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Abstract

In this work we investigate the potential of controlling cold (O(K)−mK) and ultra-

cold (mK-µK) atom-molecule collisions by tuning scattering states across Feshbach

resonances using magnetic fields. We are interested in particular in the prospect of

suppressing the often undesirable inelastic collisions. The He-O2 system provides the

vehicle for our study. We calculate bound and quasi-bound states of several isotopic

combinations, including their Zeeman structure, to reveal the underlaying pattern

for easier characterization of quasi-bound states in terms of rigorous and approxi-

mately good quantum numbers. These calculations also help us locate the fields at

which zero-energy resonances will occur. Scattering calculations are then performed

for collisions of 3He and 4He with 16O2 at fixed (1 µK) energy but varying magnetic

field. The field is varied to sweep the scattering state across resonance. At low and

ultralow energies we enter the Wigner threshold regime where the S-partial wave

dominates the wavefunction. The cross sections, and the real and imaginary parts

of the scattering length, vary dramatically across resonance. Their profiles are used

to analyze the resonances. In a highlight of our results we show that dramatic sup-

pression of inelastic cross sections occur for 4He-16O2. The resonances are relatively

wide (of order 100 Gauss), with suppression of inelastic scattering over a similarly

wide range of fields and for temperatures ranging from 10 mK down to 1 µK. We

conclude that under certain conditions it is possible to almost completely eliminate

inelastic collisions. This is potentially very important for cooling techniques, such

as evaporative and sympathetic cooling, that require efficient elastic cross sections.

Suppression of inelastic collisions can not only increase thermalization efficiency but

it can also result in longer trap-lifetimes by reducing transitions to untrapable states.
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as I constantly picked his brain for some basic chemistry, to Jesus Aldegunde for

some interesting and stimulating discussions, and to Alisdair Wallis for sharing

useful information. To the group as a whole, I thank them for their friendship.

I would also like to thank Maykel González-Mart́ınez for his work on the BOUND
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Chapter 1

Introduction

Research in cold and ultra-cold molecular physics and chemistry has seen phenome-

nal growth over the last decade and a half fueled by interest from atomic molecular

and optical physics, chemical and even condensed matter physics. Initial inspiration

was provided by developments in atomic physics. These developments have been

land-marked by no less than two Nobel prizes, one for the demonstration of laser

cooling [1] and another for the achievement and early fundamental studies of the

properties of the collective quantum state of Bose-Einstein condensate (BEC from

hereon) in dilute Rubidium [2] and Sodium [3] gases. Our fascination with quan-

tum behavior reserves a special place for its macroscopic manifestation. The award

of nobel prizes for the discovery of superfluidity, superconductivity and the laser

underscores the place held by collective quantum behavior in modern physics.

Bose Einstein condensates have the important property that the interaction be-

tween the constituent particles, which determines important properties of the con-

densate such as the chemical potential and stability of the condensate [4,5], can be

tuned. Donley and colleagues [6] exploded a stable BEC by suddenly changing the

interaction from repulsive to attractive, demonstrating in spectacular fashion the

dependence of the condensate stability on the interaction. The ability to tune inter-

actions using a magnetic [7,8] or optical [9–12] field, coupled with trapping in optical

lattices [13], opened the possibility of studying quantum phase transitions [14, 15]

and understanding the underlaying mechanisms believed to be responsible for su-

1



Chapter 1. Introduction 2

perconductivity and superfluidity. Low temperature atoms have also been used in

high precision clocks [16–18], matter-wave solitons [19] and interferometry [20, 21],

and in tests of violation of fundamental symmetry [22, 23] with consequences far

beyond atomic physics.

Encouraged by the achievement of low temperature atoms, efforts are underway

to achieve similar temperatures in molecules. Ultra-cold molecular ensembles will

be more than a simple extension of ultra-cold atomic systems. Molecules have more

degree of freedom which results in a much richer structure. This facilitates the

significant enhancement of accuracies of measurements of comparable experiments

using atoms and also introduces many new interesting experiments. For example,

measurements of the electric dipole moment (EDM) of the electron is enhanced by

the presence of closely spaced states that couple the different degrees of freedom

[24], while parity violating experiments [25] performed on enantiomers can only be

performed on molecules. The increased structure also results in a richer resonance

structure. Resonances are important to atomic and molecular collisions and are

central to the prospects of controlling collision outcome. Perhaps the most exciting

prospects for ultra-cold molecules are due to the possibility of having an electric

dipole moment. The dipole moment has allowed the development of a formidable

toolkit for the manipulation of molecules which includes decelerators [26, 27], traps

[28,29], a storage ring [30], and even a synchrotron [31]. Some of these developments

were inspired by accelerator physics.

In the low temperature limit, which we divide into cold (a few kelvin to 1 mK)

and ultra-cold (below 1 mK) following Suominen [32], the long-range interaction

plays a dominant role. The dipole-dipole interaction has an R−3 dependence on

the separation R as compared to the R−6 of dispersion forces. Therefore, ultra-cold

polar molecules interact more strongly compared to neutral atoms. The long-range

nature coupled with the prospects of controlling the interaction of polar molecules in

optical lattices [33,34] raises the prospects of experimental accessability of interesting
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many-body states [35–37]. The strongly anisotropic nature of the dipole-dipole

interaction has encouraged investigations of steric effects on collision dynamics [38,

39]. Dipole moments also dramatically change the behavior of degenerate systems

[40]. Low energy collision behavior of polar molecules is dependent on the dimensions

[41]. Restricted to move in two dimensions, polar molecules can form a crystalline

structure [34] which might potentially be used to suppress collisions [42]. In general,

trapping geometry can be used to tune interactions [40, 43,44].

There are a few direct consequences of the low energy of ultra-cold atoms and

molecules that are responsible for the wide interest in them. The first and principle

reason is the quantum nature of particles which begins at about the 1 mK mark. At

ultra-cold temperatures the de Broglie wavelength of a particle becomes much longer

than typical bond-lengths and at degeneracy exceeds the average separation between

the particles in the gas. A few partial waves dominate particle encounters and the

position of the nodes and resonances of the waves cannot be washed out, bringing the

wave nature of the particles and thus quantum effects to the fore. The second reason

is a practical one. For fields achievable in the laboratory the Zeeman and Stark

effects typically result in internal energy change of the order of 1 K. This means that

meaningful manipulation and control of molecules by external fields is possible only

in the cold and ultra-cold regimes. Another important consideration is the inherent

precision of measurements implied by these temperatures. Low temperature results

in high accuracy and this coupled with excellent electromagnetic technology has

resulted in significant efforts in precision measurements of a host of fundamental

and not so fundamental quantities as we shall see below. Carr et al. [45] have

reviewed the science, technology and applications of cold molecules in 2009.
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1.1 Applications

1.1.1 Precision spectroscopy

Cold and ultra-cold molecules are ideal for precision measurements for several re-

lated reasons. A temperature of, say, 50 µK corresponds to an energy spread of

approximately 1 MHz (3×10−5 cm−1). This narrow distribution increases the accu-

racy and efficiency of spectroscopy. Lower speeds and trapping made possible by low

temperatures reduce Doppler broadening resulting in higher resolution. Efficiency of

optical transitions is increased by the reduced spread of energy giving better signal

to noise ratio. Trapping also allows for longer interrogation time increasing the pre-

cision of measurements [46]. Collision times at cold and ultra-cold temperatures are

orders of magnitude higher than at ambient temperatures, increasing the impact of

the interactions which allows for investigation of finer details of the potential energy

surface [47].

The potential of photoassociation of cold atoms as a high resolution probe of

atomic and molecular structure was pointed out by Thorsheim and colleagues [48].

Ultra-cold atoms interact at long range where the densities of bound states are

quite high and their spacing quite small. Photoassociation spectroscopy of ultra-cold

atoms has allowed resolution of near dissociation bound states of several alkali-metal

dimers [49–51]. The technique also yields important information of the long-range

interaction of the atomic species. Photoassociation spectroscopic data is complemen-

tary to data of traditional spectroscopy. Stwalley and Wang [52], and more recently

Jones et al. [53], have reviewed photoassociation of cold and ultra-cold atoms.

Cold and slowed molecules have also improved accuracy in the spectroscopy of

more traditional molecules. For example, van Veldhoven et al. [46] fully resolved

the hyperfine structure of 15ND3, while van de Meerakker et al. [54] were able to

measured the lifetime of the v = 1 vibrational level of OH radicals at 59.0 ± 2.0

milliseconds by trapping them. The measurement was in good agreement with the-
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oretical calculations [55] which gave a lifetime of 58.3 milliseconds. Velocity tuning

technology [26,56] has enabled scattering experiments that are highly sensitive to the

details of the potential energy surface [47]. As we shall see below improved accuracy

of traditional spectroscopy has benefits beyond atomic and molecular physics.

Time variation of fundamental constants

A fascinating class of precision measurements on cold molecules that have far reach-

ing implications involves experiments to determine the time variation of fundamen-

tal constants of physics. Of these, the fine structure constant α [57], and the ratio

µ = me/mp [57–60] of electron to proton mass are accessible to spectroscopic mea-

surements. The determination of µ involves measurements of hyperfine structure

which depends on nuclear and electronic masses via their respective spins. Measure-

ments of transitions that have different dependencies on a constant are compared

over extended time. Molecules, with their increased degrees of freedom, offer more

possibilities of finding closely spaced levels with very different lifetimes, increasing

the sensitivity of measurements [57–59]. The best results thus far are from as-

tronomical data. This is principally due to the possibility of measurements that

correspond to events separated by astronomical time. In contrast, laboratory ex-

periments can only compare measurements that are separated by months or years.

Current limits on the variation of fundamental constants imposed by measurements

on cold molecules are on the verge of limits obtained from astronomical data. Lower

temperatures are likely to swing the pendulum in favor of laboratory experiments

resulting in more stringent tests of the time variation of the constants. Recent exper-

iments include measurements to probe time variation of α using Stark decelerated

OH by Hudson and colleagues [61]. Kotochigova et al. [60] have proposed the use

of Sr2 molecules to probe the time variation of µ, while DeMille et al. [59] proposed

the use of Cs2 for the same purpose. Zelevinsky et al. [58] have discussed the use of

ultra-cold molecules trapped in an optical lattice. The theoretical and observational

status of the variation of the fundamental constants in 2003 has been reviewed by

Uzan [62].
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Violation of fundamental symmetries

The standard model requires physical laws to be invariant with respect to charge

conjugation, space inversion and time reversal. The acronym for the combined

symmetry is CPT (Charge, Parity and Time). However, it has been known for

some time that the standard model is incomplete. For example, the weak nuclear

force does not conserve parity [63] while the strong force is known to violate CP

[64,65]. The asymmetry between matter and antimatter in the universe might also

be explained by CP violating interactions. In efforts to extend our understanding,

scientists are probing phenomena that violate the predictions of the standard model.

These efforts include experiments in search of the EDM of electrons, protons and

neutrons which would be a consequence of violation of PT symmetry.

The EDMs, if present, are very small and will require very high electric fields

for the resulting shift in energy to be measurable. Such high fields are found inside

atoms and molecules but an external field is required to orient the dipole moments.

Relativistic effects and higher polarizability improve measurement accuracy making

heavy, ultra-cold, polar molecules ideal. Hudson et al. [24] have used cold YbF to

obtain an upper limit of −0.2±3.2×10−26 e cm, where e is the electronic charge, for

the electronic EDM. This is not as good as the best limits obtained by experiments

using atoms but is expected to improve with higher molecular densities. Kozlov

and DeMille [66] performed calculations which indicated enhanced sensitivity of

measurements of the electronic EDM in PbO. Bickman et al. [67] and Vutha et

al. [68] have described experiments using PbO and ThO, respectively.

Enantiomers or chiral molecules are a pair of molecules that are mirror images of

each other but cannot be superimposed by simple rotations and translations alone.

Enantiomers are very important in biological chemistry [69]. Differences in the prop-

erties of chiral molecules would be a consequence of parity violation and thus a result

of the weak interaction. Theoretical calculations predict differences of the order of

1 Hz, while recent experiments have achieved accuracies of tens of Hz. The orders
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of magnitude improvement in accuracy resulting from the low temperatures now

achievable is likely to benefit our understanding of the mechanisms of parity viola-

tion. Quack and Stohner have reviewed computational and experimental progress

on violation of parity in chiral molecules until 2005 [70].

1.1.2 Quantum chemistry

Wigner’s threshold laws [71] state that reactive rate constants have a finite value

in the zero-energy limit and early studies [72, 73] showed that this can indeed be

significant, prompting further research in ultra-cold collisions and chemistry. In

this limit the de Broglie wavelength of the molecules is much longer than typical

bond-lengths. This means that the conventional picture of the reacting nuclei rolling

along the surface of the electronic potential like classical billiard balls is no longer

valid. Instead we must have a quantum mechanical picture of waves over the surface.

This opens a whole new set of phenomena associated with waves. Mechanisms such

as tunneling become important [72–75]. Long-range van der Waals forces, which

are usually unimportant at higher energies, become very important [72, 76, 77] and

greatly influence chemical [78] reactions at ultra-cold temperatures. Rotational and

vibrational resonances of the van der Waals interaction become crucial [75,77,79,80].

Theoretical studies of ultra-cold chemical reactions has mainly involved atom-

dimer systems of distinguishable atoms or indistinguishable spin-polarized alkali-

metal atoms. Reactions of indistinguishable systems are usually barrierless and the

reactants and products are chemically identical. In an interesting paper, Cvitaš et

al. [81] considered atom-diatom collisions of isotopically distinguishable Li at ultra-

cold temperatures. They found that for collisions of 7Li with 6Li2 and 7Li6Li the

reactions are exothermic. For 7Li–6Li7Li, reactive rates were found to be slightly

higher than elastic rates. In contrast, only elastic outcomes are possible for 6Li–

7Li2/
6Li7Li collisions. This has important implications for efforts to produce lithium

dimers from mixed atomic isotopes and for sympathetic cooling and trap loss of Li

atoms and dimers.
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Of greater chemical interest are systems with products that are distinguish-

able from the reactants. Such reactions often have a barrier and in the ultra-cold

regime proceed mainly through tunneling. Systems that have been studied include

F+H2/HD/D2 [72,73,82–84], Li-HF [75], F+HCl/DCl [85] and O+H2 [78,86,87]. In

a study of F+H2 Balakrishnan and Dalgarno [72] found that the product channel

is dominated by the HF(v = 2) state. An important investigation in understanding

the impact of tunneling is to determine the effect of mass by comparing isotopi-

cally different systems. Balakrishnan at al [82] found a branching ratio of HF to

FD of approximately 5.5 in reactions of F+HD(v = 0, j = 0). Bodo et al. [73]

investigated reactions of F+D2 and found a difference of three orders of magnitude

in reaction rates compared to F+H2 which could not be accounted for by differ-

ences in tunneling alone. They artificially varied the mass of the H atom and were

able to show that the difference was due to resonance enhancement. They also

attributed a higher Wigner limit of reaction rate to resonance enhancement. Sim-

ilar resonance enhancement was observed earlier by Takayanagi and Kurosaki [79]

in F+H2/D2/HD systems. Weck and Balakrishnan [88] performed calculations on

H+HCl/DCl for dimer states (v = 0−2, j = 0) and found resonances corresponding

to the v = 1 in the entrance channels of both systems to increase reactivity signif-

icantly. The v = 2 state had a zero-temperature limiting rate coefficient about 8

orders of magnitude higher than the ground state. More recently Quéméner and

Balakrishnan [85] studied the reaction rates of F+HCl/DCl. They found reactions

of F+HCl to be much faster than those of F+HDl, indicating the importance of tun-

neling in ultra-cold chemistry. Reaction rates of F+HCl increased by four orders of

magnitude when the HCl molecule was promoted from its vibrational ground state

to v = 2. Rotational excitations had less pronounced effects.

1.1.3 Lattice models and parallels with solid state physics

Lattice models, such as Hubbard models [89], have been used in condensed matter

physics to explain the superfluid, superconductive, and the Mott-insulator phases.

Atoms in optical lattice traps provides a physical realization of these models [90],

and the ability to tune their interaction opened the door to the prospects of study-
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ing controlled transitions between these important phenomena. The equivalent of

pairing electrons in the so called BEC-BCS crossover believed to be responsible for

the superconductive phase was observed in fermionic atoms [91–94]. The Mott-

insulator to superfluid transition in atomic systems has also been observed [14, 95].

Developments of work with fermionic atomic species in optical lattices with two-

atom occupation [96] might lead to simulations that yield the phase diagram of the

original Hubbard model, a problem that has not lent itself to analytical description.

With extension to molecules, polar molecules can be placed in optical lattice for

the important added advantage of strong off-site interaction. This would allow for

the exploration of strongly correlated systems [34, 97, 98]. Micheli et al. [33] have

shown that it is possible to engineer arbitrary interactions between neighboring polar

molecules in optical lattices using a combination of direct and alternating electric

fields. Optical shielding has also been shown to be possible [33]. Interesting physics

is expected for polar molecules in optical lattices [36,40,99–101].

1.1.4 Quantum computing

The manufacture of the solid-state transistor heralded the age of modern electronic

computers. Continuous miniaturization has allowed for faster, less energy inten-

sive, and cheaper computers that have revolutionized every aspect of life. However,

chip manufacturing is fast approaching the quantum limit. This is the limit in size

when quantum effects become important and current computer technology will be

insufficient. Recent advances in our understanding of cold and ultra-cold atoms and

molecules, and developments in technologies to control and manipulate them, have

allowed us to take advantage of this challenge to shift the paradigm of the process

of computing itself. Quantum computers are an architectural proposal to exploit

the quantum effect of superposition to introduce a form of parallel processing with

potential for a phenomenal increase in processing speed. Quantum algorithms for

currently intractable problems, such as integer factorization, indicate that solution

of such problems might become feasible. In addition, quantum computers will be
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capable of truly random processes, opening the door to accurate modeling of many

physical processes.

Polar molecules are central to a promising new platform for the physical real-

ization of quantum computers [102]. The bits of information, normally referred to

as qubits, can be stored in long-lived hyperfine or rotational states of the electronic

ground state. The strong dipole-dipole interaction increases the efficiency of binary

operations necessary for a complete set of basic operations. The main practical

challenge is decoherence, which compromises the fidelity of information storage and

processing. Decoherence has many sources, but, cooling reduces contributions due

to translational oscillation in the trap and occupation of undesired internal states.

1.2 Achieving cold and ultra-cold molecules

The workhorse of experiments to cool atoms to ultra-low temperatures, the laser,

does not work for the vast majority of molecules. De-excitation of molecules popu-

lates many levels and the closed cycle (of a few levels) essential for laser cooling to

work is absent. This has led to alternative cooling methods that can be categorized

in two, direct and indirect methods. We will discuss some of the main methods of

both categories beginning with direct ones. These discussions are not meant to be

a comprehensive update of developments but an overview of some of the basic ideas

behind a sample of representative methods.

1.2.1 Direct methods

Direct methods start with ’hot’ molecules and cool them to low temperatures. Some

direct methods, such as Stark [26] and optical lattice deceleration [103], are really

slowing techniques and do not lead to increased phase-space density. However,

other direct methods such as buffer-gas-cooling [104] do increase phase-space density.

Direct methods such as evaporative [3, 105] and sympathetic cooling also used in

the cooling of atoms increase phase-space density too. Direct methods have the

advantage of reducing the internal as well as the translational energy of molecules.
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Bethlem and Meijer reviewed developments in the production by direct methods and

application of cold molecules up to 2003 [106]. We will begin by a brief discussion

of the Stark effect which is at the heart of the most successful slowing techniques

for molecules.

The Stark effect in molecules

The change in internal energy W of a molecule with dipole moment µ placed in an

external electric field E can be expressed as

W = −µE cos(θ)

= −µeffE (1.1)

where µ and E are the magnitudes of µ and E, θ is the angle between them and

µeff = µ cos(θ). Quantization of space limits µeff to a discrete set of values depending

on the rotational state of the molecule. If the field is inhomogeneous the molecule

experiences a force Fx in the x direction given by

Fx = −∂xW

= µeff∂xW, (1.2)

where ∂x indicates the partial derivative with respect to x. States with a positive

µeff feel a force in the direction of increasing field strength and are referred to as high

field seeking (h.f.s.) states. Negative µeff states are attracted to low field regions

and are thus low field seeking (l.f.s.). These forces are exploited in the design of

equipment such as the Stark decelerator [26, 27]. The dependence of the force on

µeff has been the basis for state selection in some experiments.

Stark deceleration

The use of fields to deflect [107] and focus [108,109] atoms and molecules has a long

history. However, the first successful use of fields to impart permanent change in

longitudinal motion of molecules was reported by Bethlem et al. [26] in what they

called a Stark decelerator. Theoretical accounts of the Stark decelerator have been

made by Bethlem et al. [110] and Gubbels et al. [111] but we will give a simplified
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Figure 1.1: A schema depicting two stages of the Stark decelerator [26] and the

profile of the interaction energy, W (x), along the direction of travel chosen to be

the x-axis.

account. The basic idea behind the decelerator is the use of a series of stages with

a synchronized switching of fields. Each stage consists of two cylindrical rods with

rounded edges. A high voltage is applied across the pair. Figure 1.1 is a schematic

diagram showing two stages in sequence. We note that between two high voltage

pairs is a set of neutral terminals. Figure 1.1 also shows a profile of the interaction

energy W (x) along the length of the decelerator, taken to coincide with the x-axis.

On entering the field region, a low field seeking molecule will experience a potential

hill, decelerating as it climbs. If nothing is done, and assuming that the molecule

has enough energy, it will overcome the hill, accelerating and regaining all of its

initial kinetic energy at the bottom. However, if the field is switched off before the

molecule exits the stage, it will leave with less energy than when it entered. The

amount of energy lost depends on the exact position of the molecule as the field is

switched off. There are an array of stages and the process is repeated at each stage.

The switching times of the stages must be synchronized taking into account the

decreasing velocity of the molecules. The concept of a synchronous molecule defined

as having just the right velocity to be in a similar position (same phase) on entering

each stage is helpful. This molecule travels a distance exactly equal to the separation

of the stages in one period. Molecules in the vicinity of the synchronous molecule
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in phase-space are in stable orbits around it as they travel through the stages. We

can imagine the molecules traveling together in a decelerating potential well, so that

the motion is phase-space coherent. Those too far from the synchronous molecule

have unstable phase-space trajectories and are lost during deceleration. Phase-space

coherence is an important property of the Stark decelerator which allows for the

deceleration of a slice of a thermal distribution as apposed to a single molecule.

Stark deceleration was first performed on metastable CO [26]. The velocity was

decreased from 225 m/s to 98 m/s in 63 stages corresponding to a reduction of

approximately 19% in energy. In 2009 Tokunaga et al. [112] reduced the velocity of

LiH molecules to 53 m/s in 100 stages removing 98% of the kinetic energy in the

process. Some of the molecules decelerated so far include ND3 [28], OH [54,113,114],

metastable NH [115], H2CO [116] and SO2 [117].

Stark deceleration will, in principle, work for any polar molecule as long as it is

in a l.f.s. states. This is not because longitudinal deceleration is not possible for

molecules in h.f.s. states, but, because of the transverse electric field pattern of the

decelerator. The field magnitude along the perpendicular axis connecting the two

electrodes of a stage has a minimum at the halfway point and increases closer to

the electrodes. Molecules in h.f.s. states traveling along the decelerator would be

defocused along this direction, eventually crushing into the electrodes. What makes

the limitation to l.f.s states so restricting is the fact that the ground state of all

molecules are h.f.s. states. In addition mixing of levels in heavy polar molecules of

experimental interest, such as YbF [24, 118] and PbO [66, 119], results in virtually

all low lying levels to become h.f.s at relatively low fields.

Alternating gradient deceleration

The alternate gradient (AG) Stark decelerator [27] is a development designed to

decelerate molecules in both h.f.s. and l.f.s. states [120]. The AG Stark decelerator

relies on an important physical phenomenon that the net effect of alternate focusing
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and defocusing in a plane perpendicular to the direction of motion results in net

focusing. Thus, alternating the field configuration so that the molecules are alter-

nately focused and defocused in each of the perpendicular directions produces net

dynamic focusing on the perpendicular plane. Bethlem et al. [27] achieved this by

alternating the field configuration between stages. Each stage in the AG decelerator

has four electrodes, producing a quadrupole field. The electrodes are at the vertices,

away from the defocusing axis, which avoids loss of any molecules from collisions.

The deceleration works as in the Stark decelerator except that the switching times

have to be adjusted. The AG decelerator can be used to slow molecules in both

h.f.s. and l.f.s. states.

In a proof-of-principle experiment Bethlem el al [27] demonstrated both accel-

eration and deceleration of metastable CO in a h.f.s. state. Subsequently AG

deceleration has also been applied to OH radicals [121] and CaF [122]. Tarbutt et

al. [118] have decelerated YbF while Wohlfart and colleagues have decelerated the

much heavier benzonitrile [123]. The Stark and AG decelerators typically achieved

temperatures of tens of mK, which are orders of magnitude higher than is required

for condensation. This means that Stark deceleration can only serve as a first stage

cooling method for experiments aimed at achieving condensation.

Buffer Gas Cooling

At temperatures of 1 K and below most gases have a very low vapor pressure, and

cooling by containment in a cold container is impractical as the molecules would

simply stick to the walls and condense. Helium is an exception. It has a relatively

high vapor pressure down to subkelvin temperatures. Buffer-gas cooling (BGC) [104]

employs He gas as a buffer between the walls of a cryogenic cell and the molecules of

a gas to be cooled. For effective cooling the He must thermalize the gas to be cooled

before its molecules touch the walls of the cell. This requires a minimum density of

the He gas depending on the mean free path. Cooling efficiency can be increased by

higher densities, however, this increases the vapor pressure, imposing a lower limit

on the temperature. The cooled gas must be trapped for further cooling. For this
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the cryogenic cell spatially coincides with a field used for the trap. As the molecules

of the gas are thermalized, they fall into the trap and the buffer-gas is pumped

out. Helium is essentially unaffected by the magnetic field due to its closed shell

structure. The trap also stops diffusion of thermalized molecules onto the cell walls

during the cooling process. The trap depth sets an upper limit on the temperature

of the trapped molecules.

Buffer-gas cooling was initially used to cool atoms [124,125]. Pumping technology

limited these early experiments to atoms with large magnetic dipole moments (6 µB).

These atoms interacted more strongly to produce deeper traps and longer trapped

lifetimes, stayed trapped just about long enough to allow for the evacuation of the

buffer-gas. Improvements in pumping techniques eventually resulted in the BGC of

atoms with smaller magnetic moments [126]. The first molecule to be cooled by BGC

to mK temperatures was CaH [127]. Other molecules such as NH [128, 129] were

subsequently cooled by this technique. In an interesting recent development BGC

was used as the first stage of a process that achieved condensation of metastable

4He [130].

Buffer-gas cooling has several advantages. It is a dissipative process which ac-

cepts the whole thermal distribution which results in a comparatively high number

of cold molecules. Up to 1012 NH molecules have been cooled [129]. The technique

is not dependent on the internal structure of the gas to be cooled and is there-

fore of quite general application. This could allow simultaneous cooling of different

species as long as they can be trapped magnetically. However, BGC only achieves

temperatures of the order of mK.

Optical lattice deceleration

Identical counter-propagating laser beams can be used to create a potential lattice

for trapping atoms and molecules [131]. The lattice can be made to travel at constant

speed if we change the frequency of one beam. Let us imagine suddenly switching-
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on a traveling lattice to capture a bunch of molecules from a pulsed supersonic

beam in one of the potential wells. The number of captured molecules will depend

on the laser spatial and intensity profile, the relative molecule to lattice velocity,

and the beam temperature. In the frame of reference of the lattice, the molecules

will eventually decelerate, and, if the well is deep enough, be reflected back in the

opposite direction. If however, we switch the laser off just as the molecules are at the

turning point, we could bring them to a standstill in the lattice frame. The use of a

lattice to reflect molecules in this way was suggested by Ryytty and Kaivola [103].

In practice the molecules in an ensemble will of course enter the trap at different

points in phase and will not be at their turning points simultaneously. The reduction

in beam velocity depends on the relative beam to lattice velocity. Ideally, we would

have a lattice stationary in the lab frame. Also it would be preferable to have deep

wells to capture many and hotter molecules. However, for a fixed potential depth,

a higher relative speed reduces the fraction of molecules that can be captured. In

a theoretical study, Dong et al. [132] found that the optimal lattice velocity for a

maximum fraction of nearly stationary molecules to be half the molecular beam

velocity. Optical deceleration slows and bunches molecules in velocity space at the

expense of spatial distribution as required by conservation of phase-space density.

Like the Stark decelerator, optical lattice deceleration is phase-space coherent.

Optical lattice deceleration relies on induced, as opposed to a permanent, dipole

moment. Since all molecules (and atoms) are polarizable to some degree, optical

lattice methods are in principle quite general. The constant lattice velocity method

generally produces deep minima (100 K) for short durations (nanoseconds) using

a pulsed laser beam to impart the required impulse. In a second variable method

the lattice is decelerated by chirping one of the lasers. Decelerating lattices have

shallower (1 K) minima but last longer (minutes). The deeper wells demand laser

light at least two orders in magnitude more intense. The decelerating lattice has the

disadvantage that it will also decelerate the molecules of the carrier gas employed

in the production of the beam. The constant velocity lattice has the advantage

that it can separate the molecules as long as there is a significant difference in the



1.2. Achieving cold and ultra-cold molecules 17

mass-to-polarizability ratios of the two species [132].

Fulton et al. [133] have slowed a beam of NO at temperatures of 1.8 K from

400 m/s to 270 m/s, corresponding to a 50% reduction in kinetic energy, using a

constant velocity optical lattice. They found that allowing for a half rotation in

phase space retained the original velocity distribution.

Sympathetic cooling

At times it is not possible to apply a cooling technique directly because of quantum

statistics or complicated internal structure of the molecules. Sympathetic cooling,

developed initially to cool ions, and which promises very low temperatures, can be

used in some such cases. The gas to be cooled is simultaneously trapped with a

second species which is usually cooled by laser. Cooling proceeds by thermalization.

Although less effective for neutral species, because they interact less strongly than

ions, sympathetic cooling by rubidium atoms was used to achieve the condensation of

41K [134]. Theoretical studies have considered the prospects of sympathetic cooling

of OH [135, 136] by Rb and found them to be poor. More recent considerations of

cooling NH3 and ND3 [137,138] by Rb and NH [139–141] by alkali-metal and alkaline-

earth atoms indicate rather mixed results. Sympathetic cooling of ammonia by Rb

is likely only for the ground state [137] of the molecule while cooling NH by Mg has

good prospects [141].

1.2.2 Indirect methods

Indirect methods begin with laser-cooled atoms and associate them to form molecules.

Association can be achieved optically [48, 49], magnetically [142, 143], or by three-

body recombination. Indirect methods have the advantage of producing molecules

with translational temperatures similar to the parent atoms. Until recently these

molecules were highly vibrationally excited. Recently, heteronuclear molecules have

been produced in their vibrational ground state by coherent photoassociation [144].

Here we will discuss homonuclear and heteronuclear photoassociation, magnetic as-
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sociation by Feshbach resonance tuning, and enhanced association by three-body

recombination.

Photoassociation

If two atoms collide in the presence of a photon they can be promoted to a bound

state of an excited electronic potential energy curve (hereafter PEC). The photon

has to be of the right frequency corresponding to the energy difference between the

scattering and bound states. Photoassociation (PA) of atoms by laser light in the

cold regime was suggested by Thorsheim et al. [48]. Fioretti et al. [49] recorded the

first PA of Cs2, and a little over half a decade later homonuclear diatomic molecules

had been produced from most of the alkali-metal atoms [51, 145, 146]. The long-

range nature of low-energy scattering states means that overlap with deeply bound

vibration states, which have a short classical turning point, is virtually zero. The

Franck-Condon factors invariably dictate PA to highly excited vibrational states,

which quickly dissociate back to a scattering state, or, drop down to a vibrational

state of the electronic ground state. The latter outcome is less likely for the same

reason that PA is more likely to produce a molecule in a highly excited vibrational

state. Even when relaxation (de-excitation) results in a bound state, it is invariably

vibrationally highly excited. These states are undesirable in trapped molecules

because collisional relaxation, even near dissociation, releases enough kinetic energy

to eject the colliding pair out of the trap. Stabilization to the ground state is

therefore important. The relaxation process need not be spontaneous, and coherent

transfer to deeper vibrational levels can be achieved by stimulation [147]. In the

latest schemes, chirped lasers are used to create a tailored wavepacket on the excited

curve increase PA yields greatly [148–150].

Homonuclear molecules

Trapped alkali-atoms are usually in spin-stretched electronic states, which means

that the scattering state is a triplet state. The leading term in the long-range

potential of the electronic ground-state of both homonuclear and heteronuclear al-

kali metal dimers has an R−6 dependence. In contrast, excited electronic states
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of homonuclear dimers have an R−3 dependence. This leads to a denser bound-

state structure at high vibrational levels, which can be advantageous in relaxation,

however, the difference in the long-range behavior of ground and excited electronic

states leads to poor Frank-Condon factors. Also the hyperfine interaction only

weakly couples gerade and ungerade symmetry states. This makes it challenging to

transfer ungerade scattering states of the 3Σu PEC to gerade bound-states of the

X1Σg ground state PEC. Nonetheless, transitions were observed by Samelis et al. in

2000 [151]. Nikolov et al. [152] reported the formation of K2 in their absolute ground

states (X1Σ(v = 0) ) by a two-step method. They photoassociated a scattering state

to a highly excited 51Πu or 61Πu state via an intermediate v = 89 level of a 11Πg

curve. The second step is an efficient bound-to-bound transition. The higher excited

state has an inner turning point above the absolute ground state, giving favorable

Franck-Condon factors. More recently, Viteau et al. [153] reported ground-state Cs2

by PA. Their method was essentially a redistribution of the vibrational occupation

by optical pumping. They excited molecules using a shaped, broadband, laser pulse

tuned to transitions between several vibrational levels of ground and electronically

excited states. Frequencies that could excite the v = 0 ground state were removed

so that it became a ’dark-state’. The molecules are then allowed to decay spon-

taneously, occupying all levels including v = 0. Population transfer to the v = 0

levels of the ground state can then be effected by a sufficient number of absorbtion-

emission cycles. Viteau et al. [153] reported a transfer of over 50% of molecules from

v = 1−10 levels to the ground state v = 0. In a different approach, Koch et al. [154]

have proposed tailoring a laser pulse by using control theory to optimize transfer

of weakly bound electronic ground state molecules to the absolute ground (v = 0)

state. A bound initial state is required to ensure that the optimization process can

guarantee the existence of an optimum solution. There must, of course, be a route

of transitions connecting the initial and final states. Koch et al. [154] simulated

optimal control transfer of long-range Na2 molecules to v = 0 for a simplified two

channel model and reported 99 percent efficiency.
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Heteronuclear molecules

For heteronuclear alkali metal dimers the excited and ground electronic states both

have an R−6 long-range dependence. Theoretical calculations by Wang and Stwalley

[155] showed this similarity to lead to much better Franck-Condon factors which

improved with increasing mass. They also noted that the turning point of the least-

bound state of the excited electronic state was much further out (at ≈ 100 Å) for

KRb than other heteronuclear dimers, pointing to better PA prospects for KRb. In

2004, Stwalley [156] noted a very fortuitous mixing of the b3Π and 21Σ states, the

two lowest curves of the first excited electronic state. This mixing, which is present in

all heteronuclear alkali metal dimers, and is stronger for heavier systems, allows for

efficient transitions to and from the ground singlet and triplet states. Stwalley [156]

reported the existence of a mixed character bound-state with four turning points

resulting from two avoided crossings of the curves above the ground v = 0. Such a

state makes for an ideal intermediate level in efforts to achieve ground state v = 0

molecules. Kotochigova et al. [157] studied transition dipole moments between the

two ground-state potentials and the mixed excited state of KRb. They found the

excited state to have triplet character in the short-range and singlet character in

the long-range. At an avoided crossing and turning point (R ≈ 10ao) there was

strong mixing. They affirmed the feasibility of a single step two-photon scheme to

achieve ground state KRb in v = 0. Another factor improving the PA efficiency of

heteronuclear dimers is the lifting of parity restrictions.

In 2005, Sage et al. [158] reported ground state v = 0 RbCs molecules achieved by

a two-steps process in a relatively low density sample. In 2008, Ospelkaus et al. [144]

reported the first observation of absolute ground-state KRb. They employed a two-

lasers to coherently transfer loosely bound Fermionic Feshbach molecules to the

v = 0 of the ground electronic state. The molecules were at temperatures below 400

nK, which is three times higher than is required for degeneracy. In 2008, Deiglmayr

et al. [159] reported LiCs in the ground state v = 0 produced using a single PA step

followed by spontaneous emission. The excited state belonged to the B1Π potential
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energy curve, the highest of the first excited electronic asymptote. The essential

science, applications, and developments in PA of alkali-metal atoms until 2006 has

been reviewed by Jones et al. [53].

Feshbach Resonance Association

Each spin configuration of a colliding pair of alkali atoms defines a channel. In

a first order picture, each of these channels supports its own bound states. It is

therefore sensible to talk about the channel that supports a given bound state. In

the complete system the hyperfine interaction couples the different channels, mixing

the character of the bound states. Only states belonging to the lowest threshold

remain truly bound, the others retain their bound-like character (localization) but

are quasi-bound or resonance states with an associated dissociation lifetime. In the

vicinity of a resonance state, scattering cross sections exhibit pronounced sensitivity

with change in energy. Resonance states are Feshbach (shape) if they are supported

by a different (the same) channel as the scattering state. This means that Feshbach

resonances generally have different magnetic moments to the scattering state. The

difference can be exploited to tune scattering properties of ultra-cold [142,160] and

degenerate [161] systems. Importantly, atoms of a condensate can be associated to

produce a molecular BEC, as pointed out by Timmermans and colleagues [143].

There are several approaches to associating atoms. The most common one in-

volves sweeping the resonance across the scattering state, resulting in the transfer

of colliding atoms to a bound state. With a linear time-dependent magnetic field,

the avoided-crossing of the scattering and resonance states is described well by a

Landau-Zener curve crossing model [162]. The probability of transition to a bound

state, Pt, can be expressed as

Pt = 1 − 1

exp(δ)
, (1.3)

where δ is inversely proportional to the rate of change of the magnetic field. In the

zero δ, or adiabatic, limit, Pt approaches unity. Although in practice the probability

for any pair is very small, each atom can pair with any other in the ensemble,
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depending of course in the phase-space density. The number of pairs is proportional

to the number of atoms, resulting in an appreciable chance of binding. The first

diatomic molecules from degenerate Fermionic species were created by this method

[163]. The Pauli exclusion principle forbids s-wave collisions of identical Fermionic

species in the same internal state. Therefore, ultracold Fermionic dimer association

requires mixed species or mixed internal states. In this first experiment, Regal

et al. [163] prepared the 40K atoms in the same total internal angular momentum

state, f = 9/2, but in different projection quantum numbers, mf = −9/2 and

−5/2. They detected the molecules indirectly by an atom count and directly by

resonant coupling of the molecular state to the |f= 9/2,mf = −7/2⟩ atomic state.

By applying a magnetic field gradient, they were able to selectively probe atoms from

the dissociation of the dimers. Subsequently, other Bosonic [164–166] and Fermionic

[163,167,168] atoms were associated by tuning across Feshbach resonances.

Another association mechanism is three-body recombination. When two atoms

collide they can bind permanently if a third body is present to carry away the excess

energy released by binding. Such three-body recombination requires high densities.

However, near a Feshbach resonance, three-body recombination is enhanced [169].

Such enhancement was exploited to associate 6Li atoms from a Fermi-degenerate

gas to create a molecular BEC of 6Li2 by Jochim and colleagues [170]. Cubizolles

et al. [168] reported association efficiencies of 85%, by three-body recombination,

of Fermi degenerate 6Li atoms. The resulting Bosonic molecules were in the ul-

tracold regime but not degenerate. They also demonstrated the reversibility of the

association process by recovering all the atoms. Three-body recombination can be

viewed chemically as an equilibrium between exothermic 3-atom collisions, which re-

sult in dimer formation, and competing endothermic atom-molecule collisions, that

dissociate the dimers.

In a novel approach, Donley et al. [171] applied two rapid pulses of magnetic field

with a constant near-resonant field, Bdc, between the pulses. The first pulse non-
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adiabatically mixed the scattering and molecular states. They observed dramatic

oscillations in the number of atoms in the BEC between the pulses. The oscillation

frequency depends on the dimer binding energy [172]. They measured the frequency

for different binding energies by changing Bdc and found excellent agreement with

theoretical prediction. Thompson et al. [173] associated 85Rb atoms by applying a

small sinusoidal oscillation to a constant field tuned close to a Feshbach resonance.

Photons from the oscillating field stimulate the scattering state into emitting a

very low frequency photon corresponding to the energy of the bound state. The

authors observed Rabi-like oscillations between the atomic and molecular states.

The oscillations were damped over the lifetime of the molecules. This approach has

the advantage of avoiding resonant fields with characteristic heating and inelastic

collisions. The physics and developments relating to Feshbach resonances in ultra-

cold and degenerate atoms up to 2006 has been reviewed by Köhler et al. [174].

1.3 Ultra-cold collisions

The kinetic model is a central pillar of our understanding of gases because for a wide

range of temperatures the details of the interaction of pairs of atoms or molecules

are not important. Collisions can be treated classically as between hard balls. In

quantum gases, where atoms and molecules are waves and can extend over regions

that exceed their average separation, understanding the details of binary interac-

tions is crucial to understanding the properties of the gas. Collisions can lead to

chemical reaction or nonreactive elastic or inelastic scattering. We have seen that

chemical reactions at ultra-low temperature have novel mechanisms and offer fasci-

nating prospects of coherent control. Inelastic collisions have a strong bearing on

the prospects of trapping, and by extension, cooling of molecules to ultra-cold tem-

peratures. There are several mechanisms responsible for trap loss. Collisions can

cause a reorientation of the electric or magnetic dipole moment, resulting in tran-

sitions to untrappable states. As the ground state is always h.f.s but static fields

can only trap l.f.s states, transitions to at least one untrappable state will always

be energetically favorable. A second mechanism is the transfer of internal energy
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to relative motion of the colliding partners. Even relaxation between highly excited

vibrational states will release sufficient energy to kick both partners out of the trap.

Trap loss can also result from chemical reactions.

Molecules can rotate, vibrate, and have fine and hyperfine structure which de-

pends on the orientation of the electronic and nuclear spins. There are a few general

principles that form a useful guide to our understanding of inelastic collisions. Ro-

tational relaxation of molecules depends on the anisotropy of the interaction energy

and the rotational constant of the molecule. Higher anisotropy and lower rotational

constants increase rotational quenching. Vibrational quenching increases with in-

creased sensitivity of the interaction to the vibrational coordinates. For ground state

2Σ, reorientation of magnetic dipole moment (or spin flipping), during collisions with

structureless atoms is due to coupling of spin states to rotational levels via the spin-

rotation interaction, and the coupling in turn of different rotational states by the

potential anisotropy [175]. Molecules of 3Σ ground state experience deeper traps for

the same magnetic field configuration. However, the spin-spin interaction mixes the

rotational states so that the ground state is no longer a pure N = 0 state (where

N is the rotational quantum number), and the interaction anisotropy plays a more

direct role in spin flipping. Therefore, Zeeman relaxation is faster for 3Σ molecules,

with the efficiency proportional to the square of the ratio of spin-spin to rotational

constant [176–178]. Stronger spin-spin, spin-rotation, higher potential anisotropy,

and lower rotational constants all increase Zeeman relaxation.

Potential anisotropy couples different Stark levels directly. Thus, electric dipole

reorientation is generally much more efficient than the magnetic counterpart for

polar molecules. Zeeman relaxation will also be generally faster in polar molecules

than in non-polar molecules. The stronger interactions of electric dipole moments

result in deeper wells which support more resonances. Increased degrees of freedom

such as spin, rotational or vibrational motions increase the number of channels,

increasing the number of Feshbach resonances. As a general rule, strongly interacting
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and heavier systems have a denser set of levels increasing both shape and Feshbach

resonances, with detrimental effect on trap stability.

Although cold and ultra-cold collisions are fully quantum mechanical, making

them counterintuitive, they have several advantages. Collisions in the low-energy

limit are dominated by a single partial wave (S-wave), significantly simplifying the

analysis. The long-range nature of the wavefunction means that away from res-

onances, the long-range character of the potential plays a dominant role. Useful

insight can be gained by dividing the radial separation of the colliding partners into

long and short ranges. Our detailed understanding of the internal structure of atoms

and molecules, and knowledge of the long-range interactions, furnishes our capacity

to understand, in great detail, cold and ultra-cold collisions. On the other hand,

the richness of even the simplest atoms and molecules poses great challenges. For

example, the number of channels and the interplay between them quickly results in

intricate complexity that not only becomes impossible to reproduce completely by

computation, but might render results difficult to interpret.

Apart from causing trap loss collisions are central to thermalization. The effi-

ciency of important cooling techniques such as buffer-gas cooling [104], evaporative

cooling [3, 105], and sympathetic cooling [179] depend on collision properties. In

particular elastic collisions are required to dominate in order to ensure the cooling

process is faster than trap loss due to inelastic collisions. The indirect methods of

optical and Feshbach association of atoms are also outcome of collisions, albeit in

fields. In order to master these processes and understand and manipulate gaseous

matter at these low temperatures, it necessary to understand collisions under ap-

propriate conditions. The challenge is essentially to determine the dependence of

collision outcome on the internal states of the colliding partners, their interaction,

and on applied static and time varying fields. We will sample efforts to understand

dependence on some of these factors.
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1.3.1 Inelastic atom-diatom collisions

The bulk of current experimental and theoretical work, including our own research, is

on atom-diatom collisions, reflecting the young stage of the field. Early calculations

[180–184] of cold and ultra-cold collisions were motivated by astrochemistry, and

involved the most abundant elements in the universe, H and He. In a study of

vibrational relaxation of H2 by collisions with H, Balakrishnan et al. [181] found an

increase of seven orders in magnitude of the rate constant resulting from vibrational

excitation of H2 from its ground state to v = 12. In collisions of H2 with 3He and

4He [183], the same authors found that rate coefficients increased by three orders

of magnitude as the initial vibrational levels v is increased from 1 to 10. They

also noted that the relaxation rates exhibited a minimum at a collision energy of

approximately 10 K, corresponding to the interaction well depth, before attaining a

limiting value in accordance to Wigner’s threshold laws [71] below 10−3 K. Forrey et

al. [185] considered vibrational relaxation of trapped molecules via direct collisional

quenching and vibrational pre-dissociation. They found direct collisional quenching

to dominate at low atom densities. At higher densities transient van der Waals

states of the complex become important. Significantly, they found that for any

given vibrational state of the molecule, the least-bound state of the collision complex

controls the vibrational relaxation.

Demonstration of BGC motivated research into low vibrational collisions of po-

lar [175, 177, 186–196] and non-polar [197–200] diatomic molecules with He. Bal-

akrishnan et al. [186] considered vibrational quenching of CO(v = 1 j = 0, 1) in

collisions with 4He and found shape resonances to influence the quenching rates

significantly at energies less than the well depth. At low energies, they found near

dissociation Feshbach resonances, supported by the j = 1 levels of both v = 0 and

1, to dramatically affected both the elastic and rotational quenching rates from the

j = 1 levels. In contrast, for collisions of 3He-CO(v = 0, 1 j = 0, 1), Zhu and col-

leagues [187] found the corresponding Feshbach resonances to be absent, and the

quenching rates to be much smaller. Experimental results at ultra-low tempera-
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ture are very limited, but, at energies corresponding to T > 35 K Balakrishnan

et al. [186] and Zhu et al. [187] found their calculations to be in good agreement

with experimental observations [201]. Bodo et al. [202] extended the work of Bal-

akrishnan et at. [186] by considering relaxations of the second excited vibrational

state of CO in collisions with 4He. They found relaxation rates corresponding to

v = 2 → 1 to dominate thev = 2 → 0 rates in the cold regime, and to be two orders

of magnitude greater in ultra-cold regime. These results applied to different initial

rotational levels. Bodo and Gianturco [191] did a comparative study of vibrational

cooling of the polar molecules LiH, CO, and HF in initial states (v = 1, 2 j = 0)

by collision with He. They found that of the three molecules LiH would be the

best candidate for BGC. Stoecklin el al. [194] considered ro-vibrational quenching

of HF(v = 1) in collisions with 3He at ultra-low energies. They found pure rota-

tional quenching to be much more efficient than pure vibrational quenching. This

is due to the high anisotropy and relatively weak dependence of the He-HF interac-

tion on the separation of the hydrogen and fluorine atoms in HF. Balakrishnan et

al. [196] found similar results in collisions of CaH with He. Balakrishnan et al. [196]

also found that the spin-rotation interaction, although small, significantly influences

the rotational quenching at temperatures below 10 K. Volpi and Bohn [200] found

17O2 to be reasonably robust against Zeeman relaxation, even at higher vibrational

levels, but warned that trapping magnetic fields would lift the degeneracies and re-

duce the robustness. Motivated by the prospects of sympathetic cooling, Lara et

al. [135, 136] studied collisions of cold and ultra-cold Rb with NH and found high

propensities for NH to change internal state. Żuchowski and Hutson performed cold

and ultra-cold collision calculations of Rb-NH3/ND3, focusing on molecules initially

in the upper level of the inversion doublet for (j = 1, k = 1), which is l.f.s [137].

They found inelastic rates to the lower level of the inversion doublet to preclude

sympathetic cooling of ammonia in the upper state. However, they reported good

cooling prospects for h.f.s states, even when Rb is in a magnetically trappable l.f.s

state.

Quasi-resonance is the enhanced efficiency in the transfer of rovibrational en-
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ergy between specific rovibrational states. It is an important phenomenon in rovi-

brational relaxation. Stewart et al. [203] and Magill et al. [204] observed quasi-

resonance at thermal temperature in experimental investigations of atom-diatom

collisions in 1988. They reported significantly enhanced transitions between levels

related by ∆J = n∆v, where n = 2 or n = 4, and ∆J and ∆v are the changes

in the J and v quantum numbers, respectively. Forrey and colleagues [205] showed

quasi-resonances to occur at cold and ultra-cold temperatures with more pronounced

effect as temperature is reduced. Similar observations were made by Balakrishnan

et al. [198] in rovibrational quenching of O2 by collisions with 3He. The increased

impact of quasi-resonance at lower temperatures is due to the increased collision

time. In particular, the collision time becomes progressively longer than the rota-

tional period as the collision energy is reduced. Tilford et al. [199] found rapid pure

rotational relaxation of all levels of O2 in a He buffer-gas at cold and ultra-cold

temperatures. Florian at al [192] compared quenching of the polar molecule CO to

O2 by collisions with He and found quasi-resonance to be more important in CO.

They also reported relative stability of some rotationally excited levels in regions

were quasi-resonance was forbidden, raising prospects of stable polar ”super rotors”

previously investigated by Forrey [206]. These so called ”super rotors” are predicted

to exhibit interesting quantum phenomena [207–209]. In a study of ultra-cold col-

lisions of OH with He, González-Sánchez et al. [195] found rotational relaxation to

be much more efficient than elastic collisions.

The achievement of photo and magnetoassociation provided another impetus to

research in collisional quenching. Early experiments involved homonuclear alkali

metal gas samples and produced translationally ultra-cold but vibrationally highly

excited diatomic molecules. However, calculations involving highly vibrationally ex-

cited states are very expensive because they required the inclusion of a large number

of open channels. In addition, even calculations of nonreactive collisions potentially

required inclusion of closed, single, and double, continuum states to which highly

excited states would be coupled [210]. For this reason, many early calculations were

limited to low vibrational levels. These generally showed vibrational quenching to
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be much faster than elastic scattering [211–215], consistent with experimental ob-

servations [216–219]. Experimental results on Cs-Cs2 [220], for the high v = 32− 47

and low v = 4 − 6 levels, showed the quenching rates to be largely independent

of vibrational and rotational excitation. More recently, calculations of vibrational

quenching of homonuclear Li atom-diatom systems by Quéméner et al. [210] showed

vibrational quenching to be particularly efficient for both high and low vibration

levels when the scattering length is negative and small. The quenching rates showed

strong but irregular dependence on the vibrational levels. They also reported the

need to include many continuum states to obtain convergence for the highly excited

vibrational states.

Interestingly, highly vibrationally excited molecules produce from Fermionic

atoms were found to be remarkably stable to collisional trap loss [167–169, 221].

Petrov and colleagues [222] explained this phenomenon in terms of Pauli blocking,

also observed in a gas of atomic 40K by DeMarco and colleagues [223]. Essentially,

the atoms making up the highly excited molecule preserved their individual identity

sufficiently as to be subjected to the Pauli principle, which forbids S-wave collisions

with the atoms of the surrounding gas. Cvitaš et al. [213], in a comparison study of

Bosonic and Fermionic atom-diatom Li systems, showed that there was no system-

atic suppression of quenching for lower vibrational levels in either. A few months

latter Quéméner et al. [215] found similar results for the v = 1 levels of Fermionic

and Bosonic K-K2 collisions.

1.3.2 Sensitivity of collision dynamics to the potential en-

ergy surface

The interaction energy is the most significant determinant of collision outcome, and,

numerous studies have explored the sensitivity of collision dynamics to the details of

the potential energy surface (PES). In a comparative study of two potential energy

surfaces of He-H2, Lee et al. [224] found significant differences in the inelastic scat-

tering. For the quenching of the first excited state of H2, the difference was up to 3
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orders of magnitude. The differences was less drastic for elastic and pure rotation

quenching. Cybulski et al. [193] found that minute variations in the analytic poten-

tial of He-NH, resulting from different fitting procedures, gave rise to a difference of

up to 50% in Zeeman relaxation rates. In a study of collisions between spin-polarized

Na-Na2, Soldán et al. [211] found an order of magnitude difference in v = 1 → 0 tran-

sitions between pairwise additive and nonadditive surfaces. Quéméner et al. [212]

studied sensitivity to three-body interactions at short distance of the same system

and found similar sensitivity of the v = 1 levels. They found that changes of 1% in

the three-body interaction can result in up to 75% difference in cross sections. They

also reported pronounced sensitivity of the rotational distribution to the three-body

interaction, even for quenching of the v = 2 and 3 levels. In a more recent study,

Cvitaš et al. [214] studied the sensitivity of ultra-cold collision dynamics of Li-Li2 to

the three-body interaction. Three-body nonadditive forces between spin-polarized

alkali metal atoms can change well depths by up to a factor of 4, and equilibrium

inter-atomic distances by more that an Ångström [225].

In a systematic survey of interactions of NH3 with alkali-metal, alkaline-earth,

and Xe atoms, Żuchowski and Hutson [138] found the interactions to have deep

minima and strong anisotropies, leading them to conclude that sympathetic cool-

ing is likely to work only when both atom and molecule are in their ground state.

However, in ultra-cold collision calculations of Rb-NH3 and Rb-ND3 [137] the same

authors found that sympathetic cooling of molecules in h.f.s states by magnetically

trapped atoms might actually be possible. In a similar study, Soldán et al. [139,140]

investigated the interaction of alkali-metal and alkaline-earth atoms with NH. They

found interactions with alkali-metals to be highly anisotropic and ion-pair states to

be accessible even at low temperatures, introducing the possibility of chemical reac-

tion. The interaction with alkaline-earths was predictably less anisotropic. However,

for Sr-NH and Ca-NH the anisotropy was still much higher than the rotational con-

stant of NH. For Be-NH and Mg-NH they found the anisotropy to be comparable or

less than the rotational constant of NH. In addition the ion-pair states crossed the

dispersion-bound states behind the repulsive wall of the dispersion surface, making
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the crossings energetically inaccessible at low energies. They concluded that Mg and

Be are promising candidates for sympathetic cooling of NH. Collision calculations

supported this conclusion for Mg-NH [141].

1.3.3 Collisions in fields

The study of collisions in fields is a necessity. As we have seen, trapping in electric,

magnetic or electromagnetic fields is a prerequisite for achieving and maintaining

ultra-cold temperatures. Thus practically all collisions take place in the presence

of fields. The suitability of molecules for magnetic or electrostatic trapping and

cooling is determined by collision properties in fields. Atom-diatom collision calcu-

lations involving the He atom and O2 [226] and NH [177,193] in magnetic fields and

CaH [227], CaD [228, 229], OH [230, 231], and YbF [232] in combined electric and

magnetic fields have looked mainly at the efficiency of Zeeman relaxation compared

to elastic collisions. Volpi and Bohn et al. [226] considered 3He-17O2 and found

that spin relaxation could be suppressed by setting the Zeeman splitting of entrance

and exit channels at less than the centrifugal barriers. Krems et al. [177] found

elastic collisions to be five orders of magnitude higher than Zeeman relaxation for

temperatures between 0.5 and 1.0 K, indicating NH as a good candidate for cooling

by 3He buffer gas. Their cold collision rates were consistent with recent measure-

ments [129]. In a combined experimental and theoretic study, Campbell et al. [178]

studied collisions of 3He and 3He with four stable isotopomers of NH. Their results

for 4He supported the inverse proportional dependence of Zeeman relaxation rates

on rotational constant of NH as predicted [176,177]. Relaxation rates involving 3He

were significantly higher and did not follow predicted dependence. They put this

down to a shape resonances. Cybulski et al. [193] found the elastic cross sections

to be insensitive to the magnetic field from 0 up to about 3 Teslas, while the Zee-

man relaxation increased rapidly in the ultra-low regime. As part of a systematic

study of the prospects of sympathetic cooling NH by laser-cooled alkaline-earth and

alkali-metal atoms, Wallis and Hutson [141] performed scattering calculations of

ultra-cold Mg with NH in a magnetically trappable state. They found NH to be

stable against Zeeman relaxation for temperatures ranging from the ultra-cold up
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to 10 mK, pointing to promising prospects for sympathetic cooling of NH by Mg.

The use of combined electric and magnetic fields allows greater control of colli-

sions. Calculations of collisions of He with CaH [227], CaD [227,228] and OH [231]

showed it was possible to effectively suppress spin-changing collisions by a com-

bination of electric and magnetic fields. Tscherbul and Krems [227] showed this

suppression to extended up to cold temperatures. They found that the electric field

can shift the start of the Wigner regime to lower energies by coupling states of differ-

ent parity. Abrahamsson et al. [228] crossed a h.f.s Zeeman state of the first excited

rotational level of CaD with a l.f.s level of the ground state using a magnetic field

and induced an avoided-crossing by applying an electric field coupling the states.

They were able to observe enhanced Zeeman transitions as they tuned the magnetic

field near the crossing. Therefore, combining fields was used not only to induce but

also to enhance an otherwise forbidden transition. The relative orientation between

the electric and magnetic fields is an additional control parameter which can break

symmetry, mixing states, and inducing transitions [227,228]. It can also be used to

change the position of an avoided crossing [227,228]. Tscherbul and Krems [227] and

Abrahamsson et al. [228] have suggested that combined fields could be used to induce

non-adiabatic spin transitions and spin-forbidden chemical reactions. Tscherbul et

al. [231] found spin relaxation to be effectively suppressed by moderate fields of 10

kV/cm at collision energies below 10 mK for 3He-OH collisions. Pavlovic et al. [230]

found that fields of less than 15 kV/cm were sufficient to enhance Stark relaxation

of OH in specific internal states by three orders of magnitude. They observed rich

resonance structure tunable by electric field strength. The sensitivity to electric field

strength reduced with increased rotational excitation. Elastic scattering dominated

over relaxation processes for 4He-OH collisions and varied monotonically with reduc-

ing energy. The cross sections changed smoothly across threshold, in disagreement

with an experimental observation [233] made earlier. Alyabyshev and Krems [234]

considered the effects of a microwave laser on Zeeman relaxation of CaH by col-

lisions with He in the presence of a magnetic field. They demonstrated that the

frequency and intensity of the laser field could be used to effectively tune collision
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cross sections.

1.3.4 Molecule-molecule collisions

As denser samples of molecules are realized [235–238] it is important to under-

stand molecule-molecule collisions. Calculations [239–243] showed that the collision

outcome between polar molecules could be influenced by electric fields. Stark re-

laxation was found to be efficient, indicating poor prospects of evaporative cooling

in electrostatic traps. The stronger interaction between polar molecules also re-

sults in a denser resonance structure [119], posing a challenge to trapped lifetimes.

Avdeenkov and Bohn [239–241] showed that the dipole-dipole interaction can be

tuned using electric fields to produce long-range minima and barriers, which could

suppress inelastic collisions [244]. Avdeenkov et al. [244] showed that high electric

fields could be used to suppress inelastic collisions driven by the dipole-dipole inter-

action in 1Σ molecules. Scattering properties of OH molecules showed remarkable

independence to the short-range details of the interaction at ultra-low energies. The

authors attributed this behavior to avoided crossings in the long-range adiabatic po-

tential energy curves [239]. Avdeenkov [245] considered stability of polar molecules

in microwave traps and concluded that evaporative cooling in such traps has good

prospects. Ticknor [246] demonstrated a universal regime at the high-field limit

where collisions are characterized by the mass, induced dipole, and the energy of

the colliding partners.

In collision calculations of OH in a magnetic field, Ticknor and Bohn [247] re-

ported two orders of magnitude suppression of inelastic collisions in l.f.s states by

fields of several thousand Gauss. For collisions of NH in their rotational ground

state in a magnetic field, Kajita [248] reported the inelastic cross sections to be

two orders of magnitude less that elastic cross sections, indicating good prospects

for evaporative cooling of NH. Tscherbul et al. [249] found efficient Zeeman relax-

ation in O2-O2 at cold temperatures for magnetic fields exceeding 10 Gauss. In the
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ultra-cold regime, the spin-relaxation cross sections are dominated by Feshbach res-

onances, with densities of up to 100 resonances per Tesla. They found the density

of resonances to reduce by up to a factor of 10 for the ground compared to excited

spin states.

Following the achievement of dense samples of ground state 40K87Rb, Ni et

al. [237] demonstrated the strong effect that modest electrostatic fields can have

on dipolar molecule-molecule collisions. These molecules are fermions and react by

tunneling through the P-wave barrier. Nonetheless, Ni et al. [237] were able to

induce chemical reactions, leading to pronounced loss rates. Reactions showed a

strong power dependence on the dipole moment, consistent with theoretical predic-

tions [250]. Collisions of 40K87Rb molecules prepared in different internal states, and

with 87Rb or 40K atoms, showed a 10 to 100 times increase in reaction rates [238].

Ospelkaus et al. [251] demonstrated control of the hyperfine interaction by preparing

molecules in a single hyperfine state. They used a two-photon scheme that should

allow any bialkali polar molecule to be prepared in an arbitrary superposition of hy-

perfine states. The transitions depended on the electric nuclear quadrupole moment

and coupling to rotationally excited states as predicted by Aldegunde et al. [252].

1.4 Feshbach resonances and control

The latest trend in the field of cold and ultra-cold physical chemistry is towards

control. The magnetic and optical association of atoms is already an example of

such control. Exquisite navigation across a maze of avoided crossing states has

been demonstrated. Lasers have been used in coherent control of chemical reactions

at higher temperatures [253], and the potential for extension to low and ultra-low

temperatures is promising. Pulsed chirped lasers have allowed excitation of tailored

photoassociated states [148–150]. Two-photon photoassociation, in the so called

”pump-dump” scheme, was the first attempt designed to overcome the inefficiencies

of spontaneous stabilization. Association of atoms, by coherent Raman scatter-

ing [254] that couples ultra-cold scattering states directly to deeply-bound states,
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effectively side-stepping intermediated excited state, has played an critical role in

realizing dense samples of near degenerate polar molecules [235–238]. Shaped laser

pulses have been used to excite tailored wavepackets, and genetic algorithms [255]

and control theory [154] have been employed to overcome the complexity of op-

timizing laser parameters to the characteristics of individual systems. Control of

polar molecules up to the hyperfine level has recently been demonstrated [251]. As

the production of dense ground state molecules becomes routine, the trend towards

control will gain even greater momentum.

Understanding binary collisions and interactions with static fields has been, and

will continue to be, central to developments. As we have seen, collision proper-

ties determine the feasibility of experiments to cool and manipulate atoms and

molecules. These properties show dramatic variation across resonances, and, shape

and Feshbach resonances play a critical role in both reactive [73, 75, 78–80, 84] and

nonreactive [186, 187, 196, 198, 256] scattering. The density of resonances increases

as the colliding partners become heavier, their interaction gets stronger, and the

number of channels is increased. Resonances are thus an even more critical fea-

ture of physically interesting atomic and molecular systems including the recently

achieved ground-state dipolar molecular gases. Dramatic variation of the cross sec-

tions, coupled with the possibility of tuning and even inducing resonances using

fields [257,258], point to Feshbach resonances as a promising mechanism of control.

In this thesis we aim to contribute to the understanding of the potential of con-

trol of collisions by magnetic Feshbach resonance tuning. We will be interested,

in particular, in identifying conditions that result in the strong suppression of the

often undesirable inelastic collisions. We propose to do this by locating and char-

acterizing the resonances of the He-O2 system. This characterization will involve

the determination of quantum properties of quasi-bound states, the location of zero-

energy resonances, and the analysis of data from low-energy scattering calculations

in the presence of a magnetic field. The calculation of bound states is important in
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illuminating the underlying pattern that determines the character of quasi-bound

responsible for the resonances. Both bound and quasi-bound states are characterized

by approximate and rigorously good quantum numbers. In the next two chapters we

will discuss the theoretical framework of multichannel bound and scattering states,

including methods of numerical calculation. Discussion of the theory will introduce

the language and context for understanding the results and important theoretical

concepts, including some relating specifically to low-energy scattering. This will be

followed by chapter 4, which begins with a discussion of the properties of molec-

ular oxygen as a prerequisite to understanding the pattern of bound states of the

He-O2 complex. The chapter ends with a presentation of the Zeeman structure of

bound states of several isotopic combinations of the complex. Only bound states

of the same parity as the S-wave dominated low-energy scattering wavefunction are

presented. Chapter 5 begins with discussion of low-energy scattering calculations

that reinforce earlier theoretical discussion. Calculations of quasi-bound states are

presented and the positions in magnetic field of S-wave Feshbach resonances are

located. This chapter ends with a discussion of a rather positive finding regrading

the prospects of suppressing inelastic collisions by Feshbach resonance tuning.



Chapter 2

Theory of bound states

2.1 Single-channel bound states

2.1.1 Two structureless particles

The wavefunction ψ(r) of two structureless particles interacting according to a time-

independent potential V (r), after removing the motion of the center-of-mass motion,

satisfies the Schrödinger equation

[−▽2 −k2 + U(r)]ψ(r) = 0, (2.1)

with

k2 =
2µE

~2
and U(r) =

2µV (r)

~2

where µ is the reduced mass of the particles and E the energy. This equation is

identical to that of a single particle of mass µ in a spherically symmetric potential.

It is more illuminating to write equation 2.1 in spherical polar coordinates, which

gives

[
− 1

r2
∂

∂r

(
r2
∂

∂r

)
+

l̂2

r2
− k2 + U(r)

]
ψ(r) = 0. (2.2)

As well as the radial degree of freedom the particles can also orbit about each other.

This results in what we will refer to as the end-over-end angular momentum for

which l̂ is the operator. We can separate the solutions ψ(r) into angular and radial

and write

37



2.1. Single-channel bound states 38

ψ(r) = r−1

∞∑
l=0

l∑
m=−l

χl(r)Y
m
l (r̂). (2.3)

The functions χl(r) represents the radial dependence while the angular functions

Y m
l (r̂) are the well known spherical harmonics. They are eigenfunctions of l̂

2
with

eigenvalues l(l + 1) with l = 0, 1, 2, 3.... etc. Substituting equation 2.3 into 2.2 and

using orthogonality of the spherical harmonics polynomials gives[
− d2

dr2
− k2 + U(r) +

l(l + 1)

r2

]
χl(r) = 0. (2.4)

These are a separable set of equations, one for each l. This separability is due to

the spherical symmetry of the interaction and means that l, which for structureless

particles is also the total angular momentum, is a good quantum number. We can

rewrite 2.4 as [
− ~2

2µ

d2

dr2
+ Vl,eff(r)

]
χl(r) = Eχl(r), (2.5)

which are a set of single dimensional Schrödinger equations with effective potential

Vl,eff(r) = V (r) +
~2l(l + 1)

2µr2
. (2.6)

The effect of the angular degree of freedom is to modify the interaction potential

according to the end-over-end angular momentum l. This modification is referred

to as the centrifugal term in light of its origins. Its notable features are the r−2

and inverse mass dependence and the sign. It is repulsive for all r and is smaller

for heavier systems. Figure 2.1 depicts an interaction potential of Rb-Cs in a fixed

electronic state without the centrifugal term. The features are typical of a pair

of interacting atoms. In the extreme short range the interaction potential and

the centrifugal terms are both repulsive. For r = 0, which corresponds to the

particles being at the same point in space, the interaction (and the centrifugal

term) is infinitely repulsive. In the short range V (r) dominates over the centrifugal

term and the potential is attractive. In the long-range the situation is reversed and

the effective potential becomes positive. In an intermediate range where the two

terms are comparable there will be a local maximum, the centrifugal barrier, at the

point where the centrifugal term takes over. The exact position and height of the

barrier depends on the reduced mass and details of the interaction potential V (r)
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Figure 2.1: The potential energy curve of the electronic ground state, l = 0, of

RbCs. Produced with permission from data provided by Ghosal [259].

but it gets progressively higher with increasing l. As we shall see in the effects of

the centrifugal barrier are very important, especially in low energy collisions.

2.1.2 Behavior of the wavefunction in classically allowed, and

classically forbidden regions

Let us now consider the behavior of the radial component of the wavefunction in

different regions of the radial domain. Such a consideration will allow us to recall im-

portant facts that underpin an understanding of some of the challenges of numerical

solution and secondly, but equally importantly, the properties of low-energy radial

wavefunctions that will aid an understanding of unique and important phenomena

in low energy scattering. Let us begin by considering the behavior in the classically

forbidden region (so called because a classical particle would not be found there)

where Vl,eff(r) > E. From equation 2.5 we note that here

Sign[χ′′
l (r)] = Sign[χl(r)], (2.7)

so that χl(r) is convex with respect to the r-axis. We have used ′′ to denote the sec-

ond derivative with respect to r. Mathematically there are two linearly independent

solutions, an exponentially increasing and an exponentially decreasing function of r.

For the vast majority of energies the wavefunction is dominated by the increasing

component in the limit r → ∞. Starting from either side of the axis χl(r) might

approach the axis, constantly turning away, and might miss turning back to grow
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unbound. If it crosses the axis it will grow in the opposite direction. Figure 2.2 shows

several scenarios for different starting points that might result as the wavefunction

approaches the axis.

χl(r) > 0

χl(r) < 0

Figure 2.2: Behavior of χl(r) in a classically forbidden region for different initial

conditions.

In the classically allowed region where V (r) < E,

Sign[χ′′
l (r)] = −Sign[χl(r)]. (2.8)

The wavefunction is concave with respect to the r-axis and turns towards it. The

two independent solutions oscillate about the axis. Beginning from above or below

the axis χl(r) will approach it, possibly crossing only to turn back and cross the axis

any number of times depending on the energy and the potential. The wavefunction

oscillates about the axis.

Bound states are localized states which is usually expressed by the requirement

that

lim
r→±∞

χl(r) = 0. (2.9)

A potential that supports bound states must have at least one classically allowed

region sandwiched between two classically forbidden regions. Each forbidden region

must either have an infinite range or have a boundary of infinite potential. For

two physical particles the condition at minus infinity is imposed instead at r = 0

where the potential is infinite. The behavior of the wavefunction coupled with the
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bound state conditions means that a bound state must have an energy less that the

interaction energy at the dissociation limit r → ∞.

χl(r) > 0

χl(r) < 0

Figure 2.3: The left and right-most panels show bound-state behavior in the in-

ner and outer classically forbidden regions respectively. The central panel depicts

behavior in the classically allowed region.

It is possible to build a picture of a bound state from arguments presented so

far by combining the behavior in the different regions. Figure 2.3 summarizes the

appropriate behavior in the three regions, while figure 2.4 shows the first three levels

of Rb-Cs. The potential energy curve is also shown at a scale that corresponds to

the eigenvalues of the states in the same figure. As we can see from the figures,

the wavefunctions oscillate in the classically allowed region and decay with pene-

tration into the classically forbidden regions on either side. Also the nodes of the

wavefunctions begin from zero and increase in steps of one. The square of the wave-

function can be interpreted as a probability distribution of the system. Figure 2.5

depicts the square of four excited states of Rb-Cs belonging to figure 2.1. There are

several notable features of individual plots and trends with increasing energy. The

probability is pronounced at the two ends nearer the classically forbidden regions.

This behavior is consistent with that of a classical particle trapped in a potential

which would spend most of its time closer to the turning points where the kinetic

energy is lowest. As the energy of the excited state increases the oscillations are

more rapid with the probability pushed further away from the central region towards

the boundaries. The probability is particularly enhanced around the outer turning

point. This is due to the shape of the potential and in particular the fact that it
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Figure 2.4: The first three states and a zoom-in of the interaction curve. The

number of nodes start from zero and go up to two, as expected. RbCs. Produced

with permission from data provided by Ghosal [259].

is less steep at the outer turning point. Typically analytic functions of the interac-

tion between neutral particles obtained by fitting to data have an exponential form

nearer the inner turning point with an r−6 variation in the long-range. Because

the potential becomes flatter with increasing r near dissociation functions have very

small amplitude in the short-range and are almost entirely long-range in character.

2.1.3 Numerical propagation: some considerations

In all but the simplest cases it is not possible to solve the Schrödinger equation

analytically and numerical methods are required. These can be categorized into

shooting [260–263] and matrix [264–266] types. Matrix methods use a complete,

usually orthonormal, basis set in which to expand the solutions. Of course a practical

implementation must truncate the basis set. The eigenvalues are then obtained by

diagonalizing the resulting matrix representation of the hamiltonian. An advantage

of this method is that all the eigenvalues are obtained at once. However, representing

the behavior of the radial wavefunction at the classically forbidden and allowed

regions using the same set of basis functions can be challenging and usually results

in the need for a large set. Matrix diagonalization time has a cubic dependence on

size and this can result in slow convergence. Shooting methods propagate an initial

value problem for some trial energy Etrial across a range [rmin ,rmax ] converging on
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Figure 2.5: The square of the amplitude of the fifth, tenth, fifteenth, and eighteenth

excited states of Rb-Cs belonging to the interaction potential shown in figure 2.1.

RbCs. Produced with permission from data provided by Ghosal [259].

one eigenvalue at a time. Propagation time is inversely proportional to the number

of points. Shooting methods are highly efficient and accurate. The radial part of

our system is solved by a shooting method which justifies a restriction of the rest of

the discussion in this subsection to integration or shooting methods.

A widely used single-channel propagation algorithm based on the Numerov inte-

gration method [267] is that of Cooley [263]. This algorithm propagates a quantity

X(r) = χl(r) − h2
d2

dr2
χl(r) (2.10)

to achieve an error of order h6/240 where h is the integration step size. The initial

conditions are expressed by

χl(rmin) = 0

χ′
l(rmin) = ϵ,
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where the initial derivative ϵ is some arbitrarily small non-zero value. In theory, for a

two particle potential, rmin should be set to zero and rmax to infinity. In practice they

are both set deep enough inside their respective classically forbidden regions as to

render the solutions insensitive to their exact values. The propagated solutions will

satisfy the bound-state boundary conditions at rmax only if Etrial coincides with an

eigenvalue. As the solution in a classically forbidden region is generally composed of

exponentially growing and decaying functions of r any deviation from an eigenvalue

will lead, eventually, to domination of the wavefunction by the diverging component.

In practice even when the trial energy is very close to an eigenvalue numerical errors

eventually lead to divergent behavior.

A common practice to mitigate divergence is to propagate a trial solution outward

from rmin and another inward from rmax with appropriate boundary conditions for

the same trial energy. The two solutions are then compared for continuity at a

point Rmid ∈ [Rmin, Rmax] set in the classical region. Due to the linearity of the

Schrödinger equation any pair of solutions can be made to agree by scaling. However,

continuity of their derivatives required by conservation of momentum affords us a

second matching condition. The two matching conditions for a solution can then be

summarized by

lχ′
l/

lχl|rmid
= rχ′

l/
rχl|rmid

(2.11)

where superscripts l and r denote propagation from the left and right directions

respectively. In this way we can ensure a single smooth and continuous bound-state

solution. Numerically there is tolerance for a difference between the two sides of

equation 2.11 corresponding to a level of accuracy of the calculated eigenvalue.

When the matching condition is met we have our solution and there is nothing

to do. However an initial guess will not, except by coincidence, result in a solution

and a procedure to converge to an eigenvalue must be provided. Such a procedure
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is a correction formula for Etrial based on the difference

d(Etrial) = lχ′
l/

lχl|rmid
− rχ′

l/
rχl|rmid

. (2.12)

Cooley [263] gave a correction formula that has quadratic convergence in the energy.

That such formulae exist is due to the behavior of d(Etrial). In particular for small

differences Etrial − En from an eigenvalue En, d(Etrial) must be a monotonically

increasing or reducing function, crossing the axis d(Etrial) = 0 when Etrial = En.

Once in this range a standard root finding algorithm such as the secant [268] method

can be used safely to converge to En. Properties of one dimensional potentials with

minima as described above include the following [269],

1. the spectra of bound states is discrete,

2. bound states are non-degenerate,

3. bound states have a unique number of nodes which increases with the energy.

The last of these properties allows for a systematic sweep through the eigenvalues.

The ground state eigenfunction has no nodes, the first exited state has one node, the

second has two etc. Normalization, which is a requirement for a physical system,

does not affect the position or number of nodes and thus a node count can and

is usually used as a first step in a convergence process. When searching for an

eigenvalue En corresponding to the nth excited state if the node count of the trial

solution is greater than n we reduce Etrial. If it is lower we increase Etrial.

Finally it is worth mentioning that difficulty in propagating the wavefunction

in the classically forbidden region stimulated the development of more stable in-

tegration algorithms. These algorithms exploit the fact that the instability in the

classically forbidden regions is invariably characterized by an explosion in both the

wavefunction and its derivative. If one propagates a quantity that is simply related

to the ratio of these two quantities it is possible to contain the propagation. Al-

though not generally used in the solution of single-channel problems, one class of

method based on propagation of the log-derivative [260] are common in solutions to

multi-channel problems.
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2.2 Multi-channel bound states

2.2.1 Coupled equations

When dealing with particles that have internal structure but remain chemically

relatively distinct, such as van der Waals complexes, it is conceptually and compu-

tational helpful to separate internal degrees of freedom from those that arise from

relative motion. We therefore expand the wavefunction as

Φ(Ω,R) = R−1
∑
α

χα(R)ψα(Ω) (2.13)

where R is the relative separation of the particles and Ω represents all internal

degrees of freedom and the end-over-end angular momentum. The use of a capital

letter for the separation of the particles is for the purpose of distinguishing the

multi-channel from the single-channel case. The ψα(Ω) are a complete set for the

Hilbert space spanned by the asymptotic Hamiltonian Hasymp which for a pair of

particles 1 and 2 is

Hasymp = H1 +H2 (2.14)

where Hi is the monomer Hamiltonian of i. If the functions are eigenfunctions

of Hasymp then they correspond to unique combination of monomer states and are

referred to as channels. Channels can be constructed simply as products of the

monomer eigenfunctions and will thus generally include rotational, vibrational, spin

and possibly electronic wavefunctions of the individual particles. The χα(R) are

radial channel functions. The factor R−1 is included for convenience of form in

the final expressions. The Hamiltonian of the complex excluding the center-of-mass

motion, can be written as

H = − ~2

2µ
R−1 d

2

dR2
R + V (R,Ω) +Hasymp. (2.15)

The term V (R,Ω) includes centrifugal contributions as well as the interaction po-

tential energy and depends on the internal states and the vector R. Dependence on

the orientation of R expresses the interaction anisotropy. Substituting 2.13 into the
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Schrödinger equation

HΦ(Ω,R) = EΦ(Ω,R) (2.16)

with H given by 2.15 and projecting onto a channel ψβ(Ω), assuming an orthonormal

set ψα, yields
d2χα(R)

dR2
=

∑
β

[Wα,β(R) − Eδα,β]χβ(R) (2.17)

where

Wαβ(R) =
2µ

~2

∫
ψβ(Ω)∗ [V (R,Ω) +Hasymp]ψα(Ω)dΩ. (2.18)

Equation 2.17 can be expressed in matrix form simply as

χ(R)′′ = W(R)χ(R). (2.19)

For an N channel problem W(R) is an N by N dimensional matrix and χ(R) are

N by 1 column vectors.

2.2.2 Early numerical methods

Numerical solution of coupled equations is computationally intensive. Early at-

tempts to solve the coupled equations had to make drastic approximations which

were aimed mainly at decoupling the equations. The most drastic of these, the

distorted wave approximation [270], simply ignored the off-diagonal terms of W (R).

From equation 2.18 we can see that the diagonal components W (R)αα act to distort

the channel functions which explains the name of the approximation technique. In

scattering, these diagonal terms contribute to elastic scattering. Adiabatic meth-

ods [270, 271] attempt to include some of the coupling by diagonalizing W (R) at

each point R to obtain adiabats. These adiabats act as effective potential energy

curves for the radial motion described by a set of decoupled equations. The most

important approximation for van der Waals molecules is helicity decoupling [272,273]

which neglects terms off-diagonal in the total angular momentum projection onto

the intermolecular axis. This effectively block diagonalizes the coupled equations

resulting in bound states which can be labeled by the intermolecular axis projection

quantum number. In all approximate methods the neglected contributions could be
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included by perturbation methods. In the modern era of desktop computers, how-

ever, we can afford to use close-coupling methods which solve the coupled equations

exactly with the exception in practice of basis set truncation.

As in the single-channel case methods for the solution of the coupled equations

2.19 can be broadly classified as matrix [274–276] or grid [264] methods. Matrix

methods expand all degrees of freedom in a basis set while grid methods, as the

name suggests, propagates all variables across a grid. The coupled channel [277–279]

method is a particularly efficient hybrid which integrates the radial component by

quadrature and handles internal dimensions using a basis set. This avoids simul-

taneous representation problems of the wavefunction in the classically allowed and

forbidden regions discussed for the one dimensional case. It also reduces the dimen-

sion of the matrix which must be diagonalized significantly reducing solution time.

The remainder of this chapter, which is devoted to the coupled channel method, will

look first at two important implications of the presence of more than one channel

on locating eigenvalues; the specification of correct initial conditions and the sys-

tematic determination of bound states. We will follow this by a description of the

multi-channel log-derivative [280] method which we have employed in our study.

2.2.3 Coupled channel method

Converging on an eigenvalue

In the single-channel case the numerical solution for eigenvalues was reduced to a

search in a single parameter, the energy. This was possible because the linearity

of the Schrödinger allowed us, by renormalization, to eliminate the search for the

correct initial derivative. In an N dimensional multi-channel case, the bound-state

boundary conditions specify the solutions at initial points and thus propagation of

a trial solution requires the specification of N + 1 parameters, N for the initial

derivatives of the radial channel functions χα(R) that make up our vector solution

χ(R) and a trial energy. Renormalization can reduce the number of parameters

by one which would still leave us with N parameters to specify. Early numerical
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methods [281–283] devised elaborate techniques to converge on the correct initial

derivatives and energy. Gordon [277] was the first to suggest a method that avoids

the need for the correct derivatives. The method takes advantage of the linearity of

the Schrödinger equation which means that a linear combination of solutions that

have the same energy is itself a solution at the same energy.

For a trial energy Etrial Gordon propagates a set of solutions with zero initial

values and an arbitrary but linearly independent set of initial derivatives. With

precisely N such solutions we span the space of all solutions that satisfy the desired

initial conditions for a bound state. Therefore, as long as linear independence is

maintained, any solution ψ(R) that is zero at the initial point and has an energy

Etrial, including an eigenfunction if it exists, can be expressed as a linear combination

of the propagated solutions. We write this as

lΨ(R)C l = ψ(R), (2.20)

where lΨ(R) is an N × N matrix whose columns are the propagated solutions and

C l is a set of coefficients. Equation 2.20 holds for arbitrary R and the coefficients

are independent of R. The superscript l indicates outward propagation from the left

boundary point Rmin. Propagating inward from Rmax at the other end of our range

at the same trial energy in a similar manner gives a second equation

rΨ(R)Cr = ψ(R) (2.21)

for solutions ψ(R) that meet the bound-state boundary condition at the trial energy.

If an eigenfunction ϕ(R) exists at the trial energy it must belong to the common

space spanned by the columns of lΨ(R) and rΨ(R). This means there exists a pair

of column coefficients C l and Cr such that

lΨ(R)C l = ϕ(R) = ψ(R)Cr (2.22)

so that

lΨ(Rmid)C l = rΨ(Rmid)Cr (2.23)
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for any matching point Rmid. Continuity imposes the second condition

lΨ′(R)C l = rΨ′(R)Cr (2.24)

where ′ indicates a derivative with respect to R. Gordon combines the two conditions

2.23 and 2.24 into a single set of 2N linear homogeneous equations

 lΨ(Rmid) rΨ(Rmid)

lΨ′(Rmid) rΨ′(Rmid)


 C l

Cr

 = 0. (2.25)

For a nontrivial set of coefficients, which we postulate, equation 2.25 implies that

the determinant ∣∣∣∣∣∣∣∣
lΨ′(Rmid) rΨ′(Rmid)

lΨ(Rmid) lΨ(Rmid)

∣∣∣∣∣∣∣∣ = 0. (2.26)

This condition is not only a necessary but also a sufficient one for Etrial to coincide

with an eigenvalue and then holds for any choice of matching point Rmid. As the

determinant of a matrix is a scalar quantity we can use a standard one dimensional

root finding algorithm to search for eigenvalues. This reduces the number of search

parameters to one, the energy.

At energies away from eigenvalues the determinant in equation 2.26 is a function

of Rmid and a judicious choice can crucially affect the search for eigenvalues. Johnson

[260,278] and Manolopoulos [284] have discussed strategies for choosing Rmid. Note

that the coefficients C l and Cr do not appear in equation 2.26 and therefore it is not

necessary to calculate the eigenfunctions in order to determining the eigenvalues. If

required the coefficients can be calculated but only after locating the eigenvalues.

A generalized node count

Armed with a strategy for locating eigenvalues that depends on a reasonable as-

sumption of continuity of the determinant in the neighborhood of an eigenvalue, we

are left with a need for a strategy to determine that neighborhood. In the single-

channel case the node count provided such a strategy. The simple characterization
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of the wavefunction as positive or negative, which allows the detection of nodes,

does not apply to a vector wavefunction and the changes caused by changing the

propagation parameters is not transparent. This means that a simple extension of

the single-channel node count is not possible. Gordon’s solution [277], based on the

observation that the number of zeros of the determinant |Ψ(R)| along the whole

integration range is equal to the number of eigenvalues below the corresponding

energy Etrial, is described below.

Let us consider an imaginary problem similar to our real problem but with an

infinite potential wall placed at the boundary Ro. When Ro = Rmax the eigenval-

ues of the real system coincide with those of the imaginary problem. We must of

course choose Rmin and Rmax to qualify this assumption. Let us now consider what

happens to eigenvalues below some trial energy Etrial as we move Ro towards Rmin.

The eigenvalues of our imaginary problem are monotonically reducing functions of

the separation Ro − Rmin. In the limit of zero separation even the ground state

eigenvalue tends to infinity. So as we reduce Ro the eigenvalues increase smoothly

(adiabatically), each coinciding with Etrial at some value of Ro. For each such Ro

there must be an eigenfunction ϕn(R) and therefore a set of nontrivial coefficients

C such that

Ψ(R)C = ϕn(R) (2.27)

for R ∈ [Rmin, Ro]. As a bound state eigenfunction to our imaginary problem ϕn(R)

satisfies

ϕn(Ro) = 0 (2.28)

and by implication of equation 2.27

|Ψ(Ro)| = 0. (2.29)

This happens exactly once for each eigenvalue that was initially below Etrial.

We have established that |Ψ(R)|, at Etrial, has a zero for each eigenvalue of the
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physical problem below Etrial. What remains to be shown is that each zero of the

|Ψ(R)| corresponds to an eigenvalue of the real problem. First we note that each

such zero would imply the existence of a nontrivial set of coefficients C for which

Ψ(Ro)C = 0 (2.30)

at Etrial. The product Ψ(R)C defines a function which by virtue of 2.30 is an eigen-

function of the imaginary problem. If we now increase the separation of the walls

from Ro the eigenvalue will monotonically decrease. At Ro = Rmax the eigenvalue

must coincide with one of the eigenvalues of our real problem. Thus a zero of the

determinant of Ψ(R) propagated at the energy Etrial corresponds to an eigenvalue

of our real problem below Etrial. This completes the arguments of a one-to-one cor-

respondence between the zeros of |Ψ(R)| and the number of eigenvalues of our real

problem below the trial energy Etrial. For a more formal discussion of this subject

see Calvert and Davidson [285].

The chief development in Gordon’s method is the elimination of the need to

converge on the correct set of initial derivatives. This is achieved at the price of

propagating an N × N matrix of trial solutions in place of an iterative process in-

volving a single N × 1 trial solution. The computational effort of Gordon’s methods

scales as the cube of the number of channels. Despite this, it has proven advanta-

geous.

The problem presented by propagating through a classically forbidden region

in the single-channel case is worse in multi-channel problems. The range of R for

which at least one of the channels is forbidden is greater. For converged results it

is always necessary to include some closed channels which exacerbates the problem.

The unbound growth of the closed channels means they quickly dominate the trial

solutions leading to a loss of linear independence. In principle, propagating inde-

pendent solutions from the two boundary points should mitigate the problem as in

the single-channel case but in practice this is not the case and the problem is quite
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serious. Gordon applied regular stabilizing transformations during propagation de-

signed to recover linearity. A more satisfactory solution proposed by Johnson [280]

involves the propagating the multi-channel log-derivative.

2.2.4 Log derivative and log derivative propagator

The log-derivative Y (R) of the matrix Ψ(R) is defined as

Y (R) = Ψ′(R)Ψ−1(R). (2.31)

Ψ−1(R) is the inverse of Ψ(R). Propagating the log-derivative is quite stable even

in the presence of closed channels. This makes it the method of choice for many

multi-channel calculations. The essential reason for this stability can be understood

by considering a single-channel example. Let us assume a one dimensional square

well potential. The Schrödinger equation can be written as

d2ψ(R)

dR2
= k2ψ(R). (2.32)

The log-derivative y(R) for the one dimensional case is

y(R) =
1

ψ(R)

dψ(R)

dR
. (2.33)

Differentiating equation 2.33 and using 2.32 to replace the second derivative gives

y(R)′ + y2(R) − k2 = 0. (2.34)

This is a Ricatti equation and for constant k2 has solutions

y(R) =


|k| coth(|k|R), if k2 ≥ 0

|k| cot(|k|R), if k2 ≤ 0

(2.35)

Apart from states very close to dissociation, for which |k| ≈ 0, the log-derivative

in the classically forbidden region remains finite (as limR→∞ |k| cot(|k|R) = |k|). In

the multi-channel case the relative sizes of closed and open channel elements of the

trial solutions remain finite resulting in the preservation of linearity of the trial set.
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The solutions 2.34 have poles in the classically forbidden regions. These poles cor-

respond to the roots of the wavefunction ψ(R). This problem persists in the multi-

channel case where Ψ−1(R) and hence Y (R) becomes undefined when |Ψ(R)| = 0.

As we have seen this condition not only occurs but is the basis of our generalized

node count. It is not possible to propagate across singularities using standard nu-

merical integration techniques and invariant imbedding methods are used instead.

Johnson [280] was the first to give a propagation formula for the multi-channel

log-derivative based on invariant imbedding but it was Mrugala and Secrest [286]

who first published a derivation. They formulated propagation equations for coupled

channels with a first derivative term which arises naturally in curve-crossing or

reactive scattering problems. The equations of non-reactive multi-channel scattering

is a special case obtained by setting the coefficient of the first derivative term to

zero. Following Manolopoulos [284], who has given a formulation that closely follows

Mrugala and Secrest, we will outline the method for the non-reactive case.

We begin by defining the log-derivative propagator as a map

y(a, b) : {Ψ(a),Ψ(b)} −→ {Ψ′(a),Ψ′(b)} (2.36)

by  Ψ′(a)

Ψ′(b)

 =

 y1(a, b) y2(a, b)

y3(a, b) y4(a, b)


 −Ψ(a)

Ψ(b)

 (2.37)

where

y(a, b) =

 y1(a, b) y2(a, b)

y3(a, b) y4(a, b)

 (2.38)

and a, b ∈ [Rmin, Rmax]. The log-derivative relates the values of a function at two

points to its derivatives at the same points. For an N ×N trial matrix Ψ(R) the in-

dividual yi(a, b) are each N×N matrices making y(a, b) 2N×2N . The log-derivative

is closely related to the R−matrix of Light and Walker [287], another common prop-

agator used in atomic and molecular bound and scattering state calculations.
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Propagation across an interval [a, b], where a < b, involves construction of a

propagator y(a, b) from a series of consecutive propagators of smaller intervals. Let

us begin by dividing the interval [a, b] in two by introducing a point c = (b− a)/2.

We seek to determine y(a, b) in terms of the half sector propagators y(a, c) and

y(c, b). Expanding the defining equation 2.37 for the half sectors [a, c] and [c, b]

a little algebraic manipulation and comparison with the propagator equations of

y(a, b) gives

y1(a, b) = y1(a, c) − y2(a, c)Z(a, b, c)y3(a, c)

y2(a, b) = y2(a, c)Z(a, b, c)y2(c, b)

y3(a, b) = y3(c, b)Z(a, b, c)y3(a, c)

y4(a, b) = y4(c, b) − y3(c, b)Z(a, b, c)y2(c, b)

(2.39)

Where

Z(a, b, c) = [y4(a, c) + y1(c, b)]
−1. (2.40)

We now proceed to make an important connection between the log-derivative prop-

agator and the log-derivative matrix. We start with the equation

 Ψ′(0)

Ψ′(R)

 =

 y1(0, R) y2(0, R)

y3(0, R) y4(0, R)


 −Ψ(0)

Ψ(R)

 (2.41)

for the log-derivative propagator across an interval [0, R], and impose the boundary

condition Ψ(0) = 0 appropriate for bound states. This gives

Ψ′(0) = y2(0, R)Ψ(R) and Ψ′(R) = y4(0, R)Ψ(R). (2.42)

Rearranging the second equation and comparing with equation 2.31 yields

Y (R) = y4(0, R). (2.43)

Combining this with the last of equation 2.39 gives

Y (b) = y4(c, b) − y3(c, b)[Y (c) + y1(c, b)]
−1. (2.44)
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This is the recursion relation used to propagate the log-derivative matrix across a

sector [a, b]. It expresses Y (b) in terms of Y (c) and the half sector propagators.

The propagation procedure can be summarized by

1. Partition the range of integration

2. Construct numerical approximations to y(a, b) across each sector using equa-

tions 2.39

3. Propagate the log-derivative matrix across the range using equation 2.44

The substantial missing ingredient for propagation is the sectoral numerical approx-

imation to y(a, b). We begin by expressing equation 2.19 in terms of the matrix

Ψ(R) of trial solutions

Ψ′′(R) = W (R)Ψ(R). (2.45)

This can be recast as

Ψ′′(R) −W 0(R)Ψ(R) = W 1(R)Ψ(R) (2.46)

by expanding W (R) us a sum of a diagonal component W 0(R) and a term W 1(R)

that contains all off-diagonal contributions. We refer to W 0(R) as the reference

potential and to W 1(R) as the residual. The residual components might include

diagonal components. The idea is to represent the reference potential analytically

so that the diagonal, and thus decoupled, homogeneous counterpart to equation 2.46

Ψ′′(R) −W 0(R)Ψ(R) = 0 (2.47)

has two linearly independent solutions satisfying an appropriate set of boundary

conditions denoted by Φ±(R). The particular solutions Ψ±(R) to equation 2.46

with the same boundary conditions are then given by

Ψ±(R) = Φ±(R) +

∫
G(R,R′)W 1(R′)Ψ±(R)dR′. (2.48)

Where the Green’s function G(R,R′) is given by

G(R,R′) = Φ−(R <)Ω−1Φ+(R >). (2.49)
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The R < and R > indicate the lesser and greater, respectively, of R and R′. The

Wronskian Ω is

Ω = Φ−(R′). (2.50)

It is well known that the Wronskian of two linearly independent functions is inde-

pendent of the variable associated with the functions and so we are free to evaluate

it at any point. We now impose the condition

 Φ+(a) Φ−(a)

Φ+(b) Φ−(b)

 =

 −I 0

0 I

 (2.51)

at the boundaries of the sector [a, b]. These conditions are also satisfied by Φ±(R)

which allows us to evaluate Ω as

Ω = Φ′
−(a) = Φ′

+(b). (2.52)

The conditions 2.51 together with the defining equation 2.37 give

 y1(a, b) y2(a, b)

y3(a, b) y4(a, b)

 =

 Ψ′
+(a) Ψ′

−(a)

Ψ′
+(b) Ψ′

−(b)

 . (2.53)

Evaluating G(R,R′) using 2.52, substituting into 2.48 and differentiating gives

y1(a, b) = y01(a, b) +

∫ b

a

Φ+(R′)W 1(R′)Ψ+(R′)dR′

y2(a, b) = y02(a, b) +

∫ b

a

Φ+(R′)W 1(R′)Ψ−(R′)dR′

y3(a, b) = y03(a, b) +

∫ b

a

Φ−(R′)W 1(R′)Ψ+(R′)dR′

y4(a, b) = y04(a, b) +

∫ b

a

Φ−(R′)W 1(R′)Ψ−(R′)dR′ (2.54)

where

 y01(a, b) y02(a, b)

y03(a, b) y04(a, b)

 =

 Φ′
+(a) Φ′

−(a)

Φ′
+(b) Φ′

−(b)

 . (2.55)
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The functions Φ±(R) are assumed to be known and thus a numerical approxi-

mation to the yi(a, b) can be obtained by representing the integral by quadrature.

At first sight the appearance of the undetermined solutions Ψ±(R) under the inte-

gral signs in 2.54 appears to present a problem. In practice, this has the effect of

restricting us to a quadrature that evaluates the integrand at the boundaries where

Ψ±(R) are prescribed by the boundary conditions. The trapezium rule is an obvious

choice. It fits a straight line between the boundary points in effect approximating

the integrand to a linear function. We can do better with Simpson’s rule which

approximates the integrand to a quadratic equation. Simpson’s rule requires eval-

uation of the integrand at the midpoint. There in no problem in evaluating the

residual potential at any point but the solutions are not known at the midpoint.

However, we use the equations of the half-sector propagators 2.39 to remove the

need for this evaluation. Modification to the ordinary Simpson’s rule is required to

account for a discontinuity in the first derivative of G(R,R′).

The final numerical approximations to the half-sector propagators are [284]

y1(a, c) = y01(a, c) +
h

3
W 1(a)

y2(a, c) = y02(a, c)

y3(a, c) = y03(a, c)

y4(a, c) = y04(a, c) +
2h

3
W̃ (c)1 (2.56)

for the first half and

y1(c, b) = y01(c, b) +
2h

3
W̃ (c)1

y2(c, b) = y02(c, b)

y3(c, b) = y03(c, b)

y4(c, b) = y04(c, b) +
h

3
W (b)1 (2.57)

for the second half-sector. The quantity h is the step size and



2.2. Multi-channel bound states 59

W̃ (c)1 =
6

h2

[
I − h2

6
W 1(c)

]−1

− 6

h2
I. (2.58)

We are finally left with the choice of reference potential and the representation (basis

set) in balancing the accuracy and computational cost. Johnson’s algorithm [280]

corresponds to choosing a diagonal reference potential whose components are the

collision energy. This corresponds to trigonometric and hyperbolic solutions (for the

open and closed channels, respectively) for the homogeneous solutions. The whole

potential must then be treated by quadrature. In principle, any level of accuracy

could be obtained in this way as long as we set the step size h to be small enough.

However, treating part of the potential analytically gives better convergence with h.

Manolopoulos’ first improvement, referred to as the diabatic modified log-derivative

propagator [288], involved the use of a piecewise constant reference potential

W 0(R)ij = W (c)δij,
(2.59)

for R ∈ [a, b]. The half-sector propagators are then diagonal and given by

y01(a, c) = y04(a, c) = y01(c, b) = y04(c, b) =


|kj| coth(|kj|h) k2j ≥ 0

|kj| cot(|kj|h) k2j ≤ 0

(2.60)

and

y02(a, c) = y03(a, c) = y02(c, b) = y03(c, b) =


|kj| csch (|kj|h) k2j ≥ 0

|kj| csc(|kj|h) k2j ≤ 0

(2.61)

where k2j = W (c)jj − E.

The choice of reference potential made by Manolopoulos means that W 1(c) is

independent of energy. Thus, once calculated, these matrices can be saved for use

at subsequent energies. This leads to a reduction of matrix inversion operation from

3 to 2 for each subsequent propagation across a sector. These two advantages result
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in a significant reduction in computational effort for a given accuracy. With finite

computing resources this translates to an improvement in achievable accuracies.

The benefits of analytic treatment of a diagonal reference potential might be in-

adequate for systems that are strongly off-diagonal in the chosen representation. We

are of course free to choose any representation. For strongly off-diagonal systems

Manolopoulos’ quasi-adiabatic modified propagator [284] transforms the potential

matrix to a representation that leaves the residual potential identically zero at the

midpoint c. This eliminates the need to evaluate W̃ (c)1 which also becomes zero

but we must find the diagonalizing basis at c. However, because a change in energy

changes only the diagonal component of W (R) the transformation matrices need

only be calculated once and stored for use at subsequent energies. Transformation

between the basis set corresponding to each sector involves two matrix multiplica-

tions and must be performed at each energy. In effect the quasi-adiabatic modified

propagator is computationally more demanding and its use must be balanced with

the advantages it offers over the diabatic modified propagator.

As in Gordon’s method, the log-derivative methods propagate a set of N linearly

independent solutions from each end of the propagation range. Because the log-

derivative obeys the Ricatti equation, a first order equation, it only requires a single

boundary condition. This is conveniently imposed at the origin and translates to

Y (0) = ∞I. (2.62)

In practice this is replaced by a matrix with very large diagonal elements, say

Y (0) = 1030I. (2.63)

There is also no need to propagate the derivative of the log-derivative for the same

reasons that reduce the number of boundary conditions. We therefore propagate

a single N × N matrix. The matching condition of the left and right propagated

log-derivatives
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[ lY (Rmid) − rY (Rmid) ]Ψ(Rmid) = 0 (2.64)

is particularly simple. Johnson [278] determined the eigenvalues by finding the roots

of the determinant | lY (Rmid) − rY (Rmid) |.

We can write an eigenvalue equation

YmatchΨ(Rmid) = λΨ(Rmid) (2.65)

where Ymatch = lY (Rmid)− lY (Rmid) and λ represents the eigenvalues. The matching

condition 2.64 corresponds to a zero eigenvalue equation. The λ are functions of the

trial energy Etrial with roots corresponding to eigenvalue En.

Hutson [279] studied the behavior of the determinant and eigenvalues of Ymatch

for total angular momentum J = 1 of the ground vibrational states of Ar-HF. The

calculations were done for Rmid values 3.2 Å, 3.3 Å and 3.4 Å. The results showed

that the roots of the determinant |Ymatch| coincide with those of the eigenvalues λ.

These are the energies En of the physical problem. The En are unchanged by the

value of Rmid, nonetheless, at other values Etrial both the determinant and λ can

be affected strongly. Crucially the determinant function is not monotonic and can

be adversely affected by the choice of Rmid. For some choices it is possible for the

determinant function to approach the axis, touch it at an eigenvalue En and turn

back without crossing the axis. This presents a problem for standard root finding

numerical algorithms. Luckily, the λ are monotonic functions of energy and methods

for locating En based on searching for the roots of these functions have proven to

be much more robust.



Chapter 3

Scattering theory

3.1 Single-channel scattering

3.1.1 Introduction

We begin our discussion of scattering by considering the collision of two structureless

particles. As was the case for bound states, this simplification offers sufficient context

for the introduction of important scattering concepts that survive the complexity

of coupled channels. In particular we can introduce the powerful method of partial

waves. We have seen in the bound states chapter that the Schrödinger equation of

two interacting structureless particles is essentially equivalent to the interaction of

a single particle with a central potential. We can therefore equivalently imagine the

scattering of a pair of such particles as a perturbation of the path of a single particle

by a potential V (r). The steady state solution ψ can be considered to be a sum

ψ = ψin + ψsc (3.1)

of an incoming, ψin, and scattered, ψsc, component. The incoming wave travels

in a definite direction defining a preferred axis. This reduces the symmetry from

spherical to cylindrical which means the solution ψ can be expanded as

ψ(r) = r−1

∞∑
l=0

χl(r)Pl(cos θ) (3.2)

where θ is the angle between the incoming and scattering directions without loss of

generality. The functions Pl(cos θ) are Legendre polynomials.

62
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Experimentally all measurements are made at distances so large compared to

the range of interaction that it is sufficient for the theoretic treatment to consider

the effects of scattering only in the asymptotic region. In this region ψin can be

represented by a plane-wave while ψsc travels in all directions with and probability

density governed by the inverse square law (i.e. |ψsc|2 ∝ r−2). The scattered wave

will also generally depend on θ. Noting that the magnitude of the incoming and

outgoing wave vectors is the same and the angle between them, θ, we can summarize

the requirements mathematically by

ψin = exp(ikr cos θ) and ψsc =
f(θ)

r
exp(ikr). (3.3)

In the asymptotic region we therefore have

ψ(r, θ) ∼ exp(ikr cos θ) +
f(θ)

r
exp(ikr). (3.4)

Where we have written ψ(r) as ψ(r, θ) making the variables explicit. The func-

tions f(θ) is the scattering amplitude and represents the angular dependence of the

scattered wave. The scattering amplitude, as we will see, contains all the physi-

cally relevant information. The scattering problem is essentially solved when the

wavefunction is determined in the asymptotic region allowing the extraction of the

scattering amplitude f(θ) by comparison with equation 3.4.

3.1.2 Cross sections and the scattering amplitude

The quantity that is measured experimentally is the cross section. The differential

cross section is defined as the ratio of scattered to incoming flux. The scattered flux

travels radially outward and measures the number of particles per unit time per unit

solid angle. The flux j associated with a wavefunction ψ is given by

j =
~
µ

Im[ψ∗ ▽ ψ] (3.5)

where µ is the reduced mass. Using equations 3.3 we get

jin =
~
µ
kr̂ and jsc =

~
µ

|f(θ)|2

r2
kr̂ (3.6)
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for the incident and scattered flux respectively. Thus the differential cross section

(dσ/dΩ) related to the incoming and outgoing flux by

dσ

dΩ
= r2

|jsc|
|jin|

, (3.7)

where Omega is the solid angle, is given by

dσ

dΩ
= |f(θ)|2. (3.8)

The total integral cross section σtot obtained by integration over all directions is

given by

σtot =

∫
|f(θ)|2dΩ. (3.9)

3.1.3 Partial wave analysis

We have seen that solving the scattering problem amounts to a determination of the

wavefunction of our system in the asymptotic region. Let us begin by recalling the

Schrödinger equation for two unstructured particles 2.4

[
− d2

dr2
− k2 + U(r) +

l(l + 1)

r2

]
χl(r) = 0. (3.10)

In the absence of a potential equation 3.10 reduces to[
− d2

dr2
− k2 +

l(l + 1)

r2

]
χ0
l (r) = 0. (3.11)

Where the superscript 0 in the solutions is added to emphasis the absence of the po-

tential. Two independent solutions are krjl(kr) and krnl(kr). The functions jl(kr)

and nl(kr) are the well known spherical Bessel and spherical Neumann functions re-

spectively. The most general solution is then expressible as a linear combination of

these independent solutions. However, on physical grounds, we require the solution

to be regular everywhere. Imposing this requirement at the origin eliminates the

spherical Neumann solutions leaving us with the solutions

χ0
l (r) = A0

l (k)krjl(kr). (3.12)

In general we must allow the factor A0 to depend on the scattering energy or equiv-

alently on k. If we now assume that our potential falls off faster than r−2 we note
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that in an intermediate region where the contribution of the potential can be ignored

but the centrifugal term is still significant equation 3.10 reduces in form to 3.11 with

solutions χl(kr) approximated by

χl(r) = kr[Al(k)jl(kr) +Bl(k)nl(kr)]. (3.13)

Regularity at the origin still applies but we cannot impose it on equation 3.13 which

is applied some distance away from the origin. We are now in a position to consider

the effect of introducing the potential on the asymptotic form of the wavefunction.

As kr → ∞

jl(kr) −→
1

kr
sin(kr − πl/2) (3.14)

and

nl(kr) −→ − 1

kr
cos(kr − πl/2). (3.15)

This implies that in the asymptotic region we have

χ0
l (r) ≈ A0

l (k) sin(kr − πl/2) (3.16)

and

χl(kr) ≈ [Al(k) sin(kr − πl/2) −Bl(k) cos(kr − πl/2)] (3.17)

which can be written as

χl(kr) ≈ Cl(k) sin(kr − πl/2 + δl(k)) (3.18)

where Cl(k) = [Al(k)2 +Bl(k)2]1/2 and

δl(k) = − arctan(Bl(k)/Al(k)) (3.19)

is a phase shift. With the understanding that the phase-shift is a function of k

we omit the explicit expression in most expressions. The presence of the potential

therefore allows us to retain the term nl(kr) which in the asymptotically region

results in a shift in phase of the wavefunction. We can write 3.17 as

χl(kr) ≈ sin(kr − πl/2) −Kl(k) cos(kr − πl/2)], (3.20)

where

Kl(k) = tan(δl) (3.21)
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defines the diagonal elements of the K-matrix. The non-diagonal elements are zero.

Similarly, we can express equation 3.18 as

χl(kr) ∼ e−i(kr−πl/2) − Sl(k)ei(kr−πl/2) (3.22)

where

Sl(k) = e2iδl(k) (3.23)

defines the S matrix. The S and K matrices are related by

Sl(k) =
1 + iKl(k)

1 − iKl(k)
. (3.24)

The sign of a phase shift

The effect of the potential on the sign of the phase-shift is best illustrated by com-

paring two potentials U(r) and Ū(r). The relevant equations for the two potentials

are

[
− d2

dr2
+ k2 + U(r) +

l(l + 1)

r2

]
χl(r) = 0 (3.25)

and [
− d2

dr2
+ k2 + Ū(r) +

l(l + 1)

r2

]
χ̄l(r) = 0. (3.26)

Multiplying 3.25 by χ̄l(r) and 3.26 by χl(r) and integrating the difference gives

[χ̄l(r)χ
′
l(r) − χ̄′

l(r)χl(r)]|∞0 =

∫ ∞

0

χ̄l(r)χl(r)[Ū(r) − U(r)] dr (3.27)

where the dash denotes derivative with respect to r. Recalling that χ̄l(0) = χl(0) = 0

and selecting the asymptotic form

χl(r) ≈ sin(kr − πl/2) + tan(δl) cos(kr − πl/2) (3.28)

for χl(r) and similarly for χ̄l(r) gives, after a little algebraic manipulation,

k[tan(δ̄l) − tan(δl)] =

∫ ∞

0

χ̄l(r)χl(r)[Ū(r) − U(r)] dr. (3.29)

If we now consider the two potentials to be infinitesimally close so that

Ū(r) − U(r) = ε, (3.30)
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a small positive number, and consequently

χ̄l(r) ≈ χl(r). (3.31)

Then the integrand on the right hand side of equation 3.29 becomes χl(r)
2ε, and is

positive everywhere. Thus we have

tan(δ̄l) > tan(δl) ⇐⇒ δ̄l > δl. (3.32)

Thus an overall more repulsive potential Ū(r) results in a greater phase-shift δ̄l(k).

If we adopt a convention that a zero phase-shift corresponds to a zero potential then,

δl > 0 ⇐⇒ overall repulsive potential (3.33)

and

δl < 0 ⇐⇒ overall attractive potential. (3.34)

Cross sections

We now return to the question of determining the cross sections. The idea is to first

determine the scattering amplitude and then using equation 3.9 to calculate the

cross section. The first step is to expand the first term in equation 3.4 representing

the incoming flux in Legendre polynomials. We note that

exp(ikr cos θ) =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ). (3.35)

Expressing the asymptotic form of jl(kr) given by equation 3.14 in terms of complex

exponentials and substituting into 3.35 we can express 3.4 as a sum of radially

incoming and outgoing parts

ψ(r, θ) ∼
[
− 1

2ik

∑∞
l=0(2l + 1)il exp(ilπ/2)Pl(cos θ)

] exp(−ikr)
r

+
[

1
2ik

∑∞
l=0(2l + 1)Pl(cos θ)il exp(−ilπ/2) + f(θ)

]
exp(ikr)

r
.

(3.36)

Next we rewrite equation 3.18 as
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χl(kr) −→
Cl(k)[exp(i(kr − πl/2 + δl)) − exp(−i(kr − πl/2 + δl))]

2ikr
(3.37)

and substitute this into 3.2 to obtain

ψ(r, θ) −→
∞∑
l=0

Cl(k)[exp(i(kr − πl/2 + δl)) − exp(−i(kr − πl/2 + δl)]

2ikr
Pl(cos θ)

(3.38)

for the asymptotic form of the partial wave expansion. We now compare coefficients

of the linearly independent functions exp(ikr) and exp(−ikr) of equations 3.38 and

3.36. Comparison of the coefficients of exp(−ikr) gives

∞∑
l=0

[(2l + 1)il − Cl(k) exp(−iδl)]Pl(cos θ) exp(ilπ/2) = 0

which upon setting the individual l terms to zero gives

Cl(k) = (2l + 1)il exp(iδl). (3.39)

Similarly comparison of exp(ikr) yields

f(θ) =
i

2k

∞∑
l=0

(2l + 1)ilPl(cos θ) exp(−ilπ/2)[exp(2iδl) − 1]

=
i

2k

∞∑
l=0

(2l + 1)ilPl(cos θ) exp(−ilπ/2)[Sl(k)) − 1]

for the scattering amplitude. Substituting this expression into equation 3.9, using

3.39 and noting the orthogonality of the Pl(cos θ) we have

σtot =
4π

k2

∞∑
l=0

(2l + 1)|1 − Sl(k)|2. (3.40)

We note that the total cross section can be written as a sum of contributions σl

from each of the partial waves where

σl =
4π

k2
(2l + 1)|1 − Sl(k)|2. (3.41)
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Note also that the total cross section is dependent only on the phase-shifts. Thus,

essentially the phase-shifts contain all the measurable information. In order to

evaluate the cross sections we must first obtain phase-shifts. Conceptually, we divide

the total radial coordinate range in two, the interior region in which the potential

is effective and equation 3.10 applies, and the exterior region in which the potential

is negligible where equation 3.11 applies. We have seen that the external region has

analytic solutions and using equation 3.13 and 3.19, the general form of the total

radial component of the wavefunction Rl(r, k) = χl(kr)/r can be written

Rl(r) = Dl(k)[jl(kr) − tan(δl)nl(kr)]. (3.42)

In the interior region, the solution is solved numerically and the phase-shift is then

obtained by imposing continuity of the solution and its derivative at the boundary of

these two regions. Equivalently, we can require that the log-derivative be continuous.

If we denote the log-derivative of the interior region by γl(k) and let r = b at the

boundary then

γl(k) =
j′l(kb) − tan(δl)n

′
l(kb)

jl(kb) − tan(δl)nl(kb)
. (3.43)

The prime denotes a derivative with respect to kr. We can rearrange this to get

tan(δl) =
γl(kb)jl(kb) − kj′l(kb)

γl(k)nl(kb) − kn′
l(kb)

(3.44)

from which we can obtain the phase-shift up to an additive multiple of π.

Low-energy scattering

In the asymptotic region we have seen that the scattering wavefunction has the

form of a sine wave. The left panel of figure 3.1 shows a low-energy scattering

wavefunction of Rb-Cs on the ground state PEC. In continuation of the trend of

highly excited states discussed earlier and shown in figure 2.5, low-energy scattering

states oscillate rapidly in the short range in contrast to the behavior at long range.

The amplitude of the wavefunction in the long range is much bigger. This means

that the probability of finding the particles in close proximity to each other is very
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Figure 3.1: The wavefunction and its square of a low energy scattering state of RbCs

on the ground state interaction energy (P.E.S shown in figure 2.1).

small and vanishes rapidly with reducing collision energy as is evident also from the

square of the wavefunction shown on the right-hand panel. In general the scattering

properties are determined mainly by the long-ranged details of the interaction. In

this low-energy limit, defined by kb→ 0, we note that

jl(kb) −→
(kb)l

(2l + 1)!
(3.45)

and

nl(kb) −→ −(2l + 1)!

(kb)l+1
(3.46)

where ! denotes factorial. Substitution into equation 3.44 yields

tan(δl) ≈
γ̂l

(kb)l

(2l+1)!
− kl (kb)

l−1

(2l+1)!

γ̂l
(2l+1)!
(kb)l+1 − k(l + 1) (2l+1)!

(kb)l+2

. (3.47)

Where γ̂l = limkb→0 γl(kb)

tan(δl) ≈
(kb)2l+1(γ̂lb− l)

[(2l + 1)!]2(γ̂lb+ l + 1)
(3.48)

Thus, as long as γ̂lb ̸= −(l + 1), which would result in a singularity,

tan(δl) ∝ k2l+1. (3.49)

Restricting the range of the phase-shift to −π ≤ δl ≤ π and using tan(δl) ≈ sin(δl)

for δl ≈ 0 and equations 3.41 and 3.49 we conclude
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σl ≈ 4π(2l + 1)k4l. (3.50)

So for vanishingly small energies the low energy cross sections vanish for all but

the l = 0 partial wave, also referred to as the S partial-wave. The S partial-wave

contribution tends to a constant value.

Scattering length

The scattering length al(k) is defined by

al(k) = lim
k→0

tan(δl)

k
. (3.51)

It is a truly low energy concept. From 3.49 we see that

al(k) ∼ k2l. (3.52)

By arguments similar to those of low-energy cross sections the scattering lengths is

also dominated by the S partial-wave in the low energy regime. Using 3.50 and 3.52

σl(k) ≈ 4π(2l + 1)a20(k). (3.53)

The scattering length is used to characterizes low-energies scattering and determines

properties of low ultra-low temperature gases including the chemical potential [289]

and the stability in traps [4,5]. We can develop an instructive intuitive understanding

of the scattering length by considering low energy scattering by a hard ball potential

of radius r̄0. The potential is infinite for r < r̄0 and zero for r > r̄0. An incoming

sine wave is totally reflected upon contact with the potential and can be expressed

as

ϕ(r) ∼ sin(k[r − r̄0]). (3.54)

The scattered wave has a phase-shift δ0 = kr̄0. If we recall that at low energy

a0 ≈ δ0/k we have a0 ≈ r̄0. This suggests that in order to reproduce collision

properties of a real system by a model contact potential the radius r̄0 of the model

potential must be equal to the scattering length of the real system.



3.1. Single-channel scattering 72

Resonances

The phase-shift generally changes slowly with energy, however at times it will change

rapidly and as it crosses some multiple of π/2 produces peaks in the cross sections.

The scattering length will have a pole precisely when δl = π(n+1/2), with n a natural

number, which corresponds to the pole in the tan(δl) function. This phenomenon is

referred to as a resonance and happens when the scattering state crosses the energy

of a quasi-bound state. If we expand cot(δl) as a function of energy about the energy

Eres corresponding to the pole in the scattering length we get

cot(δl(E)) = cot(δl(Eres)) + (E − Eres)
(

d cot(δl(E))
dE

)
E=Eres

+ o(E − Eres)
2

≈ −(E − Eres)
(

1
sin2(δl(E))

dδl(E)
dE

)
E=Eres

+ o(E − Eres)
2.

(3.55)

Noting that sin(δl(Eres)) ≈ 1 and defining Γ by

1

2

(
dδl(E)

dE

)
E=Eres

=
1

Γ
(3.56)

we have

cot(δ(E)) ≈ (E − Eres)
2

Γ
. (3.57)

The quantity Γ has units of energy and is referred to as the width of the resonance.

Thus near a resonance, substituting 1/[cot2(δl(E)) + 1] for sin2(δl(E)) in equation

3.41, we can express the partial wave cross section as

σl(E) = 4π
k2

(2l + 1) 1
cot2(δl)+1

= 4π
k2

(2l + 1) Γ2

4(E−Eres)2+Γ2 .

(3.58)

This final form is the well known Breit-Wigner form.

Inelastic scattering

As a prelude to our discussion of multi-channel scattering we consider inelastic

scattering from the viewpoint of loss of flux from an incoming channel. We start by

expressing the asymptotic solution 3.36 as
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Φ(r, θ) = Fin(k, θ)
exp(−ikr)

r
r̂ + Fout(k, θ)

exp(ikr)

r
r̂. (3.59)

The coefficients of exp(−ikr)/r and exp(ikr)/r have been captured in Fin(k, θ) and

Fout(k, θ), respectively. The outgoing flux through a point Jout(r, θ) is given by

Jout =
|Fout(k, θ)|2

r2
kr̂ +O(r−3).

To obtain the total outgoing flux, Iout, we must integrate Jout over a closed surface

containing the scatterer. We conveniently choose the surface of a sphere centered at

the scatterer so that

Iout = ⃝
∫∫

S

Jout · ds

= ⃝
∫∫

S

[|Fout(k, θ)out|2k +O(r−1)]dΩ.

If we let the surface be arbitrarily large, which we are at liberty to do, the contri-

bution of the terms O(r−1) can be neglected and we end up with

Iout = ⃝
∫∫

S

|Fout(k, θ)|2kdΩ

=
π

k

∞∑
l=0

(2l + 1)|Sl(k)|2.

Similarly the total incoming radial flux is

Iin = ⃝
∫∫

S

|Fin(k, θ)|2kdΩ

=
π

k

∞∑
l=0

(2l + 1).

The total inelastic cross section σtot,inel(k) is given by

σtot,inel(k) = −Iin − Iout
Iin

.

The minus sign is there because we are expressing a loss in flux. This gives

σtot,inel(k) =
π

k2

∞∑
l=0

(2l + 1)[1 − |Sl(k)|2].
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3.2 Multi-channel scattering

For collisions between structured particles it is necessary to consider transitions

between internal states before and after the encounter. Such transitions generally

allow for an exchange of energy between the internal states and the relative motion.

Multi-channel scattering methods are formulations that account for this additional

structure. If we consider collisions between two structured particles, 1 and 2, with

internal states ϕ1
n and ϕ2

m given by

H1ϕ
1
n = Enϕ

1
n

H2ϕ
2
m = Emϕ

2
n,

then a unique combination of internal states ϕ1
kϕ

2
l constitutes a channel. The equa-

tions of motion are identical to those of the multi-channel bound states . The differ-

ence as in the single-channel case is in the boundary conditions which we describe

below.

3.2.1 Boundary conditions and cross sections

The conditions at R = 0 remain the same but the second condition is applied in

the asymptotic region where the interaction is negligible. For an incoming channel

α the asymptotic form of the wavefunction is

χα,α(R) ∼ exp(ikαz) + fα,α(θ, ϕ)
exp(ikαR)

R
. (3.60)

On all outgoing channels β we do not have an incoming component so that the

asymptotic form of the wavefunction is

χα,β(R) ∼ fα,β(θ, ϕ)
exp(ikβR)

R
. (3.61)

We can summarize this by

χα,β(R) ∼ exp(ikβz)δα,β + fα,β(θ, ϕ)
exp(ikβR)

R
. (3.62)

The fαβ(θ, ϕ) are the probability amplitudes associated with the transitions from

α to β and δα,β is the kronecker-delta. The number of particles, dNβ, scattered
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through a solid angle dΩ at R per unit time is

dNβ = vβ|fα,β(θ, ϕ)|2dΩ. (3.63)

The square of the probability amplitude gives the probability density but this must

be multiplied by the asymptotic velocity of the channel to obtain the outgoing

flux. As the incoming wavefunction is of unit intensity the flux is vα. Noting that

vα = kα~/2µ and similarly for vβ the differential cross section associated with the

transition is

dσα,β
dΩ

=
kα
kβ

|fα,β(θ, ϕ)|2dΩ. (3.64)

The integral cross section is then

σα,β =
kα
kβ

∫
Ω

|fα,β(θ, ϕ)|2dΩ. (3.65)

The boundary condition can be written in terms of the S-matrix as

χαL,βL′(R) ∼ exp(−i[kαR− Lπ/2])δα,βδL,L′

−
(
kα
kβ

)1/2

SαL,βL′ exp(i[kβR− L′π/2]),

where the partial-wave dependence of the channels has been made explicit so that

the previous channel labels, α, β, etc. now do not include the partial wave label

L. We have used a capital letter L to distinguish the current discussion from the

single-channel case. These boundary conditions apply to the channel functions. In

general it is of course not necessary to use the eigenfunctions of the asymptotic

hamiltonian for the basis set so that the it would be necessary to diagonalize for the

true channels before applying the boundary conditions.

The elastic and inelastic cross sections can be expressed in terms of the S-matrix

as

σα,β =
4π

kα

∑
J

∑
L

∑
L′

|δL,L′δα,β − SJ
αL,βL′|2. (3.66)
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3.2.2 Multi-channel S-matrix

We now outline how to evaluate the S-matrix from the propagated solutions. We

begin by expressing the form of the channel functions in the asymptotic region. The

open channels have the form of the spherical Bessel functions

[J(R)]β,α = δβ,αk
−1/2
α ĵ(kαR) (3.67)

[N(R)]β,α = δβ,αk
−1/2
α n̂(kαR). (3.68)

The closed channel functions

[J(R)]β,α = δβ,α(k1/2α R)IL+1/2(kαR) (3.69)

[N(R)]β,α = δβ,α(k1/2α R)IL+1/2(kαR) (3.70)

are modified spherical Bessel functions. The multi-channel wavefunction Ψ(R) in

the asymptotic region can the be expressed as

Ψ(R) = J(R) +N(R)K (3.71)

where K is the reaction matrix which connects the channels. It can be written as

K =

 Koo Koc

Kco Kcc

 . (3.72)

where Koo, Koc,Kco and Kcc are the open-open, open-closed, closed-open and closed-

closed sub-matrices. In terms of the log-derivative the K-matrix is given by

K = −[Y (R)N(R) −N ′(R)]−1 × [Y (R)J(R) − J ′(R)]. (3.73)

Finally, the S-matrix can be calculated from the open-open sub-matrix Koo by

S = (I + iKoo)
−1(I − iKoo). (3.74)

Note the similarity with the equation 3.24.
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3.2.3 Rate constants

Cross sections σα,β give transition probabilities following a collision and do not

contain information on the likelihood of collisions. The collision rate is proportional

to the velocity so that we can define a rate coefficient Kα,β for a flux of particles

of velocity v as vσα,β. Real experiments involve thermal samples characterized by a

distribution of velocities. The thermally averaged rate coefficient < Kα,β > is given

by

< Kα,β >=

∫ ∞

0

vσα,βg(v, T ) dv. (3.75)

The g(v, T ) is a velocity distribution function which depends on the temperature

T . In the classical limit the distribution is typically Maxwellian, at very low tem-

peratures where quantum effects become important the distribution is governed

by Bose-Einstein or Fermi-Dirac statistics depending on whether the particles are

fermions or bosons. The < Kα,β > gives the overall transition rate for a sample at

given temperature which is often of more direct value in an experiment than the

cross sections.



Chapter 4

Bound states of He-O2

4.1 Introduction

The decision to study He-O2 was motivated by several reasons. In its ground state

molecular oxygen is a 3Σ molecule. This combines the simplest electronic state

with a Zeeman structure necessary to tune zero-energy resonances which is a central

requirement of our study. The paramagnetic nature also means that O2 is suitable for

magnetic trapping. Because of its closed-shell nature He introduces the least number

of terms to the Hamiltonian of the total system making the complex a relatively

simple one to study. Helium is the most common buffer gas and has also been used

as a carrier gas in the supersonic expansion of O2 [290, 291]. The availability of

good ab initio potential energy surfaces [292, 293] was also an important factor in

our choice of system.

We are ultimately interested in studying the collision dynamics in a magnetic

field and in particular the behavior across Fesbach resonances at ultra-low collision

energies. As we shall see, locating resonances requires calculation of bound and

quasi-bound or resonance states of the complex. The range of energy and field

that must be considered is determined by the need to locate zero-energy resonances

and to characterize the bound states in order to understand their interaction with

scattering states. In this chapter we present calculations of the bound states of the

He-O2 van der Waals complex.

78
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Factoring out the translational motion of the center-of-mass, we can express the

Hamiltonian Ĥc of the complex in Jacobi coordinates (depicted in figure 4.8 on page

95) as

Ĥc = − ~2

2µ
∇2

R + Ĥmon + V (R, r,Θ), (4.1)

where r is the vector connecting the two oxygen atoms, R the separation of the

centers of mass of O2 and the He atom and Θ the angle between r and R. The

reduced mass of the complex is µ, and Ĥmon denotes the O2 monomer Hamiltonian.

The V (R, r,Θ) is the interaction potential of O2 with He. We assume He to have

no internal structure and it thus makes no separate contributions to Ĥc. As we

shall see later, this assumption also means that the channels are defined by the

internal structure of molecular oxygen and the end-over-end angular momentum.

An understanding of the field-free and Zeeman structures of O2 is indispensable for

a clear understanding of the energy level structure of He-O2.

In the following sections we proceed by first examining Ĥmon to determine the

structure of O2. We follow this with a discussion outlining the method used in

calculating the interaction potential V (R, r,Θ) and features of the He-O2 PES of

Groenenboom and Struniewicz [292] which we have used in our bound and scattering

states calculations. The results of bound state calculations are presenting at the end.

4.2 Properties of O2

The structure of any molecule is determined by the limitation imposed by the various

interactions on the spacial and spin degrees of freedom of the constituent particles,

the electrons and nuclei. As we shall see in the next section, the nuclear and the

electronic degrees of freedom are approximately separable, however, the nuclear

framework imposes strong restrictions on electronic spacial degrees of freedom and

determines the spacial symmetry and therefore the classification of the electronic

structure. Unlike atoms, molecules are not spherically symmetric and so the total

electronic orbital angular momentum is not a good quantum number, but all di-

atomic molecules have an axis of rotational symmetry along the bond of the two
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Figure 4.1: The projection, λi, of the orbital angular momentum li is a good quantum

number used in the classification of diatomic molecular orbitals.
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Figure 4.2: A simple molecular orbital diagram for O2.

nuclei. The projection, λi, of the orbital angular momentum on the intermolecular

axis is therefore a good quantum number and forms a basis for classifying electronic

structure states. In analogy to atomic orbitals molecular orbitals are labeled σ,π,δ,

etc. depending on whether λi = 0, 1, 2, etc. The total projection, Λ, is the sum of

the individual projections of occupied states. The total symmetry of the electronic-

structure is said to be Σ,∆,Π, etc. according to the value of Λ. Oxygen has atomic

number 8 with electronic configuration 1s22s22p4. Figure 4.2 is a simple molecular

orbital diagram showing the construction of the electronic structure of molecular

oxygen from two atoms. Only the valence electrons are shown. Two unpaired elec-

trons of O2 contribute to the angular momentum. They occupy two degenerate π

orbitals to minimize repulsion energy and have parallel spins in accordance with

Hund’s rule. This results in an overall spin 1 state which makes the ground state
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a triplet. The two π orbitals have opposite angular momentum projection on the

intermolecular axis giving a total projection of zero. The electronic states are sub-

ject to a reflection symmetry about a plane containing the two atoms. The two

highest π orbitals have +1 and -1 symmetry with respect to this reflection. The

resulting symmetry of the ground state is −1 × +1 = −1. Finally, homonuclear

diatomic molecules have a center of inversion and thus the wavefunction must be an

eigenfunction of the parity operator. The electronic ground state of O2 is of even

parity. In summary, the ground state is an overall gerade triplet sigma state or 3Σ−
g

in short. The g stands for gerade which is German for even in description of the

parity. The superscript on the right-hand side signifies the symmetry with respect

to reflection discussed above. In general, the contribution of the electrons to the

total wavefunction of O2 can be expanded in terms of products of electronic spin

and electronic structure basis functions. However, the energy required to excite the

electronic structure are many orders of magnitude larger than is available at ultra-

low temperatures, therefore, the electronic structure is confined to the ground state

and is often omitted in expressions of the basis functions.

The electronic structure solved for different nuclear configurations defines a po-

tential surface which determines the rotational and vibrational structure of the nu-

clear framework. Due to the high energies involved in vibrational excitations they

are inaccessible at ultra-low energy collisions which allows us to suppress vibra-

tional motion. We thus restrict our calculations to the electronic and vibrational

ground states (3Σ−
g , v = 0). Nuclei will also posses spin and an associated magnetic

moment, however, magnetic moments are inversely proportional to the mass which

makes nuclear magnetic moments three orders of magnitude smaller than electronic

magnetic moments. For this reason the energy contributions of nuclear spin are

ignored. As we shall see however, the nuclear spin has a profound impact on the

rotational energy structure which we must account for. The complete form of an

element of the basis set for O2 would include the electronic-structure, vibrational,

rotational and electronic and nuclear spin functions. As the electronic-structure and

vibrational motion are restricted to their respective ground states, and nuclear spin
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is neglected, elements of the basis set can be written simply as

|sms⟩|nmn⟩ (4.1)

where |sms⟩ and |nmn⟩ are basis functions of the electronic spin and nuclear rotation

angular momentum, respectively. Following González-Mart́ınez and Hutson [294],

we adopt the convention that monomer quantum numbers are represented by small

letters while capital letters are used for quantum numbers of the complex. The spin

s = 1, which means −1 ≤ ms ≤ 1. Alternatively |sms⟩ and |nmn⟩ can be coupled

to give |nsjmj⟩ according to

|nsjmj⟩ =
∑
n,s

c(n,mn, j,mj)|nmn⟩|sms⟩ (4.2)

with c(n,mn, j,mj) the Clebsh-Gordon coupling coefficients and mj = mn + ms.

The |nsjmj⟩ would then be elements of a coupled basis set.

In the absence of a field, the O2 Hamiltonian is

Ĥmon = − ~2

2µmon

∇2
r + V (r) + Ĥss + Ĥsn

= − ~2

2µmon

1

r

∂2

∂r2
r +

n̂2

2µmonr2
+ V (r) + Ĥss + Ĥsn.

(4.3)

The first two terms are kinetic energy terms, with the first a vibrational term and

the second a rotational term. The operator n̂2 is an angular momentum operator

associated with the rotation of the diatomic. The last two terms are the spin-spin

and the spin-rotation interactions respectively. The potential V (r) incorporates all

other interactions between the constituent particles. The ground-state vibrational

wavefunction of the monomer, ν0(r), is an eigenfunction of

− ~2

2µmon

1

r

∂2

∂r2
r + V (r) (4.4)

with eigenvalue E0. Averaging over ν0(r) and taking E0 as the zero of energy gives

the effective Hamiltonian

Ĥmon = bn̂2 + Ĥss + Ĥsn. (4.5)
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The monomer rotational constant b is approximated by b = ~2/2µmonr
2
e with re the

equilibrium O2 bond-length. The spin-spin term

Ĥss =
2

3
λss

[
4π

5

] 1
2 √

6
∑
q

(−1)qY2−q(r̂)[ŝ⊗ ŝ](2)q (4.6)

with [ŝ⊗ ŝ]2 a tensorial product of ŝ with itself and Y2−q(r̂) are spherical harmonics

and the spin-rotation term

Ĥsn = γn̂ · ŝ. (4.7)

For O2 the spin-spin constant λss = 1.9848 cm−1 [295] and the spin-rotation constant

γ = −0.0084 cm−1 [295]. The relative difference in magnitude of the constants

points to the relative strength of the spin-spin interaction. The eigenfunctions and

eigenvalues are obtained by standard matrix diagonalization. The matrix elements

are

⟨sms|⟨nmn|bn̂2|s′m′
s⟩|n′m′

n⟩ = δnn′δmnm′
n
δss′δmsm′

s
bn(n+ 1) (4.8)

for the rotation,

⟨sms|⟨nmn|Ĥsn|s′m′
s⟩|n′m′

n⟩ = δnn′δmnm′
n
δmsm′

s
γmnms + δnn′δmnm′

n±1δmsm′
s∓1

× γ

2
[n(n+ 1) −m′

n(m′
n ± 1)]1/2

× [s(s+ 1) −m′
s(m

′
s ∓ 1)]1/2 (4.9)

for the spin-rotation and

⟨sms|⟨nmn|Ĥss|s′m′
s⟩|n′m′

n⟩ =
2
√

30

3
λss(−1)s−ms−mn [(2n+ 1)(2n′ + 1)]1/2

× [s(s+ 1)(2s+ 1)]

 n 2 n′

0 0 0




1 1 2

s s s


×
∑
q

(−1)q

 n 2 n′

−mn −q m′
n



×

 s 2 s′

−ms q m′
s

 (4.10)
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for the spin-spin interactions in the decoupled basis set [294]. The terms in ordinary

and curly brackets are three-j and six-j symbols [296], respectively. In the coupled

basis set we have

⟨snjmj|n̂2|s′n′j′m′
j⟩ = δnn′δss′δjj′δmjm′

j
bn(n+ 1) (4.11)

for the rotation,

⟨snjmj|Ĥsn|s′n′j′m′
j⟩ = δnn′δjj′δmjm

′
jγ(−1)n+j+s

× [n(n+ 1)(2n+ 1)s(s+ 1)(2s+ 1)]1/2

×


s n j

n s 1

 , (4.12)

for the spin-rotation and

⟨snjmj|Ĥss|s′n′j′m′
j⟩ = δjj′δmjm′

j

2
√

30

3
λss(−1)j+n+n′+s[(2n+ 1)(2n′ + 1)]1/2

×

 n 2 n′

0 0 0




s n′ j

n s 2

 (4.13)

for the spin-spin interactions. For ground-state molecular oxygen we must remember

that s = s′ = 1. The diagonal nature of the matrix elements with respect to s is

therefore not emphasized in the expressions above.

The rotational term is diagonal in both basis sets with the same eigenvalue

bn(n + 1). In the uncoupled representation the spin-rotation term makes different

contributions to diagonal elements depending on the product msmn and couples

states of the same rotational level that differ by 1 in mn or ms but have the same

mn + ms. The spin-spin term couples rotational states that differ in rotational

quantum number by exactly 2 (ie. ∆n = ±2) but have the same mn + ms. So it is

clear that in zero-field mn + ms is a good quantum number. In the coupled basis

set the spin-rotation term is completely diagonal while the spin-spin interaction
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n

s

j

Figure 4.3: O2 is very nearly a Hund’s case (b) molecule.

couples terms with ∆n ± 2. As we would expect from discussion of the uncoupled

representation all terms in the coupled basis are diagonal in mj. In fact both mj

and j are good quantum numbers making the coupled representation a better one

in zero field.

Diatomic molecules are also classified according to the relative coupling strengths

of the different angular momenta. In O2 the electronic spin s is coupled to the nuclear

framework rotational angular momentum n to give the total angular momentum j

as shown in figure 4.3. The ground state of molecular oxygen is nearly a Hund’s

case (b).

In a magnetic field we must add a Zeeman term

Ĥz = geµBB̂ · ŝ (4.14)

to the monomer Hamiltonian 4.5 where ge is the g-factor for the electron, µB is

the Bohr magneton and B̂ is the magnetic field operator. Choosing our z-axis to

coincide with the space fixed direction of the magnetic field, the matrix element is

⟨nmn|⟨sms|Ĥz|s′m′
s⟩|n′m′

n⟩ = δnn′δmnm′
n
δmsm′

s
geµBBms (4.15)

in the uncoupled representation and
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Isotope xO Atomic mass Nuclear spin b (cm−1) of xO2 Ground n

16O 15.995 0 1.4377 1

17O 16.999 5
2

1.3527 0 or 1

18O 17.999 0 1.2776 1

Table 4.1: The atomic mass and nuclear spin of three isotopes of atomic oxygen,

and the rotational constant and rotational ground-state quantum numbers of corre-

sponding homonuclear diatomic molecules.

⟨nsjmj|Ĥz|s′n′j′m′
j⟩ = δnn′δmjm′

j
geµBB(−1)n+s−mj+1

× [s(s+ 1)(2s+ 1)(2j + 1)(2j′ + 1)]
1
2

×

 j 1 ′j

−mj 0 mj




s j′ n

j s 1

 (4.16)

in the coupled representation. We see that the Zeeman term is diagonal in the

uncoupled representation but not in the coupled representation. This makes the

choice of representation in the presence of a field a little more complicated. In the

low-field limit where the Zeeman term is negligible the coupled basis is a better

representation, however, in the high-field limit where the Zeeman term dominates

the energy the uncoupled representation is better.

Usually, all the rotational levels of the molecular framework are allowed. How-

ever, this is not the case for molecules with identical nuclei. Homonuclear diatomic

molecules are symmetric with respect to the interchange of the nuclei. This requires

the total wavefunction, ψmon, which can be written as a product

ψmon = ψtot
el · ψvib · ψrot · ψns (4.17)

of the electronic, vibrational, rotational and nuclear spin components, respectively,

to be either symmetric (eigenvalue +1) or antisymmetric (eigenvalue −1) with re-

spect to nuclear permutation according to whether the nuclei are bosons or fermions,
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Figure 4.4: Rotational ground state levels of 16O2 and 18O2.

respectively. The vibrational wavefunction depends only on the magnitude of sepa-

ration of the nuclei and is unaffected by permutation. For O2 the electronic wave-

function is antisymmetric with respects to permutation. From table 4.1 16O and 18O

are bosons with nuclear spin 0 which only allows for the construction of molecular

nuclear spin functions that are symmetric with respect to nuclear permutation. As

the total wavefunction of 16O2 and 18O2 must be symmetric we must have rotational

wavefunctions that are antisymmetric. The rotational functions |n,mn⟩ are symmet-

ric for even n and antisymmetric for odd n. This means that ψmon can only contain

odd rotational levels. An important consequence is that the ground rotational level

is n = 1. For 17O2 the atomic nuclear spins is 5/2 from which both symmetric

and anti-symmetric molecular nuclear spin functions can result. However, the nu-

clei are fermions and the wavefunction must be antisymmetric under permutation.

This means that the even n rotational functions must combine with the symmetric

nuclear spin functions while the odd n functions must combine with antisymmetric

nuclear spin functions. The rotational levels of 17O2 are divided into even and odd

n manifolds. For the even n levels the ground state is n = 0.
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Figure 4.5: Rotational ground state levels of 17O2 for the odd (left panel) and even

n manifolds.

Let us consider the rotational ground state of 16O2 depicted on the left panel

of figure 4.4. These are n = 1 levels each with rotational energy 2b ≈ 2.9 cm−1.

There are three rotational functions |nmn⟩ for n = 1 and three spin functions |sms⟩

for s = 1 giving a product of nine basis functions. As we have seen, the coupled

representation is better at low fields so we use these in our initial interpretations.

Restricting our basis set to n = 1 levels means that the spin-spin interaction makes

no contribution. However, the spin-rotation interaction has contributions that de-

pend only upon j which has values 0, 1 and 2. Because at zero field all contributions

are diagonal in mj, we can predict three levels, one for each j. This is consistent

with the figure 4.4. Although the Zeeman term is diagonal in mj it depends on the

actual value of mj. This has the effect of lifting the degeneracy of the different mj

levels within the same j. So in non-zero field j = 2 splits into mj = ±2,±1, 0 and

j = 1 into mj = ±1, 0 while j = 0 remains a single mj = 0 level. Once a field

is applied we have nine separate levels, equal to the size of our restricted basis set

which is independent of the choice of representation. This means that all degeneracy
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has been lifted. We also note that 2.9 cm−1 is nearly at the middle of the levels.

The spin-rotation term will split levels of the same n according to j and n and the

spin-spin terms will couple levels of ∆n = ±2 shifting them according to j and n.

It is only the Zeeman term that breaks the isotropy of space and couples different j,

destroying the total angular momentum as a good quantum number. If we identify

the direction of the projection of j with that of the field, then mj is conserved by all

interactions, including the Zeeman term, reflecting the rotational symmetry about

the axis defined by the field. The mj remains a good quantum number at any field.

Although the j quantum number is not strictly a good quantum number it is

approximately good for low fields. In this region the pair (j,mj) is a good label

for the levels. From figure 4.4 we note that the low-field region extends to approx-

imately 15000 G at which point the lines (2,+2) and (1,−1) cross. In reality, the

levels of the same symmetry avoid crossing so that even from the high field limit it is

possible to adiabatically follow a label (j,mj) unambiguously back to a single level

allowing us to retain the labels if we choose. However, the character of the levels

are mixed and these labels no longer retain reliable information on the nature of the

levels. In the limit of very high fields known as the Paschen-Back limit, where the

Zeeman contribution is dominant, n and s are decoupled from each other and are

independently coupled to the field. This means that j is no longer a good quantum

number, even approximately, but ms becomes approximately a good quantum num-

ber. As ms = ±1, 0 and each ms can couple with the three mn of n = 1 there should

be three sets of levels with each set triply degenerate. The groups of levels and the

corresponding ms are shown in figure 4.6 which depicts 16O2 levels up to 40 kG.

Strictly, it is the gradient of each set of levels that approaches the same limit. As

the levels are at different energies to start with it is clear that they cannot become

degenerate. However, in the limit of very hight field the difference, which originates

from all the other terms, becomes less significant. The energy is almost entirely due

to the interaction with the field, which, from equation 4.15, is equal for levels with

the same ms making them essentially degenerate.
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Figure 4.6: The Zeeman structure beyond the boundary of the Paschen-Back limit

of the ground rotational level of 16O2.

On comparison of 16O2,
18O2 and odd n levels of 17O2 shown in figures 4.4 and

4.5 we see that the pattern of levels is essentially the same. The increase in mass

has the effect of reducing the rotational constant b which reduces the energy of the

levels and their separation. The j = 0 levels are at 0.2459 cm−1, 0.0760 cm−1 and

-0.0743 cm−1 for 16O2,
17O2 and 18O2, respectively. Similarly, the j = 2 levels are at

2.330 cm−1, 2.143 cm−1 and 1.975 cm−1, respectively. For the even n levels of 17O2,

the ground rotational state is n = 0. This gives j = s = 1 and −1 ≤ mj = ms ≤ 1.

Figure 4.5 shows the three levels of the ground state. We see that the gradient of

the mj = ±1 levels have the same magnitude but opposite sign and the mj = 0

level is unaffected by the field as would be expected when the contributions to the

mj are only from ms.

For O2 molecules with nonidentical oxygen atoms, such as 16O17O and 16O17O,

nuclear permutation symmetry does not apply. All rotational states are allowed and,

as shown in figure 4.7, the ground state is n = 0 and the first excited state is n = 1.
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Figure 4.7: Rotational ground, n = 0, and first excited state, n = 1, of 16O17O and

17O18O.

The sub-levels of these two levels are also not far apart with the |nsjmj⟩ = |1110⟩

and |nsjmj⟩ = |0110⟩ states avoided-crossing at approximately 18,500 Gauss. We

also note that the levels visible on the top right of the figures are n = 2 levels which

come within the plotted range at about 7,000 Gauss. The difference between the

levels of the two diatomic molecules is not easily visible on the scale of the graphs.

The lowest two levels at zero field for example are -0.4950 cm−1 and -0.0039 cm−1

for 16O17O and -0.4941 cm−1 and 0.008 cm−1 for 17O18O. Our bound and scattering

state calculations are restricted to homonuclear molecules and we do not consider

non-identical Oxygen complexes any further.

4.3 Potential energy surface (PES)

In this section we will outline the basic ideas that underpin the calculation of the in-

teraction energy V (R, r,Θ). In the absence of a field, and ignoring fine and hyperfine
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interaction, the full Hamiltonian Ĥ of a molecule can be written as

Ĥ = T̂N(R) + T̂e(x) + VeN(x, R) + Vee(x) + VNN(R). (4.1)

The first two terms on the right-hand side are nuclear and electronic kinetic energy

operators with R and x the nuclear and electronic coordinates respectively. The

other terms are the sum of electron-nuclear, electron-electron and nuclear-nuclear

interactions. Not surprisingly, this equation is impossible to solve exactly, even for

relatively few particles, and simplifying approximations must be made. The first is

the separation of the electronic and nuclear motions. This is the Born-Oppenheimer

approximation and it has physical basis in the fact that the nuclei are much more

massive than the electrons. The electrons in effect respond instantaneously to any

motion of the nuclei. This approximation allows us to separate an electronic Hamil-

tonian Ĥelec

Ĥelec(x;R) = T̂e(x) + Vee(x) + VeN(x;R) (4.2)

and to conveniently write the total wavefunction as a product of a nuclear and

electronic wavefunction. The electronic wavefunction Ψelec(x;R) satisfies

ĤelecΨelec(x;R) = EelecΨelec(x;R), (4.3)

an eigenvalue equation with a parametric dependence on the nuclear coordinates

R. The solutions Ψelec(x;R) and the corresponding energies Eelec calculated for

different geometries give us the electronic structure and the potential energy surface

on which the nuclei move.

The starting point for many modern electronic structure calculations is the

Hartree-Fock self-consistent field method. This is a variational method which con-
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structs the trial solution from a set of molecular spin-orbitals χi(xj) in the form

ΨHF =
1√
M !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ1(x1) χ2(x1) ...... χM(x1)

χ1(x2) χ2(x2) ...... χM(x2)

.... .... .... ....

.... .... .... ....

χ1(xM) χ2(xM) ...... χM(xM)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(4.4)

where M is the number of electrons and xj represents the spacial and spin coordi-

nates of electron j. The spin-orbitals (or simply orbitals from here on) are a product

of spacial and spin wavefunctions. The determinant is referred to as a Slater deter-

minant and satisfies the symmetry requirements imposed by the Pauli principle. The

molecular orbitals are themselves a linear combinations of atomic orbitals centered

at the nuclei. Optimization involves varying the coefficients and is done one molecu-

lar orbital at a time. The process is repeated until the set of orbitals are unchanged

or self consistent. For better solutions, the atomic orbitals are usually from the best

available atomic calculations and include the first few virtual (unoccupied) orbitals.

Atomic orbitals with higher angular momentum than is required for the atomic

ground state are included in order to better reproduce polarization properties. For

a system with M electrons the ground state is the determinant constructed from the

first M molecular spin-orbitals. Excited states are obtained by replacing some of

these with higher energy molecular spin-orbitals. Singly excited states replace one

orbital, doubly excited states replace two etc. A common practice employed when

there are an even number of electrons is to restrict them to pair up. This is done by

requiring each spacial component of χi(xj) be occupied by two electrons of opposite

spin. This reduces the number of spacial orbitals reducing computational cost. This

practice is referred to as restricted Hartree-Fock, or RHF for short. Unrestricted

Hartree-Fock produces lower and therefore better energies at higher computational

cost. The restricted open-shell formalism is a compromise employed for open-shell

systems. It applies the restriction to the electrons occupying closed shells, relaxing

it for the electrons in the open shell.
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Hartree-Fock is a mean-field theory which treats the interaction of an arbitrary

electron with all others in an averaged way. The position of any one electron is

assumed not to affect the position of the others. In reality, electron motion is cor-

related and the largest error in the energy as determined by self-consistent methods

originates from failure to account for this effect. There are several methods that

extend Hartree-Fock to correct for correlation. One such method used in the cal-

culation of the PES of Groenenboom and Struniewicz [292] is the coupled cluster

approach. In the coupled cluster method the ground state solution ΨCC is expanded

as

ΨCC = e(T̂ )ΨHF (4.5)

where

T̂ = T̂1 + T̂2 + T̂3 + .... (4.6)

with the operator T̂1 turning the Hartree-Fock ground-state function into a linear

combination of singly excited states, T̂2 into a linear combination of doubly excited

states etc. Typically, the sum is truncated at the second or third term. The ex-

ponential ensures that coupled cluster is size-consistent but must in practice also

be truncated after a few terms. When the truncation stops at triply excited states

computational cost scales as the seventh power of the size of the basis set. The

coupled cluster method is highly accurate for small to medium sized systems.

Groenenboom and Struniewicz [292] used the Jacobi coordinate system depicted

by figure 4.8. They used the partially restricted coupled cluster method with single,

double and triple excitations or RCCSD(T) for short. The restriction was applied

to electrons of the closed 1s shell of oxygen. The ”T” in brackets indicates that the

triply excited states were included perturbatively. Augmented correlation-consistent

triple-zeta (aug-cc-pVTZ) basis set was employed with additional bonding functions

between He and O2. The calculations were corrected for basis set superposition error

using the Boys and Bernardi [297] method. All three coordinates (r,R and Θ) were

varied producing a 3-dimensional hypersurface from 754 geometries. Symmetry

considerations allowed Θ to be restricted between 0◦ and 90◦. Particular care was
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Θ

R

r

Figure 4.8: The Jacobi coordinate system for He-O2. The distance r is the separation

between the two oxygen atoms of O2, R is the distance between the centers of mass

of the oxygen molecule and He, and Θ the angle between the vectors R and r.

taken to reproduce the long-range properties.

In our calculations the O-O bond length is frozen to the equilibrium value r =

re = 2.282 a0 (1.208 Å). Figure 4.9 depicts the equipotential lines of the PES of

He-O2 with the bond length fixed at this equilibrium value. The energy is in units

of cm−1. For re = 2.282 a0 Groenenboom and Struniewicz [292] report a global

minimum of −127.71 µEh (−27.90 cm−1), with Eh the atomic unit of energy of

Hartree, at a T-shape geometry (Θ = 90◦) with a separation R = 6.0 a0 (3.18 Å).

There are two local minimum −116.4 µEh (−25.55 cm−1) deep at a linear geometries

Θ = 0.0◦ and Θ = 180.0◦ at a distance R = 6.9 a0 (3.65 Å). The saddle point, 36.8

µEh (8.08 cm−1) above the global minimum is at Θ = 49◦, R = 6.8 a0 (3.60 Å).

Figure 4.10 shows cross sections of the PES at various angles. The repulsive wall

starts at very different distances for the different angles. The minima also occur

at different distances. For Θ = 90◦ the curve shows a minimum at the distance of

approximately 6.0 a0 consisted with the reported global minimum.
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Figure 4.9: Potential energy surface, in cm−1, of He+O2 with O2 with bondlength

held at re = 1.208 Å.

4.4 Bound state equations

We can recast equation 4.1 as

Ĥc = − ~2

2µ
R−1 d

2

dR2
R +

L̂2

2µR2
+ Ĥmon + V (R,Θ) (4.7)

where the kinetic energy term has been separated into the relative radial and angular

motions of the pair. The L̂2 is the space-fixed end-over-end angular momentum

operator as discussed earlier. We have dropped the r from the potential V (R,Θ)

as we have fixed it to the equilibrium value. The potential is fitted to a functional

form

V (R,Θ) =
∑
λ

Pλ(cos Θ)Vλ(R) (4.8)

where the Pλ(cos Θ) are Legendre polynomials. The argument cos Θ is used due

to cylindrical symmetry. For a homonuclear molecule such as O2, symmetry about

Θ = 90◦ means that only the even polynomials are present in the expansion. These
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Figure 4.10: Potential energy curves across the interaction surface, V (R,Θ), at Θ =

0◦, 30◦, 60◦, and 90◦. The minimum of the curves at 0◦ and 90◦, which corresponds to

the local and global minimum respectively, are consistent with the reported estimate

[292].

correspond to even values of λ. The bound states are calculated using the coupled-

channel method with the total wavefunction Φ(R,Ω) expanded as

Φ(R,Ω) = R−1
∑
β

χ(R)βψβ(Ω). (4.9)

The ψβ(Ω) are channel functions with β denoting a channel |sms⟩|nmn⟩|LML⟩ in

the uncoupled representation or |nsjmj⟩|LML⟩ in the coupled representation. The

inclusion of the angular momentum basis set |LML⟩ reflects the corresponding end-

over-end degree of freedom of the complex. The matrix elements of the Legendre

polynomials are given by [294]



4.4. Bound state equations 98

⟨LML|⟨nsjmj|Pλ(cos(Θ))|n′s′j′m′
j⟩|L′M ′

L⟩ = [(2n+ 1)(2n′ + 1)(2j + 1)(2j′ + 1)]
1
2

×[(2L+ 1)(2L′ + 1)]
1
2

 n λ n′

0 0 0



×

 L λ L′

0 0 0


×

∑
mλ

(−1)s+j+j′+λ+mλ−ML−mj

×

 L λ L′

−ML −mλ M ′
L



×

 j λ j′

−mj mλ m′
j



×


j j′ λ

n′ n′ s

 (4.10)
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in the coupled representation and

⟨LML|⟨nmn|⟨sms|Pλ(cos(Θ))|s′m′
s⟩|n′m′

n⟩|L′M ′
L⟩ = δmsm′

s
[(2n+ 1)(2n′ + 1)]

1
2

× [(2L+ 1)(2L′ + 1)]
1
2

×

 n λ n′

0 0 0



×

 L λ L′

0 0 0


×
∑
mλ

(−1)mλ−ML−mj

×

 L λ L′

−ML −mλ M ′
L



×

 n λ n′

−mn mλ m′
n


(4.11)

in the uncoupled representation. These elements are off-diagonal in both representa-

tions. The isotropic part of the potential does not couple different channels. As the

potential has no odd terms we note from the matrix element in both representations

that the first anisotropic term P2(cos Θ) couples terms with ∆n = ±2. From 4.10

we note that potential elements that couple channels with ∆mj = mλ also couple

channels with ∆ML = −mλ so that there is no coupling of channels with different

MJ = mj +ML. In the uncoupled representation the interaction potential is diago-

nal in ms and couples channels with different mn and ML in such a way that the sum

mn +ML is conserved leading, as in the coupled representation, to the conservation

of MJ = mn +ms +ML.

The calculations are performed using BOUND [279,298,299]. The radial compo-

nent is propagated outward from a point Rmin and inward from a point Rmax using
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a log-derivative propagator. Apart from the basis set the mid and boundary points

and the propagation step-size, which we denote by ∆R, must be fixed. Convergence

tests of the energy levels were performed for each of these variables. As there is

considerable experience in the group, choosing initial values did not present a chal-

lenge and the tests were aimed at tuning the values to the He-O2 system. We chose

4He-16O2 as our representative system. Convergence calculations were performed at

zero field and the results are presented below.

4.5 Convergence calculations

The first convergence investigation tested convergence of the energy levels with

respect to the size of the basis set. With the spin basis functions fixed by the spin

value, s = 1, there was the possibility to choose the size of rotational |nmn⟩ and end-

over-end |LML⟩ basis functions. In BOUND, this is chosen by setting the maximum

values of n and L, which we refer to as nmax and Lmax, respectively. The initial

propagation points were set at Rmin = 1.0 Å and Rmax = 15.0 Å. As we can see

from figure 4.10, these values place the points deep inside their respective classically

forbidden regions. The mid point Rmid was set at 3.5 Å, and the step size ∆R to

0.02 Å. The calculations were done at zero field for a range of energies that spans

the depth of the interaction energy. The basis set was varied by changing both nmax

and Lmax. With no reason to expect any basis to have a more important effect, we

imposed the constraint nmax = Lmax. This would allow us to investigate the change

in the combined basis. The results are shown in figure 4.11. The left panel shows

the whole bound-state energy range.

We note that on the scale of the graph there is visible reduction in the energy

of most states up to nmax = Lmax = 7. Between Lmax = 5 and 7 the changes in

the least-bound states are more clearly visible. The right panel, which shows the

four least-bound states allows us to discern a further reduction in the energy of the

least-bound state as Lmax is increased to 9. Another important observation is that

we do not always have all the states for any given Lmax. In fact for Lmax = 1 there
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Figure 4.11: Convergence test of 4He-16O2 levels with respect to the basis set. The

x-axis indicates the size of the basis set |sms⟩|nmn⟩|LML⟩ defined by L = n and

s = 1. The left panel shows all bound states, while the right panel shows the four

least-bound states.

are only three levels. The calculations are restricted to even parity which restricts

L to even values, so that for Lmax = 1 only the L = 0 basis set is included. The

end-over-end quantum number is an approximately good quantum number, and as

we shall see following complete characterization of the bound states, there are three

bound levels in the energy range in question belonging to L = 0. We are also able

to conclude that all the remaining bound states, except the least bound one which

first appears at the basis set size L = 5 and therefore belongs to L = 4, belong to

L = 2 surfaces.

Having decided on a basis set defined by nmax = Lmax = 9 we proceeded to vary

the step size. All other variables were unchanged. Calculations were performed for

five step sizes. The results are shown in figures 4.12. Once again the left panel shows

all the levels while the right shows the four least-bound states. The figures show

no discernable changes in the energy of the levels. However, figure 4.13 shows the

least-bound state on its own. In the left panel we see a clear change in the energy,

however, the changes are in the fifth significant figure. We are ultimately interested

in locating low energy resonances. From the figures of the O2 Zeeman structure

we note that the threshold levels change by roughly 1 cm−1 in the 20 kG range,
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Figure 4.12: Convergence test of bound states of 4He-16O2 with respect to ∆R. The

left panel shows all states, while on the right panel shows the four least-bound states.

which corresponds to a gradient of approximately 5 × 10−5 cm−1/ G. This means

that the changes in energy of the least-bound state, which is of the order 10−4 cm−1

for the range of ∆R considered, will shift the position of the resonance by about

10 Gauss. The right panel of figure 4.13 shows the computing time taken for the

various ∆R. The time increases nearly ten-fold between the two extreme values of

∆R. Comparing the two panels of 4.13 we conclude that a value of ∆R = 0.02 Å

presents a good compromise between computational time and the convergence of

the levels. We note in particular that it is about four-fold in the computational time

compared to the largest step-size (∆R = 0.1 Å), but reduces the difference with the

best value by an order of magnitude. The remaining parameters were set, based on

similar convergence tests, to Rmax = 15.0 Å, Rmin = 1.7 Å, and Rmid = 3.5 Å.

4.6 Bound states

In the absence of a field the total angular momentum J = j + L and its projection

MJ are rigorously good quantum numbers and must be used to label the bound

states. However, He-O2 is weakly anisotropic and the monomer quantum numbers

n, s, j and the end-over-end angular momentum L are approximately conserved.

This makes them a useful set of labels for understanding the bound-state spectrum.

In addition, bound states are of even or odd parity P = (−1)L+n+1 depending on
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Figure 4.13: Left panel shows convergence of the highest bound state with respect

to ∆R. The right panel shows ∆R versus time in CPU seconds.

whether P = +1 or P = −1 respectively. Even in the presence of a magnetic field

parity remains a good quantum number and levels of different parity do not interact.

In our study we are interested ultimately in characterizing zero-energy resonances.

This requires the interaction of a discrete state with a scattering state dominated by

the L = 0 partial wave. For collisions of He with O2 molecules in the n = 1 ground

states, the relevant scattering and bound states are of even parity.

Table 4.2 is a listing of the even-parity energy levels of four He-O2 complexes

involving molecular oxygen with ground state n = 1. As vibrational motion is frozen

the largest contribution to the energy of the complex, apart for the interaction, is

due to rotation of the O2 monomer. For 16O2 the first excited rotational state of

n = 3 has energy 12b ≈ 17.25 cm−1, much higher than the binding energy of the

deepest levels of the complexes. This indicates that all the bound states belong to

the rotational ground state. In fact this becomes clearer from the pattern of levels

in a magnetic field as we shall see latter. At zero field, the rotational ground state

n = 1 level of O2 has three sub-levels j = 0, 2 and 1, respectively. For the bound

states of the complex, the O2 molecule, in any one of these levels, binds to He with

the whole complex potentially rotating with an end-over-end angular momentum

L to give a series of closely spaced levels with total angular momentum values J
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ranging from |L− j| to |L+ j|.

Let us take for example the 3He-16O2 system. Its lowest level is at −6.1018

cm−1. This state belongs to the lowest 16O2 threshold with no end-over-end angular

momentum. The pair (j = 0, L = 0) can only result in a total angular momentum

J = 0, which is indeed the total angular momentum of the lowest level. The second

deepest level at −4.1089 cm−1 has the same j = 0 state but the monomers are

rotating about each other. The first allowed end-over-end excitation of the complex

is L = 2 which, assuming an equilibrium separation corresponding to the potential

minimum, requires and energy of about 2.5 cm−1. This energy is approximately

the difference between the two lowest levels. Similarly, the second allowed end-

over-end excitation L = 4 would require an energy of roughly 8 cm−1 which would

place a j = 0, L = 4 level at approximately 2 cm−1 above threshold. In fact the

(j, L, J) = (0, 4, 4) level is at 1.0498 cm−1. This level is a quasi-bound state included

here to illuminate the discussion. We will discuss quasi-bound levels in greater detail

in the next chapter.

The first level with j = 2 at −3.7375 cm−1 is 2.3643 cm−1 above the lowest.

This difference is roughly the difference between j = 0 and j = 2 levels of 16O2

which is 2.0843 cm−1. Figure 4.14 shows bound levels of 3He-16O2 and 4He-16O2

plotted according to their j quantum numbers in order to make the pattern of

levels more apparent. The L quantum numbers are also indicated to the left of the

levels. Naturally only parity-allowed L quantum numbers are present and appear

in ascending order up the energy scale. So the first level of each j is an L = 0 level

and as j and L pair to give J these levels have J = j and always occur individually.

Levels belonging to j = 0 also occur singly because for these levels J = L. For an

end-over-end excited complex with j equal to 1 or 2 there are several closely packed

levels. For example for 4He-16O2 with j = 1 and L = 2 there are three levels, J = 1,2

and 3. The corresponding levels for 3He-16O2 are quasi-bound and do not appear in

the figure, but, they are listed in table 4.2 for illustration. For both complexes the
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Figure 4.14: Bound states of 3He-16O2 and 4He-16O2 shown according to their j

quantum number. Like L, the j quantum number is only an approximately good

quantum number, but it is indispensable for an understanding of the pattern of

levels.

pair j = 2 and L = 2 result in four bound states with J = 0, 1, 2, 3 and 4.

The difference in the levels shown in the left and right hand panels of Figure 4.14

reveal the effects of increased mass. The lowest level of 4He-16O2 is at −7.4713 cm−1.

The increase in mass pulls the levels further down the potential well and at the top

end what were quasi-bound states in 3He-16O2 have been pulled below threshold

increasing the total number of bound states from 9 for 3He-16O2 to 13 for 4He-16O2.

As the bottom of the well remains at the same position the increase in levels reduces

their separation but leaves the pattern essentially unchanged.

The pattern of levels for the even n manifold of 17O2 is quite different to that of

the odd levels. For this reason the pattern of bound states of 4He-17O2 is different to

the complexes we have discussed so far. The levels and their quantum numbers are

shown in table 4.3. The difference in energy between the deepest and least-bound
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Table 4.2: Field-free even-parity levels of 3He-16O2,
4He-16O2,

4He-17O2 (for the

odd rotational manifold of 17O2) and 4He-18O2. The first column indicates the total

angular momentum quantum number J which is a rigorously good quantum number.

The second column is the approximate good quantum number L.

3He-16O2
4He-16O2

4He-17O2 (odd n) 4He-18O2

J L Energy(cm−1) Energy(cm−1) Energy(cm−1) Energy(cm−1)

0 0 −6.1018 −7.4713 −7.6888 −7.8823

2 2 −4.1089 −5.7001 −5.9311 −6.1373

2 0 −3.7375 −5.2957 −5.5255 −5.7309

1 2 −2.2119 −3.6694 −3.8912 −4.0984

3 2 −1.8360 −3.6345 −3.8791 −4.0886

2 2 −1.8184 −3.5846 −3.8284 −4.0468

0 2 −1.7651 −3.5012 −3.7493 −3.9724

4 2 −1.6560 −3.4143 −3.6558 −3.8721

1 0 −1.4540 −3.0883 −3.3123 −3.5117

1 2 +0.0628 −1.7086 −1.9337 −2.1338

3 2 +0.1355 −1.6396 −1.8653 −2.0660

2 2 +0.2289 −1.5147 −1.7383 −1.9371

4 4 +1.0498 −1.4143 −1.6557 −1.8702

states is approximately 6.0 cm−1. This is much less than the difference between the

ground n = 0 and first exited n = 2 rotational levels of 17O2 which indicates that all

the levels shown belong to the n = 0 state. The deepest level at −8.2074 cm−1 is a

result of the coupling of the lowest j = 1 level of 17O2 with L = 0. The next two sets

of three closely packed states result from the coupling of the same monomer level

with L = 2 and L = 4 quantum numbers, respectively. Note that for this system
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the correct parity for the S partial-wave is odd.

Table 4.3: Field-free, odd parity levels of 4He-17O2, belonging to the n = 0 ground

state of the even n manifold of 17O2. The rigourously good quantum number J

is the total angular-momentum while L is the approximate good quantum number

representing the end-over-end angular momentum.

4He-17O2 (even n)

J L Energy(cm−1)

0 0 −8.2074

2 2 −6.4367

3 2 −6.3207

1 2 −6.2494

4 4 −2.2218

3 4 −2.2035

5 4 −2.1900

In the presence of a magnetic field each zero-field J level splits into the 2J + 1

levels labeled by the projection quantum numberMJ . Figure 4.15 shows the splitting

of some levels of 4He-16O2 in a field of 100 G. Unlike the total angular momentum

quantum number, MJ remains a rigorously good quantum number. However, for

complexes with odd n, J remains a good quantum number up to approximately

1000 G, after which point the levels are strongly mixed. Figures 4.16 to 4.19 show

the Zeeman structure of complexes of odd rotational manifold of O2. We note, for

example, that the lowest level of the complexes has a field dependence very similar

to the j = 0 of O2 shown on 4.4. Between −1 and −2 cm−1 on Fig. 4.17, despite

mixing of levels belonging to j = 0 and 1, it is possible to discern a pattern similar

to the O2 j = 1 Zeeman structure. The j = 2 levels of the complex bear a similar

resemblance to the monomer levels of the same quantum number.
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Figure 4.15: The lifting of degeneracy of the levels of 4He-16O2 by a magnetic field.

The left-hand panel shows several levels splitting according to their J quantum

number. On the right, we have the splitting of a J = 4 level into 9 levels labeled by

their MJ quantum number.

The magnetic quantum number MJ can be written as the sum of mj and ML. As

the magnetic moment due to the end-over-end rotation is not included, ML makes no

contribution to the magnetic field dependence of MJ , so that the Zeeman structure

is strongly determined by mj. However, ML influences the point at which the levels

avoided-cross. The similarity in the pattern of the complex and O2 levels points

to mj being an approximately good quantum number even for the complex. The

Zeeman structure of 4He-17O2 is shown in Figure 4.20. The first three sets of levels

have quantum number j = 1. The similarity with the j = 1 ground-level of 17O2 is

more striking. We note an avoided crossing between MJ = +1 levels of the first two

sets of levels at about 10000 Gauss. Many of the lines above the bound states are

artificial states which should be ignored for the purpose of the discussion at hand.
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Figure 4.16: The Zeeman structures of the bound states of 3He-16O2. These states

correspond to the ground rotational level (n = 1) of the 16O2 monomer.
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Figure 4.17: The Zeeman structures of the bound states of 4He-16O2. These states

correspond to the ground rotational level (n = 1) of the 16O2 monomer.
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Figure 4.18: The Zeeman structures of the bound states of 4He-17O2. The states

correspond to the ground rotational level (n = 1) of the odd series of 17O2 monomer.
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Figure 4.19: The Zeeman structures of the bound states of 4He-18O2. These states

correspond to the ground rotational level (n = 1) of 18O2 monomer.
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Figure 4.20: The Zeeman structures of the bound states of 4He-17O2. These states

correspond to the ground rotational level (n = 0) of the even series of 17O2 monomer.



Chapter 5

Scattering resonances of He-O2

5.1 Introduction

Like bound states, scattering states in principle extend to Rmax = ∞. In practice, we

must of course limit calculation to some finite range. However, scattering states do

not decay to zero at the outer limit and we are required to propagate to significantly

larger values of Rmax to recover scattering properties accurately. In our scattering

calculations we found Rmax = 120 Å to be sufficient. The instability of propagating

into the outer classically forbidden region is still an important consideration as the

threshold of at least some, and often most, adiabatic surfaces will be higher than the

energy of the scattering state. The long-range nature of the incoming wavefunction

allows us to use a variable step-size propagator for the range beyond Rmid. Varying

the step-size ∆R according to the curvature of the wavefunction avoids unnecessarily

small steps, saving time and computational resources.

In this chapter we will locate and characterize zero-energy resonances of colli-

sions of 3He and 4He with 16O2. These systems were chosen as representative of the

structure of discrete states of He-O2 complexes belonging to the approximate quan-

tum number n = 1. Preliminary calculations supported this conclusion. Our group

previously studied n = 0 collisions of NH (a triplet Sigma molecule like O2) with He.

The He-O2 system is more anisotropic, resulting in higher inelastic cross sections.

Additionally, the n = 1 levels are more directly coupled to each other and to higher

114
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n levels by the potential anisotropy, increasing inelasticity and resonance widths.

Because He is assumed to have no internal structure, the levels of molecular oxygen

are the collision thresholds. We present low-energy resonances of scattering states

incoming in the two lowest thresholds, mj = −2 and mj = −1, of the j = 2 level

of O2. This restriction was motivated by our interest in inelastic collisions in the

low-energy limit. Scattering calculations were performed using the MOLSCAT [300]

package, as modified to include magnetic fields [294], using a decoupled basis set.

The potential energy surface was provided by Groenenboom and Struniewicz [292].

5.2 Wigner threshold regime

At long range, the interaction of He with O2 is dominated by a leading −C6/R
6

term of the interaction potential, and, the centrifugal energy. We can express the

interaction in this range as

V (R) = −C6

R6
+

~2L(L+ 1)

2µR2
. (5.1)

We omit the angular dependence here as the anisotropy becomes increasingly less

significant with distance. The two terms are opposite in sign, with the attractive

dispersion term stronger initially and the repulsive centrifugal term dominating at

longer range. This results in a centrifugal barrier, with positions and height given

by

Rmax =

[
6C6µ

~2L(L+ 1)

] 1
4

(5.2)

and

Vmax = 2C6

[
~2L(L+ 1)

6C6µ

] 3
2

, (5.3)

respectively. Groenenboom and Struniewicz [292] give a value 9.17 Eh/a
6
0 for the C6

coefficient. This places the lowest even-parity (L = 2) barrier of the 4He-16O2 system

at Rmax = 8.2637 Å with a height of 0.3994 K (0.2776 cm−1). For low and ultra-low

collision energies, the centrifugal barriers are insurmountable, and the wavefunction

has to tunnel through in order to sample the short range interaction. Tunneling

reduces rapidly with energy so that in the zero-energy limit the repulsive centrifugal

term dampens all but the S partial wave, which has no centrifugal interaction and
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dominates the wavefunction at low energy. However the wavefunction has very long

wavelength, washing out the effect of the short range interaction. What matters

is the long range character of the potential. The cross sections follow Wigner’s

threshold laws [71]

σelas ∝ E2L (5.4)

σinel ∝ EL−1/2 (5.5)

where E is the energy. The positions and heights of the centrifugal barriers corre-

sponding to even-parity thresholds of 3He-16O2 and 4He-16O2, up to L = 6, are given

in table 5.1.

Table 5.1: The position and height of the centrifugal barriers for L = 2, 4, and 6 for

3He-16O2 and 4He-16O2.

3He-16O2
4He-16O2

L Rmax(Å) Vmax(cm−1) Rmax(Å) Vmax(cm−1)

2 7.7529 0.4070 8.2637 0.2776

4 5.7378 2.4770 6.1158 1.6892

6 4.7664 7.5380 5.0804 5.1405

Figure 5.1 is a plot of calculated total elastic and inelastic cross sections for col-

lisions of 4He with 17O2 for a range of collision energies in a field of 2000 Gauss. The

scattering state has MJ = 0 symmetry and is incoming in the channel corresponding

to the mj = 0 level of the n = 0 rotational ground state of 17O2 shown in figure

4.5. This level has ms = 0. The cross sections are of the same order of magni-

tude with the elastic cross section dominating up to about 0.2 mK, at which point

the inelastic cross section takes over. Below about 1 mK, the elastic cross section

tends to a constant value, while the inelastic cross section is linear with a gradient

of −1/2 in the log-scaled graph. We note from the threshold laws 5.5 that this is

consistent with an S-wave dominated process for which the elastic cross section at
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Figure 5.1: Elastic and inelastic cross sections of collisions of 4He with 17O2 in

the limit of low energy. The incoming channel belongs to the (n, j,mj) = (0, 1, 0)

threshold of the even rotational manifold of 17O2 and is of MJ = 0 symmetry.

low-energy is predicted to be constant and the inelastic cross section to have an

E−1/2 dependence. This dependence of the inelastic scattering results in a constant,

in some systems significant [72], inelastic rate-constant in the low-energy limit. The

S-wave elastic and inelastic cross sections are also included in the figure. For most of

the energy range, S-wave cross sections practically coincide with the corresponding

cross sections, underlining the dominance of the S partial-wave. Figure 5.1 indicates

that the threshold laws begin to hold from a few mK. At low energy the only open

inelastic channels will correspond to the mj = ms = −1 threshold. In order to con-

serve the total symmetry contributions from the partial waves to the total projection

must be +1. This forbids L = 0 partial waves in the outgoing channel requiring

all inelastic scattering to take place via tunneling. With the barriers of L = 2 and

L = 4 at 0.3993 K and 2.406 K, respectively, inelastic scattering is dominated by

L = 2, with little contribution from the L = 4 partial wave. The prohibition of some

partial-waves in the outgoing channel, coupled with the ability to tune the levels

can potentially be exploited to suppress inelastic collisions. This is especially true
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Figure 5.2: Elastic and inelastic cross sections of collisions of 4He with 17O2 for

collision energies 10 mK and 1 µK. The incoming channel belongs to the trappable

(n, j,mj) = (0, 1, 1) threshold of 17O2. The overall symmetry of the scattering state

is MJ = 1.

for systems with large centrifugal barriers.

The graph in figure 5.2 shows cross sections for collisions with incoming channel

belonging to the mj = +1 threshold of the ground state n = 0 of 17O2. As we can

see from figure 4.5 this is a weak-field-seeking state and is therefore trappable. The

collision energy was held at 1 µK for the whole range of fields. The open channels

belong to mj = 0 and mj = −1 thresholds. In both cases the first allowable outgoing

partial wave is L = 2. Sufficient energy to clear the L = 2 centrifugal barrier is

available on exit to the lowest threshold at a field of about 1800 Gauss, and on exit

to the mj = 0 threshold at a field of approximately 2000 Gauss, which correspond

to the peak in the inelastic cross section. The oscillations beginning around 12000

Gauss are close to the value at which sufficient energy is released, on transition to

the lowest threshold, to clear the L = 4 barrier.
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Figure 5.3: The ratio of elastic to inelastic cross section of collisions of 4He with

17O2 for collision energies of 10 mK and 1 µK. The incoming channel belongs to the

trappable (n, j,mj) = (0, 1, 1) threshold of 17O2.

There is a generally upward trend in the inelastic cross sections as the field

increases. This is due to the increase in the energy available for inelastic collisions,

resulting in increased tunneling and the opening of channels. We observe also that

from zero field up to about 7000 Gauss the inelastic cross sections are lower than

the elastic cross sections. Figure 5.3 shows that for fields up to about 1800 Gauss,

which correspond to a trap depth of 0.2 K, the elastic cross sections are at least two

orders of magnitude higher. This is also the case for a wide region between 2200

Gauss and 3600 Gauss. At its highest, the ratio of elastic to inelastic cross section

is about 104 for the first 100 Gauss and about 103 for the second 100 Gauss. A 200

Gauss change in field would correspond to a trap-depth of about 20 mK. The two

temperatures for which calculations were performed were chosen so as to sample the

cold and ultra-cold regions. We observe that despite the wide range of between the

two values, the cross sections, and thus their ratios, are very similar.

We have seen that all information on the scattering processes is stored in the
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scattering or S-matrix. For an incoming channel i, the elastic cross section σel is

given by

σel =
π

k2
|1 − Sii|2 (5.6)

and the total inelastic cross section by

σtot
inel =

π

k2
{1 − |Sii|2}. (5.7)

The diagonal element Sii can be written as

Sii = e2iδi , (5.8)

where δi is the phase-shift. The S-matrix is unitary, imposing the condition |Sii| ≤ 1,

which requires the phase-shift to be generally complex with a non-negative imaginary

part [301].

In the Wigner regime the phase-shift is proportional to the wavevector k and

tends to zero with the reducing energy. The scattering length a(k), defined by

a(k) = lim
k→0

−tan(δ0(k))

k
(5.9)

where 0 denotes the incoming channel, is a parameter that characterizes the scat-

tering process. The scattering length is usually a finite quantity and can be written

as a(k) = α − iβ [11, 180] where α and β are real quantities. The elastic and total

inelastic cross sections can then be written in terms of α and β exactly as [214]

σel =
4π|a|2

1 + k20|a|2 + 2k0β
(5.10)

and

σtot
inel =

4πβ

k0(1 + k20|a|2 + 2k0β)
. (5.11)

In the zero-energy limit these equations give σel = 4π|a|2 and σtot
inel = 4πβ/k0, in

consistence with Wigner’s threshold laws [71].

5.3 Quasi-bound states and resonances

The term resonance is sometimes used to refer to a bound state embedded in a

continuum. These localized states are above the lowest threshold and are there-
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fore quasi-bound. Elastic and inelastic cross sections are generally slowly varying

functions of energy, however, when traversing a quasi-bound level they vary quite

dramatically. Resonance is at other times used to describe this dramatic change,

which is how we will use the term from hereon. Regardless of how the term is used,

locating resonances involves the determination of the position of quasi-bound levels.

In the low-energy limit we can write the scattering amplitude, f(k), of systems with

long-range interactions V −n where n ≥ 4 as

f(k) =
1

g(k) − ik
. (5.12)

The function g(k) is an even and generally complex function of the wavenumber k.

Singularities in f(k) correspond to bound and quasi-bound states of the system and

can be determined by the condition g(k) = ik. We can expand g(k) as

g(k0) = g0 + g2k
2
0 +O(k40) (5.13)

where g0 = −1/a, with a the scattering length and g2 = r0/2. The quantity r0 is

the effective range [302] of the interaction. Taking only the leading term of 5.13 and

equating it to ik we get an estimate of the energy, Eb, of the least-bound state as

Eb = − ~2

2µa2
(5.14)

where µ is the reduced mass of the complex. If there is a discrete state just below

threshold the interaction is overall repulsive, the phase-shift is negative, and the

scattering length is large and positive. For a bound state just above threshold the

scattering length is large and negative, indicating an overall attractive interaction.

A more accurate approximation of Eb can be obtained by taking higher-order terms

in the expansion of f(k). This will also allow estimation of other discrete states.

As the scattering state crosses the discrete state the eigenphase sum [303, 304],

which is the sum of the phases of the eigenvalues of the S-matrix, changes by π. The

eigenphases, and thus their sum, are real unlike the phase-shifts. The eigenphase

sum follows a Breit-Wigner form

Σ(E) = Σbg + arctan

[
ΓE

2(Eres − E)

]
(5.15)
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across resonance. The first term, Σbg, is a slowly varying background, while the

second is a rapidly changing resonant term. The individual elements of the S-matrix

trace a circle on the complex plane across resonance. The diagonal element of the

incoming channel can be written

S00 = Sbg,00 +
ig2E0

E − Eres + iΓE/2
(5.16)

as a function of energy. The ΓE is the width of the resonance with units of energy.

The quantity gE0 is complex with the radius r0 of the circle given by r0 = |g2E0|/ΓE.

The quantity |g2E0|, usually denoted simply by ΓE0, is the partial width of channel 0.

5.3.1 Artificial states

We have established the central role of discrete states in collision resonances. Quasi-

bound states are localized, and, although less accurately than true bound states,

can be located by applying bound-state boundary conditions on the continuum.

However, box-quantization of the continuum converts some of the non-localized

scattering states into artificial quasi-bound states. It is not possible to avoid artificial

states as they result directly from the boundary conditions required to locate the

discrete states. Fortunately artificial levels are strongly dependent on the boundary

points. For energies well above a given threshold, where the interaction potential can

be ignored, artificial levels supported by an adiabatic surface of that threshold have

a 1/(Rmax − Rmin)2 dependence. For Rmax ≫ Rmin, artificial states have effectively

a 1/R2
max dependence.

In figure 5.4 we see the relaxation of a large number of artificial states as the

outer boundary point Rmax is increased. The levels flatten off as they approach

the lowest threshold and do not cross it. There are three true quasi-bound levels

between 0.0 and 0.25 cm−1. The artificial states do not cross this set of levels but do

cross a quasi-bound state at about 1.05 cm−1. A close-up of this crossing is depicted

by figure 5.5. The artificial states mix and avoided-cross with the quasi-bound level,

reappearing below it at higher Rmax. A problem arises when an artificial states lies

close to a real state for a particular Rmax used to locate quasi-bound states. In such
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Figure 5.4: Artificial and real quasi-bound states of 3He-16O2. The artificial states

relax as Rmax is increased, avoided-crossing the unchanging quasi-bound levels on

their way down.

a case, the real state can be strongly perturbed. To avoid this calculations were

performed for a range of Rmax, which allowed not only the identification of artificial

states, but also the best Rmax values to use for accurate determination of quasi-

bound states. In figure 5.5 some artificial states avoid the quasi-bound level more

strongly. This is because like bound states, quasi-bound states, artificial or not,

overlap strongly with a single threshold. Consequently, artificial states supported

by the same threshold as the quasi-bound state are more strongly coupled to it.

This causes a stronger avoided-crossing. The crossings are genuine indicators of the

degree of coupling of the discrete states with the continua. This has a direct bearing

of the width of resonance.

The density of artificial states is highest near thresholds, but, we have been able

to find suitable Rmax values to calculate the energy of quasi-bound states of our

complexes. The challenge will be greater for heavier systems for which the density

of artificial states is higher.
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Figure 5.5: A close-up of artificial states crossing a quasi-bound state of 3He-16O2.

5.3.2 Quasi-bound levels

Even-parity quasi-bound levels below 3 cm−1 at zero field of 3He-16O2 and 4He-

16O2, with all artificial states removed, are listed in table 5.2. The j, L and total

angular momentum quantum number J of the levels are shown. We observe that

the quasi-bound levels are an extension of the structure of bound states discussed

in the previous chapter. We saw in the previous chapter that the least-bound state

of 3He-16O2 belongs to L = 0 of the j = 1 threshold. The first three quasi-bound

states of the same complex belong to the first excited end-over-end rotational level,

L = 2, of the same threshold. In continuation of the bound-state series of the j = 0

and 2 levels, which ended with levels of L = 2, the remaining quasi-bound states

result from coupling of the same monomer levels to the next allowed end-over-end

excitation, L = 4. In the case of 4He-16O2 we saw that the highest bound states

belong to L = 2 of the j = 2 threshold. Looking at table 5.2 we observe that the first

five quasi-bound states of this complex belong to L = 4 of the same threshold. The

rest of the quasi-bound states are also L = 4 levels but belong to the higher j = 1

monomer level. The maximum value of the total angular momentum for the range

of energy considered is J = 6. The first few levels of both systems are shown in
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Table 5.2: Field-free, even-parity, quasi-bound levels of 3He-16O2 and 4He-16O2. The

first and second columns are the approximately good quantum numbers j and L,

respectively. The total angular momentum quantum number J , which is a rigorously

good quantum number, is indicated by a separate column for each system. The

energies are given relative to the lowest dissociation channel.

3He-16O2
4He-16O2

j L Energy(cm−1) J Energy(cm−1) J

1 2 0.0628 1 ——- -

1 2 0.1355 3 ——- -

1 2 0.2289 2 ——- -

0 4 1.0498 4 ——- -

2 4 3.0120 2 0.5543 4

2 4 3.0988 4 0.5808 2

2 4 3.1584 6 0.6775 5

2 4 3.1619 3 0.7106 3

2 4 3.7409 5 0.7171 6

1 4 —— - 2.4824 3

1 4 —— - 2.5326 4

1 4 —— - 2.5531 5

figures 5.6 and 5.7. They are depicted in adiabats corresponding to their parentage.

The energies of quasi-bound states are the collision energies for which we can

expect resonances. This usually refers to energies above the complex threshold.

For resonances at zero collision energy we would require the quasi-bound state to

have the same energy as the threshold. In general this does not happen naturally.
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Figure 5.6: The first few quasi-bound states of 3He-16O2 in zero field. The adiabatic
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However, when the system has magnetic or electrical moments, fields can be used to

tune both thresholds and discrete states, causing them to cross. In this way we can

use fields to tune zero-energy resonances predictably. Fields split states, resulting in

an increased number of levels, but the reduction in symmetry also imposes greater

restrictions on their interaction. The Zeeman structure of even-parity quasi-bound

levels of 3He-16O2 and 4He-16O2 are shown in figure 5.9 and 5.11. The magnetic

quantum numbers range from MJ = +6 to MJ = −6. The levels of 16O2 are

included for comparison. We note, as was the case for bound states, the similarity

of the structure of the quasi-bound states with the threshold levels. For example, in

figure 5.9 the similarity of the structure of the set of quasi-bound states of 3He-16O2

labeled by (j, L, J) = (2, 4, 2− 6) with that of the j = 2 threshold shown just below

is striking. This is due to the fact that the interaction potential only weakly couples

different channels, leaving j and mj as approximately good quantum numbers.

Resonances do not occur at every crossing of threshold and discrete state. The

incoming S-wave at the relevant threshold must have the same symmetry as the

discrete state. In a field, this means the same projection quantum number MJ and

of course the same parity. For an S-wave ML = 0, which means that the projection

quantum number MJ = mj. Thus, for a threshold belonging to a given mj, zero-

energy resonances occur at crossings with quasi-bound states belonging to MJ = mj.

Figures 5.8 and 5.10 show quasi-bound states of 3He-16O2 and 4He-16O2 belonging

to MJ = ±1,±2. The levels are plotted according to their projection quantum

number, with circles indicating the predicted positions of zero-energy resonances.

5.4 Resonances of 3He-16O2 and 4He-16O2

5.4.1 Single open channel

In the energy domain, as collision energy is increased, the scattering state crosses

the resonance state from below. Magnetic tuning allows for resonances in which

the scattering state crosses the discrete state from above, even with increasing field.
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Figure 5.8: Quasi-bound levels of 3He-16O2 of MJ = ±1,±2 symmetry. Each graph

shows levels of unique total angular momentum projection MJ (in dotted colored

lines) and the threshold levels (in a solid black line). The circles indicate positions

of zero-energy resonances.
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Figure 5.9: The Zeeman structure of the quasi-bound states of 3He-16O2. For the

energy range depicted, the highest projection quantum number is MJ = +6. The

solid black lines show the levels of 16O2 which are the collision threshold levels of

the complex. Only quasi-bound states with the same symmetry as the 16O2 level

can result in zero-energy S-wave resonances.
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Figure 5.10: Quasi-bound levels of 4He-16O2 of MJ = ±1,±2 symmetry. Each graph

shows levels of unique total angular momentum projection MJ (in dotted colored

lines) and the threshold levels (in a solid black line). The circles indicate positions

of zero-energy resonances.
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Figure 5.11: The Zeeman structure of the quasi-bound states of 4He-16O2 with MJ

between −6 and +6. The solid black lines show the levels of 16O2 which are the

collision threshold levels of the complex. Only quasi-bound states with the same

symmetry as the 16O2 level can result in zero-energy S-wave resonances.



5.4. Resonances of 3He-16O2 and 4He-16O2 132

When inelastic scattering is impossible, and only S-wave scattering is present, the

S-matrix is 1× 1 and the eigenphase sum reduces to the phase-shift δ0(k). Across a

magnetically tuned resonance the phase-shift can be expressed as [305]

δ(B) = δbg + arctan

[
ΓB

2(Bres −B)

]
. (5.17)

If the collision energy is E, the discrete level Eres(B), and the energy of the threshold

of the incoming channel Ethresh(B), then Bres is the field B for which Eres(B) =

E + Ethresh(B). Such a field exists if the threshold and discrete states cross. The

width, ΓB, is the field-width across which the phase-shift changes by π. It is related

to the usual width in the energy domain, ΓE, by ΓB = ΓE/∆µ [305] where

∆µ =
d

dB
(Eres − Ethresh) (5.18)

is the difference in the magnetic moments of the threshold and discrete state. This

means that ΓB is signed according to whether the discrete state crosses resonance

from above or below. The phase-shift, as described by equation 5.17, completely

characterizes the resonance.

Figure 5.12 shows the predicted zero-resonance positions of both systems for

MJ = 0. For low-energy scattering, incoming channels corresponding to the lowest

threshold result in only elastic cross scattering. This is certainly the case for the

energies we use. The phase-shifts for the resonances marked Res 3 on the left panel

of figure 5.12 and Res 1 on the right panel of the same figure are shown in figure

5.13. We note the sudden change by π as the scattering state crosses the bound

state. In the case of Res 3 we note that the discrete state crosses threshold from

below, resulting in a reduction in the phase-shift while that of Res 1 on the right

increases as the discrete state crosses from above.

The scattering length a(k), which describes the effective interaction in the low-

temperature limit, has a pole at resonance as the phase-shift is an odd multiple of
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Figure 5.12: Quasi-bound states of MJ = 0 symmetry of 3He-16O2 and 4He-16O2

with the S-wave resonance positions indicated by circles. Ultra-low energy collisions

incoming at the lowest mj = 0 threshold can only result in elastic scattering.
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Figure 5.14: The scattering length across Res 3 of 3He-16O2 depicted in figure 5.12.

π, and changes sign across it. Its behavior is described by [142,305]

a(B) = abg

[
1 − ∆B

B −Bres

]
, (5.19)

where ∆B is related to the resonance width by ΓB = −2abgk∆B. In the limit

of low energy, the quantity ∆B is constant. As discussed earlier a negative value

of the scattering length corresponds to an overall attractive interaction, while a

positive scattering length corresponds to an overall repulsive interaction. Tuning

across resonance thus effectively changes the strength and nature of interaction. In

the case of elastic scattering the pole means that we can tune the interactions to

arbitrary strength. In figure 5.14 is depicted the scattering length of the Res 3.

Note that the scattering length starts off above the axis when the discrete state is

below threshold, reaching large positive values before reappearing below the axis at

large negative values as the discrete state crosses and is just above threshold. The

pole, which corresponds to the discrete state and threshold coinciding in energy, is

a mathematical point and the calculated values are on either side of this point.

We can obtain the expression for the elastic cross section in the absence of

inelastic scattering from equation 5.10 by setting β to zero to get

σel(k) =
4πa2

1 + k2a2
. (5.20)
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Figure 5.15: The elastic cross section across Res 3, MJ = 0, of 3He-16O2 for collision

energies of 1 µK, 10 µK, and 100 µK.

We drop the magnitude sign on the scattering length to emphasize that it is real

for pure elastic scattering. The cross section, σel(k), has a maximum value 4π/k2 at

resonance. Figure 5.15 shows the cross section across Res 3 for collision energies of

1µK, 10µK and 100µK. The peaks of the graphs agree well with maximum values

1.1 × 10+8 Å2, 1.1 × 10+7 Å2 and 1.1 × 10+6 Å2 predicted by the formula.

With a real phase-shift, δ0, the magnitude |S00| = |e2iδ0 | = 1. Across resonance

the element S00 traces a unit circle on the complex plane as shown on the right hand

panel of figure 5.17. The figure portrays two circles indicated by solid and empty

circular points correspond to 1 µK and 4 µK collision energies. We note that both

circles are of unit radius. The S-matrix circle is unaffected by the collision energy

and will always pass through S00 = (1, 0) corresponding to the pole in a(B).

5.4.2 Multiple open channels

When several channels are open inelastic scattering is possible and |S00| < 1 or β < 0.

Across a resonance S00 still traces a circle. Figure 5.16 is a schematic of S00 across

a resonance in the case of multiple open channels. The larger circle, which is of unit

radius, is the boundary imposed on S00 by unitarity. Starting from a background
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Figure 5.16: Schematic figure showing the S-matrix element, S00, corresponding to

the S-wave in the incoming channel across a resonance, in the presence of inelastic

scattering. The outer arc is part of the unit circle that unitarity imposes as an outer

limiting boundary for all S-matrix elements.

value S00,bg away from resonance, S00 is tuned around the smaller circle, completing

its journey back at the starting point. The background S00,bg is characterized by

an angle θbg measured from the point of least background inelastic cross section

as shown by figure 5.16. This angle allows us to identify several qualitative cross

section profiles.

From equations 5.6 and 5.7 we can conclude that the elastic cross section is

proportional to the distance of S00 from the point (1,0) on the real axis. Similarly

the inelastic cross section is proportional to the shortest distance to the unit circle.

In the special case where θbg = 0◦ the background inelastic cross section ( σtot
inel,bg)

is also the minimum value of σtot
inel(B). Across resonance the inelastic cross section

increases to a maximum value before dropping back to the background value. The

profile of the inelastic cross section is symmetric about the resonant field Bres. The

initial behavior of the elastic cross section depends on the sense of circulation, which

is determined by the sign of ∆µ as defined by equation 5.18. If we assume a clockwise

sense, then, as we increase the field σel(B) starts off at σel,bg, decreases to a minimum,

turns round to increase to a maximum before it gradually returns to its background
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value. The profile of the elastic cross section is antisymmetric about the resonance

position. For systems that have very weak background inelastic scattering, ie. S00,bg

is very nearly on the unit circle, unitarity requires θbg to be approximately zero,

imposing the above behavior.

For strong background inelastic cross sections an extreme case can be identified

with θbg = 180◦ when the background inelastic cross section is the largest value of

σtot
inel. The inelastic cross section reduces, reaching a minimum at resonance, and

asymptotically rises back to σtot
inel,bg. The profile is symmetric about Bres and is an

inversion of the θbg = 0◦ case. The elastic cross section will be antisymmetric as

before, except that for circulation in the same direction it will start by rising to a

maximum. For 0◦ < θ < 180◦, the inelastic cross section will show both a reduction

as well as an increase at different points across a resonance. The profile is asymmetric

with two extrema (a maximum and minimum). The degree of oscillations depends

on the radius r0 of the S-matrix circle. The impact of the resonance depends in

particular on the relative magnitudes of the oscillation to the background.

For a resonance tuned magnetically at constant collision energy the eigenphase

sum is given by

Σ(B) = Σbg + arctan

[
ΓB

2(Bres −B)

]
, (5.21)

with ΓB = ΓE/∆µ. The S-matrix element is given by

S00(B) = Sbg,00 +
ig2B0

B −Bres + iΓB/2
(5.22)

with gB0 = gE0/∆µ
1/2 and ΓB0 = ΓE0/∆µ. The radius can be expressed as r00 =

ΓB0/ΓB. We note that in the case of a single-channel the total and partial widths

are effectively the same, resulting in a circle of unit radius regardless of the collision

energy. The singularity in the scattering length cannot be avoided in this case. For

a well isolated resonance, the total width is simply the sum of the individual partial

widths. Expressed mathematically

ΓB =
∑
i

ΓBi. (5.23)



5.4. Resonances of 3He-16O2 and 4He-16O2 138

-0.10

-0.05

0.00

0.05

0.10

0.80 0.85 0.90 0.95 1.00

Im
[S

oo
]

Re[Soo]

3He-16O2
MJ = -1, Res = 3

EK.E

1 µK
4 µK

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0

Im
[S

oo
]

Re[Soo]

3He-16O2
MJ = 0, Res = 3

EK.E

1 µK
4 µK

Figure 5.17: The left panel shows S-Matrix elements across resonance Res 1, MJ =

−2, of 3He-16O2, for collision energies 1 µK and 4 µK. Inelastic collisions to channels

of the mj = 0 threshold are possible in this case. The radius of the two circles differ

by a factor of two, reflecting the E1/2 dependence of the S-wave partial width. The

right panel shows S-Matrix elements across Res 1, MJ = 0, of the same system.

Only elastic collisions are possible in this case, and the S-matrix elements at both

energies are of unit radius, indicating the independence of the radius in pure elastic

scattering. Note the difference in the scales of figures on the left and right hand

panels.

In the limit of low energy the magnitude of the partial width corresponding to the

incoming channel |ΓB0| is proportional to k0 [143]. The partial widths of inelastic

channels on the other hand depend on open-channel wavenumbers, which are much

larger and are nearly constant near zero-energy collisions. This means that as the

energy decreases ΓB is dominated by inelastic partial width contributions. Then

r00 ≈ ΓB0/Γ
inel
B , where Γinel

B = ΓB −ΓB0, tends linearly to zero in the S-wave regime.

The left side panel of figure 5.17 shows the S-matrix elements across Res 1 of the

MJ = −2 symmetry of 3He-16O2. Note the difference in scale with the circles of

the right side panel representing elastic collisions. The two circles correspond to

collision energies of 1 µK and 4 µK. The radius corresponding to 1 µK is about a

factor of 2 less than that of 4 µK reflecting the E1/2 proportionality between r00 and

k0. This is in contrast to the insensitivity of the radii of elastic resonances.
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Like the S-Matrix element the scattering length traces a circle on the complex

plane. With |S00| < 1 the circle will not pass through (1,0) on the real axis, removing

the singularity in the scattering length and dampening the maximum value of the

cross sections. Both the real and complex components of the scattering length still

change significantly across resonance. For r00 close to 1 the suppression of the

scattering length is weak, and the cross sections obtain limiting values of σel ≈

4π|a0|2 and σtot
inel ≈ 4πβ/k0. The scattering length can be expressed as [294]

a(B) = abg +
ares

2(B −Bres)/Γinel
B + i

. (5.24)

where abg is the background term. The quantity ares is a complex quantity and

indicates the strength of resonant oscillations. The abg and ares can be expressed in

a similar manner to a(B) as ares = αres − iβres, and, abg = αbg − iβbg. The special

case of purely elastic background scattering corresponds to real values of ares, with

a singularity at resonance. The real and imaginary parts of a(B) can be written

as [305]

α(B) = αbg +
αres[2(B −Bres)/Γ

inel
B ] − βres

[2(B −Bres)/Γinel
B ]2 + 1

(5.25)

and

β(B) = βbg +
βres[2(B −Bres)/Γ

inel
B ] + αres

[2(B −Bres)/Γinel
B ]2 + 1

. (5.26)

When the background scattering is purely elastic and the oscillations are symmetric,

the imaginary part reaches a maximum value |ares| above its background value, while

the real part oscillates between αbg − |ares|/2 and αbg + |ares|/2.

With the zero-energy resonance positions indicated by figures 5.8 and 5.10 we

proceeded to performed scattering calculations for a range of fields across the indi-

cated points. The collision energy, given in units of temperature as is conventional

in the field, is held constant at 1 µK. The equivalent energy in joules can be calcu-

lated by multiplication by the Boltzmann constant k. The data on eigenphase sum

output by MOLSCAT is plotted for a definitive signature of resonance. Figure 5.18

shows the eigenphase sum for resonances resulting from S-wave scattering in incom-

ing channels of the mj = ±1 and ±2 thresholds of 3He-16O2 and 4He-16O2. The
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Figure 5.18: The eigenphase sum across resonances of 3He-16O2 and 4He-16O2 for

MJ = −2 and −1 symmetry.
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accuracy with which the quasi-bound state calculations predict the position of the

resonance is notable. The calculated points are fitted to equation 5.21 to determine

the total width ΓB and position Bres. We use a quadratic term for the background

Σbg. The MOLSCAT program also gives values of the individual S-Matrix elements

which are fitted to equation 5.22 with the determined total width and resonance

positions to obtain the partial widths. We also get the real and imaginary parts of

the scattering length from the scattering calculations, and obtain the resonant and

background terms by fitting. All fitting is done using the RESFIT [306] program.

The results are given in tables 5.3 and 5.4.

Table 5.3: Characterization data of resonances of 3He-16O2 with MJ = −2 and −1

symmetry. The negative sign of the partial widths indicates that the discrete state

responsible for resonance crosses threshold from below. The real background term

of the scattering length of the resonance at 19.7710 Gauss is best described by a

linear function of the field, αbg(B) = mB + c. The gradient m = 3 × 10−6 Å and

the constant c = 0.5303 Å.

MJ Bres(kG) ΓB(G) ΓB0(G) αbg(Å) αres(Å) βbg(Å) βres(Å)

−2 16.3827 −3.7705 −0.2151 −0.7989 169.1685 0.02242 −3.7439

−2 19.7710 −4.6903 −0.3972 −−−− 0.00040 0.00148 0.00037

−1 17.6316 −7.1878 −0.0836 −0.7679 34.4732 0.03424 −1.7706

−1 20.2966 −1.2665 −0.0940 −0.8642 220.1736 0.03257 2.6297

The real and imaginary parts of the scattering length across the resonances

of 3He-16O2 and 4He-16O2 are shown in figures 5.19 and 5.20. From table 5.4 we

estimate that for Res 1 of MJ = −2 of 3He-16O2, which is at Bres = 16.3827 kG,

|ares| ≈ 170 Å. The imaginary part of this resonance, shown on the top left hand

panel of figure 5.19, reaches a maximum very close to this value. We note also that

the real part is approximately antisymmetric, with a background value less that 1

percent of αres. It oscillates about its near-zero background value with an amplitude
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Table 5.4: Characterization data of resonances of 4He-16O2 with MJ = −2 and −1

symmetry. The negative sign of the partial widths indicates that the discrete state

responsible for resonance crosses threshold from below.

MJ Bres(kG) ΓB(G) ΓB0(G) αbg(Å) αres(Å) βbg(Å) βres(Å)

−2 9.7476 −479.323 −14.9573 −65.6299 7.5560 2.3294 30.4895

−2 14.4961 −442.642 −16.2046 −74.6273 8.2622 6.4089 48.0724

−1 11.6577 −290.242 −8.4833 −69.0708 7.0634 3.5276 −28.9025

−1 19.0514 −430.138 −15.4457 −75.0970 8.4798 5.7891 −40.0072

|ares|/2 ≈ 85 Å. The resonance at Bres = 20.2966 kG has |ares| ≈ 220 Å and its

oscillations are of the same order. The oscillations of Res 1 at Bres = 17.6316 kG

are less pronounced, with |ares| ≈ 35 Å. Resonance Res 2, of MJ = −2 symmetry at

a field Bres = 19.7710 kG, is even less pronounced with |ares| ≈ 4× 10−4 Å. The real

background term, αbg, varies linearly across the range shown. If we express it as

αbg(B) = mB+c, then the gradient m = 3×10−6 Å and the constant c = 0.5303 Å.

For the resonances of 3He-16O2 the real parts of the background scattering, αbg, are

at least an order of magnitude higher than the imaginary parts, βbg. The elastic and

inelastic cross sections are shown in figure 5.21. The lines represent the formulae

5.10 and 5.11 while the points are calculated values. We observe that inelastic

scattering is stronger than elastic scattering across all resonances. The oscillations

of the inelastic scattering cross sections are also more pronounced. The profile of

these cross sections are qualitatively close to those discussed for θbg ≈ 0.

Table 5.4 lists resonance data of 4He-16O2. The ares values are less than half

those of 3He-16O2 resonances, reducing the strength of the oscillations of α(B) and

β(B) as can be seen in figure 5.20 (Note the peaks as compared to figures of 5.19).

However, in stark contrast, the background terms αbg and βbg are much stronger.

The elastic background terms are generally an order of magnitude higher compared

to 3He-16O2, while the inelastic terms are two orders of magnitude higher. In 3He-
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Figure 5.19: The real and imaginary parts of the scattering length across resonances

of 3He-16O2, for MJ = −2 and −1 symmetry. For Res 2 of MJ = −2 symmetry, the

y-axis of the real and imaginary parts have been separated, with the y-axis of the

real part to the right. This is because of the difference in magnitude between them.

Also note the 10−3 scaling factor, which applies to both real and imaginary parts.

16O2, the contributions to ares were predominantly from the real term, αres, while in

4He-16O2 the imaginary terms, βres, are significantly larger than the real components

of the scattering length. Most notably, the cross sections of 4He-16O2 are asymmetric

about the resonance fields, and the inelastic cross sections show reductions across

resonance. Figure 5.22 shows the cross sections in log scale. The asymmetry of the

cross sections of 4He-16O2, and the contrast with 3He-16O2, is more clearly visible.

We are also better able to see just how significant the reductions in the inelastic

cross sections in the 4He-16O2 system are. For the resonances of MJ = −2 the

inelastic cross sections deep below the elastic cross. For Res 2, at Bres = 9.7476 kG,

the inelastic cross section stays below the elastic cross section for a range of field of

over 1000 Gauss. The profile of the cross sections correspond to larger values of the

angle θbg compared to the 3He-16O2 system.
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Figure 5.20: The real and imaginary parts of the scattering length across resonances

of 4He-16O2, for MJ = −2 and −1 symmetry.

5.5 Dramatic suppression of cross sections

The most notable result of our characterization of cross sections is the dramatic

suppression of the inelastic cross section across the MJ = −2 resonances of 4He-

16O2. At its lowest the inelastic cross section reduces by a factor of 103 from its

background value. This is potentially of great importance to cooling techniques

that rely on thermal contact between two species such as evaporative [307] and

buffer gas cooling [104]. It is also potentially good news for efforts to reduce trap

loss. Figure 5.23 shows the inelastic cross section across Res 1 for collision energies

of 1 µK, 100 µK and 10 mK. The figure also shows the resonance position of the 1

µK case. The position of the resonance is shifted slightly for the different collision

energies. This is because the quasi-bound state must be raised above threshold by

an amount equal to the collision energy to be in exact resonance with the scattering

state. This requires different fields for the different energies. The suppression of cross

section is of similar magnitude for the different temperatures and has its minimum
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Figure 5.21: The elastic and total inelastic cross sections of 3He-16O2 and 4He-16O2,

for MJ = −2 and −1 symmetry. For Res 2 of 3He-16O2, MJ = −2, the y-axis of the

elastic and total inelastic cross sections have been separated, with the y-axis of the

total inelastic cross sections to the right.
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Figure 5.22: The elastic and total inelastic cross sections of 3He-16O2 and 4He-16O2,

for MJ = −2 and −1 symmetry, plotted in a log-scaled graph. The extent of the

suppression across resonance is more clearly visible.
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Figure 5.23: The total inelastic cross sections across resonance Res 1, MJ = −2, of

4He-16O2. The collision energies are 10 mK, 100 µK and 1 µK.

at about 8700 Gauss. The cross sections are lower at higher temperatures, with

the minimum reaching less than 1 Å for 10 mK. We note that the difference in the

background inelastic cross section reduces by exactly a factor of 10 between 1 µK

and 100 µK. This is indicative of the validity of the Wigner threshold regime. In

contrast increasing the collision energy to 10 mK results in nearly two orders of

magnitude reduction in the inelastic cross sections. This is a much faster reduction

than is predicted by the threshold laws.

Figure 5.24 reveals that the elastic cross section does not oscillate as strongly.

We note that the 1 µK and 100 µK elastic cross sections almost completely overlap,

as would be expected from the threshold laws, while the 10 mK point is clearly out-

side the Wigner regime. More significant is the fact that the minima in the elastic

cross sections occur at about 9500 Gauss. This is well away from the minima of

the inelastic cross sections. As we see from figure 5.25 this results in a dramatic

variation in the ratios of the elastic to total inelastic cross sections across both res-

onances of MJ = −2 symmetry. At its peak the ratio is about 100 at 1 µK and over

104 at 10 mK. The increase of this ratio with temperature reflects the properties of
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Figure 5.24: The elastic cross sections across resonance Res 1, MJ = −2, of 4He-

16O2. The collision energies are 10 mK, 100 µK and 1 µK.

the threshold laws and the fact that these laws continue to hold across resonance.

This indicates the promise of efficient cooling and trapping across resonance. Cool-

ing efficiency can, under suitable circumstances, increase with temperature. The

resonances have widths of hundreds of Gauss. This is much wider than resonances

of He-NH [294] considered previously in our group (which are of order 10−2 Gauss).

For resonances of 4He-16O2 MJ = −2, the large widths result in suppression of in-

elastic cross sections over a field range of more than a 100 Gauss. This results in

favorable elastic to inelastic cross section ratios over a similarly wide range of fields

as we can see from 5.25.

The cross sections of 4He-16O2 have the profile of Fano line shapes. Fano [308]

considered absorbtion spectra across resonances as a function of energy. For a dis-

crete state embedded in a single continuum, he showed that contributions to the

transition matrix from the discrete state attains a maximum at resonance, dimin-

ishing to zero symmetrically on either side. Contributions from the continuum states

reach a maximum furthest from resonance, reaching zero and changing sign at a res-

onance. This means that there would be only constructive interference between the
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Figure 5.25: The ratio of elastic to total inelastic cross sections across a range of

fields that includes resonances Res 1 and Res 2 MJ = −2 of 4He-16O2. The collision

energies are 10 mK, 100 µK and 1 µK.

contributions of the discrete and continuum states on one side of a resonance. On

the other side there would be only destructive interference with complete cancelation

at some energy. For a discrete state embedded in N continua it is always possible to

diagonalize the Hilbert space such that the discrete state is coupled to a single con-

tinuum corresponding to some linear combination of the N continua. Interference,

and complete cancelation, will now occur with contributions from states of this con-

tinuum. The absorbtion profile is similar to the case of a single continuum with the

crucial exception that there is a constant background term, unaffected by resonance,

resulting from transitions to the N − 1 continua not coupled to the discrete state.

The transition probability is never completely zero.

We can apply Fano’s explanation of absorbtion spectra to our scattering process

which similarly constitutes transitions to states across resonance. We consider the

coupling of the discrete state to all open channels. In the low-energy regime coupling

to channels of the incoming threshold diminish linearly with the collision energy. For



5.6. Conclusion 150

Res 1 of the MJ = −2 symmetry we can therefore ignore coupling to channels of the

j = 2,mj = −2 threshold. At resonance the kinetic energy released on transition to

the j = 0,mj = 0 threshold is about 1.4 cm−1. This is well above the L = 2 barrier

but does not clear the L = 4 barrier. However, the energy is sufficient to allow

significant transitions to the L = 4 channel. The magnitude of the partial widths

are 455 Gauss and 1.01 Gauss for the L = 2 and L = 4 partial waves, respectively.

The discrete state is more strongly coupled to the L = 2 channel. Therefore, the

resonance suppresses transitions to the L = 2 channel which contributes most to

the inelastic cross section, leading to an overall dramatic reduction in the inelastic

transitions. The behavior is similar across Res 2.

In contrast suppression of the inelastic cross section is much less pronounced for

the resonances of MJ = −1 symmetry. In this case there are two thresholds below

the incoming channel (j = 2,mj = −2 and j = 0,mj = 0). The release of energy

at, say, Res 1 is about 0.3 cm−1 on transition to the j = 2,mj = −2 threshold

and 1.6 cm−1 to the j = 0,mj = 0 threshold. This is enough to clear the L = 2

barrier. The magnitude of the partial widths are 2.99 and 276 Gauss for L = 2 of

the j = −2,mj = −2 and j = 0,mj = 0 thresholds, respectively. The L = 4 partial

wave of the j = 0,mj = 0 threshold has a partial width of magnitude 3.83 Gauss and

contributes significantly to the inelastic cross section. The dominant contribution to

the inelastic cross sections is from transitions to the channels of the lowest threshold.

Although this channel is also more strongly coupled to the discrete state there is

still significant inelastic cross section to the L = 2 channel of the j = 2,mj = −2

threshold. The resulting suppression is much less dramatic.

5.6 Conclusion

The objective of our study was to locate and characterize resonances of He-O2 with

an aim of increasing our understanding of the potential of Feshbach resonance tun-

ing as a tool for the control of collision outcome in atomic and molecular systems. It

is with some satisfaction that we reported [309] dramatic suppressing of the inelastic
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cross sections, by magnetic tuning of Feshbach resonances, in collisions of 4He with

16O2. We have also managed to interpret the results in terms of Fano line shapes,

helping to establish the conditions necessary for the favorable application of this

technique. Suppression of inelastic collisions increases thermalization efficiency and

is potentially very useful for important cooling methods such as evaporative and

sympathetic cooling. Additionally, loss of atoms and molecules from traps during

cooling can be reduced by suppressing transitions to untrappable states. More inter-

esting and complex systems have greater densities of resonances. Thus resonances

will continue to be of central importance in future research in the area of ultracold

physics. The ability to tune Feshbach resonances can potentially convert what is

a challenge to the control and manipulation of molecular systems to an exploitable

feature.

Future research to complement our work could look for similar suppression of

inelastic cross sections in other systems. This could establish how common the

conditions for such suppression are and help consolidate our understanding of the

mechanisms involved. It is also possible to study the effects of using electric fields

to tune Feshbach resonances. Electric fields do not conserve parity and couple a

different set of levels, introducing new and interesting possibilities.
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[85] Quéméner, G.; Balakrishnan, N. J. Chem. Phys. 2008, 128(22), 224304.

[86] Balakrishnan, N. J. Chem. Phys. 2004, 121(13), 6346.

[87] Weck, P. F.; Balakrishnan, N.; Brandao, J.; Rosa, C.; Wang, W. J. Chem.

Phys. 2006, 124(7), 074308.

[88] Weck, P. F.; Balakrishnan, N. Eur. Phys. J. D 2004, 31(2), 417.

[89] Hubbard, J. Proc. Roy. Soc. Lond. Series A-Mathematical and Physical Sci-

ences 1963, 276(1364), 238.

[90] Jaksch, D.; Zoller, P. Ann. Phys. 2005, 52, 315.

[91] Regal, C. A.; Greiner, M.; Jin, D. S. Phys. Rev. Lett. 2004, 92(4), 040403.

[92] Bartenstein, M.; Altmeyer, A.; Riedl, S.; Jochim, S.; Chin, C.; Denschlag,

J. H.; Grimm, R. Phys. Rev. Lett. 2004, 92(12), 120401.

[93] Chin, C.; Bartenstein, M.; Altmeyer, A.; Riedl, S.; Jochim, S.; Denschlag,

J. H.; Grimm, R. Science 2004, 305(5687), 1128.

[94] Partridge, G. B.; Strecker, K. E.; Kamar, R. I.; Jack, M. W.; Hulet, R. G.

Phys. Rev. Lett. 2005, 95(2), 020404.

[95] I. B. Spielman, W. D. P.; Porto, J. V. Phys. Rev. Lett. 2007, 98(8), 080404.
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