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Abstract 

The white clawed crayfish (Austropotamobius pallipes) is a freshwater crustacean at imminent risk 

of extinction, largely due to the introduction of American signal crayfish (Pacifastacus leniusculus) 

to Britain. With the purpose of determining how white clawed crayfish respond to habitat and 

spatial variables, this study correlated white clawed crayfish distribution over a 35 km length of 

the River Wansbeck, Northumberland, to physical variables at three-spatial scales. White clawed 

crayfish were present throughout the study area at an average density of 5.3 individuals per 

square metre. The realised niche of white clawed crayfish was very broad; the only available areas 

crayfish could not make use of were those with microhabitat scale D50 smaller than 8 mm. Within 

their wide realised niche, crayfish showed significant responses to habitat. The strongest response 

was to grain size, with crayfish preferentially selecting cobbles as refuges. Distance downstream 

and lateral distance did not influence distribution or density of white clawed crayfish but crayfish 

were more abundant in the upstream half of the study area, reflecting the higher availability of 

favourable habitat in low order streams. Patchiness in distribution was only evident at the sub-

metre scale, suggesting crayfish are only directly responding to microhabitat scale heterogeneity. 

Habitat based conservation actions should be conducted at this scale. However, habitat variables 

operating at the kilometre section and site scale (100 m) influenced the suitability of 

microhabitats. The abundant, dense population of white clawed crayfish on the River Wansbeck 

makes it a site of international importance. It is therefore recommended for designation as a 

Special Area of Conservation.  
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Chapter 1- Introduction 

1.1 Introduction and Rationale  

Freshwater ecosystems are immensely valuable to human communities as they provide 

economical, cultural, scientific and intrinsic benefits (Dudgeon et al. 2005). The global value of 

ecosystem goods and services provided by inland freshwaters has been estimated at US $6579 

billion per year (Constanza et al. 1997). This value exceeds the GDP of every country in the world 

apart from the USA and is greater than the combined value of all terrestrial systems (Constanza et 

al. 1997). The value of freshwaters is, in part, due to the number and diversity of species they 

contain. Whilst freshwaters account for only 0.8 % of the Earth’s surface they support 6 % of all 

known species (Hawksworth & Kalin-Arroyo, 1995). 

 

Consequently, freshwater ecosystems are often heavily exploited. Unsustainable use of these 

systems has led to severe degradation (Dudgeon et al. 2005), rapid declines in biodiversity (Sala et 

al. 2000) and accelerating extinction rates (Moyle and Leidy, 1992). Data on global extinction 

rates is sparse but the evidence collected thus far suggests that rates of decline in freshwater 

species richness and abundance are higher than rates of decline in terrestrial species (Sala et al. 

2000; Millennium Ecosystems assessment, 2005). The causes of these declines can be categorised 

under four main headings: overexploitation, water pollution, habitat modification and 

introduction of invasive species (Dudgeon et al. 2005).  These threats are briefly outlined below. 

 

Unsustainable catch rates have resulted in severe depletion of many species harvested for food, 

including molluscs (e.g. Anthony and Downing, 2001), fish (e.g. Holmlund and Hammer, 1999) and 

crustaceans (e.g. Le Vay et al. 2001). Pollutants, encompassing a wide range of contaminants such 

as domestic and industrial effluent, agricultural runoff, siltation, endocrine disruptors and 

pathogens, may cause direct mortality in freshwater species or act as long-term stressors 

(Dudgeon et al. 2005). Large-scale alterations of freshwater systems are also widespread, 

primarily occurring in order to allow human exploitation of freshwater resources and to prevent 

flooding (Nilsson and Berggren, 2000). Indirect habitat modification due to changes within a 

catchment, such as deforestation, can also be detrimental to aquatic ecosystems (Dudgeon et al. 

2005). Invasive non-native species can have negative impacts on native species, ecosystem 

functioning, economic activity and human health.  Attempting to deal with invasive species costs 

£ 2 billion per year in the U.K. alone (DEFRA, 2008). Climate change and the resultant change in 

temperature and precipitation patterns are acting as additional stressors for many species and 

increasing the pervasiveness of invasive species (Vescovi et al. 2009). The combination of these 

threats has led to a global crisis in freshwater ecosystems but awareness of the need to conserve 

them is low (Dudgeon et al. 2005). Immediate action is needed to prevent irreversible losses of 
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valuable freshwater species. Thus, conservation and management of freshwater biodiversity is a 

priority, in both the U.K. and worldwide (Dudgeon et al. 2005). Rivers, streams and standing 

waters are all recognised as priority habitats for conservation in the U.K. (U.K. Biodiversity Action 

Plan [BAP], 2007). Over forty species of recognised conservation importance in the U.K. are reliant 

on these habitats, including birds, fish, amphibians, crustaceans, molluscs, mammals and 

cnidarians (U.K. Biodiversity Action Plan, 2007). Many of these species are internationally 

threatened and rapidly declining in the U.K.  

 

In order to maximise the effectiveness of conservation efforts with limited resources, 

conservationists must have a thorough understanding of the habitat requirements and 

preferences of a species (Simberloff, 1988).  This understanding is necessary for assessing habitat 

quality, predicting distribution, maintaining and creating suitable habitat and identifying potential 

reintroduction sites (Smith et al. 1996). Habitat requirements and preferences can be determined 

by studying the distribution of populations in relation to the distribution of physical variables 

(Hirzel, 2002).  

 

Previous studies have shown that the likelihood of riverine species being present in a given 

location changes with longitudinal and lateral position within the channel (e.g. Richardson and 

Mackay, 1991; Torgersen and Close, 2004). Thus, acknowledging spatial position as an 

explanatory variable is likely to improve predictions of a species distribution from physical 

variables (Thorp et al. 2006). Further, the hierarchically structured nature of river systems (Frissell 

et al. 1986) makes generally applicable habitat models difficult to obtain. This structure means 

that the observed patterns of environmental heterogeneity and conclusions on species-habitat 

relationships depend on the scale at which the system is viewed (Torgersen and Close, 2004). 

Previous studies have shown that different taxonomic groups respond to their environment at 

different scales (e.g. Townsend et al. 2003; Torgersen and Close, 2004). Habitat studies and 

management efforts should view river systems at the scale over which the focal species responds 

to environmental heterogeneity.  

 

The white clawed crayfish (Austropotamobius pallipes) is an example of a freshwater species that 

is ecologically and economically valuable but is threatened both internationally and in the U.K.  

The white clawed crayfish (WCC) is a decapod crustacean (Groves, 1985) and the only crayfish 

species native to the U.K. (Holdich and Lowery, 1988). Crayfish, as omnivorous foragers and 

detrital feeders, are polytrophic and therefore play an important role in freshwater ecosystem 

functioning (Goddard and Hogger, 1986). This influence makes native crayfish key species in 
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freshwater ecosystems, and as such, they help maintain populations of other species of cultural, 

ecological or economic importance (e.g. Statzner et al. 2000). 

 

Like many freshwater species, crayfish are threatened by pollution, habitat degradation and 

introduction of non-native competitors (Crandall and Buhay, 2008). The major threat to WCC in 

Britain is competition from the North American signal crayfish (Pacifastacus leniusculus) which 

was introduced to Britain in the 1970s. Signal crayfish out-compete WCC for food and habitat and 

carry a fungal plague (Aphanomyces astaci), which is lethal to native crayfish (Holdich, 1988).   

Signal crayfish also cause broader negative consequences in river systems. They are a nuisance to 

anglers, their presence is detrimental to stream fish populations (Guan and Wiles, 1997) and they 

have been shown to exacerbate bank erosion through burrowing activity (Guan, 1994; Stancliffe-

Vaughan, 2009). Due to the combined negative impacts of signal crayfish, habitat degradation, 

habitat modification and pollution (Holdich, 2003), the number of 10 km grid squares occupied by 

WCC in England and Wales declined by 20.3 % between 1997 and 2001 (Sibley et al. 2002). It is 

estimated that the number of white-clawed crayfish in the U.K. has declined by 60 % since 2000 

(Holdich et al. 2009). At this rate of decline, WCC will be extinct in Britain by 2030 (Sibley et al. 

2002).   

 

Consequently, WCC are recognised as ‘endangered’ by the International Union for Conservation 

of Nature (IUCN) and listed as a priority species in the EC habitats directive (European Council 

Directive 92/43/EEC). Signatories to this directive are required to ‘maintain and restore priority 

habitats and species at a favourable conservation status’. The directive specifies that conservation 

of WCC requires the designation of Special Areas of Conservation (SACs). In response to this, the 

U.K. has a Biodiversity Action Plan for WCC, which aims to maintain the present distribution of the 

species until 2013 (U.K.BAP, 1995). Maintaining biological diversity and protecting native species 

is also crucial in meeting the EU Water Framework Directive, the 15 year commitment made by 

EU member states in 2000 to bring freshwater systems back to good ecological, chemical and 

geomorphological quality (European parliament and council directive 2000/60/EC). Meeting these 

legislative aims and ensuring continued survival of WCC will require population monitoring, 

habitat management and increased public awareness (U.K. BAP, 1995). Application of 

conservation measures to prevent extinction of WCC is imperative, before the opportunity to act 

is lost. 

 

Several authors have conducted studies of WCC habitat preferences (e.g. Smith, 1996; Naura and 

Robinson, 1998; Benvenuto et al. 2008) and as a result some aspects of WCC habitat use are well 

understood. It has been established that WCC; require stable refuges to shelter from predation 

and high flows during daylight, avoid fast flowing areas, and locate in proximity to in-channel 

http://eur-lex.europa.eu/smartapi/cgi/sga_doc?smartapi%21celexplus%21prod%21DocNumber&lg=en&type_doc=Directive&an_doc=2000&nu_doc=60
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vegetation (e.g. Reynolds 1998; Benvenuto et al. 2008). However, the findings of habitat studies 

for WCC are often inconsistent. Inconsistencies are evident in the literature on many aspects of 

WCC habitat use, including: physio-chemical requirements and tolerances, the size of refuge they 

require, the favourability of exposed roots, preferred bank profiles and maximum tolerable flow 

velocities.  Several authors have attempted to create models allowing prediction of WCC 

distribution from physical variables (e.g. Smith et al. 1996; Naura and Robinson, 1998). However, 

each model has different conclusions suggesting models are not generally applicable across river 

systems.    

 

This inconsistency in habitat models for WCC may be due to the lack of knowledge on the 

influence of spatial context and study scale. Failure to account for these factors may lead to 

flawed conclusions about species-habitat relationships and erroneous conservation actions (Thorp 

et al. 2006). To the author’s knowledge, no study has examined the influence of spatial context 

and position in the channel on distribution patterns of WCC. Therefore, this study aims to address 

these gaps in current knowledge in order to improve predictive models of WCC distribution and 

habitat use and identify the scale at which management efforts should be focussed.   

 

This study is a field-based survey of WCC over 35 km of the River Wansbeck, Northumberland. The 

River Wansbeck has been regarded as a site of international importance due to the size and 

density of the WCC population it supports and the absence of non-native crayfish species (Rogers, 

2005). It has therefore been recommended as a SAC for WCC (Rogers, 2005) but has not been 

designated. In this study, habitat heterogeneity at three spatial scales will be correlated to 

daytime distribution of WCC with the aim to determine the pattern of habitat use in this river and 

the scale at which WCC are responding to their environment. Location within the channel will be 

included as an explanatory variable to determine if lateral and longitudinal positions consistently 

influence distribution of WCC.   

 

This research is performed in conjunction with the Northumberland Wildlife Trust, a charity which 

aims to ‘rebuild biodiversity’ (Royal Society of Wildlife Trusts, 2010). In order to maintain and 

enhance WCC distribution with limited resources, the Northumberland Wildlife Trust requires 

accurate information on current distribution and species-habitat correlations. It is hoped that the 

results of this study will be a valuable resource for future WCC conservation efforts by the 

Northumberland Wildlife Trust.  
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1.2  Aims and Objectives 

The main aims of this research are three-fold:  

1. To determine the day-time response to habitat variables by WCC on the River Wansbeck 

2. To determine whether distribution of WCC is influenced by position in the channel 

3. To determine the spatial scale at which WCC are responding to their habitat  

 

In order to achieve these aims, the following questions need to be addressed:  

1a) How are WCC distributed on the River Wansbeck? 

1b) What range of habitat variables are WCC making use of in daylight hours? 

1c) Which habitat types are WCC selecting and avoiding in daylight hours? 

 

2a) Does the likelihood of WCC being present change with longitudinal and lateral position? 

2b) What is the explanatory power of river position on probability of finding WCC,        

       independent of habitat quality and availability? 

2c) Are there predictable trends in occurrence of favourable habitat with distance downstream? 

 

3a) Over what scale do WCC respond to heterogeneity in habitat variables? 

3b) What scales of habitat heterogeneity influence distribution of WCC? 

 

 

1.3  Thesis outline 

The following chapters present the context, methodology, results and discussion of the research 

outlined above. Chapter 2 reviews concepts and ideas in conservation and spatial ecology 

applicable to this study. Chapter 3 reviews current knowledge on the threats and conservation 

status of WCC and considers their ecology and habitat preferences in the wider framework of 

riverine spatial ecology, as discussed in chapter 2.  An overview of the physical environment of the 

River Wansbeck and the field methodology used to obtain results are described in chapter 4. The 

statistical analyses undertaken are also outlined. In chapter 5 the data obtained from the field 

survey is presented and analysed. Chapter 6 discusses the results in the context of previous work 

and conservation management. The main conclusions of the work are presented in chapter 7. 
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Chapter 2- Review of concepts  

This chapter briefly outlines why conservation of threatened species is a priority in today’s society 

and why an increased knowledge of species distribution and habitat use is crucial. Within this 

chapter, ecological concepts and methods used to determine species-habitat relationships are 

reviewed. Further, the principles of spatial ecology, concerned with spatial factors and scale, are 

outlined. The relevance of these principles to river systems and their implications for conservation 

of river species are then examined. 

 

2.1  Conservation and ecology 

Globally, biodiversity is declining at an unprecedented rate due to human-induced pressures on 

ecosystems and climate change (Sala et al. 2000). In 2010, 33 % of all assessed species were at risk 

of extinction (IUCN, 2010). Biodiversity loss has a major negative impact both economically and 

for human well-being due to loss of species and habitats resulting in loss of ecosystem services 

(Costanza et al. 1997). Recognising this, the Convention on Biodiversity, in 2002, set a target ‘to 

achieve by 2010 a significant reduction of the current rate of biodiversity loss at the global, 

regional and national level’. The most recent publication of this convention, the ‘Global 

Biodiversity Outlook 3’ (Secretariat of the Convention on Biological Diversity, 2010), states that 

this target has not been met. The ‘Global Biodiversity Outlook 3’ report presents the findings that 

most endangered species are at increasing risk of extinction, the global threats to biodiversity are 

increasing and there is a continued decline in the range and quality of natural habitats. However, 

this publication suggests that conservation efforts over the last decade have had a positive impact 

on reducing biodiversity loss and that with an increase in the level of effort and resources 

dedicated to conservation globally, there is reason to be optimistic that the situation can improve.  

 

An integrated approach of social sciences, economics, resource management and physical and 

biological sciences is required to improve the effectiveness of conservation efforts. Ecological 

studies will need to be a key component of any conservation strategy as a complete knowledge of 

the distribution of a species and its response to environmental variables is vital for a species 

protection and management (Simberloff, 1988). This understanding allows efforts to be targeted 

to areas where they will be most effective, helps identify threats and agents of decline, guides 

development of captive breeding programmes and  is necessary for identifying suitable areas for 

reintroductions (Smith et al. 1996).  

 

 

 

 

2.2  Describing the response of a species to physical variables  
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2.2.1  Habitat niche 

Every species is able to tolerate a range of physical conditions, beyond the limits of which it is 

unable to survive (Blackman, 1905). The combination of a species’ tolerances to multiple variables 

produces a multi-dimensional environmental space in which the species can exist in the absence 

of competitors. This is termed the fundamental habitat niche (Hutchinson, 1978) (fig. 2.1). At the 

broadest scale, physiological tolerances limit the habitat niche and hence, the distribution of a 

species (Lodge and Hill, 1994). The physiological capacity of an individual to endure variation in 

variables such as, light, temperature, moisture and pH determine the breadth of conditions over 

which it can survive. Organisms may require certain elements above a critical level for survival. 

Conversely, high concentrations of other elements may preclude the organism from inhabiting a 

given area. Within areas of suitable physiochemical parameters, resource requirements limit the 

area in which a species can exist (Lodge and Hill, 1994). Together, physiochemical tolerances and 

resource requirements dictate the multi-dimensional fundamental niche for a species. If any one 

of the requirements for survival and reproduction is not met, a species cannot persist in that area. 

 

 
 

 Figure 2.1-An example of some of the key parameters of the fundamental  

 niche space for a hypothetical aquatic species 

 

Understanding the fundamental niche of a species is vital for maintaining suitable habitat. 

Absolute physiological tolerance limits can only be precisely determined by controlled experiment 

but extensive study of the distribution of a species can define the range of conditions over which 

it occurs (Pearson and Dawkson, 2003). However, the conditions required for growth and 

reproduction, and hence the persistence of a population, are likely to be more specialised than 
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the full range of conditions in which an individual can survive. Defining the range of conditions in 

which growth and reproduction occurs is more informative for conservation ecology (figure 2.2) 

(Shelford, 1913). To ensure conditions are favourable for reproduction, ecological studies need to 

be repeated throughout reproductive cycles or ensure there is evidence of breeding activity 

within the population. Biotic interactions and disturbances further restrict the area of the 

fundamental hyper-volume that is made use of (Hutchinson, 1978). Presence of predators and 

inter-specific competitors, particularly non-indigenous species, may preclude use of favourable 

physical areas due to the high mortality rates encountered in the presence of these pressures 

(Hutchinson, 1978). Thus, the actual areas over which a species is distributed is termed the 

realised niche and is the combined result of physiochemical tolerance, physical habitat 

requirements and biotic interactions (Lodge and Hill, 1994) (figure 2.3). The extent to which biotic 

interactions influence the distribution of a species varies spatially. Thus, transferring inferences of 

optimal habitat made in one system to other areas must be done with caution (e.g. Vanreusel et 

al. 2007). 

 

 
 

Figure 2.2 – Idealised tolerance curve. A species can survive within a range of environmental   

conditions. Growth and reproduction will only occur in a subset of this range (redrawn from Smith 

and Smith, 2001) 
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Figure 2.3- Conceptual model of controls on the distribution of an animal species. Physiochemical 

parameters determine the large-scale areas in which the species can survive. Where 

physiochemical parameters are within a species’ tolerated range, distribution is conditioned by 

refugia and food availability. Where these are limiting, populations experience competition and 

predation, which are interacting processes and ultimately determine population size (Lodge and 

Hill, 1994) 

 

Niche limits can be inferred from the range of conditions a species is found over. If certain habitat 

types are not made use of despite high availability, it is likely these are outside the niche space of 

the species. Krebs (1999) suggests that if a species is making use of less than 5 % of the available 

area of a given habitat type then that habitat type is outside the species’ niche space. This gives a 

more conservative estimate of niche breadth than when considering complete absence and may 

be more informative for a single sample, as it accounts for biotic interactions or disturbance 

temporally forcing individuals into unfavourable habitat in which they could not persist for an 

extended time.  This measure is therefore more likely to represent the niche space for growth and 

reproduction rather than just survival. 

 

2.2.2  Habitat preferences 

Within a species’ realised niche, a subset of habitat types will give an individual the highest 

likelihood of surviving to reproductive age and maximise their production of viable offspring 

(Fretwell and Lucas, 1970). Thus, the fitness of an individual, defined as the ‘genetic contribution 

by an individual’s descendants to future generations’ (Smith and Smith, 2001) is affected by the 

habitat in which it locates (Fretwell and Lucas, 1970).  Mobile organisms will preferentially locate 

in areas with the conditions that result in the highest fitness gain (Cody, 1985). For conservation 

efforts, where the aim is to maintain viable populations, the combined response to habitat of 

whole populations is of interest (Pidgeon et al. 2006). To give the maximum gain to the focal 

population, conservation efforts should focus on the highest quality habitat, where the quality of 
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a habitat type is a measure of the relative contribution to the next generation from individuals in 

that habitat type (Hall et al. 1997). Thus habitat quality is a measure of density of organisms that 

can persist in a given habitat type and the contribution they make to the next generation.  

 

Active selection of high quality habitats often results in the majority of individuals using a more 

restricted range of conditions than that in which they could survive and reproduce. Thus, 

comparing the range of values of a given habitat variable within which the majority of a 

population is located to the total range of values available illustrates if the population is 

demonstrating a habitat preference (Hirzel, 2002) (fig 2.4). This measure is termed specialisation 

and illustrates whether the population is preferentially using a subset of the available range of a 

habitat variable (Hirzel, 2002). This may indicate niche limits but is also useful for identifying 

presence of habitat selection within a study area. Determination of the direction of habitat 

selection can be achieved by comparing the mean value of conditions used by a population and 

the mean value of conditions available. This measure is termed marginality (Hirzel, 2002) (fig. 2.4).  

 

 

 

 

Figure 2.4- Marginality and specialisation in distribution. Marginality is the difference between the 

mean value of all habitat variables (mG) and the mean value of the habitat made use of by the 

population (mS). Specialisation is the difference in the standard deviations of the used range (σS) 

and the available range (σG) (Redrawn from Hirzel, 2002) 

 

Because the distribution patterns of mobile species responding to habitat quality are a result of 

the distribution of heterogeneous physical variables, correlative approaches can be used to gain a 

detailed knowledge of habitat preferences (Johnson, 1980). There are three correlative methods 

for inferring habitat quality and hence habitat preferences of a species a) comparing use of 

different habitat types relative to their availability, b) correlating population density to habitat 
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type and c) correlating condition of individuals to the physical variables of the area in which they  

are located (Johnson, 2007). The methods and advantages and disadvantages of each are briefly 

discussed below. 

 

The first correlative method for inferring habitat quality compares use of habitat types to their 

availability and assumes that deviation from random use indicates selection or avoidance. 

Electivity index formulas consider relative use and availability of habitat types to output a 

numerical value, which can be interpreted as selection or avoidance of given habitat types (Jones, 

2001). If a habitat type is used in excess of its availability it is assumed to have been selected due 

to its high quality (Jones, 2001). A wide variety of electivity indices have been developed, largely 

for studying selection of food types but can be applied to selection of habitat.  The simplest index 

of selection is the forage ratio (Eq. 2.1) (Savage, 1931, in Krebs, 1999). 

     
  

  
       (Eq. 2.1) 

Where ri is the proportion of habitat type i used by the individual (area of habitat type i used by 

the individual/total area of habitat type i), pi  is the proportion of habitat type i in the whole study 

area (area of habitat type i/total area) and Ei is the preference score and ranging from +1 to 

infinity for preferred items and 0 to 1 for avoided items. A value of 1 shows random use of habitat 

types. 

 

Although widely used, this index is heavily influenced by the relative availability of different 

habitat types, particularly of the rarest habitat type. The maximum value the forage ratio can 

attain depends on the proportion of each habitat type available. This means deviation from 

random is not symmetrical for preference and avoidance and values obtained from different 

samples are not comparable (Lechowicz, 1982). Several authors have proposed variations on the 

forage ratio to overcome the dependence of the index on relative abundance of habitat types 

(Manly, 1971; Johnson, 1980). The most commonly used is Manly’s α (Eq. 2.2) also referred to as 

Chesson’s index and the standardized forage ratio. 

             
  

  
    

  

  
                                                                                         (Eq. 2.2) 

The value of α when habitat use is random is the reciprocal of the number of habitat types 

available. The index varies between 0 and +1 with values above 1/no. habitat types showing 

selection and values below this value showing avoidance. Manly’s alpha is recommended where 

there are large variations in the availability of habitat types, but the index is strongly affected by 

proportional use of rare resources (Krebs, 1999).  In interpreting electivity index scores it must be 

recognised that selection also depends on the costs of finding and moving to given habitat types 

(Fretwell and Lucas, 1970) and accessibility of different habitat types to the focal organism (Jones, 

2001). Further potential for inaccurate results with this correlative method occurs where a habitat 
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type is extremely abundant and density-limiting biotic factors determine the maximum 

proportion of the habitat that can be made use of (Angermeier et al. 2002). To prevent erroneous 

conclusions being drawn, the adaptive significance of preferences should be considered when 

interpreting the outputs of selection indices (Jones, 2001).  

 

Only recording presence in a given habitat type means proportional use indices can be skewed by 

‘false absences’ where individual were present but undetected (Reese et al. 2005). Similarly, 

presence in a habitat does not necessarily demonstrate a preference, especially when sampling is 

only conducted once at each site. Individuals may be in transition between two areas of 

favourable habitat at the time of the survey or may have been forced into less favourable habitat 

due to disturbance or biotic interactions (Jones, 2001). These observations may be thought of as 

‘false positives’. These problems explain why the majority of preference studies use population 

density based methods to determine habitat preferences of a species (Johnson, 2007). Areas of 

high population density are assumed to have higher habitat quality, as more individuals are 

present to survive to maturity and produce viable offspring. Comparing average population 

density in different habitat types can therefore inform about a species’ habitat preferences 

(Johnson, 2007). Failure to detect an individual is more likely in areas of low population density, 

thus ‘false-absences’ have less influence on results than when using proportional-use measures. 

However, whether population density accurately represents habitat quality depends on intra-

specific competitive interactions. If individuals are not equal competitors, the despotic 

distribution model states that dominant individuals will monopolise high quality habitats forcing 

sub-dominants into sub-optimal habitat (Fretwell, 1972). Areas with lower fundamental habitat 

quality may support larger densities of individuals. Under these circumstances, population density 

will not accurately indicate habitat quality (Van-Horne, 1983). Prioritising habitats based on the 

density of individuals they support requires an understanding of the competitive interactions in 

the population.  

 

The final method of assessing habitat quality considers the difference in condition of individuals 

residing in different habitat types. For this method to be informative the condition must be a 

consequence of the habitat e.g. due to lower food supply or increased predation risk (Johnson, 

2007). Morphological indicators such as body mass are easier to assess than physiological 

indicators such as endocrinological signs of stress which require tissue samples. However, both 

methods are extremely time-consuming and are not suitable for assessing rapid changes in 

habitat conditions due to the lag time in response. Further, body condition may be the cause of 

differential habitat use. Habitat segregation may occur based on size or smaller individuals may be 

competitively inferior and thus forced into lower quality habitat. Thus, like measures of 

population density, this method requires knowledge of the competitive structure of the 
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population (Johnson, 2007). The use of multiple indicators of habitat selection is recommended 

because conditions affecting survival, population density and reproduction may not be the same 

(Johnson, 2007). Obtaining consistent results from multiple approaches to defining habitat quality 

strengthens conclusions and reduces the effect of the weaknesses of each approach.  

 

2.2.3  Predictive modelling 

The findings from correlative approaches to habitat modelling can be used to produce empirical 

predictive models of habitat suitability. Using predictive models, rapid assessments of habitat 

suitability in unsurveyed areas can be made, allowing production of maps of potential habitat or 

predicted species distribution (Guisan and Zimmermann, 2000). Predictive models are increasingly 

being used as a conservation tool and have a number of useful applications. Firstly, predictive 

maps can be used to identify areas that require further survey resulting in optimal allocation of 

the limited resources conservation agencies have for field survey (Rodríguez et al. 2007). In areas 

where sampling is difficult or expensive, predicted habitat suitability may be the best substitute 

for field sampling (Rodríguez et al. 2007). The understanding of factors influencing a species 

distribution inherent in predictive models means they are capable of predicting impacts of land-

use change or engineering. For endangered species, this understanding may aid in efforts to 

mitigate decline (Rushton et al. 2004).  Perhaps the most useful application of predictive models 

to conservation efforts is identification of potential reintroduction sites and identification of areas 

of good habitat that should be conserved for future use (Engler et al. 2004; Angermeier et al. 

2002).  Predictive models can also be used to identify barriers to movement or areas that are 

unlikely to be colonised and predict the carrying capacity of an area. This permits a thorough 

evaluation of potential reintroductions (Rodríguez et al. 2007).  Because empirical models do not 

describe cause and effect but only statistical correlates, the ecological relevance of model 

parameters of habitat models must be assessed before they are used to guide conservation 

measures (Guisan et al. 2000).  

 

In order to be useful for the applications outlined above, a predictive model must perform well in 

areas other than that in which it was created. In creating a model, a trade-off is needed between 

the model being accurate and informative and being generally applicable across a range of 

locations (Guisan and Zimmerman, 2000). Overfitting the model to the data used to create it 

reduces the transferability of models between locations (Strauss and Biedermann, 2007). This is 

particularly problematic when the data set is small, and when conditions are present in new 

locations that were not present in the data set used to create the model (Vaughan and Ormerod, 

2005). The species may have the potential to live in a wider range of habitats than those that 

were present in the test data. Therefore, models created in areas with a wide range of 

environmental conditions are likely to have the highest transferability (Angermeier et al. 2002). 
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Transferability of species-habitat models is likely to be higher for specialist species than for 

generalists and models will perform better in new areas that have similar landscapes and climatic 

regions to the area used to create the model (Angermeier et al. 2002). 

 

The influence of biotic interactions on the distribution of a species varies spatially and therefore 

biotic interactions can reduce the generality of predictive habitat models (e.g. Vanreusel et al. 

2007). These include differences in both intra and interspecific competitive interactions, 

differences in availability and types of food, differences in dispersal constraints, allee effects and 

differences in predation pressures. Anthropogenic effects and historical factors also vary spatially 

and may threaten the transferability of predictive habitat suitability models (Jiménez-Valverde et 

al. 2008). Few authors test the validity of their models in new locations. Generally applicable 

models have been created for fish species (e.g. Belaud et al. 1989) but most attempts do not 

transfer well between catchments (Leftwich and Angermeier, 1997).  

 

2.3  Spatial ecology 

Correlating spatial patterns of species distributions to environmental parameters in order to 

produce predictive models, as discussed above, is the premise of spatial ecology (Perry et al. 

2002). Spatial ecology is a sub-discipline of ecology directly concerned with observed spatial 

patterns of ecological parameters and species (Perry et al. 2002). In spatial ecology, it is 

recognised that heterogeneity in physical variables is evident at multiple scales (Fortin et al. 2002) 

and therefore the pattern of distribution of a species and the observed response to physical 

variables is specific to a given scale (Bellier et al. 2007).  Further, physical parameters may vary in 

consistent, identifiable patterns such as gradients or patches (Fortin et al. 2002) meaning the 

distribution of a species in an area may change in a predictable way with relative location in that 

area. Acknowledging the influence of location and scale in patterns of ecological variables is 

essential for gaining accurate understanding of species-habitat relationships and creating 

generally applicable habitat suitability models (Thorp et al. 2006).  

 

2.4  Spatial ecology in river systems 

River systems provide immense benefits to human communities and have potential to cause 

considerable damage to human developments. Therefore, river systems worldwide have been 

heavily exploited and altered, resulting in them experiencing rapid declines in biodiversity (Sala et 

al. 2000). Riverine species are therefore a global priority for conservation action.  River systems 

possess certain key spatial characteristics that make concepts developed in spatially ecology 

particularly relevant to conservation efforts in these systems (Fausch et al. 2002). Firstly, river 

systems are hierarchically structured, meaning heterogeneity in physical variables occurs at 

multiple spatially nested scales. The pattern evident at each spatial scale is composed of 
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interacting smaller scale components and is itself a component of a larger scale entity (O’Neill et 

al. 1989). This means variables operating at larger spatial scales constrain those at lower spatial 

scales (Frissell et al. 1986). Therefore, an integrated whole catchment approach is required for 

effective management of river systems (Thorp et al. 2006). Secondly, river systems are uniquely 

linear systems with unidirectional flow. At broad scales, there are consistent gradients in many 

hydrological and geomorphological features with distance downstream (Vannote et al. 1980). 

These characteristics and their implications for ecological studies and conservation management 

will be discussed in the following sections. 

 

2.4.1  The hierarchical river system 

The distinct hierarchy in physical variables in river systems is best conceptualised by the 

classification system of Frissell et al. (1986) (fig. 2.5). The entire network of surface water within a 

catchment makes up the broadest spatial scale, conditioned by large-scale variables of climate 

and geology. Controlling variables at this coarse scale usually change over geological time scales, 

for example climatic change, tectonic uplift or sea level change (Frissell et al. 1986). Within the 

catchment, the river network is composed of a number of stream segments ‘portions of the 

stream flowing through a single bedrock type and bounded by tributary junctions, major 

waterfalls or abrupt transitions’ (Frissell et al. 1986). A segment will have reasonably uniform 

slope, sediment and discharge patterns controlled by the drainage area, valley side slopes and 

position in the drainage network. Within a single segment, Frissell’s (1986) hierarchy defines 

reaches as, ‘lengths of stream segments lying between breaks in the channel slope, local side 

slopes, valley floor width and bank material’, which range from ten metres to hundreds of metres 

depending on stream size. Within reaches of overall uniform bed material and flow velocity, pool 

and riffle systems are the next scale of heterogeneity. Pools are areas of deep, slow flowing water 

with finer sediment and riffles are the accumulation of coarse sediment producing shallower 

areas of faster flow (Richards, 1976). This scale of heterogeneity also includes cascades, rapids, 

runs, boils, glides and slack waters (Padmore, 1998). Pool and riffle systems are characterised by 

oscillations in bed topography and water velocity and are conditioned by the slope and sediment 

budget of the reach (Schuum and Lichty, 1965). The smallest hierarchical scale of heterogeneity 

recognised by Frissell et al’s (1986) classification is microhabitat. Microhabitats are patches within 

pools or riffle that have homogenous substrate depth and velocity at the scale of centimetres to 

meters. 
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Figure 2.5 - Hierarchical organisation of lotic systems.  The spatial scales shown are average for a 

second or third order stream (Frissell et al. 1986) 

 

2.4.2  Implications of hierarchies for ecology and conservation 

2.4.2.1  The scale of active habitat selection 

Individuals will respond to variation in habitat quality over a certain range of scales within the 

hierarchy depending on their perception of their environment (Kotliar and Wiens, 1990). The 

perception grain of an organism is the smallest scale at which it can differentiate between 

physical patch structure. At spatial scales finer than this grain, the organisms’ behavioural and 

perceptual limits cause it to perceive the environment as homogenous and thus it no longer 

responds to variations in habitat quality (Kolasa, 1989). An organism’s perception extent is the 

maximum range over which it interacts with its environment (Gustafson, 1998). Limits of 

perception depend on an organism’s sensory capability, size, behaviour and mobility (Hildrew and 

Giller, 1994), and will differ between species and, to a lesser extent, between individuals within 

species due to size, age and behavioural differences (Wu and Loucks, 1995). It is vital to 

understand the scale at which a species is interacting with its environment so that management 

can be conducted at the relevant scale (Wiens et al. 1993; Fausch et al. 2002). Numerous studies 

have been performed to determine the scale of species-habitat relationships for riverine species. 

Robson and Chester (1999) conducted a two-tiered nested sampling design to determine the 

relative influence of pool-riffle scale and microhabitat scale physical variables on macro-

invertebrate community structure. The results of this study indicated that microhabitat 

characteristics had a much more significant impact on macro-invertebrate community structure 

than riffle scale habitat.  Similarly, Torgersen and Close (2004) sampled larval Pacific lamprey 

(Lampetra tridentata) over a 55km section of the Middle Fork John Day River, Oregon within 60 m 

sites and 1 m² quadrats, to determine whether the influence of habitat variables on larval 
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abundance differed with spatial scale. Habitat variables were measured over the scale at which 

they showed variation (site or quadrat) e.g. depth, dominant substrate and velocity were 

measured in each quadrat whereas gradient, width, canopy closure, pH and temperature were 

measured once per site. Larval lamprey were mainly responding to variables operating at the 

microhabitat scale (Torgersen and Close, 2004). Fukushima (2001) found Sakhalin taimen (Hucho 

perryi), a Pacific salmonid, preferentially constructed redds (nests) in Japanese streams in highly 

sinuous areas when sinuousity was measured over 50 m but this correlation was not evident 

when sinuosity was measured over larger scales. This suggests Sakhalin taimen were only 

responding to variables operating over the local (50 m) scale. Conversely, increasing the scale 

over which variation in habitat variables was recorded from 50 m to 100 m to 200 m, increased 

the explanatory power of habitat on the distribution of Atlantic salmon parr (Salmo salar) within 

an 88 km stretch of the Sainte Margauerite River, Canada (Bouchard and Boisclair, 2008). Further, 

Hedger et al. (2006) demonstrated that measures of grain size in a 5 x 20 m area around juvenile 

Atlantic salmon had much greater explanatory power on their distribution than the grain size in 

the exact locality they were found. This suggests that juvenile Atlantic salmon, as mobile animals 

requiring multiple habitat types to complete their life cycle (c.f. Schlosser, 1991), respond to 

habitat suitability at a broader scale than that of the microhabitat. The variability of results of 

studies into the scale of responses of riverine species to physical variables demonstrates that 

identifying the appropriate scale to measure species-habitat relationships is complicated (Gido et 

al. 2006).  

 

The perception grain and extent of an individual may encompass several scales within the 

hierarchy of habitat heterogeneity (Levin, 1992). Where an individual is capable of perceiving and 

responding to multiple scales of habitat heterogeneity, habitat will be selected at sequentially 

smaller hierarchical scales (Wiens, 1985). This has been shown for a variety of bird species (e.g. 

Barbaro et al. 2008) with individuals selecting broad scale habitat areas based on food availability 

and specific roosts within these area based on breeding requirements (Martinez and Zuberogoitia, 

2004). Evidently, the scale of response to habitat heterogeneity is highly variable between species 

and locations. Identifying the scale of response to habitat is necessary to ensure habitat based 

conservation measures are relevant to the focal organism.  

 

2.4.2.2  Hierarchical filters  

The scales of physical heterogeneity beyond the limits of an organism’s perception are not 

irrelevant, despite the fact that individuals will be unable to respond to them directly (Wiens, 

1985). In hierarchical systems, patterns and processes at coarse scales condition those occurring 

at smaller scales (Wiens, 1985). For a particular location to be suitable for a species, with values of 

all physical variables within the species’ fundamental niche space, all broader scale constraints 
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must also be suitable. This idea was formalized in Poff’s ‘landscape filter’ model (1997) which says 

habitat selection is ‘a sequence in which every category is included in the detail of the previous 

one’ (Hilden, 1965) (fig 2.6). To occur at a given locale, a species must pass through broader scale 

filters. For example, although macro-invertebrates are unlikely to respond directly to catchment 

geology or land-use, these broad scale factors correlate to macro-invertebrate assemblage 

structure due to the fact they condition flow velocity and substrate at the microhabitat scale, 

which macro-invertebrates do respond to (Richards et al. 1996; Robson and Chester, 1999). The 

process of broad scale filters precluding use of certain areas can be thought of as passive habitat 

selection. Patterns of distribution are the result of the collective influence of all scales in the 

hierarchy (Torgersen and Close, 2004) and it is difficult to separate the relative influence of 

habitat heterogeneity at different scales on the distribution of a species (Gido et al. 2006).  The 

linkages across hierarchical levels and constraints of broad scale processes on small-scale habitat 

features are not well-understood (Poff, 1997) but appreciation of the influence of all scales in the 

hierarchy is necessary for effective habitat management and creation.  

 

                                      Figure 2.6- Poff’s (1997) landscape filter model 
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2.4.3  Downstream trends 

Rivers are unique linear systems with unidirectional flow. At broad scales, there are consistent 

trends in many hydrological and geomorphological features with distance downstream (Vannote 

et al. 1980). Altitude and slope decrease from source to mouth, discharge increases with the 

addition of water from more of the catchment and width and depth increase to accommodate 

increased discharge (Vannote et al. 1980). Traditionally, a downstream fining of grain size has also 

been asserted (e.g. Leopold, 1953) with a trend from boulders and large cobbles in headwaters to 

gravel and sands in lowland channels, because of selective transport and abrasion during 

transport. Recently, Petts et al. (2000), confirmed particle size decreased and heterogeneity of 

grain sizes increased with distance downstream although the scientific community now 

acknowledge that downstream fining is an oversimplified model (e.g. Rice and Church, 1996; Rice, 

1998).  Many authors have suggested predictable downstream trends in biological processes and 

community structure, as a response to these linear trends in physical variables. The River 

Continuum Concept (RCC) (Vannote et al. 1980) was the first model to explicitly detail a 

continuous downstream gradient of physical variables (depth, width, slope, velocity, discharge, 

temperature and entropy gain) and postulate the influence these gradients had on biological 

processes. The RCC recognises that the significance of autochthonous production varies with 

distance downstream. Photosynthesis is low in heavily shaded uplands, increases in the middle 

reaches of a river, because width increases more rapidly than depth with longitudinal distance 

resulting in greater light penetration, and decreases in large lowland channels due to depth and 

turbidity (Rice, 2001). The RCC proposes that in response to this, macro-invertebrate community 

structure, trait representation and biodiversity vary in a continuous gradient downstream such 

that stream order (c.f. Horton, 1945) is an accurate predictor of system characteristics.  Work on 

the Salmon River, Idaho by Minshall et al. (1982) and Bruns et al. (1984) supported the claims of 

the RCC for macro-invertebrate functional feeding groups. Similarly, Culp and Davies (1982) 

showed a longitudinal zonation of macro-invertebrate communities in the Saskatchewan River, 

Canada with downstream changes in dominance of functional feeding guilds in agreement with 

the RCC.  

 

Differences in physical variables in a longitudinal gradient may result in the probability of 

occurrence of a species changing with position within the channel due to changes in availability of 

habitat (Thorp et al., 2006). For example, distribution and diversity of a variety of riverine fish 

species has been shown to vary with depth (Sheldon, 1968). Deeper areas become more common 

with distance downstream producing a longitudinal trend in species assemblage of fish (Sheldon, 

1968; and Hocutt and Stauffer, 1975). Similarly, river channels exhibit largely predictable lateral 

gradations with channel margins generally having higher shade coverage, more backwaters, 

higher vegetation coverage and increased riparian debris than mid channel areas (Ward, 1989). 
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Torgersen and Close (2004) found abundance of larval lamprey to be significantly higher in 

channel margins than mid-channel.   

 

However, the source to mouth gradients postulated by the RCC  are disrupted by the presence of 

discontinuities such as tributary junctions (Benda et al. 2004), geological discontinuities, land use 

change and lakes (Sedell et al. 1989). These factors are system specific and result in disruption of 

predictable downstream changes (Statzner and Higler, 1985). For example, modified catchments 

may rapidly vary between open pasture and wooded river banks in an unpredictable downstream 

pattern. This will result in reach or multi-reach scale discontinuities in shading, allochthonous 

input and runoff characteristics and hence disruptions in patterns of species distribution.  

Similarly, catchment specific variability in soil type, geology, relief and basin shape will result in 

variable runoff patterns with distance downstream and modification of longitudinal trends in 

hydrology and habitat (Minshall et al. 1982).  

 

Tributary confluences are a major disruption to longitudinal trends in river systems. Tributaries 

input large volumes of water and sediment that can be characteristically distinct from that of the 

main channel. Not all tributaries will influence the characteristics of the main channel. The 

magnitude and characteristics of the water and sediment added determine which characteristics 

of the main river are altered and the extent to which they are changed (Rice, 1998). This is 

dependent on the size, land-use, lithology and geomorphology of the tributary’s sub-basin (Rice, 

1998). Influential confluences often cause adjustments in slope, depth, width, flow velocity, shear 

stress and riparian shade cover of the main channel (Naiman et al.  1987; Rice, 1998) resulting in 

marked discontinuities in downstream trends (Rice, 1998). Inputs of coarse sediment produce 

step-changes in mean substrate size, substrate heterogeneity and substrate angularity (fig 2.7) 

(Rice, 2001). If there is sufficient distance between adjacent significant tributaries a fining trend 

may be seen due to sorting, and possibly abrasion (Rice, 1998). The resultant pattern in substrate 

size is a saw-tooth of gradual fining punctuated by sudden increases in grain sizes (fig 2.7) (Rice, 

2001). Each length of downstream fining, separated by abrupt discontinuities in grain size, is 

termed a sedimentary link. 

 

Many of the variables influenced by confluences are responded to by riverine species and thus the 

arrangement of tributaries is likely to be an important control on the longitudinal distribution of 

populations. Studies have shown tributary confluences to result in discontinuities in community 

structure of benthic fauna (Illies, 1953; in Rice, 2001; Bruns et al. 1984) and fish (Osbourne and 

Wiley, 1992). For lithophilous species, the largest impact of tributaries on habitat quality and 

availability is likely to be the change in grain size. Thus, there is likely to be greater availability of 

habitat for lithophilous species immediately downstream of confluences where larger refuges are 
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more abundant and refuges are more angular and thus more stable in high flows. The influence of 

the sedimentary link structure on grain size in the St. Marguerite River, Canada, was strong 

enough to result in a predictable spatial pattern in presence of grains suitable for salmon 

spawning. Hence, Davey and Lapointe (2007) were able to predict the distribution of Atlantic 

salmon (Salmo salar) spawning sites from the position of tributaries in this low gradient gravel-

bed river. 

 

 

Figure 2.7- Stylised trend in grain size with distance downstream. An overall fining trend is 

punctuated by inputs of coarser material where significant tributaries enter the channel.  Fining 

occurs between adjacent confluences forming sedimentary link.  Redrawn from Rice et al. (2001) 

 

Most habitat variables, including depth, substrate size, flow velocity and food availability are 

heterogeneous at multiple scales (Frissell et al. 1986). The continuous downstream trends 

discussed above are often evident at the catchment scale. At intermediate scales discontinuities 

such as lakes, land-use modifications and tributaries result in inconsistent downstream patterns. 

When the system is viewed at this segment scale, predictable longitudinal gradients may be 

evident but discontinuities cause these to be zonal rather than clinal (Ward, 1992). At the 

microhabitat scale parameters vary as seemingly stochastic patchiness (Rice, 2001) (fig 2.8). 

Duncan and Kubecka (1996) demonstrated, using acoustic echo integration, that the longitudinal 

density of fish in the River Thames is patchy at multiple scales. If organisms respond to habitat at 

the microhabitat scale there is unlikely to be predictable downstream trends (Wiens, 1989). 

Naiman et al. (1987) found no pattern in benthic macro-invertebrate richness or diversity with 

distance downstream and concluded the community was influenced by microhabitat and local-

scale factors that were highly heterogeneous. Differences in the scale of response and the scale at 

which lateral and longitudinal gradients are evident is also likely to account for the lack of 

influence of spatial position on distribution of Atlantic salmon parr in a study by Bouchard and 

Bosclair (2008). The explanatory power of eighteen variables accounting for spatial position, both 

as an absolute measure within the system and as a relative distance to other habitat types such as 
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thermal refugia, spawning sites, over-wintering habitat and tributary junctions was low compared 

to that of local scale habitat variables. 

 

 

 

Figure 2.8- Idealised downstream changes in discharge (dashed line)  and grain size (solid line) 

viewed at the spatial scales of a) the entire drainage basin b) a river segment and c) pools and 

riffles within a link. Vertical dashed lines show a snapshot area expanded in the next graph. 

Patterns of longitudinal variation in grain size and discharge change with the scale of observation 

(Rice et al. 2001) 

 

Downstream trends may be a response to neither continuous nor discontinuous changes in 

physical parameters but may reflect the ‘spatial context of biological factors’ (Rice, 2001), such 
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that locational variables are a seemingly independent predictor of distribution (Torgersen and 

Close, 2004). Variability in community composition, predators and competitors are examples of 

these factors and are likely to be system specific. Historic distribution and dispersal ability will also 

determine the area over which a species is currently located. Barriers to connectivity of 

movement may preclude use of otherwise favourable areas (Fahrig and Merriam, 1985). Analysis 

of locational variables is necessary to highlight system complexities.  

 

It is important for managers to understand whether likelihood of a species being present, or the 

habitat types selected by that species, vary with position within the channel in order to target 

conservation efforts with limited resources (Torgersen and Close, 2004). It is therefore useful to 

study the influence of spatial factors on distribution of species of conservation priority to inform 

future conservation efforts.  

 

2.4.4  Sampling techniques to account for hierarchical, longitudinal systems 

Traditionally, studies of species-habitat relationships have been conducted over short lengths of 

river at a single scale, generally that which is most easily conceptualised and most convenient for 

the surveyor, rather than that which is relevant to the organism (Wu and Qi, 2000; Fausch et al. 

2002). Wheatley and Johnson (2009) reviewed 79 peer-reviewed papers which considered 

species-habitat relationships at multiple scales. Seventy percent of these papers made 

observations at arbitrary scales with no biological relevance. The hierarchical nature of river 

systems is rarely acknowledged when presenting results; surveyors fail to recognise that presence 

within the sample site already indicates a passive or active selection of physical variables that 

show variation at the site scale (Wu and Loucks, 1995). Single scale studies over short reaches are 

therefore likely to miss key influences on species distribution patterns because species 

distribution may be a response to habitat heterogeneity at scales of the hierarchy that are not 

perceived by the surveyor (Orians and Wittenberger, 1991). The potential to miss influences on 

distribution with traditional sampling designs was demonstrated by a multi-scale study of Bull 

charr (Salvelinus confluentus) distribution in a Montana mountain river. Bull charr were found to 

be preferentially constructing redds in low-gradient bounded alluvial valley segments (BAVS) 

where thermal conditions for egg incubation were favourable due to upwelling groundwater.  

BAVS occurred at intervals of 5-10km down the channel and thus this association between Bull 

char distribution and physical conditions would not have been detected by traditional sampling 

over short reaches (Baxter and Hauer, 2000).  

 

Another problem with single scale studies is that the scale chosen for study determines the 

conclusions drawn on the distribution of species and availability of habitat (Kotliar and Wiens, 

1990). In a survey performed over a 55 km section of the Middle Fork John Day River, Oregon 
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larval lamprey were present in 93% of 60 m sampling sites but quadrat scale distribution was 

highly heterogeneous  (Torgersen and Close, 2004). Thus, conclusions drawn on the frequency of 

occurrence of suitable habitat would have been different at different scales of observation. This is 

formally known as the Modifiable areal unit problem (MAUP). The MAUP recognises that 

arbitrarily selected scales of study produce scale specific and arbitrary results preventing 

complete understanding of ecosystem functioning (Openshaw, 1983), which could result in 

inappropriate conservation actions (Talley, 2007). The problem was neatly summarised by Wiens 

(1999) ‘We can no longer…cling to the belief that the scale on which we view systems does not 

affect what we see’.  The ecological community needs to understand and appreciate the MAUP in 

order to produce relevant results appropriate for conservation decisions (Jelinski and Wu, 1996).   

 

Nested sampling is a rapid, cost-effective method to sample hierarchical systems at multiple 

scales over long lengths of the river. In nested sampling,  the total sampling area is divided into 

primary sampling units which are sub divided into secondary sampling units, which are further 

subdivided into tertiary sampling units (Bellehumeur and Legendre, 1998) (fig 2.9). At each 

sampling scale, habitat variables that show variation over that scale are analysed. This design 

integrates fine-scale variability with the broad-scale processes that condition it (Hewitt et al. 

2002). Nested sampling can prevent scale-specific results but has not been widely used in lotic 

systems (Cooper et al. 1997). The collection of multiple samples within each site increases both 

the ability to discern habitat suitability and the reproducibility of the results (Southwood and 

Henderson, 2000).  Further, because detailed fine scaled analyses are conducted within larger 

primary sampling units, a long length of river can be surveyed in a realistic time span.  Nested 

sampling is therefore suitable for discerning longitudinal changes in habitat availability, species 

distribution and habitat use (Armitage and Cannan, 1998). The notion that physical variables and 

community structure have corresponding spatial hierarchies in rivers (Frissell et al. 1986) allows 

nested sampling designs to utilise watershed, reach, biotope and microhabitat scales (fig 2.9).  
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                 Figure 2.9- Nested sampling design. Sampling is carried out in progressively  

                 smaller scale units nested within larger spatial units (adapted from Peay, 2003) 

 

Many authors have shown nested sampling to increase explanatory power of habitat models 

(Hewitt et al. 2002) without increasing sampling density and field work (Thrush et al. 2000). A 

multi-scale nested study of fish densities in Hungarian rivers demonstrated the improvement in 

predictive ability gained by considering multiple scales (Poizat and Pont, 1996). Point abundances 

of fish, found by electro-fishing, were related to habitat variability at three spatial scales. The 

largest scale considered was the difference between the main channel and ‘dyked side channels’; 

areas partially enclosed by an artificial embankment. Within each of the channel types the same 

five bank types were present.  Within each of the bank types, in both main and dyked channels, 

microhabitat variables of bank slope, depth, substratum, current velocity, turbidity, shelter, 

filamentous algae cover and shade were measured. Microhabitat variables alone accounted for 

only 23% of total variation in fish distribution and when considered in isolation resulted in 

incorrect associations between species distribution and habitat variables. Including multiple scales 

improved the ability to predict fish densities by 21% (Poizat and Pont, 1996).  
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2.5  Combining riverine spatial ecology concepts with predictive modelling 

In recent decades the need to communicate effectively about rivers, compare sites and predict 

how a river system will respond to perturbation or management, has increased (Newson et al. 

1998a). In response to the need for a holistic, objective and statistically robust method of 

characterizing rivers, the River Habitat Survey (RHS) was developed (Raven et al. 2000).  The RHS 

involves recording features in the channel, marginal area, bank and a 50 m riparian corridor along 

a 500 m site (Newson et al. 1998b). Ten spot checks are performed per 500 m site to eliminate 

the subjectivity inherent in trying to estimate percentage abundance of cover of different habitat 

types. At each spot check variables such as substrate type, aquatic vegetation, depth and 

complexity of bank vegetation are recorded (Raven et al. 1997). To capture rare features or those 

which occur between spot check locations, a ‘sweep up’ survey is also performed. The ‘sweep up’ 

records information such as flow type boundaries, bankfull and water width, valley form, adjacent 

land use, planform, extent of channel shading, extent of vegetation types. It is necessary to 

estimate the percentage cover of certain features but to reduce inaccuracy, a simple three point 

scale; absent, present (<33%) and extensive (>33%), is used (Raven et al. 1997).  

 

The RHS provides a standardized and efficient method of characterising lotic systems. Many of the 

variables recorded in the RHS are ecologically relevant (Jeffers, 1998), thus RHS criteria can be 

made use of in habitat studies to make results comparable and reproducible. Further, the 

distribution of species can be predicted from RHS criteria if the species habitat requirements are 

understood (e.g. Naura and Robinson 1998; Buckton and Ormerod, 1997).  Buckton and Ormerod 

(1997) used correlative approaches to determine which variables recorded in the RHS influence 

the likelihood of presence of five species of riverine birds (dipper Cinclus cinclus, grey wagtail 

Motacilla cinerea, common sandpiper Actitis hypoleucos, goosander Mergus merganser and 

mallard Anas platyrhynchos) at 74 upland river sites. The results of this study showed the RHS to 

be a useful tool for predicting distribution of these species.  Similarly, Naura and Robinson (1998) 

created a predictive model for WCC distribution using RHS criteria.  

 

An analogous predictive modelling technique is that of HABSCORE. HABSCORE is an established 

method of assessing habitat suitability for riverine species, particularly game fish. To conduct 

HABSCORE, a surveyor visually assesses a variety of criteria and scores them as optimal, sub-

optimal, marginal or poor for biota. These criteria include: biotope variability, embeddedness of 

substrate, bank stability, sediment deposition, riparian vegetation, channel alteration and 

availability of refuges (Parsons et al. 2002). The total score gained for each site is compared to an 

optimal reference condition to determine suitability for a species.  
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Both RHS and HABSCORE record the average conditions over a 500 m stretch of river.  This single-

scale data is unlikely to correspond to the scale at which riverine species are responding to habitat 

variables and is subject to missing variables that influence species distribution. Failure to consider 

all spatial scales relevant to the focal species is likely to weaken the predictive power and 

transferability of habitat suitability models based on RHS data (Guisan and Thuiller, 2005). Broad 

scale RHS cannot be extrapolated to finer scales because different processes are prevail at finer 

scales (Thrush et al. 1997a; Guisan and Thuiller, 2005). Thus, to improve predictive power of 

habitat suitability modelling from RHS data observations from all scales relevant to the focal 

species need to be incorporated (Leftwich and Angermeier, 1997). RHS criteria could be adapted 

into a nested sampling design to produce findings on species-habitat relationships that are not 

scale specific.  
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Chapter 3- Overview of current knowledge of the white clawed crayfish 

In this chapter the ecology and life history of the white clawed crayfish is outlined. The threats to 

the continued survival of the species and the current conservation actions and legislations aimed 

at preventing it from extinction are discussed. Literature on habitat requirements and preferences 

of the white clawed crayfish is reviewed with the aim of identifying gaps in current knowledge 

and areas of debate. Finally, the need for application of principles of spatial ecology to 

conservation of white clawed crayfish is established.   

 

3.1   Introduction to white clawed crayfish  

3.1.1  Classification and distribution 

White clawed crayfish are freshwater crustaceans of the order Decapoda and family Astacidae.  

The range of the WCC extends from 56 ˚N in Britain to 38˚S in Spain and from 8˚W in Ireland to 

16˚E in the former Yugoslavia (Laurent, 1988). They are the only species of crayfish native to 

Britain (Holdich and Lowery, 1988). WCC are typically a benthic, lithophilous species and can 

inhabit both lotic and lentic freshwater environments. Populations are found throughout England 

and Wales, confined to areas of base-rich substrate due to their requirement of calcium to harden 

their exoskeleton (Holdich, 1991).  

 

3.1.2  Anatomy and life cycle  

White clawed crayfish are the largest mobile, native freshwater invertebrate in the U.K., reaching 

lengths up to 12 cm (Reynolds, 1998). Crayfish have a segmented typical arthropod body plan, 

composed of the cephalothorax and abdomen, covered by a protective calcified exoskeleton 

known as the carapace (Groves, 1985) (fig. 3.1). The most anterior of their five pairs of perepods 

(i.e. legs) supports enlarged ‘claws’, termed chelae, which are used for manipulating food, in 

aggressive display and in mating by males (Mason, 1974). The other four pairs are walking legs 

used for movement across substrate. They can also make rapid backward movements through the 

water column using their tail fan (Mason, 1974) (fig. 3.1). Crayfish have two ocular peduncles for 

vision and sensory antennae for touch, smell and taste (Groves, 1985). At a species level, WCC are 

identifiable by their whitish ventral side compared to their brown body (Goddard and Hogger, 

1986); the presence of spikes along the cervical grove and the single post-orbital ridge behind 

each eye, terminating in a spine (Freshwater Invertebrate Survey of Suffolk, 2010). 
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              Figure 3.1- Basic external anatomy of an adult white clawed crayfish 

 

The lifespan of WCC can exceed 10 years (Brewis and Bowler, 1982) with sexual maturity 

occurring in Britain at three to four years, dependent on local environmental conditions with 

some variability between populations (Reynolds, 1998). Brewis and Bowler (1982; 1985) found 

females reach sexual maturity between 22 and 27 mm carapace length (CL) and males can reach 

sexual maturity at even smaller sizes (Brown and Bowler, 1977; Thomas and Ingle, 1987). Natural 

England use a guideline figure of 25 mm for both males and females (Peay, 2000).  After sexual 

maturity is reached, moult frequency varies between the sexes leading to sexual dimorphism. 

Males moult more frequently and grow faster than females and have proportionally larger chelae 

(Reynolds, 2002). 

 

White clawed crayfish are poikilothermic and their annual cycle of growth and reproduction is 

conditioned by seasonal changes in temperature and day-length (Brown and Bowler, 1977).  

When water temperatures drop below 10˚C, usually in October or November but variable 

between rivers, males establish and aggressively defend territories to compete for mates. 

Reynolds (2002) examination of male WCC vas deferens suggested that some males copulate with 

multiple females and some males do not mate at all. This indicates a dominance hierarchy is 

present in WCC mating (Reynolds, 2002). Males fertilise eggs by the transfer of a spermatophore 

by the gonads onto the underside of the female (Reynolds, 1998). Six days after fertilisation, the 

female lays eggs into a viscous matter called glair, which then attaches to the underside of her 
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abdomen (Brown and Bowler, 1977). The average number of eggs is between sixty and eighty but 

is dependent on the size of the female (Reynolds et al. 1992). The female carries the egg clutch 

beneath her tail for seven to ten months and in this state is described as ‘berried’. This is an 

iteroparous reproductive strategy, since it is repeated over a number of years, with high 

investment in relatively few eggs (Holdich and Lowery, 1988). Whilst berried, females are 

relatively inactive and migrate to deep waters to incubate the eggs. Eggs hatch on the female 

between late June and August depending on water temperature (Hogger, 1988). Hatching is likely 

to occur later in Northern or upland populations due to lower temperatures (Brewis and Bowler, 

1985). The young remain attached to the female for one to two weeks before they become 

independent, leaving the female entirely by their third moult (Lowery, 1988). After the release of 

young, activity rates by females are much higher as they forage to increase resources ready for 

fertilisation (Mason, 1974).  

 

In order to grow, WCC moult their calcareous exoskeleton. Absorption of calcium from the water 

is necessary to harden the new exoskeleton, restricting WCC to calcium rich rivers (Lowery, 1988). 

Young of the year have rapid growth rates moulting seven or eight times within the first year 

(Holdich and Lowery, 1988). The number of moults decreases each year until, at sexual maturity 

(3 to 4 years) adult females moult once per year in August and adult males moult twice per year 

when water temperatures exceed 10˚C, usually in July and September (Pratten, 1980). Loss of the 

protective exoskeleton makes crayfish susceptible to predation and cannibalism during moult 

(Brewis and Bowler, 1982). A strong tendency to synchronise moulting is demonstrated by WCC, 

which is thought to be an adaptation to reduce susceptibility predation and cannibalism (Lowery, 

1988).  

 

3.1.3  Diet and role in the ecosystem 

The WCC is an omnivorous forager with a diverse diet including worms, insect larvae, snails, small 

fish (Reynolds, 1979), a wide variety of aquatic plants and detrital material (Mason, 1974).  

Foraging activity largely occurs nocturnally when risk of predation is lower (Gheradi, 2002). 

Juveniles are more carnivorous than adults are, preferentially feeding on nymphs and larvae 

(Reynolds, 1998). This is due to their requirement for protein to increase growth rates in order to 

decrease the length of time during which they are vulnerable to cannibalism and gape limited fish 

predators (Reynolds, 1998). Analysis of WCC gut contents reveals them to be opportunistic 

feeders (Gheradi et al. 2004). Detritus is consumed in the highest proportion in autumn when leaf 

litter is abundant and insects are consumed in the highest proportion in spring (Gheradi et al. 

2004).  
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The range of food sources used by freshwater crayfish means they cannot be assigned to a trophic 

level, instead filling multiple trophic roles (Momot et al. 1978). This polytrophic position of WCC in 

freshwater food webs means they can contribute significantly to energy flow in freshwater 

systems (Momot et al. 1978) and have strong impacts on aquatic community dynamics. By grazing 

on macrophytes WCC reduce excessive weed growth (Goddard and Hogger, 1986) and influence 

the assemblage of benthic invertebrates (Nyström and Strand, 1996). Their ability to ingest 

detrital material, such as wood and leaves, and convert it into fine particulate organic matter 

means WCC significantly increase community productivity (Momot et al. 1978) and slow 

eutrophication rates (Hogger, 1984).  White clawed crayfish also provide a prey source for species 

of economical and conservation importance, such as trout (Salmo trutta), pike (Esox spp.), perch 

(Perca fluviatilis), kingfishers (Alcedo atthis) and otters (Lutra lutra) (Smith et al. 1996). Inter-

specific competition occurs between WCC and other fish species for food and refuges, such as 

bullheads (Cothus gobio) (Bubb et al. 2009). The importance of crayfish in influencing community 

structure and ecosystem functioning is disproportionate to their biomass making them key 

species in aquatic systems (Hogger, 1988). 

 

Crayfish are also ‘ecosystem engineers’ due to their alteration of physical habitats by bioturbation 

of fine substrates (Statzner et al. 2000). Most notably, the walking motion of crayfish reduces 

sand content among gravels, which increases the survival of salmonid eggs (Statzner et al. 2000) 

and increases the abundance of macro-invertebrates reliant on interstitial spaces (Brown and 

Lawson, 2010). Overall, native crayfish have an important role in structuring riverine communities 

and a positive impact on river ecosystem health and biodiversity (Englund and Krupa, 2000). 

Conservation of WCC will bring wider ecological and economical benefits.  

 

3.2  Threats to the white clawed crayfish 

Despite recognition of the importance of WCC, the species has declined rapidly over the last three 

decades in England and Wales (Sibley, 2003).  At the current rate of decline, WCC will be extinct in 

mainland Britain by 2030 (Sibley et al. 2002). The main cause of this decline has been the 

introduction of non-indigenous signal crayfish (Pacifastacus leniusculus) (Smith et al. 1996). North 

American signal crayfish were introduced to Britain in the 1970s to be commercially farmed for 

food but escaped into natural river courses (Holdich et al. 1995).  They are larger, more 

aggressive, have higher growth rates and higher fecundity than WCC (Holdich, 1988; Nyström, 

2002) and therefore out-compete WCC for food and refuges. This leads to increased WCC 

mortality and lower recruitment (Holdich, 1988). Inter-specific mating further reduces WCC 

reproductive success (Lodge et al. 2000). Signal crayfish can spread rapidly throughout river 

systems moving, on average, more than twice the distance moved by WCC per day (Bubb et al. 

2006). Although mainly found in the south of England, populations of signal crayfish are rapidly 



Page | 32  
 

spreading north. Introduction of signal crayfish has invariably led to local extinction of WCC, with 

no record of coexistence for more than nine years (Holdich, 2003). The ability of signal crayfish to 

colonise new areas has resulted in them becoming more abundant in Britain than native crayfish 

(Sibley et al. 2002). Five other species of non-native crayfish are also present in the U.K. (Holdich 

et al. 2009). These are the noble crayfish (Astacus astacus), the Turkish or narrow-clawed crayfish 

(Astacus leptodactylusi), the red swamp crayfish (Procambarus clarkii), the virile crayfish 

(Orconectes virilise) and the calico crayfish (Orconectes immunis). The number of 10 km grid 

squares in Britain occupied by invasive crayfish increased by 43 % between 1997 and 2001 (Sibley 

et al.  2002). Correspondingly, WCC declined by 20 % over the same period. In 2001, only 13 river 

catchments containing native crayfish remained free of invasive crayfish species (Sibley et al. 

2002). Since then, it is estimated that the number of WCC in the U.K. has declined by 60 % 

(Holdich et al. 2009).  

 

Signal crayfish also have a negative influence on the broader river ecosystem. They are less 

susceptible to predation than WCC and thus contribute less to the transfer of energy across 

trophic levels and to the diet of other species of conservation importance (Lodge et al. 2000). 

Signal crayfish have been shown to cause a reduction in abundance and diversity of macrophytes 

(Nyström and Strand, 1996), macro-invertebrates (Stenroth  and Nyström, 2003) and fish (Guan 

and Wiles, 1997). In addition to this, the negative impacts of signal crayfish are economically 

costly. Their presence is a nuisance to anglers and a threat to fisheries productivity as they 

consume fish eggs and small fish (Guan and Wiles, 1997) and outcompete Atlantic salmon (Salmo 

salar) and benthic fish for food and refuges (Griffiths et al. 2004; Bubb et al. 2009). Further, signal 

crayfish can burrow into soft riverbanks exacerbating bank erosion (Guan, 1994; Stancliffe-

Vaughan, 2009) which has deleterious effects on fish and is costly for landowners. Eliminating 

signal crayfish populations is essential not only for conservation of native crayfish but also for 

maintaining healthy, productive river systems as a whole.  

 

A further threat to WCC is crayfish plague, a lethal oomycete fungus (Aphanomyces astaci), which 

causes behavioural abnormalities, impairs mobility and results in 100 % mortality in an infected 

population (Oidtmann, 2000). Once infected WCC usually survive for less than two weeks (Smith 

and Söderhall, 1986). The fungus is carried by signal crayfish, red swamp crayfish and spiny 

cheeked crayfish, which are resistant the disease. Crayfish plague can also be transferred on damp 

surfaces, such as boats or fishing tackle (Holdich, 1991; Palmer, 1994; Holdich et al. 2004). 

Consequently, crayfish plague has spread rapidly throughout the U.K. (Alderman, 1993). Most 

outbreaks of the disease have occurred in Southern England and Wales but the plague is 

spreading north. Disinfection and thorough drying of equipment can prevent spread of the plague 
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(Peay, 2000) but increased public awareness is necessary to ensure river users take these 

precautions (Reynolds, 1997).  

 

 Even in catchments free from invasive crayfish and crayfish plague, WCC are at threat from 

human modification to river systems (Reynolds, 1998). Due to slow movement rates (Bubb et al. 

2008) and dependence on refugia, WCC are highly sensitive to changes in their physical habitat 

(Westman, 1985). Human alteration of river systems destroys and fragments habitat. Dredging, 

bank stabilisation and canalisation result in loss of refuges leading to increased mortality from 

disturbance and predation (Schulz and Schulz, 2004). Construction of flood prevention schemes, 

such as culverts and weirs, may introduce barriers to upstream movement of WCC. This causes 

fragmentation of populations leading to reduced genetic diversity and a higher probability of 

stochastic extinction (Peay, 2002). Construction activities may increase sedimentation, as does 

removal of riparian vegetation and bank poaching by livestock (Brusconi et al. 2008). 

Sedimentation degrades refuges and reduces oxygen content in the substrate interstices WCC use 

as refuges (Slater and House, 2001). These non-lethal habitat modifications may increase stress 

on individuals resulting in increased susceptibility to disease. White clawed crayfish are affected 

by porcelain disease caused by the protozoan Thelohaniasis conjeaniI. When highly prevalent, 

porcelain disease can cause significant crashes of WCC populations (Souty-Grosset et al. 2006).  

 

Crayfish have specific water chemistry requirements and are therefore sensitive to chemical 

pollution (Laurent, 1988). Many pollutants, including pesticides and fertilisers, permethrin-type 

sheep dip, alkalis leached from concrete construction and industrial chemical effluent have been 

found to have significant detrimental effects on WCC (Schulz and Schulz, 2004). When subjected 

to ammonia concentrations typical of farm effluent (5-7mg/L of ammonium chloride) mortality 

rates of WCC significantly increased above areas with no added ammonia within 24 hours (Foster 

and Turner, 1993). Nutrient enrichment leading to enhanced macrophyte growth, high turbidity 

and night-time oxygen deficit is particularly threatening to WCC (Reynolds, 1998).  

 

As for many species, climate change poses an additional threat to WCC. The predicted changes in 

precipitation patterns may result in more frequent and severe flood events (IPCC, 2007). Flood 

events can cause substantial mortality of WCC, either directly through the impact of high velocity 

flows, or indirectly by increasing sedimentation and by depositing individuals onto floodplains 

who become stranded and are unable to move back to the channel when floodwaters recede 

(Lewis and Morris, 2008). Further, as the need for flood prevention increases, detrimental river 

engineering works are becoming more widespread.  

 

 



Page | 34  
 

3.3  Conservation of white clawed crayfish 

The rate of decline and threats to WCC populations have led to the International Union for the 

Conservation of Nature and Natural Resources (IUCN) classifying WCC as ‘endangered’. This 

classification recognises WCC as a globally threatened species that has a very high chance of 

extinction in the near future if its circumstances do not improve. White clawed crayfish have been 

recognised in U.K. legislation since 1981. They are protected under schedule five of the Wildlife 

and Countryside Act (1981), appendix III of the Bern Convention (Council decision, 1982), the 

Town and Country Planning Act (1990) and the Water Resources Act (1991) (Sibley, 2003). 

However, only with the signing of the Convention on Biological Diversity at the Earth Summit in 

Rio de Janeiro, 1992, did the need for active conservation of this species become recognised in 

legislation. The 1992 Convention on Biological Diversity led to the creation of the EU habitats 

directive (European council directive, 92/43/CEE) which listed WCC under annex II as ‘a species of 

community interest whose conservation requires the designation of Special Areas of Conservation 

(SACs)’ and annex V, ‘a species of European interest whose capture and trade are to be submitted 

to management measures’.  

 

The U.K. Biodiversity Action Plan (UKBAP) was developed in response to the EU habitats directive 

with the objective to ‘conserve, and where practicable enhance, the overall populations and 

natural ranges of native species and the quality and range of wildlife habitats.’ White clawed 

crayfish were acknowledged as a priority species in the UKBAP and an action plan was developed 

for the species with the aim to maintain their current distribution. Population monitoring, habitat 

management, designation of SACs and public awareness were recognised as vital for meeting this 

aim (UK BAP, 1995).  Thus far, seven areas of high quality habitat have been designated as SACs 

for WCC in England and Wales, in line with Annex II of the EU habitat directive (fig. 3.2). Although 

this network will contribute considerably to conservation efforts, it is important to recognise the 

range of habitats which WCC can utilise and protect all significant populations.    
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           Figure 3.2 - Location of Special Areas of Conservation for white clawed crayfish in         

          England and Wales ( jncc.gov.uk [26/01/10]) 

 

The Water Framework directive (European Parliament and Council Directive 2000/60/EG), 

implemented in 2000, requires all surface water to be of good ecological, chemical and 

geomorphological status by 2015. The preservation of biodiversity, and hence maintenance of 

WCC populations, is a key requirement of the WFD. New legislation concerning river 

environments continue to incorporate the WCC, for example the 2006 Natural Environment and 

Rural Communities Act listed WCC as a species of principal importance. This demonstrates the 

necessity of, and commitment to, conserving WCC in Britain.  

 

A range of conservation initiatives for WCC have been implemented throughout Britain. Thus far, 

no effective method of eradicating signal crayfish has been found. Consequently, current 

conservation efforts are focussed on introducing WCC populations to isolated waters, free of 

invasive crayfish, known as ark sites (Rogers and Watson, 2007). For ark sites to safeguard the 

population against extinction, they need to contain suitable, sustainable habitat for WCC and 

must be free from the threat of colonisation by non-native crayfish (Whitehouse, 2010). 

Therefore, most ark sites are isolated ponds or former gravel extraction sites. Although ark sites 

form an essential part of preventing extinction of the WCC, they should not replace wild 

populations (Synder et al. 1996). It is also essential that favourable natural habitat conditions for 

native crayfish are protected and maintained (Synder et al. 1996). Areas of suitable habitat exist 

that are not currently occupied by WCC. Introduction to establish new populations is another 

conservation strategy (Schulz et al. 2002; Edsman and Smietana, 2004) and has been successful in 

1. Malham Tarn- North Yorkshire 

2. Ensor’s Pool – Warwickshire 

3. Derbyshire, Rive Dove – 

Staffordshire 

4. River Eden – Cumbria 

5. River Kent – Cumbria 

6. River Wensum – Norfolk 

7. River Wye- Montmouthshire 
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Ireland (Schulz et al. 2002). Identifying suitable introduction sites and evaluating the suitability of 

natural areas requires predictive habitat suitability models based a thorough understanding of 

WCC habitat requirements.  

 

Preventing the spread of non-native crayfish into currently unaffected systems and reintroduction 

sites is vital for the continued existence of this species in the wild. Increased public involvement is 

necessary in order to; raise awareness of the detrimental impact of signal crayfish, encourage 

disinfection in order to reduce spread of crayfish plague and foster community ownership of local 

rivers. Although legislation implemented over the last two decades has slowed the decline of WCC 

(Holdich and Pockl, 2005), the species is still vulnerable.   

 

At a regional scale, the Northumberland Biodiversity Action Plan aims to maintain the range of 

WCC in the region at the eleven 10 km squares that were occupied in 2000 (Jaggs, 2009). The plan 

of action between 2008 and 2012 contains a wide range of conservation approaches to both 

maintain and increase populations in the wild and create safe-haven ark sites. Attempts to 

safeguard existing populations have included campaigns with farmers to address diffuse pollution 

issues; raising awareness among anglers in order to reduce inadvertent spread of crayfish plague; 

and habitat improvement projects. Identifying reintroduction sites and potential ark sites are the 

key aims over the next two years. Ongoing monitoring of both WCC and signals is recognised as 

key (Jaggs, 2009).   

 

3.4  Habitat use by white clawed crayfish  

The effort dedicated to conservation of WCC has led to a large number of studies being conducted 

on their habitat requirements and physiological tolerance. Many different techniques have been 

used to study tolerances and preferences including laboratory based analyses (e.g. Gheradi et al. 

2004), correlation of habitat to distribution and population density (e.g. Smith et al. 1996; 

Armitage, 2001), radio-tracking (Bubb et al. 2006) and correlation of WCC distribution to RHS 

criteria (Naura and Robinson, 1998). From this work, a good level of understanding has emerged 

but disagreements and gaps in knowledge are evident. These are reviewed in the following 

sections. 

  

3.4.1  Physiological tolerances of white clawed crayfish 

The most widely cited requirement of white clawed crayfish is that for dissolved calcium to 

replace their exoskeleton after moulting. The minimum concentration of calcium in which WCC 

can survive is widely cited as 5 mg l-1 (e.g. Jay and Holdich, 1981) but other authors have found 

presence of WCC in water with just 1 mg l-1 of calcium (Trouilhe et al. 2007). Magnesium ions are 

also required for exoskeleton development (Trouilhe et al. 2007). These requirements mean that 
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WCC generally inhabit slightly alkali waters but experimental evidence has revealed WCC can 

inhabit areas with pH between 6.8 and 8.2 (Jay and Holdich, 1976). Evidence suggests WCC can 

survive for several weeks in a salinity of 21g l-1 (Holdich et al. 1997) but salinities exceeding 7 g l -1 

disrupt growth and reproduction (Nyström, 2002). Failure in body salt regulation causes death in 

unsuitable salinities or pH (Jay and Holdich, 1976). Specifically, potassium and sodium are 

required for body salt regulation (Trouilhe et al. 2007). For most ions, the threshold concentration 

required is not agreed upon in the literature but the study of Smith et al. (1996), which compares 

the range of concentrations available in the study area with the range of concentrations over 

which WCC were found,  gives a good indication of the concentrations required for survival. These 

findings suggest minimum tolerated concentrations are 0.8 mg l-1 potassium, 3 mg l-1 magnesium 

and 5.7 mg l-1 sodium. Conversely, crayfish are unable to tolerate concentrations of some ions 

above a critical threshold (Trouilhe et al. 2007). The maximum tolerated concentrations found by 

Smith et al. (1996) and Trouhile et al. (2007) are shown below (table 3.1) but the full range of 

concentrations over which WCC can survive has not been clearly defined (Lyons and Kelly-Quinn, 

2003). 
 

Table 3.1- Estimated chemical tolerance limits for white clawed crayfish, 

 from Smith et al. (1996)and Trouilhe et al. (2007) 

Chemical Max. tolerated 

concentration (mg l-1) 

Nitrate 4.2 

Sulphate 23.6 

Phosphate 0.22 

Ammonia 0.148 

Chloride 23 

 

It has been extensively documented that WCC require very high water quality, making them 

bioindicators of river health (e.g. Jay and Holdich, 1981). However, crayfish have been found to 

inhabit streams with a wider range of water chemistry and quality than previously thought (e.g. 

Trouilhe et al. 2007), persisting in moderately polluted waters and tolerating short term acute 

pollution (Demers and Reynolds, 2002). Within the wide variety of water parameters that are 

suitable for survival, exact mineral concentrations have not been found to influence distribution 

or abundance (Foster and Turner, 1993). Concentration of organic matter, however, has been 

shown to discriminate presence and absence of WCC (Trouilhe et al. 2003; Trouilhe et al. 2007). 

Areas with high organic matter concentrations tend to have low dissolved oxygen and are 

therefore usually unsuitable for WCC.  WCC experience oxygen stress when oxygen concentration 

falls below 5 mg l-1 (Westman, 1985) and BOD levels exceed 18 mg l-1 O2 (Lyons and Kelly-Quinn, 
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2003). Oxygen levels decrease with increasing temperature and the combination of these stresses 

results in death due to physiological damage when water temperatures exceed 28˚C (Whiteley 

and Taylor, 1993), or remain above 18˚C for an extended period of weeks to months (Reynolds, 

1979; Grandjean et al. 2001). However, by making use of shaded areas and cool burrows WCC 

may be able to persist in areas with higher surface temperatures (c.f. Payette and McGaw, 2003). 

Although, WCC can survive temperatures lower than 1˚C, mortality in winter is higher than other 

seasons, suggesting low temperature acts as a stressor (Brewis and Bowler, 1983). Growth and 

reproduction only occurs when temperatures exceed 10˚C, restricting the realised niche of the 

species and placing a limit on the northerly latitude of the species’ distribution (Pratten, 1980).  

 

3.4.2  Physical requirements and the fundamental niche of white clawed crayfish 

Within tolerated limits, water chemistry has very little influence on the distribution or abundance 

of crayfish (Smith et al. 1996) and the physical structure of habitat determines distribution (Lodge 

and Hill, 1994).  Physical variables therefore have more explanatory power on the distribution of 

WCC than physiochemical parameters (Broquet et al. 2002). However, several authors have found 

that habitat is not a strong nor consistent discriminator of crayfish presence (e.g. Armitage, 2001) 

due to WCC having a wide habitat niche in both lentic and lotic systems.  

 

Suitability of an area for WCC is primarily determined by permanence of the water and the 

availability of stable refuges, which crayfish require to shelter from predators and high flows 

(Reynolds, 1998). Refuges must be large enough to cover an individual and be stable in high flows 

(Foster, 1993). Thus, the presence of WCC has largely been found to correlate with presence and 

abundance of boulders and cobbles and other stable refuges such as water saturated logs, 

bedrock crevices, tree roots, man-made debris and crevices in banks (e.g. Naura and Robinson, 

1998; Armitage, 2001; Broquet et al. 2002; Bubb et al. 2006). Until recently, it was thought that 

crayfish avoided all areas of fine substrate such as gravel, sand or mud (Holdich, 2003), yet several 

recent studies have found WCC thriving in areas of fine substrate. Peay et al. (2006) found WCC in 

microhabitats dominated by silt in the River Ivel, south-east England.  Despite an overall finding 

that the probability of WCC presence was increased by the presence of small cobbles (64 – 128 

mm grain diameter) and reduced by presence of gravel, sand and silt, Ream (2010) found WCC of 

all age groups to be present in areas where gravels (8 – 16 mm) were the largest grains. Young of 

the year (less than 9.4 mm CL) were found in microhabitats where the substrate was entirely 

sand. Similarly, a recent survey on the Darnford brook, a tributary of the River Severn, Shropshire 

found crayfish to be abundant in areas of deep, anoxic and unvegetated mud (Holdich et al. 

2006). Dewatering Darnford brook revealed up to 50 crayfish per square meter burrowed into 

mud in areas with organic silt and twigs present (Holdich et al. 2006).  White clawed crayfish were 

observed emerging from beneath the surface of the mud in areas without burrows leading the 
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authors to discover than WCC can overcome problems of gill clogging by reversing the flow of 

water through their gill chambers (Holdich et al. 2006). Further, WCC are able to forage on the 

surface of mud, which can be a rich source of macroinvertebrates and decaying vegetation.  The 

authors suggest that it is stability that determines suitability of a refuge and very dense mud, 

particularly that stabilised by twigs, can provide such stability (Holdich et al. 2006).  The results of 

these studies suggest WCC can locate in any substrate that provides stable refuges and larger 

individuals may be able to burrow into fine substrate for refuge. White clawed crayfish tend to 

avoid areas of frequently shifting fine sediment with low stability where there are no stable 

refuges present in the banks and no suitable artificial or vegetative refuges (Smith et al. 1996).   

 

Where suitable refuges are present, WCC can tolerate a wide range of channel structures and 

depths, existing in lakes, ponds, canals, major rivers and narrow, shallow drainage ditches 

(Grandjean et al. 2000). Although Broquet et al. (2002) found the presence of crayfish to be 

unrelated to depth, low flows over extended periods dramatically increase susceptibility to 

terrestrial predators, meaning at least 5 cm of water is required to support a population of WCC 

(Rogers and Holdich, 1995a). However, individuals, especially juveniles, can locate in areas less 

than 1 cm deep (Ream, 2010).  

 

The requirement for dissolved oxygen by WCC means they are unable to tolerate stagnant water 

(Westman, 1985; Reynolds, 1998). As long as water is not stagnant, there is no minimum flow 

velocity required by crayfish. Maximum tolerable flow velocity is determined by the size and 

stability of available refuges (Demers et al. 2003). High flow speeds cause downstream movement 

of refuges and may damage crayfish directly. Foster (1995) claimed that WCC do not live in high 

velocity, turbulent flows and Ream (2010) found a negative correlation between flow velocity and 

presence of WCC. Benvenuto et al. (2008) found avoidance by WCC of areas with flow velocities 

exceeding 0.1 ms-1 and Bohl (1989b; in Renz and Breithaupt, 2000) estimated the closely related 

Austropotamobius torrentium could not tolerate flow velocities exceeding 0.3 ms-1. Absolute 

tolerances are, however, likely to vary between locations depending on the refuges available.  

 

The wide range of food types consumed by WCC means nutritional requirements do not 

significantly restrict their distribution but WCC must locate in proximity to areas containing 

detritus or vegetation such as blanketweed (Cladophora spp.) moss or submerged vascular plants 

such as water crowfoot (Ranunculus aquatilis) (Gallagher et al. 2006). Individuals have been 

shown to move up to 34 m per day, with an average movement of 4.2 m per day for males and 1.7 

m per day for females in summer (Robinson et al. 2000) and 0.233 m per day when averaged over 

the whole year (Bubb et al. 2008).  Therefore, food sources are not necessarily a requirement in 

an individual’s immediate locale.  



Page | 40  
 

3.4.3  Habitat preferences of white clawed crayfish in lotic systems 

Within areas containing suitable chemical and physical conditions, crayfish have been shown to 

demonstrate active preferences, selecting certain habitat types and showing relative avoidance of 

others (Armitage, 2001). Therefore, habitat is a better predictor of population density than of 

presence/absence of WCC (Armitage, 2001). The response by WCC to numerous habitat variables 

has been consistent between studies and consensus has emerged on their favourability to WCC. 

The influence of other physical variables on habitat suitability for WCC has, however, been 

disputed, with different studies drawing different conclusions.  The discrepancies in findings may 

be due to location specific interactions and system functioning or may be a product of the 

different approaches used.  Gaining a full understanding of habitat preferences in rivers, and how 

this varies between systems, is required to inform conservation measures.  

 

Although crayfish can make use of a range of refuge types (Holdich et al. 2006), the proportion of 

studies that have found WCC in cobbles and boulders compared to pebble or mud suggests that 

crayfish ‘prefer’ these coarse substrates (e.g. Foster, 1993; Naura and Robinson, 1998; Armitage, 

2001; Broquet et al. 2002; Ream, 2010). There is disagreement in published literature, with Naura 

and Robinson (1998) and Foster (1993) claiming cobbles do not provide a stable enough refuge 

for adult WCC but Armitage (2001) and Demers et al. (2003) finding adult WCC preferentially 

selecting cobbles as refuges.  The inconsistency between these studies may be due to differences 

in flow velocity in the study areas. High flow velocity and discharge decrease the favourability of 

small and less stable refuges. Alternatively, this difference could be due to differences in the size 

of individuals in the study, as smaller individuals require smaller refuges (Foster, 1993; Ream, 

2010). This explanation is supported by the results of Brusconi et al. (2008) which showed 

increasing percentage cover of cobbles increased abundance of young of the year and 1 + crayfish 

but decreased the abundance of older age classes. Similarly, Ream (2010) found pebbles were 

made use of by young of the year and 1 + WCC (up to 16.5 mm CL), cobbles were preferred by 2 + 

WCC (16.5 – 30.5 mm CL) and boulders were selected by 3+ individuals (30.5 + mm CL). These 

results suggest substrate heterogeneity is necessary to provide suitable habitat for all age groups. 

 

There are also differences in findings on the favourability of bedrock. Where bedrock lacks 

crevices it has a negative association with crayfish distribution and population density (Armitage, 

2001; Ream, 2010) but where bedrock crevices are present crayfish preferentially make use of 

them (Gallagher et al. 2006; Englund and Krupa, 2000). Bedrock crevices are particularly 

favourable due to the reduced flow turbulence over smooth bedrock surfaces. Slow, smooth flows 

allow individuals to maintain their position in the water column with low energetic expenditure 

(Gallagher et al. 2006), meaning glides are likely to be the preferred hydraulic biotope of WCC. 

However, Reynolds (1998) found shallow riffles to be the preferred habitat when large rocks were 
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present. Turbulent areas increase dissolved oxygen concentrations and are therefore likely to be 

favourable where the impact of the high flow velocity is not detrimental. Benvenuto et al. (2008) 

found WCC to avoid areas with flow velocity exceeding 0.1ms-1. Peay (2000) claims, without 

reference to field data, that WCC prefer areas with flow velocity less than 0.1 m s-1 and avoid 

areas with flow velocity exceeding 0.2 ms-1. The flow velocity WCC preferentially use will depend 

on the size of the individual (Ream, 2010) and the size and stability of available refuges. As WCC 

increase in size, they are able to maintain their position in the water column against higher flow 

velocities (Ream, 2010). Gallagher et al. (2006) found flow type in isolation had no effect on the 

distribution of crayfish.  

 

Consistently studies of crayfish habitat use have found preferences for areas with in-channel 

vegetation.  Laboratory based preference tests showed moss to be the preferred food source due 

to the fungi, microbes and metazoan hosted on moss plants (Gherardi et al. 2004). This 

preference has been reflected in field-based habitat studies. For example, Gallagher et al. (2006) 

found presence of crayfish could be predicted from distribution of moss and bedrock with 100 % 

accuracy and Ream (2010) found moss to increase likelihood of crayfish presence, particularly of 

larger individuals (greater than 16.5 mm CL). Conversely, liverworts and blanketweed have been 

shown to have a negative association with WCC presence (Naura and Robinson, 1998). Areas with 

submerged macrophytes, such as water crowfoot (Ranunculus spp.) and watercress (Rorippa 

nasturtium-aquaticum) are selected by WCC due to the shelter and food they provide (Demers et 

al. 2003; Holdich et al. 2006).  Submerged macrophytes can support high densities of crayfish in 

the absence of substrate refuges (Reynolds et al. 2002). However, macrophytes can be 

unfavourable to WCC where they are so dense they impede movement (Peay et al. 2006).  

 

Responses to riparian vegetation by WCC have also been demonstrated. Many studies have found 

areas with overhanging bank-side vegetation and overhanging boughs to be preferentially used by 

WCC (Foster, 1995; Smith, 1996; Naura and Robinson, 1998; Armitage, 2001; Ream, 2010). 

Riparian vegetation and canopy cover increase habitat favourability by providing food in the form 

of leaf detritus and insects and by shading the river, preventing high water temperatures 

(Brusconi et al. 2008). Further, canopy cover can reduce predation pressures from terrestrial 

predators (Ream, 2010). However, too much shading from trees may decrease the growth of 

photosynthetic macrophytes and actually reduce food sources for WCC (Peay et al. 2006). An 

intermediate extent of canopy cover is likely to be optimal.  

 

Roots of riparian trees protruding into the channel have been cited as an important refuge for 

crayfish and also trap leaf litter, a primary food source (Smith et al., 1996; Nyström, 2002). The 

structural complexity provided by exposed tree roots is important as protection for juveniles 
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against high flows (Benveuto et al. 2008). However, Naura and Robinson (1998) found no 

correlation between WCC presence and tree roots. They suggest exposed roots may offer refuges 

to predators such as mink (Neovison vison) and otters and can indicate bank erosion and 

therefore are not always favourable refuges. Crevices in the banks themselves from soil cavities 

and vegetation are utilised by WCC (Holdich et al. 2006). Bank refuges offer added protection 

from predators and high flows (Groves, 1985; Holdich et al. 2006). Therefore, earth and boulder 

banks with natural crevices are preferred by WCC and bedrock banks or artificial concrete banks 

are avoided (Naura and Robinson, 1998; Armitage, 2001). Undercut and overhanging banks can 

offer natural refuges (Schulz and Schulz, 2004) but may indicate erosion, which has been found to 

be detrimental to crayfish by increasing turbidity and sedimentation of substrate refuges (Foster, 

1995; Naura and Robinson, 1998).  

 

The majority of studies on WCC habitat have focussed on day-time refuges but a complete 

understanding of WCC habitat needs requires information on night-time foraging habitat. Clavero 

et al. (2009) used electivity indices to evaluate night-time habitat preferences. The surveyors used 

torches to conduct a hand-search after dark. A metal disk was placed where each crayfish was 

found and habitat variables in each location measured the flowing morning.  Significant selections 

were evident, with crayfish making use of pools with fine, silty substrate in excess of their 

proportional availability. Adult crayfish show strong night-time preferences for deeper areas 

(Clavero et al. 2009), with high proportions of organic carbon and nitrogen from plant detritus 

(Gheradi et al. 2001). These differences between preferred resting and foraging habitat suggest 

that, at the scale of WCC’s daily movements, optimal WCC habitat should contain a 

heterogeneous mix of substrate sizes (Grandjean et al. 2003; Clavero et al. 2009) and flow types 

(Holdich, 2003) to enable them to collect food and return to refuges (Sáez-Royuela et al., 2001). 

 

Several authors have attempted to create generally applicable models of habitat quality for WCC. 

Creation of predictive models that perform satisfactorily across a range of sites would permit 

rapid, cost-effective assessment of habitat quality in un-sampled areas. This would allow 

prediction of WCC distribution and would enable identification of potential lotic ark sites and 

suitable reintroduction sites for WCC. Smith et al. (1996) used multiple regression analysis to 

correlate field obtained population density estimates to physical habitat to create a predictive 

model of habitat quality for WCC. Their model showed that percentage of vertical bank, 

percentage of channel with overhanging bank-side vegetation and percentage of exposed roots 

explained 71 % of variation in crayfish abundance. A different predictive model was created by 

Naura and Robinson (1998) by correlating River Habitat Survey (RHS) data to crayfish presence 

and absence at a coarser scale. In this model, crayfish presence could be predicted from presence 

of overhanging boughs, extensive steep banks, presence of submerged vegetation, 
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boulder/cobbles as a bank substrate and tree shading. Variables associated with crayfish absence 

were; eroding cliff banks poached by cattle, bank substrates of gravel, pebble or sand, and 

artificially reinforced banks. However, the model did not perform well at predicting WCC absence 

and was not tested on any data other than that used to create the model.  Using Naura and 

Robinson’s (1998) model, Peay (2002b) predicted that WCC would be absent at four sites in the 

Eden catchment. Yet sampling found crayfish to be present at all four of these sites. This suggests 

low generality in the model. This may be due to overfitting of the model, unique conditions in the 

Eden, or differences in predation and competition pressures between the two systems. 

 

Further, Naura and Robinson (1998) asserted that crayfish presence could be predicted from 

altitude, slope and distance from the source. This finding was not supported by Gallagher et al. 

(2006) who showed that when sites have low variability in these parameters they cannot 

satisfactorily predict WCC distribution. These variables do not have biological relevance to WCC 

and are likely to be correlated to different micro-scale habitat variables in different systems 

(Randin et al. 2006). In order for predictive models of WCC distribution to perform satisfactorily in 

different catchments, relevant habitat variables should be measured over an appropriate scale 

(Leftwich and Angermeier, 1997) and should only be transferred between similar systems 

(Angermeier et al. 2002). For example, predictive models of habitat suitability for WCC created in 

upland gravel-bed rivers are unlikely to perform well in lowland chalk streams. Further, 

distribution of non-indigenous crayfish and crayfish plague are major determinants on the 

suitability of areas for WCC. Evaluation of current or potential biotic threats need to be 

incorporated into predictive models of habitat suitability for WCC (Jiménez-Valverde et al. 2008).  

 

3.4.4  Confounding influences on crayfish habitat relationships  

White clawed crayfish distribution patterns and habitat use are likely to be specific to a given 

location due to differences in population structure and biotic influences. Biotic interactions may 

explain the results of recent studies that have not found significant correlations between physical 

habitat and crayfish presence (e.g. Armitage, 2001; Lyons and Kelly-Quinn, 2003).   

 

Aggressive intra-specific interactions have been observed in WCC populations. Male WCC defend 

territories in the mating season, remaining in one location for several days and displaying 

aggressive behaviour towards other WCC (Mason, 1974; Robinson et al. 2000; Bubb et al. 2008). 

WCC also cannibalise juveniles (Mason, 1974). These behaviours suggest intra-specific 

competition for refuges and food occurs, which may limit population density, influence 

distribution and result in segregation of larger dominant and smaller subordinate individuals 

(Lodge and Hill, 1994). The strength of competition is likely to depend on availability of food and 

refuges compared to the population size (Lodge and Hill, 1994).  
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Intra-specific competitive interactions may explain the observed habitat segregation between age 

classes (e.g. Foster, 1993; Smith et al. 1996; Ream, 2010). Competition and cannibalism by 

dominant individuals may force smaller individuals into less favourable substrates. To the author’s 

knowledge, no study has conclusively shown competitive exclusion resulting in sub-dominants 

being forced into habitat areas that result in slower growth rates or lower survival. If this does 

occur, WCC would conform to the despotic distribution model (c.f. Fretwell, 1972) meaning 

density may not always accurately represent habitat quality (Van Horne, 1983).   

 

However, segregation of age classes may be explained by differences in age-specific food 

preferences. Smith et al. (1996) and Ream (2010) found juveniles to preferentially use shallow 

channel margins and Demers et al. (2003) confirmed juveniles select areas with finer substrates 

and more leaf litter as refuges than adults. Size related differences also occur in depth 

preferences with juveniles selecting shallower areas than adults do, particularly during foraging 

(Clavero et al. 2009; Ream, 2010). Deeper areas are correlated with increased plant debris, 

preferred by adult crayfish (Clavero et al. 2009) and shallower channel margins have a higher 

abundance of insect larvae, favoured by juveniles (Reynolds and O’Keefe, 2005). Further, 

differential predation pressure changes realised habitat quality and can result in differences in 

habitat use between different sized individuals and between sampling locations. Where the major 

predation pressure is from terrestrial predators, such as heron (Ardea cinerea), kingfisher, otter 

and mink, the realised habitat quality of shallower areas is reduced. Larger WCC are preferentially 

selected by terrestrial predators and therefore utilise larger refuges in deeper areas and avoid 

shallow stream margins (Clavero et al. 2009). However, aquatic predators, such as eel (Anguilla 

anguilla), salmonids, perch and pike, may also be present. Due to limits on gape size, aquatic 

predators predate on small prey. Shallow channel margins, which are difficult for fish to access, 

are more therefore favourable for small WCC (Englund and Krupa, 2000). Variations in type, 

number and distribution of predators will alter the distribution and habitat use by WCC.  

 

3.5  Sampling techniques 

Several sampling techniques are used to monitor and assess crayfish populations. Different 

techniques are suited to different survey objectives. July to September is the optimal survey 

period for assessing population size and condition. Sampling in this period results in minimal 

disturbance to breeding activity as young crayfish are released from females between May and 

mid July and mating has not yet begun (Moriaty, 1972). Further, the summer months provide 

optimal conditions for survey and greatest sampling efficiency, as rivers have low flows and clear 

waters and crayfish are more active due to higher water temperatures.  
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The standard method for assessing crayfish populations is to identify the five patches containing 

the most optimal WCC habitat in the survey reach and to hand search ten refuges in each (Peay, 

2003). Manual searching in this way is the most time and cost efficient method for obtaining 

baseline data and monitoring populations but is unsuitable for detailed studies on habitat use and 

population structure as it is biased towards large individuals, misrepresents juveniles and only 

samples favourable habitat (Rabeni et al. 1997; Ream, 2010). Fixed area sampling gives better 

estimates of local population density and population structure and can be used to study response 

to habitat variables (Rabeni et al. 1997; Peay, 2003). A surber sampler can increase the efficiency 

of fixed-area searches. Surbers are cuboid metal frames with three sides covered with netting and 

weighted at the bottom to prevent crayfish escaping (Surber, 1936). The fourth side, which is 

positioned downstream, has a large net attached to catch individuals washed downstream (fig 

3.3). Dorn et al. (2005) demonstrated that surber sampling gives accurate estimates of population 

density, size distributions, and sex ratios for slough crayfish (Procambarus fallax). By stocking 

seven enclosures with a known number of crayfish Dorn et al. (2005) were able to evaluate the 

efficiency of sampling techniques. Surber sampling had an 88 % efficiency rate. Efficiency did not 

differ with vegetation cover or with absolute density. The size distribution and sex ratio of crayfish 

caught did not differ significantly from that of the stocked population. However, small crayfish 

were captured at a slightly lower relative frequency than larger individuals suggesting a slight size 

bias. These results provide a strong indication that surber sampling is an efficient method and 

gives more accurate estimates of population size than night-viewing counts, refuge hand searches 

or trapping. Efficiency of trapping varies with the number of natural refuges within the channel 

and is highly biased towards large active males (Hogger, 1988; Byrne et al. 1999). Further, traps 

are expensive, prone to vandalism and can harm water voles (Arvicola amphibious) and shrews 

(Sorex araneus). All techniques are biased towards catching large individuals but the inclusion of 

all substrate sizes in surber sampling means this bias is significantly less using this method than in 

manual searches or trapping (Rabeni et al. 1997).   

 

Figure 3.3 – Drawing of a surber sampler (Di Stefano et al. 2003). 
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3.6  White clawed crayfish on the River Wansbeck 

Previous WCC surveys performed in the Wansbeck catchment show that the river contains a 

‘dense and thriving’ population of WCC (Armitage, 2001; Rogers, 2005). Rogers (2005) claimed the 

River Wansbeck probably contained the largest dense population of WCC in England and as such 

was a site of global importance. The report recommended that the River Wansbeck was 

designated as a SAC for WCC but this has not occurred. Currently, the River Wansbeck is not 

protected as a conservation site by any statutory or non-statutory designation, though all crayfish 

are protected under the Wildlife and Countryside Act (1981). 

 

The results of previous published surveys on the Wansbeck found the WCC population to be 

patchily distributed with high abundance in some areas and absence in others (Douglas, 1993; 

Rogers, 2005). In 2005, David Rogers Associates conducted a WCC survey at eight locations on the 

River Wansbeck. At each site, a hand-search of fifty potential refuges was conducted and ten 

baited traps were set overnight. Of the eight locations successfully surveyed, crayfish were absent 

at two, Low Angerton, 27 km downstream of the source (NZ 09302 84310) and Meldon Bridge, 31 

km downstream of the source (NZ 120 851) due to siltation from stock grazing and poor water 

quality from road runoff respectively. The survey location at Meldon Bridge was very close to the 

location of survey by Douglas (1993) which found a high abundance. This suggests a deterioration 

of habitat quality at this location over the decade.  

 

A major pollution incident occurred in the lower reaches of the Hart Burn, a major tributary of the 

River Wansbeck, in May 2004. Almost the entire population of WCC on the Hart Burn, 

downstream of the pollution source, was wiped out by this event. Sampling of WCC and analysis 

of macro-invertebrate assemblages in the week subsequent to the incident showed no impact on 

the River Wansbeck (M. Lucas, unpublished data).  

 

Between 5th  – 8th  September 2008, the Wansbeck experienced a 1 in 150 year flood event with 

river levels at Mitford 3 m higher than average for the time of year (Environment Agency, 2010). 

Lewis and Morris reported that 20 000 WCC had been stranded by the flood and the EA estimated 

total mortality from flood flows or subsequent stranding of individuals on surrounding land to be 

10 300 individuals (Ream, 2010). However, a survey conducted throughout summer/early autumn 

2009 showed no significant difference between population density before and after the flood at 

Mitford (Ream, 2010). A redistribution of WCC was evident after the flood event with higher 

maximum number of individuals per square meter and higher heterogeneity in number of WCC 

per surber area after the flood (Ream, 2010). The flood flows had reduced the area containing 

suitable WCC habitat by depositing mounds of gravel or removing larger substrate from areas 

underlain with bedrock, resulting in higher densities of WCC locating in the remaining suitable 
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habitat (Ream, 2010).  A further result of the flood event was a reduction in the number of larger 

crayfish (greater than 16.5 mm CL). Larger WCC are unable to utilise small crevices and are more 

likely to be injured if their larger refuge shifts. Larger WCC will also suffer higher mortality rates 

than juveniles when stranded due to lower survival rates in shallow pools of standing water. This 

event could have had a lasting impact on population abundance as population growth rates in 

WCC are limited by slow maturation (Mason, 1974).   

 

3.7  Summary of study context and rationale 

The discussion in this and the preceding chapter has placed this research in context and 

confirmed the need for this study. White clawed crayfish are a threatened native species that 

have important positive impacts on wider river ecosystems (Momot et al. 1978; Sibley 2003). 

Despite much legislation existing to protect and conserve them, the distribution of WCC in Britain 

continues to decline (Holdich and Sibley, 2009). In order to manage a species effectively, 

conservationists must have a thorough understanding of habitat requirements and preferences 

(Edsman and Smietana, 2004). This review has highlighted disparity in findings of previous studies 

on the range of conditions WCC can make use of and the conditions they find preferable.   

 

The easiest and most widely achievable method to obtain information on species response to 

their environment is by correlating current distribution to environmental parameters (Jones, 

2001). Inclusion of location within the channel as a parameter may increase the accuracy of 

predictive models (Perry et al. 2002).  However, conclusions drawn depend on the scale at which 

the study is conducted (Wiens, 1999). The most relevant conclusions will be from studies 

conducted at the same spatial scale the focal organisms is responding to. Previous studies have 

shown various taxonomic groups to respond to their environment at different scales but this has 

not been determined for WCC. The constraints imposed on distribution by broad scale processes, 

as discussed in Poff’s landscape filter, must be determined. Failure to acknowledge the potential 

influence of these large-scale constraints may result in erroneous conclusions about habitat 

suitability (Jelinski and Wu, 1996). To the authors knowledge a multi-scale habitat study for WCC 

has not been conducted. Schulz and Schulz (2004) found that landscape scale land-use influenced 

the distribution of European indigenous crayfish species. This suggests that broad scale variation 

in physical variables may be relevant to WCC and that habitat studies should include variables 

operating at a landscape scale. Identifying the scale of WCC response to habitat is crucial for 

maintaining and improving WCC habitat, a key aim in their Biodiversity Action Plan.  
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Chapter 4- Methods  

4.1  Characteristics of the River Wansbeck, Northumberland 

The River Wansbeck, Northumberland (fig.4.1) is a gravel bed river with a catchment of 331 km² 

(EA, 2005). The source of the River Wansbeck is in the marshy grassland of Four Laws hilltop (NY 

913 829) at 345 m a.s.l. (EA, 2005). From the source, the river flows eastwards, passing through a 

stocked fishing lake called Sweethope Lough at 2 km downstream and continuing for 

approximately 60 km before discharging into the North Sea. The Wansbeck has two main 

tributaries, the Hart Burn, which joins from the north bank at 32 km downstream, and the River 

Font, which drains the Simonside Hills, and also joins from the north, at 43 km downstream (fig. 

4.1). The upstream 20 km of the river have an underlying geology of carboniferous limestone.  

Downstream of this the river is underlain by millstone grit, which was deposited during the 

Carboniferous age (Abesser et al. 2005). Most of the catchment is covered by glacial till, which is 

clayey and largely impermeable (EA, 2005). Hence, the catchment has flashy flood hydrographs, 

dominated by surface runoff, (EA, 2005) and frequently experiences major flood events.  

 

The Wansbeck catchment contains a number of land-uses. The headwater area is largely heather 

moorland with wet mires and extensive areas of afforestation. Downstream of Sweethope Lough, 

land-use is agriculturally managed, improved/semi improved grass or arable land, interspersed 

with small settlements and mixed woodland. Bankside vegetation is mainly tall grasses including 

canary grass (Phalaris arundinaceai), branched bur reeds (Sparganium erectum) and butterbar 

(Petasites hybridus). After 45 km the river flows through Morpeth, a small market town with a 

population of nearly 14 000 (Office for National Statistics, 2001). For 10 km downstream of 

Morpeth surrounding land use continues to be agricultural with wide riparian buffers, composed 

mainly of alder species, present on both sides of the channel. The river then flows through the 

larger town of Ashington (population approx. 28 000, Office for National Statistics, 2001) before 

widening into a sand based estuary at North Seaton.  

 

Environment Agency records from Middleton (approximately 22 km downstream), Mitford 

(approximately 40 km downstream) and the River Font and Hart Burn confluences show very high 

water quality, between 2000 and 2008 (Environment Agency, 2009). All sites are consistently 

classified as ‘very good’, both chemically and biologically with a pH between 7 and 8 (variables 

recorded are macro-invertebrate community structure, dissolved oxygen, ammonia, phosphate, 

nitrates, pH, copper, zinc and calcium carbonate). Downstream of Morpeth, water quality is 

variable. Although concentration of dissolved oxygen remains high, concentrations of phosphates 

are consistently classified as ‘high’ or ‘very high’.  
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4.2 Creating a frame of reference for the channel  

The aim of this study is to investigate spatial patterns in WCC distribution and habitat use over 

several tens of kilometres of the River Wansbeck. To extract spatially explicit information from 

river systems, it is necessary to have a frame of reference relevant to the channel, such that 

distance downstream is measured as perceived by aquatic organisms (Legleiter and Kyriakidis, 

2006). A curvilinear river coordinate system has been developed which transforms [x,y] Cartesian 

coordinates into [s,n] river coordinates with s being distance downstream on the streamwise axis 

and n being distance from the centre line (Smith and McLean, 1984) (figure 4.2). Dugdale and 

Carbonneau (in review) have developed a Fluvial Information System (FIS) as a tool for riverine 

scientists and managers with need for spatially explicit, high resolution data over large scales. The 

FIS is a Matlab-based tool which is capable of automatic mapping of riverine habitats from high 

resolution aerial imagery of rivers (Dugdale and Carbonneau, in review). The FIS is capable of 

delimiting the river channel in images by classifying images into a predefined number of groups 

using statistical clustering of pixels groups with similar attributes (Dugdale and Carbonneau, in 

review). Algorithms implemented the FIS can then transform the [x,y] Cartesian coordinates of 

the river centreline into [s,n] river coordinates to produce  a river coordinate system which can be 

used to accurately measure longitudinal and lateral distances. The FIS promises to be a vital tool 

in developing spatially explicit understanding of species-habitat relationships and was employed 

in this study to create a river coordinate system for the River Wansbeck so that longitudinal 

trends and spatial patterns in WCC and their habitat could be analysed.  

 

Twenty-five centimetre resolution, fully geo-referenced, aerial imagery of the river corridor was 

purchased from the Infoterra Geostore. These images were cropped in Erdas, an image analysis 

software, into areas of equal pixel number and entered into the Fluvial Information System (FIS). 

Because the FIS is not designed for 25 cm resolution imagery, the river could not be accurately 

classified straight from the Infoterra images. To overcome this problem, the river channel on each 

image was accurately traced in bright red in Adobe Photoshop. The FIS classification could then 

easily and accurately distinguish between the channel and surrounding land, allowing production 

of a digitised vector centreline and a river coordinate system. This was used to determine distance 

downstream for all analyses and allowed Cartesian coordinates and measurements obtained in 

the field to be transformed to accurate distances downstream. 
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Figure 4.2- Transformation between Cartesian (x, y) and channel-cantered curvilinear (s, n) 

coordinate systems. Flow is from left to right such that s is distance downstream, +n is 

deviation from the centre line towards the left bank and –n towards the right bank.  The  

dashed lines show the co-ordinates for the circled points in the two co-ordinate systems 

(Legleiter and Kyriakidis, 2006) 

 

4.3  Nested sampling design and site selection 

As well as investigating influence of locational factors on WCC, this study also aimed to identify 

the scale of interaction between WCC and their habitat. It was therefore necessary to conduct a 

multi-scale study. A three scale spatially nested sampling design was employed with a primary 

sampling unit of one kilometre river lengths. Within each kilometre section a secondary sampling 

unit of 100 m, herein referred to as a site, was selected, and within each site ten 0.49 m2 tertiary 

units were sampled. Habitat variables were recorded over the scale at which they showed 

variability (see 4.6) and crayfish were sampled in each of the tertiary units (see 4.4). Due to time 

constraints, it was estimated that thirty-five kilometre sections was the maximum number that 

could be sampled. To determine which 35 km section of river to study and identify suitable sites 

within kilometre sections, a walkover survey was performed between the River Wansbeck’s 

source and the town of Morpeth, during October 2009. The purpose of this was to determine 

access, gain landowner permission and identify features that would prevent safe and accurate 

sampling. General characteristics of the channel and valley were recorded over 500 m areas. This 

information provided a comprehensive, spatially continuous context for selecting the study area 

and sample sites.  Based on access and suitability for survey, the length of river from the 7th to the 

42nd kilometre downstream (Crook Dean to Lowford Bridge) was identified as the optimal study 

area.   
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The river coordinate system was used to delimit kilometres from the starting point of the survey. 

Two kilometre sections spanned major tributary junctions and were thus considered to be in 

different river segments. These sections were shortened to ensure the whole channel length of 

each section had the same stream order (c.f Frissell et al. 1986). Where possible the central 100 m 

of each kilometre section was selected as the sample site. However, this was constrained by 

physical access, landowner permission and suitability for surber crayfish sampling, which requires 

average depth to be less than 0.5 m and width to be greater than 0.5 m.  Where the central 100 m 

was deemed unsuitable the neighbouring areas were assessed until a suitable site was found.  

Two kilometre sections had no suitable areas for survey due to extremely steep valley sides 

making entering the channel very dangerous. This resulted in thirty-three sample sites an average 

of 1.06 km apart (fig 4.3). The Cartesian coordinates of the upstream and downstream extents of 

the sample sites were obtained from the FIS allowing them to be located in the field using a 

handheld GPS. The ten tertiary sampling units in each site were arranged in pairs, separated by 

22.5 m in the downstream direction. Their location alternated between channel margins (1/5 and 

4/5 of wetted channel width) and either side of the channel midline (figure 4.4). The position of 

the tertiary sampling units within the catchment was identified by finding the coordinates of the 

downstream boundary of the site using a handheld Etrex GPS and then using a simple tape 

measure to establish the positions of the surbers within the site according to the layout shown in 

figure 4.4.  

 

 

Figure 4.3 – Location of sampling sites. See appendix 1 for site names, numbers and co-ordinates. 

NB/  Permission was not granted to share results at six of the sites surveyed. Data from these sites 

was used in analysis but is not shown in maps or appendix. 
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Figure 4.4- Layout of tertiary sampling units within each site 

 

4.4  Crayfish sampling  

Crayfish surveys were carried out between 15th June and 18th August 2010.  To prevent 

transference of disease between river systems all equipment was disinfected using a weak bleach 

solution and left to dry in sunlight before and after sampling. Sampling was only conducted on dry 

days with low wind when the river was at a low stage and substrate was visible at a depth of 50 

cm. Data on crayfish was obtained as an abundance per tertiary sampling area. A surber was used 

for each sample in order to increase efficiency.  The surber used for each sample was 0.7 x 0.7 m, 

and therefore enclosed an area of 0.49 m2, with a height of 0.5 m. Three-millimetre netting was 

used for the side netting and skirt. In each tertiary sampling location, the surber was carefully 

placed on the riverbed and pushed into the substrate to prevent crayfish escaping. Where areas 

were too deep or too turbid for accurate crayfish sampling, or substrate was too large to be lifted, 

the surber was moved to the nearest suitable location, which was accurately measured and 

recorded. 

 

The most downstream surber areas were sampled first and sampling proceeded in an upstream 

direction to avoid disturbance of subsequent sampling areas. All substrate that could be lifted was 

systematically removed from within the surber. Each refuge was overturned in a downstream 

direction so that disturbed sediment flowed away from the site. Once sediment had settled 

crayfish were picked up or captured in a hand-net. A wetted, Perspex viewing chamber was used 

to improve sampling efficiency. Small, loose substrate was then disturbed by a glove-protected 

hand to dislodge remaining crayfish (Armitage, 2001). Individuals trapped in the surber netting 

were retrieved at the end of sampling.  Root systems and vegetation were also sampled. There 

was no time limit on this but average search time was approximately 25 minutes per surber. 

Stones were replaced as near as possible to the position in which they had been found to 

minimise disruption to the habitat. 

 

22.5 m 5 m 

100 m 
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All captured crayfish were immediately placed in a bucket containing water and a few cobbles or 

some vegetative matter until sampling of the surber pair was complete. Each crayfish was 

measured to the nearest millimetre using vernier callipers from the tip of the rostum to the 

posterior tip of the telson, the hind-most extension of the tail fan, with the tail fully extended on a 

flat surface (c.f. Smith et al. 1996). For a subsample of individuals, measures of carapace length, 

from the tip of the rostum to the posterior median edge of the cephalothorax, were also obtained 

in order to derive a conversion between total length and carapace length. Individuals were also 

sexed.  For individuals less than 20 mm total length sex was not distinguishable in the field.  

 

4.5  Measurement of habitat variables 

A broad range of habitat variables were recorded in this study. Each variable was recorded at the 

scale of the nested sampling design at which it showed variation (table 4.1). The definitions used 

to classify features were largely based on those used in the RHS (c.f. Environment Agency, RHS 

manual 2003). Largely, it was felt the recording format and definitions used the RHS was sufficient 

to obtain data relevant to crayfish and had the advantage of been tested and reproducible. For a 

few variables it was felt that more detail was required to be relevant to crayfish and additional 

detail was recorded.  Conversely, for other variables the level of detail in the RHS was deemed 

unnecessary after an extensive literature review on crayfish ecology and habitat preference. For 

these variables, which included bank features, flow type, bank side land-use, bank profile and 

vegetation types, the level of detail recorded was reduced. Some variables included in RHS, for 

example artificial features, were not present at any of the sites and therefore were not 

considered in analysis. 
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Table 4.1- Habitat variables recorded at each spatial scale, defined according to River Habitat Survey 
Manual (Environment Agency, 2003) 

Habitat variable  Classes and Units 
Variables recorded at the scale of kilometre sections 

Water chemistry 
Temperature (C), dissolved oxygen (%), conductivity 

(mS/cm), pH, concentration of anions and cations (mg/l) 

 

concentration of anions and cations 

Stream order and distance from source After Shreve (1966) and in kilometers 

Gradient In degrees 

Sinuosity  

Predominant valley form 

Flat 

Shallow V 

Deep V 

U-shaped 

Asymmetric 

Variables recorded at the site-scale 

Predominant Land-use 

(5 m and 50 m from the channel) 

Deciduous/mixed woodland 

Park/garden 

Urban/suburban development 

Scrub/shrub 

Grassland/arable 

Bank poaching Present/Absent 

Total distance of bank erosion In meters 

Width In meters 

Sinuosity  

Predominant bank profile/s 

Undercut 

Vertical 

Steeper than 45 ˚ 

Shallower than 45 ˚ 

Predominant bank material/s 

Earth 

Bedrock 

Boulder/cobble 

Clay/fines 

Vegetation 
Mosses, algae and liverworts  (Absent/< 33 %/ > 33%) 

Submerged vascular macrophytes  (Absent/< 33 %/ > 33%) 

Emergent vascular macrophytes  (Absent/< 33 %/ > 33%) 

Shade and overhanging boughs Absent/< 33 %/ > 33% 

Exposed roots Absent/< 33 %/ > 33% 

Average substrate size D95, D84, D50, D16, D5  (mm) 

                          Hydraulic biotope 
Percentage category of Pool, Glide, Run and Riffle  

(Absent, 1-20 %, 21-40 %, 41-60 %, 61-80%, 81-100 %)   

Variables recorded at the surber-scale 
Depth In meters 

Substrate size As above 

Flow velocity At 60 % depth and at substrate boundary (m/s) 

Overhanging boughs and shade Present/Absent 

Exposed roots Present/Absent 

Predominant bank material 

Bank material 

As above 

Predominant bank profile As above 

Bank erosion Absent, slow or fast 

Substrate type 

(measurements are Wentworth, 1922 

classifications and refer to the diameter of a 

single grain) 

Bedrock 

Boulders (> 256 mm) 

Cobbles (> 64 mm) 

Pebbles (> 4 mm) 

Gravel (> 2 mm) 

Sand/silt (< 2 mm) 

Vegetation As above 
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4.5.1  Habitat recording at the kilometre scale 

Water chemistry in each kilometre section was analysed in autumn 2009. Using a YSi meter, 

temperature (˚C), conductivity (mS/cm), salinity, total dissolved solids (g/L), pH and dissolved 

oxygen (% and mg/L) were recorded. The YSi measurement was taken three times in the nearest 

riffle to the downstream boundary of each kilometre section and the average value used in 

analysis. Following standardized water sampling protocol (Nearhoof, 1995) a vial of water was 

collected at the same location as the YSi recording. The vials were frozen as soon as possible.  

Concentrations of nitrate, bromide, phosphate, ammonia, chloride, calcium, magnesium, 

potassium and sodium, were analysed in the lab using a Dionex ion chromatography machine.  

Recorded values were compared to established crayfish tolerance limits derived from Smith et al. 

(1996) and Trouilhe et al. (2007).   

 

The stream order of each kilometre section was counted from a 1:25 000 OS map according to 

Shreve (1966). Altitude of the upstream and downstream extent of each kilometre section was 

obtained from Google Earth allowing calculation of gradient. Sinuosity was measured as channel 

length divided by the straight-line distance between the upstream and downstream extent of the 

kilometre section, which was measured on Google Earth. Valley-form was classified according to 

RHS criteria, using Google Earth measurements of change in altitude with lateral distance from 

the channel and observations from the walkover survey. The categories were reduced to shallow 

V, deep V, bowl shaped, flat and asymmetric (Environment Agency, RHS manual, 2003). 

 

4.5.2   Habitat recording at the site-scale 

Land-use within 5 m and 50 m of the riverbanks over each 100 m site length was classified 

according to the categories shown in table 4.1. Because phosphate and nitrate concentrations are 

continually low throughout the river (Environment Agency, 2009) it was not considered necessary 

to further classify agricultural type. Predominant bank material was classified, following 

definitions in the RHS (Environment Agency, RHS manual, 2003), into the categories shown in 

table 4.1 for the bank immediately adjacent to the current water level.  

 

Bank poaching by cattle was recorded as present or absent regardless of its abundance. Width 

was measured across the five transects of the locations of the surber pairs. The average width 

was used in analysis. Sinuosity was calculated by dividing 100 m by the straight-line distance 

between the upstream and downstream extent of the site, which was found using Google Earth. 

Due to the difficulty of accurately estimating percentage coverage over such a large area a simple 

three-point scale of ‘absent’, ‘less than 33 %’ and ‘greater than 33 %’ was used for vegetation 

characteristics. Three categories of vegetation were recorded: mosses, liverworts and filamentous 

algae; submerged vascular plants; and emergent vascular plants. Vegetation was assessed based 
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on the habitat structure they were providing at the time of survey, not on their mature character. 

Due to the prevalence of mosses and algae, an additional category of ‘greater than 66%’ was 

added. Exposed roots and overhanging boughs were also recorded on this three-point scale. 

Shade was recorded separately as continuous, semi-continuous, isolated/scattered or absent.  

 

Percentage cover of the hydraulic biotopes: pool, glide, run and riffle were recorded on a six-point 

scale; absent, rare (1-20%), occasional (21-40%), frequent (41-60%), abundant (61-80%) and 

dominant (81-100%) (c.f. Gurnell et al. 1996). This classification retained the maximum 

information on flow type whilst being reproducible and spatially consistent. The following 

descriptors were used to distinguish between biotopes, based on definitions from the National 

Rivers Authority (1992): Riffle- shallow water flowing over coarse unconsolidated substrate with 

higher velocity, turbulent flows, often with unbroken standing waves; Runs - continuously rippled 

surface, moderate to fast velocity but lower turbulence than riffles; Glides- smooth flow with low 

but visible velocity, generally deeper than 30 cm; Pools-  areas deeper than 30 cm with smooth 

surfaces, no perceptible flow, characterised by finer substrate and shallow gradient.  

 

Finally, it was necessary to obtain accurate measures of grain size at the site-scale, as grain size is 

a major control on the distribution of WCC (e.g. Smith et al. 1996). However, field based Wolman 

counts (Wolman, 1954) and percentage cover estimates of substrate have been shown to be non- 

reproducible (Kondolf, 1997), biased towards large particles (Whitman, 2003) and prohibitively 

time consuming over large areas (Marcus, 2002).  Thus, terrestrial remote sensing methods were 

used in this study to accurately measure grain size over large areas, as relevant to WCC.    

 

Vertical photographs were obtained using an off-the-shelf digital camera, of either five or eight 

megapixels, attached to a platform atop an extendable pole. The surveyor faced upstream 

positioned 2 m downstream of the area to be photographed. The bottom of the pole was placed 

on the riverbed, secured under the surveyor’s foot (fig 4.5). When a field assistant was present, 

the camera pole, extended to 6 m length, was lowered to the assistant who pressed the trigger 

with a ten-second delay. The pole was then elevated to a 60˚ angle, measured by an attached 

clinometre, so that the camera was parallel to the riverbed when the photograph was taken (fig 

4.5). When a single surveyor was present, the surveyor pressed the trigger and fed the pole 

forward until the end was secured under their foot, before elevating the pole to a 60˚ angle. A 

pole length of 4 m was the maximum manageable by a single surveyor. With the pole extended to 

6 m each image covered a ground area of 5.2 m x 3.6 m.  A pole length of 4 m gave an image 

extent of 3.45 m x 2.4 m. A white rectangular object of known size was placed on the riverbed in 

the frame of each photograph so the scale of the image was known. The imagery was obtained at 
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high sun elevation (10:00 to 16:00 British summer time) to reduce sun glint and shadow from 

riparian vegetation.  

 

  

               Figure 4.5 – Stylised diagram of image acquisition (not to scale) 

 

On arrival at a site the positions of the surber samples were determined (see section 4.3) and 

their midpoints marked. Transects of images were taken across the full channel width at the 

location of each surber pair before crayfish sampling was conducted. Because the surveyor stood 

2 m downstream of the sample site, disturbance of the surber locations was minimal. The transect 

always began from the left bank. After each photograph the surveyor moved towards the right 

bank by 3 m when using a 4 m pole and 5 m when using a 6 m pole. This ensured the whole 

channel width was covered with minimal overlap. This gave coverage of complete width for 20 m, 

one fifth of the site. In most circumstances, image acquisition and crayfish sampling occurred on 

the same day. However, the shortage of days with favourable light conditions during the short 

time span available for the study meant images were obtained for as many sites as possible when 

light conditions were favourable. Therefore, for some sites crayfish sampling was conducted on 

separate days to image acquisition. Between image acquisition and crayfish sampling there was 

no prolonged rainfall and the river level did not fluctuate more than 5 cm according to 

Environment Agency electronic sensor measurements (Environment Agency, 2010). Markers left 

in the locations of the surbers ensured that location of images and crayfish sampling coincided.   

 

Individual grains significantly larger than the pixel resolution were distinguishable in the imagery 

due to their variations in image brightness (fig. 4.6). The images obtained had pixel sizes between 

Camera 

60˚ 

Direction 
of Flow 

Approximate  
area covered 

by photograph 

Clinometer

e 

Scale object 
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1.03 mm and 1.93 mm depending on the camera resolution and the height from which the image 

was obtained. This allowed individual particles down to 2-3 mm (coarse sand after Wentworth, 

1922) to be differentiated by eye at the on-screen computer display resolution. The images were 

manually photo-sieved using a graphical user interface programmed in MATLAB (fig. 4.6). Using 

this programme, the sides of the scale object were identified using a cross-hair and its known 

length was entered to calibrate the pixel resolution. The programme superimposed a unitless 7x8 

square grid over the image and the user clicked on each side of the  grain below each intersect, 

using the minor axis for ellipsoid grains (fig 4.6). In areas of shadow and glare the nearest visible 

grain was measured. Where several intersects fell on vegetation or bank, measurements of 

random grains were made. Where grains were less than 2 mm in diameter (sand, silt or bedrock) 

the cross hair was not moved between the clicks defining each side of the grain. In each picture, 

56 grains were measured, from which the programme calculated percentiles of grain diameter: 

D5, D16, D50, D84 and D95. Overall, between ten and thirty-five pictures were taken and measured 

per site depending on channel width. This gave sample sizes of 560 to 19, 600 particles. The 

average of the outputs of Dx for all pictures were calculated and used as the estimate of site-scale 

grain size.  

 

 

 

 

Figure 4.6 – MATLAB user interface for manual photo-sieving. Actual dimensions of scale object 

were 176 mm length x 129 mm width 

Grid intersect Grain size outputs 

Crosshair Scale object 
Current 
image 

Size of scale 
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4.5.3  Habitat recording at the surber-scale 

To measure grain size at the surber-scale, vertical images of grains within surbers were taken 

from a height of 1 m, when light conditions permitted (fig. 4.7). These images were loaded into 

the MATLAB user interface and grain sizes were measured, as described above. The location of 

surbers was identifiable on larger scale photographs from the markers. Where aerial photographs 

of individual surbers were not possible, grain size at the surber-scale was therefore measureable 

by re-loading images containing markers into the MATLAB programme and measuring only the 

particles in the 0.5 m² area around the marker.  

 

 

Figure 4.7 – Vertical photograph of a surber area used to measure grain size by manual photo-

sieving 

 

Other microhabitat scale variables were recorded within surber areas immediately after crayfish 

sampling and returning of substrate. The exact distance of the surber from the bank was recorded 

to allow lateral distance to be calculated from the transect width. Depth was recorded to the 

nearest centimetre, using a meter stick, in all four corners of the surber area and in the centre. 

Depth was taken to the top layer of base substrate in interstices between cobbles, not resting on 

the top of large substrates. After the surber frame had been removed, flow velocity was recorded 

using an electromagnetic flow metre in corners and the centre of the surber area at both 60% 

depth and the substrate boundary in the exact location of the surber sample.  

 

Overhanging boughs, shade and exposed roots were recorded as present or absent. A visual 

estimate of the percentage cover of each of moss/algae, submerged vegetation and emergent 

vegetation was made for each surber area in the categories: absent, less than 20%, 21-40%, 41-
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60%, 61-80% and greater than 80%.  The characteristics of the bank closest to the surber over the 

0.7 m length of the surber, were recorded according to the material and profile criteria outlined 

above. Bank erosion at this scale was classified as, not eroding; slow erosion, as evidenced by 

undercut banks and cliffs; or fast erosion, such as slumps, poaching or unstable cliffs. A record 

was made for each surber area of presence of bedrock, silt/sand, gravel, pebbles, cobbles and 

boulders classified according to Wentworth (1922) and whether or not grains were embedded 

(see table 4.1 for definitions). 

 

4.6 Preparation of crayfish records for data analysis 

4.6.1 Conversion to carapace lengths 

To be comparable to previous studies, total lengths of WCC needed to be converted to carapace 

length. Total length and carapace length were measured on seventy-two crayfish (twenty-eight 

females, forty males and four too small to be sexed) ranging from 11 to 92 mm total length. Linear 

regression equations were calculated for the relationship between total and carapace length for 

each of males, females and individuals too small to sex and the recorded data converted 

according to these equations.  

 

4.6.2 Elimination of young of the year  

The study period encompassed the release of young of the year causing inconsistency in the total 

number of crayfish caught per site. To prevent bias, young of the year were identified and 

removed from further analysis. Size-frequency plots were drawn to discern what sized individuals 

were young of the year. The percentage of females with young attached and the percentage of 

individuals identified as young of the year were plotted against sample date to verify individuals 

of this size were not present throughout the study period.  

 

4.7 Statistical analyses 

4.7.1 Measuring aggregation 

Analyses to determine whether distribution of crayfish was random or aggregated were 

performed using the frequency distribution of number of crayfish per surber area. The index of 

dispersion was calculated according to equation 4.1. An index of dispersion greater than one 

shows an aggregated distribution (Krebs, 1999).   

   
  

  
       Eq.4.1 

Where    is the variance in number of crayfish per surber and    is the mean number of crayfish 

per surber area. The observed frequency distribution was then compared to expected frequency 

distributions under Poisson and negative binomial models. If the data fits a Poisson distribution, it 

can be inferred that individuals are randomly located. If the data fits a negative binomial 
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distribution, aggregation is evident. The negative binomial exponent was found by solving 

equation 4.2, which is known as the maximum likelihood method (Krebs, 1999). 

                                                                
  

  
     

  

     
  

      Eq. 4.2  

Where, N is the total number of surbers,    is the estimate of the negative binomial exponent,    is 

the sample mean,   is the number of crayfish in a surber and    is calculated according to 

equation 4.3. 

    =                       
 
             Eq 4.3 

Where   is a counter (0,1,2,3 …),   is     and    is the number of surbers containing   individuals 

(Krebs, 1999). A chi-squared goodness-of-fit test was used to assess how well the Poisson 

distribution matched the observed values. The U-statistic was used to test the adequacy of the 

negative binomial distribution as a description of observed counts (Evans, 1953). This was shown 

to be the most efficient test for the given mean and k exponent (Krebs, 1999). If the output of the 

U statistic is less than two times the standard error of the data then the observed data is not 

significantly different from the negative binomial distribution. If the data does fit the negative 

binomial model the formula below can be used to determine whether this aggregation is due to 

variability in the environment (Blackith cited in Southwood and Henderson, 2000). If the mean 

size of an aggregation, as calculated by equation 4.4, is less than two then aggregation is due to 

an environmental effect and is not an active behavioural process. 

   
  

  
   

Where   is the mean number of individuals in a clump, k is the the negative binomial exponent 

and v is the critical value of a chi-squared distribution with 2k degrees of freedom at P = 0.5 

 

4.7.2  Measuring niche breadth 

A preliminary analysis to determine which continuous variables crayfish were showing a response 

to was conducted by calculating marginality and specialisation according to the equations 4.5 and 

4.6 (Hirzel, 2002). 

    
  

  
       Eq. 4.5 

Where    is the specialisation value for the focal habitat variable,    is the standard deviation of 

values of the focal habitat variable in all surber areas and    is the standard deviation of values of 

the focal habitat variable only in surber areas containing crayfish.  

  
         

         
     Eq. 4.6 

Where   is the marginality value for the focal habitat variable,    is the mean value of the focal 

habitat variable in all surbenr areas and     is the mean of values of the focal habitat variable only 

in surber areas containing crayfish. A specialisation value greater than 1 shows the niche width is 

narrower than the range of conditions available. Marginality is usually between 0 and 1. The 

Eq. 4.4 
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closer the marginality value is to one, the larger the difference between the mean of the habitat 

used by crayfish and the mean of all available habitat (Hirzel, 2002). Only variables showing 

marginality values exceeding 0.5 or specialisation values exceeding one were used in further 

analysis, apart from in the logistic regression analysis for which all variables were considered. 

 

For all categorical variables, it was determined whether crayfish were making use of each habitat 

type. For the continuous variables where either specialisation or marginalisation was evident, it 

was determined whether crayfish were making use of the maximum and minimum available 

values. If a population is making use of all habitat types surveyed then no niche limits can be 

specified. Krebs (1999) suggests less than 5% use of an available habitat type suggests it is outside 

the niche space. Proportional use was calculated for each categorical variable and for broad 

groupings of continuous variables. For classes where less than 50 % of the available habitat in that 

class was used by WCC, the class was subdivided to identify any range with less than 5% use, 

maintaining at least ten observations per group.  

 

Smith’s (1982) measure of niche breadth (equation 4.7) was calculated for all variables for which 

the range of conditions made use of was narrower than the range of conditions available. This 

measure (FT) ranges from 0 to 1, with higher values indicating a broader niche, and provides a 

standardized measure of niche breadth for comparison between locations and habitat 

parameters.  

                Eq. 4.7 

Where,    is Smith’s measure of niche breadth,    is the proportion of individuals using habitat 

type j and    is the proportion of total habitat accounted for by type j (Smith, 1982). 

 

4.7.3 Logistic regression 

A single logistic regression model was created in Stata to describe the relationship between 

presence/absence of crayfish in surber areas and the habitat variables shown in table 4.1 for all 

three spatial scales. Logistic regression was the most suitable method for analysing influence of 

habitat parameters on probability of WCC presence in this study as it does not assume normality 

and homoscedasticity (Trexler and Travis, 1993) and is able to cope with continuous, binary and 

categorical independent variables. All recorded habitat variables were assessed for utility in the 

model. For depth, boundary flow velocity, flow velocity at 60 % depth and coefficient of variation 

flow velocity a median value was calculated for each surber area and entered into the logistic 

regression model. The midpoints of the percentage categories of biotope cover and surber 

algae/moss were used (0, 10, 30, 50, 70 or 90%). Pool was then removed due to pool, glide, run 

and riffle creating a near constant sum. Due to low numbers of positive observations, percentage 

coverage of emergent and submerged vegetation at the surber-scale were amalgamated into 
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present/absent for emergent and absent, less than 20 % and greater than 20 % for submerged. 

For categorical data, dummy variables were created. Locational variables of distance downstream 

and lateral sample position were also entered into the model. 

 

It was necessary to remove some variables due to the presence of multicollinearity. 

Multicollinearity violates the assumption of logistic regression that predictor variables are 

independent, resulting in increased standard error, wider confidence intervals, reduced statistical 

significance and erratically acting coefficients (Allison, 1999). A tolerance of 0.2 was used in this 

study. Using Stata, the pair wise correlations between all predictor variables were calculated to 

identify multicollinearity. Any correlation between variables with an R² > |0.8| were considered 

to present a serious collinearity problem (Allison, 1999). Collinearity was dealt with by removing 

the correlated variable least relevant to crayfish. Although variable exclusion risks bias and a loss 

of explanatory power (Menard, 2002), it was felt that all correlations between habitat variables 

with R2 >|0.8| highlighted genuine repetition in recording of an ecologically relevant parameter. 

Therefore, the variable that was least relevant to crayfish, based on previous knowledge of their 

ecology, was removed from the model. 

 

A logistic regression was run with all remaining variables. The least significant variable (highest P 

value) was removed from the model and the logistic regression run again. This process was 

repeated, systematically removing the least significant variable one at a time, until all the 

variables in the model were significant at the 5% level (P< 0.05). For the variables remaining at a 5 

% significance level, Akaike’s information criterion (Akaike, 1973) was calculated for every 

combination of these variables to determine the most parsimonious model. The most 

parsimonious model was the final logistic regression output. To obtain actual probabilities of 

finding crayfish in a given surber area the values of the predictor variables were substituted into 

the final model and the probability calculated according to equation 4.8.  

                                     Eq. 4.8 

Where P is the probability of crayfish being present in a surber and       is the output value 

from the model when the observed values for a given surber area are inputted.  

 

The odds ratios of each predictor variable is the exponential of its coefficient in the logistic model 

and shows the predicted increase in the odds of finding crayfish for every one unit increase in that 

predictor variable, holding all other variables constant. Hence, for binary and categorical variables 

the odds ratio gives the increase in the odds of finding crayfish when these variables are present 

compared to when they are absent. The logistic regression outputs a Z value for each variable in 

the logistic regression. The Z value is the variable’s logistic regression coefficient divided by the 
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standard error. This value shows the relative importance of each predictor variable compared to 

others in the model.  

 

The strength of the model was evaluated using goodness-of-fit tests. The likelihood ratio chi-

square value compares predictions made using the model to expected results with no predictor 

variables to see if the whole model is statistically significant (Trexler and Travis, 1993). The pseudo 

R-squared value was not considered in this study due to the variety of possible techniques used to 

derive the value and the lack of agreement between them. Twenty surbers, selected using a 

random number generator were omitted from analysis and were used to assess the predictive 

performance of the model. It was ensured the twenty validation surber areas were not clustered 

in position, grain size, depth or flow velocity. The reliability of the model was calculated by 

comparing the number of surber areas predicted to have a probability greater than 50 % of having 

crayfish to the number of surber areas in which crayfish were actually observed (c.f. Naura and 

Robinson, 1998). The ability of the model to discriminate between occupied and unoccupied 

surbers (Pearce and Ferrier, 2000) was calculated as omission and commission error. Omission 

error was calculated as the number of surber areas in which WCC were caught when the model 

predicted less than 20 % probability of crayfish being present (Boone and Krohn, 2000). 

Commission error was calculated as the number of surbers in which crayfish were not observed 

when the model had predicted a greater than 80 % chance of crayfish being present.  

 

4.7.4 Measuring habitat preferences 

4.7.4.1 Proportional use 

Preferences for categorical habitat variables were analysed using a chi-squared test to determine 

if observed usage of different habitat types was significantly different from that expected if 

habitat use were random. Where analyses had one degree of freedom Yates’s correction was 

applied to make the Chi-squared estimate more conservative (Eq. 4.9).  The null hypothesis is that 

habitat types are used in proportion to their availability.  The null hypothesis was rejected at the 5 

% significance level.  For each habitat variable for which the chi-squared tests showed a significant 

result, the actual use of each habitat category/class by WCC was graphically compared to the 

expected use if WCC were randomly distributed, to determine the direction and strength of the 

response to the habitat variable by WCC in the study area.  

     
            

 
     Eq. 4.9 

Where    is the chi squared value,   is the observed number in each class and   is the number 

expected in each class is habitat type had no influence on the proportion used. 
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Continuous habitat variables were separated into intervals and proportional use of surbers within 

each class was calculated according to Manly’s alpha (eq. 4.10), which was found from preliminary 

analyses to be the most representative preference index. To normalize the values, 1/total number 

of habitat classes was subtracted from the values of Manly’s alpha. Positive values showed 

selection and negative values showed avoidance.  

           
  

  
  

 

      
      Eq. 4.10 

Where, ri,, rj is the proportion of habitat type   or   used by the individual and    ,   is the 

proportion of habitat type  type   or   or  in the whole study area (Krebs, 1999). 

 

Preliminary analysis showed preference indices to be highly sensitive to variations in number of 

observations per class. Class widths were therefore selected with the aim to maintain a constant 

number of observations per class, as this gave the best representation of the trends evident in the 

data and prevented the result being strongly affected by rare habitat types. Due to variability in 

the frequency of observed values, with multiple observations often having the same value, some 

irregular class widths were necessary. Different numbers of classes were systematically trialled 

and the final number of classes chosen to minimise noise and ensure classes did not span large 

gaps in magnitudes of observations whilst maintaining roughly the same number of observations 

per class. Preference values were plotted to aid identification of trends. 

 

4.7.4.2  Analysis of crayfish population density  

Habitat preferences of WCC were also analysed based on population density of WCC in different 

habitat types. Analyses used the number of crayfish per surber area, including surber areas in 

which no WCC were caught. A Kolmogorov-Smirnoff test was used, in conjunction with the results 

from the goodness-of-fit to Poisson and negative binomial distributions, to determine if the data 

was normally distributed. This test compares the distribution of an observed sample to the 

normal distribution with the null hypothesis that the distributions are the same. A 5 % significance 

level was used. Levene’s tests were also performed for each habitat variable to determine the 

homogeneity of variances of observations in different categories. Again, the null was that all 

categories have equal variances and a 5 % significance level was used. Preliminary analysis 

showed the distribution of the number of crayfish per surber was not normal and variances were 

largely homogeneous. Therefore, non-parametric tests were used.  

 

A Kruskal-Wallis test was performed in Stata for each habitat variable. The test determines 

whether the observations in different categories are from the same population, with the null 

hypothesis that the probability of a random observation from one category exceeding a random 

observation from another category is 0.5 (MacDonald, 2009). All observations of the dependent 
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variable are ranked from the smallest to the largest value.  In this case, the number of crayfish per 

surber was ranked from 1 to 328 using the average rank for tied data. After ranking all 

observations, the test is performed according to equation 4.11. To determine the influence of 

habitat variables measured as continuous data, observations were split into classes based on the 

magnitude of the measured habitat variable. Because this analysis is less sensitive to sample size 

than preference indices, even class widths could be used. Even class widths give results that are 

more ecologically relevant and easier to interpret. Ultimately, class widths were selected to 

minimise noise, to ensure classes did not span large gaps in magnitude of the habitat variable and 

to retain at least ten observations per class. 

                                                     
  

      
 

  
 

  

 
                           Eq. 4.11 

Where H is the Kruskal-Wallis output value, showing the variance of the ranks among categories, 

Ri is the sum of ranks in category i, ni is the number of observations in category i and N is the total 

number of observations. An adjustment was made when ties were present in the ranks of the 

dependent variable by dividing H by the output of equation 4.12. This increases the statistical 

power of the test (Rogerson, 2006).  

   
    

       

    
      Eq. 4.12 

Where t is the number of observations tied at rank i and the sum is over all sets of tied ranks 

(Rogerson, 2006). Because H is approximately a chi-squared distribution the probability of 

obtaining a particular value of H by chance if the null were true can be determined from a chi-

squared distribution table, using the number of groups minus one as the degrees of freedom.  The 

null was rejected at the 5 % significance level.  

 

For the variables with significant Kruskal-Wallis outputs, box plots for each category/class were 

plotted to allow visual comparison of the differences in number of crayfish per surber in different 

categories/classes. Further, Mann-Whitney U tests were performed in Stata to compare all 

possible pair-wise combinations of categories/classes. Essentially, the Mann-Whitney U test 

determines whether there is a significant difference between the medians of two groups. The null 

hypothesis is that the distributions of both groups are equal such that the probability of a random 

observation from the first group exceeding a random observation from the second group is 0.5 

(Aitken and Taroni, 2004). This test also ranks all observations and is calculated according to 

equations 4.13 and 4.14.   

         
         

 
     Eq. 4.13 

   
  

    
     Eq. 4.14 

Where |U| is the Mann-Whitney output value, R1  is the sum of ranks of observations in one of the 

categories, n1  is the number of observations in this category and n2 is the number of observations 
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in the other category. The significance of |U| is automatically outputted in Stata. Because 

multiple pair-wise comparisons were made, Bonferroni corrections were applied. Bonferroni 

corrections adjust the significance level at which the null hypothesis is rejected, to account for the 

increased probability of type 1 errors (significant differences occurring by chance) when multiple 

independent comparisons are made (Aitken and Taroni, 2004). To maintain a type 1 error 

probability of 5 %, the values at which differences between groups were considered significant is 

reduced to 0.05/p where p is the number of pair-wise comparisons made. However, application of 

Bonferroni corrections risks omitting significant differences due to the reduction in the accepted 

significance level being overly conservative. To account for this, Holm’s sequential Bonferroni 

corrections (Holm, 1979) were used in this study. In Holm’s method the alpha value at which a 

difference is considered significant varies depending on the rank of the U value for each pair-wise 

comparison. For the pair-wise comparison with the highest U value to be significant the alpha 

value must be below that calculated in the Bonferroni correction. For subsequent comparisons 

the significant alpha value decreases, according to equation 4.15. The significance values for 

different numbers of categories/classes after applying Holm’s sequential Bonferroni corrections 

are shown in table 4.2.  

 

       
      Eq. 4.15 

 

α is the target significance level, in this study 0.05; n is the number of pair-wise comparisons and r 

is the rank number when all paired comparisons are ranked 1 to n in ascending order of |U|. 
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Table 4.2 – Holm’s sequential Bonferroni correction values. Adjusted significance values to 

maintain a type 1 error probability of 0.05 when conducting multiple pair-wise comparisons. 

Number of different 

classes/categories 

Number of pair-wise 

comparisons made 
|U|Rank Bonferroni corrected 

significance value for  α = 0.05 

3 3 1 0.017 
2 0.025 
3 0.05 

4 6 

1 0.0083 
2 0.01 
3 0.0125 
4 0.017 

    5 … 0.025 

5 10 

1 0.005 
2 0.005556 
3 0.00625 
4 0.007143 

    5 … 0.008333 

6 15 

1 0.0033 
2 0.003571 
3 0.003846 
4 0.004167 

    5 … 0.004545 

7 21 

1 0.0024 
2 0.0025 
3 0.002632 
4 0.002778 

    5 … 0.002941 

8 28 

1 0.0018 
2 0.001852 
3 0.001923 
4 0.002 

    5 … 0.002083 
 

4.7.5 Influence of river position 

The influence of lateral position within the channel on WCC was analysed in three ways. Firstly, 

the number of crayfish in a surber area was correlated against  lateral distance of the surber using 

Spearman’s rank (eq. 4.16), due to preliminary analysis showing a non-linear relationship between 

these data sets. Secondly, the significance of the difference between observed and expected 

proportional use of lateral and medial surbers was calculated using a Chi-squared test and then 

visualised as a box-plot (eq. 4.9). Finally, the average number of crayfish in lateral and medial 

surbers was compared using a Mann-Whitney U test (eqs. 4.13 and 4.14). 

      
     

        
       Eq. 4.16 

Where rs is the spearman’s rank correlation, D is the difference in the rank between the 

dependent variable, in this instance number of crayfish, and the independent variable, lateral 

distance in this case, and n is the number of observations. 
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Total numbers of crayfish found per site (in all ten surbers) and the proportion of surber areas in 

each site that were occupied by WCC were plotted against distance downstream to determine if a 

longitudinal pattern in WCC distribution was evident. Spearman’s rank tests (eq. 4.16) were 

performed to test the significance of these relationships. Separate Spearman’s rank tests were 

conducted to compare number of WCC in each surber area with its distance downstream, number 

of crayfish caught at a site with its distance downstream and number of surber areas within each 

site that were occupied by WCC with distance downstream.  

 

The significance of the difference between observed site totals and site totals expected if all sites 

were used equally was found using a chi-squared test (eq. 4.9). The results were then split into 

the upstream half of the study area (6.6 – 23.5 km downstream) and the downstream half of the 

study area (23.6 – 44.6 km downstream). A chi-squared test (eq. 4.9) was performed to determine 

whether the proportional use of surber areas by WCC in the upstream and downstream halves 

differed from that expected by random. A Mann-Whitney U-test (eqs. 4.13 and 4.14) was 

performed to determine whether the number of WCC in occupied surbers differed between the 

upstream and downstream halves of the study area. All statistical tests were considered 

significant at a 5 % significance level.  

 

Analyses were conducted to determine if the longitudinal pattern of crayfish distribution was 

solely attributable to variations in habitat quality and to determine the cause of any differences 

between WCC distribution in the upstream and downstream halves of the study site. All habitat 

variables for which previous analyses had revealed WCC to have strong consistent responses to 

were considered. Preferred ranges of continuous variables were determined from examining and 

combining the results of all analyses conducted. For surber-scale variables, the proportion of 

surber areas within preferred habitat categories/classes in each site was used in analysis. To 

examine longitudinal influences, the number of crayfish caught per site was plotted against each 

significant habitat variable and Spearman’s rank was performed (eq. 4.16) to determine the 

strength and significance of the correlation. To determine the cause of differences in the 

upstream and downstream half of the study site, chi squared tests (eq. 4.9) were performed to 

compare the proportion of surbers in a given habitat type to the proportion expected if habitat 

types were present in equal amounts in upstream and downstream sections. This analysis 

indicated whether certain habitat types that WCC were responding to were more common in one 

half of the study reach.  

 

The final analysis was performed to determine whether the location of confluences influenced the 

longitudinal distribution of substrate sizes and hence the distribution of WCC in the study area. 

Identifying which tributaries influence the characteristics of the main channel can only be done by 
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considering the effect each tributary has on the grain size, channel form and discharge (Rice and 

Church, 1996). The position of all tributaries were identified on line graphs of the longitudinal 

trends in average site width, a proxy for discharge (average width x average flow velocity x 

maximum recorded depth) and site-scale D50, for which a log2 y-axis scale was used (Rice, 1998).  

Ray Burn, Swilder Burn, Hart Burn and the River Font were identified as the tributaries that 

resulted in discontinuities or step changes in the downstream pattern of these variables in the 

main channel. Rice and Church (1996) acknowledge that ‘recognising trends is seldom 

straightforward and a significant degree of judgement is usually required.’  

 

Site-scale D50 for each site was plotted, on a log2 scale, against distance downstream on a scatter 

graph, using a separate series for each inter-tributary length.  The distance between the upstream 

end of each site and closest upstream influential tributary was calculated. This was not possible 

for sites in the most upstream sedimentary link as the location of the nearest upstream influential 

tributary was unknown. This left 29 data points. To test whether site-scale D50 decreased with  

distance downstream from an influential tributary a one-tailed Pearson’s correlation coefficient 

was calculated (α = 0.05). 

 

To determine if the pattern of WCC distribution was attributable to the sedimentary link substrate 

pattern, and hence could be predicted from the location of influential tributaries, the number of 

WCC caught per site was plotted onto the scatter graph showing sedimentary links, using the 

same x-axis to allow comparison of downstream trends. The correlation between the distance 

downstream of an influential tributary and number of WCC caught per site was calculated using 

Pearson’s correlation coefficient (α = 0.05).  
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5.  Results  

5.1  Preliminary results 

5.1.1  Converting total lengths to carapace lengths 

Strong linear correlations between total length and carapace length (CL) were evident for all 

demographic groups of WCC. The R² values were 0.9942, 0.9941 and 0.9996 for males, females 

and individuals too small to be sexed respectively (fig. 5.1). 

 

 
   Figure 5.1- Correlations between total length and carapace length for 

   a) Males b) Females and c) Individuals too small to be sexed (<21 mm total length) 
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5.1.2  Eliminating young of the year 

Size frequency plots showed distinct grouping in the data (fig.5.2). No captured crayfish measured 

between 13 and 15 mm total length (TL) (6-7.5 mm CL) but smaller and larger individuals were 

present. This is interpreted as the distinction between young of the year and age 1+ crayfish.  

 

 

      Figure 5.2- A size frequency plot using total length of all individuals caught in the survey 

 

Plotting the number of individuals smaller than 13 mm total length per site against sample date 

showed individuals of this size were only captured after 19th July (fig 5.3). Before this date, berried 

females were present. The percentage of the total number of crayfish caught in each site 

accounted for by individuals of less than 13 mm total length increased throughout July, peaked in 

early August and declined thereafter (fig 5.3). 

 

 

      Figure 5.3- Change over sampling period in the percentage of individuals recorded per site           

      accounted for by berried females (red) and individuals less than 13 mm total length (blue) 
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5.2   Distribution of crayfish on the River Wansbeck 

All crayfish captured were WCC. WCC were present at all 27 sites for which permission was 

granted to share results. The total number of crayfish found at each site varied from 4 to 73 

individuals or 4 to 57 with young of the year removed.  The ten surber areas sampled in each site 

covered a total area of 4.9 m2, therefore it could be calculated that the overall mean number of 

crayfish per sampled square meter was 5.3 for all individuals or 4.7 with young of the year 

removed.  At the site-scale the number of crayfish caught per sampled square meter ranged from 

0.8 to 14.9 individuals, with a median of 4.2 crayfish per square meter (fig 5.4a). Of the 328 surber 

areas sampled in total, 229 contained crayfish. Extrapolating the number of crayfish found in each 

0.49 m2 surber area to number per square metre gave estimated densities over a smaller scale. 

These ranged from zero to 24.5 crayfish per square metre with a median of 4.1 (fig 5.4b).  

 

                                        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                    

 

 

 

Figure 5.4 - Box plots showing number of crayfish per square metre a) at the site-scale (total 

number of crayfish caught per site divided by 4.9) and b) at the surber-scale (number of crayfish 

per surber area x 2.041). Colour change shows the median value, blue area shows lower quartile, 

red area shows upper quartile and bars extend to maximum and minimum.  
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The index of dispersion value (Eq. 4.1) was 2.2. The observed frequency distribution of crayfish in 

all surber areas did not fit the Poisson model (fig 5.5) but showed a good fit to the expected 

frequencies of the negative binomial distribution (fig 5.6). A chi-squared goodness-of–fit test 

showed that the observed distribution was significantly different to that expected by the Poisson 

model at the 5 % significance level (table 5.1). The U-statistic for the negative binomial model is 

considerably less than twice the standard error and therefore the binomial model adequately 

describes the observed data (table 5.1). The mean size of an aggregation, as described by 

equation 4.4, was 1.67. 

 

 

Figure 5.5- Comparison of observed frequency distribution of 1+ crayfish in all surber areas 

(columns) to expected frequencies according to Poisson distribution (squares) 

 

 

Figure 5.6- Comparison of observed frequency distribution of 1+ crayfish in all surber areas 

(columns) to expected frequencies according to the negative binomial distribution (squares) 
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Table 5.1- Statistics generated by fitting Poisson and negative binomial distribution models to    

observed frequency distribution and testing their adequacy. Methods follow Krebs (1999) 

Poisson Distribution Negative binomial distribution 

Mean 2.31 Mean 2.31 

Variance 5.10 Variance 5.10 

Index of dispersion 2.20 K value 1.44 

Chi-squared goodness 

of fit 

21926.87 U- statistic for 

goodness-of-fit 

-0.916 

 

Significance (P) < 0.0001 Standard error 0.564 

 

Figure 5.7 shows the percentage of the total number of age 1+ crayfish recorded in the study that 

were found at each site, excluding sites where permission to report was not granted. The sites 

between 9 and 13, inclusive, accounted for a very high percentage of the total catch. Each site 

represented 3 % of the total number of samples but sites 9 to 13 each contained more than 5 % of 

the total number of crayfish caught. Sites 2, 17, 20, 29 and 31 also had relatively high total 

numbers of crayfish (see appendix table 1, where a break-down of site totals and population 

structure is presented). 

 

 

Figure 5.7- Relative distribution of white clawed crayfish in study sites. Height of red bars shows 

the percentage of all crayfish caught in the study found at each sample site on the River 

Wansbeck, omitting sites where permission to report findings was not granted by landowner. 

Numbers show site labels names 

  

5.3  Niche breadth of white clawed crayfish on the River Wansbeck 

5.3.1  Water quality parameters 

Concentrations of nitrite (as N), bromide and phosphate at all sample sites were below the 

detection limits of the Dionex ion chromatography machine. The ranges of concentrations of 

other ions relevant to crayfish in the study area are shown in figures 5.8 and 5.9. pH and dissolved 

oxygen concentration were within required ranges for WCC at all sites (fig 5.10) (Trouhile et al. 

2007). 
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Figure 5.8- Recorded concentrations for ions that white clawed crayfish require for survival. 

Tolerance limits derived from Jay and Holdich (1981) Smith et al. (1996) and Trouilhe et al. (2007) 

(see section 3.4.1).  

 

 

Figure 5.9- Recorded concentrations for ions that white clawed crayfish cannot tolerate above a 

certain concentration. Tolerance limits derived from Smith et al. (1996) and Trouilhe et al. (2007) 

(see section 3.4.1) 
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 Figure 5.10- a) Concentrations of dissolved oxygen and b) pH values. Tolerance limits derived from 

Jay and Holdich (1976) and Lyons and Kelly-Quinn (2003) (see section 3.4.1).  

 

5.3.2 Physical variables 

There was no evidence of marginality in the use of continuously measured habitat variables by 

WCC but the use of several habitat variables was specialised to some degree (table 5.2). No 

response to boundary flow velocity coefficient of variation or D5 at site or surber-scale was 

evident. Depth, D50 and D95 at both site and surber-scale showed the greatest specialisation.  

 

 Table 5.2- Marginality and specialisation values for selection of focal habitat variables by white 

clawed crayfish. Habitat selection was considered to be evident when marginality values exceeded 

0.5 and specialisation values exceed 1, see 4.7.2 for full details.  
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Gradient 0.0443 1.01 Neither 
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Boundary flow coeff. variation 0.00287 0.689 Neither 
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Every category of the habitat variables categorised qualitatively, e.g. bank material, included 

surber areas that contained multiple WCC. This showed that none of these habitat categories 

were intolerable to WCC. Considerably more than 5 % of surber areas in each habitat category 

were made use of by WCC. Crayfish were present in surber areas with the maximum and 

minimum values of boundary flow velocity, flow velocity at 60 % depth and surber D50 and D95. 

Crayfish were not present in surber areas with the maximum values for depth, or the minimum 

values for surber-scale D50 and surber-scale D95. Although no crayfish were found in the surber 

area with the highest median depth, multiple crayfish were present in the surber areas with the 

next highest median depth. This single surber area does not give enough evidence to infer a niche 

limit for depth.  The thirty-five surber areas with D50 less than 8 mm and the nineteen surber areas 

with D95 less than 10 mm never supported multiple crayfish. A single crayfish was present in one 

surber area with these grain sizes but the surveyor’s observations was that this crayfish was 

transitory at the time of the sample. When the niche space was considered as the habitat types 

that WCC used more than 5 % of (c.f. Krebs, 1999), the range of grain sizes within the niche of 

WCC was slightly narrower than that found using total absence. Surber areas with D95 less than 50 

mm and D50 less than 8 mm were not part of the niche space. Applying Smith’s (1982) measure of 

niche breadth to surber-scale D50 and D95 gave values of 0.94 and 0.9 respectively.  

 

5.4  Predicting distribution 

Multicollinearity was found to be present among habitat variables. Table 5.3 shows for each pair 

of variables correlated with an R2 value exceeding |0.8| which variable was retained and which 

was removed from the logistic regression. After performing logistic regression analysis with all 

remaining variables, the final logistic regression model, based on 295 observations, contained 

nine variables significant at P = 0.05.  

 

Table 5.3- Habitat variables removed from logistic regression analysis due to collinearity with 

other habitat variables (R2 > |0.8|) 

Variable removed Colinear with R² 

Stream Order Average width 0.841 

Surber D16 Surber D50 0.8703 

Surber D84 Surber D50 0.8188 

Average width Distance downstream 0.8888 

Site-scale shade Site-scale  overhanging boughs 0.8672 

Surber-scale shading Surber-scale overhanging boughs 0.8990 

Site D84 Site D50 0.8235 

Site D16 Site D50 0.8614 

 

Applying Akaike’s information criterion (Akaike, 1973) to all combinations of these variables 

showed that the optimum model contained five predictor variables (Eq. 5.1 and table 5.4).  Three 
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of these variables, D50 within the surber area, presence of cobbles in a surber area and presence 

of pebbles within a surber area increased the likelihood of the surber area containing crayfish. 

The other variables, wood or shrub as a land-use within 50 m of the channel, decreased this 

chance.  None of the remaining explanatory variables was significantly collinear with each other 

(R² < 0.4).  

     
 

   
                                                  

                                               Eq. 5.1 
 

Where P is the probability of crayfish being present in a given surber area, w is the binary 

presence/absence of woodland as a land-use within 50 m of the channel, s  is the binary 

presence/absence of shrub as a land-use within 50 m of the channel, c is the binary 

presence/absence of cobbles within the surber area, p is the binary presence/absence of pebbles 

within the surber and sb D50 is the D50 in millimetres of the grains within the surber area.  

 

In surber areas containing only sand, silt or bedrock and located in sites where surrounding land-

use is not wood or shrub, the output of the equation 5.1 is – 0.9198. This translates to a 

probability of finding a WCC in a surber sample under these conditions of 28.5 %. Where 

woodland is the dominant land-use within 50 m of the channel, this probability is decreased by a 

factor of 3.91. Presence of shrub within 50 m of the channel decreases the probability of crayfish 

being present by a factor of 2.53. Presence of cobbles in a surber area make it 7.34 times more 

likely to contain crayfish and presence of pebbles in a surber area make it 1.97 times more likely 

to contain crayfish. The calculated Z values (table 5.4) show that cobbles have the greatest 

relative importance in this model.  D50 within the surber area also has a significant influence with 

each one millimetre increase in surber-scale D50 increasing the likelihood of the surber area 

containing crayfish by a factor of 1.015. Surber-scale D50 in the sampled data range from 0 to 150 

mm. Thus, the odds of crayfish being present are 9.46 times higher in surber areas with the 

largest observed D50 than in surber areas where D50 is sand, silt or bedrock. Within the range of 

habitat variables recorded in the study site, the model predicts probabilities of crayfish presence 

between 3.88 and 93.4 %. 

 

Table 5.4- Outputs of the logistic regression.  Standard error and confidence intervals associated 

with odds ratio (to 3 d.p) 

Variable 

 

Coeff. 

 

Odds 

ratio 

Standard 

error 
Z P |z| 95 %  C.I. 

SurberD50 0.015095

1 

1.01

5 

0.006 2.50 0.01

2 

1.00

3 

1.027 

Cobbles 1.993771 7.34

3 

2.925 5.01 0.00

0 

3.36

4 

16.028 

Pebbles 0.676607

2 

1.96

7 

0.598 2.23 0.02

6 

1.08

4 

3.569 

Shrub as 50 m land-use -0.928715 0.39

5 

0.177 -2.08 0.03

8 

0.16

4 

0.949 

Woodland 50 m land-use -1.361704 0.25 0.089 -3.93 0.00 0.13 0.505 
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The likelihood ratio chi-square test was 100 % significant. This is a rare occurrence and shows that 

there is no chance that the likelihood ratio chi-square value could be obtained if the independent 

variables had no affect on the likelihood of finding crayfish. The model performs well at predicting 

presence of crayfish in the twenty surber areas omitted from model creation.  The model predicts 

that eighteen of the twenty observations have more than a 50 % chance of containing crayfish.  

Sixteen of these surber areas actually contained crayfish. Thus, the reliability of the model is 89 %.  

Of the two surber areas the model predicts to have less than a 20 % chance of containing crayfish, 

both were absent of crayfish.  The model predicts eleven surber areas to have more than an 80% 

chance of having crayfish. All of these surber areas did contain crayfish. For this sample, the 

model does not have any omission or commission error at this accuracy level.  

 

5.5  Habitat preferences by proportional use 

5.5.1  Categorical variables 

The results of the chi-squared tests for preference of categorical habitat types are shown in table 

5.5. The categories used are shown in table 4.1. Distribution of crayfish in areas with different 

valley forms and bank profiles was not significantly different from that expected if habitat use 

were random. Only land-use within 5 m of the channel influenced distribution, despite land-use 

within 50 m of the channel emerging as a predictor variable in the logistic regression output. The 

presence of exposed roots, submerged macrophytes or emergent vascular macrophytes did not 

influence the distribution of WCC at either site or surber scale. However, differences in the 

abundance of moss/algae in both sites and surbers did result in a pattern of proportional use 

significantly different from that expected if distribution were random. The presence of 

overhanging boughs above a surber area did not significantly affect the distribution of crayfish but 

the proportion of overhanging boughs within the site did have a significant influence on WCC 

distribution within the study area. Despite the proportion of run, glide and riffle at a site 

influencing proportional use by WCC, no significant response to the percentage of the site 

containing pool biotope was evident. Due to a small number of observations in which substrate 

within a surber area was armoured or embedded (n = 7), no significant influence of this on WCC 

distribution was found. However, a smaller proportion of surber areas with armoured/embedded 

substrate contained crayfish than surber areas without armoured/embedded substrate (43 % 

compared to 72 %). Surber areas containing boulders were not made use of by WCC any more or 

less frequently than would be expected if habitat use were random.  

 

For all other habitat variables, the proportional use by WCC of different categories was 

significantly different from that which would be expected if habitat use were random. Graphs of 

observed frequency of presence of WCC in each habitat category compared to the expected 
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frequency if habitat selection were random reveal the direction and strength of habitat 

preferences by WCC.  

 

Table 5.5 - Habitat preferences for categorical habitat types as shown by chi-squared test analysis. 

Categories used are shown in table 4.1. n = 327 or 328 

Habitat variable 
Chi squared value  

(χ2) 
 

Significance 
Significant at 

α = 0.05 

Valley form 7.724 0.052 No 

Land-use 50 m from channel 6.787 0.079  No 

Land-use 5 m from channel 6.347 

 

0.042 Yes 

Site-scale bank material 23.896 

 

0.000006 

 

Yes 

Site-scale bank profile 1.799 

 

0.615 No 

Site-scale overhanging 

boughs 

6.208 0.0449 Yes 

Site-scale exposed roots 0.923 

 

0.337 No 

Site-scale moss/algae cover 9.691 

 

0.0079 Yes 

Site-scale submerged  

vascular macrophytes 
2.496 0.287 

 

No 

Site-scale emergent  vascular 

macrophytes  

0.635 

 

0.426 No 

Cattle poaching 9.724 

 

0.00182 Yes 

Surber-scale bank material 45.946 

 

< 0.000001 Yes 

Surber-scale bank profile 2.202 

 

0.531 No 

Surber-scale overhanging 
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0.487 0.485 No 

Surber-scale exposed roots  0.154 

 

0.694 No 

Surber-scale moss/algae 

cover 

26.8301 

 

0.000062 

 

Yes 

Surber-scale submerged 

vascular macrophytes 

0.519 

 

0.771 No 

Surber-scale emergent  

vascular macrophytes 

0.155 

 

0.694 No 

Surber-scale erosion 7.532 

 

0.0231 Yes 

Pool  3.231 

 

0.357 No 

Glide 7.944 

 

 

0.0472 Yes 

Run 8.140 

 

0.0432 Yes 

Riffle 11.639 

 

0.0202 Yes 

Substrate 

armouring/embedding 

1.593 

 

0.207 No 

Bedrock 16.728 

 

0.000043 Yes 

Boulder 1.349 

 

0.246 No 

Boulder and/or cobble 48.465 

 

< 0.000001 Yes 

Boulder, cobble and/or  

pebble 

48.019 

 

< 0.000001 Yes 
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Figure 5.11- Observed and expected numbers of surber areas containing crayfish in different 

categories of land-use within 5 m of the channel. Expected values based on random habitat use 

 

Areas with grassland/arable farmland with 5 m of the channel are used by WCC more frequently 

than expected whereas areas where wood and shrub are predominant within 5 m of the channel 

are used less frequently than expected (fig. 5.11). Similar patterns of preference for bank material 

were seen at the site and surber-scale (figs. 5.12 and 5.13). Areas with earth banks were used by 

WCC in a higher proportion and areas with bedrock banks used in a lower proportion than 

expected at random. At the surber-scale areas with boulders/cobbles as bank material were 

relatively avoided by WCC in the study area. This is the opposite result to boulders at the site-

scale, which were preferred.  

 

 

Figure 5.12- Observed and expected numbers of surber areas containing crayfish in different 

categories of bank material recorded at the site-scale. Expected values based on random habitat 

use 

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

200 

Grass/farm Wood Shrub 

N
u

m
b

er
 o

f 
su

rb
er

s 
co

n
ta

in
in

g 
cr

ay
fi

sh
 

Land-use categories 

Observed 

Expected 

0 

50 

100 

150 

200 

250 

Earth Bedrock Boulder 

N
u

m
b

e
r 

o
f 

su
rb

er
s 

co
n

ta
in

in
g 

cr
ay

fi
sh

 

Bank material categories 

Observed 

Expected 



Page | 84  
 

 

Figure 5.13- Observed and expected numbers of surber areas containing crayfish in different 

categories of bank material recorded at the surber-scale. Expected values based on random 

habitat use 

 

Areas where cattle poaching of the riverbank had occurred were used by WCC in a higher 

proportion than expected at random (fig. 5.14a). Similarly, areas where rapid erosion was evident 

at the surber-scale in the form of poaching, slumps or unstable cliffs were used in a higher 

proportion than expected (fig. 5.14b).  Conversely, surber areas adjacent to banks showing signs 

of slow erosion, such as undercut banks, were used by WCC less frequently than would be 

expected if habitat use were random. 

 

Figure 5.14- Observed and expected numbers of surber areas containing WCC in a) sites with bank 

poaching present and absent and b) areas of different speeds of bank erosion adjacent to the 

surber. Expected values based on random habitat use 
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Moss/ algae was the only vegetation type that influenced distribution of WCC in the study area. 

At the site-scale, areas with low moss/algae cover (less than 33 % of the site) were relatively 

avoided. Areas with intermediate coverage (between 33 and 66 % of the site) were used more 

frequently than expected at random and no deviation from the expected proportional use was 

evident for sites with very high coverage of moss (fig. 5.15). A similar pattern was evident at the 

surber-scale. Surber areas that did not contain moss/algae were used considerably less and surber 

areas with 1 – 20 % coverage of moss/algae marginally less than would be expected at random. 

Surber areas with 21 -80 % moss/algae cover were used more frequently than expected at 

random. No response by WCC to high abundances (more than 80 % coverage) of moss/algae was 

evident (fig. 5.16). Surber areas in sites where overhanging boughs were abundant (covered more 

than 33 % of the site) had lower occupancy rates than expected at random whilst surber areas in 

sites with less than 33 % cover by overhanging boughs or no boughs at all had slightly higher 

occupancy than expected at random (fig. 5.17). 

 

 

Figure 5.15- Observed and expected numbers of surber areas containing crayfish in sites with 

different percentage cover of moss/algae. Expected values based on random habitat use 
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Figure 5.16- Observed and expected numbers of surber areas containing crayfish in different 

categories of percentage cover of moss/algae. Expected values based on random habitat use 

 

 

Figure 5.17- Observed and expected numbers of surber areas containing crayfish in sites with 

differing percentage cover by overhanging boughs. Expected values based on random habitat use 
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random (fig. 5.18).  A complex pattern of proportional use in sites with differing proportions of 

run biotope was found in the study area. Surber areas in sites without any run biotope and in sites 

in which run biotope accounted for 21 – 40 % of the site area were occupied by WCC slightly more 
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which run biotope accounted for 1 – 20 % or 61 – 80 % of the site area were occupied by WCC 

slightly less frequently than expected (fig. 5.19). Surber areas in sites with intermediate 

proportions (1 – 40 %) of riffle biotope were preferred by WCC in the study area. Surber areas in 

sites where riffle biotope was absent or where riffle accounted for more than 40 % of the site 

area were relatively avoided by WCC in this study (fig. 5.20). 

 

 

Figure  5.18- Observed and expected numbers of surveyed surber areas containing crayfish in sites 

with differing percentage cover of glide biotope. Expected values based on random habitat use 

 

 

Figure 5.19- Observed and expected numbers of surveyed surber areas containing crayfish in sites 

with differing percentage cover of run biotope. Expected values based on random habitat use 
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Figure 5.20- Observed and expected numbers of surveyed surber areas containing crayfish in sites 

with differing percentage cover of riffle biotope. Expected values based on random habitat use 

 

Considerable differences between observed and expected proportional use by WCC of surber 

areas containing different substrate types were found. Surber areas containing bedrock were 

occupied less frequently than expected (fig. 5.21). Surber areas without boulders or cobbles were 

used by WCC less frequently than if habitat use were random (fig. 5.22). This difference was even 

more significant for surber areas than did not contain boulder, cobbles or pebbles. Only one such 

surber area was occupied meaning the observed value was considerably lower than the expected 

(fig. 5.23). 

 

 

Figure 5.21- Observed and expected numbers of surveyed surber areas containing crayfish when 

bedrock was and was not present. Expected values based on random habitat use 

0 

20 

40 

60 

80 

100 

120 

140 

0 1 - 20 21 - 40 41 - 60 61- 80 

N
u

m
b

er
 o

f 
su

rb
er

s 
co

n
ta

in
in

g 
cr

ay
fi

sh
 

Percentage cover of site by riffle biotope 

Observed  

Expected 

0 

50 

100 

150 

200 

250 

Absent Present 

N
u

m
b

er
 o

f 
su

rb
er

s 
co

n
ta

in
in

g 
cr

ay
fi

sh
 

Bedrock 

Observed  

Expected 



Page | 89  
 

 

Figure 5.22- Observed and expected numbers of surveyed surber areas containing crayfish when 

boulders and/or cobble were and were not present. Expected values based on random habitat use 

 

 

Figure 5.23- Observed and expected numbers of surveyed surber areas containing crayfish when 

boulders and/or cobble and/or pebbles were and were not present. Expected values based on 

random habitat use 
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trends were evident for all other continuous variables for which specialisation had been found. 

For median depth, this trend was an intermediate peak. Surber areas with median depths 

between 16 and 20 cm were preferred and surber areas shallower than 16 cm and deeper than 30 

cm were relatively underused (fig. 5.24). Regardless of the groupings used, there was noise in the 

pattern of depth preference.  
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                Figure 5.24- Preferences by white clawed crayfish for different depth classes, as                  

                calculated by Manly’s alpha. n is the approximate number of observations per group 

 

A preferences for intermediate values of flow velocities relative to the recorded range was 

demonstrated by WCC. Areas with flow velocity between 0.05 ms-1 and 0.16 ms-1  at 60 % depth 

and between 0.02 ms-1 and 0.12 ms-1 at the river bed were preferred (fig. 5.25 and 5.26). Slower 

and faster flowing areas were relatively avoided, particularly when considering boundary flow.  

 

  

     Figure 5.25- Preferences by white clawed crayfish for different flow velocities at 60 % depth,  

    as calculated by Manly’s alpha. n is the approximate number of observations per group 
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                 Figure 5.26- Preferences by white clawed crayfish for different boundary flow velocity                 

                 classes, as calculated by Manly’s alpha. n is the number of observations per group 

 

Selection for grain size was evident at both the site and surber scale but alpha values are higher 

and trends more consistent at the surber-scale than at the site-scale. There was strong avoidance 

of surber areas with D50 less than 8 mm and D95 less than 50 mm. Intermediate D50 values were 

preferred; strong selection was evident for surber areas with D50 values between 35 and 77.5 mm 

(fig. 5.27). Selection for surber-scale D95 was less specific, with all D95 values above 92 mm being 

selected for equally (fig. 5.28).  Similar trends were evident at the site-scale. Surber areas in sites 

with average D50 less than 10 mm were avoided and site-scale average D50 greater than 53 mm 

was selected for (fig. 5.29). Surber areas in sites with average D95 less than 100 mm were avoided 

and surber areas in sites with average D95 greater than 215 mm were preferred. Between these 

grain sizes there was noise in the data set and alpha values were small (fig. 5.30). 
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 Figure 5.27- Preferences by white clawed crayfish for different classes of D50 value in surber areas, 

as calculated by Manly’s alpha. n is the approximate number of observations per group 

 

 

Figure 5.28- Preferences by white clawed crayfish for different classes of average D95 values in 

surber areas, as calculated by Manly’s alpha. n is the approximate number of observations per     

group 
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   Figure 5.29- Preferences by white clawed crayfish for different classes of average D50 values in   

  sites, as calculated by Manly’s alpha. n is the approximate number of observations per group 

 

 

  Figure 5.30- Preferences by white clawed crayfish for different classes of average D95  values,  

  in sites as calculated by Manly’s alpha. n is the approximate number of observations per group 
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output of Levene’s tests for valley-form and all biotope types were significant at the 5 % 

significance level, meaning observations in categories of these variables had unequal variances. 

Overall, non-parametric tests were deemed suitable for analysis of WCC population density.  

   

5.6.1  Categorical variables 

From Kruskal-Wallis tests it can be seen that the number of crayfish per surber area was not 

influenced by valley-form, bank profile at both site and surber scale, exposed roots at both scales, 

submerged and emergent vascular macrophytes at both scales, overhanging boughs at the 

surber-scale or presence of boulders in a surber area (table 5.6). For all other measured 

categorical habitat variables the sampled densities of WCC in different categories were from 

significantly different populations.   

 

Table 5.6 – Results of Kruskal-Wallis tests performed on categorical habitat variables. Differences 

are considered significant at an α value of 0.05. See table 4.1 for categories 

Habitat variable Kruskal-Wallis value 
(H) 

 

Significance Significant at 
α = 0.05 Valley form 7.717 0.051 No 

Land-use 50 m from channel 6.617 0.0366 Yes 

Land-use 5 m from channel 23.339 0.0001 Yes 

Site-scale bank material 22.184 0.0001 Yes 

Site-scale bank profile 0.3 0.8609 No 

Site-scale overhanging boughs 11.270 0.0036 Yes 

Site-scale exposed roots 1.697 0.1927 No 

Site-scale moss/algae cover 19.423 0.0001 Yes 

Site-scale submerged vascular 

macrophytes 

4.201 0.1224 No 

Site-scale emergent vascular 

macrophytes 

1.340 0.2471 No 

Cattle poaching 11. 056 0.0009 Yes 

Surber-scale bank material 9.038 0.0288 Yes 

Surber-scale bank profile 0.858 0.8355 No 

Surber-scale overhanging boughs 0 1 No 

Surber-scale exposed roots  1.412 0.2347 No 

Surber-scale moss/algae cover 22.740 0.0004 Yes 

Surber-scale submerged vascular 

macrophytes 

3.455 0.6301 No 

Surber-scale emergent vascular 

macrophytes 

0.272 0.6023 No 

Surber-scale erosion 13.206 0.0014 Yes 

Pool  8.620 0.0348 Yes 

Glide 14.41 0.0027 Yes 

Run 23.878 0.0001 Yes 

Riffle 23.209 0.0001 Yes 

Substrate armouring/embedding 3.369 0.0664 No 

Bedrock 22.939 0.0001 Yes 

Boulder 1.984 0.1590 No 

Boulder and/or cobble 41.460 0.0001 Yes 

Boulder, cobble and/or  pebble 35.092 0.0001 Yes 
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Areas with grass or farmland within 5 m of the channel had significantly higher densities of WCC 

than other land-uses (fig. 5.31a and table 5.7). Similarly, areas with grass or farmland within 50 m 

of the channel had significantly higher densities of crayfish than areas of woodland (figure 5.31b 

and table 5.7). There was no significant differences in density of crayfish in areas of the channel 

with a surrounding land-use of woodland compared to areas with a surrounding land-use of 

shrubs.   

 

Figure 5. 31 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in areas of differing land-use within a) 5 m and 

b) 50 m of the channel. n is the number of surber areas sampled  in each category 

 

Table 5.7 – Significance P values of Mann-Whitney U tests for paired comparisons of white clawed 

crayfish density in different land-use categories. Yellow shows significant differences after 

application of Holm’s sequential Bonferroni corrections 

Land use 5 m Grass/arable Woodland Shrub 

Grass/arable       

Woodland 0.0008     

Shrub 0 0.6537   
 

Land use 50 m Grass/arable Woodland Shrub 

Grass/arable       

Woodland 0.0133     

Shrub 0.2562 0.6604   
 

Sites where the predominant bank material was bedrock had significantly lower densities of WCC 

than sites with a predominant bank material of earth or boulder/cobble (fig. 5.32a and table 5.8). 

There was no significant difference between WCC densities in areas of different bank material 

when viewed at the surber-scale. Despite surber areas adjacent to banks composed of clay or 

fines containing a much lower median density of crayfish than all other bank materials, this 

difference was not significant due to the low number of observations in this category (fig. 5. 32b 

and table 5.8). 
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Figure 5.32 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in areas of differing bank material  over a) site-

scale and b) surber-scale. n is the number of surber areas sampled  in each category 

 

Table 5.8 – Significance P values of Mann-Whitney U tests for paired comparisons of white clawed 

crayfish density in different bank material categories. Yellow shows significant differences after 

application of Holm’s sequential Bonferroni corrections 

Site- scale bank material Earth Boulder/Cobble  Bedrock 

Earth       

Boulder/cobble 0.6583     

Bedrock 0 0   
 

Surber bank material Earth Boulder/cobble Bedrock Clay/fines 

Earth         

Boulder/cobble 0.0312       

Bedrock 0.4064 0.9378     

Clay/fines 0.0329 0.1099 0.2311   
 

Sites with evidence of cattle poaching contained significantly higher densities of crayfish than 

sites where cattle poaching was not evident (fig. 5.33b and table 5.9). Similarly, surber areas 

adjacent to banks showing rapid erosion (slumps, poaching or unstable cliffs) contained 

significantly higher densities of crayfish than surber areas next to banks that were not eroding or 

were showing signs of slow erosion (fig. 5.33a and table 5.9).  
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Figure 5.33 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in areas of differing in a) speeds of erosion at the 

surber-scale and b) presence of cattle poaching at the site-scale. n is the number of surber areas 

sampled  in each category 

 

Table 5.9 – Significance P value of Mann-Whitney U tests for paired comparisons of white clawed 

crayfish density in different erosion and cattle poaching categories. Yellow shows significant 

differences after application of Holm’s sequential Bonferroni corrections 

 

Cattle Poaching Present Absent 

Present     

Absent 0.0009   
 

Erosion Absent Slow Fast 

Absent       

Slow 0.3654     

Fast 0.0016 0.0004   
 

Population density of WCC was significantly lower in sites where more than two thirds of the 

channel was covered by overhanging boughs than in sites where overhanging boughs covered less 

of the channel or were absent (fig. 5.34a and table 5.10). Despite this, overhanging boughs had no 

influence on WCC population density at the surber-scale. 

 

At both site and surber-scale, abundance of moss/algae influenced average population density of 

WCC. Sites with less than a third of the substrate covered in moss/algae had significantly lower 

densities of crayfish than sites with 33 – 66 % coverage by moss/algae. No significant difference 

was evident between sites with more than 66 % moss/algae cover and all other sites . An 

intermediate coverage by moss/algae gives resulted in the highest densities of WCC (fig. 5.34b 

and table 5.10). Surber areas in which more than 20 % of substrate was covered by moss/algae 
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has higher median WCC densities than surber areas with less than 20 % or no moss/algae present 

(fig. 5.35). However, the only significant difference was that surber areas without any moss/algae 

contained lower numbers of WCC than surber areas where 21- 80 % of substrate was covered by 

moss/algae (table 5.11). 

 

 

Figure 5.34 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in sites with different percentage coverage of a) 

overhanging boughs and b) moss/algae. n is the number of surber areas sampled in each category 

 

Table 5.10 – Significance P value of Mann-Whitney U tests for paired comparisons of white clawed 

crayfish density in different site-scale overhanging boughs and moss/algae percentage cover 

categories. Yellow shows significant differences after application of Holm’s sequential Bonferroni 

corrections 

Site overhanging boughs Absent < 33 % > 33 % 

Absent       

< 33 % 0.7993     

> 33 % 0.0032 0.0021   

    Site moss/algae cover < 33 % > 33 % > 66 % 

< 33 %       

> 33 % 0     

> 66 % 0.1445 0.0309   
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Figure 5.35 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with different percentage coverage of 

moss/algae. n is the number of surber areas sampled in each category 

 

Table 5.11 – Significance P value of Mann-Whitney U tests for paired comparisons of white clawed 

crayfish density in different surber- scale moss/algae percentage cover categories. Yellow shows 

significant differences after application of Holm’s sequential Bonferroni corrections 

Surber-scale 
moss/algae cover Absent 1 - 20 % 21 - 40 % 41 - 60 % 61- 80 % 81 - 100 % 

Absent             

1 - 20 % 0.0075           

21 - 40 % 0.0004 0.3417         

41 -60 % 0 0.0319 0.2033       

61 - 80 % 0.0001 0.1536 0.6024 0.4581     

81 - 100 % 0.0062 0.3926 0.8104 0.5646 0.912   
 

Average population density of WCC varied in response to differences in the proportional cover of 

different hydraulic biotopes. Average number of crayfish per surber area was significantly lower in 

sites where pool accounted for 21-40 % of the channel area than all other sites (fig. 5.36a and 

table 5.12). Surber areas in sites with high proportions of glide (more than 60 %) had significantly 

higher densities of crayfish than surber areas in sites with less 60 % glide. Below 60 % 

proportional cover of glide had no influence on average population density of crayfish per surber 

area (fig. 5.36b and table 5.12). Number of crayfish per surber area peaked in sites in which riffle 

covered 21 – 40 %. However, the only significant difference between WCC population density in 

areas of differing proportion of riffle was that sites where riffle covered more than 60 % of the 
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site area had significantly lower densities of WCC than sites with 0 to 60 % cover by riffle biotope 

(fig 5.37a and table 5.13). Surber areas in sites which contained no run biotopes had significantly 

higher densities of WCC than sites where run was present (fig 5.37b and table 5.13). The response 

by WCC to percentage cover by run was complex with sites in which run accounted for 1 – 20 % of 

the site area having significantly lower densities of crayfish than sites in which run accounted for 

21 – 40 % of the site area.  

 

 

Figure 5.36 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in sites with different percentage coverage of a) 

pool  and b) glide. n is the number of surber areas sampled in each category 

 

Table 5.12 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different pool and glide percentage cover categories. Yellow shows significant 

differences after application of Holm’s sequential Bonferroni corrections 

Pool Absent 1 - 20 % 21 - 40 % 41 - 60 % 

Absent     
 

  

1 - 20 % 0.4636       

21 - 40 % 0.0037 0.0287     

41 -60 % 0.5095 0.7089 0.3554   

     

Glide 1 - 20 % 21 - 40 % 41 - 60 % 61- 80 % 

1 - 20 %         

21 - 40 % 0.5572       

41 -60 % 0.4837 0.9927     

61 - 80 % 0.0015 0.0005 0.0007   
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Figure 5.37 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in sites with different percentage coverage of a) 

riffle  and b) run. n is the number of surber areas sampled in each category 

 

Table 5.13 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different riffle and run percentage cover categories. Yellow shows significant differences 

after application of Holm’s sequential Bonferroni corrections 

Riffle Absent 1 - 20 % 21 - 40 % 41 - 60 % 61- 80 % 

Absent           

1 - 20 % 0.0494         

21 - 40 % 0.0127 0.0501       

41 -60 % 0.3073 0.1495 0.0108     

61 - 80 % 0.3543 0.0011 0.0002 0.0267   
 

Run Absent 1 - 20 % 21 - 40 % 41 - 60 % 

Absent         

1 - 20 % 0       

21 - 40 % 0.0001 0.0101     

41 -60 % 0.0004 0.2864 0.5863   
 

Surber areas with armoured substrate contained considerably lower crayfish densities than surber 

areas where grains were not embedded. However, there were too few positive observations for 

this difference to be significant. Densities of WCC were significantly lower in surber areas that 

contained bedrock than those that did not (fig. 5.38a and table 5.14). There was no significant 

difference in the average population density of WCC in surber areas with or without boulders but 

surber areas with cobbles or boulders contained significantly more crayfish than surber areas 

without (fig. 5.38b and table 5.14). The difference between WCC population density in surber 

areas containing at least one of boulders, cobbles or pebbles and those without boulder, pebble 

or cobble was highly significant (fig. 5.38c and table 5.14). Only one crayfish was found in the 

twenty-two surber areas containing only gravel, fines or bedrock. The surveyor observed that this 
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crayfish was moving between refuges at the time of survey. Population density in areas of gravel, 

fines and bedrock was effectively zero. 

 

 

Figure 5.38 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with and without a) bedrock, b) 

boulders and/or cobbles and c) boulders and/or cobbles and/or pebbles. n is the number of surber 

areas sampled in each category 

 

Table 5.14 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in surber areas with and without different substrate categories. Yellow shows significant 

differences after application of Holm’s sequential Bonferroni corrections 

Bedrock Present Absent 

Present     

Absent 0   
 

Boulders and/or cobbles Present Absent 

Present     

Absent 0   
 

Boulders, cobbles and or pebbles Present Absent 

Present 
  Absent 0 
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5.6.2  Continuous variables 

From Kruskal-Wallis tests it can be seen that the number of WCC per surber area varied 

significantly between classes of all continuous variables apart from flow velocity at 60 % depth 

(table 5.15). Box plots and Mann-Whitney U tests show which categories have significantly 

different densities of WCC. 

 

Table 5.15 – Results of Kruskal-Wallis tests performed on classes of habitat variables measured 

continuously. Differences are considered significant at an α value of 0.05 

Habitat 
variable 

Classes 
Kruskal-Wallis 

value (H) 
 

Significance 
Significant at 

α = 0.05 

Depth 
0 – 10 cm, 11 – 20 cm, 20- 30 cm, 
31 – 40 cm, 41 – 50 cm, 50 + cm 

20.558 0.001 Yes 

Boundary 
flow velocity 

0 – 0.005 ms
-1

, > 0.005 – 0.02 ms
-1

, 
> 0.02 – 0.1 ms

-1
, > 0.1 – 0.2 ms

-1
, 

> 0.2 ms
-1 

12.131 0.0164 
Yes 

 

Flow velocity 
at 60 % 
depth 

0 – 0.005 ms
-1

, > 0.005 – 0.02 ms
-1

, 
> 0.02 – 0.1 ms

-1
, > 0.1 – 0.2 ms

-1
,  

> 0.2 ms
-1

 
4.599 0.331 No 

Site-scale D5 

1 – 2 mm, > 2 – 4 mm, > 4 - 6 mm, 
> 6 – 8 mm, > 8 – 10 mm, > 10 - 12 
mm,  > 12 mm 

37.425 0.0001 Yes 

Site-scale D50 

1 – 10 mm, > 10 – 20 mm, > 20 -30 
mm, > 30 – 40mm, > 40 – 50 mm, > 
50 -60 mm, >60 – 70 mm, > 70 -80 
mm, > 80 mm 

32.535 0.0001 Yes 

Site-scale D95 
0 – 100 mm, > 100 – 130 mm,  
> 130 – 160 mm, > 160 – 190 mm, 
> 190 – 220 mm, > 220 mm 

32.870 0.0001 Yes 

Surber-scale 
D5 

0 – 1 mm, > 1 – 6 mm, > 6 - 12 mm, 
>12 – 18 mm, > 18 – 24 mm,  
>24 mm 

25.594 0.0001 Yes 

Surber-scale 
D50 

0 – 8 mm, > 8 – 20 mm, > 20 - 40 
mm, > 40  – 60 mm, > 60 – 80 mm, 
> 80 - 100 mm, > 100 mm 

83.169 0.0001 Yes 

Surber-scale 
D95 

0 – 50 mm, > 50 – 100 mm, > 100 - 
150 mm, > 150 – 200 mm, > 200 – 
250 mm, > 250 - 300 mm, > 300mm 

56.843 0.0001 Yes 

  

Highest median densities of WCC were found in surber areas with intermediate values of both 

depth and boundary flow velocity relative to the sampled range. Shallow areas (< 10 cm depth) 

had significantly fewer crayfish than surber areas in which water depth was between 11 and 20 

cm (fig. 5.39a). Although very deep areas (> 50 cm depth) had low densities of crayfish, fewer 

than one crayfish per surber area on average, this difference was not significant due to the low 

number of observations in this class (table 5.16). A highly skewed distribution in observed flow 

velocities meant analysis of average population density using even class widths was 
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uninformative. Surber areas with boundary flow velocity between 0.02 and 0.1 ms-1 contained the 

highest crayfish densities (fig 5.39b). However, the broad range of WCC densities found in surber 

areas with these flow velocities mean there is no significant difference between crayfish densities 

in any of the flow categories when considered using separate Mann-Whitney U tests with 

bonferroni corrections (table 5.17). 

 

 

Figure 5.39 - Box plots, showing minimum, lower quartile , median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with differing a) depth and b) 

boundary flow velocity. n is the number of surber areas sampled in each category  

 

Table 5.16 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different depth classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Depth (cm) 0 - 10 > 10 - 20 > 20 - 30 > 30 - 40 > 40 - 50 > 50 

0 - 10              

> 10 - 20 0.0001           

> 20 -30 0.006 0.5257         

> 30 - 40 0.3122 0.027 0.1534       

> 40 -50 0.3645 0.5323 0.7476 0.7556     

> 50 0.4227 0.0114 0.0312 0.2069 0.2252   

 

Table 5.17 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different boundary flow velocity classes. Yellow shows significant differences after 

application of Holm’s sequential Bonferroni corrections 

Boundary flow 
velocity (m/s) 

0 - 0.005 > 0.005 - 0.02 > 0.02 -0.1 > 0.1 - 0.2 > 0.2 

0 - 0.005 
     

> 0.005 - 0.02 0.5327 
    

> 0.02 - 0.1 0.0323 0.0271 
   

> 0.1 - 0.2 0.7828 0.6843 0.019 
  

> 0.2 0.7224 0.3648 0.0358 0.5981 
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Strong responses to substrate size were evident in patterns of WCC density. WCC were present in 

significantly lower densities in sites with D5 less than 2 mm than in all other sites (fig. 5.40a and 

table 5.18). A similar trend was seen at the surber-scale with surber areas containing substrate 

with a D5 value less than or equal to 1 mm having significantly lower densities of crayfish than 

surber areas in which substrate D5 was between 1 and 12 mm but this difference was not 

sustained as D5 class values increased (fig. 5.40b and table 5.18). Similarly, areas in the smallest 

class of D95 supported significantly fewer crayfish at both the site and surber-scale but further 

increases in D95 had no consistent influence on WCC density (fig. 5.41 and table 5.19). Only one 

surber area with D95 less than 50 mm contained a crayfish.  

 

There were also significantly fewer crayfish in surber areas with D50 less than 8 mm and in surber 

areas within sites where average D50 was less than 10 mm (table 5.20).  Only one surber area with 

D50 less than 8 mm contained a crayfish. At the site-scale, average D50 of 50 to 60 mm had the 

highest median density of crayfish but this difference was only significant when compared to 

areas with D50 30 to 40 mm, which contained relatively few crayfish (fig 5.42a and table 5.20). A 

stronger trend was evident at the surber-scale (fig. 5.42b). Box plots show an increase of median 

number of crayfish per surber area as grain size classes increases from 0 - 8 to 60 - 80 mm and a 

decline thereafter. Crayfish population density is significantly higher in surber areas with D50 

between 40 and 80 mm than surber areas with smaller D50 values. Surber areas with D50 between 

60 and 80 mm have significantly higher densities of crayfish than surber areas with D50 between 0 

and 40 mm but the difference with surber areas with D50 between 40 and 60 mm is not significant 

(table 5.19). The range of surber-scale D50 most heavily selected for by WCC in the study area can 

be clearly defined as greater than 40 mm, although there is suggestion that 40 – 80 mm is the 

preferred range (fig 5.41b).  
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Figure 5.40 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with differing D5  values at a) site-scale 

and b) surber-scale. n is the number of surber areas sampled in each category 

 

Table 5.18 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different D5 classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Site D5 (mm) 0 - 2  > 2 - 4 > 4 - 6 > 6 - 8 > 8 - 10 > 10 -12 > 12 

0 - 2               

> 2 - 4 0             

> 4 - 6 0 0.7125           

> 6 - 8 0.0002 0.2035 0.1695         

> 8 - 10 0 0.7681 0.5952 0.322       

> 10 - 12 0 0.9253 0.5088 0.2627 0.8735     

> 12 0.0003 0.1063 0.1256 0.0471 0.0611 0.1185   
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Table 5.18 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different D5 classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Surber D5 (mm) 0 - 1 > 1 - 6 > 6 - 12 > 12 - 18 > 18 - 24 > 24 

0 - 1             

> 1 - 6 0.0029           

> 6 - 12 0 0.1604         

> 12 - 18 0.0163 0.8248 0.3716       

> 18 - 24 0.0117 0.4344 0.779 0.5523     

> 24 0.0068 0.464 0.7377 0.6659 0.8693   

 

 

Figure 5.41 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with differing D95 values at a) site-

scale and b) surber-scale. n is the number of surber areas sampled in each category. 
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Table 5.19 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different D95 classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Site D95 (mm) 0 - 100 > 100 - 150  > 150 - 200 > 200 - 250 > 250 - 300 > 300 

0 - 100             

> 100 - 150 0           

> 150 - 200 0.0001 0.0391         

> 200 - 250 0 0.8146 0.0974       

> 250 - 300 0 0.0721 0.5075 0.1222     

> 300 0 0.2974 0.3995 0.3955 0.5532   

        

Surber D95 
(mm) 

0 - 50 > 50 -100 > 100 - 150 > 150 -200 > 200 - 250 > 250 -300 > 300 

0 - 50               

> 50 - 100 0             

> 100 - 150 0 0.3783           

> 150 - 200 0 0.0112 0.0724         

> 200 - 250 0 0.6451 0.3418 0.0298       

> 250 - 300 0 0.4802 0.7761 0.8051 0.4065     

> 300 0.0001 0.3924 0.5767 0.9721 0.3321 1   
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Figure 5.42 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in surbers with differing D50 values at a) site-

scale and b) surber area-scale. n is the number of surber areas sampled in each category. 

 

Table 5.20 – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different D50 classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Site D50 
(mm) 

0 -10 > 10 - 
20 

> 20 - 
30 

> 30 - 
40 

> 40 - 
50 

> 50 - 
60 

> 60 - 
70 

> 70 - 
80 

> 80 

0 - 10                   

> 10 - 20 /                 

> 20 -30 0.0005 /               

> 30 - 40 0.0024 / 0.216             

> 40 - 50 0 / 0.7562 0.0184           

> 50 - 60 0 / 0.3537 0.0015 0.2934         

> 60 - 70 0 / 0.8932 0.0761 0.7868 0.2689       

> 70 - 80 0.0641 / 0.2713 0.9312 0.1246 0.0366 0.2247     

> 80 0.0034 / 0.7546 0.1379 0.4998 0.176 0.7504 0.3878   
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Table 5.20 cont. – Significance P value of Mann-Whitney U tests for paired comparisons of crayfish 

density in different D50 classes. Yellow shows significant differences after application of Holm’s 

sequential Bonferroni corrections 

Surber D50 (mm) 0 - 8 > 8 - 20 > 20 - 40 > 40 - 60 > 60 - 80 > 80 - 100 > 100 

0 - 8               

> 8 - 20 0             

> 20 - 40 0 0.0412           

> 40 - 60 0 0 0.0128         

> 60 - 80 0 0 0.00385 0.3518       

> 80 - 100 0 0.1147 0.9027 0.1234 0.0513     

> 100 0 0.2081 0.7907 0.0817 0.0414 0.7991   
 

5.7  Influence of river position 

Distribution of WCC in the study area was not influenced by lateral channel position. No 

relationship was found between lateral distance and number of WCC per surber area (rs  = 0.056, 

d.f. = 328, P = 0.3121). Further, laterally positioned surber areas were not occupied by WCC in a 

higher proportion than medially positioned surber areas (χ2
 = 1.025, d.f.= 1, P = 0.311), nor was 

there a greater density of WCC in lateral surber areas than medial surber areas (U = 1.012 d.f. = 1, 

P = 0.3114). It can be seen from figure 5.43 that medial and lateral surber areas had the same 

lower quartile, median and maximum values for number of crayfish per surber area. Although 

crayfish population density in medial surber areas has a slightly negative skew, this difference is 

not significant (fig. 5.43). 

 

 

Figure 5.43 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in laterally and medially positioned surbers. n is 

the number of surber areas sampled in each category 
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A chi-squared test showed that there was significant variation in total numbers of crayfish found 

at each site (χ2 = 232.8, d.f. 32 P = < 0.000001). Consistently higher densities of WCC were found 

between 14 and 19.5 km downstream. Other ‘hotspots’ were found at single sites rather than 

continuous stretches. Although some sites had significantly higher densities than others, it can be 

seen from figure 5.44 that no consistent longitudinal trend in number of WCC caught per site nor 

the proportional use of surber areas in a site by WCC was evident. Spearman’s rank tests 

confirmed that there was no correlation between total numbers of WCC found at a site and the 

distance downstream (rs = -0.3, d.f. = 31, P = 0.3), nor between proportion of surber areas 

occupied by WCC caught per site and distance downstream (rs = -0.3, d.f. = 31, P = 0.2). However, 

due to the larger sample size a weak but significant correlation between distance downstream 

and WCC at the surber-scale is evident (rs = -0.2, d.f. = 326, P = 0.003). There is a weak trend of 

decreasing number of WCC per surber area with increasing distance downstream within the study 

area. This is further supported by significant differences between the upstream and downstream 

halves of the study area in terms of both proportional use of surber areas and median population 

density. Surber areas in the downstream half of the study site were used less frequently than 

expected at random and surber areas in the upstream half of the study site more frequently (χ2 = 

5.1, d.f. 1 P = < 0.02). In addition, occupied surber areas in the upstream half of the study area 

contained a median of three WCC which was significantly more than occupied surber areas in the 

downstream half of the study area (U = 2.3 d.f. 1, P = 0.02) which contained a median of two WCC 

(fig. 5.45).  

 

 

Figure 5.44- Relationships between white clawed crayfish population density and distance 

downstream and proportional use of surber areas and distance downstream. Blue line shows 

number of white clawed crayfish collected per site (ten surber areas). Red line shows proportion of 

the ten surber areas sampled in each site that were occupied by white clawed crayfish 
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Figure 5.45 - Box plots, showing minimum, lower quartile, median, upper quartile, maximum and 

outliers of the number of crayfish per surber area in the upstream half (6.6 – 23.5 km downstream) 

and the downstream half (23.6 – 40.6 km downstream) of the study area. n is the number of 

surber areas sampled in each category 

 

The results of this study reveal significant habitat preferences by WCC. The habitat variables 

significantly affecting crayfish population density and distribution were identified to allow analysis 

of longitudinal trends in habitat quality. The habitat variable with the biggest influence on WCC 

population density and distribution was substrate size. Surber areas containing only bedrock, 

sand/silt or gravel were avoided. This translated to avoidance of surber areas with D50 less than 8 

mm and sites with D50 less than 10 mm. Site-scale D50  in the range of 50 to 70 mm was selected 

for by WCC in the study area (figs. 5.29 and 5.41a and table 5.19). A clear preference for D50 at the 

surber-scale between 40 to 80 mm was identified from figures 5.27 and 5.42b and table 5.20. 

Other significant responses to habitat by WCC found in this study were: a preference for areas 

with grass/arable land surrounding the channel (figs. 5.11 and 5.31 and table 5.7), avoidance of 

sites and surber areas with bedrock banks (figs. 5.12, 5.13 and 5.32 and table 5.8), a preference 

for surber areas between 15 and 23 cm deep (figs. 5.24 and 5.39 and table 5.16), a preference for 

surber areas with 20 -80 % moss/algae cover (figs. 5.16 and 5.35 and table 5.11) and avoidance of 

sites with less than 33 % moss/algae cover (5.15 and 5.34b and table 5.10). 

 

Comparing the downstream pattern of number of crayfish caught per site to the downstream 

pattern of these habitat variables showed habitat fully accounted for the observed longitudinal 

distribution of crayfish at the site-scale. Most notably was the strong significant positive 
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correlation (rs = 0.6264, d.f = 32, P = 0.0001) between proportion of surber areas at a site with 

favourable surber-scale D50 (40-80 mm) and the number of crayfish at a site (fig. 5.46). The 

longitudinal pattern in number of crayfish caught per site is largely attributable to variations in 

substrate size. All sites where this correspondence was low had less than 33 % coverage of 

moss/algae, which has been shown to be unfavourable for WCC in the study area (table 5.10, figs. 

5.15 and 5.34b).  

 

 

Figure 5.46- Downstream trends in availability of surber areas with favoured grain sizes 

(proportion of surber areas containing substrate D50 40-80 mm per site) and total number of 

crayfish found per site (in ten surber areas) 

 

The frequency of occurrence of different habitat types varied between the upstream and 

downstream halves of the study site. Chi-squared tests to determine whether there were 

significant differences in the occurrence of different habitat categories in the upstream and 

downstream half of the study area revealed that grain size, land-use within 5 m of the channel 

and bank material accounted for the higher favourability of the upstream half of the study site for 

WCC (table 5.21). Sites with grass/arable land within 5 m of the channel were significantly more 

frequent in the upstream section than the downstream section. Despite having significantly more 

sites with grass/arable land within 50 m of the channel, the downstream half of the study area 

had higher frequency of wood/shrub within 5 m of the channel, which had been shown to be 

unfavourable to WCC in the study area (figs. 5.11 and 5.31 and table 5.7). Areas with bedrock 

banks, which were relatively avoided by WCC (figs. 5.12, 5.13 and 5.32 and table 5.8), were 

present in a significantly higher proportion in the downstream half of the site. The presence of 

moss, bedrock or preferred depths (10 – 23 cm; figs. 5.24 and 5.39a and table 5.16) was not 
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significantly different between upstream and downstream halves of the study area and therefore 

did not account for the difference in WCC distribution or population density. Despite there being 

no significant difference in the occurrence of surber areas with boulders and/or cobbles and/or 

pebble in the upstream and downstream sections, the upstream section had a significantly higher 

occurrence of sites and surber areas within the preferred D50 range and fewer sites with D50 sizes 

that were avoided by WCC.  

 
Table 5.21 –Results of chi squared tests to compare occurrence of habitat types white clawed 

crayfish have been shown to be responding to in the upstream and downstream halves of the 

study area. ‘Affect’ indicates whether crayfish were found to be using the given habitat category 

more (positive) or less (negative) frequently than expected at random in the whole study area.  

Significance considered at P = 0.05 

Habitat 
variable 

Categories 
considered 

Affect 
on WCC 

No. of 
observations 

Chi-
squared 

Signifi-
cance 

Interpretation 

Land use 
within 50 m 

Grass/arable Positive 328 9.854 0.00170 
Downstream  
favourable 

Land use 
with 5 m 

Grass/arable Positive 328 8.004 0.00467 
Upstream 
favourable 

Bank 
material 

Bedrock Negative 326 28.189 0.000001 
Upstream 
favourable 

Moss (site) < 33 Negative 328 0.221 0.639 Not significant 

Moss 
(surber) 

20 – 80 % Positive 327 0.645 0.422 Not significant 

Depth 10 – 23 cm Positive 328 0.524 0.469 Not significant 

Substrate 

Bedrock Negative 327 2.00 0.157 Not significant 

Boulder/cobb
le/pebbles 

Positive 328 0.271 0.602 Not significant 

Site-scale 
D50 

< 10 mm Negative 318 5.380 0.0204 Upstream  
favourable 50 – 70 mm Positive 318 6.407 0.0114 

Surber-scale 
D50 

< 8 mm Negative 316 0.188 0.665 Not significant 

40 – 80 mm Positive 316 6.037 0.0140 
Upstream 
favourable 

 

5.7.1   Influence of tributary confluences 

Site-scale D50 showed the clearest pattern of a downstream gradient punctuated by tributaries. 

Average site D50 decreased between each tributary showing downstream fining and abruptly 

increased at each influential confluence, producing a saw-tooth pattern (fig. 5.47).  The two sites 

downstream of the River Font (blue stars on fig. 5.47) did not fit the pattern of sedimentary links 

due to the dominance of bedrock at the most upstream of these sites. This suggests four 

sedimentary links were present within the study site. The correlation between distance 

downstream of an influential tributary and site-scale D50 was just insignificant when considering 

sites 5 to 33 (r = -0.2359 d.f. = 27 P = 0.109) but was significant if the two sites downstream of the 
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River Font, which did not fit the sedimentary link structure, were removed from analysis (r = -

0.386 d.f. = 25 P = 0.0232). 

 

 

Figure 5.47- Change in grain size with distance downstream, separated into lengths 

between influential tributaries. Different symbols indicate different inter-tributary  

lengths.  Vertical lines show distance downstream of influential confluences 

 

Comparison of the sedimentary link structure with the longitudinal pattern of number of crayfish 

caught per site revealed that peaks and troughs in site totals did not correspond to the 

distribution of confluences (fig. 5.48). The correlation between distance from an influential 

tributary and the number of WCC found at a site was insignificant both with (r = 0.05276, d.f = 27, 

P= 0.393) and without inclusion of the most downstream two sites (r = 0.15538, d.f = 25, P= 

0.219). Although sites at the downstream end of sedimentary links had smaller grain sizes and are 

thus more likely to have grain sizes below the range shown to be preferred by WCC in the study 

reach, this did not have a significant influence on distribution. The longitudinal pattern of WCC 

distribution could not be predicted from sedimentary link structure.  
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 Figure 5.48- Comparison of sedimentary link structure and the number of  crayfish caught per site. 

Different symbol show site-scale D50 in different sedimentary links. Orange line shows number of 

crayfish caught per site (caught in ten surber areas) 
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6. Interpretation and Discussion 

6.1  Distribution of crayfish on the River Wansbeck 

An abundant and dense population of WCC was present in the study area with crayfish present at 

every site and in 68 % of surber areas. The average density of crayfish caught was 5.3 individuals 

per square metre sampled. The prevalence of crayfish at all sites suggests there is a continuous 

dense population of WCC throughout the entire study reach. The presence of either young of the 

year or berried females at twenty-three sites shows that the population of WCC on the Wansbeck 

is healthy and current conditions are favourable. The recorded data on young of the year suggests 

a release of the young from their mothers began on the 19th July. This is slightly later than the 

release data found by a survey conducted on the River Wansbeck the previous year, which found 

all juveniles to be released by mid-July (Ream, 2010). Relative abundance of young of the year 

increased rapidly after this date and then declined, probably due to high mortality rates of young 

of the year from predation and cannibalism (c.f. Brewis and Bowler, 1982). Large, mature adults 

were also present at the majority of sites showing conditions are suitable for long-term survival. A 

growth curve produced by Brown and Bowler (1978) in a similar temperature regime to the 

Wansbeck suggests the largest individual found in the present study (45 mm CL) was at least 11 

years old.   

 

Placing these results in a national context requires comparison with previous studies. Differences 

in survey techniques, distribution of samples and timing of surveys causes variations in reported 

densities of WCC for reasons unrelated to habitat quality. This means comparisons must be made 

with caution. Natural England provides a tentative grading of abundance for sampling in fixed 

areas surrounded by netting (Peay, 2003) (table 6.1), based on studies on a variety of rivers. It is 

likely that search efficiency in surber samplers in the present study was greater than the average 

for fixed area studies, particularly for juveniles. Nevertheless, this grading allows broad 

conclusions on relative abundances to be drawn.  

 

Table 6.1- Natural England classification for densities of white clawed crayfish found by fixed 

    area sampling as given by Natural England (Peay, 2003) 

Average number 
per 1 m² 

Population 
abundance 

> 5 Very high 

≥2  - ≤5 High 

≥0.2 -  <2 Moderate 

< 0.2 Low 

0 Absent/undetected 
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Average population density for twenty-five of the twenty-seven sites surveyed in this study for 

which results can be discussed is classified as ‘high’ or ‘very high’ by this grading system. This 

suggests that the population of WCC on the River Wansbeck is highly significant in a national 

context. Two sites, twelve and thirteen (NZ 05063 84210; NZ 05727 84282) had more than double 

the number of crayfish classified as a ‘very high’ population by Natural England. It is likely that 

these are some of the densest populations in England. This assertion is supported by comparison 

to other published studies. A review of scientific literature on crayfish published in 1988, found 

the highest recorded density of WCC in England to be 4.45 individuals per square metre (Hogger, 

1988). This same review asserted that artificially enhanced habitat on the River Leen, 

Nottinghamshire, only supported densities up to 3.6 individuals per square metre  (Hogger, 1988).    

 

The densities of crayfish found in the present survey are highly comparable to a survey conducted 

on the River Wansbeck between the Hart Burn confluence and Mitford village in the summers of 

2008 and 2009 (Ream, 2010). Using the same sampling technique as that used in the present 

study, Ream (2010) found density of WCC to be 5.3 individual per square metre before the 

September 2009 flood event and 5.7 individuals per square metre after the flood event. The 

similarity of this result to the 5.3 WCC caught per sampled square metre in the present study 

suggests the 2008 flood event has not had a lasting influence on population size.  

 

Comparing these results to earlier surveys suggests density of WCC in the River Wansbeck has 

increased over the last decade. In 2005, David Rogers Associates conducted a WCC survey at eight 

locations on the River Wansbeck. The results are not directly comparable to the present study due 

to the different sampling methods used but general comparisons are informative. Of the eight 

locations surveyed in 2005, crayfish were absent at two, Low Angerton (NZ 09302 84310, site 

twenty) and Meldon Bridge (NZ 11960 85066, site twenty-five). This was interpreted by the study 

authors as being due to siltation from stock grazing and poor water quality from road runoff 

respectively. In this survey, permission was not granted to publish results from either of these 

locations but upstream and downstream sites had high population densities suggesting crayfish 

have recolonised these areas.  Areas close to Lowford Bridge (NZ 18933 86119, site thirty-three) 

and Mitford Castle (NZ 17050 85619, site thirty-one) were sampled in both surveys. In 2005, both 

had low population densities according to Natural England categories for standard hand-searches. 

In the present survey, Lowford Bridge contained a ‘high’ and Mitford castle a ‘very high’ 

population density according to Natural England categories for fixed-area searches. Despite 

differences in methods, it is fair to say population density in these areas has increased since 2005. 

A longer-term increase in population density is demonstrated by comparing the results of the 

current survey to those of a study conducted over the area between sites 4 and 13 in 1997 and 
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1998 (Armitage, 2001). Like the current survey, Armitage (2001) used exhaustive surber sampling.  

In 1997 and 1998 average population densities found were 4.6 and 3.8 WCC per square metre 

respectively (Armitage, 2001) compared to an average of 5.6 WCC per square metre in the same 

stretch of river in this study. Overall, it would seem that the abundance of WCC on the River 

Wansbeck has increased markedly in the last 15 years and their distribution has become more 

uniform along the length of the river (see appendix table 1).  It is not known whether this increase 

in abundance is due to improved habitat quality, reduction in predators or represents an intrinsic 

population cycle in WCC.  

 

At the microhabitat scale, WCC had an aggregated pattern of distribution in the study area as 

shown by the index of dispersion and the fact that the observed frequency distribution did not 

differ significantly from the frequencies expected in a negative binomial model. The wide range of 

number of individuals caught per surber area suggests variation in the resources surber areas 

contain and a response to this by crayfish. This is supported by a value of mean size of an 

aggregation, according to equation 4.4, of 1.67 individuals. As this value is smaller than two, it can 

be concluded that the aggregated distribution of WCC on the River Wansbeck is a response to 

variation in environmental parameters and not an active behavioural process (Blackith cited in 

Southwood and Henderson, 2000). This is likely to be a response to physical habitat but may also 

be due to food availability, predation patterns or impacts of past flood events (c.f. Ream, 2010). 

Presence at every sampling site shows there was no heterogeneity in distribution at the site-scale 

in this study.  

 

6.2  Habitat requirements of white clawed crayfish on the River Wansbeck 

Crayfish were present in every kilometre section of the study site and were therefore able to 

tolerate the full range of water chemistry present. All water chemistry parameters, apart from 

ammonia, were within the range cited by Smith et al. (1996) or Trouilhe et al. (2007) as being 

tolerable to crayfish. In one kilometre section, concentration of ammonia exceeded the tolerance 

level cited in Trouilhe et al. (2007). Because water chemistry was not measured synchronously 

with crayfish sampling, it cannot be firmly concluded that WCC were present at the location of 

this high concentration of ammonia but populations must have persisted in close proximity. This 

supports the recent findings by Demers and Reynolds (2002) that WCC can tolerate moderately 

polluted waters although the single set of water chemistry samples obtained in this study does 

not allow determination of the duration of the high concentration of ammonia. Chronic pollution 

has been shown to have more severe impacts on populations than short-lived pollution events 

(Holdich and Reeve, 1991; Laurent, 1988). Due to crayfish being present in every kilometre 

section, no niche limits can be inferred for water chemistry parameters. Within tolerable limits, 



Page | 120  
 

water chemistry has not been found to influence the distribution of individuals (Lodge and Hill, 

1994; Smith et al. 1996) and was therefore not considered in further analysis.  

 

The only physical variable that crayfish were not using the full available measured range of was 

grain size at the surber-scale. Analysis of substrate descriptions showed that, in this study, WCC 

were not making use of surber areas that contained only gravel, sand, silt or bedrock. When grain 

sizes were measured from photo-sieving, the smallest average (D50) grain size crayfish were 

making use of in surber areas was 8 mm. Measurements of D95 showed that this translated to all 

areas with D95 less than 50 mm being outside the niche space of WCC in the Wansbeck. These 

results suggests that as well as areas containing only gravels and fines, areas containing only small 

pebbles are outside the realised niche of WCC.  

 

These results agree with much of the previously published literature on WCC habitat preferences 

(e.g. Smith et al. 1996; Benvenuto et al. 2008). Recent studies that have found WCC in fine 

substrate (Peay et al. 2006; Holdich et al. 2006) have been conducted in areas of organic silt and 

mud which is stable enough for WCC to create burrow refuges. The fine sediment experienced in 

this study was shifting silt and sand, not stable mud or organic silt. Although Ream (2010) found 

WCC present in unstable sand and gravel only young of the year were present in areas where the 

substrate was entirely sand and this age class was not considered in the present study. Ream 

(2010) modified the Wentworth categories and classified gravel as grains of 8 to 16 mm diameter. 

Therefore, the finding of the present study that 1+ crayfish require grains larger than 8 mm is 

comparable to the results of Ream (2010). Avoidance of bedrock was also evident in this study. 

Gallagher et al. (2006) and Englund and Krupa (2000) showed bedrock crevices to be 

preferentially used by WCC whereas Armitage (2001) and Ream (2010) found crayfish in the 

Wansbeck to avoid bedrock areas. The bedrock sheets present in the study area have very few 

crevices suitable as refuges. The results of the present study confirm that the presence of stable 

refuges is the major determinant of WCC distribution. 

 

The results of the logistic regression model confirmed the findings of niche breadth analysis.  

Grain size, in terms of both surber-scale D50 and presence of cobbles, were the variables with the 

most influence on likelihood of crayfish occurrence. Pebbles were also shown to have a positive 

influence on the probability of finding crayfish, suggesting cobble on a base substrate of pebble 

was optimal habitat. This would provide interstice refuges for all sizes of crayfish (c.f. Nyström, 

2002). The logistic regression model showed that land-use within 50 m of the channel influenced 

the likelihood of crayfish presence, with the presence of woodland and shrub having a negative 

influence on the probability of finding crayfish. Very few studies have been conducted on the 
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influence of surrounding land-use on distribution of WCC (Schulz and Schulz, 2004). Shading from 

bank-side trees may result in reduced macrophyte growth (Peay et al. 2006) but the lack of 

correlation with land-use and in-channel vegetation parameters suggests this is not the cause of 

the negative association between WCC and woodland land-use. It is possible that predation from 

terrestrial predators, particularly from otter and mink that are abundant in the Wansbeck 

catchment (Armitage, 2001), is higher in areas with shrub and woodland surrounding the channel 

than in open grass/farmland areas. Evidently, further work is needed to determine the response 

of crayfish to land-use in rivers.  

 

In disagreement with the present study, Smith et al. (1996) did not find grain size to be a 

significant predictor of WCC distribution when using logistic regression analysis. Smith et al.’s 

(1996) study found that the presence of WCC could be predicted from the presence of tree roots, 

overhanging boughs and vertical banks. None of these variables were significant predictors of 

presence/absence in the present study. Similarly, Naura and Robinson (1998) found overhanging 

boughs, bank substrate, erosion and presence of tree roots to be the most influential variables for 

WCC presence, but none of these variables influenced the likelihood of crayfish presence in the 

present study.  Several authors have found crayfish unable to tolerate flow velocity exceeding 0.2 

ms-1 (e.g. Foster, 1995; Benvenuto et al., 2008) but this study found multiple crayfish in areas with 

boundary flow velocity as high as 0.5 ms-1. The results of the present study suggest that crayfish 

can tolerate and prosper in a much wider range of habitat variables than previously documented. 

 

Although the logistic regression model performed well, as shown by a high reliability, low 

commission and omission errors and a highly significant likelihood ratio, absences were under-

estimated. According to the model, based on a sub-set of all data, there was a 28.5 % chance of 

finding crayfish in areas of sand, silt or bedrock substrate without shrub or wood within 50 m of 

the channel. However, the data from all surber areas showed that only a 5.5 % chance of finding 

crayfish in these substrates, regardless of surrounding land-use types. When extrapolated to new 

areas the model performed less well and overestimated the frequency of crayfish occurrence. The 

density of WCC on the River Wansbeck is exceptional compared to other British rivers. For rivers 

containing small populations of WCC, individuals may not be present even in ‘optimal’ habitat as 

defined by the model presented here. For rivers with dense macrophyte growth, such as lowland 

chalk streams, substrate size may be less relevant than in the current system. The model could be 

of value to WCC conservation in all systems but has highest utility for predicting habitat suitability 

in upland gravel-bed rivers, where invasive competitors are not present.  
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In summary, WCC on the River Wansbeck are able to make use of a wide range of habitat types 

and have a broad realised niche.  Even for the habitat variables for which crayfish could not make 

use of the full available range, surber-scale D50 and D95, Smith’s (1982) measure of niche breadth 

shows the realised niche to be very wide. Habitat variables are not particularly strong 

discriminators of WCC presence in the River Wansbeck due to the large size of the WCC 

population and prevalence of individuals in a variety of habitat types. Thus, the ability to predict 

the presence of WCC from the habitat variables investigated is low. The only firm prediction that 

can be made is that WCC will be absent in microhabitat areas where the substrate is mobile small 

pebbles, gravel, fines, or bedrock.  

 

6.3  Habitat preference of white clawed crayfish on the River Wansbeck 

Despite being able to use the full available range of most habitat variables, the majority of 

crayfish located in a narrower range of habitat types than was available. This indicated that WCC 

were showing preferences for some habitat variables. Largely, analyses of proportional use and 

average density of WCC in different habitat types produced the same conclusions about habitat 

preferences by WCC. The fact that crayfish distribution and population density were exhibiting a 

similar response to habitat strengthens the conclusions drawn from this study.  

 

No preferences were evident for sinuosity, width, gradient or valley form. This was expected as 

there is no evidence in previous literature of these parameters affecting WCC. No response to 

bank profile was evident but crayfish showed significant preferences for bank material. Earth 

banks were selected for and bedrock banks were avoided at both the site and surber scales. Earth 

banks offer additional refuges and protection from predation and high flows, as crayfish can make 

use of natural crevices in the bank and associated vegetation (Holdich et al. 2006). This explains 

why bedrock banks, which offered no refuges, were relatively avoided. The response to 

boulder/cobble banks was less clear. Proportional use analyses showed boulder banks at the site-

scale to be preferred by WCC but boulder/cobble banks at the surber-scale to be relatively 

avoided by WCC in the study area.  Boulder banks have crevices that offer refuges and were found 

to be strongly preferred by WCC in a study by Naura and Robinson (1998). Surber-scale boulder 

and cobble were amalgamated in this study due to the low number of observations in each class. 

The results suggest that boulders are preferred habitat and cobbles unfavourable for WCC. This 

may be due to high flows that occur on the River Wansbeck causing cobble banks to shift. 

 

Previous studies have found vertical and overhanging banks to be favoured by WCC (Smith et al. 

1996; Schulz and Schulz, 2004) but other authors have suggested that overhangs are indicative of 

erosion and are therefore avoided by crayfish due to the detrimental impact of increased turbidity 
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and sedimentation (Naura and Robinson, 1998). In this study, crayfish avoided areas of slow 

erosion. The positive influence of refuges provided by stable overhanging banks combined with 

the negative influence of actively eroding overhanging banks may have resulted in the overall lack 

of significant response to bank profile found in this study. The analyses suggested that crayfish 

were selecting areas with rapidly eroding banks or cattle poaching but previous studies have 

shown both these factors to have a negative impact on WCC (Foster, 1995; Armitage, 2001). It is 

likely that the apparent positive influence of high erosion rates is an artefact of the correlation 

between erosion/poaching and earth banks. Some areas with signs of poaching and erosion will 

not currently be inputting enough sediment into the system to be detrimental to crayfish and will 

therefore have no influence on crayfish distribution. The positive effect of refuge provision in 

earth banks may override the negative influence of their propensity to erode. 

 

Many previous studies have found WCC to respond to abundance and type of vegetation both 

within the channel and along the banks (e.g. Brown and Bowler, 1977; Armitage, 2001; Gallagher 

et al. 2006). Vegetation provides food directly and by hosting a range of invertebrate species, 

fungi and periphyton (Gallagher et al. 2006). Further, vegetation provides shelter and protection 

from high flows and predators (Reynolds et al. 2002). Thus, it would be expected that areas with 

in-channel vegetation would be preferentially used by WCC in high densities. However, no 

response to submerged or emergent vascular macrophytes was evident in this study at site or 

surber scale. The low number of positive observations for emergent vascular plants may account 

for the lack of significant response, yet the same lack of response to submerged vegetation was 

evident despite submerged macrophytes being present in over 40 % of samples. 

 

The only response to in-channel vegetation was to abundance of moss/algae.  White clawed 

crayfish avoided sites with less than 33 % moss/algae cover and surber areas without any 

moss/algae and selected surber areas with intermediate cover (40-80 %) of moss/algae. There 

was suggestion that sites with intermediate cover of moss/algae (33 – 66 %) were also preferred. 

The selection of intermediate cover of moss/algae may be due to high densities of moss impeding 

movement of WCC (Peay et al. 2006) or because high moss cover tends to occur on stable 

substrate such as bedrock or embedded boulders, which are not likely to offer refuges for crayfish 

(c.f. Gallagher et al. 2006). Moss has been shown to be preferred as a food source over 

macrophytes due to the fungi, microbes and metazoan its hosts (Gherardi et al. 2004) but algae 

and liverworts have a negative association with WCC (Gallagher et al. 2006; Naura and Robinson, 

1998). The distinction between liverworts, algae and moss was not made in this study but the 

strength of preference for moss/algae suggests either liverworts and algae were not abundant in 

the study area or that crayfish were not avoiding them. The lack of response to submerged and 
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emergent macrophytes may be due to the prevalence of moss in the study reach. If dietary 

requirements were met by moss, it would not be necessary for crayfish to seek out other 

vegetation types.  In a spate river such as the Wansbeck, vegetation stands may provide 

insufficient protection to be used by WCC as refuges. This assertion is supported by the findings of 

a study by Demers et al. (2003) which showed that macrophytes support large numbers of 

crayfish in areas of slow moving current but contain few individuals in areas of higher flow 

velocities.  

 

An additional source of food for WCC is leaf litter from overhanging boughs (Naura and Robinson, 

1998). The shade provided by overhanging boughs also prevents high water temperatures, which 

can be detrimental to crayfish (Brusconi et al. 2008). Therefore, overhanging boughs have been 

widely cited as being preferentially used by WCC (e.g. Foster, 1995; Smith, 1996). In this study, 

presence of overhanging boughs had no influence on the density of WCC and high coverage of a 

site by overhanging boughs was actually unfavourable to WCC. This negative influence of 

overhanging boughs may be because the shade they create reduces growth of photosynthetic 

moss/algae, which was found to be favourable for WCC. Additionally, because the Wansbeck is 

towards the northerly limit of WCC’s range, temperature stress is unlikely meaning shading will 

offer little or no benefit. 

 

There has been debate in the literature about the favourability of exposed roots for WCC.  Several 

authors have found exposed roots to be selected by crayfish due to the refuges they provide, 

particularly from high flows which may move substrate refuges, and their propensity to trap food 

in the form of leaf litter (Smith et al. 1996; Benvenuto et al. 2008; Ream, 2010). However, 

exposed tree roots indicate bank erosion, which is detrimental to crayfish, and may provide 

refuges for predators of crayfish such as mink and otters (Naura and Robinson, 1998), both of 

which are present on the Wansbeck (Armitage, 2001). In this study, no significant selection or 

avoidance of exposed tree roots was evident. This may be due to the combined positive and 

negative influences of the factors discussed above.  

 

Distribution of predators can also influence depth selection by WCC (Clavero et al. 2009). In 

shallow areas, crayfish are at higher risk from terrestrial predators. Otters particularly are active 

predators of WCC on the River Wansbeck (personal observations) and herons, mink and 

kingfishers are also likely to consume crayfish. Large fish were absent from most of the study site 

due to the stream being small and shallow. Differential predation risk therefore adequately 

explains the avoidance of areas shallower than ~ 10 cm.  Overall, analyses suggested that depths 

between 15 and 23 cm were preferred by WCC. The relative avoidance of deeper areas found in 
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this study may be due to lower search efficiency in deeper areas or may be due to deeper pool 

areas generally having fine substrates and few refuges.  

 

Substrate size was the habitat variable to which WCC in the study area were exhibiting the 

strongest response in terms of both proportional use and population density. This was expected 

as refuges to protect against predation, cannibalism and high flows are the major habitat 

requirement of WCC (Holdich, 2003). Brusconi et al. (2008) found substrate size to be the only 

variable with an influence on crayfish abundance, demonstrating its significance in determining 

habitat quality. The preference analysis confirmed the earlier findings on grain size tolerance 

limits and revealed a preferred range of grain sizes.  Substrate of small pebbles, gravel, fines or 

bedrock were not made use of by WCC in the study area. This translated to avoidance of areas 

with site-scale D50 less than 10 mm, site-scale D95 less than 100 mm , surber-scale D50 less than 8 

mm and surber-scale D95 less than 50 mm. There was also suggestion of avoidance of areas with 

armoured or embedded substrate and avoidance of areas with the lowest recorded D5 values but 

this was not consistent or particularly informative.  

 

A preference for intermediate grain sizes relative to those recorded in the study reach was 

evident when considering D50 at both the site and surber-scale.  The strength of response by WCC 

to substrate size was greater at the surber-scale than at the site-scale. White clawed crayfish 

showed relative avoidance of surber areas with substrate D50 less than 35 mm and a preference 

for substrate D50 between 40 and 80 mm. Similar trends were evident at the site-scale, with WCC 

preferentially using areas with D50 exceeding 53 mm and using areas with D50 between 50 and 60 

mm in the highest density.  These measurements correspond to large pebbles and small cobbles. 

No previous studies of crayfish have measured grain size in terms of D50, making comparisons 

difficult. The photo-sieving method employed in this study measured all grains including fine 

grains between the substrate WCC were selecting as refuges. Therefore, the grains crayfish were 

selecting as refuges probably correspond to large cobbles. The finding that WCC were 

preferentially locating in areas with site-scale D95 exceeding 190 mm, which also corresponds to 

cobbles, supports this assertion.  

 

Analysis of recorded presence/absence of each substrate type supported the conclusion that 

cobbles were the preferred substrate of WCC in this study. White clawed crayfish did not use 

areas containing boulders more frequently or in higher densities than areas containing cobbles 

but areas of boulder and/or cobble were preferentially used over areas where pebble was the 

biggest grain size. This result agrees with both Armitage (2001) who found WCC on the Wansbeck 

to actively select cobbles and small boulders and Ream (2010) who found a preference for small 
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cobbles by WCC on the Wansbeck. Demers et al. (2003) also found WCC to prefer  cobbles in a 

study of Irish streams but Naura and Robinson (1998) and Foster (1993) both claimed that cobbles 

do not provide a stable enough refuge. The discrepancy between these studies may be due to 

differences in the size of crayfish studied, as smaller crayfish require smaller refuges (Foster, 

1993). The prevalence of juveniles in this study, as reflecting the natural population, may account 

for the preferred grain size being smaller than that found in some previous studies. Further, the 

favourability of different refuge sizes differs depending on flow velocity.  

 

Proportional use analyses suggested WCC preferred intermediate flow velocities relative to the 

range recorded in this study. Avoidance of very slow flows (less than 0.02 ms-1) is likely to be due 

to the low levels of dissolved oxygen in these areas. The upper limit to the preferred range of 

boundary flow velocity was 0.12 ms-1. Fast flows are unfavourable to WCC due to the increased 

energy expenditure required to maintain position in the water column (Gallagher et al. 2006). No 

response to flow velocity was evident when WCC densities were analysed. The discrepancy 

between these results is likely due to the distribution of refuges, as preferred water velocity 

depends on the size and stability of available refuges. Most areas with boundary flow velocity 

exceeding 0.12 ms-1 could not be made use of by WCC but where these areas contained stable 

refuges, high densities of WCC were able to locate there. The combined influence of substrate 

and flow velocity was also evident in a study by Gallagher et al. (2006) who found flow velocity 

considered in isolation had no effect on the distribution of crayfish.  

 

Descriptions of hydraulic biotopes combine flow velocity and substrate and are therefore likely to 

be more relevant to crayfish. Significant responses to biotopes were evident in this study. White 

clawed crayfish were preferentially using sites with intermediate proportions of riffle. Turbulent 

riffle flows oxygenate the water and can provide favourable habitat when stable refuges are 

present (Reynolds, 1998). However, if substrate pariticles in a riffle are small and unstable in the 

high flow velocities WCC will be unable to locate in them. This explains why presence of riffles in a 

site was favourable but sites with very high proportional cover of riffle biotope were relatively 

avoided. The lack of a consistent response to proportion of run may reflect the fact that this 

broad habitat category encompasses a wide range of substrate sizes and flow velocities. There 

was no consistent significant response to proportional cover of a site by pool biotope but a 

preference by WCC for sites with a high proportion of glide biotope was evident. White clawed 

crayfish showed avoidance of surber areas in sites with less than 20 % cover by glide biotope and 

used surber areas in sites with more than 60 % cover by glide biotope in high densities. Glide 

biotopes are likely to have suitable flow speeds and may provide both daytime resting and night-

time foraging habitat (Clavero et al. 2009). Overall, sites with heterogeneous flow patterns, 
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particularly sites containing both glide and riffle, appeared to be preferred by WCC in the study 

area. 

 

Finally, there was evidence of a response to land-use within 5 m and 50 m of the channel. Areas of 

grass and farmland were selected for at both scales. In agreement with the logistic regression 

output, areas of the channel surrounded by wood or shrub were relatively avoided by WCC. This 

response was strongest when considering land use with 5 m of the channel. Because water 

chemistry/quality was not influencing distribution, it is difficult to perceive a mechanism by which 

land-use directly influences favourability of habitat. It is likely that the responses of WCC to land-

use found in this study are due to associations between land-use and other habitat variables such 

as bank material, vegetation and overhanging boughs. No strong correlations were evident but 

areas of grass/arable land were more likely to have earth banks, which WCC were selecting, and 

less likely to have high coverage by overhanging boughs, which WCC were avoiding in the study 

area. 

 

In summary, the distribution of WCC was a result of active responses to habitat variables. Within a 

wide realised niche crayfish demonstrated strong preferences for certain habitat types.  Average 

substrate size was the most influential habitat parameter; it was the only variable to limit niche 

breadth in the study area and the variable to which WCC were exhibiting the strongest 

preferences. WCC were also showing significant responses to depth, flow velocity, hydraulic 

biotope type, abundance of moss/algae, surrounding land-use and bank material. Predictions of 

distribution and habitat quality would be possible from measures of these variables.   

 

6.4  The scale of white clawed crayfish response to habitat 

An aim of this study was to determine the spatial scale at which WCC were responding to and 

were affected by their environment. Like all river systems, the River Wansbeck is a hierarchically 

structured system with heterogeneity in physical variables evident at each of the three spatial 

scales of the study (Frissell et al. 1986). The presence of WCC at every site demonstrates that all 

variables operating at the scale of kilometre sections and site were tolerable to WCC. The wide 

range of kilometre section and site scale habitat types present in the study area suggests that 

sensitivity of WCC to these broader scale controls is very low, but it is impossible to draw firm 

conclusions about this due to the absence of unsuitable sites in this study area. Presence of WCC 

in all primary sampling units (kilometre sections) and secondary sampling units (100 m sites) but 

not all tertiary sampling units (surber areas) shows patchiness in distribution occurred only at the 

sub-metre scale. This suggests, for the range of scales considered in this study, WCC were only 

directly responding to microhabitat scale heterogeneity in physical variables. The findings of niche 
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and preference analyses confirm that microhabitat scale variables had the most explanatory 

power on the distribution of WCC on the River Wansbeck. The primary control on WCC 

distribution was the occurrence of suitable refuges at the microhabitat scale. These findings agree 

with previous studies that found microhabitat scale variation to have the biggest influence on 

distribution of aquatic organisms (e.g. Poizat and Pont, 1996 ; Robson and Chester, 1999).  

 

Although microhabitat scale heterogeneity had the most significant influence on WCC distribution 

in the study area, heterogeneity in kilometre sections and site scale variables did influence the 

distribution of WCC to some degree. Some of the apparent influences of variables operating at 

the kilometre section and site scale variables on WCC distribution were due to these broad-scale 

variables being correlated to microhabitat scale variables, as was found by Gido et al. (2006) in a 

multi-scale study of fish distribution in prairie streams. The higher the proportion of the site 

covered by a given habitat category, the more surber areas are likely to fall in that habitat type. 

For example, bank material and moss cover at the site and surber scales were correlated (R² > 0.5 

and R² > 0.4 respectively) and the influence of the variables on crayfish was the same at both 

scales. Therefore, site-scale responses to bank material and abundance of moss/algae are 

manifestations of micro-scale responses repeated across surber areas. Similarly, the same trends 

in grain size preferences were evident at site and surber scales but responses to grain size were 

less distinct at the site-scale. The apparent response to site-scale average grain size is a result of 

the fact that sites with optimal average grain sizes are more likely to contain surber areas with 

optimal grain sizes. Because crayfish have been shown to require fine substrates for foraging 

(Clavero et al. 2009), a strong independent influence of site-scale grain size could have been 

expected in this study. A mixture of coarse and fine sediment within the ‘home-range’ has been 

cited as optimal for WCC (Nyström, 2002; Clavero et al. 2009) and thus it would be expected that 

optimal average grain size at the site-scale would be lower than optimal grain size in day-time 

microhabitat in surber areas. This response was found by  Hedger et al. (2006) who showed that 

average grain size over 50 m river length had higher explanatory power on the distribution of 

juvenile salmon than the grain size at the in the actual location an individual was found. The 

requirement for multiple habitat types and the ability to move between them made larger-scale 

heterogeneity relevant to juvenile salmon. This has not been found in this study; WCC did not 

exhibit an independent response to site-scale grain size. Similarly, the mobility of WCC means 

food substances are not a necessity within their immediate locale. It could therefore have been 

expected that presence of vegetation would be selected for more strongly at the site-scale than at 

the surber-scale. Again, an independent site-scale response was not evident.  
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However, other habitat parameters operating at the kilometre and site scale were genuinely 

acting as filters on the microhabitat scale distribution of WCC, as in Poff’s (1997) model of 

hierarchical habitat suitability. A response to proportional cover of hydraulic biotopes at the site-

scale was evident, particularly for riffles. Turbulent areas increase the oxygen concentration of 

the water and in doing so increase favourability of the whole site (Reynolds, 1998). It is likely that 

the positive influence of riffle in a site is due to riffles increasing the likelihood of downstream 

microhabitat areas having sufficient dissolved oxygen, to which WCC respond. Thus, proportion of 

flow types in a site is a filter, conditioning suitability of microhabitats. Similarly, over-hanging 

boughs at the site-scale influence the amount of moss/algae at the surber-scale and is thus a 

broad scale filter on microhabitat suitability. The influence of land-use on WCC distribution is 

likely to be a result of its influence on vegetation parameters, sediment input, erosion and 

possibly depth and grain sizes, which influence WCC directly at the microhabitat scale.  

 

The hierarchical nature of environmental heterogeneity and species response in the study area 

means that the observed distribution pattern was dependent on the scale of observation. Viewing 

the system at different spatial scales would have led to different conclusions on the distribution 

and response to habitat by WCC in this river. If this study had been conducted only at the scale of 

the site, it would have been concluded that all habitat types were suitable for WCC and important 

causes of variation would have been missed. This was also the case in a multi-scale study of larval 

lamprey by Torgersen and Close (2004). Only by conducting multi-scale studies did the 

importance of micro-scale habitat emerge in both Torgersen and Close’s work and the present 

study. The modifiable areal unit problem is relevant to crayfish conservation: arbitrarily selected 

scales of study will produce scale specific arbitrary results (Openshaw, 1983), which will result in 

inappropriate conservation actions.  

 

This study has shown that crayfish primarily respond to microhabitat scale variation in their 

environment. Habitat based conservation actions should be conducted over this scale to provide 

the greatest benefit to WCC (Wiens et al. 1993). Further work on species-habitat correlations 

should be conducted at this scale to give comparable and relevant results. However, this study 

has suggested that processes operating at coarser scales than that which WCC respond to directly 

still influence WCC distribution through their impact on finer scale processes (Wiens, 1985). The 

favourability of conditions on the River Wansbeck has meant this study was unable to discern the 

extent of the influence of broader scale habitat variables but future conservation actions should 

not ignore the wider spatial context of the system.  
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6.5  Influence of river position on distribution of crayfish 

Distribution of WCC in the study area was not influenced by lateral channel position. There was 

significant variation in total number of WCC caught between sites but the lack of correlation 

between number of WCC and distance downstream suggests longitudinal position was not the 

cause of this variation.  At the surber-scale, a weak trend of decreasing number of WCC per surber 

area with increasing distance downstream was evident within the study area. This suggests that 

favourability for WCC decreases with distance downstream and is supported by the finding that 

proportional use of surber areas and population density in occupied surber areas was higher in 

the upstream half of the study area (6.6 – 23.5 km downstream) than the downstream half (23.5 -

23.6 – 40.6). The aim was therefore to determine whether these observed longitudinal patterns 

could be fully accounted for by habitat quality and availability or whether longitudinal position 

had some independent explanatory power on WCC distribution. Comparisons of the longitudinal 

pattern of total numbers of crayfish per site and longitudinal patterns of habitat parameters WCC 

had been found to be responding to showed that the differences in number of crayfish per site 

was fully accounted for by differences in grain size and abundance of moss/algae. The difference 

in WCC distribution in the upstream and downstream halves of the study site could also be 

accounted for by habitat variables. The upstream half of the study site had less wood/shrub 

surrounding the channel, which had been unfavourable to WCC, significantly higher occurrence of 

sites and surber areas within the preferred D50 range and fewer sites with D50 sizes that were 

avoided by WCC.  

 

Continuous downstream trends in habitat variables are disrupted by tributary confluences (e.g. 

Rice, 1998). In the study reach, tributary confluences significantly influenced the downstream 

pattern of grain size. Four sedimentary links of downstream fining punctuated by abrupt 

coarsening were present. This sedimentary link structure influenced the availability of optimal 

substrate to some degree but the strength of this influence was too weak for distance from an 

influential tributary to account for the longitudinal pattern in number of crayfish per site. WCC 

distribution could not be predicted from sedimentary link structure.  

 

Overall, river position had low explanatory power on the distribution of WCC in the study reach, 

confirmed by the insignificance of both lateral distance and distance downstream in the logistic 

regression.  There were no influence of longitudinal position on WCC distribution independent of 

habitat quality. Naura and Robinson (1998) claimed that likelihood of WCC presence could be 

predicted from altitude, slope and distance from the source. These variables are likely to be 

correlated, meaning the authors found a predictable downstream trend in WCC distribution. This 

has not been found in this study perhaps due to this study concentrating on a shorter study reach 
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at a finer spatial scale than the data used by Naura and Robinson (1998). As discussed in section 

6.4, the distribution of crayfish was conditioned by local-scale factors that were highly 

heterogeneous (Naiman et al. 1987). However, the physical conditions required by crayfish are 

evidently more common at certain distances downstream due to the geology, pedology and 

fluvial dynamics of the catchment. In this study there was indication that preferred WCC habitat is 

more common in low order streams. Further work is needed to discern whether this finding is 

system specific or applicable to all upland gravel-bed rivers. Overall, the distribution of WCC on 

the River Wansbeck could not be accurately predicted from any absolute spatial factor.   

 

In a similar investigation on larval lamprey, Torgersen and Close (2004) found distance 

downstream to have significant explanatory power on distribution of individuals at multiple 

spatial scales. This explanatory power was not fully explained by the downstream pattern of 

habitat variables. Spatial context had an independent influence, which the author’s suggest was 

attributable to the distribution of spawning adults.  No such spatial biological process is evident 

for WCC on the River Wansbeck. Therefore, a non-spatially explicit approach may be adopted in 

habitat management for WCC within a catchment but different biotic pressures, flow regimes and 

available habitat means findings will not necessarily apply to across catchments.  

  

It must be noted that there is a possibility that a tendency to locate at certain distances 

downstream has caused the habitat variables associated with these distances downstream to 

emerge as predictors of habitat quality. The lack of consistent longitudinal trends and sporadic 

high abundances in crayfish suggests this is not the case. Further, the ecological relevance of 

influential habitat variables suggests the correlation between WCC and physical parameters 

illustrate a true response to habitat quality.   

 

6.6  Limitations and future research 

Significant and informative results have emerged from this investigation.  However, sources of 

error and limitations on general applicability were present in this study. In this section, potential 

errors in the methods used and the influence of these on overall conclusions is considered. 

Potentially confounding factors are then identified and the scope for future study on these is 

discussed.  

 

A limitation on the applicability of the terrestrial remote sensing technique used in this study is 

the requirement of favourable weather conditions. The major barrier to obtaining decent images 

was glare on the water surface (fig 6.1a), which occurred on bright days with clouds. This 

restricted image collection to days with bright sunshine and low cloud cover or dark days with 
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high cloud cover where the flash could be used to obtain satisfactory images (fig 6.1b).  However, 

the ease and speed at which images can be obtained in favourable weather conditions does not 

preclude this from being a feasible technique of grain size mapping in this climate. Like field-based 

grain size measures, the technique employed in this study was confined to unconsolidated, open 

network bedding surfaces (Rice and Church, 1996; Carbonneau et al. 2005). Turbid water and 

areas deeper than 50 cm were not suitable for photo-sieving or surber crayfish sampling. Thus, 

the image acquisition technique was suitable for all areas where crayfish could be sampled. The 

resolution limits of the imagery meant sand and silt were not distinguished in this study. This did 

not influence the results as WCC were avoiding all grain sizes smaller than pebbles in this study 

area. Within the study area there was no fine but firm substrate, such as mud, which could have 

been used as refuges (Holdich et al. 2006). 

 

Error will be present in imagery due to imbrications, (Carbonneau et al. 2004), slight image blur, 

minor deviation from plan view (Dugdale et al. 2010) presence of white water surfaces, overhead 

canopies (6.1c), river debris, shadow, sun-glint (fig 6.1c) and thick vegetation on the substrate 

(6.1d). Despite these issues, it was felt that the grains visible in each image were representative of 

the substrate over the whole picture extent. Using an extendable pole to obtain aerial imagery is 

a new method but similar image acquisition techniques combined with manual photo-sieving 

have been shown to have low error margins (e.g. Dugdale et al. 2010; Ibbeken and Schleyer, 

1986). Photo-sieving of aerial imagery with 3 cm resolution using the same photo-sieving user 

interface employed in this study showed D50 estimates to have a residual error of 0.5 to 3.5 mm 

compared to field datasets (Dugdale et al. 2010). The resolution of images in this study is an order 

of magnitude higher than imagery obtained by Dugdale et al. (2010). Using close range images of 

riverbeds, Adams (1979) achieved strong agreement (correlation coefficient = 0.94) between grain 

size found by manual photo-sieving of the images and grain size found by sieving in the field.  

There was a slight bias introduced by photo-sieving, which the author suggested could be rectified 

by multiplying D50 by 1.07. Thus, for grain sizes around the 8 mm tolerance threshold of crayfish, 

the bias present in a photo-sieved D50 measurement is 0.56 mm and the maximum error for grain 

sizes in the study area is 10 mm. These results suggest that the maximum error present in the 

current study is likely to be less than one centimetre and the error for smaller grains is likely to be 

less than a millimetre. This error does not influence the conclusions drawn from this study. 
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 Figure 6.1 – Sources of error and differing quality of aerial photographs. a) Cloud cover resulting      

 in glarey images where substrate could not be seen b) Image quality obtained using flash  

photography c) Problems of overhanging canopies and sun-glint glare  d) Lack of contrast  

between grains due to vegetation cover 

 

Unlike the method of image acquisition, the method of crayfish sampling used in this study is well 

established. Surber sampling has been shown to be the technique that gives the best estimates of 

local population density (Dorn et al. 2005). However, the aggregated distribution of WCC in this 

system means results are specific to the sampled areas (Peay, 2000) and cannot be extrapolated 

for the whole channel (Byrne et al. 1999). Repetition of a standardized sampling technique is 

needed to establish the population size and identify changes over time.   

 

The generality of the results of this study to other catchments has not been tested. The logisitic 

regression model performed well at predicting distribution for the test data. The model was based 

on a large data set containing a diverse range of habitat types. Because the model contains few 

parameters and all modelled variables are ecologically relevant it is unlikely to be overfitted (c.f. 

Vaughan and Ormerod, 2005). The general findings from this study, such as the importance of 

different physical variables in discerning habitat quality and the scale at which WCC are 

responding to their habitat, are likely to be transferable between catchments, particularly other 

upland, gravel bed rivers, in Northern England where invasive species are absent. Therefore, the 

general findings from this study are likely to be of utility for informing future conservation efforts 

B A 

D C 

A 
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in the region. However, the specific findings, such as the exact tolerance limits and strength of 

WCC responses to habitat variables will only apply to the study reach as distribution and habitat 

selection are influenced by location-specific biotic interactions (Angermeier et al. 2002), the 

availability of different habitat types and the costs of finding and moving to certain habitat types 

(Fretwell and Lucas, 1970). 

 

A biotic influence that will differ between catchments is the type and strength of predation 

pressures on WCC. Although predation is not an influential control on population size (Brewis and 

Bowler, 1983) differential predation pressures can influence realised habitat quality and can 

therefore determine habitat selection (Englund and Krupa, 2000). Where terrestrial predators are 

dominant, crayfish are likely to preferentially select deeper habitat, whereas in areas where fish 

predators are dominant, crayfish will use shallower areas (Clavero et al. 2009). Responses to 

predation may result in segregation by size, as juveniles are more susceptible to fish predators 

and adults to terrestrial predators (Englund and Krupa, 2000). Conservationists must consider 

predation pressures before deciding what constitutes optimal habitat in different systems.  

 

Predation interacts with intra-specific competition to determine the size of the population (Lodge 

and Hill, 1994). The strength of competition depends on the availability of food and refuges and 

will therefore differ spatially and temporally (Lodge and Hill, 1994). Inter-specific competition will 

also differ between locations depending on the community structure. Presence of potential 

competitors, particularly non-indigenous crayfish species, will affect the distribution and habitat 

use of WCC (c.f. Hutchinson, 1978). Further work is needed to determine the influence of biotic 

interactions on habitat use and, from this knowledge, increase the applicability of findings to new 

areas. 

 

A final limitation of this study was that it was restricted to daytime habitat use. Previous studies 

have shown preferred night-time foraging habitats differs from that used as daytime refuges 

(Clavero et al. 2009) but this has not been demonstrated on the River Wansbeck. Suitability of an 

area for crayfish should not be generalised from daytime studies without consideration of the 

availability of foraging habitat and the ability of WCC to move between required habitat types 

(Angermeier et al. 2002).  

 

6.7  Implications of results for conservation measures in the Wansbeck catchment 

The results of this study agree with Rogers (2005) that the Wansbeck probably contains the 

largest dense population of WCC in England. The river is therefore a stronghold for this 

endangered species and is of national and international importance. Strategic management and 

conservation efforts are essential to sustain favourable habitat on this river over long time scales.  
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Designating the River Wansbeck as an SAC would assist in doing this and would contribute to 

national conservation efforts, to meeting the requirements of the EU habitats directive and to 

fulfilling the U.K. Biodiversity Action Plan. The criteria for designation of an SAC for a species are: 

large population size and high population density; high quality habitat (including possibilities for 

restoration) and; low degree of isolation of the population from the species natural range (JNCC, 

2010b). The River Wansbeck satisfies all these criteria. It is therefore reasserted that the 

Wansbeck should be put forward for designation as an SAC, as suggested by Rogers (2005).  

 

The findings of habitat requirements and preferences found in this study are informative for 

identifying high-quality reintroduction sites and creating suitable habitat in lotic ark sites, both of 

which are identified as priority actions in the Northumberland Biodiversity Action Plan (Jaggs, 

2009). Further, the results will be informative for the planned habitat improvement work, having 

identified what constitutes optimal habitat and ascertained that habitat creation should focus at 

the microhabitat scale. Overall, however, this study suggests that lack of physical habitat is not a 

major threat for WCC due to their tolerance of a wide range of habitat types. It is therefore 

recommended that to maintain populations in the wild the limited resources available for 

conservation should be directed towards maintaining suitable water quality and preventing the 

spread of non-native crayfish into currently unaffected systems. Since the development of the 

Northumberland Biodiversity Action Plan for WCC in 2000, signal crayfish have been introduced to 

the nearby Blyth catchment (Rogers, 2005) and the River Coquet (personal conversation, with 

Steve Lowe Northumberland Wildlife Trust, February 2010). This has increased the importance of 

the Wansbeck as a stronghold for the species and made efforts to prevent the spread of signal 

crayfish into this system a more vital need. Continued public awareness on the negative impact of 

signal crayfish and the need for disinfection to prevent the spread of crayfish plague is essential.  
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Chapter 7- Conclusion 

An abundant, dense and healthy population of white clawed crayfish (WCC) is present on the 

River Wansbeck. Average density of WCC per surveyed square metre was 5.3 individuals and in 

some areas density reached 24.5 individuals per square metre. Comparison to previous studies 

and Natural England guidelines shows this is a very dense population of national importance. The 

suitability of chemical and physical habitat for WCC along the entire length of the study reach 

suggests that, at the site-scale, there is a continuous distribution of crayfish between 8 km and 42 

km downstream. Comparisons to previous published work on this river show the population size 

within this area is increasing. At the microhabitat scale, the distribution of crayfish was 

aggregated in response to heterogeneity in environmental parameters. 

 

White clawed crayfish have a broad realised niche on the River Wansbeck and can tolerate and 

prosper in a wide range of habitat types. According to this study, the only available habitats they 

could not make use of during day-light were areas where the largest substrate was small pebbles, 

gravel, fines or bedrock. Absence could therefore be determined from D50, D95 or substrate 

descriptions. Presence/absence at the microhabitat scale could be satisfactorily predicted from 

surber-scale D50, presence of cobbles and pebbles in a surber area and presence of wood and 

shrub within 50 m of the channel, but extrapolating these results to systems with less abundant 

populations is not likely to yield good results. Within their wide realised niche, crayfish appear to 

be actively responding to physical variables, showing strong selection and avoidance of different 

habitat types.  

 

The strongest day-time response to a physical variable by WCC was to substrate size. White 

clawed crayfish were selecting microhabitats with an average grain size between 40 and 80 mm, 

which corresponds to cobbles. This requirement for coarse substrate agrees with the findings of 

previous studies (e.g.Foster, 1993; Brusconi et al. 2008) and was expected, as crayfish require 

refuges to protect against predation and high flows. Some authors have claimed that cobbles do 

not provide stable enough refuges for WCC (Naura and Robinson, 1998; Foster, 1993) but they 

were clearly adequate in the study area. A strong response to bank material was also evident with 

WCC selecting areas with earth banks and avoiding areas with bedrock banks. This response is 

likely to be caused by differing refuge provision in these materials and has been found by many 

authors (e.g. Holdich et al. 2006). Surprisingly, the day-time distribution of crayfish was not 

responding to the distribution of submerged or emergent macrophytes. Most previous studies 

have found preference for areas containing these vegetation types due to the food and shelter 

they provide (e.g. Brown and Bowler, 1977; Gallagher et al. 2006). However, crayfish were 

selecting areas where moss/algae was abundant. Where food requirements are met by moss and 
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leaf litter, submerged and emergent macrophytes may not be required. Crayfish were also 

exhibiting a significant response to depth and flow velocity in the study area. Areas with an 

average depth of 15 to 25 cm and average boundary flow velocity between 0.05 and 0.16 m s-1 

were preferred.  These findings are likely to be specific to the study area due to the influence of 

predation and refuge availability on response by WCC to these variables. A more widely applicable 

result is the preference of WCC for areas with heterogeneous flow patterns. Sites containing both 

riffles and glides were preferentially used, probably due to these sites having adequate dissolved 

oxygen and providing both resting and foraging habitat (Clavero et al. 2009).  

 

There was no predictable spatial pattern in distribution of WCC in the study reach although the 

upstream half of the study reach had higher densities of WCC. The longitudinal pattern of WCC 

distribution could be fully explained by differences in habitat quality; there was no independent 

affect of river position on WCC distribution. The upstream half of the study reach had a higher 

abundance of favourable habitat for WCC indicating that WCC are more likely to be present in low 

order streams. The applicability of this finding to other catchments needs to be tested. If this 

finding is generally applicable, reintroductions and habitat improvement efforts should 

concentrate in low order streams to increase their success rates and cost-effectiveness. At the site 

and surber scale, WCC distribution could not be predicted from any spatial variable meaning 

inclusion of spatial factors will not improve the performance of predictive models.  

 

Patchiness in the distribution of WCC was only evident at the sub-metre scale. If this study had 

been conducted only at the site-scale, different, and erroneous, conclusions about distribution 

and habitat preferences would have been drawn. The scale of patchiness in distribution suggests 

crayfish are only directly responding to microhabitat scale heterogeneity in physical variables. In 

this study, sensitivity to broad scale habitat variables was low but kilometre section and site-scale 

habitat heterogeneity did influence the distribution of crayfish to some degree by acting as filters 

on microhabitat-scale habitat suitability (c.f. Poff, 1997). Habitat based conservation actions 

should be conducted at the microhabitat scale to provide greatest benefit to WCC. However, 

broader scale influences on the suitability of microhabitats such as water chemistry, land-use and 

flow patterns should not be ignored.  

 

The River Wansbeck is in a favourable conservation status for WCC, with a large, dense population 

and no imminent threats.  The size and density of the population of WCC on the River Wansbeck 

make it a stronghold for the species and a site of national and international importance (Rogers, 

2005). The study site meets all criteria for a Special Area of Conservation (SAC) for WCC and it is 

therefore recommended that the River Wansbeck be proposed for designation.  Designating the 
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River Wansbeck as a SAC would contribute to conservation efforts and the meeting of legislation 

at regional and national levels. As SAC designation is a lengthy process, non-statutory designation 

as a local wildlife site may contribute to conservation of this endangered species in the interim.  

 

The findings of this study are a valuable addition to the growing knowledge on the response of 

WCC to habitat. Further research is required in order to better understand the influences of biotic 

interactions on WCC-habitat relationships and to determine whether the findings of this study are 

applicable to different river catchments. The implications for conservation of the WCC emerging 

from this study is that  lack of suitable physical habitat does not appear to be a major threat to 

this species due to their tolerance of a wide range of habitat types. Therefore, conservation 

efforts should focus on maintaining favourable water chemistry at the landscape-level and 

preventing spread of invasive species and crayfish plague into currently unaffected systems. The 

most effective way of implementing this would be through public awareness campaigns that 

highlight the negative impact of signal crayfish and the need for disinfection to prevent the spread 

of crayfish plague.  
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Appendix 

 

Appendix table 1- River Wansbeck survey site locations, details and population abundances 
 

Site 
code 

 
Site name 

 
Landowner 

Downstream 
coordinates 

Upstream 
coordinates 

Total 
cray-
fish 

1 Crook dean  
Cornfields farm 
 

NY 97362 83576 NY 97309 83496 17 

2 
Kirkwhelpington 
quarry NY 97986 83810 NY 97914 83847 48 

3 Horncastle Horncastle farm  
 
and  The Shield 

NY 98736 84350 NY 98696 84274 16 

4 
Kirkwhelpington 
bridge NY 99244 84464 NY 99174 84466 11 

5 Ivy crag  
Mr. Anderson 
Littleharle 
 

NZ 00339 84457 NZ 00246 84462 21 

6 Dean house NZ 00953 84246 NZ 00855 84256 20 

7 
Littleharle nature 
reserve NZ 01359 83706 NZ 01429 83670 10 

8 Greave’s dean NZ 02224 83918 NZ 02146 83899 29 

9 Wallington woods National Trust 
warden, Richard 
Dickinson 

NZ 03021 83592 NZ 02932 83567 31 

10 Wallington stepping 
stones 

NZ 03674 84155 NZ 03614 84090 39 

11 Scarlett Hall Scarlett Hall NZ 04315 84283 NZ 04343 84236 38 

12 Middleton bridge  
 
 
Middleton Mill 
 
 
and Highlaws 

NZ 05077 84138 NZ 05063 84210 73 

13 Middleton mill NZ 05822 84261 NZ 05727 84282 65 

14 Middleton mill 2 NZ 06072 84242 NZ 06064 84310 21 

15 Middleton meanders NZ 06501 84280 NZ 06489 84323 16 

16 
Middleton meanders 
2 NZ 06859 84246 NZ 06798 84282 26 

17 Highlaws bridge NZ 07461 84335 NZ 07364 84356 37 

18 West Marlish Elizabeth Walton NZ 08043 84461 NZ 08012 84439 18 

21 Broome house cops Broome House 
Allan Thompson  
Angerton Steads 
Mrs. Fenwick 

NZ 09830 84429 NZ 09761 84427 28 

22 Howlett hall bridge NZ 10402 84324 NZ 10319 84280 10 

23 
Broome house 

NZ 10712 84656 NZ 10680 84569 15 

27 Rivergreen Mill Rivergreen Mill NZ 13783 84646 NZ 13735 84729 10 

29 
West scroggs 
stepping stones 

Mitford Hall 
game keeper,  
Joe Pellegrino 

NZ 15282 85336 NZ 15200 85276 31 

30 Mitford hall NZ 16700 85371 NZ 16674 85282 5 

31 Mitford NZ 17320 85901 NZ 17223 85899 33 

32 Highford bridge Highford bridge NZ 18210 86040 NZ 18138 85980 4 

33 Lowford bridge NZ 18993 86120 NZ 18905 86093 11 
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Appendix Table 2- Population structure analyses for River Wansbeck sites 

 
Site 

Largest 
individual 
CL (mm) 

Smallest 
individual 
CL (mm) 

Percent 
male 

Percent 
female 

Percent 
juveniles  

(CL < 25 mm) 

Percent juveniles 
excluding 
yearlings 

1 27 9 66 33 87.5 88.2 

2 27 5 53 47 98 97.8 

3 23 5 67 33 100 100 

4 23 7 13 88 100 100 

5 34 8 61 39 66.7 66.7 

6 35 5 60 40 70 90 

7 47.5 11 50 50 90 90 

8 32 4 55 45 79.3 77.8 

9 33 8 52 48 67.7 67.7 

10 31 5 67 33 81.6 89.5 

11 38 9 55 45 81.6 81.6 

12 42 5 39 61 87.7 86 

13 34 4 48 52 95.3 93.5 

14 30 11 43 57 95.2 95.2 

15 33 4 40 60 81.3 70 

16 29 5 36 64 80.8 84.6 

17 38 4 47 53 94.9 73.3 

18 38 5 33 67 83.3 82.4 

21 25 4 49 51 96.4 95 

22 24 8 43 57 100 100 
23 30 8 31 69 73.3 73.3 

27 34 12 80 20 50 50 

29 32 8 60 40 77.4 77.4 

30 25 8 0 100 75 100 

31 28 8 52 48 78.8 78.8 

32 39 11 100 0 50 50 

33 27 5 56 44 91 77.8 

Total 47.5 4 49 51 81.5 79.3 
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