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Abstract

We investigate some of the properties of D-brane configurations which behave
as BPS monopoles. The two D-brane configurations we will study are the enhancgon
and D-strings attached to D3-branes.

We will start by investigating D3-branes wrapped on a K3 manifold, which are
known as enhangons. They look like regions of enhanced gauge symmetry in the
directions transverse to the branes, and therefore behave as BPS monopoles. We
calculate the metric on moduli space for n enhangons, following the methods used
by Ferrell and Eardley for black holes. We expect the result to be the higher-
dimensional generalisation of the Taub-NUT metric, which is the metric on moduli
space for n BPS monopoles.

Next we will study D-strings attached to D3-branes; the ends of the D-strings be-
have as BPS monopoles of the worldvolume gauge theory living on the D3-branes. In
fact the D-string/D3-brane system is a physical realisation of the ADHMN construc-
tion for BPS monopoles. We aim to test this correspondence by calculating the en-
ergy radiated during D-string scattering, working with the non-Abelian Born-Infeld
action for D-strings. We will then compare our result to the equivalent monopole

calculation of Manton and Samols.
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Chapter 1

Introduction

This thesis is based on the work we have carried out concerning D-brane configura-
tions which behave like BPS monopoles. Since the discovery of D-branes in string
theory, and the realisation that they can be alternatively interpreted as soliton so-
lutions of supergravity, it has been apparent that our knowledge of branes of all
types is crucial for our understanding of string theory and M-theory. Studying the
properties of D-branes should deepen our understanding of string theory at strong
coupling, and give us more insight into the nature of M-theory. Also, the con-
struction of D-brane configurations allows us to construct multi-dimensional gauge
theories in string theory. Therefore an understanding of the many and varied ways
in which D-branes interact with one another is an essential step towards the goal of
constructing a realistic model from string theory.

Research has shown that there are many instances in which a D-brane configu-
ration behaves like a magnetic monopole. In particular we will be investigating here
the enhancon, and D-strings attached to D3-branes. Since much is already known
about magnetic monopoles, it is natural for us to use what we know to develop a
deeper understanding of D-branes.

In this introductory chapter we will review some basic facts about the properties
of D-branes and monopoles. In chapter 2 we focus on the case of the enhangon,
and describe our calculation of the metric on moduli space for many enhancons.
In chapters 3 and 4 we investigate the energy radiated during the scattering of D-

strings stretched between D3-branes. We compare the result to the calculation of

1




1.1. Properties of D-Branes 2

Manton and Samols in ref. [80] for the energy radiated during monopole scattering.

1.1 Properties of D-Branes

We discuss here some of the basic aspects of D-branes; how they arise as BPS
states in string theory, and their complementary description as soliton states of
supergravity. All the material from this section is reviewed in refs. [3] and [4]. See

also refs. [5] and [6] for more compact reviews of D-branes.

1.1.1 D-Branes in String Theory

A Dp-brane in string theory is defined to be a surface with p spacelike dimensions
and one timelike dimension on which the ends of open strings are constrained to
lie. Historically D-branes in string theory were discovered by the action of T-duality
on the bosonic string (see ref. [7]). T-duality is a duality between string theory
compactified on a circle of radius R and string theory compactified on a circle of
radius R = o//R.! Let X*(7,0) be the fields which describe the embedding of the
string worldsheet, with parameters 7 and o, into the target space (for bosonic string
theory u = 0,...,25). For a closed string, compactification on a circle corresponds
to the identity

X®(o+2m,7) = X*®(0,7) + 27Rm , (1.1.1)

where m is an integer called the winding number; it is the number of times the
closed string has wound around the extra dimension. The left-moving and right-
moving momenta of the bosonic string, p? and p%, are discretised and contain extra

components due to the winding number:

5 _ 1N mR s N MR
PL=p"

(1.1.2)

al
where n € Z labels the momentum states. In the limit B — oo the momentum

states with n < R become light, while the winding states become so massive as

'Here o' is the universal Regge parameter, which has dimension L2. It sets the fundamental

string tension Tr = 1/27¢’.
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to be irrelevant; we have a 26-dimensional theory, as we would expect. In the
T-dual theory R — 0, and the momentum states become massive, indicating the
disappearance of the compactified dimension, but the winding states become light;
a new uncompactified dimension has opened up. So we see that closed strings in 26
dimensions are T-dual to closed strings in 26 dimensions. However, open strings are
unable to wind around the compactified dimension, and so there is no open string
equivalent of the winding number m. So there is no uncompactified dimension which
opens up in the limit R — 0, and we see that open strings in 26 dimensions are
T-dual to open strings in 25 dimensions. For a theory containing both open and
closed strings there appears to be a discrepancy here; does the T-dual theory have
25 or 26 dimensions? This discrepancy is resolved by observing that under T-duality
the usual Neumann boundary condition for the ends of the open string gets changed

into a Dirichlet boundary condition of the form
X®(r,0 =7n) — X®(1,0 = 0) = 27lR , (1.1.3)

where o = 0 and 0 = 7 are the ends of the open string, X# denotes a T-dualised
direction, and [ is an integer. This means that the ends of the open string are fixed
in the T-dualised direction, and so they must end on a surface with 24 spacelike
dimensions, which we call a D24-brane. Similarly, T-dualising on a direction parallel
to a Dp-brane produces a D(p — 1)-brane, and T-dualising on a direction transverse
to a Dp-brane produces a D(p + 1)-brane. The D25-brane, which fills all the 26
dimensions of bosonic string theory, corresponds to a theory in which the open
strings are unconstrained.

In the spectrum of open string theory there is a massless vector which has a U(1)

gauge invariance. This gauge invariance manifests itself as follows

[9) ~ [8) + AlY) (1.1.4)

where |¢) is any open string state, and [¢) is a ‘spurious’ state, which can be
added without physical effect since it is orthogonal to all other states and null. In
the worldvolume of a single D-brane the open string therefore corresponds to the
massless gauge boson of a U(1) field theory living on the brane. The string is massless

because it can achieve vanishing length. Let us consider what happens when we allow
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N D-branes to coincide. There is now a choice of D-branes for the open string to end
on; there are N2 choices for each string, and all are massless, corresponding to the
gauge bosons of a U(N) gauge theory (see refs. [8] and [9]). The gauge theory can
be broken by separating the D-branes; the strings stretched between two separated
branes become massive, thus breaking the gauge group. This is equivalent to the
Higgs mechanism in SU(N) gauge theory, where the gauge bosons acquire masses
due to the non-zero expectation value of the Higgs field. We will comment further
on how the Higgs mechanism works in the D-brane context later on. Since the gauge
vector is constrained to the worldvolume of the D-brane, we will henceforth denote it
by A, where « is an index corresponding to a D-brane direction, a = 0,...,p. We
will denote the corresponding two-form gauge field strength by F,5, where F' = dA.

There are other fields living on the worldvolume of a Dp-brane whose dynamics
we must take into account. We can see that this must be the case by considering the
T-duality transformation of a D25-brane. The gauge vector A, of a D25-brane has
26 components, & = 0,...,25. Under T-duality on the X?® direction a D25-brane
transforms into a D24-brane, whose gauge field has 25 components, o = 0, ..., 24.
The extra component of the D25-brane gauge field, Ajs, transforms into a scalar

field, which we will denote ®%°

Ao Ao
=1, (1.1.5)

A24 A24

A25 @25

If we T-dualise further we find that a Dp-brane has (25 — p) scalar fields living on its
worldvolume, which we will denote ®*, 7 = p+1,...,25. Since these fields originate
from components of A,, they belong to the adjoint representation of the gauge group
on the D-branes. To see the role the ®* play, let us consider NV coincident Dp-branes;
from the discussion of the previous paragraph the gauge group on these branes is
U(N). If we compactify the direction X? on a circle of radius R, then we can include

a constant gauge field

Ap: diag{Hl,Hg,...,HN}/27rR . (116)
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This gauge field is in the diagonal subgroup of U(N), namely U(1)". Locally it is

pure gauge, but when we gauge it away the charged fields pick up a phase
diag{e " e % 70N} (1.1.7)

An analysis of the open string mode expansion reveals that an open string which

has charge +1 under U(1); has its Dirichlet boundary condition (1.1.3) changed to

XP(r) — XP(0) = (27l + 6;)R . (1.1.8)
From equation (1.1.6) we can write, up to an arbitrary additive constant,
Xp = 91,[{ = 271'(1/141,,1'1' . (119)

So we see that the scalar field ®” is related to the position of the D-brane in the
transverse direction X? as follows

o= X
T 2red

(1.1.10)

More precisely, the N eigenvalues of the field ®’ represent the positions of the N

D-branes in the direction 27 as follows
X! =2nad'®7 | (1.1.11)

where X} is the position of the a'" D-brane in the z7 direction, and ®J denotes the
a't eigenvalue of the field ®’.

We can now see where the Higgs mechanism, which we mentioned above, comes
from. From equation (1.1.10) we can see that separating D-branes in the X direction
corresponds to giving a vacuum expectation value to the field ®'. Therefore it is ®*
which plays the role of the Higgs field, breaking the gauge group when the branes
are separated.

In our discussion so far we have considered the fields originating from the open
strings, but not those originating from the closed strings. Closed strings can pen-
etrate all of the 26 dimensions of the bosonic theory, and therefore they should be
considered as background fields to the worldvolume of the D-brane. The massless
part of the closed string spectrum contains the background metric, G, the anti-

symmetric Kalb-Ramond field, B,,,, and the dilaton ® (not to be confused with the
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transverse fields ®/ which we discussed above). The vacuum expectation value of

the dilaton field, which we will denote ®, sets the string coupling g, as follows
gs = e . (1.1.12)

From now on we will turn our attention away from the bosonic string theory
to superstring theory in ten dimensions. The arguments used so far concerning D-
branes in bosonic string theory all apply to the superstring theory as well. The fields
G, B and ® come from the massless part of the NS-NS sector of closed superstring
theory. In addition there are fields coming from the massless part of the R-R sector.
For type IIA superstring theory these are the R-R fields C(V, C® (where C®
denotes a p-form field), and their Hodge duals C®® and C. In type IIB string
theory we have C(®, C® and their Hodge duals C®, C® and also the self-dual
field C™W. It was shown in ref. [10}, using a tadpole calculation, that the Dp-brane is
a source for the R-R field C®*) (i.e. the action containing CP+Y is a generalistion of
the term e [ A,v* from electromagnetism, where € is the electric charge and v* is the
velocity - see section 1.2 for more details). In type II string theory the field C(7~?) is
related to the field C?*1) by Hodge duality, dC{7—P) = F8-P) = 4 P(r+2) = 4qCr+1)
We say that the Dp-brane is a magnetic source for C{"~?). In type IIA string theory
there exist Dp-branes for p = 0,2,4,6 and 8. In type IIB string theory there exist
Dp-branes for p = —1,1,3,5,7,9. The D8-brane and D9-brane, for which there are
no corresponding R-R fields, are special cases which we will not be considering here.

The actions describing the dynamics of the worldvolume fields are the Born-
Infeld and Chern-Simons actions. We will review these actions both for the Abelian
case and for the non-Abelian case in section 1.2.

Let us consider the tension 7, and the Ramond-Ramond charge 1, of a Dp-brane.
These can be calculated using the vacuum cylinder diagram as follows. This diagram
corresponds to the exchange of a closed string between two parallel D-branes (it
looks like a cylinder joining the two D-branes, hence its name). Its amplitude can
be calculated by a tree-level closed string diagram computation. But this diagram
also corresponds to an open string going round in a loop. So its amplitude can
also be calculated by a one-loop open string diagram computation. In fact the

amplitude is zero, which is to be expected seeing as the open string calculation is
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a supersymmetric vacuum diagram. However, the closed string amplitude can be
separated into terms describing the exchange of NS-NS states, and terms describing
the exchange of R-R states. Equating coefficients with the corresponding terms in
the open string amplitude leads to two equations. The equation relating to NS-NS
terms gives an expression for 7,, since the NS-NS fields of the closed string couple
to 7,. The expression is

—ptl

T =g, (2m)7P(a/) T T (1.1.13)

The equation relating to R-R terms gives an expression for p,, which is

= (2m) (o)) 5T (1.1.14)
So the tension and charge of a Dp-brane are related as follows
Tp =G5 Hp - (1.1.15)

This equality between charge and tension resembles a BPS bound. In fact an analysis
of the supersymmetries preserved by a D-brane state shows that exactly half of the
supersymmetries present in the background are broken, and so it is indeed a BPS
state. The amplitude of the vacuum cylinder diagram being zero is also indicative
of a BPS state; the NS-NS diagrams, which correspond to the attractive gravity and
scalar forces, cancel the R-R diagrams, which correspond to repulsive R-R forces, so

that there is no net force between two parallel D-branes.

1.1.2 D-Branes as Supergravity Solitons

In the previous section we described how D-branes arise in string theory as surfaces
on which open strings can end. In this section we describe the alternative formulation
of D-branes, as soliton solutions of supergravity. These solutions can be considered
as solitons in the sense that they are localised in the transverse directions. See
ref. [11] for a review of D-branes from the supergravity point of view.

Supergravity arises from string theory by taking the low energy limit o/ — 0
(i.e. the limit in which all massive modes become infinitely massive and can be

neglected). The low energy limit of string theory is ten-dimensional supergravity,
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from ref. [12]. The type I1A string theory contains only even R-R forms; the bosonic

part of the corresponding supergravity action in the string frame is

1
Siia > 2 A% (- G)I/Q{ —2® [R+4(V<I>) 12(}{(3))2
1 , 1 1
Loy L@yl _ _/Bmd ®) 4o 1
G = 5 CE ) - 4 COdCH . (1.1.16)
where
2k39% = 16mGy (1.1.17)

sets the ten-dimensional Newton’s constant Gy. Here H®, G and G® are defined

in terms of the NS-NS and R-R field as follows

H® — 4B® (1.1.18)
G® = qc® . GW =qc® 4+ H® ACO | (1.1.19)

The type IIB string theory contains only odd R-R forms; the equivalent action is

Sup = 212 d'% (- G)“’“’{ -t [R+4<v<1>> 12(H<3>)2}

——(G(3) +CO ™2 _ (dC(O)) 1 (G(5))2}
12

—ig <C<4> + %B@) - c<2>> GOH® | (1.1.20)

4rKg
where H® is defined in (1.1.18) and

G® —dc® G® = do®W L HOC® (1.1.21)

and C© is the R-R scalar. We also need to impose the self-duality constraint on

F® = dC™ by hand in the equations of motion
FO = 4O (1.1.22)

The solution to the supergravity equations of motion which corresponds to N

coincident D-branes is, from ref. [13],

ds? = Z;'’nepdz®da® + Z)da'ds’ (1.1.23)
3-—
2 = 27,7 (1.1.24)

C(p-l-l) — (Z;l _ 1)93_1de A AdxP (1125)
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where, as before, o, 3 = 0,...,p are the D-brane directions, and i = p+1,...,9 are

the transverse directions. The function Z, is a harmonic function given by

7—p
Z, =1+ (7;_7)) , (1.1.26)
where
rP=>"g'rt, (1.1.27)
and
7— - 7 —
ri P = dy(21)P~2g,Na' 7 |, d, = 27~ 3 [ (Tp) - (1.1.28)

The above solution has the appropriate symmetries of (p+1)-dimensional Poincaré
invariance in the brane directions and SO(9 — p) rotational symmetry in the trans-
verse directions. In fact the solution we have described above is not the solution to
the pure supergravity equations of motion; we must also include in the action the
source terms for the tension and the R-R charge of the D-branes. These are given
by the Dirac-Born-Infeld action and the Chern-Simons action respectively, which we
will discuss in section 1.2.

The supergravity solution (1.1.23) - (1.1.25) is valid providing the lengthscale of
the solution, given by 7, is large compared to the string length I, = Vo' (recall that
superstring theory reduces to supergravity in the limit o/ — 0, i.e. [y — 0). From
(1.1.28) we have

riP ~ g, No/T7P2 (1.1.29)

and so the supergravity solution is valid as long as g;IN > 1. We also need the
string coupling to be weak for the supergravity solution to be valid, and so we
require N > 1. For open string perturbation theory each loop in an open string
Feynman diagram carries a factor of g;/N (the N comes from a trace over the gauge
indices). So open string perturbation theory is valid when gsN < 1. Therefore what
we have are two descriptions of open string theory which are valid in complementary
regions of the parameter space. In open string perturbation theory D-branes can
be treated as objects in flat background, whereas in supergravity the curvature of

spacetime must be taken into account.
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1.2 D-Brane Worldvolume Actions

We devote this section to a description of the Dirac-Born-Infeld and Chern-Simons
actions, which describe the dynamics of the fields living on the worldvolume of D-
branes. A detailed knowledge of the properties of these actions will be necessary for
the chapters which follow this one. We will begin in section 1.2.1 by describing the
Abelian D-brane actions, and then in section 1.2.2 we will move on to the less familiar
non-Abelian D-brane actions. In section 1.2.3 we will describe some corrections to
the Dirac-Born-Infeld and Chern-Simons actions which will be necessary for our
discussion of the enhangon mechanism in section 1.4.1. Most of the material from

this section can be found in refs. [3] and [4].

1.2.1 Abelian D-Brane Actions

Here we will review the actions which describe the dynamics of a single D-brane.
The gauge group on the brane is therefore the Abelian group U(1), and the fields
living on the brane, A, and &', commute with one another. We will consider only
the bosonic fields of the ten-dimensional type II superstring theory.

We start with the action describing the coupling of the D-brane fields to the
NS-NS background fields, which will turn out to be the Dirac-Born-Infeld action. If
we introduce the coordinates £€* on the brane, then the metric on the worldvolume
of the brane is the background metric pulled-back to the brane’s worldvolume. This

is given by

oX* 90XV G
ocx ggp TR
where we have used the notation P to denote the pull-back. Recall from (1.1.11)

P[Glas = (1.2.1)

that for the transverse fields ®* we have
X' =21d/®* | (1.2.2)

and so the pull-back of the metric describes the coupling of the background metric to
the transverse fields. The appropriate action for the metric is given by the higher-
dimensional equivalent of the action for a point particle; it is the tension of the

brane multiplied by the higher-dimensional ‘volume’ of the surface swept out by the
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D-brane’s worldvolume. This action is given by

1, / e/~ det (PIC]) . (12.3)

We also need to introduce the appropriate couplings to the fields B, ® and A
into the action (1.2.3). We will discuss first the coupling to F' = dA (see ref. [14]).
Consider a D2-brane in the directions X! and X?, with a constant gauge field Fi,.
One can fix the gauge such that the only non-zero component of A is Ay, = X1 F},.

T-dualising in the X? direction, and using the relation (1.1.9)
XQ = 27ra'X1F12 s (124)

i.e. the result is a D1-brane which is tilted in the X!-X? plane. The action for the

D1-brane is

S~/d§ =/dX1 14 (0, X2) =/dX1\/1+(27ra’F12)2. (1.2.5)

Generalising the above result, the appropriate factor of F'in the action of a Dp-brane

is

S, =T, / dPHIE |/ dot (P[Glag + 2’ Fig) (1.2.6)

The dependence of the D-brane action on B can be deduced from the combination

of B and F in the string world-sheet action, which is given by

1
1 [ A. 2
2m,/M v (1.2.7)

It turns out that the combination of the fields B and F' which is invariant under
the gauge transformations of both B and A is (B + 2na’F) (see ref. [15]). So the

required action for a Dp-brane is

P = T, / Ve [~ det (P[Clap + PlBlop + 2naFog) . (1.28)

which is the Dirac-Born-Infeld action. The factor of the dilaton in (1.2.8) gives the
appropriate factor of the string coupling, g; = e%°, since the action is also the action
for open string scattering at tree level. The tension T}, in (1.2.8) is related to the
physical tension 7, by

T, = e*1, = g,7, . (1.2.9)
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This action can also be deduced using the fact that the D-brane fields originated
from the ends of open strings, whose action is a sigma model action (see ref. [18]).
The Dirac-Born-Infeld action (1.2.8) is correct to all orders in «', but it is only
accurate for slowly varying field strengths, since derivatives of F' have been neglected
(see ref. [19]).
The T-duality rules for the NS-NS fields can be deduced from the action for an
open string in a curved background, which is a sigma model action. They are given

by

= 1 = B = Guw — GupGup — BB
G = —, G,=-" Gg,= upTvp W
PP G WG 1 Gy
= G ~ B,,Gp — G,,B
B = —* B,=DB, — pupTvp upZvp
" Gpp g g Gpp
oo £ (1.2.10)
e = ’ L.
Gpp

where G, B and ® are the T-dualised fields. We assume that the fields in (1.2.10) are
independent of the direction zP, and so the metric G has an isometry corresponding
to translations in the zP direction. Because we will only consider T-duality in
spacelike directions, the norm of the associated Killing vector is greater than zero,
ie. Gpp > 0. It is possible to use the rules given in (1.2.10), along with (1.1.5)
for the D-brane fields, to show that the Dirac-Born-Infeld action is indeed invariant
under T-duality, as we would expect (see refs. [16] and [17]).

The low energy limit of string theory is o/ — 0, when all the massive fields
become infinitely massive, and can be ignored. Expanding the Abelian Dirac-Born-
Infeld action (1.2.8) as a series in o/, we find that the leading order term is given
by

T, (2ma!)?

- /d”“f e P F g F°P (1.2.11)

which is Yang-Mills theory with the coupling
Gonp = oIy 1(2ma’) 7% = g, (2m)P 2/ P~/ (1.2.12)

Next we consider the coupling of the D-branes to the R-R fields. Since the Dp-
brane acts as a source for the C®*D R-R field, we must integrate this field over

the Dp-brane’s worldvolume. Again, since C®*V is a background field, it must be
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pulled back to the D-brane’s worldvolume. So the coupling we require is

u,,/ P[CPHY] | (1.2.13)
M

1
where M is the D-brane worldvolume (the term (1.2.13) is the higher-dimensional
generalisation of the term e [A,v* in the action for electromagnetism, where e is
the electric charge, and v* is the velocity). We must also consider the possibility of
lower-dimensional R-R fields coupling to the antisymmetric fields B and F. Using
T-duality arguments it is possible to show that the full coupling to the R-R fields is
given by

Scs = tp /M P [Z C’(")eB] e f (1.2.14)

p+1

which is the Chern-Simons action (see refs. [20] and [21]). The combination of B and
F in (1.2.14) can be understood using the same arguments as those we discussed
for the Dirac-Born-Infeld action above. The summation sign in (1.2.14) means
that we must include all possible combinations of C™, B and F' which have the
form specified in (1.2.14), and which combine to give a (p + 1)-form. In particular
this means that a Dp-brane can couple to lower-dimensional R-R fields. When this
happens the lower-dimensional brane becomes delocalised in its transverse directions
which are parallel to the higher-dimensional brane; it is said to be ‘smeared out’ in

the extra directions.

1.2.2 Non-Abelian D-Brane Actions

In this section we consider the worldvolume actions for N D-branes. The gauge
group on the branes is now non-Abelian; for N coincident D-branes it is U(NV).
Therefore the fields A, and ®*, which live on the D-brane, are now non-commuting.
We take the convention that the ® and the A, are hermitian matrices, so that the

field strength on the branes is given by
Fag = aaA,g - agAa + 'i[Aa, Aﬁ] . (1.2.15)

We first outline some considerations which must be taken into account when

extending the Abelian actions (1.2.8) and (1.2.14) to the non-Abelian case (see
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ref. [22]). For the actions to remain gauge invariant all partial derivatives must be

converted into covariant derivatives in the non-Abelian case, i.e.
0x®" — Da®' = 0,9" + i[A,, D] . (1.2.16)

Recall from equation (1.1.5) that under T-duality in the z? direction we have A, —
®P and so

D,®' — [P, §] . (1.2.17)

And so we may need to include extra commutators of the ® in our non-Abelian
actions, which would be zero in the Abelian case. Also, it is necessary to perform
some sort, of trace over the gauge indices.

We start by considering the non-Abelian extension of the Dirac-Born-Infeld ac-
tion (1.2.8). The full non-Abelian Dirac-Born-Infeld action was found in ref. [22] by
taking the Dirac-Born-Infeld action for a D9-brane and applying T-duality (see also
ref. [23]). Since a D9-brane has no transverse directions in string theory, there are
no ®’s, and so the non-Abelian generalisation of (1.2.8) with p = 9 does not contain
any extra commutators. So the non-Abelian Born-Infeld action for the D9-brane is

defined to be

So = —Ty / d%¢ STr (e‘q’\/ —det (Gap + Bagp + 2m'Faﬁ)) , (1.2.18)

where STr denotes the symmetrised trace, which we will explain below. In what
follows we will assume static gauge, in which £* = z* for the D-brane directions.
Applying T-duality to the action (1.2.18) results in the non-Abelian Dirac-Born-

Infeld action for a Dp-brane, which is

Shis = ~Tp [ ST (67 /= det (PlBap + (@ = 09 Byl + 2rcc g

X \/det(Qij)) , (1.2.19)

where

E;w = Gy,u + Bul/ y (1220)

and

Q' = 0% + i2ma [®F, D*] Ey; . (1.2.21)
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In the derivation of the action (1.2.19) it was assumed that det Q" # 0 (see ref. [22]
for more details). The Abelian case is given by Qij = (53, when the action (1.2.19)
reduces to the Abelian Born-Infeld action (1.2.8). In the low energy limit the leading
order term in o' of (1.2.19) is the action for non-Abelian U(N) super-Yang-Mills
theory, as we would expect.

Next we consider the non-Abelian extension of the Chern-Simons action (1.2.14).
Again, the form of this action can be deduced by requiring consistency with T-

duality. The result is [22]

S / STt (P [e””a"@i@ 3 (C(“)eB)] e’m’F) . (1.2.22)

Here iy denotes the interior product by ®* regarded as a vector in the transverse

space, e.g. for a two-form C(?

,C?® = &' CPdat
S 1 ) )
ipieC?® = <1>1q)fc§f)=§q.(f) [©7, B . (1.2.23)

So the ip introduce dependence on the commutators of the ®* into the non-Abelian
Chern-Simons action. As with the Abelian case, only forms of dimension (p + 1),
and combinations of forms whose dimensions total (p + 1) contribute to the action
(1.2.22), since they must be integrated over the worldvolume of the Dp-brane.

In the non-Abelian actions (1.2.19) and (1.2.22) a symmetrised trace over the
worldvolume fields has been included. This notation indicates that we should sym-
metrise over all orderings of F,5, D,®' and [®*, 7] when we take the trace. Naively
one might include an ordinary trace in the non-Abelian actions. However, this leads
to an ambiguity over the ordering of the fields when calculating the determinant in
the action (1.2.19). The symmetrised trace prescription was proposed by Tseytlin
in refs. [24] and [25] as an alternative. The argument behind Tseytlin’s conjecture
was that, if we expand the Dirac-Born-Infeld action in powers of the field strength
F, then the symmetrised trace prescription retains only even powers of F'. This is
encouraging because odd powers of F' can be written in terms of derivatives of F,
which, as we pointed out in section 1.2.1, are neglected in the Abelian Dirac-Born-

Infeld action. Therefore in generalising the Abelian Dirac-Born-Infeld action, the
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symmetrised trace prescription appears to be the correct way to include a trace over
the non-Abelian fields. In ref. [26] it was argued that the symmetrised trace is the
correct trace operation to include because it is the only candidate which allows the
existence of certain solitons, e.g. monopoles in the D3-brane action (on which the
work in two chapters of this thesis will be based).

Having obtained candidates for the non-Abelian D-brane actions, (1.2.19) and
(1.2.22), they can be tested using open string scattering calculations. Such calcula-
tions have received much attention in the literature; see for example ref. [27], and the
references therein. It turns out that the symmetrised trace prescription is correct at
order (’)?, but that there are higher order corrections at order (a/)® and (/). We

will be working to leading order in ¢/, and so these corrections need not concern us.

1.2.3 Couplings to the Background Curvature

It turns out that the Dirac-Born-Infeld action and the Chern-Simons action, which
we discussed in the previous two sections, are not the whole story. When we wrap
a D-brane on a non-trivial manifold we must also take into account the corrections
to the action due to the background curvature. It will be sufficient for our purposes
to work with the Abelian Dirac-Born-Infeld and Chern-Simons actions. We will
discuss the case of a Dp-brane wrapped on a K3 manifold, p > 4, which will be
relevant for our discussion of the enhangon mechanism in section 1.4.1. Recall that
a K3 manifold is a four-dimensional, Ricci flat, simply connected, compact Kéahler
manifold with SU(2) holonomy. It contains one four-cycle and 22 independent two-
cycles. When we say that a D-brane is ‘wrapped’ on K3 we mean that four of the
brane’s dimensions take on the geometry of a K3 manifold, and the D-brane metric
(1.1.23) is modified accordingly.

For the Dirac-Born-Infeld action the relevant corrections are given by [28]

Sher = ~Tp /dpﬂf e”? \/— det(P[G + Blag + 2ma/ Fop)
(471’261(’)2 oy g i o
§ (1 768n2 (R " Ropys — B Rijap — 2R Rap +2RJRL-J')

+0<<a')4)) , (1.2.24)
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where, again, the indices «, 3,7, § denote directions tangent to the worldvolume of
the brane, and ¢, 7 denote transverse directions. Raﬁ is constructed by pulling-back
the Riemann tensor to the D-brane worldvolume, then contracting it. Similarly, f%ij
is constructed by pulling-back the Riemann tensor to the space transverse to the
D-brane worldvolume, and then contracting. For the case of a D-brane wrapped on
K3, only the corrections involving D-brane directions contribute. Also, since K3 is
Ricci flat, the only contribution from the D-brane directions is R*" R,5.5. After

integrating over the K3 directions, the action (1.2.24) becomes

Sher =~ /dp_(jf e (1,Vks — Tp—4)\/—' det(P[G + Blop + 2ma'Fog) ,  (1.2.25)

where Vi3 is the volume of the K3 manifold. Note that the tension in (1.2.25) now
has an extra component due to the curvature of the K3 manifold.

Including the curvature couplings in the Chern-Simons action, the action be-

thp / P |y C™eP| ™\ [ A(an®a/R) (1.2.26)
Mp+1 n

where A is the ‘A-roof’ or Dirac genus (see refs. [29] and [21]). A is a generating

comes

function, which can be expanded in terms of the Pontryagin polynomials p; as follows

AF) =1~ 5opi(F) + s (Tor(F)? — dpa(F)) - (1.2.27)

Keeping just the first two terms in the expansion (1.2.27), we have

A 2 1 _ (47r2al)2 1 4
A(dr“ad’R) =1+ 51 o TTRAR+ O(a") . (1.2.28)
Integrating over K3 (see ref. [29]), the additional term in (1.2.26) is
—Hp—4 / ce-3) (1.2.29)
Mp_3

where M,,_3 is the manifold consisting of the unwrapped brane directions.

Taking (1.2.25) and (1.2.29) together, we deduce that wrapping a Dp-brane on
a K3 manifold induces a unit negative charge of a D(p — 4)-brane. Note that this is
a different object to an anti-D2-brane; it has a negative charge, but it preserves the
same unbroken supersymmetries as a D(p — 4)-brane. From (1.2.25) we see that the

overall tension is given by

T = TpVK3 — Tp—-4 , (1230)
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where the volume of the K3 manifold, Vi3, may be allowed to depend on the di-
rections transverse to the K3 manifold. The equation (1.2.30) has the potential to
vanish and to become negative. But the enhancon mechanism will prevent this from

happening, as we will see in section 1.4.1.

1.3 Magnetic Monopoles

In this section we will review some of the aspects of magnetic monopoles which we
will be using later on. See refs. [30] and [31] for monopole reviews. The magnetic
monopole was originally postulated in the 19'" century as a pointlike source for the
magnetic field; it was studied by Dirac in ref. (32]. If we include magnetic source

terms in Maxwell’s equations then they take the form
O F"™ =37, OuxF™ =37, (1.3.1)

where F),, is the electromagnetic field strength, and j¥ and j. are the electric and
magnetic four-currents respectively. The equations (1.3.1) are invariant under the
transformation

e T L S (1.3.2)

which is called electromagnetic duality (in essence the electric and magnetic fields are
exchanged, as well as the electric and magnetic currents). For a pointlike magnetic
charge there is no single gauge potential which can describe the magnetic field
everywhere; we must define two overlapping gauge potentials, one for the Northern
half of a two-sphere surrounding the charge, and one for the Southern half. By
requiring that physical quantities are continuous in the overlapping region it turns

out that the electric charge is quantised as follows
eg=2mn, nez, (1.3.3)

where e is the electric charge and g is the magnetic charge. This is the Wu-Yang
derivation [33] of Dirac’s quantisation condition (see ref. [32] for the original deriva-
tion). It is this property which makes the magnetic monopole so attractive to

quantum field theorists.



1.3. Magnetic Monopoles 19

In this thesis we will be dealing with a topological version of the monopole, which
is called the 't Hooft-Polyakov monopole. In section 1.3.1 we will review some of
the basic properties of the 't Hooft-Polyakov monopole, and the limit which results
in the BPS monopole. In section 1.3.2 we will discuss ways of constructing BPS
monopole solutions, in particular the ADHMN construction. In section 1.3.3 we will

review monopole moduli spaces, and their bearing on monopole scattering.

1.3.1 The ’t Hooft-Polyakov Monopole and BPS Monopoles

The 't Hooft-Polyakov monopole is a topological soliton solution of the Yang-Mills-
Higgs theory. It was originally postulated independently by ‘t Hooft and Polykov
in refs. [34] and [35] respectively. The appropriate Lagrangian is

£=§i{—%%FWWéD%UMW—V@ﬁ, (1.3.4)
where gy is the Yang-Mills coupling. Here p, v, ... denote spacetime indices, and
a,b,... denote the gauge indices labelling the adjoint representation of the gauge
group. We take the gauge group to be SU(2) for simplicity at this stage. The gauge

field is defined as follows

Fo, = 8,A% — 8,A% — e AL A (1.3.5)

pitv o

and the covariant derivative is defined to be
D% = §,9* — A0 0° . (1.3.6)

The Bianchi identity
D,x F** =0 (1.3.7)

follows from the definition of F¢#”. The potential V(®) is chosen such that the

vacuum expectation value of the Higgs field ® is non-zero. We will take

vx¢)::%(¢a@a—wﬁ)2. (1.3.8)

2

V' is minimised when ®*®® = v*; we say that the Higgs field & has a non-zero

expectation value v. This breaks the symmetry of the gauge group from SU(2) to
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U(1). Then the perturbative spectrum of the theory consists of a massless photon,

massive spin one gauge bosons W with mass

mw="v, (1.3.9)
and also the Higgs field.
We define
B = Fg,
B = %Giijajk : (1.3.10)

where ¢, 7, k € {1,2,3}. Then E? and Bf are analogous to the electric and magnetic
fields, respectively, of electromagnetism. Then the energy density corresponding to
the Lagrangian (1.3.4) is

1

£=7 (E“ cE®+ B®. B® + II°11° + D%°. 5@“) +V(®), (1.3.11)

where I1* is the momentum conjugate to @, I1* = Dy®*. From the form of the
energy density (1.3.11) we can see that & is positive, and £ = 0 if and only if the

following conditions are met
FeW =DER* =V (®) =0 . (1.3.12)

So the conditions (1.3.12) define the vacuum solution of the theory. For a solution to
have finite energy it is necessary that the vacuum conditions are met on the surface
of the sphere at spatial infinity, which we will denote S2.. In particular, the Higgs
field on the surface of S% must minimise the potential V', with V(®) = 0. We define

My to be the set of all such configurations, then
My = {®°: °0° = *} | (1.3.13)

which has the topology of a two-sphere. Therefore, for finite energy, the Higgs field

configuration at spatial infinity defines a map from one two-sphere to another
®:5% - My . (1.3.14)

Such a map has a topological quantity associated with it called a winding number,

which we will denote by n. For the case considered here, i.e. SU(2) broken down to
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U(1), the winding numbers are the integers, and are given by

1
n=o- Tr(B;D:®)d’z, ncZ. (1.3.15)
Y

In our discussion so far we have not explained the connection to magnetic
monopoles. It turns out that for a solution with n # 0 to have finite energy there
must be a non-zero gauge field to cancel a contribution from the angular part of
(6@“)2 at spatial infinity. The required gauge potential has an angular component
which falls off as 1/r as r — oo, giving rise to a non-zero magnetic field at infinity,
with magnetic charge given by

4
g= 2" (1.3.16)

Equation (1.3.16) is once again Dirac’s quantisation condition with gy, = 2e (the
factor of 2 comes from the charge of field in the fundamental representation of
SU(2)). So we deduce that the solutions we have been discussing, with winding
number n # 0, are magnetic monopoles with magnetic charge g. The conservation
of g comes about because it would take an infinite amount of energy to transform a
solution with n = n; into a solution with n = ny # ny.

Next we will look for a Bogomol’nyi bound on the energy for the monopole
solutions (see ref. [36]). Consider a static solution with the electric field set to zero.
Then the energy of the solution is given by

1

1o = . .
E = = /d3r (—Ba - B* + 1D<I>“ . D‘IJ“) + V(®)
9y m 2 2

> /d3r (%B‘a B+ %5@0 - ﬁcb“)
1 _, ., - .,
= — / d*r (B* — D®*) - (B* — D®*)
29y
1 L
+—— [d’r B*- D®* . (1.3.17)
9y m

The first term in (1.3.17) is positive. Integrating the second term by parts and using
the Bianchi identity (1.3.7)

/d37" B®. D®* = vg . (1.3.18)

where g is the magnetic charge. So we have

lug]

E> —
9y m

: (1.3.19)
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where we have included the modulus in (1.3.19) to account for the case with negative

magnetic charge. Equality holds in (1.3.19) if and only if V(®) = 0 and
B* = Dd° . (1.3.20)

Consider the condition V(®) = 0. For the ‘t Hooft-Polyakov monopole of the
Yang-Mills-Higgs theory (1.3.4) with potential given by (1.3.8), this condition is

realised if we take the limit A — 0, while keeping fixed the boundary condition
|®| v as r —o00. (1.3.21)

This limit is called the BPS limit, and the monopole of this theory which satisfies
the Bogomol'nyi equation is the BPS monopole (see ref. [37]). From (1.3.19), the
mass of a BPS monopole is given by

v
Mmon = 29 . (1322)

9y m

The theories we will be dealing with in this thesis will be supersymmetric theories
in which V(®) = 0. However, it still makes sense to impose the boundary condition
(1.3.21) because to change from one value of the Higgs expectation value v to another
in the theory would take an infinite amount of energy. Therefore the value of v has
to stay fixed once it has been imposed, and so the theory has a well-defined Hilbert
space.

It can be shown that for a ‘t Hooft-Polyakov monopole configuration, i.e. for the
winding number given by (1.3.15) to be non-zero, the Higgs field must be zero at
some point in space. At this point the unbroken SU(2) gauge symmetry is restored.

In our discussion so far we have considered solutions which are purely magnetic.
Solutions with combined electric and magnetic charge are called dyons (see ref. [38]).
For dyons we have the Dirac-Zwanziger-Schwinger condition, which generalises the
Dirac quantisation condition. For two dyons with electric charges e, e; and magnetic
charges g;, g2 it is given by

€192 — €eagy = 27N . (1.3.23)

By calculating the energy of a static configuration with non-zero electric and mag-

netic fields, one can also obtain the generalised Bogomol'nyi bound,

E>v(e?+¢H)Y?, (1.3.24)
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for a dyon with magnetic charge g and electric charge e.

1.3.2 Constructing Monopole Solutions

In this section we consider the techniques available for constructing explicit solutions
for BPS monopoles. We will take the gauge group to be SU(2) throughout.

The charge one solution to the Bogomol'nyi equation (1.3.20) was first found by
Prasad and Sommerfield in ref. [37]. It is given by

a

T
o = H
gymT? (vgvr)
Al = €4, 1— K(v r)), 1.3.25
1 z]gij,rg( ( gy m )) ( )
where
H(y) =ycothy—1, K(y)= y_ (1.3.26)

~ sinhy

Note that the solution (1.3.25) is spherically symmetric. For monopoles with
monopole number n > 2 there are no spherically symmetric solutions. But for
n = 2 an axially symmetric solution has been calculated numerically in ref. [39].
Its charge is concentrated in a ring around the origin, so that it has the shape of
a two-torus (i.e. a ‘doughnut’). Also, for n > 2, multimonopole solutions can be
constructed which are n static, well-separated versions of the charge one solution
(1.3.25). As was shown in ref. [40], this can be done for BPS monopoles because the
Higgs field is massless, and so the Higgs force is long-range. The scalar attraction
due to the Higgs field cancels out the magnetic repulsion between monopoles so that
they can remain static.

There are also some indirect methods which can be used to construct multi-
monopole solutions. One of these uses twistor methods, and was originally described
by Ward in ref. [41]. Using this method, Ward also obtained the axially symmetric
two-monopole configuration described in the previous paragraph. This approach
was studied further by Hitchin in ref. [42]. In the rest of this section we will dis-
cuss another indirect technique which can, in principle, be used to construct all the
monopole solutions for a given monopole number n. This technique was adapted
from the ADHM instanton construction of ref. [43] by Nahm in refs. [44] and [45];
it is called the ADHMN construction. See ref. [46] for a review.



1.3. Magnetic Monopoles 24

First we demonstrate that the Bogomol'nyi equation (1.3.20) is equivalent to the

self-duality equation in four dimensions

1
F. = 55“,,1,,,,[7’,,(7 . My, po€{1,23,4}, (1.3.27)

when the fields are independent of the Euclidean time z,. Setting
A= (1.3.28)

in (1.3.27) recovers the Bogomol'nyi equation (1.3.20).

The first step of the ADHMN construction is to find the Nahm data. These are
n X n. Hermitian matrices, which depend on the real parameter £ € [0, 2], and which
satisfy the following

1. Nahm'’s equations

ar; i
de = éfijk[TjaTk] : (1.3.29)

2. The T; have simple poles at £ = 0 and £ = 2.

3. The matrix residues at the poles form an irreducible n-dimensional represen-

tation of SU(2).

The second step of the ADHMN construction is to solve the construction equa-
tion, which is given by

d Ti0; .
(Hznd—sﬁln@% —Tj®aj> 7=0. (1.3.30)

The equation (1.3.30) must be solved for the complex 2n-vector ¥(¢, Z). For SU(2)
there are two linearly independent solutions for ¢, which we call ) and 5. These

can be normalised so that

2
/ d€vivg =0py, p,qe{1,2}. (1.3.31)
0

In the third step of the ADHMN construction, the solutions for the Higgs field
® and the gauge potential A; can be calculated from the v,. Assembling a 2n x 2

matrix v out of #; and 7, the solutions are given by

2 2
cb:/o(g—l)vadg, A,-:—z'/o viovde . (1.3.32)
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For the general SU(N) case there is a fundamental monopole associated with
each factor of U(1) which occurs when the gauge group is broken. These monopoles
look like embeddings of the unit SU(2) monopole. Then the Nahm data becomes
more complicated; there is a set of Nahm data associated with each U(1) factor. We
will not discuss this in detail as it will not be necessary for the work described in
this thesis; see ref. [47] for a review.

Returning to the Nahm data for the SU(2) case, we can orientate the Nahm

data for a two-monopole so that it has the form

T, — —%ai Cie{1,2,3}, (1.3.33)

where f; are three real functions of &, and o; are the Pauli matrices. With this
ansatz Nahm’s equations reduce to

dfy dfy _

_ dfs
d—g_f2f3 ) df

de

The solution to (1.3.34) satisfying the appropriate boundary conditions is [48]

fafv, = fifs . (1.3.34)

__ KKk __
sn(K(k)E, k) Fa(&, )
K(k)en(K(k)E, k)

(& k) = — KIER (1.3.35)

K(k)dn(K(k)¢, k)
sn(K(k)¢, k) 7

fl(év k)

where K (k) is the complete elliptic integral of the first kind with parameter k, which
is defined as follows

w/2
K(k) =/0 (1 — k2sin®7)"Y2dr . (1.3.36)

Also, sn(x, k), en(x, k) and dn(x, k) are the Jacobi elliptic functions with argument z
and parameter k. See ref. [49] for a review of the properties of these functions. The
parameter k is a modulus of the solution with 0 < k£ < 1. The functions f,(¢, k) and
fo(€, k) are symmetric about € = 1, while f3(£, k) is antisymmetric about £ = 1 (this

can be seen from the periodicity properties of the elliptic functions - see ref. [49]).

1.3.3 The Moduli Space and Monopole Scattering

In this section we will discuss the moduli space of monopole solutions. By the

‘modulus’ of a solution we mean a physical zero mode, i.e. a parameter of the
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solution which can be changed without changing the energy of the solution, or
alternatively a parameter corresponding to a flat direction in the potential energy.
The charge one monopole (1.3.25) has four moduli. Three of these are easy to spot
- they correspond to the freedom to reposition the monopoles anywhere in R®. The
fourth modulus is not so obvious. It can be obtained by deforming a BPS monopole
configuration in such a way that the Bogomol’nyi equation (1.3.20) and the Gauss’

law constraint, given by

are kept fixed. Working in Ag = 0 gauge, there is a unique physical transformation

which obeys these constraints; it is given by the following rigid gauge transformation
U=ex®® (1.3.38)

When x = 0 in (1.3.38) x is a physical zero mode because the transformed configu-
ration still satisfies the Bogomol'nyi equation. The transformation (1.3.38) belongs
to the global U(1) group of electromagnetism, which is compact since it has been
embedded in SU(2), and so x is periodic. The modulus x is therefore called the
phase of the monopole. For a charge n monopole there are 4n moduli, of which
3n represent the positions of the monopoles (at least when the monopoles are well-
separated), and n represent the monopoles phases.

The moduli define a 4n-dimensional manifold M called the moduli space, with
each modulus corresponding to a dimension of M. See ref. [50] for a detailed geo-
metrical discussion of the properties of monopole moduli spaces. In ref. [51] Manton
showed how it is possible to use the moduli space to describe slow motion monopole
scattering. He argued that, for an initial configuration which is tangent to the mod-
uli space, and in the limit of low velocity, the motion is constrained to min(V),
where min(V') is the space of solutions which minimise the potential of the Yang-
Mills theory, i.e. the moduli space. Then the motion is described by a geodesic in

the moduli space, with the action

1
S:E/m%m%k (1.3.39)

where 2 are the moduli with kK, A = 1,...,4n, and g., is the metric on moduli

space. This action can be obtained from the standard action for a path in the
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configuration space of monopole solutions (see ref. [51] for details). The action
(1.3.39) is the effective action in which terms of order z* and higher have been
ignored. For monopole motion this means that there are some effects, such as energy
radiation, which have been ignored. We will focus more on the energy radiated
during monopole scattering in chapters 3 and 4.

For a two-monopole solution the geometry of the moduli space is (see ref. [52]),

Sl x M

RS
X ZQ

(1.3.40)

In (1.3.40) the R? corresponds to the centre of mass position of the monopoles, the
S! to the overall phase, and M is a four-dimensional manifold which specifies the
relative position and phase. The quotient by Z, is because the monopoles cannot
be distinguished. The metric on moduli space for the centre of mass coordinate X

and the overall phase x is flat
dX - dX +dy?* . (1.3.41)

The metric on moduli space for M is more interesting. It can be shown to be
invariant under SO(3) rotations, and hyper-Kéahler. In ref. [52] these properties were
used to deduce the asymptotic form of the metric in the limit that the monopoles are
well-separated; it is the Taub-NUT metric with a negative mass parameter, which
is given by

ds> = U(r)dr- di + 4U(r) N dy + & - d7)? (1.3.42)

where 7 = (Z; — &) is the relative position of the monopoles, and ¥ = (x; — x2) is

the relative phase. Here U(r) is a function of r = |7], which is given by

Ur)y=1- = (1.3.43)
Also w is defined by
- LT
Vxda= el (1.3.44)

Note that, although the metric (1.3.42) contains a singularity at r = 2, this is not a
problem because the singularity is outside the region in which (1.3.42) is valid. The
unique metric with the properties of SO(3) isometry and hyper-Kahlerity, which
has Taub-NUT as its asymptotic limit, and is also smooth, is the Atiyah-Hitchin
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metric. We will not discuss the details of this metric here - the Taub-NUT metric
will be sufficient for our purposes.

For monopoles with monopole number n the metric on moduli space is not known
accurately. It was calculated in the asymptotic limit by Gibbons and Manton in
ref. [53]. They used the fact that allowing the phases to depend on time results
in a non-zero electric field, so that the monopoles become dyons. By studying
the dynamics of the dyons, and reinterpreting the electric charges as phases, they
used (1.3.39) to deduce the asymptotic form of the metric. They obtained the

generalisation of the Taub-NUT metric to higher dimensions. Defining r,s = |Z, —Z,|

and
1
V, X &yps =V, (-—) : (1.3.45)
’r'rs
where 7, s = 1,...,n. The metric is given by
ds? = g5 dZ, - dTs + (97 Vps(dO, + Wiy - dZ,) (dBs + Wiy, - dZ,) | (1.3.46)
where
1
= 1— —, , 1.3.47
g ; — (no sum over ) ( )
1
gs = —, (r#s), (1.3.48)
W, = —Z(D’Ts ,  (no sum over r) , (1.3.49)
r#8
Wys = Grs, (T#3). (1.3.50)

We next discuss a particular geodesic in the two-monopole moduli space which
we will make use of in chapters 3 and 4 (see ref. [50]). Consider two monopoles ap-
proaching each other headlong along the z! axis. When they collide the monopoles
form the axisymmetric ‘doughnut’ configuration in the z!-z? plane. Therefore the
motion corresponds to motion in a sub-manifold of the moduli space which is in-
variant under rotations of angle m about the z3-axis. This submanifold is therefore
isometric to R?/Z,, which is the cone with vertex angle m/3. Since the Atiyah-
Hitchin manifold is smooth, we can think of the sub-manifold as this cone with
a smoothed out vertex. The geodesic corresponding to headlong collision is the
one which bounces back from the vertex of the cone. This geodesic corresponds to

scattering by an angle of 7/2 in R3.
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1.4 D-Branes as BPS Monopoles

In sections 1.1 and 1.2 we have reviewed some of the basic properties of D-branes,
and in section 1.3 we have reviewed some of the properties of BPS monopoles.
In this section we will review some of the ideas on which the work in this thesis
was based; how D-branes can act as BPS monopoles. We will concentrate on two
specific examples; the enhangon, and D-strings (i.e. DI-branes) attached to D3-
branes. There are many other examples of D-brane configurations which act as
BPS monopoles, which we will not discuss here (some of them are related to the
configurations we shall discuss by the various dualities of string theory). In section
1.4.1 we will review the enhangon, and in section 1.4.2 we will review D-strings

attached to D3-branes.

1.4.1 The Enhancon Mechanism

In this section we will review what happens when a Dp-brane is wrapped on a K3
manifold for p > 4. Recall from section 1.2.3 that this induces a unit negative charge
of a D(p — 4)-brane. To be concrete we will discuss the case p = 6. Most of the
material from this section can be found in the original enhangon paper, ref. [54],

and in ref. [4].

The Supergravity Solution

Using the harmonic function rule for p-brane solutions (see refs. [55] and [56]), the

supergravity solution for this object in the string frame is given by

ds? = 27277 npdatds® + 73 2 doida

yV2Z R 7o s (1.4.1)
e = 27?773 (1.4.2)
C® = —g7'(1 - Z;1)dz® Adz* A da® (1.4.3)
C = Vg (1 - Z;Y)dx® Ada* Ada® Ada® AdzT Adz® AdR®, (1.4.4)

where o, now represent the directions common to both branes, a, 8 € {0,4,5},

and as usual 7,j represent directions transverse to the branes, 4,j € {1,2,3}. The
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harmonic functions Zs and Zg are given by

22:1_{_2’ Z6:1+E7 (1.4.5)
T r
with 7 = (2*z")}/? and
on)g, Na'5/? sNa'1/2
vy — _ugw_ pe= QT , (1.4.6)

N is the number of D6-branes, and also the number of induced D2-branes. The
parameter V is the volume of K3, measured at spatial infinity. From the form of

the metric (1.4.1) we see that the volume of K3 at radius r is given by

Zz (T
Zﬁ (’l“

~—

VK3 (T‘) = V

. (1.4.7)

—r

There is something obviously wrong with the supergravity solution we have pre-
sented above; it has a naked singularity at r = —ry, when Z; = 0. So the region
r < |rs| appears to be unphysical. The resolution to this problem is the enhangon

mechanism, which was proposed in ref. [54].

A Brane-Probe Calculation

There is clearly a problem with the supergravity solution given by equations (1.4.1)
- (1.4.6). In order to understand the geometry better we can probe it with a single
D6-brane wrapped on K3, which we move in from spatial infinity. The effective
action governing the motion of the brane probe is the Dirac-Born-Infeld action
and the Chern-Simons action together, taking into account the curvature couplings

discussed above. It is given by

Save = = | %6 (1Vialr) = 72) /= det(P[Glaa)

Mo

+46 / CD —yy | C® | (1.4.8)
Mox K3 Mo

where M is the unwrapped part of the D-branes’ worldvolume, and P denotes the
pullback to My. The D-brane charges u, and ug were given in equation (1.1.14). We
allow the D-brane probe 