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Abstract 

In this thesis· high quality electron densities are used to provide insight into 

density functional theory (DFT) and to improve the quality of DFT calcu­

lations. 

Chapter 1 provides an introduction to ab initio molecular wavefunction 

calculations with particular emphasis on the Hartree-Fock method. Chap­

ter 2 outlines important concepts in density functional theory (DFT). This 

includes a discussion of the Zhao, Morrison and Parr (ZMP) method, vvhich is 

the key to calculating DFT quantities from high quality densities. In Chap­

ter 3, high quality densities are used to gain an understanding of dispersion 

interactions in the helium dimer. The investigation seeks to understand the 

correlation potentials associated with a density distortion that gives rise to 

the correct dispersion forces. Chapter 4 presents a study of response prop­

erties using orbitals and eigenvalues determined from high quality densities. 

Both magnetic and electric properties are considered and comparisons are 

made with conventional DFT functionals and wavefunction methods. Chap­

ter 5 makes a comparison between Kohn-Sham eigenvalues and related prop­

erties, generated both by conventional functionals and from densities. The 

influence on NMR shielding constants is considered and two approaches to 

correcting LUMO eigenvalues are presented. In chapter 6, a DFT exchange­

correlation functional determined from a fit to high quality densities is ap­

plied to study the gauche effect in 2-~uoroethylamine, 2-fluoroethanol and 

their protonated analogues. Conclusions are presented in Chapter 7. 
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Every attempt to employ mathematical methods in the study 

of chemical questions must be considered profoundly irrational 

and contrary to the spirit of chemistry. If mathematical analysis 

should ever hold a prominent place in chemistry-an aberration 

which is happily almost impossible-it would occasion a rapid 

and widespread degeneration of that science. 

A. Compte 

Philosophie Positive, 1830. 
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Chapter 1 

Molecular electronic structure 

calculations 

In this chapter, quantum chemical methods which seek to obtain an approxi­

mate solution to the Schrodinger equation are examined. Beginning with the 

Hartree-Fock method (the least computationally expensive ab initio method 

in general use), the theory is described in detail and the concepts of exchange, 

correlation, restricted and unrestricted calculations and expansion into a ba­

sis set are introduced. These concepts will be relevant for later discussion of 

density functional theory. 

The limitations imposed by the approximations employed in the Hartree­

Fock method are discussed. More sophisticated techniques which seek to 

circumvent these limitations (at a cost of increased complexity) arc then 

introduced. These methods will be used later in this thesis to generate high 

quality electron densities for use in density functional theory calculations. 

----------------------



1.1 The Schrodinger equation 2 

1.1 The Schrodinger equation 

Mathematical expressions exist that describe all phenomena of interest to 

chemists to an accuracy that is in negligible disagreement with experimental 

values. Unfortunately, except for a few trivially simple systems the equations 

are too complicated to solve when applied to atomic or molecular systems. 

Thus computational chemistry is the search for approximate mathematical 

models which will provide qualitative insight into chemical processes and 

allow quantitative predictions to be made. At present, a compromise must 

generally be made between accuracy of results and scope of the applicability 

of a given method. 

Schrodinger's wave mechanics [1] was inspired by de Broglie's hypothesis 

that particles of matter have associated wavelengths [2]. Schrodinger devel­

oped a mathematical expression to describe these matter waves, and it is this 

wave equation that is known as the Schrodinger equation. The most general 

form of the Schrodinger equation is the time-dependent case 

(1.1) 

which describes how the wavefunction, W, (which describes the dynamical 

properties of the system in question) evolves in time. The symbol n is 

Planck's constant divided by 27!", t is time and H is the operator corre­

sponding to the total energy of the system 1 . In the realm of atomic theory, 

Schrodinger interpreted the wavefuncqon as a description of the spatial dis- . 

tribution of electronic charge that he considered to constitute an electron [1]. 

However, this view has been largely replaced by that put forward by Born [3], 

that w•w is the probability density. Hence 'll is a probability amplitude and 

has no obvious physical interpretation. 

There is no way to derive the Schrodinger equation, just as there is no 

way to derive Newton's Laws of motion. Arguments can be made for the 

plausibility of the relations described by the equation, but in general the 

1 known as the Hamiltonian operator. In classical physics, the Hamiltonian is the sum 

of the kinetic energy and potential energy H = T + V 
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Schrodinger equation is treated as a postulate of quantum mechanics and 

its adoption rationalised by its quantitative agreement with experimental 

results. 

Many properties of isolated systems are independent of time. There­

fore, when calculating such properties it is both valid and convenient to 

separate the Schroclinger equation into expressions for the time and space 

variation of the wavefunction. From this separation may be developed the 

time-independent Schroclinger equation 

iiw = Ew ( 1.2) 

which makes it possible to construct expressions describing systems of interest 

in quantum chemistry. For the case of a particle of mass m and total energy 

E, moving in one dimension x, experiencing a potential V, the Schrodinger 

wave equation for that particle is 

---+V W=EIJ! ( 
-n? 82 ) 

2mox2 

and so the Hamiltonian is 

' Jt 2 [j2 
H=---+V 

2m8x2 

(1.3) 

(1.4) 

For a molecular system of ~M nuclei and N electrons, neglecting energy 

clue to translational motion, the non-relativistic Hamiltonian H is a differ­

ential operator representing the total internal energy of the system. In the 

absence of external magnetic or electric fields, and working in atomic units 

( e = Jt = me = 47TEo = 1) 

The first and second terms are the kinetic energy operators for the nuclei and 

electrons, respectively. The third term is the coulomb attraction between 

the electrons and the nuclei and the fourth and fifth terms are the electron­

electron and nuclear-nuclear repulsion, respectively. MA is the ratio of the 



1.2 The Born-Oppenheimer approximation 4 

mass of nucleus A to the mass of an electron and ZA is the atomic number 

of nucleus A. The Laplacian operators \7~1 and 'VI involve differentiation 

vvith respect to the coordinates of the A.th nucleus and the ith electron, 

respectively 
n EJ. a. ()k 
V= -I+ -J +-

EJx EJy EJz 
(1.6) 

and 

(1.7) 

1.2 The Born-Oppenheimer approximation 

The time-independent Schri::idinger equation (1.2) is a second order differen­

tial equation in 3(N +NI) variables. In order to simplify this expression, the 

great difference between the mass of the nuclei and the mass of the electrons2 

is exploited. This difference in mass suggests that any change in the position 

of the nuclei can be accommodated almost instantaneously by the electronic 

motion. In consequence, electronic and nuclear motion may be considered 

separately, to a good approximation. This is the Born-Oppenheimer [4, 5] 

or clamped-nuclei approximation. The nuclei are considered to be fixed in 

position and the electronic Schri::idinger equation 

Helec \)} elec = Eelec \)} elec (1.8) 

is solved for the electrons in the sta~ic potential clue to the nuclei. The 

wavefunction, \1! elec, has a parametric dependence on the nuclear coordinates 

and the electronic Hamiltonian, Helec, is 

' V? ZA 1 
Helec = - L- - L- + L-

. 2 . I T;A . . riJ. 
t u t>J 

(1.9) 

The variation of the energy with the nuclear coordinates defines the potential 

energy surface (PES); the minimum on this surface defines the equilibrium 

geometry. The force is minus the derivative of the energy with respect to the 

2 t.he smallest. nucleus, a single proton, has a mass over 1800 times that of an electron 
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nuclear coordinates, so when considering forces on nuclei (as will be done in 

Chapter 3) the PES determines the quality of calculated forces. 

\iVhen nuclear movements must be taken into account, as in spectroscopic 

measurements, for example, an effective Hamiltonian is used consisting of the 

nuclear kinetic energy operator and the potential energy from the fixed-nuclei 

approximation. 

In all work described in this thesis the Born-Oppenheimer approximation 

is used, so the electronic subscripts will be omitted for clarity. 

1. 3 Hartree-Fock theory 

Even after the nuclear and electronic motion have been decoupled usmg 

the Born-Oppenheimer approximation, the electronic Schrodinger equation 

is still a many-body problem. Although it is possible to describe the mo­

tion of individual electrons, the motion of the electrons is coupled, meaning 

that their equations of motion must be solved simultaneously. vVhen there 

are two coupled particles (a 2-body problem) the system of equations is ex­

actly solvable, but an n-body problem (where n 2:: 3) is, in general, unsolv­

able analytically3 . Hence it is not generally possible to solve the electronic 

Schroclinger equation directly and simplifying assumptions about the form 

of the many-electron wavefunction must be made. 

vVithin Hartree-Fock theory [6, 7] the electronic wavefunction for an N­

electron system is approximated by an anti-symmetrised product (a Slater 

determinant) of N one-electron wavefunctions, X;(x). These one-electron 

wavefunctions are termed spinorbitals and they are the product of a spatial 

orbital function and a spin function 

X;(x) = <Pf(r)a(s), a= a, f3 (1.10) 

3 certain particular n-body problems can be solved analytically and all can (in principle) 

be solved numerically 
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The Hartree-Fock wavefunction, W1-1F, is generally written 

Xt (xi) X2(x1) XN(xl) 

1 Xt (x2) X2(x2) XN(x2) 
\]!HF = JNf (1.11) 

xt(xN) X2(xN) XN(xN) 

where 1/ JNf is a normalisation constant. It is necessary to use the antisym­

metrised product of the one-electron wavefunctions, since a simple product 

(as employed in the Hartree method [8]) would not satisfy the Pauli principle, 

which requires that the total electronic wavefunction, 1]!, be antisymmetric 

with respect to the interchange of the space and spin coordinates of two elec­

trons. A short hand notation for eqn. (1.11), which will be employed later in 

this text, gives just the diagonal elements 

(1.12) 

The energy associated with a general Slater determinant, <I>sD, is just the 

expectation value 

(1.13) 

Expanding this expression gives 

E[<I>sD] = -} L (xi 1\72 1 Xi)+ j p(r)vext(r)dr 
t 

+ ~ j"j p(r )p(r,') drdr' - j"j Pt (r, r')
2 

drdr' (1.14) 
2 I r - r'l . I r - r'l 

where Vext(r) is the external potential 

(1.15) 

p(r) is the electron density, which may be expressed in terms of the spinor­

bitals 

p(r) = L lxJr)l
2 (1.16) 
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and p1 (r, r') is the reduced 1-particle density matrix 

(1.17) 

The first term in eqn. (1.14) is the kinetic energy, the second is the nuclear­

electron attraction energy, the third is the classical electron-electron repulsi·on 

(the coulomb or Hartree term) and the fourth term is the exchange energy. 

The exchange energy does not have a simple classical interpretation, but is 

defined by its effects. The Pauli exclusion principle means that two electrons 

cannot occupy the same state, and hence two electrons with the same spin 

cannot be located at the same point in space. This tendency of electrons of 

like spin to avoid one another means that the true average repulsion energy 

will be lower than that computed from the coulomb term. The exchange 

energy is the correction made to take into account the reduced probability 

of finding two electrons of the same spin near one another. 

Using the variational principle4 it can be shown that any energy computed 

from a trial wavefunction will be an upper bound to the true energy. Hence, 

the spinorbitals are varied 

(1.18) 

to find the Slater determinant that gives the lowest energy 

EHF = min E[<I>so] 
<I>so~N 

(1.19) 

subject to the constraint that the orbitals remain orthonormal. Following an 

appropriate unitary transformation (a ~·otation of the orbitals that maintains 

orthononormality), this gives the Hartree-Fock equations 

[ -~\72 + Vext(r) + V.J(r)] Xi(r)- j ~~(:, ;;~ Xi(r')dr' = EiXi(r) (1.20) 

where V.J ( r) is the coulomb potential 

I p(r') , 
v J ( r) = . I r - r'l dr (1.21) 

4The theorem states that \ WtriadHillltrial J = Etrial 2 Eo = \ llloiHIWo J for any trial 

wavefunction 
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The value of this potential at r depends on the value of pat all points r1
, so 

it is termed non-local. It is also termed multiplicative, since the effect of the 

operator on the spinorbital at r depends only on the value of that spinorbital 

at r; there is a well-defined potential at all points in space. It is important 

to note that the exchange operator 

j. p 1 ( r' rl) ( I) i I 
I I 

Xi r er 
r- r 1 

(1.22) 

is also non-local in the same sense as the Coulomb potential is non-local. 

However, the effect of the operator on the spin orbital depends on the value 

of the orbital at all points in space, and so the operator is termed non­

multiplicative; there is not a well-defined potential at each point in space. 

The notation may be further simplified through the introduction of the 

Foclc operator, F such that 

(1.23) 

Since the spinorbitals are obtained by solving an equation involving the Fock 

operator, and the Fock operator in turn depends on all the other spinorbitals, 

the solution must be known in order to set up the equations. The way around 

this is to solve the equations in a self-consistent, iterative manner. A guess 

is made for an initial set of spinorbitals and these are used to formulate 

the Foclc operator. The Hartree-Fock equations are then solved to obtain a 

new set of spinorbitals and this proces~ is repeated until convergence (in the 

energy or some other term) is achieved. In this thesis the method is denoted 

Hartree-Foclc Self Consistent Field (I-IF -SCF). 

1.3.1 Restricted and unrestricted Hartree-Fock 

vVhen dealing with closed-shell atoms or molecules it is usual to make the 

assumption that each pair of electrons shares the spatial form of their spinor­

bitals 

( 1. 24) 
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This is the restricted Hartree-Fock (RHF) method. Note that a system hav­

ing an even number of electrons is not equivalent to it being a dosed-shell 

system. Consider the case of the neutral carbon atom, which has six elec­

trons. If the electrons that occupy the p orbitals are constrained to share 

the spatial form for their spinorbitals a state will exist that is lower in en­

ergy. According to Hund's rule of maximum multiplicity, the state with the 

highest multiplicity is synonomous with that with the lowest energy. Thus 

the energy could be lowered by relaxing the paired-electron constraint and 

allowing the p orbital electrons to occupy different orbitals. 

For open-shell systems there are two commonly used procedures. In the 

restricted open-shell formalism all electrons, except those explicitly required 

to occupy open-shell orbitals, occupy dosed-shell orbitals. This has the ad­

vantage that the wavefunction is an eigenfunction of S2
. However, the spa­

tial equations are more complicated than those of unrestricted Hartree-Fock 

(UHF), and the constraint of occupying orbitals in pairs raises the variational 

energy. Alternatively, in the unrestricted open-shell formalism [9] there is no 

constraint that electrons occupy orbitals in pairs. The relaxing of this con­

straint lowers the variational energy, but at a price: the wavefunction is no 

longer an eigenfunction of S2 . 

1.3.2 Expansion of the spinorbitals into a basis set 

The HF-SCF procedure can be implemented for atoms, since their spherical 
' 

symmetry allows numerical sol uti on of the HF -SCF equations for the spinor­

bitals. This is not the case for molecular systems, and it becomes necessary 

to modify the method. Roothaan and Hall's procedure for expanding the 

spatial part of the spinorbitals into a known basis set [10, 11] transforms 

the HF -SCF coupled equations into an algebraic problem that can be solved 

using standard matrix techniques. Nearly all modern implementations of the 

HF -SCF method use these matrix techniques for both atomic and molecular 

applications, although numerical solutions are possible for atomic systems. 

All calculations in this thesis involve expansion into a basis set. 
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Consider the restricted Hartree-Fock method. The introduction of a set 

of known basis functions allows us to expand the orbital functions cpp(r) as 

linear combinations of the basis functions 7]/3 (r) 

cPp(r) = L Cf3p77/3(r) 
(j 

(1.25) 

This expansion is only exact if the set of basis functions is complete (the basis 

set limit). Since this would require an infinite basis set, it is not achievable 

in practice. Because of this, the selection of basis functions is an important 

optimising step, as limiting the number of basis functions used reduces com­

putational costs, but the basis set must provide an appropriate expansion for 

the orbitals. 

Taking the Hartree-Fock equations expressed in terms of the Fock oper­

ator, eqn. (1.2.3), and integrating out spin gives 

(1.26) 

Substituting the basis functions into this HF -SCF expression for the spatial 

vvavefunctions gives 

I. F(r, r') L c/3i17/3(r')dr' = Ei L cf3iTJf3(r) 
. /3 /3 

(1.27) 

To transform this into a matrix equation each side is multiplied by 17; (r) and 

integrated over dr 

L c/3i I I 77~(r)F(r, r')77!3(r')drdr1 
= Ei L c/3i I 77~(r)77!3(r)dr 

/3 /3 
( 1. 28) 

which is one of a set of J\1 simultaneous equations (one for each value of i). 

The introduction of two matrices simplifies the notation. First, the overlap 

matrix S with elements 

Sa/3 =I 77~(r)7713(r)dr (1.29) 

and the Fock matrix F 

Fa/3 =I I 77~(r')F(r, r')'TJ/3(r)drdr' (1.30) 
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Thus eqn. (1.28) can be re-written in compact matrix notation 

FC =SCE (1.31) 

C and.E are both 111 x j\;J matrices; C is composed of the coefficients Cf3i and 

E is a diagonal matrix of the orbital energies Ei· Eqn. (1.31) has non-trivial 

solutions only if 

(1.32) 

Again, a self-consistent, iterative approach is needed to solve this matrix 

problem. 

1.3.3 Koopmans' Theorem 

There is considerable theoretical interest and some confusion over the physi­

cal significance and the interpretation of the orbitals in Kohn-Sham density 

functional theory. Before considering this issue in detail (see Chapter 5) it 

is useful to describe the original Koopmans' theorem [12], which provides a 

physical interpretation of the Hartree-Fock orbital energies. 

Koopmans' theorem states that the orbital energy, Ei obtained from Hartree­

Fock theory is an approximation to minus the ionisation energy (I) associated 

with the removal of an electron from that particular orbital, i.e. 

(1.33) 

Thus for the HOMO eigenvalue 

(1.34) 

The theorem is approximate because it ignores reorganisation (the tendency 

of a system to relax into a lower energy configuration when an electron is 

removed) and electron correlation (see Section 1.4). Fortunately, these errors 

tend to cancel one another. In general, the HF-SCF HOMO eigenvalue is 

a reasonable approximation to minus the experimental ionisation potential. 

However, the virtual orbitals from HF -SCF theory are often not bound. 
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1.4 Electron correlation 

Even if the calculation is carried out in the basis set limit, the ground state 

Hartree-Fock energy does not correspond to the exact non-relativistic ground 

state energy (-within the Born-Oppenheimer approximation) of the system 

being modelled. This discrepancy is clue to the neglect of what are termed 

correlation effects within the Hartree-Fock method. The computational ef­

ficiency of the Hartree-Fock method is achieved through the use of a single 

determinant to represent the wavefunction. However, this leads to the ne­

glect of the instantaneous coupling of the motion of the electrons. Instead, 

each electron moves in a potential that arises from the average effects of the 

other electrons. 

A precise, universal definition of correlation (effects or energy) is prob­

lematic because it is defined as those phenomena or components of an energy 

expression that are neglected by a particular approximate scheme. The con­

ventional definition of the correlation energy is that due to Lowdin [13] 

"The correlation energy for a certain state with respect to a spec­

ified Hamiltonian is the difference between the exact eigenvalue 

of the Hamiltonian and its expectation value in the Hartree-Fock 

approximation for the state under consideration." 

For the purpose of this work the difference between the exact, non-relativistic 

ground state energy within the Born-Oppenheimer approximation and the 

Hartree-Fock ground state energy is taken to be the correlation energy 

(1.35) 

This is a negative quantity since EHF :2: E0 (see Section 1.3). 

It is common to identify separate contributions to the electron correla­

tion. Dynamical correlation arises because the instantaneous repulsion of the 

electrons is not covered by the effective HF -SCF potential. Therefore, the 

electrons get too close to one another in the HF-SCF scheme. This means 

that the electron-electron repulsion term is too large, so EHF > E0 . This is 
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referred to as dynamical correlation because it relates to the movement of 

individual electrons and is a short-range effect. 

Non-dynamical or left-right correlation arises under circumstances where 

a single determinant fails to adeq"t1ately describe the true ground state. It 

is referred to as left-right correlation because it is most often discussed m 

the context of diatomic molecules. The canonical example is the dissociation 

of H2 . As the internuclear separation R --+ oo there can be no dynamical 

correlation, as there are no electron-electron interactions (there are two inde­

pendent hydrogen atoms with one electron on each, and they are infinitely far 

apart, so 1/r --+ 0). However, although the restricted Hartree-Fock scheme 

describes the H2 system reasonably well at equilibrium distances, the error 

increases as the internuclear separation increases. 

The next consideration is how to introduce a description of the electron 

correlation into the approximate solution of the Schrodinger equation. The 

modelling of correlation in density functional theory will be a major compo­

nent of Chapter 3. Remaining within wavefunction theory, the introduction 

of electron correlation depends on increasing the number of determinants 

used to approximate the N-electron wavefunction. Several such procedures 

are examined below. 

These correlated methods will be used in subsequent chapters to calcu­

late electronic densities that will be employed to generate density functional 

theory quantities. 

1.4.1 Configuration interaction 

Conceptually, configuration interaction (CI) is the simplest procedure for tak­

ing into account correlation effects. The exact ground-state and excited-state 

wavefunctions can be expressed as a linear combination of all possible N­

electron Slater determinants arising from a complete set of spinorbitals [13]. 

Thus the exact ground-state or excited state electronic wavefunction '11 of 

a system can be written as a linear combination of the ground state and 
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excited configuration state functions ( CSF)5 

?.,a i<j<k 
n<b<c 

14 

(1.36) 

where C denotes an expansion coefficient. The limits in the summations 

ensure that a given excited determinant appears only once in the summation. 

The energy associated with eqn. (1.36) is the exact non-relativistic ground 

state energy (within the Born-Oppenheimer approximation). The difference 

between this energy and the Hartree-Fock limit is the correlation energy. 

As always, computational considerations limit the practical calculations 

that are feasible. Firstly, as in the HF -SCF method, it is only feasible to 

employ finite basis set, meaning that all CSFs are constructed from a finite 

set of one-electron spin orbitals. Full Cl refers to a Cl calculation using 

all the CSFs of the appropriate symmetry for a given finite basis set. The 

·difference between the HF-SCF ground state energy and a full Cl calculation 

using the same basis set is called the basis set correlation energy. In the limit 

of a complete basis full Cl gives the exact wavefunction, and the basis set 

correlation energy is equal to the correlation energy. 

In addition to the limits of the basis set, it is also computationally very 

demanding to handle large numbers of determinants. Even with a small 

number of electrons and a small basis the number of determinants quickly 

becomes very large indeed. Thus it is almost always necessary to truncate 

eqn. (1.36), e.g. truncation at doubl~ excitations gives Cl singles-doubles 

(ClSD). 

This truncation causes an additional problem besides reducing the accu­

racy of the method. Full Cl is size-consistent, but truncated Cl is not. A 

method is size-consistent if the sum of the energy of two isolated fragments is 

"a configuration state function is an N -electron Slater determinant constructed from 

a set of spinorbitals, or a linear combination of a small number of Slater determinants. 

Thus the Slater determinant that is used to approximate the N -electron wavefunction in 

Hartree-Fock theory is a CSF, but many more CSFs can be constructed from the same 

spinorbitals, with one or more electrons promoted from occupied to virtual orbitals. 
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equal to the energy of those two fragments in a dimer when the internuclear 

distance is infinite. 

1.4.2 Coupled cluster theory 

Introduced to quantum chemistry in the late 1960s by Cfzek and Paldus [14, 

1.5, 16], the coupled cluster (CC) method, like Cl, expresses the wavefunc­

tion as a linear combination of Slater determinants. Unlike Cl, truncated CC 

methods are size-consistent. The exact, non-relativistic ground-state molec­

ular electronic wavefunction is given as 

(1.37) 

where <1> 0 is a normalised, ground-state wavefunction6 and e1 is an operator 

defined as a Taylor-series expansion 

t - . ~ j2 j3 = f'k 
e =1+T+-+-+···="'"'-

21 31 L..., 1~1 
. . ' k=O 11'' 

( 1. 38) 

where the cluster operator T is 

(1.39) 

where n is the number of electrons in the molecule. T1 is the one-particle 

excitation operator defined as 

= n 

T1 <I>o = S L tf<Pf ( 1.40) 
b=n+l i=l 

vvhere <Pi is a singly excited Slater determinant with the occupied spinorbital 

c/Ji replaced by the virtual spinorbital c/Ja, while ti is a numerical coefficient 

the value of which is dependent on i and a and is determined by considering 

(1.37) to be a necessary condition. Similarly T2 is the two-particle excitation 

operator = oo n n-l 

T2<Po = L L L L tfJ<PfJ (1.41) 
b=a+la=n+lj=l+l i=l 

6 often, hut not necessarily, the Hartree-Fock wavefunction. 



1.4 Electron correlation 16 

Thus the effect of the et operator is to express the wavefunction as a linear 

combination of Slater determinants that include <T? 0 and all possible excita­

tions of electrons from occupied to virtual spinorbitals. Two approximations 

are used to make calculations feasible 

1. a finite basis set is used to express the spinorbitals 

2. not all of the operators T1 + T2 + · · · + Tn are used, instead T is ap­

proximated by using only some of these operators 

Two commonly used truncations are the coupled cluster singles and doubles 

(CCSD) 

(1.42) 

and CC singles, double and triples (CCSDT) 

"' " "' "' 
T = T1 +T2 +T3 (1.43) 

1.4.3 Brueckner theory 

Brueckner's theory for infinite nuclear matter [17] was first proposed for 

use with systems of atoms and molecules by Nesbet [18]. For our purposes, 

Brueckner theory can be considered to be a variant on coupled cluster theory. 

It is possible to carry out a CCSD calculation in which the effects of the single 

excitations are absorbed into the orbitals. This was first proposed by Chiles 

and Dykstra [19] and Handy and co.Jworker:s [20, 21, 22] similarly imple­

mented the procedure-which is generally referred to as Brueckner Doubles 

(BD)-along with a perturbational triplet correction (BD(T)) and analyti­

cal energy gradients. The ground state determinant used in the expansion is 

chosen to have the maximum overlap with the exact wavefunction possible 

for a single determinant 

max('l/;I<T?) ( 1.44) 

and the resulting orbitals are called Brueckner orbitals. 
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1.4.4 lVI0ller-Plesset perturbation theory 

Configuration interaction calculations are variational but they have the dis­

advantage that they are not size-consistent (except for full CI). An alternative 

method for approaching the correlation energy in a systematic manner arises 

from perturbation theory. The exact Hamiltonian is expressed in terms of 

the known Hamiltonian of a simpler system and a correction 

fi = fJ(O) + fJ(l) (1.45) 

The resulting scheme is size-consistent, though energies calculated in this 

way are not variational. 

Perturbation theory applied to molecular systems (or, more generally, 

systems composed of many interacting particles) is usually referred to as 

many-body perturbation theory (i\IIBPT). \Vhen the zeroth-order Hamilto­

nian is composed of a sum of the Hartree-Fock SCF Fock operators (see 

eqn. (1.26)) then the procedure is called i'V!f}ller-Plesset perturbation theory 

(MPPT). The zeroth-order Hamiltonian in l\IIP theory is defined as 

n 
~ (0) -"'"' ~. H -~Fz (1.46) 

i=l 

The perturbation is expressed in terms of the zeroth-order Hamiltonian 

n 

i{(l) = ii - 2: pi (1.47) 
i=l 

where H is the electronic Hamiltonian, see eqn. (1.9). The Hartree-Fock 

energy is given by the expectation value 

(1.48) 

or equivalently 

(1.49) 

Since the zeroth and first order corrections to the energy can be expressed 

as 

( 1. 50) 
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and 

(1.51) 

it is clear that the Hartree-Fock energy is equal to the sum of the zeroth and 

first order energy corrections 

(1.52) 

This implies that second order perturbation theory is required to obtain the 

first order correction to the ground-state energy 

(1.53) 

This yields the following expression for the second order correction to the 

energy (the inclusion of which is referred to as MP2) 

( 1. 54) 

which includes contributions from double excitations only, since only doubly 

excited determinants contribute to the second order energy correction. 



Chapter 2 

Density functional theory 

Density functional theory (DFT) is an alternative approach to the electronic 

structure problem. This chapter covers early formulations of density hmc­

tional theory, general proofs of the validity of using the electron density as the 

fundamental variable in electronic structure calculations and a discussion of 

Kohn-Sham density functional theory, which is the formalism underpinning 

the majority of calculations carried out in this work. 

Also introduced is the method of Zhao, Morrison and Parr (ZMP) which 

enables the construction of DFT orbitals, eigenvalues and potentials from 

electron densities. This is the formalism by which high quality densities will 

be introduced into DFT calculations, the major component of this thesis. 
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2.1 The electron density 

Expressing the electronic energy in terms of the electron density (as opposed 

to using the wavefunction of the system) has a number of advantages. While 

the wavefunction is a (possibly complex) function of 4N variables, the elec­

tron density is a simple function of three variables (x, y and z, the electronic 

Cartesian coordinates). Also, the wavefunction is not an observable, while 

the density is and may be probed through the use of (for example) X-ray 

diffraction. 

The density may be be expressed in terms of the wavefunction 

such that p(r)dr1 is the probability of finding any of the N electrons in a 

volume element dr 1 with arbitrary spin, while the N - 1 other electrons 

have arbitrary positions and spin. For finite molecular systems this function 

is positive everywhere, vanishes at infinity and integrates to the number of 

electrons 

/ p(r)dr = N (2.2) 

2.2 The models of Thomas, Fermi and Dirac 

Independently derived by Thomas [23] and Fermi [24] the Thomas-Fermi 

method sought to determine the effective electric field inside atoms. By 

making certain assumptions, namely that 

1. Relativistic considerations may be r1eglected; 

2. In an atom there exists an effective field that depends only on the 

distance from the nucleus; 

3. Electrons are uniformly distributed at the rate of two for each h3 of 

volume (h3 is a convenient unit of volume in a six-dimensional phase 

space with three dimensions of space and three of momentum); 
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4. The potential IS determined by the nuclear charge and the electron 

distribution; 

it was possible to derive an expression for the energy of an atom in terms of 

the electron density. 

The Thomas-Fermi kinetic energy expression uses a quantum statistical 

model of the electrons (based on the uniform electron gas) 

(2.3) 

while classical expressiOns are used for the nuclear-electron and electron­

electron interactions 

1~,e = Z / p;~) dr (2.4) 

_ ~ ;· ;· p(r)p(r') , 
V:e- I I drdr 2. r- r' 

(2.5) 

so the Thomas-Fermi expression for the energy of an atom 

ETr[p(r)] = 2_(311"2) 213 ;·ll3(r)dr- Z ;· p(r) clr + ~. / ;· pl(r)p(r? drdr' 
10 . r 2 . r- r' 

(2.6) 

includes an approximation to the kinetic energy and the classical parts of the 

nuclear-electron and electron-electron interactions, all in terms of the elec­

tron density only. To find the correct electron density, p(r), the variational 

principle is used. The density is varied to minimise ETF[p(r)] subject to the 

constraint in eqn. (2.2). 

The description of the energy of ~toms by the Thomas-Fermi model is 

poor, and it fails to predict molecular binding. This is not surprising, since 

TTr is a very crude approximation to the kinetic energy and both exchange 

and correlation are completely neglected. The neglect of the exchange was 

addressed by Dirac [25] through the inclusion of a term 

3 ( 3) 1/3 . 
Ko[p(r)] = - 4 :; / p413 (r)dr (2.7) 

but the resulting Thomas-Fermi-Dirac model fails to improve substantially 

upon the Thomas-Fermi model. However, the importance of these methods 

is that all parts of the energy are expressed in terms of the electron density. 
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It should be noted that, at the time these methods were proposed, the 

validity of expressing the energy in terms of the density and the use of the 

variational principle were assumptions. 

2.3 The Hohenberg-Kohn theorems 

Although the models of Thomas, Fermi and Dirac had shown that an expres­

sion for the electronic energy in terms of the electron density \vas feasible and 

could provide qualitatively correct results for atomic systems, the poor de­

scription of atomic energies and the failure to describe molecular binding 

meant that these first density functional theories were extremely limited. 

Also, there was no formal proof that the mapping of electron density to 

electronic energy was valid, nor that use of the variational principle was 

appropriate. 

In 1964 Hohenberg and Kahn published a paper [26] containing two the­

orems. These showed that the ground state energy is a unique functional of 

the density and that the representation of the energy in terms of the electron 

density is a variational method. No new method was proposed in the pa­

per, but it demonstrated that an exact density functional theory existed in 

principle, and the methods of Thomas, Fermi and Dirac could be considered 

approximations to this exact theory. The theorems of Hohenberg and Kahn 

provide the theoretical underpinning of nearly all subsequent development of 

density functional theory. 

2.3.1 Unique determination of the Hamiltonian by the 

density 

The first theorem states that the external potential v.x, ( r) is a unique func­

tional of the density p(r) (to within a constant). Since the density fixes the 

number of electrons N and, in turn, N and vext ( r) fix the Hamiltonian fi, 

fi is a unique functional of p(r). To prove this statement, it is sufficient 
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to consider the contradiction that arises when two external potentials are 

postulated, vex! ( r) and v~xt ( r), which differ by more than a constant and give 

rise to the same electron clensi ty p( r). The corresponding Hamiltonians are 

(2.8) 

the kinetic energy and Coulomb terms being identical. We can express the 

relationship of the two potentials to the single, unique density as 

(2.9) 

Since the two wavefunctions w and w' are different, w' can be used as a 

trial wavefunction for fi and vice versa. From the variational principle the 

expectation value from the trial wavefunction must be above the exact energy 

(2.10) 

and since the Hamiltonian operators differ only in their external potential 

(2.11) 

Repeating the above steps for the case where W is used as a trial wavefunction 

for ii' yields the equivalent equation 

(2.12) 

The contradiction becomes clear when equations (2.11) and (2.12) are added 

together 

Eo + Eb < Eb + Eo (2.13) 

This establishes that it is impossible to have two different external potentials 

that yield the same ground state electron density. 
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2.3.2 Variational principle 

Having established that the ground state density uniquely determines the 

Hamiltonian, and therefore can (in principle) be used to obtain any properties 

of interest, it is important to know whether or not a certain density is the 

ground state density. The second theorem presented by Hohenberg and Kohn 

states that the energy associated with a certain density is a minimum if and 

only if the density is the true ground state density p0 (r). In other words, the 

Hohenberg-Kohn formalism is variational. 

The ground state energy of a many-electron system may be written 

E[p] = T[p] + ./ p(r)vext(r)dr + V:.[p] (2.14) 

where the three terms are the kinetic energy, nuclear-electron and electron­

electron interactions respectively. J'viinimising the energy with respect to the 

density, subject to the constraint 

./ p(r)dr = N (2.15) 

gives the Euler-Lagrange equation 

6T[p] 61~. [p] 
j.t = Op(r) + Vext(r) + Op(r) (2.16) 

It should be noted that the variational principle for the Hohenberg-Kohn 

formalism is valid only for the exact functional which returns the ground 

state energy of a system for an input density. We do not know the form of 

the exact functional and are forced to use approximations to it. Therefore, 

it is not possible to use the principle that the lower the energy returned the 

better the agreement between the trial density and the exact density. 

2.4 Kohn-Sham density functional theory 

Although the theorems of Hohenberg and Kohn (Section 2.3) provided the 

theoretical underpinnings upon which nearly all modern density functional 
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theory is based, they were simply proofs of existence. They established that 

the ground state electron density uniquely determines the ground state en­

ergy, but they offered no clues as to how a practical functional that returns 

the energy associated with a density might be constructed. 

The Thomas-Fermi (TF) and Thomas-Fermi-Dirac (TFD) methods (Sec­

tion 2.2) provide expressions for the energy explicitly in terms of the electron 

density by making drastic assumptions, but the price paid is low accuracy. 

The TF and TFD models give very poor results, and a major reason for this 

is their treatment of the kinetic energy. From the virial theorem 

T"""' -E (2.17) 

and this implies that an accurate description of the kinetic energy is vital. 

Kohn and Sham [27] proposed the introduction of orbitals, rather than con­

structing an energy explicitly in terms of the density, and this led to a simple 

expression that accounts for a large proportion of the kinetic energy, leaving 

a small remainder to be handled separately. The exact expression for the 

ground state kinetic energy, in terms of orbitals, is 

T = -~ Lni \xd'V2 1XiJ (2.18) 
l 

where Xi are the natural orbitals and ni are their occupation numbers. From 

the Pauli principle the occupation numbers must be in the range 0 2: ni 2: 1. 

T is a functional of the density since 

(2.19) 

For any interacting system eqn. (2.18) will involve an infinite number of 

terms. The problem must be approached differently if progress is to be 

made. 

Within HF -SCF the wavefunction is approximated by a single Slater de­

terminant composed of N spin-orbitals. However, this determinant could 

also be considered to be the exact wavefunction of a fictitious system of 
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N non-interacting electrons. The expression for the kinetic energy of this 

non-interacting system is 

1 N 
Ts = -2 I:(xdY'2 1XiJ (2.20) 

t 

and the density becomes 
N 

p(r) = L lx;(rW (2.21) 

Equations (2.20) and (2.21) are the special case of (2.18) and (2.19) where 

ni = 1 for N orbitals and ni = 0 for the rest. Thus Kohn and Sham invoked 

a non-interacting reference system with the Hamiltonian 

(2.22) 

which introduces the effective potential v5 (r). Since for a non-interacting 

system T[p] = T5 [p] and 11ee[P] = 0 the Euler-Lagrange equation (eqn. (2.16)) 

in the effective potential v5 (r) becomes 

c5Ts[P] 
J-L = c5p(r) + vs(r) (2.23) 

The ground state wavefunction of the non-interacting system is exactly given 

by a single Slater determinant (in analogy with eqn. (1.11) but switching to 

8 and cp to avoid confusion with the Hartree-Fock equations) 

CfJt(1) CfJ2 ( 1) CfJN(1) 

1 CfJl ( 2) cp2 ( 2) CfJN(2) 
(2.24) 8s=--

JNf 
CfJ1 ( N) CfJ2 ( N) CfJN(N) 

The one-particle equations for this non-interacting system are 

(2.25) 

The connection of this fictitious system to the real system of interest is 

achieved through the selection of the effective potential vs(r). To see how 

this is possible an alternative expression for the energy is now introduced. 
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The exact energy may be written as the sum of the kinetic energy, the 

nuclear-electron interaction and the electron-electron interaction 

E[p] = T[p] + ./ p(r)vext(r)d(r) + V:.[p] (2.26) 

Kohn and Sham defined a term called the exchange-correlation energy 

Exc[P] = (T[p] - Ts[P]) + (V:e[P] - .J[p]) (2.27) 

where J[p] is the coulomb term (first encountered in the context of Hartree­

Fock theory, in eqn. (1.14)) 

.J[p] = ~ ./ ;· p(r)p(r') drdr' 
2 Jr- r'l 

(2.28) 

and hence the exchange-correlation energy contains the difference between 

the exact kinetic energy and the kinetic energy of the non-interacting system 

and all the non-classical parts of the electron-electron interactions. The 

energy expression can now be rewritten 

E[p] = Ts[P] + ./ p(r)vext(r)d(r) + J[p] + Exc[P] (2.29) 

Minimising the energy expression with respect to the density (under the 

constraint that the orbitals remain orthonormal, eqn. (2.2)) gives the Euler­

Lagrange equation 
oTs[P] 

f.L = Op(r). + Veff(r) (2.30) 

where the Kohn-Sham effective potential 

. ( ) o.J[p] oExdP] 
Ven(r) = Uext r + op(r) + op(r) 

./ 
p(r') , 

Vext(r) + Jr _ r'Jdr + Vxc(r) (2.31) 

which in turn defines the exchange-correlation potential 

. ( ) _ 6Exc[P] 
Uxc r - op(r) (2.32) 
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Comparing eqn. (2.30) and eqn. (2.23) it is clear that if 

(2.33) 

then the Euler equations are identical. In this way, it is possible to obtain an 

exact expression for the energy in independent particle form, with the only 

unknown being the form of Exc[p]. The Kohn-Sham orbitals are obtained 

from N one-electron equations 

(2.34) 

veff(r) depends on p(r) so the equations (2.34) must be solved self-consistently. 

A guess is made for p( r), ve1r( r) is constructed and a new p( r) generated via 

N 

p(r) = L lct?i(r)l 2 (2.35) 

This process is repeated until convergence is reached. Once a density has 

been constructed the energy may be determined using 

+ ~ ;· ;· p(r)p(r') drdr' + E .[p] 
2. lr- r'l xc 

(2.36) 

where the first term is the kinetic energy of the non-interacting system; 

the second is the nuclear-electron attr,action; the third term is the classical 

coulomb interaction of the electrons and the fourth term is the exc~ange­

correlation energy. 

Several parallels may be drawn between the Kohn-Sham (2.34) and the 

Hartree-Fock equations (1.20). The first three terms in both equations are 

the kinetic energy, the external potential due to the nuclei and the Coulomb 

potential clue to the electron-electron interaction. Since the Coulomb term 

depends on the orbitals the Kohn-Sham one-electron equations, like the 

Hartree-Fock equations, must be solved in a self-consistent, iterative man­

ner. The only difference between the equations is that the non-multiplicative 
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exchange operator is replaced by the multiplicative exchange-correlation po­

tential. 

In this work the procedure of obtaining the electronic energy via (2.36) us­

ing the Kohn-Sham orbitals defined in (2.34) is denoted Kohn-Sham density 

functional theory (KS-D FT). 

2.5 Hartree-Fock-Kohn-Sham theory 

In most approximations to the exchange correlation energy a separation is 

made into exchange and correlation components 

(2.37) 

Since the exchange energy can be written explicitly in terms of orbitals (and 

hence, indirectly, in terms of the density) 

Ex[P] = - ;·;·PI (r, r')
2 

drdr' 
[r- r'[ 

(2.38) 

it is possible to include exchange exactly in the Kohn-Sham scheme, leaving 

the unknown functional the task of approximating the correlation energy 

(a small fraction of Exc[p]) and the difference between the exact kinetic 

energy and the kinetic energy of the non-interacting system. The inclusion 

of exchange in this way was first suggested by Kohn and Sham [27] and in 

this thesis it is referred to as Hartree-~ock-Kohn-Sham (HFKS) theory. 

The one-particle equations become 

[ -t \7 2 + Vext (r) + v.~ (r) + vc(r)] 'Pi(r) -./ ~~ (~, ::i 'Pi(r')dr' = Ei'Pi(r) 

(2.39) 

Here vc( r) is the correlation potential 

, ( ) _ 5Ec[p] 
Uc r - c5p(r) (2.40) 

just as Vxc:(r) is the exchange-correlation potential (eqn. (2.32)). The energy 

is nmv expressed 
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EHFKs[P] EHF [ { 4Jd l + Ec:[p] 

-~ ~ (4?; IV2 14?iJ + ./ p(r)v.xt(r)dr 
! 

1 /'/ p(r)p(r
1

) 1 j'j p(r, r
1

)

2 
1 

+2. . lr _ r 1l drdr -. . lr _ r 1l drdr + Ec[p](2.41) 

The Hartree-Fock-Kohn-Sham method will be used extensively in Chapter 3. 

2. 6 Exchange-correlation functionals 

If the exact form of the exchange-correlation functional were known then KS­

DFT would return the exact, ground-state, non-relativistic energy within the 

Born-Oppenheimer approximation, including the effects of electron correla­

tion. However, the exact form of the functional is not known and therefore 

approximate forms must be employed. Many of these will be used later in 

this thesis. 

2. 7 Local density approximation 

In the case of an inhomogeneous system with a density p(r), the local density 

approximation (LDA) approximates the exchange correlation energy as: 

Exc[P] = j p(r)Exc(p)dr (2.42) 

where Exc is the exchange-correlation energy per electron in a homogeneous 

electron gas of constant density. This may be divided into exchange and 

correlation parts 

Exc(P) = Ex(P) + Ec(P) (2.43) 

The exchange term is given by [28] 

3 ( 3) 1/3 ELDA(p) = __ _ plj:3(r) 
X 4 1f 

(2.44) 
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which gives the Dirac expression (eqn. (2.7)) for the exchange energy 

(2.45) 

There is no corresponding explicit expression for the correlation energy per 

electron, Ec(p). Instead, accurate values for Ec(P) have been determined 

using quantum Monte-Carlo calculations [29] and Vosko, vVilk and N usair 

(VvVN) [30] interpolated these values to obtain an analytical form for Ec(p). 

The local density approximation has proved remarkably accurate consid­

ering its simplicity. It generally gives good results for bond lengths, bond 

angles and vibrational frequencies [31, 32, 33]. However, the LDA has a 

strong over binding tendency [.34], often of the order of > 20 kcal mol- 1 per 

bond. It has been shown [35]that many such discrepancies result from errors 

in the LDA approximation to the exchange energy. 

2. 8 Generalised gradient approximation 

The local density approximation is obviously incorrect as the electron density 

in an atom or molecule is not uniformly distributed. In the generalised gra­

dient approximation (GGA) a correction based on the gradient of the density 

is added to eqn. (2.42) to account for this. In other words, the exchange­

correlation energy density Exc[P] is a function of p(r) and its gradient. 

The lowest order gradient correction (LGC) for exchange is 

ELGC = ELDA _ f3" ;· (V' Pa(r))
2 
dr 

X X L 4/3( ) a · Pa r 
(2.46) 

where f3 is a constant. This is uniquely determined by dimensional analy­

sis [36, 37]. However, this functional has severe problems. In particular, the 

corresponding exchange potential diverges asymptotically and thus requires 

adjustment for any practical application. 
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2.8.1 B86 

In an attempt to correct this problem, Becke [38] introduced a modified 

gradient-corrected exchange-energy functional, referred to as B86 

/

. 2 
E. = E~DA - f3"'"' 4/3 .Ta i 

x x , ~ Pa (1+ ,.2)cr 
a · /.l·a 

(2.47) 

where Xa is the climensionless ratio 

IV Pal 
:&a = ~ (2.48) 

Pa 

and (3 and ~~ are parameters chosen by a least-squares fit to atomic data, 

meaning that the functional is semi-empirical. Unlike eqn. (2.46) the ex­

change potential is well-behaved in the asymptotic exponential tail of charge 

distribution. However, the asymptotic behaviour of ( 2.4 7) is incorrect. 

2.8.2 B88 

This led Becke [39] to propose a new functional that reproduces the ex­

act asymptotic behaviour of the exchange-energy density of a finite many­

electron system 

l. ua 1 
lm . = -­

r-too x '/' 
(2.49) 

(where U~ is the Coulomb potential of the exchange charge clensi ty) and the 

asymptotic behaviour of the spin density [40], given by 

lirn Pa = e-au,. 
r-too ' 

(2.50) 

where aa is a constant related to the ionisation potential of the system. This 

functional, referred to as B88, has the form 

E = ELDA - !3 L ;· p4/3 x; dr 
x x a. a (1+6f3xasinh- 1.7:a) 

(2.51) 

where (3 is a constant. This parameter was determined by a least-squares fit 

to exact atomic Hartree-Fock data, and a best-fit value of (3 = 0.0042 au is 

quoted. It should be noted that, although the exchange-energy density has 

the correct r- 1 asymptotic behaviour, the potential has a form of r-2
, not 

the correct r- 1 . 
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2.8.3 LYP 

The Lee-Yang-Parr (LYP) correlation functional [41] is based on an approx­

imate correlation energy formula for helium by Colle and Salvetti [42] and 

involves the gradient and the laplacian. Integration by parts eliminates the 

laplacian [43] and for closed shell systems 

a . dr 1
0 p 

0 1 + dp- 113 

ab jwp2 [cpp8
;:

1 + ['Vp[ 2 
( 

5 
- 5!___)]- ~/['Vp[ 2 dr(2.52) 

0 12 72 24 

where 

( -l/3) exp -cp _1113 w= p 
1 + dp-1/3 

dp-!/3 
-- -l/3 
6 - cp + 1/3. 

1 + dp-

(2.53) 

(2.54) 

Here a., b, c and d are the Colle-Salvetti parameters and a. = 0.04918, b = 
0.132, c = 0.2533 and d = 0.349. 

2.8.4 HCTH 

HCTH [44] is an empirical GGA functional that employs the same functional 

form as B97 [45], but does not include orbital exchange. The fifteen parame­

ters of the functional were determined by fitting to thermochemical data and 

Zl\IIP exchange-correlation potentials for a set of 93 atoms and molecules. 

For more details on the development of functionals that have flexible func­

tional forms with many parameters determined through a least-squares fit, 

see refs. [46,. 47, 48]. 

2.8.5 1/4 

The 1/4 functional [49] is a GGA having the same functional form as HCTH, 

but fitted solely to ZMP potentials for the 93 systems used in the HCTH fit. 

No thermochemical data was explicitly included in the fitting procedure. 

Geometries determined using 1/4 are generally an improvement over HCTH. 
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2.8.6 PBE 

PBE is a non-empirical functional developed by Perdew, Burke and Ernzer­

hof [50]. It is designed to satisfy exact conditions, but only in energetically 

important regions, simplifying it in comparison with many previous GG A 

functionals. It uses only fundamental constants as parameters. 

2.8.7 KT2 

KT2 is the second of a series of functionals developed by Keal and Tozer [51] 

with the aim of improving the description of shielding constants using GGA 

functionals. The first in the series, KTl, uses a mathematical form (the LDA 

functional augmented with a second-order exchange-gradient expansion-based 

term) chosen such that its potential exhibits structure close to that of high­

quality potentials. The parameters defining the gradient correction were 

optimised against experimental shielding constant results. KT2 utilises the 

same form as KTl, except that the LDA exchange and correlation terms are 

scaled by fitting to atomisation energies and ionisation potentials, which has 

the efFect of relaxing the uniform gas condition. 

2.9 Hybrid functionals 

The combining of density functional theory and the Hartree-Fock method 

has an obvious attraction when their-seemingly complementary-respective 

strengths are considered. Hartree-Fock provides a treatment of exchange that 

is both exact and scales well with molecular size, while ignoring electron 

correlation. Extensions to HF that take into account electron correlation are 

complicated and in general do not scale well with molecular size. Density 

functional theory, on the other hand, includes correlation and is simple and 

cheap to implement. 

However, a simplistic addition of electron gas correlation to Hartree-Fock 

energies has proven extremely weak in thermochemical tests [52]. If exchange 
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is treated exactly and an approximate form used for the correlation only then, 

for the LDA form of the correlation energy 

(2.55) 

where Ex is the exchange energy of the Slater determinant of the Kohn-Sham 

orbitals and E~oA is the local density approximation correlation energy. Note 

that Ex is not the conventional Hartree-Fock exchange energy, as Kohn-Sham 

and Hartree-Fock orbitals are not the same. However, this approximation is 

often made. 

The above formulation has proved useful in atomic applications [53, 54], 

but cannot describe molecular bonding. The difficulty relates to the sepa­

ration of the correlation energy into dynamic and non-dynamic components 

(see Section 1.4). Hartree-Fock exchange, plus dynamic correlation plus non­

dynamic correlation gives the exact exchange-correlation energy. However, 

because of the nature of the local approximations to the exchange-correlation 

energy, the breakdown of the components of the energy is not straightfor­

ward. In general, the GGA exchange energy picks up not only the exchange 

energy but also the non-dynamic correlation energy. This does not cause a 

problem when used in conjunction with a GGA approximation to the cor­

relation energy, as these only model the dynamic correlation. Thus when 

GGA correlation energy is added to exact (Hartree-Fock) exchange, the non­

dynamic correlation energy is not accounted for. This will be considered in 

more detail in Chapter 3. 

An alternative partitioning, proposed by Becke [55], was designed to ame­

liorate this problem. If we define an interelectronic coupling-strength param­

eter, /\, and U~c is the potential energy of exchange-correlation at coupling 

strength /\ then 

(2.56) 

/\ effectively "switches on" the ~ Coulomb repulsion between electrons. This 

is a rigorous ab initio definition of the Kohn-Sham exchange-correlation en­

ergy and is known as the "adiabatic connection". Ab initio calculation of 
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exchange-correlation energies from eqn. (2.56) is, of course, impractical, but 

it provides the starting point for the development of approximate functionals. 

A first approximation to the integral eqn. (2.56) is a linear interpolation 

1 0 1 1 
Exc '==' 2Uxc + 2Uxc (2.57) 

U~c is the exchange-correlation energy of the non-interacting reference sys­

tem, which is the pure exchange energy of the Kohn-Sham Slater determinant 

and can, therefore, be evaluated exactly. U~c is the exchange-correlation en­

ergy of the fully interacting system. 

The above method explains the basic principle of Becke's hybridisation of 

Kohn-Sham DFT and Hartree-Fock methods. However, despite performing 

well for energy differences, total energies are poor within this methodol­

ogy. To address this, and several other shortcomings of the basic "half-and­

half" methodology, Becke [56] introduced an extension to the previous work 

that included gradient corrections and relaxed the linear /\ dependence. The 

exchange-correlation approximation now becomes 

E = ELDA + a (Eexact - ELDA) + a . t:,.EB88 + a t:iE\W9l 
XC XC 0 X X X X C C (2.58) 

where E~~A is the exchange-correlation functional from the local density ap­

proximation, EX.xact is the exact exchange energy and E~DA is the exchange 

energy of the local density approximation. !::iE~88 is Becke's 1988 gradient 

correction to the LDA for exchange [39] and t:iE[;w91 is Perdew and vVang's 

1991 gradient correction for correlation [57]. a0 , ax and ac are semiem­

pirical coefficients determined by fitting to experimental data. Optimised 

parameters are a0 = 0.20, ax = 0.72 and ac = 0.81 and this formulation is 

designated B3P86. 

2.9.1 B3LYP 

The B3LYP functional [58] has the same form as B3P86 and uses the same 

parameters but uses the Lee-Yang-Parr correlation functional in place of 

Perdew and vVang's. Since LYP has no easily separable local component the 
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VWN local correlation expression is used to provide the different coefficients 

of local and gradient corrected correlation functionals 

EB:~LYF = ELDA +a (Ee:xact - ELDA) + a ,t::,.EB88 
XC XC 0 X X X X 

+ act::..E~YP + (1- ac)E~'v~2.59) 

2.9.2 B97 

Becke [45] has introduced a 10 parameter functional, denoted B97, that in­

cludes a fraction of exact exchange and is optimised in a non-self consistent 

manner using only energetic data. 

EB97 - EB97 + c EHF 
xc - GGA X X 

The GG A part is separated into exchange and correlation parts, thus 

where the exchange part 

E~g~"- = Ex + Ec 

m 

.9x = L Cxa,(LL~a 
i=O 

(2.60) 

(2.61) 

(2.62) 

(2.63) 

(2.64) 

where lxa = 0.004. The correlation part is separated into parallel (GO") and 

anti parallel ( a,B) spin correlation functionals 

Ec = L Ecaa + Eca8 (2.65) 
a 

when~ the parallel functional 

(2.66) 
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m 

.fJCaa = L Ccaa,(UbrTa 
i=O 

where 'YcCJCJ = 0.2. The antiparallel functional 

E I LSDA ( ) ( 2 ) l 
Ca.6 = . eca{3 Pa, Pf3 9Ca{3 savg c r 

where )Ca/3 = 0.006. 

2.9.3 B97-1 

m 

9Ca{3 = L Cca{3,iUCa{3 
i=O 

'U - "~ Ss (1 + "~ ,2 )-1 Ca{3 - 1 Ca{3 avg 1 Ca{3 ~ avg 
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(2.67) 

(2.68) 

(2.69) 

(2.70) 

(2.71) 

(2.72) 

(2.73) 

B97-1 [44] is a ten parameter hybrid functional using the same functional 

form as B97, fitted to thermochemical data for the 93 systems used in the 

fitting procedure for HCTH. Results 'are comparable to or more accurate 

than those of B3L YP. 

2.9.4 B97-2 

B97-2 [59] takes the same form as B97-1 except it was determined by fitting 

to both thermochemical data and high quality potentials (modified to take in 

to account the presence of orbital exchange) for the same 93 systems. It im­

proves upon B97-1 for reaction barriers, polarisabilities and NMR shieldings. 

Other quantities are comparable. 
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2.9.5 PBEO 

PBEO [60, 61] is a hybrid analogue of the PBE GGA functional. The frac­

tion of exact-exchange included (25%) was chosen from perturbation theory 

considerations [ 62]. 

2.10 The Zhao, Morrison and Parr (ZMP) 

method for the calculation of exchange­

correlation potentials 

The Kohn-Sham orbitals, orbital energies, exchange-correlation potentials 

and kinetic energies associated with a ground state density p0 (r) can be 

obtained from the Zhao, Morrison and Parr (Z1viP) method [63, 64, 65]. 

This method begins with Levy and Perdew's constrained search minimisation 

procedure [66]. The electron nuclear attraction, Coulomb and exchange­

correlation energy are explicit functionals of the density. If only orbitals that 

yield the exact density are considered, then the Kohn-Sham orbitals are those 

that minimise the non-interacting kinetic energy 

Ts[P] = min I 8ITI8) 
0--+po \ 

(2.74) 

where T is the kinetic energy operator - ~ Li \17 and 8 is the Slater deter­

minant composed of the Kohn-Sham prbitals 'Pi· The orbital constraint is 

written 
N 

"""' 2 .~__.lcpil = Po(r) (2.75) 

and to enforce this constraint ZMP imposed that the self-repulsion be zero 

C[ l = ~I I [p(r)- Po(r)][p(r')- Po(r')]l d '= 0 
p, Po , I I c r r 2 r- r' 

(2.76) 

To find extrema of a function .f(x) (in this case, the minimum) with the 

constraint that g(:r) = 0, another function is introduced 

F(x, /\) = f(x) + ,\g(:r) (2.77) 
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where A is the Lagrange multiplier. Differentiating F with respect to x and 

/\ gives a system of equations that, equated to zero, must be satisfied at any 

point where a constrained minimum occurs. Minimisation with respect to 

the form of the orbitals gives the orbital equations 

(2.78) 

where the superscript A indicates a dependence on the value of the Lagrange 

multiplier and 
, >.() = \j p(r')- Po(r')d, 
uc r /\ I I r r- r' 

(2.79) 

To bring (2.78) into the usual Kohn-Sham form two additional terms are 

added to the minimisation; the electron-nuclear attraction energy and the 

Coulomb energy so that eqn. (2.78) becomes 

(2.80) 

where 

(2.81) 

(Because the electron-nuclear and Coulomb energies are explicit functionals 

of the density they may be added to the Perdew-Levy minimisation without 

affecting the final orbitals.) The Coulomb potential is multiplied by the 

Fermi-Amaldi factor 

(2.82) 

such that the final form of the orbital equation is 

(2.83) 

The inclusion of this factor speeds convergence and increases numerical sta­

bility, and also ensures the correct long-range behaviour of Vx.c· In the limit 

as /\ tends to infinity 

Vxc = lim [v;- ;rv~j] (2.84) 
>.--+oo lv 

and the last term ensures the correct _l behaviour. Since ifJi are the Kohn-
r 

Sham orbitals, equations (2.83) are the Kohn-Sham equations and Ei are the 
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Kohn-Sham energies. Thus given p0 (r) it is possible to solve eqn. (2.83) 

self-consistently. 

In practice the exact density is not known, so theoretical approximations 

must be used. The use of finite basis sets means that the constraint in (2.76) 

cannot be satisfied [67]. It is therefore necessary to use a finite value of a 

Lagrange multiplier ,\. Previous investigations [67, 68] suggest that /\ = 900 

is appropriate. 

2.11 This thesis 

The primary aim of the work described in this thesi,s is the development of 

novel applications of the ZMP method to 

1. provide benchmark values against which DFT calculations of molecular 

properties might be compared. The better the quality of the density 

supplied to the Zi'viP calculation, the better the quality of the resulting 

Kohn-Sham orbitals, eigenvalues and potentials. A ZMP calculation 

using a high-quality ab initio density will indicate the potential accu­

racy available within the Kohn-Sham formalism for a given basis set. 

Comparison with conventional DFT calculations will then indicate how 

well a particular exchange-correlation functional performs. 

2. aid understanding of the performance of DFT calculations. By com­

paring ZMP orbitals, eigenvalues and potentials with the correspond­

ing Kohn-Sham quantities determined using conventional exchange­

correlation functionals, it is often possible to rationalise the perfor­

mance of such functionals. 

3. provide insight into possible new methodologies. Just as ZMP quanti­

ties may provide insight into the performance of conventional function­

als, they may also suggest new directions for functional development 

or corrections to existing functionals. 
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In Chapter 3 the first use of the ZMP method to calculate Kohn-Sham 

dispersion forces is presented. A relation between the forces and the electron 

density is exploited to make explicit the relation between the correlation po­

tential and the accuracy of DFT dispersion forces. Previous work [69] has 

shovvn that ZMP calculations can determine NMR shielding constants to 

high accuracy. Chapter 4 extends this to chemical shifts and then goes on to 

consider electrical as well as magnetic response properties (static polarisabil­

ities and vertical excitation energies). Kohn-Sham orbitals and eigenvalues 

are known to play an important role in the determination of such response 

properties, and in Chapter 5 explicit consideration is given to such quan­

tities, using eigenvalues and eigenvalue differences determined from ZMP 

calculations. Chapter 6 presents an application of the 897-2 semi-empirical 

exchange-correlation functional, which was fitted to both thermochemical 

data and multiplicative exchange-correlation potentials determined using the 

ZJVIP approach. The gauche conformational preference of a class of organic 

molecules is investigated. All calulations use the CADPAC program [70]. 



Chapter 3 

Dispersion forces and 

correlation potentials in He2 
I> 

In this chapter, high quality electron densities are used to help understand 

dispersion interactions in DFT. The majority of studies of dispersion interac­

tions determine the variation of the electronic energy vvhen systems interact, 

but here an alternative approach is taken, considering the forces on the nuclei. 

Using the electrostatic theorem of Feynman it can be shown that the in­

teraction forces can be understood in terms of distortion of densities. \iVithin 

the Hartree-Fock-Kohn-Sham formalism (see Section 2.5) this density distor­

tion (and hence the force) is determined solely by the correlation potential. 

The density distortion and the correl;:ttion potentials that give rise to the 

density distortions are investigated for the case of the helium dimer. Related 

potentials are also presented for the H2 molecule. 
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3.1 Intermolecular interactions 

The phrase 'intermolecular interactions' generally refers to forces between 

neutral, closed shell atoms or molecules that have no tendency to form chem­

ical bonds. The evidence for the existence of such forces is readily apparent. 

The fact that condensed phases of matter exist at all, indicates that there 

must exist attractive forces at long-range. Equally, since these condensed 

phases have a definite density and are not easily compressed, at short range 

the forces become repulsive. 

This behaviour is visualised in Figure 3.1, which illustrates the variation of 

the interaction energy of a pair of atomic or molecular systems as a function of 

their separation R. The lowering of the energy at long-range (relative to the 

isolated molecules) means that an attractive force exists between the systems 

in this region. A sharp increase in the interaction energy (becoming positive 

relative to the isolated molecules) at short range indicates the repulsive forces 

that resist compression. The minimum (Re) is the equilibrium separation of 

the system, where the attractive and repulsive forces are balanced. 

The attractive and repulsive forces that constitute intermolecular inter­

actions may be subdivided into separate contributions, each of which may 

be identified with a specific physical phenomenon. The contributions to the 

long-range forces are [71]: 

1. electrostatic - the classical inter,action between the static charge dis­

tributions of two molecules. Both molecules must have a permanent 

electric multipole (at its simplest, an electrical charge, but this could 

also be a dipole or higher multipole). The electrostatic interaction may 

be attractive or repulsive, and this will depend on the charge distribu­

tion of the molecules and their relative orientation. 

2. induction- the interaction between a distorted molecule and its neigh­

bours. For example, a polar molecule near a polarisable molecule 

(which might itself be polar) can distort the second molecule's charge 

distribution. The interaction between this induced multipole and the 
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Figure 3.1: Typical intermol~cular potential energy function. 

original multipole gives rise to an attractive force. This is often referred 

to as a dipole-induced dipole interaction. 

3. dispersion - there is no simple classical picture that explains the dis­

persion interaction, but it arises 'because of the coupling between con- · 

stantly fluctuating electron densities. Dispersive interactions exist be­

tween all systems, whether nonpolar, polar or charged. They are always 

attractive. 

For short range forces, the most important contribution is from the exchange 

(or overlap) repulsion. Other effects arise because of modifications to the 

electrostatic, induction and dispersion interactions when the disparate sys­

tems overlap to a significant degree. 
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3.1.1 Supermolecular calculations and basis set super­

position error 

An obvious way to proceed when considering interaction energies is the su­

permolecule method: the interaction energy is taken to be the difference 

between the energy of the interacting system and the sum of the energies of 

the separate molecules. For a pair of molecules, A and B 

(3.1) 

The procedure is attractively straightforward, but this beguiling simplicity 

conceals unexpected complications that mean that the method must be em­

ployed with caution. 

vVhen two monomers are brought together and a calculation is performed 

on the resulting supermolecule, then the basis set of each monomer becomes 

available to the other. Thus, if the interaction energy is calculated in the 

obvious way 

(3.2) 

where EAs(AB) denotes the energy of the dimer system using the basis 

sets of A and B, while EA(A) is the energy of system A using basis (A) 

only, then the improved description of the monomers in the supermolecule 

calculation will lead to an artificial lowering of the energy relative to the 

isolated monomers. This error is the, basis set superposition error (ESSE) 

and is simply a result of the inability to use infinite basis sets. 

The procedure used to correct for this error is the so-called 'counterpoise 

correction' suggested by Boys and Bernardi [72]. All calculations, those on 

the isolated monomers as well as the supermolecule, are performed using the 

supermolecular basis set, so the ESSE corrected interaction energy is 

(3.3) 

An alternative (but equivalent) formulation of the ESSE corrected energy is 
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where E?nt refers to the uncorrected definition of the interaction energy 

( eqn. (:3.2)). Hence for differentiation with respect to the nuclear co-ordinate 

(as when evaluating forces) 

8Ej~,l 8EA (AB) 
---

8/\ 8/\ 
8E8 (AB) 

f)). 
(3.5) 

E4 (A) and Es(B) are constants with respect to variation of/\, since all basis 

functions are centred on (and move with) the nucleus under consideration. 

However, EA(AB) and Es(AB) are not constants with respect to variation 

of).. because there are basis functions at the other atomic position and hence 

the energy will vary with interatomic separation. 

3.2 Performance of DFT for intermolecular 

interactions 

Given that dispersion is a correlation effect, it is not accounted for by Hartree­

Fock calculations. Unfortunately, dispersion forces are especially important 

in many biological systems that, because of their size, are not amenable 

to investigation by correlated wavefunction methods. Because of this, the 

efficient manner in which DFT models correlation effects means that there is 

a great deal of interest in the use of D FT to model intermolecular interactions. 

An exact DFT would include all correlation effects, including dispersion 

interactions. However, a local approximation for the exchange-co~relation 

energy cannot, even in principle, describe the interaction with another, dis­

tant system. The total exchange-correlation energy of two non-overlapping 

charge distributions is the sum of the individual contributions for any local 

DFT. Neither the use of functionals which employ the gradient (GGAs) and 

higher derivatives (meta GGAs) of the density, nor the inclusion of a frac­

tion of exact exchange (hybrid functionals) alters this, despite the fact that 

hybrid functionals are rigorously non-local. 

This limitation would seem to preclude the use of approximate DFT to 

describe any long-range interactions. However, even systems where inter-
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molecular interactions are dominated by dispersion often have minimum en­

ergy conformations where there is appreciable overlap between the systems. 

In such cases, a local approximation to the exchange-correlation energy might 

be able to describe approximate dispersion interactions. 

The literature contains assessments of the performance of conventional 

exchange-correlation functionals in describing dispersion interactions for a 

range of systems including rare gas dimers [73, 74, 75, 76, 77, 78, 79, 80, 

81, 82], C6 H6 dimer [75, 79, 81, 83], CI-L1 and C2H2 dimers [81, 84], He · · · 

C02 [85, 86], N2 dimer [87], C6H6 ···X (X = 0 2 , N2 , CO [88], Ne, Ar [75]) 

and other non bonded dimeric complexes [89]. Across these disparate sys­

tems, particular functionals are consistent in their behaviour. Use of the 

local density approximation (LOA) leads to overbinding [7.3, 74, 76, 77, 88]: 

well depths are too deep and bond lengths are too short. If one moves to 

generalised gradient approximation (GGA) or hybrid functionals the results 

are variable and sensitive to the choice of approximate exchange functional. 

Functionals based on Becke 1988 exchange [90] often predict a repulsive in­

teraction [73, 74, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 88, 89]; those based 

on PvV91 [91] or PBE [50] exchange do tend to bind, although they do not 

provide quantitative accuracy [76, 77, 78, 79, 80, 81, 86, 87, 88]. This sen­

sitivity to exchange functional has been attributed [77, 88] to the behaviour 

of the exchange enhancement factor at large reduced density gradient s; the 

Becke 1988 enhancement factor diverg;es, whereas the PvV91 and PBE fac­

tors are better behaved. For a recent review of van der vVaals studies using 

conventional functionals, see ref. [92]. 

Preliminary work carried out as part of the present investigation was 

consistent with the conclusions from the literature. In Figure 3.2 potential 

energy curves for the helium dimer, generated using various wavefunction and 

OFT methods, are presented. Figure 3.2(a) presents plots of energy versus 

interatomic separation for three wavefunction methods; Hartree-Fock (HF­

SCF), MP2 and BD. Binding energies (De) and equilibrium separations (Re) 

for these methods are presented in Table 3.1. The extensive 7 s5p4d basis set 
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was used and results were corrected for BSSE using the procedure described 

in Section 3 .1.1. D FT calculations were also corrected for integration grid 

superposition error by including the integration grid of both atoms in all cal­

culations. HF -SCF, which includes no correlation, does not bind the helium 

dimer. If a description of electron correlation is included via MP2 then the 

helium dimer is bound and the equilibrium separation is reasonable, though 

the minimum is too shallow. The BD method, a more expensive correlated 

method discussed in Section 1.4.3, is in better agreement. 

Potential energy curves generated using local density and generalised gra­

dient approximation functionals are presented. in Figure 3.2(b). The LDAX 

functional, which includes no correlation, overbinds the helium dimer. vVith 

the LDA exchange-correlation functional this overbinding becomes worse­

the binding energy is too large by an order of magnitude. The HCTH func­

tional barely binds, while the 1/4 functional displays a reasonable equilib­

rium separation, though the binding is too strong. This is consistent with the 

above discussion of the exchange enhancement factor. The HCTH enhance­

ment factor increases rapidly with increasing s, while the 1/4 enhancement 

factor is better behaved and increases more gradually [95]. 

The B3LYP functional does not bind, whereas, as shown in Figure 3.2(c), 

the more recently developed B97-2 approximation is surprisingly good. 

Though no local density functional theory can rigorously describe long­

range dispersion interactions (since the~e interactions are fundamentally non­

local), qualitatively correct behaviour can therefore be seen in regions of 

density overlap/ because the interaction energy in these regions is composed 

of several terms; as well as the dispersion there is the exchange-dispersion, 

electrostatic, exchange-repulsion, etc. The DFT description breaks down as 

the separation increases to regions where the overlap is negligible and the 

interaction is dominated by the long-range dispersion energy. 

1This gives a rational for the importance of large basis sets and integration grids in DFT 

dispersion calculations: the separation between systems will be relatively large, and hence 

the long range description of the density must be accurate to allow useful calculations to 

be carried out. 
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Figure 3.2: Energy plots for the He dimer from (a) wavefunction methods, 

(b) LDA and GGA DFT functionals and (c) a hybrid DFT functional. In 

each case, a BD energy plot is included for reference. Note different scale 

for (b). 
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Table 3.1: Binding energies De and equilibrium separations Re from wave­

function and DFT methods for He2 . A dash indicates that no binding is 

observed 

De/10-5 Eh Re/au 

HF-SCF 

MP2 1.8 5.9 

BD 2.1 5.7 

LDA 34.6 4.5 

LDAX 19.5 4.7 

BLYP 

HCTH 0.3 6.8 

1/4 8.3 5.3 

B3LYP 

B97-2 2.6 5.9 

Expt. 1 3.3 5.6 
1 Refs [93, 94] 

It is possible to introduce the dispersion terms in an empirical man­

ner [96], though it is clearly more satisfying to include them in a rigorous man­

ner. This has been done using long-range [97, 98, 99, 100, 101, 102, 103, 104] 

and seamless [105, 106, 107, 108, 109] approaches, and an assessment of some 

of these methods is presented in ref. [llO]. Another approach to dispersion 

interactions that makes use of conventional DFT is the employment of Kohn­

Sham orbitals within symmetry-adapted perturbation theory [l11, l12]. 

3.3 Calculation of intermolecular forces 

In this study, we consider the long-range interaction in DFT from the view­

point of the force on a nucleus, rather than from the vievvpoint of the elec­

tronic energy. We consider the helium dimer He2 , for a number of reasons. 
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The interaction between two He atoms is known to a high accuracy. The 

small size of the system allows the use of high-order wavefunction calcula­

tions for comparison purposes, and enables large basis sets to be employed, 

reducing basis set truncation errors. This last point is important, as the 

interaction of the helittm dimer is an extremely challenging computational 

problem. The well depth De is extremely shallow (only 3.3 x 10-5 Eh) and 

the zero-point vibrational energy is approximately equal to the well depth. 

This means that it is necessary to calculate the potential energy curve to a 

very high degree of accuracy simply to yield a bound state. This difficulty 

in achieving accurate results for the helium dimer means that it represents 

an important challenge for DFT methods. 

Since dispersion arises because of correlation between electronic charge 

densities the Hartree-Fock-Kohn-Sham (HFKS) method is employed, treat­

ing exchange exactly and approximating the correlation. The details of the 

HFKS formalism are given in Section 2.5, but the main equations are pre­

sented again here in an alternative form, to emphasise both the connection 

with the HF -SCF method and the importance of the correlation potential. 

The HFKS electronic energy may be expressed as the sum of the Hartree­

Fock energy functional and an approximate correlation energy functional 

(3.6) 

E..xpansion of the orbitals { <p;} in a basis set { 7],6} allows the HFKS equations 

(3.7) 

to be recast as secular equations 

where FHF(r, r') is the co-ordinate representation of the Hartree-Fock opera­

tor, as in eqn. (1.23). The HFKS force on nucleus A is then 

- 8EDFT - ERA[{ }] I RA( ) ( )d '""' ·SRA F DFT - - 8 - - HF <p; - p r Vc r r + L.., Et ;; 
RA ! 

(3.9) 
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where E~A [ { 4?i}], pRA ( r), and SJ;A are the basis-function-only derivatives of 

the Hartree-Fock functional, density, and orbital overlap matrix, respectively, 

with respect to the nuclear co-ordinate vector RA. Other than vc(r), all the 

terms in eqn. (3.9) can be constructed from the solutions to eqn. (3.8), and 

the only approximated term in eqn. (3.8) is vc:(r). This means that vc(r) 

determines the quality of the force calculated for a given basis set. This is 

consistent with the approximations in the HFKS method: since Ec[p] is the 

only approximation in the expression for the total energy, the derivative of 

Ec[p] (vc(r)) determines the derivative of the energy (the force). 

·when the basis set is complete the dependence of the force on vc(r) IS 

especially clear. In the case of a complete basis eqn. (3.9) reduces to the 

Hellmann-Feynman force [113] (see below). For a given Born-Oppenheimer 

configuration the Hellmann-Feynman force depends only upon the density, 

which is governed entirely by vc(r) through eqns. (2.21) and (3.7). 

The dispersion interaction dominates van der vVaals molecules at large 

internuclear separations, so the force on the nuclei in such a system is almost 

entirely clue to the dispersion. In calculating such dispersion forces using 

the HFKS formalism, the accuracy will depend upon the quality of the rep­

resentation of vc(r) at large separation. vc(r) is, therefore, a key quantity, 

determining both the dispersion force and the dispersion energy (which can 

be recovered from the force by integration along the dissociation path). 

The aim of this study is to investigate the relationship between the cor­

relation potential, Vc ( r), and dispersion forces in the helium dim er. The 

correlation potentials considered are generated using BD(T) electron densi­

ties. vVe commence by presenting computational details. In particular, we 

outline a modification of the ZMP procedure that allows vc(r) to be deter­

mined from high quality densities. 

3.3.1 Computational details 

All force and density calculations used an extensive 7 s5p4d basis set on the 

He atoms. This basis consists of the nuclear centred part of the DC+Bs 
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(Dc147) basis set of ref. [114] with the f functions removed (the ZI'viP code 

employed cannot utilise .f functions). All forces are calculated analytically. 

Where possible, numerical stability has been confirmed by comparing the 

analytic forces with numerical forces determined from energies at perturbed 

geometries. 

Basis set superposition errors (BSSE) affect the shape of the interaction 

energy curve, so also affect the calculated forces. All forces are corrected for 

BSSE by differentiating the counterpoise energy correction, see eqn. (3.5). 

For DFT calculations, the integration grid on the ghost atom was also in­

cluded, in order to account for integration grid superposition error. Given 

the extensive basis set, large internuclear separations, and near-saturated 

integration grids, the BSSE corrections to the total forces are very small. 

To the number of decimal places quoted they are negligible for all methods 

except BD(T) (where it contributes 0.1x10-6 au (about 2%) to the forces at 

8.0 and 8.5 au). BSSE corrections to Hellmann-Feynman forces are slightly 

larger. 

All BD(T) densities are relaxed densities. HFKS correlation potentials, 

vc(r), are determined from these densities using the methodology of refs. [59, 

115], which is a modification of the ZMP approach (Section 2.10) and is 

denoted ZMPX. The method is as follows. The HFKS energy expressiOn 

( eqn. (3.6)) can be rewritten 

E[p] = Ts[P] + j p(r)vext(r)d(r) + J[p] + E~F[p] + Ec[p]. (3.10) 

The only terms in eqn. (3.10) that are not explicit functionals of the density 

are the non-interacting kinetic energy Ts[P] and orbital exchange energies 

E~F[p]. By analogy with the constrained search procedure [66] 

As in the ZMP procedure, the constrained minimisation is enforced through 

eqn. (2.76). Also, as in standard ZMP, a Lagrange multiplier is attached. 
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In order to convert the Lagrangian into the same form as the HFKS equa­

tions (3. 7) explicit functionals of the density are added and minimisation 

with respect to orbital variations gives the one-electron equations 

(3.12) 

cf. eqn. (2.80). v~(r) is defined in eqn. (2.81) and v8(r) is defined in 

eqn. (2. 79). 

v>.(r) = -"'""' j <t?7(r)<p7(r') P, ,dr' 
x ~ I 11 rr . . r- r 

t . 

(3.13) 

Comparison of the equations then allows Vc ( r) to be identified in terms of the 

BD(T) density, the iterating density, and a Lagrange multiplier A associated 

with the density constraint. 

(3.14) 

The inclusion of exact exchange obviates the need to include the Fermi­

Amalcli factor (2.82) as is clone in the ZMP procedure to compel the correct 

long range behaviour of the potential. The one-electron equations are solved 

within a basis set framework and the potential is tabulated numerically on a 

DFT numerical integration grid. 

In the case where the iterating density exactly reproduces the BD(T) 

density, the Lagrange multiplier is formally infinite. ·working within a (finite) 

basis set it is not possible to reproduce the BD(T) density exactly, so an 

infinite Lagrange multiplier is inapprop'riate. Three alternatives to an infinite 

Lagrange multiplier were evaluated: a finite value of /\ = 900, as used in 

ref [115]; an extrapolation scheme [116] involving an expansion from A - 3 

to A +l, where the latter term represents basis set incompleteness; a second 

extrapolation scheme (similar to that in ref. [63]) where A +l is replaced by 

/\- 4 . To make an assessment of these various schemes, we employed the 

fact that the ZMP iterating density should equal the BD(T) density, and so 

Hellmann-Feynman forces from the two should be identical. Forces relating 

to the two densities were calculated for each scheme and their agreement 

compared. The agreement in the case of the first extrapolation scheme was 
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poor, and so it was abandoned; a similar conclusion was reached in ref. [115]. 

Both /\ = 900 and the second extrapolation scheme performed well, and since 

there was little to choose between them, a value of ). = 900 was selected for 

simplicity. /\ = 900 is used throughout. 

The helium nuclei (labelled A and B) are positioned at z-coordinates ZA 

and z8 , where zs > zA. Thus the internuclear separation is z8 -zA and forces 

on nuclei act along the z axis. Because He2 is homonuclear the forces on the 

nuclei are equal and opposite. (Forces constructed using approximate ZMP 

potentials do not generally satisfy this translational invariance condition. 

This is because the potentials are not exact functional derivatives.) Values 

quoted are for the force on nucleus A. Positive forces equate to attractions; 

a negative force conversely represents a repulsion. 

3.4 Dispersion forces and the atomic density 

distortion 

In order to ensure that the quantities under consideration are (as far as pos­

sible) due only to the dispersion interaction, it is necessary to choose inter­

nuclear separations where the dispersion interaction dominates. To this end, 

a high-accuracy interaction energy for He2 is compared with the long-range 

dispersion energy. In the region where the two energies become indistin­

guishable the dispersion is considered' to be the dominant factor. Korona 

et al. [114] have fitted an accurate symmetry-adapted perturbation theory 

(SAPT) interaction energy to the analytic form 

_ -aR+f3R2 ~ ( ) C2n 
EsAPT - Ae - ~ hn R, b R2n 

n=3 · 

(3.15) 

where A, a, (3 and b are parameters adjusted during the fitting process, Cn 

are the dispersion coefficients and fn is the damping function of Tang and 

Toennies [117] 

( 

2n (bR)k) 
hn(R) = 1- ~ ~ exp( -bR). (3.16) 
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Table 3.2: Parameters for the fit of the SAPT potential 

Parameter Value Unit 

c6 1.460 977 8 (au) 

Cs 14.117 855 (au) 

c10 183.691 25 (au) 

c12 3265.0 (au) 

cl4 76 440.0 (au) 

cl6 2 275 000.0 (au) 

A. 2 074 364.26 K 

a 1.886 482 51 bohr- 1 

,6 -0.062 001 349 bohr- 2 

b 1.948 612 95 bohr- 1 

The optimised parameters and dispersion coefficients employed are presented 

in Table 3.2. At large R this SAPT interaction energy must approach the 

long-range dispersion energy 

(3.17) 

The SAPT force on nucleus A is the derivative of the interaction energy with 

respect to the z co-ordinate of the nucleus 

where 

F. 
__ fJEsAPT 

SAPT- ::l 
uzA 

fJEsAPT 

fJR 
(-a+ 2j3R)A. exp( -aR + ,6R2

) 

~ [-2nC2n ] 
- ~ R2n+1 g 

g = [~ (-b + (2n + k)) C2n (bR)k exp( -bR)]. 
L..., R R2n k' 
k=O · . 

(3.18) 

(3.19) 
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Figure 3.3: SAPT interaction energy EsAPT and force FsAPT> together with 

long-range dispersion contributions Edisp and force Fdisp for He2 . 

Again, at largeR this must approach the corresponding long-range dispersion 

force 

F __ 8Edisp _ 8Edisp _ ~ 2nC2n _ 6C6 8Cs 16Cl6 (
3

_
20

) 
disp - 8 z - 8 R - L R2n+ 1 - R7 + R9 + ... + R 17 . 

A n=3 

A graphical comparison of the SAPT and long-range dispersion energies and 

forces is presented in Figure 3.3 where E sAPT and F sAPT are plotted as a 

function of R, together with the corresponding long-range dispersion contri­

butions. Beyond R = 7.5 au the curves become indistinguishable, indicating 

that for larger internuclear separations the long-range dispersion force accu­

rately represents the overall force due to the interaction . The implication is 
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Table 3.3: The force on nucleus A in He2 , in units of x 10-6 E 11 , for internu­

clear separations R = 8.0, 8.5, and 9.0 au. All forces act along the He-He 

bond axis. A positive force represents an attraction between the nuclei. 

Total force 

8.0 5.4 5.1 -0.2 4.9 0.9 4.8 -0.3 4.8 

8.5 3.4 3.3 -0.1 3.1 0.3 3.2 -0.1 3.2 

9.0 2.2 2.2 -0.0 2.1 0.1 2.1 -0.0 2.1 

Hellmann-Feynman contribution 

8.0 -0.1 4.8 1.0 4.5 

8.5 -0.0 3.2 0.3 3.0 

9.0 -0.0 2.1 0.1 2.0 

that this region is dominated by the dispersion interaction, and so calcula­

tions are performed at R = 8.0, 8.5 and 9.0 au. In Table 3.3, Fctisp and FsAPT 

are presented for these three R values. The forces are close, but not identical, 

reflecting the fact that the atomic overlap is not zero. In this work, FsAPT 

are regarded as near-exact reference forces. 

A fundamental precept of this work is the premise that it is possible to un­

derstand the physical origin of the dispersion force in terms of distortions of 

atomic densities that occur when separated systems interact. The theoretical 

basis for this physical picture is the electrostatic theorem of Feynman [113]. 

The differential Hellmann-Feynman theorem [113, 118] states that the deriva­

tive of the energy E with respect to a parameter P is equal to the expectation 

value of the derivative of the Hamiltonian with respect to P 

~~=(~!) (3.21) 

Applying the Hellmann-Feynman theorem to a nuclear perturbation (i.e. a 

force) gives Feynman's electrostatic theorem. This states that the force on 

a nucleus in a molecule or extended system is just the classical electrostatic 



3.4 Dispersion forces and the atomic density distortion 60 

force exerted by the other nuclei and the electron density. For the helium 

dimer, the force on nucleus A is thus 

(3.22) 

where the first term is the repulsion due to the nucleus and the second term is 

the force clue to the electron density. Feynman's electrostatic theorem does 

not reduce the calculation of electronic structure to a problem in classical 

electrostatics, as the determination of the correct charge distribution is nec­

essary to calculate accurate forces and this step contains all the quantum me­

chanical complications. However, the theorem does indicate that molecular 

geometry may be rationalised as a balance of electrostatic forces, dependent 

on the charge distribution. It is thus possible to understand dispersion forces 

in terms of the electron density. 

Consider two bare helium nuclei in an otherwise empty universe. If the 

internuclear separation is finite then there is a repulsive force on nucleus A 

due to nucleus B. Since it is known that at large internuclear separation an 

attractive force exists between the two nuclei (the dispersion interaction), 

the electron distribution in the exact case must be such that the electro­

static interaction between nucleus A and the electron density overcomes this 

repulsion. A spherically symmetric distribution of electrons centred about 

each nucleus will not achieve this, since at long-range this would become 

equivalent to a negative charge at the· nucleus that exactly cancels the pos­

itive nuclear cha~ge. The result would be zero force between the nuclei. By 

this reasoning, at large R the atomic densities must be distorted, and they 

must be distorted towards one another. In summary, increasing the density 

in the region between the nuclei would mean that the force on nucleus A (in 

the direction of nucleus B) due to the density is greater than the repulsion 

between the nuclei. Feynman described this distortion: 

"The Schrodinger perturbation theory for two interacting atoms 

at a separation R, large compared to the radii of the atoms, leads 

to the result that the charge distribution of each is distorted from 
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central symmetry, a dipole moment of order 1/ R7 being induced 

in each atom. The negative charge distribution of each atom has 

its centre of gravity moved slightly toward the other." 

Feynman also suggested that 

"It is not the interaction of these dipoles which leads to van der 

vVaals' forces, but rather the attraction of each nucleus for the 

distorted charge distribution of its own electrons that gives the 

attractive 1/ R7 force." 

This is generally referred to as Feynman's conjecture. 
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For the case of the helium dimer this implies that the atomic electronic 

charge densities are distorted from spherical symmetry towards the other 

nucleus to form a dipole (along with the positively charged nucleus). The 

attraction of a given nucleus to the centre of its associated electron cloud gives 

rise to the leading term in the dispersion force. Hirschfelder and Eliason [119] 

showed that, for two hydrogen atoms, the magnitude of the distortion of the 

electron cloud in the vicinity of nucleus A, induced by atom B, is proportional 

to 1/ R 7 . They thus concluded that Feynman's conjecture was verified in this 

case. A more general proof has been provided by Hunt [120], who extended 

Hirschfelder and Eliason's work to the case of two molecules of arbitrary 

symmetry at long-range and in regions of clamped dispersion forces, where 

overlap between the charge distributi'ons of the two systems is small but 

not negligible. The importance of this result is that it validates the simple 

physical picture of the origin of dispersion forces. Further discussion of the 

implications may be found in refs. [121, 122, 123]. 

The electrostatic theorem is only strictly valid when an infinite basis set 

and variational methodology are employed. This is never achieved for prac­

tical calculations, since these are always restricted to a finite basis set. How­

ever, comparison of the Hartree-Fock, BD(T) and DFT forces with Hellmann­

Feynman forces (3.22) calculated using their respective densities (Table 3.3) 

demonstrates that it is valid to interpret the forces using the electrostatic 
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theorem. The force reflects the density distortion produced by the method. 

The density distortion is therefore quantified and visualised using a density 

difference function 

(3.23) 

where ~p( r) is the clensi ty of the dim er and patom .-.. ( r) and pat am 
8 

( r) are 

atomic densities, each obtained from a separate calculation at the respective 

positions of the dimer nuclei. Note that, unlike the atomic calculations where 

a BSSE correction is being made, no ghost atoms are included in the atomic 

density calculations. The atomic densities must be spherical (as in the exact 

case) if the density difference comparison is to be meaningful. A positive 

value of ,6,p(r) represents a region of density build-up, while a negative value 

indicates a reduction in density. 

In Table 3.3 HF -SCF and BD (T) forces (denoted FHF and Fso(TJ respec­

tively) are presented. HF -SCF fails to describe dispersion forces in the helium 

dimer; FHF are small, repulsive rather than attractive and as overlap becomes 

negligible the forces vanish. BD(T) forces, however, are in good agreement 

with the near-exact reference values FsAPT· These differences can be under­

stood through examination of the density distortions. Figure 3.4 presents 

,6,p(r) for BD(T) for the three R values. 

There is a positive peak on either side of the nucleus, and these are more 

pronounced on the side of the nucleus nearest to the other atom. 2 These 

plots are fully consistent with the Feynman distortion. Of course, we are 

only considering one dimension. Our plots say nothing about the distortion 

along a parallel line. However, as demonstrated in ref. [124] for the H2 

molecule, the behaviour along parallel directions is exactly the same. See 

also refs [122] and [125]. The quantitative agreement between the BD(T) 

and near-exact reference forces, and the fact that Hellmann-Feynman forces 

from BD(T) densities also agree well with the BD(T) forces, indicates that 

2 In order to show these peaks, a scale was chosen that means that the density differences 

at the nuclei are not visible. The values approach -182, -126 and -88 x w-7 au for 

R = 8.0, 8.5 and 9.0 respectively. 
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the BD(T) density distortion represents the actual distortion in all important 

respects. 

Hartree-Fock densities, in contrast, are distorted away from each other. 

This is because of the absence of electron correlation in the HF-SCF method: 

the only interaction present is due to overlap (exchange) effects that must 

lead to a reduction in density between the nuclei. No density difference 

plots analogous to Figure 3.4 are presented, since at these separations the 

overlap is extremely small and hence the HF -SCF dim er is almost equivalent 

to two spherical atoms. The density difference is also, therefore, extremely 

small, making it difficult to distinguish real features of the distortion from 

numerical noise in the calculation. To demonstrate the type of distortion seen 

at shorter separations-where overlap is significant-Figure 3.5 presents the 

HF -SCF density difference for an internuclear separation of R = 5.6 au. The 

distortion of the electron densities away from one another is clear: 6.p(r) is 

positive on the far side of each nucleus and near the nuclei, but negative in 

the region between the nuclei. This leads to a repulsive interaction (exchange 

repulsion). 

'vVe now go on to consider forces from HFKS calculations. The only 

difference between the HF and HFKS equations is the correlation potential. 

For a HFKS calculation to yield accurate dispersion forces, therefore, the 

correlation potential alone must generate the density distortion. 

3.5 DFT forces and correlation potentials 

First, conventional DFT correlation functionals are considered. HFKS cal­

culations are carried out using the LYP correlation functional. Eqn. (3.8) 

was solved with the correlation potential obtained by applying eqn. (2.40) 

to the L YP energy functional and this potential is denoted vgi~:;~ ( r). The 

forces (3.9), denoted FoFT[vgi~~~], are presented in Table 3.3. Unlike the 

HF -SCF forces, the LYP HFKS forces are attractive but they are still con­

siderably too small (far smaller than those of BD (T)) and vanish as overlap 
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Figure 3.5: Density difference 6.p(r) determined from HF-SCF densities, 

plotted along the He-He bond axis for R = 5.6 au The nuclei are symmetri­

cally placed either side of z = 0. 

reduces. 

The reason for the failure of the LYP correlation functional to reproduce 

quantitative dispersion forces is readily apparent when the density difference 

calculated from HFKS LYP densities is examined. In Figure 3.6(a) 6.p(r) 

determined from both LYP HFKS and BD(T) densities at R = 9.0 au are 

presented. Comparing the two, it is clear that, although the LYP atomic 

densities .are distorted towards one another, the magnitude of the distortion 

is far too small. This is consistent with the LYP HFKS forces, which are of 

the correct sign but too small by an order of magnitude. 

Since the accuracy of the HFKS force depends upon the ability of the cor­

relation potential to reproduce the density distortion, to improve upon the 

HFKS LYP forces the correlation potential must be improved. The ZMPX 

procedure was used to generate the correlation potential associated with the 

BD(T) density. This potential is denoted vg~~n~~(r). Forces determined from 

eqn. (3.9) using v0 (r) = vgi~~tP(r) are denoted FoFT[vg~~tP] in Table 3.3. They 

are in very good agreement with BD(T) forces; vg~;~'P(r) gives rise to quan­

titatively correct dispersion forces. Both the agreement between the HFKS 

and BD(T) forces, and the fact that a HFKS calculation using vg:~~tP(r) re­

turns a density close to that of BD(T) (small differences are due to the use of 

finite basis set and integration grids), indicate that the atomic density distor-
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Figure 3.6: Density differences 6.p(r) determined from BD(T) densities (solid 

line), plotted along the He-He bond axis for R = 9.0 au, compared with 

6.p(r) from HFKS calculations (dashed lines) using (a) LYP and (b) ZMP 

poter:-tials. 
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tion from both calculations will be the same. Figure 3.6(b) compares .6.p(r) 

calculated from HFKS densities using 'Ugi~~~(r) for the dimer and BD(T) den­

sities, and the agreement is excellent. This agreement between the BD(T) 

and HFKS densities is quantified by comparing their Hellmann-Feynman 

forces (Table 3.3). 

Figure 3.7 presents vgj~;:;·~(r), plotted along the He-He bond axis for the 

three R values. The only discernible difference between the three plots is the 

increased separation between the atomic features. The difference between 

vgj~;:~(r) and vgi~%'P(r) is demonstrated in Figure 3.8, where both dimer po­

tentials are plotted for R = 9.0 au; they share virtually no common features. 

This is consistent with previous investigations, which have demonstrated sig­

nificant discrepancies between approximate and near-exact correlation poten­

tials [115, 126]. 

This is an important result, as it represents a DFT calculation that cor­

rectly describes the 1/ R7 dispersion force without recourse to adding on 

a correction or exploiting fortuitous features of an exchange functional in 

regions of overlap of the charge densities. Although the necessity of first 

constructing the BD(T) density precludes the use of this method as a prac­

tical method of calculating dispersion forces in all but very simple systems, 

it does demonstrate that such accuracy is possible within the Kohn-Sham 

DFT framework, provided that a suitable correlation potential is available. 

The next step must be an investigation of the form of that potential, with 
' 

an ultimate view to reproducing it without the need to employ the ZMP 

procedure. 

3.6 Partitioning the correlation potential 

On the scale of Figure 3.7 the dimer ZMP correlation potential vgi~~tP (r) 
is indistinguishable from the sum of two atomic correlation potentials. This 

raises the question as to why v gi~~'P ( r) gives rise to the correct density distor­

tion, since the atomic potentials correspond to spherically symmetric electron 
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densities. A partitioning of the dimer potential 

VDimer (r) = VAtoms (r) + Vlnt (r) 
C.ZMP C,ZMP C,ZMP 

(3.24) 

into atomic and interaction components allows the investigation of the rela­

tionship between the correlation potential and the density distortion. Here 

v.;~~~;~ ( r) is the sum of two independent atomic correlation potentials, posi­

tioned at the dimer nuclear co-ordinates 

V Atoms (r) = V Atom A (r) + V Atom B (r) 
C,ZMP C,ZMP C,ZMP 

(3.25) 
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and just as 6p(r) represents the change in the density upon dim er formation, 

so 'ug·~MP ( r) is the change in the correlation potential that occurs when the 

atoms interact; it is an 'interaction correlation potential'. 

In order to construct v2~~;:;~ ( r) a ZMPX calculation was used to determine 

the correlation potential for the BD(T) density of atom A, while including 

atom B as a ghost atom with an associated numerical integration grid but 

no basis functions. The converse procedure was then carried out for atom B 

with a ghost atom at A. The integration grids for the two calculations are 

identical, so it is straightforward to generate the sum of the potentials. 

It is instructive to compare HFKS forces using vc(r) = v2~~~;~(r) (de­

noted FoFT[v2~~;:;~]) and vc(r) = vg:~MP(r) (denoted FoFT[v~~~MP]) in Table 3.3. 

FoFT[v2~~~;~] are small and repulsive, and closely resemble HF-SCF forces. 

The ZMPX atomic correlation potential is short ranged, so at the separa­

tions examined the Vc of the neighbouring atom has no significant effect. This 

means that v2~~~;~ is spherical in the regions of the nuclei. Such a potential 

does not cause the atomic densities to be distorted towards one another; an 

examination of the density difference plots confirms this. Thus the exchange 

interaction dominates, giving the Hartree-Fock-like forces. The atoms them­

selves are correlated, but there is no correlation between the atoms. 

FoF'T[vg:~MP], in contrast, are indistinguishable from forces constructed 

using the full dimer potential (FoF'T[vgi~~~]). The fact that the interaction 

potential reproduces the dispersion fqrces of the dimer potential indicates 

that it alone is responsible for the dispersion force. 

By examining a plot of v~:~MP(r) (Figure 3.9) for the three R values it is 

possible to understand why the potential leads to a density distortion of the 

correct general form. The potential is not symmetric about the nuclei (as the 

independent atomic potential is) but instead is greater on the side opposite 

the neighbouring nucleus than it is on the adjacent side. Density will tend to 

build up in regions where the potential is low, and therefore this asymmetry 

will distort the atomic densities towards one another. 

The oscillatory behaviour seen near the nuclei is sensitive to basis set 
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He bond axis for the three R values. 
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and other convergence criteria, and it is possible that it does not represent 

physical features of the interaction correlation potential. The major features 

of the potential are not sensitive to the precise details of the computation, 

and we are confident of their accuracy. 

Despite giving essentially identical dispersion forces, HFKS calculations 

using v~:~~>IP(r) and vgi~~·~~(r) are fundamentally different. At largeR 

lim v1
"t (r) = 0 

R-400 C,ZMP 
(3.26) 

but 

lim 'U~imer (r) = v~toms (r) 
R-400 C,ZMP C,ZMP 

(3.27) 

and so, asymptotically, the former yields two Hartree-Fock atoms whereas 

the latter yields two BD(T)-like atoms. Quantitatively similar dispersion 

forces can therefore be obtained through a minor distortion of Hartree-Fock 

or BD(T)-like atoms. It is the distortion that matters, not the underlying 

atom. 

3. 7 The hydrogen molecule 

One of the key findings of this work is the structure of the He2 asymmetric in­

teraction correlation potentials in Figure 3.9. Before concluding the chapter, 

we demonstrate that similar potentials also arise in the H2 molecule. 

Figure 3.10 presents th~ potentiai energy curve of H2 determined us­

ing restricted Hartree-Fock (RHF), compared with the near-exact BD curve. 

As noted in Chapter 1, RHF is reasonable near the equilibrium geometry, 

but breaks down as the internuclear separation increases. This is often 

termed left-right correlation. Unlike the He2 case, it is possible to include an 

additional curve: unrestricted Hartree-Fock (UHF). By breaking the spin­

symmetry, UHF dissociates correctly. 

Therefore, it is possible to calculate HFKS correlation potentials Vc that 

lead to UHF and BD densities. VVe have used the ZMPX procedure to calcu­

late these potentials using the doubly augmented p V6Z basis set with f, g and 
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Figure 3.10: Potential energy curves of I-h. 

h functions removed. A Lagrange multiplier .\ = 900 was used. vVe denote 

these potentials v~HF and v~0 . Such potentials are presented in Figure 3.11 

for two internuclear separations: the clashed curves are UHF potentials and 

solid curves BD potentials. The shorter distance (3. 78 au) is slightly beyond 

the Coulson-Fischer point [127]. The longer distance (9.45 au) is closer to 

dissociation. At 3. 78 au there is a noticeable difference between the two 

curves. This reflects the fact that the UHF and BD descriptions are not the 

same. However, at 9.45 au the two curves become indistinguishable. UHF is 

now near-exact. 

At large distances the principle deficiency with UHF is the lack of disper­

sion. vVe therefore expect the difference between v~HF and v~0 to resemble 

the interaction correlation potentials. Figure 3.12 presents the differences 

at the two internuclear separations. The general structure closely resembles 
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that of Figure 3.9. 
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3.8 Summary 

We have used high quality electron densities to learn about DFT dispersion 

interactions in the helium dimer. 'vVe have highlighted the importance of the 

density distortion and the correlation potential. A knowledge of the structure 

of the potential may aiel the development of nevv energy functionals that 

correctly describe dispersion. It may also help develop pragmatic schemes 

for correcting existing potentials. We have also highlighted similar structures 

in the potentials of the H2 molecule. 

Remaining within the HFKS scheme, the requirement is for a correlation 

functional that produces the correct distortion: the associated functional 

must exhibit the asymmetric structure about the nuclei (in the case of a 

diatomic). It is doubtful if this could be achieved with a local correlation 

functional. A possible route to functionals that have associated asymmetrical 

potentials might be the use of non-local functionals (though an associated 

rise in computational effort might make this uneconomic). 



Chapter 4 

Magnetic and electric response 

properties 

DFT response properties depend to a large extent on the Kohn-Sham or­

bitals and eigenvalues. It has previously been shown that improved orbitals 

and eigenvalues, determined from high quality electron densities, can im­

prove magnetic response properties [69], including NMR shielding constants. 

In this chapter, this approach to the calculation of magnetic properties is 

extended to chemical shifts, and comparisons are made with orbital depen­

dent methods and functionals optimised for shielding constants. Kohn-Sham 

orbitals and eigenvalues determined from electron densities are then used in 

electric response property calculations. vVavefunction and DFT densities are 
I 

employed to calculate static polarisabilities and vertical excitation energies. 

The explicit dependence of electric response properties on the exchange­

correlation functional derivative (which is not the case for corresponding 

magnetic properties) leads naturally to an investigation of its role in such 

calculations. 
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4.1 Kohn-Sham magnetic response theory 

The calculation of magnetic response properties in DFT is especially im­

portant for the determination of nuclear magnetic resonance (NMR) chemi­

cal shifts. NMR is perhaps the single most important characterisation tool 

in modern organic chemistry, and finds wide application in all branches of 

chemistry. The ability to calculate spectra from theoretical methods is there­

fore extremely valuable, provided that reasonable accuracy can be obtained. 

Comparison with experimental spectra can aiel in the interpretation of such, 

and even allow the identification of unknown compounds. 

NMR depends on the resonant absorption of radio frequency radiation by 

magnetic nuclei in the presence of an externally applied magnetic field. A 

magnetic nucleus has a nuclear spin quantum number I i= 0 (each nucleus 

has a fixed value of I, integral or half-integral, and positive). A nucleus of 

spin I has 21 + 1 permitted orientations relative to an applied magnetic field 

and each orientation has a different energy. It is this energy difference that 

can be detected and, because it varies not only with the nucleus but also 

with the chemical environment around the nucleus, this is a powerful tool for 

characterisation. 

The field at the magnetic nucleus is not necessarily that of the applied 

field, B. The applied field induces electronic currents that circulate through­

out the framework of the molecule, and these currents give rise to an addi­

tional field at the nuclei. The additional field, Bind is proportional to the 

applied field and it is usual to express it in terms of a climensionless quantity, 

the shielding constant, a 

Bind= -aB ( 4.1) 

Thus the total local field at the nucleus becomes 

Btoc = B +Bind= (1- a)B (4.2) 

It would be feasible to report the different resonant frequencies in terms of 

shielding constants, but it is more usual to quote values in terms of the 

chemical shift, which is the difference between the resonance frequency of 
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the nucleus in question and that of a reference system. The separation is 

proportional to the strength of the applied field, but if chemical shifts are 

reported on the 6 scale 

(4.3) 

the chemical shifts are independent of the strength of the applied field. 

NMR shielding constants can be expressed as a mixed second derivative 

of the total electronic energy with respect to the magnetic field B and the 

nuclear magnetic moment f-L 

cPE I 
a= I+ 8B8 

· f-L B=ll=O 

(4.4) 

Stationary perturbation theory may be applied to this problem. In conven­

tional HF-SCF this leads to the co_upled perturbed Hartree-Fock equations, 

which describe the linear response of the molecular orbitals (which define 

the Slater determinant of the corresponding Hartree-Fock ground state) to 

the external perturbation. However, Hartree-Fock calculations do not gen­

erate shielding constants of sufficient accuracy for useful comparison with 

experiment, and the inclusion of correlation is generally necessary. Because 

of this, expensive post Hartree-Fock methods must be employed, and the 

cost associated with these techniques limit their applicability. The relatively 

inexpensive inclusion of correlation effects in DFT suggests that it might be 

a more general route to the calculatior~ of shielding constants. 

Both GG A and hybrid functionals (containing a fraction ~ of orbital ex­

change) can be represented in a general form 

E [ ]=EaaA[ J-~//Pl(r,r')2d dr' 
xc p xc p 4 . I r - r'l r (4.5) 

Minimisation of the total electronic energy with respect to the Kohn-Sham 

orbitals gives 

[ 
1 2 ( ) ( ) a eA ( ) ~ [ P1 ( r, r') p d ' ] ( ) 0 --\,7 + vext r + v.l r + Vxc r - - I 'I rr' r - Ei (/Ji r = 
2 ' 2. r-r 

(4.6) 
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where v~gA(r) is the multiplicative potential associated with E~gA[p] and 

Prr' is the electron interchange operator. The Kohn-Sham orbitals 'Pi ( r) and 

eigenvalues Ei then appear in the diamagnetic contribution to the shielding 

tensor 

aJaf3 = L (.jl(r.rA8af3- rar~)r,4 3 IJ) 
j 

and also the paramagnetic contribution [128] 

A.a{:l - ""ea [( "ll{:l - 3 lb) (blla - 3
1 ")] 17P --6 bj J A.TA. + ATA J 

bj 

The overall shielding tensor is simply 

(4.7) 

(4.8) 

(4.9) 

Cbj represents the linear response of the Kohn-Sham orbitals to the exter­

nal static magnetic field and is determined from a set of coupled-perturbed 

equations [128] 

l:(H2)ai,bjc~ = -l~i 
bj 

(H2 )ai,bj is the magnetic Hessian matrix 

(H2)ai,bj =(Ea- Ei)r5ai,bj + ~[(ajlbi)- (ablji)J 

and l~i is the angular momentum index matrix. 

(4.10) 

(4.11) 

The functional does not appear explicitly in the shielding tensor; its im­

portance is due to it determining the orbitals and eigenvalues that do appear 

in the expression. 

If a GGA functional is employed (~ = 0) then the coupled-perturbed 

equations have a simple solution 

(4.12) 

and the paramagnetic contribution becomes 

17~\a{:l = _ L (bllalj)(jll~r,4 3 lb) + (bllAr::[
3 IJ)(JWib) 

bj Eb - Ej 
( 4.13) 



4.1 Kohn-Sham magnetic response theory 82 

For hybrid functionals (where~ f. 0) the magnetic Hessian matrix ( eqn. ( 4.11)) 

is not diagonal and hence the coupled-perturbed equations (eqn. (4.10)) must 

be solved. This is a consequence of the presence of the non-local exchange 

operator, meaning that the response of a particular orbital is dependent on 

the linear response of all the occupied orbitals. The approach is often termed 

"coupled" because of this. This does not imply that the hybrid functionals 

explicitly include current dependence; it is the inclusion of the fraction of 

exact (HF -SCF) exchange that means the approach must be coupled. 

Most GGAs perform poorly for the calculation of shielding constants and 

chemical shifts of main group nuclei (an exception is the KT2 functional [51], 

whose form was chosen in order that its potential should closely mimic high­

quality potentials, with the aim of improving the description of shielding 

constants). The inclusion of a fraction of exact exchange (hybrid functionals) 

does not generally improve this situation. Both approximations tend to give 

shieldings that are too deshielded. 

Several procedures have been advanced with the aim of improving ac­

curacy within the DFT framework. Malkin et al. [129], working within 

the uncoupled sum-over states density functional perturbation theory (SOS­

DFPT) formalism, explicitly corrected occupied-virtual eigenvalue differ­

ences; ref. [130] presents an investigation of such a correction, denoted Loc.3. 

Wilson et al. [128] have obtained high quality shielding constants using a 

hybrid Kohn-Sham calculation that includes only a small fraction of orbital 

exchange. Patchkovskii et al. [131] have applied an optimised effective po­

tential approach to the self-interaction corrected (SIC) LDA functional; the 

approach (denoted SIC-VWN) gives high quality chemical shifts. Poater et 

al. [132] have demonstrated that the statistical average of different model 

orbital potentials (SAOP) is another route to high quality chemical shifts. 

Keal and Tozer [51] have presented a GG A functional denoted KT2 (see Sec­

tion 2.8.7), designed specifically to provide high quality shielding constants. 

Results are 2-3 times more accurate than other, commonly used GGAs for 

main group nuclei [51]. 
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vVilson and Tozer [69] have also proposed the Multiplicative Kohn-Sham 

(MKS) approach, which is now discussed. 

4.1.1 MKS magnetic response properties 

The ZMP method can be used for the evaluation of shielding constants. 

The most straightforward approach would be to sotve the ZMP equations 

(eqn. (2.83)) for the occupied and virtual orbitals and eigenvalues associated 

with a reference density, and substitute these into equation (4.9). However, 

an alternative method was employed in order to allow flexibility in the basis 

sets employed. 

vVilson and Tozer [69] have shown that NMR shielding constants can be 

successfully determined from ZMP orbitals and eigenvalues. Their method 

for determining orbitals and eigenvalues can be summarised as follows: 

1. The first step is the calculation of a relaxed density matrix1 for a par­

ticular basis set and theoretical method. 

2. This density matrix is used to solve the ZMP equations using the same 

basis set that was used in the calculation of the density matrix. A finite 

value of,\ is used (A = 900) because of the finite basis set. The ZMP 

potential is written to disk. 

3. A conventional Kohn-Sham calc~lation is performed, but the ZMP po­

tential is read from the disk, rather than explicitly calculating the 

potential. The basis set used for the Kohn-Sham calculation is not 

restricted to the basis used in the calculation of the density matrix. 

If the same basis set is used throughout then the orbitals and eigenvalues 

will be identical (within numerical integration error) to those calculated ana­

lytically in the ZMP approach. The advantage of the above method is that it 

allows the use of a large basis set for the shielding calculations while the ZMP 

1 relaxed density defined as one for which the finite field dipole corresponds to the 

expectation value using that density 
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calculations can employ a smaller basis. Because the densities used included 

expensive correlated wavefunction methods the use of large, diffuse basis sets 

would severely constrain the size of the systems that could be considered. In 

this work, for the determination of chemical shifts, the less extensive basis 

set TZ2P was employed for the ZMP calculations. 

This method is denoted MKS (for Multiplicative Kohn-Sham, as it returns 

a multiplicative potential from a reference density), and the specific notation 

used is MKS followed by the method used to determine the reference density 

in parenthesis, e.g. rviKS(BD). 

4.2 Chemical shifts 

vVe now apply the MKS method to the study of chemical shifts for the first 

time. To a good approximation the chemical shift 6 is related to the absolute 

shielding constant rY by 

6 = CYref - (Y ( 4.14) 

where CYref is the shielding constant of an appropriate reference system. Be­

cause the chemical shift is a shielding constant difference, it could benefit 

from a cancellation of errors. However, both shielding constants and chemi­

cal shifts are poorly described with DFT. 

Patchkovskii et al. [131] and Poater et al. [132] have calculated isotopic 

chemical shifts of 44 molecules that 'consist of the elements H, C, N, 0 

and F. These previous studies use the Amsterdam Density Functional pro­

gram [133, 134, 135, 136] (ADF) and both use Slater basis sets. It is not 

possible to employ an identical basis set for comparison purposes, since the 

present version of CADPAC uses Gaussian basis sets only. 

Poater et al. [132] quote LDA absolute shielding constants for 8 small 

molecules using 5 of the standard ADF basis sets. The results for ADF V 

(the TZ2P quality Slater basis employed by Patchkovskii et al.) and ADF VII 

(the 8s6p3d3f/6s3p basis used by by Poater et al. [132] in their main study) 

are reproduced in Table 4.1. This allows preliminary comparison with LDA 
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Table 4.1: LDA isotropic shielding constants in ppm. Calculations are per-

formed at TZP BP86 geometries. 

ADF 1 CADPAC 

Molecule Nucleus ADF V ADF VII TZ2P HuziV 8s6p3d Expt2 

CH4 c 194.6 189.6 193.4 190.7 190.3 198.7 

H 30.9 30.8 31.2 30.9 30.9 30.61 

NH3 N 266.6 261.6 261.8 266.9 265.8 264.54 

H 31.3 31.0 30.8 30.3 30.3 31.2 

HzO 0 329.1 325.2 310.5 326.0 321.6 344.0 

H 30.7 30.1 31.1 30.4 30.4 30.052 

HF F 408.2 406.7 394.4 408.1 405.2 410.0 

H 29.3 28.4 33.7 28.9 28.9 28.5 

Nz N -94.5 -100.4 -93.6 -96.5 -98.1 -61.6 

CO c -23.0 -29.0 -20.8 -25.8 -26.3 3.0 

0 -90.4 -102.3 -94.1 -99.2 -100.8 -42.3 

CH2 NN c 163.4 159.5 169.4 166.9 166.6 164.5 

N(middle) -60.6 -70 -54.0 -65.7 -66.9 -42.3 

N (terminal) -175.7 -184.4 -172.4 -179.8 -182.6 -149.0 

H 27.7 27.6 29.1 29.0 28.9 

03 O(terminal) -1647.0 -1674 -1675.5 -1665.0 -1695.3 -1290.0 

O(middle) -987.0 -989.2 -974.9 -982.0 -988.8 -724.0 
1 The Amsterdam Density Functional program [133, 134, 135, 136] 

· 2 Ref. [131] 

chemical shifts computed using the CADPAC program, using three different 

basis sets (TZ2P, Huzinaga IGLO IV [137, 138] and a standard CADPAC 

8s6p3d/6s3p basis set) which are also presented in Table 4.1. The CADPAC 

basis 8s6p3d/6s3p gives results closest to Poater's ADF7 basis set, so would 

appear to be the most appropriate for the present study. 

Note that our NMR calculations use the LORG formalism [139] and, 

following Patchkovskii et al. and Poater et al., reference shielding constants 

are not used to determine chemical shifts, since, as the authors of both studies 

point out, this is liable to bias the comparison of theoretical methods by 
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placing too much emphasis on their performance for the reference systems. 

Instead, O"rer is treated as an adjustable parameter that is chosen to minimise 

the average signed error for the calculated chemical shifts. A consequence of 

this definition of the reference shieldings is that the chemical shifts depend 

(to a small degree) on the set of systems chosen. 

Due to a limitation on the number of basis functions allowed in a shielding 

constant calculation in the CADPAC program, it is only possible to include 

a subset of 36 of the 44 systems considered in the previous studies. Chemical 

shifts calculated using this subset are not directly comparable with those 

published in refs. [131, 132]. To allow comparison with the previous results, 

it was necessary to recalculate the chemical shifts from [131, 132] for the 

subset of 36 molecules. Absolute shielding constants were not quoted by 

these authors, but can be recovered using eqn. (4.14). 

Table 4.2 compares our LOA reference shieldings and mean absolute er­

rors, determined using the 8s6p3d/6s3p basis, with those recalculated from 

the data of Patchkovskii et al. and Poater et al. Following [131, 132], calcula­

tions were performed at TZP-quality 8P86 geometries, taken from reference 

63 in the bibliography of [131] and reproduced in Appendix C. Dirac ex­

change [25] was combined with Vosko-Wilk-Nusair (VWN) correlation [30]. · 

The errors demonstrate the poor performance of LOA for chemical shifts. 

Our values are in good agreement with those of Poater et al., and this justifies 

a direct comparison between their high quality SAOP results and calculations 
' 

performed using the 8s6p3d/6s3p basis set in this work. This is not the case 

for the high quality SIC-VWN results of Patchkovskii et al.: the poor agree­

ment between their LOA values and those calculated using 'the 8s6p3d/6s3p 

basis mean that a direct comparison is not warranted. The slightly smaller 

errors of Patchkovskii et al. reflect their use of a less extensive basis set. 

Table 4.3 presents isotropic chemical shifts from HCTH, 897-2, SAOP, 

MKS(897-2) and KT2. The same TZP-8P86 geometries were used as for the 

LOA calculations. Following previous work [59, 69], 897-2 electron densities 

and exchange-correlation potentials were determined using a TZ2P basis set 
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Table 4.2: LDA reference shieldings CTref and mean absolute errors in isotropic 

chemical shifts for the 36 molecules in Table 4.3. Values for Poater et al. [132] 

and Patchkovskii et al. [131] have been re-calculated from the data in the 

original references. All quantities are in ppm. 

t3c tH ISN l7Q 19p 

This work 

er ref 175.1 30.57 -112.9 173.3 302.6 

Mean abs. error 9.2 0.41 57.3 138.5 31.1 

Poater et al. [132] 

er ref 173.8 30.43 -114.3 176.6 306.2 

Mean abs. error 9.4 0.41 56.1 133.1 30.1 

Patchkovskii et al. [131] 

er ref 179.3 30.45 -106.6 192.6 314.7 

Mean abs. error 7.8 0.41 53.5 124.6 24.7 

and a Lagrange multiplier of 900. All chemical shift calculations used the 

full 8s6p3d/6s3p basis set. The experimental values are taken from [131]. 

Corresponding reference shieldings and mean absolute errors are presented 

in Table 4.4. 
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Molecule 

CO 

HOF 

HCN 

HF 

Table 4.3: Isotropic chemical shifts in ppm. SAOP values have been re­

calculated from t.he data in Ref. [132]. Unless otherwise stated, calculations 

are performed at TZP BP86 geometries. 

Nucleus 

c 
0 

c 
0 

F 

0 

F 

0 

H 

F 

N 

F 

0 

H 

0 

H 

c 
N 

H 

N 

N(terminal) 

N(middle) 

0 

N(NO) 

N(N02) 

O(NO) 

O(N02) 

O(terminal) 

O(middle) 

F 

H 

N 

H 

c 
H 

c 
H 

c 
H 

C(rniddle) 

C(terminal) 

H 

HCTH 

195.6 

296.0 

127.7 

11.4 

629.3 

967.9 

457.8 

399.4 

12.6 

206.9 

108.8 

357.0 

-96.8 

0.2 

154.3 

7.1 

108.1 

-60.0 

2.6 

-12.5 

-180.4 

-98.3 

61.5 

6.54.6 

B97-2 

202.0 

272.0 

131.7 

-20.3 

618.2 

869.1 

446.4 

365 . .5 

12.6 

187.8 

99.3 

353.1 

-130.8 

0.4 

109.7 

6.9 

111 . .5 

-54.5 

2.6 

-4.4 

-171.9 

-87.2 

32.2 

.544.9 

SAOP 

192.0 

313.4 

128.6 

44.8 

638.6 

952.6 

455.1 

443.5 

13.4 

191.4 

110.4 

343.3 

-71.6 

0.8 

177.4 

7.5 

111.1 

-54.5 

2.2 

-8.4 

-168.1 

-86.3 

100.8 

541.5 

89.1 115.0 112.1 

1217.7 1089.5 1068.1 

347.3 344.0 398.8 

1803.5 

1137.3 

-89.5 

1.7 

-350.0 

-0.4 

-3.5 

-0.1 

13.6 

0.7 

131.3 

5.5 

225.0 

77.8 

4.7 

2047.1 

1387.9 

-74.3 

2.1 

-352.6 

-0.3 

-4.7 

-0.1 

10.8 

0.6 

131.9 

5.4 

228.3 

77.9 

4.6 

1755.2 

1193.3 

-74.0 

3.3 

-349.0 

-0.5 

-5.7 

-0.4 

11.8 

0.4 

133.2 

5.2 

227.5 

77.7 

4.2 

MKS 

(B97-2) 

192.6 

345.4 

129.6 

73.4 

585.8 

905.6 

424.0 

431.6 

12.1 

203.2 

106.5 

338.1 

-27.4 

0.4 

204.7 

6.9 

108.5 

-53.1 

2.7 

-8.4 

-167.5 

-81.6 

117.3 

520.3 

KT2 

188.8 

330.8 

130.1 

50.2 

573.6 

910.5 

446.3 

400.0 

11.8 

197.8 

112.0 

364.1 

-55.4 

0.2 

181.2 

6.8 

106.2 

-54.9 

3.0 

-10.8 

-168.0 

-82.7 

104.4 

535.6 

188.6 

354.3 

131.0 

7<1.5 

536.1 

853.3 

420.4 

389.2 

11.4 

186.8 

103.3 

358.4 

-35.7 

0.0 

184.6 

6.5 

108.1 

-44.8 

2.9 

-3.1 

-162.5 

-74.8 

123.1 

466.0 

108.8 103.3 100.5 

1069.0 1088.2 1036.0 

407.8 388.4 395.6 

1566.8 

1122.1 

-64.3 

2.1 

-332.5 

-0.3 

-1.4 

-0.1 

14.8 

0.7 

130.5 

5.4 

222.7 

77.7 

4.6 

1664.6 

1126.3 

-79.5 

1.5 

-335.9 

-0.4 

-1.1 

-0.1 

15.9 

0.8 

129:8 

5.4 

222.0 

77.7 

4.7 

1587.0 

1116.2 

-66.2 

1.4 

-330.5 

-0.5 

-2.1 

-0.1 

14.6 

0.8 

130.2 

5.6 

223.4 

77.6 

4.8 

88 

194.2 

386.3 

136.4 

100.6 

596.0 

817.1 

426.0 

12.1 

194.0 

312.8 

0.0 

0.55 

210.6 

113.0 

-41.3 

2.83 

0.0 

-161.1 

-72.9 

141.5 

366.0 

138.0 

891.0 

461.0 

1634.0 

1068.0 

-46.9 

2.10 

-326.2 

-0.09 

0.0 

0.00 

14.2 

0.74 

130.5 

5.18 

224.3 

79.7 
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Molecule 

(CI-h)20 

CHzNN 

Cl·bCN 

Nucleus 

c 
H 

0 

c 
H 

C(C(O)H) 

C(CH3) 

0 

H(C(O)H) 

H(Clh) 

C(CO) 

C(CH2) 

0 

H 

0 

C(C(O)H) 

C(CH) 

C(CH2) 

H(C(O)H) 

H(CH) 

H(CH2,cis) 

H(CH2,trans) 

c 
0 

H 

C(middle) 

C(terminal) 

0 

c 
N 

H(CH3) 

H(NH2) 

c 
N(middle) 

N(terminal) 

H 

C(CH3) 

C(CN) 

N 

H 

C(CH~) 

C(NC) 

N 

H 

Table 4.3: (continued) 

HCTH 

71.2 

1.2 

640.7 

204.2 

10.2 

207.9 

37.2 

568.7 

10.2 

1.8 

200.0 

1.9 

240.3 

2.2 

572.2 

201.3 

148.8 

146.9 

9.9 

6.3 

6.5 

6.2 

40.0 

-101.6 

2.4 

-14.0 

119.7 

89.2 

37.3 

-325.6 

2.2 

0.0 

25.4 

-38.5 

75.8 

3.1 

5.1 

119.1 

-69.2 

1.6 

30.6 

173.9 

897-2 

72.8 

1.2 

628.0 

204.3 

9.9 

209.1 

34.7 

555.2 

9.9 

1.8 

203.8 

1.8 

217.2 

2.3 

550.0 

203.0 

149.1 

147.3 

9.7 

6.4 

6.5 

6.2 

45.5 

-144.9 

2.3 

-16.7 

125.2 

58.3 

34.0 

-332.3 

2.1 

0.0 

25.6 

-40.8 

102.1 

3.2 

2.9 

121.5 

-63.5 

1.6 

28.6 

179.7 

SAOP 

74.6 

0.7 

616.0 

205.6 

9.8 

210.8 

36.3 

548.9 

9.9 

1.6 

200.4 

2.3 

255.0 

1.7 

542.2 

202.7 

150.1 

149.7 

9.5 

6.2 

5.9 

6.3 

49.9 

-83.8 

2.1 

-13.4 

121.1 

121.5 

36.6 

-326.6 

2.0 

-0.2 

28.2 

-23.3 

79.5 

2.7 

3.5 

121.8 

-64.1 

1.2 

29.8 

175.9 

-181.0 -180.2 -178.1 

2.9 2.8 2.5 

MKS 

(897-2) 

72.7 

1.3 

650.7 

201.8 

9 7 

207.4 

38.8 

586.4 

9.8 

2.0 

198.1 

3.7 

287.0 

2.2 

580.9 

198.4 

147.8 

145.6 

9.5 

6.3 

6.1 

6.4 

51.1 

-34.9 

2.4 

-14.8 

122.1 

148.0 

KT2 

71.5 

1.5 

657.1 

199.5 

10.0 

203.7 

39.8 

591.4 

10.1 

1.8 

198.6 

3.3 

277.0 

2.3 

588.7 

197.7 

148.2 

144.0 

9.8 

6.4 

6.5 

6.1 

50.4 

-66.7 

2.4 

-13.0 

120.9 

125.0 

38.4 . 40.1 

-311.0 -312.2 

2.1 2.3 

0.1 0.1 

26.8 28.3 

-27.7 -28.8 

72.2 76.6 

3.1 3.3 

6.5 8.0 

118.8 117.1 

-62.6 -61.5 

1.6 1,8 

32.1 33.9 

172.8 168.9 

73.4 

1.4 

681.9 

200.1 

10.2 

204.1 

39.2 

613 7 

10.4 

2.1 

198.3 

2.2 

299.3 

2.3 

611.5 

198.5 

148.5 

145.6 

10.1 

6.6 

6.8 

6.3 

49.6 

-44.2 

2.4 

-12.6 

122.2 

150.8 

39.1 

-307.4 

2.3 

0.0 

26.7 

-21.7 

78.1 

3.4 

7.4 

118.9 

-52.7 

1.8 

33.4 

170.3 

89 

Expt2 

77.9 

1.33 

590.0 

195.2 

9.5 

201.7 

38.0 

628.0 

1.79 

201.0 

9.5 

615.1 

201.2 

145.8 

144.6 

47.6 

-13.0 

-7.6 

136.7 

36.8 

-311.7 

0.27 

30.1 

-16.2 

90.4 

7.4 

121.3 

-52.8 

1.53 

.33.8 

165.2 

-169.8 -172.0 -162.2 -141.0 

2.9 3.0 3.1 
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Table 4.3: (continued) 

Molecule Nucleus HCTH B97-2 SAOP MKS KT2 KT2 1 Expt2 

(B97-2) 

CH3N02 c 68.1 66.9 68.7 68.5 70.7 68.9 68.4 

N 42.2 71.4 71.2 58.7 57.1 61.1 74.7 

0 589.1 580.5 613.5 601.4 609.5 617.4 639.0 

H 4.1 4.0 3.7 4.0 4.2 4.1 3.91 

CH3F c 80.9 77.1 82.1 81.5 82.5 81.6 78.9 

F -13.3.3 -127.4 -130.0 -111.0 -128.4 -114.0 -107.7 

H 4.1 4.0 4.1 4.1 4.2 4.4 4.00 

CHzF2 c 124.8 119.5 123.6 124.2 126.5 125.4 117.6 

H 5.8 5.5 5.6 5.7 5.9 6.1 

F 4.3 7.7 6.6 19.5 17.6 32.5 24.1 

CHF3 c 136.8 131.6 131.2 135.7 138.4 137.0 126.7 

H 6.7 6.4 6.4 6.5 6.8 7.0 

F 71.0 76.3 73.3 84.9 87.1 100.9 89.1 

CF4 c 143.2 138.0 132.7 141.5 145.0 144.0 130.7 

F 88.1 96.6 89.5 103.6 102.3 115.1 104.2 

COF2 c 147.0 147.2 141.2 147.3 148.6 149.3 141.1 

0 202.4 180.4 216.5 255.0 237.6 258.2 

F 141.5 148.7 139.4 149.:3 152.3 163.2 141.5 
1 Evaluated at KT2 optimised geometries 
2 Ref. [131] 

vVhen considering the performance of the various methods for calculating 

chemical shifts, 15 N, 17 0 and 19F are the most diagnostic nuclei, since these 

vary most. All methods considered are consistent for the 13 C chemical shifts 

and the description is in good agreement with experiment (note that this 

still represents an improvement of more than 50% over LDA, with mean 

absolute errors reducing from "' 9.5 'to "' 4.5 ppm). 1H chemical shifts 

span the range of 1-10 ppm and vibrational corrections are likely to be of 

comparable magnitude to these results. A more rigorous study-~orrecting 

for rovibrational effects-would be required to make a detailed analysis of 

these results meaningfuL 

HCTH represents a significant improvement over LDA for 15 N, 17 0 and 
19 F. The reduction in the errors is reasonably uniform, approximately 25% 

in each case. The B97-2 hybrid functional improves upon HCTH for 15N and 

HJF, but is poor for 17 0 (a mean absolute error of 136.2 ppm is similar to 

the LDA value of 138.5 ppm). The erratic performance of hybrid functionals 
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Table 4.4: Reference shieldings CTref and mean absolute errors in isotropic 

chemical shifts for the 36 molecules in Table 4.3. SAOP values have been re-

calculated from the data in Ref. [132]. Unless otherwise stated, calculations 

are performed at TZP BP86 geometries. All quantities are in ppm. 

13C lH tsN 170 19p 

HCTH 

O"ref 182.9 31.15 -95.6 216.1 309.7 

Mean abs. error 4.5 0.26 44.4 102.3 24.4 

B97-2 

CJ ref 184.0 31.16 -96.8 184.3 327.0 

Mean abs. error 4.7 0.17 29.3 136.2 18.1 

SAOP 

O"ref 181.7 30.83 -94.2 249.4 337.2 

Mean abs. error 4.1 0.45 27.0 78.0 20.4 

MKS(B97-2) 

O"ref 186.5 31.14 -76.1 290.4 340.4 

Mean abs. error 4.0 0.14 23.8 50.8 8.5 

KT2 

O"ref 191.6 31.19 -76.5 260.4 321.0 

Mean abs. error 4.4 0.25 26.1 59.5 17.3 

KT21 

O"ref 194.0 31.69 -65.6 289.7 342.8 

Mean abs. error 4.0 0.35 16.1 42.8 19.7 

1 Evaluated at KT2 optimised geometries 

I ___ - -~-------
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for shielding constants of first and second row elements has been previously 

described [140]. Chemical shifts were also calculated using two other hybrid 

functionals, B3LYP and PBEO; though the results are not presented in Ta­

ble 4.3 they confirm that functionals including exact exchange do not present 

a direct route to high accuracy conventional shieldings. For 15 N, 17 0 and 19 F 

the B3LYP errors are 33.6, 146.1 and 22.0 ppm, respectively. The corre­

sponding PBEO errors are 30.3, 153.4 and 19.2 ppm. Both functionals are 

therefore less accurate than B97-2. The SAOP results are of good quality; 

errors are notably smaller than those of HCTH. MKS(B97-2) is significantly 

more accurate. Finally, the KT2 functional gives errors that are intermediate 

between those of SAOP and MKS(B97-2). 

MKS(B97-2) clearly provides the best performance, but the requirement 

to generate the multiplicative exchange-correlation potential associated with 

the B97-2 density makes it more computationally demanding than a. con­

ventional DFT calculation, and more difficult to implement. Thus KT2 is 

the best compromise between accuracy and simplicity. It improves over the 

other methods, including SAOP, and is trivial to implement. It is no more 

computationally expensive than any other GGA DFT functional. 

KT2 has a further advantage over SAOP. The strong dependence of cal­

culated chemical shifts on geometries is well established. Calculated chemical 

shifts have been used as a criteria to assess molecular geometries [ 141]. KT2 

is a well-defined functional, and can therefore be used to optimise geometries, 

making it possible to perform a consistent calculation where both geometry 

and chemical shifts are determined using the same functional. SAOP, be­

ing a. model potential, is not suitable for geometry optimisations because its 

potential is not a functional derivative. Unphysica.l nuclear forces will arise 

unless the optimisation is performed in internal coordinates, in which case 

the geometry will then depend on the coordinate system chosen [142]. 

To complete this study we therefore performed consistent calculations 

where KT2 chemical shifts are determined for the 36 molecules at geometries 

optimised using KT2 and the 8s6p3d/6s3p basis set. Chemical shifts, refer-
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ence shieldings and mean absolute errors are presented in Tables 4.3 and 4.4. 

The geometry dependence is particularly evident in the improvement of the 
15 N and 17 0 chemical shifts. 19 F shifts become slightly less accurate in mov­

ing to KT2 geometries. "Rovibrational corrections were not included in the 

experimental values, and these are significant for the F 2 molecule; inclusion 

of the correction for this molecule alone means that the KT2 errors at the 

BP86 and optimised geometries are essentially identical, at 16.2ppm. The 

small number of 19 F results will also make the statistical analysis less mean­

ingful. 

4.3 Kohn-Sham electric response theory 

vVe now go on to consider the application of the MKS approach to electronic 

response properties; specifically, we consider static isotropic and anisotropic 

polarisabilities and vertical excitation energies. Previous studies have shown 

that it is possible to achieve reasonable accuracy for isotropic polarisabilities 

within the DFT framework [59], and that vertical excitation energies can 

also be computed accurately, provided that some form of asymptotic correc­

tion is made to the potential in order to describe the Rydberg excitations 

correctly [143, 144, 145]. While we do not, therefore, expect the dramatic 

reduction in errors seen with chemical shifts, this new work allows direct 

comparison between the MKS propert,ies determined from a particular den­

sity and the conventional polarisabilities and excitation energies from the 

method used to generate that density. 

The dependence of electric response properties on Kohn-Sham orbitals 

and eigenvalues has been investigated in previous work. Van Gisbergen et 

al. [146] have determined isotropic polarisabilities using the Kohn-Sham or­

bitals and eigenvalues associated with exchange-correlation potentials deter­

mined from wavefunction densities. Using high quality densities and the LDA 

exchange-correlation integrand, their polarisabilities were close to the best 

estimates. The new work presented here compliments the previous study 
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in several ways: it extends the number of systems considered; it considers 

excitation energies as well as polarisabilities; it makes use of potentials from 

both wavefunction and DFT electron densities; it makes direct comparison 

between the MKS results and the corresponding conventional results and it 

investigates the dependence of the results on the exchange-correlation inte-

grand. Before presenting our results we review the appropriate theory. 

The variation of the electronic energy, E with an applied electric field, E 

gives the dipole moment 

the polarisability 

and the hyperpolarisability 

fJE 
1-L = -­

OE 

;]3 E 
f3 = - fJE3 . 

(4.15) 

( 4.16) 

( 4.17) 

The determination of the response of an interacting many-particle system to 

a time-dependent external field can be accomplished through time-dependent 

density functional theory (TDDFT). This determination of response proper­

ties has been extensively reviewed [147, 148, 149, 150]. 

If the unrestricted time-dependent Kohn-Sham equations are written 

' . DI.{Jia 
Kai.{Jia = 2n8t, (4.18) 

where ka is the rJ spin Kohn-Sham operator and I.{Jia is an occupied rJ spin 

orbital, then the first order expansion of the Kohn-Sham orbitals, in the 

presence of a time-dependent electric field with ). component E>. cos wt, is 

t + 1 >.(u>. ( ) -iwt u>. ( ) -iwt) 
<pia = I.{Jia 2E ria + e + ria - e I.{Jra· (4.19) 

Here r denotes both occupied and virtual orbitals. The frequency dependent 

polarisability can now be obtained by considering the first-order response of 

the electric dipole [151], thus 

a;..!l(-w;w) = -2 ~ z~iap~~a ( 4.20) 
11a,a 
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where ?'' is the dipole integral matrix 

(4.21) 

and 

( 4.22) 

(in each case the subscript a indicates virtual (unoccupied) orbitals.) This 

quantity is the solution to a set of coupled perturbed equations 

( 4.23) 

where H 1 and H 2 are the electric and magnetic Hessian matrices respectively. 

The frequency dependent polarisability is an important quantity because 

it allows the calculation of both static polarisabilities and vertical excitation 

energies. This is because it has the important properties that it gives the 

static polarisabilities when w = 0 and it diverges at the electronic excitation 

energies. This divergence is especially useful as it allows the calculation of 

single photon vertical electronic excitation energies from a description of the 

ground state energy only. 

If a gradient-corrected exchange-correlation functional is written as 

( 4.24) 

where Pu are the spin densities and (uu = \1 Pu·\1 Pu, then if current depen­

dence is ignored the electric Hessian matrix is 

( 4.25) 
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and 

(HI) aio:,bj,B 

( 4.26) 

where (paqalra' sa') denotes a two electron integral. In contrast, the mag­

netic Hessian matrix is diagonal (assuming that there is no current depen­

dence) 

( 4.27) 

Thus, unlike the magnetic case, electric response properties are not deter­

mined solely by the orbitals and eigenvalues. Instead, there is an explicit 

dependence on the exchange-correlation integrand F.xc which must be con­

sidered. 

4.3.1 MKS electric response properties 

MKS polarisabilities and excitation energies are calculated by evaluating 

eqn. ( 4.20) using ZMP orbitals and orbital energies, generated as in the mag­

netic case (Section 4.1.1). Since H 1 explicitly depends upon the exchange­

correlation integrancl Fxc it is possible to investigate the effect of varying 

the Fxc. Therefore the notation is extended such that the functional of the 

density used to generate the integrand is appended in square brackets. For 

example, an MKS calculation using a Brueckner Doubles density with the 

HCTH integrand is denoted MKS(BD)[HCTH]. 

Unlike the MKS calculations for magnetic response, for electric response 

calculations one basis set was used consistently for all parts of the calcu­

lations. The basis sets employed for polarisability and excitation energy 
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calculations are rather more modest than those required to generate accu­

rate shielding constants and consequently there was no advantage in using a 

smaller basis for the ZMP calculations. 

4.4 MKS polarisabilities 

Static electric polarisabilities are quantifications of the ease of distortion of 

charge density by an external electric field. The calculation of polarisabilities 

is of considerable importance owing to their use in the understanding of 

molecular interactions and the properties of dimers. 

Static electric polarisabilities were calculated for 14 small molecules. All 

polarisability calculations were carried out at the near experimental geome­

tries listed in Appendix C and used the Sadlej basis set [152, 153]. 

4.4.1 Analytical versus numerical calculations 

There are two possible ways of determining a static polarisability; the fi­

nite field method (numerical differentiation) or solving the coupled-perturbed 

Kohn-Sham equations (computing the derivative analytically). Both ap­

proaches are equivalent, but analytical evaluation-while more difficult to 

implement-is numerically more stable. Analytical derivatives were used for 

all methods except BD and BD(T) for which the procedure is not available 

in CADPAC. For these, numerical differentiation was necessary. 

In numerical polarisability calculations, the components of the polaris­

ability tensor are constructed through a series of calculations with applied 

electric fields 

( 4.28) 

where J-La is the dipole moment component in the direction ex and 6E13 is the 

magnitude of the applied field in the direction f3. Then, for a polarisability 
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tensor 
O'.xy au) 
O'.yy O'.yz 

O'.zy O'.zz 

(4.29) 

the isotropic polarisability is [154] 

1 
a = 3 ( O'.xx + O'.yy + O'.zz) ( 4.30) 

and the anisotropic polarisability 6.a is defined by [154] 

( 4.31) 

For all calculations an electric field strength of 0.001 au was used. 

4.4.2 Error analysis and vibrational corrections 

·when considering the results of calculations of molecular polarisabilities, it is 

important to note that calculated values correspond to static polarisabilities, 

while experimental values relate to molecules that are vibrating. Unless vi­

brational corrections are introduced, a comparison between experimental and 

calculated values is not valid. To make error analysis meaningful, comparison 

with high accuracy correlated ab initio methods, rather than experimental 

values, avoids this problem. Even if vibrational effects are eliminated how­

ever, it is not true that the highest level correlated method is necessarily the 

most accurate, since cancellation of er"rors may mean that simpler methods 

yield more accurate results for a given basis (errors due to decreasing the or­

der of correlation and reducing the size of the basis may have opposite sign, 

and hence cancel each other). As an example, to assess the accuracy of the 

BD and BD(T) methods (the best wavefunction methods available within 

the CADPAC program) the vibrational corrections of Russell and Spack­

man [155, 156] were added to the calculated values for the 7 molecules CH4 , 

H20, H2S, HCl, HF, NH3 and PH3 and the resulting polarisabilities were 

compared with experimental values. For this procedure, BD has a mean ab­

solute error of 0.09 au compared with the BD(T) value of 0.22, so adding the 
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perturbative triplet excitations seems to reduce the accuracy. However, to 

compare with BD values, as those which get closest to experimental values 

neglecting vibrational effects, begs the question as to how good the vibra­

tional correction actually is, and what effect basis set truncation has. 'vVe 

consider it more sensible to compare with BD(T) values, since this is the 

highest order correlated method available to us within the approximation of 

the basis set and neglect of vibration. 

4.4.3 Isotropic and anisotropic polarisabilities 

In Table 4.5 we present isotropic polarisabilities of 14 small molecules, calcu­

lated using DFT methods, wavefunction methods and multiplicative Kohn­

Sham potentials built from DFT and wavefunction densities. DFT methods 

and densities are denoted by the exchange-correlation functional. All MKS 

calculations used the LDAX Fxc (Local Density Approximation for exchange 

only). 



~ 

~ 

Table 4.5: Static isotropic polarisabilities (in atomic units), determined using the Sadlej basis set. MKS calculations ~ 
use the LDAX Fxc ~ 

r.n 
'0 
0 -~ 

HCTH B97-1 B97-2 HF-SCF MP2 BD BD(T) MKS MKS MKS MKS MI<S MI<S MKS Expt 1 .., 
,_.. 

(HCT!-I) (B97-1) (B97-2) (HF-SCF) (MP2) 
Ul 

(BD) (BD(T)) ~ 

C2H-1 27.96 27.92 27.56 27.77 27.26 26.74 26.91 27.:33 27.31 26.79 26.72 27.73 27.05 27.30 27.70 
0"' ,_.. -CH4 17.08 16.86 16.64 15.88 16.51 16.29 Hi.43 16.71 16.58 16.28 15.78 16.69 16.42 16.5'1 17.27 
,_.. 
c:-1-,_.. 

Cl2 30.89 30.91 30.46 29.89 30.56 30.47 30.71 30.18 30.45 29.75 29.36 31.14 :l0.78 3l.l 0 30.35 ro 
Ul 

CO 13.33 13.05 12.96 12.23 13.09 12.91 13.04 13.04 12.92 12.72 12.:31 13.21 12.95 13.10 13.08 

C02 17.42 17.17 16.99 15.81 17.82 17.39 17.56 17.08 17.01 16.68 15.82 17.44 17.03 17.27 17.51 

F2 8.69 8.62 8.53 8.58 8.22 8.31 8.45 8.49 8.37 8.20 7.60 8.63 8.43 8.58 8.38 

fhO 10.25 9.81 9.70 8.50 9.79 9.48 9.71 9.97 9.69 9.46 8.58 9.81 9.45 9.64 9.64 

H2S 25.18 24.99 24.61 23.78 24.71 24.44 24.67 24.56 24.58 24.04 23.92 25.13 24.78 25.0 l 24.71 

HCl 17.84 17.74 17.42 16.67 17.37 17.26 17.43 17.40 17.52 17.07 16.92 17.78 17.61 17.77 17.39 

HF 6.02 5.75 5.68 4.89 5.67 5.51 5.64 5.86 5.70 5.55 4.95 5.71 5.52 5.64 5.60 

N2 11.94 11.84 ll. 71 11.43 11.46 11.59 11.75 11.71 11.72 11.50 11.39 11.89 11.77 11.89 11.74 

NH3 15.07 14.53 14.34 12.93 14.42 14.04 14.33 14.68 14.33 13.98 13.01 14.57 14.08 14.33 14.56 

PliJ :n.3o 30.99 30.76 29.91 30.68 30.29 30.45 30.53 30.44 29.98 29.76 30 97 30.52 3o.n 30.90 

so2 25.95 25.50 25.26 23.73 26.15 25.6G 26.06 25.50 25.27 24.81 23.48 2G.:H 25.'1,1 25.95 25.61 

Errors relative to experimental values 

tnean 0.32 0.09 -0.13 -0.89 -0.05 -0.29 -0.11 -0 10 -0.18 -0.55 -1.06 0.18 -0.19 0.03 

mean abs. 0.36 0.22 0.19 0.93 0.24 0.31 0.28 0.22 0.24 0.55 1.06 0.28 o.:3o 0.28 

Errors relative to BD(T) values 

mean 0.43 0.20 -0.02 -0.77 0.06 -0.18 0.02 -0.07 -0.43 -0.95 0.30 -0.07 0.14 

mean abs. 0.47 0.34 0.24 0.92 0.17 0.19 0.24 0.20 0.43 0.95 0.31 0.21 0.22 
1 CO from Ref. [157]i all others from Ref. [154] 

I 
1-' 
0 
0 
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When comparing results with those from BD(T), MP2 performs best 

overall, while BD is very close. The best MKS results are for B97-l, BD 

and BD(T) densities, and all these give mean absolute errors which are com­

parable with the best wavefunction methods. MKS (BD) and MKS (BD (T)) 

mean absolute errors are very close to those of BD and BD(T). This is very 

encouraging, as it means it is possible to obtain correlated wavefunction type 

accuracy for polarisabilities without differentiating the wavefunction energy 

twice. The fact that this accuracy can be achieved using wavefunction densi­

ties in a DFT calculation also shows that inclusion of the current dependence 

in response property calculations is not necessary for the DFT model to equal 

the best ab initio performance; improving the description of the orbitals and 

eigenvalues is sufficient. 

Even more important, from the point of view of practical calculations, is 

the performance of MKS(B97-l). Here again, the performance of the corre­

lated wavefunction calculations is equalled, but no wavefunction calculations 

is performed, and hence the N 7 scaling that limits coupled cluster calcula­

tions is avoided. Although the MKS procedure is less efficient than a standard 

DFT calculation it will scale in a similar way (N4). 

Noting that calculating errors with respect to experimental values is not 

strictly valid, the comparison is nonetheless interesting since the pattern seen 

is similar to the comparison with BD(T). B97-2 has the lowest mean absolute 

error overall, while MP2 is the best wavefunction method. MKS(HCTH) and 
' 

MKS(B97-l) are comparable with the best DFT and wavefunction methods. 

Also, MKS(BD) and MKS(BD(T)) have mean absolute errors very close to 

BD and BD(T) respectively. 

Similarly, anisotropic polarisabilities are presented in Table 4.6. Note 

that, in .the case of the errors compared to experimental values, this is only 

for the 10 systems for which experimental values are available. Comparing 

with BD(T), BD performs the best by a considerable margin. This seems 

to be because of the close agreement between BD and BD(T) on the value 

for 802 . There is little variation in the errors of the other methods, except 
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for the HF-SCF and MKS(HF-SCF), both of which are extremely poor. In 

comparing with exp~riment there are no clear winners, although conventional 

B97-l and B97-2 perform best overall. 

An important point to note is the seeming disparity in the errors for the 

B97-l and B97-2 DFT methods and the MKS results using B97-l and B97-

2 densities. For conventional DFT calculations, B97-2 outperforms B97-l. 

However, when using these two functionals in MKS calculations B97-l gives 

better results than B97-2. This can be understand by considering the densi­

ties associated with the two functionals. In order to assess the quality of the 

densities dipole moments were calculated (see Table 4.7). Dipole moments 

are a good indication of the quality of a density and B97-l outperforms B97~ 

2. Since the values of properties calculated using the MKS method depend 

on the quality of the density, it might be predicted that "tvlKS(B97-l) would 

outperform MKS(B97-2). 

The question remains: why is conventional B97-2 better at calculating po­

larisabilities than B97-l? B97-2 is fitted to exchange-correlation potentials, 

and consequently is more likely to describe the long-range region well: more 

physics is included in the functional. This region is important for the accu­

rate calculation of polarisabilities. B97-l does better at short range, which 

accounts for its performance on dipole moment calculations. The issue is the 

emphasis of different regions of space. 



Table 4.6: Static anisotropic polarisabilities (in atomic units), determined using the Sadlej basis set. f--1IKS calcula­

tions use the LDAX Fxc 

ezH4 

eH4 

e12 

eo 
eo. 
Fz 

HzO 
H2S 

He! 

HF 

Nz 

NI-13 

PI-13 

SOz 

HeTH B97-1 B97-2 

11.78 11.84 11.91 

0.00 0.00 0.00 

16.23 16.62 16.58 

3.75 3.65 3.63 

13.65 13.44 13.34 

5.62 6.27 6.24 

0.30 0.60 0.59 

1.21 0.89 0. 77 

1.44 1.55 1.57 

1.12 1.19 1.18 

5.06 5.03 5.06 

2.52 1.82 l. 79 

2.09 1.78 1.70 

13.23 13.02 12.99 

Errors relative to experimental values 

mean -0.03 -0.08 -0.11 

mean abs. 0.45 0.31 0.33 

Errors relative to BD(T) values 

mean 0.23 0.21 0.19 

mean abs. 0.48 0.41 0.43 

1 Ref. [158] 

HF-SeF 

12.98 

0.00 

18.30 

3.36 

12.04 

9.01 

1.14 

0.31" 

1.87 

1.29 

5.38 

0.51 

0.96 

12.50 

-0.06 

0.83 

0.35 

1.13 

MP2 BD BD(T) MKS 

10.61 11.02 

0.00 0.00 

16.56 16.78 

3.91 4.00 

14.93 14.37 

4.92 5. 75 

0.42 DAB 

0.82 0.77 

1.87 1.68 

1.10 1.17 

4.44 4.82 

1.93 1.65 

1.68 1.43 

13.68 10.73 

10.86 

0.00 

16.61 

3.94 

14.38 

5.70 

0.41 

0.91 

1.66 

1.16 

4.87 

1.87 

1.56 

10.80 

-0.05 -0.34 -0 33 

0.45 0.47 0.50 

0.11 -0.01 

0.39 0.08 

(HeTH) 

11.32 

0.00 

15.8.5 

3.66 

13.48 

5.44 

0.:32 

1.06 

1.47 

1.10 

4.92 

2.44 

2.08 

13.07 

-0.:32 

0.42 

0.11 

0.47 

lv!KS 

(B97-l) 

10.85 

0.00 

15.90 

3.54 

13.08 

.5.54 

0.54 

0.86 

1.49 

1.13 

4.71 

1.88 

1.97 

12.62 

-0.38 

0.43 

-0.04 

0.38 

MKS 

(B97-2) 

10.86 

0.00 

15.73 

3.47 

12.90 

5.50 

0.56 

0.70 

1.53 

1.13 

4.70 

1.77 

1.85 

12.51 

-0.44 

0.47 

-0.11 

0.42 

MKS 

(HF-SeF) 

9.04 

0.00 

1.5.26 

2.91 

10.96 

5.60 

0.84 

0.65 

1.50 

1.12 

4.18 

1.03 

2.05 

10.69 

-1.16 

1.20 

-0.64 

0.77 

MKS 

(1V!P2) 

!VIKS 

(BD) 

10.68 10.74 

0.00 Cl.OO 

Ui.OO 15.77 

3.41 3.18 

12.93 12.35 

5.39 5.46 

0.16 0.31 

0.93 0. 73 

1.50 1.57 

0.83 0.90 

4.85 4.63 

2.30 1.89 

2.05 1.66 

12.78 12.08 

-0.39 -0.59 

. 0.55 0.63 

-0.06 -0.25 

0.48 0.4.5 

MKS 

(BD(T)) 

10.91 

0.00 

15.8:3 

3.25 

12.67 

.5.46 

0.25 

0.82 

1.55 

0.88 

4.65 

2.07 

1.72 

12.44 

-0.48 

0.56 

-0.16 

0.45 

Expt 1 

11.40 

17.5:3 

14.17 

0.66 

0 65 

1.45 

1.:n 
4.70 

1.94 

13.00 

H::. 
H::. 

~ 
~ 
'(f) 

"0 
0 ,_. 
P-l 
"1 ..... 
r:n 
P-l 
0"' ..... -..... e-t-..... 
(!) 
[fJ 

"'"" 0 
w 
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Table 4.7: Dipole moments (in atomic units) determined using the Sadlej 

basis set 

B97-1 B97-2 MKS MKS BD BD(T) Expt. 1 

(B97-1) (B97 -2) 

CO 0.044 0.041 0.043 0.041 0.040 0.056 0.043 

H20 0.726 0.727 0.726 0.727 0.731 0.722 0.727 

HzS 0.401 0.409 0.401 0.409 0.391 0.384 0.401 

HCl 0.441 0.444 0.441 0.444 0.440 0.433 0.441 

HF 0.705 0.706 0.705 0.706 0.708 0.702 0.707 

NH3 0.598 0.598 0.598 0.598 0.601 0.592 0.603 

PH:3 0.258 0.272 0.258 0.272 0.231 0.228 0.226 

SOz 0.641 0.632 0.641 0.632 0.679 0.644 0.640 

Errors relative to experimental values( x 10-3) 

mean 3.11 5.19 3.13 5.20 4.07 -3.42 

mean abs. 5.23 9.23 5.15 9.34 8.05 8.06 

Errors relative to BD(T) values( x 10-2 ) 

mean 0.65 0.86 0.66 0.86 0.75 

mean abs. 1.03 1.52 1.05 1.54 1.14 
1 Ref. [158] 

4.4.4 Variation of isotropic polarisabilities with Fxc 

Next the effect of varying Fxc on the MKS isotropic polarisability calculations 

is considered. In Tables 4.8 to 4.11 are presented isotropic polarisabilities 

from MKS calculations \vith a range of densities using the LDAX + VWN, 

BLYP, HCTH ancl1/4 Fxc approximations respectively. Also presented is a 

summary of the mean errors cf. BD(T) in Table 4.12. Overall, the LDAX 

Fxc performs best, giving the smallest mean error for HCTH, 897-1, BD and 

BD(T) densities. Only 897-2 and HF -SCF perform better with another Fxc, 

specifically the HCTH Fxc· Note that the 897-1 density coupled with the 

BLYP Fxc gives a mean error comparable with those termed 'best'. 



~ 

Table 4.8: lVIKS static isotropic polarisabili ties (in atomic units) determined using the Sadlej basis and the ~ 

LDAX+V\VN Fxc ~ 
~ 
UJ -

MKS MKS MKS MKS MKS MKS MKS BD(T) Expt.1 "d 
0 

(HCTH) (B97-1) (B97-2) (HFcSCF) (MP2) (BD) (BD(T)) -Pl 
1-j 

C2H4 27.73 27.71 27.17 27.10 28.13 27.43 27.68 26.91 27.70 
...... 
[JJ 

Pl 
CH4 16.96 16.82 16.52 16.00 16.93 16.65 16.78 16.43 17.27 o-...... -Cl2 30.57 30.84 30.12 29.72 31.54 31.17 31.50 30.71 30.35 

...... 
~ ...... 

CO 13.21 13.08 12.87 12.46 13.37 13.11 13.26 13.04 13.08 
(T) 
[JJ 

C02 17.25 17.18 16.84 15.96 17.60 17.19 17.43 17.56 17.51 

F2 8.57 8.45 8.27 7.66 8.71 8.51 8.66 8.45 8.38 

H20 10.13 9.83 9.60 8.69 9.95 9.58 9.78 9.71 9.64 

H2S 25.00 25.01 24.45 24.33 25.57 25.21 25.44 24.33 24.71 

HCI 17.68 17.80 17.33 17.18 18.05 17.88 18.05 17.43 17.39 

HF 5.93 5.77 5.62 5.01 5.78 5.59 5.71 5.69 5.60 

N2 11.84 11.85 11.63 11.51 12.02 11.90 12.02 11.75 11.74 

NH3 14.94 14.57 14.21 13.21 14.82 14.31 14.56 14.33 14.56 

PH:l 31.07 30.98 30.50 30.28 31.51 31.05 31.26 30.64 30.57 

so~ 25.78 25.53 25.07 23.71 26.59 25.71 26.22 26.06 25.61 

Errors relative to experimental values 

mean 0.16 0.07 -0.30 -0.83 0.44 0.06 0.28 -0.11 

mean abs. 0.24 0.19 0.31 0.83 0.49 0.28 0.36 0.28 

Errors relative to BD(T) values 

mean 0.27 0.18 -0.19 -0.72 0.55 0.18 0.39 lg 
mean abs. 0.38 0.31 0.26 0.74 0.55 0.31 0.41 
1 CO from Ref. [157]; all others from Ref. [154] 
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Table 4.9: MKS static isotropic polarisabilities (in atomic units) determined using the Sadlej basis set and the ~ 

BLYP Fxc $: 
~ 
m -

MKS MKS MKS MKS MKS MKS MKS BD(T) Expt. 1 '0 
0 

(HCTH) (B97-1) (B97-2) (HF-SCF) (MP2) (BD) (BD(T)) -~ 
1-j 

C2H4 27.43 27.42 26.89 26.84 27.84 27.18 27.42 26.91 27.70 
...... 
r:n 
~ 

CH4 16.75 16.62 16.33 15.83 16.74 16.47 16.60 16.43 17.27 cr' ...... -Cl2 30.18 30.46 29.76 29.38 31.15 30.80 31.11 30.71 30.35 
...... 
M-...... 

CO 13.02 12.90 12.70 12.30 13.19 12.94 13.09 13.04 13.08 
(t) 
r:n 

C02 17.02 16.96 16.63 15.78 17.39 16.99 17.22 17.56 17.51 

F2 8.48 8.36 8.19 7.59 8.64 8.43 8.58 8.45 8.38 

H20 9.92 9.65 9.41 8.55 9.78 9.42 9.61 9.71 9.64 

H2S 24.55 24.59 24.04 23.94 25.14 24.80 25.02 24.33 24.71 

HCl 17.35 17.48 17.03 16.89 17.74 17.58 17.73 17.43 17.39 

HF 5.81 5.66 5.51 4.92 5.67 5.49 5.61 5.69 5.60 

N2 11.66 11.67 11.46 11.35 11.85 11.73 11.85 11.75 11.74 

NH3 14.65 14.30 13.96 13.00 14.56 14.07 14.31 14.33 14.56 

PH3 30.64 30.57 30.10 29.91 31.11 30.67 30.87 30.45 30.90 

so2 25.43 25.20 24.75 23.45 26.25 25.40 25.90 26.06 25.61 

Errors relative to experimental values 

mean -0.11 -0.19 -0.55 -1.05 0.19 -0.18 0.03 -0.11 

mean abs. 0.21 0.22 0.55 1.05 0.28 0.29 0.26 0.28 

Errors cf. BD 

mean 0.00 -0.07 -0.43 -0.94 0.30 -0.06 0.15 jg 
mean abs. 0.27 0.23 0.43 0.94 0.33 0.24 0.25 
1CO from Ref. [157]; all others from Ref. [154] 
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Table 4.10: !viKS static isotropic polarisabilities (in atomic units) determined using the Sadlej basis set and the t+:>. 

HCTH Fxc ~ 
~ 
m -

MKS MKS MKS MKS MKS MKS MKS BD(T) Expt. 1 '0 
0 

(HCTH) (B97-1) (B97-2) (HF-SCF) (MP2) (BD) (BD(T)) ...... 
p.l 
>-; 

C2H4 27.91 27.93 27.37 27.37 28.39 27.70 27.95 26.91 27.70 
...... 
00 
p.l 

CH4 17.02 16.91 16.60 16.11 17.05 16.77 16.90 16.43 17.27 U' ...... ...... 
Cb 30.88 31.19 30.45 30.07 31.90 31.53 31.86 30.71 30.35 

...... 
~ ...... 

CO 13.30 13.19 12.98 12.59 13.50 13.24 13.39 13.04 13.08 
(1) 
00 

C02 17.40 17.35 17.00 16.15 17.81 17.39 17.63 17.56 17.51 

F2 8.68 8.56 8.38 7.77 8.85 8.64 8.79 8.45 8.38 

H20 10.19 9.91 9.67 8.78 10.07 9.70 9.89 9.71 9.64 

H2S 25.14 25.20 24.62 24.53 25.77 25.41 25.64 24.33 24.71 

HCI 17.81 17.95 17.47 17.33 18.22 18.05 18.21 17.43 17.39 

HF 5.98 5.82 5.67 5.07 5.85 5.67 5.78 5.69 5.60 

N2 11.91 11.93 11.70 11.61 12.11 12.00 12.12 11.75 11.74 

NH3 15.01 14.66 14.30 13.33 14.95 14.44 14.69 14.33 14.56 

PH3 31.27 31.23 30.73 30.56 31.80 31.33 31.54 30.45 30.90 

so2 25.91 25.71 25.24 23.94 26.81 25.93 26.44 26.06 25.61 

Errors relative to experimental values 

mean 0.28 0.22 -0.16 -0.66 0.62 0.24 0.46 -0.11 

mean abs. 0.33 0.30 0.20 0.66 0.65 0.34 0.51 0.28 

Errors relative to BD(T) values 

mean 0.40 0.33 -0.05 -0.55 0.73 0.35 0.57 I~ mean abs. 0.44 0.42 0.23 0.66 0.73 0.40 0.57 
1 CO from Ref. [157]; all others from Ref. [154] 
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Table 4.11: MKS static isotropic polarisabilities (in atomic units) determined using the Sadle.i basis set and the ~ 

1/4 Fxc $: 
~ 
(/). 

MKS MKS MKS MKS MKS MKS MKS BD(T) Expt.1 '"d 
0 

(HCTH) (B97-1) (B97-2) (HF-SCF) (MP2) (BD) (BD(T)) -P' 
>-j 

C2H4 27.74 27.73 27.19 27.16 28.18 27.49 27.74 26.91 27.70 
..... 
C/J 
P' 

CH.t 16.96 16.83 16.53 16.03 16.95 16.68 16.80 16.43 17.27 0" ..... -Cl2 30.65 30.94 30.22 29.83 31.65 31.28 31.61 30.71 30.35 
..... 
<"+-..... 

CO 13.21 13.09 12.89 12.49 13.39 
(1) 

13.14 13.28 13.04 13.08 C/J 

C02 17.25 17.19 16.86 16.00 17.64 17.23 17.46 17.(?6 17.51 

F2 8.57 8.45 8.28 7.67 8.73 8.52 8.67 8.45 8.38 

H20 10.10 9.81 9.58 8.69 9.96 9.59 9.78 9.71 9.64 

H2S 25.01 25.05 24.48 24.38 25.61 25.26 25.49 24.33 24.71 

HCl 17.68 17.81 17.35 17.20 18.08 17.91 18.07 17.43 17.39 

HF 5.91 5.75 5.61 5.01 5.77 5.59 5.70 5.69 5.60 

N2 11.83 11.84 11.62 11.52 12.02 11.90 12.02 11.75 11.74 

NH3 14.89 14.54 14.19 13.21 14.81 14.31 14.56 14.33 14.56 

PH3 31.14 31.07 30.59 30.40 31.63 31.17 31.38 30.45 30.90 

802 25.77 25.54 25.08 23.77 26.62 25.75 26.25 26.06 25.61 

Errors relative to experimental values 

mean 0.16 0.09 -0.29 -0.79 0.47 0.10 0.31 -0.11 

mean abs. 0.24 0.21 0.29 0.79 0.52 0.30 0.39 0.28 

Errors relative to BD(T) values 

mean 0.27 0.20 -0.17 -0.68 0.59 0.21 0.43 I~ mean abs. 0.37 0.33 0.27 0.72 0.59 0.34 0.44 
1CO from Ref. [157]; all others from Ref. [154] 
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Table 4.12: Summary of variation of mean errors with Fxc cf. BD(T) 

MKS MKS MKS MKS MKS MKS MKS 

(HCTH) (B97-1) (B97-2) (HF-SCF) (MP2) (BD) (BD(T)) 

LDAX 0.25 0.20 0.43 0.95 0.31 0.21 0.22 

LDAX+VWN 0.38 0.31 0.26 0.74 0.55 0.31 0.41 

BLYP 0.27 0.23 0.43 0.94 0.33 0.24 0.25 

HCTH 0.44 0.42 0.23 0.66 0.73 0.40 0.57 

1/4 0.37 0.33 0.27 0.72 0.59 0.34 0.44 

4.4.5 The HCTH[LDAX] method 

In Table 4.13 the performance of another procedure, termed HCTH[LDAX], 

is assessed. This is a standard HCTH calculation with the Fxc replaced 

by that of the LDAX. ·with this it is hoped to reproduce the performance 

of MKS(HCTH)[LDAX] without the cost of the separate density and po­

tential calculations. We include standard HCTH and MKS(HCTH)[LDAX] 

results for comparison. Since the only difference between the HCTH[LDAX] 

and MKS(HCTH)[LDAX] procedures should be the asymptotic correction 

introduced by the Fermi-Amaldi term in the ZMP method, asymptotically 

corrected HCTH [143] results (denoted HCTH(AC)) are also presented. 

Replacing the Fxc to give HCTH[LDAX] does produce results very close 

to those of the MKS(HCTH)[LDAX] ~rocedure. The MKS(HCTH)[LDAX] 

results are slightly lower; since the effect of the asymptotic correction is to 

lower polarisabilities, this is consistent. 

4.5 MKS excitation energies 

Excitation energies for CO, N2 , H2 CO and C2H4 were calculated at near ex­

perimental geometries. The Sadlej basis set was used with additional diffuse 

functions to ensure good description of the virtual orbitals. Geometries and 

acldi tional functions used are summarised in Table C. 2. 
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Table 4.13: HCTH[LDAXJ static isotropic polarisabilities (in atomic units) 

determined using the Sadlej basis set 

HCTH MKS(HCTH) HCTH HCTH BD(T) Expt 1 

[LDAX] [LDAX] (AC) 

C2R1 27.96 27.33 27.38 26.64 26.91 27.70 

CH4 17.08 16.71 16.77 16.15 16.43 17.27 

Cb 30.89 30.18 30.20 30.74 30.71 30.35 

CO 13.33 13.04 13.08 12.84 13.04 13.08 

C02 17.42 17.08 17.11 16.93 17.56 17.51 

F2 8.69 8.49 8.51 8.28 8.45 8.38 

H20 10.25 9.97 10.04 9.40 9.71 9.64 

H2S 25.18 24.56 24.61 24.71 24.33 24.71 

HCl 17.84 17.40 17.44 17.64 17.43 17.39 

HF 6.02 5.86 5.90 5.44 5.69 5.60 

N2 11.94 11.71 11.75 11.52 11.75 11.74 

NH3 15.07 14.68 14.76 13.88 14.33 14.56 

PH3 31.30 30.53 30.57 30.73 30.45 30.93 

so2 25.95 25.50 25.55 25.51 26.06 25.61 

Errors relative to experimental values 

mean 0.32 -0.10 -0.06 -0.29 -0.11 

mean abs. 0.36 0.22 0.21 0.38 0.28 

Errors relative to BD(T) values 

mean 0.43 0.02 0.07 -0.17 

mean abs. 0.47 0.25 0.27 0.30 
1CO from Ref. [157]; all others from Ref. [154] 
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Knowing that there is an explicit dependence on Fxc in the electric Hes­

sian matrix it was anticipated that varying Fxc would have an effect on 

calculated electric response properties. vVe have shown that this is the case 

for polarisabilities. vVe note that MKS(BD)(LDAX] performs much better 

than MKS(BD)(HCTH] for polarisabilities. Since the procedure for deter­

mining Kohn-Sham orbitals and eigenvalues, MKS(BD), is constant between 

the two methods the orbitals and eigenvectors themselves will be constant. 

Thus the difference between the two methods is due to the Fxc· 

Vertical excitation energies were calculated for CO, N2 , H2 CO and C2 H4 . 

The singlet excitations for these molecules are presented in Tables 4.14 

to 4.17. vVe compare a standard KS-DFT calculation using the HCTH 

exchange-correlation functional with an MKS calculation using a BD density 

with both the HCTH and LDAX Fxc and the HCTH(LDAX] method (de­

scribed above). In comparing the MKS(BD)(HCTH] and P.1IKS(BD)(LDAX] 

results it can be seen that the choice of Fxc has relatively little effect on 

the mean absolute errors: Rydberg excitations are insensitive to Fxc· This 

is consistent with the observation that Rydbergs may be improved by im­

proving eigenvalue differences (via an asymptotic correction which leaves F'.xc 
unchanged). In eft:'ect, the eigenvalue difi'erences dominate the electric Hes­

sian matrix. In contrast, the valence excitations are much more sensitive to 

Fxc, changing by up to 0.2 eV. This suggests that accurately representing 

Fxc is important for the evaluation of," low lying excitations, a class that is 

problematic for Kohn-Sham theory. 

4.6 Summary 

We have considered response properties using the MKS procedure. Previous 

studies have shown a dramatic improvement for shielding constants when 

going from conventional B97-2 to MKS(B97-2) (59, 69]: similar results are 

seen here for chemical shifts. MKS(B97-2) chemical shift errors are the lowest 

of the methods considered in this study, though KT2 is the best practical 
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Table 4.14: Vertical excitation energies of CO (in eV), computed using the 

augmented Sadlej basis set. 

State Transition HCTH MKS(BD) MKD(BD) HCTH Expt 1 

[HCTH] [LDAX] [LDAX] 

F tL;+ (]" ---+ 3 dO" 9.58 11.69 11.70 9.59 12.4 

E 1I1 (]" ---+ 3p7r 9.48 10.87 10.88 9.53 11.53 

c lL;+ O" ---+ 3 PO" 9.41 10.82 10.82 9.43 11.40 

B tL:+ O" ---+ 3s 8.94 10.19 10.19 8.96 10.78 

D 16 7r ---+ n* 10.19 10.39 10.62 10.41 10.23 

I tl::- 7r ---+ 71* 9.92 10.13 10.13 9.92 9.88 

A 1I1 O" ---+ n* 8.31 8.55 8.71 8.44 8.51 

Mean abs. error 1.13 0.39 0.46 1.11 
1 Ref [159] 

Table 4.15: Vertical excitation energ·ies of N2 (in eV), computed using the 

augmented Sadlej basis set. 

State Transition HCTH IviKS(BD) MKD(BD) HCTH Expt 1 

[HCTH] [LDAX] [LDAX] 

trr1L 1r u ---+ 3s O" 9 11.11 13.1·2 13.14 11.08 13.24 

lL;+ 
u (]" g ---+ 3pO" 1L 10.48 12.13 12.10 10.48 12.98 

trr u (]" g ---+ 3p1rlL 10.49 12.07 12.06 10.50 12.90 

lL;+ 
g O" 9 ---+ 3sO" 9 10.19 11.48 11.47 10.20 12.2 

161L 7r 1L ---+ 7r g 10.08 10.09 10.34 10.33 10.27 
1),-

L./1L 1rn ---+ 7r g 9.73 9.75 9.75 9.73 9.92 

trr 
g (]" g ---+ 7r g 9.15 9.40 9.53 9.27 9.31 

JVIean abs. error 1.25 0.38 0.39 1.27 
1 Ref [160] 
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Table :..!.16: Vertical excitation energies of H2CO (in eV), computed using 

the Sadlej basis set. 

State Transition HCTH MKS(BD) MKD(BD) HCTH Expt 1 

[HCTH] [LDAX] [LDAX] 
1
A2 n-+ 3dbl 7.11 9.21 9.22 7.11 9.22 

1A2 n-+ 3pb1 6.54 8.25 8.26 6.55 8.38 
1
B1 (J -+ 7r* 8.98 9.32 9.42 9.08 8.68 

1
B2 n-+ 3pal 6.38 7.84 7.86 6.39 8.12 

1
A1 n-+ 3pb2 6.33 7.97 8.01 6.32 7.97 

1
B2 n-+ 3sa 1 5.69 7.05 7.07 5.68 7.09 

1
A2 n-+ 7r* 3.92 4.42 4.50 4.00 3.94 

Mean abs. error 1.29 0.23 0.25 1.31 
1Ref[161] 

choice as it provides excellent results at a low computational cost. 

MKS(BD) and MKS(BD(T)) polarisabilities are close to those of con­

ventional BD and BD(T) calculations respectively. MKS(B97-2) does not 

reduce errors in polarisabilities as was seen for magnetic response properties. 

The best polarisabilities used the LDAX Fxc· For vertical excitations, Ry­

dberg excitations are relatively insensitive to Fxc· Valence excitations are 

more sensitive, and the accuracy of the Fxc is important, but no calculations 

performed as part of this work showed a substantial gain in accuracy. 
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Table 4.17: Vertical excitation energies of C2H4 (in eV), for states formed 

by single excitations from the b3u = 7f orbital (molecule lies in yz plane), 

computed using the augmented Sadlej basis set. 

State Transition HCTH MKS(BD) MKD(BD) HCTH Expt 1 

[HCTH] [LDAX] [LDAX] 

1 Blu 3d7f = b2g 7.82 9.09 9.12 8.09 9.33 

1 B2u. 3do = b19 7.37 8.83 8.85 7.58 9.05 

1 B3u 3do = ag 7.29 8.74 8.75 7.45 8.90 

1 B3u 3da = a 9 6.86 8.53 8.55 6.98 8.62 

lA g 3p7r = b3u 6.94 8.15 8.14 7.05 8.28 

1 Blu 7f* = b2g 7.18 7.57 7.72 7.30 8.0 

1 B2g 3pa = blu 6.68 7.71 7.72 6.71 7.90 
1 
B19 3pa = b2u 6.69 7.67 7.68 6.73 7.80 

1 B3u 3s = a 9 6.24 7.07 7.07 6.24 7.11 

Mean abs. error 1.32 0.18 0.15 1.21 
1 Ref [162] 



Chapter 5 

Eigenvalues, integer 

discontinuities and NMR 

shieldings 

In this chapter, high quality electron densities are used to investigate Kohn­

Sham eigenvalues and related properties. First, Kohn-Sham HOMO-LUMO 

eigenvalue differences are considered. GGA values are compared with values 

determined from coupled-cluster densities; the influence on NMR shielding 

constants is investigated. Next, eigenvalues calculated from electron densities 

are used to investigate the integer discontinuity. This leads to a considera­

tion of the HOMO eigenvalue. GGA .ijOMO eigenvalues are compared with 

ionisation potentials and eigenvalues calculated from a continuum functional 

that averages over the integer discontinuity. Further investigation of NMR 

shielding constants is presented, and the study is extended to excitation en­

ergies. 
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5.1 HOMO-LUMO eigenvalue differences 

Kohn-Sham eigenvalues are extremely important [65, 163, 164, 165, 166, 167, 

168, 169, 170, 171, 172, 173, 174, 21], both intrinsically, since there is con­

troversy over the physical significance (if any) of Kohn-Sham orbitals and 

eigenvalues, and practically, because of the importance of eigenvalue differ­

ences in the calculation of response properties. 

The ZMP method was used to calculate Kohn-Sham orbitals and eigen­

values from Brueckner Doubles electron densities. A Lagrange multiplier 

value of A = 900 was employed. An extensive preliminary investigation into 

the effect of the use of different basis sets was carried out. Diffuse functions 

were found to be important, as the calculations require a good description of 

high-lying orbitals. Unless otherwise stated, the aug-cc-PVTZ basis set [175], 

with d and f functions removed (for technical reasons) from hydrogen and 

non-hydrogen atoms respectively, was used. Near experimental geometries 

used are listed in Table C.3. Experimental vertical ionisation potentials (I) 

and electron affinities (A.) are listed in Table C.4. 

In Table 5.1 HOMO-LUMO eigenvalue differences from the ZMP proce­

dure are compared with those from conventional GGA functionals. Although 

HCTH (Section 2.8.4) is fitted to thermochemical data and ZMP potentials, 

while PBE (Section 2.8) is non-empirical and developed from theoretical con­

siderations, the two functionals give very similar results. (Note that although 

HCTH used ZMP(BD) potentials in the fitting procedure, it was not explic­

itly fitted to BD densities and other data were also fitted to. Thus we do not 

expect HCTH to necessarily reproduce the ZMP (BD) values.) Eigenvalue 

differences from both HCTH and 1/4 are below those from the ZMP cal­

culations. The 1/4 functional (Section 2.8.5) shares a functional form with 

HCTH, but it was fitted to ZMP potentials only, with no explicit thermo­

chemical information supplied. This emphasis on ZMP potentials might be 

expected to improve 1/4 HOMO-LUMO eigenvalue differences, and the 1/4 

results are closer to those calculated using the ZMP approach than HCTH or 

PBE. However, the improvement is small, and the 1/4 values are still lower 
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Table 5.1: HOMO-LUMO eigenvalue differences 6.t: = ELUMo - EHoMo de-

termined from the ZMP approach, compared to those from the HCTH, 

PBE, and 1/4 functionals. Experimental values of I - A and calculated 

6.xc = I - A - 6t:zMP are also presented. All values are in au. 

System 6.t:ZMP 6t:HCTH 6.t:PDE 6.t:l/4 I-A 6.xc 

H20 0.28 0.23 0.23 0.24 0.70 0.42 

NH3 0.24 0.20 0.20 0.21 0.60 0.37 

CH4 0.37 0.33 0.33 0.35 0.79 0.42 

HF 0.38 0.32 0.32 0.33 0.81 0.43 

PH3 0.24 0.22 0.22 0.23 0.46 0.22 

CO 0.27 0.26 0.26 0.26 0.58 0.31 

N2 0.32 0.31 0.31 0.31 0.65 0.34 

H2S 0.22 0.20 0.20 0.21 0.46 0.24 

HCN 0.30 0.29 0.29 0.29 0.58 0.29 

C2H2 0.26 0.25 0.25 0.25 0.52 0.26 

C2H4 0.21 0.21 0.21 0.21 0.46 0.24 

H2CO 0.15 0.14 0.13 0.13 0.46 0.30 

than those from ZMP. 

5 .1.1 NMR shielding constants 

Molecular response properties are highly sensitive to eigenvalue differences. 

This has been demonstrated for the case of NMR shielding constants by the 

work of Malkin et al. [129], where it was shown that correction of Kohn-Sham 

eigenvalue differences significantly improved calculated shielding constants. 

In this section we consider the effect on NMR shielding constants of the afore­

mentioned discrepancy between GGA and ZMP HOMO-LUMO eigenvalues 

differences. 

As discussed in Chapter 4, for a GGA functional the shielding tensor for 
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nucleus A. takes the form [128] 

J 

where za and z!3 are angular momentum operators; j and b denote occupied 

and virtual Kohn-Sham orbitals, respectively; and Ej and Eb denote occupied 

and virtual Kohn-Sham eigenvalues, respectively. 

The latter term in eqn. (5.1) is the paramagnetic contribution to the 

shielding tensor and it involves contributions from all occupied-virtual ex­

citations. However, it is reasonable to suppose that excitations to spatially 

diffuse high-lying virtual orbitals are relatively unimportant due to the pres­

ence of the r- 3 term in the numerator matrix elements and the relatively large 

eigenvalue differences in the denominator; this is indeed the case [69, 128]. 

The underestimation of the HOMO-LUMO gap by conventional func­

tionals seen in Table 5.1 would be expected to reduce calculated shielding 

constants by increasing the magnitude of the negative paramagnetic term; 

it is well known that NMR shielding constants calculated from conventional 

GGA functionals are significantly too deshielded [176]. Previous work by \Nil­

son and Tozer [69] has shown that when eqn. (5.1) is evaluated using ZMP 

orbitals and eigenvalues determined from Brueckner Doubles densities the 

resulting shielding constants approach ab initio quality. The improvement 

over conventional GGA shielding constants by this method (MKS(BD)) is 

clue to the improvement of all the orbitals and eigenvalues, but it must arise 

primarily from low-lying excitations (as high-lying excitations are relatively 

unimportant) and of these the HOMO-LUMO is likely to be significant. This 

is because it involves relatively compact orbitals and, of all the excitations, 

has the smallest eigenvalue difference. 

To quantify the effect of excitations to the LUMO, shielding constants 

were calculated using the HCTH and 1/4 functionals but with their respective 



5.1 HOMO-LUMO eigenvalue differences 119 

L UMO eigenvalues explicitly replaced by 

ti!CTH ---7 tMKS(BD) _ f.MKS(BD) + tHCTH 
LUMO LUMO 'HOMO HOMO (5.2) 

l/4 --' cMKS(BD) _ cMKS(BD) + cl/4 
tLU~IO --, '-LUMO '-HOMO '-HOMO 

In other words, the HCTH and 1/4 HOMO-LUMO eigenvalue differences are 

forced to equal the ZMP differences. The results are denoted HCTH(LCl) 

and 1/4(LC1) respectively, for 'LUMO Correction 1'. The results are pre­

sented in Table 5.2, together with conventional HCTH and 1/4 shieiding 

constants and the MKS(BD) results from [69]. The deshielding of the con­

ventional functionals and the great improvement of the MKS(BD) results are 

evident. For both HCTH and 1/4 the LUMO correction reduces the mean 

absolute errors compared to MKS(BD) (denoted ~MKs(BDl) by increasing the 

shielding constants. In fact, over two-thirds of the error is corrected simply 

by correcting the LUMO eigenvalue (for HCTH the mean absolute error re­

duces from 37.5 to 11.9 ppm, while in the case of 1/4 there is a corresponding 

reduction from 47.4 to 15.1 ppm). 

In Table 5.3 anisotropic shieldings for a senes of small molecules are 

presented. Similar results are obtained as with the isotropic shieldings; the 

LUMO correction reduces the mean absolute errors by more that half. 

5 .1. 2 The integer discontinuity 

Using an ensemble treatment, Perdew et. al. [171] have demonstrated that 

the exact exchange-correlation potential is discontinuous as the number of 

electrons passes through an integer. The limiting potentials from above and 

below the integer N differ by an amount ~xc 

lim Vxc(N + r5) - lim Vxc(N- c5) = ~xc 
6~0 6~0 

(5.3) 

and give LUMO and HOMO eigenvalues of [171] 

-A (5.4) 
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Table 5.2: Isotropic NIVIR shieldings (in ppm) at near-experimental geome­

tries, determined using the Huzinaga IGLO IV basis set. 

Mol. Nucl. HCTH 1/4 HCTH 1/4 HCTH 1/4 MKS Expt 

(LC1) (LCl) (LC2) (LC2) (BD) 

HF F 411..5 <113.1 417.9 418.7 412.2 420.5 416.3 419.7 1 

H20 0 327.6 329.5 330.3 331.7 331.5 336.0 3:31.1 357.6 1 

CH4 c 189.3 189.7 189.3 189.7 189.3 189.7 189.9 198.4 1 

CO c -7.5 -15.6 -4.0 -8.5 -49.7 -5.6 0.2 2.8 1 

0 -66.8 -74.7 -611 -63.6 -134.8 -58.9 -42.9 -36.71 

N2 N -76.9 -84.6 -69.3 -73.7 -132.7 -67.5 -64.4 -59.6 1 

F2 F -269.9 -278.6 -200.4 -196.8 -190.9 -192.8 1 

0'00' 0' -1438.2 -1486.0 -1105.3 -1117.2 -1063.9 -1290 1 

0 -859.4 -886.5 -680.5 -688.3 -729.4 -724 1 

PN p -7.6 -41.9 22.4 -1.3 42.0 53 2 

N -378.5 -393.3 -354.2 -360.7 -346.1 -3492 

lchS s 720.1 718.7 724.9 723.6 593.3 690.8 72:3.4 7523 

NH~ N 259.8 261.0 260.1 261.3 260.5 262.5 261.2 273 .. 3 1 

HCN c 75.7 70.4 76.8 71.6 53.3 74.9 79.3 82.1 1 

N -33.4 -43.2 -30.5 -40.2 -89.8 -32.1 -22.0 -20.4 1 

C2H2 c 112.2 107.2 112.7 107.7 95.3 108.1 113.8 117.24 

C2H4 c 53.4 47.5 54.7 49.3 26.3 54.8 56.1 64.5 5 

H2CO c -17.7 -27.6 -2.9 -8.5 -38.3 5.2 -86 -4.4 1 

0 -406.7 -437.0 -330.6 -340.1 -518.4 -273.7 -331.6 -3751 

N'NO N' 94.9 90.4 100.8 97.2 100.9 99.56 

N 8.5 4.0 14.9 11.1 11.3 11.36 

0 174.8 175.4 179.1 180.3 20:3.3 200.56 

C02 c 57.5 53.4 58.0 57.3 57.0 63.1 61.6 58.85 

0 215.3 212.2 214.1 217.3 216.9 225.1 235.0 243.47 

OF2 0 -610.9 -637.2 -544.7 -559.5 -458.5 -473.1 7 

lbCNN' c 161.8 161.3 162.1 161.4 164.6 164.5 1 

N -51.0 -56.7 -40.8 -45.5 -39.7 -43.4 1 

N' -155.6 -164.8 -125.2 -130.9 -124.9 -149.0 1 

HCl Cl 949.4 949.9 953.2 952.8 951.2 9528 

so2 s -183.9 -212.2 -143.8 -169.3 -150.5 -1263 

0 -260.6 -268.6 -226.0 -232.4 -180.8 -2053 

Pl-b p 576.6 571.6 579.7 575.6 438.0 537.0 577.6 599.98 

c,.MKS(BD) 37.5 47.4 11.9 15.1 

1 Ref. [177]; 2 Ref. [178]; 3 Ref. [179]; 4 Ref. [180]; 5 Ref. [181]; 6 Ref. [182]; 7 [183]; 8 Ref. [184] 



5.1 HOMO-LUMO eigenvalue differences 121 

Table 5.3: Anisotropic NMR shieldings (in ppm) at near-experimental ge-

ometries, determined using the Huzinaga IGLO IV basis set. 

Mol. Nucl. HCTH 1/4 HCTH 1/4 HCTH 1/4 MKS Expt 

(LC1) (LC1) (LC2) (LC2) (BD) 

HF F 105.3 101.9 95.7 93.4 104.3 00.7 !)7.6 93.8 1 

CO c 420.9 432.4 415.6 421.() 484.2 417.4 408.7 406.1 1 

0 716.0 726.8 707.:3 710.2 817.9 70.3.0 679.3 676.1 1 

N2 N 625.1 6:35.9 613.7 619.6 708.8 G10.3 605.7 ()031 

F2 F 11:n.2 1149.2 1033.0 1026.5 1018.3 1050 1 

PN p 1461.7 1511.6 1416.7 1450.7 1385.9 1376 2 

N 1081.0 1102.6 1044.5 1053.7 - 1031.7 10482 

NI{J N -47.() -48.4 -48.4 -48.8 -49.0 -50.5 -48.5 -40.33 

H2CO c 167.1 179.3 144.9 150.6 198.1 130.1 161.9 158.8 1 

HCI Cl 300.1 297.6 294.4 293.3 296.0 2983 

PH3 p -64.5 -69.3 -65.2 -70.1 -24.8 -61.4 -50.8 -64.53 

c,.MKS(BD) 31.2 42.8 12.5 17.5 
1 Ref. [177]; 2 Ref. [178]; 3 Ref. [184] 

In the case of the exact Z!viP potential (where the reference density is equal 

to the exact density) the potential vanishes asymptotically and 

EZMP =-I 
HOMO (5.5) 

Eqn. (5.5) can be considered an exact Koopmans' theorem (see Section 1.3.3) 

for the HOMO eigenvalue. Thus Hartree-Fock has an approximate Koop­

mans' theorem for all eigenvalues and DFT has an exact Kooprnans' theorem 

for one eigenvalue, that of the HOMO: 

It follows, given that the potential in the electron deficient limit has a 

HOMO eigenvalue equal to -I (eqn. (5.4)), that the exact ZMP potential is 

the electron deficient limit of the exact exchange-correlation potential 

'UzMP = lim Vxe(N - r5) 
cl-+0 

(5.6) 

and if we substitute eqn. (5.6) into eqn. (5.3) we see that the ZMP potential 

and the limiting potential on the electron abundant side differ only by the 

constant fixe 

'Uz~IP = lim Vxe ( N + r5) - fixe 
cl-TO 

(5.7) 
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Hence the ZMP LUMO eigenvalue is obtained by subtracting ~xc from the 

Vxc(N + 6) LUlVIO eigenvalue which, using the relation in eqn. (5.4), gives 

ZMP _ 4 A 
Er.uMo - -" - L.l.xc (5.8) 

From eqn. (.5.5) and eqn. (5.8) it follows that [185] 

ZMP ZMP I A ;\ 
ELUMO - EHOMO = - - L.l.xc (5.9) 

Thus the discontinuity can be approximated from ZMP HOMO-LUMO eigen­

value differences, provided that values for I and A are available. In Table 5.1 

experimental values of I- A and values of the discontinuity ~xc determined 

from eqn. (5.9) are presented; the discontinuity is of the order of 6 to 11 eV. 

These calculated values are consistent with previous studies [173] and their 

significance will be seen when the relationship between the GGA HOMO 

eigenvalue and the ionisation potential is considered in the next section. 

5.2 HOMO eigenvalues 

It is generally assumed that, since GGA potentials vanish asymptotically 

(i.e. the magnitude of the potential at infinity is zero), from eqn. (5.5) the 

HOMO eigenvalue associated with a GGA functional should satisfy 

GGA - I 
EHOMO ~-

(5.10) 

but in practice this is not found to be the case. In Table 5.4 HOMO eigen­

values determined using HCTH, PBE, 1/4 and ZMP are compared with 

-I (experimental values). In line with eqn. (5.5), the agreement between 

the ZMP HOMO eigenvalues and -I is good, and any discrepancies are at­

tributable to errors in the BD densities and the use of finite basis sets and 

Lagrange multipliers. However, in all cases the GGA HOMO eigenvalue lies 

well above -I. This is well known. It will now be argued that these HOMO 

eigenvalues are completely appropriate for a GGA and that it is incorrect to 

assume that the HOMO should equal -I. 
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Table 5.4: HOMO eigenvalues from ZMP, HCTH, PBE, and 1/4, compared 

to -I and the average HOMO E~v~·~"c; defined in Eqn. (5.13). All values are 

m au. 

System ZMP -I HCTH PBE 1/4 Caverage 
f. HOMO f. HOMO f. HOMO EHOMO HOMO 

H20 -0.48 -0.46 -0.27 -0.27 -0.29 -0.25 

NH3 -0.40 -0.40 -0.23 -0.23 -0.25 -0.21 

CH4 -0.51 -0.50 -0.35 -0.35 -0.38 -0.29 

HF -0.61 -0.59 -0.36 -0.35 -0.39 -0.38 

PH3 -0.38 -0.39 -0.25 -0.25 -0.27 -0.28 

CO -0.50 -0.51 -0.33 -0.33 -0.36 -0.36 

N2 -0.56 -0.57 -0.38 -0.38 -0.41 -0.40 

H2S -0.37 -0.39 -0.23 -0.23 -0.26 -0.26 

HCN -0.49 -0.50 -0.33 -0.33 -0.36 -0.36 

C2H2 -0.41 -0.42 -0.26 -0.26 -0.29 -0.29 

C2H4 -0.39 -0.39 -0.25 ..:._0.25 -0.27 -0.27 

H2CO -0.40 -0.40 -0.23 -0.23 -0.26 -0.25 

GGAs functionals are continuum functionals and, as such, cannot (by 

definition) exhibit the discontinuity of the true potential as the number of 

electrons passes through integer. The best that can be achieved [170, 185] is 

to approximately average over the integer discontinuity such that 

, average _ 1 ( (J"r + ;;;) +, (J"T s:)) _ + 6xc Uxc - 2 Vxc 'V U Uxc V - U - VzMP 2 (5.11) 

Since the average potential is shifted from the ZMP potential by !:::.xc/2 the 

HOMO eigenvalue associated with the average potential is similarly shifted 

6xc average _ ZMP + 
EHOMO - EHOMO -2- (5.12) 

and from eqn. (5.5) this is 

6xc f. average = _I + _._ 
HOMO 2 (5.13) 
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Thus given values for I and .6.xc we can calculate E~1v~~~b. We have performed 

calculations using experimental I and the .6.xc values in Table 5.1 and the 

results are compared with HCTH, PBE and 1/4 HOMO eigenvalues in Ta­

ble 5.4. HOMO eigenvalues from HCTH, PBE and 1/4 are in fact much 

closer to E~1v~~\~b than they are to -I. It has previously been observed [172] 

that GGA HOMO eigenvalues are close to -(I+ A)/2, and we note that, 

for open-shell systems in a restricted formalism, E~v~~~b reduces to this value. 

For the heavier systems (those with more than one first row non-hydrogen 

atom, or those with a second row atom) the 1/4 functional performs better 

than HCTH and PBE (the results of which are very similar). For the lighter 

systems the opposite is observed (HF is an interesting exception). This is 

consistent with previous studies which show that 1/4 performs especially well 

for heavier systems [49]. 

vVe rationalise the agreement between GGA HOMO eigenvalues and E~~~~~b 

in the following manner. The HOMO eigenvalue is largely determined by the 

potential in regions where there is significant density. Conventional GGA 

functionals describe the average potential (eqn. (5.11)) reasonably well in 

such regions, and so correctly shift the HOMO eigenvalue from -I by ap­

proximately .6.xc/2. At long range the potential should approach a system 

dependent constant, .6.xc· The fact that the potentials from GGA functionals 

do not do so, but instead vanish at long range, indicates that the approxi­

mation breaks clown in this region; see. ref. [186] for illustration. This failure 

leads to inaccurate asymptotic densities and a consequent poor description 

of Ryclberg electronic excitation energies [143], but it does not significantly 

impact the HOMO eigenvalue. This breakdown is also consistent with un­

derestimated HOMO-LUMO eigenvalue differences (Section 5.1). 

5. 2.1 NMR shielding constants 

The above analysis of the HOMO eigenvalue suggests another approach for 

correcting the LUMO eigenvalue. By analogy with eqn. (5.12) the potential 
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that averages over the discontinuity has an associated LUMO eigenvalue 

P + 
~x·c 

E
average _ ZM . 

LUMO - ELUMO 2 (5.14) 

and from (5.8) this is 
~XC caverage = _ 4 __ _ 

'-LUMO ' 2 (5.15) 

Combining (5.13) and (5.15) gives [185] 

Eaverage + Eaverage = _(I + A) 
HOMO LUMO (5.16) 

It follows from (5.16) that if E~v;~~' I and A are known then it is possible to 

calculate E~v~~~· For the HCTH and 1/4 functionals, the new correction of 

the LUMO takes the form 

HCTH (I A) HCTH ELU~!O --+ - + - EHOMO (5.17) 

1/4 (I 4) 1/4 
fLUt-.!0 --+ - +" - EHOMO 

respectively. The corrected methods are denoted HCTH(LC2) and 1/4(LC2) 

(for LUMO Correction 2). To assess this correction, isotropic and anisotropic 

shielding constants were calculated for the subset of systems for which reliable 

experimental vertical I and A values are available. The results are presented 

in Tables 5.2 and 5.3. 

For the majority of systems the HCTH(LC2) results are less accurate 

than conventional HCTH. In contrast, 1/4(LC2) shielding constants are an 

improvement over conventional 1/4 re~ults for many of the systems. These 

results can be understood because of the way the HOMO-LUMO gap de­

pends on how well the HOMO eigenvalue averages over the discontinuity. 

There is an implicit assumption in the LC2 correction that the potential as­

sociated with the GGA functional employed is a good approximation to the 

potential that averages over the discontinuity. In other words, the calculated 

LUMO (and hence the gap) depends on the value of the HOMO. Eqn. (5.16) 

constrains the sum of the HOMO and LUMO eigenvalues to be a constant, 

therefore since HCTH HOMO eigenvalues are too high, calculated LUMOs 

are too low, leading to an underestimation of the HOMO-LUMO eigenvalue 
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difference. The improved average 1/4 HOMO eigenvalues (Table 5.4) are 

reflected in the improved 1/4(LC2) shielding constants, an indication that 

the gaps have opened. 

5.2.2 Excitation energies 

Having considered the expli<;it correction of the LUMO eigenvalue on the 

calculation of magnetic response properties, the next logical step is to ex­

tend this to electrical properties. Vertical electronic excitation energies were 

calculated for CO, N2 , H2 CO and C2 H4 at near experimental geometries. 

The Sadlej basis set [152, 153] was used with additional diffuse functions to 

ensure good description of the virtual orbitals. Geometries and additional 

functions used are summarised in Table C.2. Results are presented for the 

LDA, HCTH and 1/4 exchange-correlation functionals, and for the LUMO 

corrected (LC2) counterparts (as described in Section 5.2.1) in Tables 5.5 

to 5.8. 

In calculating excitation energies using the LC2 procedure, it was found 

that in almost all cases the mean absolute error compared to experiment 

increased relative to the uncorrected values. This is consistent with the poor 

description of the HOMO eigenvalue by the GGA functionals compromising 

the calculated gaps. For the LDA and HCTH functionals, for all molecules 

the-already too low-excitation energies were further reduced by the cor­

rection of the LUMO eigenvalue. Although the better description of the 

HOMO eigenvalue by the 1/4 functional led to an increase in excitation en­

ergies for all affected values, this generally over compensated, and again the 

mean errors increased. The only exception was the 1/4 C2R1 values, where 

the LUMO correction reduced the mean error. Note that for CO and N2 

(Tables 5.5 and 5.6) the 1/4 mean error increased less than those of LDA 

and HCTH when the LUMO correction was applied (approximately 0.1 eV as 

compared to the order of 0.5 eV). The reverse is true for H2 CO (Table 5.7), 

and there is no obvious pattern in the average HOMO eigenvalues (Table 5.4) 

that would account for this. The conclusion is that the excitation energies 
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Table 5.5: Vertical excitation energies of CO (in e V), computed using the 

augmented Sadlej basis set. 

State Transition LDA LDA HCTH HCTH 1/4 1/4 Expt 1 

(LC2) (LC2) (LC2) 

F tE+ J--+ 3dJ 9.70 9.70 9.58 9.58 10.22 10.22 12.4 

£liT J--+ 3p7r 9.65 9.65 9.48 9.47 10.09 10.10 11.53 

c li;+ J--+ 3pJ 9.56 9 .. 56 9.41 9.41 10.03 10.03 11.40 

B LI;+ J--+ 3s 9.08 9.50 8.94 8.93 9.54 9.54 10.78 

Dt.C. 7r --+ 1f* 10.32 9.50 10.19 9.03 10.27 10.68 10.23 

I LI;- 7r --+ 7r* 9.84 9.03 9.92 8.76 9.91 10.33 9.88 

A 1I1 J --+ 7r* 8.18 7.36 8.31 7.15 8.28 8.70 8.51 

Mean abs. error 1.09 1.42 1.13 1.70 0.82 0.94 
1 Ref [159] 

Table 5.6: Vertical excitation energies of N2 (in eV), computed using the 

augmented Sadlej basis set. 

State Transition LDA LDA HCTH HCTH 1/4 1/4 Expt 1 

(LC2) (LC2) (LC2) 

trru 1ru --+ 3sJ9 11.81 11.80 11.48 11.47 12.15 12.15 13.24 

LE+ 
1L J 9 --+ 3pJu 10.62 10.62 10.48 10.48 11.46 11.20 12.98 

trr" Jg--+ 3p1rlL 10.61 10.61 10.49 10.49 11.23 11.23 12.90 
ly-:+ 
~g J 9 --+ 3sJ9 10.39 10.39 10.19 10.19 10.85 10.85 12.2 

t.c,u 7r, --+ 7r g 10.22 9.43 10.08 8.90 10.16 10.61 10.27 

tE-
11. 1ru-+1rg 9.64 8.85 9.73 8.55 9.70 10.16 9.92 

trr!J Jg --+ 1rg 9.04 8.25 9.15 7.96 9.12 9.57 9.31 

Mean abs. error 1.14 1.59 1.25 1.79 0.84 0.92 
1 Ref [160] 
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Table 5.7: Vertical excitation energies of H2CO (in eV), computed lising the 

Sadlej basis set. 

State Transition LDA LDA HCTH HCTH 1/4 1/4 Expt 1 

(LC2) (LC2) (LC2) 
1A2 n -t 3db1 7.23 7.23 7.11 7.11 7.81 7.81 9.22 
1 A2 n --+ 3pb 1 6.69 6.69 6.54 6.54 7.19 7.19 8.38 
1Bt CJ -)- 1f* 8.79 8.62 8.98 8.47 8.93 10.05 8.68 
1B2 n--+ 3pal 6.46 6.46 6.38 6.38 6.96 6.96 8.12 
1At n -t 3pb2 6.50 6.50 6.33 6.33 6.92 6.92 7.97 
1B2 n -t 3sa1 5.8.3 5.83 5.69 5.69 6.14 6.14 7.09 
1A2 n --+ 7r* 3.68 3.51 3.92 3.40 3.84 4.92 3.94 

Mean abs. error 1.21 1.22 1.29 1.35 0.87 1.16 
1 Ref [161] 

are very sensitive to the HOMO-LUMO gap and that it is not possible to 

account for anything beyond broad trends. All results were consistent with 

our above conclusions: that correcting the LUMO eigenvalue in terms of the 

HOMO eigenvalue is limited by the ability of the GGA under consideration 

to average over the discontinuity, that the poor performance of the GGA 

functionals tested is consistent with their inability to reproduce E~;~~1~ and 

that, in general, the 1 j 4 functional performs better than HCTH, as might be 

expected from their respective HOMO eigenvalues. 

5.3 Summary 

vVe have generated eigenvalues associated with coupled-cluster BD electron 

densities via the ZMP procedure. A comparison was made between HOMO­

LUMO eigenvalue differences from conventional GGA functionals and those 

from the ZMP procedure. GGA eigenvalue differences are all smaller than 

those of ZMP. Forcing GGA HOMO-LUMO eigenvalue differences to equal 

-------------------------------------------
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Table 5.8: Vertical excitation energies of C2 H4 (in e V), for states formed 

by single excitations from the b:3u = 1r orbital (molecule lies in yz plane), 

computed using the augmented Sadlej basis set. 

State Transition LDA LDA HCTH HCTH 1/4 1/4 Expt 1 

(LC2) (LC2) (LC2) 

1 Btu. 3dn = b29 8.00 7.91 7.82 7.60 8.34 8.44 9.33 

1 B2u 3do = b1 9 7.72 7.72 7.37 7.37 8.10 8.10 9.05 

1 B3u 3do = ag 7.63 7.63 7.29 7.29 7.99 7.99 8.90 

1 B3u 3da = a9 7.11 7.11 6.86 6.86 7.57 7.57 8.62 

1 A.g 3p7r = b3u 7.31 7.31 6.94 6.94 7.62 7.62 8.28 
1 Blu 7r* = b2g 7.39 6.92 7.18 6.34 7.51 7.86 8.0 
1 B29 3pa = btu 7.04 7.04 6.68 6.68 7.27 7.27 7.90 
1Bt9 3pa = b2u 7.04 7.05 6.69 6.67 7.27 7.27 7.80 

lB3u 3s = a9 6.56 6.56 6.24 6.24 6.75 6.75 7.11 

Mean abs. error 1.02 1.08 1.32 1.44 0.73 0.65 
1 Ref [162] 

those of ZMP significantly improves isotropic and anisotropic NMR shielding 

constants. 

The magnitude of the integer discontinuity was approximated using ZMP 

eigenvalue differences. HOMO eigenvaJues from GGAs are not close to -1, 

but they are close to E~v~r~~. This suggested another approach to correct­

ing the HOMO-LUMO eigenvalue differences, under the assumption that 

the potential approximately averages over the integer discontinuity. This 

correction was used to determine NMR shielding constants and excitation 

energies. These results are dependent upon the accuracy of the calculated 

HOMO eigenvalue from a particular functional. 



Chapter 6 

The gauche effect 

·This thesis has considered the use of high quality electron densities within 

DFT. Broadly, these densities have been used to explore the likely impli­

cations for DFT if high-accuracy approximations for Exc[P] were available. 

This is possible because exchange-correlation potentials Vxc( r) can be gen­

erated from electron densities rather than exchange-correlation functionals. 

In principle the accuracy is limited only by the quality of the supplied elec­

tron density (though at a much higher computational cost than conventional 

DFT). 

However, there is another way in which electron densities can be employed 

in DFT calculations: they can be used in the development of functionals. 

897-2 is a hybrid exchange-correlation functional that was developed in this 

way. In this chapter, the 897-2 functional is used to study the gauche effect 

in 2-fiuoroethylamine, 2-ftuoroethanol and their protonated analogues. 
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6.1 The gauche effect 

The gauche effect [187] describes the tendency for certain molecules to adopt 

a particular conformation in preference to other dynamically available spatial 

arrangements. This interaction is stereoelectronic in origin and is noteworthy 

because it overcomes unfavourable steric interactions 1 and results in struc­

tures that defy a simplistic conformational analysis. 

In this study the extent of any gauche effect in 2-fluoroethylamine, 2-

fiuoroethanol and their protonated analogues will be investigated using theo­

retical calculations and X-ray analysis of solid-state structures. These studies 

were prompted by observations made by O'Hagan and eo-workers [188, 189] 

of a fluorine-amide gauche effect and a study comprising solid-state inves­

tigations and theoretical calculations that reported a fluorine-ester gauche 

effect [190, 191]. 

6.2 Conformational preference of substituted 

ethanes 

Consider rotation about the carbon-carbon bond in ethane. There are two 

extreme conformations, staggered and eclipsed (see Figure 6.1). Rotation 

about the C-C bond is free, meaning that although a barrier to rotation 

exists, it is low (for ethane, about 3 kcal mol- 1). This barrier to rotation 

exists because when a methyl group is rotated about the C-C axis, starting 

from the staggered conformation, the hydrogen-hydrogen distances decrease 

to a minimum at the eclipsed conformation and the potential energy increases 

as the H-H distances decrease. This increase in potential energy also means 

that the staggered conformation is energetically preferred. 

Moving from ethane to propane (by substituting a methyl group for one of 

the hydrogen atoms, see Figure 6.2), the barrier to rotation increases because 

1 to a first approximation, steric interactions can be equated with the bulk of a group: 

two substituents cannot occupy the same region of space 
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staggered eclipsed 

Figure 6.1: Ethane staggered and eclipsed conformations 

of the greater steric bulk of the methyl group, relative to a hydrogen atom. 

staggered eclipsed 

Figure 6.2: Propane staggere~ and eclipsed conformations 

Further substitution to give butane not only increases the barrier to ro­

tation over propane, it also means that there are two distinct staggered con­

formations, referred to as anti and gauche (see Figure 6.3). Because the anti 

conformation maximises the separation between the bulky methyl groups it 

is lower in energy than the gauche conformation. Thus the anti structure is 

more stable than the gauche. 

For some systems there is a counterintuitive conformational preference 

for the gauche structure. The canonical example is 1 ,2-difluoroethane (Fig-
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anti gauche 

Figure 6.3: Butane anti and gauche conformations 

ure 6.4). Here, the gauche structure is energetically preferred by 0.5-1.0 kcal 

mol- 1 [192, 193, 194], despite the fact that this brings the bulky F atoms 

into closer proximity with one another than they are in the anti structure. 

H F 
H,,\ I 
~H 

F H 

anti 

F F 
H,,H, 

''''H 
H H 

gauche 

Figure 6.4: 1,2-difluoroethane anti and gauche conformations 

This gauche preference is a consequence of a gauche effect. It is important 

to differentiate these two terms, as the gauche conformer may be stabilised 

relative to its anti equivalent by means of an intramolecular hydrogen bond 

or other structural elements that do not induce an appeal to a separate 

gauche effect. A gauche preference refers to the tendency to adopt the gauche 

conformer, while the gauche effect is a specific mechanism that promotes 

this stabilisation relative to the anti conformer. The stabilisation has been 
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attributed to a a -+ a* donation [195, 196, 197, 198]. In the case of 1,2-

difi uoroethane the C-H bonds (those anti to the C-F bonds) are the donors 

and the C-F bonds the acceptors. The gauche struture is the most stable 

because the molecule adopts a conformation that places the best er-donor 

bond anti to the best a-acceptor bond. 

6.3 Theoretical studies 

The B97-2 functional (Section 2.9.4) was used for all calculations. A TZ2P 

basis augmented with diffuse s and p function on non-hydrogen atoms (a 

simple geometric progression was used to determine the exponents) was em­

ployed. As part of preliminary investigations, calculations were also per­

formed using the HCTH, B3LYP and B97-1 functionals and the IYIP2 method. 

Similar trends to those seen with the B97-2 functional were observed. Mini­

mum energy structures for each conformation were determined using analytic 

first derivatives (forces). Harmonic vibrational frequencies were determined 

from finite differences of analytic first derivatives at perturbed geometries 

and these were used to ( 1) confirm that the stationary points represented 

real minima on the potential energy surface and (2) to determine zero-point 

vibrational energies. All relative energies presented include zero-point vi­

brational corrections. Calculated energies of systems are given in Eh, while 

energy differences are given in kcal m9l- 1 for ease of comparison with liter­

ature values. 

Calculations on 2-fluoroethylamine and 2-fluoroethylammonium 

Figure 6.5 presents geometries of gauche ((a) - (c)) and anti ((d) - (f)) 

conformers of 2-fiuoroethylamine. The calculated energies of these optimised 

geometries are presented, along with the energy differences of the gauche 

relative to the anti, in Table 6.1. 

The ga·uche conformers 6.5(a) and 6.5(c) are 0.9 and 1.0 kcal mol- 1 lower 

in energy than the corresponding anti conformers 6.5( cl) and 6.5(f). However, 



6.3 Theoretical studies 135 

H H * H,R-* * : H,R-H H,H-H 
-~.... H -~ .... H -~~ H 
H H H 

(a) (b) (c) 

H H * H,R-* * : H,M-H H 'N-H H,,K 
-~.... H -~ .... H -~ .... H 
H F H H 

(d) (e) (f) 

Figure 6.5: Minimum conformations of 2-fluoroethylamine. The stars denote 

lone pairs 

in both these cases it is possible that the gauche structure is stabilised by 

an F· · ·H intramolecular hydrogen bond. The pair of structures 6.5(b) and 

6.5(e), for which such a hydrogen bond is not possible, displays no preference 

for the gauche conformer; instead the anti conformer is 0.9 kcal mol- 1 lower . 
in energy. This suggests that any gauche effect is not responsible for the 

stabilisation, but rather that it depends on intramolecular hydrogen bonding. 

The F-C-C-H dihedral angles of the gauche structures 6.5 (a), (b) and 

(c) are 175.9, 165.3 and 174.8 degrees respectively. Clearly, the presence or 

absence of hydrogen bonding affects the F-C-C-H dihedral. 

In 2-fluoroethylammonium (protonated 2-fluoroethylamine, see Figure 6.6) 

the three-fold radial symmetry of the NH3 group means that there is only one 

gauche and one anti conformer. The protonation of the nitrogen atom has 

two important effects on the conformation adopted by 2-fluoroethylammonium, 
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Table 6.1: F -C-C-N dihedral angles, absolute energies and gauche anti energy 

differences of 2- fi uoroethy lamine and 2-fi uoroethy lammoni um 

gauche Dihedral Total anti Dihedral Total gauche - anti 

angle energy angle energy 

(degrees) (Hartrees) (degrees) (Hartrees) (kcal mol- 1 ) 

NH2 NH2 

6.5(a) 61.5 -234.342092 6.5( cl) 180.0 -234.340615 -0.9 

6.5(b) 69.8 -234.338996 6.5(e) 178.3 -234.340450 +0.9 

6.5(c) 66.7 -234.342000 6.5(f) 181.7 -234.340450 -1.0 

NH+ 
3 NHt 

6.6(a) 52.7 -234.685112 6.6(b) 180.0 -234.675825 -5.8 

both related to the fact that the nitrogen acquires a positive charge relative 

to the equivalent atom in 2-fiuoroethylamine. The increased electronegative 

character of the nitrogen atom will further polarise the H-N+ bond, promot­

ing the intramolecular hydrogen bond. Similarly, the C-N+ bond will also 

become more polarised, and this will heighten the gauche effect. 

The combination of these two effects predicts a strong gauche preference 

for 2-fiuoroethylammonium. The calculated energies of the optimised geome­

tries are presented in Table 6.1. The gauche structure is stabilised relative 

to the anti by 5.8 kcal mol- 1
. However, there is no simple way to separate 

this gauche preference into component::; relating to intramolecular F· · ·H hy­

drogen bonding and a stereoelectronic gauche effect. The F-C-C-H dihedral 

is now 172.5 degrees. 

Calculations on 2-fiuoroethanol and protonated 2-fiuoroethanol 

Having considered fiuoroethylamine and fluoroethylammonium, calculations 

were performed on the corresponding oxygen analogues. A stronger gauche 

effect was anticipated for these compounds, since the greater electronegativ­

ity of oxygen relative to nitrogen will create a more polarised C-0 bond. 

Also, as discussed above, the electronegativity of oxygen will promote in-
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(a) (b) 

Figure 6.6: Minimum conformations of 2-fluoroethylammonium 

tramolecular hydrogen bonding, in structures where the conformation makes 

such bonding possible. 

2-ftuoroethanol has been considered in a previous study by Dixon and 

Smart [199] allowing comparison with calculations presented here. Structures 

are shown in Figure 6.7 and calculated energies are presented in Table 6.2. 

Examining the gauche structures, 6.7( a) has the potential to be stabilised 

via intramolecular hydrogen bonding, while 6.7(b) and 6.7(c) do not. \iVhere 

the intramolecular F· · ·H bond is present the gauche structure is stabilised 

relative to the corresponding anti (Figure 6.7( cl)). The gauche preference 

is approximately 2.0 kcal mol- 1. The gauche structures 6.7(b) and 6.7(c) 

do exhibit a gauche preference over their anti analogues (unlike the case 

of 2-ftuoroethylamine where, in the absence of an intramolecular hydrogen 

bond, the anti energy is lower), though the stabilisation is only of the order 
' 

of 0.1-0.2 kcal mol- 1
. Any gauche effect in 2-fluoroethanol is small, and the 

stabilisation of 6.7(a) is largely due to the F· · ·H bonding. These results are 

in agreement with the previously published work [199]. 

The F-C-C-H dihedral angles of the gauche structures 6.7 (a), (b) and 

(c) are 176.5, 166.3 and 170.5 degrees respectively. Again, the orientation of 

the OH2 group affects the F-C-C-H dihedral. 

In protonated 2-ftuoroethanoi, as with protonated 2-ftuoroethylamine, the 

increased polarisation of the bonds to the oxygen atom are expected to in­

crease the gauche preference by enhancing the intramolecular hydrogen bond-
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* * 

(a) (b) (c) 

* * H 

H,M-* * -::: *,: H,H-H H,H-* --, H '-:.. H -,,. H 
H H H 

(d) (e) (f) 

Figure 6. 7: Minimum conformations of 2-fiuoroethanol 

ing and gauche preference. In contrast to 2-fiuoroethylammonium, however, 

gauche conformers of protonated 2-fiuoroethanol exist that do not exhibit in­

tramolecular hydrogen bonding, allowing the separation of any gauche pref­

erence into contributions from hydrogen bonding and a gauche effect. 

Figure 6.8 shows optimised structures for protonated 2-fiuoroethanol, and 

total energies and energy differences are presented in Table 6.2. In all cases 

the gauche structure is stabilised relative to the anti. Where there is no 

intramolecular hydrogen bonding (structures 6.8(b) and 6.8(e)) the energy 

difference is 4.4 kcal mol-l, which can be attributed to a stereoelectronic 

gauche effect. Compare the free amide analogues (6.5(b) and 6.5(e)), where 

steric repulsion dominates in the absence of intramolecular hydrogen bond­

mg. 

When conformers that display intramolecular hydrogen bonding are con­

sidered (6.8(a)/6.8(d) and 6.8(c)/6.8(f)) the stabilisation is increased, and 
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Table 6.2: F-C-C-0 dihedral angles, absolute energies and gauche anti energy 

differences of 2-fiuoroethanol and protonated 2-fiuoroethanol 

grmche Dihedral Total anti Dihecl raJ Total gauche - anti 

angle energy angle energy 

(degrees) (Hartrees) (degrees) (Hartrees) (kcal moJ- 1 ) 

OH OH 

6.7(a) 65.3 -254.225123 6.7(cl) 178.5 -254.222006 -2.0 

6.7(b) 72.8 -254.222654 6.7(e) 180.0 -254.222198 -0.3 

6.7(c) 64.9 -254.222054 6. 7(f) 181.5 -254.222006 -0.0 

OHi OHi 

6.8(a) 48.2 -254.512994 6.8( cl) 180.0 -254.501790 -7.0 

6.8(b) 63.5 -254.509319 6.8(e) 175.9 -254.502339 -4.4 

6.8(c) 50.5 -254.513888 6.8(f) 184.1 -254.502339 -7.2 

the gauche structures are lower in energy by 7.0 and 7.2 kcal mol- 1
. On the 

assumption that the contribution from the gauche effect is constant across 

all the conformers, this large gauche preference consists of a stereoelectronic 

gauche effect of approximately 4.4 kcal mol- 1 and an intramolecular hydro­

gen bond that contributes between 2.6 and 2.8 kcal mol- 1
. 

The F-C-C-H dihedral angles of the gauche structures 6.8 (a), (b) and 

(c) are 165.7, 178.1 and 164.7 degrees respectively. 

6.4 Solid state studies 

It is important to investigate whether our theoretical results are consistent 

with experimental observations. To this end, O'Hagan and eo-workers [200] 

have determined X-ray crystal structures for the 2-fluoroethylammonium 

derivative systems presented in Figure 6.9 (for details of synthesis and other 

experimental details, see ref. [200]). Figures 6.10, 6.12, 6.14, 6.16 and 6.18 

show the structures of the molecules in the solid-state. In all cases there 

is a clear ga·uche preference, as was observed in the molecular calculations. 
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H H * 

H,H'-· F *~-= + H,R:_H H,h-H 
--..... H --.... H --.... ·- H 
H H H 

(a) (b) (c) 

H H * 

H,R'-· H *~-= + H,R:_H H')_~-H 
'-:.. H --.... - H --.... H 
H F H H 

(d) (e) (f) 

Figure 6.8: Minimum conformations of protonated 2-fluoroethanol 

There is little evidence of intramolecular hydrogen bonding-the H- · ·F sep­

arations are large enough that any interactions will have a small effect (if 

any) on the conformation adopted. In all cases the H- · ·F separation is equal 

to or greater than the van der vVaals contact distance (2.7 angstrom). This 

is in contrast with the theoretically calculated gas-phase structures, where 

the H· · ·F distance is between 2.2 and '2.6 angstroms. Of course, in the solid 

state we must also take account of intermolecular interactions. The X-ray 

crystal structures are shown in Figures 6.11, 6.13, 6.15, 6.17 and 6.19. For 

all systems considered, the dominant intermolecular interaction is N-H- ··Cl 

hydrogen bonding. It is not possible, therefore, to attribute the adoption of 

the gauche conformation solely to the molecular gauche effect. The gauche 

effect will be a contributing factor, but intermolecular interactions will also 

have an influence. 
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Cl 
+ 

NH3 

~ 
F 2-ftuoroethylammonium chloride 

Wl 

+ 

F~N N,N-dibenzyl-2-fluoroethylammonium hydrochloride 

4- (2-Fluoroethyl) morpholin-4-i um chloride 

N-2-Fl uoroethylamine hydrochloride 

cli (2-ft uoroethyl) amine hydrichloride 

Figure 6.9: Systems for which solid-state X-ray crystal structures have been 

determined. 
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H2N 

H3 

~CI1 

Figure 6.10: Molecular solid-state structure of 2-fluoroethylammonium chlo­

ride 

6.5 Summary 

In summary, we have used the B97-2 functional-which was determined 

from a fit involving high quality electron densities-to study the gauche ef­

fect. Extensive gauche effects are observed in protonated 2-fluoroethylamine 

and protonated fluoroethanol. Molecules in the solid state also exhibit the 

gauche preference, although the situation is complicated by the intermolec­

ular N-H- ··Cl hydrogen bonding. 
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Figure 6.11: X-ray crystal structure of 2-fluoroethylammonium chloride 

Figure 6.12: Molecular solid-state structure of N,N-dibenzyl-2-

fluoroethylammonium hydrochloride 
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Figure 6.13: X-ray crystal structure of N,N-dibenzyl-2-fiuoroethylammonium 

hydrochloride 

Figure 6.14: Molecular solid-state structure of 4-(2-Fluoroethyl) morpholin-

4-ium chloride 



6.5 Summary 145 

c 

Figure 6.15: X-ray crystal structure of 4-(2-Fluoroethyl) morpholin-4-ium 

chloride 
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Figure 6.16: Molecular solid-state structure of N-2-Fluoroethylamine hy­

drochloride 

Figure 6.17: X-ray crystal structure of N-2-Fluoroethylamine hydrochloride 
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CH1} 

Figure 6.18: Molecular solid-state structure of di(2-ftuoroethyl)amine hy­

drochloride 



6.5 Summary 148 

Figure 6.19: X-ray crystal structure of di(2-fluoroethyl)amine hydrochloride 



Chapter 7 

Concluding remarks 

Kohn-Sham density functional theory provides high accuracy calculations of a 

wide range of molecular properties for a relatively modest computational cost. 

However, there are some properties for which OFT calculations are of poor 

quality (such as the determination of shielding constants) and other areas 

where the applicability of the OFT method is inappropriate (as with long­

range dispersion interactions from local functionals). It was the overall aim of 

this work to use high quality electron densities to improve OFT calculations, 

either directly, by incorporating them into schemes for practical calculations, 

or indirectly, by using densities to learn about the Kohn-Sham DFT method. 

An investigation of dispersion interactions in the helium dimer highlighted 

the relation between the density distor;tion and the dispersion force, and the 

importance of the correlation potential in the HFKS scheme. The failure 

of the L YP functional was highlighted; near exact results were obtained us­

ing BO(T) densities. The origin of the density distortion was traced to the 

asymmetric structure of the interaction correlation potential. Similar struc­

ture was observed in the correlation potential of the hydrogen molecule. Re­

search into the development of correlation functionals, exchange-correlation 

functionals or correction schemes for existing functionals that display the cor­

rect correlation potential structure, might lead to an improved description of 

dispersion interactions within Kohn-Sham theory. 
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Orbitals and eigenvalues from potentials associated with high quality den­

sities were used in Kohn-Sham response property calculations. Dramatic im­

provements in calculated results previously reported for shielding constants 

were repeated for chemical shifts. Electric response properties did not show 

a striking reduction in error with the use of MKS orbitals and eigenval­

ues. However, it has been shown that DFT polarisability calculations can 

approach the accuracy of coupled cluster methods if orbitals and eigenval­

ues are generated from a high quality density and an appropriate Fxc is 

used. Also, the sensitivity of valence excitations to F.xc has been demon­

strated. Further investigation of magnetic response properties using orbitals 

and eigenvalues generated using high quality densities is warranted on the 

basis of these results. The sensitivity of valence excitations to Fxc also pro­

vides an opportunity for the development of functionals for electric response 

properties. 

The calculation of Kohn-Sham eigenvalues and related properties using 

the ZMP method revealed the underestimation of HOMO-LUMO eigenvalue 

differences by conventional functionals. Forcing GGA HOMO-LUMO dif­

ferences to be equal to Z1viP differences showed that this underestimation 

has a significant impact on NMR shielding constant calculations. Integer 

discontinuities were also determined and the results were used to explain 

why GGA HOMO eigenvalues lie well above -I. A second approach for 

correcting the LUMO eigenvalue was _also considered. In the development 

of new functionals, consideration of the requirements for GGA orbitals and 

eigenvalues (especially the underestimation of eigenvalue differences and the 

incorrect long-range behaviour of the potential associated with commonly 

used GGAs) could improve calculated DFT properties. 

A functional developed through a fit to high quality electron densities was 

used to investigate the gauche effect in 2-fluoroethylamine, 2-fluoroethanol 

and their protonated analogues. Large gauche preferences were calculated 

for the protonated systems, which agreed with experimental observations. 

Electron densities can offer a great deal of information and insight about 
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DFT calculations. This information may be of use in the development of 

new functionals, or in the creation of correction schemes that improve the 

accuracy of DFT calculations. 



Appendix A 

Atomic Units 

Table A.1: Atomic units 

Quantity Atomic unit Value in SI units 

mass rest mass of electron 9.1094 X 10-31 kg 

charge elementary charge 1.6022 x 10-19 C 

action Planck's constant/27r 1.0546 X 10-34 J S 

length 41fE0n/mee2 5.2918 x 10- 11 m 

energy n2 /mea6 4.3597 X 10-lS J 

To convert between energy units 

1Eh = 27.2114eV = 627.51kcal/mol 

1kcaljmol = 4.184kJjmol 

To convert bohr to angstrom and vice versa 

1 bohr = 0.52918 angstrom 

1 angstrom = 1.88972 bohr 

Symbol (name) 

me 
e 
n 
ao (bohr) 

Eh (hartree) 



Appendix B 

Differentiation of SAPT energy 

Korona et. al. have proposed an analytical fit to their SAPT potential energy 

curve for the helium dimer [114] 

E - 4 -nR+fJRl ~ f (R b) C2n 
SAPT - .l e - L... . 2n , R2n 

n=3 

(B.1) 

where A, a, f3 and bare adjustable parameters and hn is the damping function 

proposed by Tang and Toennies [117] 

(

2n (bR)k) 
hn(R) = 1- t; ~ exp(-bR) (B.2) 

In order to obtain and expression for the SAPT force the SAPT energy is 

differentiated with respect to R. Usil\g the sum rule the energy expression 

is separated into two sections 

(B.3) 

and 

(B.4) 

Taking the second section first, ignoring the summation leaves 

[ ( 

2
n (bR)k) l C2n 

[1 - _t; ~ exp( -bR)_ R 2" (B.5) 



which can be rearranged as 

Using the sum rule again this can be divided into 

and ~ (bR)k . (-bR) C2n 6 k! exp R2n 

Once again, taking the second part first and ignoring the summation 

which is rearranged as follows 

(bR)k exp(-bR)C2n 
k! R2n 

which can be differentiated using the product rule 

where 

and 

and hence 

d 

dR 

d dv du 
dR = ·u dR + ·u dR 

hence 

v = exp( -bR) 

dv. 

dR 

hence 

(
C2nR-2n+kbk . ) 

k! exp( -bR) 

( -2n + k)C2nbk R-2n+k-1 

k! 

dv 
- = -bexp(-bR) 
dR 
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(B.6) 

(B.7) 

(B.8) 

(B.9) 

(B.lO) 

(B.ll) 

(B.12) 

C2nbk R-2n+k ( -2n + k)C2nbk R-2n+k-1 
k! exp( -bR)( -b) + exp( -bR) k! 

C2nbk R-2n+k 
k! exp(-bR) [(-b)+ (-2n + k)R- 1] 

C2n bk Rk exp( -bR) [(-b)+ ( -2n + k)l (B.l3) 
fl2n k! R 



replacing the summation and rearranging gives 

d :!n [ ( -2n + k)l C?n (bR)k 
dR (v, + v) = E (-b)+ R R;n ----y;s- exp( -bR) 

which leaves two other parts to differentiate 

d C2n 
--
dRR2n 

and 

d -2n 
dRC2nR 
_') C. R-2n-1 
~n 2n · 

-2nC2n 
R2n+l 
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(B.l4) 

(B.15) 

(B.16) 

Combining the three parts and including all summations gives the final ex-

presswn 

FsAPT (-a+ 2(3R)A exp( -aR + (3R2
) 

_ ~ [-2nC2n ] 
L R2n+t g 
n=3 

(B.17) 

where 

g = [f (-b + (2n + k)) C~~ (b~)k exp(-bR)l 
k=O R R k. 

(B.18) 



Appendix C 

Geometries and experimental 

data used in calculations 
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Table C.l: Optimised BP86/TZP molecular gcomctries, Cartesian co-ordinates, Angstroms 

X y 

CO 

0.000 0.000 

0.000 0.000 

C02 

0.000 0.000 

0.000 0.000 

0.000 0.000 

0.000 

0.000 

F2 

OF2 

0.000 

0.000 

0.000 0.000 

1.433 0.000 

-0.365 1.385 

HOF 
0.000 0.000 

0.984 0.000 

-0.191 1.446 

NF3 

0.000 0.000 

-0.624 1.262 

-0.624 -0.631 

-0.624 -0.631 

H20 

0.000 0.000 

0.974 0.000 

-0.229 0.974 

H202 
0.000 0.000 

1.481 0.000 

-0.161 0.967 

1.641 -0.315 

HCN 

0.000 0.000 

0.000 0.000 

0.000 0.000 

N2 

0.000 0.000 

0.000 0.000 

N20 

0.000 0.000 

0.000 0.000 

0.000 0.000 

N203 

0.000 0.000 

1.151 0.000 

1.664 1.862 

0.687 2.591 

2.853 2.126 

z 

0.0011 

1.1<10 

0 000 

1 17·1 

·1 17<1 

.o. 712 

0. 712 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

·1.093 

1.093 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.914 

0.141 

1.217 

2.375 

-0.552 

0.552 

0.019 
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-1.181 

0.000 

0.000 

0.000 

0.000 

0.000 

Atom 

0 
0 

0 

H 

F 

N 

H 

H 

H 

c 
H 

H 

H 

H 

c 
c 
H 

H 

H 

H 

H 

H 

c 
c 
H 

H 

H 

H 

c 
c: 
c 
c 
c 
c 
H 

H 

H 

H 
H. 

H 

X y 

03 

0.000 0.000 

1.290 0.000 

-0.602 1.141 

HF 
0.000 0.000 

0.000 0.000 

NH3 
0.000 0.000 

-0.400 0.943 

-0.400 -0.471 

-0.400 -0.471 

CH4 

0.000 0.000 

1.096 

-0.365 

-0.365 

·0.365 

0.000 

1.034 

-0.517 

-0.517 

C2H5 
0.000 0.000 

1.532 0.000 

-0.401 1.024 

-0.401 -0.512 

-0.401 

1.933 

1.933 

1.933 

-0.512 

0.512 

-1.024 

0.512 

C2H4 
0.000 0.000 

1.334 

-0.572 

-0.572 

1.906 

1.906 

0.000 

0.930 

-0.930 

0.930 

-0.930 

C6H6 

0.000 1.399 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.700 

-0.700 

-1.399 

-0.700 

0.700 

2.491 

1.2<15 

-1.245 

-2.491 

-1.245 

1.245 

z 

0.000 

0.000 

0.000 

0.000 

0.935 

0.000 

0.000 

-0.816 

0.816 

0.000 

0.000 

0.000 

-0.895 

0.895 

0.000 

0.000 

0.000 

-0.887 

0.887 

0.887 

0.000 

-0.887 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

-1.212 

-1.212 

0.000 

1.212 

1.212 

0.000 

-2.157 

-2.157 

0.000 

2.157 

2.157 

Atom 

c 
c 
c 
H 

H 

H 

H 

c 
c 
H 

H 

0 

c 
H 

H 

c 
c 
c 
c 
c 
c 
c 

0 

c 
c 
c 
H 

H 

H 

H 

H 

H 

c 
c 
0 
H 

H 

c 
F 

F 

F 

F 

X y 

CH2CCH2 

0.000 0.000 

0.000 1.309 

0.000 

0.935 

0.000 

0.000 

0.000 

-1.309 

1.875 

1.875 

-1.875 

-1.875 

C2H2 
0.000 0.000 

1.207 

-1.072 

0.000 

0.000 

2.279 0.000 

H2CO 

0.000 0.000 

1.213 0.000 

1.803 0.950 

1.803 -0.950 

CH3CHO 

0.000 0.000 

1.218 0.000 

2.077 1.236 

1.780 -0.971 

2.738 1.222 

2.738 1.222 

1.462 2.143 

(CH3)2CO 

0.000 0.000 

1.224 0.000 

2.021 1.295 

2.021 -1.295 

2. 736 1.310 

2.618 1.367 

1.343 2.152 

2.735 -1.310 

2.618 -1.367 

1.343 -2.152 

CH2CO 

0.000 0.000 

0.000 

0.000 

0.947 

-0.947 

1.315 

-1.175 

1.851 

1.851 

CF4 
0.000 0.000 

1.339 

-0.446 

-0.446 

-0.446 

0.000 

1.262 

-0.631 

-0.631 
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z 

0.000 

0.000 

0.000 

0.000 

0.000 

0.935 

-0.935 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.882 

-0.882 

0.000 

0.000 

0.000 

0.000 

0.000 

0.838 

.0.923 

0.068 

-0.838 

0.923 

-0.068 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

-1.093 

1.093 



Atom 

() 

c 
c 
c 
H 

H 

H 

H 

0 

c: 
c: 
11 

H 

H 

H 

c 
c 
c 
0 

0 

c 
c 
(! 

N 

N 

c 
c 
c 
c: 
H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

c 
c 
F 

F 

F 

F 

X y 

CH2CHCHO 

0.000 0.000 

1.223 0.000 

2.058 1.216 

3.397 1.126 

1.800 -0.962 

1.53-1 2.175 

:l.887 0.148 

4.041 2.006 

(CH2)20 

1.243 

0.000 

0.000 

-0.218 

-0.218 

-0.218 

-0.218 

0.000 

0.737 

-0.737 

1.274 

1.274 

-1.274 

-1.274 

C302 
0.000 0.000 

0.000 1.277 

0.000 -1.277 

0.000 2.453 

0.000 -2.453 

"carbene'' 

1.000 1.214 

1.000 -1.002 

1.000 -1.002 

1.000 0.348 

1.000 0.349 

-2.153 

-2.152 

0.831 

z 

0.000 

0.000 

0 000 

0.000 

0 000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

-0.928 

0.928 

0.928 

-0.928 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.686 

-0.686 

1.064 

-1.063 

1.640 

-1.649 

2.441 

1.000 

1.000 

1.000 

1.000 

1.000 

1.891 

0.109 

1.000 

1.888 

0.112 

1.000 

1.888 

0.112 

1.000 

1.895 

0.105 

0.829 -2.437 

-0.017 3.134 

1.443 2.625 

1.443 2.625 

-3.100 1.083 

-2.155 2.292 

-2.155 2.292 

-1.798 -2.687 

-2.792 -1.525 

-2.792 -1.525 

1.922 -2.390 

0.490 -2.978 

0.490 -2.978 

C2F4 

0.000 0.000 

1.329 0.000 

-0.730 

-0.730 

2.059 

2.059 

1.113 

-1.113 

1.113 

-1.113 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

Atom 

c 
N 

H 

H 

H 

H 

H 

N 

c 
c 
c 
c 
c 
H 

H 

H 

H 

H 

N 

c 
c 
c 
c 
c 
H 

H 

H 

H 

H 

0 

N 

N 

0 
c 
c 
H 

H 

H 

H 

H 

H 

c 
N 

H 

H 

H 

c 

Table C.l: (continued) 

X 

0.000 

l.H3 

-0.474 

-0.359 

-0.3.59 

1.818 

1.818 

y 

0.000 

0.000 

0.999 

-0.545 

-0.545 

0.513 

0.513 

C 5 H5 N 

0.000 1.409 

0.000 0.704 

0.000 0. 704 

0.000 -0.694 

0.000 -0.694 

0.000 -1.409 

0.000 1.312 

0.000 1.312 

0.000 -1.218 

0.000 -1.218 

0.000 -2.438 

C5 H 5 N->0 

0.000 1.408 

0.000 0. 701 

0.000 0. 701 

0.000 -0.684 

0.000 -0.684 

0.000 -1.408 

0.000 1.337 

0.000 1.337 

0.000 -1.205 

0.000 -1.205 

0.000 -2.461 

0.000 2.694 

CH3N(NO)CH3 

0.000 

1.353 

~0.539 

1.990 

2.147 

l.l97 

2.619 

2.619 

1.444 

2. 786 

2.784 

0.000 

1.423 

-0.372 

-0.372 

-0.372 

2.602 

0.000 

0.000 

1.116 

-1.303 

1.219 

-2.059 

-1.429 

-1.4 29 

2.060 

1.259 

1.261 

0.000 

0.000 

1.032 

-0.516 

-0.516 

0.000 

z 

0.000 

0.000 

0.000 

-0.883 

0.883 

0.815 

-0.815 

0.000 

-1.145 

1.145 

-1.200 

1.200 

0.000 

-2.102 

2.102 

-2.184 

2.184 

0.000 

0.000 

-1.185 

1.185 

-1.197 

1.197 

0.000 

-2.076 

2.076 

-2.188 

2.188 

0.000 

Atom 

c 
c 
H 

H 

H 

N 

c 
N 

N 

H 

H 

c 
N 

H 

H 

H 

0 

0 

c 
F 

H 

H 

H 

c 
H 

H 

F 

0.000 F 

0.000 c 
0.000 H 

0.000 F 

-0.000. F 

-0.000 F 

-0.000 

-0.895 0 

0.894 c 
0.001 F 

0.895 F 

-0.896 

0.000 

0.000 

0.000 

-0.894 

0.894 

0.000 

c 
c 
F 

F 
F 

N 

X y 

CH3CN 

0.000 

1.458 

-0.378 

-0.378 

-0.378 

2.621 

0.000 

0.000 

1.031 

-0.515 

-0.515 

0.000 

CH2NN 

0.000 0.000 

0.000 1.300 

0.000 2.449 

0.000 -0.506 

0.000 -0.506 

CH3N02 

0.000 0.000 

1.506 

-0.344 

-0.332 

-0.313 

2.078 

0.000 

1.036 

-0.560 

-0.523 

1.062 

2.062 -1.074 

CH3F 

0.000 

1.401 

-0.351 

-0.351 

-0.351 

0.000 

0.000 

1.040 

~0.520 

-0.520 

CH2F2 

1.000 0.000 

0.401 

0.401 

1.801 

0.920 

-0.920 

0.000 

1.801 0.000 

CHF3 

0.000 

1.096 

-0.471 

-0.471 

0.000 

0.000 

1.269 

-0.634 

-0.471 -0.634 

COF2 

0.000 0.000 

1.182 0.000 

1.973 1.077 

1.973 -1.077 

CF3CN 

0.000 

1.480 

-0.469 

-0.469 

-0.469 

2.641 

0.000 

0.000 

1.266 

-0.633 

-0.633 

0.000 
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z 

0.000 

0.000 

0.000 

-0.893 

0.893 

().000 

fl.OUO 

0.000 

0.000 

0.960 

-0.960 

0.000 

0.000 

0.000 

-0.879 

0.911 

0.278 

-0.261 

0.000 

0.000 

0.000 

-0.901 

0.901 

0.000 

0.000 

0.000 

1.117 

-1.117 

0.000 

0.000 

0.000 

-1.099 

1.099 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

0.000 

-1.096 

1.096 

0.000 
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Table C.2: Geometries of systems and additional basis functions used for 

vertical excitation energy calculations. All bond lengths in Angstroms. 

System Bond length(s) Bond angle Additional diffuse functions 

CO 1.128 2s, 1p and 1d diffuse functions at centre of bond 

functions are average of C and 0 exponents 1 

N2 1.098 N diffuse functions 1 at centre of bond 

also additional p function (exponent 0.00543) 2 

l·hCO 1.203 121.9 C diffuse functions 1 on carbon atom only 

1.102 

C2H4 1.331 121.4 C diffuse functions 1 midway between carbon atoms 

1.081 
1 defined in ref. [20 1 J 
2 to ensure reasonable description of highest 1 EZ" excitation 
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Table C.3: Geometries of systems for shielding and polarisability calculations. 

Bonds lengths in Angstroms, bond angles iri degrees. 

System Bond length Bond angle System Bond length Bond angle 

C2H2 1.203 H2S 1.336 92.1 

1.063 HCl 1.275 

C2H4 1.331 121.4 HCN 1.065 

1.081 1.153 

CH4 1.086 109.5 HF 0.917 

Cl2 1.988 N2 1.098 

CO 1.128 N20 NN 1.128 

C02 1.160 NO 1.843 

F2 1.412 NH3 1.012 106.7 

H2CNN HC 1.074 HCH 125.2 0:3 1.272 116.8 

CN 1.297 NCH 117.4 OF2 1.405 103.4 

NN 1.139 PH3 1.419 93.5 

H2CO 1.203 121.9 PN 1.491 

1.102 so2 1.430 119.3 

H20 0.957 104.5 
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Table C.4: Experimental vertical ionisation potentials (I) and electron affini-

ties (A) 

System I ( e V) 1 A(eV) 2 I+ fl(eV) I+ A(Hartree) 

HF 16.12 -6.0 10.12 0.372 

H20 12.62 -6.4 6.22 0.229 

CH4 13.6 -7.8 5.80 0.213 

CO 14.01 -1.8 12.21 0.449 

N2 15.58 -2.2 13.38 0.492 

H2S 10 .. 5 -2.0 8.50 0.312 

NH3 10.82 -5.6 5.22 0.192 

HCN 13.61 -2.3 11.31 0.416 

C2H2 11.49 -2.6 8.89 0.327 

C2H4 10.68 -1.8 8.88 0.326 

H2CO 13.77 -1.5 9.40 . 0.345 

C02 13.77 -3.8 9.97 0.366 

PH3 10.59 -1.9 8.69 0.319 
1 ref. [202] 
2 ref. [203] 



Appendix D 

Publications and conferences 

D.l Publications 

1. "The observation of a large gauche preference when 2-fluoroethylamine 

and 2-fluoroethanol become protonated" Caroline R. S. Briggs, Mark 

J. Allen, David O'Hagan, David J. Tozer, Alexandra M. Z. Slawin, 

Andn§s E. Goeta and Judith A. K. Howard, Org. Biol. Mol. Chem., 

2, (2004), 732. 

2. "Improved NiVIR chemical shifts in density functional theory" Mark J. 

Alien, Thomas W. Keal and David J. Tozer, Chem. Phys. Lett., 380, 

(2003), 70. 

3. "Polarisabilities and excitation energies from the Multiplicative Kohn­

Sham (MKS) approach" Mark J. Alien and David J. Tozer, Mol. Phys., 

101, (2003), 421. 

4. "Helium dimer dispersion forces and correlation potentials in density 

functional theory" Mark J. All en and David J. Tozer, J. Chem. Phys., 

117, (2002), 11113. 
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S. "Eigenvalues, integer discontinuities and NMR shielding constants in 

Kohn-Sham theory" Mark J. Allen and David J. Tozer, Mol. Phys., 

100, (2002), 433. 

6. "Kohn-Sham calculations using hybrid exchange-correlation function­

als with asymptotically corrected potentials" IVIark J. Allen and Da.vicl 

J. Tozer, J. Chem. Phys., 113, (2000), 5185. 

D.2 Conferences and seminars attended 

9th July 2003 

13th Ann·ual Northern Universities Meeting on Chemical Physics ( ANUMOCP 

XIII) 

Chemical Physics Group 

University of Durham 

18-23rd August 2002 

M olewlaT Physics and Quantum Chemistry 

A Summer School 

Jesus College, University of Oxford 

31st .July-2nd August 2002 

Exploring Modern Computational Che'm.istry, EM(} 

University of Nottingham 

10-14th September 2001 

9th International Conference on the Applications of the Density Functional 

TheoTy ·in Chemistry and Physics 

San Lorenzo de El Escorial, Madrid, Spain 



D.2 Conferences and seminars attended 

14th June 2001 

Recent advances in quantum chemistry 

A symposium in honour of Nicholas Handy's 60th birthday 

Dept. of Chemistry, University of Cambridge 

18-20th April 2001 

Faraday discussion 118, Cluster Dynamics 

Royal Society of Chemistry 

Dept. of Chemistry, University of Durham 

14th February 2001 

Calculating the distribution of bonding energy in polyatomic molecules 

Dr Si an T. Howard 

Dept. of Chemistry, Cardiff University 

24th January 2001 

164 

Chemical Interated Circuits: organic synthesis and analysis on a small scale 

Dr Andrew deMello 

Dept. of Chemistry, Imperial College, London 

17th January 2001 . 

Applications of polarised NEXAFS spe,ctroscopy to the structural characteri­

satioTJ, of soft molecular interfaces 

Professor Kevin Roberts 

Dept. of Chemical Engineering, University of Leeds 



D.2 Conferences and seminars attended 165 

lOth January 2001 

Micelles, reversed micelles and shell-crosslinked micelles based on tertiary 

amine methacrylates 

Professor S. P. Armes 

School of Chemistry, Physics and Environmental Science, 

University of Sussex 

6th December 2000 

Du.al activation approach to electroanalysis; ultrasound, microwaves and laser 

activation 

Professor Richard Compton 

University of Oxford 

29th November 2000 

Life, death and the carotenoids 

Professor T. George Truscott 

University of Keele 

22nd November 2000 

Synthesis of novel dendrimers and hyperbranched polymers 

Dr vVayne Hayes 

University of Reading 

8th November 2000 

Cosmic: a universal, DNA-based language for communicating with aliens and 

other intelligent lifeforms 

Dr J. P. L. Cox 

Bath University 



D.2 Conferences and seminars attended 

25th October 2000 

Science, art and drug discovery. A personal perspective 

Dr S. F. Campbell 

Former Senior Vice President of Pfizer 

23rd June 2000 

An Afternoon of Comp·utational Chemistry 

Dept. of Chemistry, University of Cambridge 

166 
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