s c/j ~
S x> 2 < (7)) (=) < (%) T <nE
j o/j 709 109

T=t—0

of Hy(t) implies that j - > X, > o. The probability for this event is at most

Pr

for any constant &, provided that n is sufficiently large. Consequently, invariant Hy holds,

w.v.h.p., over all batches. O

This completes the proof of Theorem It follows from Observation because L(t),
H, (t) and Hs(t) hold w.v.h.p. (Lemma(5.3.6] Corollary|[5.4.12|and Lemma/|5.4.16)).

5.4.3 Lemmas Used for Proving H(t)

Lemma 5.4.17. Leti € {5,...,4} and k € {1, ...,i}. Then:

S0 (2 50%) <0 (H5%) e

k+1

Proof. Consider the quotient of two successive summands:

Flie J+1 A
() (%) ‘ _ (n—4)-2-fi—k)
(0 - (ELEs) G+1)(n =2 i~ k)
J n—2-f(i—k)

(n—k)-2- f(i — k)
(k+1)-(n—2-f(i— k)
(o M (o 5<.4.7 )
- kE+1

From this we can derive the statement:

2. f(i—k) k. 1
n—2-f(i—k) 1 2fG=k)

k+1

89
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Lemma 5.4.18. Let 6 < i < (. The terms

s 2 fli—-k) (n 2 fi—k) \ e zfh
20 = — [ (k) ' (n—?-f(i—k)) 1 2&1/«)’
~ k ~
i~ — — f(@—k). ny\ 2-f(i—k) ' e 2 f(i=Fk)
el = e, TG <k> (n?-f(ik)) | 2ok
o fi=i) (2 fi—i) ' ez
"0 = T <z> (n—2-f(i—i)> 1 _ 24G=)

i+1

-7 () () s

are maximal for i = 6.

Proof. In all cases we will show that @ﬁf (i+1) < @fi (7) so that <I>’,§f (6) must be indeed the
maximum. We will often use that k£ and 4 are bounded: k1 < k < ko, 6 < ¢ < /. Additionally,

we will make use of:

0.34"F __ 2.9411.."F
(e)) k+1 —  k+1

grows with k.
Q) Ifke{i—4,..,i—1}andi >6,then (k+1)-(i—k+1) =i+ 1+ k- (i — k) is minimal
fork=17—1.

Case ®i7°(i): Note that k < i — 5 implies i — k > 5 and therefore

fli—k)=f(i—k+1)=67-0.34F1

We use
Flit1—(k+1)) | ( n ) . ( 2 f(i+1—(k+1)) )k'H ekt
i+ 1,k+1) _ f(+1) k+1 n—2 f(i+1—(k+1)) 1_2-f(i}:r_:;£1;+1))
¢(l>k) fli—k) . (n) ) ( 2. f(i—k) )k . e—2-f(i—k)
f(@) k n—2-f(i—k) 1,2-1;($k)

f(i) 'nfk' Q'f(ifk) .1724;(_:1@)

i+1) k+1 n—9.f(i— 2 Flimk
fli+1) k+1 n—2.f(i—k) 1_ﬁ

© 5<4_7 1 1 9. f(@ B ]f) 1— 2-f(i—k)

k+1
=034 k+1 1 1 _ 24G=h)
k+2
2. 67-0.341k+1 (2 2.67-0.341(i=5)+1
034-(k+1) ~— 034-(i—5+1)
5 5
_ 2-67-0.34 _ 2:67.034° 67.0.345 < 0.31

i —4 - 6—4
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and
fl+1-1) (n) . ( 2-f(i+1-1) )1 At
g+l D W Ane2fren) - 2Aeen
(i, 1) fiza) (my ( 2-f(i=1) )1_ 21
f(@) 1 n—2.f(i—1) 1-200-D
Fi £l —2.f(i 2. f(i—1
_ 206 n-2-f(i-1) QAM 1- <? )
2. f(z — 1) n—2- f(Z) e—2-f(i—1) 1- 2-f2(i)
< & 2 f=1)=2-f(i) | i{-l)
fi=1) 1— f(3)
< 0.34. 1340347134034 _ (g 34 134:0.347-(1-0.34)
< 0.34'6134-0.346-0.66 <0.39
to obtain:

i+1-5

OB 41) = Z¢z+1k Z¢(i+l,k+1)
k=0
1—5
= ¢(i+1,1)+ > @i+ 1,k+1)
k=1
i—5

i—5
< 03990, 1)+ Y 0.31-(i,k) <> (i, k) = ®7°(i)
k=1

k=1

Case ®!"}(i): Note that since k € {i —4,...,4 — 1}, we have 1 < i — k < 4 and therefore

£l _ 07
fli—Fk) =
We can reuse the first lines from the previous case to prove a useful inequality:

SlitLk+1) _ 1 L2 fi=k) _ 2-0.7
o(i, k) - 034 k41 1 0.34-(k+1)-(i —k+1)
@ 2-0.7 14
= 034-(i—14+1)-(i—(G—1)+1) 0.34-5-2
1.4
< .
S 03162 0
We obtain:
i+1—-1 i—1
OUITIE4+1) = > eli+1Lk)= ) i+ 1Lk+1)
k=i+1—4 k=i—4
< ZOBE)d)Zk ka ®i-1(4)
k=i—4 k=i—4

91
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Case ®:(i): From

1 n 2 V't e
PiT(i+1) Fi+D) (i41) - (ﬁ) i p—

7 7 T
@100 o (1) (%) o

i+1

n—1 2 1*24_71
f(z'—i—l) i+1 n—2 1-— +2
1 2 i41-2 z+2< 1 2 6-1 642

S 034 i+l it2-2 i+1°034 6+1 6 6+1
180
= 04 201 =P
follows that ®/1] (i + 1) < 0.81 - ®i(4). O

Lemma 5.4.19. Ifn > 29, then:

®1(5) < 0.1583
®3(5) < 0.1779
®1(6) < 0.1897
d5(6) < 0.0592

®8(6) < 0.1628

Proof. Define §;, to be 0.01 if £ = 1 and §;, = 0 otherwise. Then for n > 29,

() == 2f(5<"k)’;,f1> <146 fork e {1,2,3,4}

because, for k = 1,

14

n<n+0.29—1.01-0.28:n+0.01-29_1.01.m§(1+0.01).(n_2.]5(5_1))
and, for k = 2,
n(n—l)anfn<nfﬁ n+1'967 n,£ n,ﬂQ
4 16 1) 5—2+1)

For k = 3, 4, it holds because the additional factors are #k(;ik) < 1.

With similar arguments one can prove

(@) Pl < Lfor k € (2,3,4,5).
Forn > 29,

3) 7=y < 101
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5.4 Analysis of the Overloaded Bins

because n < n +0.29 —0.21 <n +0.1-29 —1.01-2-67-0.34° < 1.01 - (n — 2 £(6)).

; R k .
N f6—=k) (n\ [ 2-f6-Fk) | em2i6h)
@1(5)_2 f(5) <k> <n—2'f(5—k)> 1_ 2f6-k)

= B+
_ 24:]?(5—/?) n-(n-1)-..-(n-k+1) 2-f(5—k)k ' o~ 2F(5-k)
- k=1 f5) k! (n—2- f(5 —k)k 1 2-J;(J5£k)
W -Gk (2-fB-k)F e 2I6R
< 2 O (1+0y) - o S o
- k1

After applying f(5) = 67 - 0.34% and f(5 — k) = for k € {1,2,3,4} and after

5— k+1

computing the sum with a computer program, we get:

d1(5) < 0.1583

5 7 ~ k N )
_ N~ f(6=F) (n 2. f(6—k) e—2F(6=h)
P5(6) = ZW : (k) : (n—2-f(6—k)> = e

> fok n-(n—1)-..-(n—k+1 Q.fok k e=2f(6=h)
_ Z( ) n-(n=1-.-( ) _(2-f(6-k)"

= O K (n—2-f(6—k)k 1 zio=h
@ SOk 2 fE—k)F IO
P f(6) k! lizi(izk)

Again, we apply f(6) = 67 - 0.34 and f(6 — k) = for k € {2,3,4,5} and compute

6— k+1

the sum with a computer program. The result is:

®5(6) < 0.0592

5 f(5——5) n 2.f(5__5) g e—2-f(5-5)
2:6) = JT5).<5>. (n——Q-fX5-5)> ' 14,2f@7@

5+1

1 n 2 \° e*2< 1 2 3.e?
f(5) \5 n—2) 1-2 " 67-034° 5 2

32.3. 2
_ 0.1779
67-0345 1202 ©
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i 6 — n . (6 — O —2f(6-6)
oi(e) = 1 6),(),( 2- f(6-6) )

f(6) 6 n—2-f(6—6) 1— 2'{3(?;6)
1 (n 2 \° e? o1 26 7.¢72
~ f(6) \6 n—2 1—2 7 67-0.345 ¢! 5

64-7-e2

= < 0.162
67-0.345-720 -5 01628

F6 n F(6— b —2fe-1)
TR ( n,(>,< 2-J(6-1) ),

f(6) 1) \n-2-f6-1) 126D
£(6) 2. f(6) e—2:f(6) (3) e—2f(6)
= cq. . 1.01-2-f(6) ————
76) " =2 1) 1= ) 10 1)
B 6 6—2‘67-0.346 -
= 1.01-2-67-0.34°- 1-67.0316 < 0.189

5.4.4 Lemmas Used for Proving H(t)

Lemma 5.4.20. Assume ¢ > 5. Fix an integer constant X > 2. For all k € {\, ..., £+ 1} it holds

that

(6'f(€+1—k)>k < 082
— ] =

for sufficiently large n.

Proof. Define ¢(f) := 6 - 67 - 0.34/"2 and recall that f(i) < h(i + 1) = 67 - 0.347+! for
i €0,...,L — 2 (see Definition and Observation [5.4.7). Instead of the original function we

consider

w(k) = (c(ﬁ) : 034"“)'“ _ (6 : 67-0.34@+2—k>k y <W>k

k k - k

and show w(k) < n~%8, For this we regard w(k) as a continuous function on the interval

(0, 00) C R and perform a curve sketching. In order to identify the extrema we derive w(k) and
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obtain:

, c(0)k '
wik) = (kk ~(0.)34k2>
c(0)% In(c(0)) - k* - 0.34F" — c(0)% - k% - 0.34F . (In(k) + 1+ 2 - k - In(0.34))
(kk - 0.34k%)2
c(O)F -In(c(0)) — c(O)* - (In(k) + 142 k- 1n(0.34))
Kk - 0.34

k
(k .6(5,632416) - (In(c()) —In(k) = 1 — 2 k- In(0.34))

w'(k) = 0 is fulfilled if and only if g(k) := In(c(€)) —In(k) —1 —2- k- 1n(0.34) = 0. Since
In(c(f)) —1—2-k-1In(0.34) is linear in k and In(k) is a strictly concave function, there are at

most two solutions. Let € > 0, ¢ — 0 and ¢ — oo, then:

gle) = In(c(t)) —In(e) —1—2-¢-In(0.34) — oo
g(1) = In(6-67-0.34"?) —In(1) =1 —2-1-1n(0.34)

= In(6-67) 4+ (£ +2) - 1n(0.34) — 1 — 2 - In(0.34)

< 716—1.07-(£+2) < 716—1.07-(5+2) < 0
9() = In(c(f)) —In(¢p) =1 —2-¢ - In(0.34)

> In(c(f))—1—-In(yp) +2.14- ¢ —

Since g(k) is continuous on (0, 00), g(k) and, thus, w’(k) must have a root in the interval
(0,1]. Because of the gradients at € and 1, w(k) must have a maximum there. The second
extremum is a minimum in the interval (1,00). It may or may not be in the given domain
[A, £ + 1]. In any case, restricted to [A, £ + 1], w(k) is maximal at one of the boundaries. And
since £ = ©(In(n)) (which can be derived from Definition [5.4.1), it follows that, for all integers

k € {A, ..., + 1}, some constant ¢ and sufficiently large n,

w(k) < max{w(\),w(l+1)} < maX{(W)A,<6£'i(ll)>é+l}
e () () ™)
<

A
6
max { ()\ 0 34)\2> . n—0.9~>\, 1650483'1n(n) . n—0.83~1n ln(n)} < n—0.8~)\
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Lemma 5.4.21. Leti € {5,...,0 + 1}, then

t41 i

YN Pr(Zx=1]< 1f(z‘k).n-Pr[B<Z.f(z‘k),n> Zk}

k=1be B,;’k k=
For A > 2 and sufficiently large n,

t+0+1

SN Pr(Zygpag=1]<n 08

k=X bEBz+1,k

The probability that any bin receives a ball with height at least { + 1 is bounded by

t+0+1

Z Z Pr(Zyot1=1]< n=09.

k=0 bEBerl,k

Proof. First we bound the probability for a bin to get the next ball. Letb € B;;, 0 < k < ¢

(where the B; j, are defined in Definition [5.4.8). The probability for b to be chosen is +. The

probability that any bin on the same level or higher is chosen is bounded by f(’_Tk)" = f (i—k)

(see Observation|5.4.6). Since every ball has two choices, the probability p; ; for b to get the ball
is

1 - A

pi < e fi= B+ fi =05 =2 fi - b)

Slw

For all b € B; 1, k > 1, the probability p; 1 to get the ball is bounded by

2 2
Pik < — = —
n n

-1 (0).
For any bin b € B, o, let p; ¢ be the maximal probability for b to be chosen. Then
Di0 < Pil-

Now, for each bin b € B; i, 0 < k < t + 4, we can upper-bound the probability for the event

Zyi1 = 1 (that b receives at least one ball from batch ¢ with height at least ¢ 4 7):

Pr[B(n,pl,l)zu_Pr[B(n,%-f(i—l))21} for k = 0
Pr(Zyix =11 << Pr|[B(n,pis) > k] 7Pr{ (n,%-f(i—k)) > k} forl <k <i
Pr[B(n,piyk)zk]gPr{B(n,%-f(i—i))21’ fork >
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Define Bi,l = Bi,l @] Bi,0~ Then
1

> Pr(Zx=1]<|Bia|-Pr [B <n,i~f(i1)) > 1} .

k=0beB, s

Define B” = UZZ‘Bi,k- Then

3\1\9

f(z—z))zi]

For 1 < k < i, define Bi,k = B, 1, and observe that 22:1 |sz| = nand that, for 1 < k <1,

|Bix| < f(i — k) - n (see Definition and Observation [5.4.6).

The first inequality stated in the lemma follows from:

t+i
> > Pr(Zyx=1]<|Bi|-Pr {B (n

k=i beEB; &

t4i t4i
> 2 PriZun=1] < 3, > PriZus=1]
k}zleBi,k k?:ObeBi,k
i . 2 R
< Bix|-Pr | B — - fli— >
< 1Bl o5 (nl fien) k]

i

IN
AR

f(i—k)-n-Pr[B(n, ~f(i—k)> zk}

k=1

For the proofs of the second and the third statement in the lemma, we can reuse the analysis

of the first one. Here, 7 is set to £ + 1.
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In particular, for A = 3,
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5 Load Balancing in a Parallel Environment

This can be used to show the last inequality:
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5.5 Larger Values of d

Considering the results for d-choice balls-into-bins games one would assume the batched proto-
col to be monotone in the same sense that non-batched protocols are: The more choices we have
per ball, the better the final load distribution. Surprisingly this does not seem to be the case. The
experiment charted in Figure [5.1] shows how the gap between maximum and average load as a
function of d. The rapid decrease from d = 1 to d = 2 is followed by a seemingly logarithmic
increase.

The experiments fix n = 1,000 bins and allocate 1,000 batches with 1,000 balls each (a
total of 1,000, 000 balls). Each data point is actually the average of five individual experiments.
Notice that the y-axis is logarithmically scaled. The tall peak on the left corresponds to d = 1,
the single-choice process.

One explanation of this observed phenomenon may be that bins that fall behind will have a
relatively high probability to receive many balls from the next batch. For example, let d = ©(n).
All balls of the first batch find the bins empty, and the allocation is stochastically equivalent to
the single-choice game. This implies that expectedly about ~ bins remain empty. With the next
batch almost all balls will have at least one of these bins among their d choices and allocate to
one of them. The balls of the third batch will then mainly commit to the remaining bins of load 0
and bins of load 1. And so on.

For n = d = 25 and m = 20 - n, the process is traced in Table[5.I] One can clearly see that
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n=1,000 after 1,000 batches
128
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Figure 5.1: Gap between maximum and average load as a function of d.

the least loaded bins often receive so many balls that they top all other bins. The same effect is
observable for smaller d, but since a bin’s probability to be among the choices of a ball is smaller,

the increase is not as extreme.

5.6 Conclusions

In this chapter we have analysed GREEDY 2] in a dynamic parallel environment and showed that
the gap between maximum and average load stays O(In(n)) w.v.h.p. if the batch size equals the
number of bins n and if the number of balls m is polynomially bounded in n. Our simulations
suggest that this gap grows with the number of choices d. This is surprising because in other
models applying GREEDY[d] in the heavily-loaded case [8]94] [85]] the maximum load decreases
with d.

The main open problem is the generalisation to arbitrary m. Considering the analyses in
[8, 194, [85]], proving and applying a short memory lemma seems to be a promising approach.

Furthermore, it would be interesting to analyse the game for d > 2.
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5 Load Balancing in a Parallel Environment

Batch Bins
1 0 0 0 1 0 1 1 1 1 oi 2 2 2 1 2 1 0 1 5 0 0 2 0 2 0
2 3 2 4 1 2 1 1 1 1 m: 2 2 2 1 2 1 3 1 5 1 3 2 0 2 3
3 3 2 4 4 2 3 2 2 3 m: 2 2 2 2 2 1 3 1 5 1 3 2|15 2 3
4 3 2 4 4 2 3 2 2 3 m: 2 2 2 2 2 5 3 6 5116 3 3115 2 3
5 3 7 4 4 3 3 2 3 3 m: 4 3 6 4 8 5 3 6 5116 3 3115 5 3
6 5 7 4 4 4 3120 4 4 m: 4 3 6 4 8 5 3 6 5116 4 3|15 5 4
7 5 7 4 4 4111120 4 4 N: 4 9 6 4 8 5111 6 5116 4 6| 15 5 4
8 5 7 4 8 611120 4 8 oi 5 9 6 6 8 5111 6 5116 7 6| 15 5 8
9 5 7113 8 6| 11|20 | 16 8 oi 5 9 6 6 8 6| 11 6 6| 16 7 6| 15 7 8
10 || 18 7113 8 6 11|20 | 16 8 9 7 14 9 7 7 8 6 | 11 6 6| 16 7 7115 7 8
11 ]| 18 7113 8|15 (11|20 | 16 8 9 7 14 9 7 7 8 711 |13 | 14 | 16 7 7|15 7 8
12 || 18 | 10 | 13 8|15 | 11 |20 | 16 8 9 7 14 9110 | 10 8|12 |11 |13 | 14| 16 9112 | 15| 11 8
1311810 (13|16 | 15|11 |20 | 16| 12 9 7 14|11 10| 10|15 (12 | 11 | 13 | 14 | 16 91 12|15 |11 ] 12
14 {18 |12 |13 |16 | 15| 11 | 20| 16 | 12 | 16 7 14 |11 11 [ 11 | 15|12 |12 |13 |14 |16 |22 | 12 | 15| 11 | 12
15 18|12 (13|16 |15 |17 |20 |16 | 12| 16 7 1411416 |15 |15 |12 |12 |13 |14 |16 |22 | 12 | 15| 18 | 12
16 || 18 | 17 |13 |16 | 15|17 |20 | 16 | 15| 16 7 14|14 ]16 15|15 | 15|16 |13 |14 |16 |22 | 17 | 15| 18 | 17
171 18|17 {26 |16 | 15| 17 |20 | 16 | 15| 16 7 14116 |16 |15 |15 | 15|16 |22 | 15|16 |22 |17 | 15| 18 | 17
18 | 18 | 17 |26 | 16 | 18 | 17 | 20| 16 | 17 | 16 7 29 |16 (16 | 17 | 15| 15|16 |22 |16 |16 |22 | 17 | 17 | 18 | 17
19 || 18 |17 |26 |16 | 18 | 17 |20 | 16 | 17 | 17 7 29 116 | 17 | 17 |25 |28 |16 |22 |16 | 16 |22 | 17 | 17 | 18 | 17
20 || 18 | 17 | 26 | 21 | 18 | 17 | 20 | 21 | 17 | 17 7 29 |25 (17 |17 | 25|28 |16 |22 |18 |20 |22 |17 |17 | 18 | 17

Table 5.1: Load distribution. n = 25 bins, d = 25 choices, 20 batches.
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