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Abstract 

A solid-state NMR study of a range of tin- and silver-containing compounds has been 
carried out in order to obtain information on the chemical shifts, coupling constants and 
relaxation times. The results are discussed in relation to the crystal structures, where 
known, and some crystallographic information obtained in cases with no previously
known structures. 

For tin-containing compounds, solid-state 119Sn and 31 P NMR comprise the majority of 
this work. Nevertheless, 13C NMR studies have been also carried out to assist the 
structure determination. Six Sn(ll) compounds have been examined, including three 
which also contain phosphorus. Spinning sideband analysis has been achieved for 119Sn 
(in some cases 31 P), giving information on the shielding tensors. Satellite peaks observed 
on the 119Sn NMR spectra of SnHP03 and SnHP04 reveal that the spectra contain 
information about indirect Sn,Sn coupling. Since surprisingly large values of 2600 ± 
200Hz and 4150 ± 200 Hz are found for SnHP03 and SnHP04, respectively, the 
calculated relative intensities of the satellites and the results of a single Hahn echo 
experiment have been discussed in detail. 

The relatively isolated eH,31P) spin pair in solid SnHP03 have been extensively 
investigated in this work, though the systems are rather complicated. The 1H and 31 P 
spectra display an intensity distribution of the spinning sidebands, which is the 
characteristic of an interplay of shielding, dipolar and indirect coupling tensors 
dominated, by the strong dipolar interactions. A single Hahn echo experiment was 
employed to reveal indirect spin-spin coupling eJPH). Strong oscillatory polarization 
transfer by dipolar interaction occurs during short contact times on moderately fast 
magic-angle spinning and the P,H distances were extracted (including for SnHP04). 
Rather complicated 1H NMR spectra under 31 P continuous-wave decoupling arises from a 
second-order recoupling of the heteronuclear dipolar-coupling tensor and the shielding 
tensor of 31 P, leading to line-splittings and broadenings in the e1P} 1H spectra. 
Additionally, measurement of 1H and 31 P relaxation times has been undertaken, 
producing results which were expected to follow the behaviour characteristic of an 
isolated two-spin system, but anomalies were observed. 

Various nuclei, such as 13C, 15N, 31 P and 109 Ag, in silver-containing com~ounds have 
been studied, and provide information on indirect spin-spin interactions, 1Je 9 Ag14N) and 
1Je09 Ag 15N). The 109 Ag NMR spectra for [Ag(NH3)2hX where X = S04, Se04, N03 
show spinning sideband manifolds, which are typical for systems with moderately large 
shielding anisotropy. Other silver compounds namely [Ag(R)2]N03 where R = pyridine, 
collidine, 2-picoline, quinoline and AgY where Y = HP04 and P04, have been 
investigated to give as much complementary information about the chemical shifts as 
possible. 



Memorandum 

The research presented in this thesis has been carried out at the Department of Chemistry 

of the University of Durham between March 2001 and March 2004. It is the original 

work of the author unless otherwise stated. None ofthis work has been submitted for any 

other degree. 

The copy right of the thesis rests with the author. No quotation from it may be published 

without her prior written consent, and information derived from it should be 

acknowledged. 



Acknowledgements 

My three years at Durham have been wonderful, I take this opportunity to thank many 

people who have helped at various stages, and in many ways, either directly or indirectly 

with the work in this thesis. 

Firstly, I would like to thank my supervisors Professor Robin Harris and Dr. Paul 
' 

Hodgkinson who have both offered me much advice, guidance and inspiration throughout 

the duration of this research. I would especially like to thank Professor Harris for 

introducing the topic of this thesis. His considerable support, encouragement and 

patience while supervising enabled me to complete this work. 

It is my pleasure to express my thanks to Dr. David Apperley who took on the task of 

training me in the experimental aspects of solid-state NMR, and also answered my many 

naive questions about NMR. I would also like to thank Philip Wormald and Fraser 

Markwell for their assistance with experimental work on the 300 MHz spectrometer. 

am grateful to Professor Graham Bowmaker (University of Auckland, New Zealand) and 

Dr. Philip Waterfield (Uniliver Port Sunlight) who supplied me with samples for study. 

Thanks are also extended to the Royal Thai government for a studentship. 

I must also thank all of my friends from CG 22 and 30: Diane, Giancarlo, Barry, Ian, 

Thomas, Debbie, Paolo, Alessia, Phuong, Susan, Romain, Veni, Matthew and Andy who 

produced a lively and friendly working atmosphere. Thanks also go to Neil and Clare for 

their help with X-ray diffraction data. 

I would also like to thank Dr. Anucha Yangthaisong, Dr. Auttakit Chattaraputi, Narumon 

Sakpakornkarn, Pisuttawan Sripirom, Jitnapa Sirirak and Monsit Tanasittikosol and for 

their friendship and support that made my life outside ofNMR extremely enjoyable. 

I am indebted to my family; none of this work would have been possible without their 

considerable support, encouragement and understanding from thousands of miles away. 

Thanks for being there. 

And last but by no means least, the biggest thank you of all must go to my husband, 

Dr. Taweechai Amornsakchai, for his encouragement throughout the past three years, and 

for his patience and understanding whilst this thesis was being written. 



To mum and dad 



Abbreviations, symbols and notation 

The following acronyms and symbols have been used in this thesis. In general, these are 

in standard notation and are included here for reference purposes. Standard symbols 

comply with IUPAC conventions 
1 

fJ 

e 
s 
CP 

CSA 

cw 

1J 

FID 

FT 

y 

h 

H 

HX 

J 

Kel-F 

static magnetic field of an NMR spectrometer 

RF magnetic field associated with v1 

Euler angle 

angle between a given vector and B0 

shielding anisotropy 

cross-polarisation 

chemical shift anisotropy 

continuous wave 

chemical shift (of nucleus X) 

dipolar coupling constant 

effective dipolar coupling constant 

nuclear receptivity relative to that of the carbon-13 nucleus 

nuclear receptivity relative to that of the proton (hydrogen-1 nucleus) 

asymmetry 

free induction decay 

fourier transform 

gyromagnetic ratio 

Planck's constant= 6.626 X I o-34 J s. ( h =hI 2tr) 

Hamiltonian 

proton-X nucleus probe 

indirect scalar (spin-spin) coupling 

(CF2CFCI)n 

1 
R.K. Harris, J. Kowalewski, S.C.D. Menezes, Pure Appl. Chem. 12 (1997) 2489. 



Mo 

MAS 

V 

NMR 

pp m 

r 

ramped-CP 

RF 

(J 

SIMPSON 

SSB97 

STARS 

r, 
T1p 

T2 

TPPM 

Vespel 

magnetisation at equilibrium state 

magic-angle spinning 

frequency 

nuclear magnetic resonance 

part per million 

internuclear distance 

ramped-amplitude cross-polarisation 

radio frequency 

shielding tensor 

a general simulation program for solid-state NMR spectroscopy 

an iterative program for spinning sideband analyses 

spectrum analysis of rotating solids 

spin-lattice relaxation time 

spin-lattice relaxation time in rotating frame 

spin-spin relaxation time 

time between RF pulses 

two-pulse phase modulation 

fluorine free polymer 
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Chapter 1: Introduction 

CHAPTER! 

INTRODUCTION 

The nuclear magnetic resonance phenomenon was first recorded in 1945 by Purcell 

et al. [1] and by Bloch et al. [2]. Purcell and his colleagues observed their first NMR 

signal from the protons in solid paraffin wax, whist Bloch and his colleagues obtained a 

signal from the protons in liquid water. Useful chemical applications became possible 

after the discovery of the chemical shift effect in 1949 [3,4]. Since its discovery, NMR 

has developed considerably and has become an important technique for the elucidation of 

molecular structure in the solution state. In the past, progress in solid-state NMR was 

hampered by technical and conceptual difficulties. Today, however, it is acceptable that 

solids are (almost) as amenable to NMR as solutions by combining three techniques, 

namely magic-angle spinning (MAS), cross-polarisation (CP) and efficient proton 

decoupling [5-8], as will be discussed in the following Chapter. Furthermore, solid-state 

NMR is becoming increasingly important, since it is used in the elucidation of structure 

and dynamics of many solid inorganic, organic and organometallic compounds and 

materials. 

The main work presented in this thesis is the study of a range of tin- and silver-containing 

solid compounds using high-resolution solid-state NMR techniques. Each series of 

compounds will be introduced in the corresponding Chapters. The aims of the work are 

to examine the solid-state structures, to obtain NMR parameters (including anisotropies) 

and to understand the behaviour in coupled two-spin e I P, I H) systems. 

In the following chapter, a brief overview of the basic principles of NMR spectroscopy as 

it applies to the solid-state is given, while Chapter 3 briefly describes the experimental 

considerations. Chapter 4 reports some of the results for the tin-containing compounds. 

Chapter 5 investigates the coupled two-spin 3IP, IH systems, providing an indirect spin

spin coupling and also the P,H internuclear distances. Chapter 6 reports the application 



Chapter I: Introduction 2 

of high-resolution solid-state NMR to some silver-containing compounds and Chapter 7 

describes the complications in the relaxation behaviour of the coupled two-spin 31 P, 1H 

systems. 

1.1 References 

[I] E.M. Purcell, H.C. Torrey, R.V. Pound, Phys. Rev. 69 (1946) 37. 

[2] F. Bloch, W.W. Hansen, M.E. Packard, Phys. Rev. 69 (1946) 127. 

[3] W.G. Proctor, F.C. Yu, Phys. Rev. 77 (1950) 717. 

[4] W.C. Dickinson, Phys. Rev. 77 (1950) 736. 

[5] l.J. Lowe, Phys. Rev. Lett. 2 (1959) 285. 

[6] A. Pines, M.G. Gibby, J.S. Waugh, J. Chem. Phys. 59 (1973) 569. 

[7] S.R. Hartmann, E.L. Hahn, Phys. Rev. 128 (1962) 2042. 

[8] J. Schaefer, E.O. Stejskal, J. Am. Chem. Soc. 98 (1976) 1031. 
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CHAPTER2 

BASIC PRINCIPLES OF SOLID-STATE NMR 

This chapter will describe some of the basic ideas that are generally applicable to solid

state NMR. The theory of solid-state NMR is now well-known and can be found in Refs 

[1-3], and so only a short overview is appropriate here. A few more specific points are 

discussed in later chapters. 

2.1 Nuclear interactions 

Initially, it is essential to have an understanding of the nature of NMR interactions. The 

nuclear spin Hamiltonian consists of a sum of terms that describe physically different 

interactions of the nuclear spin. The interactions may be divided into external and 

internal spin interactions and may be written as: 

(2.1) 

The external spin interactions are those with the external magnetic field Bo and the time

dependent radio frequency field 8 1, which are essentially under the control of the 

experimentalist. The remaining terms in Equation 2.1 namely, dipolar, shielding, indirect 

(scalar) coupling and quadrupolar coupling, are the internal spin interactions, which 

represent the interactions of nuclear spins with their surroundings and are independent of 

the experimental conditions. Brief attention to each internal interaction will now be 

given as follows: 
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The dipole-dipole coupling or dipolar coupling is the direct magnetic interaction between 

two nuclei through space, which the total interaction is the summation of homo- and 

heteronuclear interactions. The dipolar interaction is potentially useful for molecular 

structure determination, since it depends upon the internuclear distance. The dipolar 

interaction for a pair of non-equivalent nuclei, isolated spins I and S is given by 

(2.2) 

where r18 denotes the internuclear distance. It is important to note that the dipolar 

interaction leads to an orientation-dependent splitting, in which the doublet splitting is 

D18 (3 cos2 8 -1) where 8 is the angle describing the orientation of r1s with respect to Bo. 

A typical heteronuclear dipolar powder pattern for an isolated spin-pair is shown in 

Figure 2-1, which consists ofthe superposition oftwo subspectra (ms = ±112). 

D e = 90" 
----/ 
I 

0• I 
~ 1: e = 54.74" 

e =O i\ t "' __ .,_• -"-~-~-

D D/2 0 -D/2 -D 

Figure 2-1 Powder pattern showing dipolar coupling (D) for the I spin of an IS system. 
The subspectrum marked with '+' is associated with S spin state of+ 112, whereas the 
subspectrum with '-' is associated with S spin state of -1/2. 

The indirect spin-~pin coupling, J describes the coupling of nuclear spms vta the 

electrons present in the molecular system surrounding them. This interaction (tens to 

hundreds of Hz) is quite small compared to the dipolar interaction (tens of kHz). 
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The source of shielding of nuclear spins arises from the interaction of the orbital motion 

of surrounding electrons with the external magnetic field. The magnitude and direction 

of the interaction will thus be dependent on molecular orientation in B0. This implies that 

the interaction is a tensor quantity (see below). 

Additionally, a nucleus with I > ~ has a 'quadrupole moment', which interacts with 

electric field gradients at the nucleus. This interaction is called quadrupolar coupling 

Note that this interaction will not be considered further since it is not relevant to the work 

presented in this thesis. 

All of these internal interactions are second-rank tensors (expressed in terms of 3 x 3 

matrices) and, to a first-order approximation, have the same orientation dependence of 

the form 3 cos2 B -1, B being the angle between Bo and a local molecule-fixed direction. 

In the general case, molecular motion is usually very limited in solids; hence the NMR 

spectrum of a solid is influenced by all of these internal interactions simultaneously, 

producing a complicated spectrum. This is in contrast to the solution state, where the 

molecules are free to rotate rapidly, so that the total interaction is reduced to the isotropic 

chemical shift and isotropic indirect coupling, i.e. dipolar and quadrupolar interactions 

are cancelled out by motional averaging, resulting in high-resolution spectra being 

obtained. 

In a powder sample containing many tiny crystallites, the NMR spectrum is a 

superposition of contributions from each crystallite, which are randomly orientated with 

respect to the external magnetic field. Each orientation has a different NMR transition 

frequency, resulting in the observation of a powder pattern for a static sample, as shown 

in Figure 2-2 for the case of shielding, i.e. the shielding constant (a") will vary with the 

orientation of the molecule (see Figure 2-2 (b) and (c)) unless the electronic environment 

is highly symmetric (see Figure 2-2 (a)). Thus the shielding interaction affects the width 

and the shape of this pattern. 
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(•) j_ 
cr 

(b) 

' cr,r 

(c) 

cr 
~ 

' crtt crzz crJJ 

Figure 2-2 Schematic powder patterns caused by shielding anisotropy for a site with 
(a) cubic symmetry (b) axial symmetry and (c) lower symmetry. 

In order to obtain a well-resolved spectrum, a combination of techniques, namely magic

angle spinning (MAS), efficient 1H decoupling, and cross-polarisations (CP), are 

frequently used. Each of these techniques will now be considered briefly. 

2.2 Magic-angle spinning and high-power decoupling 

High-resolution NMR spectra of solids may be obtained by rapidly rotating the sample 

about an axis at the "magic angle", f3 = 54.74° with respect to the static magnetic field 

(see Figure 2-3). This technique is known as magic-angle spinning (MAS) [4,5]. The 

average value of 3 cos2 e -1 is zero since this term is proportional to (3 cos2 f3 -1). The 

average angle of e given by 

(2.3) 

where x is fixed for a rigid solid, and it takes all possible values for a powder sample. e 

is all possible angles for a powder. The angle f3 is at the control of the experimental ist. 
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Consequently, with MAS all anisotropy effects involving the geometric factor 

3cos2 (}-I, such as the shielding anisotropy and the dipolar interaction, are removed 

from the spectra and each powder pattern will collapse to a single line at a frequency 

determined by isotropic chemical shift. Also, rotational sidebands with multiples of the 

spin rate will be obtained if a spin rate is less than the shielding anisotropy (in frequency 

units). 

rotation axis 

\/ 
// 

Figure 2-3 Magic-angle spinning of a rotor with a spin rate of vr . r is the internuclear 

vector. 

Use of MAS alone cannot remove the dipolar interaction effectively since this interaction 

can be several tens of kHz (e.g. carbon-proton dipolar interaction); such an approach 

would require higher spin rate than are available today (2004). Thus, high-power 

decoupling is often required to remove the heteronuclear dipolar interaction properly. 

Decoupling is achieved by applying a strong RF field to non-observed spins (e.g. proton). 

Normally, this is done continuously and is known as 'CW decoupling'. The RF 

irradiation causes the non-observed spins to change their spin states (e.g. a and 13 states 

for proton) rapidly compared with the heteronuclear dipolar interaction, and thus 

'decouples' them from the observed spin. CW decoupling works well at low magnetic 

fields and modest spin rates. However, often CW decoupling becomes inefficient at high 

magnetic field when the MAS frequency exceeds the proton-proton interaction, leading to 

an increase in resonance offset effect, and resulting in residual linewidths. Fast spin rates 

at high magnetic fields are required to reduce the sideband intensities due to the size of 
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chemical shift anisotropy (e.g. CSA for a carbonyl carbon IS m order of 30 kHz at 

18.8 T). 

A multiple-pulse heteronuclear decoupling scheme, TPPM (two-pulse phase modulation) 

is now widely used instead of CW decoupling. This pulse sequence has been proved to 

be more efficient than CW decoupling in the regime of high magnetic fields and fast spin 

rates (see this pulse sequence in Chapter 3), in which increases an enhancement in 

resolution and in sensitivity compared to CW. 

2.3 Cross-polarisation 

Cross-polarisation (CP) [6] is a powerful technique for acquiring spectra of rare spin 

systems, e.g. 13C, in organic solids. CP allows enhancement of the signal by transferring 

magnetisation from the protons to the observed spins. Another benefit of using this 

technique is the reduction in the recycle delay between radio frequency pulses since the 

recycle delay depends on the relaxation time (T1) of the abundant spin (usually 1H) rather 

than that ofthe observed spins (which is generally longer). 

Cross-polarisation is achieved in a double-resonance experiment. A 90° pulse is applied 

to the proton channel and this magnetisation is then spin-locked. At this point B1s is 

turned on and magnetisation is transferred from the protons to the dilute spins if the 

Hartmann-Hahn matching condition [7], r HB!H = rsB!S' is satisfied. The enhancement is 

proportional to the ratio lr HI rsl· 

CP, however, is not limited to dilute spin systems like 13C. It can be applied to abundant 

. l"k 31p spm systems, 1 e . Very recently, the application of CP to low-y nuclei has been 

reviewed by Sebald [8]. 
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CP experiments are usually combined with MAS. At low spin rates, the CP is very 

efficient and the matching profile is rather broad. The matching profile represents the 

cross-polarisation efficiency, which is the intensity of the observed signal as a function of 

RF field strength for a fixed mixing time. Under static conditions, the CP matching 

profile consists of a broad unstructured peak centred at vH = v5 with the width 

comparable to homogeneous proton linewidth, where v H, vs are RF field strengths 

applied to proton and S spins respectively. With increasing spin rate, when the MAS 

frequency exceeds the proton-proton interaction, it significantly influences the CP 

process [9, I 0]. This is because the matching profile breaks down into a series of 

sidebands separated by rotor frequency [11,12], v1 =vs +nvr where vr is the spin rate. 

When this occurs, the matching at the centre becomes inefficient (as the matching profile 

shows 'dip' at the centre); on the other hand, efficient CP can be obtained by matching on 

a sideband. The most efficient transfer is found at the n =±I and n = ±2 sidebands. 

However, the accuracy of the matching is much more critical due to the narrower 

matching profiles obtained at higher spin rates. Fortunately, a pulse sequence 

incorporating a variable or ramped amplitude cross-polarisation pulse sequence [13,14] 

has been suggested for circumventing this problem. Use of this pulse sequence extends 

the range of matching conditions and allows for deviation from an exact Hartmann-Hahn 

matching during an experiment. 

2.4 Spinning-sidelband analysis 

One of the advantages of solid-state NMR is that the principal components of shielding 

tensors can be obtained, whereas in solution-state they are averaged by molecular 

tumbling to the isotropic value. The shielding tensors provide potential information 

about the bonding and structure, especially regarding the local chemical environment of 

the nucleus. 

At moderate spm rates (less than the static bandwidth), spinning sidebands will be 

observed, with lines that are separated from the isotropic shift by multiples of the rotor 

spinning frequency. The spinning sidebands can be analysed to yield the values for the 
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shielding tensor elements. For analysis of the spinning sidebands, to obtain values for 

anisotropy and asymmetry via the principal shielding tensor components, an iterative 

program for spinning sideband analyses (SSB97) [15] written in-house was used. 

The conventions regarding the shielding tensor information used in this thesis are based 

on Haeberlen [ 16]. The three-tensor elements are labelled in the following form: 

(2.4) 

where a;so is the isotropic chemical shift and is given as: 

(2.5) 

More positive shielding values correspond to lower resonance frequencies (i.e., 

0'- O',~r = -8 ). The shielding an isotropy has two different definitions, defined as in 

Equations (2.6) and (2. 7), respectively. 

(2.6) 

~'=0' -(J 
I.;, 33 iso (2.7) 

Obviously, they are related by ~0' = 3s I 2. Note that the shielding anisotropy can be 

either positive or negative, depending on whether 0'33 > 0'22 > 0'11 or vice versa. 

The shielding asymmetry, 17, is defined as 

0', -(JII (0'22 -(JII) 17 = --=-c.=._----'-'--

0'33 - (Ji.w c; 
(2.8) 
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This clearly implies 0:::; 11 :::;1. When 11 = 0, it means that the nucleus has axial symmetry 

( ()1 1 = ()22), which can occur for both positive and negative cases of anisotropy. 

A schematic powder pattern for the case of axial symmetry is shown in Figure 2-2 (b) 

whereas Figure 2-2 (c) presents a general asymmetric case. 

2.5 Interplay of shielding, direct and indirect coupling tensors 

When slow spinning is combined with heteronuclear indirect coupling (e.g. in SnHP03), 

the spinning sideband manifolds are more complex because of the interplay of shielding 

(a), dipolar coupling (D) and indirect coupling (J) tensors [17, 18]. The simplest case 

occurs when fJ and J are axially symmetric and when their principal axes are along the 

relevant internuclear distance and are thus coaxial with D. Then, the anisotropy in J has 

exactly the same form as D. Since the anisotropy in J cannot be distinguished from D, an 

effective parameter D' may be defined 

D' = D-I!J 
3 

(2.9) 

where D is the dipolar coupling constant (in frequency units), and I!J = J
11

- J:L is the 

anisotropy in J. 

Following Ref. I, the transition of the I nucleus (in reduced form) in an IS ( I1 =I~ =I I 2) 

system is given by 

_ ''" 1 0;-eJ/( 3 2() I) J VI- VI -2V!':>i COS - -,ISmS (2.1 0) 

where v~ = y1 B0 I 2Jr is the I Larmor frequency in the absence of shielding, m, is the 

appropriate spin component quantum number for the S spin, J 1s is the isotropic (J,S) 

coupling constant, () is the angle between 'is and B0 , and t;j11 is an effective tensor 

anisotropy given by 
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;-eff _ / _ 2D'ms 
':11 - ':IJ vo 

I 

12 

(2.11) 

Thus this means that one static powder subspectrum ( ms = -1 I 2) is 'stretched' whereas 

in the other ( ms = 112) is 'squeezed'. Note that s1 and y1 are assumed to be positive. 

Figure 2-4 presents the powder pattern when IS system is influenced by both dipolar 

interaction and shielding anisotropy. 

D 

<B) ---, 
D 0 -D 

Figure 2-4 Powder pattern for the I spin of an IS system influenced by both (J,S) dipolar 
interactions and axially symmetric shielding anisotropy (with a

11 
>a_~_). The subspectra 

marked with '+' and '-' have the same significance as in Figure 2-1. The small separation 

marked by single and double-headed arrows are of magnitudes vJ s1 I 2 and vJ s1 , 

respectively. It is assumed that the symmetry axis of shielding is in the internuclear 
direction. 

Under slow MAS conditions, the influence of the angle-dependent term 3 cos2 
(} -1 is 

translated into the distribution of intensities among the relevant spinning sidebands. For 

one spinning-sideband manifold, the effects of shielding anisotropy and dipolar 

interaction are additive (stretched sub-spectra), whereas for the other the tensors tend to 

compensate (squeezed sub-spectra). The isotropic indirect coupling serves to 

differentiate between the manifolds and thus two values siff can be obtained by the 

analysis of spinning sidebands. This allows s1 and D' to be derived independently. 
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2.6 Spin echoes in coupled systems 

It is worth considering a spin-echo sequence here since it will be important in later 

chapters. 

By using a spin-echo pulse sequence, inhomogeneities in the static magnetic field and 

chemical shift differences can be refocused [2, 19]. In the basic spin-echo sequence 

(Figure 2-5 (a)), an initial 90° pulse turns Mo into the y direction (Figure 2-6 (b)). The 

magnetisation vectors move ahead of the mean whilst others lag behind during the time 

period t (Figure 2-6 (c)). A 180°y pulse is then applied after timet, which has the effect 

of rotating the faster moving vectors and the slower ones along y, in other words 

reflecting them in the yz plane. They continue to move in the same direction, and after a 

refocus time equal to t they are again in phase in the yz plane. This pulse sequence can 

be modified by applying successive 180° y pulses (Figure 2-5 (b)), resulting in a series of 

echoes of decaying intensity. This sequence is known as the Carr-Purcell-Meiboom-Gill 

(CPMG) [20,21]. 

90°, 180°y 

(a) D· 't D· 't 

~{\!\A/'-vvv 
90°, 180°y 

D( 't -n 't ~ 1\1\ L'v--
n V" v 

(b) 

Figure 2-5 Spin-echo sequences (a) A basic spin-echo and (b) Carr-Purcell-Meiboom
Gill (CPMG) sequence. In CPMG, data points will be acquired between pulses. 
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(a) (b) {c) (d) (e) 

Figure 2-6 The spin-echo refocuses magnetisation vectors dephased by field 
imhomogeneity or by chemical shift differences. 

The spin-echo experiment provides a useful means for observing spin-spin couplings. 

For a heteronuclear AX system, the net magnetisation of A (observed nuclei) can be 

considered as composed of two separate magnetisations, MA xu and MA x~, for A nuclei 

with their X neighbours in the a and ~ states respectively. The heteronuclear coupling 

will be re focused in exactly the same way as chemical shifts (see above). Figure 2-7 

shows the schematic illustration of A magnetisation vectors during a spin-echo pulse 

sequence. Note that in Figure 2-7 JAx is positive, so that MA x~ will precess faster than 

MA xu. Any direct effect of the pulses on the X spin has been ignored. 

't 180°y Mxp 't -- A 

EEr~ Mxp 
A ffiM~ ffiM:" EBM:" 

Mxp 
A 

X X Mxp X X 
A 

(a) (b) (c) (d) 

Figure 2-7 The evolution in the x/y plane of the A magnetisation vectors of a 
heteronuclear AX spin system during a spin-echo pulse sequence. 

On the contrary, if a homonuclear AX system is considered, with the pulses affecting A 

and X equally, a different situation will be obtained (Figure 2-8). The 180° pulse on the 

X spins inverts the populations of the X-spin levels, and thus has the effect of changing 

the labels of the Xa and X~ states. Consequently MA xu and MA x~ are interchanged, and 

this would normally occur at the same time as the 180° rotation of these magnetisations 
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about the y direction (Figure 2-8 (c)). Thus refocusing does not occur after time t later, 

as in Figure 2-8 (d), because the faster vector is now still ahead of the slower one. This 

relates to the phase angle generated at time 2t, fjJ = 4nJAxr. 

t 180°y Mx" t -- A Mx" EEr:· EBM~ ffiM:' $,~ Mxp 
A 

X X . l\P 
MA X X A 

(a) (b) (c) (d) 

Figure 2-8 The evolution in the x/y plane of the A magnetisation vectors of a 
homonuclear AX spin system during a spin-echo pulse sequence. 

When the signal is sampled at the maximum of the echo, the net magnetisation is given 

by 

This implies that the echo height will vary cosinusoidally with t. A series of 

measurements of echo heights yields data that contain a modulation from the relevant 

coupling, therefore an A spectrum obtained from Fourier transformation shows two A 

lines ofthe AX spin system. 

Applying 180° pulses simultaneously to both A and X spms, 90°(A) - t -

180°(A)/180°(X)- t -, allows evolution under heteronuclear J couplings to be observed. 
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CHAP'fER3 

EXPERIMENT AlL DIE§ClRIP'fRON§ 

The general experimental procedures will be described in this chapter. 

3.1 Spectrometers and probes 

Three solid-state NMR spectrometers were used for the work presented here, namely a 

Chemagnetics CMX200, a Varian UnityPlus 300, and a Varian InfinityPlus 500. 

Additional information is often obtained when working at different field strengths, e.g. a 

potential increase on resolution of spectra at higher field. In the other hand, working at 

higher field generally requires higher spin rates to remove the spinning sidebands since 

the shielding anisotropies are increased with increasing magnetic field. 

The similarities and differences between the three spectrometers are described below. 

The Chemagnetics CMX 200 has a 4. 7 T Oxford instrument magnet and operates at a 

proton resonance frequency of 200.13 MHz. Chemagnetics probes with a Pencil rotor 

design were employed. The HX probes have been mainly employed for MAS 

experiments in this work, the rotor diameters being 4 and 7.5 mm. 

The Varian UnityPlus 300 is equipped with a 7.05 T Oxford instrument magnet, 

operating at 299.8 MHz for protons. The probes were supplied by Doty Scientific. 

Most of the Sn-119 spectra (except for SnC204) were obtained from this spectrometer, 

the rotor diameters used being 4 mm. Most of the Ag-1 09 spectra were acquired from 

the 300 MHz spectrometer on the 5 mm probe, while a 7 mm MAS probe was used for 

most of the C-13 spectra of the silver-containing compounds (except for [Ag(quin)2]N03 

which was observed using 7.5 mm probe). 
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For the Varian InfinityPlus 500, a magnet of 11.7 T is manufactured by Oxford 

Instruments. The proton resonance frequency is 499.70 MHz. This system uses the 

Varian (Chemagnetics) HX probes, and the Chemagnetics "spinsight" software controls 

the system. A 7.5 mm double-resonance HX MAS probe (equipped with an external 

tuning box for frequencies below 15N) was employed to observe the Ag-1 09 spectra. 

Using the low gamma tuning box extends the tuning range down to 12 MHz. Hence, the 

'tune' and 'match' process can be directly adjusted using this box. Spinning up to 

22kHz can be obtained by using a small rotor diameter (3.2 mm) HX probe. Thin-walled 

rotors (zirconia) with short caps were used with this probe to achieve the maximum 

signal-to-noise ratio. Most of the variable contact time experiments described in 

Chapter 5 were undertaken on the 3.2 mm probe. 

As shown above, HX probes have been mainly employed for MAS experiments in this 

work. Such probes operate on two channels, one of which needs to be tuned to the proton 

resonance frequency, whereas the other one will be tuned to frequency ranging from 31 P 

frequency to 15N frequency, adjusted by changing the capacitors. 

The rotors used in the three spectrometers were made from zirconia with drive tips in 

Kel-F (7 and 7.5 mm), Vespel (4 and 5 mm) and Torlon (3.2 mm), and Teflon end caps. 
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3.2 Nuclei of interest and chemical shift references 

Table 3-1 gives the frequencies and chemical shift references of the standard samples 

used. Referencing was done by replacement and the chemical shifts adjusted as follows: 

Table 3-1 Standard references 

Nucleus Frequency 

/MHz 

IH 200.13a 

31p 81.02a 

II<JSn 74.56a 

13c 50.33a 

11Se 57.27° 

ISN 30.40b 

IU'JAg 13.97° 

a At magnetic field of 4.7 T 
hAt magnetic field of 7.05 T 
c High frequency resonance 
"Nitrate peak 

Secondary standard 

Polydimethylsiloxane 

(PDMSO) 

Brushite 

(CaHP04 · 2H20) 

Tetracyclohexyltin 

(C6H11)4Sn 

Adamantane 

(C10H16) 

Ammonium selenate 

((NH4)2Se04) 

Ammonium nitrate 

(NH4N03) 

-

8/ppm Primary standard 

at 0 ppm 

0.0 TMS 

1.2 85% H3P04 

-97.4 Me4Sn 

38.4c TMS 

1040.2 (CH3)2Se 

-5.1 d CH3N03 

0.0 AgN03 
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3.3 Magic-angle setting 

The magic-angle should always be set properly before MAS experiments. Although 

small mis-sets do not usually significantly influence linewidths, the proper setting is very 

important when the observed nuclei have a large shielding anisotropy (most heavy metal 

nuclei such as 119Sn, 207Pb and 199Hg). This is because the shielding anisotropy cannot be 

completely removed when the rotor is spinning off 54.74°, resulting in the fact that a 

scaled powder pattern will be observed. 

Setting the magic-angle is simply done by monitoring 79Br (from KBr) FID signals and 

maximizing the duration of the rotary echo train in the FID. If the angle is well-set, the 

echoes should last for at least I 0 ms. 

3.4 Recycle delay setting 

The recycle delay is the time between the end of the data acquisition from one FID and 

the start of the next period of RF excitation. During this delay, the magnetisation of the 

sample returns towards the equilibrium state. The sample is returned to its equilibrium 

state with a rate of I/T1 where T1 is the spin-lattice relaxation time (ofthe observed nuclei 

for direct polarisation operation but of protons when cross polarisation from 1H is used). 

T1 is sample dependent, and it is important to choose the optimum delay before starting 

the experiment. If the delay is too long, it will waste spectrometer time. On the other 

hand, a delay which is too short can result in the loss of signal due to saturation. 

Full relaxation requires a recycle delay of 5 x T1• However, for a fixed experiment time 

(number of transients x recycle delay) the best signal-to-noise ratio is obtained at~ 1.2 x 

T1 not at 5 x T1 [I]. This delay can only be used for experiments for which quantitative 

signal intensities are not important (e.g. cross-polarisation experiments). This optimal 

delay can be estimated by 'arraying' the recycle delay. The optimum recycle delay gives 

~ 70% of the full intensity. 
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3.5 Basic acquisition pulse sequences 

A number of pulse sequences have been used during the course of the work described in 

this thesis. The more common pulse sequences used are described in following sections, 

unless otherwise stated in later Chapters. 

3.5.1 Single-pulse excitation (SPE) 

The single-pulse excitation experiment is the simplest pulse sequence, which combines a 

90° pulse and proton decoupling. The pulse sequence is shown in Figure 3-1. The 

duration of the 90° pulse is probe- and to some extent sample-dependent. They were 

generally set at ea. 5 f..lS for 7 and 7.5 mm probes and 4-5 f..lS for 4 and 3.2 mm probes. 

Efficient proton decoupling is necessary when there are strong X-H heteronuclear dipolar 

interactions present. Continuous wave (CW) decoupling is the most common way to 

decouple protons in solid-state NMR. However, two-pulse phase modulation (TPPM) [2] 

was used to decouple phosphorus for SnHP03• The expanded region of this pulse 

sequence is shown in Figure 3-1. TPPM consists of the application of RF pulses of 

length 'tp, alternating between two phases separated by an angle rjJ . Since 'tp and rjJ are 

dependent on the MAS frequency and the system under study, both parameters need to be 

optimised before using the TPPM sequence in this work. 
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1-4>/2 1 +4>t2 1-4>t2 1 +4>12 1 
~~ 

.... p p,. 

'H 
... ... , , 

I 
'" (a) TPPM decoupling 

90° 
X 

[1/\ 
V 

C>. c> C"'>. .......... 
V 

'H y 
(b) CW decoupling 

X 

(c) 1H 90° 90" 
X y 4 

Affi ~--- ---~--------~--------
IH T--- CW decoupling 

X 

90". decoupling window 
(d) 'H 

CW decoupling 
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X 

Figure 3-1 Pulse sequence: (a) SPE with CW decoupling; (b) CP; (c) ramped-CP; (d) 
dipolar dephasing (NQS); (e) TOSS. 
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3.5.2 Cross-polarisation and Ramped-Amplitude Cross-Polarisation 

As described in Chapter 2, cross-polarisation (CP) is used to enhance the magnetisation 

of dilute spins from abundant spin, e.g. protons. Figure 3-1 shows the pulse sequence. 

This sequence, together with a "flip back" pulse on the 1H channel after the acquisition 

time, was used to obtain Be and 15N spectra for the silver-containing compounds. 

The Hartmann-Hahn condition, rH B1H = r 5 B15 , is achieved by varying the RF power of 

either the H channel or the X channel using a suitable standard compound. The matching 

condition was considered to occur when the signal was maximised. Since the RF field 

strength is related to the 90° pulse duration, it is necessary to set the 90° pulse on both 

channels properly by varying the pulse duration for any given power until the maximum 

signal is obtained. Note that it is important to know what the limit of the RF power is for 

the probe used. 

For each compound (e.g. for a Be spectrum), the optimum contact time can be found by 

varying the contact time, which gives the maximum signal. It is worth noting that for 

nitrogen-containing compounds it is not easy to optimise the contact time directly 

because the 15N intensity is probably too low. However, the optimum contact time can be 

determined by considering the signal behaviour for carbon as a function of contact time. 

This is because in a CP experiment the proton source for 1H to ne is effectively the same 

as that for 1H to 15N. It has been found in practice that it is better to use longer contact 

times for 15N than for ne. This is only feasible when T1p(H) (spin-lattice relaxation time 

in rotating frame) is significantly longer than the optimum contact time for ne. This is 

probably because 15N and 1H dipolar interaction is on average weaker than 13C and 1H 

dipolar coupling (e.g. YN <Ye). 

As mentioned above, the flip-back is extra pulse consisting of a 90° pulse of opposite 

phase from the first one (i.e. 90°.x if the first one is 90° x) [3]. The flip-back pulse has the 

effect of returning proton magnetisation that remains spin-locked at the end of acquisition 

to the z-direction. So, the optimum recycle delay can be reduced using the flip-back 

pulse since less spin-lattice relaxation is required. Flip-back is only effective when T,p(H) 
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> contact time + acquisition time. In addition, it is important to choose the acquisition 

time with care since very short acquisition time can cut off FID; on the other hand, very 

long acquisition time simply adds noise (and also heats the probe). 

Most of tin-119 spectra were obtained using ramped-amplitude cross-polarisation on the 

300 MHz spectrometer. The pulse sequence for ramped-CP is shown in Figure 3-1. In 

the conventional Hartmann-Hahn matching, the RF field strengths on the two nuclei are 

kept constant ( v1H = v1s,) during the contact time whereas, in ramped-CP, the proton RF 

field strength is changed linearly over the ramp size ~ v1H while the tin amplitude is kept 

constant. A 90° pulse on the proton channel was set to 3 )..LS (equivalent to 83 kHz). The 

proton RF field strength over the ramp was varied in a range of 62-83 kHz, which 

covered the -1 sideband (see Chapter 2): spin rates were in a range of 11-15 kHz. 

3.5.3 Dipolar dephasing (Non-quaternary suppression) 

Figure 3-1 shows the pulse sequence of non-quaternary suppression (NQS), which is also 

known as dipolar dephasing. The difference from the CP pulse sequence lies in the 

insertion of a window in the proton decoupling before acquisition of the FID. The 

duration of this window for 13C observation is typically 40 )..LS. During this period, 13C 

signal dephases under the influence of dipolar couplings to the protons. The rate of 

signal loss is dependent on the magnitude of C,H dipolar interaction. Carbons with 

directly attached protons generally dephase rapidly, whereas non-protonated carbons 

dephase more slowly. Methyl groups are usually observed in NQS spectrum because 

rapid rotation greatly diminishes the effective dipolar interaction. Hence, this pulse 

sequence assists assignment of carbon signals. 
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3.5.4 Total sideband suppression (TOSS) 

In order to obtain a spectrum free of spinning sidebands, the technique called total 

sideband suppression (TOSS) is used [ 4]. The pulse sequence is show in Figure 3-1. 

This sequence applies a series of 180° pulses at carefully determined delays before 

acquisition of the FID. Usually four 180° pulses are used, with phase cycling to 

compensate for pulse imperfections. 

The TOSS pulse sequence makes phase alternation of the mth-order spinning sideband, 

resulting in cancellation of the mth-order spinning sideband at the end of the pulse 

sequence. TOSS is most useful when there is a small number of spinning sidebands, as is 

usually the case for 13C. This technique, however, is not well-suited for the case of many 

spinning sidebands (e.g. 119Sn and 109 Ag spectra) since small residual phase-distorted 

spinning sidebands are always observed. 

3.6 Sample sources 

The following samples were studied during the course of this work and the sources of the 

compounds are given accordingly. 

3.6.1 Tin-containing compounds 

SnHP03 and SnHP04 were prepared at University of Durham by the published methods 

[5,6). CaSnEDTA was prepared by the method of Langer [7], and supplied by Dr. P.C. 

Waterfield, Unilever Research (Port Sunlight Laboratory). The other three compounds 

investigated were supplied commercially: Sn2P20 7 by Nihon Kagaku, SnC204 by Sigma 

and SnS04 by Aldrich. 

3.6.2 Silver-containing compounds 

The series of silver-containing compounds were synthesized, purified and supplied by 

Prof. G. A. Bowmaker, Department of Chemistry, University of Auckland, New Zealand. 
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The element tin possesses several isotopes of which three e 15Sn, 117Sn, 119Sn) are spin-

112 and hence magnetically active (see Table 4-1). Most published tin NMR 

measurements refer to the 119Sn nucleus due to its slightly higher magnetic moment than 
117Sn and appreciable natural abundance of 8.59 %. Its good sensitivity and large 

chemical shift range (ea. 2500 to -2500 ppm with respect to the signal for Me4Sn) make 

Sn NMR valuable for structure determination [1-4]. 

Table 4-1 NMR properties of tin isotopes [5]. 

Natural Magnetic Magnetogyric Relative 

Isotope abundance I moment ratio receptivity 

% (JliJlN) (y I 10"7rad T 1 s·1) (De) 

Sn 0.34 -1.5915 -8.013 0.711 
117Sn 7.68 -1.1338 -9.588 20.8 

II9Sn 8.59 -1.8139 -10.0317 26.6 

Shielding anisotropies are in general large for Sn, so that high-speed spinning is required 

(more than 10 kHz in the present study) to obtain acceptable spectra. It has been known 

for a long time that the combination of cross-polarisation (CP) and the magic-angle

spinning (MAS) becomes more difficult at high MAS rates because the cross-polarisation 

profile (Hartmann-Hahn matching condition [6]) breaks down. As a result, it is hard to 

obtain maximum signal intensity [7-9]. Therefore, ramped-amplitude cross-polarisation 

(ramped-CP) [ 10,11] has been used in the present work to circumvent this problem. 
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Of course, cross polarization is only feasible if the compound in question contains a 

suitable abundant-spin nuclide (usually 1H), otherwise direct polarization (DP) methods 

must be used. The latter becomes very inefficient when 119Sn spin-lattice relaxation 

times are long. 

The primary reason for use of the MAS technique in solid-state NMR is to eliminate 

effects of orientation-dependent nuclear spin interactions. While rapid magic-angle 

spinning provides high-resolution spectra of solids, all information about the shielding is 

lost, other than the isotropic value. If the spin rate is large with respect to the shielding 

anisotropy, only a single peak will be obtained at the isotropic value. Lower spin rates 

result in a series of spinning side band resonances, separated from the relevant centre band 

by multiples of the spinning frequencies. The distribution of intensities in these side band 

manifolds contains information about the shielding anisotropy, which gives an 

opportunity to create correlations between anisotropies and the nature of the environment 

for the relevant nuclei. Therefore, it is of interest to extract the anisotropy data to gain 

better understanding of molecular structure. Spinning-sideband manifolds were analysed 

in this chapter using an in-house computer program [12], SSB97, based on the method of 

Maricq and Waugh [13]. This iterative program minimises the sum of differences 

squared between the experimental and calculated intensities to find the principal 

components of the shielding tensors and hence anisotropy and asymmetry. The accuracy 

of the results is heavily dependent on the number of spinning sidebands used and, in 

particular, the intensities of the outer side bands, i.e. signal-to-noise of the spectrum. The 

better the signal-to-noise ratio, the more accurate the fitting will be [ 14, 15]. It is, in any 

case, desirable to obtain at least two spectra to locate the centrebands, which are invariant 

in position to the spin rate, in contrast to the sidebands. The results of the shielding 

tensors are averaged because more than one spin rate are analysed. 

Whilst 119Sn spectra of many solid Sn(IV) compounds have been obtained [ 16-21 ], there 

are relatively a few reports of studies of Sn(II) systems [22-29]. Therefore, the main 

focus of this chapter is on presenting spectra and extracting the components of shielding 

tensors for six such solid compounds, namely tin phosphite (SnHP03), tin hydrogen 

phosphate (SnHP04), tin diphosphate (Sn2P207), tin oxalate (SnC204), tin sulfate 
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(SnS04) and calcium tin ethylene diamine tetraacetate (CaSnEDT A). Of these, the 

diphosphate and CaSnEDT A do not have reported crystal structures. Solid-state NMR 

spectra have been recorded for 31 P and 119Sn using single-pulse excitation with and 

without proton decoupling and ramped-amplitude cross polarization (ramped CP). Some 
13C spectra where relevant have been also studied. 

In addition to the intrinsic NMR interest of this work, tin(Il) compounds have some 

importance in biochemistry, so that this provides a further motivation. A number of 

microbiological studies have shown that solutions of the stannous ion will decrease 

bacterial growth. The data demonstrate that the stannous ion is a more active 

antibacterial agent than the fluoride ion alone. In vitro studies on the oral organism 

Streptococcus mutans have shown a Minimum Inhibitory Concentration (MIC) of 

300 ppm of fluorine for sodium fluoride, while stannous fluoride inhibited growth at only 

75 ppm of fluorine [30]. Thus stannous compounds can be considered among the 

constituents of toothpaste. Other researchers [31] have found that stannic fluoride at 390 

ppm Sn has no effect on bacterial growth. We can conclude from these and other studies 

that the most effective antibacterial form of tin is the stannous ion, Sn(II), and not the 

stannic ion, Sn(IV). However, the stannous ion in aqueous solution is vulnerable to 

oxidation to stannic (hence bio-inactive) or via hydrolysis to stannous hydroxides or 

stannous oxide hydrates, which are insoluble and hence largely inactive as antibacterial 

agents. Therefore, in order to maximise the antibacterial effect of the stannous ion, 

careful attention must be taken to provide a source of stannous ions that is both soluble in 

aqueous media, hence bioavailable, but contained within a structure that sufficiently 

protects the Sn(II) against hydrolysis or oxidation. 
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§n, §n scalar coupling 

Most MAS experiments do not reveal effects arising from isotropic ]-coupling in the 

spectra because they are typically of dilute spin systems ( 13C or 15N) and are recorded 

under conditions of proton decoupling. Moreover, linewidths in MAS solid-state NMR 

obscure splittings arising from coupling constants less than ea. 50 Hz in magnitude. 

Coupling effects are sometimes seen in 31 P spectra, but in this case the situation is 

relatively simple because of the 100% natural abundance of the nuclide. 

Tin represents an unusual case, with 117Sn and 119Sn having similar magnetic properties. 

The observation of coupling effects is complicated by the dominating influence of spin

zero isotopes (totalling 83.39 %). This implies that coupling between spin-Y2 tin nuclei 

may result in satellite peaks around the 117Sn or 119Sn resonances. Moreover, such 

satellite peaks can, arise from either homonuclear (e.g. 119Sn, 119Sn) or heteronuclear (e.g. 
119Sn, 117Sn) coupling. For homonuclear cases, even if there are two nuclei in identical 

crystal sites, complications may arise in the spectra. If two coupled 119Sn nuclei (for 

example) have co-axial shielding tensors, they will be completely equivalent, and the 

spectrum of a static single crystal will be only a single resonance. This will be also 

observed for a microcrystalline sample under all MAS conditions. On the other hand, if 

the two spins are not fully equivalent (that is if they are related by symmetry but with 

shielding tensors that are not co-axial), then the chemical shifts for a static single crystal 

will generally be different and coupling will cause splittings in the spectrum. For MAS 

of a microcrystalline powder, when the spin rate is very fast (no spinning sidebands), the 

averaged chemical shifts will be the same and so coupling will not be effective and a 

single resonance will be observed. However, if the spin rate is slow, so that spinning 

sidebands occur, coupling will cause some splittings to appear, which will be spin-rate

dependent and second-order in nature [32,33]. Such satellite peaks will not be separated 

by I J(Sn,Sn) I but by a value in excess of 21 J(Sn,Sn) 1. For tin spectra (in contrast to 

31 P spectra) the satellite peaks are expected to be very small because of the dominance of 

a central peak from tin nuclei having only spin-zero neighbours. 
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4.2 Results and Discussions 

The NMR experiments presented here were implemented on Varian InfinityPlus 500, 

Varian UnityPlus 300 and Chemagnetics CMX 200 spectrometers. The studies of 31 P 

were carried out on the CMX200 and InfinityPlus 500 systems (the latter used only for 

the static 31 P spectrum of SnHP03), whereas the 119Sn and 13C experiments were done on 

the Varian UnityPlus 300 spectrometer (except the 13C experiment for SnC20 4, which 

was studied using the CMX200 instrument). 

4.2.1 Analysis of shielding tensors 

The following compounds were investigated: 

Tin(II) phosphite, SnHP03 

An isolated molecule of SnHP03 in principle contains Sn2
+ cations and HPO? anions, 

though in practice there would be considerable covalency. The anion contains a direct P

H bond, constituting a two-spin system when spin-active isotopes of tin are ignored (see 

Chapter 5). 

The general features of the tin(II) phosphite crystallographic data are as follows. The 

phosphite crystals are monoclinic of space group le [34]. The structure consists of sheets 

of Sn03 and P03 trigonal pyramids fused together at their bases (see Figure 4-1 ). The 

P03 group has almost exact trigonal symmetry (in term of bond angles and distances; the 

0(1 )-P-0(2), 0(1 )-P-0(3) and 0(2)-P-0(3) angles are 111.5°, 112.3° and 114.7°, 

respectively; the P-0(1), -0(2) and -0(3) bond distances are 1.53, 1.51 and 1.52 A, 
respectively). The Sn03 pyramids are less symmetric. Each tin atom is coordinated by 

three separate P03 groups. Each oxygen atom bridges one tin and one phosphorus atom. 

Although the positions of the hydrogen atoms in this compound were not determined, 

they must be directly bonded to phosphorus, as is known for other phosphites [35]. 

Therefore, in this case, the hydrogen atom should lie at the top of the P03 pyramid at 

roughly tetrahedral angles with the oxygen atoms. 
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0 

(a) (b) 

Figure 4-1 Crystal structure of SnHP03: (a) layers within a unit cell outline (b) the 
coordination oftin. 

As mentioned above, the P-H bond in SnHP03 can be considered to form an isolated two

spin system by consideration of the distances of P,P, other P,H and H,H. All the 

distances are extracted from the structure ofMgHP03 · 6H20 [35] since it is not possible 

to locate the hydrogen atom in SnHP03 by X-ray studies. Table 4-2 summarises the 

distances and dipolar interactions. The large distances of both P,P and H,H give small 

dipolar coupling constants, suggesting that the P-H bond is rather isolated. 

Table 4-2 lnteratomic distances and dipolar coupling constants ofMgHP03 · 6H20 [35]. 

Distance I A Dipolar coupling constant0 I Hz 

p_pa 5.957 

P-H 1.474 

H-H 5.957 

a P-P d1stance for SnHP03 IS 4.127 A and d1polar coupling constant IS 281 Hz. 

b Dipolar coupling constant = (J..L 0 I 4n )r -Jy 1 y 2 (n I 2n) 

93 

15198 

569 
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Figure 4-2 shows the proton-decoupled 31 P spectra with single-pulse-and-acquire 

operation, obtained at 81.01 MHz. There is only a single centre band at 1.4 ppm observed 

for 31 P. This reveals that only one type of phosphorus exists in the asymmetric unit, in 

agreement with the crystal structure. 

All the spectra in Figure 4-2 have very good signal-to-noise ratios; therefore, the error for 

measuring the intensities should be small and thus a good fit with simulation is expected. 

The spinning sideband analysis results are summarised in Table 4-3. It is clear that the 

phosphorus nuclei have nearly axial symmetry, as expected, and the tensor components 

obtained from the three spinning sideband manifolds are equal (within experimental 

error). Note that it is difficult to distinguish between axially symmetric ( 77 = 0) and near

axially symmetric systems ( 77 < 0.2) 

100 50 0 -50 -lOO 

lip I ppm 

Figure 4-2 31 P spectra of SnHP03 at different spin rates: (a) 1.8 kHz with 32 transients, 
(b) 2.2 kHz with 20 transients and (c) 3.1 kHz with 24 transients. The recycle delay is 
300 s. 
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A Phosphorus-31 direct polarisation static spectrum with proton decoupling has been also 

recorded at 202.82 MHz. The anisotropy and asymmetry parameters have been derived 

using the STARS program [36]. The fit is illustrated in Figure 4-3. The results from this 

are t; = -68.1 ± 0.5 ppm and 17 = 0.08 ± 0.01. The static lineshape fit is excellent, and 

the results are in good agreement with those from the spinning sideband analyses using 

SSB97 [12]. 

150 100 50 0 

Op I ppm 

-50 

Experiment 
Simulation 

-lOO -150 

Figure 4-3 Comparison of the computed-fitted (using STARS) and experimental 31 P 
direct-polarisation spectra obtained at 202.28 MHz. Acquisition parameters were: recycle 
delay 300 s and number of transients 80. A 'line broadening' factor of 1600 Hz was 
applied to the simulated spectrum 
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Table 4-3 Results of spinning sideband analyses for 31 P spectra of SnHP03. The errors 
quoted are these given on a statistical basis the SSB97 computer program [12]. 

Spin rate {) Linewidth 0'11 - O'ref O'zz- O'ref 0'33- O'ref 0'33 - O';so 

/kHz /pp m /Hz /pp m /pp m /pp m ~/ppm 
'7 

1.8 1.4 251 32± 2 32±2 -69.1 ± 0.5 -67.7 ± 0.5 0.00 ± 0.06 

2.2 1.4 256 32 ±4 32 ±4 -69.0 ± 0.6 -67.6 ± 0.6 0.00 ± 0.13 

3.1 1.4 228 33 ±4 33 ± 4 -69.6 ± 0.7 -68.2 ± 0.7 0.00 ± 0.12 

average a 1.4 245 ± 10 32 ± 1 32 ± 1 -69.2 ± 0.6 -67.8 ± 0.3 0.00 ± 0.05 

a Th b b' d ' f h I ' ' b X 
7 (/a,' J 

e e" corn me ••~>mate o t e true va ue" g.ven y ,,1,, = 
7
(/a,' J ; 

1 1 
the standard error on the weighted mean is: - 2- = --2 • 

a- La 
xl.;) x; 

The proton-decoupled tin spectrum, obtained by using ramped-CP at 111.86 MHz, has a 

single centreband at -713.3 ppm, shown in Figure 4-4. The single centreband is indicated 

by the arrow. This implies that a single molecule exists in the asymmetric unit, again as 

expected from the crystal structure. The spinning sidebands in Figure 4-4 were analysed 

and the results are shown in Table 4-4. This indicates that tin nuclei are in a non-axially 

symmetric environment. 
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Figure 4-4 119Sn spectra of SnHP03 at different spin rates: (a) 11.0 kHz with 1156 
transients, (b) 13.1 kHz with 1124 transients. For the key acquisition parameters of 119Sn 
spectra, the contact time is 10 ms and the recycle delay is 60 s. The proton RF field 
strength over the ramp was in a range 62-83 kHz. The centreband is indicated by the 
arrow and the peaks marked with * in the expanded centreband region (top right) are the 
satellite peaks referred to the text. 

Table 4-4 Shielding tensor data for SnHP03 from the 119Sn experiment. 

Spin rate 8 Linewidth 0"11 - O"ref 0"22- O"ref 0"33- O"ref 

1kHz /pp m /Hz /pp m /pp m /pp m 
s/ppm 17 

11.0 -713.6 493 290± 5 423 ± 5 1427 ± 5 714 ± 5 0.19±0.01 

13.1 -713.3 499 291 ± 11 403 ± 11 1447 ± 6 734±6 0.15±0.03 

average -713.3 ± 0.2 496±4 290± 5 420± 5 1435 ± 4 722±4 0.19 ± 0.01 

The NMR results are fully consistent with the structure above described, and also show 

that there is only one whole SnHP03 group present in the asymmetric unit. 
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The inset in Figure 4-4 shows the expanded centreband. Interestingly, there is one pair of 

satellite peaks present marked with • with apparent coupling constant, 2600 ± 200 Hz, 

which is a very large value. This splitting cannot be the result of coupling to 31 P and 

could be assigned to four-bond indirect coupling between the tin nuclei through oxygen 

atoms (see Figure 4-1). This coupling, which corresponds to 119Sn-O-P-0-119Sn or 117Sn

O-P-0-119Sn, is discussed in the sections 4.2.3 and 4.2.4. 

Tin(II) hydrogen phosphate, SnHP04 

The structures of tin(II) hydrogen phosphate and tin(II) phosphite are quite similar, since 

both which consist of infinite sheets [34]. The crystal structure of tin(II) hydrogen 

phosphate belongs to space group P2 1/c, and is presented in Figure 4-5. It shows that the 

sheets consist of Sn03 groups fused with P04 groups, and they are closer together than 

those of SnHP03• Sn03 trigonal pyramids and P04 tetrahedra are linked together at their 

corners. Each tin atom is coordinated by three phosphate groups. Two of the oxygen 

atoms of a P04 group are each coordinated with two tin atoms as well as the phosphorus 

atom. The remaining two oxygen atoms protrude into the spaces between sheets and are 

not closely coordinated to tin. These atoms are presumably involved in the hydrogen 

bonding which holds the sheets together. Although, it was not possible to determine the 

hydrogen position by X-ray studies, the hydrogen atom has been suggested to lie between 

sheets and to be involved in hydrogen bonding [34]. Thus, the distance between sheets is 

about an average distance for hydrogen-bonded phosphate groups, which is the closest 

interaction between the sheets. 
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p 

(a) (b) 

Figure 4-5 Crystal structure of SnHP04: (a) layers within a unit cell outline (b) the 
coordination oftin. 

Figure 4-6 illustrates the proton-decoupled 31 P spectrum. The single centreband was 

found at -4.4 ppm. It indicates that there is only one phosphorus atom in the asymmetric 

unit, in agreement with the crystal structure. The spinning sideband analysis of Figure 

4-6 has been performed and the results are displayed in Table 4-5. These show that the 

phosphorus nuclei are in a low symmetry environment. 

There is an impurity in this compound, which leads to the peak at -0.3 ppm. This peak 

could arise from the existence of H3P04, which was used in the synthesis of this 

compound. However, it was not possible to remove the impurity by rewashing this 

compound with ethanol and ether. 
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Figure 4-6 31 P spectra of SnHP04 at different spin rates: (a) 1.1 kHz, (b) 1.3 kHz and 
(c) 1.5 kHz. Spectrometer operating conditions: The number of transients is 16; the 
recycle delay is 150 s. 

Table 4-5 The 31 P shielding tensor data for SnHP04 • 

Spin rate 8 Linewidth lTII - lTref t122- lTref 0"33- lTref 0"33 - lTiso 

/kHz /pp m 1Hz /pp m /pp m /pp m s/ppm 
1] 

1.1 -4.4 186 34.0 ± 0.4 8.3±0.1 -28.4 ± 0.4 -33.0 ± 0.4 0.78 ± 0.00 

1.3 -4.4 186 33.4 ± 0.5 8.7±0.1 -28.2 ± 0.6 -32.8 ± 0.6 0.75 ± 0.01 

1.5 -4.4 190 32.7 ± 0.8 8.6± 0.2 -27.4 ± 0.8 -32.0 ± 0.8 0.75±0.01 

average -4.4 187 ± 3 33.6 ± 0.3 8.5 ± 0.1 -28.2 ± 0.3 -32.8 ± 0.3 0.75 ± 0.01 
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Figure 4-7 119Sn spectra of SnHP04 at different spin rates: (a) 11 kHz with 18308 
transients, (b) 14 kHz with 20000 transients. For the key acquisition parameters of 119Sn 
spectra, the contact time is 1 0 ms and the recycle delay is 1 s. The centre band is indicated 
by the arrow and the peaks marked with * are the satellite peaks on the centreband. 

The proton-decoupled 119Sn spectrum of this compound, is illustrated in Figure 4-7. 

A single centreband resonance is found at -959.8 ppm, indicating that only one tin atom 

is present in the asymmetric unit. Satellite peaks also appear in the tin spectrum, which 

can be seen easily at the positions of -939.4 and -975.9 ppm. The spinning-sideband 

intensities, including those of the 1171119Sn satellite peaks, have been analysed together to 

give information on the shielding tensors. The results are shown in Table 4-6. It is 

obvious that the anisotropy is relatively large and that the tin has a low symmetry 

environment. 

The above NMR studies are fully consistent with the known crystal structure of tin(II) 

hydrogen phosphate. 
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Surprisingly, a very large indirect coupling constant has been found in this compound, 

4151 ± 200 Hz, as shown in the expanded centreband in Figure 4-7. This result is 

discussed in section 4.2.4. 

Table 4-6 Shielding tensor data for SnHP04 from the 119Sn experiments. 

Spin rate 8 Line width lit! - O"ref 0"22- O"ref 0"33 - O"ref 0"33- O"iso 

1kHz lppm lHz lppm lppm lppm ljppm 
17 

11.0 -957.7 566 612 ± 9 704± 9 1554 ± 5 597 ± 5 0.15±0.03 

14.0 -959.8 547 600± 9 718 ± 8 1551 ± 7 594±7 0.20 ± 0.03 

average -959.8 ± 1.5 556 ± 12 606± 6 712 ± 6 1553 ± 4 596±4 0.18 ± 0.02 

In general, an isolated molecule of tin(II) diphosphate consists of Sn2
+ cations and P20 7 

4. 

anions, in which divalent tin may be bridged by phosphate groups. Note that Sn2P201 is 

very stable at room temperature and exists up to 700°C; above this temperature, tin(II) 

will be oxidised to tin(IV) and produce SnP20 7 and Sn02 [37]. Unfortunately, 

information concerning tin(II) diphosphate is limited and a crystal structure is not 

available. Therefore the structural information from NMR is very important. 

The 31 P spectra obtained with a single-pulse experiment at 81.01 MHz for tin diphosphate 

are presented in Figure 4-8. The two peaks at -11.7 and -15.6 pp m observed in this 

compound show that the asymmetric unit contains two atoms of phosphorus. The peak at 

-4.4 ppm is not expected and presumably arises from an impurity. The tin(II) 

diphosphate was prepared from SnHP04 [3 7]. A comparison of this peak and its 

sidebands at a low spin rate (1.4 kHz) with the 31 P spectrum of SnHP04 at a spin rate of 

1.5 kHz is displayed in Figure 4-8 (a). The peak position of the centreband for the 

Sn2P20 7 impurity is nearly the same as that for SnHP04, although the sideband intensities 

are different. Nevertheless, this clearly indicates that the -4.4 ppm peak may be assigned 

to the existence of SnHP04 in the Sn2P207 sample. 



Chapter 4: Solid-state NMR studies of tin-containing compounds 42 

(a) 

(b) 
,y M ~ ~ t~i - . -

-,- T T 

200 150 100 50 0 -50 -lOO -150 -200 

Sp / ppm 

Figure 4-8 31 P spectra of Sn2P20 7 at different spin rates: (a) 1.4 kHz, (b) 2.6 kHz. (a) 
shows a comparison ofthe 31 P Sn2P20 7 spectrum (straight black line) at a spin rate of 
1.4 kHz and the 31P SnHP04 spectrum (dashed red line) at a spin rate of 1.4 kHz. 
Spectrometer operating conditions: The recycle delay is 300 s; the number oftransients is 
(a) 16, (b) 12. 

A number of spinning sidebands are observed in Figure 4-8, and at the spinning speeds of 

1.4 and 2.6 kHz they allow the shielding components to be extracted . The results are 

shown in Table 4-7. The deconvoluted intensity data were used to determine the 

principal components using SSB97. Since there is the impurity peak overlap in the 

centre band, it is likely that the data are not very accurate. This can be apparently seen by 

the fact that the differences in tensor components (especially at the isotropic shift 

of -15.6 ppm) between two spinning sideband manifolds are not equal (within 

experimental error). It is certain that the shielding tensors of the two different nuclei are 

not axially symmetry. It is, however, clear that the peak at Op = -11.7 ppm has a 

somewhat smaller anisotropy than that of the Or = -15.6 ppm resonance, though the 

situation regarding the asymmetry is less obvious. 
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Table 4-7 The shielding tensors of 31 P for Sn2P20 7• 

Spin rate 0 Linewidth 

1kHz /pp m lHz 

-11.6 200 
1.4 

-15.4 174 

-11.7 200 
2.6 

-15.7 171 

-11.7±0.1 200 
average 

-15.6±0.2 173 ± 2 

(a) 

(b) 

500 0 

0"11 - O"ref 0"22- O"ref 

/pp m /pp m 

56.7 ± 0.9 40.1 ±0.9 

68.1 ± 1.1 42.3 ±0.8 

59.8 ± 1.2 38.4±1.1 

60.9 ± 5.9 52.1 ±5.9 

57.8 ± 0.7 39.4 ±0.7 

67.8 ± 1.1 42.6 ±I. I 

-500 -1000 

lisn I ppm 

-1500 

43 

0"33- O"ref 0"33 - O"iso 
1] 

/pp m s/ppm 

-62.1 ± 0.8 -73.7 ± 0.7 0.22 ± 0.02 

-64.2 ± 1.3 -79.6± 1.3 0.32 ± 0.02 

63.1 ± 0.8 -74.8 ± 0.8 0.29 ± 0.03 

-65.8 ± 0.5 -81.6 ± 0.5 0.11±0.14 

-62.6 ± 0.6 -74.2 ± 0.5 0.24 ± 0.02 

-65.6 ± 0.5 -81.3 ± 0.5 0.32 ± 0.08 

-2000 

Figure 4-9 119Sn spectra of Sn2P20 7 at different spin rates: (a) 13.3 kHz with 552 
transients, (b) 16.3 kHz with 212 transients. The recycle delay is 300 s. The centre bands 
are indicated by arrows. 
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Figure 4-9 displays the tin-119 spectra, obtained by direct polarisation for this compound, 

which consists of a double peak at the centreband. The centrebands are at -781.2 and 

-836.2 ppm, found by varying the spin rates. This implies that the asymmetric unit 

contains two tin atoms. Spinning sideband analysis was carried out for spectra spinning 

at different speeds, and the averaged results and the reproducibility are given in Table 

4-8. Due to the low signal-to-noise ratio of tin spectra from both spin rates, there are 

large experimental errors. Nevertheless, the anisotropy of the peak at -781.2 ppm is 

consistently slightly larger than that for the -836.2 ppm resonance. It is also revealed that 

both types of tin atoms are in an axial symmetry or nearly axial environment. 

Table 4-8 The 119Sn shielding tensors for Sn2P207• 

Spin rate 0 Linewidth lill - lTref li22- lTref lT33- lTref lT33 -lTiso 

1kHz /pp m lHz /pp m /pp m /pp m t; /ppm 
17 

-780.7 525 430 ± 23 447 ± 23 1464 ± 8 684± 8 0.02 ± 0.06 
13.3 

-835.8 539 463 ± 20 557 ± 20 1486 ± 8 651 ± 8 0.14 ± 0.06 

-781.7 495 428 ± 27 428 ± 27 1488 ± 9 707 ± 9 0.00 ± 0.08 
16.3 

-836.6 568 503 ± 25 503 ± 25 1504 ± 7 667± 7 0.00 ± 0.07 

-781.2 ± 0.7 510±21 429 ± 18 439 ± 18 1475 ± 6 694±6 0.01 ± 0.05 
average 

-836.2 ± 0.6 553 ± 20 479 ± 16 536 ± 16 1496 ± 5 660 ± 5. 0.08 ± 0.05 
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Tin(II) oxalate, SnC204 

The principal feature oftin(ll) oxalate is that it contains divalent tin and oxalato groups. 

The oxalato groups are located on a symmetry centre [38]. Two tin atoms are bonded to 

the oxalato groups through one oxygen on each carbon atom. As a result, there are 

infinite chains (SnC204)n. A schematic representation of the structure for SnC204 is 

shown in Figure 4-1 0. 

Figure 4-10 Crystal structure of SnC204. 

Only one 119Sn peak is observed by a single-pu lse experiment at 74.56 MHz, as shown in 

Figure 4-11. The chemical shift oftin is -878.8 ppm. This reveals that only one tin exists 

in the asymmetric unit of SnC204 which is clearly consistent with the X-ray data. 

Analysis of the spinning side band manifold of Figure 4-11 shows that tin has low but 

non-zero asymmetry. The results for the shielding tensor are summarised in Table 4-9. 
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Figure 4-11 119Sn spectra of SnC20 4 at different spin rates: (a) 3.8 kHz with 72 
transients, (b) 5.2 kHz with 48 transients. The recycle delay is 300 s. The centreband is 
indicated by the arrow. 

Table 4-9 Shielding tensor data for SnC20 4 from 119Sn spectra. 

Spin rate 8 Linewidth O"JJ- O"ref 0"22- O"ref 0"33- O"ref 0"33- O"iso 
17 

1kHz /pp m /Hz /pp m /pp m /pp m 1;; /ppm 

3.8 -878.7 205 530 ± 5 633 ± 5 1472 ± 6 594 ± 6 0.17±0.01 

5.2 -878.9 195 516 ± 5 643 ±4 1476 ± 6 598 ± 6 0.21 ± 0.01 

average -878.8 ± 0.1 200± 7 523 ±4 639±4 1474 ± 4 596±4 0.18±0.01 

The 13C spectrum (Figure 4-12) was studied under the conditions of single pulse-and

acquire operation with very long recycle delay 300 s. A spectrum with poor signal-to

noise ratio was obtained. There are two reasons to explain this: (I) there are only non

protonated carbons in this compound, so it is not feasible to enhance the sensitivity from 

proton magnetisation via cross-polarisation ; (2) there is a background problem from the 

rotor (Teflon containing carbon). Nevertheless, after subtraction the background signal, a 
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very low intensity peak at 169 ppm is observed, which can be assigned to the oxalato 

group. This suggests that only one type of carbon exists in the asymmetric unit, in 

agreement with the crystal structure. 

300 250 200 150 

lie I ppm 

100 50 0 

Figure 4-12 13C spectrum of SnC20 4 at 50.32 MHz A single pulse experiment was 
employed at a spin rate of 5 kHz. Spectrometer operating conditions: The number of 
transients is 252; the recycle delay is 300 s. A broad negative signal probably arises from 
the background signal after subtraction. 

Calcium tin (11) ethylene diamine tetraacetate, CaSnEDT A 

For this compound, ethylene diamine tetraacetate anions (EDT A 4) form metal complexes 

of both tin(II) and calcium(ll) cations. Note that the EDT A anion is 

rco2CH2)2NCH2CH2N(CH2Co2-)2· In solution-state 1H NMR studies [39], it has been 

reported that the EDT A anions act mainly as penta- or hexadentate ligands towards 

metallic ions, forming ionic bonds with the four oxygens of the carboxylate groups rather 

than covalent bonds to the nitrogens. (The structure of CaSnEDT A has not yet been 

reported.) 

In general, the 13C spectrum for uncomplexed EDTA, H4-EDTA [ 40], shows two peaks 

of equal intensity for carboxylate resonances and three different methylene peaks. The 

two separate carboxylate peaks are attributed to the zwitterionic nature of this species, in 
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which two nitrogen atoms have been protonated, leaving protonated and unprotonated 

carboxyl groups as shown below. 

"0~. OYOH 
rNH~ • 

0A 0 Yo 
0 

Additionally, investigation of the 13C isotropic chemical shifts by solid-state NMR for 

EDTA-metal complexes has been reported [ 40,41]. The carbonyl resonances are found 

between 169 to 180 ppm, the acetate methylene resonances occur between 54 to 65 ppm 

and the ethylenic methylenes are between 45 to 54 ppm. 

200 160 120 80 40 

&c I ppm 

Figure 4-13 13C CP/MAS spectrum of CaSnEDTA at 75.4 MHz, obtained with spinning 
at 9.2 kHz. Acquisition parameters were: recycle delay 30 s, contact time 5 ms, and 
number of transients 320. 

The proton-decoupled 13C CPIMAS spectrum for CaSnEDTA at a spin rate of 9.2 kHz is 

presented in Figure 4-13. Four carboxyl resonances are observed at 174.0, 174.7, 176.9 

and 178.6 ppm. Six methylene peaks are obtained; the central methylene groups probably 
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give rise to the peaks at 51.7 and 53.0 ppm, whereas the acetate methylene peaks are at 

56.6, 57.3, 59.4 and 61.1 ppm. The values of the chemical shifts are consistent with 

those reported [40,41] from solid-state NMR for EDTA-metal complexes (e.g. Ca2EDTA 

and MgNa2EDTA · xH20). 

Although, no crystal structure has been reported for this compound, the multiple 

resonances in the 13C spectrum reveal the presence of one complete EDTA anion (or two 

half-anions) in the crystallographic asymmetric unit. A lam and As sink [ 41] report that 

carbonyl 13C shifts at 179-180 ppm characterise compounds with co-ordination by 

nitrogen to the metal, whereas shifts in the range 170-174 ppm are normal for systems 

without such co-ordination (although in these cases there is not full neutralisation of the 

acetate groups). Clearly solid SnCaEDTA gives intermediate values for the carboxyl 

chemical shifts, perhaps because of the overall structural environment. 

The proton-decoupled 119Sn spectra were recorded using ramped-CP at 111.76 MHz as 

exhibited in Figure 4-14. The tin has only one site at -683.3 ppm. The spectrum at a spin 

rate of 14.2 kHz has a relatively poor signal-to-noise ratio; consequently, the error in 

measuring the intensities is rather large and this has an effect on the derived tensor 

parameters. Iterative fitting of the sideband manifolds to obtain tensor components 

(Table 4-1 0) showed that the asymmetry parameter is 0.20 ± 0.02. Thus, the 119Sn 

shielding tensor is not axially symmetric, though the asymmetry parameter is low and 

perhaps not statistically significant. 
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Figure 4-14 119Sn spectra of CaSnEDTA at different spin rates: (a) 11.9 kHz with 2000 
transients, (b) 14.2 kHz with 668 transients. The key acquisition parameters of the 119Sn 
spectra are: The contact time is 10 ms and the recycle delay is 30 s. The centre band is 
indicated by an arrow. 

Table 4-10 Shielding tensor data for CaSnEDTA from 119Sn spectra by use of the SSB97 
program. 

Spin rate 8 Linewidth 1111 - 11ref 1122- 11ref l133- 11ref l133 - 11iso 

/kHz /pp m /Hz /pp m /pp m /pp m !;; /ppm 
17 

12.0 -683.2 713.9 329± 7 452± 6 1269 ± 6 585 ± 6 0.21 ± 0.02 

14.2 -683.4 661.9 364 ± 26 421 ± 26 1263 ± 9 580 ± 9 0.09 ± 0.09 

average -683.3 ± 0.1 690 ± 15 331 ± 7 450± 6 1267 ± 5 583 ± 5 0.20 ± 0.02 

The fitting of the spinning sidebands using the STARS program [36] is shown in Figure 

4-15. The tin spectrum at a spin rate of 11.9 kHz was chosen for a comparison because it 

has a better signal-to-noise ratio than that for the higher spin rate. A successful fit is 

achieved and the parameters obtained are r; = 593 ppm and 17 = 0.30. These results are 

reasonably consistent with the SSB97 data (Table 4-1 0). 
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Figure 4-15 119Sn-{ 1H} spinning sideband pattern for CaSnEDTA at a spin rate of 
11.9 kHz. (a) Computed fit (using the STARS program) and (b) experimental spectra at 
111.76 MHz. (c) The integrals and the difference between experimental and simulated 
values are plotted to the right, the horizontal dashed line being at zero level. 

As shown above, clearly, there is no characteristic splitting arising from the coupling 

between 119Sn and '"N. Therefore, it implies that tin-119 in CaSnEDT A does not involve 

nitrogen coordination, which is consistent with the conclusion made by Ref. [41] 

regarding to the 13C chemical shift for carbonyl group (see above). 
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Tin(II) sulphate, SnS04 

The crystal structure of SnS04 has been reported [ 42]. It consists of sulphate groups and 

layers with tin(ll) atoms co-ordinated by three oxygen atoms; there are three Sn-0 bonds 

of2.25, 2.27 and 2.27 A, and pyramidal bond angles of79.0, 77.1 and 77.1°. The 

structure is shown in Figure 4-16. 

A single centreband at -1262.6 ppm in the direct-polarisation 119Sn spectrum was 

observed for tin(Il) sulfate, as shown in Figure 4-17. This indicates that there is only one 

type oftin in the crystallographic asymmetric unit. The analysis ofthe spinning sideband 

manifold reveals that the tin nuclei are in low symmetric environments (see Tab le 4-11 ). 

These results are in agreement with the published crystal structure [42]. No satel lite 

peaks were seen for this compound. 

(a) (b) 

Figure 4-16 Crystal structure ofSnS04: (a) within a unit cell outline (b) the coordination 
of tin. 
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Figure 4-17 119Sn spectra of SnS04 at different spin rates: (a) 12.0 k.Hz with 264 
transients, (b) 14.2 kHz with 260 transients. The recycle delay is 300 s. The centreband is 
indicated by the arrow. 

Table 4-11 Shielding tensor data for SnS04 from 119Sn spectra. 

Spin rate 8 Linewidth 0'11 - (J'ref (J22- (Jref (J33 - (Jref (J33 - (Jiso 

/k.Hz /pp m /Hz /pp m /pp m /pp m s/ppm 

9.0 -1262.1 330 1030 ± 15 1073 ± 15 1682 ± 2 420±2 

12.0 -1263.6 310 1031 ± 15 1083 ± 15 1677 ± 3 414 ± 3 

13.0a -1266.6 300 1059 ± 9 1059 ± 9 1681 ± 2 414 ± 2 

average -1264.1 ± 2.3 313±15 1047 ± 7 1066 ± 7 1679 ± 1 416 ±I 

a New values of the shielding tensors were obtained by re-running the spectrum from a new sample of 
SnS04 (the same company as used for the previous one). 

7] 

0.10 ± 0.07 

0.13 ± 0.07 

0.00 ± 0.04 

0.05 ± 0.03 



Chapter 4: Solid-state NMR studies of tin-containing compounds 54 

4.2.2 Comparison of the ll9Sn shielding anisotropies 

The shielding anisotropies for five of the six compounds (except SnS04) in the present 

work are in a relatively narrow range, 583-722 ppm. In the cases of SnHP03, SnHP04 

and SnC20 4 this may be linked to the layer-type structures which all three possess. As 

remarked above, only a small number of tin(II) compounds have had their shielding 

tensors measured. These are listed [22-29] in Table 4-12. With the exception of the two

coordinate systems, they span a similar range, 213-929 ppm. No low values have been 

measured, in contrast to the situation for tin(IV) compounds. This is presumably because 

tin(IV) environments are likely to be tetrahedral, allowing a high degree of electronic 

symmetry when the ligands are similar. 

Table 4-12 Tin-119 shielding tensor data for tin(II) compounds. 

Compound s/ppm 11 Reference 

SnO 675 0.1 [22] 

[H!!B(pzkn]mSnCb-m, 320-695 ea. 0.2 [23] 
n= 0,1 ,2; m=1, 2; pz= pyrazolyl ring, 
[Poly(pyrazolyl)borate complexes oftin(Il)] 

Sn2P2S6 (Tin hexathiohypodiphosphate 213 0.69 [24] 
polymorphs) 329 0.18 

SnS 384 Not given [25] 

Two-coordinate low-valent tin compounds 1794-2532 Not given [26] 
(SnXC6H3-2,6-trip2) 

SnNb206 (Tin niobate) 929 0.15 [27] 

BaSnF4 593 0.0 [28] 

R2Sn=SnRz, R = (Me3Si)zCH) 900 0.3 [29] 
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4.2.3 Investigation the satellite peaks of 119§n 

The small doublet surrounding each sideband for SnHP03 and SnHP04 is likely to 

originate from an indirect ]-coupling, which is the interaction between two nuclei 

through bond. However, the coupling constants are rather large. This is unusual for such 

long-range (e.g. 4-bond) couplings, which in general give small coupling constants. 

(Note that, generally, the shorter the bonding path, the larger the coupling.) Nevertheless, 

(as described in the introduction) it is not totally clear whether this coupling ts 

homonuclear e 19Sn/119Sn) or heteronuclear (117Sn/119Sn) or both. Therefore, it is 

desirable to have an experimental technique to clarify the origin of the satellites. 

In this section, the examination the satellite peaks of 119Sn (as shown in Figure 4-4 and 

Figure 4-7) have been studied using the CPMG pulse sequence [ 43,44] and point-by

point measurement with a single Hahn echo for each refocusing time. A comparison of 

the calculated satellite intensities from the tin's nearest neighbours with the experimental 

results has been also done. 

Spin-echo experiments 

The signal decay in simple spin-echo experiments is modulated only by homonuclear ]

coupling, whereas heteronuclear ]-coupling is refocused. If the coupling is due to 

homonuclear interactions, the time domain signal will be modulated by the ]-coupling. 

On the other hand, no oscillation will be observed if the coupling is purely heteronuclear. 

A rotation-synchronised CPMG experiment was performed. The sequence described 

here was expected to remove line broadening mechanisms. The MAS was carried out to 

eliminate direct dipolar interactions, proton decoupling was applied in order to assist in 

removal of heteronuclear (H, Sn) dipolar interactions, ramped-CP was employed to 

increase the efficiency of cross-polarisation, and the CPMG sequence was required to 

remove sources of inhomogeneous line broadening. 
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The pulse sequences used for investigation the splitting are illustrated in Figure 4-18. 

The rotation-synchronised CPMG sequence (Figure 4-18 (a)) is based on the Carr

Purcell-Meiboom-Gill experiment, with the addition of ramped-CP and proton 

decoupling. It was carried out with the spacing of the 180° pulses being exactly one rotor 

period. This requires measurement of the spinning speed very accurately, which was 

done by averaging the spacing from the spinning sidebands. The centreband was exactly 

on resonance. The number of data points acquired was typically the maximum possible 

without risking probe arcing, (the maximum acquisition time under full power proton 

decoupling was 100 ms). 

(a) 

'H 
90·, rt1 decoupling 

flipback 

D 

(b) 

'H 
90·, flipback 

decoupling D 
ISO\ 

~l CT 

The results of a Fourier transformation following pulse sequence (a) (see Figure 4-18) are 

illustrated in Figure 4-19. The linewidths obtained using this technique are 13.5 and 

14.3 Hz for SnHP03 and SnHP04, respectively. The significantly narrowed linewidths 

are much less those in the normal CP/MAS spectra (556 and 496 Hz for SnHP03 and 

SnHP04 respectively). Therefore, it is of interest to explore the intrinsic linewidths of 

tin-119 using a simple Hahn echo experiment. This experiment has been taken into 

account to compare the results of the I inewidths and also to investigate the satellite peaks 
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since there is no clear evidence of satellite lines using rotation-synchronised CPMG (see 

Figure 4-19). 

(a) 

1.5 1.0 0.5 0 -0.5 -1.0 -1.5 

(b) 

* * 

1.2 0.8 0.4 0 -0.4 -0.8 -1.2 

Frequency I kHz 

Figure 4-19 119Sn CPMG MAS spectra of (a) SnHP03 using 1644 transients, 60 s recycle 
delay and 1 0 ms contact time at a spin rate of 14 k.Hz, (b) SnHP04 using 65 368 
transients, 1 s recycle delay and 10 ms contact time at a spin rate of 14 kHz. The asterisks 
indicate digital artifacts. 

More reasonable linewidths (compared to the above results), 78 Hz for SnHP03 and 

51 Hz for SnHP04, have been obtained using single Hahn echoes with varying refocusing 

time. The pulse sequence is displayed in Figure 4-18 (b). Adjusting both pulse duration 

(n pulse) and resonance offset has been done carefully. It is clear that heteronuclear J

coupling e 17Sn- 119Sn) is refocused since the results from the Fourier transformation 

(Figure 4-20) show only single peaks. The measured linewidths correspond to values of 

T2 which are 4.1 and 6.2 ms for SnHP03 and SnHP04, respectively. 
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Figure 4-20 Fourier transformation of the maximum echo 119Sn intensities as a function 
of the refocusing time, 2't, obtained using single Hahn echos: (a) SnHP03 using 40 
transients, 60 s recycle delay and 10 ms contact time at a spin rate of 15.5 kHz, 
(b) SnHP04 using 600 transients, 1 s recycle delay and 10 ms contact time at a spin rate 
of 15.2 kHz. 

Consequently, the satellites seen from both SnHP03 and SnHP04 originate from 

heteronuclear J-coupling (117Sni 19Sn). However, it should be noted that, in principle, 

there is a network of coupled tin nuclei rather than isolated spin systems, so that second

order effects can be presented to complicate the situation. 

Note that there is no clear explanation for the dissimilarity of linewidths between CPMG 

and simple Hahn echoes (see above) in both SnHP03 and SnHP04. 
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4.2.4 Discussion of Sn, Sn coupling 

The values of Sn, Sn coupling constants found for both SnHP03 and SnHP04 are very 

large when we consider the number of chemical bonds separating the nuclei (within the 

layers) of 4 and 2 respectively. It should be noted that in organotin compounds it is 

possible to observe long-range couplings. Values of 4J(SnSn) have been reported from 

solution-state experiments in the range 20-130 Hz [3,4]. However, these data are of 

limited value with respect to conclusions regarding the structure and the bonding 

situation. So far, one interesting case of four-bond tin-tin coupling, of 1611 Hz, have 

been found [ 45] for 3-substituted-(X)bicyclo[l.l.l ]pent-1-yltrimethylstannanes (X = 

SnMe3). This very large coupling constant has been explained by the significant through

space bridgehead-bridgehead interactions. 

In the case of the phosphate, the nearest-neighbour tin atoms within a layer are separated 

by only two chemical bonds through an oxygen atom, Sn-0-Sn, as shown in Figure 4-5. 

The coupling is substantially larger for SnHP04 than in SnHP03, as might be expected 

due to the number of atoms separating the tin nuclei, but it is nevertheless unusually 

large. Scalar two-bond coupling in various organotin compounds has been studied from 

solution-state NMR experiments and the magnitude of 2J(Sn-O-Sn) has been reported, 

generally corresponding to 100-1000 Hz [4,46]. As is known from solution-state NMR 

studies, the coupling constant depends strongly on the organic ligand, and correlates 

roughly with the Sn-0-Sn angle [ 4 7]. The smaller the Sn-0-Sn bond angle, the smaller is 

the corresponding value of the coupling, and the largest value is found for a linear Sn-0-

Sn arrangement. However, the largest Sn-0-Sn bond angle is only 111 o in SnHP04. 

Furthermore, a few Sn-0-Sn indirect couplings have been found in solid-state NMR, 

from several tens to 950 Hz [ 48-51 ]. In some of these cases, the reported values are for 

I J e 17Sn, 119Sn) I [51 ,52]. The strongest indirect coupling, I J e 17Sn, 119Sn) I of 

8300Hz, was discovered in SnO [22]. However, in this case the authors attributed the 
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magnitude of the coupling constant to possible bonding between tin atoms in adjacent 

layers of the structure, which they based their conclusions on the satellite intensities 
1

. 

A marked s-character in the bonding is required, involving weakly-localised Ss orbitals 

occupying the top of the valence band for SnO. It is noteworthy that the coupling for 

Sn02 is small [17,53] (presumably because all the relevant electrons are involved in 

formal bonding). Effectively, this interpretation involves through-space interactions, but 

corresponds, in another view, to 1J. A value for a direct Sn=Sn double bond, I J ( 117Sn, 
119Sn) I = 1340 ± 10 Hz, has been reported [29] for a solid-state dimeric structure 

R2Sn=SnR2, R = (Me3Si)2CH. However, the Sn=Sn bond is unusual in type and is 

relatively weak since the bond strength is at least a factor of 2 less than that for typical 

Sn-Sn bond. 

Can a similar explanation be considered for SnHP03 or SnHP04 or both? A second 

question to address is the absence of satellite peaks for the oxalate and sulphate. Table 

4-13 shows the relevant structural data. In order to explain the puzzling satellite peaks, 

the number of neighbouring tin atoms and the intensity of the satellite peaks have been 

taken into account first. The probability of the occurrence of a coupling configuration for 

a given isotope e 19Sn) can be obtained from the number of relevant neighbouring tin 

atoms and from the natural abundance of the various isotopes (see below). 

1 To get agreement between estimated and observed intensities they invoked long-range coupling but their 
argument is difficult to follow. 



Table 4-13 Structural data for layered Sn(ll) compounds. 

INTRA-LAYER 
Co- Co-

Compound Space group Ref. ordination ordination No. of No. of Distances 
number type bonds neighbours through space 

/A 

SnO Tetragonal [54] 4 ~Tetragonal 2 8 Groups of 4 at 
P4/nmmz pyramid 3.542 & 

3.803b 

SnHP03 Monoclinic [34] 3 ~Trigonal 4 6 Pairs at 
pyramid 4.180, 4.685 

le & 5.878 

SnHP04 Monoclinic [43] 3 ~Trigonal 2 2 3.848 
P21/c pyramid 

SnC204 Monoclinic [38] 4 Distorted 4 2 5.991 
C2/c tetrahedral 

SnS04 Orthorhombic [42] 3 ~Trigonal 4 6 Two at 5.319 
Pnma pyramid & four at 

4.497 
- - - - - - '----- -

a Cossement et al. [22] give this as 3.525 A. 
b The 3.542 A pairs have two Sn-0-Sn paths each, whereas the 3.803 A pairs only have one. 
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Calculation of satellite intensity 

The probability of the occurrence of a coupling configuration for a given isotope et 19Sn) 

can be calculated from the number of neighbouring tin atoms and from the natural 

abundance of the other isotopes et 17Sn). The crystallographic data of SnHP03 (see Figure 

4-1) shows that a given tin has 6 tin atoms four bonds away. Thus, there are 7 possible 

ways for 119Sn to couple with 117Sn. lfthe probability of finding n ofthese neighbours as 
117Sn is denoted Pn and the natural abundance of the 117Sn isotope is written as p 117, Pn can 

be calculated from: 

6! ( )" (1 )6-n 
P, = (6- )' 1 Pm - P117 n .n. 

(4.1) 

The probability of each pattern are summarised in Table 4-14. 

Table 4-14 The relative proportion of each coupling pattern for SnHP03. 

Number of NMRpattern Combination Fraction of total 

117Sn factor signal/% 

0 A 1 61.91 

1 AX 6 30.90 

2 AX2 15 6.43 

3 AX3 20 0.71 

4 AX4 15 0.04 

5 AXs 6 negligible 

6 AX6 1 negligible 
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The calculated relative intensity of each of the first satellites (from the AX and AX3 cases 

only) is 15.72 % of the total 119Sn intensity. The calculated value for 6 neighbours is in 

excellent agreement with the experimental results obtained accurately from 

deconvolution; the results at a spin rate of 11 kHz are 15.92% and 16.37% for the high

and low-frequency satellites respectively, the results at a spin rate of 13 kHz are 16.04% 

and 16.03% for the high- and low-frequency satellites respectively. These results were 

measured on sum of side band and centre band. 

The above result strongly suggests that intra-layer interactions are responsible for the 

satellite peaks and confirms that the coupling is solely heteronuclear in origin. The 

former statement arises because there are only two close tin neighbours (at 4.067 A) in 

the adjacent layer to a given tin atom, which would give rise to very different satellite 

intensities (predicted value 7.09%). However, it may be noted that the six intra-layer 

interactions are not all equivalent. The direct interatomic distances occur in three pairs 

(4.180, 4.685 and 5.878 A) so the conformational relations differ. Therefore the 

"through-bond" coupling constants will not be equal, but presumably they are sufficiently 

close that the satellite peaks cannot be further resolved. It is possible that the six Sn,Sn 

interactions giving rise to the satellite peaks for the former are 4 intra-layer and 2 inter

layer, of similar magnitude, with much weaker coupling involving the other pair of intra

layer interactions, but this would seem to be relatively unlikely. 

The relative intensity of the satellite peaks for SnHP04 has been also calculated. From 

the crystallographic data, there are 2 nearest neighbour tin atoms, two-bonded 

interactions through oxygen atom, and this suggests that there are only 3 possible patterns 

for 119Sn coupling with 117Sn. The probability of each pattern is shown in Table 4-15. 

The result for the relative intensity of satellite peaks is 7 .09%. This, however, is not 

consistent with the experiment results with a recycle delay of I s (3.14% and 3.37% 

obtained with spinning at 11kHz; 3.16% and 3.19% obtained with spinning at 14kHz). 

Since the satellite peaks and the main peak may have different relaxation times, use of a 

short recycle delay can partially saturate the main peak if its relaxation time is longer 

than those of the satellite peaks. This is very important when doing the DP experiment. 

Although CP is employed here (where recycle delay depends on proton relaxation time), 



Chapter 4: Solid-state NMR studies of tin-containing compounds 64 

it is also worth checking the experiment by using the longer recycle delay of 30 s. 

A similar result (3 .14% and 3.23 %) was obtained with spinning at 14.2 kHz. 

Table 4-15 The relative proportion of each coupling pattern for SnHP04• 

Number of NMRpattern Combination Fraction of total 
117Sn factor signal I% 

0 A 1 85.23 

1 AX 2 14.18 

2 AX2 1 0.59 

On the other hand, there is only one close Sn,Sn distance (at 4.487 A) between tins in 

different layers. This is consistent with the experimental satellite intensities (predicted 

values 3.71 %), so we suggest that the Sn,Sn coupling gives evidence of effective 

bonding between tin atoms in different layers as in SnO [22]. It may be noted that in this 

case the tin atoms in question are related by a centre of symmetry, so that homonuclear 

coupling would not affect the MAS spectra under any conditions. 

The interatomic distance involved in SnHP04 is substantially greater than that in SnO 

(which we measure to be 3.694 A from the report in Ref. [54], though Ref. [22] gives it 

as 3.525 A), which presumably accounts for the fact that the coupling constant in the 

former is significantly less in magnitude (i.e. about half) than the value in the latter. 

The apparent lack of inter-layer coupling for SnHP03 in spite of the small Sn,Sn distance 

(smaller than for SnHP04) and the analogous lack of intra-layer coupling for SnHP04 are 

very surprising. 

It is also odd that for tin(II) oxalate and tin(II) sulfate no tin satellites are seen on the tin 

resonances (in spite of the relatively narrow linewidth for the former) even though the 

Sn .... Sn distances between layers (4.324 A in the oxalate and 4.425 A in the sulfate) are 

comparable to that in the SnHP04 and the number of bonds separating tin atoms within a 

given layer is the same as for SnHP03. Currently we have no rationale for these apparent 

anomalies. 
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4.3 Conclusions 

High-resolution solid-state 31 P and 119Sn spectra of six tin-containing compounds were 

readily obtained using ramped-CP and DP techniques. High-resolution solid-state NMR 

gives useful information about crystallographic asymmetric units in cases where the 

crystal structure is unknown, as for tin(II) diphosphate and CaSnEDT A, studied here. 

Data on 119Sn shielding anisotropies as measured from spinning sideband analysis 

manifolds have also been provided for six tin-containing compounds, together with 

similar information for 31 P in three of the cases. 

A particularly interesting aspect of the present 119Sn solid-state NMR studies is the 

observation of large long-range coupling constants between 119Sn and 117 Sn nuclei. 

A very strong four-bond coupling constant between tin nuclei was observed in SnHP03, 

2599 ± 200 Hz in magnitude, and also large coupling between tin nuclei was discovered 

in SnHP04, 4151 ± 200 Hz in magnitude, but the latter appears to be inter-layer in origin. 

Hahn echoes were used to confirm the heteronuclear e 19Sn, 117Sn) nature of these 

coupling constants. Measurement of satellite intensities gave clear evidence of the 

bonding between tin atoms since the calculated relative intensities of the satellites are 

also in agreement with the experiment values; although complete understanding of the 

relationship of coupling to structure has not been obtained. 
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CHAPTERS 

STUDIES OF TWO-SPIN 31P, 1H SYSTEMS 

5.1 Introduction 

This chapter will focus on the study of two systems containing relatively isolated 1H, 31 P 

spin pairs, using high-resolution solid-state NMR techniques. Both protons and 

phosphorus nuclei are abundant spins (spin-~ isotopes). In this work, tin (11) phosphite 

(SnHP03) and tin (Il) hydrogen phosphate (SnHP04) were investigated (though most 

attention is given to SnHP03) to show both the opportunities and the complications in 

these isolated spin systems. 

Unlike NMR in the solution state, where rapid isotropic re-orientation efficiently 

averages out anisotropic interactions, NMR of the solid-state is dominated by anisotropic 

interactions, most notably dipolar coupling between nuclear spins. For typical solid 

organic materials, for example, 1H NMR spectra are broad and featureless as a result of 

the strong and numerous dipolar interactions between the protons. Spinning the sample 

rapidly at the "magic angle"-Magic-Angle Spinning (MAS)-can significantly improve 

resolution by partly suppressing the dipolar interactions, but the resolution remains low 

compared to that for solution-state NMR. On the other hand, spinning at moderate rates 

also gives rise to high-resolution spectra, but with the addition of spinning sidebands, the 

intensities of which provide a wealth of anisotropy information by suitable analysis. 

Interesting cases occur when several interactions, each of which is a tensor, contribute to 

the intensity distribution, as when shielding (a), (direct) dipolar coupling (D), and 

(indirect) scalar coupling (J) are all important. The interplay of tensors results in 

different effective anisotropies as displayed in the intensity distribution of the spinning

sideband manifolds [1 ,2]. This influence was also observed in coupled proton and 

phosphorus spectra for SnHP03. 
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The cross-polarisation (CP) experiment with MAS not only enhances the signal intensity 

of rare spins (S) with low gyromagnetic ratios by transferring magnetisation from the 

abundant spins (/), but also provides valuable information on the dipolar coupling 

between I and S spins for strongly coupled spin systems when the "transient oscillations" 

are observed during short contact times, TcP [3]. This phenomenon generally occurs 

under very fast spin rates resulting in the fact that the efficient transfer of magnetisation 

is perturbed [4,5] and the "matching condition" becomes V1 =vs+ nv,, where v, is the 

spin rate. In the limit of spinning fast compared to the dipolar linewidth, n is restricted to 

± 1, ± 2 . Note that at modest spin rates efficient transfer of magnetisation can occur 

between abundant (/) and rare (S) spins by matching the nutation rates associated with the 

RF fields applied simultaneously to the two nuclei, v1 = v8 [6,7]. 

In this study of 31 P CPMAS of SnHP03 and SnHP04, the 1H, 31 P dipolar couplings were 

able to be determined by measuring the transient oscillations on cross-polarisation build

up curves [8], and hence the length of the 1 H, 31 P internuclear distance in these systems. 

This distance could not be determined by X-ray diffraction studies due to the difficulty of 

locating the H atoms in the presence of the strong scattering from Sn [9]. 

It has been well known that heteronuclear decoupling is one of the main components of 

high-resolution solid-state NMR. A spectrum, e.g. 13C spectrum, can often be 

significantly improved when the heteronuclear interaction is suppressed. Continuous

wave (CW) RF irradiation [7, 1 0] is the main technique to achieve the high resolution and 

sensitivity, in which a RF field is applied at the Larmor frequency of proton to reduce 

their influence on carbon, whose signal is observed. It is generally accepted that for 

efficient decoupling the RF field strength must be greater than the magnitudes of both the 

homonuclear and the heteronuclear interactions. Nevertheless, using 31 P CW decoupling 

for the isolated 1H, 31 P pair does not lead to a sharp line but rather the e1P}- 1H spectra 

exhibit complicating features. The second-order recoupling of shielding and dipolar 

coupling tensors has been previously described in carefully-chosen model systems [11], 

but has not, to be the best of our knowledge, been previously reported on "normal" 

samples. These effects lead to unexpected line-splittings, which could have been 
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mistaken for real features in more complex systems. This chapter will show how these 

effects can be diagnosed from their dependence on decoupling, although it proves 

difficult to eliminate them completely due the size of the 31 P chemical shift anisotropy 

(CSA) relative to the strength of the RF decoupling. 

Very recently, it has been reported that the line splitting which comes from second-order 

effects can be strongly reduced using two-pulse phase modulation (TPPM) decoupling 

[ ll-13] in contrast to CW decoupling. This sequence offers a simple way to decouple 

better than with CW irradiation. TPPM involves continuous irradiation with repetition of 

two pulses of equal flip angle aP, usually close to n, and with a phase difference of l'!.r/J. 

In this study, this decoupling sequence was also implemented for our case, e1P}- 1H. 

5.2 Results and Discussions 

5.2.1 Interplay of shielding, direct and indirect coupling tensors 

A single pulse-and-acquire method was employed to obtain 1H spectra and direct

polarisation without proton decoupling was used to observe 31 P spectra for SnHP03. 

The coupled proton and phosphorus spectra are illustrated in Figure 5-l (a) and (b) 

respectively. Apparently, each spectrum consists of two peaks for the centrebands. 

The splittings observed in the coupled spectra (both 1H and 31 P) suggest that this is due to 

scalar coupling. The investigation of the isotropic scalar coupling will be given later in 

section 5.2.2. It should be noted that all proton spectra presented in this Chapter were 

obtained after implementing the "backward linear projection" of data shift. This process 

is essential due to the probe background problem. 
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Experiment Simulation 
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Figure 5-1 Experimental (a) Proton spectrum and (b) phosphorus-31 spectrum of tin(II) 
phosphite at 200.13 MHz spectrometer, obtained at a spin rate of (a) 12.5 kHz with a 
single-pulse experiment, (b) 11.6 kHz with direct-polarisation under without proton CW 
decoupling. Simulated (a) 1H and (b) 31 P coupled MAS spectra at 200.13 and 81.01 MHz 
respectively. J. and * indicate the two sets of sidebands, which relate to the high- and 
low-frequency centrebands respectively. The centrebands of these two manifolds are 
separated by JPH. Acquisition parameters were: (a) recycle delay 120 s and number of 
transients 4; (b) recycle delay 300 sand number of transients 4. Simulation parameters: 
31 P, 1H dipolar interaction 16.8 kHz; 31 P shielding anisotropy -68 ppm, 31 P shielding 
asymmetry 0 (the results for shielding anisotropy and asymmetry were analysed using 
SSB97 [14] and are shown in Table 4-1); JPH 693 Hz (obtained from the result in section 
5.2.2); spin rate 12.5 kHz. 
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As shown above in Figure 5-1 (a), the structures of the sidebands on both sides of the 

centreband show inverted intensity, but the total intensities of the two side band manifolds 

are approximately equal as established by careful deconvolution. For the 31 P spectrum 

(Figure 5-1 (b)), the side band structures are more complicated, and also the observed two 

peaks are clearly of unequal intensity, but again the total intensities of the two sideband 

manifolds are equal. These appearances can be explained from the influence of the 

interplay of shielding ( o-), (direct) dipolar coupling (D), and (indirect) scalar coupling (J) 

tensors. The theory of such interplay for isolated heteronuclear two-spin (IS) systems 

with Ir =Is= 1/2 has been stated by Harris et al. [1]. The simplest case occurs when axial 

symmetry prevails, and thus all three tensors (for the A spin) are co-axial (with the major 

principal axes of o- and J along the internuclear I, S distance, r 15). Note that the theory of 

this influence is given in Chapter 2. 

Clearly, the influence of the interplay of tensors has an effect on the spinning sideband 

manifolds for both 1H or 31 P spectra, but in different ways: the full proton spectrum is 

nearly symmetrical, in contrast to the phosphorus spectrum. This is related to the 

magnitude of the shielding anisotropy; proton shielding anisotropy is likely to be small 

whereas phosphorus shielding anisotropy is relatively large. 

In addition, it is easy to observe the distribution into the two sub-spectra for bandshapes 

of static powder patterns for this isolated 1H, 31 P pair, as shown in Figure 5-2. Cross

polarisation and direct-polarisation spectra without proton decoupling were obtained 

from the Chemagnetics CMX200 and Varian InfinityPlus spectrometers. One static 

powder spectrum is clearly 'stretched' whereas in the other is 'squeezed' under the 

influence of effective anisotropies, CJJ. Since the separation between the horns (dipolar 

coupling) is unaffected by the interplay of tensors, the differences between the horns 

from the two fields are found to be closely similar, ea. 16.4 kHz and ea. 16.6 kHz at 

4.7 T and 11.7 T respectively. 
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(a) 

40 20 0 -20 -40 40 20 0 -20 -40 

Vp/ kHz Vp I kHz 

Figure 5-2 Phosphorus-31 static spectra of tin(II) phosphite at (a), (b) 81.01 MHz, and 
(c), (d) 202.28 MHz. Direct-polarisation without high-power proton decoupling was 
employed in (a) and (c), recycle delay 300 sand number of transient (a) 100 and (b) 21. 
Cross-polarisation from protons without high-power proton decoupling was used in (b) 
and (d). Acquisition parameters were: recycle delay 120 s; contact time 5 ms; number of 
transients (b) 80 and (d) 8. The separation between the horns is indicated by the arrows. 
The "stretched" subspectrum and the "squeezed" subspectrum are marked with the "plus" 
and "minus" respectively. 

At a field of 4.7 T, the measured magnitudes of the 'stretched' and 'squeezed' effective 

anisotropies are 32 and 16 kHz, respectively (see Figure 5-2 (a) and (b)). Use of Equation 

2.11 from Chapter 2, shows that when the 31 P shielding anisotropy is -68 ppm and the 

dipolar interaction is 16.8 kHz (an effective dipolar interaction D' = D- M I 3 ~ D when 

M~ 0 ), the calculated magnitudes of the 'stretched' and 'squeezed' anisotropies ( !1a) 

are 33 and 16.5 kHz, respectively. These values are in excellent agreement with the 

experiments. This is not true only at the low field but also at the high field. Table 5-1 

summarises the data for the magnitude of the stretched and squeezed anisotropies 

between the calculations and experiments . The appearances of the stretched and squeezed 
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subspectra are more pronounced at the higher field due to the increase in size of the 31 P 

shielding anisotropy expressed in Hz. (The anisotropy in J is assumed to be zero for the 

calculation.) Note that the dipolar interaction used for the simulation in this Chapter is 

16.8 kHz, obtained from a variable contact time experiment at a spin rate of 15 kHz as 

described in Section 5.2.3. 

Table 5-1 Experimental and calculated values of the stretched and squeezed sub-spectra 

(b.a•ff). The shielding anisotropy of 31 P is -68 ppm. DPH is 16.8 kHz obtained from a 
variable contact time experiment described in Section 5.2.3. 

Magnetic Experiment lkHz0 Calculation 1kHz 

field IT stretched I Squeezed I horn separation stretched I squeezed / horn separation 

4.7 32 16 16.4 33 17 16.8 

11.7 45 6 16.6 46 5 16.8 

a± 200Hz. 

Note that the anomalous lineshapes for the static coupled spectra are observed at 

81.01 MHz, which Figure 5-2 (a) shows an extra peak at the middle and in Figure 5-2 (b) 

displays 'dip' between two horns. These unexpected appearances may relate to the 

unusual CSA patterns observed under condition of proton decoupling (see Chapter 7). 

However, the bandshape distortion does not affect the magnitude of the 'squeezed' and 

'stretched' anisotropies. 

The signs of the 31 P shielding anisotropy and the scalar coupling constant (JpH) can be 

taken into account in the features of the two sub-spectra. Note that D is positive since rH 

and r P are both positive. Since the 31 P shielding anisotropy is negative in sign, as 

derived using SSB97 [14], and 1
JPH has been also known to be positive [15], it is evident 

that the structure of the two sub-spectra (Figure 5-2) is in agreement with one of the four 

possible types of static two-spin spectra [ 1]. 

When such distributions of the two sub-spectra both in static and spinning spectra arise 

from the interplay of tensors, it is also of interest to simulate the appearance of 

phosphorus-31 proton-coupled spectra. Such simulated static 31 P spectra are shown in 
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Figure 5-3 using SIMPSON [ 16] and compared to the experimental spectra in Figure 5-2. 

For spinning cases, Figure 5-l (c) and (d) shows simulated 1H and 31 P coupled MAS 

spectra, which are consistent with the experimental results (Figure 5-l (a) and (b)). 

Clearly, the influence of the interplay oftensors dominates the appearance ofthe coupled 

spectra for the isolated heteronuclear two-spin e1P, 1H) systems. 

(a) 

0 ® \ .;V 

(b) 

0 ® \ .;V 

(c) 

40 30 20 10 0 -10 -20 -30 -40 

Vp I kHz 

Figure 5-3 Simulated 31 P static proton-coupled spectra at (a), (b) 81.01 MHz and (c) 
202.28 MHz. For the purpose of comparison, (a) no interplay of tensors has been taken 
onto account in the simulation. Other simulation parameters: 31 P, 1H dipolar interaction 
16.8 kHz; 31 P shielding anisotropy -68 ppm, 31 P shielding asymmetry 0. The "stretched" 
subspectrum and the "squeezed" subspectrum are marked with the "plus" and "minus" 
respectively. 

The proton spinning sideband manifolds were also analysed (using SSB97) to extract the 

effective values for the anisotropy and asymmetry shown in Table 5-2. These results will 

not be accurate because there are very few spinning sidebands. However, the results for 

the anisotropies of the two sub-spectra are similar in magnitude as expected because the 

dipolar coupling constant is likely to be much larger than the proton shielding an isotropy. 

It is not feasible to derive a value for the latter. The subspectra anisotropies are equivalent 

to a dipolar coupling constant of 21 kHz (see Chapter 2). This is in approximate 
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agreement with the dipolar interaction of 16.8 kHz obtained from the Fourier 

transformation of data from a variable contact time experiment, discussed in section 

5.2.3. 

Table 5-2 Tensor data for protons in SnHP03. 

8isd ppm An isotropy Asymmetry 

t;"i! I ppm lleff 

7.8 106 ± 4 0.00 ± 0.24 

2.8 -104 ± 4 0.00 ± 0.23 

It is not possible to obtain the effective shielding anisotropy of 31 P accurately from the 

coupled phosphorus spectrum because there are very few spinning sidebands, as shown 

previously in Figure 5-1 (b). 

5.2.2 The proton-phosphorus scalar coupling constant 

As previously shown, the coupled spectra of 1H and 31 P for SnHP03 (Figure 5-1) contain 

splittings arising from the indirect coupling constant, JPH. The magnitude of the splittings 

obtained by careful deconvolution was ea. 960Hz from the proton spectrum obtained at a 

spin rate of 12.5 kHz and ea. 690 Hz for phosphorus spectrum at a spin rate of 11.6 kHz. 

In principle, they should be the same, but from the experiments there is a discrepancy. 

It is important to note that a significant property of scalar coupling is that the coupling 

constant remains unchanged (when expressed in Hz) at different fields. Hence, it can 

easily be measured by running the sample at three different fields, 4.7 T, 7.05 T and 

11.7 T. Figure 5-4 shows the 1H and 31 P spectra obtained on a Varian UnityPlus 300 

spectrometer. The line splittings are found, and the values are ea. 970 Hz and ea. 690 Hz 

from single-resonance 1H and 31 P spectra (obtained at a spin rate of 16kHz), respectively. 

Figure 5-5 illustrates the 1H and 31 P spectra obtained at a spin rate of 15kHz on a Varian 

InfinityPius 500 spectrometer. The line splittings are extracted, and the values are ea. 
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930 Hz and ea. 700 Hz from single-resonance 1H and 31 P spectra, respectively. The 

magnitudes from the experiments at the three fields are similar. However, the apparent 

inconsistency of JPH values from 1H and 31 P remains. 

(a) 

(b) 

10 

I I 
I I 

I I 

I I 
I I 
I I 

I I 

0 
Frequency I kHz 

·5 -10 

Figure 5-4 (a) 1H and (b) 31 P spectra oftin(II) phosphite at 7.05 T obtained at a spin rate 
of 16 kHz. Spectrometer operating conditions: (a) recycle delay 300 s and number of 
transients 4; (b) recycle delay 600 sand number of transients 4. 

(a) 

(b) 

10 

I I 
I I 

0 

Frequency I kHz 
-5 -10 

Figure 5-5 (a) 1H and (b) 31 P spectra oftin(II) phosphite at 11.7 T obtained at a spin rate 
of 15 kHz. Spectrometer operating conditions: (a) recycle delay 120 s and number of 
transients 4; (b) recycle delay 300 sand number of transients 4. 
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Therefore, it is of interest to obtain an accurate value tor the coupling constant. A spin

echo experiment [17] was used to provide more precise information on coupling 

constants. A single Hahn echo-experiment of 31 P, with 180° pulses implemented 

simultaneously [17, 18] for both proton and phosphorus nuclei after cross-polarisation, 

successfully resolved the heteronuclear coupling between phosphorus and proton. The 

pulse sequence is displayed in Figure 5-6. Use of such a spin-echo pulse sequence 

removes many line-broadening mechanisms, yielding the intrinsic linewidth and thus 

disclosing a contribution from heteronuclear spin-spin coupling (see Chapter 2). 

'H 90° 180° 

D CT I· t ·D· t I decoupling I 
180° 

A. t n· t 

AA:~~~6 ._ CT 

-vvv,~vvv· 

3lp 

Figure 5-6 Pulse sequence of the single Hahn echo experiment, used for 31 P by applying 
1r pulses to both nuclei after cross-polarisation. The refocusing time, 't, is rotor
synchronised. 

20 JpJI 

15 

~10 

j 
- 5 

0 J~ .......... 
-5 

0 2 3 4 5 -4 -3 -2 -I 0 I 2 3 4 

time/ms Frequency I kHz 

(a) (b) 

Figure 5-7 Result of a single Hahn-echo experiment obtained by applying 1t pulses 
simultaneously to both proton and phosphorus nuclei for SnHP03 : (a) Time evolution at a 
spin rate of 15 kHz with proton decoupling power equivalent to 83 kHz; (b) Fourier 
transform of(a) after zero filling but with no line broadening. 
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As expected, the signal decay in the time domain was modulated by heteronuclear 

coupling, as shown in Figure 5-7. An oscillation was indeed observed and revealed a 

symmetrical doublet after Fourier transformation. The decay rate could be fitted easily 

with the equation 

y =A+ Bcos(nJ2r)exp(-2r 17;) (5.1) 

This reveals the scalar coupling as JPH, is 693 ± 12 Hz, which corresponds approximately 

to the values reported, 580-800 Hz, in solution-state NMR for Na2H2P205, the divalent 

anion PHO? in isotonic solution, and Na2PH03 [19-21 ]. Such one-bond P-H coupling 

constants appear always to be positive [15]. The result is close to that obtained directly 

from the 31 P spectra (see above) so it is concluded that the 1H splitting is anomalous (see 

below). 

Another parameter that we took into account to explain the unexpected inconsistency of 

the splitting observed from 31 P and 1H spectra is the spin rate. The situation concerning 

the coupled spectra is more complicated when we consider the magnitude of the splittings 

at different spin rates. Figure 5-8 shows that the splittings of the 1H spectra decrease with 

increasing spin rate while the splittings of the 31 P spectra are more constant at spin rates 

higher than 12 kHz. The results observed from three different fields are similar. These 

experiments are useful and may imply that an asymptotic value of the splitting from the 

1H spectrum is possible to be obtained at very fast spin rates ( v, >> 16.8 kHz). However, 

at the highest spin rate (22 kHz) available from the 3.2 mm probe, it is not sufficient to 

reduce the splitting to the isotropic coupling constant. 
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Figure 5-8 Plots of the magnitude of the splitting, obtained from deconvolution of 31 P 
and 1H spectra, as a function of spin rate at different three different fields, 4.5, 7.05 and 
11.7 T. 

Figure 5-9 also shows the 1H spectra at different spin rates. Apparently, a sideband 

pattern can be observed at low spin rates. The heteronuclear dipolar coupling becomes 

time-dependent under MAS and leads to sideband patterns as does the chemical shift 

anisotropy (CSA). The behaviour of forming spinning side bands at a low spin rate is 

indicative of an inhomogeneous system, obtained because the P,H spin pair is relatively 

isolated. This, however, is not the case for tightly coupled spin systems such that the 

proton spectrum is not easy to break down at such a spin rate of6 kHz. 



Chapter 5: Studies of two-spin 31 P, 1H systems 81 

Spin rate I kHz 

13.8 

123 

10.3 

8.3 

5.6 

40 30 20 10 0 -10 -20 -30 -40 

Figure 5-9 1H spectra at 200.13 MHz as a function of spin rate. A single-pulse 
experiment was employed with recycle delay 120 sand number oftransients 4. 

5.2.3 P-H distance determination in SnHP03 and SnHP04 

The experiments in this section were carried out at 11.7 T on the Varian InfinityP1us 

spectrometer equipped with a 3.2 mm double-resonance MAS probe. To stabilise the 

spin rate, the MAS controller was used. 

Standard Hartmann-Hahn cross-polarisation was used to transfer magnetisation from 1H 

to 31 P, where the signal was detected. The integrated intensity of the 31 P resonance in 

SnHP03 as a function of the proton RF-field strength for spin rates of 15 and 18 kHz is 

shown for a fixed contact time of5 ms, respectively, in Figure 5-10 e'p spin-lock field of 

83 kHz). The behaviour for 31 P in SnHP04 is similar, as shown in Figure 5-11 for spin 

rates of 12 and 15 kHz with a fixed contact time of 10 ms and the 31 P spin-lock field 

strength was 71 kHz. As expected, the ± 1 and ±2 side bands clearly dominate the 

matching profiles, i.e. efficient CP under fast spinning can only be obtained by matching 
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at the ±1 and ±2 sidebands, v, = v8 + nv,. The n = ±1 matching condition is preferred in 

practice because the effective dipolar coupling is larger than at n = ±2 [8]. 

It should be noted that the difference in estimated nutation rates for the sidebands in 

Figure 5-l 0 and 5-11 do exactly match the actual spin rate, within the error limits on the 

nutation rates. The matching profile needs to be obtained first to identify the 1H RF field 

strength at n = ± 1 , and a variable contact time experiment to extract the dipolar coupling 

can be carried out later. 

The build-up of the 31 P magnetisation as a function of CP contact time at different 

Hartmann-Hahn matching conditions was determined for SnHP03 and SnHP04. 

The results for SnHP03 at the n = ± 1 matching condition at a spin rate of 15 kHz are 

shown in Figure 5-12. For this experiment, seventy-eight increments of the contact time 

were used in the range of 0--1.15 ms. A narrow range of contact times was studied since 

the splitting between the horns of the powder pattern is largely independent of the long

time behaviour of the build-up curve, which is affected by factors such as spin-diffusion 

and T..P relaxation [22]. As illustrated in Figure 5-12, no significant intensity decay due 

to T..P relaxation is detected for the range of contact times used. Clear "transient 

oscillations" are seen at short contact times indicating the presence of a strong resolved 
31P, 1H dipolar coupling. The same experiment performed at 18 kHz also shows 

pronounced dipolar oscillations, as displayed in Figure 5-13. 
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Figure 5-10 Intensity of the 31 P signal for SnHP03 following cross-polarisation from 
protons as a function of the 1H RF field strength at a spin rate of (a) 15 kHz and (b) 
18kHz. The matching 'sidebands', corresponding to efficient cross-polarisation, are 
located at the Hartmann-Hahn condition plus and minus multiples of the MAS frequency. 
Acquisition parameters: 31 P RF field strength 83 kHz; contact time 5 ms; recycle delay 
120 s; number of transients 4. The proton decoupling power during acquisition time was 
equivalent to 70kHz. The 31 P and 1H transmitter frequencies were exactly on resonance. 
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Figure 5-11 Intensity of the 31 P signal for SnHP04 following cross-polarisation from 
protons as a function of the 1H RF field strength at a spin rate of (a) 12 kHz and (b) 
15 kHz. The matching 'sidebands', corresponding to efficient cross-polarisation, are 
located at the Hartmann-Hahn condition plus and minus multiples of the MAS frequency. 
Acquisition parameters: 31 P RF field strength 71 kHz; contact time 1 0 ms; recycle delay 
120 s; number of transients 4. The proton decoupling power during acquisition time was 
equivalent to 70kHz. The 31 P and 1H transmitter frequencies were exactly on resonance. 

Fast CP MAS at 12 and 15kHz was also applied successfully for SnHP04. The variable 

contact time curves at the n = ± 1 matching condition are presented in Figure 5-14, with 

forty increments of contact time in the range of 0-1.6 ms. The oscillatory behaviour is 

less pronounced than is observed in SnHP03. This behaviour corresponds to the lower 

magnitude of the dipolar coupling since stronger dipolar coupling gives more pronounced 

oscillations. 
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Figure 5-12 eH}-31 P cross-polarization dynamics for SnHP03• For curve (a) and (c), 
the spin rate was set to 15 kHz for the matching conditions of n = + 1 and 
n = -1 respectively. (b) and (d) Fourier transform of (a) and (c) after multiplication by 
-1, removal of "DC offset" and zero-filling. For (a), v,(1H) ~ 95 kHz and v,e'P) ~ 
83kHz, whereas v1(

1H) ~72kHz and v1e1P) ~ 83 kHz were set for (c). The mis-setting 
for (e) was set to v1(

1H) ~92kHz and v1e1P) ~ 83 kHz. (f) Fourier transform of (e) with 
the same data treatment as in (b). The acquisition parameters were: recycle delay 120 s; 
number of transients 4. Asterisks mark frequency components at multiples of the 
spinning speed arising from a "periodic quasi-equilibrium" state [22]. 
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Figure 5-13 eH}-31 P cross-polarization dynamics for SnHP03 under a spin rate of 
18 kHz at the n = ± 1 Hartmann-Hahn matching condition. For curves (a) and (c), the 
matching condition was set to n =+I and n = -1 respectively. (b) and (d) Fourier 
transform of (a) and (b) after multiplication by -1, removal of "DC offset" and zero
filling. For (a), v1(1H) ~ 95 kHz and v1e 1P) ~ 83 kHz, whereas v1eH) ~ 66 kHz and 
v1e1P) ~83kHz were set for (c). The mis-setting for (e) was v1eH) ~92kHz and v1e1P) 
~ 83 kHz. (f) Fourier transform of (e) with the same data treatment as in (b). The 
acquisition parameters were: recycle delay 120 s; number of transients 4. 
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Figure 5-14 eH}-31 P cross-polarization dynamics for SnHP04 at a spin rate of 12 kHz 
for (a) and (c), and 15 kHz for (e) and (g). Hartmann-Hahn matching conditions were: 
(a) vtctH) and Vte 1P) estimated to be 82 and 71 kHz respectively; (c) VtctH) and v/1P) 
estimated to be 61 and 71 kHz respectively; (e) v1(

1H) and v1e
1P) estimated to be 82 and 

71 kHz respectively; (g) v1ctH) and v1e1P) estimated to be 58 and 71kHz respectively. 
(b), (d), (t) and (h) Fourier transforms of (a), (c), (e) and (h) after multiplication by -1, 
removal of "DC offset" and zero-filling. The acquisition parameters were: recycle delay 
60s; number of transients 4. 
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Fourier transformation of the build-up curves gives Pake-like powder patterns in the 

frequency domain, as presented above. The difference between the horns of the powder 

pattern is directly proportional to the dipolar coupling, DPH , which depends on the order, 

n, of the sideband matching condition (see below). This situation has been addressed by 

Bertani et al. [8]. Following Ref. [8], it is known that, under fast spinning conditions 

(v,>> DPH) at the n = ±1 and n = ±2 sideband matches, the transferred magnetisation is 

given by (neglecting spin-lattice relaxation in the rotating frame and 1H- 1HI31 P_3 1P spin 

diffusion [23]): 

M,lp (t) = ~ M 0 [ 1- cos ( 8i) J 
2yllp 

(5.2) 

where o±n are defined by: 

(5.3) 

(5.4) 

pis the angle between rPH and the rotor axis. DPH is the magnitude ofthe 31 P, 1H dipolar 

coupling. This is related to the internuclear distance rPH by: 

(5.5) 

As in the static case, DPH can be directly determined from the Pake-like powder pattern. 

However, for the n = ±I sideband matching, the maximum splitting in the powder pattern 

is found at p = 1r I 4, and the separation of the horns of the powder pattern will be 

DPH I .fi. For the n = ±2 condition, the maximum splitting in the powder pattern is 

found at p = ;r I 2, and the separation of the horns of the powder pattern will be DPH I 2 . 

Thus, distance determination by this technique is very straightforward because there is no 
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need to fit to numerical simulations since the dipolar coupling can be directly extracted 

from the line splitting of the powder pattern. The measured dipolar coupling constants 

were 16.76 kHz for SnHP03 (Figure 5-12 (b)) and 5.70 kHz for SnHP04 (Figure 5-14 

(f)), corresponding to P,H distances of 1.43 A (direct P-H bond) and 2.03 A (P-0-H 

unit) respectively. 

The reproducibility of the distance determination using this technique was studied by 

repeating experiments at the n = ± 1 conditions with different spinning speeds. Four 

results (Table 5-3) at two spin rates of 15 and 18 kHz gave distances within the range 

1.41-1.43 A for SnHP03, and so it may be concluded that the average of rPH is 1.42 ± 

0.01 A, in good agreement with the P-H distance reported for MgHP03 · 6H20 [24] of 

1.47 A. 

Table 5-3 Dipolar coupling constants ( DPH) and the internuclear distances ( rPH ) for 
SnHP03 determined using the variable contact time experiment. 31 P RF-field was set to 
83.33 kHz. It is assumed that M is negligible. 

Spin rate I 

kHz 

15 

18 

a± 160Hz. 
b ±215Hz. 
c±O.OlA 

1H RF-field 

strength I kHz 

94.82 

71.84 

94.82 

66.08 

Side band 

no. 

+1 

-1 

+1 

-1 

Separation of 
DPH I Hzb 

rPH 

the horns I Hza lAc 

11849 16758 1.43 

12004 16976 1.42 

12109 17123 1.42 

12207 17263 1.41 

The results for SnHP04 are in Table 5-4. The distance range was 2.02-2.07 A, obtained 

at spin rates of 12 and 15 kHz, corresponding to an average rPH = 2.05 ± 0.03 A. The 

result is consistent with the values in the range of 2.07-2.27 A reported from 

crystallographic studies for SnHP04 [25] and other phosphate compounds Zr(HP04h 

[26] and CaHP04 [27], CaHP04 · 2H20 [28]. 
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Table 5-4 Dipolar coupling constants ( DPH) and the internuclear distances ( rPH) for 
SnHP04 determined using the variable contact time experiment. 31 P RF-field was set to 
71.43 kHz. It is assumed that M is negligible. 

Spin rate I 

kHz 

12 

15 

a± 160Hz. 
b ±225Hz. 
c ± 0.03 A 

1H RF-field 

strength I kHz 

81.63 

61.23 

81.63 

58.31 

Side band 

no. 

+1 

-1 

+1 

-1 

Separation of 
DPH I Hzb 

rPH 

the horns I Hza lAc 

4205 5946 2.02 

3876 5480 2.07 

4102 5700 2.03 

3906 5523 2.07 

It is important to consider the effect of m is-setting the side band matching condition, since 

this is the most likely source of experimental error in this otherwise robust experiment. 

Following Ref. [8], the relationship between the separation of the horns, S1 , and the m is-

set of the Hartmann-Hahn matching condition ( ~ = v1 - v, - nv,) at the n = ± 1 matching 

condition is: 

(5.6) 

If we are in the limit where the mismatch is small compared to the dipolar coupling, the 

corresponding expression for the dipolar coupling in terms of S, can be written: 

(5.7) 

A mismatch has the effect of decreasing the apparent dipolar coupling constant for a 

fixed value of S1 • But (in this limit), the effect is second-order in the ratio ~IS,. 

Moreover, the strong dependence of dipolar coupling on internuclear distance, D18 oc r1;
3

, 
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means that the fractional error on r1s is one-third that of any fractional error in D1s . Note 

that any mismatch will tend to underestimate r1s . 

This is supported experimentally. The mis-setting of 2.8 kHz from exact match for 

SnHP03, as shown in Figure 5-10, was chosen since the 31 P signal could be observed 

with a good-signal-to-noise even though this RF field strength was half way from the 

exact match. As shown in Figure 5-12 (f) and Figure 5-13 (f) at spin rates of 15 and 

18 kHz, deliberate mis-settings of 2.8 kHz for SnHP03 from exact sideband matching 

resulted in an increase ofthe separation ofthe horns, 12451 and 12516 Hz respectively. 

For the spin rate of 15 kHz, it leads to an increase of ea. 5% in the apparent dipolar 

coupling constant and a decrease of only 1.4% in rPH, to 1.404 A. Similarly, only a 1.1% 

decrease in rPH is decreased to 1.402 A is obtained for the mis-setting at the spin rate of 

18 kHz. The variation in the dipolar coupling measurement is less than predicted by 

Equation 5.5 (6 and 7% for a mis-setting at the spin rates of 15 and 18kHz respectively), 

which is probably due to a constructive interaction between mismatch and 

inhomogeneities of the B1 field; the signal will be strongest from the regions in which 

these effects have tended to cancel, while little signal will be observed from regions 

where the overall mismatch is large. Hence there is relatively little advantage to reducing 

RF inhomogeneities by restricting the sample volume to the centre of the coil. Although 

this will sharpen the matching profile, allowing the match to be set with greater precision, 

the robustness of the experiment would not be greatly improved while sensitivity would 

be significantly worse. 

It is also worth noting that the heteronuclear distances are most often measured by 

Rotation-echo Double-resonance (REDOR) [29]. This "recoupling" method employs 

very strong 1t pulses synchronously with the sample rotation and in this way tries to re

introduce the heteronuclear dipolar coupling. However, this method is only suitable for 

the study of weak heteronuclear dipolar interactions (a few hundred to a few thousand 

Hertz) since the 1t pulses are assumed to be very short compared to the sample rotation 

period, which is hard to realise for high spin rates [30]. This implies that the REDOR 

technique is perhaps less well adapted to the measurement of strong couplings (such as 
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those between 31 P and 1H). On the other hand, variable contact time experiments under 

fast spin rates do not suffer from these complication, resulting in the fact the method it is 

well-suited to the measurement of strong couplings. Similar conclusions have been 

drawn by other workers [8],[31]. 

As can be seen above, all results (for both SnHP03 and SnHP04) are consistent with X

ray diffraction data from related compounds, but it is important to note that XRD was 

unable to locate the hydrogens in our tin compounds due to the proximity of the heavy tin 

atoms [9]. It is also important to note that distance measurements by NMR and X-ray 

diffraction are based on different phenomena. The distance is determined using the 

electron density distribution in X-ray diffraction whereas NMR can extract the distance 

from internuclear interactions (based on the nuclei). Thus, the results from the two 

techniques will not be, in principle, equal; X-ray studies may provide shorter internuclear 

distances than NMR due to the delocalisation of electrons and the way mobility can affect 

measurements of dipolar coupling constants [32]. 

5.2.4 Unusual behaviour under 31P decoupling 

The experiments under MAS were performed using the direct polarization pulse sequence 

with and without CW 31 P decoupling during acquisition. Figure 5-15 (a) shows the 1H 

spectrum of SnHP03 obtained without CW decoupling. This shows a splitting due to 

indirect (.J) coupling to 31 P, which is too complicated (see in section 5.2.2). Hence the 1H 

spectrum acquired under 31 P decoupling is expected to be a single peak, corresponding to 

the unique hydrogen site in the asymmetric unit. However, the proton spectrum acquired 

with CW 31 P decoupling, as shown in Figure 5-15 (b), shows two peaks with a splitting of 

520Hz. This unexpected result is more pronounced at a higher field (11.7 T), as shown in 

Figure 5-15 (e). The splitting broadens to about 1520Hz under CW decoupling. 
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Figure 5-15 1H spectra of SnHP03 at (a-c) 200.13 MHz, (d-f) 499.97 MHz. The 1H 
spectra in (a) and (d) were obtained without CW decoupling, whereas (b) and (e) were 
studied under CW decoupling. TPPM decoupling was employed to acquire the 1H spectra 
in (c) and (f). The sample was spinning at the magic angle with spin rates of 12.5 kHz (a
c) or 18 kHz (d-f)). The 31 P RF field strength was 83 kHz (b, c) or 70 kHz (e,f). The 
TPPM tip angle was set to ~ 180° with a phase difference of 15°. 

It has been known that under CW decoupling, e.g. off-resonance, insufficient decoupling 

field strength could lead to incomplete decoupling and residual line splitting [33,34]. 

Therefore, to investigate the line splitting observed above, the field strengths of CW 

decoupling and off-resonance magnitude were taken into account. 

Figure 5-16 displays the splitting in the proton spectra as a function of 31 P RF field 

strength (CW decoupling) on the 200 MHz spectrometer. The separation of the peaks 

was strongly dependent on the decoupling power (Figure 5-16 (b)). The line splitting did 

not vanish at the decoupling power of 83 kHz. Note that the maximum safe decoupling 

power is 83 kHz for the probe used (4 mm rotor). Although using such a high decoupling 

may remove the splitting, this can also lead to undesired heating of the probe (especially 

when the acquisition time is too long). 
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Figure 5-16 (a) 1H spectra at 200.13 MHz under CW decoupling as a function of 31 P 
CW-decoupling power at a spin rate of 12.5 kHz. Direct polarisation was employed. The 
acquisition parameters were: recycle delay 120 s; number of transients 4. (b) The 
magnitude of the splitting (from deconvolution) as a function of 31 P CW-decoupling 
power. 
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An effect of off resonance CW decoupling on the line splitting was further investigated 

on the 200 MHz spectrometer. Figure 5-17 shows a series of proton spectra where the 
31 P off-resonance frequency was varied from 0 to 100kHz at a fixed decoupling power of 

83 kHz. As expected, the splittings were a function of the resonance offset (Figure 5-17 

(b)), with a greater magnitude of the splitting at higher off-resonance frequencies. The 

asymptotic value of the splitting is ea. 900 Hz. However, even with on-resonance 

decoupling the line splitting is still clearly pronounced. Note that good CW decoupling 

of the heteronuclear dipolar interaction requires that the irradiated nuclei is on-resonance 

[34,35]. Experimentally, off-resonance effects are normally minimized by optimising the 

position of the 31P transmitter frequency, which straightforward for the case of SnHP03 

since there is only one phosphorus resonance. 

The effect of the 31 P off-resonance frequency (an offset of the 31 P transmitter) on the 

magnitude of the splitting of 1H spectrum under 70kHz CW decoupling power was also 

studied at higher field (11.7 T), as shown in Figure 5-18. The splitting on-resonance is 

ea. 1500 Hz. This splitting increases with increasing off-resonance frequency from 0 to 

I 0 k.Hz, but (in contrast to the case shown in Figure 5-17) the splittings significantly 

decrease with a further increase in off-resonance frequency. For the negative off

resonance frequency, the splittings reduce with increasing the off-resonance frequency 

from 0 to -110 kHz. The magnitudes of the splitting on the two sides of resonance (plus 

and minus) are not symmetrical. This is probably due to the size of the phosphorus 

shielding anisotropy ( s = -68 ppm) and the low asymmetry, since the phosphorus nuclei 

are in a nearly axial symmetric environment (see Chapter 4). From Figure 5-18, it is 

obvious that the intensities of the peaks at lower frequency and higher frequency are not 

generally equal. 
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Figure 5-17 (a) 1H spectra at 200.13 MHz under CW decoupling as a function of 31 P 
resonance offset. Direct polarisation was employed. The decoupling field strength for all 
spectra was set to 83 kHz, and the spin rate was 12.5 kHz. The acquisition parameters 
were: recycle delay 120 s; number of transients 4. (b) The magnitude of the splitting as a 
function of 31 P off-resonance frequency. 
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Figure 5-18 1H spectra at 499.70 MHz under CW decoupling as a function of 31 P off
resonance frequency. Direct polarisation was employed. The decoupling field strength for 
all spectra was set to 70 kHz, and the spin rate was 18 kHz. The acquisition parameters 
were: recycle delay 120 s; number of transients 4. (b) Plots of the magnitude of the 
splitting as a function of 31 P off-resonance frequency, including results from simulations 
(see Figure 5-22). 
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The dependence of the 1H splitting at 500 MHz on the 31 P RF field strength (CW 

decoupling) is shown in Figure 5-19. The line is still split and rather broad even with the 

highest decoupling field strength. The magnitude of the splitting increases with the 

decrease of RF field strength. In addition, another unexpected result was found in this 

study; a new peak was seen in the middle of the spectrum. This peak was more 

noticeable as the RF field strength was decreased, which this may be explained by the 

inhomogeneity in B 1• At the moment we cannot explain satisfactorily the origin of this 

peak. 
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Figure 5-19 (a) 1H spectra at 499.70 MHz under CW decoupling as a function of 31 P 
CW-decoupling power at a spin rate of 18 kHz. Direct polarisation was employed. The 
acquisition parameters were: recycle delay 120 s; number of transients 4. 
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In order to understand the behaviour of unusual splitting, simulations 1H spectra under 

CW decoupling have been carried out using SIMPSON [16], concentrating on the 

observed behaviour at the higher field. In all simulations, the anisotropy of the dipolar 

tensor was set to 16.8 kHz, the coupling constant was 693 Hz, the decoupling power 

70 kHz, and shielding anisotropy was -68 ppm. Axially symmetry was assumed. 

Since the splitting is possibly orientation-dependent, one of the important parameters 

which needs to be considered first is the angle f3 (which is the angle between the dipolar 

and shielding tensors). The aim of specifying angle f3 is to test the accuracy of the 

simulation model that should be in agreement with the experimental model. Thus, the 

first set of proton spectra was done under fixed 31 P CW decoupling (70 kHz) and spin 

rate (18kHz). 

Figure 5-20 show the simulation of the dependence of the proton spectra on the relative 

orientation of the dipolar tensor. It can clearly be seen that there is a strong dependence 

of the magnitude of splitting on the angle f3 . At the angle f3 of 0, the magnitude of the 

splitting (ea. 1520 Hz) for the simulated proton spectrum is consistent with the 

experimental result (ea. 1550 Hz). This indicates that the simulation model is correct, 

and can reproduce the experimental result. The result also strongly suggests that the 

dipolar coupling tensor and the shielding tensor are coaxial. Therefore, all the simulated 

results in this section the angle f3 was set to 0. 

Note that the splitting cannot be seen at the angle f3 of 54.74°. This is probably due to 

the employed line broadening 400 Hz, which is quite large compared to the scalar 

coupling. 
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Figure 5-20 Dependence of the splitting on the orientation, f3 , of the dipolar tensor 
relative to the shielding tensor. Simulation parameters: the anisotropy of the dipolar 
tensor was set to 16.8 k.Hz, the coupling constant was 693 Hz, the decoupling power 
70 k.Hz, and shielding anisotropy was set to -68 ppm and assumed to be axially 
symmetric. 

Figure 5-21 presents 1H spectra as a function of the decoupling field strength. The 

magnitudes of the splitting from the simulation are in agreement with the experiments, as 

shown in Figure 5-21 (b), but the central lines are not reproduced by the simulation. The 

difference may be explained by considering the inhomogeneity in B 1 since this parameter 

has not been included in the simulations. It would be very difficult to include this 

parameter in the simulation, so that the real system is more complicated than the 

simulation. We have not emphasised this problem in this Chapter. On the other hand, we 

concentrated on investigating and understanding the anomalous behaviour of the splitting 

under CW decoupling. 
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Figure 5-21 (a) Simulated CW-decoupled 1H spectra at 499.97 MHz as a function ofRF 
decoupling power. Other simulation parameters: 31 P-1H dipolar interaction 16.8 k.Hz, 31 P 
shielding an isotropy 13.8 kHz in magnitude, 31 P shielding asymmetry 0, spin rate 18 k.Hz, 
line broadening 400 Hz. (b) comparison of the splitting of 1H spectrum derived from 
simulation and experimental results. 
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The influence of 31 P off-resonance decoupling on the magnitude of the splitting was also 

studied using SIMPSON, as shown in Figure 5-22. The magnitude of the splitting from 

the simulated results is in good agreement with the experimental results. Comparison of 

the values is shown in Figure 5-18 (b). However, the intensities of the peaks from the 

simulated results are equal, which differs from the experimental results (Figure 5-18 (a)). 
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Figure 5-22 Simulated 1H spectra at 499.97 MHz under CW decoupling for a variable of 
31 P off-resonance frequency. Simulation parameters: 31 P- 1H dipolar interaction 16.8 kHz, 
31 P shielding anisotropy 13.8 kHz in magnitude, 31 P shielding asymmetry 0, JPH coupling 
constant 693 Hz, RF field strength 70 kHz, spin rate 18 kHz, line broadening 400 Hz. 
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Clearly, numerical simulation of the two spin 1H, 31 P spin system reproduces the 

experimental behaviour of the magnitude in the splitting (Figure 5-21 (b)), which is 

encouraging, but provides little physical insight. Following Ref [11], we can write the 

spin Hamiltonian in the doubly rotating frame for this problem, using S to denote the 

observed 1 H spin and I for the irradiated 31 P, as: 

where mD, m1, ms and m1 are the strengths of the dipolar and indirect coupling 

interactions, and the offsets from the transmitter frequency of the S and I spins 

respectively (expressed in common frequency units). These interactions are all 

potentially orientation-dependent, with n; representing the set of Euler angles relating 

the principal axis system of the tensor interaction I with the laboratory frame. mrf is the 

nutation rate of the I spins under CW decoupling. The heteronuclear J interaction is 

straightforwardly incorporated into the previous treatment [ 11] by replacing the dipolar 

coupling with the effective coupling term mD,eff cn/J,J) = (1)/) (Q[)) + J(Q J) I 2 , noting that 

this effective interaction now contains an isotropic component (unlike the dipolar 

interaction) and that the principal axis systems of the interactions are likely to be co

incident i.e. QD ~ QJ. 

As previously shown [ 11 ], if it is assumed that mrf is significantly larger than the other 

interactions, second-order perturbation theory can be used to derive the frequencies of the 

two strong transitions corresponding to the S spin resonance: 

(5.9) 

Under conditions of magic-angle spinning, the corresponding centreband frequencies are 

determined by the time average of these frequencies: 
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(5.1 0) 

We assume that 21zvr <<mif, i.e. the averaging due to the MAS and RF irradiation can be 

treated independently. The first term in Equation 5.10 is simply the isotropic chemical 

shift of the observed S spin, while the second is a cross-term between the (effective) 

heteronuclear coupling and the shielding of the I spin. This cross between an effective 

rank 0 + rank 2 interaction and another rank 2 interaction will contain terms of rank 

0 + 2 + 4. Under normal decoupling conditions, the resulting isotropic term is negligibly 

small and the rank 2 term is eliminated (like the anisotropy of m5 ) by the MAS, but the 

rank 4 terms survives the averaging. At finite decoupling power ( mrf ), this term 

separates the otherwise degenerate transitions, and the S spin spectrum from an 

individual crystallite appears as a doublet. The size of the splitting depends on the 

crystallite orientation (in addition to the relative orientations of the tensor interactions) 

and so the spectrum of a powdered sample appears as a Pake-like double-peaked 

lineshape. 

Thus the broadening rank 4 term arises from the cross-term between the chemical shift 

anisotropy of the decoupled (J) spin and the anisotropy of the coupling (dipolar + J) 

between I and S. Hence, it is unsurprising that these effects are not widely observed in 

1H-decoupled spectra, due to the weakness of the 1H CSA. In this case, however, we are 

decoupling 31 P, which has a substantially larger shielding anisotropy (s = -68 ppm), and 

so these effects are much more prominent. We have also recently observed analogous 

effects in the eH}- 13C NMR of fluorine-containing systems; here the 
1
H-

19
F dipolar 

coupling appears, from the viewpoint of the decoupling, as equivalent to a large effective 

1H CSA [36]. Furthermore, this is the first sample involving the P,H pair of nuclei, with 

a resolvable J-coupling (693 Hz), shows the splitting under CW decoupling arising from 

the second-order recoupling. Note that the model sample studied in Ref [11] is fully 
15

N 

labeled tris-(trideuteromethyl)-ammoniumchloride with J NH ~ I 00 Hz, which does not 

give an observable splitting in the fully-coupled spectrum at a 1H Larmor frequency of 
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301.2 MHz. However, the splitting can be seen in a 600 MHz spectrum obtained at a 

spin rate of 30 kHz [3 7]. 

Fortunately, the second-order effects can be averaged out using two-pulse phase 

modulation (TPPM) decoupling [38). The sequence consists ofthe following: application 

of RF pulses with the flip angle alternating between two phases separated by an angle tjJ • 

The small phase-alternation reduces the second-order recoupling effect; for TPPM 
0 0 

decoupling with the model pulse sequence of (180 +
9
180 _

9
) N with tjJ = 1r /(2N) and with 

N> 1. It has been reported [38] that the effect of TPPM depends strongly on the flip angle 

and the phase difference. The dependence becomes more pronounced at high MAS 

frequencies. Consequently, these parameters need to be optimized to achieve high 

resolution under this decoupling sequence. 

Flip angle I deg 

_}\_ 200 

A 190 

A 180 

A 170 

A 160 

_}\_ 150 

A 140 

7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 

vH/kHz 

Figure 5-23 Experimental 1H spectra at 200.13 MHz under TPPM decoupling for seven 
different flip angles from 140° to 200° at fixed phase difference 15°. The decoupling 
power was set to 83 kHz. 
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Figure 5-23 illustrates the dependence of the 1H spectrum on the flip angle at the 

magnetic field of 4.7 T. Clearly, at the flip angle of 180° at fixed phase difference of 15°, 

the splitting was eliminated. The comparison between the line splitting under TPPM 

decoupling and CW decoupling is shown in Figure 5-15 (b) and (c). The TPPM sequence 

has succeeded in eliminating any observed splitting. 

The dependence of the splitting on the flip angle and phase difference at 500 MHz are 

presented in Figure 5-24. The experiments were studied at 70 kHz RF field strength and 

18kHz spin rate. It is obvious that both flip angle and the phase difference at higher field 

are very sensitive parameters. The optimal flip angle was set to 180° and the optimal 

phase difference was 15°. However, even with the precise setting of both flip angle and 

phase difference the 1H spectrum is still not a simple single line. 

As can be seen, the use of TPPM decoupling under MAS can reduce the line-broadenings 

and splittings only at lower fields ( 4. 7 T), but is not totally successful at higher fields 

(11.7 T). The latter fact is attributed to the increase in magnitude (in frequency units) of 

the 31 P shielding anisotropy. Hence, a new decoupling sequence for nuclei with large 

CSAs under MAS is required and this means a challenge for current decoupling methods 

in solid-state NMR. 
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Figure 5-24 Experimental 1H spectra at 499.70 MHz under TPPM decoupling for (a) 
seven different flip angles from 155 deg to 205 deg at a fixed phase difference 15° and 
(b) five different phase differences from 5 deg to 25 deg at a fixed flip angle 180°. The 
decoupling power was set to 70 kHz. The spin rate was 18 kHz 
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5.3 Conndunsnom~ 

Isolated spin systems present both opportunites and complications for solid-state NMR. 

It has been shown that reliable internuclear distances of P-H for SnHP03 and P-0-H for 

SnHP04 can be determined from a variable contact time experiment under a fast spin 

rate, which has provided the internuclear distances 1.42 ± 0.01 A (SnHP03) and 2.05 ± 

0.03 A (SnHP04). This technique is very powerful for precisely evaluating the P,H 

internuclear distances in the phosphate and phosphite compounds, since they cannot be 

readily measured by X-ray diffraction. 

It has been also found that the second-order cross term between the CSA of 31 P (in 

SnHP03) and the (effective) heteronuclear dipolar coupling is the significant contribution 

to the residual line splitting and also linewidth under CW decoupling of isolated two-spin 

systems. Since this residual line splitting arises from the coupling of two second-rank 

tensors it will not be removed under MAS conditions because rank 4 terms remain. 

However, use of an efficient decoupling sequence (such as TPPM) can remove the 

second-order recoupling effect. This was successful at a low magnetic field (4.7 T), but 

not completely for a higher magnetic field (11.7 T) because of the increase in 31 P 

shielding anisotropy. 
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CHAPTER6 

MULTINUCLEAR MAGNETIC RESONANCE STUDIES OF SOLID 
SILVER COMPOUNDS 

6.1 Introduction 

Silver(!) compounds are of interest to a wide range of scientists including chemists and 

biochemists. Silver(!) exhibits a rich biological chemistry [1], forming the basis of a 

widely used antibacterial agent and a transcriptional initiator in plants and animals. The 

action of silver ion effectively prevents breeding of bacteria while being harmless for 

humans. Inorganic silver-based agents are used for tile, tableware, silverware, dental 

material and sanitary ware. However, many silver compounds are light-sensitive to the 

point that often X-ray crystallographic information cannot be obtained. 

For various reasons, silver is an attractive element for high-resolution solid-state NMR. 

Direct observation of Ag NMR signals is advantageous since the Ag chemical shift 

(a range of- 1000 ppm) is very sensitive to the chemical environment of the nucleus. 

Furthermore, silver has two active isotopes, 107 Ag and 109 Ag, with spin ~ (see Table 6-1 ). 

Most NMR studies have involved the 109 Ag nucleus because of its higher magnetic 

moment, and so even though its 48.16% natural abundance is slightly less than that of 
107 Ag, its receptivity is about 1.4 times greater. Thus, solid-state NMR studies of silver 

are very helpful understanding areas from fast ion conducting glasses to organometallic 

complexes of biological significance. 
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Table 6-1 NMR parameters of the nuclei 107 Ag and 109 Ag [2]. 

Isotope Natural abundance Magnetic moment Magnetogyric ratio Relative receptivity 

(xI%) (J.!I!lN) (y I 1 07rad T 1 s-1
) DPI 10-5 DC 

IO!Ag 51.839 -0.1969 -1.0889 3.44 0.205 

to9Ag 48.161 -0.2264 -1.2519 4.86 0.290 

d and De are the receptivities relative to 1H and 13c respectively. 

The main difficulty of silver NMR arises from the low magnetogyric ratio, and so low 

sensitivity. Moreover, the spin-lattice relaxation time (Tt) is often extremely long for 

solid silver compounds, usually greater than one minute, which implies long delays 

between pulses. Thus, the observation of silver-1 09 signals in solids can be a serious 

challenge [3,4]. 

The problem of long relaxation times can be alleviated, to some degree, by use of cross

polarisation (CP) from 1H. However, only a few 109 Ag CPMAS investigations have been 

reported to date [ 1 ,5-9] (see literature survey). Moreover, a high proportion of the reports 

for 109 Ag is related to silver-containing glasses (no protons), where silver ions display 

high ionic mobility resulting in shorter relaxation times, so it is easy to observe. The 

chemical shift anisotropies ( !1a) of the small number of previously reported systems 

[1,7,9] cover a range of 500-2000 ppm in magnitude, which results in the appearance of 

several spinning sidebands at typical spin rates. 

In this chapter, the measurement and interpretation of the 109 Ag CPIMAS spectra of a 

number of silver(l) compounds are reported. The study was carried out in order to gain a 

better understanding of the relationship between the structure of silver complexes (where 

the crystal structures have been known already) and the observed 109 Ag NMR parameters, 

and to extract the structural information from the NMR studies. The results will be 

presented in three sections: the first section will involve diammine silver(l) complexes, 

the second will report on silver(l) nitrate complexes with various ligands in silver(l)

cations, and the last will discuss some silver phosphate compounds. Carbon-13, 

nitrogen-15 and phosphorus-31 NMR studies are also included in this chapter. 
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6.2 Literature §unrey 

As a result of the low sensitivity, only a limited number of 109 Ag NMR studies have been 

reported in the literature, and most of these have dealt with Ag compounds in solution. 

Results from solution-state 109 Ag NMR have been summarized by Mann [I 0]. 

In solid-state NMR studies, the technique of cross-polarisation, transfer of magnetisation 

from protons, can reduce the problems associated with long T1 and lack of sensitivity. 

The signal enhancement could be ~21 (rH I rAg), and the experiment time can also be 

decreased since the recycle delay is governed by the T1 of protons. As previously 

described in Chapter 2, in the CP experiment the transfer occurs during the contact time, 

when both radio frequencies are being transmitted. The CP experiment can be achieved 

when the Hartmann-Hahn matching condition, r HBIH = r AgBIAg' is satisfied. The power 

requirement for silver to fulfill the matching condition is technically much more 

demanding than for commonly used nuclei like 13C due to the large value of 

B1Ag required. Thus, the power handling capability of the probe used is of significance 

[3,4]. 

The first 109 Ag CP/MAS spectra have been reported by Merwin and Sebald [7]. 109 Ag 

CP/MAS spectra of silver acetate, (CH3C02)Ag, silver lactate, [CH3CHC(OH)C02]Ag 

and silver acetylatonate, (C5H70 2)Ag, have been studied. It has been found that isotropic 

chemical shifts cover quite a wide range of 33-472 ppm. Most silver compounds 

required long contact times, ea. 40-50 ms. After the study of various possible CP set-up 

compounds, silver lactate has been suggested as a standard (chemical shifts are 210.7, 

219.7, 320.2 and 345.9 ppm referenced to AgN03 in H20). Silver acetate can be also 

used as the secondary reference (382.7 and 401.2 ppm with respect to AgN03 in H20) 

[1]. Nevertheless, both these compounds give more than one signal in NMR (due to 

crystallographic inequivalencies) and are, moreover, light sensitive. Very recently silver 

methanesulfonate, AgS03CH3, has been found to be a suitable standard for solid-state 

NMR [11]. The 109 Ag chemical shift of this solid is 87.2 ppm with respect to a saturated 

solution of AgN03. The signal is easily seen at a contact time of 10 ms. This compound 
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shows no air sensitivity and very weak light sensitity. In addition, the spinning sidebands 

are eliminated at a spin rate of 4kHz (because of a small CSA). 

The first examples of a solid acid catalyst, trisilver dodecatungstophosphates 

(Ag3PW1204o · 6Hz0), have been observed by using 109 Ag MAS NMR [8]. The 109 Ag 

NMR spectra, consisting of a single peak at 30 ppm, indicates homogeneous 

microenvironments of Ag+ ions coordinated with water molecules. 

Fijolek et al. [1 ,5,6] carried out a detailed study of silver thiolates and related compounds 

using CPMAS NMR. It was observed that 109 Ag NMR is remarkably sensitive to 

differences in Ag environment; small differences in bond lengths and angles result in 

very different isotropic shifts. The chemical shifts are in the range of 826-1228 ppm and 

the silver sites also show a significant range in their CSA, with values of 569-2120 ppm 

reported for two- and three- coordinated Ag thiolates in Ref. [ 1]. 

Rammial et al. [9] reported the 109 Ag CPMAS NMR spectrum for a monomeric imidazol-

2-yldine-silver(I) chloride complex, which contains single peak at 532 ppm. The 

shielding tensor reveals a large CSA ( f"..a = 1798 ppm) and the silver environment is 

nearly axially symmetric, arising from the linear Cl-Ag-Cl geometry. 

6.3 Experimental Considerations 

The spectrometers used to acquire silver- I 09 signals in this work were (a) Varian 

UnityPlus 300, and (b) Varian InfinityPlus 500. A 7 mm double resonance HX MAS 

probe and a 7.5 mm double resonance HX MAS solids probe (equipped with an external 

tuning box for frequencies below 15N) were employed with the Varian UnityPlus 300 and 

Varian lnfinityPlus 500 spectrometers respectively. A 9 M aqueous solution of AgN03 

was used as a standard reference for convenience. The chemical shift is set to 0.0 ppm. 

The frequencies of the silver nuclei on the two spectrometers are 13.97 MHz and 

23.27 MHz respectively. (For 13C, 15N and 77Se, the frequencies of the individual nuclei, 

reference compounds and probes used are stated in Chapter 3.) 
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For the Varian UnityPlus 300 spectrometer, 39K is more amenable than 109 Ag because T1K 

< T1Ag and it gives a sharper signal, so the 90° pulse duration was determined using a 

solution of KC I. It was assumed that, with the spectrometer in the same configuration but 

tuned to 109 Ag, the pulse duration would be the same (since 39K and 109 Ag have similar 

resonance frequencies: 14.00 and 13.97 MHz, respectively). A 109 Ag radiofrequency power 

equivalent to ea. 36 kHz (equivalent to 7 f.lS 90° pulse duration) was employed. After 

finding the power setting, AgN03 solution was used to set the reference signal. The 

Hartmann-Hahn match condition was determined by linearly scaling the 1H field for a 

known 90° pulse (using adamantane) to give a 90° pulse duration equal to that 

determined for 109 Ag via 39K of the KCI solution. It is worth noting that B1Ag (equivalent 

to 0.02 T at the RF field of 36 kHz) has to be very high compared to BIH (0.0008 T) to 

achieve the Hartmann-Hahn match condition. 

On the other hand, on the Varian InfinityPlus 500 spectrometer, the 90° pulse duration 

was directly determined using the 109 Ag signal of an AgN03 solution, and a power of ea. 

17 kHz (equivalent to 15 f.lS 90° pulse duration). KCl was not used for this spectrometer 

because the tuning condition for the probe used required the exact resonance frequency of 
109 Ag for setting the 90° pulse duration. Besides, using AgN03 gave a sensible signal-to

noise and linewidth. The 90° pulse duration for protons was found by linearly scaling the 

power setting required for the 90° proton pulse on adamantane. The Hmimann-Hahn 

match condition was directly optimised from the sample. 

Both the optimum recycle delay and the optimum contact time were found directly from 

proton and silver signals on the sample, respectively. The recycle delay was determined 

by a variable recycle-delay-time experiment and checked by measurement of T1H where 

appropriate. The optimum contact time was found by arraying this parameter on each 

sample and choosing that giving the greatest signal intensity. 
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6.4 Results and Discussions 

6.4.1 Silver(I) Amine Complexes 

115 

A series of three silver amine complexes were studied, namely diammine silver(I)-nitrate, 

[Ag(NH3)2]N03, diammine silver(l)-sulphate, [Ag(NH3)2]2S04 and diammine silver(l)

selenate, [Ag(NH3)2]2Se04. The [Ag(NH3)2]N03, [Ag(NH3)2]2S04 and [Ag(NH3)2]2Se04 

are the products of reactions between silver(!) nitrate, silver(!) sulphate and silver(l) 

selenate, respectively, and concentrated aqueous ammonia. The microcrystalline 

products are light sensitive. 

Crystal structure data 

The nitrate complex, [Ag(NH3)2]N03, and the sulphate complex, [Ag(NH3)2]2S04, have 

been previously studied by X-ray crystallography [12, 13], and the crystal structure of 

[Ag(NH3)2]2Se04 was recently reported [14]. The structural data and selected bond 

distances and angles ofthe three silver(!) ammine complex are presented in Table 6-2. 

Table 6-2 Summary of selected bond distances (A) and angles (deg) for [Ag(NH3)2]N03, 
[Ag(NH3)2]2S04, and [Ag(NH3)2]2Se04 

[Ag(NH3)2]N03 a [Ag(NH3)2]2S04 b [ Ag(NH3)2]2Se04 c 

Crystal system orthorhombic tetragonal tetragonal 

Space group Pnnm P42 1c P421c 

Ag(l)-N 2.155(16) Ag-N 2.110(3) 2.112(2) 

Ag(2)-N 2.172(22) 

Ag(2)-0(1) 2.915(23) Ag-O 3.259(3) 3.249(3) 

Ag(l)-0 3.791 (11) 

N-Ag-N 180.00(81) N-Ag-N 174.31(11) 172.84(14) 

N-Ag .. Ag-N 54.72(64) N-Ag-Ag-N 38.68(11) 38.98(10) 

Ag-Ag d 3.143(1) Ag-Ag 3.20 3.262(0) 

0 Ref[12]. hRef[13]. cRef[14]. dThe van der Waals radius of Ag is 1.72 A. 
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The structure of diammine silver(!) nitrate is shown in Figure 6-1. It consists of linear 

[Ag(NH3)2t-units, which are aligned in a columnar arrangement along the 

crystallographic c-axis. The units are held together with Ag-Ag separations of3.143 A. 

The [Ag(NH3)2t -columns are surrounded by N03--ions, which lie parallel to the (0 11) 

plane. The angle of torsion of the stacked [Ag(NH3)2t-ions, (N-Ag-Ag-N), is 54.7°. 

The Ag(l)-atoms occupy the centre of prisms, which are the result ofthe alignment ofthe 

nitrate-anions, as shown in Figure 6-2. The Ag(2)-atoms occupy the centre of four nitrate 

anions, which form parallelograms. Additionally, Ag(2) is coordinated by two oxygen 

atoms, where the distance d(Ag(2)-0(l )) = 2.9 15 A. The Ag(2) environment is distorted 

square planar. However, the N-Ag-N angle ofthe diammine silver(I)-cation is 180°. 

Figure 6-1 Perspective view of the structure of [Ag(NH3)2]N03 along the c-axis. The 
coordinates ofthe hydrogen atoms are unknown. 
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Figure 6-2 The immediate N03--environment of one [Ag(NH3)2f -column m 
[Ag(NH3)2]N03. The coordinates ofthe hydrogen atoms are unknown. 

The structure of diammine si lver(l)-sulfate is shown in Figure 6-3, and is similar to that 

of diammine silver(l)-nitrate. The structure is built up of metal-over-metal stacks of 

[Ag(NH3)2f -cations along the crystallographic c-axis. The [Ag(NH3)2f-units are held 

together with a Ag-Ag separation of3.200 A by slightly bent hydrogen bonds N-H···o as 

can be seen in Figure 6-4. The torsion angle N-Ag-Ag-N of38.68° is smaller than in the 

case of[Ag(NH3)2]N03. The N-Ag-N angle of the diammine si lver(I)-cation is 174.31°. 

This departure from linearity is due to the coordination of si lver(I) by two oxygen atoms 

of the sulfate anions. However, the distance d(Ag-0) = 3.259 A is significantly longer 

than d(Ag-N) = 2.1 I 0 A. 
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Figure 6-3 Perspective view of the structure of [Ag(NH3)2]2S04 along the c-axis. The 
hydrogen atoms have been omitted for clarity. 

2.260\ 

I 

'3.200 
: / 2.154 

~H3 

"" H1 

Figure 6-4 The immediate N03·-environment of one [Ag(NH3)2t-column in 
[Ag(NH3)2]2S04 
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The structure of diammine silver(I)-selenate shows that the selenate complex is 

isomorphous with the corresponding sulphate complex. The N-Ag-N angle for the 

diammine silver(I)-cation is non-linear, 172.84 o. 

Diammine silver(l)-nitrate, [Ag(NH3h]N03 

Silver-109 CP/MAS spectra with proton decoupling of [Ag(NH3)2]N03 are shown in 

Figure 6-5. The spectrum in Figure 6-5 (a), obtained at 13.97 MHz with spinning at 

3 kHz, shows a large number of spinning sidebands. This suggests a large shielding 

anisotropy for the silver nuclei, which is characteristic of heavy atoms. The centrebands 

are expanded in Figure 6-5 (b), which consist of two symmetrical 1:2:3:2:1 quintets. This 

implies that the asymmetric unit contains two silver atoms in the nitrate. It is clearly 

consistent with the crystal structure data. 

The quintet pattern arises from the coupling between a single silver nucleus (/ = 112) and 

two equivalent 14N nuclei (/ = 1). Thus, the splitting of the quintets with a spacing of 

about 49Hz can be attributed to the presence of indirect 1Je09 Ag14N) spin-spin coupling. 

The chemical shifts and coupling constants are summarised in Table 6-3. 

Coupling constants have been confirmed by acquiring the spectrum at a higher field 

strength (11.7 T) since the ]-coupling (when expressed in Hz) is independent of the 

magnetic field. The 109 Ag CPMAS spectrum (centreband expansion) obtained at 

23.27 MHz is shown in Figure 6-5 (c). The quintets from the two fields give clear 

evidence that no second-order effects arising from dipolar coupling between 109 Ag and 

the quadrupolar 14N nuclei. 
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lFigure 6-5 Silver-109 CPMAS NMR spectra of [Ag(NH3h]N03, obtained at (a), (b) 
13.97 MHz with spinning at 3 kHz and (c) 23.27 MHz with spinning at 6 kHz. The 
centrebands are indicated by arrows. Acquisition parameters were: contact time 8 ms, 
recycle delay 2 s, and number of transients: (a), (b) 27584, (c) 25372. 
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Only the centreband is shown (see Figure 6-5 (c)) because the sidebands cannot be 

adjusted to the same phase in the 109 Ag spectrum. One possible reason of this problem 

may relate to the spin-lock field strength, which is probably not sufficient to efficiently 

lock the silver magnetisations along B1-axis during the mixing time (CSA - 36 kHz 

whereas the spin-locked field strength is ea. 17 kHz). This problem, however, has no 

effect on the magnitude of the splittings, and the values obtained from the sidebands are 

consistent with that of the centreband. 

The dips around the peaks in the 109 Ag spectrum obtained at 13.97 MHz, as shown in 

Figure 6-5 (a), probably arise from problems with recovery of the receiver circuitry after 

the excitation (the RF powers used are ea. 1 kW). Note that the problems of baseline 

distortion are not due to the dead time since a long delay time ea.1 00 f.lS was used for the 

selenate and sulphate complexes to avoid these problems; this however still did not 

produce a distortion-free spectrum. A spin-echo with a standard CP sequence was 

employed for the nitrate complex (the rotor period is ea. 250 f.lS and the delay times, -r, 

before and after the echo pulse were set to this). However, the distortions were still 

observed. 

A nitrogen-15 spectrum for [Ag(NH3h]N03 was easily acquired using CP/MAS and 

proton decoupling, as shown in Figure 6-6 (a). Two doublet signals at -391.5 and 

-394.1 ppm for [Ag(NH3)2]2
+ (the expanded peaks are also shown) and one peak at 

-4.2 ppm for N03- are observed. These are in excellent agreement with the crystal 

structure, which consists of three nitrogen atoms in the asymmetric unit. 

The splittings in the 15N spectrum can be assigned to 11 coupling between 109 Ag and 15N. 

However, it was not clear whether the correct values are from the spacing between lines 

no. 1 and 2 or lines no. 1 and 3 (see Figure 6-6 (a)). Therefore, the values were 

confirmed from the nitrogen-15 spectrum at 11.7 T, as shown in Figure 6-6 (b). Clearly, 

the two amine groups give 1
11(107

•
109 Ag 15N) I of 62 and 65 Hz. These values were 

obtained from the spectrum at the lower field (7.05 T) and are from the separations 

between lines no. 1 and 2, and lines no. 3 and 4 (see the top right in Figure 6-6 (a)). 
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It should be noted that using the natural abundances and magnetogyric ratios of the 107 Ag 

and 109 Ag [15,16], it can be shown that the average coupling constant 11(109Ag 15N) = 

1.072 x 11e07
'
109 Ag15N), so that 111(109 Ag 15N) I= 66 and 70Hz for the nitrate. Therefore, 

the observed ratio of 1(109 Ag15N)!Je 09 Ag 14N), 68/49 is 1.39, consistent with y15 I y14 , 

1.40. The 15N chemical shifts and the coupling constants are given in Table 6-3. 

I 2 3 4 

(a) 

-380 -3'Xl -400 -410 

(b) 

-380 -3'Xl -400 -410 

Figure 6-6 Nitrogen-15 CPMAS NMR spectra of [Ag(NH3) 2]N03, obtained at (a) 
30.40 MHz with spinning at 3.5 kHz and (b) 50.64 MHz with spinning at 6 kHz. 
Acquisition parameters were: contact time 20 ms, recycle delay 2 s, and number of 
transients: (a) 30000, (b) 8824. 

From the above results (both the crystal structure and NMR studies), it is clear that there 

are two half cations of [Ag(NH3)z] in the asymmetric unit. 
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Table 6-3 Chemical shifts and coupling constants for [Ag(NH3)zt ions from solid-state 
109 Ag and 15N NMR spectra. 

Compound Nucleus J;sol ppm lll(I09 Agl4,15N) 1 I Hza 

at 300 MHz at 500 MHz 

[Ag(NH3)z)N03 109 Ag 636.5 48.5 48.2 

109Ag 583.8 49.4 49.4 

1sNb -391.5 66.8d 67.3d 

15Nb -394.1 69.6d 70.0d 

i5Nc -4.2 

[Ag(NH3)z)2S04 109Ag 606.9 43.4 46.8 

1sN -389.1 65.7d 

[ Ag(NH3)z)2Se04 109Ag 596.5 49.0 46.8 

1sN -388.1 64.7d 

77Se 1044.4 

a± 0.5 Hz. bValues for the nitrogen peaks for [Ag(NH3) 2]
2

+ cations. cValue for the nitrate peak. 

d Values are obtained from the observed I1J( 107
·
109Ag 15N) I by using 1J( 109Ag 15N) = 1.072 x 1JC 07

·
109Ag 15N), 

which can be calculated from the natural abundances and gyro magnetic ratios of 107 Ag and 109 A g. 

Diammine silver(l)-sulphate, [Ag(NH3hhS04 

Figure 6-7 shows the 109 Ag spectra for [Ag(NH3)zhS04• A single quintet with a 

separation of ea. 43 Hz was found in the spectrum obtained at 13.97 MHz, as shown in 

Figure 6-7 (b). This information suggests that there is only one silver atom in the 

crystallographic asymmetric unit, which also correlates well with the finding from X-ray 

crystallography [13]. 

The apparently unsymmetrical intensity distribution in the quintet was puzzling. This 

anomalous result was investigated by acquiring the spectrum at a different magnetic field 

(11.7 T). The silver-109 was successfully obtained at 23.27 MHz, as shown in Figure 

6-7 (c) (only the centre band is displayed due to the difficulty in phasing that is explained 
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above). Obviously, the relative intensities of the component are a symmetrical 1:2:3:2:1 

quintet, which produces the expected 109 Ag- 14N splitting of 47 Hz. Therefore, it can be 

concluded that the odd intensity distribution observed at the lower field (7 .05 T) is an 

artifact caused by the difficulty of implementing CP for 109 Ag, i.e. large B1Ag· (see also 

the results for the selenate, below) 

(a) 

1200 800 400 0 -400 -800 

(b) 

640 630 620 610 590 580 

Figure 6-7 Silver-109 CPMAS NMR spectra of [Ag(NH3)2hS04, obtained at (a), (b) 
13.97 MHz with spinning at 3 kHz and (c) 23.27 MHz with spinning at 6 kHz. 
Acquisition parameters were: contact time 8 ms, recycle delay 2 s, and number of 
transients: (a), (b) 4000, (c) 2640. 
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Figure 6-8 shows the proton-decoupled 15N spectrum with CPMAS experiment, obtained 

at 30.40 MHz. There is only a single doublet at -389.1 ppm, with a separation of 61Hz. 

This reveals that only one nitrogen atom exists in the asymmetric unit, in agreement with 

the crystal structure. 

Figure 6-8 Nitrogen-15 CPMAS NMR spectra of [Ag(NH3) 2]2S04, obtained at 
30.40 MHz with spinning at 3.5 kHz. Acquisition parameters were: contact time 20 ms, 
recycle delay 2 s, and number of transients 3296. 

As previously shown, the NMR results are fully consistent with the described structure, 

and it can be concluded that there is a half molecule of [Ag(NH3) 2t present in the 

asymmetric unit. 

Diammine silver(l)-selenate, [Ag(NH3hhSe04 

Silver-109 CPMAS spectra of the selenate complex [Ag(NH3)2]2Se04 are displayed in 

Figure 6-9. The centreband obtained at 13.97 MHz, as shown in Figure 6-9 (a), appears 

to consist of six lines rather than the quintet found for the nitrate complex 

[Ag(NH3) 2]N03. The separation of each peak is 49 Hz. The appearance of the 

centreband is similar to its counterpart in the sulphate complex [Ag(NH3hhS04. Thus, it 

is of interest to investigate this multiplet pattern at a different field. 
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Figure 6-9 Silver-109 CPMAS NMR spectra of [Ag(NH3)zhSe04, obtained at (a), (b) 
13.97 MHz with spinning at 4 kHz and (c) 23.27 MHz with spinning at 6 kHz. 
Acquisition parameters were: contact time 8 ms, recycle delay 2 s, and number of 
transients: (a), (b) 30048, (c) 2048. 

The 109 Ag CPMAS spectrum at 23.27 MHz was obtained to examine the appearance of 

the centreband. The result is illustrated in Figure 6-9 (c). It shows a clear 1:2:3:2:1 

quintet as expected with a splitting of 47 Hz (unsurprisingly, the coupling arises from the 

two equivalent 14N atoms). Therefore, the result obtained at the higher field strongly 

suggests that unsymmetrical sextet, as shown in Figure 6-9 (b), is (see the explanation for 

the odd intensity distribution in the sulphate complex) wrong. 
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Two lines were observed in the nitrogen-IS CPMAS spectrum, as shown in Figure 6-IO. 

The separation is 60Hz, which is very close to the 61 Hz found for the sulphate complex, 

and the ratio of 1(109 Ag 15N)/J( 109 Ag 14N), 64/48 is 1.33. 

The NMR results suggest that there is one half of a [Ag(NH3)2]-cation in the asymmetric 

unit. 

Figure 6-10 Nitrogen-IS CPMAS NMR spectra of [Ag(NH3)2hSe04, obtained at 
30.40 MHz with spinning at 3.S kHz. Acquisition parameters were: contact time 20 ms, 
recycle delay 2 s, and number of transients 6S92. 

Furthermore, a 77Se signal from the selenate anion was detected at S7.27 MHz, as shown 

in Figure 6-Il. A single peak at I044.4 ppm is observed, in agreement with the presence 

of one anion in the asymmetric unit of the structure derived from X-ray diffraction 

measurements. 

The chemical shifts and coupling constants for the selenate complex are summarised in 

Table 6-3. 
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Figure 6-11 Selenium-77 CPMAS NMR spectra of [Ag(NH3)2hSe04, obtained at 
57.27 MHz with spinning at 3.5 kHz. Acquisition parameters were: contact time 10 ms, 
recycle delay 2 s, and number of transients 64. 

Spinning sideband analysis 

The spinning sideband intensities m the 109 Ag CPMAS spectra of [Ag(NH3)2]N03, 

[Ag(NH3)2hS04 and [Ag(NH3)2]2Se04 were analysed. An iterative program for spinning 

sideband analysis (SSB97) [17], written in-house, was used to obtain values for the 

anisotropy and asymmetry via the principal shielding tensor components of those 

compounds. Absolute value spectra were employed to solve the problem of baseline dips 

around the peaks, so all signals are always positive. After applying the absolute-value 

mode, the peak height of the highest peak (in general at the middle) of each sideband was 

used instead of the peak integral. The fitting procedure used the peak height of 7 to 9 

sidebands plus the centreband, and was carried out at spinning rates of: 3 kHz for 

[Ag(NH3)2]N03 and [Ag(NH3) 2]S04, 4 kHz for [Ag(NH3)2]Se04. The 109 Ag shielding 

tensor data are given in Table 6-4. 
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Table 6-4 Tensor information from spinning sideband analysis, with observation of 109 Ag 
at 23.27 MHz.a 

Compound all- O"ref 0"22- O"ref 0"33- O"ref s 
/QQm /QQm IQQm /QQm 

[Ag(NH3)2]N03 

at 636.5 ppm -1195 ± 49 -1118 ± 48 405 ± 12 1041 ± 12 0.07 ± 0.09 

at 583.8 ppm -1111 ±53 -1111 ±53 472 ±9 1056 ± 9 0.00 ± 0.10 

[Ag(NH3)2]S04 -1161±10 -954 ± 9 327 ±7 923 ±7 0.22 ± 0.02 

[Ag(NH3)2]Se04 -1285 ± 14 -961 ± 10 424 ± 17 1032±17 0.31 ± 0.01 

a Errors in the shielding tensors are statistical and were calculated by a published method [ 18] . 

The shielding anisotropy values, s. are all positive, and lie in the range of 923-1056 ppm. 

Note that accuracy was limited by the relatively high noise levels. The sign is the same 

as that observed for 199Hg shielding anisotropies for linear two-coordinate mercury(II) 

complexes, but the magnitudes of this parameter for silver are considerably lower than 

those observed in the mercury compounds [19]. Both of these observations are consistent 

with the view that the shielding anisotropy is determined mainly by the local 

paramagnetic contributions to the shielding (see below). Following Ref. [19] the 

expression for the local paramagnetic contribution, a P, considering np electrons only, is: 

(0.1) 

where )10 is the permeability constant, e is the electronic charge, m is the electron rest 

mass, (r-3
) is the expectation value of r-3 for the valence np electron and M is an 

llfJ 

average excitation energy. 

a P generally includes d-orbitals when heavier nuclei are considered, but the d-orbital 

involvement in the bonding will be small for Hg(II) and Ag(l) (5d10 and 4d 10 

respectively). 
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Thus, a reduction in shielding anisotropies from the Hg(II) to the Ag(l) case is expected 

due to the reduction in <r3
>np for the metal np orbitals (see Equation 6.1) involved in the 

metal-ligand bonding (6p in Hg(II) and 5p in Ag(l)) [19]. 

As shown in Table 6-4, the analyses of the spinning sideband manifolds imply that the 

silver atom in [Ag(NH3)2]N03 has nearly axial symmetry. On the other hand, the silver 

atoms in both [Ag(NH3)2]2S04 and [Ag(NH3)2]2Se04 are clearly in non-axially 

symmetric environments. Note that the spectra are not sensitive to low asymmetry 

values, so it is difficult to distinguish between axially symmetric (17 = 0) and nearly

axially symmetric ( 17 < 0.2) systems. 

From the above analysis, the asymmetry parameter may imply that the N-Ag-N angles in 

[Ag(NH3)2]-cation for [Ag(NH3)2]N03 complexes are linear whereas for the sulphate and 

selenate this angle is non-linear. These results are consistent with the angles obtained 

from X-ray diffraction studies (180°, 174.31°, 172.84° for the nitrate, sulphate and 

selenate respectively). 

6.4.2 Various Silver Complexes with a Nitrate Counter Ion 

This section involves the study of five silver(I)-nitrate complexes: dipyridine silver(l)

nitrate, [Ag(py)2]N03, dilutidine silver(l)-nitrate, [Ag(lut)z]N03, dicollidine silver(I)

nitrate, [Ag(coll)2]N03, di(2-picoline) silver(I)-nitrate, [Ag(2-pic)2]N03, and diquinoline 

silver(I)-nitrate, [Ag(quin)2]N03. The aims of the solid-state NMR experiments is to gain 

structural information about the compounds, especially concerning the crystallographic 

asymmetric unit to compare with the known crystal structures, and to report the chemical

shift data. 
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In general, an isolated molecule of [Ag(X)2]N03, where X = py, lut, call, 2-pic, quin, 

contains a [Ag(Xht cation and a N03- anion. Schematic representations of the 

substituted X structures in silver(l)-cations for the five compounds are shown below: 

py = pyridine 
4 

3/~5 

11 I 
2~~6 

N 
1 

collidine = 2,4,6-trimethylpyridine 
eH3 
I 
4 

3/~5 

11 I 
2 ~6 

H e/ ~N~ ""'eH 
3 1 3 

quinoline 
5 4 

6/~10/~3 

11 I I 
7~~9~~2 

a N 
1 

lutidine = 2,6-dimethy lpyridine 
4 

3/~5 

11 I 
2 ~6 

H e/ ~N~ ""'eH 
3 1 3 

2-picoline = 2-methylpyridine 
4 

5/~3 

11 I 
6 ~2 
~N~~eH 

1 3 

Figure 6-12 Schematic structures of the ligands in the sil ver(l)-cations. 

The crystal structure of [Ag(lut)2]N03 was previously determined by X-ray 

crystallography [20], and the structures of [Ag(py)2]N03, [Ag(coll)2]N03, 

[Ag(quin)2]N03 and [Ag(2-pic)2]N03 were recently studied [21], but they have not been 

reported in the literature yet. A common structural characteristic is silver(!) two 

coordinated to N atoms (N-Ag-N) of aromatic ligands. For the purpose of comparison, 

the structural data and selected bond distances and angles of these complexes are 

summarised in Table 6-5. 



Table 6-5 Summary of selected bond distances (A) and angles (deg) for [Ag(x)2]N03, where X= py, Jut, coli, 2-pic, quin. I~ 
'0 -('!) .., 
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::s 
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Carbon-13 and Nitrogen-15 CPMAS spectra were acquired for all compounds. Silver-] 09 

CPMAS spectra were obtained at 23.27 MHz with high-power proton decoupling for 

[Ag(lut)2]N03 and [Ag(2-pic)2]N03. The assignment of carbon signals in this study was 

made by reference of 'carbon-13 NMR spectroscopy' by Stothers [22] and 'spectroscopic 

method in organic chemistry' by Williams and Fleming [23]. 

The 13C and 15N chemical shifts of silver(!) complexes for this section are given in Table 

6-6 and 6-7. 

Table 6-6 Carbon-13 chemical shifts of the silver(l)-nitrate complexes 

Compound 

[Ag(py)2]N03 

[Ag(lut)z]N03 

[Ag(coll)2]N03 

[Ag(2-pic)2]N03 

C-2 6 

151.4 

159.5a 

157.5a 

157.7 

C-2 

157.5 

159.1 

C-3 

125.6 

123.2 

bfsofppm 

C-3 5 C-4 

125.4 143.1 

123.2 

122.1 

C-4 

139.1 

14J.Oa 

139.9a 

152.4 

150.3 

C-5 

122.5 

C-6 

CH 

27.4, 26.5, 25.5 

27.8, 26.7, 24.9, 

21.7, 20.7 

149.6 

151.1 

25.2 

27.0 

C-2 C-3 C-4 C-5 C-6 C-7 C-8 C-9 C-10 

[Ag(quin)z]N03b 154.1 145.6 

a All values are obtained by deconvolution. 

h Most of peak positions cannot be derived (see the texts). 
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Table 6:.. 7 Nitrogen-IS chemical shift of silver(l)-nitrate complexes. 

Compound bisolppm itJeo9 AgtsN) I /Hz b 

tsNa · .1 (I) . m SI ver -catiOns N03 

[Ag(py)2]N03 -117.0 -1.2 81.8 

[ Ag(lut)2]N03 -109.0,-112.4 -2.2 81.5 

[Ag(coll)2]N03 -118.4,-122.3 -4.2 84.2, 77.7 

[Ag(2pic)2]N03 -105.4,-107.1 -3.0 59.0 

[Ag(quin)2]N03c -112.6,-115.2 -2.8 

a The 15N chemical shifts in the isolated pyridine-derivative ligands obtained from solution-state NMR 

(with respect to nitromethane) are in a range of (-62.2)- ( -63 .5) pp m [24]. (see the texts for discussion of 

the chemical shift discrepancies) 

b See footnote in Table 6-3. 

c The peak position in silver(I)-cations are not clear from the obtained spectra. 

Dipyridine silver(I)-nitrate, [Ag(py)2]N03 

The structure was determined by X-ray crystallography [21] including the monohydrate, 

in which water has no apparent structural role. The asymmetric unit consists of one 

molecule of pyridine ligand, silver, nitrate and water. The [Ag(py)2]N03 is a flat one

dimensional polymer and crystal packing is dominated by overlapping symmetry-related 

pyridine ligands. The Ag atom lies on a crystallographic 2-axis, which is coordinated by 

two nitrogen atoms from a pair of pyridine ligands. The N-Ag-N angle of [Ag(pyh]

cation is 172.8(2t. Equatorial to the N-Ag-N axis, the Ag is approached from either side 

by a pair of symmetry-related chelating oxygen atoms from the nitrate group. The nitrate 

group has almost trigonal symmetry (in term of bond angles and distances: 1.23 5( 4 ), 

1.247(7) A; 119.9(3) 0
, 120.3(5)0 (x2)), while Ag-0-Ag (at the bridging oxygen) is nearly 

linear (169 .4(2t). 
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High-resolution solid-state carbon-13 spectra are characterised by individual isotropic 

chemical shifts, each of which may be assigned to a chemically different carbon atom in 

the unit cell. The carbon-13 spectrum obtained under conditions of cross-polarisation 

from protons is illustrated in Figure 6-13. Three peaks and their separate spinning 

sideband manifolds are clearly observed. The chemical shifts are at 151.4, 125.4 and 

143.1 ppm for C-2,6, C-3,5 and C-4 respectively. 

C-216 C-315 

C-4 

300 250 200 !50 100 50 0 -50 

8c /ppm 

Figure 6-13 Carbon-13 CPMAS NMR spectra of [Ag(py)2]N03, obtained at 75.43 MHz 
with spinning at 4.4 kHz. Acquisition parameters were: contact time 1 ms, recycle delay 
5 s, and number of transients 800. 

Structural information may be obtained by considering the number of resonances for C-4 

and C-3,5. A single peak observed for C-4 suggests a half-molecule or one whole 

molecule of pyridine in the asymmetric unit. If there is half a molecule in the asymmetric 

unit, it must give a single line for C-3,5. On the other hand, if there is one whole 

molecule in the asymmetric unit, it must give two lines for C-3,5. It is not feasible to 

distinguish these cases from the lines observed since the signal for C-3,5 is rather broad 

(see the discussion below). This suggests that there is one whole molecule of pyridine 

ligand in the asymmetric unit, in agreement with the crystal structure described above. 
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Figure 6-14 Nitrogen-15 CPMAS NMR spectrum of [Ag(py)2]N03, obtained at 
30.40 MHz with spinning at 4 kHz. Acquisition parameters were: contact time 2 ms, 
recycle delay 20 s, and number of transients 3588. 

Figure 6-14 shows the proton-decoupled 15N spectrum at 30.40 MHz, obtained with 

cross-polarisation. The 15N chemical shifts, however, are not difficult to obtain even with 

the poor signal-to-noise ratio. One peak for the N03-anion is found at -1.2 ppm. Two 

equal intensity centreband peaks are observed at -115.8 and -118.2 ppm for the 

[Ag(py)2]-cation. The splitting is due to J coupling between 15N and Ag nuclei with a 

11Jeo7, 109 Agi5N) I of 76.3 Hz. 
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Dilutidine silver(I)-nitrate, [Ag(lut)2]N03 

The crystal structure of this compound is known [20] and the structural information is 

given in Table 6-5. A silver atom is coordinated pseudo-linearly with a pair of lutidine 

ligands, and the nitrate behaves as a weakly chelating ligand, where Ag ... O are 2.715(8) 

and 2.663(7) A. The structure is illustrated in Figure 6-15. One formula unit, in which 

the two lutidine ligands are crystallographically independent, is the asymmetric unit of . 

the structure. 

't~"' 0!.~ -.h. I" 
1 ''*.'e4• 

•¥!.-.e\e }. 
~ .., ..... 

Figure 6-15 Crystal structure of dilutidine silver(l)-nitrate. The hydrogen atoms have 
been omitted for clarity. 

Carbon-13 spectra of [Ag(lut)2]N03 are shown in Figure 6-16. Figure 6-16 (a) consists 

of several sets of spinning sidebands. However, the spinning side bands do not confuse 

the interpretation of this spectrum. The sidebands can be removed by faster spinning, but 

the cross-polarisation experiment becomes inefficient at higher spin rates [25-27]. The 

spinning sidebands may be suppressed using the Total Suppression ofSpinning Sideband 

(TOSS) sequence. The CPMAS I TOSS spectrum is shown in Figure 6-16 (b). Non

quaternary suppression (NQS) (also known as "dipolar dephasing") was used to assist in 

the assignment of the signals. Clearly, we can see from Figure 6-16 the differences 

between the quaternary carbons (C-2,6) and the methyl group signals from the other main 

peaks. The values ofthe chemical shifts are given in Table 6-6. 
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Figure 6-16 (a) Carbon-13 CPMAS NMR spectrum with (b) TOSS and (c) NQS 
experiments for [Ag(lut)2]N03, obtained at 75.43 MHz . with spinning at 4 kHz. 
Acquisition parameters were: contact time 1 ms, recycle delay 5 s, and number of 
transients: (a) 300 (b) 220 (c) 160. 

The doublet line for C-4 shows that the asymmetric unit contains two half-molecules or 

two whole molecules of lutidine ligand. The C-3,5 peak for this compound is again very 

broad and has no observed splitting: it must give two lines if there are two half

molecules, or four lines if there are two whole molecules in the asymmetric unit. The 

structure can be confirmed from the number of the 13C resonances for the methyl groups. 

There are at least three CH3 peaks (top right of Figure 6-16). Implying that the 
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asymmetric unit probably has two whole molecules of lutidine ligand, in agreement with 

the X-ray measurements. 

The nitrogen-IS CPMAS spectrum was studied at two magnetic fields (7 .OS and 11 . 7 T). 

Figure 6-17 (a) shows the 15N spectrum obtained at the lower magnetic field. A very 

sharp peak at -2.2 ppm with linewidth of 30 Hz corresponds to the nitrate group. In 

addition, the 15N spectrum consists of doublet peaks with 1
11(107

' 
109 Ag15N) I of ea. 7S 

and 76Hz. The 15N chemical shifts are given in Table 6-7. The values of the splittings 

are confirmed by running the 15N spectrum at 11.7 T. Figure 6-17 (b) displays the 15N 

CPMAS spectrum obtained at S0.64 MHz with spinning at 6 kHz. The extracted 

coupling constants from the doublets (ea. 77 and 76 Hz) are in agreement with those 

obtained from the lower field. 

-90 -100 -110 -120 -130 

(a) 

-90 -100 -110 -120 -130 

200 100 0 -lOO -200 -300 

Figure 6-17 Nitrogen-IS CPMAS NMR spectra of [Ag(lut)2]N03, obtained at: (a) 
30.40 MHz with spinning at 4.3 kHz, (b) S0.64 MHz with spinning at S.S kHz. 
Acquisition parameters were: contact time 20 ms, recycle delay S s, and number of 
transients: (a) 1S068, (b) I 0764. 
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As can be seen from Figure 6-17 (b), the nitrate peak is quite broad at the base (when 

compared to this peak at the lower field). This is due to overlapping between the nitrate 

peak and sidebands of [Ag(lut)2]-cation. This happened because the spin rate was 

accidentally set to the same value as the spacing between those two groups. Fortunately, 

this did not have an effect on the splittings (see above). 

In addition, a silver-1 09 CPMAS spectrum was obtained at a spin rate of 6 kHz, as shown 

in Figure 6-18. At this spin rate, no spinning sidebands could be observed. Only a single 

symmetrical 1 :2:3:2:1 quintet is seen implying that only one type of silver exists in the 

crystallographic asymmetric unit, which is consistent with the crystal structure. 

The splitting of ea. 59 Hz in the silver spectrum arises from the one bond coupling 

between the silver-109 and nitrogen-14 (!= 1) and the ratio of J( 109Ag15N)/J( 109Ag 14N), 

81/59 = 1.38. 

450 425 400 375 
8Ag I ppm 

350 325 300 

Figure 6-18 Silver-1 09 CPMAS NMR spectra of[Ag(lut)2]N03, obtained at 13.97 MHz 
with spinning at 6 kHz. Acquisition parameters were contact time 20 ms, recycle delay 
5 s, and number of transients 468. The 'dips' around the peaks are discussed in section 
6.3.1. 

It can be concluded that there is one whole group of [Ag(lut)2]N03 in the asymmetric 

unit, in agreement with the X -ray data. 
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Dicollidine silver(I)-nitrate, [Ag( coii)2]NOJ 

The structure of dicollidine silver(I) nitrate is similar to dilutidine silver(I) nitrate, since 

silver is closely coplanar with the nitrate. X-ray analysis shows it has a water molecule 

per the asymmetric unit, which hydrogen atoms bond to two oxygen atoms from nitrate 

(one coordinated and another one not) from the nitrate group. This bonding does not 

induce asymmetry in the 'chelation' of the nitrate. See also Table 6-5 for other 

information on the structure. 

The 13C spectrum, obtained at 75.43 MHz, for dicollidine silver(l)-nitrate is presented in 

Figure 6-19. The 13C peak positions and assignments are summarised in Table 6-6. 

C-3/5 

C-2/6 
35 25 15 

C-4 

300 250 200 150 100 50 0 -50 
8c I ppm 

Figure 6-19 Carbon-13 CPMAS NMR spectra of [Ag(coll)2]N03, obtained at 75.43 MHz 
with spinning at 4.5 kHz. Acquisition parameters were: contact time I ms, recycle delay 
20 s, and number of transients 60. 
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Structural information can be deduced from the two lines at C-4 and the signals for the 

CH3 group. For the latter, there are at least five resonances with the ratio of 2:1: I: I: 1 

(one peak consists of double intensities from the methyl group at C-4, as displayed on the 

top right in Figure 6-19). Thus, there should be two whole molecules of collidine in the 

asymmetric unit, consistent with the structure described above. 

Four centreband peaks assigned to the 15N for [Ag(coll)2]-cations, and one peak for the 

nitrate were observed in the 15N spectra for this compound, as shown in Figure 6-20. At 

higher field (7.05 T), the Hz separation of the two doublets is increased (see Figure 

6-20 (b)), but the J-coupling for each doublet, obviously, remains the same. The 
1Jct 07

•
109 Ag- 15N) splittings obtained at 30.40 MHz, ea. 78 and 74 Hz, are consistent with 

the values extracted at 50.64 MHz (ea. 79 and 71 Hz.). 

(b) 
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Figure 6-20 Nitrogen-15 CPMAS NMR spectra of [Ag(col1)2]N03, obtained at: (a) 
30.40 Hz with spinning at 4 kHz, (b) 50.64 MHz with spinning at 5 kHz. Acquisition 
parameters were: contact time 20 ms, recycle delay 15 s, and number of transients: (a) 
3660, (b) 3772. 
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Di(2-picoline) silver(I)-nitrate, [Ag(2-picoline)2]NOJ 

The asymmetric unit consists of one half of a centrosymmetric dimer, one AgN03 : two 

2-picoline [21]. One oxygen atom of each nitrate group is coordinated with two silver 

atoms, thus the nucleus of molecule is a planar four-membered ring. The two 2-picoline 

planes (each coordinated with the same silver atom) have somewhat different dihedral 

angles to the central ring plane (64.8 (3), 48.9(5)0
), hence the two picoline molecules are 

not equivalent. The N-Ag-N angle of the di(2-picoline) silver(l)-cation is 140.4°, which 

is less than those of di(pyridine) silver(I)-cation (see Table 6-5). 

The isotropic shifts of each 13C signal for [Ag(2-picoline)2]N03 are, as illustrated in 

Figure 6-21, consistent with the literature [22]. Unlike the other silver(I) complexes, C-2 

and C-6 are clearly observed at different positions, as is also true for C-3 and C-5, in 

conformity with the unsymmetrical nature of the picoline ligand. Moreover, the C-2, C-6 

and CH3 resonance are each clearly split into doublets. One line at 125.6 pp m is assigned 

to C-3. However, it is unlikely on intensity grounds that there is only one signal for C-3, 

and in fact a second peak is observed as a shoulder of the C-5 resonance (as shown on top 

left in Figure 6-21 ). Clearly, C-3 consists of two peaks at 125.6 and 123.2 pp m (obtained 

by deconvolution). Thus, it is clear from the carbon-13 spectrum that two whole 

molecules of 2-picoline exist in the asymmetric unit. The 13C chemical shifts are 

presented in Table 6-6. 
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Figure 6-21 Cm·bon-13 CPMAS NMR spectra of [Ag(2-picoline)2]N03, obtained at 
75.43 MHz with spinning at 4.5 kHz. Acquisition parameters were contact time 3 ms, 
recycle delay 5 s, and number of transients 120. 

Figure 6-22 (a) illustrates the 15N CPMAS spectrum obtained at 30.40 MHz. A nitrate 

peak at -2.95 ppm was observed. There is also, apparently, a 1 :2:1 triplet with a spacing 

of 55Hz, arising from nitrogen-15 in [Ag(2-picoline)2]-cation. This unexpected result of 

a triplet peak was also studied at high field (11.7 T). Unfortunately, those peaks in the 
15N spectrum are not well resolved. This "triplet" pattern is likely to arise from 

accidental near-degeneracies. 
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Figure 6-22 Nitrogen-15 CPMAS NMR spectra of [Ag(2-picoline)2]N03, obtained at 
30.40 MHz with spinning at 4.5 kHz, (b) 50.64 MHz with spinning at 6.6 kHz. 
Acquisition parameters were: contact time 20 ms, recycle delay 5 s, and number of 
transients (a) 10512, (b) 15408. 

Figure 6-23 displays the 109 Ag CPMAS spectrum obtained at 13.97 MHz. For this 

compound the spectrum consists of one symmetrical quintet ( 1 :2:3:2:1) with separations 

of 46 Hz due to one-bond coupling between 14N and 109 Ag. 
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Figure 6-23 Silver-109 CPMAS NMR spectra of [Ag(2-picoline)2]N03, obtained at 
13.97 MHz with spinning at 6 kHz. Acquisition parameters were: contact time 8 ms, 
recycle delay 60 s, and number of transients 1216. 

Thus, the NMR results are fully consistent with the structure described above, in which 

two whole 2-picoline groups, one silver atom and one nitrate group are present in the 

asymmetric unit. 

Diquinoline silver(I)-nitrate, [Ag(quin)2]N03 

Diquinoline silver(I)-nitrate crystallizes as a discrete binuclear aggregate incorporating 

ligands, metal and anions [21]. It has two silver atoms in the asymmetric unit, in which 

the disposition of the pairs of ligands about two silver atoms differs. Each silver atom, 

Ag(l) or Ag(2), is bonded by pairs of anionic oxygen. However, this bonding is rather 

unusual in relation to the other silver(I)-complexes above because the two relevant 

oxygen atoms are from the same nitrate group rather than from two different nitrogen 

groups as in the other cases. The distances and bond angles are given in Table 6-5. 

The 13C spectrum (see Figure 6-24) for this compound is very broad and poorly resolved, 

so distinction of the chemical shifts of each carbon in the quinoline ligand is difficult. 

Only the peaks for C-2 and C-9 can be analysed to obtain the chemical shifts, which are 

found at 154.1 and 145.6 ppm respectively. 
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Poor crystallinity is unlikely to be the reason for the broad peaks since the powder XRD 

showed sharp symmetrical peaks implying that this compound is highly crystalline. 

The fact that the quinoline ligand contains nine non-equivalent aromatic carbons 

probably causes substantial overlapping in the spectrum. 

Attempts have been made to record the 13C spectrum at higher field to improve the 

quality of the spectrum in terms of the separations of the peaks. Surprisingly, the 

spectrum obtained at 125.64 MHz (not shown) provides no resolution improvement. The 

difficulty in recording the 13C spectrum may be from the compound itself. This, 

however, cannot be satisfyingly explained at the moment. 

C-9 

300 250 200 150 100 50 0 -50 

Be /ppm 

Figure 6-24 Carbon-13 CPMAS NMR spectra of [Ag(quin)2]N03, obtained at 
75.43 MHz with spinning at 6 kHz. Acquisition parameters were: contact time I ms, 
recycle delay 300 s, and number of transients 16. 

Figure 6-25 shows the 15N CPMAS spectrum, obtained at 30.40 MHz. The signal-to

noise ratio is very poor even with long recycle delay and many transients (see Figure 

caption). It also shows somewhat broadened signals (linewidth of ea. 77 Hz for nitrate 

peak compared to those of other silver(l)-nitrate compounds of ea. 29 Hz). However, it is 

still feasible to attribute the peak at -2.8 ppm to the nitrate group, but it is quite difficult 

to analyse the chemical shifts (by deconvolution) for the signals from the quinoline 
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ligands (see the expanded region at the top right in Figure 6-25). Moreover, the 15N 

spectrum obtained at high field (not shown) gave no significant improvement. 

A major difficulty for obtaining a good quality 15N spectrum may be related to the very 

long relaxation time of protons since the ligand is rather rigid (no CH3 substituents) 

unlike the other ligands considered (lutidine, collidine and 2-picoline). Also sensitivity 

of the CP experiment is lower when the number of proton atoms is not much larger than 

the number of nitrogen atoms (compared with collidine ligand). Consequently, it 

suggests that the optimum contact time and recycle delay for this compound are 

significantly long. 

Therefore, it is not possible to conclude from the 15N spectra how many nitrogen atoms 

are in the asymmetric unit. 

·100 ·110 ·120 -130 

200 100 0 -lOO -200 -300 

Figure 6-25 Nitrogen-15 CPMAS NMR spectra of [Ag(quin)2]N03, obtained at 
30.40 MHz with spinning at 4.2 kHz. Acquisition parameters were: contact time 20 ms, 
recycle delay 300 s, and number of transients 268. 
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As shown above, the 15N chemical shifts for four pyridine-type ligands (pyridine, 

lutidine, collidine and 2-picoline) are in the range of (-105.4)-(-122.3) ppm. The 

chemical shifts for each compound are summarised in Table 6-7. These values differ by 

ea. 50 ppm compared to those for the uncomplexed ligands [24]. Similar shifts have 

been observed in solution-state and solid-state studies [28,29]. This is true of the changed 

chemical shift of six-membered rings when the nitrogen lone-pair hybridization is 

changed (the electron lone pair is no longer available). 

Comparison of the 13C linewidths 

The motivation for this section arises from the variations in the linewidths for C-3,5 and 

C-2,6 of the systems studied, which all contain pyridine-type ligands, see Figure 6-12. 

For the purposes of comparison, all the carbon-13 spectra are shown in Figure 6-26 and 

the linewidths for each carbon resonance are given in Table 6-8. All spectra were 

obtained using the same probe and proton decoupling field strength (equivalent ea. 

60kHz). 

The following interesting cases have been found: (1) in [Ag(py)z]N03, the linewidths for 

C-3,5, C-2,6 and C-4 are unexpectedly broad and significantly larger than for the other 

compounds; (2) only the case of 2-picoline shows the expected linewidths, with those of 

each carbon consistent (ea. 72 Hz). The latter spectrum also presents clearly-resolved 

peaks for C-2 and C-6 (also for C-3 and C-5), in contrast to the spectra of the other 

compounds. 
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Figure 6-26 Carbon-13 spectra (aromatic regions only) of (a) [Ag(py)2]N03 (b) 
[Ag(lut)2]N03 (c) [Ag(coll)2]N03 and (d) [Ag(2-pic)2]N03. 

'fable 6-8 Carbon-13 linewidthsa in Hz of the silver(I)-nitrate complexes obtained at the 
300 MHz spectrometer. 

Compound 

[Ag(py)2]N03 

[ Ag(l ut )2]N 03 

[ Ag( coli)2]N03 

[ Ag(2-pic )2]N 03 

0 ± 2Hz. 

C-2/6 C-3/5 

180 192 

110, 96b 14.9,79b 

89 e 79,80 

C-2 C-3 

61,60 70,64 

h linewidths of the shoulder peaks. 

C-4 

106 

82,91 

56,57 

C-4 

78,68,60,74 

80c, 70,68,82, 76 

C-5 C-6 

76,82 

c.J the peak has double the intensity of the other CH3 and aromatic carbon peaks respectively. 

71,74 

e the band shows unsymmetrical shape. It, however, is difficult to extract an individual peak by 

deconvolution. 
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The case of (Ag(py)2]N03 will be considered first. The asymmetric unit (obtained from 

the X-ray study) consists of one whole pyridine ligand, suggesting that C-3 and C-5 (also 

C-2 and C-6) are non-equivalent. However, there is only one broad peak observed for C-

3,5 and for C-2,6. Three possible reasons may result in the linebroadening: (1) the 

existence of molecular motion (i.e. internal rotation about the C-4 and N distance) may 

cause averaging of the chemical shifts (e.g. of C-2, and C-6) by the usual exchange 

process, with measurement being in the coalescence region; (2) the motion may increase 

the linewidth, via interplay with either the decoupling (30] or MAS (31 ]; (3) an 

accidental near degeneracy may cause the two lines for C-3 and C-5 (also C-2 and C-6) to 

overlap sufficiently so as to be unresolved. 

As for cause (2): Waugh and coworkers [30,31] have shown that when m, re~ I or 

.fimr'rc ~ 1 (where m1 is the RF field strength for decoupling, m, is the MAS frequency 

and re is the correlation time), i.e. when the time between rotational jumps is comparable 

to the inverse of the precessional frequency of proton decoupling, m,-', or MAS, mr_,, 

then the effectiveness of proton decoupling or MAS will be reduced, so the resonance 

lines will become broad. 

For the compounds in this section (see Figure 6-12), the aromatic rings may rotate about 

the axis which runs through C-4 and N, resulting in pair-wise exchange of C-2,6 and C-

3,5. It is therefore possible that, at the temperature of the NMR experiment, the 

rotational rates of the aromatic ring may be in the same region as the precessional 

frequency of the proton RF-field or MAS, so that proton decoupling or MAS is 

ineffective, resulting in broadened peaks for both C-2,6 and C-3,5. Therefore, it is of 

interest to examine the effect of changing the temperature (which will change rJ on the 

line broadening, which will influence all the causes ((1) and (2)) depending on motion. 

[Ag(py)2]N03 was studied at low temperature, -25, -50 and -75°C, at a spin rate of 

4.5 kHz and an RF field strength of 50 kHz on the 300 MHz spectrometer. Apparently, 

C-3,5 and C-2,6 are not split to two lines each at low temperature (so cause (I) is 

unlikely), and the linewidths of ea. 190 Hz are comparable with those at ambient 

temperature (22°C) (so cause (2) is also unlikely). This result implies that accidental 
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near-degeneracy of chemical shifts is the most probable reason for broadened peaks of 

the pyridine complex, though some contribution from the other causes cannot be ruled 

out. 

In the case of C-2,6, a further possibility exists. It is known that if the carbon nucleus is 

bonded to nitrogen, second-order quadrupolar effects may be transferred to 13C spectra 

via the dipolar interaction, resulting in a doublet with an intensity ratio of 2: I [32,33]. 

This effect may be expected to be observed for the C-2,6 peaks (only) of the pyridine

type ligands. However, 1:1 splitting for C-2,6 in the 2-picoline complex and a 3: I 

splitting for C-2,6 in the lutidine complex give clear evidence that there is no observable 

second-order effect in either complexes. This is presumably explained by a small product 

of the 14N quadrupolar and the C, N dipolar coupling constant. Thus, the second-order 

effect is unlikely to be a reason for the broadened lines for C-2,6 of the pyridine and 

collidine complexes. The band with an intensity ratio of ea. 3: I, which occurs for C-2,6 

in the lutidine complex, arises from the nature of the asymmetric unit (4 carbons for C-

2,6 from two lutidine ligands), implying that the line-broadening probably arises 

primarily from peak overlap, with three of the resonances not resolved. The weaker of 

the two observed peaks is distinctly sharper than the other, which is consistent with the 

above interpretation. 

Additionally, the cause of the line broadening for C-3,5 in collidine and lutidine 

complexes is probably due to peak overlapping, with intensity ratios ea. of 3:1 and ea. 

3.5:0.5 for collidine and lutidine complexes respectively. These ratios are consistent with 

the carbon atoms in the asymmetric unit (see above). 

In addition to above, it is noticeable that even the signal for C-4 of [Ag(py)2]N03 is 

somewhat broader than those of C-4 for the other complexes (in each case bonding is to a 

proton, except in the collidine ligand). This, however, cannot be satisfyingly explained at 

the moment. 
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6.4.3 Silver Phosphate Compounds, Ag3P04 and Ag2HP04 

Phosphorus-31 and silver-! 09 NMR spectra for silver(l) phosphate, Ag3P04, and 

silver(I) hydrogen phosphate , Ag2HP04, are reported in this section. 

Silver(I) phosphate, Ag3P04 

Silver(l) phosphate has been studied by X-ray crystallography [34,35], and its structure 

depicted in Figure 6-27. The compound has a cubic lattice space group P 4 3n. The 

structure consists of regular tetrahedra of phosphate ions (P04-) forming a body-centred

cubic (b.c.c) lattice. The P-0 distance is 1.539(4) A. The Ag+ cations are distributed 

among twelve sites with twofold symmetry since each Ag+ occupies one oftwo possible 

sites on either side of the ideal site. The distance between these two possible sites is 

0.23( I) A. The Ag + is bonded to four oxygen atoms, which are from different phosphate 

groups (the Ag-O distances are 2.345(3) and 2.403(4) A), to form an irregular 

tetrahedron. The 0-Ag-0 ang les are 93.66(7)0
, 145.0(5)0 and 155.5(5)0

• Each oxygen is 

bonded to three Ag +-cations. 

Figure 6-27 Crysta l structure of silver(l) phosphate, Ag3P04• 
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A single-pulse experiment was employed to observe the 31 P and 109 Ag spectra Figure 

6-28 and 6-29 respectively. Very long recycle delays 600 s and 1000 s were used to 

acquire the 31 P and 109 Ag respectively. A single resonance at 29.0 ppm with linewidth of 

ea. 20 Hz is found in the 31P spectrum with no observable coupling to 109 Ag. This is 

confirmed from the 109 Ag spectrum, which consists of only one peak at 343.2 ppm with 

linewidth of ea. 17 Hz. The NMR results indicate that there is only one type of both 

phosphorus and silver in the crystallographic asymmetric unit. 

The observation of the 31P spectrum with a small CSA (the spinning sidebands for v, = 

5 kHz are very weak) is in agreement with the crystal structure where the 31 P is a 

tetrahedral symmetry (P-0 = 1.539(4) A and 0-P-0 = 109.47°). No spinning sidebands 

are observed in the 109 Ag spectrum (spin rate of 6.4 kHz). (Note that silver-containing 

compounds generally have large shielding anisotropies, such as were found in the NMR 

studies for the silver(!) compounds discussed above.) This is probably due to the position 

of silver at a tetrahedral site in the solid even though the environment is irregular. 

100 80 60 40 20 0 -20 -40 
15p I ppm 

Figure 6-28 Phosphorus-31 spectrum of Ag3P04, obtained at 121.42 MHz with spinning 
at 5 kHz. Acquisition parameters were: recycle delay 600 s and number of transients 4. 
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Figure 6-29 Silver-109 spectrum of Ag3P04, obtained at 13.97 MHz with spinning at 
6.4 kHz. Acquisition parameters were: recycle delay I 000 s and number of transients 
320. 

Silver(I) hydrogen phosphate, Ag2HP04 

An isolated molecule of Ag2HP04 consists of Ag+ cations and HPO/ anions. The crystal 

structure of this compound has been reported [36]. It consists of individual P04 groups 

bridged by Ag-Ag pairs and hydrogen bonds, as shown in Figure 6-30. 
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Figure 6-30 The crystal structure of silver(!) hydrogen phosphate. 
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The proton-decoupled 31 P CPMAS NMR spectrum of this compound was obtained at 

121.42 MHz. The spectrum shows a single site with an isotropic shift of 15.4 ppm, as 

shown in Figure 6-31. Spinning sideband analysis was carried out for spectra at different 

speeds, and the averaged results and the reproducibility are given in Table 6-9. The 

results suggest that the 31 P system has low symmetry. This information correlates well 

with the findings from X-ray crystallography [36], according to which the P04 group has 

distorted tetragonal symmetry with the P-0(1) and P-0(2) of 1.513 ( 11) and 1.564 (1 0) A 

respectively; the 0(1)-P-0(1), 0(1)-P-0(2) , 0(2)-P-0(1) and 0(2)-P-0(2) angles are 

109.4 (5)0
, 107.2 (5)0

, 111.6 (Stand 109.5 (5)0
, respectively. 

(a) 

(b) 
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Figure 6-31 Phosphorus-31 CPMAS NMR spectra of Ag2HP04, obtained at 121.42 MHz 
with spinning at (a) 1.4 kHz (b) 2.5 kHz. Acquisition parameters were: contact time 1 ms, 
recycle delay 120s, and number of transients (a) 32 (b) 20. 
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'fable 6-9 Results of spinning sideband analyses for 31 P for Ag2HP04. The errors quoted 
are those given on a statistical basis by the SSB97 computer program [17]. 

Spin rate 0 Linewidth 0"11 - O"ref 0"22- O"ref 0"33- O"ref 0"33 - O"iso 

/kHz /ppm /Hz /pp m /pp m /pp m s/ppm 
rJ 

1.4 15.4 235 -46.0 ± 0.5 -16.8±0.1 16.6 ± 0.6 32.0 ± 0.6 0.91 ±0.01 

2.5 15.4 225 -48.0 ± 0.3 -16.7±0.1 18.4±0.1 33.9 ± 0.3 0.92 ± 0.01 

average 15.4 230 ± 7 -47.5 ± 0.3 -16.8 ± 0.1 18.3±0.1 33.3 ± 0.3 0.92 ± 0.01 

The proton-decoupled 109 Ag MAS spectrum (Figure 6-32) shows two peaks, with the 

same intensity, centred at 296.2 and 146.4 ppm respectively. This reveals that there are 

two silver sites in the asymmetric unit, in agreement with X-ray diffraction structure. 

Figure 6-32 Silver-109 spectrum of A~HP04, obtained at 13.97 MHz with spinning at 
6kHz. Acquisition parameters were: recycle delay 1000s and number of transients 440. 

There is no sign of J coupling between 109 Ag and 31 P. 
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6.5 Conclmdons 

This work has illustrated the application of solid-state 109 Ag, 15N and 77Se NMR to the 

study of three solid diammine silver(!) compounds. Good-quality silver-1 09 spectra have 

been obtained and analysed to give shielding tensor parameters. The shielding anisotropy 

values, ~' are in the range of 923-1056 ppm. The number of resonances is in agreement 

with the crystallographic asymmetric units known from diffraction structure results. The 

one-bond e09 Ag, 15N) coupling constants are found to be in the range 64-70Hz. 

The assignment of 13C chemical shifts of pyridine, lutidine, collidine, 2-picoline and 

quinoline in silver(I) nitrate complexes are straightforwardly obtained. In addition, 

I1Je09 Ag15N) I is observed in the range of 59-84 Hz. Information regarding 

crystallographic asymmetric units has been derived. 

Structural information has been also investigated for silver phosphate compounds, 

Ag3P04 and Ag2HP04. Phosphorus-31 and silver-1 09 NMR were easy to observe, giving 

detailed information on the environments of each atom in the molecule, in agreement 

with X-ray crystal structures. 
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CHAPTER i 

RELAXATION MEASUREMENTS IN A COUPLED TWO-SPIN 31 P~ 
1H SYSTEM 

7.1 Introduction 

In this chapter, measurements of spin-lattice relaxation (Tt) and transverse (spin-spin) 

relaxation (T2) times in the sample oftin(II) phosphite (containing relatively isolated 31 P, 
1H spin pairs) were carried out to fully characterise the NMR behaviour of the system. 

It is of interest to study the relaxation in the coupled two-spin 31P, 1H system since the 

relationship between relevant relaxation parameters has not been analysed in detail 

previously. Only a few reports [1-4] have appeared on relaxation in coupled two-spin-1/2 

systems in solids, and none for the coupled two-spin 31 P, 1H system. Ref [1-3] deal with 

a case of short T1 c ( < 1 s ). Thus, the intensity of the 13C magnetisation can be easily 

fitted by single-exponential when the carbon signal is monitored whilst the proton spins 

remain saturated by the use of a succession of 90° pulses during the recovery time t. 

Horsewill [4] et al. reported relaxation in solid hexafluoroacetylacetone. Fluorine and 

proton spin-lattice relaxation times were measured using saturation-recovery. The 

exponential components obtained from the 19F experiment were consistent with the 

values from the 1H experiment, in agreement with theory. Noting that the exponential 

components are 1.5 s and 0.12 s in this system. 
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7.2 Theory of relaxation in two-spin system 

The relaxation dynamics of a coupled spin system have been described by the Solomon 

equations [5]: 

(7.1) 

d(Sz) _ 
-- -R1s [(Iz)-Io]- Rs [(sz)-So] 

dt 
(7.2) 

where (Iz) and (sz) are longitudinal magnetisation of the spin I eH) and S e1
P), 

respectively; 10 and S0 are the equilibrium values of / 2 and S2 ; R1 = 1 I ~11 ; Rs = 1 I ~ss 

and R
15 

= 1 I ~~s. ~11 is simply the proton T1 value, and, similarly, ~ss is the phosphorus 

T1 value. ~~s is the cross-relaxation time between the two coupled spins. 

Setting [ (Iz)- 10 J = x and [ (Sz)- S0 J = y, these become 

(7.3) 

(7.4) 

The general solution is of the form 

(7.5) 

y = c3 exp( -~t) + c4 exp( -A.i) (7.6) 

where cl' c2' c3 and c4 are constants. ~ and ~are roots of the characteristic equation. 

(7.7) 
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It is clearly shown by Equations 7.5 and 7.6 that the time dependences of the z 

magnetisations. are both hi-exponential. Note that it is only in the coefficients C1 to C4 

that the behaviour of the two nuclides differs. In order to obtain the value of each 

exponent, the T1s were studied in the next section. 

i .3 Results and Discussions 

7.3.1 Spin-lattice relaxation measurement in a coupled two-spin system 

As previously shown above, spin-lattice relaxation for a coupled two-spin system will be 

double exponential. Hence measurement of T1x alone would require the decoupling of 

the other nucleus. Unfortunately this is not feasible when the relaxation times are long, 

because this would destroy the probe from over-heating. 

It should be mentioned that there are two major problems for the T1 measurement in 

SnHP03. One is that the probe used (7.5 mm HX) has a substantial proton background 

signal. Figure 7-1 shows the results for the proton spectra from SnHP03 and the empty 

rotor at a spin rate of 5.2 kHz, obtained with a single pulse experiment. This experiment 

was done to compare the proton intensities and to obtain the real signal after subtraction. 

However, an unexpected negative signal is observed after subtracting the background. It 

is not clear why it is negative since all acquisition parameters and the 90° pulse used to 

acquire the two spectra were set the same. 
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Faga.nre 7-1 Proton spectra at 200.13 MHz obtained with a spin rate of 5.2 kHz. 
Spectrometer operating conditions: recycle delay is 60 s; the number oftransients is 976. 

Back linear projection of the initial 12 points of the FrO was unable to remove the 

background signal at a spin rate of5.2 kHz. Consequently, the direct measurement ofTtH 

for the protons may be difficult. 

Another problem arises from the very long times associated with 1H and 31 P spin-lattice 

relaxation. This implies that a long experiment time would be taken if the inversion

recovery pulse sequence, [180° - t - 90° (FID) - Td], is used. This is due to the 

requirement for a long recycle delay, Td ::::: 5 x T1, to allow full recovery between 

successive 180° pulses. This pulse sequence is only useful for short T1 's. Fortunately, 

there is another technique, saturation recovery, which can circumvent the problem of the 

long recycle delay. This sequence consists of a saturation chain of 90° pulses before a 

recovery time (t), [(90°)0 - t- 90° (FID)- Td]. The series of90° pulses at the resonance 

frequency (e.g. proton) will saturate the proton spins, resulting in equal populations of 

two energy levels, Mz = 0. Mz will grow towards Mo during the recovery time before the 

next 90° pulse, and the observed NMR signal is proportional to the growth in Mz. The 

recycle delay can be as short as is consistent with a reasonable duty cycle by the use of 

this technique. 
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Figure 7-3 TtH and TtP curves from double exponential fits at a spin rate of5 kHz. The 
signal intensity was extracted from the use of the pre-contact saturation recovery pu I se 
sequence (see Figure 7-2). Spectrometer operating conditions: (a) contact time 5 ms; (a) 
and (b) recycle delay 1 s; (a) and (b) number of transients 4. 

One possible reason is that the states ofthe phosphorus and proton magnetisations at the 

start of the measurement of T1H and T/ respectively are unknown, i.e. only one spin 

magnetisation was fixed by implementing saturation pulses (see Figure 7 -2). Hence, the 

sequence was modified to apply saturation pulses to both nuclei during the preparation 

period, cf. Figure 7-4. This ensures that both magnetizations start from a fixed position 

(saturation). 



Chapter 7: Relaxation measurements in a coupled two-spin 31 P, 1H system 166 

(a) 

90\ 
t 

31p 

(b) 

Figure 7-4 Pulse sequences for saturation of both nuclei before the relaxation period. (a) 
For T1H measurement via cross-polarisation. (b) For T1P measurement via direct
polarisation. The dephasing time was 50 j.iS and the number of saturation pulses was set 
to I 00. 

The new pulse sequences shown in Figure 7-4 were tested directly on SnHP03, checking 

from any effect of the number of saturation pulses on the signal intensity. 

Figure 7-5 shows that there is no observable difference in the peak intensities when 100 

saturation pulses are used or just one saturation pulse. It implies that no significance of 

the number of saturation pulses is in the measurement of T1 in the solid-state because T2 

<< T~, in contrast to the solution-state where the number of the saturation pulses is very 

important because of T2 ~ T1• This can be explained by considering the required values 

of 't compared to T2; the magnetisations in the xy plane are dephased within only a few 

tens of milliseconds during the 't period after applying the single saturation 90° pulse. 

Figure 7-6 show the signal intensity as a function of relaxation time for two different spin 

rates. The results ofthe T1 measurements are shown in Table 7-2. 
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Figure 7-5 Comparison of the number of saturation pulses on the signal intensity 
obtained with spinning at 10kHz under a fixed dephasing time 50 f.!S. (a) Using the pulse 
sequence for T1 H measurement via CP and (b) using the pulse sequence for T1 r 
measurement via DP. Spectrometer operating conditions: (a) contact time 5 ms; (a) and 
(b) recycle delay 1 s; (a) and (b) number of transients 4. 
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Figure 7-6 T1H and T/ curves from double exponential fits at two different spin rates: 
(a), (b) 5 kHz whereas (c), (d) 10 kHz. Spectrometer operating conditions: (a) and (c) 
contact time 5 ms; (a)-( d) recycle delay 1 sand (a)-( d) number of transients 4. 
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Table 7-1 a Result for 11A. H and 1/A.P by pre-contact saturation (proton or phosphorus 
only) during the preparation period. These experiments were obtained at a spin rate of 5 
kHz. 

1/A_H 1/A.p 

Component 1 2 1 2 

Percentage of component I % 61 ± 2 39 ±2 66 ± 3 34 ±4 

Relaxation time of component I s 24 ± 1 4.0 ± 0.3 1319±137 143 ± 20 
a Th1s expenment was done on a 7.5 mm probe 

Table 7-2 a Result for 1/A. H and 1/A.P by implementing saturation for both nuclei at the 
same time during the preparation period. 

5 kHz spinning speed 1 0 kHz spinning speed 

11A H 1/A.t' 1/A_H 1/A.t' 

Component 1 2 1 2 1 2 1 2 

Percentage of 
55± 2 45 ± 3 78 ± 1 22 ±2 58 ±2 42 ±2 75 ± 1 25 ± 1 

component I % 

Relaxation 204 13 885 85 174 11 1071 103 

time of ±20 ± 1 ± 32 ±8 ± 11 ± 1 ± 32 ±6 

component Is 

a These expenment were carried out on a 4 mm probe. 

As shown above, when saturating pulses are applied to both nuclei the results of 11A. 

measurements are improved (the values of IIA.1H and 1/A.2H are increased and the fits for 

both 1/A.1 P and IIA./ are also better than for the simple pre-contact saturation recovery 

experiment) since the proton and phosphorus magnetisations start from a known-position. 

However, the results at a spin rate of 5 kHz differ by 10-20% from those obtained at a 

spin rate of 10 kHz. It is not clear how to explain these results. Furthermore, the 1/A. 

values for the two nuclei are consistently different. 
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7.3.2 Analysis of the effects of relaxation on 31P static spectra 

Static 31 P spectra from cross-polarisation and direct-polarisation experiments with and 

without proton decoupling have been recorded on the 200 and 500 MHz spectrometer. 

Figure 7-7 shows proton-decoupled 31 P CP spectra, recorded using the 7.5 mm probe 

(Figure 7-7 (a) and (c)) and 4 mm probe (Figure 7-7 (b)). Surprisingly, they show a dip 

in each spectrum instead of a normal powder pattern. Thus, it is of interest to investigate 

this anomalous lineshape, and the question of 'which parameters may have an effect on 

this dip' arises. Two factors, contact time and recycle delay, were taken into account. If 

the contact time is too short, the CP rate between 1H and 31 P will be inefficient and lead 

to small 31 P signal intensity. Also, if a short recycle delay is used, the 1H magnetisation 

will be saturated and cause CP inefficiency. Both parameters were examined on: (1) 

different contact times at fixed recycle delays of 120 and 600 s (2) different recycle 

delays at a fixed contact time of 5 ms using the 4 mm probe. However, they had no 

effect on the dip. (The results are in the Appendix.) 

Since the dip is obviously at about the magic-angle position, the existence of the dip may 

be due to a dependence of CP rate on molecular orientation; CP will be inefficient if the 

P-H vector is aligned on the rotor axis, i.e. at the magic angle with respect to B0• 

As shown below, the dip in the spectrum obtained from 4 mm probe is deeper than those 

from 7.5 mm probe. The differences between the probes are only the amount of the 

sample and the RF field strength on proton decoupling, but there is no obvious reason 

why these would influence the lineshape. 
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Figure 7-7 Proton-decoupled 31 P CP static spectra at (a), {b) 81 MHz and (c) 
202.28 MHz, obtained with (a) and (c) a 7.5 mm probe (b) a 4 mm probe. Acquisition 
parameters were: contact time 5 ms; recycle delay 120 sand number of transients (a) 116 
(b) 56 (c) 4. Proton decoupling field strengths were 50 and 83 kHz for 7.5 and 4 mm 
probes respectively. 
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Figure 7-8 shows proton-decoupled 31 P DP spectra, recorded on the 200 and 500 MHz 

spectrometers. An anomalous lineshape was observed on the 200 MHz spectrometer (see 

Figure 7-8 (a) and (b)) whereas a static 31 P DP spectrum obtained with the 500 MHz 

system showed a sensible CSA bandshape (see Figure 7-8(c)). It is not clear why the 

results from two spectrometers are different. It is also obviously seen that the lineshape 

distortion is less marked for the 7.5 mm than the 4 mm. 

Since the first 200 MHz static spectrum showed an unexpected lineshape, attempts were 

made on the 200 MHz to examine the possible influences on the 31 P static spectrum using 

the 4 mm probe. Recycle delay and pulse angle were considered. However, increasing 

the recycle delay had no effect on the lineshape (see Figure 7-9) and also shorter pulse 

angles did not improve the sensitivity (see Figure 7-1 0). 

[Note that the optimum flip angle ('Ernst angle') a given by: 

cos a = exp ( -r P IT;) (7.8) 

where rP is the recycle delay, T1 is assumed to be 1000 s for this study.] 

The unusual CSA lineshape may be related to a dependence of relaxation on orientation 

of the shielding tensor axis in B0• If this assumption is correct, each site will have 

different value of relaxation time. Therefore, it is of interest to further investigate on the 

T1P measurement (see the pulse sequence in Figure 7-4). Figure 7-11 shows the lineshape 

at different recovery times, t. A comparison of two spectra at the t of 60 and 600 s, 

scaling the a1. site of the 60 s spectrum to be the same as that of the a1. site of 600 s, is 

shown at the top in Figure 7-11. It is obvious that the relative intensities of the two sites 

( Oit and a1.) at different times are equal. The intensities at intermediate angle to Bo also 

appear to be the same, implying that the relaxation time does not depend significantly on 

tensor orientation. 



Chapter 7: Relaxation measurements in a coupled two-spin 31 P, 1H system 173 

f\1 

.J 
/! Experiment 

/ f Simulation 

// r ............ .-r,...,...~* 
(a) ;l 

/1 \.'= ~~ ~--~--~ 

-- Experiment 
- - -- ~ Simulation 

150 100 50 0 -50 -100 -150 

llp I ppm 

Figure 7-8 Proton-decoupled 31 P DP static spectra under proton decoupling at (a), (b) 
81 MHz and (c) 202.28 MHz, obtained on (a) and (c) 7.5 mm probe (b) 4 mm probe. 
Acquisition parameters were: recycle delay 300 sand number of transients (a) 80 (b) 32 
(c) 80. (a) and (c) Comparison ofthe computed-fitted (using STARS) and experimental 
31P DP spectra. 
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Figure 7-9 Proton-decoup led 31 P static spectra at 81.01 MHz for different recycle delays. 
The number of transients is 32 for each spectrum. 

- 90", 300 s recycle delay 
- 42", 300 s recycle delay 

25°, 100 s recycle delay 
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Figure 7-10 Proton-decoupled 31P static spectra at 81.0 l MHz for different pulse angles 
and recycle delays, which were calculated from an estimated recycle delay and T/. The 
numbers of transients are 32 for recycle delay 300 s, 96 for recycle delay 100 s and 480 
for recycle de lay 20 s. 
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Figure 7-11 31 P DP static spectra at 81.0 I MHz under proton decoupling for different 
recovery times, obtained with the 7 _5 mm probe. Each spectrum was obtained with 32 
transients. Line broadening of 50 Hz was applied to each spectrum. The top 
(superimposed) spectra are a comparison ofintensities at 60 and 600 s by scaling the 60s 
spectrum at particular angle (perpendicular a1) to Bo. 
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7.3.3 31 JP spin-spin rela:xation measurements 

The simple Hahn-echo experiment has been used to measure T/, to determine the true 
31 P linewidth in SnHP03 . The pulse sequence used is shown in Figure 7-12. 

IH 
90° 

D CT decoupling 

31p T 
1800 

T 

R ·o -~~ih .. 
•v1fr~vv· 

lFigure 7-12 Pulse sequence for CP for by a simple Hahn-echo. 

The signal intensity decays obtained at each refocusing time {2t) together with single 

exponential fits are illustrated in Figure 7-13. The values for T/ under the different 

conditions used (spin rate and decoupling) are shown in Table 7-3. Although the decay at 

14 kHz with proton decoupling did not fit well to a single exponential compared to the 

other results, the T/ values are consistent with each other within the errors. The 

intensities at a spin rate of 14 kHz are less than at a spin rate of 6 kHz due to the 

inefficiency of cross polarisation at high spin rates. 
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Figure 7-13 T/ curves using single exponential fits at two different spin rates. 
Acquisition parameters were: contact time 5 ms and number of transients 4. 

Table 7-3 T/ and linewidth data for SnHP03 determined using the single Hahn echo 
pulse sequence. 

Spin rate I kHz T{ lms ( 1 I 7l"T/) I Hz Experimental 

linewidtha I Hz 

6, with proton decoupling 4. 1 ±0.1 78 157 

14, with proton decoupling 4. 1 ±0.2 78 147 

14, without proton decoupling 3.9 ± 0.3 81 NIA0 

a estimated error± 5 Hz. 
b experimentallinewidth is very broad due to coupling with protons. 
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The intrinsic 31 P linewidths from the proton-decoupled and proton-coupled phosphorus 

spectra are similar (see Table 7-3). This implies that the heteronuclear dipolar interaction 

is completely refocused (along with heteronuclear J coupling or chemical shift, i.e. 

refocusing occurs (see Chapter 2)) by Hahn-echo experiment. This is very different from 
13C behaviour in organic samples where the spin-echo does not refocus effects of 

couplings to the protons. In this case, however, the 31 P, 1H spin system is well isolated 

(on the time scales of the spin-echo experiment) and so spin diffusion among protons is 

not significant. This presumably allows the heteronuclear interaction to be fully 

refocused. 

7.4 Conclusions 

Isolated 31 P, 1H spin systems in SnHP03 present complications for relaxation processes in 

solid-state NMR. The measurement of T1 has been investigated and it is found that the 

exponents for 1 H and 31 P are different and there is no clear explanation for the relaxation 

behaviour of SnHP03 at this stage. One possible reason for the difficulty of this system 

is a very long Tt since spin diffusion may become prominent resulting in an influence on 

the system. 

However, the T/ measurement is less complicated than the T1 measurement because spin 

diffusion is negligible in this study. The results are straightforward to analyse. It is 

relatively successful for this investigation, and the intrinsic 31 P linewidth is found to be 

79 ±2Hz. 

Unexpected CSA bandshapes have been found in 31 P CP and DP static spectra. The 

anomalies in 31 P CP powder pattern may be ascribed to CP inefficiency at magic angle. 

However there is no obvious reason for the distorted lineshape in the 31 P DP powder 

pattern. 
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CONCLUSIONS AND FURTHER WORK 

This work has been important in order to provide information about NMR properties in 

tin(II)- and silver(I)-containing compounds, i.e. chemical shifts and coupling constants, 

which have not been extensively studied using solid-state NMR techniques. Valuable 

information about shielding tensor parameters has been also obtained for 119Sn and (in 

some cases) 31 P for the tin(II)-containing compounds whereas those for 109 Ag and 31 P in 

some of silver(I)-containing compounds. Hence, the relationship between NMR 

parameters and molecular structure (where the crystal structures have been known) has 

been explored, and new insights have been gained into the structures (in cases with no 

previously-reported structures). 

Isolated e1P, 1H) spin pairs in SnHP03 have been also studied. The system provides both 

opportunity and difficulty, about which various details have been discussed: the 

determination of P,H internuclear distances, the measurement of relaxation times and the 

unexpected behaviour under 31 P CW decoupling. The reliability of the P,H internuclear 

distance has been successfully demonstrated. A better understanding of the complicated 

behaviour under 31 P CW decoupling has been obtained, which relates to the effect of 

second-order recoupling between the heteronuclear dipolar-coupling tensors and the 

shielding 31 P tensor. Unfortunately, a study of relaxation times did not lead to a good 

understanding of the behaviour· of a coupled two-spin 31 P, 1H system in SnHP03 at this 

stage. The complexity of this system may be related to the very long T/. 

In addition to the above, there are several experiments that would be interesting to 

explore in the further work on the topics included here, as follows: 

• Investigate the effect of the CPMG pulse sequence on intrinsic linewidths of 119Sn 

in SnHP03 and SnHP04 . This experiment may help to explain the discrepancy 

between results obtained using Hahn-echo pulse sequence and CPMG pulse 

sequence. 
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o Obtain 109 Ag spectra for [Ag(py)2]N03, [Ag(coll)2]N03 and [Ag(quin)2]N03 to 

report the chemical shifts and also coupling constants. 

Re-crystallised [Ag(py)2]N03 and [Ag(quin)2]N03 to obtain new 13C spectra and 

then compare their linewidths the other silver(l)-complexes, e.g. [Ag(lut)2]N03 

and [Ag(2-pic)2]N03. This experiment is worth doing since there is no obvious 

reason why the linewidths for 13C in [Ag(py)2]N03 are very broad. It is also 

desirable to improve the quality of 13C in [Ag(quin)2]N03 to analyse the chemical 

shifts. 

• Investigate new decoupling methods to decouple nuclei with large CSAs under 

magic-angle spinning. 

Study coupled 1H and 31 P spectra in SnHP03 at higher spin rates (more than 

22 kHz) to explore the value of the splitting, since there are discrepancies in the 

results obtained in this thesis even at a spin rate of 22 kHz. 
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APPENDIX A 

Conferences attended 

o '15th International Meeting on NMR Spectroscopy' 8-12 July 2001, Royal Society 

of Chemistry, University of Durham, UK 

'16th European Experimental NMR conference' 9- 14 June 2002, Prague, Czech 

Republic 

• 'The 3rd Alphine Conference on Solid-State NMR' 14-18 September 2003, 

Chamonix-Mont Blanc, France 

Publications 

'Solid-state NMR studies of some tin(II) compounds'. Pornsawan Amornsakchai, 

David C. Apperley, Robin K. Harris, Paul Hodgkinson and Philip C. Waterfield, 

Accepted for publication in Solid-State Nuclear Magnetic Resonace 

e 'NMR studies of 31 P, 1H spin pairs in solid tin(II) phosphite and tin(II) hydrogen 

phosphate'. Pornsawan Amornsakchai, Paul Hodgkinson and Robin K. Harris, 

Accepted for publication in Molecular Physics 

'Solid-State 109 Ag CPMAS NMR Spectroscopy of some Diammine Silver(!) 

Complexes'. Graham A. Bowmaker, Robin K. Harris, Behnam Assadollahzadeh, 

David C. Apperley, Paul Hodgkinson and Pornsawan Amornsakchai, Accepted for 

publication in Magnetic Resonance in Chemistry 
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Poster presented 

o 'Multinuclear Studies of Solid Compounds Containing Tin and Silver' 

'161
h European Experimental NMR conference' 9- 14 June 2002, Prague, Czech 

Republic. 

• 'Solid-state NMR Studies ofTin(II) Phosphite' 

'The 3rd Alphine Conference on Solid-State NMR' 14-18 September 2003, 

Chamonix-Mont Blanc, France 
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APPENDIXB 

Additional spectra and graphs for Chapter 7 
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Figure I Proton spectra of a static empty rotor and 7.5 mm probe at 200.13 MHz. 
Spectrometer operating conditions: The recycle delay is I 0 s; the number of transients is 
160. 
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Figure TI Proton-decoupled 31P CP spectra at 81.01 MHz for different contact times at 
fixed recycle delay 120 s. The number of transients is 56 for each spectrum. 
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Figure Ill Proton-decoupled 31 P CP spectra at 81.0 l MHz for different contact times at 
fixed recycle delay of600 s. The number oftransients is 32 for each spectrum. 
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Figure IV Proton-decoupled 31 P CP spectra at 81.01 MHz for different recycle delays at 
a fixed contact time of 5 ms. The number of transients is 56 for each spectrum. 
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Figure V Comparison ofthe signal intensity at different dephasing times obtained with 
spinning at 1 0 kHz under the fixed number of saturation pulses at 100. The signal 
intensities are measured on (a) T1H via CP (b) T1P via DP. Spectrometer operating 
conditions: (a) contact time 5 ms; (a) and (b) recycle delay 1 s; (a) and (b) number of 
transients 4. 
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APPENDIXC 

Additional crystal structures for Chapter 6 

Figure VI Perspective view of the structure of [Ag(NH3)2]2Se04 along the c-axis. The 
hydrogen atoms have been omitted for clarity. 

Figure VII Crystal structure of[Ag(py)2]N03 
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Figure VIII Crystal structure of [Ag(coll)2]N03 

Figure IX Crystal structure of [Ag(2-pic)z]N03 
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Figure X Crystal structure of [Ag(quin)2]N03 
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§IMPSON input file for proton spectrum undler CW heterormdear decoupling 

# direct polarisation under cw decoupling 
spinsys { 

channels 1 H 31 P 
nuclei 1H 31P 
dipole 12 -16800000 
shift 1 0 5500 0 0 0 0 
jcoupling 1 2 680 0 0 0 0 0 

} 

par { 

} 

spin_rate 
gamma_ angles 

SW 

crystal_file 
np 
start_ operator 
detect_ operator 
proton_ frequency 
variable rf 
method 
verbose 

proc pulseq {} { 
global par 
maxdt I 

12000 
15 

spin _rate*gamma _angles 

rep168 
2048 
Ilx 
Ilp 
200e6 
80000 
gcompute 
1101 

pulse 1 e6 0 0 $par(rf) 0 

} 

proc main { } { 
global par 
set f [fsimpson] 

faddlb $f 400 0 

fsave $f $par(name).fid 

fzerofill $f [expr 4*$par(np)] 

fft $f 

191 
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fsave $f $par(name).spe 

} 

The simulation was implemented using 168 different crystallite orientations ( acR and 

f3cR) and 15 equally spaced r eR angles: where C is a crysatllite-fixed coordinate system 

and R is the rotor-fixed coordinate system. 

SIMPSON input file for phosphorus static spectrum 

# Static Direct-Polarization experiment with cw decoupling. 

spinsys { 
channels 1H 31P 

1H 31P 

} 

nuclei 
dipole 
shift 
jcoupling 

1 2 -16800 0 0 0 
2 0 13890 0 0 0 0 
1 2 680 0 0 0 0 0 

par { 
spin_rate 
gamma_ angles 
SW 

crystal_file 
np 
start_ operator 
detect_ operator 

# proton _frequency 
method 
verbose 
variable rf 

} 

proc pulseq {} { 
global par 

reset 

0 
1 
10000 
zcw232 
512 
12x 
12p 
500e6 
direct 
I 10 I 
50000 

pulse [expr 1 e6t$par(sw)] $par(rt) 0 0 0 

store I 

} 

reset 
acq $par(np) 1 

# maxdt 

proc main {} { 
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} 

global par 
set f [fsimpson] 

faddlb $f 600 0 
fsave $f $par(name).fid 

fzerofill $f [expr 4*$par(np)] 

fft $f 
fsave $f $par(name).spe 
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