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Albstract 

The scores provided by the International Test of Developed Ability (ITDA) have 

been used as an alternative baseline for comparing the progress of students in the 

A-level Information System (ALIS) project of U.K. The responses of 26,964 

examinees to the mathema~ics items of ITDA in year 2000 were fitted by using the 

Rasch model. Five subject groups (the population, 2 gender groups and 2 ability 

groups) and 25 random samples (5 from each group) were generated from the responses 

of the examinees. The unconditional maximum likelihood estimates of the item 

difficulty and examinee ability parameters for various groups/samples were produced by 

the RASCAL program. 

The scatterplots among different sets of sample item difficulty parameters 

reflected that the feature of item and ability invariance was not preserved in the groups 

of extreme abilities. The assumptions of unidimensionality, equal item discrimination, 

zero guessing factor and non-speededness were generally not supported in the two 

ability groups. In particular, the result indicated that the ITDA Mathematical Test 

might be a speeded test. 

It was quite interesting in this study to see that the item difficulty parameters and 

examinee abilities estimated from the Classical Test Theory (CTT) and those from the 

Rasch model were very comparable and both frameworks exhibit more or less the same 

feature in terms of invariance. On the other hand, more items were "found" unfit by 

the CTT method than the Rasch approach indicating that the former looks more 

sensitive to the lack of fit than the latter. 
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To study the effect of speededness, the analysis was repeated with the last 11 

items (which has the highest omits) deleted. Disappointingly, the results showed no 

significant improvement. Further research on the fitness of data with speed 

incorporated into the estimation of ability level is recommended. 
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Jlntroductitonn 

C:UAJPTER 1 

STATEMENT OF THE PROBLEM 

1.1 Concern about the quality of school education is an international trend. 

Educators and administrators make efforts to devise "indicators" measuring and 

monitoring school performance and value-added improvement in student 

performance in major domains of education. According to Willms (1992, p.1), 

an indicator is "simply a statistic describing some feature of the schooling 

system associated with its performance". Fitz-Gibbon (1996, p.5) defines an 

indicator as "an item of information collected at regular intervals to track the 

performance of a [schooling] system". Examples of indicators include the 

average test score of a school, the percentage of drop-outs, the civic awareness 

and moral attitudes of students, students' ability to cope with pressure and 

changes, etc. Clearly, a good indicator will provide good information for 

measuring performance and monitoring system. However, it is not easy to 

formulate a set of commonly acceptable, measurable and reliable indicators to 

assess the value-added performance of schools and students. The A-level 

Information System (ALIS) in U.K. is an up-and-running indicator system 

which has been providing "value-added" measures to schools and colleges over 

a decade. 

1.2 The ALIS is a project which aims to provide performance indicators for post-16 

students· of U.K. across all sectors of education. It is a value-added monitoring 



system run at the Curriculum, Evaluation and Management (CEM) Centre of the 

University of Durham. It has grown from only 12 schools in 1983 1 to cover 

one third of all A-Level entries in U.K. and international schools sitting U.K. 

examinations in 1999. The ALIS project has been extended to cover the 

Advanced General National Vocational Qualifications (GNVQs) examinations in 

the last few years and is hence sometimes called ALIS+. But the addition of 

vocational qualifications is now simply subsumed under the one name ALIS 

without the "plus". 

1.3 The progress of students in the ALIS project Is compared based on the 

performance indicators provided so that schools joining the project will know 

exactly the locations of their students. To make these comparisons fairly, all 

students are measured against a common baseline representing their ability 

before starting their post-16 courses. Generally, the GCSE scores are the 

baseline for the ALIS project. However, for students with no GCSE scores, the 

scores provided by the International Test of Developed Ability (ITDA) are used 

as an alternative baseline. 

1.4 The ITDA was developed at the Educational Testing Service, Princeton, New 

Jersey ofU.S.A. as a measure suitable for college entrants around the world and 

was introduced into the ALIS project in 1988 2
• The ITDA comprises a 

20-minute verbal section of 25 questions, a 25-minute mathematical section of 

1 In 1983, the ALIS project was first introduced as Confidential, Measurement-Based Self-Evaluation 
(COMBSE) project. The existing name was used since 1988 (Fitz-Gibbon, 1996, pp.54-61). 
2 The AH6 SEM test of the National Foundation for Educational Research and the Raven's Advanced 
Progressive Matrices were used as the ability test in 1984 and 1985 respectively. Since these two tests 
were not good predictors of the A-level grades, the ability test was dropped until 1988 (Fitz-Gibbon, 1996, 
pp.58-61). 
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35 questions and a 5-minute vocabulary test (introduced in 1992 to improve the 

predictive validity of the test) of 20 questions. All the questions are 

multiple-choice items. 

1.5 Since the introduction of ITDA to the ALIS project, the ITDA mathematics 

items were unchanged. Consequently, the test may have lost its effectiveness 

as an objective instrument for an alternative baseline for comparing the progress 

of all students in the ALIS project. Of course, a strict security may improve the 

situation but no test could be strictly secure if it was repeated year by year. 

Therefore, a viable alternative is to have different tests set for students in the 

ALIS project every year. The tests then not only provide a baseline for 

measuring the "value-added" of students but also let schools joining the project 

know the exact "locations" of their students. However, this alternative 

naturally gives rise to the problem of maintaining the standard of the test so that 

abilities of different examinees can be compared. A measurement model which 

can generate sample free item difficulties is very useful for such purpose. A 

pool can then be constructed with items fitted and calibrated by the 

measurement model and the mathematics items of the ability test could be drawn 

from the pool. This research intends to investigate the extent to which the 

ITDA mathematics items can be fitted by using measurement theory. Two 

theories, namely the Classical Test Theory (CTT) and the Item Response Theory 

(IRT) or Latent Trait Theory could be considered and they are discussed as 

follows. 

3 



Classical Test Tllleory 

1.6 The CTT can be used to specify rules for transforming examinees' responses to 

the items of an educational test into estimates of their latent abilities or traits3 

("latent" because the abilities or traits are not directly measurable) assumed to 

underlie the observable responses. The CTT model is simple. An examinee's 

score X on a particular test is considered to be a chance variable with some 

unknown frequency distribution. The mean of this distribution is the 

examinee's true score T. Mathematically, 

X=T+E (1.1) 

where E is the error of measurement. The basic assumptions on the error term 

in (1.1) are (a) the expected value of error over examinees is zero; (b) the error is 

not related to true score, other error scores and other true scores; and (c) the 

errors are normally distributed within examinees and homogeneously distributed 

across persons (e.g. Lord, 1980, pp.4-6; Embretson & Reise, 2000, pp.42-43). 

1. 7 The CTT mainly focuses on test-level information, but item statistics (i.e. item 

difficulty and item discrimination) are also essential in the model. The major 

advantage of the CTT is that it has relatively weak theoretical assumptions and 

hence can be easily applied in many testing situations (Fan, 1998, p.358). The 

estimation of the item parameters is simple and straightforward. The CTT 

collectively considers a group of examinees and examines their success rate on 

an item. This success rate, expressed as the proportion of examinees correctly 

respond to the item, is known as the p-value of the item and is used as the index 

3According to Brown (1976, p.5), a trait can be considered as "a cluster of interrelated, or intercorrelated 
behaviours .... It is an abstraction, a construct, rather than an objective, tangible reality." 
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for the item difficulty (the higher the p-value, the less difficult is the item). The 

item discrimination is expressed as the Pearson product-moment correlation 

coefficient between the scores on the item and the scores on the total test. 

When the items are dichotomously scored (i.e. 1 for a correct and 0 for an 

incorrect response), that coefficient is estimated as the point-biserial correlation 

coefficient. The purpose of examining the item-total correlations is to find out 

whether a particular item tends to be failed by examinees of low-ability and 

passed by examinees high in ability (reflected by high correlation) or vice versa 

(reflected by low correlation). 

1.8 However, the CTT has also a lot of shortcomings (Hambleton & Swaminathan, 

1985, pp.1-4; Hambleton, 1995, pp.84-85; Fan, 1998, p.358). Among all, the 

most important shortcoming is that the examinee characteristics and the test 

characteristics are inter-dependent and cannot be separated. For example, in 

the CTT, the ability of an examinee (which is the examinee characteristics we 

are interested in) is expressed by the true score (i.e. the expected value of 

observed performance on the test) and is hence only defined in terms of a 

particular test. The definitions of the item parameters (i.e. the item difficulty 

and item discrimination) make it clear that their estimates depend on the ability 

of examinees being measured. Therefore, the examinee parameters (i.e. ability) 

and the item parameters are not sample-free. Many measurement specialists 

discredit the CTT model with regard to its inability to produce 

examinee-invariant item parameters and item-invariant examinee parameters. 

The dependence of item measurement on a particular group and the dependence 

of examinee scores on a particular test are serious concerns as they lead to ~l ~a.~c~ ~ 

of comparability of examinees who have taken tests of different difficulties and 
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tests taken by different groups of examinees. 

Item Respol!llse Theory 

1.9 IRT is another technique used in item analysis. The IRT approach is based on 

the postulate that for each item, there is a curve, known as Item Characteristic 

Curve (ICC), which relates the probability of getting an item right to the 

examinee's ability. Each item has its own curve, which is expected to move 

from left to right in an upward direction. Four variables are required to define 

an ICC or to determine the probability. There are one examinee parameter and 

three item parameters. The examinee parameter is the ability or trait and the 

three item parameters are the item difficulty, item discrimination and guessing 

level. Depending on the number of item parameters needed to describe the ICC, 

three basic models result. They are the one-, two- and three-parameter logistic 

models. Figure 1.1 shows three typical ICCs for the one-parameter logistic 

model. They are "parallel" curves which differ only by their location on the 

ability scale and the item difficulty is the only item characteristic that influences 

examinee performance. Figure 1.2 shows two typical ICCs for the 

two-parameter logistic model. The curves have different slopes reflecting that 

their item discrimination values are different. Four typical three-parameter 

logistic ICCs are shown in Figure 1.3. They have highlighted the role of 

guessing level in the shape of ICCs. Clearly, the non-zero probability of 

success for the low ability examinees indicates the existence of the guessing 

factor. 

<Figure 1.1 - 1.3> 
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1.10 In the general IRT, it is assumed that a set of n latent abilities underlies examinee 

performance on a set of test items. The n latent abilities define a n-dimensional 

latent space. Each examinee's location in the latent space can be easily 

determined if the examinee's position on each latent ability is known. The 

latent space is referred to as "complete" (Lord & Novick, 1968; p.359; 

Hambleton & Swaminathan, 1985, p.l6) if all the n latent abilities have been 

specified. In the item response model, it is commonly assumed that the latent 

space is unidimensional, that is, a single latent ability is adequate to specify an 

examinee's test performance. In fact, this assumption can hardly be met 

because factors like the examinee's personality, the examinee's ability to work 

quickly, test anxiety, level of motivation, etc. always exist and influence the test 

performance. Therefore, a more realistic approach is to seek "a 'dominant' 

component or factor that influences test performance" (Hambleton & 

Swaminathan, 1985, p.17). Clearly, it is this dominant component which is 

referred to as the ability measured by the test. 

1.11 Apart from the assumption of unidimensionality, the one-parameter logistic 

model further assumes that all items are equally discriminating and there is no 

guessmg. Therefore, only one item parameter - the item difficulty (or the 

location with respect to the ICC) is specified in this model. The 

appropriateness of these assumptions has been criticized by many measurement 

practitioners (e.g. Divgi, 1986). However, the assumptions can be found not 

unreasonable if one looks into the questions of how the word "harder" is 

interpreted and what makes examinees "guess" in the test. If it is agre~dotha_t 

the probability of success on the harder of two items should always be less than 
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that on the easier, then different item discriminations which will produce crossed 

ICCs does not occur. Therefore, variation in discrimination can be considered 

as "a symptom of item bias, multi-dimensionality" (Wright, 1992, p.199). On 

the other hand, if the items are too hard for an examinee, then he or she will be 

forced to guess. Therefore, if the difficulties of items "match" with the abilities 

of examinees, the guessing factor will be reduced to a minimum. On the whole, 

as commented by Hambleton et al (1991), the assumptions of equal 

discrimination and zero guessing can be approximately met "for relatively easy 

tests constructed from a homogeneous bank oftest items" (pp.13-14). 

1.12 There is also an implicit assumption of IRT models, namely, the 

non-speededness - the tests under the study of fit are not administered under 

speeded condition. If an examinee does not have time to reach an item, then 

his/her response does not only depend on his/her ability but also on his/her speed 

of performance. Since the unidimensional IRT models only deal with actual 

responses, the behaviour of examinees who do not respond to some of the items 

in a test because of lack of time cannot be described by the model. Moreover, 

apart from speed itself, psychological effect like nervousness, motivation, etc. 

resulting from speededness also have impact on the test performance. In 

general, speed is usually considered as a dimension independent of the trait 

measured by the test content. But since it affects mathematics achievement, it 

is sometimes confounded with the trait of examinees and is not easy to be 

identified. For example; when an examinee does not answer an item, the item 

may be too difficult to the examinee so that he/she just leaves it unanswered or 

he/she has no time to reach that item. On the other hand, having speed may be 

important for mathematics aptitude as examinees who can not only do 
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mathematics, but also do it quickly will tend to get higher grades than those who 

need more time. 

1.13 Georg Rasch is the main proponent of the one-parameter logistic model, which 

is therefore commonly known as the Rasch model. As long as all the items in 

the bank had equal discrimination, it was possible to produce a single item 

parameter (the item difficulty) which was independent of the examinees and the 

other items in the test (Rasch, 1966, pp.53-56; 1980, pp.178-182). That is, the 

Rasch model is "person free" and "item free". Therefore, if the assumptions 

are met, the Rasch model can be used to calibrate a pool of items and any subset 

of items from the pool can be used to measure examinees on the same ability 

scale. 

Source of Data 

1.14 The data for the study consist of responses of 26,964 students to the 35 

mathematics items of the ITDA offered in the ALIS project. The items are of 

multiple-choice type, each with 4 options. The data were collected by the 

CEM Centre in 2000 and had been scored. Each line of data in the data file 

consists of the identity and sex of the examinee and his/her scores (i.e. Os or 1 s) 

to the 35 items in the Mathematical Test. There are totally 26,964 lines in the 

set. Figure 1.4 shows part of the file. The first character represents the 

gender of the examinee concerned (1 for male and 2 for female), the next 7 

characters are the examinee identification (e.g. 0121852 in the first line), the 91
h 

character is a space and the sequence of Is and Os following (totally 35 numbers) 

are the scores ofthe individual items. For example, the examinee 0121852 has 
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got a correct response (i.e. score 1) to items 1 and 2, an incorrect response (i.e. 

score 0) to item 3, etc. "x" is a code for omitted responses and not-reached 

responses. It can be seen that some examinees had just left some items 

unresponded. For example, examinee 0291852 (the 41
h line from the bottom in 

Figure 1.4) did not reach the last 20 items and hence left them unattempted. 

<Figure 1.4> 

1.15 The ITDA mathematics items are primarily curriculum content based. The 

frequency distribution and cumulative frequency distribution are respectively 

shown in Figure 1.5 and 1.6. It is not hard to see that the distribution is not 

normally distributed; rather it exhibits an obvious floor effect (skewness = 

1.692), that is, the scores of most examinees are at the lower end of the 

distribution. 

<Figure 1.5 - 1.6> 

Aims of the Study 

1.16 The CTT and IRT models, particularly the Rasch model, are widely perceived as 

two very different measurement frameworks. The major advantage of the CTT 

is its relatively weak theoretical assumptions so that it is easy to apply in many 

testing situations and these tests usually have quite acceptable internal 

consistency. On the other hand, the IRT solves problems by focusing on the 

interaction of persons with items. The item and person parameters estimated 

are sample independent which is a very crucial feature and a strong argument in 

favour of the IRT framework. It would be of great interest to compare the two 
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frameworks and see the extent to which what is learnt from each is much the 

same or different. Therefore, the aims of this study are to: 

(a) determine the extent to which the Rasch model fits the data of the 

mathematics items of the ITDA; 

(b) study the unidimensionality of the ITDA mathematics items based on the 

item parameter estimates; 

(c) investigate to what extent the items the model fits satisfy the assumption 

of equal item discrimination; 

(d) investigate to what extent the items the model fits satisfy the assumption 

of no guessing; 

(e) investigate to what extent the items the model fits satisfy the assumption 

of non-speededness; 

(f) compare the classical test theory method with the Rasch approach; and 

(g) identify poor items using independent analysis from the classical test 

theory method and the Rasch approach. 

1.17 In this study, it should be noted that omits and items not reached could not be 

easily distinguished because examinees might not respond to the items in serial 

order. Therefore, any attempt to assume that not-reached items only occur at 

the end of the test and ignore the not-reached items (say scoring them as zero) in 

the analysis would set limits on the conclusions that can be drawn from the 

study. 
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CHAJPTER2 

METHODS REVIEW 

Review of Item Response Tilleory 

2.1 The IRT was developed over 50 years. Essential work embraces those of 

Tucker (1946) who was the first to use the term "item characteristic curve", a 

key concept in the field of IRT, Lord who described the two-parameter normal 

ogive model (1952), derived parameter estimates (1953a) and considered 

application of his model (1953b), Bimbaum (1968) who used the logistic curve 

for Lord's normal ogive curve and Rasch (1980) who -introduced his 

probabilistic model for item analysis, etc. Thereafter, the important 

breakthrough in problem areas of test score equating, adaptive testing, test 

design and test evaluation by using IRT has attracted the interest of many 

measurement specialists (Hambleton & Swaminathan, 1985, p. 7). 

2.2 An essential part of IRT is usmg a mathematical function to relate the 

probability of giving a correct response (or the probability of success) to an item 

by an examinee to certain characteristics of the examinee and the item. Many 

different IRT models have been considered. Although whether these models 

provide satisfactory solutions to measurement problems can only be tested 

empirically, they have a common perspective, that is, they assume that the 

probability of an observable response is related to the examinee's latent ability. 

The ability is not directly observable, but the crucial point of IRT is to make use 

of the observed behaviour of the examinee (usually responses to a set of items 
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are represented as Os or 1s) to estimate the examinee's ability. The latent 

ability is usually considered to be distributed continuously, but the particular 

form of the distribution is not known. The general class of measurement 

theories specifies how to transform the item responses into an estimate of the 

ability underlying the item response. 

2.3 Some different IRT models have been used in the past. Examples include the 

Guttman "perfect scale", the linear model of Lazarsfeld (cited in Hulin et al, 

1983, pp.l6-19), the normal ogive model (Lord, 1952) and the logistic model 

(Bimbaum, 1968; Rasch, 1980). 

(a) The Guttman "perfect scale" used the step function 

P(8) =Ofor 8<b; (2.1) 

= 1 for 8 2b 

where 8 is the latent ability, to relate the probability of a response to an 

item with the ability under consideration. The discontinuity at the 

breaking point b of the ability and the flatness of the curve seem 

umealistic as people rarely behave in this way. 

(b) The linear model was developed by Lazarsfeld in which 

P(8) =a+ b8. (2.2) 

One obvious limitation of this model is that the probability cannot lie 

between 0 and 1 unless b is zero, but in this case, the item provides no 

information about 8. 

(c) The normal ogive model postulates a normal cumulative distribution 

function as a response function for the item i of a set of test items: 

f 
(EJ-b) 1 z2 

P(8) = I I ~exp( --)dz 
eo -v2rr 2 

(2.3) 
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where ai is the item discrimination parameter of the item i and bi is 

the corresponding item difficulty parameter. The normal og1ve 

expresses the area under the standardized normal curve from a z-score of 

- oo to a z-score of ai (8- bi) as the probability of success. It is 

viable as the said area is always positive and less than 1. However, a 

defect of this model is its assumption of normality of the distribution of 

the examinee ability (van der Linden & Hambleton, 1997, p.7). 

2.4 Rasch developed the logistic model in 1950s. In this model, Rasch proposed 

(2.4) 

where ex is the ability of an examinee x and Bi is the difficulty of item i. 

Clearly, this model describes the probability of a successful outcome of an 

examinee on an item as a function of only the examinee's ability and the item's 

difficulty. Taking the parameters on a logarithmic scale, that is, taking the 

transformation: 

(2 .4) becomes 

1 
(2.5) 

This transformation has assigned an ability of negative infinity to a score of zero 

and an ability of positive infinity to a score of 100 percent. (2.5) can be 

rearranged to give 

It is noted that the ability and item difficulty have been expressed in the same 

scale known as log-odds scale. The unit on the scale is called a logit which is 
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defined as the natural logarithm of the quotient of the log-odd for success and is 

"the distance along the line of the variable that increases the odds of observing 

the event specified in the measurement model by a factor of 2. 718 ... , the value 

of e" (Linacre & Wright, 1989, p.54). Clearly, if log-odds are used in the 

vertical axis of the ICC in Figure 1.1 instead of the probabilities, the curves will 

become lines which are exactly parallel. 

2.5 Since the Rasch model involves only one parameter - the item difficulty 

parameter, it is also known as one-parameter logistic (lPL) model. The logistic 

ogive is practically identical to the normal ogive as it has been shown by Haley 

that 

1 [ 2 1 ~ exp(-z )dz- _
17 

<0.01 
-v2n oo 1+e .x 

(2.6) 

(cited by Bimbaum, 1968, p.399 and Van der Linden & Hambleton, 1997, p.13). 

Thus, the 1PL ogive is usually scaled as 

P(S ) -
1 

X - 1 -0(9 -b·) + e X I 

(2.7) 

where D = 1.7 to keep the inequality (2.6) true. Inequality (2.6) is important as 

it ensures that the logistic ogive and the normal ogive can approximate one 

another. 

2.6 Bimbaum 's main contribution to IRT was his suggestion to replace the normal 

ogive model by the 2PL model 

(2.8) 

He also proposed a third parameter - the pseudo-chance level or guessing level 

parameter to account for the non-zero performance of the low ability examinees 

on multiple-choice items. The 3PL model then takes the form 
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1 
P(8J = ci + (1- cJ _0 ·(O -b > , (2.9) 1 + e 31 X I 

where ci is the guessing level parameter of item i. Clearly, the Rasch model 

is a special case of the 3PL model with unity ai and zero ci. 

The Rasch Model and its Mathematics 

2. 7 The Rasch model has the following important features: 

(a) The abilities4 of people and difficulties of items are along the same scale 

so that abilities and difficulties can be compared. For a given item, a 

more able person is always more likely to get a correct response than a 

less able person; and a given person is always more likely to answer an 

easy item correctly than a difficult item. Here the term "more able 

person" is a shorthand for a person who is currently more able on the 

dimension being measured. Indeed, "ability" here often means a level 

of achievement. 

(b) The Rasch model produces item difficulty levels independent of 

examinee samples and person abilities independent of the particular test 

administered. 

(c) Sufficient statistics5 exist. For example, all the information about the 

ability of a person on a given dimension is contained in the number of 

correct responses (or the number correct score). All persons with the 

same number correct score must be assigned the same estimated ability. 

4 The terms ability and achievement are sometimes contentious. Ability seems to often denote a fixed 
aptitude whereas achievement is altered by, for example, schooling. 
5 A sufficient statistic for a parameter cl> is a statistic that captures all the information about cl> contained 
in the sample concerned (Casella & Berger, 1990, p.24 7). That is to say, any additional information in 
the sample does not contain any more infmmation about cl>. 
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Similarly, all the information about item difficulty is contained in the 

number of persons correctly responding to the item. All items with the 

same score must be assigned the same estimated item difficulty level. 

(d) The model is a theoretical model and is relatively simpler than other 

logistic models. Its relative simplicity makes it less expensive and 

easier to apply in solving practical measurement problems. It is 

consistent with Kaiser's Principle 11 that "simplicity is elegance" (1970, 

p.404) and Einstein's view that "Everything should be as simple as 

possible but no simpler" (cited by Fitz-Gibbon, 2000). 

The observable responses of a group of examinees to a set of items are usually 

obtained for a sample. The item and ability parameters are then determined by 

statistical estimation. Several estimation procedures are available, but in this 

study, the maximum likelihood procedure6 is adopted. 

2.8 Let the probability that an examinee x with ability 8 x obtains a response U xi 

response and 0 for an incorrect response. For a correct response, the 

probability P xi (U xi = 118 x, b J is the item response function and is commonly 

For an incorrect response, the 

probability is 

Therefore, the probability of a response U xi can be expressed as 

. 
6 Maximum likelihood estimators are consistent and efficient estimators, functions of sufficient statistics 
and asymptotically normally distributed. 
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p _UxiQ _1-U,i 
XI XI • 

If the examinee x with ability 8, responds to n items and if the assumption of 

unidimensionality holds, the joint probability of the responses uxl 'ux2 , ... , u xn' 

elements bi (i = 1, 2, 3, ... , n), can be expressed as a product of the individual 

probabilities of the responses Ux1, Ux2 , ... , U xn. That is, 

n 

Px(Ux,, Uxz, ... , Uxnlex,(bi))= flPxi(Uxijei,bi) 
i=l 
n 

=ITP _UxiQ _1-Uxi 
XI XI • 

i=l 

The likelihood function for the examinee x is therefore given by 

n 

LX (uxl' ux2 , ... ' uxnlex ,(bi)) = f1Pxi u,jQxi l-u,j 
i=l 

(2.10) 

where ux1, ux2 , ... , uxn are the respective specific values (either 0 or 1) taken by 

the random variables U xi, U xz, ... , U xn . 

2.9 Suppose a group ofN examinees is administered a set ofn items, the likelihood 

function from (2.1 0) is 

N 

L([ Uxi] I (8J,(bJ) = fJ Lx (uxl' Ux 2 , ··., Uxn IC8x ),(bJ) 
x=l 

N n 

=[lf1P _uxiQ _1-u,i 
XI XI 

(2.11) 
x=l i=l 

where[uxi)is theN x n matrix with elements u,i(x = 1, 2, 3, ... , N; i = 1, 2, 

3, ... , n) and (ex) is the 1 x N vector with elements 8, (x = 1, 2, 3, ... , N). 

The logarithm ofthe likelihood function is then given by 

N n 

log LC[ Uxi] I (8 J,(bi)) = L L) uxi log P" + (1- u xi) logQxJ 
X= I I= I 

If ~l represents 8, or bi, then 
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2.10 

(2.12) 

The maximum likelihood estimators of (8J and (b;) are obtained by solving 

the set of likelihood equations BlogL = 0 (totallyN + n equations). 
all 

1 e-oce,-b;) 
For Rasch model, Pxi = -nee -b ) and Qxi = nee b ) · 1+e ·' 1+e- ,-; 

Thus, 

8Pxi _ -1 [ -D(8 -b ) ( D)] --- e x ' x -
88x (1 + e -D(8x -b;) )2 

De-nce,-b;) 

apxi 

aex =D. 
pxiQxi 

. 8logL ~ 
(2.12) g1ves = D L)uxi- Px;) 

aex i=l 
for x = 1, 2, 3, ... , N 

i=l 
n 

(2.13) 

where rx = L uxi , is the number correct score for the exammee x. The 
i=l 

likelihood equations for the estimation of the abilities of theN examinees are 

Now, 

n 

rx- IPxi = 0 
i=l 

for x = 1, 2, 3, ... , N 

11 

=-D
2
LpxiQxi · 
i=l 

for x = 1, 2, 3, ... , N 

(2.14) 

(2.15) 

8
2

logL O 
Clearly, 

2 
< as 

ae, 
Pxi and Q,; are all positive numbers. Thus, 
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11 

the s: at which rx- LP xi = 0 gives a maxunum value of the log L or 
i=l 

equivalently the likelihood L and is hence the maximum likelihood estimator of 

2.11 Since the likelihood equations (2.14) are nonlinear, a numerical procedure, 

known as Newton-Raphson procedure, has to be used. In general, if xm is the 

approximate solution for the equation f(x) = 0 at the m th stage, then the 

improved solution xm+l is given by 

(2.16) 

(Hambleton & Swaminathan, 1985, pp.79-81; Stephenson, 1961, pp.347-351). 

The procedure is iterated until the difference between xm+l and xm, i.e. 

xm+l - xm, is less than a pre-established value, say 10-3
. When this happens, 

the process is said to have converged and xm is taken as the approximate 

solution to the equation f(x) = 0. It can be shown that Newton-Raphson 

procedure converges rapidly provided that f'(x) is not zero or close to zero 

(Acton, 1970, pp.54-55). 

2.12 For the Rasch model, the recurrence relation becomes 

8logL 

s =9 - as 
m+l m 82logL 

for examinee x 

89 2 

(from(2.13)and(2.15)) (2.17) 

(The subscript for examinee x is dropped from 9 for simplicity:) 
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2.13 Similarly, to estimate the item difficulty, we have 

and 

aPxi = -1 [e-0(9,-b;) X n] 
abi (1 + e -0(9,-b;) )2 

_ De-0(9,-b;) 

(1 + e -o(O,-b;) )2 

=-DPxiQxi 

apxi 

ab 
----'---~ - = - D 
pxiQxi 

alogL=-D~(u .-P.) fori=1,2,3, ... ,n 
ab. ~ XI XI 

1 x=l 
N 

= -D(si- LPxJ 
x=l 

N 

(2.18) 

where si = L uxi is the number of examinees who respond to item i correctly. 
x=l 

The likelihood equations for the item difficulty parameters bi are 

N 

S·-~p · = 0 
I L.,. XI 

x=l 
fori= 1, 2, 3, ... , n 

fori = 1, 2, 3, ... , n 

N 

=- D2 L pxiQxi < 0 
x=l 

N 

(2.19) 

Thus, the b~ at which si- L Pxi = 0 gtves a maxtmum value of the 
x=l 

likelihood L and is the maximum likelihood estimator of b i . Again, the 

equations (2.19) can be solved by the Newton-Raphson procedure. The 

relevant recurrence relation is 

aJogL 

b = b - ab 
111+1 111 aziogL 

for item i 

ab 2 
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(2.20) 

X=] 

(The subscript for item i is dropped from b for simplicity.) 

2.14 It can be seen that when an examinee responds incorrectly to all the items, i.e. 

n 

rx = 0, equation (2.14) reduces to L Pxi = 0. Since Pxi is the probability of 
i=l 

a correct response, this equation is satisfied only when Pxi = 0 for all i, i.e. when 

8 = -oo. Similarly, when an examinee responds correctly to all the items, i.e. 

n 

rx = n, the likelihood equation reduces to LP xi = n which is satisfied only 
i=l 

when Pxi = 1 for all i, i.e. when 8 = +oo . Clearly, maximum likelihood 

estimators do not exist for these cases. A viable way to address the problems 

of zero-correct scores and perfect scores is to eliminate the examinees concerned 

from the estimation procedure. In a similar way, the items to which no 

examinee responds correctly and the items to which all exammees respond 

correctly will be eliminated. 

2.15 Since the number correct score is a sufficient statistic (see Appendix 1 for proof) 

for estimating the ability of an examinee, any examinee who gets a certain score 

will be estimated to have the ability associated with that score. Hence all 

examinees who get the same score will be estimated to have the same ability. 

The likelihood equations (2.14) and (2.19) can then be simplified to 

i=l 

n-1 

si- InkPk, = 0 
k=l 

for k = 1, 2, 3, ... , n - 1 

for i = 1, 2, 3 .... , n 

(2.21) 

(2.22) 

where nk is the number of examinees m score group k (i.e. with score k). 
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Note that k = 0 and k = n have already been excluded from the estimation 

procedure. The corresponding recurrence relations in the Newton-Raphson 

procedure are 

i=1 

n-1 

si- InkPki 
and b b k=1 

m+1 = m- n-1 

DLnkPkiQki 
k=1 

for each score group (2.23) 

for each item. (2.24) 

2.16 In summary, maximum likelihood estimators are found from the roots of the 

likelihood equations which set the derivatives ofthe log likelihood equal to zero. 

To estimate the parameters, the logarithm of the ratio of number correct score to 

the number incorrect score for each score group k, i.e. log-k-, is used as an 
n-k 

initial estimate of the ability (Hambleton et. al., 1991, p.42). Treating the 

ability values as known, the parameter b~ for item i is estimated by solving just 

one equation out of (2.24). When the item parameters are known, the ability 

estimate s: for score group k is found from just one equation out of (2.23). 

This suggests an iterative procedure when the trial values s: (k = 1, 2, 3, ... , 

n - 1) are treated as known while solving (2.24) for the estimates b~ (i = 1, 2, 

3, ... , n), then treat all item parameters b~ (i = 1, 2, 3, ... , n) as known while 

solving (2.23) for all trial values s: (k = I, 2, 3, ... , n- 1). This process is 

repeated until the numerical values converge. This procedure which uses 

--

provisional ability estimates as known \ alues, improves the values by using 



subsequently estimated item parameters (which are also successfully improved) 

and finally provides point estimates for all item and examinee parameters is 

known as joint or unconditional maximum likelihood procedure. 

Goodness-of-Fit Tests 

2.17 Item and exammee parameters will be "person independent" and "item 

independent" respectively when the Rasch model and the data are fitted. 

Model data fit can therefore be assessed by checking the invariance of item 

difficulties and examinee abilities estimated by the Rasch model (Gustafsson, 

1980, p.209; Hambleton et al, 1991, p.24). Although invariance of item 

difficulties and examinee abilities can never be observed in the strict sense, the 

"degree" to which it holds can be assessed when samples of test data are used. 

For the invariance of item parameters, one possible way is to draw two samples 

of different abilities from the population and estimate the item parameters in 

each sample. The correlation coefficient and the scatterplot of the difficulty 

values for the items of the two samples can be studied. A low correlation 

coefficient or a large amount of scatter observed may indicate a lack of 

invariance although it may be caused by model-data misfit, poor item parameter 

estimation or by the fact that one or more of the underlying assumptions may not 

hold for the data set. It should be noted that a high correlation coefficient alone 

is not sufficient to indicate a model-data fit. For a real model-data fit, the 

points in the scatterplot of the item difficulty values estimated from two samples 

should fall along the baseline "y = x". Similarly, ability estimates can be 

compared for different item sets (e.g. set of odd-numbered items vs. set of 

even-numbered items, set of easy items vs. set of hard items and sets of items 
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reflecting differing content categories). Invariance is established if the 

estimates are highly correlated and the points are closed to the baseline. 

2.18 Apart from the scatterplot mentioned in para.2.17, the fit between the Rasch 

model and an examinee's responses can also be assessed by examining the item 

residuals which are the differences between the model's probabilities of correct 

responses and the examinees' observed item performance. In particular, the 

residual of examinee x with ability ex on item i is 

Yxi = Uxi- Pxi 

where uxi is 1 or 0 and Pxi is the probability of a correct response. Since 

the number correct score is a sufficient statistic, the residual could be rewritten 

as 

* * Yki = Pki - E(Pki) 

* where Yki is the residual of examinees in score group k on item i, Pki is the 

* observed proportion of correct responses in score group k on item i and E( Pki) 

is the expected proportion of correct responses using Rasch model. To take 

* into account the sampling error of E( Pki ), the standardized residuals are usually 

used. 

* * Pki- E(Pki) 
Yki = ~ * 

Var(Pki) 

* * where Var( Pki) is the variance of Pki. Clearly, 

* * 
and 

* E(Pki)[l- E(Pki)J 
Var( Pki) = 
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where n k is the number of examinees in score group k. 

* 
Thus, 

pki- pki 
y ki = --;============= 

pki (1- pki) 
(2.25) 

nk 

The sum of squares of the standardized residuals of an item over the m score 

groups with nk "* 0 is distributed as a chi-square statistic which can be used as 

a measure of the fitness of the item. 

2.19 The residual difference between observed and expected scores is the basis of fit 

analysis and all chi-square measures used adopt more or less the same rationale. 

For example, Yen (1981, p.246) rank ordered the examinees on the basis oftheir 

ability estimates and divided into 10 cells with approximately equal number of 

examinees per cell and defined the Q1 statistic for item i as 

10 

Qli = LYJi 
j=l 

(2.26) 

where n j is the number of examinees in cell j, P Ji is the observed proportion 

of correct responses in cell j on item i and Pji is the mean of the probability of 

correct responses of the examinees in cell j. The degree of freedom is 10 - 1 = 

9. On the other hand, Wright & Panchapakesan (1969, pp.44-46) essentially 

involves calculating the following residual 

fki- E(fkJ 
Yki = ~Var(fkJ 

or fki- nkPki (2.27) 

where fki represents the number of examinees in score group k answering item 
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i correctly. Two other fit statistics are also reported. They are the infit and 

outfit mean square statistics (Rasch, 1980, p.193-194; Linacre & Wright, 1994, 

p.360; Bond & Fox, 2001, p.176). The outfit is based on the conventional sum 

of squared standardized residuals. It is an outlier sensitive fit statistic that 

picks up rare events that have occurred in an unexpected way. On the other 

hand, the infit is an information-weighted7 sum of the squared standardized 

residuals. It focuses on the overall performance of an item or person. To 

calculate infit, each squared standardized residual is weighted by its variance, 

summed and then divided by the sum of variance (Linacre & Wright, 1994, 

p.360; Bond & Fox, 2001, p.176). The result is 

Infit = 

n-1 

IVar(P~)yb 
k=1 
nk7o0 

n-1 

IVar(P~) 
k=1 
nk ;toO 

n-1 

ICP~i -Pki)
2 

k=1 
nk ;toO 

I1 pki (1- Pkj) 

k=l nk 
nk7o0 

(from (2.25)) 

2.20 One of the problems of using the chi-square statistic is its sensitivity to sample 

s1ze. The chi-square value may become significant owing to large sample size 

7 The information in an observation quantifies how much could be learnt about the modeled variable 

from that observation (Wright, 1996, p.504 ). For the Rasch model. the item information I xi, in the 

dichotomous responses (i.e. 1 or 0) of examinee x to item i is given by I" = 0 2 P xi (I - P,i ) where D is I. 7 

and P xi is the probability that the examinee x obtains a correct response to item i. The amount of 

informatiOn provided by item i at the ability level eX iS inversely related tO the Standard effQf" aSSbCia~t~d . 

With the ability estimate eX . 
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(Hambleton & Swaminathan, 1985, p.l53; Embretson & Reise, 2000, p.235). 

Hambleton & Murray (cited by Hambleton & Swaminathan, 1985, p.155) has 

conducted a simulation study to illustrate the problem associated with examinee 

sample size. The results show that when the sample size was increased from 

150 to 2400, the number ofmisfitted items was increased from 20 to 42 (out of 

50) at the 0.05 level! In fact, the dependence of statistical significance on 

sample size is not uncommon. The larger the sample size, the more likely to 

get statistically significant results (Carver, 1978, p.387). Therefore, apart from 

statistical significance, the magnitude of the misfit and the interpretation of its 

educational significance should be sought as these are the most important pieces 

of information to arise from a study. The educational significance of the misfit 

requires a judgment made in terms of the outcome measure (Fitz-Gibbon, 1984, 

p.136). 

Review of Approaches for Assessing the Assumptions of Rasch Model 

2.21 Whether there is a model-data fit between the Rasch model and a data set is 

based on strong assumptions, i.e. unidimensionality, equal item discrimination, 

zero guessing level and non-speededness. Undoubtedly, these assumptions 

cannot be met completely by any set of test data. Therefore, it is more 

appropriate to locate and interpret the departures of the Rasch model from the 

assumptions in practical measurement problems. Since one of the most critical 

assumptions of latent trait models is that a set of items should measure only one 

ability, testing the assumption of unidimensionality takes precedence over others 

in most related research studies. 
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Unidimensionality 

2.22 Unidimensionality is a qualitative concept and no test can ever be perfectly 

unidimensional. There are vanous methods/indices for assessmg 

unidimensionality, but many of them lack a rationale and some are just 

adjustments of others to take into account the criticisms (Hattie, 1985, p.139). 

Hambleton & Rovinelli (1986) also criticized that most of the methods are "only 

loosely connected to the various definitions in the psychometric literature" 

(p.287). Nevertheless, indices based on reliability (such as coefficient alpha), 

factor analysis, principal components, residual analysis and Bejar's analysis 

method8 (1980) are the more popularly used or promising methods in the field. 

2.23 Indices based on Reliability 

(a) The coefficient alpha (or Kuder-Richardson Formula 209
) is a popularly 

used index which is based on reliability and is a measure of internal 

consistency of a test (i.e. the extent to which scores on each item and scores 

on other items of the test are related (Bartram, 1990, p.71)). It is the 

expected value of the correlation between any two random samples of items 

drawn from a pool like the given test. Mathematically, the alpha, rxx is 

given by 

r =-k x[l-Is~] 
XX k- 1 sz 

T 

(2.28) 

where k is the number of "parallel" parts of a test, L S~ is the sum of the 

8 The rationale of Bejar's analysis method is that if the items in a test are unidimensional, then the 
grouping of the items for calibration will be irrelevant and the parameter estimates for items calibrate_d 
with different subsets of items should be identical aside from sainpling enors. 
9 The coefficient alpha is applicable to multichotomous items while Kuder-Richardson Formula 20 is 
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part variances and Si is the variance of the total test score. If a test is 

regarded as comprising "k" parallel items, coefficient alpha can be 

considered as the theoretical average of all possible split-half reliability 

coefficients10 of the test (Green, 1991, p.29). Since the coefficient alpha 

is defined in terms of the concept of "parallel tests" (whether with only one 

item or sets of items) and one of the assumptions of "parallel tests" is that 

the items measure a single factor or ability (Bartram, 1990, p.71), a high 

alpha is believed to be an index of "common factor concentration" 

(Cronbach, 1951, p.331) and shows that the items are "all related to the 

same underlying construct" (Green, 1991, p.28). It is this interpretation 

which relates alpha to dimensionality. However, Green et al (1977) have 

given a numerical example to show that it is possible to obtain a high value 

of alpha for a multi-dimensional test. They also noted that the value of 

alpha is dependent on test length and group hetergeneity11 (also Green, 

1991, p.28; Thomdike, 1997, pp.l10-114). This contradicts the basic 

conception that the unidimensionality of a test should be independent of its 

length and the group of examinees. 

(b) The concept of reliability could be extended to the broader and more 

flexible notion of generalizability which recognizes multiple sources of 

measurement error, estimates each source separately and hence optimizes 

the reliability (Shavelson et al, 1989, p.923). The main distinguishing 

feature of generalizability analyses is that they explicitly consider a group 

more specific and is applicable to dichotomous items. 
10 Split-half reliability coefficient is a form of internal consistency that preceded coefficient alpha. It is 
calculated by correlating one half of a test with the second half. But a difficulty with this formulation is 
how to divide the test as different divisions resulted in different split-half coefficients. 
11 It is true as alpha is a measure of internal consistency which is always higher for longer tests (with 
greater potential variability of scores) and more diverse groups (orderly relationships are more clearly 
visible for more striking differences among examinees), i.e. alpha is a sample dependent index. 
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of items as a random sample from a universe of items (Goldstein & Wood, 

1989, p.148). The generalizability theory (G Theory) provides a 

generalizability coefficient (G coefficient) which is similar to the reliability 

coefficient in CTT. The G coefficient reflects the proportion of variability 

in examinees' scores that is attributable to variability in the "universe 

score" (which is analogous to the true score in CTT), that is, variability in 

the examinees' knowledge, skills and so on (Shavelson & Webb, 1991, 

p.14). In a test like the mathematics section of the ITDA, there are four 

different sources of variability. They are those which arise from the 

differences in examinees' abilities, the differences in the difficulty of test 

items, the interaction between examinees and items and the randomness. 

The last two sources of variability cannot be disentangled and are usually 

lumped together as a residual. The G theory uses the analysis of variance 

(ANOVA) to partition the total variability among item scores into the 

effects for examinees, items and the residual. Once the variability among 

scores has been partitioned, the G coefficient is given by dividing the 

estimated examinee variance component by an estimated observed score 

vanance. As reliability, a high G coefficient (which is in the range of 0 -

1) reflects the unidimensionality of a test. 

(c) The confusing concepts of unidimensionality, reliability, internal 

consistency and homogeneity (used specifically to refer to the similarity of 

the item inter-correlations) have introduced problems in assessing indices 

ofunidimensionality (Me Donald, 1981, p.103 & 110; Hattie, 1985, p.157). 

Reliability (and also G coefficient), internal consistency and homogeneity 

are comparative concepts but not unidimensionality. We can say one test 

is more reliable, more internally consistent or more homogeneous than the 
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other test, but as Me Donald (1981, p.103) indicates, unidimensionality is 

"an integer-valued quantity" and we cannot say one test is more 

unidimensional than the other. In fact, a unidimensional test may or may 

not be necessarily reliable, internally consistent or homogeneous. 

2.24 Factor analysis12 

(a) McDonald (1981, p.101; 1982, p.394) defined a set of test items as 

unidimensional if the residual covariation between items in the set is zero 

for examinees with the same ability and argued that the dimensionality of a 

set of test items should be determined by the number of factors needed for 

describing examinees. Therefore, if only one factor is defined, the set of 

items should be unidimensional. However, the use of linear factor 

analysis is not appropriate since it assumes linearly related variables which 

contradict the non-linearity assumption of latent trait models. A major 

drawback of using factor analysis on dichotomous items is the distortion of 

the loadings of the items on the two extremes of difficulty scale (Hattie, 

1985, p.149). This makes it appear that such items do not measure the 

same underlying dimension as the others, hence leading to a factor solution 

with too many factors. The occurrence of these "spurious factors" in 

addition to "genuine factors" is common in factor analyses when items of 

different difficulty levels are scored dichotomously and this raises problems 

in using factor analysis. These spurious factors are referred to as 

12 The basic notion of factor analysis is that the variance of an item is composed of 2 components, 
namely the common variance and the unique variance. The former is the proportion of the total variance 
that an item shares with the other items in the analysis while the latter is the remainder of the total 
variance in each item which consists both of a variance that is specific- to a particular item and random 
error variance. The objective of factor analysis is to identify those factors arising only from the 
components of common variance of the set of items. 
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"difficulty factors" by a number of writers like Wherry & Gaylord and 

Carroll (cited in Hattie, 1985, pp.148-149) and they had been attributed to 

the attenuation of the phi coefficient 13 below what it should be if the 

difficulty levels were all the same. Wherry & Gaylord (cited in Hattie, 

1985, pp.148-149) argued that phi correlations are contingent upon 

difficulty and hence suggested to use tetrachoric correlations 14 which 

would be 1.0 provided that the items measure the same ability regardless of 

differences in difficulty. However, the tetrachoric correlations need a 

normality assumption which is not a necessity to the Rasch model (Lord & 

Novick, 1968, pp.345-346; Slinde & Linn, 1979, p.440). Also, the 

normality assumption is hard to hold in multiple-choice tests because of the 

effect of guessing (Slinde & Linn, 1979, p.440). The calculation of 

tetrachoric correlations is complicated and does not necessarily yield a 

correlation matrix which is positive definite (Hambleton & Swaminathan, 

1985, p.156). Me Donald & Ahlawat (1974, p.98) opined that the 

occurrence of spurious factors is not due to the attenuation of the phi 

coefficient. They showed that they are due to the non-linear regressions 

of items on the factors rather than difficulty per se. They concluded in 

their paper that the notion of difficulty factors should be dropped and 

replaced by that of"factors due to non-linearity" (p.98). On the whole, no 

rigorous theory of "difficulty factors" seems to exist. 

(b) Non-linear factor analysis may be more appropriate as it does not require 

the assumption of linear relationships among the variables and between the 

L' A phi correlation is a special case of Pearson correlation coefficient. It is a measure of the 
relationship between two dichotomous variables instead of continuous variables. 
1 ~ A tetrachoric correlation is similar to the phi correlation, but it further assumes that there is a 
hypothesized and normally distributed continuous variable underlying each dichotomous variable. 
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variables and the abilities. However, non-linear factor analysis is not 

without problems. There are so many non-linear curves and it is hard to 

determine which is more appropriate. One popular version is to use a 

polynomial (in fact, any curve can be approximated by a polynomial), but 

the problem that naturally arises is the number of terms of the polynomial 

that should be retained. The procedure will be very complicated if too 

many terms in the polynomial are retained in the solution. Again, no 

accepted criterion for the appropriate number of factors to be retained in a 

solution is available (Hambleton & Rovinelli, 1986, p.30 1 ). 

2.25 Principal components 15 

The first principal component which explains the maximum variance is used as 

an index of unidimensionality. The rationale is that the larger the amount of 

variance explained by the first component, the more likely the set of items to be 

unidimensional. However, there is no established criterion for "how high" the 

variance needs to be. For example, Carmines & Zeller (1979, p.60) 

recommended that at least 40% of the variance should be explained by the first 

component while Reckase (1979, p.227) recommended 20%. Moreover, it is 

not hard to show that a multi-dimensional set of items can have higher variance 

on the first component than does a unidimensional test (Me Donald, 1981, p.ll2; 

Hattie, 1985, p.146). Therefore, the proportions of variance due to the first 

principal component are only "crude and unsatisfactory criteria for 

unidimensionality" (Me Donald, 1981, p.ll3 ). A plot of eigenvalues of the 

15 Principal component analysis differs from factor analysis in that it is concerned with the total variance 
of an item. There is no distinction between common variance and unique variance. All variances are 
treated as common. variances. In principal component analysis, only the firs! few components which 
account for most of the variance are retained for analysis. 
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inter-item correlation matrix (looking for a dominant first factor) and a 

comparison of two eigenvalue plots, one from the inter-item correlation matrix 

using the test data and one from that of a set of random data, have also been 

used. A common problem of using this approach is again how large is the 

eigenvalue to be retained and considered as a "dominant" factor. Since many 

of the components may not be interpretable or have large error variance, Kaiser 

(1970, p.408) recommended to retain those components with eigenvalues greater 

than one. Therefore, the number of eigenvalues greater than one can be used as 

an index of dimensionality. Lumsden (1961) suggested to use the ratio of the 

first and second eigenvalues as the index of unidimensionality. Hutten (cited 

by Hattie, 1985, p.146), also used the ratio of the first and second largest 

eigenvalues of matrices of tetrachoric correlations to assess unidimensionality 

and considered that high values of the ratio should indicate unidimensional tests 

while low values indicate multi-dimensionality. Lord (1980, p.21) argued that 

if the first root is large compared to the second and the second is not much larger 

than any of the others, then the set of items is roughly unidimensional. 

However, Hattie (1985, p.146) has shown that it is not necessarily true. The 

sum of squared residuals (or sum of the absolute values of the residuals) after 

removing one component has also been used, but "there is no established 

criterion for how small the residual should be" (p.146). 

2.26 Residual analysis 

The residual analysis involves fitting a unidimensional IRT model to the test 

data, using the model parameter estimates to predict the item perfmmance data. 

The predicted values are then compared with the actual values by considering 

the resulting residuals. Again, no criterion is established for the size of the 
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residuals so that unidimensionality can be assumed. Moreover, large residuals 

may be due to the violations of model assumptions rather than unidimensionality 

(Hambleton & Rovinelli, 1986, p.300). This method in the study of Hambleton 

& Rovinelli (1986) was proved to be disappointing. 

2.27 Bejar's analysis method 

Bejar's method (1980) is based on the rationale that the grouping of the test 

items of a unidimensional test should be irrelevant in item calibration. That is 

to say, the performance of examinees on any subset of the test should be the 

same. The procedure requires to sort a priori the test items into categories, 

each of which appears to measure different traits. Then conduct a logistic 

model analysis of only the items in each category and repeat the model analysis 

using the total set of items. Two sets of item paran1eter estimates obtained for 

each item can be compared by using a statistical test or by plotting the estimates 

to determine the extent to which the two sets are linearly related. The merits of 

the Bejar's analysis method are that it does not involve linearity assumptions 

about the test data and it provides a straightforward check on the 

unidimensionality of the set of test data (Hambleton & Rovinelli, 1986, p.288). 

This method is particularly useful for achievement tests since the items 

frequently cover different content areas. In this case, it may be postulated that 

in addition to the "general" ability, a "unique" ability is being measured by the 

items within each content area. However, there is a drawback in this method: 

the number of items available in each category of items identified may be too 

small 16 for calibration (Bejar, 1980, p.294). 

16 If the sample size is small, say I 00 persons, tests of more than 20 or 30 items are needed to protect 
measurement from unacceptable disturbance (Wright, 1977, p.I06). 
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Equal Item Discrimination 

2.28 Only descriptive methods are available for checking this assumption (Hambleton 

& Swaminathan, 1985, pp.159-160). A viable check is analyzing the 

distribution of the item-test score correlations, say biserial or point biserial 

1 . 17 corre atlons . If the distribution is "reasonably homogeneous", the assumption 

may be right (Hambleton et al, 1991, p.56). 

Zero Guessing Level 

2.29 This assumption can be checked by analyzing the performance of low-ability 

examinees on the most difficult items (Hambleton et al, 1991, p.57). Zero 

guessing can be assumed if the performance levels are close to zero. 

According to Baker (1964, 1965), the viability of the zero guessing assumption 

can be examined by investigating the item-test score plots. Again, the 

assumption is supported if the item performance for low-scoring examinees is 

close to zero. 

Non-Speededness 

2.30 Again, only descriptive methods are available for checking this assumption. 

The following percentages can be studied: 

(a) Percentage of omits of each item 

(b) Percentage of examinees completing the whole test 

(c) Percentage completing 75% ofthe test 

(d) Percentage of examinees who do not respond to the last few items of the 

test 

17 The point biserial correlation is the product moment correlation between a continuous variable and a 
dichotomous variable while biserial correlation further assumes that there is a hypothesized and nom1ally 
distributed continuous variable underlying the dichotomous variable. 
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CHAPTER3 

METHODOLOGY 

KntrodUllction 

3.1 In this study, the Rasch model was applied to analyze the data and the RASCAL 

program 18 of Assessment Systems Corporation was used to compute the 

estimates of the difficulty parameters of the items and the abilities of the 

examinees selected. The estimates obtained from this program are 

unconditional maximum likelihood estimates. On the whole, this study is 

divided into seven sections as follows: 

(a) The fit ofRasch model to the ALIS data 

(b) The Check of the Assumption of Unidimensionality 

(c) The Check of the Assumption of Equal Item Discrimination 

(d) The Check of the Assumption ofNo Guessing 

(e) The Check of the Assumption ofNon-Speededness 

(f) The Comparison between the Classical Test Theory Method and the 

Rasch Approach 

(g) Identifying Poor Items using Independent Analyses from the Classical 

Test Theory Method and the Rasch Approach 

18 RASCAL is a one-parameter logistic model item calibration and test scoring program. It uses the 
unconditional maximum likelihood calibration method to estimate item difficulty parameters. 
Correction for the bias is an option. The scaling factor D can be set to 1. 7 to produce results comparable 
to those produced by programs such as LOGIST or BILOG, or set to 1 to produce results on similar scales 
to those obtained with programs such as BICAL or BIGSTEPS. In this study, D is set to 1. 7 and the 
ability scores are scaled to a mean of 0 and a standard deviation of 1. 
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Data Sets of the Stundy 

3.2 Samples which are progressively more dissimilar were generated by 3 sampling 

plans so that the behaviours of statistics estimated by the Rasch model could be 

examined under different examinee sampling conditions. All samples 

generated in this way have a sample size of 1 ,000, which is considered 

sufficiently large for the estimation of IRT parameters. 

(a) Random samples - Five random samples (named as r_sample1, 

r_sample2, etc.) were drawn from the whole data set of 26,964 

examinees (named as Whole Group). 

(b) Gender group samples - The Whole Group was separated into two 

gender groups, namely the Male Group (of 12,567 examinees) and the 

Female Group (of 14,397 examinees). Five samples of male examinees 

(named as m_sample1, m_sample2, etc.) and 5 samples of female 

examinees (named as f_samplel, f_sample2, etc.) were randomly drawn 

from each group respectively. As the male and female samples were 

drawn from different populations as defined by the gender variable, 

theoretically there should be more dissimilarity between a male sample 

and a female sample than between any two random samples described in 

(a). 

(c) Ability group samples - Different samples in terms of performance on 

the ITDA Mathematical Test were generated in this sampling plan. The 

top 25% of examinees were arbitrarily labeled as High-ability Group and 

the bottom 25%, Low-ability Group. By examining the raw total scores 

which were obtained by first running the RASCAL program to the data 

in the Whole Group, it was found that examinees in the High-ability 
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Group (of 6,601 examinees) have raw total scores 2 18 (i.e. from 18 to 

35) while those in the Low-ability Group (of6,821 examinees) have raw 

total scores s 10 (i.e. from 0 to 1 0). Five random samples were drawn 

from each of the ability groups (named as h_sample1, h_sample2, ... 

L_sample1, L_sample2, etc.). Since these two groups are defined in 

terms of test performance, not in terms of the gender variable as in (b), 

there should be more dissimilarity between a high ability sample and a 

low ability sample than between a male and female sample pair. 

These 3 sampling plans totally generate 5 x 5 = 25 random samples. The data 

sets available for analysis in the study are summarized in Table 3:1. 

<Table 3:1> 

The Fit of Rasch Model to the ALIS Data 

3.3 The research questions in this section are: 

(a) How invariant are the item difficulty estimates across different 

participant samples? 

(b) How well does the Rasch model fit item i of the Test (i = 1, 2, 3, ... , 

35)? 

(c) How invariant are the examinee ability estimates across different item 

sets? 

3.4 Since the fit of the model is equivalent in concept to the invariance of item and 

examinee parameters, the invariance property was investigated in this section. 

To study the invariance of the item difficulty parameters, the RASCAL program 
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was applied to each of the 25 samples to obtain 25 sets of item difficulty 

parameter estimates. Correlation coefficients between two sets of difficulty 

values were computed as follows: 

(a) Any two sets of item difficulty parameters from the 5 random samples 

were correlated. Totally, c; = 1 0 correlation coefficients were 

computed. 

(b) Item difficulty parameters from each of the 5 random samples of male 

examinees were compared with those from each sample of female 

examinees resulting in 5 x 5 = 25 correlation coefficients. 

(c) Similarly, item difficulty parameters from each of the 5 random samples 

of High-ability Group were compared with those from each sample of 

Low-ability Group resulting in another 25 correlation coefficients. 

Since the sampling distribution of correlation coefficient is skewed (Hopkins, et 

al, 1996, p.260), the individual correlation coefficients obtained in (a), (b) and (c) 

were transformed into normal variates by the Fisher's transformation. The 

average value was then obtained in each group of samples (i.e. the random 

samples, the male samples, etc.) in the usual way. The average value was 

re-transformed back into the original scale to give an overall view of invariance. 

The correlation coefficient alone is not sufficient to test a model-data fit. 

Scatterplots of the difficulty estimates of some selected samples were obtained 

to examine whether the points fall along the baseline. Since the chi-square 

statistic is sample size dependent, it is pretty useless with the subject groups 

because ofthe large sizes. Instead, the chi-square statistics (Xi 2
, i = 1, 2, 3, ... , 

35) for the 25 samples were computed for cross checking. 
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3.5 If there is a model-data fit, the item difficulty parameters estimated from the 

Whole Group should be the same as those from the gender and ability groups as 

the item parameters should be "person free". Therefore, the "effect" of the 

gender and ability of examinees on the magnitudes of misfit of the items were 

compared by studying the effect sizes of individual items. The relevant 

formula (Glass et. al., 1981, p.29; Fitz-Gibbon, 1984, p.138) is 

(Experimental group mean)- (Control group mean) 
Effect size = 

Control group SD 

In this study, the Whole Group (which contains all examinees) is taken as the 

control group and the item difficulty estimates of various subject groups were 

compared with the corresponding values estimated in the Whole Group by 

computing the "effect sizes" as follows: 

(Subject group item estimate) -(Whole Group item estimate) 
Effect size = 

SD of the Whole Group item estimates 

3.6 To study the invariance of examinee parameters, the test items were regrouped 

in three different ways to generate three pairs of item groups which were 

progressively dissimilar. The three groups are: 

(a) Equivalent-halves Groups- The items were separated into two groups, 

one group of odd-numbered items and one group of even-numbered 

items. 

(b) Content Groups- The items were separated into two groups according to 

different content categories (see para.3.7 below). 

(c) Difficulty Groups- The items were divided into two groups based on the 
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item difficulty. Items with negative item difficulty levels were 

classified as easy items and those with positive item difficulty levels as 

hard items. 

Six sets of ability estimates of the Whole Group were obtained for the 3 pairs of 

item groups by using the RASCAL program. The correlation coefficient 

between two sets of ability estimates was computed for each pair of item groups. 

Scatterplots were also drawn for cross checking. 

The Check of the Assumption of U nidimensionality 

3.7 The research question is 

Are the items of the ITDA Mathematical Test unidimensional? 

Bejar's analysis method (1980) was adopted. The 35 items of the Test were 

sorted into two different content areas19
, namely, Number and Algebra (named 

as N&A) and Shape, Space & Measures (named as SSM). The items included 

in each content area are summarized in Table 3:2. 

<Table 3:2> 

3.8 The RASCAL program was applied to each of the 5 subject groups described in 

para.3.2. For each subject group, two sets of item difficulty estimates were 

obtained. One set was obtained by including all items of the ITDA 

19 According to the National Curriculum of U.K. (DfEE & QCA, 1999), "Using & Applying 
Mathematics", "Number & Algebra", "Shape, Space & Measures" and "Data Handling" are 4 attainment 
targets. "Using & Applying Mathematics" was ignored as relevant items could be grouped in one of the 
other content areas. "Data Handling" was not considered as no item was really set on this area in the 
Test. The only one item in doubt is No.25 which involves arithmetic mean. Since the concept of data 
handling is not so obvious and this item can be easily solved by simple algebraic method, No.25 is 
categorized as an item in the "Number & Algebra" content area. 
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Mathematical Test in the calibration while the other was obtained by estimating 

only the items within each content area, i.e. N&A and SSM. The two sets of 

parameters estimated should not differ unless one or both of the content areas is 

tapping an ability, which is unique to that content area. In applying this method, 

the following procedures were adopted: 

(a) The two sets of the difficulty values in each subject group were correlated 

(the content-area-based estimates vs. the total-test-based estimates) and 

plotted, if necessary, to give a preliminary view on the extent to which the 

two sets are linearly related. 

(b) If unidimensionality holds, (i) the plot or the "principal axis" of the item 

difficulty estimates in (a) should be close to the "theoretical axis" which 

has slope 1 and intercept 0 (Bejar, 1980, p.284); (ii) the mean distance of 

items to the principal and theoretical axis should be constant across the 

two content areas and close to zero. The slope p and intercept a of the 

principal axis are respectively given by: 

where s1
2 and s2 

2 are the vanances of the content-area-based and 

total-test-based item difficulty estimates respectively, B1 and B2 are 

the corresponding mean difficulty estimates, and s12 is the covariance 

between the two sets of estimates. The sign in the numerator is chosen 

so that Pis positive. The proof of equations (3.1) and (3.2) can be found 

in Appendix 2. The distance of each point of the plot to the principal and 

theoretical axis can be computed by the equation (A2.3) of Appendix 2: 
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or 

d 1 - 1- B2i sinS+ B1i cosS -acosSI 

I

-B2 i tanS+Bli -a I 
secS 

(3.3) 

where ~=tanS. The corresponding value of di for the theoretical 

axis is found by setting~= 1 and a= 0 in the equation (3.3), i.e. 

B2. -B~-D. = I I 

I F2 (3.4) 

For each content area, the mean distances to the principal axis and to the 

corresponding theoretical axis were then compared. 

3.9 The ITDA mathematics items consist of two forms of multiple-choice items, 

namely the regular form and the comparative form. Items 1 - 15 are regular 

items while items 16 - 35 are quantitative comparison items which have the 

feature of sharing the same response options and instructions: 

Questions 16 - 35 each consist of two quantities, one in Column A 
and one in Column B. You are to compare the two quantities and on 
the answer sheet circle the letter 
A if the quantity in Column A is greater; 
B if the quantity in Column B is greater; 
C if the two quantities are equal; 
D if the relationship cannot be determined from the information 

g1ven. 

For example, items 16 and 24 are in the following format: 

ColumnA ColumnB 

16. (-1)(-3)(-5)(-7) ( -1 )( -3)( -5)( -7)( -9) 

24. 90% of 110% of8 8 
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3.10 The feature of quantitative comparison items might lead to multidimensionality 

due to the particular correct response of the items (Kingston & Dorans, 1985, 

p.285). Some examinees who did not know the answer might be more likely to 

choose option D. That means, if the correct answer were A, B or C, some 

examinees would be less likely to select the correct answer. On the other hand, 

if D were the correct answer, the same examinees would be more likely to select 

the correct answer than the model predicted. To investigate the effect of this 

feature to examinees, Bejar's analysis method was applied to each subject group 

to get two sets of item difficulty estimates. One set was obtained by including 

all items in the calibration (the total-test-based estimates) while the other was 

obtained by estimating only the items of each form (the form-based estimates). 

The analysis in para.3.8 above was repeated. 

The Check of the Assumption of Equal Item Discrimination 

3.11 The research question in this section is: 

Are the item discrimination levels close to each other? 

For each of the 5 subject groups described in para.3.2, the point biserial 

correlation of each item and the standard deviation of the resulting correlations 

were computed. The standard deviation should be small if the assumption is 

held. 

The Check of the Assumption of No Guessing 

3.12 The research question is: 

Are the guessing levels of the items close to zero? 
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One possible way is to examine the performance of examinees in the low score 

groups on the four hardest items. For each of these hard items, the proportion 

of correct responses for each score group in each subject group was plotted 

against the score group. If the proportions for the low score groups are 

substantially different from zero, guessing could be assumed to be operating. 

The Check of the Assumption of Non-Speededness 

3.13 The research question is 

Is the ITDA Mathematical Test a speeded test? 

The appropriateness of the assumption was checked by investigating the 

percentage of omits of each item of the Test, the percentage of examinees 

completing the Test, the percentage of examinees completing 75% of the Test 

and the percentage of examinees who did not respond to the last 5 items of the 

Test. 

The Comparison between the Classical Test Theory Method and the Rasch 

Approach 

3.14 The CTT model and the Rasch model were compared by addressing the 

following two major issues as suggested by Fan (1998, p.361): 

(a) How comparable are the item and examinee parameter estimates from 

the CTT framework with those from the Rasch model? 

(b) How invariant are the item and examinee parameter estimates of the CTT 

framework and the Rasch model across participant samples and item 

groups? 
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3.15 More specifically, the two issues were expressed as the following four research 

questions: 

(a) How comparable are the CTT-based and Rasch-based item difficulty 

estimates? 

(b) How comparable are the CTT-based and Rasch-based examinee ability 

estimates? 

(c) How invariant are the CTT-based and Rasch-based item difficulty 

estimates across different participant samples? 

(d) How invariant are the CTT-based and Rasch-based exammee ability 

estimates across different item sets? 

Comparability of CTT-based and Rasch-based item difficulty parameters 

3.16 Comparability of the two sets of item difficulty parameters was examined by 

correlating the CTT and Rasch item difficulty estimates obtained from each of 

the 5 subject groups of examinees. The item difficulty indices p (i.e. the 

proportion of examinees that responded correctly to the item) were used in CTT 

and the b-values in the Rasch approach. Since the p-value is an inverse 

indicator of item difficulty and expresses item difficulty on an ordinal scale (i.e. 

it indicates the rank order or relative difficulty of items), it is first transformed to 

an interval scale before conducting statistical analyses. The transformation, 

which requires the assumption that the underlying trait measured by an item is 

normally distributed, is achieved by finding the z-score corresponding to the 

(1- p)th percentile from the z-distribution. For example, ifp = 0.93 (i.e. 93% 

of the examinees respond to the item correctly), the z-value for such a p-value 

will be -1.5. This transformation removes the curvilinearity in the relationship 

between two sets of item p-values (Anastasi & Urbina, 1997, p.174). 
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Comparability of CTT-based and Rasch-based examinee parameters 

3.17 Comparability of the two sets of examinee parameters (raw total score T in the 

CTT vs. ability 9 in the Rasch approach) was assessed by correlating the T and 9 

estimates obtained from the same subject group of examinees. A high 

correlation was expected as the raw total score (or the number correct score) has 

been shown to be a sufficient statistic for the ability 9 in Appendix 1. 

Nevertheless, the CTT-scores T were still correlated with the 9 values for 

justification. The analyses were repeated for all different subject groups 

described in para.3.2. 

The degree of invariance of the CTT-based and Rasch-based item difficulty estimates 

3.18 For each of the 25 random samples described in para.3.2, the degree of 

invariance of the item difficulty parameters was assessed by correlating the 

estimates obtained within each measurement framework and studying the 

corresponding scatterplots. As in para.3.16, p-values in the CTT and b-values 

in the Rasch framework were used. If the correlations and the features of the 

scatterplots from each measurement framework are close to each other, the CTT 

and the Rasch mode1ing should make no significant difference to the invariance 

of item difficulty estimates. 

The degree of invariance of the CTT-based and Rasch-based examinee ability estimates 

3.19 For each of the item group described in para.3.6, the examinee ability estimates 

of the Whole Group obtained within each measurement framework were 

correlated. Again, if the correlations from the CTT model and the Rasch model 

and the features of the corresponding scatterplots are close to each other, the two 
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frameworks should make no significant difference to the mvanance of the 

examinee ability estimates. 

Identifying Poor Items using Independent Analyses from the Classical Test Theory 

Method and the Rasch Approach 

3.20 The research question is 

Are the CTT method and the Rasch approach identifying the same 

"poor" items? 

Two indices for each item are required for the item analysis using CTT. They 

are the p-value and the point biserial correlation coefficient between the scores 

on the item and the scores on the total test. Kline's suggestions (1990, p.90) 

were adopted in this study. That is, items to be retained should have a p-value 

between 0.20 and 0.80 and a point biserial correlation coefficient greater than 

0.3. From the point of view of measurement, the purpose of an item is to 

spread out examinees' scores along a continuum so that examinees could be 

discriminated. Therefore, a highly discriminating item should have a large 

spread (or item variance). If an item is answered correctly by most of the 

examinees (so that it has a high success rate) or by only a few examinees (so that 

it has a low success rate or a high "failure" rate), its variance will be small and it 

has made only little discrimination (discriminated only a high or low ability 

group). Therefore, items should have the highest possible item variance for 

making a large discrimination to the examinees. Since the variance of an item 

is given by 

V=p(l-p), 
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we have 
dV d2V - = 1- 2p and -- = -2 . 
dp dp2 

It is clear that p = 0.5 gives a maximum value to the item variance. That is to 

say, items with equal success and failure rates are maximally discriminating. 

However, if all the items of a test have p = 0.5, the test could not discriminate 

very bright examinees and low ability examinees. Very bright examinees 

would all respond correctly and low ability examinees would all fail. That is 

why p-values between 0.2 and 0.8 are recommended in a test. Similarly, the 

total score on a test should measure a broader concept and hence provide more 

information than any one item. Thus, very high inter-item correlations are not 

good either. It is because very high correlation must mean that the items are 

themselves highly correlated. Therefore, they would lead to the production of 

an exceedingly narrow test and some of the items are virtually identical and 

hence redundant. 

3.21 In Rasch modeling, the fitness of items was checked by exammmg the 

chi-square statistic. The "poor items" which were independently identified by 

the CTT method and the Rasch modeling could then be compared. 
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CHAPTER 4l 

RESULTS 

Introduction 

4.1 The ITDA Mathematical Test in this study requires examinees to complete 35 

items in 25 minutes, that is, examinees have on average only 43 seconds for 

answering each item including reading all the instructions (particularly those for 

items 16- 35 which are of quantitative comparison form). Therefore, the time 

may be tight20 for most examinees and the assumption of non-speededness may 

be violated. A preliminary view on the assumption of non-speededness can be 

obtained by analyzing the percentages of omits of each item. Table 4:1 shows 

the results. Clearly, more than 10% of examinees did not respond to items 7, 

15, 21- 35 (17 numbers), and more than 20% did not respond to items 25-35 

(11 numbers). There are two possibilities for the high omitting rate: (a) the 

items concerned are too difficult so that they were left unanswered; (b) the 

examinees did not have sufficient time to complete the test. Anyway, the 

assumption of non-speededness need to be studied in more detail. 

<Table 4:1> 

4.2 To further study the possible effect of speededness on the estimation of 

20 The time for the multiple-choice paper (of 54 items) in the certificate level mathematics subject of the 
Hong Kong Certificate of Education Examination (equivalent to GCE "0" Level) is 90 minutes, i.e. 100 
seconds for answering each item. 
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parameters and the results of analysis, the data were re-analysed by deleting 

from the original test, the last 11 items (i.e. items 25 - 35), which had been 

omitted by more than 20% of examinees. In the repeated analysis, the same 

subject groups and samples were used for easy comparison. However, two 

points should be noted: 

(a) Some examinees in the High-ability Group may not be really "high" in 

score. For example, an examinee with raw score 23 who had all the last 

11 items correctly responded to in the original test would only get a score 

of 12 after taking away the items. 

(b) The rationale of the repeated study is based on the assumption that if 

examinees did not have sufficient time to complete the test, they would 

omit the items at the end as a block. 

For convenience, the original Mathematical Test (of 35 items) is named as 

Test-35 while that which has deleted the last 11 items, Test-24 (of 24 items). In 

all the analysis in both tests, the RASCAL program was used and the data were 

centred on the examinees rather than the items (see footnote 18 on page 38). 

The Fit of Rasch Model to the ALIS Data 

4.3 The item difficulty and the examinee ability parameters for different participant 

samples (random, gender and ability samples) were estimated by using the 

RASCAL program. When the Rasch model fits the test data, the item difficulty 

parameter estimates will be the same within sampling errors regardless of the 

samples of examinees chosen from the random samples, gender samples or 

ability samples. Similarly, the examinee ability parameters will be invariant no 

matter what item groups are used to estimate the abilities of examinees. 
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Invariance of item difficulty parameter 

4.4 The correlation coefficients between any two sets of item difficulty estimates 

computed in each sampling plan are listed in Table 4:2-4:4. 

<Table 4:2 - 4:4> 

It can be seen that in both Test-35 and Test-24, all the correlation coefficients are 

statistically significant at the 0.01 level although the correlation between the 

high-ability and the low-ability samples are not so "strong" as those among the 

random samples and those between the male and female samples. In general, 

the correlation coefficients in Test-24 are slightly smaller than their counterparts 

in Test-35 except those of r_samplel and r_sample2, r_samplel and r_sample3, 

r_samplel and r_sample4, h_samplel and L_sample4, and h_sample5 and 

L_sample4. Nevertheless, the differences are negligible. 

4.5 The correlation between the item difficulty estimates from individual samples 

were averaged across samples under the same sampling condition to get a 

general view of the comparability of invariance of item difficulty estimates. In 

Table 4:5 and all the following tables, an average correlation coefficient was 

obtained through transforming individual correlation coefficients to Fisher's Zs, 

averaging the Fisher's Zs and then re-transforming the average value to the 

Pearson correlation coefficient. 

<Table 4:5> 
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Clearly, the average correlation coefficient decreases across progressively less 

comparable participant samples. The relationship is weakest in the ability 

group sampling. The values obtained in Test-24 were slightly less than the 

corresponding values in Test-35 in all the sampling plans. 

4.6 Plots of item difficulty estimates in the two random samples, r _ sample3 and 

r_sample5 which have a correlation coefficient of 0.993 in Test-35 and 0.990 in 

Test-24 are shown in Figure 4.1(a) & (b). The line "y = x" was added in each 

of the plots to serve as the baseline. Four other plots from other sampling plans 

are shown in Figure 4.2 and 4.3. Two compare the estimates from m_sample3 

and f_sample2 which have relatively higher correlation coefficients (0.976 in 

Test-35 and 0.974 in Test-24) and the others compare those from h_sample3 and 

L_sample2 which have relatively smaller correlation coefficients (0.882 in 

Test-35 and 0.872 in Test-24). Plots from other pairs of samples can be 

similarly obtained. 

<Figure 4.1 - 4.3> 

The plots in Figure 4.1(a) & (b) show a high relationship between the sets of 

item difficulty estimates. The slight variations in the plots are due to sampling 

errors. If the feature of item invariance is present, similar results should be 

obtained from the other plots. Figure 4.2(a) & (b) reveal clearly that the two 

sets of item difficulty estimates from m_sample3 and f_sample2 differ a bit in 

both tests and the scatter in each is a little bit below the baseline (with Test-24 

slightly better). Figure 4.3(a) & (b), on the other hand, differ substantially 

from the plots shown in Figure 4.1 - 4.2 (a) & (b). The points are more 

scattered and well below the baseline. Although the large distance from the 
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line of the low ability group is partly the result of the data being centred on the 

examinees, Figure 4.1 to 4.3 suggest that the test items function a bit differently 

in the two ability samples in both Test-35 and Test-24. There are three possible 

explanations for the difference: 

(a) The item parameter estimation 1s not done very well when extreme 

groups are used as some effects like speededness, carelessness and 

nervousness on the test performance of examinees, particularly the low 

ability examinees were not taken into account. 

(b) Other important item statistics like item discrimination index and 

guessing factor have been ignored. That is to say, the problem may be 

due to model-data misfit. 

(c) Some other assumptions of the Rasch model are violated. 

No matter which one, the feature of item parameter invariance is not obtained. 

4.7 For cross checking, the chi-square statistics for each item in all the 25 samples 

are computed for both Test-35 and Test-24. The fitness of each item in each 

sample was tested at the 0.01 level. Table 4:6 summarizes all the unfitted items 

in all the samples. For simplicity, only items which are found unfitted in at 

' least 3 samples from each sampling group are considered as "really" unfitted 

items. These "really" unfitted items are also listed in Table 4:6 for reference. 

<Table 4:6> 

Table 4:6 shows that in both Test-35 and Test-24, the random samples and the 

male samples give nearly the same unfitted items but the others give 

substantially different results. In particular, a large number of items in the 
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samples of the two ability groups fit the Rasch model. There are only two 

"really" unfitted items in the High-ability samples in both Test-35 and Test-24 

while in the Low-ability samples, there are two "really" unfitted items in Test-35 

but none in Test-24. However, the apparent fitness seems to contradict the 

plots obtained in para.4.6. Therefore, checking of the assumptions should be 

studied and this will be done in the next sections. 

4.8 Regardless of the values of the chi-square statistic, the differences in item 

difficulty estimates of the Male Group, Female Group, High-ability Group and 

Low-ability Group relative to the Whole Group which was taken as the control 

or reference group, were compared by computing the "effect sizes" of the items. 

The means and standard deviations of the item difficulty estimates of all the 5 

subject groups as well as the effect sizes are tabulated in Table 4:7. 

<Table 4:7> 

It is seen that the means of item difficulty are different for different groups and 

the differences of those of the two ability groups are more substantial ( -1.100 in 

the High-ability Group and 2.924 in the Low-ability Group vs. 0.584 in the 

Whole Group). Similarly, the item difficulty estimates of the two ability 

groups (which have relatively higher standard deviations of 2.304 for the 

High-ability Group and 1.872 for the Low-ability Group) are more scattered 

when compared with those in the Whole Group and the gender groups. 

<Figure 4.4> 
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The scatterplots of the effect sizes are plotted in Figure 4.4. The figure reveals 

that the effect sizes of the items of the two ability groups are substantially 

different from those of the two gender groups. Most of the effect sizes of the 

items of the High-ability Group are negative showing that the item difficulty 

estimates are generally smaller than those estimated from the Whole Group. 

That is to say, most of the items are easy to this group of examinees. On the 

other hand, the estimated item difficulty parameters of the Low-ability Group 

are substantially higher than those estimated from the Whole Group or most of 

the items are hard to the low-ability examinees. The effect sizes of the two 

gender groups are relatively smaller (with those from the Female Group a little 

bit above the horizontal axis and those from the Male Group a little bit below) 

showing that the "effect" of the gender is not so substantial. 

4.9 For further study, the items are ordered in terms of the item difficulty parameters 

estimated from various subject groups and tabulated in Table 4:8. In Test-35, 

the first 4 simplest items are in the order of 2, 1, 8, 5 in all groups except the 

Female one in which the order is 2, 8, 5, 1. The hardest 3 items are 33, 34 and 

35 in the Whole Group, Male Group and High-ability Group although they are in 

different order of difficulty. Different combinations were identified in the other 

two groups. The items are 13, 34 and 35 in the Female Group while in the 

Low-ability Group, the order is 34, 30 and 35. Apart from that, the orders of 

other items in all the subject groups are quite different particularly those in the 

two ability groups (the Whole Group and Male Group being a bit better). 

<Table 4:8> 
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Similar results are obtained from Test-24. The first 4 simplest items have the 

same pattern as those in Test-35. However, the hardest items identified are 14, 

15 and 13 and they are in the same order in all groups except the High-ability 

Group in which the order is 15, 14, 13. Again, the orders of other items are 

different in the Female Group and the two ability groups. On the other hand, 

the orders in the Whole Group and Male Group are more or less the same. If 

the orders of the items in Test-35 and Test-24 are compared in each group, it is 

not hard to see that the order ofthe first 24 items ofTest-35 remains the same as 

those in Test-24 no matter what group is considered. Table 4:8 reflects that not 

only the invariance of the item difficulty estimates is not preserved, but also that 

of the order of the items. 

Invariance of ability parameter 

4.10 To investigate the invariance of ability parameters across different item groups 

(i.e Equivalent-halves Groups, Content Groups and Difficulty Groups), the item 

difficulty parameters of the items in both Test-35 and Test-24 were estimated by 

applying the RASCAL program to the examinees in the Whole Group. Table 

4:9 shows the item difficulty estimates of the items of Test-35 and Test-24 and 

also the estimates sorted in item difficulty order for completeness. Figure 4.5 

(a) & (b) give the corresponding graphs showing the item difficulties arranged 

by the order of the items. As stated in para.4.9, in terms of difficulty, the order 

of the first 24 items remains the same in both Test-35 and Test-24. 

<Table 4:9> 

<Figure 4.5> 
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Items with negative difficulty estimates were considered as easy items while 

those with positive values hard items. The results are tabulated in Table 4:10 

and they reflect that both Test-35 and Test-24 identify the same easy items. 

<Table 4:10- 4:11> 

4.11 The correlation coefficients of exammee ability were estimated from the 

Equivalent-halves Groups, Content Groups and Difficulty Groups usmg the 

RASCAL program. The correlation coefficients of the estimates from each 

pair of item groups was then computed. The results are listed in Table 4:11. 

The correlation coefficients are fairly constant across the Equivalent-halves 

Groups and Content Groups (0.580 & 0.527 respectively in Test-35 and 0.342 & 

0.285 respectively in Test-24) but those obtained from the Difficulty Groups 

were substantially smaller (0.013 in Test-35 and 0.023 in Test-24). Since the 

degree of heterogeneity of samples will influence the values of correlation 

coefficients (Hopkins et al, 1996, p.112), the low values obtained in the 

Difficulty Groups may be due to the "less heterogeneity" of the abilities of 

examinee estimated by the easy items (and also by the hard items). 

Nevertheless, the low correlation coefficients, to an extent, indicate that the 

examinee ability estimates are not invariant across different sets of items. The 

scatterplots in Figure 4.6 - 4.8 provide visual comparisons between ability 

estimates obtained with different item groups. 

<Figure 4.6- 4.8> 
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From the plots, it is found that most points are clustered about the baseline 

except the extreme values, i.e. the examinees with very low abilities (with 

abilities equal -9). Obviously, these extreme values, being isolated from the 

clustered points, may give biased results as the influence of speededness and 

guessing is believed to be most significant for examinees with low abilities. In 

addition, there are more extreme values in the scatterplots based on items of 

different difficulties (i.e. Figure 4.8) (1301 & 220 numbers out of 26,964 ability 

estimates in Test-35; and 1301 & 653 numbers in Test-24) than the others (i.e. 

Figure 4.6 & 4.7). For further study, the correlation coefficients were 

re-calculated by deleting the extreme values and are also tabulated in Table 4:11. 

The results reflect that the correlation coefficients are increased substantially, 

particularly in the Difficulty Groups. The values in Test-35 and Test-24 are 

increased from 0.013 and 0.023 to 0.477 and 0.421 respectively. The 

correlation coefficients were relatively more constant across the item groups in 

both Test-35 and Test-24 after deleting the extreme values. 

The Check of the Assumption of Unidimensionality 

4.12 Bejar's analysis method was adopted to check the assumption of 

unidimensionality. For simplicity, the 5 groups of data (i.e. the Whole Group, 

Male Group, Female Group, High-ability Group and Low-ability Group) were 

tested instead of the 25 samples. The RASCAL program was applied to the 

Whole Group twice to obtain two sets of item difficulty estimates. One set 

(total-test-based) was obtained by including all 35 items of the test concerned 

while the other (content-area-based) was estimated by only items within each 

content area, i.e. N&A and SSM. The two sets of estimates hence obtained 
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were then correlated. The procedures were repeated for the other 4 groups. 

The correlation coefficient of the two sets of estimated item difficulty 

parameters of each individual group in each test is tabulated in Table 4:12. 

<Table 4: 12> 

It is seen that in Test-35, the correlation between the two sets of estimates is 

nearly "perfect" in all the groups except the Low-ability Group which has a 

value of 0.982. Although the correlation coefficient for this group is still high, 

its anomaly can be reflected from the plot of the two sets of item difficulty 

estimates as shown in Figure 4.13( a). The corresponding plots for the other 

groups are also shown in Figure 4.9(a) - 4.12(a) for comparison. Clearly, the 

two sets of estimated parameters for the Low-ability Group tended to form a 

pattern of "fan" and deviated severely for the items with high difficulty level. 

Test-24 shows improvement. There is no substantial difference for the Whole 

Group, the two gender groups and the High-ability Group, while the deviation of 

the two sets of item difficulty estimates in the Low-ability Group is much 

smaller when compared with that in Test-35. 

<Figure 4.9- 4.13> 

The anomaly of the low-ability group was further studied by considering the 

slope, p and intercept, a of the principal axis of the estimated item difficulty 

parameters. If unidimensionality holds, p will be close to 1 while a to 0. 

Table 4:13 shows the values of p and a for various groups (calculated from 

equations (3.1) and (3.2)). It is seen that except the High-ability Group and 
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Low-ability Group (in particular, the Low-ability Group in Test-35), the 

principal axes of all other groups are close to the theoretical axis. This result 

also agrees quite well with the plots in Figure 4.9- 4.13. 

<Table 4: 13> 

4.13 The mean distances of items to the principal and theoretical axis were computed 

for each content area and subject group and are tabulated in Table 4:14. Figure 

4.14(a) & (b) plot the same information. 

<Table 4:14> 

<Figure 4.14> 

The principal ax1s relating to the content-area-based and total-test-based 

estimates should be close to the theoretical axis and the average distance to the 

theoretical axis should be small and constant across the two content areas. It is 

not hard to envisage that there would be great differences in distance across 

content areas even the two axes coincide. Therefore, both requirements must 

be met for unidimensionality. The results indicate that the responses to Test-35 

are accounted for quite well by a single dimension in the Whole Group and the 

two gender groups. For the two ability groups, particularly the Low-ability 

Group, the principal and theoretical axis do not coincide as well as they do in 

other subject groups. Moreover, there are great differences in the mean 

distances whereas such distances are relatively smaller and constant in other 

groups. This indicates a severity of departure from unidimensionality in the 
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two extreme ability groups. The great difference between the mean distances 

from the theoretical and principal axes in the two ability groups disappeared in 

Test-24, but their mean distances are still relatively larger than those obtained in 

other groups. 

4.14 Bejar's procedures were re-applied to the 5 subject groups to study the effect of 

different forms of multiple-choice items (regular and quantitative comparison 

forms) on unidimensionality. The corresponding tables and plots are shown in 

Table 4:15-4:17 and Figure 4.15-4.20 respectively. 

<Table 4:15- 4:17> 

<Figure 4.15 - 4.20> 

The correlation coefficients between the form-based estimates and the 

corresponding total-test-based estimates are high (greater than 0.9) and those in 

Test-24 are relatively higher than those in Test-35 except the High-ability Group. 

Nevertheless, as in the case of different content categories, the points 

substantially deviate from the baseline in the Low-ability Group and at the 

"lower end" of the High-ability Group. These results were justified by 

considering the slopes and intercepts of the theoretical and principal axes and 

the mean distances to the two axes for each item form. From Figure 4.20, it is 

not hard to see that the result has been improved after deleting the last 11 items 

although the mean distances in the two ability groups are still large. 
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The Check of the Assumption of Equal Item Discrimination 

4.15 The discrimination of each item is measured by the point biserial correlation. 

For each of the 5 subject groups, the point biserial correlations of all the 35 

items in Test-35 and the 24 items in Test-24 were respectively computed and 

tabulated in Table 4:18. 

<Table 4:18> 

The tabled entries reflect that the means and standard deviations are fairly 

constant across the Whole Group, Male Group and Female Group (ranging from 

0.313 to 0.338 in Test-35 and 0.356 to 0.379 in Test-24) in both tests, while 

those of the ability groups deviate from each other and also from the first three 

groups. This result indicates that the item discrimination depends on the 

groups of examinees and is by no means identical. The High-ability Group and 

Low-ability Group have relatively smaller standard deviations (0.081 and 0.058 

in Test-35; 0.078 and 0.063 in Test-24). Therefore, the variation in the item 

discrimination indices is smallest. This may be explained by the fact that the 

items, in general, are relatively too easy to the high-ability examinees and too 

difficult to the low-ability ones so that all items look more or less "the same" to 

the examinees in each ability group in terms of discrimination. The variations 

in other subject groups are relatively more substantial. 

4.16 Glancing through the point biserial correlations of the last 5 items in Test-35, it 

is not hard to see that with a few exceptions (say item 2 which is the easiest item 

to all subject groups as seen in Table 4:8 and hence has the lowest item 
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discrimination as expected), the values of their correlations are generally smaller 

than those of other items in the Whole Group and the two gender groups. The 

low item discriminations of these items may attribute to the speededness of the 

test. As most students (see para.4.20 below) could not get sufficient time to 

achieve the last few items, examinees either left them unanswered or guessed 

resulting in low item discriminations and hence low point biserial correlations. 

The Check of the Assumption of No Guessing 

4.17 The guessing factor is checked by considering the performance of examinees on 

the hardest few items in the low score groups. The observed proportions of 

correct responses to the items in both Test-35 and Test-24 for each score group 

were computed for the Whole Group, Male Group, Female Group, High-ability 

Group and Low-ability Group. Although the lowest score in the High-ability 

Group is 18 in Test-35 by definition, it is included here for completeness. For 

comparison purpose, the expected ICCs were also included. The 6 hardest 

items and their item difficulty parameters estimated for each subject group in 

each ofTest-35 and Test-24 are presented in Table 4:19. 

<Table 4:19> 

For comparison purposes, the same four items were studied in all the subject 

groups in each test (i.e. items 13, 33, 34 and 35 in Test-35 and items 7, 13, 14 

and 15 in Test-24). The plots of proportions of correct responses to these 

"hard" items are shown in Figure 4.21 - 4.24 (Test-35) and Figure 4.25 - 4.28 

(Test-24). 
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<Figure 4.21 - 4.28> 

4.18 It is seen that the observed proportions correct are higher than the expected 

values for score groups roughly lower than 20-25 in Test-35 and 15-20 in 

Test-24. In addition, for score groups, say from 10 to 20 in Test-35 or from 5 

to 10 in Test-24, the observed proportions correct of most items remain fairly 

constant (for example, items 33, 34 and 35 in Test-35 and 13, 14 and 15 in 

Test-24 of the Whole Group, Male Group and Female Group). In particular, 

the observed ICC for items 34 in Test-35 and those for items 7 and 14 in Test-24 

reflect a substantial variation from their expected counterparts. The observed 

ICCs at low score groups are higher than the expected ones but the reverse is 

observed at high score groups. This reflects that there might be some 

ambiguous wordings or misconcepts which mostly affected examinees in high 

score groups. Generally, the assumption of zero guessing factor may be 

incorrect. For the Low-ability Group, most of the proportions are less than 

0.10 in Test-35 and between 0.10 and 0.20 in Test-24. 

The Check of the Assumption of Non-Speededness 

4.19 Response speed is as much an indicator of ability as is the correctness of 

responses to items. It is a different dimension which affects performance as 

examinees who can not only do mathematics, but also do it quickly will tend to 

get higher grades than those who need more time. Therefore, speed and ability 

are sometimes confounded. Nevertheless, the effect of speededness in this 

study was investigated. The preliminary analysis in Table 4:1 has shown that 

the ITDA Mathematical Test might be a speeded test to the group of examinees 
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concerned. To seek for further justification, the percentages of examinees 

completing Test-35 and completing 75% of the test were computed and are 

presented in Table 4:20. 

<Table 4:20> 

The results indicate that even in the High-ability Group only half of the 

examinees can complete the whole test and 91.5% three quarters of the Test. 

The corresponding values for the examinees in the Low-ability Group are even 

much lower (29.0% and 53.2% respectively). 

4.20 The assumption of non-speededness was further studied by considering the 

percentages of examinees who did not respond to the last 5 items, i.e. items 31 

to 35. The values are tabulated in Table 4:21. It is seen that over 20% of 

examinees in all subject groups (except the High-ability Group which has a 

relatively smaller percentage of 16.4) have omitted all the last 5 items. In 

particular, the Low-ability Group has a very high value of 46. 7%. Moreover, 

the percentages increase from item 31 to item 35 for all groups (except item 34 

and 35 of the Low-ability Group which have roughly the same percentage). 

Therefore, the examinees had insufficient time to complete the test and a large 

percentage of them omitted the last few items. According to Slinde & Linn 

(1979, p.441), a non-speeded test is considered to be one in which the proportion 

omitting the last few items is about 0.10 or less. Therefore, all the data 

obtained have provided an indication of the speededness of the ITDA 

Mathematical Test. 

<Table 4:21> 
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The Comparison between the Classical Test Theory Method and the R.asch 

Approach 

Comparability of CTT-based and Rasch-based item difficulty parameters 

4.21 Table 4:22 presents the results, associated with the first research question of 

para.3.15, that is, "How comparable are the CTT-based and Rasch-based item 

difficulty estimates?". For each of the subject group, the normalized or 

transformed CTT p-values and the Rasch-based item difficulty estimates were 

correlated. 

<Table 4:22 - 4:23> 

As the results indicate, the relationship between CTT- and Rasch-based item 

difficulty estimates is almost perfect for all subject groups in both Test-35 and 

Test-24 because the correlation coefficients are either 0.999 or 1.000. For 

cross-checking, the orders of the items based on the CTT and Rasch item 

difficulty estimates are tabulated in Table 4:23. It can be seen that in Test-35, 

except items 16 & 19 in the Female Group and items 4 & 11 in the Low-ability 

Group, the two measurement frameworks created the same item order. In 

Test-24, similar result was obtained. It appears that both the CTT and Rasch 

model provide almost the same information with regard to item difficulty but the 

latter has a considerable model complexity. Unless the Rasch model estimates 

could show superior performance in terms of invariance across different samples 

over that of CTT item difficulty indices, the results obtained here might not 

indicate any empirical advantage over the simpler CTT framework. 
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Comparability of CTT-based and Rasch-based examinee parameters 

4.22 For the second research question ofpara.3.15, that is, "How comparable are the 

CTT-based and Rasch-based examinee ability estimates?", both CTT- and 

Rasch-based ability estimates (i.e. the raw total scores and thee estimates) were 

obtained and correlated for each of the subject groups. Table 4:24 presents the 

results for the groups. The results show that the CTT- and Rasch-based ability 

estimates correlate highly with each other for all subject groups in Test-35. All 

the correlation coefficients have values of at least 0.95 except the High-ability 

Group which has a lower value of 0.889. The correlation coefficients of the 

subject groups (except the Low-ability Group) are smaller in Test-24 than in 

Test-35. In particular, the High-ability Group has an exceptionally lower 

correlation coefficient of 0.714. Nevertheless, the correlations are still high. 

These high correlations indicate that CTT- and Rasch-based ability estimates are 

comparable with each other. That is to say, regardless of which measurement 

framework is used, very similar conclusions will be drawn. This has justified 

our expectation as the raw total score is a sufficient statistic of the e estimate in 

Rasch model. 

<Table 4:24> 

The degree of invariance of the CTT-based and Rasch-based item difficulty estimates 

4.23 The third research question in para.3.15 is "How invariant are the CTT-based 

and Rasch-based item difficulty estimates across different participant samples?". 

It is a very crucial question as the assumption of item parameter invariance 

across different participating samples will justify the use of Rasch model in 

measurement. Table 4:25 presents the results for this research question. 

Notice that the correlation coefficients in this table are averages of the 
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correlation coefficients between item difficulty estimates from any two different 

samples (e.g. r_sample1 and r_sample2, h_sample1 and L_sample2, etc.) 

derived from the same measurement framework. 

<Table 4:25> 

The tabled entries indicate that the average between-sample correlation 

coefficients of item difficulty estimates are very high and are comparable 

between CTT and Rasch model (those in Test-24 are slightly smaller than their 

counterparts in Test-35). The standard deviations are smallest in the ability 

group sampling in both Test-35 and Test-24 within each measurement 

framework (Test-35: 0.034 in CTT and 0.039 in Rasch; Test-24: 0.062 in CTT 

and 0.041 in Rasch). On the other hand, the standard deviations in the gender 

group sampling in Test-24 are substantially different in the two analyses (being 

0.177 in CTT and 0.072 in Rasch as shown in Table 4:25). The scatterplots of 

the CTT transformed p-values of the same samples adopted by Rasch model in 

para.4.6 are shown in Figure 4.29 - 4.31. By comparing these plots with those 

in Figure 4.1 - 4.3, it is found that the plots exhibit very similar features as the 

Rasch item difficulty estimates, i.e. a high relationship for the random samples 

and a slightly weaker relationship for the gender samples, but the points in the 

plots of ability samples fell substantially below the baseline. 

<Figure 4.29- 4.31> 

The degree of invariance of the CTT-based and Rasch-based examinee ability estimates 

4.24 The last research question in para.3.15 is "How invariant are the CTT-based and 
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Rasch-based exammee ability estimates across different item sets?". This 

question is as crucial as the third research question. Table 4:26 presents all the 

correlation coefficients across the item groups in both Test-35 and Test-24 

within each measurement framework. The results reflect that the correlation 

coefficients of examinee ability estimates from CTT are relatively more constant 

across all the item groups than those estimated from the Rasch model, 

particularly those in the Difficulty Groups (being 0.013 in Test-35 and 0.023 in 

Test-24). 

<Table 4:26> 

The corresponding scatterplots of the standard scores (derived from the raw total 

scores) ofthe examinees of the Whole Group in different item groups are shown 

in Figure 4.32 - 4.34. Comparing the plots with those in Figure 4.6 - 4.8, it is 

not hard to see that the isolated extreme values do not exist, therefore, resulting 

higher values of correlation coefficients. 

<Figure 4.32 - 4.34> 

For comparison purposes, the isolated extreme values in the Rasch estimates 

were excluded with correlation coefficients re-calculated. The results (Table 

4:26) reflect that the correlation coefficients within the CTT framework decrease 

slightly while those from the Rasch framework increase significantly. As a 

result, the ability parameters estimated from the two frameworks are highly 

comparable. These empirical observations from para.4.23 and this paragraph 

are quite interesting as invariance is a strong argument in favor of the Rasch 

model. 
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Identifying Poor Hems using Independent Analyses from the Classicall Test Theory 

Method and the Rasch Approach 

4.25 The CTT p-values and the point biserial correlation coefficients of the items 

were computed. Using Kline's criteria (1990, p.90), items with p-values 

between 0.20 and 0.80 and point biserial correlation coefficients greater than 0.3 

are "good" items. On the other hand, the poor items were also identified by 

using chi-square statistics in the Rasch model. The comparability of the 

numbers of unfitted items from the two measurement frameworks and the 

number (and percentage) of common unfitted items are tabulated in Table 4:27(a) 

& (b). The tabled entries show that in all the samples of Test-35, the CTT 

gives more unfitted items (ranging from 15 to all items) than the Rasch 

modeling (ranging from 1 to 15 items). In particular, nearly all the items in the 

high-ability samples and all the items in the low-ability samples are unfitted 

when assessed by the CTT. In Test-24, the numbers of unfitted items identified 

by both frameworks are closer to one another than those in Test-35 in the 

random and gender samples (4 to 8 unfitted items in CTT and 3 to 8 unfitted 

items in Rasch). However, the great discrepancies in the ability samples (18 to 

23 unfitted items in CTT and 0 to 3 unfitted items in Rasch) remain in Test-24. 

The percentages of commonly unfitted items identified by both frameworks are 

low in both tests particularly in the low-ability samples (8.6% to 20.0% in 

Test-35 and 0% to 16.7% in Test-24). Clearly, the two measurement 

frameworks have identified different "poor" items in this study and the CTT 

seems to be more sensitive to the lack of fit than the Rasch Model particularly in 

the two extreme ability groups. 

<Table 4:27> 
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CHAJPTER5 

§lJMMARY, DI§ClJ§§ION AND RECOMMENDATION§ 

Summary 

5.1 In the present study, the Rasch model which claims person-free item calibration 

and item-free person measurement was used to analyze the responses of 26,964 

examinees to the International Test of Developed Ability (ITDA) Mathematical 

Test, a test of 35 multiple-choice items. As over 20% of examinees did not 

respond to the last 11 items, the analysis was repeated by deleting from the full 

test of 35 items (here called Test-35) the last 11 items to produce Test-24 for 

further studying the effect of speededness. 

5.2 There were two purposes of the study: (a) to test the fit between the Rasch 

model and the data from the ITDA Mathematical Test, the scores of which 

provides an alternative baseline for comparing the progress of students in the 

Advanced-level Information System (ALIS) project in U.K.; and (b) to compare 

the two popular measurement frameworks, namely the Classical Test Theory 

(CTT) method and the Rasch approach. To investigate these questions, 5 

subject groups, namely the Whole Group (of all 26,964 examinees), Male Group 

(of 12,567 examinees), Female Group (of 14,397 examinees), High-ability 

Group (of 6,601 examinees) and Low-ability Group (6,821 examinees), and 25 

random samples of size 1000 (5 from each group) were generated. The test 

items were also regrouped in three different ways to generate 3 pairs of item 

groups, namely the Equivalent-halve Groups (odd vs. even numbered items), 
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Content Groups ("Number & Algebra" vs. "Shape, Space & Measures" content 

areas) and Difficulty Groups (easy vs. hard items). The RASCAL program is 

adopted to analyze the responses of examinees in various groups/samples to get 

sets of unconditional maximum likelihood estimates. The major findings are 

summarized as follows: 

(a) The invariance of item parameters was not supported. The plots of item 

difficulty estimates from the ability samples showed that the points are 

more scattered and well below the baseline when compared with the 

plots of random and gender samples. Although the large distance of the 

scatter from the line is partly the result of data being centred on the 

examinees, the plots showed that the feature of invariance was not 

preserved in the samples of extreme abilities. More than that, the 

difficulty order of the items was found different in different subject 

groups. Even if scores of the 11 items with high percentages of omits 

(over 20%) were excluded, there was no significant improvement in the 

invariance of the item parameters in the ability samples. On the other 

hand, the difficulty order of the first 24 items in both Test-35 and Test-24 

are the same in each subject group. 

(b) A fairly good number of items in both Test-35 and Test-24 in the random 

samples (71.4% in Test-35 and 75% in Test-24) and gender samples 

(ranging from 71.4% to 87.5%) were found to fit the Rasch model. The 

fit looked extremely good in the ability samples, but over-fitness may 

indicate a constraint on the responses (Meijer & Sijtsma, 2001, p.823). 

In this study, the percentages of omits were high for most items. 

Therefore, the accuracy of the results in the low-ability samples is 

imputable to considering all omitted and not-reached items as "wrong" 
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items. Regardless of the statistical significance of the item difficulty 

estimates, a study of the effect sizes of individual items ofthe gender and 

ability groups (taking the Whole Group as the control or reference group) 

showed that the "effect" of examinee ability on the item difficulty 

estimates is substantially larger than that of examinee gender. 

(c) The invariance of examinee parameters was not supported by the data. 

The correlation coefficient between the examinee ability estimates was 

significantly smaller in the Difficulty Groups than those in the other two 

pairs of item groups. On the other hand, after taking away the extreme 

values ofthose examinees with abilities equal to -9 (ranging from 109 to 

1,301 numbers out of26,964 examinees) who might have omitted a large 

percentage of items, the correlation coefficients became more constant 

across the 3 pairs of item groups. 

(d) The assumption of unidimensionality, checked by Bejar's analysis 

method, was not supported in the two ability groups, particularly the 

Low-ability Group. The two sets of item difficulty estimated in the 

Low-ability Group, one from the total test while the other from either 

items within each of the two content areas identified (i.e. ''Number & 

Algebra" and "Shape, Space & Measures" content areas) or items within 

the two item forms (i.e. regular and quantitative comparison forms), were 

found to deviate substantially from the baseline. 

(e) The assumption of equal discrimination level was not supported in the 

two ability groups as the means of the point biserial correlation of the 

items deviated from each other and also from the other three subject 

groups. 

(f) The assumption of zero guessing factor was in doubt as the observed 
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proportions of correct responses in the low score groups were non-zero 

for all the subject groups. 

(g) The ITDA Mathematical Test might be a speeded test to the group of 

26,964 examinees under study as only half of the examinees could 

complete the whole test and 91.5% complete three quarters of the test 

even in the High-ability Group. 

(h) The item difficulty parameters estimated from the CTT were highly 

comparable with those estimated from the Rasch model as the two sets of 

item parameters estimated from the two measurement frameworks were 

highly correlated in each subject group. 

(i) The examinee abilities estimated from the CTT and those from the Rasch 

model were very comparable as the two sets of ability parameters 

estimated from the two measurement frameworks were highly correlated 

in each subject group. 

(j) The CTT transformed p-values and the Rasch-based item difficulty 

estimates exhibited very similar features regarding invariance across 

samples when scatterplots of item difficulty estimates of the same 

samples were examined. 

(k) The examinee parameters estimated from the CTT appeared to be more 

invariant across each of the 3 pairs of item groups than those obtained 

from the Rasch model. However, when the extreme values (abilities 

equal to -9) were deleted from the analysis, the invariance of the 

Rasch-based ability estimates across different pairs of item groups was 

greatly improved and both frameworks exhibited a high degree of 

mvanance. 

(1) The CTT method and the Rasch approach identified different "poor" 
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items. In addition, more items were "found" unfit by the CTT method 

than the Rasch approach in both Test-35 and Test-24, showing that the 

former is more sensitive to the lack of fit than the latter. 

Excluding the scores of the last 11 items in Test-35 to reduce the effect of 

speededness did show slight improvement in some aspects like the number of 

unfitted items (e.g. 28.6% of items were found unfitted in Test-35 vs. 25.0% in 

Test-24 in the random sampling plan) and unidimensionality in the Low-ability 

Group. However, the findings in other aspects like comparability of CTT- and 

Rasch-based item and examinee parameters remained more or less the same. 

Discussion 

5.3 In this study, the unconditional maximum likelihood procedure was used with 

the Rasch model. It provided point estimates for all item and examinee 

parameters. If the Rasch model holds true for the set of ITDA data, the item 

parameters are invariant or stable when estimated across different groups of 

examinees and the examinee parameters are invariant or stable when estimated 

across different item groups. This is the basic rationale for the statistical 

methods of investigating fit to the Rasch model (Gustafsson, 1980, p.209; Slinde 

& Linn, 1979, p.441). The analysis of this study showed that the feature of 

invariance could not be preserved in the groups of extreme abilities. The 

possible reasons are: 

(a) Biased Estimation Procedures- The estimation procedures of item and 

ability parameters were biased. 

(b) Violation of Model Assumptions - Some of the assumptions about the 

nature of the data were not satisfied. 
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(c) Inappropriate Model - The Rasch model is not appropriate for 

calibrating the ITDA mathematics items and measuring the abilities of 

the examinees. 

Biased Estimation Procedures 

5.4 The following two procedures adopted in the analysis might have introduced 

biased estimates: 

(i) Items with totally correct or totally incorrect responses and examinees 

with perfect or zero scores were excluded from the analysis. 

(ii) Omitted and not-reached responses were scored as zero in the RASCAL 

program. 

Since the sample size of the data set (26,964 numbers) was relatively large, the 

exclusion of items with totally correct or totally incorrect responses and 

examinees with perfect and zero scores should have been reduced to a minimum. 

On the other hand, since the percentages of omits (including the not-reached 

items) were large in the data set, it had definitely produced biased estimates. 

Lord (1980, pp.226-229) suggested that the not-reached items could be ignored 

(assuming that all not-reached responses fall in a block at the end of the test) and 

presumably supply random responses in place of omits. However, there are 

two deficiencies in the method. First, some examinees did not respond to the 

items in serial order so that mistakes would be made in assuming that 

not-reached items only occur at the end of the test. Second, presumably 

supplying random responses in the place of omits would introduce a guessing 

factor to the responses. This contradicts to the assumption of zero guessing 

factor of the Rasch model. 
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5.5 In this study, the unconditional maximum likelihood procedure was adopted to 

analyze the responses of examinees. However, conditional maximum 

likelihood (CML), marginal maximum likelihood (MML) and Bayesian 

estimation procedures could also be used. In the CML estimation, the 

likelihood function is expressed in terms of the raw total scores and not the 

unknown abilities of examinees. It is possible as the raw total score is a 

sufficient statistic for the ability level in the Rasch model (Hambleton & 

Swaminathan, 1985, pp.138-139; Embretson & Reise, 2000, pp.214-215). 

CML estimators are consistent and normally distributed (cited in Embretson & 

Reise, 2000, p.217). However, the CML estimation does not have no drawback. 

For example, the precision in computing the elementary symmetric functions is 

difficult for long tests. Also, like the unconditional maximum likelihood 

procedure, no estimates are available for items or examinees with zero or perfect 

scores. In the MML procedure, the observed data (the responses) are regarded 

as a random sample of the population. Unknown ability level is assumed to be 

a continuous variable with a specific shape distribution in the population, 

typically a normal distribution, and is handled by expressmg the response 

pattern probabilities as expectations from the population distribution. 

Nevertheless, the distribution need not be known in advance. If sufficient 

sample size is available, the ability distribution may be estimated from the data. 

One of the advantages of MML is the availability of estimates of zero and 

perfect scores. Its main disadvantage is that a distribution must be assumed for 

the ability level, thus making the parameter estimates contingent on the 

appropriateness of the assumed distribution. Like the CML estimation, it does 

not produce person parameter estimates directly. In a Bayesian method, prior 

information on the distribution of ability parameters is available based on either 
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theoretical or empirical considerations. Since the same ITDA Mathematical 

Test has been used in the ALIS project since 1988, a good picture of the 

frequency distribution of ability of the group of examinees to be tested can be 

formed. Such prior information can be used to improve parameter estimation. 

In sum, further research could be done with these three different estimation 

procedures. 

Violation of Model Assumptions 

5.6 The analysis showed that the basic assumptions (i.e. undimensionality, equal 

discrimination level, zero guessing factor and non-speededness) were not 

satisfied particularly in the two ability groups (i.e. High-ability Group and 

Low-ability Group). Among all, the violation of the assumption of 

non-speededness was more serious although speed and ability are sometimes 

confounded. The testing time was only 25 minutes which was inadequate for 

most examinees. Examinees of the same ability scored differently as slow 

examinees did not even get a chance to attempt the items late in the test. The 

items concerned therefore might appear to have higher discrimination (Mead, 

1976, p.9; Anastasi & Urbina, 1997, p.193). However, with the influence of 

guessing, the result will be very complicated. 

5.7 To eliminate the influence of speed, one possible way is to limit the analysis of 

each item to those examinees who have reached the item. However, since the 

number of subjects attempting the later items will shrink rapidly and hence 

render the results quite unreliable. This procedure is not completely 

satisfactory unless the number of examinees failing to reach the item is small 

(which is clearly not true in this study as over 20% of examinees did not respond 
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to the last 11 items). Moreover, the faster performers tend to be the more 

proficient and henc.e the later items would be analyzed on a superior sample of 

exammees. This would lower the apparent difficulty level of the later items as 

the percentage correct would be greater in this superior group than in the entire 

group. This procedure has also some effects on the item discrimination indices. 

Since slow examinees have a greater tendency to guess as they make effort to try 

all items within the time allowed, in the absence of these examinees, the sample 

on which the later items are analyzed will cover a relatively narrow range of 

ability. The discrimination indices of the later items will therefore tend to be 

lower than they would be if computed on the entire sample. 

5.8 The violation of the assumption of non-speededness is not easy to deal with. 

Several models have been proposed to incorporate speed into the estimation of 

ability level (e.g. Rasch, 1980, pp.34-49; Meredith, 1970, pp.49-82; Roskam, 

1997, pp.187-208; Verhelst et. al., 1997, pp.169-185). In these models, the 

probability or probability density of the response time to an item is essentially 

considered as a function of the item difficulty and the examinee's mental ability 

(which may be regarded as a combination of power and speed) assuming an 

exponential response time distribution (Roskam, 1997, p.l87). Further 

research on the fitness of data could be done with this speed and time-limited 

test. 

5.9 Since the ITDA Mathematical Test is a speeded test, it is clearly not 

unidimensional as the examinee's speed is also an essential "trait" affecting 

his/her performance. The results of Bejar's analysis method indicated that the 

assumption of unidimensionality held in all subject groups except that of the 
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Low-ability. This provided evidence to the anomaly of the plot of 

content-area-based difficulty estimates vs. total-test-based estimates of the 

Low-ability Group which was mostly affected by speededness. 

5.10 To low-ability examinees, the item format should be simple and straightforward 

to avoid any discomfort introduced because they are mostly affected by 

peculiarities. In particular, when testing time was limited, examinees in the 

Low-ability Group might have suffered from anxiety, carelessness and 

misunderstanding resulting from the change of item form. This might explain 

why the effect of different item forms (namely, the regular form and the 

comparative form21
) was significant in the Low-ability Group. 

5.11 The speededness of the ITDA Mathematical Test naturally encouraged 

examinees to guess, particularly those of lower abilities. The Item 

Characteristic Curves (ICCs) of some items (say items 13, 33 - 35 of Test 35 

and items 7, 13 - 15 of Test 24) revealed that the guessing factor lies roughly 

between 0.1 to 0.2 for score groups of 5 - 20. For the lowest score groups, say 

2 and 3, the examinees might not even care and they just left the items 

unanswered. This might explain why the observed and expected ICCs nearly 

coincided in these low score groups for the Whole Group, Male Group, Female 

Group and Low-ability Group. 

5.12 In particular, the observed ICCs of item 34 in Test-35 and items 7 and 14 in 

Test-24 deviated most from the expected ICCs. Examinees of low ability had 

21 Items of comparative form have the features of comparing the quantities of two expressions and 
sharing the same response options and instructions. 
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higher observed proportions correct while those of high ability had lower 

observed proportions correct than the expected ones. These peculiarities need 

further study of the items. Item 7 is a problem about simultaneous equations in 

two unknowns. Students are requested to find the value of r given that 

3 3 
r = - s + 6 and - s + 12 = 5 . 

4 2 
The fractions ~ and ~ might have confused 

4 2 

some exammees. High-ability examinees might make careless mistakes while 

low-ability examinees might just guess or leave the item un-attempted (12.8% of 

examinees did not respond to this item). Item 14 is a simple trigonometric 

problem. Students are asked to calculate the length of AC in cm (see Figure 

5.1). The answer is simply 2 x 8sin60°, but some examinees might have 

approached the problem by first finding the lengths of AD and BD from LlABD 

and then get the length of AC by applying Pythagoras' Theorem to MCD. In 

either method, confusion between sine and cosine functions might introduce 

mistakes to high-ability examinees. (In fact, this is also a common mistake 

normally made by students in Trigonometry.) Again, item 34 is also a simple 

simultaneous linear equations problem but it is of comparative form. Students 

are requested to compare the values of x + y and 1 given that 3x- 4y = 2 and 

2x - 5y = 1. Since it is the second last item in the test, most examinees had no 

chance to reach this item (percentage of omit is 37.6%). Therefore, it has 

lowered the observed proportion correct. 

<Figure 5.1> 

5.13 The National Curriculum consists of 4 attainment targets, namely "Using & 

Applying Mathematics", "Number & Algebra", "Shape, Space & Measures" and 
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"Data Handling". However, the number of items in the ITDA Mathematical 

Test is far from adequate to cover all relevant knowledge and skills in the targets 

and the items only focus on the "Number & Algebra" and "Shape, Space & 

Measures". The test, therefore, has low content validity. It is unavoidable as 

the ITDA was not developed for U.K. students. In fact, it is a general selection 

test for universities around the world so it has to be fairly "curriculum free". 

Nevertheless, whether people have been taught the curriculum will have a 

considerable impact on their performance. Therefore, this inadequacy might 

affect the performance of examinees and hence lead to violation of some 

assumptions. For example, examinees who were good in "Data Handling" but 

weak in "Shape, Space & Measures" would get poorer results and their abilities 

would be under-estimated. Moreover, the examinees needed more time to 

think and hence the test would appear to be "more speeded". They would also 

be forced to guess hence introducing a relatively larger guessing factor. On the 

other hand, the abilities of examinees who were good in "Shape, Space & 

Measures" but weak in "Data handling" would be over-estimated. 

Inappropriate Model 

5.14 It might be true that the Rasch model and the data are mis-fitted. The Rasch 

model is a theoretical ideal and incorporates only the general features of the data 

(item difficulty and non-linearity of raw scores). To incorporate the sample 

sensitive features of the data (discrimination and guessing), 3 parameter logistic 

(3PL) model may be used because it has taken the item discrimination index and 

even guessing factor into consideration. However, the inclusion of the 

additional parameters (item discrimination and guessing level) requires larger 

samples of examinees and longer tests to obtain satisfactory item and ability 
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estimates (Slinde & Linn, 1979, p.451; Goldman & Raju, 1986, p.17). For 

example, Lord (1980) suggested that sample sizes in excess of 1000 subjects and 

tests with more than 50 items are required to adequately estimate the item 

discrimination parameter in the 3PL model. Sample size was not a problem in 

this study, but the number of items was. There were only 35 items in the ITDA 

Mathematical Test and 22 and 13 items respectively in the "Number & Algebra" 

and "Shape, Space & Measures" content categories (also 15 and 20 items 

respectively in the regular and comparative item form categories) in Bejar's 

analysis method for checking the assumption of unidimensionality. The 

corresponding numbers of items in Test-24 were even less. Therefore, the 

numbers of items were far below the number suggested by Lord. 

5.15 Undoubtedly, the multi-parameter models have a greater flexibility but at the 

same time there are technical problems of using it (Goldstein, 1979, p.215). 

The program, LOGIST, usually used for 2PL and 3PL models, has been shown 

to generate estimated parameters with large biases (cited in Fisher, 1994, p.51 ). 

Ree & Jensen viewed that guessing cannot be consistently estimated (cited in 

Wainer & Wright, 1980, p.374). Lord also note that the 3PL model usually 

does not converge properly and the estimated value of discrimination is likely to 

increase without limit (cited in Fisher, 1994, pp.51-52). Wright (1977, 

pp.103-104) showed that "estimates ofitem discrimination ... drift offto infinity 

one by one" and he suggested treating the variation in item discrimination 

through "supervision" rather than estimation. Moreover, it is not uncommon in 

most 3PL analyses to have observations containing negative information22
, that 

22 By the defmition of information (footnote 7 on page 27), it is very clear that the information should be 

86 



is, with less certainty about the ability of the person relative to the difficulty of 

the item than before the observation was made, even when the data fit the model 

(Wright, 1996, p.504). For example, there will be two implications when a 

person succeeds on an item in an adaptive test if a 3PL model is used. First, the 

item is easy to the person (so that a harder item should be provided next). 

Second, the item is hard to the person so that he/she has to guess and it so 

happens that he/she has made a lucky guess (so that an easier item should be 

provided next). Of course, this problem arises mainly from multiple-choice 

items (in which guessing is a more prominent factor) and the quandary could be 

avoided to an extent by using constructed responses. However, it will never 

happen in Rasch model as the guessing factor is assumed to be zero. 

Disruptions in the measurement process are inevitable but as Fisher (1994, p.62) 

commented, it is far more productive to locate and interpret the departures from 

assumptions after they occur than to try to include them as elements in a model 

of an already very complicated situation. 

5.16 The approach of adopting more parameters in doing the estimation IS an 

everlasting process. The discrimination index and guessing factor are only two 

other popular parameters to be included in the analysis of responses to explain 

the item sensitivity. Along the same line, should we include parameters to 

explain the person sensitivity? In fact, disturbances like (i) carelessness 

(leading to the overestimation of the item difficulty as items are wrongly 

responded to carelessly); (ii) practice (examinees may require several items to 

warm up and items affected seem more difficult); (iii) examinees' personality 

positive and the greater its value, the smaller will be the standard error of measurement. Therefore, in 
real practice, items with large standard errors of measurement may be discarded. 
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(some examinees intend to guess but some never); (iv) examination anxiety 

(some examinees are very anxious about their performance in tests, but some are 

not); (v) level of motivation (examinees getting inadequate motivation to 

respond to the items may just randomly guess), etc. also affect the performance 

of examinees in a test. Although the Rasch model is robust, to an extent, to 

such aberrations, they make the estimation procedures both biased and 

inefficient (Wainer & Wright, 1980, p.374). On the other hand, these 

disturbances are rarely included in IRT models as the results will be very 

complicated. Moreover, 

multidimensionality and 

all the disturbances represent some form of 

would violate any model that assumes 

unidimensionality (Mead, 1976, p.ll ). Since these disturbances often change 

the slope of the ICC, any model that includes item discrimination as a parameter 

would appear to fit the data. Therefore, we have come to an absurd case that 

we get the data which pass the test of fit but may have in fact violated the 

model's assumptions. Fitting such a general model may lead to the loss of the 

desirable measurement properties of the Rasch model and mislead ourselves 

about the true nature of the variable (p.ll ). 

5.17 Since the ITDA Mathematical Test is used to provide a baseline for students 

joining the ALIS project, the Rasch model in this study can be considered as an 

instrument used for solving a practical measurement problem. Thus, the main 

objective is whether the model can assist to achieve the solution. According to 

Gustafsson (1980, p.226), "deviations from the model do not necessarily 

jeopardize applications, ..... , the estimates of ability are quite robust against 

deviations from the model". Therefore, despite the poor fit (particularly for 

extreme abilities of examinees), there is no point to give up this model. 
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5.18 A rather simple strategy to obtain fit of ITDA data to the Rasch model is 

excluding unfitted items from the test. The difficulty parameters of the 

remaining items are re-calibrated with the item fit re-tested. The process is 

repeated, excluding more items until a reasonable overall fit is achieved. 

However, if items are dropped from a test, that test would no longer match the 

test specification, particularly if the proportion of discarded items is large, and 

has lost content validity (Divgi, 1986, p.295; Phillips, 1986, p.1 07). 

Gustafsson (1980, p.230) holds similar view that misfitting items should not be 

routinely excluded from a test to obtain fit to the model as goodness-of-fit 

cannot replace subject matter knowledge. Therefore, it is desirable to identify 

the likely causes of the poor fit (like speededness, guessing, etc.) and take proper 

actions to remove those threats against the model. For example, speededness 

in this study may be one of the possible causes of the poor fit. 

Comparability ot the CTT Method and the Rasch Method 

5.19 In this study, the comparability of the CTT method and the Rasch model gives a 

very interesting result. The findings failed to discredit the CTT framework 

with regard to its alleged inability to produce person-free item difficulty 

estimates and item-free person ability estimates. The findings simply revealed 

that the two measurement frameworks produced very similar item and person 

statistics both in terms of comparability and invariance. Nevertheless, the 

present study has its limitations that may lower the validity of the findings. 

First, 75% of examinees got a raw total score of 17 or below (as reflected in 

para.3.2 where the High-ability Group and Low-ability Group were defined). 

The test score distribution has a positive skewness of 1.692 and shows a strong 
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floor effect which suggests that many items tended to be hard to most examinees. 

The difficulty of some items might be due to the speededness of the test as a 

large percentage of examinees could not complete the test and all omits 

(including not-reached responses) were scored as zero. These items, 

particularly those at the end of the test, would be overestimated in terms of 

difficulty. Therefore, it would be desirable in future studies to use data from a 

non-speeded test which involves items varying in item difficulty (to avoid both 

floor and ceiling effects). 

5.20 The second shortcoming of the comparison is the limited item pool used. The 

examinee pool is quite adequate in the sense that a variety of different samples 

can be drawn for investigation, but the same cannot be said about the item pool. 

There was only one test in the study, namely the ITDA Mathematical Test, 

although the test was re-grouped to different item groups. Therefore, the 

comparison of the two frameworks could be replicated with a larger test item 

pool which is more diverse in terms of item characteristics. Items can then be 

sampled from the pool to study the behaviours of CTT and Rasch item statistics 

under different conditions of item characteristics. 

5.21 The last 11 items of the ITDA Mathematical Test were deleted to take the factor 

of speededness into account and the data of the resulting test (i.e. Test-24) were 

re-analyzed. The findings, however, revealed no significant improvement. 

The possible explanations are: 

(a) examinees were assumed to respond to items in serial order, but in fact 

some of them did not; 

(b) the time pressure and the resulting psychological effect due to 
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speededness like carelessness, anxiety, speed-accuracy trade-off attitude, 

etc. had been ignored. 

:Recommendations 

5.22 In the present study, the feature of item parameter invariance was studied 

through random samples from the Whole Group, gender groups and ability 

groups. Since the violation of non-speededness has a more serious influence to 

the examinees of low abilities (for example, encouraging them to guess), the 

feature of invariance might have been confounded. Therefore, in future studies, 

other subgroups of special interest in the examinee population could be 

identified and analyzed for the feature of invariance. For example, it is 

meaningful to consider examinees with different socio-economic status, from 

different ethnic groups or geographic regions. The relevant particulars should, 

of course, be collected from the examinees sitting the test for identifying the 

subgroups of interest. 

5.23 With the advance of information technology, it is possible to deliver the ITDA 

test electronically or over the intemet in some way. The response time of each 

item can be recorded (i.e. the examinee's speed in responding to each individual 

item can be tracked). In this way, it is possible to get a measure of speed 

without putting a constraint on the total time available to the examinees for the 

full test and a measurement model to take speed into account can be adopted. 

For example, the Rasch Response Time Model proposed by Roskam (cited in 

Roskam, 1997, p.l93) has integrated the response time and correctness as 

follows: 
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where 't xi is the natural logarithm of the response time of examinee x on item i. 

When the response times are observed, the estimation procedure of the item and 

person parameters are basically the same as in the dichotomous Rasch model. 

5.24 Marginal Maximum Likelihood and Bayesian estimation procedures could be 

adopted instead of the Unconditional Maximum Likelihood procedure to take 

into account the estimates of zero and perfect scores. However, there is no 

viable method to improve the estimation with regard to omits and not-reached 

items. What could be done is to reduce the effect of speededness and hence 

reduce omits and not-reached items. Slight modifications to the ITDA 

Mathematical Test are therefore recommended: Due to the possible influence of 

the quantitative comparison items on the low-ability examinees, items 16- 35 of 

the ITDA test could be replaced by items of regular form to avoid the possible 

effect. If the item form could not be changed, more time should be allowed for 

the examinees for reading the instructions carefully. If possible, one or two 

simple items may be added for practice. In particular, items 16 - 30 are 

crowded in the same page. It could be spread uniformly across two pages to 

make it more spacious and easier to read. The items may also be presented in 

an increasing order of difficulty (see Table 4:8) so that examinees get motivation 

to continue the test and hence reduce omits. If an examinee reaches items 

which are too difficult to respond to, he or she may stop as it could be concluded 

that trying any of the remaining items is a waste of time. In this way, the bias 

imputable to scoring the not-reached responses as zero might be reduced. 
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5.25 From the discussion above, the Rasch model could be used to calibrate the test 

items as it is a theoretical ideal. On the other hand, improved estimation 

procedures could be applied for estimating examinee abilities. Those proposed 

by Wainer & Wright (1980), namely jackknife and AMT-robustified jackknife 

could be considered. Through a Monte Carlo simulation study, Wainer & 

Wright found that the jackknife and the AMT-robustified jackknife estimators 

yielded better estimates of ability than the maximum likelihood estimator for 

tests with 40 or fewer items and the AMT-jackknife was even better when 

dealing with guessing. Although the simulation had assumed the availability of 

item difficulties and only estimated abilities, "some of the techniques ... will be 

of some use in the estimation of item difficulties" (Wainer & Wright, 1980, 

p.374). Another modified version of the Rasch model introduced by Waller 

(cited in Slinde & Linn, 1979, pp.451-452) may also be useful. This modified 

procedure is an application of the Abilities Removing Random Guessing Model 

which assumes that examinees randomly guess on those items that are too 

difficult for them. Thus, this procedure involves removing from the estimation 

procedure the response of an examinee to an item estimated to be very difficult 

for him/her. It could be programmed into the marking procedures. 
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Appendix 1 

Proving that the Number Correct Score is a Sufficient Statistic for 8 

The proofbelow is abridged from Lord (1980, p.63): 

Equation (2.1 0) in Chapter 2 can be rearranged as 

Lx (uxl 'ux2 , ... ' Uxnlex ,(bi)) = TI(~) u,u Qxi 
i=l Qxi 

n n TI eD(9,-b;)U,; IT Qxi 

i=l i=l 

n 

where rx = L uxi . Since P(A and B) = P(A) P(BIA), 
i=l 

or 

(Al.1) 

(Al.2) 

where (uxi) is the 1 x n vector with elements uxi (i = 1, 2, 3, ... , n) for the examinee 

X. 

As rx depends on (uxi), (A1.2) can be simplified to 

P((uxi)l8x) 

LP((uxi)l8x) 
(u,u)Jr, 

n 

where the summation is over all (uxi) for which I:Uxi = rx. 
i=l 

Substituting (A1.1) into (A1.3), 
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n 

-D"bu. ~ I X1 

e i=• 
(A1.4) 

Clearly, the right hand side of (A1.4) is independent of e. Therefore, the number 

n 

correct score, rx = L uxi , is a sufficient statistic for the ability e. 
i=l 
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Appendix 2 

Finding the Slope B and Intercept a. of the Principal Axis 

Let the equation of the principal axis of the plot of the two sets of difficulty estimates be 

B1i = ~B2 i +a. where Bli and B2 i are the content-area-based and total-test-based 

estimates respectively, a. and ~ are the corresponding "B1 -intercept" and slope of the 

line. For simplicity, the subscript i is dropped so that 

(A2.1) 

To obtain the distance from any point ( B2 , B1) to the principal axis, the two axes are 

first rotated about the origin by an angle e (where tan e = ~) and then linearly 

transformed so that the point (a., 0) becomes the new origin. The transformation is 

accomplished by the following equation: 

(
B2

1

J = ( c~se sine)(B2) -(a.sine) 
B 1 

- sme cose B1 a. cose 
I 

(A2.2) 

I I 

where B1 and B2 are the respective new values of B1 and B2 under the new 

I 

system of axes. Clearly, B1 is the distance of any point to the principal axis in the 

plot where 

I 

B1 = - B2 sine+ B1 cose- a. cose. (A2.3) 

If D is the sum of the squared distances of all points in the plot to the principal axis. 

Then, 

D = Ic -B2 sine+ B1 cose- a.cose) 2 (A2.4) 

where the summation is over all estimates, i.e. i = 1 to n. The values of a. and ~ (or e) 

which will give a minimum ofD can be found by solving the following two equations: 

an =O 
a a. 
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and 

From (A2.5), 

From (A2. 7), 

aD =O 
ae 

aD= -2~) -B2 sinS+ B1 cos8- a.cos8)cos8 = 0 a a. 

a. cos8 = B1 cos8- B2 sin 8 

Substituting (A2.8) into (A2.4) which then becomes, 

Therefore, from (A2.6), 

or - s1
2 sin28 + s2 

2 sin28 = 2s12 cos28 

(A2.6) 

(A2.7) 

(A2.8) 

where s1
2 and s/ are the variances of the content-area-based and total-test-based 

estimates respectively, and s12 is the covariance between the two sets of estimates. 

Rearranging, 

2s 
tan28 = 12 

2 2 (-s1 +s2 ) 
or 

or (A2.9) 

where the sign in the numerator is chosen so that p is positive. 
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Appendix3 

List of Figures 

Figure 1.1 

Three ICCs for the one-parameter logistic model 

Ability 

Figure 1.2 

Two ICCs for the two-parameter logistic model 

Ability 
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Figure 1.3 

Four ICCs for the three-parameter logistic model 

Probability 

Ability 

Figure 1.4 

Plj.rt of the Data File of the Scores of the ITDA Mathematics Items 

20121852 11011101100100111110110001100100000 
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20181852 01000000001010000111011000001001010 
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20201852 11001100001100010000110111000000100 
20211852 11110101100000000111001000110000000 
10221852 110110011000010101101110x0110000000 
20231852 11110001101100010011011110000011000 
2024185200001001000101111001111000000010110 
10251852 1101x0xx1xl00001111111010001011xxxx 
10261852 11111001110001011001010x00010010xxx 
20271852 11000001110100010111111101011011010 
20281852 11111001000100011011011100110100xxx 
10291852 111111011101100xxxxxxxxxxxxxxx 
20301852101x1101111000010111111010111000000 
20311852 11000100000000011010011010110011110 
10321852 11001001000000010xl110110101x0xxxx0 
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Frequency Polygon for the Performance of Examinees 

(Skewness = 1.692) 
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Figure 1.6 
Cumulative Frequency Polygon for the Performance of Examinees 
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Figure 4.1 
Scatterplot of Item Difficulty Estimates (r _ sample3 vs. r _sampleS) 

(a) Test-35 (r = 0.993) 
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Figure 4.2 . 
s·catterplot of Item Difficulty Estimates (m_sample3 vs. f_sample2) 

(a) Test-35 (r = 0.976) 
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Figure 4.3 
Scatterplot of Item Difficulty Estimates (n_sample3 vs. L_sample2) 

(a) Test-35 (r = 0.882) 
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Figure 4.4 
Effect Sizes of Item Difficulty Estimates 
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Figure 4.5 
Item by Difficulty Estimates 
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Figure 4.6 
Scatterplot of Ability Estimates based on Equivalent Halves 

(a) Test-35 (r = 0.580) 
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Figure 4.7 . 
Scatterplot of Ability Estimates based on Different Content Categories 

(a) Test-35 (r = 0.527) 
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Figure 4.8 
Scatterplot of Ability Estimates based on Items of Different Difficulties 

(a) Test-35 (r = 0.013) 

0 

' r .o <> 

0 0 

<> 0 0 

.0 0 

~ <> 

i 1 
, .. 

V 
! v ......... -g --:- ; v • • .. 0 

-8 -6 -4 0 <>-2~V<><> • (> 0 :2 4 <> • • • 0 ~· 0 • 0 ;=7. ~ w. "-
.. -.. -. 

0 •••• • • 0 • 

~ 
~ 

~ 0 • • • • • • • <> 0 (220) 
'n -, 

Ability on Easy Items 

(b) Test-24 (r = 0.023) 

r 

~ 

(1301) ~ ........... .. 
:~ • • • • • • • • • . . ·~· • • • • • : : : :~ tin • • • • • • • ••• • • • 0 • 0 0 •,.• • • • ·~· • • • • 0 • -8 -6 -4 • +-2. • ..... • • • • <>2 4 . 

~ 
"'-' "' -v 

~ r 

~ 
-v 

n 

~ • • • 0 • • 0 o.o • • (653) 
1n 

Ability on Easy Items 

109 



' 

Figure 4.9 
Plot of Content-area-based Difficulty Estimates vs. 

Total-test-based Estimates for the Whole Group 
(a) Test-35 (r = 1.000) 
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Figure 4.10 
Plot of Content-area-based Difficulty Estimates vs. 

Total-test-based Estimates for the Male Group 
(a) Te'st-35 (r = 1.000) 
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Figure 4.11 . 
Plot of Content-area-based Difficulty Estimates vs. 

Total-test-based Estimates for the Female Group 
(a) Test-35 (r = 1.000) 
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Figure 4.12 . 
Plot of Content-area-based Difficulty Estimates vs. 

Total-test-based Estimates for the High-ability Group 
(a) Test-35 (r = 1.000) 
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Figure 4.13 
Plot of Content-area-based Difficulty Estimates vs. 

Total-test-based Estimates for the Low-ability Group 
(a) Test-35 (r = 0.982) 
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Figure 4.14 
Mean Distance to the Principal and Theoretical Axes by Content Area 

(a) Test-35 
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Figure 4.15 
Plot of Form-based Difficulty Estimates vs. 

Total-test-based Estimates for the Whole Group 
(a) Test-35 (r = 0.992) 
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Figure 4.16 
Plot of Form-based Difficulty Estimates vs. 

Total-test-based Estimates for the Male Group 
(a) Test-35 (r = 0.993) 
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Firure 4.17 
Plot of Form-based Difficulty Estimates vs. 

Total-test-based Estimates for the Female Group 
(a) Test-35 (r = 0.988) 
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Figure 4.18 
Plot of Form-based Difficulty Estimates vs. 

Total-test-based Estimates for the High-ability Group 
(a) Test-35 (r = 0.989) 
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Figure 4.19 
Plot of Form-based Difficulty Estimates vs. 

Total-test-based Estimates for the Low-ability Group 
(a) Test-35 (r = 0.915) 
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Figure 4.20 
Mean Distances to the Principal and Theoretical Axes by Item Form 

(a) Test-35 
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Figure 4.21 . 
ICCs for Item 13 ofTest-35 
(a) Whole Group (b = 2.015) 
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Figure 4.22 
ICCs for Item 33 of Test-35 
(a) Whole Group (b = 2.060) 
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(c) Female Group (b = 2.235) 
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(e) Low-ability Group (b = 4.919) 
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Figure 4.23 
ICCs for Item 34 ofTest-35 
(a) Whole Group (b = 2.640) 
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(c) Female Group (b = 2.833) 
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Figure 4.24 
ICCs for Item 35 ofTest-35 
(a) Whole Group (b = 2.769) 
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Figure 4.25 
ICCs for Item 7 ofTest-24 

(a) Whole Group (b = 0.976) 
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(e) Low-ability Group (b = 2.691) 
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Figure 4.26 
ICCs for Item 13 ofTest-24 
(a) Whole Group (b = 1.879) 
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(e) Low-ability Group (b = 4.409) 
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Figure 4.27 
ICCs for Item 14 ofTest-24 
(a) Whole Group (b = 1.576) 
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Figure 4.28 · 
ICCs for Item 15 ofTest-24 
(a) Whole Group (b = 1.604) 
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(e) Low-ability Group (b = 4.305) 
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Figure 4.29 
Scatterplot. of CTT Transformed p-values ( r _ sample3 vs. r _sampleS) 

(a) Test-35 (r = 0.993) 
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Figure 4.30 
Scatterplot of CTT Transformed p-values (m_ sample3 vs. f _ sample2) 

(a) Test-35 (r = 0.977) 

,., " 

. ~ 1\ 
•• v 

~0 <> 

1\.0 

. 

v.~ 

~oo 0 0 

"" 

~· ~$ -1.5 -1.0 -0.5 <e. 0.5 1.0 1.5 

" 
~V 

0 
1\ 

0~ 
-,,v 

« 

~ 
-.. ~ 
."LLl. -· 

Transformed p--values (f_sample2) 

(b) Test-24 (r = 0.990) 

'"'" 

~ 

2.p 

~.v 

~ " ·-~ 

~ 
~ • 

v.<~· • 
" "-:A:o ~· 2b 0 -1.5 -1.0 -0 ~- 0.5 1.0 1.5 

« 

~V 
·v.~· 

0 

" 

~~-
'LV 

c 

~ 
-.. ~ 

Transformed p-values (f_sarnple2) 

147 



Figure 4.31 · 
Scatterplot ofCTT Transformed p-values (h_sample3 vs. L_sample2) 

(a) Test-35 (r = 0.869) 
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Figure 4.32 · 
Scatterplot of CTT Ability Estimates based on Equivalent Halves 

(a) Test-35 (r = 0.644) 
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Figure 4.33 
Scatterplot of CTT Ability Estimates based on Different Content Categories 

(a) Test-35 (r = 0.595) 
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Figure 4.34 
Scatterplot of CTT Ability Estimates based on Items of Different Difficulties 

(a) Test-35 (r = 0.529) 
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Figure 5.1 

The Figure in Item 8 of the ITDAMathematical Test 
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Appendix 4 

lList of Tables 

Table 3:1 

Data Sets Available for Analysis 

Data Set Size 

Subject Groups: 
Whole Group 26,964 
Male Group 12,567 
Female Group 14,397 
High-ability Group 6,601 
Low-ability Group 6,821 

Samples: 
Random sampling ( 5 samples) 1,000 each 
Gender group sampling 

-Male (5 samples) 1,000 each 
-Female (5 samples) 1,000 each 

Ability group sampling 
-High-ability (5 samples) 1,000 each 
-Low-ability (5 samples) 1,000 each 

Table 3:2 

Separation of the Test Items into Two Content Areas 

Content Area N&A SSM 

Item No. 1, 4, 6, 7, 9, 11, 13, 15, 16, 2, 3, 5, 8, 10, 12, 14, 19, 23, 
17, 18, 20, 21, 22, 24, 25, 28,31,33,35 
26,27,29,30,32,34 

Total No. of Items 22 13 

153 



Table 4:1 

Percentages ofExaminees not Responding to Items of the Test 

Number of Percentage of Number of Percentage of 
Item Examinees Not Examinees Not Item Examinees Not Examinees Not 

Responding Responding Responding Responding 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 

Correlation 
Coefficients 
r_sample1 

r_sample2 

r_sample3 

r_sample4 

r_sample5 

0 0.00 19 2,127 
37 0.14 20 2,107 

502 1.86 21 2,747 
1,337 4.96 22 3,208 

790 2.93 23 3,378 
773 2.87 24 4,192 

3,461 12.84 25 5,423 
1,702 6.31 26 5,931 

691 2.56 27 5,736 
1,871 6.94 28 5,811 
2,396 8.89 29 7,457 

465 1.72 30 6,884 
1,125 4.17 31 8,190 
2,421 8.98 32 8,898 
2,710 10.05 33 9,308 
1,170 4.34 34 10,139 
1,782 6.61 35 10,073 
1,992 7.39 Total 26,964 

Table 4:2 

Correlation Coefficients among the Item Difficulty Estimates 

ofthe 5 Random Samples in Test-35 and Test-24 

r_sample1 r_sample2 r_sample3 r_samp1e4 

1.000 0.995** 0.994** 0.995** 
(0.996**) (0.995**) (0.995**) 

0.995** 1.000 0.997** 0.996** 
(0.996**) (0.995**) (0.995**) 
0.994** 0.997** 1.000 0.995** 

(0.995**) (0.995**) (0.993**) 
0.995** 0.996** 0.995** 1.000 

(0.995**) (0.995**) (0.993**) 
0.994** 0.995** 0.993** 0.999** 

(0.993**) (0.993**) (0.990**) (0.998**) 

** Correlation is statistically significant at the 0.0 I level (2-tailed). 

Note: The correlation coefficients for Test-24 are presented within parentheses. 
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7.89 
7.81 

10.19 
11.90 
12.53 
15.55 
20.11 
22.00 
21.27 
21.55 
27.66 
25.53 
30.37 
33.00 
34.52 
37.60 
37.36 

r_sample5 

0.994** 
(0.993**) 
0.995** 

(0.993**) 
0.993** 

(0.990**) 
0.999** 

(0.998**) 
1.000 



Table 4:3 

Correlation Coefficients between the Item Difficulty Estimates 

of the Male and Female Samples in Test-35 and Test-24 
Correlation f_sample1 f_sample2 f_sample3 f_sample4 
Coefficients 
m_sample1 0.982 0.979 0.982 0.979 

(0.973) (0.971) (0.971) (0.973) 
m_sample2 0.985 0.982 0.984 0.981 

(0.980) (0.978) (0.975) (0.979) 
m_sample3 0.982 0.976 0.982 0.976 

(0.976) (0.974) (0.972) (0.974) 
m_sample4 0.983 0.979 0.983 0.980 

(0.976) (0.973) (0.974) (0.978) 
m_sample5 0.986 0.983 0.984 0.983 

(0.977) (0.976) (0.975) (0.975) 
Notes: (1) All correlations are statistically significant at the 0.01 level (2-tailed). 

(2) The correlation coefficients for Test-24 are presented within parentheses. 

Table 4:4 

f_sample5 

0.983 
(0.976) 
0.986 

(0.983) 
0.983 

(0.981) 
0.984 

(0.978) 
0.988 

(0.982) 

Correlation Coefficients between the Item Difficulty Estimates 

of the High-ability and Low-ability Samples in Test-35 and Test-24 
Correlation L_sample1 L_sample2 L_sample3 L_sample4 L_sample5 
Coefficients 
h_samplel 0.900 0.894 0.897 0.892 0.910 

(0.892) (0.889) (0.894) (0.896) (0.894) 
h_sample2 0.895 0.885 0.889 0.886 0.904 

(0.879) (0.873) (0.876) (0.881) (0.878) 
h_sample3 0.888 0.882 0.885 0.883 0.902 

(0.875) (0.872) 0.876) (0.881) (0.879) 
h_sample4 0.895 0.889 0.892 0.888 0.906 

(0.874) (0.870) (0.875) (0.876) (0.876) 
h_sample5 0.896 0.892 0.893 0.890 0.908 

(0.894) (0.890) (0.891) (0.897) (0.894) 
Notes: (1) All correlations are statistically significant at the 0.01 level (2-tailed). 

(2) The correlation coefficients for Test-24 are presented within parentheses. 

Table 4:5 

Comparability of the Invariance of Item Difficulty Estimates 

in Different Sampling Plans 
Sampling Plan Number of Correlation Average Correlation Coefficients* 

Coefficients Test-35 Test-24 
Random sampling 10 0.996 0.995 
Gender group sampling 25 0.982 0.976 
Ability group sampling 25 0.894 0.883 

* The average correlation coefficients are computed as described in para. 3.4. 
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Table 4:6 

Unfitted Items in Various Samples 
Test-3S Test-24 

Sampling Sample Unfitted items "Really" Unfitted items "Really" 
Plan in each sample unfitted in each sample unfitted 

items* items* 
Random r_sample1 7' 1 0, 20, 21' 26, 31' 7, 12, 19, 3, 7, 14, 20, 23, 3, 7, 11, 14, 
sampling 32,33,34,3S 20, 21, 27, 24 20,24 

r_sample2 3, 12, 13, 19, 20, 21, 31, 33, 34, 3, 10, 11, 13, 
26,31,32,33,34,3S 3S 24 

r sample3 7, 12,20,21,27,31,34 6, 7, 11, 14 
r_sample4 4, 7, 11, 12, 19, 21, 23, 7, 11, 14, 19, 

27,31,33,34,3S 20,24 
r_sampleS 3, 7, 14, 19, 20, 21, 23, 3, 7, 10, 11, 14, 

27,31,33,34,3S (28.6%) 19,20,24 (2S.O%) 
Gender m_sample1 3,9,20,26,27,31,33, 7, 11, 19, 7, 10, 14, 20, 7, 10, 11, 
group 34,3S 20, 21, 27, 24 20,24 
sampling m_sample2 S, 6, 7, 11, 19, 21, 27, 31, 33, 34, 3, S, 7, 10, 11 

31, 33, 34, 3S 3S 
m_sample3 3, 7, 11, 14, 18, 19, 20, 3, 7, 11, 20 

21,27,32,34 
m_sample4 1, 11, 18, 19, 20, 21, 10, 11, 12, 19, 

22,24,26,27,31,32, 20,21,24 
33,34,3S 

m_sampleS 7, 10,20,24,27,31, 7, 14, 20, 22, 
33,34,3S (28.6%) 24 (20.8%) 

f_sample1 6, 13, 14, 19, 28, 30, 7, 14, 19, 14,20,24 14,20,24 
32,34 27,34 

f sample2 7, 14, 19, 21, 24, 34 7,20,24 
f_sample3 7, 19,20,21,27,31, 3, 13, 14, 21, 

32,34,3S 23,24 
f_sample4 6, 7, 14, 19, 20, 22, 27, 7, 11, 14, 20, 

31 24 
f_sampleS 1, 4, 13, 14, 17, 24, 27, 13, 14, 22, 24 

34 (14.3%) (12.S%) 
Ability h_sample1 10,22,23,2S 22,23 23 22,23 
group 
sampling h sample2 19,22,31,34 22,23 

h sami>_le3 2,3,4,22,23 2,22,23,24 
h sample4 3, 21, 23, 31, 3S S, 14,23 
h sampleS 9, 10, 19,20,23,27,34 (S.7%) 22 (8.3%) 
L sample1 1, 3, 6, 13 1, 3 I I 
L sample2 23 I 
L sample3 1,3,4,13 I 
L sample4 1,3,7,11 6,9,24 
L sampleS 1, 4 (S.7%) 8, 9, 13 (0%) 

* The "really" unfitted 1tems are items which are found unfitted in at least 3 samples in each sampling 
group. 

Note: The percentages of"really" unfitted items are presented within parentheses. 
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Table 4:7 

Effect Sizes of Individual Items ofVarious Subject Groups 

Item difficulty estimates Effect Sizes 
Female High-ability Low-ability Female High-ability Low-ability 

Item Whole Group Male Grollj)_ Group_ Group GrolJ!l_ Male Group Grouj)_ Grollj)_ Grollj)_ 

1 -1.213 -1.752 -0.811 -4.686 0.055 -0.430 0.321 -2.774 1.013 
2 -3.287 -3.169 -3.468 -7.139 -3.538 0.094 -0.145 -3.076 -0.200 
3 0.257 0.148 0.365 -1.163 1.991 -0.087 0.086 -1.134 1.385 
4 0.563 0.413 0.715 -1.340 2.753 -0.120 0.121 -1.520 1.749 
5 -0.910 -1.029 -0.820 -3.853 0.452 -0.095 0.072 -2.350 1.088 
6 0.591 0.498 0.691 -1.329 2.881 -0.074 0.080 -1.533 1.829 
7 1.051 0.885 1.229 0.076 2.924 -0.133 0.142 -0.779 1.496 
8 -1.036 -1.171 -0.935 -4.034 0.428 -0.108 0.081 -2.394 1.169 
9 -0.383 -0.547 -0.239 -2.864 1.320 -0.131 0.115 -1.981 1.360 
10 0.700 0.598 0.810 -0.588 2.669 -0.081 0.088 -1.029 1.573 
11 0.865 0.795 0.949 -0.326 2.749 -0.056 0.067 -0.951 1.505 
12 0.788 0.644 0.940 -0.627 2.855 -0.115 0.121 -1.130 1.651 
13 2.015 1.720 2.355 1.173 4.796 -0.236 0.272 -0.672 2.221 
14 1.691 1.459 1.953 1.102 3.989 -0.185 0.209 -0.470 1.835 
15 1.721 1.509 1.962 0.556 4.683 -0.169 0.192 -0.930 2.366 
16 -0.648 -0.834 -0.492 -3.141 1.040 -0.149 0.125 -1.991 1.348 
17 0.109 -0.016 0.228 -1.668 2.085 -0.100 0.095 -1.419 1.578 
18 -0.437 -0.565 -0.327 -3.208 1.858 -0.102 0.088 -2.213 1.833 
19 -0.585 -0.697 -0.493 -3.723 1.877 -0.089 0.073 -2.506 1.966 
20 -0.264 -0.543 -0.016 -3.567 2.607 -0.223 0.198 -2.638 2.293 
21 -0.103 -0.391 0.159 -3.223 2.800 -0.230 0.209 -2.492 2.318 
22 -0.096 -0.197 -0.004 -2.047 2.142 -0.081 0.073 -1.558 1.787 
23 -0.183 -0.304 -0.074 -2.353 2.315 -0.097 0.087 -1.733 1.995 
24 0.863 0.752 0.985 -0.109 3.322 -0.089 0.097 -0.776 1.964 
25 1.211 1.057 1.382 -0.178 4.081 -0.123 0.137 -1.109 2.292 
26 1.764 1.543 2.014 1.059 4.293 -0.177 0.200 -0.563 2.020 
27 0.827 0.468 1.196 -1.712 4.624 -0.287 0.295 -2.028 3.032 
28 0.763 0.552 0.979 -0.729 3.687 -0.169 0.173 -1.192 2.335 
29 1.983 1.768 2.232 1.296 5.114 -0.172 0.199 -0.549 2.501 
30 1.631 1.376 1.915 0.113 5.442 -0.204 0.227 -1.212 3.044 
31 0.857 0.634 1.087 0.061 3.607 -0.178 0.184 -0.636 2.196 
32 1.856 1.652 2.091 1.422 4.732 -0.163 0.188 -0.347 2.297 
33 2.060 1.918 2.235 1.894 4.919 -0.113 0.140 -0.133 2.283 
34 2.640 2.492 2.833 3.336 5.303 -0.118 0.154 0.556 2.127 
35 2.769 2.506 3.091 3.034 5.500 -0.210 0.257 0.212 2.181 

Mean 0.584 0.405 0.763 -1.100 2.924 
SD 1.252 1.226 1.317 2.304 1.872 
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Table 4:8 

Item Ordering of Various Subject Groups 

Item Number 

Test-35 Test-24 
Whole Male Group Female High-ability Low-ability Whole Male Group Female High-ability Low-ability 
Group Group Group Group Group Group Group Group 

2 2 2 2 2 2 2 2 2 2 
1 1 8 1 1 1 1 8 1 1 
8 8 5 8 8 8 8 5 8 8 
5 5 1 5 5 5 5 1 5 5 

16 16 19 19 16 16 16 19 19 16 
19 19 16 20 9 19 19 16 20 9 
18 18 18 21 18 18 18 18 21 18 
9 9 9 18 19 9 9 9 18 19 

20 20 23 16 3 20 20 23 16 3 
23 21 20 9 17 23 21 20 9 17 
21 23 22 23 22 21 23 22 23 22 
22 22 21 22 23 22 22 21 22 23 
17 17 17 27 20 17 17 17 17 20 
3 3 3 17 10 3 3 3 4 10 
4 4 6 4 11 4 4 6 6 11 
6 27 4 6 4 6 6 4 3 4 

10 6 10 3 21 10 10 10 12 21 
28 28 12 28 12 12 12 12 10 12 
12 10 11 12 6 24 24 11 11 6 
27 31 28 10 7 11 11 24 24 7 
31 12 24 11 24 7 7 7 7 24 
24 24 31 25 31 14 14 14 15 14 
11 11 27 24 28 15 15 15 14 15 
7 7 7 31 14 13 13 13 13 13 

25 25 25 7 25 
30 30 30 30 26 
14 14 14 15 27 
15 15 15 26 15 
26 26 26 14 32 
32 32 32 13 13 
29 13 29 29 33 
13 29 33 32 29 
33 33 13 33 34 
34 34 34 35 30 
35 35 35 34 35 
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Table 4:9 

Item by Item Difficulty Estimate Distribution 

Test-35 Test-24 

Items Item Items Item Items Item Items Item 
Difficulty (in item Difficulty Difficulty (in item Difficulty 
Estimates difficulty Estimates Estimates difficulty Estimates 

order) order) 
1 -1.213 2 -3.287 1 -1.133 2 -3.035 
2 -3.287 1 -1.213 2 -3.035 1 -1.133 
3 0.257 8 -1.036 3 0.234 8 -0.969 
4 0.563 5 -0.910 4 0.520 5 -0.852 
5 -0.910 16 -0.648 5 -0.852 16 -0.608 
6 0.591 19 -0.585 6 0.546 19 -0.550 
7 1.051 18 -0.437 7 0.976 18 -0.412 
8 -1.036 9 -0.383 8 -0.969 9 -0.362 
9 -0.383 20 -0.264 9 -0.362 20 -0.252 
10 0.700 23 -0.183 10 0.648 23 -0.176 
11 0.865 21 -0.103 11 0.803 21 -0.102 
12 0.788 22 -0.096 12 0.731 22 -0.096 
13 2.015 17 0.109 13 1.879 17 0.096 
14 1.691 3 0.257 14 1.576 3 0.234 
15 1.721 4 0.563 15 1.604 4 0.520 
16 -0.648 6 0.591 16 -0.608 6 0.546 
17 0.109 10 0.700 17 0.096 10 0.648 
18 -0.437 28 0.763 18 -0.412 12 0.731 
19 -0.585 12 0.788 19 -0.550 24 0.801 
20 -0.264 27 0.827 20 -0.252 11 0.803 
21 -0.103 . 31 0.857 21 -0.102 7 0.976 
22 -0.096 24 0.863 22 -0.096 14 1.576 
23 -0.183 11 0.865 23 -0.176 15 1.604 
24 0.863 7 1.051 24 0.801 13 1.879 
25 1.211 25 1.211 
26 1.764 30 1.631 
27 0.827 14 1.691 
28 0.763 15 1.721 
29 1.983 26 1.764 
30 1.631 32 1.856 
31 0.857 29 1.983 
32 1.856 13 2.015 
33 2.060 33 2.060 
34 2.640 34 2.640 
35 2.769 35 2.769 

Note: The shaded items are the items deleted to form Test-24. In terms of difficulty, the order of items 

1- 24 remains the same in both Test-35 and Test-24. 
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Table 4:10 

Distribution of Items in the Difficulty Group 

Test-35 Test-24 

Easy items 1, 2, 5, 8, 9, 16, 18, 19, 20, 21, 22, 1, 2, 5, 8, 9, 16, 18, 19, 20, 21, 22, 
23 (12 numbers) 23 ( 12 numbers) 

Hard items 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17, 3, 4, 6, 7, 10, 11, 12, 13, 14, 15, 17, 
24, 25, 26, 27, 28, 29, 30, 31, 32, 24 
33,34,35 (23 numbers) (12 numbers) 

Table 4:11 

Comparability of the Invariance of Examinee Ability Estimates 

in Different Item Groups 

Item Groups Correlation Coefficients 
Test-35 Test-24 

Equivalent-halves 0.580** 0.342** 
(0.622**) (0.554**) 

Content 0.527** 0.285** 
(0.573**) (0.522**) 

Difficulty 0.013* 0.023** 
(0.477**) (0.421 **) 

** Correlation is statistically significant at the 0.01 level (2-tailed). 

* Correlation is statistically significant at the 0.05 level (2-tailed). 

Note: The corresponding correlation coefficients after deleting the outliers are presented within 

parentheses 

Table 4:12 

Correlation Coefficient between Content-area-based 

and Total-test-based Difficulty Estimates within Individual Subject Groups 

Correlation coefficient between 
Group content-area-based and total-test-based estimates 

Test-35 Test-24 

Whole Group 1.000 1.000 
Male Group 1.000 1.000 
Female group 1.000 1.000 
High-ability Group 1.000 0.992 
Low-ability Group 0.982 0.989 
Note: All correlations are statistically significant at the 0.01 level (2-tailed). 
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Table 4:13 

Slope and Intercept of the Principal Axis for Each Subject Group 

(Different Content Areas) 

Group 
Test-35 Test-24 

Slope, p Intercept, a Slope, p 
Whole Group 1.034 -0.008 0.958 
Male Group 1.020 -0.007 0.973 
Female Group 1.047 -0.005 0.942 
High-ability Group 0.884 0.012 1.024 
Low-ability Group 1.259 -0.106 1.013 

Table 4:14 

Mean Distances to Theoretical and Principal Axes 

for Each Content Area 

Intercept, a 
0.010 
0.016 
0.007 
0.059 

-0.028 

Group Mean Distance Content area 

N&A SSM 
Whole Group Distance from theoretical axis 0.0227 0.0280 

(0.0176) (0.0308) 
Distance from principal axis 0.0025 0.0078 

(0.0093) (0.0127) 
Male Group Distance from theoretical axis 0.0058 0.0248 

(0.0151) (0.0320) 
Distance from principal axis 0.0077 0.0130 

(0.0113) (0.0168) 
Female Group Distance from theoretical axis 0.0468 0.0261 

(0.0213) (0.0447) 
Distance from principal axis 0.0111 0.0169 

(0.0128) (0.0086) 
High-ability Distance from theoretical axis 0.1642 0.1652 
Group (0.1292) (0.1513) 

Distance from principal axis 0.0217 0.0352 
(0.1171) (0.1444) 

Low-ability Distance from theoretical axis 0.7069 0.0969 
Group (0.1056) (0.1771) 

Distance from principal axis 0.1575 0.3355 
(0.1003) (0.1791) 

Note: The corresponding mean distances for Test-24 are presented within parentheses. 
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Table 4:15 

Correlation Coefficient between Form-based 

and Total-test-based Difficulty Estimates within Individual Subject Groups 

Correlation coefficient between 
Group form-based and total-test-based estimates 

Test-35 Test-24 

Whole Group 0.992 1.000 
Male Group 0.993 1.000 
Female group 0.988 0.999 
High-ability Group 0.989 0.971 
Low-ability Group 0.915 0.996 
Note: All correlations are statistically significant at the 0.01 level (2-tailed). 

Table 4:16 

Slope and Intercept of the Principal Axis for Each Subject Group 

(Different Forms) 

Group 
Test-35 Test-24 

Slope, B Intercept, a Slope,~ Intercept, a 
Whole Group 0.991 -0.012 0.931 -0.013 
Male Grou_p 0.979 -0.007 0.943 0.000 
Female Group 1.002 -0.017 0.914 -0.027 
High-ability Group 0.826 0.050 0.963 -0.011 
Low-ability Group 1.253 -0.604 0.743 -0.041 
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Table 4:17 

Mean Distances to Theoretical and Principal Axes 

for Each Item Form 

Group Mean Distance Item Form 

Regular Comparative 
Whole Group Distance from theoretical axis 0.1121 0.0799 

(0.0553) (0.0191) 
Distance from principal axis 0.1023 0.0884 

(0.0104) (0.0269) 
Male Group Distance from theoretical axis 0.1007 0.0663 

(0.0431) (0.0099) 
Distance from principal axis 0.0841 0.0791 

(0.0047) (0.0243) 
Female Group Distance from theoretical axis 0.1353 0.1061 

(0.0734) (0.0452) 
Distance from principal axis 0.1330 0.1068 

(0.0168) (0.0334) 
High-ability Distance from theoretical axis 0.4146 0.0832 
Group (0.1985) (0.2653) 

Distance from principal axis 0.1580 0.1762 
(0.1610) (0.3210) 

Low-ability Distance from theoretical axis 0.5834 0.5553 
Group (0.4391) (0.4259) 

Distance from principal axis 0.6914 0.2821 
(0.0179) (0.0946) 

Note: The corresponding mean distances for Test-24 are presented within parentheses. 
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Table 4:18 

Point Biserial Correlations of the Items in Test-35 and Test-24 

Test-35 Test-24 

Item Whole Male Female High- Low- Whole Male Female High- Low-
Group Group Group ability ability Group Group Group ability ability 

Group Group Group Group 
1 0.353 0.340 0.335 0.133 0.114 0.391 0.376 0.382 0.170 0.232 
2 0.198 0.204 0.203 0.044 0.157 0.226 0.230 0.231 0.068 0.229 
3 0.287 0.278 0.292 0.148 0.101 0.333 0.319 0.343 0.224 0.202 
4 0.360 0.383 0.333 0.224 0.085 0.401 0.423 0.377 0.304 0.172 
5 0.354 0.364 0.341 0.161 0.140 0.402 0.410 0.393 0.236 0.251 
6 0.370 0.408 0.335 0.224 0.101 0.424 0.458 0.394 0.318 0.216 
7 0.259 0.272 0.238 0.271 0.085 0.278 0.290 0.258 0.318 0.125 
8 0.361 0.372 0.347 0.139 0.197 0.402 0.410 0.391 0.179 0.306 
9 0.359 0.367 0.344 0.130 0.164 0.406 0.408 0.399 0.188 0.270 
10 0.290 0.298 0.281 0.181 0.121 0.336 0.339 0.332 0.280 0.196 
11 0.286 0.282 0.293 0.264 0.118 0.304 0.298 0.311 0.316 0.145 
12 0.315 0.310 0.315 0.248 0.100 0.344 0.339 0.344 0.297 0.150 
13 0.292 0.319 0.246 0.324 0.061 0.315 0.349 0.264 0.385 0.094 
14 0.229 0.250 0.193 0.199 0.074 0.247 0.270 0.211 0.246 0.103 
15 0.330 0.343 0.308 0.270 0.078 0.353 0.367 0.332 0.344 0.097 
16 0.364 0.364 0.355 0.177 0.227 0.385 0.384 0.377 0.216 0.245 
17 0.337 0.357 0.313 0.163 0.188 0.366 0.383 0.346 0.236 0.207 
18 0.425 0.448 0.402 0.173 0.242 0.443 0.469 0.417 0.223 0.239 
19 0.455 0.452 0.458 0.140 0.254 0.474 0.473 0.474 0.187 0.259 
20 0.488 0.492 0.471 0.154 0.229 0.509 0.512 0.495 0.220 0.218 
21 0.481 0.479 0.468 0.171 0.210 0.485 0.489 0.468 0.224 0.159 
22 0.361 0.366 0.357 0.104 0.233 0.354 0.363 0.344 0.143 0.168 
23 0.394 0.407 0.379 0.108 0.250 0.383 0.401 0.364 0.131 0.187 
24 0.288 0.291 0.282 0.221 0.181 0.259 0.275 0.239 0.229 0.089 
25 0.353 0.359 0.343 0.251 0.173 
26 0.266 0.279 0.240 0.320 0.125 
27 0.496 0.514 0.458 0.275 0.138 
28 0.358 0.361 0.345 0.156 0.190 
29 0.291 0.297 0.275 0.313 0.130 
30 0.404 0.415 0.383 0.330 0.091 
31 0.274 0.269 0.264 0.107 0.205 
32 0.252 0.274 0.220 0.293 0.143 
33 0.226 0.231 0.216 0.334 0.137 
34 0.109 0.097 0.114 0.134 0.115 
35 0.166 0.188 0.129 0.275 0.097 

Mean 0.329 0.338 0.313 0.206 0.151 0.370 0.379 0.356 0.238 0.191 
SD 0.099 0.101 0.097 0.081 0.058 0.085 0.086 0.086 0.078 0.063 
Note: All the correlation coefficients were first transformed to Fisher's Zs. The means and standard 

deviations of the transformed values were then calculated in~ the usual way. They are then 

re-transformed back to the Pearson correlation coefficients. 
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Table 4:19 

Six Hardest Items for Each Subject Group 

Test Group Six hardest items 

Whole 35 34 33 13 29 
Group (2.769) (2.640) (2.060) (2.015) (1.983) 
Male 35 34 33 29 13 
Group (2.506) (2.492) (1.918) (1.768) (1.720) 

Test-35 Female 35 34 13 33 29 
Group (3.091) (2.833) (2.355) (2.235) (2.232) 
High- 34 35 33 32 29 
ability (3.336) (3.034) (1.894) (1.422) (1.296) 
Group 
Low- 35 30 34 29 33 
ability (5.500) (5.442) (5.303) (5.114) (4.919) 
Group 
Whole 13 15 14 7 11 
Group (1.879) (1.604) (1.576) (0.976) (0.803) 
Male 13 15 14 7 11 
Group (1.598) (1.401) (1.355) (0.820) (0.736) 

Test-24 Female 13 15 14 7 24 
Group (2.190) (1.824) (1.815) (1.139) (0.912) 
High- 13 14 15 7 24 
ability (1.023) (0.962) (0.492) (0.078) (-0.082) 
Group 
Low- 13 15 14 24 7 
ability (4.409) (4.305) (3.669) (3.057) (2.691) 
Group 

Note: The numbers within parentheses are the item difficulty estimates. 

Table 4:20 

Percentages of Examinees Completing Test-35 

and 75% ofTest-35 

Group Percentages ofExaminees 

32 
(1.856) 

32 
(1.652) 

32 
(2.091) 

13 
(1.173) 

13 
(4.796) 

24 
(0.801) 

24 
(0.696) 

11 
(0.878) 

11 
(-0.268) 

6 
(2.652) 

Whole Test 75% of the Test 
Whole Group 43.0 76.2 
Male Group 48.5 81.4 
Female Group 38.3 71.6 
High-ability Group 49.9 91.5 
Low-ability Group 29.0 53.2 
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Table 4:21 

Percentages of Examinees Omitting the Last 5 Items 

Group Percentages of Examinees 

Item 31 Item 32 Item 33 Item 34 Item 35 All5 
items 

Whole Group 30.4 33.0 34.5 37.6 37.4 27.9 
Male Group 25.1 26.9 28.6 31.5 31.4 23.0 
Female Group 35.0 38.3 39.7 42.9 42.5 32.1 
High-ability Group 20.4 21.6 23.9 30.3 30.5 16.4 
Low-ability Group 48.9 52.1 53.1 53.8 53.6 46.7 

Table 4:22 

Comparability of CTT- and Rasch-based Item Difficulty Estimates 

Correlation coefficient between CTT- and 
Group Rasch-based item difficulty estimates 

Test-35 Test-24 

Whole Group 1.000 1.000 
Male Group 1.000 1.000 
Female Group 1.000 1.000 
High-ability Group 0.999 0.999 
Low-ability Group 0.999 1.000 
Note: All correlations are statistically significant at the O.Ollevel (2-tailed). 
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Table 4:23 

Comparability of Item Ordering based on CTT and Rasch Item Difficulty Estimates 

(a) Test-35 

Item Number 

Whole Group Male Group Female Group High-ability Group Low-ability Group 

CTT Rasch CTT Rasch CTT Rasch CTT Rasch CTT Rasch 

2 2 2 2 2 2 2 2 2 2 
1 1 1 1 8 8 1 1 1 1 
8 8 8 8 5 5 8 8 8 8 
5 5 5 5 1 1 5 5 5 5 

16 16 16 16 16 19 19 19 16 16 
19 19 19 19 19 16 20 20 9 9 
18 18 18 18 18 18 21 21 18 18 
9 9 9 9 9 9 18 18 19 19 

20 20 20 20 23 23 16 16 3 3 
23 23 21 21 20 20 9 9 17 17 
21 21 23 23 22 22 23 23 22 22 
22 22 22 22 21 21 22 22 23 23 
17 17 17 17 17 17 27 27 20 20 
3 3 3 3 3 3 17 17 10 10 
4 4 4 4 6 6 4 4 4 11 
6 6 27 27 4 4 6 6 11 4_ 

10 10 6 6 10 10 3 3 21 21 
28 28 28 28 12 12 28 28 12 12 
12 12 10 10 11 11 12 12 6 6 
27 27 31 31 28 28 10 10 7 7 
31 31 12 12 24 24 11 11 24 24 
24 24 24 24 31 31 25 25 31 31 
11 11 11 11 27 27 24 24 28 28 
7 7 7 7 7 7 31 31 14 14 

25 25 25 25 25 25 7 7 25 25 
30 30 30 30 30 30 30 30 26 26 
14 14 14 14 14 14 15 15 27 27 
15 15 15 15 15 15 26 26 15 15 
26 26 26 26 26 26 14 14 32 32 
32 32 32 32 32 32 13 13 13 13 
29 29 13 13 29 29 29 29 33 33 
13 13 29 29 33 33 32 32 29 29 
33 33 33 33 13 13 33 33 34 34 
34 34 34 34 34 34 35 35 30 30 
35 35 35 35 35 35 34 34 35 35 
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(b) Test-24 

Item Number 

Whole Group Male Group Female Group High-ability Group Low-ability Group 

CTT Rasch CTT Rasch CTT Rasch CTT Rasch CTT Rasch 

2 2 2 2 2 2 2 2 2 2 
1 1 1 1 8 8 1 1 1 1 
8 8 8 8 5 5 8 8 8 8 
5 5 5 5 1 1 5 5 5 5 

16 16 16 16 16 19 19 19 16 16 
19 19 19 19 19 16 20 20 9 9 
18 18 18 18 18 18 21 21 18 18 
9 9 9 9 9 9 18 18 19 19 

20 20 20 20 23 23 16 16 3 3 
23 23 21 21 20 20 9 9 17 17 
21 21 23 23 22 22 23 23 22 22 
22 22 22 22 21 21 22 22 23 23 
17 17 17 17 17 17 17 17 20 20 
3 3 3 3 3 3 4 4 10 10 
4 4 4 4 6 6 6 6 4 11 
6 6 6 6 4 4 3 3 11 4 

10 10 10 10 10 10 12 12 21 21 
12 12 12 12 12 12 10 10 12 12 
24 24 24 24 11 11 11 11 6 6 
11 11 11 11 24 24 24 24 7 7 
7 7 7 7 7 7 7 7 24 24 

14 14 14 14 14 14 15 15 14 14 
15 15 15 15 15 15 14 14 15 15 
13 13 13 13 13 13 13 13 13 13 
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Table 4:24 

Comparability of CTT- and Rasch-based Examinee Ability Estimates 

Correlation coefficient between CTT- and 
Group Rasch-based ability estimates 

Test-35 Test-24 

Whole Group 0.960 0.911 
Male Group 0.950 0.870 
Female Group 0.969 0.951 
High-ability Group 0.889 0.714 
Low-ability Group 0.960 0.961 
Note: All correlations are statistically significant at the 0.01 level (2-tailed). 

Table 4:25 

Comparability of Invariance of the CTT- and Rasch-based Item Difficulty Estimates 

Average Correlation Coefficient 

Sampling Plan Test-35 Test-24 

CTT Rasch CTT 
Random san1ples 0.996 0.996 0.995 

(0.263) (0.273) (0.236) 
Gender group sampling 0.983 0.982 0.980 

(0.078) (0.081) (0.177) 
Ability group sampling 0.881 0.894 0.848 

(0.034) (0.039) (0.062) 
Note: Standard deviations are presented within parentheses. 

Table 4:26 

Comparability of Invariance of the CTT- and Rasch-based 

Examinee Ability Estimates 
Correlation Coefficient 

Item Group Test-35 Test-24 
CTT Rasch CTT 

Equivalent-halves 0.644 0.580 0.589 
(0.634) (0.622) (0.565) 

Content 0.595 0.527 0.560 
(0.581) (0.573) (0.531) 

Difficulty 0.529 0.013 0.482 
(0.474) (0.477) (0.420) 

Rasch 
0.995 

(0.232) 
0.976 

(0.072) 
0.883 

(0.041) 

Rasch 
0.342 

(0.554) 
0.285 

(0.522) 
0.023 

(0.421) 
Note: The corresponding correlation coefficients after deleting the outliers are presented within 

parentheses 
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Sampling 
Plan 

Random 
sampling 

Gender group 
sampling 

Ability group 
sampling 

Table 4:27 

Comparability of the Numbers ofUnfitted Items 

from CTT and Rasch Modeling 

(a) Test-3S 
Number ofUnfitted No. of 

Sample Items Common 
CTT Rasch Unfitted 

Items 
r sample1 17 10 8 
r sample2 19 12 9 
r sample3 21 7 3 
r sample4 20 12 7 
r sampleS 19 12 8 
m sample1 16 9 6 
m sample2 17 11 s 
m sample3 17 11 s 
m sample4 17 1S 8 
m sampleS 1S 9 7 
f sample1 19 8 4 
f sample2 23 6 4 
f sample3 18 9 s 
f sample4 20 8 4 
f sampleS 21 8 6 
h sample1 33 4 4 
h sample2 32 4 4 
h samp_le3 34 s s 
h sample4 33 s s 
h sampleS 30 7 7 
L sample1 3S 4 4 
L sample2 3S 1 1 
L sample3 3S 4 4 
L sample4 3S 4 4 
L sampleS 3S 3 3 
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Percentage 
of Common 

Unfitted 
Items 
22.9 
2S.7 

8.6 
20.0 
22.9 
17.1 
14.3 
14.3 
22.9 
20.0 
11.4 
11.4 
14.3 
11.4 
17.1 
11.4 
11.4 
14.3 
14.3 
20.0 
11.4 
2.9 

11.4 
11.4 
8.6 



(b) Test-24 
Number of Unfitted No. of Percentage 

Sampling Sample Items Common of Common 
Plan CTT Rasch Unfitted Unfitted 

Items Items 
Random r sample1 4 6 3 12.S 
sampling r sample2 s 6 2 8.3 

r sample3 s 4 2 8.3 
r sample4 6 6 4 16.7 
r sampleS 6 8 4 16.7 

Gender group m sample1 7 s 4 16.7 
sampling m sample2 4 s 1 4.2 

m sample3 8 4 3 12.S 
m sample4 4 7 3 12.S 
m sampleS 4 s 3 12.S 
f sample1 7 3 2 8.3 
f sample2 6 3 2 8.3 
f sample3 4 6 3 12.5 
f sample4 7 s 4 16.7 
f sampleS 6 4 3 12.S 

Ability group h sample1 18 1 1 4.2 
sampling h sample2 19 2 2 8.3 

h sample3 19 4 4 16.7 
h sample4 18 3 3 12.S 
h sampleS 21 1 1 4.2 
L sample1 22 0 0 0.0 
L sample2 20 0 0 0.0 
L sample3 22 0 0 0.0 
L sample4 23 3 2 8.3 
L sampleS 22 3 2 8.3 
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