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Abstract 

This thesis first discusses braneworld models, we explain how the bulk geom­

etry in codimension 2 scenarios restricts braneworld fields in a way inconsistent 

with observation. We then show how generalising Einstein's equations to include 

Gauss-Bonnet terms avoids this problem and as an example we successfully repro­

duce the Friedmann-Robertson-Walker cosmology familiar in Einstein gravity. The 

work on braneworlds concludes with a detailed perturbation analysis of a simple 

conical space-time in Gauss-Bonnet gravity, non-trivially we find the standard four 

dimensional Lichnerowicz equation on the brane even though the calculation is per­

formed in six dimensions. Next, motivated by the microscopic description of black 

hole thermodynamics, we discuss Gubser and Mitra's conjectured relationship be­

tween classical and thermodynamic stability including a review of numerical and 

theoretical evidence for it. We then give an argument using a recently discovered 

ansatz for non-uniform smeared p-brane solutions that the conjecture fails in the 

generality in which it is proposed. The thesis emphasises the underlying relation­

ship between worldvolume field theory and bulk gravity from a geometrical point of 

view throughout. 
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Chapter 1 

Introduction 

1.1 Geometry and Physics 

Soap film surfaces provide a nice example of how a simple geometric principle can 

elegantly encompass a complicated and diverse physical phenomenon. 

Geometrically a soap film is a minimal surface, or in other words, a surface which 

has vanishing extrinsic curvature [1]. Physically, on the other hand, the film formed 

on a wire frame dipped in a soap film solution has minimal area subject to the 

boundary constraints of the wire. Two circular loops of wire for example give us the 

surface shown below. In 1916 Einstein proposed his General theory of Relativity [6] 

Figure 1.1: The Catenoid, whose vanishing mean curvature was discovered by 

Mesunier in 1778, is the only minimal surface of revolution. 

1 



1.2. String theory 2 

in which gravity is a manifestation of the geometry of space-time. This is another, 

more profound, example of such a geometric principle. 

1.2 String theory 

General relativity as a theory modelling physics on large scales is very successful, 

it correctly yields for example the observed perihelion precession of Mercury, the 

observed bending of starlight by the sun and the red shift of distant objects [15]. 

There are however two clear (although not unrelated) issues it leaves to be addressed, 

the first is that it predicts the existence of black holes, the internal singularities of 

which imply the demise of the theory itself and the second is that it doesn't model 

small scale physics. Instead we need additional theories to describe short range 

phenomenon and Quantum Field Theory arose to meet this particular requirement, 

a framework which successfully unifies special relativity and quantum mechanics. 

The goal of unifying general relativity with quantum field theory underlies much 

of modern theoretical physics, the hope is to find a quantum theory of gravity 

describing all of nature. 

The modern candidate for a quantum theory of gravity is Superstring theory [16] 

in which point particles are replaced as fundamental building blocks by strings with 

a length scale of ,....., 10-34m. Superstring theory, which for consistency lives in a 

space-time of ten dimensions, is in fact not unique. There are five consistent theo­

ries which appear to be related by various dualities, this in turn suggests that they 

themselves are different vacua of a more fundamental 11-dimensional theory known 

as M-theory [23]. The dualities led to the discovery that string theory admits higher­

dimensional dynamical solitonic objects called branes which are non-perturbative in 

origin, these are surfaces in the space-time on which open strings can end, and have 

tensions proportional to the reciprocal of the string coupling. In the low energy 

limit they are the black p-branes1 of supergravity [74] which are generalisations of 

black holes in various dimensions and as such are very interesting objects to study. 

As we have mentioned black holes in general relativity imply the demise of the 

1 A p-brane has a (p + 1 )-dimem;ioual worldvolume. 
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theory itself, a problem we would hope string theory can resolve. An immediate 

problem however is how to deal with the additional dimensions that string theory 

seems to require. Historically T. Kaluza [8] attempted to unify the electromag­

netic force with gravity by introducing an additional spatial dimension, his work 

was subsequently reformulated by 0. Klein [9] which forms the basis of the modern 

point of view. Kaluza-Klein theory provided unification through the geometry of 

a higher-dimensional space-time, the modern use of their techniques is to system­

atically "remove" extra dimensions by supposing they are compact. The existence 

of gravitating higher-dimensional objects in string theory provides a framework on 

which we can model our observed four-dimensional universe, that is we confine our­

selves to live on such an object. This leads us to the interesting possibility of an 

alternative to Kaluza-Klein compactification. 

1.3 Braneworlds 

The fundamental idea of a braneworld is that our universe is in fact an infinitesi­

mally thin slice of a higher-dimensional space-time. All the fields of the Standard 

Model [19] are confined in some way to live on a brane, yet gravity, being the geome­

try of space-time itself, is allowed to propagate everywhere. A more abstract defini­

tion would be to define any model in which the gauge and gravitational interactions 

propagate on different spaces as a braneworld, particularly since the relationship 

between such interactions motivates the second part of this thesis. In principle of 

course the freedom the gravitational field would have in such a scenario would lead 

to inconsistencies in predictions with observational experience, this would be true 

for any higher-dimensional theory without a further mechanism to confine gravity 

in some way. In the previous section we mentioned briefly that Kaluza-Klein the­

ory unified gravity and electromagnetism and the modern use of the techniques is 

to systematically remove additional dimensions in theories by supposing they are 

compact. The notion of a braneworld however provides us with a novel alternative. 

Of particular interest are the Randall-Sundrum models [92, 93], the first, to be 

abbreviated to RSl, is introduced in detail in chapter 2. In this model we have 
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two 3-branes of equal and opposite tension located at the fixed points of an § 1 /Z2 

orbifold and separated by an anti-de Sitter bulk (i.e. a space-time with a negative 

cosmological constant). The orbifold construct seems a little arbitrary, however 

Horava and Witten [23] proposed that ten-dimensional heterotic string theory is 

related to an eleven-dimensional theory (M-theory) on a JR 10 x § 1 /Z2 space, they 

claim that if M-theory on such a space reduces to a string theory then it must be 

that of the heterotic string and as such has phenomenological applications. The 

orbifold construction is shown pictorially in fig 1.2. We find that the RSl scenario 

provides a novel resolution of the hierarchy problem, namely the huge unexplained 

difference between the Planck and electroweak scales. Other attempts to explain 

this hierarchy typically result in the introduction of another large scale, such as the 

size of an extra dimension, and so are unsatisfactory. The RSl model provides a 

solution without the need for large extra dimensions by introducing a warp factor 

in the metric which is a function of the extra coordinate. 

(} rv -{} 

Figure 1.2: An orbifold construction. A discrete group acts on a space in some way 

and points in the same orbit are identified. 

The second model, similarly abbreviated to RS2 and also described in detail 

chapter 2, doesn't provide us with a solution to the hierarchy problem but is far 

more interesting. Instead of two 3-branes located at orbifold fixed points a finite 

distance apart we have a single 3-brane with an infinite extra dimension, this latter 

fact is very unusual. Since gravity is free to propagate in all dimensions in these 
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models any observer, brane based or not, would measure at the very crudest a five­

dimensional version of Newton's law and so we would expect to rule out such a 

scenario immediately. However in RS2 the warp factor damps gravitational per­

turbations away from the brane and so perturbatively we still obtain an acceptable 

four-dimensional Newton's law for any brane based observer, this model therefore 

provides an alternative to compactification. 

The braneworlds in the models of Randall and Sundrum have codimension 1, that 

is to say that they have a single direction transverse to the brane. In light of the 

possibility of the existence of extra dimensions motivated by string theory for exam­

ple it's a natural question to ask if similar constructions are possible for braneworlds 

with higher codimension, a question which is not new [56]. The conclusion of the 

investigation in [56] is easily summarised: codimension 2 braneworld scenarios in 

Einstein gravity can not admit arbitrary brane based energy-momentum and so are 

inconsistent with experience, they could not yield realistic cosmological scenarios 

for example. Another way to look at this point is to observe that we are using 

worldvolume fields as an explicit source for bulk gravity and in order to recover the 

correct lower-dimensional gravity theory the geometry restricts the types of sources 

allowed. In codimension 1 there are also interesting modifications to the usual Fried­

man equations governing the cosmology that a braneworld observer would measure. 

This aspect of these models is also discussed in chapter 2 to more clearly highlight 

the codimension 2 result. In [53] we showed that the codimension 2 problem could be 

overcome if in addition to the usual Einstein tensor we included the Gauss-Bonnet 

terms in the equations of motion, which among other things such as being the leading 

order gravitational corrections in string theory ensure uniqueness of the gravitational 

equations of motion in more than four dimensions [4]. This analysis and a discussion 

of the results that we obtained is presented in chapter 3, specifically we show that 

with the Gauss-Bonnet terms the induced metric and energy-momentum tensors 

on the brane satisfy the usual four-dimensional Einstein equations. We then show 

that we can obtain the usual Friedman-Robertson-Walker cosmological scenario for 

a brane based observer even when carefully taking into consideration constraints 

imposed by the bulk equations of motion. The final sections of chapter 2 explain 
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how the perturbation equations induced on a codimension 2 brane in Gauss-Bonnet 

gravity non-trivially have the correct four-dimensional tensor structure necessary in 

a realistic model. 

1.4 Black holes and Thermodynamics 

While black holes push the limits of what can be understood using general relativity, 

in four dimensions they are well understood; their horizons have topology § 2 , they 

are stable and are characterised by just their charge, their mass and their angular 

momentum [13]. Quantum mechanically however they are quite different objects; 

Hawking [45] showed that they can thermally radiate which together with the work 

of Bekenstein [59] and Bardeen, Carter and Hawking [48] led to a clear picture 

of black holes as being thermodynamic systems. That properties of the horizons 

of black holes, being rigorous results in differential geometry, can be identified with 

thermodynamical laws (such as entropy as summarised in the table below) which are 

based on microscopic statistical concepts is very surprising. Indeed understanding 

such a connection between the classical and quantum properties could shed more 

light on quantum gravity. 

Zeroth Law 

1st Law 

2nd Law 

3rd Law 

Black holes 

Surface gravity, 11-, is con­

stant over the horizon 

dM = 8':rdA+0HdJ+ipHdQ 

8A ~ 0 

Impossible to achieve 11- = 0 

Thermodynamics 

T is constant throughout a 

body in equilibrium 

dE=TdS +work terms 

88 ~ 0 

Impossible to achieve T = 0 

through a physical process through a physical process 

Table 1.1: Four laws of black hole mechanics. 

As the temperature of a black hole solution is a quantum mechanical effect we 

ought to be better able to understand the relationship with our candidate for a 

quantum theory of gravity. To this end Stromionger and Vafa [49] by explicitly 
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counting microstates of extremal D-brane solutions found that their number agreed 

with the size of the entropy as calculated from the area of the event horizon. In fact 

the microstates, which we will assume are responsible for the thermodynamics, form 

a ( 1 + 1 )-dimensional finite- temperature gauge theory living on the D-branes. This 

justification for the origin of the entropy must be seen as a success of string theory 

and motivated by it we can examine the deeper structure of the theory. Gubser and 

Mitra made a conjecture based on this and part of this thesis is devoted to it. First 

however we need to discuss other developments. 

Further study of higher-dimensional black objects, such as the various p-branes 

of supergravity, led to an interesting discovery in complete contradistinction with 

black holes in four dimensions. Gregory and Laflamme showed [60, 61] that a class 

of p-brane solutions were classically unstable! That is they found that there existed 

a perturbation around a p-brane background which was spatially regular but grew 

exponentially in time, in fact they found that such an instability existed down to 

an extremal limit. Interestingly the p-branes they considered always had negative 

specific heat, that is they were thermodynamically unstable. 

Given that certain black branes can be unstable we can ask the following inter­

esting questions; 

~ What is the end state of an instability? 

• Which other solutions are unstable? 

In trying to justify the instability Gregory and Laflamme used a heuristic argument 

based on black hole thermodynamical laws as follows; consider a five-dimensional 

black string which is simply the product of a Schwarzschild solution with a line, 

Sch4 x R A portion of the string of length Land mass M has entropy proportional 

to M 2 / L, a five-dimensional black hole on the other hand has entropy proportional 

to M 312 . Thus for large L the black hole solution is entropically more favourable 

which indicates we might expect an instability while also suggesting what the end 

state of such an instability might be. Horowitz and Maeda [78] have shown however 

that a black sting solution can't have a collapsing § 1 on its horizon and so the 

string can't dynamically pinch off as a result of the instability. This point is shown 
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schematically in fig 1.3. 

A 

I 
B 

I 
c ? . 

Figure 1.3: In the figure we have initially a solution (A) with an event horizon of 

topology S2 x JR., a small perturbation disturbs the solution as in (B) and the final 

state (C) is not possible through a classical evolution [78]. 

Motivated by the field theory interpretation of the microstates underlying ~ 

brane thermodynamics and further by the AdS/CFT correspondence2 Gubser and 

Mitra conjectured a precise relationship between thermodynamic stability and clas­

sical stability based on the following reasoning. A thermodynamic instability of a 

~brane system could manifest itself in the dual finite-temperature gauge theory as 

a phase transition, this in turn should manifest itself in the existence of an exponen­

tially growing mode which nucleates the new phase. Using the duality again such 

a mode in the field theory would correspond to an exponentially growing mode in 

real time, indicative of an instability. It is interesting to note here the connection 

between this proposal and the results in the literature regarding higher codimension 

braneworlds; in the former we see that the worldvolume field theory is proposed to 

restrict the geometry of the space-time through gravitational effects while in the lat­

ter the geometry of space-times admitting higher codimension braneworlds restricts 

the allowed worldvolume sources. 

The Gubser-Mitra conjecture reads [62]; 

2A conjectured correspondence between super tring theory and gauge theory [50-52]. 
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"A black brane with a non compact translational symmetry is classically 

stable if and only if it is locally thermodynamically stable3 ," 

9 

and a partial proof was given for a certain class of p-branes by Reall [63]. We 

will give a review of his argument which is based on relating an unstable mode of 

spherically symmetric perturbations to a negative mode of a Euclidean black hole 

solution in chapter 4. Further investigations of the conjecture were also carried 

out in [68, 71-73]; the results up to that point supported the conjecture and a 

review of some of this evidence is also given in chapter 4. Studies of the connection 

between dynamical and thermodynamical instabilities which relax the requirement 

of translational invariance have also been performed and appear in [75-77]. 

In chapter 5 we extend the investigations of the conjecture to study smeared 

branes; that is, we take a p-brane and smear it uniformly over one of the transverse 

directions, and study stability to perturbations in this smeared direction. This is 

a natural extension of the investigation of p-branes in [63, 71-73]. The two classes 

of solutions are related by T-duality, which implies that the thermodynamics of the 

smeared branes is identical to that of the p-brane with the same total number of 

extended directions. However, the study of perturbations in the smeared direction is 

technically more challenging; certain simplifications exploited in [63] no longer apply 

as is explained in more detail in chapter 5. Specifically we exploited recent advances 

in the construction of non-uniform brane solutions [67], which were inspired by the 

development of Horowitz and Maeda mentioned previously. In particular we used an 

ansatz proposed by Harmark and Obers in [83] for such non-uniform solutions, which 

describes both vacuum black strings of the type discussed in [79, 80] and charged 

black branes smeared over a transverse circle. We show that smeared charged black 

holes provide a counter-example to the Gubser-Mitra conjecture, implying that the 

connection between dynamical instability and thermodynamics is more complicated 

than previously thought. 

The thesis concludes in chapter 6 with a summary of our findings and suggestions 

3Thermodynamic stability is taken to mean that the Hessian of the entropy (thought of as 

a function of extensive variables such as the charge and mass of the solution) has no positive 

eigenvalues. 
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for future research based on them, in addition there are two appendices giving more 

calculational details on results in the main text. 



Chapter 2 

Codirnension 1 braneworlds 

2.1 Introduction 

This chapter gives a review of the success that the Randall-Sundrum braneworld 

models have had. First we give a brief discussion of the hierarchy problem and 

then how these models can provide a novel solution is explained in detail in sec­

tion 2.2.1. As mentioned in chapter 1 an interesting aspect of braneworld models is 

the non-trivial interaction of the sources for fields on the brane with bulk gravity, 

in section 2.2.3 we explain how such non-linear gravity effects give rise to modifica­

tions to the standard cosmological Friedman equations that an observer on the brane 

would measure. This in particular sets the context for codimension 2 scenarios. 

The final two sections then discuss how in the Randall-Sundrum scenario we can 

have on the one hand an infinite extra dimension and yet still recover conventional 

four-dimensional gravity contradicting conventional Kaluza-Klein wisdom, thus pro­

viding an alternative to compactification. 

2.2 Randall=Sundrum I 

There appear to be at least two fundamental energy scales in the universe we live 

in; the electroweak scale, mEw ,....., 103GeV and the Planck scale mp£ ,....., 1019GeV. 

The huge unexplained difference between the two is known as the hierarchy prob­

lem. There are some simple ways of trying to explain this hierarchy using theories 

11 
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with extra dimensions: suppose we have for example a (4 + n)-dimensional fac­

torisable space-time which is a product of a four-dimensional space-time with a flat 

n-dimensional compact space of volume Vn· Then if our higher-dimensional space­

time has fundamental Planck scale M and the four-dimensional space-time has a 

fundamental Planck scale mp£ we find by performing the trivial integration over the 

extra dimensions that 

m 2 _ Mn+217 
PL- Vn· (2.1) 

Now the electroweak scale has been probed at distances ,....., m£~ however gravity 

has not been probed anywhere near m:pl and so the assumption that the latter 

is truly fundamental is based on the belief that gravity is not modified over ,....., 30 

orders of magnitude between where it is measured and the Planck length. Moti­

vated by this simple argument it was proposed in [89-91] that the large hierarchy 

could be explained by making the extra dimensions very large with the doctrine that 

M ,....., mEw, so mEw is the only fundamental short distance scale in nature. In such 

a scenario there would be no hierarchy among these scales, gravity is so weak as it is 

in some sense diluted by the large extra dimensions. This procedure however, while 

eliminating the present problem introduces another, namely the new hierarchy be­

tween the weak scale and the compactification scale, even for six extra dimensions 

( c .f. string theory) there is an unexplained difference in these scales of the order 

,....., 105 [35]. Randall and Sundrum proposed a space-time metric which was not 

factorisable, but in which there is an exponential factor multiplying the braneworld 

directions which is a function of the coordinate in the extra dimension, this expo­

nential factor is responsible for generating the large hierarchy without introducing 

a new one. We will now present this in more detail. 

2.2.1 The model 

The RSl scenario [92] consists of two 3-branes embedded in a five-dimensional space­

time in which the bulk has possibly a cosmological constant A. The 3-branes are 

required to exhibit four-dimensional Poincare invariance and so the metric is taken 
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(2.2) 

where xJ.L are the usual four-dimensional coordinates and -Jr ::; cp ::; 1r is a coordinate 

for the extra dimension, the size of which is determined by re. Since the space-time 

doesn't fill out all five dimensions we have to specify boundary conditions, these are 

taken to be periodicity in cp supplemented with the additional condition of identifying 

(xJ.L, cp) with (xJ.L, -cp). That is to say we have imposed that the extra dimension has 

the topology of the orbifold space § 1 /7l2 (see fig (1.2) in chapter 1). The value of a 

over the range of cp, taken to be -1r ::; cp ::; 1r, is then however completely specified 

when given on 0 ::; cp::; Jr. We could of course rescale cp to eliminate re, this however 

would just change the periodicity condition and so we will leave it explicitly in the 

metric. The two 3-branes are now taken to reside at the orbifold fixed points, i.e. at 

cp = 0, 1r and form the boundary of the space-time. The orbifold singularities will 

provide, mathematically, the delta functions we need to support the branes. The 

metrics induced on the branes located at cp = 0, 1r are defined by 

<P=D,1r - G ("' - 0 ) g J.LV - J.LV '+' - l 7[" l (2.3) 

where GJ.Lv is the bulk metric defined in equation (2.2). 

The classical gravity action which determines the physics can be split up as 

Sgravity J dx4 1: dcpvlc (-A+ 2M
3 R), (2.4) 

S,p=O j dx4~A1 , (2.5) 

s<P=1r - jdx4~A2 . (2.6) 

The details of any matter fields living on the branes is not important in this analysis, 

however we include possible cosmological terms to act as sources for the branes2 . 

Einstein's equations following from (2.4)-(2.6) with the non-factorisable ansatz 

1 In this thesis we use a { +, -, -, -, ... } metric signature. 
2 A brane with no tension is the same as no brane as far as Einstein's equations are concerned. 
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(2.2) reduce to 

-A 
4M3 ' 

A1 A2 
4M3rc b(cp) + 4M3rc b(cp- n), 

and a solution to the first equation with the orbifold symmetry is 

14 

(2.7) 

(2.8) 

(2.9) 

This makes the space-time between the two branes simply a slice of an AdS5 geom­

etry3 as the solution only makes sense if A < 0. Differentiating equation (2.9) twice 

and using (2.8) gives us (see appendix (A.2) for how to differentiate functions with 

discontinuities and how to deal with delta functions in higher dimensions) 

(2.10) 

where k, defined by these equations, is taken to be positive (we could choose k to be 

negative, however we can obtain this by redefining cp ---+ n - cp). Note also that this 

means there is necessarily a fine tuning between the brane tensions and the bulk 

cosmological constant (see section 2.2.3 for more on this point). 

This completes the set up. We have two three-branes in a five-dimensional space­

time located at the orbifold fixed points of § 1 /Z2 of the extra dimension, one brane 

has negative tension, the other has positive tension and they form the boundary of 

a slice of an AdS5 space. Note that by taking into consideration the back reaction of 

the branes on the geometry we obtain a metric which depends on the position of the 

branes in the extra dimension, this dependence is exponential. Let us now examine 

the physical implications of this, in particular how the exponential dependence can 

resolve the hierarchy problem. 

2.2.2 Hierarchy of scales 

The first step to make is to identify the massless gravitational fluctuations, these 

provide the gravitational fields in the low energy effective theory as measured by an 

3 AdS = a1iti-de Sitter. 
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observer on one of the 3-branes. They take the following form 

(2.11) 

where 9/lv(x) = 'TlJJv + hflv(x) and k is defined in equation (2.10). So hflv is the fluc­

tuation about Minkowski space and is the physical graviton of the four-dimensional 

effective theory. f(x) measures the distance between the two branes and is referred 

to as the radian field. It can be shown that it doesn't affect the following calcula­

tion [33] so we will assume that it is frozen at the classical value f(x) =re, this is 

after all a toy model. 

The four-dimensional effective theory is now obtained by substituting (2.11) 

in the action (2.4)-(2.6) and performing the integral over the extra-dimensional <P 

coordinate. It follows that 

(2.12) 

We should pause for a moment and compare this to the result for a factorisable 

space-time given in equation (2.1). Equation (2.12) tells us that the effective Planck 

scale depends only weakly on the five-dimensional scale if kr e is large, it is also 

interesting to note at this point that even if re--+ oo, m~L still makes sense, neither 

of these facts are true for a factorisable space-time. In order to calculate how an 

observer on one of our 3-branes would measure the physical masses of fields we 

will consider the simple example of the Higgs field. Consider a fundamental Higgs 

field H bound to the brane located at <P = 0, in this case the induced metric is 

just the usual Minkowski metric and the physics for matter living on this brane will 

have its usual form, for the brane located at <P = 1r this is no longer true as the 

argument of the exponential doesn't vanish there. In this latter case suppose we 

have a .five-dimensional mass parameter m 0 , then the matter part of the action on 

this brane is 

(2.13) 

where all covariant derivatives are calculated with the induced metric on the brane. 

Using the solution given in section 2.2.1 we find 

S = J d4x ;;;,9- (g-flvc-2krcnv(4) H\7(4) H _ .xc-4krcn (IHI2 _ m2)2) 
matter V Y J.l v 0 ' (2.14) 
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where e-2krc-rr9!-lv = gt":;-rr. After rescaling the Higgs field using H--+ e-krc-rr H, so that 

the kinetic term is canonically normalised, we find 

(2.15) 

where v = e-krc-rrm0 and is the scale by which the physical mass scales are set. 

Recall that we are trying to resolve the hierarchy between the weak scale and 

the fundamental Planck scale, these differ in magnitude by a factor of rv 1015 . If we 

propose that the five-dimensional Planck scale is fundamental then we can see from 

equation (2.12) that the effective four-dimensional Planck scale is of similar magni­

tude provided that e-krc-rr is small, moreover the five-dimensional fundamental mass 

scale is scaled by exactly this amount to give the analogous effective scale. Therefore 

if we have kr c rv 50 then the hierarchy goes away courtesy of the exponential scaling 

without introducing a new hierarchy. It is important to realise that this only occurs 

if our universe is identified with the 3-brane located at cp = 1r, unfortunately the 

brane located at this point has negative tension and this is a problem as we will see 

in the end of the next section. 

2.2.3 Cosmology 

In this section we will examine cosmological models arising in the RS1 scenario. The 

mathematical formalism needed is discussed in detail in Appendix A.1, however let's 

briefly discuss the physics geometrically. 

Einstein's equations govern how the geometry of space-time is affected by the 

energy in it. The geometry is described by the metric (it defines a notion of 

distance) and a smooth metric, via Einstein's equations, gives a smooth energy­

momentum tensor. The delta function energy-momentum source of our braneworld 

is not smooth and so some derivatives of the metric must be at least discontin­

uous somewhere to support it, dealing with discontinuities like this in the highly 

non-linear context of general relativity is not trivial [106], however we can assure 

ourselves that the analysis makes sense geometrically. Perhaps the simplest most 

direct expression of this is to say that if we add singular energy-momentum to the 

space then "something must happen", in practice we introduce the singular be-
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haviour artificially using assumptions such as Z2 symmetry4 • The Gauss-Codazzi 

formalism provides a geometrical framework for describing how a submanifold curves 

in a higher-dimensional space, moreover it is able to do this in a covariant way. So we 

can convince ourselves that the analysis makes sense, the orbifold singularity creates 

the singular behaviour in the space-time for us and the Gauss-Codazzi formalism 

provides the technical tools. The whole analysis is brought together by using the 

Israel junction condition [22] which tells us how to treat general energy-momentum 

on the brane and will be discussed when we use it. 

Consider an arbitrary time-like hypersurface S with a unit normal vector nA 

embedded in a five-dimensional space-time, see fig 2.1 for example. Of course there 

are two possible choices for the normal, one for each side of the hypersurface, however 

we will not make a distinction here5 . The induced metric and the extrinsic curvature 

of the hypersurface, discussed in appendix A.1, are defined by 

hMN ~M M - u N- n nN, (2.16) 

(2.17) 

To perform the required calculation we need three equations, two of them are collec-

s 

Figure 2.1: A codimension 1 hypersurface. 

tively referred to as the Gauss-Codazzi equations and relate the extrinsic curvature 

4 Although also motivated by string theory, e.g. [23] 
5In the end we will assume ~ symmetry. 
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of the hypersurface to the intrinsic curvature of the five-dimensional space-time and 

the third is Einstein's equation. The Gauss equation is 

(2.18) 

where R~~NPQ is the four-dimensional Riemann tensor constructed using hMN and 

the Codazzi equation is 

n(4)KN _ n(4)K _ nPhN R 
V N M V M - M NP, (2.19) 

where \7(4
) is also computed with hMN· Next we obtain the Ricci tensor from 

equation (2.18) by raising the first index and then contracting with the third as 

(2.20) 

We can then use this tensor to construct the Einstein tensor 

where 

E- RP RhQ hs 
MN = QRSnpn M N· (2.22) 

To introduce energy-momentum, embodied in the tensor TMN, we need the five­

dimensional Einstein equations 

(2.23) 

where r;, = 41;13 to be consistent with notation in equation (2.4). Now the Riemann 

tensor in an arbitrary number of dimensions has more non-gauge degrees of freedom 

than are determined by Einstein's equations, these extra components are embodied 

in the Weyl-tensor6 
CMNPQ· For example, gravitational waves are non-trivial solu­

tions to Einstein's equations in vacuum [17]. The five-dimensional Riemann tensor 

can be decomposed in terms of this tensor in the following way [17] 

(2.24) 

6 See page 29 for an ex-plicit count of these components 
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If we substitute this decomposition into (2.21) and use the five-dimensional Einstein 

equations we find that 

where 

(2.26) 

Up to this point we have been quite general, these equations hold for any time­

like hypersurface in five-dimensional general relativity. Since we are interested in 

braneworld scenarios we will now be more specific. First, to be concrete, let's intro-

duce a Gaussian normal coordinate system, specifically for each p E S construct the 

unique geodesic through p with tangent vector nM. Next choose an arbitrary coor­

dinate system xJ.L in a neighbourhood of ponS and label points in a neighbourhood 

of S by xi-L and a parameter p along the geodesic on which the point lies. What we 

~esic 

~ormal 

p 

Hypersurface 

Figure 2.2: Gaussian normal coordinate construction. 

have in fact done is to write the five-dimensional metric in a neighbourhood of the 

hypersurface as 

(2.27) 

Now assign an energy-momentum tensor TMN to the space-time 

(2.28) 
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where from now on all braneworld objects will be hatted and in this case 

(2.29) 

So we have assumed that there is a bulk cosmological constant A and also (explicitly) 

a brane tension A 1 (or equivalently a cosmological constant on the brane), note that 

this latter split is ambiguous as we could soak up part of A1 into the definition of 

Next we need to make use of the following result 

(2.30) 

where [ ... ] is defined as 

[f](x) = lim (f(x +c)- f(x- c)). 
€---+0 

(2.31) 

It's known as Israel's Junction condition [22] and is very useful. Let's briefly explain 

how it arises in the Gaussian normal coordinate system. The metric in these coordi­

nates is assumed to be continuous across the hypersurface, however an assumption 

of /£2 symmetry for example would mean that first derivatives w.r.t p would not 

be. The extrinsic curvature, containing at most only first derivatives of the metric 

would then be discontinuous at p = 0 and so normal derivatives of KM N would 

then contain delta functions. Examining where such terms appear in (2.19) gives us 

the result (2.30) in this coordinate system. Using the general result (2.30) with the 

assumption of /£2 symmetry we find that 

K'ttN = =F~~ (rMN- ~9MNT), (2.32) 

where a+ index means that the limit to zero is taken from above and a- from below. 

In other words with the assumption of /£2 symmetry the junction conditions com­

pletely determine the extrinsic curvature in terms of the brane energy-momentum. 

So, with the assumption of /£2 symmetry and the choice of energy-momentum 

above we find that the four-dimensional Einstein tensor satisfies [37] 

(2.33) 

7We can render this unambiguous in a cosmological context, see comments following equa­

tion (3.47) on page 42 in chapter ::1. 
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with the tensor 1f M N defined as 

(2.34) 

whereas Newton's constant GN and the effective four-dimensional cosmological con­

stant A4 are defined via 

/1,2 

-A1 
6 ' 

-r;, A+ r;,-A . 1 ( 1 2) 
2 6 1 

There are now a few points to be made; 

(2.35) 

(2.36) 

® To solve the hierarchy problem in section 2.2.2 we needed to assume that we 

lived on a brane of negative tension, we mentioned at the end of that section 

that there was a problem, we can now see one reason why. Equation (2.35) 

tells us immediately that if A1 is negative the Newton constant would also be 

negative! 

0 In the RS1 scenario we found that the bulk cosmological constant was related 

to the brane tension in a precise way given by equations in (2.10). If we 

explicitly introduce the five dimensional Planck scale M through r;, then we see 

that equation (2.36) implies that the four-dimensional effective cosmological 

constant A4 has to be zero. This is another way of looking at the fine tuning 

referred to at the end of the section 2.2.1. 

• The LHS of equation (2.33) is not Einstein's equation with the energy-momentum 

given in (2.29), we have modifications with possible observational consequences. 

Let's look in more detail at what equation (2.33) implies in a purely cosmological 

context. To this end we will examine the equations for a homogeneous and isotropic 

braneworld described by the usual Friedman-Robertson-Walker metric [18] 

ds~ h~vdx~dxv 

dT2
- a2 (T)dx~, (2.37) 

where dx~ is the metric on a three-dimensional Euclidean space of constant curva­

ture c = 1, 0 or -1 (sphere, plane or hyperboloid respectively). 
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In particular we assume that the braneworld energy-momentum is given by a ho­

mogeneous isotropic fluid of density p( T) and pressure p( T), in other words we have 

that 

(2.38) 

where TJ.L are the components of the velocity vector of an observer. On top of these 

assumptions, to simplify things, we will also assume that EMN is zero- EMN is not 

directly related to the energy-momentum tensor, it is zero in the absence of purely 

gravitational excitations. 

If we define, as usual, the Hubble parameter H = a/ a where an overdot refers to 

differentiation with respect toT, then equation (2.33) becomes [30] 

c 8nGN (/'i,) 2 2 
- a 2 + -3-p + 6 p ' (2.39) 

H c (/'i,)2 a 2 - 4nGN(P + p)- 3 6 p(p + p). (2.40) 

These are not the usual Friedman-Robertson-Walker equations as they contain pieces 

quadratic in p and p. This means that cosmological evolution in this braneworld 

scenario is not the same as what we find in standard cosmology8 , an explicit example 

of how braneworld physics is affected by the higher-dimensional geometry. 

2.3 Randall=Sundrum II 

In this section we will review Randall and Sundrum's second paper [93]. The set up 

in this scenario is slightly modified from the previous one, if we look again at (2.12) 

we can see that the effective four-dimensional Planck scale is still well defined even 

if the periodicity of the extra dimension is taken to infinity, i.e. if the dimension is 

no longer compact. The scenario of a single brane in a space-time with an infinite 

extra dimension is exactly what we will discuss now. 

Canonically with four non-compact spatial dimensions we would not even be able 

to reproduce the usual Newton law, there is simply too much room for gravity to 

move in. The RS2 scenario is able to confine gravity through the exponential warp 

8Especially in the early universe when p was large. 
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factor. The analysis here to show this will follow that of Garriga and Tanaka [34]. 

Starting with the metric 

(2.41) 

where l is a constant related to the cosmological constant, defined in section 2.2.1. 

Similar to the procedure in section 2.2.2 we are going to consider a metric pertur­

bation of the form 

9MN ---t 9MN + hMN· (2.42) 

Under a change of coordinates such as 

(2.43) 

the metric changes as 

(2.44) 

from which it is possible to show that one can choose the five functions ryM in such 

a way as to make 

(2.45) 

The fifteen independent components of the perturbation tensor become ten, there is 

however still some residual gauge freedom as this doesn't fix the five functions ryM 

uniquely. The additional freedom can be used to ensure the location of the brane is 

fixed at y = 0, such a choice is known as the Gaussian normal gauge and here will 

be denoted by an overbar, i.e. hMN· Alternatively we can use the extra freedom to 

impose that both 

(2.46) 

which is known as the Randall-Sundrum gauge. In this latter case the location of 

the brane is not fixed but given by y = -ry5 , however the linear order perturbation 

equations simplify nicely. In fact the perturbation equations are given by 

(2.47) 

where !:lL is the Lichnerowicz operator defined by 

1 PQ p 
!:lLhMN =- 2DhMN- RMPNQh + RP(MhN) + 

1 ( p 1) 1 ( p 1) + 2VM V ph N- 2VNh + 2VN V ph M- 2VMh ' (2.48) 
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and in the Randall-Sundrum gauge they decouple and take the following form 

(2.49) 

where a = exp( -lyl/l) and o(4) is the four-dimensional Laplacian computed with 

the Minkowski metric. 

The decoupling of the Lichnerowicz operator in the Randall-Sundrum gauge is 

very useful, we could for example remove the index structure if we wished which 

makes any analysis much simpler. The disadvantage is that the effect of the pertur­

bation could be to alter the location of the brane, i.e. it would no longer be located 

at y = 0. We can get around this problem by using the Gaussian normal gauge and 

then transforming between the two. Since in both gauges the 55 and J15 components 

vanish, any gauge transformation between them must satisfy 

'Vs'f}s = 0, 

which respectively give the conditions 

l 
-2gMM8MTJ5 + AM(xP), 

TJs(x11-). 

(2.50) 

(2.51) 

(2.52) 

(2.53) 

It then follows that such a transformation between hJJ-v and h11-v can be written as 

- 5 2 5 
hJJ-v = hJJ-v- l8JJ-8v'f} + 9p(vAJJ-/- z9JJ-v'TJ · (2.54) 

Now the junction condition on the extrinsic curvature in the Gaussian normal coor-

dinate system is ( c.f. equations (2.30) and (2.32)) 

(2.55) 

where g11-v = exp( -2IYI/l)TJJJ-v· Here TJJ-v is additional energy-momentum on the wall, 

it doesn't for example include the contribution from the wall itself which we use to 

eliminate the background metric from the equation. Under our gauge transformation 

this last equation becomes 

(2.56) 
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where 'E1.w = ( TJ.Lv- ~9J.Lv'i') + 2"'-l[JJ.L[Jv'f/5
. As a consequence of the symmetries of 

the space-time the bulk fields must be symmetric under the transformation y -t -y 

and so the derivative at the origin has to be discontinuous9
• Introducing delta 

functions to enforce these discontinuities in our perturbation equation, (2.49) then 

gives us 

(2.57) 

in the sense that integration of this equation over the wall reproduces equation (2.56). 

To solve this equation, even only formally, we need to know ry5 . Since hJ.LJ.L = 0 we 

must have from equation (2.56) that 'EJ.LJ.L = 0, consequently 

(2.58) 

which can be thought of as an equation of motion for ry5 . Of course we would need 

a specific energy-momentum tensor for matter on the brane to solve this. Since in 

this section we are trying to reproduce the usual Newton's law for matter on the 

brane we will be specific and choose 

(2.59) 

which is nothing more than the energy-momentum tensor for a single stationary 

point particle living at the origin of the spatial coordinates on the brane. Taking 

the trace of this energy-momentum and using equation (2.58) we find 

(2.60) 

This last equation, assumed to be valid at y = 0, is simply Poisson's equation and 

has the well known solution (see for example [43] pg. 570) 

(2.61) 

where r = jxj. Now the formal solution to (2.57) can be written as 

(2.62) 

9 As discussed on pages 16, 20 and !)!) 
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where the integration is over they = 0 surface and G R is a retarded Green's function. 

The RHS of this equation can be naturally split up into two parts using the definition 

of ~1w as 

An appropriate choice of AIL in equation (2.54) gives us 

(2.64) 

Next we insert the explicit form of the energy-momentum tensor and the explicit 

form of 7]5 to obtain 

- Kmo 2Kmo . ( ) J 1 ( 1 ) h11v = -
12

lnr 17J.Lv + -
3
-dmg 2, 1, 1,1 dt GR x, y; x, 0 . (2.65) 

It is possible to show that the retarded Green's function is given by [34] (a more 

detailed derivation is also presented in [36]) 

G ( . I 1)--J d4k ik!J.(xJJ.-x''')(a(y)2a(yl)2z-1 rood Um(y)um(YI) ) 
R x,y,x,y - (2n)4e k2-(w+ic)2 + Jo mm2+k2-(w+ic)2 ' 

(2.66) 

where kll = (w + ic, k) and 

um(Y) = ~~ (J1(ml)Y2 (mzeiYIIL)- Y1(ml)J2 (mzeiYIIL)), (2.67) 

with N a normalisation constant satisfying N = J J1(ml) 2 + Y1(ml)2 and with In 

and Yn being Bessel functions of order n. 

For the stationary case (which is the case for our point particle) it is more illustrative 

to consider the Green's function for the Laplacian operator given by 

G(t, x, y; x
1

, 0) = 1: dt'GR(x, y; x', 0). (2.68) 

Again in [34, 36] it is shown that if both points are taken on the wall we have 

1 ( [2 ) G(x,O;xi,O) =- 4nlr 1 + 2r2 + .... (2.69) 

We can use this last equation to finally write 

J 4 I I ( A 1 A) 1"\,ffiQ , ( 1 3 ) -2K d x GR(x, y; x, 0) TJ.Lv- ""jgJ.LvT = 
6
lnr dmg(2, 1, 1, 1) 2 + k2r 2 + 0(1/r ) , 

(2.70) 
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so that (2.65) yields 

hJ.Lv = - K,mo (diag(1,1,1,1) + k
1
2 2 

diag(2, 1, 1, 1) + 0(1/r3
)) . 

4ln-r 3 r 
(2.71) 

As this result is in the Gaussian normal gauge we have cp(r) = -~h00 as the classical 

Newtonian potential and so we find without any further problems that 

cp(r) = m;~5 
( 1 + ~:: + 0(1jr3

)) , (2.72) 

where K, = 8nG5 has been explicitly introduced to make the comparison with the 

familiar result more transparent. To which end if we further note that G4 = G5 /l 

( c.f. equation (2.12)) we have found the usual Newton potential for a point particle 

of mass m 0 with the addition of small corrections which do not contradict current 

experimental tests of Newton's inverse square law for gravitational attraction. 

2.3.1 Graviton propagator 

The appearance of the usual Newton's law for a stationary point mass in the previous 

section is at the least a necessary requirement of a good theory. However we know 

that the General Theory of Relativity provides a more accurate model of gravity 

and we should therefore also require that to some extent this stronger theory is 

reproduced in some way. To this end we can consider the structure of the massless 

graviton propagator. The matter part of the metric perturbation on the brane can 

be written as 

(2.73) 

and if we consider massless modes the retarded Green's function takes the following 

form ( c.f. equation (2.66)) 

G ( I ) - - J d4
k ikJL(x~'--x'JL) ( z-l ) 

R x, 0, x '0 - (2n)4 e k2- (w + iE)2 . (2.74) 

If we insert the Green's function above into equation (2.73) we do not get the usual 

four-dimensional graviton propagator, this is because we find a factor of ~ instead of 

the usual ~. This difference is a direct result of being in five dimensions instead of 

four. However the f11ll perturbation is given in equation (2.65) and includes a term 
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proportional to T/5 , in general we can formally solve the Poisson equation (2.58) for 

T/5 as 

(2.75) 

where 

2_ = J d4
k eikp.(x~"-x'li) 

D 4 (2n )4 · 
(2.76) 

Putting it together we find that the full equation is, 

(2.77) 

We see the correct factor of ~ is found so that the usual four-dimensional propagator 

appears as we would like. This is an important observation, it was shown in [31, 32] 

that the difference in the tensor structures due to the different factors mentioned 

here is enough to give observationally inconsistent predictions for the bending of 

star light. To conclude this provides strong evidence that four-dimensional gravity 

is indeed reproduced. 



Chapter 3 

Codirnension 2 models 

3.1 Introduction 

The geometry of a space-time exterior to a localised defect depends critically on 

the number of codimensions. Typically a localised defect of codimension 1 or 2 

manifests its self-gravity in the global features of the space-time, this is not true for 

defects of codimension 3 and higher which we can see as follows; intrinsic spatial 

directions don't participate in the self-gravity interaction of the defect and so sym­

metry dictates that the self gravity will be manifested in the directions orthogonal 

to it, however inn-dimensions the Riemann and Ricci tensors have [37] 

and 
n(n + 1) 

2 
(3.1) 

independent components1 respectively and so gravity in ( 1 + 1) and (2+ 1 )-dimensions 

has no local degrees of freedom. The vacuum space-time exterior to a defect of codi­

mension 1 or 2 is therefore locally fiat and the gravitational effect of the defect shows 

up only globally. For codimension 1 scenarios we have two fiat space-times glued 

across a boundary (i.e. an orbifold construct, see chapter 2) and for the codimen­

sion 2 string we have a conical space-time. The first situation has been well studied 

and important examples and aspects have been reviewed in chapter 2, it is the latter 

situation we will examine in this chapter. 

1The difference between these is 1
1
2 n(n + l)(n+ 2)(n- 3) and counts the number of independent 

components of the Weyl tensor defined on page 19. 

29 
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Before we do that, let's first discuss the results in the literature. Rubakov and 

Shaposnikov [58] tried to modify the canonical Kaluza-Klein ansatz with the inten­

tion of learning more about the cosmological constant problem, as a by-product they 

found that Einstein's equations for the six-dimensional metric 

(3.2) 

where ds~ is a maximally symmetric four-dimensional metric, admitted a very el­

egant analysis; Einstein's equations for the unknowns can be written as simple 

classical mechanical equations for particles in potential wells. Since codimension 

2 models naturally have six dimensions this provides a very convenient framework 

for analysis. Using this framework Cline et. al. [56] found that in codimension 2 

scenarios; 

• The effect of adding a 3-brane is to introduce a conical singularity. 

e Some solutions need space-time to be cut off with 4-branes. 

• They observed that even with the more general metric 

(3.3) 

where the functions can depend on t as well as r, the brane energy-momentum 

TJ.Lv had to satisfy 

(3.4) 

The last bullet point above is a real problem, it rules out any realistic codimension 2 

models in Einstein gravity. Since it will turn out to be a special case of the main 

result of this chapter we will review it only in a simple case after a necessary review 

of conical singularities. In section 3.5 we present the work in the paper [53] where 

we showed that by considering Gauss-Bonnet terms this restriction on the energy­

momentum tensor could be overcome, the rest of the chapter after that point then 

gives some important examples showing the features of the model. 
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3.2 Conicali singuliarities 

In this section we will see how the angular deficit of a conical space-time can be 

identified with the tension of a codimension 2 braneworld. To do this we will consider 

an explicit example [39]. Start with the following static cylindrically-symmetric 

metric 

(3.5) 

where the coordinates are unrestricted except to say that, r E [0, oo) and the periodic 

angular coordinate cjJ E [0, 21r). The function {3(r) is given by 

{3(r) = "' l 
{ 

l sin err) 

( r - l + ~ tan I') cos I' 

(r S l) 

(r > l), 
(3.6) 

and here l > 0 and I' E (0, 1r /2] are constants. In the interior region of the space-time 

(r < l) there are two non-vanishing components of the Einstein tensor, specifically 

we have Gu = -Gzz = !'2 /Z 2 and hence an energy density 

(3.7) 

The metric in the exterior region ( r > l) has vanishing Riemann tensor. 

Now the mass density of the cylinder p, i.e. the density per unit length, is given by 

the integral of the energy density over the two-surface z, t=const. This gives 

r2n t /' J'T 
f.-l = Jo Jo T sin -l drdc/J 

= 21f ( 1 - cos I') . (3.8) 

To model a string we then consider the limit l -----t 0 (see fig. 3.1). In this case, since 

p doesn't depend on l, the mass density converges trivially and we can tentatively 

assign 

f.-ls = 21f (1- COSJ') J(2)(r). (3.9) 

In the exterior region {3 ( r) can be put in the form of a standard metric for a 

conical space-time in four dimensions via the coordinate transformation R = r - l + 
( l /I') tan I', specifically the metric would take the form 

(3.10) 
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Figure 3.1: From a cylinder to a cone. 

The angular variable ~. as already mentioned, has periodicity 27r, however an ob­

server performing measurements around R = 0 would notice an angular deficit. This 

is because any observer measuring the radius and circumference of a circle located 

at R = a, say, would in fact measure the proper radius A and circumference C given 

by 

C = 21ra cos "Y, 

A= la dR. 

(3.11) 

(3.12) 

Now if our observer tries to relate these two measurements she will find an angular 

deficit ~ defined via 

C = (21r- ~)A, (3.13) 

which using equations (3.11) and (3.12) can be seen to be equivalent to 

~ = 27r ( 1 - cos') . (3.14) 

This result is to be compared with (3.8) whence we see that the energy density of 

the string is exactly the angular deficit of the cone. 

A string, being a localised defect of codimension 2, therefore gives rise to a 

conical geometry with an angular defect equal to the string's energy density and it's 

this string structure which will be our codimension 2 braneworld. Using Einstein's 

equations we can identify the singular structure through j3(r) as 

!3" 7f = -27r[l- ;3'(0)]8(2)(r). (3.15) 
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Identify 

Figure 3.2: Conical space: How an angular defect gives a cone. 

3.3 Explicit example 

In this section we offer an explicit example of the third bullet point on page 30, that 

is we will examine the following special case of the metric given in equation (3.2) 

following Cline et. al. [56], namely 

(3.16) 

where all metric functions can depend on t as well as r. 

We calculate Einstein's equations using this metric and then identify the terms which 

can support delta function sources. Assuming that the only metric field to vanish at 

r = 0 is L(t, r) the terms we seek are those involving second derivatives of L w.r.t r 

as motivated in the previous section. It is straightforward to show for example that 

the Ricci tensor and Ricci scalar behave as 

R~v = 0 + non-singular terms 

L" 
R = 2y +non-singular terms, 

and so any energy-momentum must satisfy 

L" 
TJ.Lv = -gJ.L"'L +non-singular terms. 

(3.17) 

(3.18) 

(3.19) 

Therefore the energy-momentum measured by a brane based observer must behave 
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3.4 Gauss=Bonnet gravity 

Einstein's equations are derivable from an action principle from which it follows 

in two dimensions there are no dynamics. In four dimensions this is, of course, 

not true. However there are terms which may be added to the action which are 

purely topological in four dimensions but which become important in five and higher­

dimensional situations, the so called Gauss-Bonnet terms2
. 

If we define the Einstein tensor GM N by 

(3.20) 

then GMN + AgMN is the most general combination of tensors in four dimensions 

which satisfies the following conditions [4]; 

e It is symmetric. 

• It only depends on the metric and its first two derivatives. 

• It has vanishing divergence. 

• It is linear in the second derivatives of the metric3 . 

It turns out that in five (and six) dimensions we can also satisfy these with a linear 

combination of the Einstein tensor, the metric and the Lovelock tensor [4, 5]. The 

required linear combination is obtained by varying the following action which is the 

usual Einstein piece plus quadratic terms proportional to a 

(3.21) 

In this way we see from a purely geometrical point of view that the theory described 

by the above action is a natural generalisation of the pure Einstein theory. This term 

can also be shown to arise from String Theory [28, 29] and since braneworlds them­

selves are certainly motivated by String Theory [23-25] we have yet more motivation 

that they should be considered. 

2Generalisations of the Gauss-Bonnet theorem in higher even-dimensional spaces are possible 

via the Atiyah-Singer index theorem, the Euler character vanishes in spaces of odd dimensionality. 
3In four dim-ensions this is implied by the other three. 
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3.5 JI'he Model 

The idea is now simple. We use the Gauss-Bonnet corrections in six dimensions 

to provide the additional structure we need to avoid the over restrictive energy­

momentum requirement found by Cline et. al. in [56]. In [53] we proposed such a 

model which consists of a string-like defect - our codimension 2 braneworld, in a 

six-dimensional space-time in Einstein-Gauss-Bonnet gravity. 

Our task is then to derive the effective equations on the brane (i.e. the codimen­

sion 2 equivalent of (2.33)). Before we do that it is worth comparing and contrasting 

with the codimension 1 scenarios. In codimension 1 there is a single normal vector to 

the braneworld, hence a single direction from the braneworld. This means first of all 

that there is a natural coordinate system adapted to the model, the Gaussian nor­

mal coordinates, essentially we choose the extra coordinate transverse to the brane 

as a measure of the proper distance along geodesics orthogonal to the braneworld 

(see fig (2.2) in section 2.2.3 of chapter 2). Secondly we can relate the intrinsic 

curvature of the space-time with the extrinsic curvature of the braneworld using the 

Gauss-Codazzi equations. In codimension 2 there are now two normal vectors and 

for a regular submanifold we can apply the Gauss-Codazzi formalism as before4
, 

however it is not possible to put two normal vectors at the location of the deficit 

with a well defined inner product as it depends on whether you measure the inner 

or outer angle. In this case we will therefore use a coordinate system defined in the 

vicinity of the braneworld and in which the effect of the braneworld itself appears 

formally as a delta function source, so instead of using the junction conditions to 

determine the extrinsic curvature we will identify the singular behaviour explicitly. 

We will assume that our braneworld has a nonsingular metric, []J.~,v(xJ.i.) and from 

now on all braneworld objects will be hatted. The coordinates xJl. denote braneworld 

directions and we will use Greek indices to refer to these. To construct the rest of 

the coordinate system consider the set of points which have topology § 1 at fixed 

proper distance r from any xJ1. and label them with the periodic coordinate e which, 

without loss of generality, we will take to have periodicity 2n. The coordinates 

4 A discussion for arbitrary codimension is given in appendix A.l 
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Figure 3.3: Assumption of axial symmetry. 

xt~-, r and () provide a full co-ordinatisation of the space-time in the vicinity of the 

braneworld which is located at r = 0. 

There are still a few remaining assumptions we need to make. Firstly we will 

assume that the space-time is axially symmetric, we do this for two reasons; 

• It simplifies the form of the metric in the bulk. 

• It is a generalisation of the assumption of Z2 symmetry in the codimension 1 

scenarios (see fig 3.3). It means for example that if the derivative w.r.t r of 

any field at the origin is not zero the derivative can't be continuous there. 

Secondly there is of course some ambiguity in the labelling of(), we will assume that 

this has been chosen so as to make the connection on the normal bundle vanish 

(equivalently the braneworld does not intersect itself, see appendix A.l for more on 

this). The metric in these coordinates therefore takes the form 

(3.22) 

where the requirement of having a codimension 2 brane at the origin means that 

L(xt~-, 0) = 0. 

To obtain the braneworld equations of motion and hence some insight in to a 

description of the physics that an observer li mg on the lnaue would merumre we 
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now expand the metric in the neighbourhood of the braneworld since this is the 

region we are interested in. In particular with the assumptions we have so far 

(3.23) 

If we now substitute (3.23) into (3.22) and compare the result with the analysis in 

section 3.2 we find that if (3 # 1 we have a conical singularity at the origin which 

we interpret as being due to a delta function braneworld source. Strictly speaking, 

at least in Einstein gravity, we cannot talk of a delta-function source in terms of a 

zero-thickness limit of finite sources [106], to reiterate the discussion in chapter 2 

the basic reason for this is that a smooth metric yields a smooth energy-momentum 

tensor and so the smoothness condition on the metric must fail, unfortunately the 

nonlinear nature of Einstein's equations make such a condition difficult to deal with 

rigorously. We however can avoid this technical issue and, geometrically, deduce 

the existence of a delta-function in the Riemann tensor from the holonomy of a 

parallely transported vector around the source. As the area of any loop vanishes the 

curvature has to become singular to account for the lack of parallel propagation, see 

fig 3.4. The equations of motion then make perfect sense with the delta-function 

y~ 
e ··· ... 

Figure 3.4: The dashed lines are identified, parallely transporting a vector from x 

around the circle to y induces a rotation irrespective of the size of a 

being encoded in a notional discontinuity of the radial derivatives of the metric at 

T = 0. For a general braneworld then the prol>lem we wish to ::;olve i::; that of finding 
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gravitating solutions that include the effect of a general brane energy-momentum 

tensor 

(3.24) 

where upper case Latin indices run over all the dimensions, the structure of the 

delta function is discussed in appendix A.2. In particular, we will be interested in 

the relation between the four-dimensional induced metric on the brane, 9J.Lv(x, 0) = 

9J.Lv(x), and the brane energy-momentum tensor, TJ.Lv(x). It is this relation which 

determines the nature of the gravitational interactions that a "brane observer" would 

measure. 

3. 5.1 Analysis 

To derive the equations satisfied by the induced metric our starting point is the 

Einstein-Gauss-Bonnet equation 

where M is the six-dimensional Planck scale and 

is the usual Einstein tensor and the Gauss-Bonnet contribution is given by 

HMN =a[ ~9MN(R2 - 4RPQRPQ + RPQSTRPQsr) 

2RRMN + 4RMPRNP + 4RK MPNRKP 

-2RMQSPRN QSP], 

(3.25) 

(3.26) 

(3.27) 

with o: a parameter with dimensions of (mass)- 2
. SMN is the bulk energy-momentum 

tensor, which we will not specify here, other than to assume that it has no delta­

function contributions. If equation (3.25) is to be satisfied then there must be a 

singular contribution to the LHS with the structure rv 
6~). As already discussed in 

section 3.2, such contributions arise as 

L" t5 ( r) L = -(1- f3)y + (non- singular part). (3.28) 
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Also we have 

a2g V 6(r) . 
r LJ.L = ar9J.LvL + (non- smgular part). (3.29) 

In Einstein gravity these latter terms are zero as we will see later, however since 

they could in principle be nonzero here, we will retain them from now on. We must 

therefore set the delta-function contribution to the geometry equal to the brane 

energy-momentum tensor in order to solve the equations of motion. To simplify 

the calculation we note the following behaviour of some key pieces in the Einstein­

Gauss-Bonnet equations 

L" 
Rrr = L +(non-singular part), (3.30) 

L" 
R0 

0 = L + (non-singular part). (3.31) 

After some calculation, one obtains that the only singular part of the LHS of equation 

(3.25) lies in the J.L, v directions and is 

(3.32) 

where WJ.Lv is defined as the following combination of first derivatives of the four­

dimensional metric 

WJ.LV =g)..a ar911->..ar9va - g)..a ar9>.aar9J.Lv+ 

+ ~9J.Lv [(g>.aar9>..a) 2
- 9>..ag6Par9>..8ar9ap]. (3.33) 

We can now use the properties 

L" 6(r) 
(1- my+ ... , (3.34) 

6(r) 
{3 WJ.Lvir=O+ L + · · ·, (3.35) 

to obtain the matching condition by equating the 6~) terms of equation (3.25). This 

yields 

(3.36) 

where GJ.Lv is the four-dimensional Einstein tensor for the induced metric, fJJ.Lv, and 

WJ.Lv = ltVJ.Lvir=O+· This is the main result ofthis chapter, the gravitational equations 
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of a braneworld observer are the Einstein equations plus an extra Weyl term, wtLVl 

which depends on the bulk solution. This term is reminiscent of the Weyl term in the 

codimension 1 braneworlds [37] (see also equation (2.33) in chapter 2), which gives 

rise to the corrections to the Einstein equations on the brane. Roughly speaking, 

the braneworld equation is obtained by taking the components of the full Einstein 

equations parallel to the brane, with the perpendicular components giving some 

information on the nature of the Weyl term. Depending on the symmetries present, 

in some cases (cosmology being the most physically interesting) we can completely 

determine the bulk metric, and hence these Weyl corrections. For codimension 2, 

the perpendicular components of the bulk equations do lead to constraints as we 

discuss presently, however these now no longer fix the bulk metric exactly, not even 

for the highly symmetric and special case of braneworld cosmology with Einstein 

gravity in the bulk. Let us now investigate the consequences of (3.36), including the 

consistency of the extra Weyl term, which arose as a result of allowing a discontinuity 

in the derivative of the parallel braneworld metric. 

3.5.2 Discussion 

A natural first check is to take the a -+ 0 limit to recover the Einstein case. Then 

equation (3.36) reduces to 

4A A 
2n(l - {3)M g11v = T11v· (3.37) 

Although it looks like it is not possible to satisfy this condition unless the brane 

energy-momentum tensor is proportional to the induced metric, in fact we have not 

yet determined whether {3 is a constant. A non-constant {3 would correspond to 

a varying deficit angle, and is not determined by the braneworld equations alone. 

We must supplement the braneworld equations with the bulk equations normal to 

the braneworld, and since at the moment we wish to make as few assumptions as 

possible about the bulk, we will simply look at the divergent 0(1/r) terms in the 

Einstein equations near the brane, as these cannot be cancelled by any regular bulk 

SMN· These leading terms for the (Jl, v), (r, r) and (Jl, r) components of Einstein's 
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equations give 

(3.38) 

where (F) stands here for the smooth part ofF as we approach the brane. We now 

see directly that (3 must indeed be constant, and that 

(3.39) 

(3.40) 

We can now confirm the observation of Cline et. al. [56], that Einstein codimension 2 

braneworlds must have an energy-momentum proportional to their induced metric, 

and their gravitational effect is to produce a conical deficit in the bulk space-time, 

recovering two of the bullet points in the introduction to this chapter. 

In Gauss-Bonnet gravity however the situation is not so simple since all these 

equations get corrections proportional to a and one cannot rule out the existence 

of solutions with WJ.Lv =f. 0. The 0(1/r) terms in the (f-l, r) components of the 

Einstein-Gauss-Bonnet equations for example are 

-gvrra~L' [9J.Lv + 4a ( RJ.Lv(g)- ~9J.LvR(g)) -a WJ.Lv] + 

+ 2a ~ gl/fr [aT 9,w RPrrpr - aT 9vrr RPJ.LPT] = 0, (3.41) 

with similar constraints from the 0(1/r) terms of the (f-l, v) and (r, r) equations 

(though these are somewhat more complicated and not particularly illuminating). 

In this case we find that in general no simple restriction can be placed on the solution, 

and in particular the deficit angle (3 need no longer be constant. 

However, it is important to note that some components of the Ricci curvature 

tensor (and scalar) are now divergent once we allow aT9J.Lvlo+ =f. 0. For example 

(3.42) 

near the brane. In a realistic situation, we could argue that a brane would have 

finite width, which could act as a cut-off for the curvature, hence all the results in 

this chapter would still be valid provided this cut-off is sufficiently large so that the 
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curvature is still small compared to M 2 , the six-dimensional Planck mass squared. In 

this smooth case, we can use the Gauss-Codazzi formalism and the 8-independence 

of the metric to write5 

(3.43) 

where K;J.lv are the two extrinsic curvatures (i = 1, 2) for each of the two normals. 

We therefore have the interpretation of WJ.lv as being a geometric correction to 

the Einstein tensor due to the embedding of the braneworld in the bulk geometry. 

The interpretation is then that the Einstein equations acquire additional embedding 

terms which unfortunately cannot be deduced from the braneworld geometry alone. 

The physical relevance of terms which lead to divergent curvatures and hence 

tidal forces in the vicinity of the braneworld is however questionable. If M is of order 

the (inverse) brane width, or if we wish to have a truly infinitesimal brane, then we 

are forced to conclude that for consistency we cannot stop at the Gauss-Bonnet 

curvature corrections, but must include all higher order curvature corrections thus 

entering a non-perturbative regime of which we can say nothing6 . We are therefore 

led to impose Or9J.lv = 0, and equation (3.41) tells us that the deficit angle {3 is again 

constant and the equation for the induced metric (3.36) remarkably takes the form 

of purely four-dimensional Einstein gravity 

(3.44) 

We can read off our four-dimensional Planck mass as 

(3.45) 

and we note the presence of an effective four-dimensional cosmological constant 

(3.46) 

where To is the bare brane tension 

(3.47) 

5 Compare to equation (2.25) on page 19. 
60f course if the curvature terms are in the Lovelock combinations [4] then they are purely 

tojJological. 
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Of course the splitting of the energy-momentum tensor in this manner is potentially 

arbitrary, however, for a cosmological brane oTf.lv ----+ 0 as t----+ oo, and we can simply 

posit that oTf.lv ----+ 0 as either t or lxl ----+ oo as being a necessary requirement of a 

braneworld thus rendering (3.47) unambiguous. 

Interestingly, the Einstein relation between {3 and the brane tension 

To = 21r(l- {3)M4
, (3.48) 

no longer holds for Gauss-Bonnet gravity - we can specify the conical deficit and 

the brane tension independently, the only caveat being that if the Einstein relation 

does not hold, then we have an effective cosmological constant on the brane. 

To sum up: we have found the equations governing the induced metric on the 

brane for a codimension 2 braneworld. We have shown that adding the Gauss­

Bonnet term allows for a realistic gravity on an infinitesimally thin brane which 

remarkably turns out to be precisely four-dimensional Einstein gravity independent 

of the precise bulk structure, the only bulk dependence appearing via the constant 

deficit angle ~ in the definition of the four-dimensional Planck mass m~1 = 4a~M4 . 

Since Einstein gravity appears quite generically, our model provides a novel alterna­

tive realisation of the infinite extra dimensions idea of Dvali et. al. [57]. Indeed, we 

could modify our model by adding braneworld Ricci terms (which can be motivated 

via finite width corrections to the brane effective action [104, 105]), which would 

give the same form of the braneworld gravity equations, and simply renormalize the 

four-dimensional Planck mass. 

We also showed that it was possible to obtain a deviation from Einstein gravity 

via a non-zero wf.lV' In turn, this allows a variation of the bulk deficit angle and 

therefore the effective brane cosmological constant. In this case, one has to either 

perform a smooth regularisation of the brane by taking some finite width vortex 

model, or accept that the infinitesimally thin braneworld has a non-perturbative 

regime in the neighbourhood of the brane. Nevertheless it seems to be a very ap­

pealing feature toward a possible solution of the cosmological constant problem for 

example. One could envisage a situation in which the system is in a non-perturbative 

phase in which the cosmological constant can vary, and relax itself dynamically to 

a pe:rturbative Htate in which the induced gravity on the brane is four-dimensional 
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Einstein gravity and with a very small cosmological constant (an infinite flat super­

symmetric bulk might for instance lead to this situation [38]). Due to the unbounded 

curvature near the brane when this situation is violated it seems plausible that once 

the system reaches that configuration it would prefer to remain there. 

3.6 Cosmology 

In this section we will explicitly examine our model in a cosmological context, we 

have seen the general matching conditions that govern the geometry as measured 

by an observer on the brane, however as has been mentioned there are various 

constraints arising from the Einstein-Gauss-Bonnet equations in directions other 

than the four on the brane. In a cosmological context these are simple enough to deal 

with completely. First of all we will present a general inflating brane solution, this 

gives an example of a complete exact cosmological solution, and then we give a more 

general discussion of a Friedmann-Robertson-Walker scenario on a codimension 2 

brane with an analysis of the restrictions imposed by the bulk equations of motion. A 

success of the codimension 1 models is their ability to essentially reproduce standard 

cosmology, here we see in detail the same success reproduced in codimension 2. 

3.6.1 Inflating brane solutions 

In order to obtain an inflating brane solution, we note that de Sitter space is simply 

a constant positive curvature space-time and as such is the analytic continuation 

of a four-sphere. We can write down six-dimensional Gauss-Bonnet-Schwarzschild 

solutions [54] as follows 

2 2 dr
2 

2 2 
ds6 = V(r)dt - V(r) - r dx4 , (3.49) 

where 

r
2 

( J 12aA 24aJL) V(r) = /'\,
2 +- 1 ± 1 + -- + -

5
- , 

12a 5 r 
(3.50) 

and dx~ is a Euclidean four-space of constant curvature /'\,2 . This is a generalisation 

of the usual six-dimensional Schwarzschild solution in the sense that we obtain it 

if we take the rn·inus sign in (3.50) and let a -t 0. Note that tloi11g Lhe same 
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thing with the opposite sign has no such analogue and the resulting metric is that 

for a space-time with a naked singularity. These two cases are often referred to as 

the Einstein and Gauss-Bonnet branches respectively, here we will work with the 

Einstein branch. 

We doubly analytically continue the metric given in equation (3.49) as follows; 

e First analytically continue the Euclidean four-space to a de Sitter space 

(3.51) 

• Second analytically continue the t coordinate 

t ----+ ze. (3.52) 

This gives us the following metric 

(3.53) 

Note that the periodicity of e is not fixed as 271" but is determined by demanding the 

appropriate conical deficit at the analytically continued event horizon. To this end 

note that in general V(r) has two real roots, see for example fig (3.5), and so we will 

calculate the angular defect at the locatioll of each horizon and fix the periodicity 
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of e by smoothing one of the conical singularities out. 

We can determine the angular deficit at the location of each horizon by expanding 

V ( r) around the horizon location, performing a change of variables and then doing 

a simple integral. Suppose the two zeros of V(r) are located at r 1,2 (with r 1 < r 2 ) 

and that e has periodicity 'r/ then the angular deficits .6.1,2 are; 

(3.54) 

The absence of a conical deficit at r 1 requires that .6.1 = 0, so we require 

(3.55) 

in which case 

.6.2 = 2n (1-1~:~~~~1). (3.56) 

Alternatively, if instead we require that .6.2 = 0 then 

(3.57) 

In this latter case for generic V ( r) we would have an "angular excess" at r 1 , for 

example in the situation depicted fig 3.5 (with a= 0.3) we have, 

(3.58) 

so .6.1 < 0 and the interpretation would be an unphysical one as it would correspond 

to a negative tension object. 

Motivated by this we smooth out the conical singularity located at r = r 1 which 

then determines the periodicity of e as given by equation (3.55). This then gives us 

a space-time with a conical singularity, following the interpretation of the previous 

sections we have an exact codimension 2 brane world solution with an inflating 

cosmology. 

3.6.2 FRW cosmology 

Since we know that in our scenario Einstein's equations are reproduced for a brane 

based observer (although it is not yet clear that conventional gravity would be 

measured by such an observer as was motivated for codimension 1 scenarios in 
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chapter 2) and, moreover, that the Friedmann-Robertson-Walker cosmological model 

is a good one we will examine these types of solutions and the constraints the bulk 

equations impose in our set up. So we start by taking the following form of the 

metric 

(3.59) 

where 'Yij is a maximally symmetric three-dimensional metric and lower case Latin 

indices will be understood to run over these three dimensions. 

(3.60) 

with"'= -1, 0, 1 parameterising the spatial curvature. This is clearly a special case 

of equation (3.22). The coordinate e is periodic with period 211' and the requirement 

of having a codimension 2 brane at the origin (r = 0) translates into L(t, r)lr=O = 0. 

We then expand L thus defining j3(t) as in equation (3.23). Next we decompose the 

total energy-momentum tensor as the sum of two pieces, the brane and bulk terms. 

Note that in the analysis of section 3.5.1 we didn't make any assumptions about the 

nature of the bulk energy-momentum other than to assume it had no delta function 

sources, here of course the same restriction applies however we will assume that 

there is a bulk cosmological constant. So if we write 

then we are assuming that 

T brane _ 
MN -

T _ ybrane + ybutk 
MN- MN MN' 

PM2"'V·. 8(r) 
llJ L 

0 

and for the bulk part, we will just assume that at r = 0 we can write it as 

T bulk I __ ( 9J.LvAx 
MN r=O-

(3.61) 

(3.62) 

(3.63) 

where the indices f..L, v run over t and xi and a, b run over the extra-dimensional 

coordinates r, e. 
If we introduce, for convenience, the notation 

l\1!0 = flt!(t, 0), (3.64) 
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then equation (3.36) becomes 

M2 +,., 
(1- ;3)[1-12o: ~2 ] = p, 

0 
(3.65) 

[ MJ +,., Mo] (1 - {3) 1 - 4o: 2 - 8o:- = -p. 
M0 1VI0 

(3.66) 

It is clear from the equations above that when o: = 0 we can only find solutions if 

p = -p (i.e. a cosmological constant equation of state), but importantly when o:-=!= 0 

we can find solutions that include matter on the brane and, moreover, this matter 

content determines a non-trivial cosmology. Also, from equations (3.65, 3.66) we 

can recover the conventional energy-momentum conservation law for matter on the 

brane, to do this we first note that the ( t, r) component of the full Einstein-Gauss­

Bonnet equations evaluated in the limit r -t 0 gives 

lim i/ = lim /J+~r + O(r
2

) = 0 
r->0 L r->0 j3r + O(r2 ) ' 

(3.67) 

so {3 = ;..( = 0. Now, differentiating equation (3.65) with respect tot and using again 

these matching equations we get the familiar result 

. Mo 
p = - 3 Mo (p + p), (3.68) 

in fact performing the same procedure in the codimension 1 scenarios gives the same 

energy conservation result [30]. 

To continue the analysis we will consider the case where; 

• p = -p - T, so we assume a cosmological constant equation of state. 

e ,., = 0, zero spatial curvature. 

In this case equations (3.65, 3.66) imply that the solution is simply dS space for the 

brane worldvolume (MJ/MJ = M0 /M0 _ H~ is constant) and the deficit angle can 

be determined from them as 

T 
1-{3=---.....,-

1- 12o:Hr 
(3.69) 

However, these equations do not fix the value of He (and therefore the deficit angle), 

it will be determined by "bulk" physics, the main point of this section. To see this, 
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consider the ( r, r) component of the Einstein-Gauss-Bonnet equations for the metric 

given in equation (3.59), again evaluated at r = 0, that reads 

A 
3(K; + M5) 3Mo (11; + MJ)Mo 

r + MJ + Mo -12a M8 + 

3Nh ( K; + .Mg Mo) ( K; + M6) - -- 1 - 4a 
2 

- 8a- - N2 1 - 12a 
2 

= 0, 
Mo M0 Mo M0 

(3.70) 

where M2 = M"(t, 0) and N2 = N"(t, 0). This equation reduces for p = -p and 

11; = 0 to 

(3. 71) 

From this equation we also see that ( 3:ia2 + N 2) - Ab has to be constant, and 

depends on the particular bulk solution we are considering. So He can be determined 

from the previous equation in terms of ATl Ab and a. 

This agrees, for a = 0, with the general inflating solutions presented in the 

previous section for the Einstein case. But now, with a -1- 0, we can consider the 

situation in which we have some matter on the bran e. So let's take 

(3.72) 

with w > -1. In an expanding universe Pm(t---.oo) --+ 0, so asymptotically the solution 

must converge with the previous one. Then for t --+ oo the matching conditions 

reduce to equation (3.69), and since {3 and T are time independent, we must fix the 

deficit angle to satisfy equation (3.69) at all times. Substituting back this value for 

{3 in equations (3.65, 3.66) we get 

MJ _ H 2 _ 1 - 12aH; 
MJ- c 12aT Pm (3.73) 

(3.74) 

These are the conventional equations for the evolution of the scale factor of the 

universe with cosmological constant H; if we make the identification 

1 - 12aH; 81r G 
12aT --+ -3 N, (3.75) 

as can been seen by referring to equation (2.39). Notice that the effective cosmo­

logical cou~tant is independent of the brane tension, since it is determined by the 
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equation 

(3.76) 

where Aboo) - limt--+oo ( 3tfa2 + N2) is a parameter to be determined by the bulk 

solution. Matter on the brane satisfying an equation of state such that w > -1 (so 

its energy density goes to zero as the universe expands) affects the evolution of the 

scale factor in a standard way. 

3. 7 Perturbation analysis 

We know general relativity is in excellent agreement with physical observations, 

therefore we need to check that in our codimension 2 model an observer living on 

the brane would, at least to a first approximation, find this well established theory 

reproduced. In the codimension 1 scenario discussed in chapter 2 we were able to do 

this to some extent, to do this in the present case we will first perform a perturbation 

analysis ( c.f. equation ( 2.49) in chapter 2). 

To make the analysis as neat as possible we take the trace of the Einstein-Gauss­

Bonnet equations and eliminate the Ricci scalar, this gives us a set of equations which 

look like "Ricci tensor + corrections" and will enable us to more easily identify the 

role played by the higher order curvature terms. In fact when we do this we find 

the equations (in n-dimensions) to be 

RMN- a[
2 
~ n9MN(R2

- 4RPQ RPQ + RPQSTRPQsr) + 2RRMN- 4RMPRNP + 

- 4RKMPNRKP + 2RMQSPRN QSP] = TMN + - 1
-gMNT. (3.77) 

2-n 

The metric perturbation we are going to make is of the form 

(3.78) 

and we will also make a small additional perturbation to the components of the 

energy-momentum tensor 

(3.79) 

with the assumption therefore that fJT M N is additional brane energy-momentum. 
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3.7.1 The equations 

The details of the calculation of the equations of motion for hMN to first order are 

given in appendix B.1. To be concrete we have considered a perturbation around a 

conical deficit in Minkowski space, i.e. a space-time with metric 

(3.80) 

this is because locally any general metric in the codimension 2 scenario would take 

this form and therefore we expect it to highlight any generic features, moreover it is 

the simplest non-trivial case: quadratic corrections make no additional contributions 

to the equations in Minkowski space. 

Working with the following notation 

(3.81) 

the various components of the perturbation equations in Gaussian normal coordi-

nates are; 

• r, () equation: 

• {L, r equation: 

• {L, () equation: 

Bulk: 

Bulk: aTafLAfl = -~Dear ( ~) ' 
Brane: 6Tro = 0. 

( 
A 4 ) 1 Bulk: ar aAhfL - 8/Lh + DoAfl = La flaT (Lcp)) 

Brane: fJT fLT = 0 

(3.82) 

(3.83) 

(3.84) 

(3.85) 

1 - 2 1 2 3 L' 1 ( A 4) 1 A - 2\7 Afl + 2arAfl + 2-y;arAfL + 
2

L2 -8o8AhfL + DoDflh + 2afla AA= o, 

(3.86) 

Brane: 

(3.87) 
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• J-L, v equation: 

This equation is slightly more complicated, with 

1- 2 1 2 1 2 L' 
oRJ.lV = -2\7 hJ.lV + 28ThJ.1V + 2L280hJ1V + 2L oThJ.lV + 

+~ (o11oah~ + ovoah~) -}o11ovh, (3.88) 

we have the following equation 

(3.89) 

• r, r equation: 

Here we find that the perturbation equation can be written as 

1 2 _ .6. o (2) - 1 (- TT- oo- ) 
bRrr + 4o:o(R + ... )- -2h0o (r) + oTTT + 4 oT + g oTTT + g OToo , 

(3.90) 

the LHS of which is more explicitly 

where 

(3.92) 

So simplifying as much as possible yields 

L' 1 2 4 1 2 L" - 2 4 .>. 11 .6. (2) ---fJA.--fJh --fJA.-a-(Vh -ooh )=--A.o (r)+oT + L T '!-' 2 T 2 T '!-' L J.1 .>. 2 '!-' TT 

1(-- oo-+ 4 OT + gTT OT rT + g OT oo) . 

(3.93) 

• (), () equation: 

Again we find (note how similar this is to (3.90)) 

(3.94) 
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where 

Putting it all together gives 

1 - 2 0 L1 
0 L" 0 1 2 0 P. 0 1 2 4 L 1 

4 - 2\7 h0 + -y;8rh0 + yh0 + 28rho + 8o8 hp.+ 2L2 80 h + 2£ 8rh + 

+a~~ (V2h4
- ap.a>-hj..) = ~ <PS(2)(r) + l 0SToo- ~ (ST + grrsTrr + l 0SToo). 

(3.96) 

3. 7.2 The analysis 

As has already been used in section 3.5.1 the singular behaviour is embodied in the 

~~ term. In fact, to reiterate, we have the relationship 

(3.97) 

where .6. is the angular deficit. As a boundary condition at the origin we match the 

singular behaviour in our equations. The r, rand 8, e equations give us respectively 

-a~~ (V2h4
- ap.a>-h~) = (- ~ <P + STrr + ~ (ST + grrsTrr + l 0SToo)) S(2)(r), 

(3.98) 

~~ (<P + a(V2h4
- ap.a>-h~)) = (- ~ cP + l 0SToo+ 

- ~ ( ST + grr ST rr + l 0 ST oo)) 6(2
) ( r). 

(3.99) 

Now by adding these last two equations and using equation (3.97) we obtain 

- ()()-
STrr + g SToo = 0. (3.100) 

The f.-L, v components similarly give 

(3.101) 
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Together equations (3.98), (3.100) and (3.101) then imply the following 

(3.102) 

where oRJ.LV is the four-dimensional Lichnerowicz operator evaluated on a fiat back­

ground without any gauge choice, we see that the correct factor of ~ is found even 

though we are in a six-dimensional space-time as was also found in the analysis 

of the Randall Sundrum scenario described in section 2.3.1 of chapter 2. We can 

also see that the addition of oT TT and oT BB terms doesn't affect the final equations 

governing the braneworld physics. The equations are, however, not quite the usual 

Einstein equations, we would also need cjJ to be zero. 

The condition that cjJ = 0 on the brane is equivalent to the angular deficit and 

hence the brane tension remaining constant in the Gaussian normal gauge, this can 

be seen as follows; if the proper radius and circumference of a circle around the 

origin are denoted by R and C respectively then 

R= 1<~dr, 
rrr 

c = lo y'fg;fde, 

so under a general metric perturbation we would find that to first order 

In particular in the chosen gauge we have that 

C L(c) ( 1 ) 
R rv 211"-E- 1 + 2c/J ' 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

(3.107) 

and if we take the limit as E --+ 0 the angular deficit after the perturbation ~ can 

be seen to satisfy 

~ = ~- 1rL'(O)qy, (3.108) 

which in the notation of this section implies 

o~ = -1r L' (O)qy, (3.109) 

and hence the re::>ult as promised. 
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3.8 Summary 

In this chapter we have shown how the problems encountered by codimension 2 

braneworlds in Einstein gravity can be overcome with the introduction of Gauss­

Bonnet terms, in particular the braneworld equations of motion are Einstein's equa­

tions with additional Weyl terms as discussed earlier. We have shown via a general 

calculation and a specific example that the resulting braneworld physics is at least 

as rich as the usual Einstein theory, importantly we find that we can reproduce the 

usual FRW cosmology in simple cases thus reproducing a success of the codimen­

sion 1 models. 

For the codimension 1 Randall-Sundrum scenario it was possible to show that 

to a first approximation the usual Newton law would be found by an observer on 

the brane, an analogue of this argument is so far lacking in our codimension 2 

Gauss-Bonnet scenario. Having said that we are able to show that for a braneworld 

observer the correct four-dimensional tensor structure for perturbations is found even 

though the space-time is fundamentally six-dimensional, moreover as the equations 

of motion for the braneworld perturbations don't depend on the radial or transverse 

components we suggest that reproducing Einstein gravity on the brane is not a result 

of zero modes being confined there but rather an exclusion principle. 



Chapter 4 

Stability and Thermodynamics 

4.1 Introduction 

This chapter and the next will be concerned with a possible relationship between 

dynamical and thermodynamical instabilities. In the first part of this thesis we have 

seen how worldvolume fields are restricted by bulk gravity, now motivated by the 

existence of a finite temperature field theory dual to black p-brane solutions Gubser 

and Mitra conjectured a precise relationship between these two types of instabili­

ties [62]. That is, they proposed how the worldvolume field theory description of 

the microstates underlying black hole thermodynamics affects the geometry of a 

solution through gravitational effects. 

Classically a black hole is a region of space-time where gravity has become so 

strong that nothing, not even electromagnetic radiation, can escape. An important 

development in the study of black hole physics was Hawking's discovery [46] that 

quantum mechanically they could thermally radiate with temperature 

T=~ 
2n' 

(4.1) 

where "' is the surface gravity. This development suggested that the laws of black 

hole mechanics (summarised in table 1.1 on page 6) should not only be analogous 

to thermodynamic laws but are thermodynamical in nature. Hawking radiation is 

a purely quantum phenomenon, this suggests that a candidate quantum theory of 

r;ravity should be able to help us better understand the origin of these thermody-

56 
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namic properties which in turn should help us to better understand quantum gravity. 

Another important development in black hole physics was the discovery of Gregory 

and Laflamme [60,61] that in higher dimensions black hole solutions can be dynam­

ically unstable. In fact the study of black holes in five, six or higher dimensions is 

much richer than in four. While in four dimensions the static neutral black hole is 

given by the Schwarzschild solution in higher dimensions we can consider other in­

teresting black hole solutions. The study of solutions with horizons with non-trivial 

fundamental groups such as JRn- 1 x § 1 are potentially more complicated and richer, 

on the one hand because a black hole on a cylinder has self interactions, easily seen 

by passing to the universal cover1
, where we end up with an array of black holes and 

non linear interactions between them give the complications, on the other hand the 

radius of the circle provides another scale in the problem giving a richer structure. 

In the simplest case, a Schwarzschild solution smeared over an infinite transverse 

direction was shown by Gregory and Laflamme to be dynamically unstable to pertur­

bations with wavelength approximately seven times the Schwarzschild radius [60]. 

This is in complete contradistinction with the fact that in four dimensions black 

holes are dynamically stable. A review of the existence of this instability is given 

in section 4.2. The rest of this chapter will then be concerned with the conjecture 

of Gubser and Mitra and motivation for it, sections 4.3.1 and 4.4 contain a partial 

proof and various motivating examples. 

4.2 Gregory-Laflamme instability 

As mentioned in the previous section there is a substantial difference between black 

holes in four dimensions and those in higher dimensions. For example Hawking 

showed that the event horizon of a black hole in four dimensions is necessarily topo­

logically a sphere [44], he argues that a space-like slice of the horizon is a connected, 

orientable 2-surface which admits a metric of positive scalar curvature and hence 

from the Gauss-Bonnet theorem must have x = 2 from the well known classification 

1The universal cover of a connected topological space X is a unique simply connected space 

which has the same local properties as X. See for example [70] 
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of compact, oriented 2-surfaces [70]. However even in five dimensions things are 

very different, the techniques he applied do not generalise (the Euler character ap­

pearing in the Gauss-Bonnet theorem is identically zero for odd-dimensional spaces) 

and moreover it is easy to write down five-dimensional solutions with event horizons 

that have topology § 3 or JR. x § 2 for example. 

It is well known that the topologically spherical solutions are stable, that is, 

small perturbations do not grow unbounded in time [13]. However for the black 

string, under certain circumstances, this is not true as was shown by Gregory and 

Laftamme. It is this instability that we shall review in this section. 

4.2.1 Perturbation ansatz 

The discussion here is based on the original work of Gregory and Laftamme [60]. 

They showed that the following ten-dimensional black string solution 

2 2 i 
dsw = dsschwarzschild- dxidx ' (4.2) 

where ds~chwarzschild is the usual D-dimensional Schwarzschild solution and lower 

case Latin indices run from 1 to 10- D, admits a dynamical instability. In order to 

show this an analysis of the linear order perturbation equations is required and to 

this end we will consider a metric perturbation of the form 

(4.3) 

and work in the transverse trace free gauge, i.e. where hMM = 0 and h't;M = 0. 

Now to show that the solution is unstable it is sufficient to find any instability, it 

turns out to be enough to consider just a simple s-wave (physically we would expect 
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higher angular momentum modes to be more stable) of the form 

0, 

0, 

Htt(r) Htr(r) 0 0 

Htr(r) Hrr(r) 0 0 

enteiJ.L;xi 0 0 K(r) 0 

0 0 0 
K(r) 
sin2 () 
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( 4.4) 

(4.5) 

(4.6) 

where r is the usual spherical polar radial coordinate in D-dimensions, as for certain 

values of D and "2:. J-LI solutions to the Lichnerowicz equations exist. 

Note that when dealing with problems like this it, in principle, may be very 

difficult to establish whether any solutions correspond to real physical instabilities 

or are simply artifacts of the coordinate system which we may have chosen to work 

with. In the present case however there is a simple way to address this issue. Using 

the metric ( 4.2) and the s-wave assumption for the perturbation we can write the 

ten-dimensional Lichnerowicz equation in the following way 

(4.7) 

where ~f is the D-dimensional Lichnerowicz operator and J-L2 = l:.i J-LI. Now since 

a pure D-dimensional gauge perturbation satisfies the Lichnerowicz equation for 

a vacuum space-time it follows that if l:.i J-LI =/:- 0 then the perturbation must be 

physical. 

4.2.2 Asymptotic and near horizon geometries 

Finding an exact solution to ( 4. 7) is too hard. Instead what Gregory and Lafiamme 

did was to find the form of the solutions both asymptotically and near the horizon, 

identify which were regular and then numerically integrate in a regular solution 

from infinity and see if it could be matched with a regular near horizon solution. 

Although this procedure depends crucially on the form of the perturbation equations 

we can calculate the asymptotic behaviour quite easily, we also note the near horizon 

behaviour which depends on the Hawking temperature. 
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a Asymptotic behaviour 

Assuming that the space-time is asymptotically fiat then asymptotically the 

Lichnerowicz equation can be written, in the DeDonder gauge, as 

-2 00 
VhMN=O, (4.8) 

where an overbar refers to the operator in fiat space. Using the s-wave form 

of the metric perturbation we can solve this equation to give 

(4.9) 

where, of course, we require A+ = 0 for a regular solution. 

• Near Horizon behaviour 

For this particular example the Lichnerowicz equations can be reduced to a sin­

gle differential equation for the unknown Htr field. Its near horizon behaviour 

can be written as 

(4.10) 

where r + is the horizon radius and TH is the Hawking temperature of the 

solution. 

4.2.3 Existence of solutions 

For the specific case of the black string we have 

D-3 
TH=--

4nr + ' 
(4.11) 

where r = r + is the horizon location. For the solution to be regular at the horizon we 

need B_ = 0 and n > 0 in equation ( 4.10). It turns out that for n > (D- 3)/r +we 

can rule out the existence of instabilities of this type analytically. If this inequality is 

not satisfied then, as we have already said, we have to resort to numerical techniques. 

The results of this numerical investigation are presented in [ 60], they found that there 

are indeed solutions to ( 4. 7) that are regular on the horizon and decay at spatial 

infinity, moreover there is a critical value f.-L* of f.-L such that for f.-L < f.-L* there is always 

such a solution. ForT+ = 2 we find for various D that, 
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4 0.44 

5 0.63 

6 0.92 

Table 4.1: Threshold values 
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Exhibiting a single value of (0, M) proves the solution is unstable, from the details 

of the equation for Htr it can be seen there is a symmetry under the following 

transformation; r +--+ ar +, 0--+ 0/a and M--+ M/a and so one can generate a range 

of values of (0, M) for which the stability exists suggesting that it is both generic 

and robust. 

4.3 Gubser-Mitra conjecture 

Gubser and Mitra conjectured a precise relationship between the thermodynamics 

of black holes and their dynamical stability. They were partially motivated by the 

AdS/CFT correspondence; the low energy limit of a theory describing a single D­

brane is ordinary electromagnetism, a U(l) gauge theory. If we have N separated 

D-branes on any one of which an open string can end we have a (U(l))N gauge 

theory. If however theN D-branes are coincident the gauge group gets enhanced to 

SU(N) x U(l). Now D-branes are massive objects with a gravitational description, 

for small string coupling this is well described by classical supergravity. So, if the 

description of the branes on the one hand using gauge theory and on the other a 

theory of gravity are equivalent we are lead to conjecture a correspondence between 

the two. Motivated by the AdS/CFT correspondence black holes in asymptotically 

AdS space-times correspond to thermal states in the dual field theory. Gubser and 

Mitra's argument can then be summarised as follows; given a black brane solution we 

have a finite temperature dual field theory, for example the 2d conformal field theory 

Strominger and Vafa [49] used in the counting of microstates. If we identify the 

thermodynamical properties of the black hole solution with the dual field theory then 

a thermodynamic instability is in fact a thermodynamic instability in the field theory, 
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an example of this would be the onset of a phase transition. As one nucleates a new 

phase in the field theory we find modes that grow exponentially in time, such a mode 

would then correspond to an exponentially growing mode in the gravity theory which 

signals a dynamical instability. Motivated by this Gubser-Mitra conjectured [62], 

"A black brane with a non-compact translational symmetry is classically 

stable if, and only if, it is locally thermodynamically stable." 

The ingredients of this conjecture can be split up as follows; 

• Non-compact translational symmetry: This rules out the hyperspherical black 

hole solutions which are known to be classically stable and yet thermodynam­

ically unstable [13). For example the four-dimensional Schwarzschild solution 

of mass M has negative specific heat C 

c 8TH 

BM 
< 0. 

1 

8rrM 
(4.12) 

( 4.13) 

Also thermodynamic properties such as entropy contain information about 

long-wavelength physics which also suggests restricting to horizons that are 

infinite in size. 

• Thermodynamically unstable: This is taken to mean that the Hessian of the 

entropy with respect to the other extensive thermodynamic quantities is neg­

ative definite2 . 

• Classical instability: The existence of a tachyon mode in the linear fluctuation 

equations such as the one discovered by Gregory and Laftamme as reviewed in 

the previous section. 

Gubser and Mitra provided evidence in favour of their conjecture by examining the 

stability of the Reissner-Nordstrom AdS4 black hole solution, subject to numerical 

error their analysis supported their claim. Subsequently Reall [63) provided a partial 

proof in a different situation which is the subject of the next section. 

2If there are no charged fields then this reduces to the requirement of negative specific heat, see 

previous bullet point. This fact is used on page 80 
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4.3.1 Reall's argument 

Reall in [63] presented semi-classical evidence in favour of the conjecture in the case 

of translationally invariant black brane solutions. The basic points of his argument 

are given schematically in figure 4.1, each of which we shall briefly review. 

® 1: Gregory and Laflamme found that there exists a critical value p,* of p, such 

that for every p, < p,* the perturbation equation has a solution regular at both 

the horizon and at spatial infinity. The values for the black string in various 

dimensions are tabulated in 4.2.3. The solutions with p, = p,* are independent 

of time and will be called Lorentzian threshold unstable modes, the step from 

the existence of an instability to the existence of such a threshold unstable 

mode is therefore mere definition. More generally we expect a time indepen­

dent mode for the following reason; an unstable mode grows exponentially in 

time so the square of its energy must be negative, however a stable mode is 

oscillatory in nature and so the square of its energy is positive. Therefore the 

onset of instability occurs at zero energy so such a mode would be independent 

of time. 

• 2: The idea here is to form a relationship between Euclidean negative modes 

and modes for the Lichnerowicz operator with Lorentzian signature. First 

write the Euclidean eigenvalue equation as 

( 4.14) 

where f::j.LE is the Lichnerowicz operator for a metric with Euclidean signature 

and A < 0 for a negative mode. Now for fluctuations in Lorentzian signature 

that are time independent we can Wick rotate to map between f::j.L and f::j.LE· 

The Lorentzian Lichnerowicz equation is 

(4.15) 

which at first sight doesn't look like equation ( 4.14), indeed this is how it 

should be since it is well known that the Schwarzschild solution has a Euclidean 

negative mode [66] aud yet the Lorentzian solution is stable [13]. However if we 



4.3. Gubser-Mitra conjecture 64 

Classical Instability 

c 

b 

a 
3 

I Thermodynamic instability 

Figure 4.1: Schematic of Reall's argument. 
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now have a transverse extra dimension then we can decompose a fluctuation 

with momentum in the transverse space as 

( 4.16) 

then if the extra dimension is translationally invariant3 the Lichnerowicz equa­

tion can be written 

( 4.17) 

which is then, for a threshold unstable mode, mathematically equivalent to 

equation (4.14) with A= -k2
. 

For example the negative mode for the Euclidean Schwarzschild solution in 

four dimensions with mass M = 1 is A = -0.19 [64], consequently we find 

that k = 0.44, which we are thinking of as corresponding to the threshold 

unstable value f.l*· This is in excellent agreement with the value in table 4.2.3. 

So we have motivated that a Lorentzian threshold unstable mode can be con­

verted into a Euclidean negative mode by dropping the exp( .. ) factors and 

Wick rotating, although we still have to check that such a procedure preserves 

appropriate boundary conditions. The asymptotic behaviour is not affected 

by Wick rotation and so the Euclidean solution inherits this property from 

the Lorentzian one, regularity is also preserved on the horizon as explained in 

appendix A.3. 

• 3: This part of the argument requires a Euclidean negative mode to indi­

cate the existence of a thermodynamic instability, this can be motivated by 

considering the Euclidean path integral approach for the canonical ensemble, 

specifically we consider 

Z = J d[g] exp ( -I[g]), (4.18) 

where I is the Euclidean Einstein-Hilbert action and the integral is taken over 

all Riemannian manifolds that are asymptotically flat. As usual, to make 

sense of this path-integral, we work with the semi-classical approximation, 

3This is crucial here, the result doesn't hold without it. See chapter 5. 
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specifically we expand the action I around a classical solution and work to 

next to leading order. So writing 

(4.19) 

we get 

I[g] = Io[.9] + h[g, Jg]. (4.20) 

The part of h involving the traceless part of the metric perturbation, in trans­

verse gauge, is proportional to 

(4.21) 

where HJ.Lv is transverse traceless and l:lLE is the Euclidean Lichnerowicz oper­

ator. We evaluate the path integral over this part of the action by expanding 

HJ.Lv in terms of eigenfunctions of the l:lLE operator, the contribution to the 

partition function then includes a factor of v det l:lLE so if l:lLE has a negative 

eigenvalue there exists some pathology indicative of a thermodynamic insta­

bility of the canonical ensemble, there is however no known complete proof of 

the equivalence. 

• a: To show the existence of a thermodynamic instability gives rise to a Eu­

clidean negative mode we use the following line of reasoning. First construct 

a 1-parameter family of geometries for which the Euclidean action takes the 

following form 

I= {3E(x)- S(x), (4.22) 

where xis some parameter labelling the path. In [63] it is shown that this can 

be done for a large collection of solutions. We further require that for some 

value of x, say x = T the geometry becomes the black solution of interest. At 

this point E and S are the energy and entropy of the solution respectively. 

Since the black hole extremises the action we must have that 

(ai) = o 
8x x=T . 

(4.23) 

If we further define 
dE 
dS = T(x), (4.24) 
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then equation (4.23) implies that T(x) is 1/{3 when x = T. Using this we find 

that 

(fj2J) 
EJx2 x=T 

[ dT d (dE ({3 1 ) ) l 
dx dT dx T x=T 

( 4.25) 

[( 
dx)-

2 

dEl 
TdT dT 

x=T 

(4.26) 

It now follows that if the solution is thermodynamically unstable, or in other 

words, if the specific heat dE/ dT is negative the solution can't be a local 

minimum of the action. The action therefore can decrease as we move away 

from the solution along the path of geometries and therefore at least one 

eigenfunction must have a negative eigenvalue. This eigenvalue is exactly the 

Euclidean negative mode we are looking for. 

• b: The recipe in this part is to simply take a Euclidean negative mode, Wick 

rotate and then multiply by exp(iJLixi) as is motivated in step 2 on page 63. It 

would appear that this would then give a Lorentzian threshold unstable mode 

as required. That this is indeed the case is not completely trivial and requires 

a detailed analysis of the perturbation equations to show that solutions to 

all the equations are indeed recovered in this way, for example the equations 

for the Euclidean negative mode don't "know" about the extra dimensions 

although these can be shown to be recovered correctly. The details of this last 

point are presented in [63]. 

e c: The existence of a threshold unstable mode is expected to separate stable 

short wavelength fluctuations of the black brane from unstable long wavelength 

ones indicating that a classical Gregory-Lafiamme instability exists. 

4.4 Charged p-branes 

In this section we give a review of charged p-brane solutions in the context of this 

chapter. They provide a further non-trivial example of the relationship between 

thermodynamic and dynamic instability in favour of the Gubser-Mitra conjecture 

and are also necessary to discuss the more complicated smeared charged p-branes 
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which we will use in the next chapter. It was mentioned in chapter 1 that there 

is evidence that the strong coupling limit of the various consistent string theories 

are described by an eleven-dimensional theory known as M -theory, of which the low 

energy dynamics are described by eleven-dimensional supergravity. The p-branes 

are solutions to a compactified version of this latter theory. 

4.4.1 Explicit solutions 

The compactified eleven-dimensional supergravity theory admits a consistent trun­

cation to the following set of fields: the metric tensor 9MN, a scalar field cp and a 

field strength Fn of rank n. The action for these fields takes the following form 

( 4.27) 

where a is a constant characteristic of the theory. Solutions for the theory described 

by this action are given by [74] 

where; 

dsi, ~ ( 1 + :J sinh2 a)- .,t',, (U dt' - O,;dz' dzi) + 

k 
U=1---= d' T 

( 4.28) 

( 4.29) 

• The field strength can carry either electric or magnetic charge, if En is the 

volume form on a the unit n-sphere then the field strength is given by 

(4.30) 

respectively. In the former case we must have 1J = 1 and in the latter 1J = -1. 

0 i = 1, · · · , p so that the { zi} coordinates describe the p-dimensional spatial 

worldvolume, d = n - 1, d = p + 1 and of course D = 2 + n + p. 

$ The parameter .6. is defined by .6. = a2 + ~~. In general supersymmetric 

p-brane solutions can arise only when .6. = j;; where N is the number of field 

strengths participating in the solution, here of course N = 1. 
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o The constants a and k are related to the charge and mass of the solution 

respectively, the precise relationship is given in the next section. 

4.4.2 Thermodynamics/Stability 

The mass M, charge Q, temperature T and entropy S of this solution are given 

by [71] 

and 
dk 

Q = .j/5. sinh 2a 

1 4 
S = 4r~nn (cosh a)"E 

(4.31) 

( 4.32) 

where r = r + is the location of the horizon and nn is the volume of a unit n-sphere. 

The condition that the entropy is a local maximum in its thermodynamic phase 

space is equivalent to the condition that 

( 4.33) 

where <I> H denotes the charge potential energy at the horizon. Explicitly we find 

that 

d+l( h )~ 2d + (.6. + d(b.- 2)) cosh2a -4nr cos a L). -~,;...----,-___:.-=-__:__:___ __ _ 

H 2d + (.6.- 2d) cosh 2a ' 
(4.34) 

( a<I>H) 
aQ r 

r 1/ .6. cosh 2a 
2d + (.6.- 2d) cosh 2a · 

( 4.35) 

Now since the term .6. + d( .6.- 2) is positive definite the condition for thermodynamic 

stability is impossible to achieve, however4 as there is no charged field to carry 

the charge we will take the condition of thermodynamic stability to be simply the 

positivity of CQ. In which case we find that the specific heat is always negative if 

D-3-p 
lal > =a 

- J(D- 2)/2 er· 
( 4.36) 

as this guarantees that .6.- 2d ~ 0. If we further define acr to satisfy the equation 

. l 2 2(D- 3- p)(p + 1) + (D- 2)a2 

Sln 1 acr = , 
2(2(D- 3- p) 2 - (D- 2)a2) 

( 4.37) 

4I<ollowing [63, 65, 71]. 
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then for ial < acr the specific heat is negative if 0 :::; o: < O:cr and positive otherwise. 

At the critical value O:cr the specific heat diverges. 

For example; 

e The Dp-branes of type II string theory have (for D=10) a = 1/2(p- 3) and 

so for p ;:::: 5 the solutions are always thermodynamically unstable. For p < 5 

the specific heat changes sign for some critical value of the charge. 

e The black p-branes considered by Gregory and Lafiamme have a= 1/2(1- n) 

which forD= 10 implies that a= acr implying that the specific heat is always 

negative. 

The second point above is in complete agreement with the Gubser-Mitra conjec­

ture since Gregory and Lafiamme found those solutions to be classically unstable. 

In [71) a perturbation analysis was performed for the black p-branes solutions given 

in this section with added generality of allowing for a variety of values of a. The 

authors looked for solutions of the type discussed in section 4.2.1, namely those 

which are spatially regular but which grow exponentially in time, their findings are 

in remarkable agreement with the Gubser-Mitra conjecture. Specifically they found 

that the threshold mass for a regular perturbation (see section 4.2.3) goes to zero 

when o: = O:cr, i.e. when the specific heat changes sign. In other words the Gregory 

Lafiamme type instability that was present when the solution was thermodynami­

cally unstable doesn't persist into the region of thermodynamic stability. 

The data in table 4.2, taken from [71], gives an example of the closeness of the 

relationship in a special case. 

p 1 2 3 4 5 6 

Numerical 0.418 0.549 0.695 0.881 1.178 >4 

Gubser-Mitra 0.4186 0.5493 0.6954 0.8814 1.1791 oo 

Table 4.2: The first row of data in the table shows the numerical value of o: for 

which the threshold mass goes to zero for various p-branes in 10-dimensions with 

a= 1/2, the second row shows the value of O:cr. 



Chapter 5 

On The Gubser=Mitra conjecture 

5.1 Introduction 

As mentioned in the introduction of this thesis the existence of an instability raises 

two interesting questions, one being can we identify a criterion to establish easily 

if any given black brane solution is unstable and the other being what is the end 

state of such an instability if it indeed exists in the first place. The Gubser-Mitra 

conjecture discussed in the previous chapter addresses the first question and so far 

all the evidence is in support of it. In this chapter we will show how work on 

non-uniform solutions of the supergravity action 

(5.1) 

leads us to a contradiction of this conjecture [67]. 

Let's first go back to the original paper of Gregory and Lafiamme [60] discussed 

in chapter 4, they suggested that a black string solution wrapping a cylinder would 

break up and form a black hole, as was also mentioned in chapter 1 this outcome 

is at least entropically favourable. However Horowitz and Meada [78] subsequently 

have shown that this is not possible, any § 1 around the horizon can't shrink to zero 

size in finite affine parameter, so the classical evolution of an instability can't change 

the horizon topology, in other words a black string can't pinch off. This suggests 

that there are new solutions which are not uniform in the compact direction, a 

conclusion which was supported by numerical evidence provided by Wiseman [80]. 

71 
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Harmark and Obers derived a simple ansatz for such non-uniform solutions and 

although they did not find any explicit solutions (as we have already mentioned 

in section 4.1 the geometry is expected to be very complicated) the ansatz is very 

useful. We will use their ansatz to argue that the Gubser-Mitra conjecture fails 

for charged smeared branes, i.e. charged branes which have an extended direction 

not coupled to the charge. It would be natural to ask at this point where Reall's 

argument presented in chapter 4 breaks down. The most obvious problem is with 

the simple relationship between the Lichnerowicz operator on the space-time, 6.L, 

and the Euclidean operator, 6.LE, explained in section 4.3.1. If there are non-trivial 

components of the metric associated with directions transverse to the brane then 

the simple eigenvalue equation ( c.f. equation ( 4.17)) 

(5.2) 

picks up extra position dependence on the RHS and so such solutions can't be 

identified with negative Euclidean eigenmodes in any simple way. 

The rest of this chapter is organised as follows; first we give a discussion on the 

phase diagrams we will need in section 5.5, then a review of Harmark and Obers' 

ansatz for non-uniform p-brane solutions and then finally how to use everything to 

argue the existence of a counter-example to the Gubser-Mitra conjecture. 

5.2 Phase structure 

Before we give a discussion of Harmark and Obers' ansatz and how we can use it to 

study the Gubser-Mitra conjecture we first need to explain how the known neutral 

and static black string solutions can be gathered together into a single phase diagram 

introduced in [87], this phase diagram will be used in the arguments in section 5.5. 

To be specific we will consider static and neutral black holes on the cylin­

der IRd-I x § 1 . For static and neutral mass distributions in flat space JRd the asymp­

totic leading order correction to the metric is given by the mass, on a cylinder 

however we need an additional quantity called the binding energy; intuitively if we 

have a band wrapped around a circle with some tension then the tension will re­

ceive self gravity contributions if it is massive enough, these contribute to the total 
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tension of the system. The flat metric on the cylinder will be taken to be 

(5.3) 

where z is a periodic coordinate with period 2n Rr. We will consider metrics which 

asymptotically take this form and, in addition, with leading order asymptotic be­

haviour independent of z- this last requirement amounts to the physical assumption 

that far from any mass distributions the physical dependence on the periodic coor­

dinate should vanish. It is shown in [87] that with these assumptions asymptotically 

two of the metric components necessarily have leading order behaviour 

Ct 
9oo = 1 - rd-3 ' 

Cz 
9zz = -1 - rd-3) (5.4) 

and that Cz and Ct contain gauge invariant information about the metric. In partic­

ular the mass M and relative binding energy n are given in terms of them by 

Ct- (d- 2)cz 
n= . 

(d-2)ct-Cz 
(5.5) 

Note that in this last equation we have explicitly written r;, = 8nG N in the notation 

of equation (2.23) of chapter 2. These two independent quantities can be used 

as variables in a two-dimensional phase diagram for neutral and static black hole 

solutions and we can partially construct this phase diagram using solutions that are 

already known either explicitly or as a result of numerical investigations. 

First we will consider the black hole solutions, we know that such a branch in 

the phase space would start at (M, n) = (0, 0) and although the exact behaviour 

of these solutions is unknown away from the origin we know that the branch would 

have to terminate at some large value of the mass M as the horizon would meet 

itself around the cylinder. A second branch is given by the uniform neutral black 

string solutions, which exist for arbitrary mass. These are the solutions obtained 

by taking the direct product of a Schwarzschild black hole solution with a circle. In 

d + 1 dimensions the metric can be written as, 

(5.6) 

where f = 1- (r0jr)d-3. So from the definition of the binding energy we infer that 

1 
n=·---. 

d-2 
(5.7) 
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In the phase diagram for fixed dimensionality this family of solutions appears simply 

as a horizontal line. Finally there is a family of solutions discovered numerically by 

Wiseman [80]. Gubser [79], assuming directions transverse to the brane remain 

rotationally symmetric, introduced a non-uniformity parameter A defined by 

A= ~ (Rmax _ 1) ' 
2 Rmin 

(5.8) 

where Rmax and Rmin are the maximum and minimum values of the Schwarzschild 

radius of the solution. For example for the uniform solution in equation (5.6) we 

have A = 0. Wiseman [80], by using relaxation techniques with a translationally 

invariant black string solution of critical mass as an initial guess, numerically found 

non-uniform solutions for values of A up to nine. His numerical data was translated 

into the M and n variables of our phase diagram in [87] and these data are also 

plotted. 

n 

1 
3 Uniform string branch 

Non-uniform string branch 

-----Black hole branch 

-
o~--------------------~--------------------

0 ~ M 

Figure 5.1: Phase diagram for neutral solutions for a five-dimensional system on a 

circle. 

5.3 The ansatz 

In [83] Harmark and Obers presented an ansatz for electrically charged dilatonic 

Llack p-brane solutions on a cylinder ]Rd-l x S1 . The ansatz was motivated by 
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introducing a new coordinate system which interpolates between the usual black 

brane with transverse space JR.d (c. f. section 4.4.1) 

Am ... p = cotho:(1- H-1
), (5.9) 

where 
d-2 

f = 1- ;~-2' 
pg-2 sinh2 o: 

H=1+ d2 ' p-
(5.10) 

which is a good description of a black hole on a cylinder of small mass, as in such a 

situation the black hole has a small radius and in some sense doesn't know that the 

transverse space is compact, and the same black brane smeared over the transverse 

circle 

Am ... p = cotho:(1- H-1
), (5.11) 

where 
rd-3 sinh2 a 

H = 1 + o rd-3 ' (5.12) 

which is a good description at large mass since in this case the horizon radius is 

large enough to fully explore the compact direction. 

The ansatz in the new coordinates, given in [83], is 

ds'b ~H-i~; (fdt2
- t(dx') 2

- Hf4 (r'AdR2 + K~_2 dv2 + KR2dl1L2)) 

(5.13) 

eacfJ = H 2
, Aol..p = cotho: (1- H-1

), 

.Rg-3 Rg-3 sinh2 o: 
f = 1 - Rd-3 ' H = 1 + Rd-3 ' 

(5.14) 

(5.15) 

where v is periodic with period 2n and A and K are two unknown functions of R 

and v only. The total space-time dimension D = d + p + 1 and the ansatz is for a 

solution with an event horizon located at R = Ro. 
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5.4 Analysis 

Given the ansatz in the previous section an important question is; are the resulting 

equations of motion consistent? The next subsection deals with this issue. Sec­

tion 5.4.2 then points out an important property of the the equations of motion for 

the unknown fields which will be exploited in section 5.5. 

5.4.1 Consistency 

The ansatz given in the previous section is an ansatz for solutions to the equations 

of motion derived from the action (5.1), namely 

R - la -ha -1, - l acf>p p>. - (-1-) acf>p2 
1.w 2 J.L'+' v'f' 2e AJ.L v- 9J.Lv 4(2-n) e ' (5.16) 

(5.17) 

One of the equations of motion can be solved algebraically for A in terms of K; this 

leaves a system of three second-order equations which need to be satisfied by the 

function K(R, v). Generically, such a system is heavily over-determined; however, 

it was shown in [83] that the system is consistent to second order in perturbation 

theory. This surprising result was elucidated in [84, 85], where it was shown that in 

the neutral case, the seemingly restricted ansatz taken above is in fact equivalent 

to the most general ansatz consistent with the symmetries. For the neutral black 

string, the Harmark and Obers ansatz reduces to 

(5.18) 

where 

(5.19) 

Using staticity and spherical symmetry, the most general metric for a black string 

can be brought to the form 

(5.20) 

where z is a periodic coordinate of period 2n Rr and r 2 0 with r = 0 being the 

location of the horizon. This is referred to as the conformal form, as the ( r, z) space 
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is written in conformally fiat coordinates. Here B, C and D are functions of r and 

z only. Since the metric in (5.20) involves three arbitrary functions, while that in 

(5.18) only involves two, it seems like the former must be more restrictive. Of course 

from a purely geometrical point of view the former is more restrictive, however with 

the additional constraint of having the equations of motion satisfied they are in fact 

equivalent [84, 85]. We can see this as follows, first perform the following coordinate 

transformations and redefinitions in equations (5.18) 

Rd-3 Rd-3 -d-3 
o +r ' (5.21) 

A (f) 2(d-4) f- 1 ARJ, -
R 

(5.22) 

j(d-2 K;-2 (~) 2(d-4) 
(5.23) 

We find that the metric takes the following form 

ds2 = dt2 - A dr2 + -~-- - P 2 Kfd-2 (Rd- 3 + rd-3) d- 2 drl? . 
pd-3 

A ( dv2 ) A 5-d 3 

d+l Rg-3 + pd-3 Kd-2 "''T o d-2 

(5.24) 

Next write A = e2a and RJ,k = e2
k then transform to the conformal form by making 

the following transformation 

f = g(r, z), v = h(r,z) (5.25) 

(5.26) 

where the last two equations are a sufficient condition for drdz cross-terms to vanish. 

We can bring the ansatz for the metric in the neutral case (5.18) into the conformal 

form (5.20) if 
pd-3e2B 

d-3 .L 'il 
g = 1 2B' -e 

(5.27) 

and 

p2 2(d-5) 2 
e2k = _ .. 'T_e2D e (d 2)(d 3) B (1 - e2B) d-3 

R2 . 
0 

(5.28) 

The system of equations in (5.26) imply an integrability condition which together 

with (5.28) implies 

(5.29) 
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but this is exactly the Ru = 0 equation of motion for the conformal metric (5.20). 

This means that the ansatz in the neutral case is consistent. To show that the 

ansatz is in fact the most general possibility with the assumptions we have imposed, 

we also have to check that the location of the horizon and the periodicity of the 

compact direction are reproduced correctly. In the conformal form these are r = 0 

and z -----+ z + 27r Rr respectively. The location of the horizon is straightforward to 

obtain, when r = 0 we have that eB vanishes and so by equation (5.27) g(O, v) 

must vanish also, but this in turn means that r = 0 and hence from equation (5.21) 

R = Ro, so r = 0 corresponds exactly to R = Ro as required. The periodicity on 

the other hand is slightly harder, v is taken to have periodicity 2rr and so we want 

that z -----+ z + 2rr Rr as v -----+ v + 2rr. Looking at equation ( 5. 25) this is clearly the 

case if 

h(r, z + 2rrRr)- h(r, z) = 21r, (5.30) 

now the RHS of equation (5.27) is periodic in z and therefore so is g(r, z), this in 

turn means that Ozg(r, z) is also periodic in z and so from equation (5.26) Org(r, z) 

is as well. The point here then is that this proves that the LHS of equation (5.30) 

is independent of r as required. We still have to show that the correct value of 2rr 

is obtained on the RHS, to this end we note that the LHS of equation (5.30) can be 

written, using equation (5.26), as 

r2rrRr r2rrRr 
Jo dzozh = Jo dze(d- 2)kEJrg, (5.31) 

however since this equation is independent of r we can consider it in the limit as 

r -----+ oo, this is a useful thing to do for two reasons, first because in such a case 

k -----+ 0 and secondly because asymptotically the metric takes the following form 

Ct 
9oo = 1- d3' r-

(5.32) 

and so 1 - e2B = ctr-(d-3) to leading order. If we use this in equation (5.27) we 

obtain that equation (5.30) is true provided that Ct = (RrRo)d- 3 which is indeed 

the case in the R coordinate system since r / R -----+ Rr asymptotically. 

This proves that the ansatz ( 5.18) is in fact the most general possibility. The 

extent to which this argument may be generalised to the charged case is given 

in appendix A.4. 
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5.4.2 Charge dependence 

An important point regarding the resulting system of equations following from equa­

tions (5.16) and (5.17) for A and K for the general ansatz is that they are inde­

pendent of the charge (i.e. of a), and hence also of the value of p (since the extra 

dimensions xi decouple in the neutral case). Furthermore, the boundary condition 

necessary to ensure regularity at the horizon is simply that A(Ro, v) and K(Ro, v) are 

constants, so the boundary conditions also do not involve the charge, this boundary 

condition corresponds physically to requiring that the surface gravity, and hence the 

temperature (see chapter 4), is constant along the horizon. Importantly this allows 

us to map the problem of finding a charged solution of the form (5.13) to finding a 

solution in the uncharged case. 

5.5 Counter~example 

We can now provide a counter-example to the Gubser-Mitra conjecture by using the 

ansatz (5.15). The uniform smeared black p-brane is given by setting A= K = 1, 

its thermodynamics are equivalent to those of the T-dual p + 1-brane solution [88] 

and so can be computed from the results in our discussion of p-brane solutions in 

section 4.4 of chapter 4. In particular, the mass and charge are1 

(5.33) 

Od-221r Rr d 3 
Q = G ( Rr Ro) - ( d - 3) sinh a cosh a, 

167r 
(5.34) 

while the entropy and temperature are 

S _ nd-22n Rr Vp (R R )d-2 h -
4

G r o cos a, 
d-3 

T= ------~-----
4n(RrRo) cosh a 

(5.35) 

The statement of the Gubser-Mitra conjecture uses the Hessian matrix of derivatives 

of the entropy as the test for thermodynamic stability. However, following [63, 71, 72], 

we will assume that there is no charged field in the theory, so the charge is not 

1 We take the v and xi coordinates to be periodically identified to allow us to write finite 

expressions. 
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allowed to vary as a function of position. This assumption in particular allows us to 

focus just on the specific heat when considering the thermodynamics (if the charge 

is not able to redistribute itself there is no way it can be responsible for altering the 

entropy): we take the condition for thermodynamic stability then to simply be the 

positivity of the specific heat 

CQ = ( ~~) Q > 0. (5.36) 

We can then calculate from the formulae (5.34) and (5.33) that the specific heat is 

negative at Q = 0 for all values of d, in fact in this case we find that 

Go~ ~(d ~ 2)(d ~ 3) l1d-;~:~rV, ( d 4~ 3) d-3 T2-d, (5.37) 

but it becomes positive above some critical charge if d > 5 as near extremality we 

find that 
2 d-3 

';::; Q ( nd-221r RT vp)- d-
5 

( 167r
2 

) d-
5 

( d _ 2) (T2Q) ~=~. 
M + 167rG (d- 3)3 

(5.38) 

We now reiterate the key feature of non-uniform solutions in this ansatz. In [83], it 

was shown that when we impose the equations of motion2 

RJ-Lv - ~f}J-Lc/Jovc/J - ~ea</> F>.J-Lp>.v = 9J-Lv ( 4(2~n)) ea<P F 2
, 

\l2c/J = ~ea<P p2, \l 1-L ( ea<P p1-Lv) = 0, 

(5.39) 

(5.40) 

the solution is independent of the charge. The important point for our present pur­

pose then is that this implies that any solution of the equations of motion describing 

a neutral black string, uniform or non-uniform, can be written in the form (5.18). 

This provides a convenient framework for discussing solutions. To include these 

solutions on the phase diagram we have already discussed we need the mass M and 

the relative binding energy n. For general charge, the mass is 

M= w(RTRo)d-3 [(d- 2) + (d- 3) sinh2 a] (5.41) 

and the binding energy parameter is 

1- (d- 2)(d- 3)x 
n= ---------n~--~--~--------

( d - 3) sinh 2 a + ( d - 2) - ( d - 3) X ' 
(5.42) 

2 Derived from the action in (5.1). 
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where 

(5.43) 

and x parametrises the asymptotic falloff of the unknown function K [83], and is 

hence independent of the charge. 

The known phase structure for five-dimensional neutral static solutions on a 

circle of radius Rr is sketched in figure 5.1. Now since the equations of motion are 

independent of the charge, each solution in figure 5.1 gives a solution for every value 

of the charge. Inspection of (5.41,5.42) shows that adding charge increases the mass, 

as expected, and decreases n, enhancing the binding effect. Thus, if we plot M vs 

n in the charged case, we get a qualitatively similar picture, as shown in figure 5.2. 

We can see that on a circle of some fixed radius Rr, there is always some critical 

n 

1 
3 

~ ·· ····- ... 

OL-------------------------~-------------------------
0 ~ M 

Figure 5.2: The bold lines now refer to charged solutions. The diagram is qualita­

tively the same as in the neutral situation, shown as dotted lines for reference. 

value of the mass at which a non-uniform branch joins on to the uniform smeared 

black hole branch. We can re-state this in terms relevant for the Gubser-Mitra 

conjecture: for any given value of the mass and charge, there is a finite wavelength 

at which a threshold unstable mode occurs. We know that for zero charge, the 

uniform black string is unstable to modes of longer wavelength. Although we have 

not demonstrated the existence of the corresponding dynamical instability explicitly 

in the charged case, the persistence of the threshold unstable mode is strong evidence 

that it exists. 
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This result should be contrasted with the analysis of p-brane solutions in [71-73] 

discussed in chapter 5. In those studies, it was found that for the ten-dimensional 

supergravity p-brane solutions with p ::; 4, there is a threshold unstable mode for 

the neutral case, but this mode goes off to infinite wavelength at a critical value of 

the charge, signalling the disappearance of the instability. This was found to occur 

at the same critical value of the charge where the specific heat changes sign. 

In our case, by contrast, the threshold unstable mode exists all the way up to 

extremality, even though the specific heat changes sign before we reach extremality 

for cases with d > 5. Thus, there are smeared branes which are locally thermo­

dynamically stable, but possess a dynamical instability by the arguments of this 

section. This is a clear violation of the Gubser-Mitra conjecture. It is interesting 

to note that even though we have pointed out a possible failure of Reall's argument 

for this situation it is clear from the result in this section that the 

Classical instability -+ Thermodynamic instability (5.44) 

part of the argument must fail. Note also that the wavelength of the threshold 

unstable mode, which signals the onset of instability, is determined by Ro, since 

the equations for K are independent of charge. Hence if we go near extremality 

by taking Ro -+ 0 and o: -+ oo keeping M fixed, the wavelength of the unstable 

mode will go to zero, suggesting that the instability will appear sufficiently close to 

extremality for any compactified black string as well. 



Chapter 6 

Conclusions 

This thesis has discussed two modern aspects of theoretical physics, braneworlds and 

black holes. From a modern point of view the physics of each are closely related, 

here we briefly review each in turn. 

6.1 Braneworlds 

Physical theories in higher-dimensional space-times can have rich structures, Kaluza­

Klein theory arose as a result of trying to use them to unify electromagnetism with 

general relativity. Kaluza-Klein theory now provides a useful tool in modern physics 

as it allows us to sweep away, in a systematic fashion, higher dimensions of space-time 

which seem necessary when considering unified theories such as superstring theory 

and M-theory which require ten and eleven dimensions respectively. Kaluza-Klein 

theory hides the extra dimensions by supposing that they are compact. Braneworlds 

on the other hand deal with higher dimensions in a fundamentally different way, the 

Randall-Sundrum models discussed in chapter 2 provide us with an "alternative to 

compactification" - in other words they do not rely on the Kaluza-Klein doctrine. 

This offers us both a novel alternative and a richer theoretical base of study, moreover 

they are motivated by the higher-dimensional theories themselves. 

The Randall-Sundrum models are primarily models in five-dimensional space­

times, they consist of branes which have codimension 1. Of course if we have consis­

tent theories in even higher-dimensional spaces then we could use a combination of 

83 



6.1. Braneworlds 84 

techniques adapted from both Kaluza-Klein and Randall-Sundrum models to obtain 

more realistic scenarios. However there is another possibility; consider braneworlds 

with higher codimension. Higher codimension models - specifically codimension 2 

- had already been studied in the literature, it was found that in Einstein grav­

ity such models were over-restrictive on the matter and energy that such a brane 

could support and is a clear example of how bulk geometry restricts worldvolume 

fields. As explained in chapter 3 such a "no-go" result can be circumvented if we 

generalise Einstein's equations to the Einstein-Gauss-Bonnet equations which are 

motivated by both string theory and pure generality required by the geometry of 

higher-dimensional space-times. Specifically we showed that the theory on a codi­

mension 2 braneworld could be at least as diverse as the usual Einstein theory. The 

main result of chapter 3 is summarised in the following equation of motion for the 

braneworld metric fJJ.Lv 

(6.1) 

where the braneworld energy-momentum TJ.Lv and the Weyllike tensor WJ.Lv are de­

fined in chapter 3. Examples and consequences of this equation are also discussed 

in chapter 3, we find that in the simplest cases the usual Einstein theory is repro­

duced yet, with the addition of the Weyl like terms wj.LV) there could be interesting 

modifications - at the least we have some of the success of the Randall-Sundrum 

models. It is however not clear that in our model an observer would measure the 

usual Newtonian gravitational law to first order as is possible to motivate in the 

Randall-Sundrum models. We were able to show that the braneworld components 

of the perturbation equations can be written as 

(6.2) 

where 8 RJ.Lv is the usual Lichnerowicz operator calculated using the four-dimensional 

braneworld metric. This result is promising, it avoids the problem in six dimensions 

where we find that Einstein's equations yield 

(6.3) 
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the factor of 1/4 being evidence of two extra dimensions. 

Since the main result in chapter 3 there has been a lot of interest in these mod­

els to attack the cosmological constant problem using the automatic relationship 

between the brane tension and the deficit angle [40, 42], to construct models by in­

tersecting branes [41] and also to study the effect of Gauss-Bonnet terms in the more 

familiar codimension one scenarios [55]. There has also been further investigation 

into the origin of the no-go result of Cline et. al. [56] using thick branes instead of 

resorting to Gauss-Bonnet terms as we used in [53]. In fact in [42] they find that to 

lowest order in the density of matter on the brane the usual four-dimensional FRW 

cosmology is reproduced, there would however be higher order corrections which 

have not yet been calculated. There is clearly still much interesting work to do here. 

6.2 Black Holes 

Once it is appreciated that certain black hole solutions in higher dimensions are 

unstable there are a number of interesting directions to pursue as mentioned in the 

introduction in chapter 1. Knowing when a solution is stable is obviously an im­

portant physical question to which the second half of this thesis is devoted. The 

identification of the laws of black hole mechanics with the usual laws of thermody­

namics motivated a partial solution. The Gubser-Mitra conjecture, motivated and 

discussed in chapter 4, reads 

"A black hole with a non-compact translational symmetry is classically 

stable if and only if it is thermodynamically stable." 

As also discussed in chapter 4, a partial proof of this conjecture for certain transla­

tionally symmetric black p-brane solutions can be given along with further evidence 

in the results of non-trivial numerical investigations for other more general solutions. 

However a related development of Horowitz and Maeda that black brane solutions 

would not be able to change their horizon topology through some classical evolution 

led Harmark and Obers to focus on solutions which would not have the translational 

invariance used by Reall in his argument, to this end Harmark and Obers presented 
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a consistent ansatz for non-uniform solutions possibly smeared over a compact direc­

tion which crucially was independent of a charge parameter. This ansatz is used in 

chapter 5, where we explain how it motivates the existence of solutions which possess 

instabilities of the Gregory-Lafiamme type but which are also thermodynamically 

stable and hence provide a counter-example to the Gubser-Mitra conjecture as it is 

stated above. 

A natural question to ask is of course where their heuristic argument for the 

instability fails or in other words to understand how the smeared charge affects the 

thermodynamics from the dual field theory point of view. Such an understanding 

would surely indicate how to modify the conjecture in light of these results and 

give a deeper understanding of the connection between the two distinct types of 

instability and, more subtly, how they are related. The end state of the instability 

is also unresolved, the non-uniform solutions found by Wiseman [80] can't be the 

end state of the Gregory-Lafiamme instability as they have too large a mass. Higher­

dimensional black holes have such a rich structure that it would be interesting to 

more fully understand this. 

It is also worth mentioning the possibility of studying black hole thermodynamics 

in Einstein-Gauss-Bonnet gravity, a recent discussion of this is given in [109]. In 

this paper the authors offer a Noether charge approach to computing the entropy of 

black hole solutions with Gauss-Bonnet corrections, in particular they point out that 

the resulting corrections are interestingly reminiscent of our results in chapter 3. To 

be specific the entropy S for a solution in n dimensions is found to be 

S "' j rr- 2xVh (1 + 2aR) , (6.4) 

where hJ.tv and Rare the metric and scalar curvature on the horizon respectively. It 

would be very interesting to understand the relation between the two results. 

The current state of physics provides much hope of understanding quantum 

gravity, non-trivial and unforeseen connections between various aspects of current 

theories lead us on. There is however still lots of be understood. 
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Appendix A 

Miscellaneous details 

A.l Gauss-Codazzi formalism 

The Gauss-Codazzi formalism provides a powerful tool for describing the geometry 

of the embedding of a submanifold S in a manifold M. 

Let us work in complete generality. Suppose that M is an-dimensional manifold 

with coordinates xa (a= 0, ... , n- 1) 1 and that S is ad-dimensional submanifold. 

We want to describe how S bends and contorts in M. 

To do this with a simple one-dimensional curve in a three-dimensional Euclidean 

space parametrised by arc lengths we use the well known Serret-Frenet formulae [2] 

dt 
(A.l.l) 

ds 
Kn, 

dn 
-Tb- Kt, (A.1.2) 

ds 
db 

(A.1.3) 
ds 

Tll, 

where n, t and b are the normal, tangent and binormal vectors respectively and K 

and T are the curvature and torsion. The curvature of the curve can be thought of 

as the rate we "pull away" from the normal at each point as we move along it, in 

the case of a plane curve this is easy to see. 

1This is a more convenient convention here, there is no confusion with results in the main text. 
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t JR2 

B 

g(s) 

Figure A.1: . 

In the diagram we have t = (cos B, sin B) so n = (- sin B, cos B) but 

(A.1.4) 

So K = ~: and is the rate of change the unit tangent vector makes with the axis, or 

equivalently, the normal vector. 

In the more general case each point of S admits a d-dimensional tangent space 

spanned by vectors which we shall denote by tp,, the jj in this notation is just a label 

taking d values and not a contravariant index. Similarly at each point on S we have 

an-d-dimensional normal space (S is said to have codimension n- d) which we 

will assume is spanned by n~, again p, is just an index labelling the vector and so 

takes n- d values. The normal vectors are only defined on S, it is possible to extend 

them off the submanifold in such a way that for all p, and v [2] 

and also so that they are orthonormal in M, that is 

where, 

f.J,± = { 1 
-1 

if time-like 

if space-like 

We can now define the first fundamental form of S in M 

n-d-1 

hab = 9ab - 2:::::: P,±nJJ.anp.b, 

p.=O 

(A.1.5) 

(A.1.6) 

(A.l.7) 

(A.l.8) 
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where 9ab is the metric on the full space-time. This defines the projection tensor of 

S. For example 

habhbc =hac 

habnbJ.L = 0. 

(A.1.9) 

(A.1.10) 

Next we can define the extrinsic curvature of S in M. This object, labelled by J.-l, 

measures how the submanifold curves away from n~ in M. 

Using A.1.8 we can rewrite this equation as 

which, after using A.1.5, simplifies to 

where we have defined the normal fundamental form by 

Note the following 

(A.l.ll) 

(A.1.12) 

(A.1.13) 

(A.l.l4) 

(A.l.15) 

• The normal forms (courtesy of the orthogonality condition) are anti-symmetric, 

!3ta = -!3~a· In particular if n = d + 1 we get the simple relation 

(A.1.16) 

e If we rearrange A.l.14 to 

(A.l.17) 
V 

then we see that f3J.Lva can be thought of as a connection on the normal bundle. 
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To proceed further we define 'V~d) to be the covariant derivative operator associated 

with hab· It follows that 

(A.l.18) 

This result allows us to derive equations relating the curvature of the submanifold 

to that of the whole space. For example 

(A.l.19) 

where Ea is a vector laying in S. However using equation (A.l.18) it is straight 

forward to show that 

Vi d) '\l~d) <o ~ h1 .h•0h', '\1 1 '\1 •'' - h'" ( ~ i'±K '""'n•) '\1 •'' + 

-h•, ( ~ i'±K"",n') '\1 •'e· (A.l.20) 

Now since K1.wb is symmetric when we use this equation in A.l.19 the second term 

on the RHS must vanish, moreover the last term can be written as 

(A.l.21) 

So putting it all together gives us 

R(dlbc d = hfahgbhkchdlRfgkl + 2:::= J-L± (KJ.lbcK~ a- KJ.lacK~ b). (A.l.22) 
J1 

A similar calculation also yields 

n(d)Ka _ n(d)Ka _ R dhc 
v a f.lb v b 11a - cdn/1 b' (A.l.23) 

These last two equations are known as the Gauss-Codazzi equations and are used 

in chapters 2 and 3. 

A.2 Dirac delta function in general coordinates 

Let M be an n-dimensional Euclidean manifold with metric 

(A.2.24) 
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The defining property of the m-dimensional delta function, J(m) ( r - r'), is that for 

an arbitrary test function f ( r) we have 

1 f(r)J(m)(r- r') = {oj(r') 
otherwise 

for r' E § 
(A.2.25) 

where § is an open subset of M. We can write this delta function as a product of 

one-dimensional functions in the following way; suppose that the set of points r' E § 

in m dimensions is multiply covered by the x 11 coordinates in (A.2.24) and that the 

submanifold spanned by these coordinates, denoted by S, has the metric 

(A.2.26) 

Then we can write 

J(m) (r- r') = ~IT o(xi - x~), (A.2.27) 
i#ll 

where 

(A.2.28) 

and g is the determinant of the metric on the space transverse to §. Let's use this 

to write a two-dimensional delta function with r' = 0 in plane polar coordinates as 

a product of one-dimensional delta functions. The metric in plane polar coordinates 

is 

(A.2.29) 

where () E (0, 21r] and the origin is multiply covered by this coordinate. It now 

follows from (A.2.28) that 

n = 27rr, (A.2.30) 

and hence that 

J(2)(r) = - 1
-o(r). (A.2.31) 

21rr 

The generalisation from r 2 to an arbitrary function L(r? in (A.2.29) is trivial. 

Let's now see how the assumption of Z2 symmetry generates the one-dimensional 

delta function for us. 

Let g(x) be an even function (this is the symmetry assumption) with 

g(O) = 0 

g'(O) =/= 0, 

(A.2.32) 

(A.2.33) 
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so that in a neighbourhood of the origin we can write 

g(x) ~ lxig'(O). (A.2.34) 

The delta function is defined by its action on test functions, consider that 

1: g"(x)f(x)dx = g'(x)f(x)l~£- 1: g'(x)f'(x)dx 

~ g'(O)(f(c) + f( -E))- g'(O) (1£ f'(x)dx- 1: f'(x)dx) 

and as lim£-+O the RHS becomes 2g'(O)f(O). On the other hand if we had integrated 

over a region which had not contained zero, such as [a- E, a+ c] then we would 

quickly have found that as E -----7 0 the integral vanishes. Motivated by this we define 

g"(x) = 2g'(O)b(x). (A.2.35) 

A.3 Regularity of the Euclidean negative mode 

In this section we complete the argument, following [63], that a candidate negative 

mode is, by dropping the exp ( ... ) factors, a physical negative mode by showing that 

it satisfies appropriate horizon boundary conditions. 

Consider the following, general, perturbed Lorentzian metric 

ds2 = U(r )(1 + </>(r, z) )dt2
- V(r r 1 (1 + 7/l(r, z) )dr2 

- R(r )2 (1 + k(r, z) )d02 
- dzidzi, 

(A.3.36) 

where </>, 7/J and k have z-dependence exp( if.LiZi). The metric is regular at the horizon 

r = r + if, and only if, the perturbation is bounded as r -----7 r + and 

<P(r +' z) = 7/J(r +' z). (A.3.37) 

Now Wick rotate (A.3.36) (i.e. t -----7 iT) and drop the exp( ... ) factors in the</>, 7/J and 

k fields. Next define a new radial coordinate near the horizon by 

(A.3.38) 

so that the t, r part of the metric can be written as 

(A.3.39) 
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Regularity of the background solution requires T rv T + (3, the perturbation only 

satisfies this if 

(A.3.40) 

which is satisfied if equation (A.3.37) is. We conclude the correct boundary condi­

tions are indeed satisfied. 

A.4 Generality of Harmark and Obers' ansatz in 

the charged case 

In chapter 5 we mentioned that the Harmark and Obers ansatz is consistent in the 

neutral case. Since the equations for the unknown functions A(R, v) and K(R, v) 

are independent of the charge, this also implies that the ansatz is consistent in the 

charged case. It would still be interesting, however, to ask if we can show that the 

most general solution of the equations of motion with the assumed symmetries can 

be written in the form (5.13,5.15) when we include charge. The following argument 

contains all the details for the neutral case. 

We can easily show that the metric can be written in the form (5.13) by an 

extension of the previous argument. Starting from the 3-function conformal form 

(5.20), we can make the redefinitions, 

eB ----+ 
- d-2 B 
H-n-2e ' 

ec - 1 B 
----+ Hn-2e 

' 
eD - 1 D 

----+ Hn-2e 
' 

for any function f!, so that (5.20) becomes 

(A.4.41) 

(A.4.42) 

(A.4.43) 

(A.4.44) 

If we now perform the same change of variables as was used in [85] in the neutral 
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case, 

R
d-3 -d-3 
o +r 

(f) 2(d-4) 
f- 1ARJ, -

R 
K;-2 ( ~) 2(d-4) 

(A.4.45) 

(A.4.46) 

(A.4.47) 

and then transform to the conformal form by making the further transformation, 

f = g(r, z), v = h(r,z) 

We can bring the metric (5.13) in the ansatz to the form (A.4.44) if 

and 

Rd-3e2B 
d-3 0 

g = -1------::-c2B=-' -e 

(A.4.48) 

(A.4.49) 

(A.4.50) 

(A.4.51) 

The system of equations in (A.4.49) imply an integrability condition which together 

with (A.4.51) imply that 

(A.4.52) 

the same integrability condition we had in the neutral case. 

If we assume that the arbitrary function fi introduced in the redefinitions (A.4.41) 

is identified with the dilaton as in (5.15), i.e., ea<f> = fl2 , we can show that this in­

tegrability condition is again implied by the equations of motion. The most general 

form for FJ.Lv consistent with the assumed symmetries has only Ftz and Ftr non-zero; 

hence we can write 

(A.4.53) 

and so eliminating the dilation field using (5.40) from the t, t component of the 

graviton equation (5.39) gives us 

n- 3 2 -
Ru = 9tt 2(n _ 2) V (ln H). (A.4.54) 
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This equation reduces to exactly (A.4.52) for the metric given in equation (A.4.44) 

and therefore we conclude that this integrability condition is implied by the equa­

tions of motion. 

However, this is not yet enough to show that the general solution takes the 

form (5.13,5.15): we have not yet shown that fi = H(R), and we have no coordi­

nate freedom left to redefine it. The problem can be simply stated in coordinate­

independent terms: in the charged case, there are two a priori independent scalar 

quantities, namely the norm of the time-like Killing vector Ot and the dilaton. The 

ansatz (5.13,5.15) assumes a specific functional form for both of these. While we 

can choose coordinates so that one of them takes the specified form, it will not 

be possible to do this for both of them in general, without using some additional 

information. 

Thus, while it seems quite natural to us to assume that the ansatz (5.13,5.15) 

describes the most general solution of the equations of motion in the charged case 

as well, we cannot show this by some analogue of the arguments in [84,85]. Rather, 

verifying our belief would require explicitly solving the equations of motion. We 

reiterate that this question of generality is irrelevant to the argument in the body of 

the argument, which required only the observation that uncharged solutions of the 

form (5.13,5.15) lift to charged solutions. 



Appendix B 

Perturbation details 

B.l Perturbation equations 

The Einstein-Gauss-Bonnet equations are: 

where 
1 

Gab= Rab- 2,9abR, 

whereas the contribution from the Gauss-Bonnet term reads, 

Hab =a [- ~9ab(R2 - 4Rcd Red+ Rcdef Rcdef) 

+2RRab- 4RacRbc- 4Rc adbRc d + 2RacdeRb cde]. 

In fact we will write the equations in the following way 

(B.l.1) 

(B.1.2) 

(B.1.3) 

(B.1.4) 

(B.1.5) 

and consider a metric perturbation of the form (from now on lower case Latin letters 

will run over all dimensions) 

9ab ~ 9ab + hab, (B.1.6) 

together with an additional energy-momentum perturbation whose components are 

oTab· 
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The linearised Riemann tensor is calculated to be, 

(B.1.7) 

from which we obtain the Lichnerowicz operator, 

2bRab = - '\l 2hab- 2Rcadbhcd + 2Rc(ahb) + ~ '\lb(2'\lch~- '\7 ah) + ~ '\7 a(2'\l eh~- '\lbh), 

(B.1.8) 

also, 

bR = gabbRab- hab Rab· (B.1.9) 

Let's perturb the energy-momentum part of equation B.l.1, 

( 

A 1 ( r 0) A ) 2 bTab = bTab- 2 hr + ho Tab b (r), (B.1.10) 

(B.l.ll) 

So if we have TJ.Lv = /).gJ.Lv where[:). is the angular defect of the background space-time 

(which is the situation we are interested in) then we find that, 

( 
1 ) - 1 (- rr- oo- ) b TJ.Lv + --gJ.LvT = bTJ.Lv- --gJ.Lv bT + g bTrr + g bToo . 

2-n n-2 

Similarly we also have, 

( 
1 ) [:). ( 0 r) 2 -b Trr + --grrT = 9rr- ho- hr b (r) + bTrr+ 

2-n 2 

1 (- rr- oo- ) + --grr bT + g bTrr + g bToo , 
2-n 

( 
1 ) [:). ( r 0) 2 -b Too+ --gooT = goo- hr- h0 b (r) + bToo+ 

2-n 2 

1 (-- oo-) + --goo bT + grrbTrr + g bToo , 
2-n 

b Tro + --groT = bTro- [).hrob (r), ( 
1 ) - 2 

2-n 

(B.1.12) 

(B.1.13) 

(B.l.14) 

(B.l.15) 

and the structure of the other cross terms is the same as the one above. To calculate 

the equations for the LHS of B.l.1 we need the perturbations of the separate parts 
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of the Gauss-Bonnet term. These can be written 

2RbR- 8(bRab)Rab + 8hacRabR~ + 

+ 2(bRP )R abc + abc p 

b (RkmpnR~) 

b (RmpR~) 

b (RmqspRnqsp) 

(B.1.16) 

(B.1.17) 

(B.1.18) 

Of course they can be be put together to form the full equations, however having 

this written out explicitly in this generality isn't useful in any way. 

Now let's suppose we have a background metric of the form 

which is the example we consider in this thesis. 

The non-zero components of the Riemann tensor are 

Rroro = -LL", 
L" 

R
0

rOr = -L' 

and the non-zero Ricci tensor components 

Then we have 

(B.1.20) 

(B.1.21) 

(B.1.22) 

(B.1.23) 

(B.1.24) 

(B.1.25) 

(B.1.26) 

(B.1.27) 
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and for the other f.J,V components we find 

b (RR11v) 

b (RJlaRva) 

b ( Ra JlbvRab) 
L" 
y (bRrwv + bR(J11ev) 

0. 
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(B.1.28) 

(B.1.29) 

(B.1.30) 

(B.1.31) 

After the first part of a lengthy calculation we can then write the f.J,V components of 

the perturbation equations as 

bR11v+ (B.1.32) 

L" ( 1 ( APbR ('f:J2hr - 2h(J) (82hr 1 a2hr +ay - 49J1v 4g >.p + 2 r + \7 (} - 2 r r- £2 (} r+ 

L' r L' e 2 e 1 2 e 4 L"l r e ~ ) + 3y8rhr- 3r;8rh(J- arh(J + £2a(Jh(J + £2araehre + 2y (hr- he)~ + 

+ 4bR11v+ 

1 L' 
+ 2 ( araJlhVr + avarhJlr - a; hJlV - aJlavhrr + £2 8e8Jlhve + LaJlhvr+ 

1 li 1 li 1 
+ L28v8eh11e + r;8vh11r- L2 8~h11v- r;8rh11v- L2811 8vhee))+ 

L" 1 L" ( L' ) 
2 

+ay (- 4g11v(48r8ah~ + 4yl (h~- h~) 1-4 L (h~- h~) + (B.1.33) 

+ 4~ ar (h~- h~)- 2a;h+ 

+ : 28e (8ahe +LL'h~) +4~ (aah~ + ~ (h~- h~))- ;2 8~h- 2~ 8rh)). 

We have split the equation into two parts, the second part begins at B.1.33. If we 

calculate the equations with a harmonic gauge choice then all the terms in the second 

part are zero (with this choice also understood in bR11v), this leaves troublesome 

terms with ( L" / L )2 factors which without the harmonic gauge choice cancel (such 

terms have been boxed for clarity). We therefore chose to work with a Gaussian 

normal gauge in which 

hrJl = 0, hre = 0 and hrr = 0. (B.1.34) 

(B.1.35) 
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where 

1 - 2 1 2 1 2 L' 
bRf-Lv = -2\7 h11v + 28rhJtv + 2£ 2 8ohf-Lv + 

2
£ 8rhf-Lv + 

+~ (8118ah~ + 8v8ah~) - ~af-Lavh. (B.1.36) 

The rr and ee perturbation equations can be written respectively as 

b 0 + !ab (R2 - 4R Rab + R Rabcd) = 6,6. - ,6. (h9 - hr) b2 (r) 
J. "rr 

4 
ab abed 

2 
9 r , 

(B.1.37) 

bRoo -lgooab (R2
- 4RabRab + RabcdRabcd) = 9oo (6,6.- ~ (h~- h;) b2(r)), 

(B.1.38) 

where 

_ 1 - 2 1 2 L' 1 L' 0 1-L 1 2 bRrr- -2\7 hrr + 
2

L2 89 hrr-
2

L 8rhrr- L2 8r8ohro- --y;8rh0 + 8r8f-Lhr-
2

arh 

(B.1.39) 

and 

The important point for the analysis in chapter 4 is that bR90 contains an L" term 

which is not part of the a corrections (even if we are careful to consider such terms 

hidden in a;ho0 ). The equations in the Gaussian normal gauge obtained from these 

are written out in the main text. 

All the other components of the equations have no a contributions, in the Gaussian 

normal system they are also written out explicitly in chapter 4. 


