
Durham E-Theses

Thinking inside the box: using derivatives to improve

Bayesian black box emulation of computer simulators

with application to compart mental models

Killeya, Matthew R. H.

How to cite:

Killeya, Matthew R. H. (2004) Thinking inside the box: using derivatives to improve Bayesian black box

emulation of computer simulators with application to compart mental models, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3105/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/3105/
 http://etheses.dur.ac.uk/3105/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

"Thinking Inside The Box"

Using Derivatives To Improve
Bayesian Black Box Emulation Of

Computer Simulators With
Application To Compartmental

Models.

Matthew R. H. Killeya

A copyright of this thesis rests
with the author. No quotation
from it should be published
without his prior written consent
and information derived from it
should be acknowledged.

A Thesis presented for the degree of

Doctor of Philosophy

Statistics and Probability Group
Department of Mathematical Sciences

University of Durham
England

October 2004

2 0 APR 2005

Thinking][nside the Box: Using Derivatives to
][mprove Bayesian Black Box Emulation of
Computer Simulators with Application to

Compartmental Models.

Matthew R. H. Killeya

Submitted for the degree of Doctor of Philosophy

October 2004

Abstract

Increasingly, science relies on complex numerical models to aid understanding of

physical phenomena. Often the equations in such models contain a high number of

poorly known parameters so that the resulting output encodes much uncertainty. A

'computer simulator', which comprises the model equations together with a solver

routine, produces a solution for a given choice of these 'input' parameters.

In cases where the dimension of the input parameter space is high, we can only

hope to obtain a thin coverage of the space by running the simulator. Building a

representation of the simulator output as a function of the input, then, is a statistical

problem in which we observe output at a collection of input choices and, based

on these observations, infer output values for unseen inputs about which we are

uncertain. In a Bayesian context, this representation, termed the 'emulator', encodes

our beliefs about the relationships between inputs and outputs.

Our interest is in exploiting the structure of compartmental models to aid in

this process. Compartmental models are widely applied to model systems in the

absence of fundamental equations to describe the processes of interest. We show that

the structure of such models enables us to efficiently generate additional function

information, in the form of input derivatives, each time we run the simulator and we

adapt the emulator methodology to allow for derivatives. We show that considering

derivatives offers a range of natural ways to aid assessment of prior beliefs and

iii

that updating based on derivatives can lead to substantial reduction in emulator

uncertainty. We show that, in addition, the model structure allows us to derive

estimates of increased costs of generating derivatives which we can compare against

the corresponding reduction in uncertainties.

We are motivated throughout by the problem of calibrating a compartmental

model of plankton cycles at multiple locations in the sea, and we show that a knock­

on effect of reduction of uncertainty by derivatives is an improvement in our ability

to perform this calibration. The search for a model which could accurately repro­

duce plankton cycles at various physical locations, if successful, is thought to have

significant ramifications for understanding climate change.

Declaration

The work in this thesis is based on research carried out at the Statistics and Proba­

bility Group, the Department of Mathematical Sciences, the University of Durham,

England. No part of this thesis has been submitted elsewhere for any other degree

or qualification and it all my own work unless referenced to the contrary in the text.

Copyright © 2004 by Matthew Killeya.

The copyright of this thesis rests with the author. No quotations from it should be

published without the author's prior written consent and information derived from

it should be acknowledged.

iv

Acknowledgements

"The saying 'Having a Killey 's thirst' records a man with a prodigious liquid capac­

ity." (In "Surnames of the Manks" by Leslie Quilliam)

Thanks firstly to all those who came to the Queen Vie last night - under slightly

false pretences - to celebrate the submission of my thesis. I wish I could remember

more of the evening.

To my supervisor, Michael, for his constant support, insight, good humour and

enthusiasm; the extent of which is such that he was able to convince me that I would

rather go to Milton Keynes than Chile to present my work. Jonty for encouragement

and enthusiasm and for help many times with R. Peter Craig for good humour and

interesting conversations and for allowing me to fill his hard-drive with plankton

data.

Of my friends, Giblin arrived in Durham at the same time as me and was the

only one to stay the distance. I'll never forget that argument about sick in the bath

that turned out to be our housemate's Body Shop 'body scrub with marmalade

pieces'. Thanks also for Kenya; the only time I have ever sat next to a goat on

public transport.

Harry the Belgian, thanks for our trip to Malta in the summer of second year

and for arranging the accommodation; those three days on the streets at the start

were an experience. Falling asleep with mild fatigue on the wall of the town square

to awake and find a 200 foot drop the other side was the catalyst for celebrity status

in small town Malta. Something everyone should experience.

Thanks also to !bison for making my final year as an undergraduate a true

pleasure.

V

vi

Mohammed al Masri has put up with me at his place for the last two weeks

and has been a truly great friend for the last two years. Our conversations have

influenced many of my ideas and attitudes; whenever I am writing in future, I am

sure I will pause many times and think 'What would Mohammed say?'

To Anton, whose unique brand of 'being a miserable bastard' had a cheering

effect on me throughout the three years. Also to Lisa, who played a crucial part in

the final stages in keeping me in music after mum had taken my entire CD collection

home. To Harald and his housemates for providing me with food and shelter for the

first two weeks in October when otherwise I would have been forced to sleep in the

coffee room. Also thanks to Maha for several interesting conversations about the

middle east.

To Frank Coolen who was responsible for convincing me to do a PhD in the first

place. When I finally decided to do it, three days before graduation, he jumped up,

said 'I have to make some phone calls' and ran out of Michael's office. The deadline

for me to decide was the previous February. Thanks for persevering.

To Sharry, for Friday football and for going to extreme lengths - including an

alleged on-the-spot fine from the police- in order to provide amusement on depart­

mental outings. To Rachel Duke for never tiring of winding me up by email. And

Michael McNamara; the only person I know to have fitted the phrases 'Jock Stein',

'Brandenburg gate' and 'Bradford and Bingley' into a single sentence.

Also from the department for making me laugh, helping me out or taking an

interest in what I was up to (or in some cases, all three): Patrick Dorey, Vernon

Armitage, James Gray, Probert, Wee Stevie, Debbie, Emily, Majid, Wadey, Mike,

Owen, Ian Vernon, David Wooff, Gerda Arts, John Coleman, Bob Johnson and

Clifford Johnson.

Thanks to John Hemmings in Southampton for always being helpful and quick

to respond to oceanography-related queries. Stefano Conti from the University of

Sheffield for useful conversations.

Thanks to Chris, Vanja and Stephen and to anyone who ever came to our house

for food or Risk: Chris Prior, Beki, Frank, Pierpaolo, Steve Cox, Esti, Kate and

Duncan, Harry Byrd, Nick-Fete-and-Griff amongst others. Thanks especially to

vii

Shahram who never failed to turn up with a smile and a pizza from his shop (even

when he was coming for a dinner party).

Thanks also to PC Jeff Barksby who had at least as much fun as we did at

anti-war and other protests and who still enthusiastically asks me when the next

one will be whenever I bump into him.

So many people at durham21: Mike, a brilliant deputy in my year as editor;

Cat Evans, for bright and funny conversations; and Barney, our road trip to the

Guardian Media Awards is one of the best days out I have had.

To my parents for all their love and support. You always made me feel that you

were very proud of me, which is an amazing gift to give someone. To my brother,

Adam, for those three-hour phone conversations from Japan which, when Mum and

Dad asked what we talked about, neither of us could ever remember.

Finally, to Charlotte. A truly amazing person who makes me laugh everyday.

Contents

Abstract ll

Declaration iv

Acknowledgements V

1 Introduction 1

2 Calibrating the plankton cycle 6

2.1 Motivating problem . 6

2.2 The model 9

2.3 Equations for the PZN simulator 13

2.3.1 Phytoplankton 13

2.3.2 Zooplankton . 15

2.3.3 Nutrient ... 15

2.4 Simulator input: invariant input parameters 15

2.5 Simulator input: physical forcing 16

2.5.1 Mixed Layer Depth 17

2.5.2 Photosynthetically Available Radiation 17

2.5.3 Day length .. 20

2.6 System observations 20

2.6.1 Chlorophyll Data 20

2.6.2 Winter time Nutrient data 24

2.7 Recap: General features of the problem 26

viii

Contents

3 Computer Simulators and Emulation

3.1 Computer Simulators

3.1.1 Uncertainty on inputs

3.1.2 Model discrepancy

3.1.3 Observation error .

3.1.4 Simulator uncertainty.

3.2 Emulators

3.3 Bayesian approach

3.4 Partial Beliefs: Bayes Linear Methods .

3.5 Bayes Linear emulators

4 Adjusting emulators based on derivatives

4.1 Random Processes and derivatives .

4.2 Beliefs about Derivatives

4.3 Discussion

4.4 Theoretical calculations of resolved variance

4.4.1 Variance resolved by a single input point

4.4.2 Several independent design points

4.5 Estimating 8 covariance parameters

4.6 Choice of Gaussian covariance function

5 Taking derivatives in compartmental simulators

5.1 Derivatives and compartmental structure

5.2 Differentiating Euler's Rule

5.3 Higher order generalisation and adaptive stepsize

5.4 Exploiting compartmental structure .

5.5 Implementation in Maple and R . . .

5.6 Additional cost of derivatives: a heuristic

5.6.1 Derivation of heuristic

5.6.2 Discussion of heuristic assumptions

5. 7 Localisation of inputs in the PZN model

ix

27

27

28

28

29

30

31

35

37

40

41

41

43

47

48

49

52

54

57

59

59

61

61

63

65

67

67

69

70

Co~e~s x

6 Emulator construction and refinement for the plankton model 73

6.1 Choice of stations to emulate

6.2 Parameterisation of model output

6.3 Preliminary analysis at station 1115 .

73

77

79

6.3.1 Choice of active inputs 82

6.3.2 Assessing global prior mean and covariance parameters 87

6.3.3 Assessing variance parameters for t: and r5 . 88

6. 3.4 Design of simulator runs 92

6.4 From exploratory analysis to prior emulator

6.5 Resolving emulator uncertainty at a single site

6.6 Simulator Diagnostics

6. 7 From single to multiple sites

7 Calibrating the model

7.1 Linking simulator and physical system

7.2 Implausibility in a single output dimension

7.3 Combining Implausibilities

7.4 Bayesian vs Bayes Linear calibration

7.5 Choosing CJe and aT/ ...•......

7.6 Preliminary comparison with and without derivatives

7.6.1 Function and derivative calibration trade-off

7. 7 Calibration under maximal information

7.7.1

7.7.2

7.7.3

7.7.4

Lower dimensional projections of implausibility

'Most plausible' output

Refocusing and widening the scope of the calibration

Discussion in relation to Hemmings analysis

8 Conclusions and Future Directions

Appendix

A Additional Chapter 6 analysis

A.1 Derivative plots

94

96

100

102

105

105

107

108

108

109

110

116

117

117

122

126

127

129

137

137

. 138

Contents

A.2 Simulator Diagnostics

B PZN simulator run code with derivatives

C Emulator updating code

D Implausibility code

E Miscellaneous code

F Bessel functions

G High order derivatives of the Gaussian covariance kernel

xi

141

144

159

170

173

181

182

List of Figures

2.1 Map showing station locations, taken from Hemmings et al. (2004). The

subset of stations marked in black is used throughout this chapter to il­

lustrate a range of physical observations and location-specific simulator

data ..

2.2 Schematic overview of the simulator.

2.3 Simulator output for the default input setting plotted against time (days)

7

10

at the four demonstration stations. The first row corresponds to phytoplankton,

P(t), the second row to zooplankton, Z(t), and the third row to nutrient,

N(t)

2.4 Schematic diagram of the simulator.

2.5 Mixed layer depth (m) against time (days) at the four stations.

2.6 Photosynthetically Available Radiation against time (days) at the four

stations.

2.7 Observed chlorophyll (mmol m-3) at the four locations recorded for 1998

12

13

18

19

where t = 0 corresponds to midnight GMT on 31st December 1997. . . . 21

2.8 Optical interactions for Ocean Remote Sensing. Reproduced with permis-

sion from Andreas Neumann and Jill Schwarz

2.9 Estimated annual maximum nutrient concentration in the mixed layer

(mmol m-3). Circles denote stations and additional crosses mark stations

where nitrate estimates are available.

3.1 Conditional Independence Graph for the simulator, s(-), the best input,

xo, the physical system, y, and observations of the system, fj. Any two

nodes are independent given the values of all their parent nodes.

xii

23

24

29

List of Figures

3.2 Realisations from a Gaussian process with Matern Correlation function,

R 11,e(x), shown for different v and e values. The final row shows R11,e(h)

with e fixed at the corresponding column value and varying v = 1 (black),

xiii

v = 4 (red), v = oo (green). 33

4.1 (Top left) Covariance between function values and derivatives for the Gaus-

sian COVarianCe kernel in One dimenSiOn With hyper-parameterS aE = 1, e =

1.5 plotted against the distance between observations, h = llx- x'll· The

thick lines shows Cov[c(x), c(x')], the dashed line shows Cov[c(x), dc(x')jdx']

and the dotted line shows Cov[dc(x)jdx, dc(x')jdx']. The top right and

bottom left plots show the constraining effects of function values and ad­

ditionally with derivatives respectively. 45

4.2 Profile likelihood fore for ten samples from a Gaussian Process with r(h) =

exp - 7·5h
2

, each sample taken at seven points, without derivatives (top) and

with derivatives (bottom).

5.1 Input and outputs appearing on each additive arc of the model.

6.1 Top: Euclidean distances of mixed layer depth (MLD) forcing functions

(left) and photosynthetically available radiation (PAR) forcing functions

(right) between pairs of stations. Light colours correspond to large dis­

tances and dark colours to small distances. Bottom: Mean and range of

forcing function values at each station, again with MLD shown left and

PAR shown right; circles denote mean values and lines connect minimum

and maximum values and, in the MLD plot, colours denote groupings sug-

gested by the MLD distances.

6.2 Map of stations shown with coloured outlines corresponding to the group­

ings identified by the mixed layer depth distances in Figure 6.1. The four

stations marked black are those which we propose to emulate in this Chap­

ter and then calibrate in Chapter 7. Station 1115, marked dark grey, is

used to perform an exploratory analysis before we begin the emulation

56

71

74

process. 76

List of Figures

6.3 Observed chlorophyll (mmol m-3) at the four calibration locations recorded

for 1998 where t = 0 corresponds to midnight GMT on 31st December

1997. Vertical lines determine intervals used for parameterisation as de-

XIV

scribed in Section 6.2. 78

6.4 Station 1115: time series simulator output at different inputs for phyto-

plankton, P(t), and nutrient, N(t), plotted against time, t. 80

6.5 Station 1115: mean ± 2 s.d. phytoplankton simulator data. Black lines

denote values for daily time series data and grey lines and rectangles denote

values for each output of the interval re-parameterisation. 81

6.6 Station 1115: value of the largest and second largest phytoplankton input

derivative mean and standard deviation, plotted at every seventh day of

the original untransformed time series. The plot symbols are numbers

corresponding to the input whose derivative is plotted and lines join values

of inputs whose derivative appears at successive time points. For the mean

plot, grey filled circles corresponds to derivatives whose values are negative. 83

6. 7 Station 1115: Derivatives of re-parameterised outputs with respect to each

input computed at the twenty five input values. The set of active variables,

x* = (xi,X4,X6,xw) for 1\ns, and x* = (xi,x4,x6,XI3) for N1115, are

coloured black and grey vertical lines denote ±2s.d. for each sample of

derivatives. .

6.8 Station 1115: simulator output, Pi and partial derivatives, 8Pifax 1, i =

1, ... , 5, plotted against x1 for the first five plots, and simulator output,

Nw, and partial derivative, 8Nw/8x13, plotted against x 13 for the final

plot. For each output, function values are marked by their run number and

derivatives by the gradient of the line passing through the corresponding

84

point. 85

6.9 Mean ±2 standard deviation of C1, ... , C13 values based on 25 minimisa­

tions of wCs + (1- w)C13, with each minimisation over 10,000 randomly

generated 13-dimensional 200-point hypercubes. Results for different val-

ues of wE (0, 0.25, 0.5, 0.75, 1) are shown from left to right for each Ci. 93

List of Figures XV

6.10 Station 1113: output parameterisation (top left) and derivatives of the re-

parameterised outputs with respect to each input computed at the twenty

five input values (remaining plots). See caption in Figure 6.7 for full de-

scription. 95

6.11 Adjusted standard deviation against number of simulator runs with deriva-

tives (black) and without derivatives (grey) for outputs at Station 1113.

Solid and dashed lines correspond respectively to the mean and maximum

standard deviation taken over the input space. The light grey rectangle is

defined by the horizontal lines V a'f + ag and a t5, shown for reference. . . 97

6.12 Station 1113: Separate components of adjusted standard deviation with

derivatives (black) and without derivatives (grey). Solid lines correspond

to SDDn[Bg(x)] and dashed lines to SDDn[E(x)]. The light grey rectangle

is defined by the horizontal lines J a'f + ag and at5, shown for reference. . 98

6.13 Forecast diagnostics based on function values for the outputs at station

1113 plotted against the number of runs, n. Filled circles correspond to

s(xn+l), the value observed when running the simulator at Xn+l· Unfilled

circles correspond to EDn [s(xn+dl and vertical lines show ±3SD Dn [s(xn+l)]

for Dn = Sn· . 101

6.14 Forecast diagnostics based on function values and derivatives for the out­

puts at station 1113 plotted against the number of runs, n. See Figure

6.13 for details (Dn = (Sn, V' x•Sn)) · · · · ·

6.15 Plots of b..sn -b..(SnSx•Sn) for station 1113 (See Eqn. 6.12). The red dotted

line shows Derr=O and the blue line gives the running average of the first

n Derr scores.

7.1 Proportion of input space ruled out by the set, P, of phytoplankton outputs

across all four stations with derivatives (black) and without derivatives

(grey) plotted against the size n of the input set Xn at each station (so

that e.g. n = 10 corresponds to ten runs at each station, and so forty in

total). The numeric plotting symbols, m= 0, 2, correspond to a 17 = mae,

. 102

. 103

m=0,2 111

List of Figures xvi

7.2 Proportion of input space ruled out by the set, F5 , of phytoplankton output

for each station, s, with derivatives (black) and without derivatives (grey). 111

7.3 Proportion of points 'falsely' ruled out by phytoplankton outputs at station

1116 (top) and all four stations (bottom). The proportions are the number

of points which are ruled out based on n input points but ruled in based

on n = 50 points. Shown in each plot are the proportions with derivatives

(black) and without derivatives (grey) for CJ71 = 0 (thick line) and CJ71 = 2CJe

(dotted line). The cut off value in each plot is the implausibility score

above which we rule points out. 113

7.4 Proportion of input space ruled out by the set, Nw, of nutrient outputs

across all four stations with derivatives (black) and without derivatives

(grey). See Figure 7.4 for more details. 114

7.5 Proportion of input space ruled out by the nutrient output, Nw,s, at each

station, s, with derivatives (black) and without derivatives (grey) 114

7.6 Ip(x1,x4) (left) and Ip(x6,xw) (right), shown after n =50 runs at each

station. Implausible areas are shaded darker, black dots denote input

points at which simulator output has been observed at one of the four

stations, and numbered circles correspond to the three most plausible input

points. 119

7.7 Ip,(x1,x4) (top) and Ip,(x6,XI~) (bottom): Implausibility maximised over

phytoplankton outputs and projected into two input dimensions, for each

of the four calibration stations, shown after n = 50 runs.

7.8 'Four dimensional' plot of the top 1% 'most plausible' input combinations,

all of which fall in either region 1 (left) or region 2 (right) of the (x1,x4)

space. Outer grid lines correspond to the x1 and X4 dimensions with X6

. 119

and x 10 dimensions plotted within these grid lines, each on the range [-1, 1].120

7.9 Subregion of two dimensional I p projection in Figure 7.6, with implausi-

bility minimised over the subregions only. 120

7.10 IN(xi, x13) fori= 1, 4, 6: Implausibility maximised over nutrient outputs

and stations and projected into two input dimensions by minimising over

remaining input dimensions, shown after n = 50 runs at each station 121

List of Figures

7.11 INs(xi,Xl3) fori= 1,4,6: Implausibility based on the nutrient output at

each of the calibration stations, projected into two input dimensions after

xvii

n = 50 runs. 121

7.12 Simulator output at i:o (unfilled circles, with lines denoting ±3a-17) and

historical data (filled circles, with lines denoting ±3o-e) for phytoplankton

at the calibration stations. The dotted line gives the original, unparame­

terised phytoplankton output at i:o and the grey polygon shows the range

spanned by ±35% of the original historical chlorophyll observations, as a

guide to ±3 measurement error for the calibration and validation stations. 123

7.13 Simulator nutrient output at i:0 (unfilled circles, with lines denoting ±3a-17)

and historical nutrient data (filled circles, with lines denoting ±3o-e) at the

calibration and validation stations. Validation stations are shown with

O"e = o-17 = 1 as a guide only.

A.1 Station 1015

A.2 Station 1116

A.3 Station 1215

A.4 Station 1015

A.5 Station 1116

A.6 Station 1215

124

138

139

140

141

142

143

List of Tables

2.1 Inputs with Expert's Lower Bound, L, Default Value, D, and Upper

Bound, U.

2.2 Mid-winter nutrient observations, Nw,s at each station, s.

6.1 Top three ranking inputs based on the number of runs at which an input

scores one of the top three derivatives magnitudes. The numbers in brack­

ets denote the number of runs at which each input scores the first, second

11

25

and third highest derivative magnitude. 86

6.2 R2 values from OLS fits at station 1115. 88

6.3 Estimates for B coefficients from OLS fit. 89

6.4 Estimates from the modified spectral method at the exploratory site. 91

7.1 Percentage of input points ruled implausible at each station based on n

simulator runs and O'ry = mO'e· F denotes the percentage when derivatives

are not included and T when they are. 116

7.2 Implausibility scores at :io. Bold type denotes the output with maximum

implausibility score at each station. 125

7.3 Implausibility of input Xo corresponding to best matching set of output

for each station from the fifty simulator runs. 126

XVlll

Chapter 1

Introduction

"So what is your PhD about?" I had spent a week working at the Daily Mirror and,

with the exception of the enthusiastic musings of the managing editor that having 'a

doctor' on the team might enable the resurrection of a long-forgotten weekly column

addressing the medical (predominantly sexual) problems of the readership, it was

the first time somebody had taken an interest.

Unsure as I always am about how much people want to know when they ask

the question, I tentatively began to explain: ((Well, think about climate change and

how scientists are trying to understand it - by building gigantic computer models of

the earth's climate and running them forward into the future to see what happens.

I 'm interested in how we can use those kinds of computer models to learn about real

world phenomenon such as climate change. "

11But don't those models rely on some phenomenal assumptions?" he asked.

For the little that many people understand about the intricacies of science, it

is often surprising how adept they can be at pointing out its weaknesses. The

great minds of science toil to reproduce the complexities of the earth's climate on a

computer; attempting what, to the layman, is obvious as being an impossible task.

The statistician, on the other hand, is lucky in being able to keep one step ahead

of both the scientist and the layman. A good computer model of any complexity

involves a combination of scientific expertise and understanding of some aspects

of the physical process being modelled, together with some fairly rough and ready

approximations about aspects which are not well understood and then, finally, a

1

Chapter 1. Introduction 2

jarring together of these aspects. The statistician avoids the jarring by recognising

- and embracing - the uncertainties in such problems. Fairly recently, a whole liter­

ature has sprung up to address the statistical issues that arise from using computer

models to learn about physical systems. The work allows various levels of informa­

tion and scientific understanding on different aspects of physical phenomenon to be

joined together in a coherent and rigorous manner. The glue that is used to do so

is 'uncertainty'.

The Bayesian subjectivist view of probability interprets this uncertainty quite

naturally in terms of the beliefs of the model builder who, although in some sense

an expert, has various degrees of uncertainty about different aspects of the physical

process being modelled. Uncertainty about the exact form of equations that govern

physical dynamics induces uncertainty on the model output or 'prediction'. In other

words, those 'phenomenal assumptions' are acknowledged, uncertainty purporting

to them stated and the transfer of this uncertainty onto predictions of the future

then tracked. Bayesian statistics provides a framework which allows an expert's

beliefs and inherent uncertainty to be cobbled together in a cogent manner - and

then updated as information becomes available. This is the starting point for our

work.

The chronology of thought is not captured altogether in the thesis and it is per­

haps worth explaining at this point. The statistical work on computer models treats

the model as a 'black box', sending different choices of input - often corresponding

to obscure unphysical quantities - into the model, enabling a probabilistic picture

to be built up of how changing inputs changes output. A desire to 'open up' the

black box is what ultimately led to the idea of inclusion of derivatives of simulators

as extra information which we could use to update beliefs and reduce uncertainty.

Opening up the black box meant looking at the equations and the numerical solution

method employed to solve them. Doing this, it becomes clear that the quantities

that are treated by the numerical solution method as numbers can more naturally

be thought of as functions of inputs. Then, for example, Taylor expansions of these

functions could be carried through the solution method in much the same way as

the numbers. The coefficients of a Taylor expansion of a function are, of course, the

Chapter 1. Introduction 3

derivatives of the function.

Hence consideration of derivatives forms the basis of the original work in this

thesis. From how to generate derivatives, how to estimate how much additional cost

there will be in doing so, and how much extra information we can expect to gain

by doing so. The aim is to demonstrate that anyone faced with a compartmental

model of any complexity stands to benefit a great deal by performing an analysis of

the type developed in this thesis.

A compartmental model of plankton cycles is used throughout to illustrate and

motivate the work. The model was chosen for two reasons. Firstly, the model is an

example of a wide class of compartmental computer models whose general features

we are interested in exploiting through development of the statistical methodology.

Compartmental models are popular and widely applied to model systems, such as the

one under consideration, for which fundamental equations, describing the underlying

physical processes, are yet to be established. Such an approach generally leads

to a system of equations containing a large number of poorly known parameters.

Calibrating these parameters to physical data is far from easy, particularly when

observations at several locations are required to be matched (Hemmings et al., 2003,

2004). Secondly, building a generic model which captures the main features of annual

plankton cycles at any location in the world ocean is a genuine physical problem

that has long occupied those in the field of oceanography. The problem has received

renewed attention recently in the context of climate change in which it is believed

there is potential for significant climatic effects as a result of behaviour of the marine

biota. Thus we chose the model in the belief that it would benefit from being set

into a rigorous statistical framework such as the one we develop and, although our

aim was not to solve the full problem in its entirety, we hoped to be able to offer

some new insight of interest to those concerned with this specific physical problem.

The structure of the thesis is thus as follows. In Chapter 2, we describe in

detail the computer model and calibration problem which is used to demonstrate

the methodology and which serves as a motivation for the work.

Chapter 3 is a presentation of recent literature on Bayesian analysis of computer

experiments which forms the theoretical starting point of our work. We detail the

Chapter 1. Introduction 4

Bayesian interpretation of computer models which views any such model as an un­

known quantity about which we have beliefs, and in particular spend some time

introducing 'Bayes Linear methods' as a natural way to describe these beliefs.

In Chapter 4, we demonstrate a natural extension of the approach described

in Chapter 3 which allows us easily to incorporate information from derivatives of

output with respect to the model input parameters. The extension is a completely

general one which allows us to include derivative information for a process whenever

it is available. Having established this, we go on to show two things. Firstly that

derivatives offer us 'more of the same', in terms of providing extra information which

can be used to reduce uncertainty. We perform some theoretical calculations to get

an idea of how much additional information derivatives can be expected to tell us in

terms of this reduction of uncertainty. Secondly, we show that this extra information

is of a slightly different type to that which is usually available which enables us to

target information at covariance parameter estimation; an aspect of the current

statistical methodology which up until now has proved to be problematic.

In Chapter 5 we develop an efficient way to obtain derivatives for compartmental

models which exploits the compartmental structure of such models. We also develop

a heuristic for estimating the additional cost, in computing time, in generating

derivative information for compartmental models, which we then test and discuss in

light of the theoretical calculations of uncertainty reduction in Chapter 4.

Chapter 6 is where we apply our adapted methodology to the physical prob­

lem. The aims of the chapter are dual. Firstly, we are interested in the impact

of derivative information on the process of building and refining of beliefs and we

carefully compare situations with and without derivatives at various stages in order

to understand the role of derivatives through this process. Secondly, we are inter­

ested in building up a picture of the simulator as best we can in order to produce

some useful insights into the physical problem, of interest to those concerned with

the model itself. Hence we discuss several problem-specific issues and present some

solutions to these issues.

In Chapter 7, we calibrate the plankton model to physical data. Once again, our

focus is two-fold. We are interested firstly in comparing analyses with and without

Chapter 1. Introduction 5

derivatives to assess the impact that derivatives have in the calibration process and,

secondly, in the results of the calibration in relation to the physical problem. For

the latter, we discuss the results in the light of previous analyses and show that they

offer some interesting new insights.

Finally, in Chapter 8, we conclude with a discussion of our results and the

most promising areas for future work. Code to perform updating and implausibility

calculations throughout the thesis was developed in R (R Development Core Team,

2004) and is given in the Appendices.

Chapter 2

Calibrating the plankton cycle

The aims of this chapter are threefold. Firstly, we introduce and discuss a real

world model calibration problem which serves as a motivation for the work in the

remainder of this thesis and gives context for the recent statistical theory, outlined

in Chapter 3, into which the problem falls. Secondly, we point out the features

of the physical problem and model which we wish to exploit to build on current

methodology for this class of problems. Thirdly, we give exact details of the model

equations and data. Some of the model details, such as the model equations, may be

skipped over by the reader without any loss of comprehension of subsequent parts

of the thesis and, wherever this is the case, it is stated.

2.1 Motivating problem

Building a generic model which captures the main features of annual plankton cycles

at any location in the world ocean is a challenge that has long occupied those in the

fields of oceanography and marine biology. The problem has received renewed atten­

tion recently in the context of climate change in which it is believed there is potential

for significant climatic effects as a result of behaviour of the marine biota. Typically

the models considered are compartmental, in which each compartment represents an

aggregated group of species assumed to be homogeneous. Compartmental models

are popular and widely applied to model systems, such as the one under considera­

tion, for which fundamental equations, describing the underlying physical processes,

6

2.1. Motivating problem 7

are yet to be established. Such an approach generally leads to a system of equations

containing a large number of poorly known parameters. Calibrating these param­

eters to physical data is far from easy, particularly when observations at several

locations are required to be matched (Hemmings et al., 2003, 2004).

70°N

1416 1419 1420

~
1318 13~9 1320

60°N

1214

:::: ,,,, ~~
50°N ~J 1013

911 912 913 r---~.

40°N (J 809 810 811 812

708 709 710 711 .·./(/ 30°N
. 0.

606

20°N

BOW 70'W 60'W 50'W 40'W 30'W 20'W 10'W ow

Figure 2.1: Map showing station locations, taken from Hemmings et al. (2004). The

subset of stations marked in black is used throughout this chapter to illustrate a range of

physical observations and location-specific simulator data.

Figure 2.1 shows the locations of the thirty stations considered m Hemmings

et al. (2004). The station numbering is consistent with Hemmings et al. (2004),

2.1. Motivating problem 8

who forms the numbers by dividing the map into a grid and concatenating the two

digit meridional and zonal position numbers in the grid. The four stations marked

black are used as 'demonstration' stations throughout this chapter to illustrate a

range of forcing data and physical observations specific to each location.

Hence we have a physical system y(c/J, t) which depends on a spatial component,

c/J, and a temporal component, t. As a representation of y, we have a computer

model or simulator s1(x) = s(x, F~,t), where l indexes the spatial location c/J1, which

is a function of an input vector x and a set of forcing functions Ft,t where the

simulator output, s1(x), is in general a vector of outputs corresponding to different

time points. In our case, the spatial element cjJ = (cPx, c/Jy) is two dimensional with

cPx denoting longitude and c/Jy denoting latitude. We consider a discrete number of

locations, which we refer to as stations, and look for the simulator to reproduce

the average variation in a given area about each station. In general, the act of

spatial-averaging could induce a covariance structure across stations, although the

resolution of forcing functions and physical data was considered to be high enough

to ignore this effect here.

Our interest is in calibrating x to physical data across a collection of stations

under the assumption that the forcing functions resolve the variation at different

locations and that x, which governs plankton dynamics, is spatially and temporally

invariant. The problem is a real-world physical problem taken from a series of

papers (Hemmings, 2000; Hemmings et al., 2003, 2004). Hemmings provided run

code from Hemmings (2000) and the physical and forcing function data used in

Hemmings et al. (2003, 2004). On several occasions, his advice was sought as an

'expert' (in the Bayesian sense) and, as such, he is referred to as 'the expert' in the

thesis wherever appropriate. As a disclaimer to this, it should be pointed out that

the arrangement was only ever an informal one and any attributed specifications

should be viewed with this in mind.

2.2. The model 9

2.2 The model

The model is a simple compartmental ecosystem model, taken from Hemmings

(2000), which describes the evolution over time of three interacting populations

• phytoplankton, P

• zooplankton, Z

• nutrient, N

The concentration of each (in mmol Nm-3) in the top 'layer' of the ocean, known

as the mixed layer (see Section 2.5.1), is modelled as a homogeneous compartment.

The model is essentially one of nitrogen flow, each population representing nitrogen

molecules in a different form. The model equations, set out in Section 2.3, cannot

be solved in closed form and a numerical solver or computer simulator routine is

required to obtain an approximate solution. Given suitable input data, the computer

simulator solves the system of equations to produce time series output for the three

populations over a period of one year. The computer simulator is deterministic so

that, if we were to run the solver routine at the same collection of input data on the

same computer, we would obtain identical output. A single run of the simulator, for

a given choice of input data, typically takes a few seconds.

Simulator input can be divided into three broad types. First there are the un­

known input parameters, listed in Table 2.1, which appear on the functional rela­

tionships which govern inter-compartmental flows, along with imports and exports

from the system. Second, spatia-temporal forcing data must also be specified before

the model can run. These data - described in detail in Section 2.5 - are taken

to be known and comprise time series, appropriate to the physical location being

considered, derived from a variety of sources: day length, T, is given by established

theory, photo-synthetically available radiation, I 0(tD, t), from a combination of the­

ory and physical observations of cloud cover and, finally, mixed layer depth, M, is

given by empirical results of a general circulation model. The model assumes that

there is no feedback from the system state to the forcing functions so that forcing

function values are identical for different choices of the input parameters. This is

2.2. The model 10

Figure 2.2: Schematic overview of the simulator.

Simulator

1\
Model Solver

/\
Equations Input Data

I \
Parameters Forcing Functions Initial Conditions

justifiable for our model since any such feedback can be considered to take place

over a much longer time scale than that considered for the purposes of this thesis.

Finally, the simulator requires initial conditions to be specified for each population.

In practice, these are unknown; however, here we treat them as fixed and run the

simulator for a "spin up" period of one year after which time we consider the out­

put to be effectively independent of these values. We take the fixed starting values

P(-365) = 0.02, Z(-365) = 0.002, N(-365) = 1, used in Hemmings et al. (2004).

Figure 2.2 gives an schematic overview of the different aspects of the simulator.

Output at the four demonstration locations for the default input settings are

shown in Figure 2.3. A noticeable feature of the output, apparent in Figure 2.3,

is the 'spikiness' of the phytoplankton and zooplankton time series. The spikes,

which correspond to sudden blooms of the populations, are a well-established phe­

nomenon of plankton dynamics. For each station shown in Figure 2.3, blooms of

the phytoplankton prey are always followed by blooms of the zooplankton predator.

By contrast, the output for nutrient, N, has no spikes although it registers a sharp

dip in the middle of the year.

2.2. The model 11

Description Units L D u
rfyp phytoplankton mortality rate d-1 0 0.05 0.3

kN nutrient uptake half-saturation mmol N m-3 0.05 0.5 1

constant

Vp phytoplankton maximum growth rate d-1 0 1.5 4

0: initial slope of P-I curve (lyd-1)-1 d-1 0 0.05 0.2

kp light attenuation coefficient for m2 (mmol N)-1 0 0.03 0.3

phytoplankton

(3 zooplankton assimilation efficiency 0 0.75 1

J-L zooplankton excretion rate d-1 0 0.1 0.5

rPz zooplankton mortality parameter (mmol N m-3 dt1 0 0.2 0.3

g zooplankton maximum ingestion rate d-1 0 1 3

kc zooplankton ingestion half-saturation mmol N m-3 0.05 1 3

constant

f export fraction of zooplankton faeces 0 0.33 1

Nref sub-surface nutrient at reference depth mmol N m-3 3 9 15

m cross-pycnocline mixing rate m d-1 0 0.2 1

Table 2.1: Inputs with Expert's Lower Bound, L, Default Value, D, and Upper Bound,

u.

Figure 2.4 shows the model structure; in crude terms, phytoplankton feed on

nutrient, zooplankton feed on phytoplankton and zooplankton faeces flow back as

nitrogen into the nutrient pool. Exports from the system in the form of dead plank­

ton and faeces from the phytoplankton flow from both P and Z to N and are then

immediately exported from the system. The rate at which these processes take place

is affected by the amount of sunlight, which affects the rate of phytoplankton growth,

and the depth of the mixed layer, which kills both phytoplankton and zooplankton

as it decreases.

The arcs in Figure 2.4 correspond to 'flow functions' which determine the rate

of flow to and from compartments. Each arc represents an additive part of the flow

so that Figure 2.4 specifies the following system of equations which describe the

2.2. The model 12

Station 1015 Station 1113 Station 1116 Station 1215

0 J 0
ell
19 6'

<P
<C ~ ~

rJ' fa rP
0... ... Do 00

0
0 00
oo JiM,._ 0

0 0 0
0

N 00 0 0
0 0

~
_)~ _j~ \ 0

<D

~
"':

0 2 0 ~
'b

0 a
0

C1J 'b
0

N d 0 0
0 0
0 6'

<Sl

~ ~
0

L ...

:~ d

0

, I j

~

~ n n
0
0
0

0 0
0 0

z </) 0
0

...: 0 §
0 0
0 0
0 0

<D 0
0

<'i 0

0

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300

Figure 2.3: Simulator output for the default input setting plotted against time (days) at

the four demonstration stations. The first row corresponds to phytoplankton, P(t), the

second row to zooplankton, Z(t), and the third row to nutrient, N(t).

variation in P, Z and N over time, t.

dP

dt
dZ
dt

dN

dt

The flow functions depend on P, Z and N and on the input data and, whilst

the dependencies can be complex, they are specified by the model equations in

2.3. Equations for the PZN simulator

Figure 2.4: Schematic diagram of the simulator.

Nutrient N

Ap
Phytoplankton P 1---~

Zooplankton Z

13

closed form. The model equations describing these explicit dependencies are given

in Section 2.3. In general, we are interested in models of this type and the reader

can skip through Section 2.3 without impeding their understanding of subsequent

sections of the thesis.

2.3 Equations for the PZN simulator

The time-dependent relationships between the three populations, P, Z and N are

described formally by the following state equations. All quantities which do not

appear as inputs in Table 2.1 are time dependent unless stated otherwise.

2.3.1 Phytoplankton

The rate of change of phytoplankton, P, is given by the equation

dP = PQ] _ Gp _ rpp? _ (m+ h+)P
dt A1

(2.1)

where

• The first term is primary nutrient production, corresponding to AN p in Figure

2.4, and is a product of three factors:

(i) Phytoplankton concentration, P.

(ii) The nutrient limitation factor,

N
Q = Q(N) = kN + N' (2.2)

2.3. Equations for the PZN simulator 14

parameterised by the half saturation constant for nutrient, kN; the concentra­

tion at which the growth rate of the nutrient population is half its maximum

rate.

(iii) The light-limited growth rate, J, determined by

1 1T1M J(t, P) = - J(z, t, tD, P)dzdtD
M o o

(2.3)

where tD is the time of day,

](P)
_ Vpal(z, t, tD, P)

Z, t, t D, - ---;::::::::;:;:===========::
JV) + a 2 I(z, t, tD, P) 2

(2.4)

is the light-limited growth rate at depth, z, and time, t, and

I(z, t, tD, P) = Io(t, tD) exp{ -(kw+ kpP)z} (2.5)

is the underwater light field where kw = 0.04 is the light attenuation coefficient

for water, which we treat as known, and kp is the (unknown) light attenua­

tion coefficient for phytoplankton. I 0 (t, tD) is a forcing function described in

Section 2.5.2.

• The second term in (2.1), G p, is the grazing rate of zooplankton on phytoplankton,

corresponding to Apz in Figure 2.4 which is given by

gZP
GP = GP (P, Z) = kc + P (2.6)

and parameterised by the zoo plankton maximum ingestion rate, g, and the

half saturation constant for zooplankton ingestion, k0 .

• The final two terms in (2.1) are exports from the system, the sum of which

corresponds to Ap in Figure 2.4. The first term models phytoplankton mortal­

ity and is parameterised by the phytoplankton mortality rate cf;p. The second

export term models the physical flux due to vertical mixing processes, and

depends on the the rate of diffusive mixing across the mixed layer base, m, the

mixed layer depth forcing function, !vi, and h+ = max(h, 0), where h = d~I.

2.4. Simulator input: invariant input parameters 15

2.3.2 Zooplankton

The rate of change of zooplankton, Z, is given by

(2.7)

where

o Gp is the grazing rate of zooplankton on phytoplankton given in (2.6) and (3

is the assimilation efficiency from phytoplankton to zooplankton.

o The remaining three terms form the zooplankton exports (Az in Figure 2.4),

the first being parameterised by f-1, the zooplankton excretion rate; the second

by c/Jz, the zooplankton mortality parameter; and the third representing the

physical flux which takes the same form as that for phytoplankton in (2.3.1).

2.3.3 Nutrient

The rate of change of nutrient, N, is given by

dN - m+ h+ dt = -PQJ + J-LZ + (1- t:)(l- (J)Gp + M max[Nsub(M)- N, 0] (2.8)

where

• E is the exported fraction of zooplankton faecal material.

• Nsub(z) = Nrefln(bz + 1) is the subsurface nutrient concentration at depth z,

parameterised by Nref, the nutrient concentration at reference depth (e- 1) /b,

where we fix this reference depth at lOOm by taking b = 0.017. This term

corresponds to AN in Figure 2.4.

2.4 Simulator input: invariant input parameters

Table 2.1lists the set of invariant input parameters (referred to hereafter as 'inputs')

collected in the model equations in Section 2.3. The value of each of the inputs is

uncertain and this is reflected by the specification of lower and upper bounds for

each by our expert, listed in Table 2.1. Zero lower bounds are strict because of the

2.5. Simulator input: physical forcing 16

requirement that parameters be non-negative whilst other bounds arise from a com­

bination of previous informal data analysis experiments and knowledge of observable

quantities which are considered to correlated with the inputs. Positive values outside

of these ranges are considered by the expert to be "unphysical" although, because

of deficiencies in the model and forcing data, relating the inputs to real-world quan­

tities is ambiguous and so values outside the ranges which produce realistic output

are also of interest.

Note that, in general, it is desirable to extract as much information as the expert

is confident to give about input values; for example, a 95% percentile would have

been desirable had the expert been willing to specify one. The issue is that whilst

in some sense it is desirable for the expert to give conservative bounds for input

values, the clownside to this is that "unphysical" values of inputs may have high

leverage in fitting the emulator because of their position on the extremities of the

input space; in other words, we want to build as good as fit as possible on the

range of interest rather than compromising to include values in which, ultimately,

we are not interested. In addition, information about whether any depedencies exist

between inputs is desirable but again generally (as in our case) difficult to elicit.

2.5 Simulator input: physical forcing

The model is driven by forcing functions, imposed at each location cp = (cf>x, c/>y),

and determined by external data in the form of time series of

• Mixed Layer Depth (MLD), M[cf>x, c/>y, t].

• Photosynthetically Available Radiation directly below the sea-surface (PAR),

Io[cf>x, c/>y, t].

• Day length, r(c/>y, t).

Each of the three quantities is in general continuously dependent on location, c/>,

and time, t. Our notation is used to to demonstrate whether the data available to

us is discrete (MLD and PAR, shown with square brackets) or in continuous closed

form (clay length, curly brackets).

2.5. Simulator input: physical forcing 17

The forcing values are taken to be known throughout this thesis, although this

is clearly a simplification and, in general, forcing functions can themselves contain

large amounts of uncertainty.

2.5.1 Mixed Layer Depth

The model describes plankton evolution in the Mixed Layer; the volume of water

directly below the surface of the ocean outside of which it is assumed (by the model)

that plankton is unable to survive. Formally, the Mixed Layer Depth (MLD) is

defined in one of the following two ways:

• Temperature Criterion The depth at which the temperature falls to 0.5°C

below that at the sea surface.

• Density Criterion The depth at which the density difference from the surface

is 0.125 sigma units.

The mixed layer time series in our model are based on the temperature criterion

and are taken from the output of a climatologically forced ocean general circula­

tion model (J ia, 2000) corresponding to the final year of a 16 year integration of

the coarse resolution (4/3°) version. Figure 2.5 plots the MLD series for the four

demonstration locations. The minimum values of the MLD series at the four stations

span the range 22m-30m and the maximum values 262m-550m. This compares to

20m-30m for minima and 225m-801m for maxima over the thirty stations in Figure

2.1. Comparing Figure 2.5 with the simulator output at the default input settings

in Figure 2.3, we see that the stations with larger MLD levels tend to result in larger

nutrient levels.

The MLD series, J\1, is also used by the simulator in forming h+ = max(O, dM/dt)

with the dl\1! / dt series formed by differencing values of 1\1!.

2.5.2 Photosynthetically Available Radiation

The Photosynthetically Available Radiation (PAR) available directly below the sea­

surface, I0 (t, tv), is in general a function of the time since the start of the year, t,

2.5. Simulator input: physical forcing 18

Station 1 015 Station 1113

0
0
l/)

0
0

r1
..,.

E 0 - 0
M

0 % _J

::2: 0 9
0
N

0

~

0

Station 1116 Station 1215

0

_,..,
0 0 8 l/) ,

0
0 0 0 ,

~ 0 0
0 e

I 0
0
M

0
_J

::2: 0
0
N

0
0
~

0

0 60 120 180 240 300 360 0 60 120 180 240 300 360

time (days) time (days)

Figure 2.5: Mixed layer depth (m) against time (days) at the four stations.

and the time of day since sunrise, tD. For the purposes of integrating, the following

product form is taken

where

fv(tv) ~ {
4 t

y2 D E [0, ~]

PAR forcing for I 0 (t) was taken from SeaWiFS PAR Standard Mapped Image

data of 8-day mean values for the year 1998 taken at a resolution of 9km. For each

available time point, a value was computed for each station by averaging values

2.5. Simulator input: physical forcing 19

Station 1 015 Station 1113
00 - -

CO -

a:
<('<t -
a..

C\J -

0 -

00 -

CO -

a:
<('<t -
a..

C\J -

0 -

o oo...o
0 CC() -v

0
0 0

0 00
0 0

0
0

0 0 0

cP 0 0 o
0

0 0

0 Or:fPJ Oo
0

o
0 CXXXb

I I I I I I I

Station 1116

0

0

cP 0
00 0

oo:P
0 0

0

cP Ooo
Oo

% oo
0

0

rfP~ ooc:P

0 0
~ cfXJo

0

I I I I I I I

0 60 120 180 240 300 360

time (days)

-

-

-

-

-

-

-

-

-

dp

OocP
0 0

0 0 0

0 0
0

0

0

0
00

0 0

0

0 ~
0 0

0000 oo

ocf:XJ Cb~ cP
00

I I I I I I I

Station 1215

0

0

0 oo

oo 0
0 0

0
0 CO cP

0 0 0
0 cP

0 0
00

cP 0

cP o"o
0

ofl:J ~

I I I I I I I

0 60 120 180 240 300 360

time (days)

Figure 2.6: Photosynthetically Available Radiation against time (days) at the four sta-

tions.

over a lOOkm radius about the station. Series at the four demonstration stations

are shown in Figure 2.6. We see that, at each station, PAR rises to a peak in mid

summer before falling again.

2.6. System observations 20

2.5.3 Day length

Day length, r, as a function of latitude, cPy, and number of days since the start of

the year, t, is given by (Brock, 1981)

(
A,) = arccos(-tanfJ(t)tancPy)

T 'f'y, t
27r

(2.1)

where

((
284+t)) {J (t) = 0.40928 sin 27r

365
(2.2)

is the angle between the sun and equator, in radians, at solar noon. Note that

0.40928 rad = 23.45° is the angle between the earth's axis of rotation and the

direction perpendicular to its orbit.

2.6 System observations

Past observations from the physical system at different locations are available which

might be used to calibrate the unknown input parameters. The observations are

those used in Hemmings et al. (2003) received in their final form after the process­

ing described in this section had been carried out.

For each valid station, we have:

• A time series of chlorophyll a observations as an estimate of phytoplankton

concentration at the corresponding time-points.

• Climatological nitrate and mixed layer depth data used to produce an estimate

of the winter-time nutrient concentration; i.e. this gives us a single value to

calibrate against.

2.6.1 Chlorophyll Data

The data consists of time series of chlorophyll a observations for the year 1998,

derived from satellite observations made by Sea WiFS Standard Mapped Image ocean

colour data at a resolution of 9km (McClain et al., 1998). The ratio of chlorophyll

2.6. System observations 21

to phytoplankton is taken to be 1 mol N per g chlorophyll so that the quantities

correspond exactly.

,--_ ~ -
'?
E
Ol ~ -
E_,

>- ~ -.s=
a.
e

_Q ~ -
.s=
0

6 -

:3 -

,--_ ~ -
'?
E
Ol ~ -
E

>- ~ -.s=
a. e

_Q ~ -
.s=
(.)

6 -

:3 -

Station 1 015

0

~--~--·~------~--·~------~--·1----~l

Station 1116

0

0 #eft
00

Oco oo
oo 8

~6> ~0
0 ...,9P08 0

§oo ~

~--~--·~----.-l--,l----.-1--,l----~1

0 60 120 180 240 300 360

time (days)

-

-

-

-

-

-

-
I

-

-

-

-

-

-

-
I

0

<§> 00

I

Station 1113

Oo
0
0

0
0 0 0
0 ° 0

0 0 0~
o 8 fliP Q)o

OS o 'b&o

I I I I

Station 1215

0

'bo

0 0 ~

I

I I I I I I

60 120 180 240 300 360

time (days)

Figure 2. 7: 0 bserved chlorophyll (m mol m - 3) at the four locations recorded for 1998

where t = 0 corresponds to midnight GMT on 31st December 1997.

Time series for each of the thirty stations in Figure 2.1 were derived by averaging

all valid pixels within a 100km radius of the corresponding station's position. Figure

2. 7 shows the resulting series for the demonstration stations. In broad terms, we see

a noticeable bloom in spring, with levels then either rapidly dropping again (as in

Stations 1015 and 1215) or being maintained at elevated levels through the summer

before a gradual decline in the autumn (as in stations 1113 and 1116).

2.6. System observations 22

The phytoplankton observation series contain various sources of measurement

error and uncertainty which are difficult to quantify. In particular, the original

chlorophyll series are the result of complex processing algorithms applied to the

ocean colour data- itself, a combination of light wave signals from numerous sources

- in order to extract the part of the signal corresponding to chlorophyll. Figure 2.8

illustrates the complexity of the task at hand, showing the main sources known to

contribute to the signal detected by the satellite sensor. Light which is scattered

into the sensor by molecules and aerosols in the intervening atmosphere can be up

to as much as 95% of the total signal so that errors in "atmosphere correction"

algorithms, which seek to remove this signal, can lead to significant errors in the

processed data sets (Cordon, 1993). The target of SeaWiFS is to estimate the

phytoplankton concentrations to within ±35% of their true values, where validation

is carried out by comparison with more accurate readings taken from cruises and

bouys. The attraction of ocean colour data, compared to the more accurate in situ

measurements, is the extensive spatial and temporal coverage offered so, although

less accurate, much more data is available to calibate against. We can expect to

reduce these errors through our averaging of pixels, although by how much is unclear

since values at adjacent pixels are unlikely to be independent.

2.6. System observations

oceanic
aerosol

turbulent I; /)Q
• I;

resuspens1on
of

~satellite \r) sensor

continental aerosol

land
drainage

k----;,---~--:r--' ___,
absorption' and reflectance

of sea bed

23

Figure 2.8: Optical interactions for Ocean Remote Sensing. Reproduced with permission

from Andreas Neumann and Jill Schwarz.

2.6. System observations 24

2. 6.2 W inter time Nutrient data

At twenty five of the stations, a single nutrient observation, Nw,s, is obtained by

treating a climatological estimate of the winter time nitrate level as an observation

on the winter time nutrient level. In general, the nutrient compartment, which

accounts for nitrogen in dissolved form, is a combination of nitrate and ammonium.

In winter, however, the concentration of ammonium is assumed to be negligible and

the nitrate value can be taken as an estimate of Nw,s, the nutrient value at the

corresponding t ime point.

sow 70"W 60"W 50"W 40"W 30"W 20"W 10"W ow

Figure 2.9: Estimated annual maximum nutrient concentration in the mixed layer (mmol

m-3). Circles denote stations and additional crosses mark stations where nitrate estimates

are available.

2.6. System observations 25

s 606 708 709 710 711 809 810 811 812 911

Nw,s - 1.95 2.66 2.50 - 6.35 5.82 6.03 4.04 -

s 912 913 1013 1015 1113 1115 1116 1117 1214 1215

Nw,s 8.42 6.16 10.63 13.77 15.12 15.85 14.68 15.23 16.5 16.03

s 1216 1217 1218 1313 1318 1319 1320 1416 1419 1420

Nw,s 15.1 14.51 13.32 - 14.26 13.64 13.06 - 12.44 13.32

Table 2.2: Mid-winter nutrient observations, Nw,s at each station, s.

Estimated annual maximum nitrate values were obtained by averaging clima­

tological estimates of mixed layer depth over the period February-April and then

interpolating annual vertical nitrate profiles to this depth. The vertical nitrate pro­

files were taken from World Ocean Atlas 1 o analysed annual mean fields (Conkright

et al., 1998) and the mixed layer depth estimates from monthly data also on a P

grid (Levitus, 1982). Locations with a winter-time mixed layer depth of less than

lOOm were discarded because nitrate concentrations above this depth are known

to exhibit strong seasonal variation. Estimates for each station were obtained by

averaging the nitrate field over a 3 x 3 grid centered on the corresponding station

location.

Figure 2.9 shows the resulting annual nitrate maximum field with station loca­

tions laid over. Five of the thirty stations- 606, 711, 911, 1313, 1416- were omitted

because more than half the points in the 3 x 3 grid centered on these locations

contained no observation. These omissions are denoted in Figure 2.9 by the absence

of a cross inside the circle at these locations. The resulting values for stations are

given in Table 2.2.

As with the chlorophyll observations, the Nw,s contain errors from various sources,

including in the original mixed layer and vertical nitrate profile data and in the in­

terpolation of this data. We expect to reduce the combination of errors through the

averaging, although by how much will again be difficult to quantify.

2. 7. Recap: General features of the problem 26

2. 7 Recap: General features of the problem

To conclude the chapter, we note that in general we are interested in models formed

from a series of linked compartments, the form of whose equations are known but

contain unknown input parameters which we wish to calibrate using physical data.

Although given in closed form, the equations are coupled and non-linear so that their

solution is not obtainable analytically but only approximately using a numerical

solver. This last consideration is the norm for almost all compartmental models of

any practical relevance. For an investigation of uncertainty in linear compartmental

models which relies on exact, closed form solutions of outputs in terms of inputs

being obtainable, see Cooke and Kraan (2000a,b).

Chapter 3

Computer Simulators and

Emulation

The model and calibration problem outlined in Chapter 2 is essentially a statistical

one. In this chapter we introduce and advocate a rigorous statistical approach

to dealing with the uncertainties in problems of the type outlined in Chapter 2

and describe relatively recent statistical methodology for doing so. Our standpoint

remains Bayesian throughout as we believe this offers the only natural interpretation

of various aspects of the problem. The final two sections introduce the Bayes Linear

methodology which, whilst Bayesian in spirit, drops full distributional assumptions

required for beliefs in a full Bayes analysis and replaces them with low order belief

structures which we believe to be more appropriate to problems of this type.

3.1 Computer Simulators

In general, a computer simulator, s(-), for a physical system, y, takes some input,

x, and produces output, s(x), as a representation of y. Access to such a simula­

tor, together with historical observations from the system itself, gives rise to two

immediate questions: "Which inputs produce outputs which closely match histor­

ical data?" (Calibration) and "How can we combine historical data and simulator

output to predict future system behaviour?" (Forecasting). There is a considerable

literature in this area; see Sacks et al. (1989) and Currin et al. (1991) for an early re-

27

3.1. Computer Simulators 28

view and Bayesian interpretation. Bayesian approaches are outlined and developed

in detail in Craig et al. (1997) and Kennedy and O'Hagan (2000) whilst Santner

et al. (2003) provides a recent and comprehensive overview of the field.

The need for such work is a result of the many difficulties associated with using

such simulators for calibration and forecasting. Computer simulators are used to

model complex physical systems. They offer the opportunity to perform experiments

relating to systems for which direct physical experiments on the system are either

impossible or prohibitively expensive. At the same, they also often encode much

uncertainty from various sources, which we summarise below.

3.1.1 Uncertainty on inputs

Inputs to the simulator are unknown. Some inputs may relate directly to a phys­

ical quantity which is measurable (with error), but often - as with many of the

parameters in our model, summarised in Table 2.1 - they will be poorly known

and immeasurable, often relating to unphysical, aggregated quantities. This is a

typical feature of compartmental models. Calibration aims to find combinations of

input parameters that give rise to simulator output which closely matches historical

observations. This can be thought of in terms of learning about the value of the

'true' input. The hypothesis that such a 'true' input exists (we adopt the term 'best

input' for reasons which will become clear) raises several issues, primarily because

the model is not an exact representation of reality, but rather there exists model

discrepancy.

3.1.2 Model discrepancy

A computer simulator is a simplified representation of a physical system based on

approximate science. For example, our model is a simplified form for which there

are various more complicated models which themselves, although more accurate,

are far from being exact (Hemmings et al., 2004). This means that, even if we

were to remove all uncertainty relating to the inputs to the simulator, we would

not expect the simulator to predict exactly the physical system. We will therefore

3.1. Computer Simulators 29

be interested in the 'discrepancy' between simulator and system, which we might

define, for example, as the distance (in some metric) between the physical system

and simulator at the best inputs.

The assumption of a best input is reasonable if the simulator is a good represen­

tation of the system and, from our point of view, it provides a device which allows

us to link simulator and system together and proceed. The interested reader might

consult Goldstein and Rougier (2004) for an in depth discussion of related issues.

3.1.3 Observation error

Observations from the physical system itself usually come with observation error.

As is the case with the observations presented in Section 2.6, this uncertainty can

be a combination of uncertainties from various sources and the error structure will

often be complicated.

y historical observations

measurement error e
y system

discrepancy

s(xo) best output

simulator {s(x), X EX} Xo best input

Figure 3.1: Conditional Independence Graph for the simulator, s(-), the best input, x 0 ,

the physical system, y, and observations of the system, y. Any two nodes are independent

given the values of all their parent nodes.

3.1. Computer Simulators 30

Figure 3.1 shows a possible way to link the simulator to the system through

these sources of error together using a Bayesian Graphical Model (see e.g. Cowell

et al., 1999) and captures the essence of the problem: to use a simulator, s(·), and

observations, y, to learn about a physical system, y. The implications of the exact

form of the Graphical Model are discussed in general and for our physical problem

at the start of Chapter 7. A Bayesian interpretation, which we keep to throughout

this thesis, is natural because of the subjective nature of the various aspects of the

problem outlined and the consequent difficulty in describing them 'classically'. In

particular, the discrepancy term, which represents our beliefs about the difference

between simulator and system from a Bayesian perspective, is irreducibly subjective

in the sense that there is no experiment that we can do to learn about it. In addition,

the simulator we consider is deterministic so that running the code at the same set

of inputs always produces the same output. However, as it appears in Figure 3.1,

the implicit assumption is that s(-) is in some sense random. Once again, this

apparent contradiction can be dealt with naturally using a Bayesian argument since

we can consider the simulator as 'unknown to us'. In particular, since we can only

observe the simulator at a finite number of input points, we are uncertain about the

simulator output values over most of the space of inputs. The implications of this

fact leads us to highlight a further area of uncertainty.

3.1.4 Simulator uncertainty

Simulators often contain a large number of poorly known input parameters and can

also be expensive, in CPU time, to run. When either condition applies, we can

only hope to get a thin coverage of the input space by evaluating the simulator at

different input choices. Moreover, the simulators are often complex so that the effect

that changing inputs has on simulator output is far from transparent. For the model

described in Chapter 2, although the run time takes only a few seconds, there are

thirteen unknown input parameters so that even a very sparse 313 factorial design

at a single station would require over a year of computing time (and we have thirty

stations!) This leads onto uncertainty about the value of simulator output, which

can be represented by building an emulator.

3.2. Emulators 31

3.2 Emulators

In cases when the simulator is such that only a thin coverage of the input space is

possible, a popular approach has been to construct a surrogate for the simulator,

termed an emulator, as a stochastic representation of our beliefs about the deter­

ministic simulator. Early work based on this approach is reviewed in Sacks et al.

(1989). A common approach to emulators is to write down a representation of the

output, s(x), of the following form

s(x) = Bg(x) + r(x) (3.1)

In the presentation here for simplicity we consider s(x) to be univariate although

the extension to multivariate forms is, in principle, straightforward. The first term

in (3.1) describes the main global effects of the inputs, in which g(x) is a known

vector of functions and B is a set of unknown coefficients. The second term, r(x),

is a random process constituting a correlated error structure, which is taken to be

uncorrelated with B. (In reality this is a simplifying assumption and B and r are

correlated since s(x) is deterministic; it is justified by the fact that any contribu­

tion from associated terms is small when variation accounted for by r is small and

because, in any case, the dropped terms have little affect once we begin to make

observations on s(x).)

A very popular choice is to take r(x) to be a Gaussian process, which is char­

acterised by the property that all finite dimensional probability densities are multi­

variate Gaussian

1 (1 (T -l) P-yJ, ... ,-yn(x) = (
2
n)'i(deO.::)! exp - 2(x- m x)) E (x- m(x)) (3.2)

and is thus determined completely by its mean function, m(x) = E[r(x)J, and eo-

variance function, E, then x n matrix with elements Ei,j = Cov[r(xi), r(xj)]. We

take E[r(x)] = 0 and E = 0"
2 R where 0"

2 is a variance parameter and R is an x n

positive definite correlation matrix, ~.j = r(xi, Xj)· Typically, r(·, ·) is taken to

be isotropic and stationary so that it is a function of the distance between points,

r(xi,xj) = r(llxi- xjll), where r(O) = 1 and r(llxi- xJII) decreases monotonically

to zero as llxi- Xjll -too.

3. 2. Emulators 32

Popular choices for R are (for x scalar):

Power Exponential

r(x, x') = exp (-Bix - x'IP), 0 < p :::; 2 (3.3)

Matern

r(x, x') = r(v)
1
211_1 (2Mix- x'l)

11
I<v (2Mix- x'l) (3.4)

where I<11 (x) is the modified Bessel function of the second kind, order v (see Ap­

pendix F for more details).

The parameter, e, which appears in the Power Exponential and Matern forms, is

often referred to as a 'smoothness' parameter although, as is clear from the equations,

it is in fact a scale parameter. The parameter, p, appearing in the Power Exponential

form, is referred to as the 'shape' parameter, because of its effect on the shape of

the correlation function. The parameter plays an important role in determining

smoothness of solutions, since p = 2 yields infinitely differentiable realisations (in

the mean-square - see Section 4.1 for more details) whilst p < 2 corresponds to

realisations which are non-differentiable. In this thesis, our interest shall be in

differentiable processes only and we restrict attention to the case p = 2. For the

Matern family, v might also be more accurately described as a smoothness parameter

than e, determining the differentiability of the process: realisations are almost surely

continuously differentiable with order ([v]- 1) where [v] is the smallest integer that

is greater than or equal to v (sometimes referred to as the integer ceiling of v).

A popular and widely-used special case of both families- corresponding to taking

p = 2 in the Power Exponential class, and taking the limit as v ---+ oo in the Matern

class (see Appendix F) - is the Gaussian correlation function (given for multivariate

x)
R(x, x') = exp-(x-x')Te(x-x')' 8 = diag(el' ... , ep) (3.5)

Figure 3.2 shows realisations from the Matern and Gaussian families for varying

parameter values. From the Figure, we see why e is often- misleadingly, from our

point of view - referred to as a smoothness parameter. We see that, as we increase

3.2. Emulators 33

theta= 0.1 theta= 1 theta= 10

"'
"'

11 0
::I
c:: I

"' I

"'
"'

Ct)

11 0
::I
c:: I

"' I

"'
"'

:E
11 0

::I
c:: I

"' I
-1.0 -0.5 0.0 0.5 1.0 - 1.0 -0.5 0.5 1.0 -1 .0 -0.5 0.5 1.0

~
X

~
,...__

0 .s:::. ..._, Ill

a: ci

0
0
ci I I I

- 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
h h h

Figure 3.2: Realisations from a Gaussian process with Matern Correlation function,

Rv,e(x) , shown for different v and (} values. The final row shows Rv,e(h) with (} fixed

at the corresponding column value and varying v = 1 (black), v = 4 (red), v = oo (green).

() (move from left to right in the Figure) , realisations become more wiggly, with an

increasing number of turning points. The effect is purely one of scaling, however,

with us effectively stretching the realisations sideways as we decrease 0. Comparing

plots in the final row we see that , as we increase () , correlations between pairs of

points decrease. Increasing v (moving from top to bottom in the Figure) , we increase

the differentiability of the realisations. This is most in evidence for v = 1 (top row)

where we see that realisations are not differentiable no matter how 'smooth' the value

3.2. Emulators 34

of e. Moving from the second to third row takes us from third order differentiability

to infinite differentiability (corresponding to the Gaussian case), although it is hard

to see much difference by eye. One of main differences in the correlation functions

(bottom row) is visible at h = 0. For v = 1 (black), it is clear that the correlation

function is not differentiable at h = 0. In Chapter 4, where we discuss more closely

differentiability of random processes, we see that the conditions of differentiability

we develop do not hold anywhere if they do not hold at the origin. Again it is

difficult to see much difference between v = 4 and v = oo although the former is

four times differentiable at the origin and the latter infinitely differentiable.

The Power Exponential and Matern families have natural product form general­

isations, for multivariate x = (x 1 , ... , xp), given by r(x) = f1f=1 r(xi), where we are

free to take as few or as many of the parameters to be indexed by i. Although the

families describe within them a collection of covariance functions with a wide range

of different behaviours, they are by no means the only possibilities; see Schlather

(1999) for many more.

A possible extension to the model arises when there exists a subset x* of x, termed

the "active inputs", which are responsible for most of the systematic variation in

s(x). When this is the case, as in Craig et al. (1997), we take g(x) = g(x*) to depend

only on active inputs. Furthermore, we split r(x) further so that

r(x) = E(x*) + c5(x \ x*) (3.6)

In this representation, the E-surface is a correlated error structure describing vari­

ation explained by active inputs but not picked up by the global effects, and the

c5-surface, taken to be uncorrelated with the E-surface, describes any variation ex­

plained by the set of remaining (non-active) inputs x \ x*. The advantages in this

representation arise when we believe that the c5-surface, which captures variation in

non-active inputs, has variance, CTJ, which is small. We discuss these advantages in

Chapter 4.

3.3. Bayesian approach 35

3.3 Bayesian approach

A Bayesian approach lends itself well to the problem of building and refining an

emulator for a simulator. From a Bayesian perspective, the emulator is interpreted

as a representation of our beliefs about the relationships between inputs and outputs

in the simulator. Starting with prior beliefs we can then update these beliefs as we

observe simulator output at different input choices. Not only is this updating process

very natural, but also our ability to build in any prior information we have about

the simulator is potentially very useful, given that we can only expect to obtain a

thin coverage of the input space.

Bayesian approaches, such as those in Currin et al. (1991) and Kennedy and

O'Hagan (2001a,b), have also relied heavily on Gaussian processes for tractability.

Assuming a Gaussian process prior fors(·),

s(·) rv N (m(·), v(·, ·)), (3.7)

the posterior distribution for s(·), conditioned on the set S = (s(XI), ... , s(Xn))

of observed function values (assuming for the time being that m(·) and v (·, ·) are

known), is also a Gaussian process

where

s(·) IS rv N (ms(·), vs(·,·))

ms(x)

vs(x, x')

m(x) + c;v-I(S- M)

v(x, x')- c;v-Icx'

v(x, XI) m(XI)T

Cx = M=

v(x, Xn) m(Xnf

v(XI,XI) v(XI,Xn)

V=

v(Xn, XI) v(Xn,Xn)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

3.3. Bayesian approach 36

In general, m(-) and v(·, ·) are unknown, and in this case the approach has typically

been to specify their form through a collection of hyper-parameters on which (3. 7)

is conditional and then set up a hierarchical model. For example, O'Hagan (1992)

treats (3. 7) as the first conditional factor in the following hierarchical model

where j] and a 2 are hyper-parameters corresponding to

E[s(x)l/3, a 2
]

Cov[s(x), s(x')l/3, a 2
]

g(xfj]

(3.13)

(3.14)

(3.15)

The vector g(x)T = (g1 (x), ... , 9q(x)) is a q-vector of known regressor functions

and M= Gf] in (3.9) with er= (g(X1), ... , g(Xn)). Prior Normal and Inverse-x2

distributions are attached to j] and a 2 respectively

2 -2
(J rv SoXao .

where the latter is characterised by

This yields posterior distribution for f],

where

and posterior for a 2
,

b

B

B- 1(Bobo + GTV- 1S),

B0 + crv- 1G

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

3.4. Partial Beliefs: Bayes Linear Methods

where

a a0 + n- q,

s So+ sr (v- 1 - v-1G(GTV- 1G)- 1GTV- 1) S.

37

(3. 23)

(3.24)

In general, further hyper-parameters will be introduced into (3.13) through spec­

ification of the correlation function r(x, x'). Kennedy and O'Hagan (2001a,b) con­

sider the Gaussian and Matern correlation functions and note that integrating out

these hyper-parameters is only possible numerically using computationally inten­

sive high-dimensional quadrature. Acknowledging that much of their subsequent

methodology is computationally intensive, they conclude that a full Bayes analysis

of these hyper-parameters will often not be possible and opt to 'derive plausible

estimates of these parameters and then to act as if they were fixed'. Currin et al.

(1991) use computationally demanding maximum likelihood methods to estimate

hyper-parameters, but discover a further problem - that often there is not enough

information in the data to distinguish between competing values of (a, 8) in the

Gaussian covariance function. For a good discussion of the problems of maximum

likelihood for estimating these parameters, see Ripley (1988). Estimating these

parameters is something we will return to in Chapter 4.

3.4 Partial Beliefs: Bayes Linear Methods

Bayesian methodology provides a mathematically rigorous and philosophically sound

framework to deal with the subjective aspects inherent in real-world situations in­

volving uncertainty. However, in almost all practical situations, it is beset by two

main problems. Firstly, although probability distributions are a natural medium

for representing quantities of uncertainty, they do not necessarily transfer to the

representation of an individual's subjective beliefs. In particular, individuals can

rarely justify distributional assumptions for their beliefs (to see this, consider a

single, scalar quantity and consider your beliefs about each of its moments). The

parametric families employed will be chosen for convenience and, although in simple

situations they may represent a good approximation to actual beliefs, in more com­

plicated situations, results can potentially be sensitive to specifications which are

3.4. Partial Beliefs: Bayes Linear Methods 38

not strongly held. The second issue is computational: as we saw in Section 3.3, pos­

terior distributions are often not available in closed form and the methodology must

either be compromised or computationally-intensive numerical integration methods

employed, in turn limiting the scale of problems that can be dealt with.

Motivated by these two issues, the Bayes Linear methodology aims to enable

rigorous statement and updating of partial belief specifications within a framework

which also does not fall prey to the same computational pitfalls of a full Bayes

analysis. In doing this, it effectively kills two birds with one stone: removing full

distributional assumptions whose connection to actual beliefs is tenuous at best and,

in doing so, throwing off the computational millstone attached to analysing these

'beliefs'.

The Bayes Linear approach treats expectation, rather than probability, as a

primitive for expressing our beliefs about random quantities (See de Finetti (1974)

for a careful treatment of expectation as a primitive and Goldstein (1999) for a survey

of the Bayes Linear approach). In particular, for a collection, C = (C1, C2 , ...), of

random quantities, we specify directly:

1. the expectation, E[C], for each element C in C

2. the variance, Var[C], for each element C in C

3. the covariance, Cov[C, C'], for each pair of elements (C, C') in C

Formally, we define the Belief Structure, [C], for C to be the inner product space

formed from:

1. the space of linear finite combinations of the elements of C and the unit con­

stant C0 , together with:

2. the inner product (·, ·) and norm 11 · 11 for C, C' E C defined by

(C,C')

IICII 2

Cov[C, C']

Var[C]

(3.25)

(3.26)

To complete the definition, we define the inner product space over the closure

of the equivalence classes of random quantities which differ by a constant. This

3.4. Partial Beliefs: Bayes Linear Methods 39

enables us to standardise each quantity by subtracting its prior expectation so that,

in particular, all constant terms become equivalent to zero and 11 C 11 = 0 if and only

if C = 0 as required.

Suppose we observe data, V= (D1 , ... , D 8), and let B = C\V be the collection of

remaining unobserved quantities in C about which we wish to revise our beliefs given

the data. Then the adjusted expectation of B given V is the element Ev[B] E [V] that

minimises IIB-Ev[BJII· In other words, Ev[BJ, for BE B, is the linear combination

of the data (including constant term D0), Ev[B] = ""L;=o cjDj, which minimises

s

L = IlB- I: CjDjll (3.27)
j=O

over the space of possible c.

Squaring both sides of (3.27), differentiating with respect to components of c,

equating to zero and solving the resulting matrix equations, we obtain

ED[B] = E[B] + Cov[B, D]Var[Dr 1(D- E[D]) (3.28)

From (3.28) we see that the rule has several intuitively appealing properties.

Firstly, we note that E8 [B] = B but also that the influence of the data in the ad­

justment is larger the larger the prior correlation between B and D, the smaller the

prior data variance, Var[D], and the greater the distance between the prior expec­

tation, E[DJ, and the observed value D.

Geometrically, Ev[B] is the orthogonal projection of B onto [V]. The adjusted

variance of B given V is the squared orthogonal distance from B to V, given by

VarD[B] IlB- ED[BJII 2

Var[B] - Cov[B, D]Var[Dr 1Cov[D, B] (3.29)

Eqn. (3.29) offers intuitive properties in that the greater the prior correlation

between B and D, the greater the amount of variance reduced by observing D.

Similarly, the covariance of B and B' adjusted by D is given by

CovD[B, B'J E[(B- ED[B])(B'- ED[B'])J

Cov[B, B']- Cov[B, D]Var[Dr 1Cov[D, B'] (3.30)

3.5. Bayes Linear emulators 40

It is worth noting that (3.28) and (3.29) correspond to (3.9) and (3.10), the con­

ditional mean and variance obtained in the full Bayes analysis based on a Gaussian

Process with known mean and covariance function.

3.5 Bayes Linear emulators

We follow the approach of Craig et al. (2001, 1996, 1997, 1998) in only requiring

second order beliefs to be specified and then using Bayes Linear methods to update

these beliefs. In general B denotes a vector of quantities about which we have beliefs

and D an observed data vector related in some way (as defined by its covariance

structure) to B. For our purposes, B is replaced by the simulator, s(x), and D by

S = s(X), the set of simulator output observed at X = (X1 , ... , Xn)·

Our reasons for adopting the Bayes Linear approach in this thesis are the two

given at the beginning of Section 3.4: firstly, the simulators we are concerned with are

highly complex and consequently very difficult to elicit full belief structures for and,

secondly, the approach allows certain largely intractable calculations to be performed

without the computationally intensive methods required in a full Bayes analysis.

Furthermore, in the next chapter, where we consider extending the methodology

to allow for observation of derivatives, deriving the required joint distributions in

a full Bayes analysis further compounds the heavy reliance on a Gaussian process

framework for tractability.

Chapter 4

Adjusting emulators based on

derivatives

In this chapter, we consider the situation in which derivatives of the simulator are

available and show that the methodology described in Chapter 3 can be extended

quite naturally to allow for inclusion of such derivatives. We begin with some nec­

essary background on random processes and their derivatives, before developing the

extensions to the methodology in Chapter 3, which allow us to update beliefs about

the simulator based on derivatives when they are available. Finally, we perform

some theoretical calculations to get an idea about how much extra information we

can hope to gain from including derivatives.

4.1 Random Processes and derivatives

In this section, we summarise some basic ideas concerning random processes and,

in particular, those concepts related to the differentiation of such processes. The

discussion is based on Yaglom (1986), where more details can be found.

Let Y (x), x scalar, be a random process on probability space x. Then Y (x) is a

random process of second order if the expectation m(x) = E[Y(x)] and cova.riance

C(x, x') = Cov[Y(x), Y(x')] exist. A process Y(x) is said to be mean-squared dif­

ferentiable at x = a if there exists a random variable y(l) (a) with E[Y(l) (a)] < oo

41

4.1. Random Processes and derivatives

such that

1. E IY(a +h)- Y(a) y(I)()1
2

0 1m h - a =
h-+0

The process y(l) (x) exists on an interval, I, if and only if the derivatives

dm(x) oC(x, x')

dx ' ox

oC(x, x')

ox'

42

(4.1)

(4.2)

exist on I. When this is the case, the quantities in (4.2) correspond to E[Y(ll(x)],

Cov[Y(l), Y] and Cov[Y, y(ll] respectively.

Higher order derivatives can then be defined by a simple inductive argument so

that, for example, y(z) (x) is the mean squared derivative of y(l) (x) and so on. This

leads to analogous conditions that a process Y (x) has nth mean square derivative if

and only if the derivatives

di
-d .m(x),
x~

exist for all i, j :::; n. Moreover, when this is the case,

d
-d m(x)
x~

(4.3)

oi+j

0 0
. C(x, x')

x~ x'J
Cov[Y(i)(x), yUl(x')] (4.4)

It is similarly straightforward to generalise the ideas of mean square differentia­

bility to multivariate x.

Before we proceed any further, let us first stop and examine the definition of

mean-square differentiability given in (4.1). Note that the mean-square differen­

tiability of the process Y(x) for all x does not mean that all realisations y(x) of

this process will be differentiable. Rather the requirement is that, for a given x,

the probability that the process is non-differentiable in the interval [x, x + h], for

h small, is very low so that the mean square of y(l) - Y(x+htY(x) is also small. In

fact, the realisation y'(x) of the derivative Y'(x) of a differentiable process Y(x)

may be a discontinuous function of x. On the other hand, the process Y(x) may

also be non-differentiable when all its realisations y (x) have continuous realisations

y'(x) (Yaglom, 1986, provides examples of both).

4.2. Beliefs about Derivatives 43

In practice, however, this turns out to be something of a technicality and, for

those differentiable stationary processes suitable for practical situations, realisations

y(x) turn out to be differentiable and the functions y'(x) coincide with the realisa­

tions of the process Y' (x). This is the case for the Mat ern correlation function for

which, as we remarked in Chapter 3, derivatives of realisations of a process with

smoothness parameter v are differentiable to order [v]- 1. It also true for the Gaus­

sian correlation function (to see this, recall that the Gaussian is simply the limit of

the Matern as v -----+ oo). The coincidence of derivatives and realisations is a crucial

one for our needs in the next section, where we will be concerned with updating

beliefs about a process based on derivatives realised from that process.

4.2 Beliefs about Derivatives

Specifying an emulator for a function induces an emulator for the derivatives of

the function. In this section, we derive the covariances between a function and

its derivatives and discuss how we might exploit these implications to improve our

specification and refinement of the emulator.

For a univariate process, s(x), with covariance function, v(x, x'), the order of

integration and differentiation can be swapped provided the indicated derivatives

exist so that, for example,

Cov [ams(x)jox~, ans(x')/BxT] = am+nv(x,x')jaxr;oxjn. (4.5)

Recall the emulator model specified by (3.1) and (3.6)

s(x) = Bg(x*) + t:(x*) + o(x \ x*). (4.6)

If Xi and x1 belong to the set, x*, of active inputs, then provided g(x) is differentiable,

we have

v(x, x')

Bv(x, x')joxi

B2v(x, x') 1 axioxj

g(xfVar[B]g(x') + Cov[t:(x), t:(x')J + Cov[b(x), o(x')J

8g(x)/8xiVar[B]g(x') + 8j8xiCov[t:(x), t:(x')J (4.7)

8g(x)j8xiVar[B]8g(x')/8xj + 8 2 j8xi8xjCov[t:(x), t:(x')]

4.2. Beliefs about Derivatives 44

If either xi or Xj does not belong to x*, but rather is inactive, then differentiating

(4.6) yields

ov(x, x')loxi = oloxiCov[6(x), 6(x')]

82v(x, x')loxioxj = 82 loxioxjCov[6(x), 6(x')]

For the t:-surface, the Gaussian covariance kernel, given for multivariate x by

(4.8)

Cov[t:(x), t:(x')] = exp-(x-xYe(x-x'l, 8 = diag(81 , .. . ,ep), ei > 0, (4.9)

is infinitely differentiable and so the interchange of order of differentiation and inte­

gration is allowed. Differentiating (4.9) and making the interchange of order explicit,

we obtain

Cov[ot:(x)loxi, t:(x')] = -28i(xi- x~)Cov[t:(x), t:(x')]

Cov[ot:(x)loxi, ot:(x')lox~] = 28i (l(i=j)- 28j(xi- x~)(xj- xj)) Cov[t:(x), t:(x')]

(4.10)

where 1(i=j) = 1 if i = j and zero otherwise. An immediate consequence of the

equations in (4.10) is the following three equations:

Cov[ot:(x)loxi, t:(x)]

Cov[Ot:(x) I oxi) ot:(x) I OXj l

Var [ot:(X) I oxi]

0

0 fori =I j

(4.11)

(4.12)

(4.13)

There are a couple of interesting points to note from this second set of equations.

Firstly, we see from (4.11) and (4.12) that, at any given point, the separate pieces

of information given by the function value and each of the first order derivatives

are all orthogonal to each other in terms of what they tell us about the function at

that point. Secondly, we see from (4.13) that the variability of the derivative with

respect to xi is related linearly to ei. This suggests that derivatives may be useful

in estimating 8, something we will return to in Section 4.5. The top left hand

panel in Figure 4.1 plots the covariance between function values and derivatives

derived in (4.10) for x scalar. We see the effect of the multiplicative distance term,

which appears in the expression for Cov[t:(x), dt:(x')ldx'], is that the covariance

between t:(x) and a derivative observation, dt:(x') I dx', does not decrease as quickly

4.2. Beliefs about Derivatives 45

0
111 N

111

C!

C!

lO
0

lO
0

0
0 0

0

lO lO 0 0 I I

C!
0

I I

-3 -1.5 0 1.5 3 -1.0 -0.5 0.0 0.5 1.0

h X

0

A
0

lO

0
I

0

C!
I

111
I

-1.0 -0.5 0.0 0.5 1.0

X

Figure 4.1: (Top left) Covariance between function values and derivatives for the Gaus­

sian COVarianCe kernel in One dimenSiOn With hyper-parameterS aE = 1, e = 1.5 plot­

ted against the distance between observations, h = llx - x'll· The thick lines shows

Cov[t:(x), t:(x')], the dashed line shows Cov[t:(x), dt:(x')jdx'] and the dotted line shows

Cov[dt:(x)jdx, dt:(x')jdx']. The top right and bottom left plots show the constraining

effects of function values and additionally with derivatives respectively.

ash= llx-x'll increases. We also see there are two turning points for the derivative

covariance, which we can show are at hi = ±y'3!1f;, at which the correlation function

attains its highest negative value. We can easily generate expressions for covariances

of higher order derivatives should we wish. In Appendix G we present a simple way

4.2. Beliefs about Derivatives 46

to do this for the Gaussian covariance kernel.

Note that in (4. 9), 8 can be generalised to be any positive definite matrix so that

its off-diagonal terms are not necessarily zero. Taking 8 to be diagonal tends to be

the method of choice, however, and is convenient because it admits a product form

for the covariance function. (O'Hagan, 1998, shows the diagonal form corresponds

to a Markov-type assumption on E(x)).

Modelling the 6-surface in (4.6) similarly with a correlated covariance structure

would enable us to include derivatives of non-active inputs in an identical fashion.

However, we choose to take the following structure

{

a 2 for x = x'
Cov[6(x), 6(x')] = li '

0 for x #- x'.
(4.14)

Eqn. (4.14) represents a combination of two simplifying assumptions for the 6-

surface part of our emulator model. Firstly, we assume that any runs we make

on the simulator are sufficiently far apart in the space of non-active inputs for

the 6 residuals of any fit to be effectively uncorrelated. Secondly, we reduce the

dimensionality of s(x) by considering it as a function only of active inputs so we

treat the variance of the 6-surface, ag, as the loss in precision attributable to the

dimension reduction, being the irreducible lower bound on our uncertainty at any

given x*. An immediate consequence of the latter is that we evaluate our emulator

beliefs, s (x), over a grid of dimension dim(x*) rather than dim(x) leading to a

large reduction in the computational burden of required calculations, enabling us to

obtain a reasonable coverage of the space provided the number of active variables

is small. The price we pay for these large computational savings is that derivatives

with respect to inactive inputs can not be included in our updating since s(x) is not

differentiable with respect to these arguments. However, this will be a price worth

paying if our assumption that ag is small holds true, since then the simulator will

be fiat in the inactive input dimensions and, since any offset from zero will have

been absorbed by the systematic part of the model, these derivatives will not be

informative.

4.3. Discussion 47

4.3 Discussion

In a Bayesian context, the emulator is interpreted as a representation of our beliefs

about the relationships between inputs and outputs. Since (4. 7) specifies joint beliefs

about derivatives and function values, we can exploit this underlying covariance

structure and make use of observations of derivatives using the Bayes Linear formulae

derived in Chapter 3:

ED[B] =E[B] + Cov[B, D]Var[Dr 1(D- E[D])

VarD[B] =Var[B]- Cov[B, D]Var[Dr 1Cov[D, B]
(4.15)

Since we are interested in the effects of observing derivatives, we define the

operator \7 X = (a I axl) ...) a I axp) which, when applied to a quantity, returns the

partial derivatives of that quantity with respect to components of the vector x =

(x1 , ... ,xp)· Hence, VxS is the collection of first order derivatives of s(x) at X=

(X1 , ... , Xn)· In particular, we will compare updating based on (4.15) for the cases

D = Sand D = (S, \7 x• S) where, for the latter, we update based only on derivatives

with respect to variables in the set of active inputs, x*, because it is these derivatives

which we expect to be most informative and doing so allows us to make simplifying

assumptions in our treatment of the 6-surface, discussed in section 6.3, which reduce

computational burdens.

We do not know of any systematic application of functional derivatives for

Bayesian emulation in the literature, although the potential to incorporate deriva­

tive information was pointed out, in principle, by O'Hagan (1992) who considered

first derivatives of Gaussian processes in the context of numerical analysis. Theo­

retical considerations relating to design, also when first derivatives are available, are

tackled in Mitchell et al. (1993, 1994), who derive asymptotic results in the case that

intersite correlations become progressively weaker. Santner et al. (2003, p. 107) also

give a simple example to demonstrate the potential in which derivative information

is shown to lead to an improved predictive performance of the emulator.

Specifying beliefs about a function induces beliefs about the derivatives of that

function. In practice, for the inclusion of derivative information to be worthwhile,

we need an efficient and relatively inexpensive method for generating derivatives.

4.4. Theoretical calculations of resolved variance 48

In Chapter 5, we introduce a cheap and accurate method for obtaining derivatives

for compartmental simulators, such as that introduced in Chapter 2. However, even

in situations where observations on derivatives are not available, it may well be

insightful to derive the belief representations (4.7), (4.10) and to reflect on whether

they are in agreement with those prior beliefs that are actually held.

As we remarked in Chapter 3, in the important special case that the prior is

a Ga.ussian Process with known mean and covariance function, (3.28) and (3.30)

correspond to the conditional mean and variance obtained in the full Bayes analysis.

This is also true in the case that D contains derivatives because a function which

is normally distributed has a joint normal distribution with its derivatives (see e.g.

O'Hagan, 1978). However, whilst the full distributional treatment of derivatives,

required in a full Bayes analysis, has only been demonstrated to be tractable within

the Gaussian process framework, a Bayes Linear analysis remains tractable without

any such restriction, requiring only that the covariance function is differentiable to

the required order.

A final remark is that it is prudent to be wary of the dangers of misspecification of

the variance function for s(·). Seemingly similar covariance functions can often give

rise to quite different inferences based on simulator evaluations and we would expect

this to even more the case when derivative information is included in the analysis

since its inclusion amounts to an increased reliance on the model assumptions, on

one level at least. Whilst squeezing more from the model assumptions is desirable,

this should of course be tempered by placing emphasis on precautionary diagnostics.

4.4 Theoretical calculations of resolved variance

In this section, we consider a process with Gaussian covariance function and compare

variance resolved by observing a function value with that resolved by observing the

function value and the collection of first-order derivatives of the function. We then

consider a collection of design points and derive a result for the trade-off between

function values and derivatives - in terms of resolved variance - when the design

points are effectively independent. We relate bounds on the 8 covariance parameter

4.4. Theoretical calculations of resolved variance 49

to bounds on the validity of the independence approximations. Finally, we conclude

with a discussion of our results and possible extensions.

4.4.1 Variance resolved by a single input point

Suppose we have a set D = (D1 , ... , Dn) of observations on aspects of a process

~:(x) at a set of n design points X = (X1, ... , Xn). Then the Resolved Variance

RVarD[t::(x)] of ~:(x) by D is

RVarD[t::(x)] Var[~:(x)]- VarD[~:(x)]

Cov[~:(x), D]Var[Dt 1Cov[D, ~:(x)] (4.16)

where VarD[~:(x)] is the variance of t::(x) adjusted by D, defined in (3.29).

Recall the relevant expressions for the Gaussian covariance kernel, given in (4.10),

Cov[t(x), t::(x')]

Cov[8~:(x)j8xi, t::(x')]

Cov[8~:(x)j8xi, 8~:(x')/8x~]

(4.17)

(4.18)

2Bi (l(i=J)- 2Bj(xi- x~)(xJ- xj)) Cov[~:(x), t::(x')]

(4.19)

where 1i=J = 1 if i = j and zero otherwise. Suppose we observe S = t::(O), the

function value at the origin. Then substituting for (4.17) into (4.16), we find

(4.20)

Now suppose instead that we observe V' xS = (a;~~), ... , a;~~)), the set of p first

order derivatives of ~:(x), again at the origin. Then we see from (4.17- 4.19) that

Var[V' xS] = 280'; which is easily invertible since 8 is diagonal. Hence, plugging

this into (4.16) together with the covariance terms, Cov[~:(x), Y'xSJ,- given in (4.18)

- the resolved variance is found to be

(4.21)

Recalling our remarks in light of (4.11), that the function value and derivatives are

orthogonal at any given point, we have

RVar(s, 'V xS) [t::(X) l RVars[t::(x)] + RVar'Vxs[t::(x)] (4.22)

(4.23)

4.4. Theoretical calculations of resolved variance 50

Now suppose x ~ x with dim(x) = p ::::; p and reorder the components of x so that

x = (x 1 , ... Xp). Then the analogous expression for V x S to (4. 23) is

(4.24)

where 8 = diag(B1, ... , Bp)· From (4.20- 4.24) we see that, as we would expect,

we resolve more variance the more derivative information we include; the question

is how much more? Specifically, we are interested in the trade-off between deriva­

tive information and function information. This is relevant because, in the case

of a computer simulator, the code will take longer to run if it computes derivative

information as well as function information; hence knowing how much including

derivatives allows us to decrease the number of input points, whilst still maintaining

the same level of variance reduction, tells us how high the computational overhead

of computing derivatives can be and it be worth our while to compute them.

Clearly, "how much we learn" has yet to be defined. For the purposes of this

work, we consider the Integrated Resolved Variance for D

IRVarD = J RVarD[E(x)]dx
X

(4.25)

which is simply the variance resolved by D, integrated over the p-dimensional

bounded design space x = [-1, 1]P. The quantity is analogous to the Integrated

Mean Squared Error of Sacks et al. (1989) and the integral of the posterior variance

in the Full Bayes approach of O'Hagan (1992); both authors developing designs

based on minimising its value.

Setting a; = 1, without loss of generality, we see from (4.20) that

p 11 IRVars = IJ exp- 20;x; dxi
i=l - 1

(4.26)

Integrating (4. 23),

IRVar(s, 'lxS) = IRVars + IRVarv'"s (4.27)

4.4. Theoretical calculations of resolved variance 51

so that the extra information gleaned from j5 derivatives is given by

IRVarv;;s = 21 iT Si exp- 2xrex dx

fJ p J dx L 2eix; IT exp - 2eixJ
X i=l j=l

(4.28)

For each term in the sum, we have a product of p - 1 integrals identical to those

in the product for IRVar5 in (4.26), corresponding to the cases i =J. j, and a final

integration corresponding to the case i = j for which we can use integration by

Parts. Letting u = x and v' = x e-2B;xr we have u' = 1 and v = _ _l_e- 28;x; and so
l l ' 48;

1
1

x?e- 21i;x~ dxi = -~e-21i; + -1-11

e-21i;x~ dxi
-1 4ei 4ei -1

(4.29)

The integral term in (4.29) contributes to the product an integral of the same

form as the other components, multiplied by a factor of 1j4ei· If we divide the first

term in (4.29) by f
1
exp-21i;.:r; dx;, then we can factor the full product of p integrals,

which is equal to IRVar5 , from both terms in (4.29) and take it outside the sum in

(4.28) to obtain

IRVarv;;s
fJ (2 -

2
1i 1)

IRVars x 2::.:: 2ei ~ e ' 2 + -e
. 4e J e-21i;x; dx 4 i
l=l l -1 l

(4.30)

(

- p -21i) p e '
IRVars x --

2 2::.:: t e-21i;x~ dx
l=l -1 l

(4.31)

Note that the terms inside the sum tend to 1/2 as e --t 0 and can be made

arbitrarily small by taking ei suitably large (since, as ei --t oo, the integral in the

denominator tends to Ff5JJ: which goes to zero much slowly than the numerator).

Hence, as long as variation described by E is reasonably localised (so that the vari­

ance resolved by observing function value and derivatives is essentially zero at the

boundaries of the design space x), then a single scalar derivative contributes half

that of a function value to the integrated resolved variance. That is

IRVarV';;S = IRVars x ~ for ei large. (4.32)

4.4. Theoretical calculations of resolved variance 52

Hence observing the function value and set of p first order derivatives of s(x) resolves

the same amount of variance as observing two function values for p = 2 and resolves

more variance for p :::: 3. In order to get an idea of how large the ei need to be

realistically, if mini ei > 1.5, then this corresponds to 0'
2 < 1/6 in the standard

I 2

Gaussian density e- 2u2 x and it is easy to show numerically that the terms in the

sum in (4.31) are all less than 0.05 so that

IRVarY'xS > 0.45p X IRVars for min ei > 1.5.
i

4.4.2 Several independent design points

(4.33)

We are interested in generalising (4.33) to the case of several design points, XI, ... , Xn,

at which we observe some information D = (DI, ... , Dn). Suppose that there exist

sub-regions of x, RI, ... , Rn, each centered on its respective design point such that

fn RVarD, ~ fx RVarD,· Then condition (4.33) is satisfied for each Di since the

variance resolved by Di is outside of Ri C x is negligible. If no two regions overlap,

the information at any design point is effectively independent from the information

at the remaining design points (the resolved variance at the midpoint of the straight

line between any two design points will be approximately zero) and

1 RVarv(x)dx "'t, L. RVarv,(x)dx. (4.34)

Hence, since the covariance between two points depends only on the distance be­

tween them, the ratio of the variance resolved by the set, Sn, of function evaluations

at design points (XI, ... , Xn) and the set, (Sm, V xSm), of function values and first

order derivatives observed at design points (XI, ... , Xm), is

IRVarsm,Y'Sm _ m(2 + p) f , O· l _
IR

"' - 01 1 arge .
. varsn 2n

(4.35)

To get an idea about how large the ei need to be, consider the rectangular

subregion, R = [-LI, LI] x · · · x [-LP, Lp], centered on some design point. Then,

by a linear transformation of xi, it is straightforward to show that the resolved

variance, integrated over the subregion, R, is identical to (4.31) but with ei replaced

by OiL;_ Hence, the condition becomes

6
IRVarY'xS > 0.45p x IRVars ~ Oi >

4
£ 2 for all i.

1

(4.36)

4.4. Theoretical calculations of resolved variance 53

This is a powerful result since it tells us that, provided we have some condition on

the smallest ei (for example, mini ei > 1.5), then we can pack design points close

together in dimensions with large ei values and our approximations will still be valid.

Hence, assuming that information at design points is reasonably independent,

(4.35) tells us that we can expect to be able to reduce the number of design points

by a factor of 2!P if we observe p derivatives at each location whilst still achieving

the same (integrated) reduction in variance. A few comments are worth making at

this point.

Firstly, typically our emulator model will contain some global terms, not included

in our calculation to make the analysis tractable, and so we should emphasise that

the factor 2!P relates only to the E-surface (with Gaussian covariance function). We

can think of this as the trade-off factor once most of the variation in global terms has

been resolved. Note that the analysis would remain tractable if we were to include a

constant global term, b since this would not affect covariances relating to derivatives

in the data variance matrix and the variance matrix of observed function values

would comprise CJ; + CJ; terms on the diagonal and CJ; terms on the off-diagonal, an

inverse to which is available in closed form (see e.g. Graybill, 1983).

Secondly, the lower bound mini e > 1.5 was chosen to allow us scale through

the sum in (4.31) and, in practice, alternative conditions based on combinations of

different ei may be more useful. For example, if ei is small for a single component of

x and large for all other components, we might consider a bound which scales with

p- 1.

Thirdly, Nather and Simak (2003) perform a. related calculation to ours in the

univa.ria.te case (p = 1) where they compare the integrated resolved variance obtained

by observing derivatives of order k and l in the case that e --. oo. Letting Lk and

L1 be the corresponding limits, they show that, for l 2::: k,

Lk
Lz

21-k for Gaussia.n cova.ria.nce function

rrl (2i + 1) ' . 2 +
2

(v _ i) for Ma.tern cova.ria.nce function
t=k+l

(4.37)

(4.38)

What we see is that the Ga.ussia.n cova.ria.nce model, on which our result is

4.5. Estimating 8 covariance parameters 54

based, represents conditions under which we can get the most out of derivatives.

The result for the Matern although only valid for p = 1, shows that if we compare

observing derivatives of order l to function values (k = 0), that the ratio of function

value to derivative decreases monotonically to 2 as the parameter v -----> oo and, for v

small, the ratio is large so that derivatives are relatively much less informative. This

means that, if our covariance function is misspecified as Gaussian, then the emulator

model will resolve variance optimistically each time we observe derivatives. On the

other hand, the ratio of derivatives to function values for our Gaussian result in

(4.35) is independent of 8 (subject to its components being large enough for our

approximations to hold) so that we can choose a value of 8 conservatively and still

maintain this ratio. In any case, we believe that the infinite differentiability of the

Gaussian covariance function is appropriate for the simulator we consider, as we

discuss in Section 4.6.

Finally, we could consider higher order interactions between design points. For

example, a natural extension might be to consider the trade-off between function

values and derivatives for a set of m independent input points and n pairs of points

which interact with each other but are independent of all other points.

4.5 Estimating 8 covariance parameters

Estimating components of 8 for the E-surface covariance kernel is a difficult prob­

lem. One approach is to use maximum likelihood estimation as in Ripley (1988).

The maximum likelihood approach relies on distributional assumptions, which we

are keen to avoid for reasons discussed in Chapter 3, and is often beset by computa­

tional problems, but it will be useful to use it for comparison with other estimates

and also to demonstrate the essence of the usefulness of derivatives in estimating

8 values. (For an alternative justification of this likelihood, which does not rely

on distributional assumptions, a quasi-likelihood approach can be used. See e.g.

Pawitan, 2001) Suppose that our emulator model is

s(x) = g(xf /3 + E(x) (4.39)

4.5. Estimating 8 covariance parameters 55

where E rv MVN(O, K) (note we have dropped the 6-surface as its inclusion is prob­

lematic). Now we derive the maximum likelihood estimate (MLE) for ((3, c/J) where

cjJ is the set of hyper-parameters that appear in K. The log likelihood is

L((J, c/JIS) = const- ~ (In IK<t>l + (S- G(Jf Ki 1 (S- G(J)) (4.40)

Discarding the constant, as we may, the MLE of (3 minimises the quadratic form,

and so is the generalised least squares estimate (3 given by

(4.41)

where Lis lower triangular and defined by the Cholesky decomposition, LLT, of K.

Thus the profile likelihood, Lp, for cjJ is

(4.42)

Writing K = a 2 R, we can extract an MLE for a 2

(4.43)

and hence we can extract an MLE, &2
, for a 2

(4.44)

If cjJ = (a2 , B), then

(4.45)

The attraction of the MLE is that we can easily include derivatives into the

analysis by redefining s(x) to be the vector of itself a.nd the derivatives of interest,

and similarly for g(x) and E(x). Then G is the matrix of g and its derivatives

at X, S is the vector of observed function values and derivatives, and covariances

involving derivatives of E(x) are simply absorbed into Kq, with the scale parameter,

a 2 , extractable as before. Figure 4. 2 shows us the potential derivatives have in

offering us information about 8. The Figure shows the profile likelihood for e
for ten samples from a univariate process, t:(x), with Cov[E, t:'] = e-7·5(x-x')

2
, with

each sample of observations at seven input points. The top plot shows the profile

4.5. Estimating 8 covariance parameters 56

0

U')
I -:p -(J) 01

I

U')

I

0
C\1
I

5 10 15 20 25 30

0

U')
I -... :p -(J)

"0 0 ui
....1 I

U')

I

0
C\1
I

5 10 15 20 25 30

e

Figure 4.2: Profile likelihood for (} for ten samples from a Gaussian Process with r(h) =

exp - 7·5h
2

, each sample taken at seven points, without derivatives (top) and with derivatives

(bottom).

likelihood based on observing function values only and the bottom plot shows the

profile likelihood when derivative also are observed.

One of the problems of maximum likelihood estimation has been that a sparsely

scattered collection of function values simply does not offer enough information to

distinguish between competing() values. The top plot in Figure 4.2 shows this with

th profile flat for all but Vi ry small () valu . D rivatives look as though they will

4.6. Choice of Gaussian covariance function 57

solve one of the problems of MLE estimation; the information about 8 is there

waiting to be extracted. MLE estimation is still problematic though. Firstly, it

relies on full distributional assumptions that we can not justify and are thus keen to

avoid. Secondly, it is computationally intensive, particularly in higher x dimensions

and when we do not wish to set all components of 8 to be equal. What we want

is a computationally cheaper way of extracting information contained in derivatives

which does not rely on full distributional assumptions. In Chapter 6, we develop

such an estimate and apply it to our problem.

4.6 Choice of Gaussian covariance function

Throughout the thesis, we work almost exclusively with the Gaussian covariance

function. This form has come in for criticism recently: Stein (1999), for example,

is highly critical of using the function to model physical processes in the context of

interpolation of spatial data, showing that it can lead to predictions that are much

too optimistic in resolving uncertainty when the covariance function is misspecified

and advocating a Matern form. It is better to be badly conservative than wildly

optimistic, Stein argues. Whilst agreeing with his sentiments, we do not necessarily

feel that they transfer to the context of computer simulators. Put another way, we

agree that there is often no basis for knowing a priori the degree of smoothness of

some physical process; but we have much stronger beliefs concerning the smoothness

of computer simulators of the type discussed in this thesis. It is true that an opti­

mistic misspecification of 8 is potentially more dangerous with the Gaussian than

Matern correlation function, but we have shown that derivatives offer the potential

to provide good estimates of 8 values. Perhaps the one assumption most needing to

be tested in both forms is that of a constant 8 across all the input space although,

when this is not the case, a conservative 8 value towards the upper end of the

range should suffice. Stein's comments do, however, focus the mind on the need for

careful diagnostics relating to such specifications as mentioned at the end of Section

4.3. In our analysis of the plankton problem in Chapter 6, we introduce and apply

diagnostics to back up our belief statements and, in doing so, demonstrate another

4.6. Choice of Gaussian covariance function 58

area in which derivative information can be useful.

Chapter 5

Taking derivatives in

compartmental simulators

In the previous chapter, we showed that the framework from the computer simu­

lator literature could be naturally extended to allow for inclusion of derivatives in

emulator building and refinement. In this chapter, we develop a cheap and efficient

method for generating such derivatives in the case of a compartmental simulator.

vVe also perform calculations to estimate the increase in cost, in CPU run-time,

of computing derivatives so that, by weighing the increase against the additional

variance resolved, we can ascertain whether it is worth our while computing a given

collection of derivatives. The model in Chapter 2 is used to clarify aspects of the ap­

proach, although the method itself is perfectly general to the class of compartmental

simulators.

5.1 Derivatives and compartmental structure

The calculation of derivatives has long been central to the field of sensitivity analysis,

in which so-called perturbation methods, in which 'pseudo' derivatives are generated

by perturbing the inputs and re-running the simulator at the new values, have

proved popular. The advantage is that the method can be applied to any simulator;

however Oblow et al. (1986), who give a brief overview of the field, point to several

difficulties: "the time-consuming nature of the perturbation calculations and the

59

5.1. Derivatives and compartmental structure 60

inaccuracies that occur in trying to estimate sensitivities from small changes in

inherently imprecise numbers." Both of these difficulties are of particular concern to

us. The precision issue is important because we are concerned with actual derivatives

rather than "effects of small changes" and we are loathe to model our derivatives

as being observed with error. Moreover, we may be interested in observing higher

order derivatives as well, for which perturbation methods become yet less reliable.

The time issue is equally as important: using perturbation methods, even the lowest

order approximation requires an extra run per each extra derivative to be computed.

Since the simulators we consider are generally high dimensional in input space, we

require a much more efficient method if the use of derivatives is to be practical.

Here we chose to differentiate the equations by hand, which is both practical

for a model the size of ours and avoids this initial overhead. Our ability to do this

successfully and cheaply in the case of a compartmental model lies in recognising

our simulator as two distinct parts.

Firstly, the compartmental model itself defines the following initial value problem

~~ (t, x) = f(t, y, x), y(to, x) = Yo, f: R x Rk x RP -t Rk, (5.1)

where k dim(y), the number of compartments, and p = dim(x), the number

of input parameters. For given x, there exists a unique solution y(t,x) to (5.1)

provided f(t, y, x) satisfies a Lipschitz condition, satisfied automatically when f is

continuously differentiable in y for all (t, y) (See for example Burden and Faires,

1989).

Secondly, the simulator combines the initial value problem (5.1) with a solver

routine which, for given x, produces an approximate numerical solution, y(t, x),

for y (t, x). For the code provided for the model in Chapter 2, a fifth-order Runge­

Kutta method was used (See Press et al., 1992). Runge-Kutta methods are a popular

and often-applied general class of techniques for solving systems of ODEs. In the

following section, we introduce a simple first-order Runge-Kutta method, Euler's

Rule, and demonstrate our approach for obtaining derivatives. We also discuss

computational savings made through exploiting compartmental structure.

5.2. Differentiating Euler's Rule 61

5.2 Differentiating Euler's Rule

Consider the general system of 0 DEs in (5.1). For sufficiently small h,

dy() y(t+h,x)-y(t,x)
dt t, X ~ h

Substituting this into (5.1) and rearranging, we have

y(t + h, x) ~ y(t, x) + hf(t, y(t, x), x)

Writing Yn = y(tn, x), we obtain Euler's Rule

(5.2)

Fixing x, we can propagate (5.2) forward through time and obtain the solution,

y(t), for this x. However, viewing f and fin as functions of x then, provided f is

differentiable in components of x to the required order, we can differentiate both

sides of (5.2) and obtain similar expressions which relate derivatives of Yn+l to

those of Yn· For given f, we can use a computer algebra package to generate the

algebraic relations once, add these expressions into the simulator code and let the

simulator propagate the numerical expressions forward through time in exactly the

same way as for function values. In particular, we can alter f in the computer code

to additionally return its derivatives at each iteration and simply extend the vector

Yn in (5.2) to include the corresponding derivatives.

5.3 Higher order generalisation and adaptive step~

.
SIZe

Euler's Rule is of conceptual importance since the higher order methods which are

often used in practice all emanate from it. The generals-stage Runge-Kutta method

is given by

s i-1

Yn+l = Yn + h 2:: ciki, where ki = f (tn + aih, Yn + h L bijkj, X) (5.3)
i=l j=l

where the ai, biJ and ci are constants chosen to satisfy certain error properties. From

(5.3), we see that each step of the general s-stage method is a linear combination

5.3. Higher order generalisation and adaptive stepsize 62

of s Euler-style steps. Hence we can simply redefine the vector of functions, f, to

include derivatives by altering f to additionally return these derivatives in the code.

All this then requires is the dimension of the vector Yn to be increased and the

remainder of the code remains unaltered.

Often, as was the case with the code provided for our model, a Runge-K utta

solver comes with an adaptive stepsize routine, which aims to achieve a specified

accuracy in the solution whilst minimising computational load. It does so by esti­

mating a vector, ~' of truncation errors- one for each output - at each iteration and

adjusting the step-size accordingly; if the errors are much smaller than required, the

step size for the next iteration is increased and, if the errors are larger than allowed

for the required accuracy, the step-size is decreased and the iteration repeated. Typ­

ically, this adjustment is based on max(~), so that we guarantee a specified level of

accuracy for all outputs (See Press et al., 1992, for more details).

As we have already remarked, inclusion of derivatives in the Runge-Kutta up­

dating is handled in the same way as the original code, by a simple extension of

the vector Yn in (5.3) to also include derivatives. This means that truncation error

estimates are naturally generated by the code for derivative quantities, which in

turn presents us with something of a dilemma. For any iteration, ~ contains all

the original truncation errors relating to function values plus additional estimates

relating to derivatives. If we adjust the stepsize based on max(~) then, for any

given iteration, this quantity must be at least as large as it would have been for

the original ~ (since all we have done is added some additional estimates relating

to derivatives). The issue here is that if we are truly 'differentiating the simulator',

then this differentiation should not change the simulator; in other words, we want

the derivatives of the output at the time points which would have been given by the

original code.

At the same time, maximising over derivative error estimates in the adaptive

routine, offers a somewhat tempting diagnostic on the quality of the simulator, with

a large increase in the number of steps required suggesting a mismatch between

derivatives of the simulator and derivatives of the differential equations. Vve expect

some increase since including derivatives in the adaptive routine- increases the di-

5.4. Exploiting compartmental structure 63

mension of the vector ~ over which the maximisation takes place so that doing so

can only affect the stepsize by decreasing its value.

In practice, the nature of the criterion in adjusting stepsize based on the max­

imum error together with tight error bounds (our code requires accuracy of the

solution to 1 in 105 for each component of Yn) means that any change in stepsize

caused by derivatives will change function values by a negligible amount for our

simulator so that little should be lost by restricting the truncation error assessment

to the original output quantities only.

Since our model was cheap to run, we choose to include first-order derivatives

for the thirteen inputs in Table 2.1 in the adaptive routine, which led to an average

increase of 14.4% in the number of steps required over twenty five runs, with the

smallest increase 4.6% and the largest 44.6%. We considered these increases not

to represent any cause for concern given the nature of the adaptive routine. When

considering additional cost of derivatives, however, we do not count this additional

cost in the comparison since it represents extra accuracy in relation to the differential

equations which is not strictly required.

5.4 Exploiting compartmental structure

For the process of derivative computation described in Section 5.2, computational

savings arise in two ways; firstly, through the additive structure of compartmental

models in general and, secondly, by consideration of the degree of "localisation" of

input parameters in a given model, where the notion of "localisation" is one we will

make explicit shortly.

By the additive structure of compartmental models, we mean simply that the

time derivative of any compartment is given by the sum of functions flowing into the

compartment minus the sum of functions flowing out. Hence, writing A= (A1 , A2)T

for the set of r flow functions in a given k-compartment model, where A1 is the set

of r 1 flow functions that are connected to a single compartment only and A2 is the

set of r 2 flow functions which link two compartments together, we can write

f = (hlh)A (5.4)

5.4. Exploiting compartmental structure 64

where 11 is a k x r 1 diagonal matrix with ±1 in its diagonal entries and ! 2 is a k x r 2

anti-symmetric matrix with zeros on the centre diagonal and ±1 on the two diagonals

either side. For the model described in Chapter 2, we have A1 = (Ap, Az, AN) and

A2 = (AzN, ANP, Apz). Then, writing (5.4) explicitly for the model in Chapter 2,

-1 0 0 0 1 -1

!= 0 -1 0 -1 0 1 (5.5)

0 0 1 1 -1 0

For x = (x1 , ... , xp), we can apply V x = (fJjfJx 1 , ... , fJjfJxp) to (5.4) and obtain

(5.6)

where, on the left hand side, V xf is a k x p matrix of functions and, on the right

hand side, V acts on each arc-function in A, producing a p-dimensional row vector

for each. Note that we can readily replace x by any subset of x in (5.6) and hence

we can evaluate as few or as many input derivatives as we wish. If, for example,

some x-derivatives are difficult to derive or computationally relatively expensive to

evaluate, they can be dropped.

For example, consider our model with V x operating on

A = rl- p + m+!z+ p
p 'f'P M '

the flow function describing exports from the phytoplankton compartment. In doing

so, we first split Ap down into two additive parts,

Then taking each term to be a generic function of x and applying V x, we obtain

cPP V xP + PV xcPP
m+h+ P

M VxP+ MVxm

(5.7)

(5.8)

Eqns. (5. 7) and (5.8) demonstrate the essence of our approach: the expressions

are easily generated, by hand or using a computer algebra package, and are linear

in the derivative vectors - in this case V xP - so that derivatives with respect to

many inputs can be generated in the code quickly using efficient vector operation

5.5. Implementation in Maple and R 65

implementations. The vector argument 'V xP is then propagated forward, using (5.3),

in the same way as P. The vectors 'V x<fJp and 'V xm are fixed constant vectors with

jth component defined by ('V xxi)j = 1 if i = j and zero otherwise (where in our

case tjJ p corresponds to x 1 and m to x 13). They constitute extra terms generated by

taking derivatives with respect to inputs which appear explicitly in the expression

for Ap. The fewer of these extra terms there are, the more we will feel the benefit of

the vector implementation and the cheaper derivatives will be relative to function

values. Hence, if most additive terms have explicit dependence only a small subset

of x, then the relative cost of computing derivatives will remain relatively cheap; an

idea which we make more concrete in Section 5.6. Firstly, however, we show how to

implement the calculations required to obtain (5.7) and (5.8) using Maple.

5.5 Implementation in Maple and R

In this section we demonstrate how to implement the example in (5.7) and (5.8)

in Maple and then how to add to the simulator code. In both sets of code, A} is

denoted Pdeep and A~ is denoted Pflux. Any input we enter into Maple begins on

a new line with the prompt > and is executed with the ; command. For each input

line, the subsequent Maple output is shown on the following line.

Starting with A} = I}JpP, we define each term to be a generic function of x:

> Pdeep := phiP(x)*P(x);

Pdeep := phiP(x) P(x)

Then we use the diff command to differentiate with respect to x:

> dPdeep := diff(Pdeep, x);

I d \ I d \

dPdeep := phiP(x) I P(x) + phiP(x) I P(x)l

\ dx I \ dx I

The process is similar for A~ = mti1+ P, although now the mixed layer depth !vi and

h+ forcing functions are independent of x:

5.5. Implementation in Maple and R

> Pflux := ((m(x) + hplus)IM)*P(x);

(m(x) + hplus) P(x)

Pflux ·= ------------------­

M

Applying the diff command,

> dPflux := diff(Pflux, x);

I d \ I d \

-- m(x) I P(x)

\ dx I

(m (x) + hplus) I P (x) I

\ dx I

dPflux -------------- + ------------------------

M M

66

The results on the Maple working can then be added into the simulator code (given

here in R syntax) as follows:

Pdeep <- x[1]*P

dPdeep <- x[1]*dPdx

dPdeep[1] <- dPdeep[1] + P

The first line calculates Pdeep, as would be required in the original simulator with­

out derivatives, where x [1] corresponds to c/Jp. The second line computes the vector

of derivatives, dPdeep, in terms of the vector, dPdx, where both these vectors are of

the same dimension as the vector, x, of input values. The final line adds the extra

contribution to the first component of dPdeep caused by the explicit appearance of

x [1] in Pdeep.

Similarly for A~:

Pflux.denom <- x[13] + hplus

Pflux <- (Pflux.denom I M) * P

dPflux <- Pflux.denom * dPdx

dPflux[13] <- dPflux[13] + P

dPflux < - dPflux/M

5.6. Additional cost of derivatives: a heuristic 67

One thing to note is that computing derivatives will require additional storage

space. In particular, as well as the final derivative values, note that in the R code,

we have introduced a temporary variable, Pflux. denom, which we would not have

defined in the original code. The reason for this is to save us duplicating the same

(very cheap) calculation twice. This is simply efficient coding and does not cause

any problem, but it is perhaps worth remarking here that, for larger models, it is

likely that we will generate a significant number of additional temporary variables

when we include derivatives calculations so that extra storage space is required by

the code. In general, we would not expect these extra storage requirements to cause

a problem and, overall, there may be no net increase in storage requirements if

calculating derivatives allows us to perform less runs on the simulator for the same

information.

5.6 Additional cost of derivatives: a heuristic

In this section we develop a heuristic for the proportional increase in cost (in com­

puter run-time), 1fx, in order to calculate first order derivatives with respect to a

given subset i of x (for example, we might take i to be the set of active inputs x*).

5.6.1 Derivation of heuristic

Let A(x*,y*(x)) be a scalar function of vectors x* ~ x and y* ~ y. Then, applying

the chain rule for differentiation,

(5.9)

Let dim(x) = p, dim(x*) = p*, dim(y) = k, dim(y*) = k* denote the cost,

in some standardised units, of multiplying a scalar by a vector, dimension d, by

Md and the cost of adding two vectors, both dimension d, by Ad· Since we are

interested in comparing the cost of function values and derivatives, we write the

cost of evaluating A as the sum of two parts, Cost(A) = C + K, where K is the

'set-up' cost of A, constituting calculations required tq evaluate A which can be

re-used when calculating derivatives and C is the cost of the remaining calculations

5.6. Additional cost of derivatives: a heuristic 68

8A(•) required to evaluate A. Next we assume that each a~ and each component of

Vx·A(x*) costs C to evaluate (we discuss this assumption at the end of this section)

so that, counting operations in (5.9), we find

Cost(\7 xA(x*, y*(x))) p*C +p*A 1 + k*(C + Mp) + (k* -1)Ap

(p* + k*)C + (k*)Mp + (k*- 1)Ap + p* A1 (5.10)

Computational savings come from the fact that the dependency of Md and Ad on

d is typically weakly linear and, moreover for the values of d we consider, A1d::::::; !111 ,

Ad ::::::; A1 . As multiplication is more expensive than addition, from (5.10) we see

that if C » M 1 , as typically it is for the functions we consider, then the additional

cost of evaluating the p derivatives of A is approximately (p* + k*)C.

For a compartmental model with r flow functions, A1 , ... Ar, let K be the sum of

the flow-function set-up costs and C1, ... , Cr the remaining costs. Then, a natural

generalisation is to compare K + 2.:.::;= 1 Ci with K + 2.:.::;= 1 Ci (1 + kt + p;). Supposing

that the costs, C1 , ... , Cn are roughly the same (again we discuss this at the end of

the section), then the proportional increase in cost, 1fx, can be estimated by

1 r 1 r C
1fx = 1 + (Lx + Ly)p, where Lx =- "'""'p;, Ly =- "'""'k;, P = C ·

r~ r~ +K
i=l i=l

N ate that we can easily generalise this if we only wish to differentiate with respect

to components of a subset i of x by replacing x by i, which in turn requires us to

replace Pi by Pi
1 r 1 r C

1fx = 1 + (Lx + Ly)p, where Lx = - "'""'p;, Ly = - "'""'k;, p = C . (5.11)
T~ T~ +K

i=l i=l

In (5.11), K is the 'setup cost' for a run, representing calculations required to eval­

uate the r flow functions that can be reused in calculating derivatives, and C is the

average cost, over flow functions, of operations not included as part of the set up

cost K. The terms Pi and ki are the number of inputs in i and the number of

outputs, respectively, on which the ith flow function has explicit dependence in the

model equations. Hence Lx and Ly can be thought of as measuring the degree of

localisation of i and y respectively.

From (5.11), we see that the smaller the values of Lx, Ly, and p, the smaller

the additional cost in generating derivatives. The term Ly, which is fixed for any

5.6. Additional cost of derivatives: a heuristic 69

simulator, can be thought of as a setup cost for generating derivatives and hence

the lower bound, n~, for 1fx is obtained by taking Lx = 0 in (5.11).

Note that n:x only depends on i through L:x; hence if we run the simulator,

setting it to calculate derivatives with respect to inputs in i, and record the observed

proportional increase in cost, n:x, we can substitute this and the value of L:x into

(5.11) and fix p. Having fixed p, we can calculate Lx' for any other subset i' ~ x

and use (5.11) to calculate the corresponding 1r x'.

5.6.2 Discussion of heuristic assumptions

In deriving, (5.11) we made two assumptions: (i) for an individual flow function,

A, the non-reusable cost C was of the same order as the cost of calculating each

component of V x•A(x*) and (ii) that the C corresponding to different flow functions

were all of the same order.

For assumption (i), consider the example of Ap at the end of Section (5.4).

Counting the cost, K, of reusable operations and the costs of non-reusable opera­

tions, C, we obtain:

(5.12)

K=O

A~ (5.13)

K = Cost(M) + Cost(h+) + A1

where Dd is defined to be the cost of dividing a d-vector by a scalar (which is

trivially equal to M1 + l\1d). From our earlier remarks that l\1d ~ !111 and Ad ~ A 1 ,

the assumption seems to be valid, for Ap at least. Note also that, for A~, the set-up

cost, K, involves the evaluation of the mixed layer forcing function, !11, and its time

derivative dM, through h+ = rnax(O, dM). These operations involve searching and

interpolation of tables of forcing function values so that the reusable operations are

5.7. Localisation of inputs in the PZN model 70

relatively expensive and hence including derivatives does not add much extra cost,

proportionally, in this case. Assumption (ii) is more difficult to justify although we

believe it to be reasonable magnitude of order approximation; in reality, we do not

expect the assumption to be strictly true but rather that competing forces cancel

out to make it a reasonable approximation. This appears to be borne out in Section

5. 7 in comparisons of predicted proportional increases with those observed.

5. 7 Localisation of inputs in the PZN model

As an example, consider the additional cost of generating derivatives with respect to

all thirteen inputs in our model. Figure 5.1 lists the inputs and outputs appearing

explicitly on the different flow functions of the PZN model, where we have split

some of the arcs down further into their additive components, as we did with the

example in (5.7) and (5.8). Splitting the arcs denoting flow functions into additive

pieces is natural for two reasons. Firstly, linearity properties of derivatives allow

us to add derivatives of two sub-arcs to obtain the derivative of the arc. Secondly,

different additive pieces tend to correspond to different processes in the physical

modelling which contain their own localised input parameters. For example, the

two sub-arcs in (5.7) and (5.8) capture very different processes which combine to

form phytoplankton exports: phytoplankton mortality modelled by A~ and physical

dilation as a result of vertical mixing processes, modelled by A~.

From Figure 5.1 we see that, of the ten arcs, there are five which depend on

one input, two which depend on two and three which depend on four so that Lx =

((5 x 1) + (2 x 2) + (3 x 4))/10 = 2.1. Counting numbers of outputs, six arcs depend

on one output and four on two outputs so that Ly = ((6 x 1) + (4 x 2))/10 = 1.4.

Running the simulator at twenty five input values, the proportional increase in

CPU time caused by generating the thirteen derivatives was 2.6. The proportional

increase in individual runs varied from 2.1 to 3.3 with a standard deviation of 0.25.

This variation is largely random and down to the effect of other processes on the

computer so that 2.6 was thought be a good estimate of the proportional increase of

any set of twenty five runs. Taking 1fx = 2.6, and substituting into (5.11) together

5.7. Localisation of inputs in the PZN model 71

with Lx + Ly = 3.5, we obtain the corresponding vector p = 0.46.

Figure 5.1: Input and outputs appearing on each additive arc of the model.

Arcs Sub-arcs Outputs Inputs

----- AI p p c/Jp

i\p ----- i\2 p m p

_________., i\ 1 P,Z /3, g, kc, E

i\z i\2 z z m

------------- i\3 z z cPz

i\N N Nrer, m

----- A1N z p,

i\zN ----- J\~N P,Z /3, g, kc, E

i\NP P,N kN, \fp, 0: 1 kp

i\pz P,Z g,kc

The reason for a lower value of C relative to K (p - 0.46 corresponds to

C = 0.85K), and so smaller increase in cost incurred by calculating derivatives,

is that the partial derivative calculations in the model re-use forcing function values

calculated in evaluating the flow functions, and these operations are relatively ex­

pensive, requiring searching and interpolation of look-up tables. In general, we may

only wish to compute derivatives of a subset x <;:: x, for example the active inputs,

which will reduce the additional cost further. For any subset, we can estimate the

proportional increase in cost in doing so, using the value for p obtained above.

In our analysis of the problem in Chapter 6, the set of inputs x* = (xL x 4,

x 6 , x 10 , x13) turn out be active. From Figure 5.1, the input counts are (reading the

sub-arcs from top to bottom) 1, 0, 1, 0, 0, 1, 0, 1, 2, 1 so that Lx• = 0.7. Plugging in

the values for p and Ly into the heuristic for the increased cost, 1ri: = 1 + (Lx + Ly)p,

we find 1fx• = 1 + (0. 7 + 1.4) x 0.46 = 2.0. Hence, over the twenty five input poi!1ts,

we expect to obtain most of the information given by derivatives, which is contained

5.7. Localisation of inputs in the PZN model 72

within derivatives of active inputs, for a factor increase in cost of 2.0. Running the

simulator at the twenty five runs gave a corresponding proportional increase of 2.1

so tha.t the estimate is a very slight underestimate. Hence, for a reasonably large

collection of input points, we expect to be able to generate derivatives with respect

to active inputs at an overall cost factor of around 2.1.

It is the localised nature of the parameters with respect to which we differentiate,

as measured through Lx and Ly, and the relatively high set up cost for a run- both

features common to many compartmental models - which offers us the potential for

computational saving and so increases the appeal of observing derivatives. Concern­

ing compartmental models in general, the method will scale well with the dimension

of x and y provided this localisation remains intact, so that the greater the number

of compartments and the greater the number of inputs, the greater we can expect

our information to computation ratio to be.

Essentially this calculation is a 'mean' calculation, where the cost of the various

function derivatives relative to the original functions is treated as unknown. 'vVe

could take more care in counting the operations carefully (see Griewank, 1989, for

some interesting work using known relative costs of standard mathematical func­

tions to bound costs of derivatives relative to the original function). Alternatively,

we could perform numerical experiments to count the relative costs of different

derivatives. In practice, we feel our heuristic offers a quick and reasonably method

to estimate proportional increased cost in generating different collections of deriva­

tives and would be particularly useful for larger compartmental models with many

compartments and/ or parameters.

As a final comment, we note that programs exist which automatically differen­

tiate computer code (see inter alia Oblow et al. (1986) and Dimitrios et al. (2003)).

Such programs offer potential to generate derivatives for lengthy code for which a

'by hand' approach may become infeasible. However, we expect to be able to get

to a reasonably large scale with our approach, with the benefits being a retention

of the efficiency which is forfeited in the automatic process through inefficiencies in

the additional code generated which can often be significant.

Chapter 6

Emulator construction and

refinement for the plankton model

In this chapter, we are concerned with emulator construction and refinement, using

the Bayes Linear approach outlined in Section 3.5. We firstly demonstrate some

uses of derivatives in forming prior emulators and secondly investigate additional

reduction in uncertainty in the emulator achieved by including derivative observa­

tions as well as function evaluations. We begin by considering an exploratory site,

then considering a single site, forming a prior based on the exploratory analysis,

and investigating in detail the additional effects of derivatives in updating at this

single site. Finally, we move to multiple sites and build emulators using function

and derivative evaluations.

6.1 Choice of stations to emulate

In emulating the simulator at different locations, we consider the emulator model

given in Eqns. (3.1) and (3.6),

(6.1)

where index s denotes station s and where we consider outputs separately at each

station so that (6.1) is implicitly indexed by output at each station. The variation

over the index s is resolved by differences in forcing functions at the different loca­

tions and so, in theory, we could learn about this variation by running the simulator

73

6.1. Choice of stations to emulate 74

1420
1419

1416
1320

1319
1318

1313
1218

1217
1216

1215
1214

1117
1116

1115
1113

1015
1013

913
912

911
812

811
810

809
711

710
709

708
606

MLD PAR

1420 -
1419 -

1416 -
1319

1320 :
1318 -

1313 -
1217

1218 :
1216 -

1215 -
1117

1214 :
1116 -

1115 -
1015

1113 :
1013 -

913 -
912 -

911 -
812 -

811 -
810 -

809 -

710
711 :
709 -

708 -
606 -

I I I I I

0 200 400 600 BOO 0 5 10 15 20

Figure 6.1: Top: Euclidean distances of mixed layer depth (MLD) forcing functions (left)

and photosynthetically available radiation (PAR) forcing functions (right) between pairs of

stations. Light colours correspond to large distances and dark colours to small distances.

Bottom: Mean and range of forcing function values at each station, again with MLD

shown left and PAR shown right; circles denote mean values and lines connect minimum

and maximum values and, in the MLD plot, colours denote groupings suggested by the

MLD distances.

at different locations for the same choice of input vector x. Hence the greater the

'difference' between forcing functions at two locations s and s', the less correlated

we expect the quantities in the corresponding emulator models to be (for example,

corresponding components of B 8 and Bs' in the case that x: = x:, and 9s = 9s')· In

6.1. Choice of stations to emulate 75

theory, this leads naturally into a multivariate covariance specification of unknown

quantities across outputs and locations. However, in practice our beliefs do not

stretch much beyond this initial statement since the model response is non-linear

over time and the relationship between forcing functions, themselves time series, and

simulator output is far from clear and a multivariate approach is difficult (though

not necessarily impossible) to justify. The approach here then is to build emulators

at individual sites and link these sites together by informal judgements, proceeding

sequentially by using what we have learnt at previous sites to construct prior emula­

tors at a given site and then updating the corresponding emulator formally based on

simulator runs at this site. A consequence of this approach is that considering the

sites in a different order would probably lead to different prior specifications at the

sites; in practice, the many shared similarities of sites means that we would expect

any differences caused by ordering to be relatively small. An alternative approach

might be to use an exchangeability-type argument such as that made by Craig et al.

(2001) to link beliefs about a fast and slow version of a simulator.

Figure 6.1, top row, shows the relative Euclidean distance between vectors of

daily forcing functions values for all possible pair of stations, with mixed layer

depth (MLD) shown left and photosynthetically available radiation (PAR) shown

right. The bottom row shows the mean (denoted by a circle) and range of the

forcing functions (denoted by the horizontal line from the minimum to maximum

value) for each station. For MLD, the subset of three stations (1217, 1218, 1318)

stand out as being far away from other stations, with station 1318 in particular

registering large distances with other stations. Of the remainder, a subset of four

stations - (1115, 1116, 1215, 1216) - form a group within which all stations appear

to be relatively close and outside of which stations are generally far apart. The

remaining stations are all relatively close, generally increasing in distance with an

increase in distance of their physical locations. For PAR there are two distinct

groupings, the first consisting of stations up to and including station 913 and the

second consisting of the remainder.

For simplicity, we aim to perform an emulation and subsequent calibration over

a subset of the thirty stations and, based ou Figure 6.1, we chose the subset

6.1. Choice of stations to emulate 76

1416 1419 1420

1318 13~9 1320

60°N

1214

50°N

1013

=
911 912 913

40°N

809 810 811 812

708 709 710 711

30°N

606
: ff. /

20°N

BOW 70W 60W 50W 40W 30W 20W 10W ow

Figure 6.2: Map of stations shown with coloured outlines corresponding to the groupings

identified by the mixed layer depth distances in Figure 6.1. The four stations marked black

are those which we propose to emulate in this Chapter and then calibrate in Chapter 7.

Station 1115, marked dark grey, is used to perform an exploratory analysis before we begin

the emulation process.

(1015, 1113, 1116, 1215) along with station 1115 to perform an exploratory analy­

sis. Figure 6.2 shows the stations, together with the groupings identified from the

MLD distance analysis. These stations were chosen because they offered the chance

to produce a calibration that was valid over a connected geographic region and, over

which, stations covered a large part of the overall range of forcing functions so as

to stretch the methodology. We see from Figure 6.2 that two of the four stations lie

6.2. Parameterisation of model output 77

in the main group, as determined by MLD distances in Figure 6.1, and two within

the red region. Differences in MLD were the main consideration when looking for

a range of physical conditions since the expert believed the MLD forcing function

played a much larger role than PAR in determining simulator output.

6.2 Parameterisation of model output

The simulator output, for each station, is a time-series of the three populations at

uneven time intervals. For nutrient, we have a single winter-time nitrate observation

to calibrate against and we take this to correspond to simulator nutrient output,

Nw, at the time, tw, of the maximum MLD forcing function value at the station;

this is the time at which nutrient is thought to correspond most closely to nitrate

as discussed in Chapter 2. For phytoplankton, we have a time-series of physical

observations and the question arises as to how best to parameterise this output.

Our parameterisation is driven by the physical problem through our consideration

of the main features of the data which we wish our calibrated model to reproduce;

for example, the sudden increases or 'blooms' of phytoplankton in the springtime

witnessed at the four stations and the general decline in phytoplankton stocks later

in the year.

The strategy we adopt in attempting to pick up these features is by first inter­

polating simulator output at each station onto the time points of the corresponding

physical observations. We then split the time series at a given station, s, into inter­

vals according to the physical data and parameterise the phytoplankton output by

the set Ps = (Ps,l, ... , Ps,JJ, where Ps,i is the mean phytoplankton value in interval

i, and 18 the total number of intervals, at station s. The resulting parameterisation

for the four stations we consider is shown in Figure 6.3. As the mean is a linear

operator, the derivative of an interval mean is simply the mean of the derivatives

in the interval and so we can easily re-parametrise the derivatives generated by our

simulator.

For phytoplankton blooms, choosing an interval about the maximum value and

calibrating to the mean taken over the interval reflects our belief that changing inputs

6.2. Parameterisation of model output 78

Station 1 015 Station 1113

5 110 185 235 320 25 110 185 230 275 330

Station 1116 Station 1215

0

"'
""!

q

10
0

0
0

10 130 185 245 310 35 95 140 235 310

Figure 6.3: Observed chlorophyll (mmol m-3) at the four calibration locations recorded

for 1998 where t = 0 corresponds to midnight GMT on 31st December 1997. Vertical lines

determine intervals used for parameterisation as described in Section 6.2.

can also affect the phase of the simulator bloom as well as its magnitude. Such a

parameterisation is then appealing for two reasons: firstly, it yields a relationship

between input and the (re-parameterised) output which is smoother than that based

on output at selected time points and, secondly, in calibrating the model in Chapter

7, it allows us to score as a good match output with a similarly shaped but slightly­

out-of phase bloom (calibration based on selected time points would lead to big

miss-match scores for outputs either side of the bloom in such a situation.) We

choose the end points of the interval to reflect our desire to judge an input as giving

6.3. Preliminary analysis at station 1115 79

a good match if it produces a bloom of roughly the correct shape anywhere within the

interval. Calibrating to the mean levels in intervals either side of the bloom imposes

restrictions that the raised mean level in the sandwiched interval corresponds to a

reasonably isolated peak. We ignore what we observe to be a bloom at the end of

the cycle at Station 1015 as there in no data to the right of the bloom for us to

include in an interval around the bloom. Mean values over non-bloom intervals are

also taken to capture the general level of phytoplankton at various times of year

and are preferable to single time points because of the high day to day variability

evident in the data. It allows us to capture, for example, the general pattern of

decline from summer to autumn shown in stations 1113, 1116 and 1215.

It is worth noting that the fairly coarse representation of the output that this

transformation offers us is quite desirable at this stage; we are looking for a param­

eterisation which allows us to rule out a large part of the space of possible inputs in

our calibration. A simple re-parametrisation of outputs at the first stage of calibra­

tion is a good strategy in general because the parameterisation is not only applied to

the physical data but to the simulator output and many simulators produce output

over much of the input space which is very different to the physical data to which

the simulator is to be matched.

6.3 Preliminary analysis at station 1115

There are many ways to construct emulators (See, for example, Oakley (2002) and

Craig et al. (1998)). Our aim in this section is to demonstrate the role that deriva­

tives can play in constructing the emulator. Generating derivatives brings additional

information at a relatively cheap cost and, in addition, derivatives offer a somewhat

different type of (localised) information. Hence our goals are, firstly, to use this ex­

tra information to improve our prior specification in general terms and, secondly, to

divide up resources so that information is targeted at parts of the prior specification

about which it is most informative.

In all that follows, xi is used to denote the ith input in Table 2.1, linearly rescaled

6.3. Preliminary analysis at station 1115

........ -CC

........ -........

C')

N

0

0
N

LO

z 0

LO

0

,•_

0 100

0 tw 100

'\
I I

I
I
I
I
I
I
I
I
I

200

200

t (days)

80

300

300

Figure 6.4: Station 1115: time series simulator output at different inputs for phytoplank­

ton, P(t), and nutrient, N(t), plotted against time, t.

so that lower and upper bounds for Xi are mapped from xi E [Li, Ui] to xi E [-1, 1]:

1 -
x · = (2x · - (U + L))

t ui- Li l l l .
(6.2)

For the most part, we work with the inputs in their transformed units, xi, with

the occasional exception, in particular in Chapter 7, when we use the symbols and

original units, given Table 2.1, in linking our findings back to statements about the

physical problem. Rescaling inputs necessarily requires to us to rescale derivatives

generated by the simulator, 8s/8ii and, wherever they are shown, derivatives are

6.3. Preliminary analysis at station 1115

0 = ---
..-

I

25

I'
I , '

' \

\
\I

I

110

I I
I I

I,
I I

I

\

I

I

I

I

I

I

I

185

.... -- - -

--------

230 275

--­.. -------..-

330

81

Figure 6.5: Station 1115: mean ± 2 s.d. phytoplankton simulator data. Black lines

denote values for daily time series data and grey lines and rectangles denote values for

each output of the interval re-parameterisation.

rescaled to correspond to inputs in their transformed units:

Ui- Li 8s
2 8ii'

(6.3)

We began by choosing a fifth location, station 1115, as an exploratory site with

a view to a preliminary analysis to aid our forming of prior beliefs at other stations.

Station 1115 was chosen as it lay in the middle of the four calibration stations and

we believed it would give us information about each of them. We re-parameterised

output at station 1115 according to the intervals at station 1113; the first station

at which we intended to fit a prior based on the exploratory analysis. Station 1113

was chosen because station 1115 lay slightly further away than it did the other three

calibration stations so that any similarity between it and the remaining three sites

would, we thought it reasonable to believe, be at least as strong.

We ran a 25-point Latin hypercube over the thirteen inputs in Table 2.1, taking

a uniform prior distribution on [-1, 1] for each input. Latin hypercube sampling

(see Owen, 1992) returns a sample of n points from a space, x, by dividing the prior

distribution for x E x into n intervals of equal probability along each dimension,

xi, and sampling the grid boxes in such a way that each interval in each dimension

6.3. Preliminary analysis at station 1115 82

is sampled only once. In our case, the prior distribution is uniform over [-1, 1] for

each input dimension so that these intervals are distributed over an evenly spaced

grid. The advantages of such a design is that it gives good coverage of the input

space and lower dimensional projections of the sample retain this coverage.

Figure 6.4 shows the original untransformed time series data at the twenty five

input points for phytoplankton (top) and nutrient (bottom) at station 1115. We see

a large variability in the phytoplankton output in the middle of the year (between

approximately 100 days to 200 days) with a much smaller variability at the start

and beginning of the year. Figure 6.5 shows the mean± 2s.d. for the phytoplankton

simulator output before being re-parameterised (black lines) and under the interval

parameterisation (grey horizontal lines and rectangles). We see the variation is much

less for the transformed data which should help us to build an accurate emulator

based on fewer runs (since observing output will tell us about outputs further away

in the input space than under the original parametrisation) whilst still hopefully

retaining enough variation for us to calibrate against (in our case, variation in the

simulator output is still large relative to that in the physical observations under

this re-parameterisation so that we can calibrate). The bottom plot in Figure 6.4

shows that nutrient output for any given input vector appears to be fairly smooth

around iw and hence modelling a single nutrient time point should not cause too

many problems.

6.3.1 Choice of active inputs

For each input, we computed the mean and standard deviation of the twenty five

derivative values at every seventh day of the original untransformed time series

simulator output. Figure 6.6 plots the largest and second largest mean derivative and

standard deviation derivative at each of these time points. The numeric plot symbols

denote the input to which the derivative statistic corresponds and grey circles for

the mean plots denote a negative value. The plots are designed to aid in spotting

any general patterns which may influence our interpretation and selection of active

inputs for the re-parameterised output. We see from the top row that phytoplankton

tends to be most sensitive to changes in x 1 , with this input registering the largest

6.3. Preliminary analysis at station 1115 83

10

..
c "' ea
<I> N E

0

10

..
C\1
c "' ea
<I> N -E

-
0

LO
N

0
N

"'0 ~
(/)

~

10

0 _.Jj_ ~ ! ____ '_'_,_~-·~·······
10
N

0
N

C\1
~ "'0

(/)

~

10

0

Figure 6.6: Station 1115: value of the largest and second largest phytoplankton input

derivative mean and standard deviation, plotted at every seventh day of the original

untransformed time series. The plot symbols are numbers corresponding to the input

whose derivative is plotted and lines join values of inputs whose derivative appears at

successive time points. For the mean plot, grey filled circles corresponds to derivatives

whose values are negative.

absolute value in the mean and largest standard deviation at the majority of time

points. In addition, x3 registers as the largest absolute derivative in the mean and

in the standard deviation for a small number of time points in middle of the year.

Second order effects tend to be caused by x4 and x 10 early on and by x3 later on,

with x6 also registering effects in the middle of the year.

Figure 6. 7 shows the parameterisation of outputs for station 1115 together with

6.3. Preliminary analysis at station 1115 84

11
CD

14 11
22 ''

fj I b t£ tl <t
0- & g

"" B .:LJ D :w L .. 5
1e "' I I i1 14

-,, r ~ ,:r;
,..-·~ r_:, ~ 0

I
,_,

r~
,_3 ~-; i?; ~:; ·- w

14 16 'jl - "' I
11 25

7 - "f 11
25

14
P,

'?
p2

X1 X3 xs X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13

11
CD -

1' 11

"' <t - 11

"' - 16 0 I Ci £:1 I I Q t~J i:::J G la L) £j Cl

11
14 ~'i

! ?~ • ~J 'A ,, 11
0 - Ll ~ I If "' \,1 :i:1 'j

25
~(; "' 25

'jl - 16 I

"f - "f 11
p3 p4 '? -

11
11

X1 X3 X5 X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13

CD

"' - •
<t

"' - 25
11 "' 25 3

11

I
16

~ - 11
I li i' 0 14 ~J] d .,

I
11 0 ';;i I

< l N -C-) 'W Ef
2l I -~ i 'J L! ~ !f ~'}

0 - I CJ ·~ TJ Z.) 1;1 ;::]

"' 22
11 'I I

I - 21 25 I' "f
25 Ps Nw

X1 X3 X5 X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13

Figure 6.7: Station 1115: Derivatives of re-parameterised outputs with respect to

each input computed at the twenty five input values. The set of active variables,

x* = (x1, x4, x5, xw) for P1115, and x* = (x1, x4, XG, x13) for N1115, are coloured black

and grey vertical lines denote ±2s.d. for each sample of derivatives.

plots of first-order input derivatives for each output at the twenty five input points

in our hypercube design, with vertical lines denoting ±2s.d. for each sample of

derivatives. The plots provide an informal means to form various aspects of our prior

beliefs. In looking for active variables for a given output, much of the information

can be summarised by considering the sample mean and variance of each of the

corresponding input derivatives. An input which has a collection of derivatives with

6.3. Preliminary analysis at station 1115 85

(X)

ci

<C
ci

14

22

112 21

~ -'r------,-"=61"-"5"'-9-'-'1 6:..!:16~6,_2r01:!.::9'-'5~ID~23,_7.....:31~7!.....!..::15~42~4~13f-'

-1.0 -0.5 0.0 0.5 1.0

x,

~ ,-----------------,

(X)

ci

<C
ci

0
ci

(X)

ci

<C
ci

0
ci

-1.0

14

-1.0

25

6

-0.5

25

21

6

-0.5

16

5

24

16
7

20
4

9 6 19 ID 23 17 15 13

0.0

x,

16

16 20

9 6 19

0.0

x,

5

0.5

7

ID 23

0.5

24

-4

1.0

17 15 13
1

1.0

"' ci

0
ci

11

22

-1.0

1
14

25

12 21
6

-0.5

16

20
16

5

9 6 19

0.0

x,

7

ID 23

0.5

3

4

24

17 15 13

1.0

~ ~--------------------,

(X)

ci

<C
ci

0
ci

1.f2

-1.0

14
112

25

21

6

-0.5

16

18 20
5

3

7

24

4

9 8 19 ID 23 17 15 13

0.0 0.5 1.0

x,

~ ~------------1~-5-2-2-,

"'

0

21
6

1{!

2 7 12IJ
4 14

- 1.0 -0.5

9 11

13 1017 25 16
8

24 1 6

1

0.0 0.5

3

1

1.0

Figure 6.8: Station 1115: simulator output, Pi and partial derivatives, 8Pd8x1, i

1, ... , 5, plotted against x1 for the first five plots, and simulator output, Nw, and partial

derivative, 8Nw/8x13, plotted agrunst x13 for the final plot. For each output, function

values are marked by their run number and derivatives by the gradient of the line passing

through the corresponding point.

small variance and mean close to zero can be discarded as inactive and we might

choose not to compute its derivatives in further runs. An input whose derivatives

have mean far from zero but small variance can be considered as active, but we

may wish also to drop derivatives calculation in further runs as derivatives appear

constant throughout the space. Conversely, we may wish to calculate higher order

derivatives in future runs of inputs whose derivatives exhibit high variance.

6.3. Preliminary analysis at station 1115 86

Figure 6.8 takes, for each output, the twenty-five function values plots them

against what appears, from Figure 6.7, to be their most active input - x 1 for P

and x 13 for Nw - together with the twenty-five derivative values with respect to this

input. A noticeable feature of the 8~j8x 1 values is that they seem, in general, to

be much more variable for smaller x 1 than for larger x 1 . For Nw, we see the strong

linear effect of x 13 in the function values and in the constant 3Nw/ 3x13 values.

Output Input 1 Input 2 Input 3 Totals

pl X1 (16,8,1) X4 (6,9,7) x3 (3,2,4) (25,19,12)

p2 X4 (8,1,7) XI (7,15,2 X3 (5,1,1) (20,17,10)

p3 X4 (9,0,4) Xl (3,12,3) X3 (5,1,2) (17,13,9)

p4 X4 (8,1,7) XI (5,14,1) x3 (5,1,1) (18,16,9)

p5 X1 (8,11,2) x" (7,4,5) x3 (5,1,1) (20,16,8)

Nw X13 (25,0,0) X15 (0,13,5) X4 (0,3,9) (25,16,14)

Table 6.1: Top three ranking inputs based on the number of runs at which an input scores

one of the top three derivatives magnitudes. The numbers in brackets denote the number

of runs at which each input scores the first, second and third highest derivative magnitude.

A noticeable feature in Figure 6. 7 is a small number of large derivatives at each

input. Thus the plots are good for spotting inputs with large derivatives, but these

derivatives tend to warp the scale of the plot and make it hard to make a distinction

between inputs at runs for which derivatives are smaller. A way round this is to

produce versions of the plots with these extreme values removed. An alternative is

to compare derivatives on a run-by-run basis: Table 6.1 does this by counting the

number of runs at which each input has one of the top three derivative magnitudes.

The numbers in brackets denote the number of runs at which each input scores

the first, second and third highest derivative magnitude. For example we see that

8Nw/8x13 is the largest derivative for all 25 runs, backing up our previous findings.

A word of caution about these numbers, however, is this: some runs are more

important than others. In particular, an input which ranks as the largest derivative

for the majority of input points, but for which all derivatives are small at these input

points will score well here but we may not feel it to be active: x 15 - which is the

6.3. Preliminary analysis at station 1115 87

second largest derivative of Nw at 13 of the 25 runs, may be one such input, based

on Figure 6.7.

The derivative plots in Figure 6.7 are also rich in information about the kind

of variation explained by each input. In our case, the plot of Nu 15 (bottom right)

shows that the derivative with respect to x 13 (Nref in the original units) is consistently

relatively large with little variation. This led us to suspect a strong linear effect from

x 13 dominating the variation for this output. Since there was no such consistent

linear effect for the phytoplankton outputs, we decided to group our prior beliefs

for the outputs into phytoplankton outputs and nutrient. For the nutrient output,

Nu 15 , we chose the set of active inputs x* = (x 1 , x 4 , x 6 , x 13), marked black in Figure

6. 7. Whilst there were some differences between phytoplankton outputs, given the

small number of runs performed and the uncertainty inherent in linking it to the

other sites, we decided not to break down our prior description further. We chose

the active inputs x* = (x 1 , x4 , x 6 , x 10) for Pu 15 since, between them, they were

responsible for the majority of the variation in derivatives at the exploratory site

outputs.

6.3.2 Assessing global prior mean and covariance parame­

ters

In selecting and estimating terms in our model at the exploratory site, we adopted

a model-fitting approach, fitting linear, quadratic and first-order interaction terms

in the active inputs for each output using Ordinary Least Squares (OLS). Table 6.2

shows the R2 values for linear fits with and without quadratic and interaction terms.

From Table 6.2, we see that R2 values for outputs in P are all much lower than for

Nw and are all roughly the same order, although they tend to increase slightly for

outputs corresponding to intervals further away from the centre of the year. All the

phytoplankton R2 values are much lower than for Nw.

In general, quadratic terms appeared to pick up less variation than interaction

terms. Although the amount described by individual terms varied across different

outputs, we chose to keep 'all linear terms' or 'all interactions' rather than hand-pick

terms, in order to keep a reasonably flexible prior model which could be naturally

6.3. Preliminary analysis at station 1115 88

Output Pn15,1 pll15,2 Pn15,3 Pnl5,4 ?1115,5 Nll15,w

R~n 0.43 0.53 0.33 0.48 0.54 0.97

R~n+quad 0.55 0.59 0.47 0.59 0.62 0.98

R~n+int 0.83 0.66 0.54 0.69 0.78 0.98

R~n+int+quad 0.93 0.72 0.66 0.80 0.87 0.99

Table 6.2: R2 values from OLS fits at station 1115.

extended to other sites. Hence, we decided to keep linear terms for Nw and linear

and first-order interaction terms for P. This gave models of the form

Pm5,k !3o + L !3ixi + L !3i,jXiXJ + a;,k> i, j = 1, 4, 6, 10,
i,j i#j

Nlll5,w = f3o + L {Jixi +a;, i = 1, 4, 6, 13.

(6.4)

(6.5)

In order to improve the fits for the phytoplankton outputs, we experimented with

including inputs which we had not chosen to be active based on our derivative plots,

but this also had little effect and we were wary about spurious improvements because

of the small number of runs used in building the OLS models. We also tried a log

transformation of the simulator output data, and repeated the OLS model-fitting,

but this did not result in any significant improvement in the R2 values. Thus we kept

the original models, believing them to represent a good description of global 'trends'

in the phytoplankton outputs, but from which there was significant variation which

would be described by higher order effects in the £-surface (including the variation

described by the dropped quadratic terms). Table 6.3 gives the OLS estimates for

the coefficients in these models.

6.3.3 Assessing variance parameters for E and o
Craig et al. (2001) describe a 'spectral decomposition' approach to estimating a; and

ag, in a Bayes Linear context, which does not require full distributional assumptions.

The method estimates a; and ag by regressing the residuals of the corresponding

OLS fit onto the eigenva.lues of the model covariance of f + 5 for a given choice of

8 as follows: Let e be the residuals from an OLS fit of S = s(X) on X. Then e =

6.3. Preliminary analysis at station 1115 89

f3o {31 {34 {36 {310 !31,4 !31,6 {31,10 !34,6 !34,10 {36,10

p1 0.07 -0.11 0.13 -0.01 -0.10 -0.21 0.07 0.21 -0.01 -0.15 0.06

g 0.63 -0.41 0.52 -0.03 0.18 0.02 -0.08 0.10 -0.10 0.33 -0.51

p3 0.29 -0.23 0.17 -0.07 0.10 0.28 0.25 -0.05 -0.06 0.18 -0.30

p4 0.28 -0.24 0.20 -0.12 0.15 0.23 0.24 -0.08 -0.13 0.22 -0.28

p5 0.19 -0.21 0.13 -0.10 0.10 0.12 0.21 -0.08 -0.11 0.16 -0.19

f3o {31 {34 {36 {313

Nw 11.57 0.43 -1.31 -0.02 7.95

Table 6.3: Estimates for B coefficients from OLS fit.

P(c+6) where P = X(Xr X)- 1 xr is the projection operator from the OLS fit. Then

Var[e] = PVar(c+6)PT = (}'; P RPT +(}'gP I pr, where R = exp{ -(x-x'f8(x-x')}

is taken to be known. The two components of Var[e] commute (to see this note that

P = pT and, since P is a projection matrix, pn = P for n ~ 1) so that they can be

diagonalised simultaneously in an orthonormal basis u1 , ... , 1l71 with corresponding

eigenvalues .Xi and .\f. Then, for vi = uf e, we have that the ui are independent with

E[vi] = ufE[e] = 0 and Var[vi] = ufVar[e]ui = (}'; .\~ + (}'g>,f. Hence we can estimate

(}'; and (J'g by regressing vf on .Xi and .\f (with no intercept term).

Note that the method assumes that the value of 8 is known. In Chapter 4 we

discussed the fact that estimating 8 values was difficult under a full Bayes anal­

ysis and, in fact, the same turns out to true in a Bayes Linear analysis. Craig

et al. (2001) take a common B for each input dimension and fix this value a priori,

choosing this common value based on simulating random functions with a Gaussian

covariance structure for different e values, and choosing a e which appeared to give

realisations of roughly the desired variation. However, in Chapter 4, we illustrated

with an example the potential that derivatives offer in estimating components of 8.

Here we offer a way to exploit this potential by extension of the method of Craig

et al. (2001), which not only keeps true to the Bayes Linear spirit of dropping full­

distributional assumptions, but is computationally cheap.

By considering the models for the derivatives of each output taken with respect to

6.3. Preliminary analysis at station 1115 90

each of its active variables

(6.6)

together with our model variance for E-derivatives which, from (4.13), is given by

(6.7)

we proceed as follows:

1. Start with a prior guess for 8 (e.g. obtained from simulation).

2. Use the spectral decomposition method of Craig et al. (2001) to obtain esti­

mates of CJ; and CJ} for each output.

3. Fit the global terms in (6.6), using e.g. OLS, to the corresponding derivatives

generated by the simulator.

4. For each output, take the Residual Sum of Squares (RSS) of the fit in step 3

as an estimate of the left hand side of (6. 7), and divide through by estimates

of 2CJ; from step 2 to obtain estimates of the ei.

5. Iterate steps 2 - 4.

We applied this 'modified spectral decomposition method' in order to assess CJ;,

8 and CJ} for each output of the exploratory site. For everything that follows, we

take 8 to be a diagonal matrix and adopt the shorthand 8 = diag(8) for the

vector of its diagonal elements. In choosing starting values for the elements of 8,

we took all components to be equal and chose a common value of e = 2.5. The

value was obtained by simulating random functions on the range [-1, 1], taken

from a multivariate normal distribution with Gaussian covariance structure, for a

range of different e values, and choosing a e which gave realisations of roughly the

desired variation. In our case, e = 2.5 gave smooth realisations but also containing

substantial quadratic and higher order effects.

Table 6.4 gives the results of steps 2 - 4 of the modified method at the ex­

ploratory site. Note that the method gives a estimate for each component of 8 for

6.3. Preliminary analysis at station 1115 91

Output a2
(

a2
r5 e1 ()2 ()3 ()4

H 0.045 0.013 27.33 5.91 2.95 0.79

p2 0.279 0.015 7.78 3.76 0.79 1.03

p3 0.231 0.058 7.18 5.36 0.36 1.07

p4 0.227 0.012 9.91 5.82 3.03 3.34

p5 0.009 0.215 6.80 2.06 0.96 0.14

Nw 0.885 1.493 1.95 2.10 1.60 0.28

Table 6.4: Estimates from the modified spectral method at the exploratory site.

each output. Computational savings arise from outputs with common active inputs

having common () values for these inputs. For phytoplankton outputs, we decided

to combine estimates over outputs to obtain a single 8 vector, but to allow different

values for different components of 8. In combining the estimates, we decided to

ignore estimates corresponding to P 1 and P5 since both these outputs had small a;
estimates to which our method of 8 estimation, which involves dividing by a;, is po­

tentially very sensitive to any errors. The remaining 8 estimates for phytoplankton

outputs were all the same order for any given component and we chose to combine

them conservatively by setting each component to be the maximum value of that

component over these outputs. This gave the estimate 8 = (9.91, 5.82, 3.03, 3.34)

for P and 8 = (1.95, 2.10, 1.60, 0.28) for Nw. Finally, we plugged these estimates

back into the spectral decomposition method to re-estimate a(and a0 for the new

8. Of the resulting estimates, there was very little change, with six of the twelve

estimates registering no change at all.

Note that in general we could continue to reiterate the method, although we chose

not to here because of the small changes and, in particular, because the estimates

for aE corresponding to P2 , P3 , P4 were three of the six estimates which remained

unchanged. A note of caution concerning an iterative method such as that outlined is

this: unless the emulator residual is orthogonal to the regression terms (for example,

with respect to a uniform distribution on x in our case), then the two parts of the

model may begin to compete for variation because of the non-identifiability of the

model. In particular, the residual may try to 'steal' variation from the regression

6.3. Preliminary analysis at station 1115 92

terms leading to a CJ€ term which is too large and a collection of 8 parameters which

are too small. Since we made just one pass through the method here, this is not

an issue; in general, however, it may be - and in fact it may be advisable to limit

oneself to one iteration.

As mentioned previously, estimating 8 is a problem that has caused a great deal

of difficulty in the literature. Access to derivatives, however, has offered us a way

to estimate 8 which is simple owing to the form of the E-surface and enables us

to make prior distinctions between dimensions because the information contained

within the derivatives is linearly related to 8 through (6.7). Diagnostics of emulator

forecasting performance in Section 6.6 show nothing to contradict our belief that

these estimates are good.

6.3.4 Design of simulator runs

In selecting the set of inputs at which to run the simulator, we set down a total

budget of 200 runs across the four calibration stations and took a 200 point Latin

hypercube over all thirteen inputs and then assigned each calibration station twenty

five of these runs at random. A single hypercube was preferable to generating a

50 point Latin hypercube at each station as we wanted to maximise our coverage

of the input space in our search for inputs which produce good matches at all four

stations. Random assignment of these runs to each station was a simple and quick

way to divide up the runs although better assignments are probably possible. Whilst

Latin hypercubes offer space-filling designs which project well into lower dimensions,

they do not guarantee orthogonality and can potentially result in highly correlated

designs. Schemes to generate orthogonal designs, by contrast, are typically not space

filling and this effect is exacerbated after projecting into lower dimensions. We were

able to exploit the desirable properties of a Latin hypercube design whilst exercising

control over the degree of orthogonality in a simple way as follows: we generated

several candidate designs and computed the correlation matrix for each. For each

input, we computed its maximum correlation with the remaining inputs, giving a

total of thirteen correlations, denoted cl' ... 'cl3 after ordering from smallest to

6.3. Preliminary analysis at station 1115 93

largest. We then chose the design which minimised

wC5 + (1- w)C13 with w E [0, 1] (6.8)

and investigated the effects of varying w, whose value reflects the relative impor­

tance of minimising the active input correlations relative to the remaining correla­

tions. Finally, we permuted the columns of our final choice of hypercube so that the

dimensions with the smallest five correlations corresponded to active inputs.

0
C')

0

0

I t\J

it II
0 I I

c5

llj: Ill! 11

I

!Ill

JIIJ:
1111; Ill 0 ,.... I

0

0
0
0

2 3 4 5 6 7 8 9 10 11 12 13

Figure 6.9: Mean ±2 standard deviation of C1, ... , C13 values based on 25 minimisa­

tions of wCs + (1 - w)C13, with each minimisation over 10,000 randomly generated 13-

dimensional 200-point hypercubes. Results for different values of w E (0, 0.25, 0.5, 0. 75, 1)

are shown from left to right for each Ci.

Figure 6.9 plots the means ±2s.d. for twenty five minimisations, each over 10,000

candidate hypercubes, for different values of w. We see firstly that, for w close to 1

(where we constrain C5 only), that C13 shows a lot of variation in its value and can

be relatively large. On the other hand, for smaller w, the constraint on C13 has the

effect of constraining all C5 reasonably well, but at the cost of not constraining the

smaller Ci quite so much. Based on this, we generated a further 10,000 candidate

hypercube and chose the design which minimised (6.8) with w = 0.9 chosen to

direct most of the effort into minimising correlations between active inputs, but

6.4. :From exploratory analysis to prior emulator 94

precluding large values of correlations between inactive inputs. This gave a largest

correlation involving an active input of magnitude C5 = 0.097 in our final choice

of hypercube. There are many sensible alternative criteria to (6.8) which could be

employed to exert some control over correlations and this may be an interesting

area for future work. We do not pursue this here, but note that employing some

form of control over the degree of orthogonality of hypercube designs is probably

desirable and can be achieved very cheaply (a sample of 10,000 hypercubes took

approximately two minutes to generate and minimise on our computer). For some

alternative approaches to improving Latin hypercube designs, see Koehler and Owen

(1996) and references contained therein.

6.4 From exploratory analysis to prior emulator

The exploratory site had two main functions in assisting our emulation at station

1113. Firstly, it revealed active inputs and provided estimates of coefficients of the

resulting model in these active inputs to aid with prior model building at station

1113. Secondly, again through the selecting of active inputs, it influenced our design

of input points at which to run the simulator at station 1113, in order to refine our

prior. A natural way to proceed in forming a prior at 1113, then, is through a

combination of the estimates of the exploratory model-fitting in conjunction with

informal assessments of our beliefs about the likely magnitude of difference between

the two sites. We took the same form for outputs as at the exploratory site, given

in (6.4), and took OLS coefficient estimates as the corresponding prior mean for the

terms at station 1113. In forming variances for these coefficients, we considered for

each coefficient a relationship of the form:

(6.9)

where we chose a and b to reflect our beliefs about the differences between the

stations: a specifies what our uncertainty about a coefficient at station 1113 would

be if we knew the value of the corresponding coefficient at 1115, b ~ 1 scales up

uncertainty because OLS fitting assumes an uncorrelated error distribution which,

in practice, does not hold. In the absence of strong information about a and bat this

6.4. From exploratory analysis to prior emulator 95

35 35
<D

35 35 40 40 33
'<t

1/)

N 30 I I I u I 35 .. 1 I • 0 I • 11 " . • 0 I • N lW
I 38 35 33 ,. ~ 30 1/) D P, I 35

p2 §~
'I' I I

Xl X3 X5 X7 X9 Xll X13 Xl X3 xs X7 X9 Xll X13

40

3 40
3]
40

1/) 1/) 9

~ 33
9 I 19 • I 9

I • 0

I • • 0

I
.. I .. . I I 33

Ill 38 9

Ill
11 I 8J 3

I 35

35
p3

35
p4 0

40 I 35

Xl X3 X5 X7 X9 Xll X13 Xl X3 X5 X7 X9 Xll X13

40
<D

35 30 35
'<t Ill 30 1j! I 13

11
N

I
29

3!; I I 11 111 u !I " ~ ' 0

I • • 0 • • N 40 ~
I

~ ,. :m 30
Ill 9

~5 Ps
I Nw 'I' 40

Xl X3 xs X7 X9 Xll X13 Xl X3 X5 X7 X9 Xll X13

Figure 6.10: Station 1113: output parameterisation (top left) and derivatives of the re­

parameterised outputs with respect to each input computed at the twenty five input values

(remaining plots). See caption in Figure 6.7 for full description.

take, we chose to take them to be equal for all components of P and to choose them

conservatively. An obvious way to learn about these values is to perform exploratory

analyses at two sites. However , we chose instead to maximise our run budget for

updating and scale uncertainty conservatively here (We can scale less conservatively

when we link to and form priors for subsequent sites). In general, a more complicated

linking relationship than (6.9) may be appropriate. For example, if the coefficients

are on vastly different scales, we may want to scale with the quantity itself as well;

6.5. Resolving emulator uncertainty at a single site 96

this was not the case here however and so (6.9) was felt to be sufficient.

Figure 6.10 gives the derivative plot for twenty five input points assigned to

station 1113 at random from our 200-point hypercube, which we use as a diagnostic

for checking aspects of our prior beliefs. In general, if for some station, the plots

look very different to those at the exploratory site, we might for example perform

OLS fits on the simulator output at the station and, in some cases, add extra terms

into our prior emulator model, although we did not feel this to be necessary in this

case. Similarly, our hypercube design is flexible in being easy to sample over extra

active inputs dimensions for the seventy five remaining points if we do find extra

or difFerent active inputs. For N 1113 we saw much the same behaviour as at the

exploratory site with a large linear effect from x 13 indicated. For the Pm3 , the plots

reinforced our choice of active inputs as the four were active across most outputs

and did not appear to contradict our prior groupings.

6.5 Resolving emulator uncertainty at a single site

We are interested in the additional reduction of emulator uncertainty caused by

evaluating derivatives. For the calibration problem in hand, we are additionally in­

terested in the effect this reduction has on our ability to calibrate the model, which

we explore in Chapter 7. In making the comparison, we introduce the subscript

notation Xn to denote the first n input vectors in X, with Sn and 'V .•• Sn the corre­

sponding simulator output and derivatives respectively. We evaluated our adjusted

beliefs, for each output, on an evenly spaced 154 grid representation of the possi­

ble values of the four corresponding active inputs. This equates to 154 = 50, 625

evaluations for each output, which we can compute in less than one minute, demon­

strating the strength of the emulator method. To compare variance reduction with

and without derivatives, we considered the mean adjusted standard deviation,

Sbon =mean SDo,[s(x)] (6.10)
X

and the maximum adjusted standard deviation,

Sbo, = maxSDo,.[s(x)], (6.11)
X

6.5. Resolving emulator uncertainty at a single site

both taken over the 154 grid representation of the active input space.

' I'
I'

I -.

' '
I

I

' ' ' '

"' ' '

0

'<t

"'

"'

'
~__::~-::_ =-~- _- ~ --
o,

0 5 10 15 20 25

' p3 I'
I'

I

' ' I

----------~--
iif.•ol --------~~~==~~~~
o,

0

I.

' I
I

I

5 10 15 20 25

0

'<t

"'

1/)

M

0
M
1/)

N

0
N

~----~O:+o~ ------

0 5 10 15

I'

I

' '

0 5 10 15

' '-

·- - - - - - ~ -

20

20

97

25

p4

25

0

0 5 10 15 20 25

1/)

0

0
0

0 5 10 15 20 25

Figure 6.11: Adjusted standard deviation against number of simulator runs with deriva­

tives (black) and without derivatives (grey) for outputs at Station 1113. Solid and dashed

lines correspond respectively to the mean and maximum standard deviation taken over

the input space. The light grey rectangle is defined by the horizontal lines V 1J'l_ + tJJ and

IJ 0, shown for reference.

Figure 6.11 shows SbDn and sbDn against the size, n, of the input set, Xn, for

the outputs at station 1113, comparing the cases when derivatives are and are not

included. The vectors in X appear in the order that they were selected at random

from the 200-point hypercube so that Xn+l is equivalent to Xn together with an

6.5. Resolving emulator uncertainty at a single site 98

C> p1 C> p 2

(X) (X)

d d

P.-.~---
CD CD ---------d d

V V
d d

N N
d d

o,

0 "' 0
d d

0 5 10 15 20 25 0 5 10 15 20 25

C> p3 C> p4

(X) (X)

d d

CD CD
d d

V

~---------~
V

d d

N N
d d

0
o,

0
d d

0 5 10 15 20 25 0 5 10 15 20 25
0

C> p5
I'J

Nw
(X) "!
d

CD
d C>

V
d
~---------~ ----------- lll --

N d
d

0 o, 0
d d

0 5 10 15 20 25 0 5 10 15 20 25

Figure 6.12: Station 1113: Separate components of adjusted standard deviation with

derivatives (black) and without derivatives (grey). Solid lines correspond to SDDn[Bg(x)]

and dashed lines to SDDn[E(x)]. The light grey rectangle is defined by the horizontal lines

J a~+ a~ and a0 , shown for reference.

input vector randomly chosen from the remaining input vectors and does not, for

example, correspond to an ordering of the most informative runs.

For each output, the a0 line corresponds to the irreducible part of the variance

and is thus a lower bound on the overall standard deviation, whilst the J a'; + a~
line denotes the level of standard deviation at which mo t of the global variance has

6.5. Resolving emulator uncertainty at a single site 99

been resolved and after which we learn mainly about the £-surface. In both plots

we see that both the mean and maximum are significantly lower when derivative

information is included (black) than when it is not (grey).

We see that, for Nw, the standard deviation decreases much faster than for the

phytoplankton outputs for small n, which is a consequence of the smaller number

of global terms in B leading to quicker resolving of global variation, which is the

dominating variance for small n. This is confirmed also by the plot of separate

part of the variance surface, given in Figure 6.12. In the bottom plot, the means

are furthest apart after five runs and, after twenty five runs, the mean without

derivatives has caught up quite a lot of the difference (although the maximum still

has some way to go). In contrast, in the phytoplankton plots, the slower decrease

in standard deviation means that, after twenty five runs, the difference between the

two is just about levelling off at its maximum value so that we feel the benefit from

including derivatives over the whole range.

We also investigated percentiles of the distribution of standard deviations such

as the 50th and 95th percentiles. We found that the 50th percentile remained very

close to, although slightly lower than, the mean and the 95th percentile remained

approximately half way between the mean and maximum, giving an indication of

the order of positive skew of the distribution.

The benefit of including derivatives can be thought of in terms of the horizontal

(for a given number ofruns with derivatives, how many runs do we expect to need to

perform to obtain the same variance reduction without derivatives?) and the vertical

(for a given number ofruns, what is the additional reduction in variance achieved by

observing derivatives?). Figure 6.11 shows us that, when we reduce largely global

variation, the vertical gain can be much higher whereas, as we resolve variance

largely in the £-surface, the horizontal benefits are the greater. Considering vertical

gain, for the outputs in Figure 6.11, the additional reduction in mean variance for

Nw is at its greatest after five runs at 44.5%, after which it falls gradually to 31.2%

after twenty five runs. For P, the additional reduction in standard deviation climbs

slowly as we increase the number of simulator runs and is not far off levelling out

at 30.3% after twenty five runs, after which we expect it to begin falling slowly

6.6. Simulator Diagnostics 100

again. As a measure of horizontal gain, we took the number of runs based on

derivatives at which the mean variance surpassed that obtained by n = 25 runs

without derivatives, which we found to be n = 8 and n = 6 for outputs P and

Nw respectively. This corresponds to horizontal gains by factors of 3.1 and 4. 2 for

these two outputs, which represents a substantial saving in effort given our expected

increase in cost by a factor of 1.8 in generating them.

6.6 Simulator Diagnostics

For each output, we considered one-step diagnostics for each of the correspond­

ing simulator runs as follows: for the (n + 1)th input choice, Xn+I, we computed

ED, [s(xn+d], the adjusted expectation based on observing output, Dn = (Sn, \7 x•S11),

at the first n input vectors and compared this to s(xn+I), the value obtained from

running the simulator at Xn+I, after dividing each by SDDJs(xn+I)], the corre­

sponding forecast standard deviation. Figure 6.13 shows diagnostics for outputs at

station 1113 based on function values and Figure 6.14 plots the same quantities when

derivatives are included in the updating. In both plots we see a general decrease in

uncertainty as we learn about the simulator and observations generally falling within

±3 forecast standard deviations of the forecast mean. The only notable exception is

ED29 [s(X30)] which underestimates the collection of unusually large phytoplankton

values at X 30 , and affects both function value and derivative plots.

To compare derivatives and function values more directly, we considered the

quantity f:::.s, - f:::.(sn,'Vx•Bn) where !:::.Dn is defined by

/:).D = ED,[s(xn+I)] - s(xn+d
n SDDn[s(xn+I)]

(6.12)

Figure 6.15 plots these values together with a running average of the scores for

each n. The expected value of this quantity is zero and so we expect, in particular,

the running average to be close to 0 for large n; from the Figure 6.15 this seems to

be the case.

In general we do not expect that the derivative-based emulator will do better

on every individual forecast, but if for example the inclusion of derivatives leads to

consistently worse forecasting, then this provides a diagnostic concerning the model

6.6. Simulator Diagnostics 101

(')

'<t

N

~ ~ tl~lt ~~ ~~ l! jl f tj~ I N

0

I
0

N
I N

I
(')

p1 p2 I

0 10 20 30 40 50 0 10 20 30 40 50

'<t

(')

'<t

N

!I ~ ~ffilt!~~~~~t!~tf
N

!I
0

0

I
N N I

p 3
I

p 4
(')

I

0 10 20 30 40 50 0 10 20 30 40 50

"' N
'<t

• 0
N

N

t~ ~~~t ·~ tl~~~
"'
0

0

"'

t I 1 I # ~! N
I 0

P5

0 10 20 30 40 50 0 10 20 30 40 50

Figure 6. 13: Forecast diagnostics based on function values for the outputs at station

1113 plotted against the number of runs, n. Filled circles correspond to s(xn+d, the value

observed when running the simulator at Xn+l· Unfilled circles correspond to Evn [s(xn+ 1)]

and vertical lines show ±3SD Dn [s(xn+dl for Dn = Sn .

specification and may lead us to revise our beliefs. Hence the greatest benefit from

including derivatives may not be that it leads to better forecasting; rather that, in

the cases that it leads to a worse forecast ing performance, a model misspecification

is revealed about which we might otherwise have been blissfully unaware.

6. 7. From single to multiple sites 102

M

'<t

N

I tt~~~t~!~
N

I ~tl 0

'l 0
I

N
I N

I
M

p1 p2 I

0 10 20 30 40 50 0 10 20 30 40 50

'<t

M
'<t

N

N

0

0

I
N N I

p3
I

M
I

0 10 20 30 40 50 0 10 20 30 40 50

"' N
'<t

• 0

* !; H !lt !t' /+j + ~·i+l ~~ I I

N

N

Jt~ ~llli*~!tr~~~f~IJ
~

~
0

"' ! I t"t' jl j j j+l +11' j I
N t N I 0

p5 w
I I I

0 10 20 30 40 50 0 10 20 30 40 50

Figure 6.14: Forecast diagnostics based on function values and derivatives for the outputs

at station 1113 plotted against the number of runs, n. See Figure 6.13 for details (Dn =

(Sn, 'Vx•Sn)).

6. 7 From single to multiple sites

The process of building emulators at multiple sites is much the same as at a single

site: we transform the data at the exploratory site onto the intervals correspond­

ing to the station under consideration and form a prior based on the same fitting

approach of this transformed data. However, some additional features arise for

consideration in choosing priors for remaining sites, in particular relating to our in-

6. '7. From single to multiple sites

"' ci

0
ci

<t
ci

I

0
ci

I{)

ci

0
ci

0

0

I

0

10

0

10

20

I

20

0

0

0

0

30

Oo
0

30

0
0

0

0

40

I

40

0

0

p1

50

103

q ~----------------~0-------------,
0 0

0 0 0

c:P 0 0
o oo o o o o

o
0

o o __ .9- __ o

oo. - GOO 0 -<>-_o-G. 6 ~ < ~ ~ .Q ~ 0 ~ o. 0
o 0 o o o ···o· ··eo·

L{)

ci -
I

q
I

0

"'

0

0

"'' -

0 0
0 0

0
0

10 20 30 40 50

0

0 oo oo
0 0 0 ° 0

0
0 0 ° 0 oO 0 0

~ -o- - - - - - (l::i6cr. ~ -o- <l ~ - ~ ~'1,-.

0

I

10

0

o0
0

o 0
0 Ooo

0

I

20

0

0
0 0

0

30

0

00

0

0

0

40

0

0 0
0

p~

50

0

0
0

..: -
I ~----,------,-----,-----,~----~~ ~~-----,,-----,-----~----,------r

0 10 20 30 40 50 0 10 20 30 40 50

Figure 6.15: Plots of tl.sn- tl.(sn,Y'x•Sn) for station 1113 (See Eqn. 6.12). The red dotted

line shows Derr=O and the blue line gives the running average of the first n Derr scores.

formal adjustments of uncertainty. If we consider, for example, emulating a second

site, station 1116 say, then as well as the prior emulator based on our exploratory

analysis at station 1115, also available to us is the posterior emulator at station

1113. To form prior expectations at other sites, we can build OLS models based

on the exploratory site in exactly the same way as at station 1113. Parameteris­

ing the exploratory data by the interval ranges belonging to the station we wish to

emulate, we believe, captures the common variation over these intervals, described

by the simulator time dynamics. The difference between prior and posterior beliefs

6.7. From single to multiple sites 104

at station 1113 potentially offers valuable information when considering our prior

variances at the second emulator station (that is, relating to the how we rescale

prior uncertainty from the exploratory site to the second emulator site) in giving us

an idea about the scale of warping of the common variation by differences in forcing

functions.

In particular, taking the results at the exploratory site and using them in building

our prior for the first emulator site essentially involved a scaling up of uncertainty

according to our beliefs about the relationship between the two. Owing to a lack of

knowledge about the magnitude of the difference between stations 1115 and 1113,

the scaling we chose was one which, we believed, was conservative, leaning towards

the upper end of what we thought the variance of the difference may be. In practice,

it would seem to make sense to scale conservatively when linking early emulators

and reduce this scaling (and presumably the number of runs performed) for prior

emulators at later stations based on what we learn about the differences between

stations. Informal updating of our beliefs about the difference between sites could

be reviewed at each stage of a sequential emulation of sites. However, here we

considered only a review from the first to second emulation site, considering that

this link would encapsulate the bulk of the revision. vVe reviewed diagnostics for

each site, given in Appendices A.l and A.2, similar to those used in emulating station

1113, to make sure that there was no evidence obvious conflict between prior of run

data at the sites.

We could potentially improve our understanding of the relationship between sites

by including some replicates of the input points at which we ran the simulator for

the earlier stations although we refrained from doing this in favour of maximising

coverage of the input space within our budget. Also we could build a multivariate

covariance structure over outputs and stations: this is a big area for future work

related to the physical problem.

Chapter 7

Calibrating the model

In this chapter, we perform a calibration experiment on the simulator. We begin

by introducing and justifying an 'implausibility' approach to calibration and then

calibrate the model at several locations using the approach. We investigate the

knock-on effect the inclusion of derivatives has on our ability to calibrate, by com­

paring calibration based on function values with that which also uses derivatives.

Finally, we obtain a calibrated region for the simulator using the full collection of

function values and derivatives as our best answer to the calibration problem.

We follow Craig et al. (1996, 1997) who develop an approach to calibration

using the notion of "implausibility". An implausibility-based approach is a form of

global search which seeks to identify classes of solutions by ruling out implausible

inputs, where an implausible input is one which is "unlikely" to have given rise to

the physical observations under some appropriate metric. In order to define such a

metric, we need first to link simulator output, s(x), to the physical observations, y,

which we do in the following section.

7.1 Linking simulator and physical system

In linking scalar simulator output, s(x), to the physical observation, fj, we proceed

in two stages. Firstly, we link the system, y, to physical observations, y, by the

relationship

i;=y+e

105

(7.1)

7 .1. Linking simulator and physical system 106

where e is the observation error, taken to be independent of y with expectation 0

and variance a;. Secondly, we link the simulator output, s(x), with the system, y,

via the following equation

y = s(xo) + TJ (7.2)

Eqn. (7.2) assumes the existence of a unique but unknown value x 0 for which we

assume s(x0) summarises all the information about y contained within evaluations of

the simulator; in other words, if we were to run the simulator at x 0 , we would learn

nothing more by running the simulator elsewhere. This judgement is expressed

by taking the discrepancy, TJ, between this representation and the system to be

independent of each s(x) and of x0 , with expectation 0 and variance a~.

In terms of the plankton model, we assume that there is a single setting of the

input parameters for which the associated output is sufficient for the plankton model

in summarising everything we can learn from the plankton model about plankton

cycles in the sea (at the scale we consider). The discrepancy TJ is a measure of

how closely this best model output reproduces reality. The fact that we consider

TJ to be independent of the simulator means that, for example, we don't allow for

situations where one choice of input parameters produces good simulator output at

some time points only and a different choice of parameter settings produces good

output at other time points only. In practice, it is hard to justify this assumption -

although it is currently the norm. An alternative would be to allow the discrepancy

to depend on the value of x 0 (see e.g. Rougier, 2004) although again we would not

be confident in specifying the exact form of such a dependency. Another approach

would be to make these assumption not in linking the plankton model to reality,

but to link the model to a 'better' plankton model. This 'better' plankton model

would be closer in some sense to reality and the linkage would then perhaps be more

justifiable. Goldstein and Rougier (2004) outline an approach in this vein, in which

this consider a hierarchy of increasingly detailed simulators.

7.2. Implausibility in a single output dimension 107

7.2 Implausibility in a single output dimension

We now proceed with a hypothesis-testing type argument, developing a measure of

how likely, based on our beliefs, a given input point, x, is to produce a good match

under the assumption that x is the best input, x 0 . If the measure suggests this to

be unlikely, then we consider this to be evidence that x is implausible as x 0 .

Under the hypothesis that x = x 0 , (7.1) and (7.2) together yield

(7.3)

We then evaluate the implausibility, I(x), of a point, x, as

I(x) = IEv[s(x)]- Yl

Jvarv[s(x)] +u~ + u;
(7.4)

Large values of I (x) indicate that there is a large standardised difference between the

expected simulator output, Ev[s(x)], and the corresponding physical observation y

and thus that x is unlikely to be a good choice of calibration value x 0 . Small values

can indicate one of two possibilities. First, Varv[Y] may be large, so that we are

too uncertain to rule the input x out. Second, the expected difference between

simulator and physical observation may be small so that x lies within the class of

acceptable matches. The presence of the separate parts of the denominator in (7.3)

can be intuitively understood as follows: the larger Varv[s(x)], the less certain we

are about the value the simulator would produce if run at x and so the less willing

we are to rule x out; the larger u; the less useful the physical data is for calibration;

the larger u~ the less able we believe the simulator to be of reproducing the physical

system- and hence the larger the difference between simulator output and historical

observations can be before we rule out the input. In our example, as a simple rule of

thumb, we rule an input x as implausible if I(x) > 3; for comparison, the three sigma

rule (Pukelsheim, 1994) states that for any unimodal density, at least 95% of the

probability lies within three standard deviations of the mean. Where appropriate,

we check that our results are not too sensitive to the choice of cut-off to make sure,

7.3. Combining Implausibilities 108

for example, that altering the cut-off value slightly does not vastly alter the number

of points ruled implausible.

Finally, we note that the "ruling out" approach to calibration underpins the

philosophy in our choice of parameterisation of phytoplankton output in section

6.2; that we do not necessarily believe that the minimum fit based on the interval

means for phytoplankton will produce the best representation, rather that if an

input does not produce an acceptable match to the means, then we wish to discard

it from further consideration with the best representation lying somewhere within

the remaining input region.

7.3 Combining lmplausibilities

We combine implausibilities, h, ... , h, corresponding to scalar components of a

vector of outputs, Y = (Y1 , ... , Yk), using

]y (x) = max Ii (x) (7.5)
2

reflecting our desire that an input be ruled implausible if it is implausible for any

of the outputs (See Craig et al., 1997, for some alternative measures). In visual­

ising plausible regions in the input space, we consider plots of lower dimensional

projections of the implausibility surface given by

(7.6)

where x', a subset of x, is the set of the components to be plotted and x" is the set of

remaining components over which we minimise. Such a projection enables us easily

to rule out regions based on the plot, since for a projected input to be implausible

it must be implausible for all combinations of the omitted components.

7.4 Bayesian vs Bayes Linear calibration

In a fully Bayesian approach, probability distributions must be specified for e and

r; in (7.2) and (7.1) and, in theory, a posterior distribution for x 0 , conditional on

the simulator run data and physical observations, derived. In practice, however, the

7.5. Choosing Ue and u17 109

posterior is not available in closed form and computationally intensive numerical

quadrature routines must be used which quickly become infeasible for simulators

which are slow or contain large numbers of inputs (See Kennedy and O'Hagan, 2001a,

who obtain the posterior mean for x 0 after approximating prior beliefs to be normally

distributed and applying such techniques and give a discussion of the limitations

of such an approach). In our case, beliefs about the simulator are characterised

by a Bayes Linear belief structure which prohibits such a full Bayes analysis. It

is worth recalling that one of our main motivations for a Bayes Linear approach

is that the complexity of the simulator makes us uncomfortable about specifying

full distributional assumptions, since we are unclear about how accurately such

assumptions reflect our beliefs. In general, experts tend to be less clear about their

beliefs relating to quantities linking the simulator to the historical observations - in

particular, the 7]-surface- than they are about their beliefs concerning the simulator,

adding further weight to the case for a Bayes Linear approach in general, since the

ultimate aim of any emulation will be to use it to make inferences about the real

world.

7.5 Choosing (J'e and a'TJ

In order to compute implausibilities, we first had to elicit Ue and u 17 for each output.

The observational error estimates for Ue relating to phytoplankton components were

specified by the expert and derived from two sources. Firstly, an estimate of variation

caused by mesocale eddy activity was obtained from sample variances of pixels within

a 150km radius of the corresponding station. Secondly, the error in the Sea WiFS

chlorophyll pixel estimates was taken to be such that 3 error standard deviations

corresponded to (35%) of the observed value, based on the SeaWiFS target to achieve

95% of the data within (±35%) of in situ measurements of the same quantities.

Analysis in O'Reilly et al. (2000) appears to show these errors are uncorrelated

overall, but we expect there to be some spatial and temporal correlation between

measurements, which isn't tested for in the analysis, and so we chose, conservatively,

to take the interval mean of these observations to have 3.s.cl also of (±35%). (For

7.6. Preliminary comparison with and without derivatives 110

an interesting exploration of more complicated measurement error structures, see

Buck et al., 1996). No data were available to us of the variablity of the nutrient

observations and we took these observations to have variance 1 at each station,

based on the estimate of the expert.

For the discrepancy term, CJ7-, we began by considering residual mean-squared val­

ues between simulator and physical observations: Hemmings et al. (2004) calculated

residual mean squared values for each station by summing the squared difference

between physical observations and his 'best' output, and found values to be between

2 and 4 observational standard deviations for chlorophyll and between 0 and 2 for

nutrient. We expected discrepancy estimates of roughly the same order to be ap­

propriate, although not necessarily identical since Hemming's calibration method

differed in several ways from ours, using a different output parameterisation, a dif­

ferent set of stations over which to calibrate and constructing a 'misfit function' -

essentially an implausibility measure (different to ours) - which he then attempts

to minimise. With this in mind, we took individual components of CJ1J to be equal

to the corresponding components of CTe, whilst investigating the effects on our cal­

culations of scaling through a range of multiples mCJe for m = 0, ... , 5. The value

m = 0 is chosen because of its conceptual interest - corresponding to the case of no

discrepancy between the simulator output and the physical system - rather than as

a realistic physical value.

7.6 Preliminary comparison with and without deriva­

tives

We computed implausibilities for each output, using (7.4), over the 154 grid of cor­

responding active input points on which we adjusted beliefs in Chapter 6. Wherever

we consider the effects of the number of runs on implausibilities, the ordering of runs

is the same as in Chapter 6. For each input point in the grid, we combined implau­

sibilities across outputs and stations based on (7.5), to produce lp, the maximum

implausibility over the set, P, of phytoplankton outputs across all four stations and,

IN, the maximum implausibility over the set, N, of mid-winter nutrient values at

7.6. Preliminary comparison with and without derivatives

CO
0

c.o
0

0
0

0 10 20 30 40

111

50

Figure 7.1: Proportion of input space ruled out by the set, P, of phytoplankton outputs

across all four stations with derivatives (black) and without derivatives (grey) plotted

against the size n of the input set Xn at each station (so that e.g. n = 10 corresponds to

ten runs at each station, and so forty in total). The numeric plotting symbols, m= 0, 2,

correspond to CT1J =meTe, m= 0, 2.

1015 1113 1116 1215
0
~

0
I()

0

~ 0 ' /
0
0 I I I I I I

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 7.2: Proportion of input space ruled out by the set, F8 , of phytoplankton output

for each station, s, with derivatives (black) and without derivatives (grey).

the four stations. We did not combine these two measures at this stage in order

to investigate the separate effects on calibration of the phytoplankton and nutrient

outputs.

Figure 7.1 plots the proportion of input points ruled implausible based on P

against the number of simulator runs, n, when derivatives are included (black) and

7.6. Preliminary comparison with and without derivatives 112

when they are not (grey) for the two cases 0"1J = 0, u1J = 2ue. For a given set of n

input points, we see a marked improvement in our ability to rule out space when

derivative information is included; with zero discrepancy, the proportion of input

space ruled out after 5 runs at each station is 10.2% without derivatives compared

to 77.6% with derivatives and, after 10 runs at each station, the corresponding

proportions are 61.8% and 96%. For larger values of n, the difference begins to close

as function values catch up, derivatives having effectively ruled out everything that

is not plausible. For 0"1J = 2ue, we see similarly large differences which prevail for

large n.

Figure 7.3 plots the number of 'falsely' ruled points ruled out showing, for each

n, the number of points which are currently ruled out which are ruled in based

on n = 50 runs. The top left plot shows the effect at station 1116 which peaks

at just over 10% of points after ten runs. The function values and derivatives for

outputs at the tenth run are amongst the largest of those observed at station 1116

and this effect is apparently more localised than the emulator allows. The values

are not particularly unusual and removing this observation does not register much

of a change on the analysis. The top right hand plot shows the overriding cause;

a slight sensitivity of the analysis to the cut-off value c = 3 above which we rule

inputs as implausible. The top right hand plot shows the number of points that are

ruled out after n runs based on a higher cutoff of c = 4 which are ruled in after 50

runs and we see that most of the effect has gone. There is still a peak after n = 10

runs but it quickly dissappears. In any case, we expect there to be a certain level

of missclassification at each stage and are not too unhappy with the levels observed

(See Craig et al. (1997, Section 8.1) for an interesting observation related to this).

The bottom row shows the proportion of falsely ruled out points based on all four

stations and here we see the benefits of having several stations, with the effect at

station 1116 damped by their support. Overall the levels appear acceptable and, in

general, appear to be lower when derivatives are included than when they are not.

The difference in our ability to rule out based on the set of nutrient outputs, Nw

- shown in Figure 7.4 - is less marked, although it is still significant. For a given

collection of u 17 values, derivatives consistently allow between 4% and 7% additional

7 .6. Preliminary comparison with and without derivatives

0
~ -
0

LO
C\l -
0

0
C\l -
0

LO
"": -
0

0
... -
0

LO
C! -
0 I

Station 1 1 16 c=3

,,
t I \ \

\

,\..,. I"',,,''
~' '

0 2 -'~------------------~\ C! -1~ --...
O I I I I I I

0
~ -
0

LO
C\l -
0

0
C\l -
0

LO
"": -
0

0
"": -
0

LO
0 -

0 1 0 20 30 40 50

All 4 stations c=3

0 --, , - -
0 21
C! -or-~-----------~
0

I I I I I I

0 1 0 20 30 40 50

Station 1116 c=4
0
~ -
0

LO
C\l -
0

0
C\l -
0

LO

0 -

0

LO ' 0- , ,-,
Q I "' ,\

'-2 I -- ~'

0 ·~~~~--------~--~~ 0-1~
' - J -- ... '

':...~)

O I I I I I

0
~ -
0

LO
C\l -
0

0
C\l -
0

LO ;; -

0

0 -

LO
0 -
0

0 10 20 30 40

All 4 stations c=4

8 - 2 , - • - - , ,. , ~ _, - , - ~ .,. --- -- - .., ,.

O ~ I I I I

0 10 20 30 40

I

50

I

50

113

Figure 7.3: Proportion of points 'falsely' ruled out by phytoplankton outputs at station

1116 (top) and all four stations (bottom). The proportions are the number of points which

are ruled out based on n input points but ruled in based on n = 50 points. Shown in each

plot are the proportions with derivatives (black) and without derivatives (grey) for 0" 17 = 0

(thick line) and 0" 17 = 20"e (clotted line). The cut off value in each plot is the implausibility

score above which we rule points out.

space to be ruled out. Our ability to rule out a large amount of space before we

make any runs is due to the strong linear effect of x 13 , as respresented by a relatively

large prior expectation for the (313 coefficient in the emulator for Nw 8 , the form of

7.6. Preliminary comparison with and without derivatives 114

C?

-----------~~==~~s
00 -------
0

c.o
0

'<:t
0

"!
0

0
0

0 10 20 30 40 50

Figure 7.4: Proportion of input space ruled out by the set, Nw, of nutrient outputs across

all four stations with derivatives (black) and without derivatives (grey). See Figure 7.4

for more details .

1015 111 3 1116 1215
~ ~-------------. .--------------. .--------------. ~-------------.

0

"' c:i

0

~ Lr--.-,-~----~ ~~--~-.----~ ~~----~--~~ ~~--~-.----~
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

Figure 7.5: Proportion of input space ruled out by the nutrient output , Nw,s, at each

station, s, with derivatives (black) and without derivatives (grey).

which is given in (6.5). Many of the points that are not ruled out a priori are ruled

out by five runs or fewer because the variance relating to the x 13 term is quickly

resolved in the updating.

We see from the plots that, as we increase the number, n, of data points, we

approach a 'saturation level ' which is essentially an upper bound on the proportion

of points we can rule out as implausible. As we get close to this level , any extra

simulatm data makes little difference to the calibration. The value of this saturation

7.6. Preliminary comparison with and without derivatives 115

depends on the collection of aTJ values and, in particular - as we would expect - the

level decreases as we increase the scaling of the aTJ values. Close to this saturation

level, reducing simulator variance further makes no difference because the change

is small compared to the size of ary. For the P, we have effectively reached this

saturation level for the four stations combined after 10 runs with derivatives at each

station whilst, we begin to get close at about n = 30 runs. Proportion of space

ruled out by Nw and P for a few choices of n are given in Table 7.1. Note that,

for calibration based on individual stations only (Figure 7.2), we are yet to reach a

saturation level based on phytoplankton after n = 50 runs at each although we have

for nutrient (Figure 7.5).

Note that although Figures 7.1 and 7.4 offer a natural way to compare calibration

with and without derivatives for P and Nw individually, comparisons between the

two groups using the plots may be somewhat ambiguous. This is because Nw has an

active input - x 13 - which is apparently much more active than the others so that,

thinking of the proportion of ruled out points as a volume of the four dimensional

active input space, we rule out based mainly on the x 13 dimension and the resulting

region is a 'wedge' which is thin in the x 13 dimension and wide in the remaining

active input dimensions. By contrast, the set P has no input that is dominant to the

same extent, so that the ruling out of points is much more evenly spread through

the active input dimensions.

As a final remark, it is worth noting that this increased 'speed' of learning about

the emulator offers once again a lot of potential as a diagnostic - this time on our

discrepancy variance: not only does derivative information allow us to rule out

points more quickly, it allows us to see more quickly if we are ruling too much space

out (in other words, when our discrepancy values are too low). This is important

because we are concerned not to rule out points which currently have high-relative

implausibility but which subsequently turn out to be good matches under the correct

discrepancy specification. Such a scenario would be particularly disastrous if we had

refocused our search in a sub-region of the input space having wrongly ruled out

an alternative region because we had been too demanding of the simulator in our

choice of discrepaucy variance.

7.6. Preliminary comparison with and without derivatives 116

N p

m 0 1 2 0 1 2

n F T F T F T F T F T F T

1 38.8 46.3 34.3 40.0 24.0 28.5 0.4 7.0 0.3 5.5 0.1 2.0

5 72.5 80.7 63.1 69.5 41.7 46.1 10.2 77.6 8.7 72.2 6.0 58.2

10 77.1 84.8 66.0 73.0 42.5 46.9 61.8 96.0 58.8 93.0 50.7 74.5

25 85.8 92.3 74.4 80.8 47.9 53.7 89.9 98.2 84.4 95.9 61.2 77.8

50 90.9 95.1 78.9 83.6 51.7 56.8 95.4 99.8 90.3 99.1 61.2 85.6

Table 7.1: Percentage of input points ruled implausible at each station based on n sim-

ulator runs and o-IJ = m a-e. F denotes the percentage when derivatives are not included

and T when they are.

7.6.1 Function and derivative calibration trade-off

To conclude the comparison between function values and derivatives of calibration,

we consider again horizontal and vertical gains as we did for emulator uncertainty

reduction in Chapter 6. Since, in our discussion of falsely ruled out points, we

concluded that levels were reasonably low, we compare trade-offs based on points

ruled out. In any case, derivatives showed a slightly lower false rule out level in

general and so consideration of this level would most likely benefit them. For the Nw,

we have commented on the relatively small difference between function values and

derivatives for calibration of the Nw. However, if we are concerned with questions

of the type 'How many derivatives do I need to get a calibration as good as with

fifty function values?' (horizontal difference), then the trade-off looks a lot more

attractive; about ten. This is slightly misleading since ten function values allows

us to rule out most of the same points. However, for phytoplankton outputs, a

similarly impressive (if slightly better) horizontal trade-off gives rise to calibrations

with which the same number of runs with only function values fails to compete.

We would expect the trade-off to be favourable to derivatives, in general, for any

outputs for which the E-surface explains a significant proportion of the variation

(that is, for outputs which are not too linear). For our simulator, the trade-off for

7.7. Calibration under maximal information 117

phytoplankton outputs of fifty function values versus ten runs with derivatives is a

significant one and is strong in light of the increase in cost of calculating derivatives

of only a factor of 2.

7. 7 CaHbration under maximal information

We now consider calibration using the full fifty runs at each station with derivatives

in order to produce the best calibration for the physical problem. In all that follows,

we take (TT/ = ae for all outputs. The exploration concludes with a discussion of our

results in the light of the analysis by Hemmings et al. (2004).

7.7.1 Lower dimensional projections of implausibility

In order to visualise the plausible regions of the 4-dimensional input space, we

produced plots of the lower dimensional projections of the implausibility surface

by minimising over input dimensions using (7.6). Figure 7.6 shows 2-dimensional

projections, lp(x 1 , x 4) (left) and Ip(x6 , x 10) (right), with black dots denoting input

points at which simulator output has been observed at one of the four stations and

numbered circles marking the three most plausible input points in the 154 grid of

evaluated points.

Broadly speaking, the first plot suggests a fairly distinctive most plausible region

characterised by middle values of x 1 and mid-to high values for x 4 . The plot of x 6

and x 10 appears to suggest that combinations for which at least one of the two inputs

is small offer the best matches, although again containing within this a distinctive

most plausible region defined by low values of x 10 and mid to low values of x 6 . Both

these inputs have strict physical lower bounds, Xi = -1 corresponding to zero in

their original units, so there is no scope to stretch the search past these boundaries.

Figure 7. 7 shows the same projections, but for implausibility maximised over the

phytoplankton outputs at a single station only. VIe note that, as in Figure 7.6, we

are able to rule more points out by the (x 1 , x4) projection than that for (x6 , x 10).

We see also for both projections that, of the four stations, station 1116 allows us to

rule out the most points.

7.7. Calibration under maximal information 118

It is worth adding a note of caution in the case of the (x6 , x 10) plot: the plots

suggests a better model as x 10 approaches its lower prior bound of x 10 = -1. In

such situations, where plausibility increases as we move towards a boundary, there

is a chance that this may be the result of a lack of run data near to the boundary

and, in particular, a lack of support of data from beyond the boundary leading

to a higher uncertainty and in turn a low implausibility. In this case it is clear

that there are plausible points near to the boundary (where the run data is) but

the decreasing implausibility as we move away from them and towards the boundary

may be the result of local decreasing linear slope imposed by implausible data above

these points.

Figure 7.8 gives a 'four dimensional' representation of the implausibility surface.

Outer grid lines correspond to the x 1 and x 4 dimensions with x 6 and x 10 dimensions

plotted, on the range [-1, 1], within these outer grid lines. The most plausible 1%

of points is shown, equating to just over 500 points in the 154 grid. From the two

plots, we see that the majority of these most plausible points appear in the region

2 of the (x 1 , x4) space (the right-hand plot), defined by mid values of x1 and high

values of x 4 . An interesting feature of this plot is that appears to suggest a higher

dimensional interaction. In particular, the most plausible points in the lower part

of this region tend to lie in region 2 of the (x 6 , x 10) space whereas those closer to

the boundary defined by x4 = 1 tend to belong to region 1 of the (x6 , x 10) space.

Such behaviour could have important implications for any future analysis, since it

suggests that, for points in region 2 of the (x6 , x10) space, there is no need to extend

the search outside of the prior region past the prior upper bound for x4 .

Figure 7.9 shows this behaviour in action, with implausibility minimised only

over the two most plausible regions (sub regions of regions 2 of both the (x1, x,l)

and (x 6 , x 10) spaces. We see that the implausibility contours for the (x 1 , x4) space

now move much more away from boundary of the x 4 interval, circling a region still

in the upper part of the x 4 interval but reassuringly away from the boundary.

7.7. Calibration under maximal information

-1.0 -0.5 0.5 1.0 -1.0 -0.5 0.0

Xs

0.5

119

1.0

Figure 7.6: Ip(x1, x4) (left) and Ip(x6, x10) (right), shown after n = 50 runs at each

station. Implausible areas are shaded darker, black dots denote input points at which

simulator output has been observed at one of the four stations, and numbered circles

correspond to the three most plausible input points.

1015 1113 1116 1215

~
• y •••

V '•)
• • • • • • • •

1; • .. • • • • • • • • • • • • • .. • • • • • H • •• • • • •• • ~ . . (, ... '• ~ • • • ·0:: • r, ••
.(J • • ••• • ~ • • • • • • • • • •

•• • •

·~·~ ' • • ~ • • • • •

~
• •• • • • • • •

~ •• ~· • . • •• • • H • • • •• • • • i • I • ~-7
~ • <! • ••• •• ~ . • • •• • •• • • ·0:: • • •

' • • • • • • • • • • .. , . • • • • • •
~ •• • • • •• . ' . • •

• • • • • ' • ·- • • • • •

Figure 7.7: Ip.(x1,x4) (top) and Ip.(x6,X10) (bottom): Implausibility maximised over

phytoplankton outputs and projected into two input dimensions, for each of the four

calibration stations, shown after n = 50 runs.

7.7. Calibration under maximal information 120

<')

'<1: -

'1' ,....._ o,.._
8:ci-xl

;:: -
'1'

0
q -
I

I I I I I I

-1.00 -0.86 -0.71 -0.57 -0.43 -0.29

Xl(Xs)

0

~ -

<0
~ -
0

;:: -
,...._a

0

x:
'-"lll-xo

<')

'<1: -
0

"' "! -
0

.,.
0 -~-----.----.----.----.----,--~ I I I I I I

-0.29 -0.14 0.00 0.14 0.29 0.43

Xl(Xs)

Figure 7.8: 'Four dimensional' plot of the top 1% 'most plausible' input combinations, all

of which fall in either region 1 (left) or region 2 (right) of the (x 1,x4) space. Outer grid

lines correspond to the x1 and X4 dimensions with X6 and xw dimensions plotted within

these grid lines, each on the range [-1, 1].

-0.2 0.0 0.2 0.4 0.6

x1

<0
0

I

0
~ro

X 9

q
I

-0.6 -0.4 -0.2

Xs

0.0 0.2

Figure 7.9: Subregion of two dimensional Ip projection in Figure 7.6, with implausibility

minimised over the , ubrcgions only.

7.7. Calibration under maximal information 121

Figure 7. 10: IN(Xi, x 13) for i = 1, 4, 6: Implausibility maximised over nutrient outputs

and stations and projected into two input dimensions by minimising over remaining input

dimensions, shown after n = 50 runs at each station.

1015

• I>~~-~.~ • •
• • •• •

0.1 •

._ .. ~,
.. ,r._.. -

' .

I '

~· 0 • • '
<>• <> ·.-··. ~ ~

- 0.1 __.____y-~
__..-:-- 1.-t ~~

1113 1116 1215

• ·~ • • o.r ~ •

: . ' . ~-lil :-= · , .- ·- ., I

. .

• •
., • ,:~ •I ~ :· -- ...-:.. .. - '

Figure 7.11: IN,(xi,x 13) fori= 1,4,6: Implausibility based on the nutrient output at

each of t he calibration stations, projected into two input dimensions after n = 50 runs.

7.7. Calibration under maximal information 122

For nutrient outputs, the plots in Figure 7. 7 demonstrate clearly the strong

linear effect of x13 being felt in the calibration, with plausibility contours virtually

orthogonal to the x 13 axis in much of the space. Hence a side-effect of this is that,

whilst Nw outputs would enable us to rule out a significant part of the x 13 dimension,

they would not offer us any help with the other input dimensions. The analogous

plots for at the individual stations show a similar pattern and we see that we are able

to rule out a significant part of the x 13 dimension based on any one of the individual

stations. The fact that there is so much overlap suggests that further calibration

using nutrient values at other stations does not offer much scope for ruling out more

space; as most of the information will be duplicate. Station 1113 looks at little

bit different to the other three in the plausible regions. Based on the plots, we

ruled out all input combinations outside the range x 13 E [0, ~], corresponding to

Nref E [9, 13.3] in the original units given in Table 2.1.

7.7.2 'Most plausible' output

In order to how see well the calibration was working, and to informally assess the

magnitude of the discrepancy between the simulator and system, we ran the simu­

lator at the four stations at £0 , our best guess for x0 . In choosing a value for x0 ,

we set all non-active inputs to be at their prior mean value. We choose components

corresponding to active variables for P to be the point in the grid of implausibil­

ity evaluations which minimised Ip, which lay in region 2 of both the (x1 , x4) and

(x6 , x10) spaces. Note that this was a sensible choice in our case, because the final

point had low uncertainty; in general, we want a best input with both small im­

plausibility and small uncertainty. Finally, we took x 13 = 4/7, corresponding to the

midpoint of the plausible region based on the IN plots. In theory, we could have

minimised the latter over x 13 and combined the resulting 3-dimensional grid with I p

when choosing values for x 1 , x4 and x 6 , but we chose not to because of the ambiguity

in how best to combine them and since, in any case, the result of the minimisation

not surprisingly offered little constraining effect on these inputs. This gave, for the

five active inputs, (x1 , x 4 , x 6 , x 10 , x 13) = ~(1, 4, 0, -7, 4) in transformed units,

corresponding to (<fyp, a, kp, g, Nref) = (0.17, 0.16, 0.15, 0, 12.4) in the original

7.7. Calibration under maximal information 123

units given in Table 2.1.

N

0

N

0

0

Station 1015

11

I I

I I

I

I

'J~
/1 l.-rr,f-. __

'---~--- '·

0 100 200
Station 1116

I I

I I

I I I tl
-I . ~ '•t'

I f \. .
I . .

300

11 ••• ·\'·.·. t· ·. ~
·. y . ,' \- ' .;;- ,·, ; '

-----+---
0

0

100 200

100

Station 1013

11
I I

I I

I

I

I
i.

200

300

\ ,, , \

300

Station 1113

0 100 200 300
Station 1215

j f/'t f
---~-~~-+-',' '·--1------

0

0

100 200

100

Station 1217

:I
I

I I I

,, "'\

200

300

300

Figure 7.12: Simulator output at xo (unfilled circles, with lines denoting ±30',7) and

historical data (filled circles, with lines denoting ±30'e) for phytoplankton at the calibration

stations. The dotted line gives the original, unparameterised phytoplankton output at

xo and the grey polygon shows the range spanned by ±35% of the original historical

chlorophyll observations, as a guide to ±3 measurement error for the calibration and

validation stations.

Figure 7.12 shows the unparameterised phytoplankton output at the four cal­

ibration stations together with two further 'validation' stations, 1013 and 1217,

lying at opposite ends of the calibration region. The grey polygon shows the range

spanned by ±35% of the original historical chlorophyll observations, as a guide to

7.7. Calibration under maximal information 124

±3 measurement error standard deviations, corresponding to the Sea WiFS target

discussed in Section 7.5. The calibration station plots act as a visual diagnostic

of our assertion, made through our choice of phytoplankton output parameterisa­

tion, that good matches on the interval mean values correspond broadly to good

matches on the time series. The plots at the two validation station test the ability

of the calibrated model to reproduce observations at uncalibrated stations. Of the

20 phytoplankton outputs across the calibration stations, all but two - the second

and third outputs at station 1215 - match reasonably well.

"' t "'
0

tl tl "'
~ tt tt t! t
~

"' -
0 -

I

1015 1113 1116 1215 1013 1217

Figure 7.13: Simulator nutrient output at x0 (unfilled circles, with lines denoting ±3D"77)

and historical nutrient data (filled circles, with lines denoting ±3D" e) at the calibration and

validation stations. Validation stations are shown with O"e = 0"'7 = 1 as a guide only.

Of the two validation stations, 1013 appears to be a reasonable match whilst

1217 looks to be a bad match. This is promising in our ability to reproduce output

at station 1013 and also because 1217 offers us the potential to calibrate the inputs

further at this level of output parameterisation. It is perhaps not surprising that

we struggle at station 1217 since the closest station amongst the four calibration

stations is 1215 and also station 1217 is one of those with a MLD forcing function

that is different to many of the other stations (see Figure 6.1).

Figure 7.13 shows nutrient output at the six stations, with measurement error

and discrepancy taken to be 1 at the validation stations - as it was at the calibration

stations - as a guide. We see that nutrient outputs match well at the calibration

stations with all four falling within ±3s.d. of the historical observation. For the two

7. 7. Calibration under maximal information 125

validation stations, we see that, as with phytoplankton, station 1013 looks to match

well whilst 1217 once again appears more problematic.

s Ips,l (.To) I Ps,2 (.To) Jps,3(i:o) Jps.4(i:o) Jps,s(i:o) Jps,6(i:o) INs(i:o)

1015 2.46 3.21 0.05 1.98 1.13 0.98 1.51

1113 2.97 1.21 0.76 0.57 1.69 1.08

1116 2.72 2.29 3.08 0.83 3.59

1215 2.36 5.44 2.65 0.11 2.68 2.83

Table 7.2: Implausibility scores at .io. Bold type denotes the output with maximum

implausibility score at each station.

Table 7.2 gives the lp.(i0) and INs(i0) scores corresponding to the outputs in

Figure 7.12, again taking CJ17 = CJe. The scores are computed using (7.4) with the

simulator variance set to Var[s(x)] = CJ]. We do not set the simulator variance to

zero since the variation in the 5-surface, explained by the remaining inactive inputs,

is not resolved by observing simulator output at ±0 . We do not expect changes

in inactive inputs to make much difference but, since we have not optimised over

them, it is likely that we will be able to find slightly improved fits by varying inactive

inputs also.

We see that the largest value does indeed correspond to ?1215,2 , the bloom at

station 1215 and that the matches at this station suggest that we may wish to scale

up the discrepancy variance, at this station at least. Taking CJry = 2CJe at station

1215 reduces all implausibility scores to below three except for P1215,2 which becomes

3.66.

As a quick way to offer insight into the quality of the match at ±0 , we computed

the implausibility score of the best matching of the 50 simulator runs for each indi­

vidual station, the results of which are shown in Table 7.3. It is not surprising that

the runs do better in general than ±0 since there are based on calibration at individ­

ual stations rather than across all four stations. As with ±0 , station 1215 is the most

difficult to match locally: in the best matching of the simulator runs, we do better in

the phytoplankton runs at 1215 at the expense of a poorly matching nutrient value,

with an implausibility score of 5.45. In general it may not be so surprising that

7.7. Calibration under maximal information 126

P1215,2 is difficult to match since it is the narrowest of the parametrisation intervals

across the four stations.

s Ips,l (Xo) Jps,z(Xo) Ips,3(Xo) Ip.)Xo) Ip.)Xo) Ip., 6 (Xo) IN. (Xo)

1015 2.84 1.49 1.18 0.93 1.49 1.12 0.74

1113 1.83 1.22 2.55 2.02 0.31 1.99

1116 2.31 2.64 2.56 2.19 1.17

1215 0.11 2.04 1.65 3.53 1.38 5.45

Table 7.3: Implausibility of input X0 corresponding to best matching set of output for

each station from the fifty simulator runs.

Running the simulator at x0 gives us an idea of how well we can hope to match

the simulator- we don't necessarily think this is the best we can do. We do however

believe that the best run lies within the regions given in the previous section. We

would refocus into these regions and, in this refocused domain, we might expect

other inputs to become active. We might also parameterise the output into nar­

rower intervals at this point, now that we have ruled out combinations which fail to

reproduce our coarse parameterisation.

7. 7.3 Refocusing and widening the scope of the calibration

A natural next step, given that we appear to be able to rule out a large part of

the input space, is to refocus; that is to consider a sub-region of the input space,

containing within it the input points which have not been ruled implausible and

to repeat a similar analysis over this region. In particular, we should be able to

build more accurate models of outputs over this reduced space and this may lead to

new inputs becoming active (which can then be calibrated). We might also wish to

re-parameterise outputs at this stage, for example, to be at a finer resolution.

The posterior input region (that is, the region we would continue to search were

we to refocus) can be found as the direct product of the 2-dimensional implausibility

projections (in fact this is an 'upper bound' on the plausible region since it ignores

higher order effects, such as those shown in Figure 7.8, which would allow us to rule

7. 7. Calibration under maximal information 127

out more space). Based on Figure 7.7, the posterior region for (x 1, x 4) is the union of

region 1, defined by [-1, -~]0 [-1, 0], and region 2, defined by[-~, ~]0 [~, 1]. The

posterior in put region for (x 6 , x 10) is the union of region 1, defined by [-1, - ~] 0

[- ~, 1], and region 2, defined by [-1, 1] 0 [-1, - ~]. The posterior region, then, is

the direct product of these regions, together with [0, ~], the plausible interval for

The size of this posterior region can easily be computed as the product of the

sizes of the lower dimensional regions. We have (as fractions of 15) for (x 1, x4):

(4 x 8) + (8 x 7) = 88; for (x6 ,x10): 152 -112 = 104; and for x 13 : 6. Hence the

posterior volume is 88 x 104 x 6 =54, 912 which is approximately 7.2% of the original

155 . The posterior volume, ignoring the x 13 dimension, is approximately 18% of the

prior input space. This compares to 91% of points ruled out after 50 runs at each

station with derivatives in Table 7.1, representing a decrease of approximately 9

percentage points for our gain of easily parameterisable regions in which we can

continue our search.

7. 7.4 Discussion in relation to Hemmings analysis

Relating back to the work of Hemmings et al. (2004), the nature of the plausible

regions in Figure 7. 7 gives some insight into the difficulty Hemmings has in con­

straining individual parameters through his projections of joint posterior parameter

distributions into marginal distributions for each input. In our two dimensional

projections we see that, for each of the four active inputs for phytoplankton, the

majority of the range for each input contains some plausible region. Interestingly,

x 1 (cl> p in the original notation) - the one parameter that Hemmings is able to con­

strain well - would not be constrained well by a !-dimensional projection of our

2-dimensional plot in Figure 7. 7. Hemmings, who performs several calibration ex­

periments over different groups of stations, finds all his best runs to be generated by

cf>p E [0, 0.03], correnponding Lo x1 E [-1, -0.8] in our units. This would correspond

with region 1 of the (x 1 , x4) plot in Figure 7.7. However, Hemmings' method may

in fact be missing what appears to be the more favourable region 2 in our analysis

because of his minimisation routine. Hemmings generates starting points to the

7.7. Calibration under maximal information 128

minimisation routine by adding scaled Normal(O,l) quantities to a prior value for

each input where the scaling is done separately for the two sub-intervals either side

of this prior value and is chosen to be a third of the length of each sub interval. For

cpp, his choice of prior value, at 0.05, is close to the lower end of the [0, 0.3] which

means that the minimisation routine is much more likely to start in the neighbour­

hood of the lower of our two regions and find its way there rather than find what

our analysis suggests to be the best region (subject again to caveats about differ­

ent implausibility measure, different output parametrisation etc.) In particular, we

would argue that our region is preferable to that in Hemmings in view of our com­

ments in Chapter 6 regarding Figure 6.8. We commented that the derivative of

phytoplankton outputs with respect to XI appeared to be much more variable for

small xi. The consequence of this is that, whilst it is much more likely to be able

to find good matches for low xi, these matches are likely to be sensitive to small

changes in XI and so, in particular, may not produce good matches at future un­

calibrated stations. This may not be the case for all groups of calibration stations,

however, Hemmings performs calibration experiments on several different groups of

stations - although never exactly the group that we look at - and finds low cpp are

required in each; it may be that our new region is not valid for the groups that

Hemmings considers.

Chapter 8

Conclusions and Future Directions

In this thesis, we have modified statistical methodology for computer models and

applied it to a calibration problem of real-world interest. In setting the real-world

problem in a rigorous statistical framework, we have obtained several useful insights

of interest to people concerned with the specific model. In modifying the methodol­

ogy, we have accomplished two main things. Firstly, we have made the first tentative

steps in 'opening up the black box', exploiting the model structure to differentiate

the simulator, re-closing the box and using the extra information generated to im­

prove the process of belief building and updating of the emulator. Secondly, having

offered a real-world example where derivatives are obtainable, we have provided what

we believe to be the first serious investigation of the uses of derivatives in emulating

computer simulators. In particular, we have shown that derivatives offer a range of

natural ways to aid assessment of prior beliefs and that updating based on deriva­

tives can lead to substantial reduction in emulator uncertainty. In addition, we have

performed theoretical calculations, backed up by experimental results, of the cost

of generating derivatives and considered the trade-off between derivatives and func­

tion values by comparing this cost against the associated reduction of uncertainties.

We have shown that, for our model, the trade-off leans in favour of derivatives and

discussed reasons as to why this will often be the case for compartmental models.

Since compartmental models are widely applied in modelling physical systems, we

believe that the applications of the work to be wide-spread. Moreover, we gen­

uinely feel that anyone faced with a compartmental model of any complexity stands

129

Chapter 8. Conclusions and Future Directions 130

to benefit a great deal by performing an analysis of the type developed in this thesis.

There are many possible future directions. Here are the most promising:

Multivariate covariance structure for output: Our study emulates each model output

individually and does not consider covariance between outputs. In fact, we believe

that taking outputs to be uncorrelated is a reasonable approximation for our coarse

parameterisation. However, were we to re-parameterise phytoplankton output to be

on a finer scale (e.g. following on from our work, after refocusing), then this analysis

might benefit from a full multivariate covariance structure over outputs, although

this would require a detailed and careful elicitation process. A more careful analysis

and consideration of differences between forcing functions may be useful here. An

advantage of this would be that multivariate implausibility measures would very

naturally allow us to rule out input which not only produced one very bad output

but, for example, obtained several 'OK but not great' matches in the output collec­

tion.

Epsilon covariance structure: Observing derivatives tells us about 8 and potentially

allows a better estimate for its value than previously. Derivative information may

assist us in improving 8 in two further ways. Firstly, as noted in Chapter 4, 8 can

be generalised to be any positive definite matrix; it tends to be taken to be diagonal

because it admits a convenient product form, but also because off-diagonal elements

of 8 are even harder to estimate than those on the diagonal. It seems plausible,

however, that just as derivatives have aided us in estimating the diagonal, they may

also enable us to estimate the off-diagonal. Secondly, derivative information might

also tell us that a constant 8 is not valid. This means that derivative information

may be useful for other covariance functions; for example, a Gaussian-like covariance

function with varying 8. We don't know of such a covariance function and whether

or not it would be positive definite, but it would be interesting to investigate. Alter­

natively, crudely breaking down input space into (a small number of) sub-regions,

specifying different 8 in each, and then 'patching' the regions together might be a

Chapter 8. Conclusions and Future Directions 131

way forward. Alternatively, transformations of input space, which 'warp' x, might

be the answer so that the constant 8 assumption looks better.

Uncertainty on forcing functions: An interesting area for future work would be to

investigate the effects of uncertainty about the model forcing functions. One way

to proceed might be split the functions into a smoothed parameterised mean curve

and residuals and then elicit uncertainty about the separate parts. In this way, we

would effectively extend the number of input parameters and could, for example,

differentiate with respect to these parameters.

Design: Derivatives allow us learn about the emulator based on less input points

and provide information about regions of high local variability of output (that is,

where derivatives are large). This might enable better-than-current sequential design

where runs are targeted at these areas. Away from derivatives, we would recom­

mend some control of orthogonality be exerted when using hypercube designs, as we

discuss in Section 6.3.4. We give one problem-specific criterion - investigation into

other criteria would be interesting.

Structure of compartmental models: The structure of compartmental equations, in

general, appears to suggest that an input can't be active for an output without first

being active for outputs that are connected directly to the flow function on which the

input appears ('outputs to which the input is local'). We did not pursue this because,

with only three compartments, any such effects transferred through our model very

quickly. However, for a much larger model with hundreds of compartments, it

may be useful to make use of this structure when emulating outputs; for example,

in choosing active inputs. In addition, linking this to our comments about the E

covariance structure, consideration of this structure may lead to us considering a

block diagonal structure for e with blocks corresponding to groups of parameters

which are local to each other.

Bibliography

Brock, T. D. (1981). Calculating solar radiation for ecological studies. Ecological

Modelling 14, 1 - 14.

Buck, C., W. Cavanagh, and C. Litton (Eds.) (1996). Bayesian Approach to Inter­

preting Archaeological Data. Chichester: John Wiley and Sons.

Burden, R. L. and J. D. Faires (1989). Numerical Analysis Fourth Edition. Boston:

PWS-KENT.

Conkright, M., T. O'Brien, S. Levitus, T. Boyer, J. Antonov, and C. Stephens

(1998). World ocean atlas 1998 vol 10: Nutrients and chlorophyll of the atlantic

ocean. noaa atlas nesdis 36. Technical report, US Govt. Printing Ofice, Washing­

ton.

Cooke, R. and B. Kraan (2000a). Processing expert judgements in accident conse­

quence modelling. Radiation Protection Dosimetry 90(3), 311 - 315.

Cooke, R. and B. Kraan (2000b). Uncertainty in compartmental models for haz­

ardous materials- a case study. Journal of Hazardous Materials 71, 253- 268.

Cowell, R., A. David, S. Lauritzen, and D. Spiegelhalter (1999). Probabilistic Net­

woTks and ExpeTt Systems. New York: Springer.

Craig, P. S., M. Goldstein, J. C. Rougier, and A. H. Seheult (2001). Bayesian

forecasting for complex systems using computer simulators. Jma·nal of AmeTican

Statistical Association 96, 717 - 729.

132

BIBLIOGRAPHY 133

Craig, P. S., M. Goldstein, A. H. Seheult, and J. A. Smith (1996). Bayes lin­

ear strategies for history matching of hydrocarbon reservoirs (with discussion).

Bayesian Statistics 5, 69 - 95.

Craig, P. S., M. Goldstein, A. H. Seheult, and J. A. Smith (1997). Pressure matching

for hydrocarbon reservoirs: A case study in the use of bayes linear strategies for

large computer experiments (with discussion). Case Studies in Bayesian Statis­

tics III, 36 - 93.

Craig, P. S., M. Goldstein, A. H. Seheult, and J. A. Smith (1998). Constructing par­

tial prior specifications for models of complex physical systems (with discussion).

Journal of Royal Statistical Society 47, 37- 53.

Currin, C., T. Mitchell, M. Morris, and D. Ylvisaker (1991). Bayesian prediction of

deterministic functions, with applications to the design and analysis of computer

experiments. Journal of the American Statistical Association 86, 953 - 963.

de Finetti, B. (1974). Theory of Probability, Volume 1. London: Wiley.

Dimitrios, M., I. Kioutsiouskis, I. Zerefos, and I. Ziomas (2003). Evolutions of

perturbations in 3d air quality models. Annals of Geophysics 46(2), 353- 361.

Goldstein, M. (1999). Bayes linear analysis. In S. Kotz, C. Read, and D. Banks

(Eds.), Encyclopedia of Statistical Sciences. New York: Wiley. Update Volume 3.

Goldstein, M. and J. C. Rougier (2004). Probabilistic formulations for transfer­

ring inferences from mathematical models to physical systems. SIAM Journal on

Scientific Computing, forthcoming.

Cordon, H. (1993). Radioactive transfer in the atmosphere for correction of ocean

colour remote sensors. In V. Barale and P. Schlittenhardt (Eds.), Ocean Colour:

Theory and applications in a Decade of CZCS Experience. ECSC,EEEC,EAEC.

Gradstein, I. S. and I. M. Ryshik (1981). Tables of Series, Products and Integrals

Volume 2. Frankfurt: Verlag Harri Deutsch.

BIBLIOGRAPHY 134

Graybill, F. A. (1983). Matrices with Applications in Statistics: Second Edition.

California: Wadsworth.

Griewank, A. (1989). On automatic differentiation. In M. Iri and K. Tanabe (Eds.),

Mathematical Programming: Recent Developments and Applications, pp. 83- 107.

Tokoyo: KTK Scientific Publishers.

Hemmings, J. (2000). Validation of oceanic ecosystem models using satellite ocean

colour and data assimilation techniques: a preliminary experiment. Technical

Report 58, Southampton Oceanography Centre.

Hemmings, J. C. P., M. A. Srokosz, P. Challenor, and M. J. R. Fasham (2003).

Assimilating satellite ocean colour observations into oceanic ecosystem models.

Philosophical Transactions of the Royal Society of London. Series A, Mathemat­

ical, Physical and Engineering Sciences 361, 33- 39.

Hemmings, J. C. P., M. A. Srokosz, P. Challenor, and M. J. R. Fasham (2004).

Split-domain calibration of an ecosystem model using satellite ocean colour data.

Joumal of Marine Systems 50, 141-179.

Jia, Y. (2000). Formation of an azores current due to mediterranean overflow in a

modelling study of the north atlantic. Journal of Physical Oceanography 30, 2342

- 2358.

Kennedy, M. and A. O'Hagan (2001a). Bayesian calibration of computer models

(with discussion). Joumal of the Royal Statistical Society, Series B 63(3), 425-

464.

Kennedy, M. and A. O'Hagan (2001b). Supplementary details on bayesian calibra­

tion of computer models. Technical report, University of Sheffield.

Kennedy, M. C. and A. O'Hagan (2000). Predicting the output from a complex

computer code. Biometrika 87, 1 - 13.

Koehler and Owen (1996). Computer experiments. InS. Ghosh and C. Rao (Eds.),

Handbook of Statistics, Volume 13, pp. 261-308. Elsevier.

BIBLIOGRAPHY 135

Levitus, S. (1982). Climatological atlas of the world ocean. Technical Report 13,

US Govt. Printing Ofice, Washington.

McCla.in, C. R., M. L. Cleave, G. C. Feldman, W. 'vV. Gregg, S. B. Hooker, and

N. Kuring (1998). Science quality seawifs data. for global biogeochemica.l research.

Sea Technology 39, 10 - 16.

Mitchell, T., M. Morris, and D. Ylvisaker (1993). Bayesia.n design and analysis of

computer experiments: Use of derivatives in surface prediction. Technometrics 35,

243- 255.

Mitchell, T., M. Morris, and D. Ylvisaker (1994). Asymptotically optimum experi­

mental designs for prediction of deterministic functions given derivative informa­

tion. Journal of Statistical Planning and Inference 41, 377- 389.

Nather, W. and J. Simak (2003). Effective observation of random processes us­

ing derivatives. Mathematical Pmgramming: Recent Developments and Applica­

tions 58, 71 - 84.

Oakley, J. E. (2002). Eliciting gaussian process priors for complex computer codes.

The Statistician 51, 81 - 97.

Oblow, E. M., F. Pin, and R. Q. Wright (1986). Sensitivity analysis using computer

calculus: A nuclear waste isolation application. Nuclear Science and Engineer­

ing 94, 46- 65.

O'Hagan, A. (1978). Curve fitting and optimal design for prediction (with discus­

sion). Journal of the Royal Statistical Society Series B 40, 1 - 42.

O'Hagan, A. (1992). Some bayesian numerical analysis (with discussion). In J. M.

Bernardo, J. 0. Berger, A. P. Dawid, and A. F. Smith (Eels.), Bayesian Statistics,

Volume 4, Oxford, U.K., pp. 345- 363.

O'Hagan, A. (1998). A markov property for covariance structures.

O'Reilly, J. E., S. Ma.ritorena, and M. O'Brien (2000). Sea wifs postlaunch calibra­

tion and validation analyses. Technical Report 3, NASA.

BIBLIOGRAPHY 136

Owen, A. B. (1992). A central limit theorem for latin hypercube sampling. Journal

of the Royal Statistical Society B 54, 541 - 551.

Pawitan, Y. (2001). In all likelihood: Statistical modelling and inference using like­

lihood. Oxford: Oxford University Press.

Press, W., B. Flannery, S. Teukolsky, and W. Vetterling (1992). Numerical Recipes

in C, 2nd edition. Cambridge: Cambridge University Press.

Pukelsheim, F. (1994). The three sigma rule. The American Statistician 48, 88-91.

R Development Core Team (2004). R: A language and environment for statistical

computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN

3-900051-00-3.

Ripley, B. D. (1988). Statistical processes for spatial Processes. Cambridge: Univer­

sity Press.

Rougier, J. C. (2004). Bayesian prediction of climate using ensembles of simulator

evaluations. Submitted to Climate Change.

Sacks, J., W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989). Design and analysis

of computer experiments (with discussion). Statistical Science 4, 409- 435.

Santner, T. J., B. J. Williams, and W. I. Notz (2003). The Design and Analysis of

Computer Experiments. New York: Springer-Verlag.

Schlather (1999). Introduction to positive definite functions and to unconditional

simulation of random fields. Technical Report ST-99-10, Lancaster University.

Stein, M. L. (1999). Interpolation of spatial data. New York: Springer-Verlag.

Yaglom, A. M. (1986). Correlation Theory of Stationary and Related Random Func­

tions, Volume I. New York: Springer-Verlag.

Appendix A

Additional Chapter 6 analysis

This section contains derivative and diagnostic plots for other stations not included

in Chapter 6.

137

A.l. Derivative plots 138

A.l Derivative plots

C\1 :t "' 21 1§ 30 li: a 30 '<t ::''

B 0

11 " ! C:J ; _ _; .. ·) L' ili C! iJ ~) :;r; L1
-..-.J C\1 •'

ij
j'i

I I n 9 c~ ~" Fl I Q Cl 3
0 l,J ··~ 1,~~ ~j C\1

I 13 y nl 13 ~

1 1
~A 30

15 P, 24 p2
"i' 24 (X) I!H

I I I I
I

I I I

X1 X3 X5 X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13
30 30

30 -~i> 28 :\jl 12

"' 49 :io

I
J " "'

12
~ i

47 14
47

I
30

28
49 r, H

I '~ I;J L1 ~rl I 1" (1 .. 2j •'""1 "- '
.• LJ ~~J 0 r· ~J

~, • ~J 0 • ~. ~ [j
"~ "' 'J \~ ,·; .. 47 i·1 '£! ~,,_,

: (~

"' 49 12 ,,p3 "' -,!' ,p4 I
~it ;~U I ~~~ .H. 14 28

I I I I I I I I

X1 X3 X5 X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13
30 28

"' "' 9
'<t '<t la ag -~ ,:.

2
C\1 4'' i

C\1 tib I d I I ?3
,,.

I"' (~ • -'tl • VI

I
,·, r• (j \:J u r·•

I CJ :. J r1 ,.-....,
Cl !.J Cl .,,.

"'
._J '"·:1 t.,.c 1.! 47

C\1 111 C\1 47 30 I I

Ps "'
15 Pe "' 24 28 24 9 I I

I I I I I I I I

X1 X3 X5 X7 X9 X11 X13 X1 X3 X5 X7 X9 X11 X13

"' - "r-l .'•1 I 16
'<t - 18

C\1 - I 21 21

24 I -'·~
(:)

{"1

0 - c; (' I
0 :] n ::~

,..... ~)
\(

1.-.·

'I' -
- 24

"i' - H :1!! 24 Nw 'I :?.1
I I I I I

X1 X3 X5 X7 X9 X11 X13

Figure A.l: Station 1015

A.l. Derivative plots 139

~Q ~ 10
<0 ,,.
..;- 15

"
Hi

~§ l()

"' 7 38

I 1~~ \. f, u I A" • ,,
c~ I

~~j

' a I c:: ,- \:1 Q C:J (.J h 0 c., ,)

lJ .it. i n 0 CJ '\] ~ .1 r..::::
.,

.~ L ~-~,

"' 16 '1
~~ I 16

..;- 25 7 l() ~ ~ ~~~ I 10 '" 6 I H i''
'I' t6 P, 15

p2 49
30 10

X1 X3 XS X7 X9 X11 X13 X1 X3 xs X7 X9 X11 X13
~ 1H 10

,;.·:
10

~~~ i"· 
, .. ~n it"t 

l() 
l() ~9 10 

8 
,., 11 

16 
3 ib 47 

0 c .J;1 

! I () !~l Cl !~: • i-,~ C1 ~~ 
,. I :-,.1 ,- ~~~ 

I 
~~~· ,, 

.~ lfl c ,·.
0 I -._,, J v' \) L. \:-..:

44
lB 16

l()

~ 49 49 I 10
l() 25 49 38 I

38 10 :Ml
0 p3 49 p4 I 38 10

X1 X3 XS X7 X9 X11 X13 X1 X3 xs X7 X9 X11 X13
<0 •
..;-

2

"' I I ·;, j2 ~J
0 t1 ~ I

{i D q 8 :g 9 "
2 10 1_!)

"'
\;_)

I 15
I''·

1
10 Nw

<0
I

X1 X3 XS X7 X9 X11 X13

Figure A.2: Station 1116

A.l. Derivative plots 140

15 23
N

N -

2

I 0

~
0 ii • ,_. "' I .. .,_, " i ~

0 - • (_ r.·

"
::J ·' s• ~-' "'·' 15

2 27 31
N 23

'i' - lP 2 I

31

1 1 - 23 15

15
<0 15 p1 '\' - p2 I 15

2 2
I I I I I I I

X1 X3 XS X7 X9 X11 X13 X1 X3 xs X7 X9 X11 X13
15 15 15

~
15 34

!!~ 43 "' - 43

"'
43 23 I ~·.

i ~3 :,:,

I
!1 31

J u .J.: 4 " 0

n
(j (_,! c~ !I

0
,-""'. 43

(i ~_3 I ;~~ .'-...i 13
-\ ~

-:} >:
(; u I'' (~ 0 o' "' ~)

4
26 "' !IX I 34

"' M I 15
<\}

p3 0 p4
0 15 I 15 15

I I I I I I I I I

X1 X3 xs X7 X9 X11 X13 X1 X3 xs X7 X9 X11 X13
15

<0 • ''

"' "<t

27 7

I .~~ i ·t' N

I I
:~:;

,,

I [\ c:l ~.J ~-~ r; ,.<..; I F;
0 \-J ~~r

,_J ?J
27 rJ 0 I

t-i F ;.:: '" ,- ,(I'
0 :;.""! ,_,

i:t

N

"' I l;1 ~
I

15

Ps 1 Nw
15 15 5
I I I I I I I I I

X1 X3 XS X7 X9 X11 X13 X1 X3 xs X7 X9 X11 X13

Figure A.3: Station 1215

A.2. Simulator Diagnostics 141

A.2 Simulator Diagnostics

I()

ci

0
,...: -

I

~

I()

ci

0
ci

N

0

N
I

0

0

I

0

0

10

I

10

0

10

0 0

20

20

20

0

0
0

30

30

0

30

0 0

40

40

I

40

0

50

I

50

50

00 0 00
00° 00 o 0 oo 00 0 0 o

... o . . . ~. ~o ~. -.- o o- - - - _oo
~ o ' - -· ._ . ._~-· ~ o . . ·o
1 I 0 oO O 0
•' oOo o Coo

0
0

0 10 20 30 40 50

0 0

0 0 0 0
I()

ci

0
ci

0 0 p2
~ -,_------.------.------.------.----~~

0 10 20 30 40 50

0
- 0

~ - ooO o o o o
00 0 oo _o oO 0 ooo0

... ~Cf" o- - ·- .. ·- ·- ·-o- ·- ·- ·- -o- - - - a .- ·- o ·- ~- ..
o 0oo 0 o o0 ooct:Jo o o o

0 ° 0

~- ~4
I Lr-------r-------r-,------r-------r---~--r

0 10 20 30 40 50

0

0

~- Pe
I ,_------,-------,-------,-------,-----~-r

0 10 20 30 40 50

Figure A.4: Station 1015

A.2. Simulator Diagnostics

N

0

N
I

"' I

N

0

N
I

N

0

N
I

0

0

0

0

0 0

0 0
0 0

0
c:P _ _ o _ 0 o o o_ .P _ _ o

r;PfP, 0 ~- . . :1:1.. ~ ~ -()'00".0.0. . . 600.- -:v- '0
0- 0 0 0 0 0 0 oO

0 0 0
0 0

10 20 30 40 50

0

0 0 0 0
0

0

0 0

0 0

0

10 20 30 40 50

0 0

0
0

0

0

10 20 30 40 50

N

0

"' I

N

~ -

0

I

N
I

"' I

I

0

0

0

10

0

0 0

10

Figure A.5: Station 1116

142

0

0

0 0

0
0

p2

I I

20 30 40 50

0 0

0

0
0

20 30 40 50

A.2. Simulator Diagnostics

q

I{)

0

0
0

I{)

0
I

q
I

(")

C\J

0

C\J
I

(")
I

q

"' 0

0
0

0

0
0

p1

0 10 20 30 40 50

0 0

0

0 0

0 10 20 30 40 50

0

~
0 0

0 0 0 0

PoO o ~ , o-oO ~ - ~ - - - ~o. o
, _o_ - n- o - :b- - -%-

.' ... 0 . . . 0. 0 ·a PcPJ 0 0 0
0 0 00 p 0

0 p

I

0 10 20

0
0

0

30 40 50

q -

I{)

0

0
0

I{)

0
I

q
I -

C\J -

0

I

C\J
I

(") -
C\J

0

I
C\J

I

(")
I

0

0

0
0

0 0 0 p 0

0 00

143

0

~ o o, ' -o~ c ' ~ - - - - ocr - -o- __ Og _
I -I-~ -Elo-0- .0 .. 0 .0. Q o"O 0ooo 0 00o .0.

0

0

0

,, 0 ° 0

00

10

10

0

10

0

0

20

20

20

0

0

0

0

0

0

0

0

0

30 40 50

0

0

p4

30 40 50

0
0

0 0 0
. ·o·.

-----o-o---
0-po

0
0

0 0 0

30 40 50

Figure A.6: Station 1215

Appendix B

PZN simulator run code with

derivatives

Solve.PZN<- function(station, runnames, deriv.order, act=1:15,

runnamesX=runnames, adapt="all"){

pars<-c ("phiP", "kN", "VP", "alpha", "kW", "kP", "beta", "mu", "phiZ",

"g", "kG", "epsilon", "Nref", "b", "m")

p<-length(pars)

NULLVEC<-rep(O, p)

pact<-length(act)

if (deriv.order==O){

NAM<-c ("per", "tdays", "P", "Z", "N")

} else {

}

NAM<-c("per", "tdays", "P", paste("dPd", pars, sep=""),

"Z", paste("dZd", pars, sep=""), "N", paste("dNd", pars, sep=""))

RANK<-rep(NA, p)

RANK[act]<-rank(act)

inp<-read.table(paste(runnamesX,".X",sep=""), header=TRUE)

Given in original units

cd<-ncol(inp)

if (! cd==p) {

144

Appendix B. PZN simulator run code with derivatives

stop("Only", cd, "parms given - should be", p)

}

nperiod<-2 # One year's spin-up as in Hemmings

Read in ffs

if (any(station==10010+1:4)){

ffpath<-file.path("-dma3mrk", "Hemmings", "PrelimData")

lats<-read.table(file.path(ffpath, "stations.nabe"), header=T

CLOUD<-read.table(file.path(ffpath, "cloud.nabe"), header=T

MLD<-read.table(file.path(ffpath, "mld.nabe"), header=T)

} else {

145

lats<-as.matrix(read.table(file.path("-/Hemmings","stations.5d"), head=T))

CLOUD<-as.matrix(read.table(file.path("-/Hemmings","ffcloud"), head=T))

MLD<-as.matrix(read.table(file.path("-/Hemmings","ffmld"), head=T))

}

lat<-lats [which(lats [,"station"] ==station), "lat"]

lat<-lat*pi/180 # convert into radians

CLOUD<-CLOUD [which (CLOUD [,"station"] ==station), c ("tdays", "cloud")]

MLD<-MLD[which(MLD[, "station"]==station), c("tdays", "mld")]

CLOUD<-as.matrix(CLOUD)

MLD<-as.matrix(MLD)

nrowM<<-nrow(MLD)

nrowC<<-nrow(CLOUD)

CLOUD<-rbind(c(CLOUD[nrowC,1,drop=F]-365, CLOUD[nrowC,2,drop=F]), CLOUD,

c(365+CLOUD[1,1,drop=F], CLOUD[1,2,drop=F]))

MLD<-rbind(c(MLD[nrowM,1,drop=F]-365, MLD[nrowM,2,drop=F]), MLD,

c(365+MLD[1,1,drop=F], MLD[1,2,drop=F]))

getff<-function(tdays){

CLOUD

while (CLOUD[Ccur,1]>tdays) { Ccur<<-Ccur-1}

Appendix B. PZN simulator run code with derivatives

while (all(CLOUD[min(nrowC,Ccur+l), 1]<=tdays, Ccur<nrowC)) {

Ccur<<-Ccur+1

}

if (CLOUD[Ccur,1]==tdays) {

C<-CLOUD[Ccur,2]

} else {

}

w1<-CLOUD[Ccur+1,1]-tdays; w2<-tdays-CLOUD[Ccur,1]; w<-w1+w2;

C<-(CLOUD[Ccur,2]*w1 + CLOUD[Ccur+1,2]*w2)/w

MLD

while (MLD[Mcur,1]>tdays){ Mcur<<-Mcur-1 }

Careful with bad jumps as Mcur is set globally

while (all(MLD[rnin(nrowM,Mcur+1), 1]<=tdays, Mcur<nrowM)){

Mcur<<-Mcur+1

}

if (MLD[Mcur,1]==tdays) {

M<-MLD[Mcur,2]

} else {

}

w1<-MLD[Mcur+1,1]-tdays; w2<-tdays-MLD[Mcur,1]

if (any(w1<0, w2<0)){

cat(paste("M: t=", round(tdays,3), "w1=", round(w1,3),

"w2=", round(w2,3), "Mcur=" ,Mcur), "\n")

w1<-abs(w1); w2<-abs(w2)

}

w<-w1+w2

M<-(MLD[Mcur,2]*w1 + MLD[Mcur+1,2]*w2)/w

w1<-MLD[Mcur,1]-MLD[Mcur-1,1]; w2<-MLD[Mcur+1,1]-MLD[Mcur,1]

if (any(w1<0, w2<0)){

print(cat("dMdt: t=", round(tdays,3), "w1=", round(w1,3),

"w2=", round(w2,3), "Mcur=" ,Mcur), "\n")

w1<-abs(w1); w2<-abs(w2)

146

Appendix B. PZN simulator run code with derivatives

}

w<-w1+w2

m1<-MLD[Mcur+1,2]-MLD[Mcur,2]; m2<-MLD[Mcur,2]-MLD[Mcur-1,2];

dMLDdt<- (w1*m1/w2 + w2*m2/w1)/w

c(C, M, dMLDdt)

}

The two Phot functions

Removed lny (denom of ln) - subtract this later

Ffn<-function(y,t){

}

s2<- y~2 + t~2

s<-sqrt(s2)

s - t*log((t + s)/y)

dFfn<-function(y,t){

}

s2<- y~2 + t~2

s<-sqrt(s2)

(s2 + t*s)/(y*(t+s))

phint<-function(y){

y * (0.555588 + o.004926*y) I (1 + 0.188721*y)

}

#Let y->1/360*y and mutiply top and bottom by (360y)~2

phint2<-function(arg){

num<- (61732*arg + 1.52037037)

den<- arg*(arg*0.4e8 + 20969)

147

Appendix B. PZN simulator run code with derivatives 148

num/den

}

dphint<-function(arg){

num<-- (0.246928e13 + (0.1216296296e9/arg) + (0.3188064629e5/arg~2))

den<- (arg*0.4e8 + 20969)~2

num/den

}

RK constants

Ca<-c(NA, 1/5, 3/10, 3/5, 1, 7/8)

Cb<-matrix(NA, nrow=6, ncol=5)

Cb[2,1]<- 1/5; Cb[3,1:2]<- c(3/40, 9/40)

Cb[4,1:3]<- c(3/10, -9/10, 6/5)

Cb[5,1:4]<- c(-11/54, 5/2, -70/27, 35/27)

Cb[6,1:5]<- c(1631/55296, 175/512, 575/13824, 44275/110592, 253/4096)

Cc<-c(37/378, 0, 250/621, 125/594, 0, 512/1771)

dCc<-Cc-c(2825/27648, 0, 18575/48384, 13525/55296, 277/14336, 1/4)

SAFETY<- 0.9

PGROW<- -0.2

PSHRINK<- -0.25

ERRCON<- 1.89e-4 #ERRCON=(5/SAFETY)~(1/PGROW)

HMIN<- le-50

TINY<- le-25 #le-30 seems too demanding

EPS<- 1e-4 # form 1e-6

HINITIAL<- 1

HMAX<<- 25 # form 5

actualHMAX<<-HMAX

MAXnsteps<- 1e4 # counts two periods together

NSTEPS<-c ()

Appendix B. PZN simulator run code with derivatives

fun<- function(tdays, Ymat, deriv.order=1){

P<-Ymat[1,1]; Z<-Ymat[2,1]; N<-Ymat[3,1]

ffs<-getff(tdays); C<-ffs[1]; M<-ffs[2]; dMdt<-ffs[3]

if (M<O){ print(paste("M<O =",M, "t=", tdays)) }

delta<- -0.40928*cos(2*pi*cos((tdays+10)*(2*pi/365))/365)

ss<-sin(delta)*sin(lat)

cc<-cos(delta)*cos(lat)

tt<- -ss/cc

if (tt <= -1) {

sunset<-pi

} else {

}

if (tt >= 1) {

sunset<-0

} else {

sunset<-acos(tt)

}

#Sunset is an angle (which R gives in Radians)

tau<-sunset/360

149

884*pi = 2777 - NB 1353 in Hemmings(2001) documentation; 430*pi = 1353

Isn<- 884*(ss*sunset + cc*sin(sunset)) #Hemmings code

These agree except for factor out front (see personal comm. for unit change)

if ((IO*alpha*VP) <= 0) {

flowNP<-0

} else {

bet<- (VP*tau)/(IO*alpha)

Appendix B. PZN simulator run code with derivatives

}

atten<- (kW + P*kP)*M

attenmod<-atten

bet2<- bet*exp(atten)

outfront<- (360*tau*2*VP/atten)

Ibar<- phint2(bet) - phint2(bet2)

Jbar<- outfront*Ibar

Q<- N/(kN+N)

Pdeep<-phiP*P

pzdenom<-kG+P

flowPZ<- g*Z*P/pzdenom

Zdetr<- (1-beta)*flowPZ

epstmp<- epsilon*Zdetr

flowZN<- mu*Z + Zdetr - epstmp

Zdeep<-phiZ*Z~2 + epstmp

hstar<-max(dMdt, 0)

Common<-(hstar+m)/M

fluxP<- Common*P

fluxZ<- Common*Z

Test.Nref<-Nref*log(b*M+1) - N

if (Test.Nref<=O){

fluxN<-0

} else {

fluxN<- Common*Test.Nref

}

STATE<- matrix(e(flowNP- flowPZ- Pdeep- fluxP,

150

Appendix B. PZN simulator run code with derivatives

if (deriv.order>O){

flowPZ - flowZN - Zdeep - fluxZ,

flowZN- flowNP + fluxN), ncol=1)

dPdTheta<-Ymat[1, 2:(1+pact)]

dZdTheta<-Ymat[2, 2:(1+pact)]

dNdTheta<-Ymat[3, 2:(1+pact)]

if ((IO*alpha*VP) <= 0) {

flowNP<-0

dflowNP<-NULLVEC

} else {

bet<- (VP*tau)/(IO*alpha)

dbet<- NULLVEC

if (is.element(3,act)){

dbet[RANK[3]]<- tau/(alpha*IO) }

if (is.element(4,act)){

dbet[RANK[4]]<- -VP*tau/(alpha~2*IO) }

atten<- (kW + P*kP)*M

datten<- dPdTheta*M*kP

if (is.element(5,act)){

datten[RANK[5]]<-datten[RANK[5]] + M }

if (is.element(6,act)){

datten[RANK[6]]<-datten[RANK[6]] + P*M }

bet2<- bet*exp(atten)

dbet2<- exp(attenmod)*(dbet + bet*datten)

outfront<- 2*VP/atten

doutfront<- -VP*datten

if (is.element(3,act)){ # Extra term for theta=VP

doutfront[RANK[3]]<- doutfront[RANK[3]] + attenmod}

doutfront<-doutfront/attenmod~2 #Division of whole vector last

doutfront<- (360*tau*2)*doutfront # Don't forget the multiplier!

151

Appendix B. PZN simulator run code with derivatives

Ibar<- phint2(bet) - phint2(bet2)

dibar<- dphint(bet)*dbet - dphint(bet2)*dbet2

Jbar<- outfront*Ibar

dJbar<- outfront*dibar + doutfront*Ibar

Q<- N/(kN+N)

dQ<- dNdTheta*kN

if (is.element(2,act)){

dQ[RANK[2]]<- dQ[RANK[2]] - N } # Extra term for theta=kN

dQ<-dQ/(N+kN)~2 #Do division of everything last

flowNP<- P*Jbar*Q

dflowNP<- dPdTheta*Jbar*Q + P*(Q*dJbar + dQ*Jbar)

}

Pdeep<-phiP*P

dPdeep<-phiP*dPdTheta

if (is.element(1,act)){

152

dPdeep[RANK[1]]<-dPdeep[RANK[1]] + P } # Extra term for theta=phiP

pzdenom<-kG+P

flowPZ<- g*Z*P/pzdenom

dflowPZ<- g * (dZdTheta*P*pzdenom + Z*dPdTheta*kG)

if (is.element(10,act)){ # Extra term for theta=g

dflowPZ[RANK[10]]<- dflowPZ[RANK[10]] + (Z*P*pzdenom) }

if (is.element(11,act)){ #Extra term for theta=kG

dflowPZ[RANK[11]]<- dflowPZ[RANK[11]] - (P*Z*g) }

dflowPZ<-dflowPZ/pzdenom~2

Division is very last operation to combat numerical errors

Zdetr<- (1-beta)*flowPZ

dZdetr<- (1-beta)*dflowPZ

if (is.element(7,act)){ #Extra term for theta=beta

dZdetr[RANK[7]]<- dZdetr[RANK[7]] - flowPZ }

Appendix B. PZN simulator run code with derivatives

epstmp<- epsilon*Zdetr

depstmp<- epsilon*dZdetr

if (is.element(12,act)){ # Extra term for theta=epsilon

depstmp[RANK[12]]<- depstmp[RANK[12]] + Zdetr }

flowZN<- mu*Z + Zdetr - epstmp

dflowZN<- mu*dZdTheta + dZdetr - depstmp

if (is.element(8,act)){ # Extra term for theta=mu

dflowZN[RANK[8]]<- dflowZN[RANK[8]] + Z }

Zdeep<-phiZ*Z~2 + epstmp

dZdeep<-phiZ*2*Z*dZdTheta + depstmp

153

if (is.element(9,act)){ #Extra term for theta=phiZ (not theta=phiP!)

dZdeep[RANK[9]]<-dZdeep[RANK[9]] + z~2 }

hstar<-max(dMdt, 0)

Common<-(hstar+m)/M

fluxP<- Common*P

dfluxP<- Common*dPdTheta

if (is.element(15,act)){ #Extra term for theta=m

dfluxP[RANK[15]]<- dfluxP[RANK[15]] + P/M }

fluxZ<- Common*Z

dfluxZ<- Common*dZdTheta

if (is.element(15,act)){ #Extra term for theta=m

dfluxZ[RANK[15]]<- dfluxZ[RANK[15]] + Z/M }

Test.Nref<-Nref*log(b*M+1) - N

if (Test.Nref<=O){

dfluxN<-NULLVEC

} else {

fluxN<- Common*Test.Nref

dfluxN<- -Common*dNdTheta

if (is.element(13,act)){ # Extra term for theta=Nref

dfluxN[RANK[13]]<- dfluxN[RANK[13]] + Common*log(b*M+1) }

if (is.element(14,act)){ # Extra term for theta=b

Appendix B. PZN simulator run code with derivatives

}

dfluxN[RANK[14]]<-dfluxN[RANK[14]]+(hstar+m)*Nref/(b*M+1) }

if (is.element(15,act)){ # Extra term for theta=m

dfluxN[RANK[15]]<- dfluxN[RANK[15]] + Test.Nref/M}

dY<-rbind(dflowNP - dflowPZ- dPdeep- dfluxP,

dflowPZ - dflowZN - dZdeep - dfluxZ,

dflowZN - dflowNP + dfluxN)

return(cbind(STATE, dY))

} else { return(STATE) }

}

RKCK<-function(ymat, dord){ #deriv.order

t<-ymat[[l]]; Y<-ymat[[2]];

K<-vector("list",6)

K[[l]]<-h*fun(t, Y, dord)

K[[2]]<-h*fun(t+Ca[2]*h, Y + Cb[2,1]*K[[1]], dord)

K[[3]]<-h*fun(t+Ca[3]*h, Y + Cb[3,1]*K[[1]] + Cb[3,2]*K[[2]], dord)

K[[4]]<-h*fun(t+Ca[4]*h, Y + Cb[4,1]*K[[1]] + Cb[4,2]*K[[2]] +

Cb[4,3]*K[[3]], dord)

K[[5]]<-h*fun(t+Ca[5]*h, Y + Cb[5,1]*K[[1]] + Cb[5,2]*K[[2]] +

Cb[5,3]*K[[3]] + Cb[5,4]*K[[4]], dord)

K[[6]]<-h*fun(t+Ca[6]*h, Y + Cb[6,1]*K[[1]] + Cb[6,2]*K[[2]] +

Cb[6,3]*K[[3]] + Cb[6,4]*K[[4]] + Cb[6,5]*K[[5]], dord)

hdYdx<- Cc[1]*K[[1]]+ Cc[2]*K[[2]] + Cc[3]*K[[3]] + Cc[4]*K[[4]] +

Cc [5] *K [[5]] + Cc[6] *K [[6]]

Y<- Y + hdYdx

154

DeltaErr<-dCc[l]*K[[l]] + dCc[2]*K[[2]] + dCc[3]*K[[3]] + dCc[4]*K[[4]] +

dCc [5] *K [[5]] + dCc [6] *K [[6]]

Appendix B. PZN simulator run code with derivatives

list(tnew=t+h, Y=Y, DeltaErr=DeltaErr, hdYdx=hdYdx)

}

RKAS<-function(y, dord=1){

Try<-RKCK(y, dord);

#yscal<-Try[[2]]; DeltaErr<-Try[[3]]; hdYdx<-Try[[4]];

yscal<-Try$Y; DeltaErr<-Try$DeltaErr; hdYdx<-Try$hdYdx

if (adapt==" all"){

err<- abs(DeltaErr) I (abs(yscal) + abs(hdYdx) + TINY)

} else { # Only check error for state variables not derivatives

155

err<- abs(DeltaErr[,1]) I (abs(yscal[,1]) + abs(hdYdx[,1]) + TINY)

}

err<-erriEPS

errmax<-max(err, na.rm=T)

if (any(is.na(err))) {

cat (paste ("err has NA, errmax=" , errmax, "\n")) ;

errmax<-10*max(errmax,1) }

w<-which(!abs(err)==Inf)

if (!all(w)) { errmax<-10*max(err[w] ,1) }

if (errmax > 1){

Truncation error too large, reduce stepsize.

nbad«-nbad+1

htmp<-max(SAFETY*h*errmax-PSHRINK, 0.1*h) #No more than a factor of 10

if (tim==tim+htmp) {

UNDERFLOW<<-TRUE

print("Stepsize Underflow")

Appendix B. PZN simulator run code with derivatives

print(y)

return (list(Try[[1]], Try[[2]]))

} else {

h«-htmp;

return (RKAS(y, dord))

}

} else {

}

}

ngood«-ngood+1

h<<-min(SAFETY*h*errmax-PGROW, 5*h, HMAX);

Maximum factor of 5 increase AND Don't let h go above HMAX

tim«-Try [[1]]

return (list(tim, yscal))

Initial conditions

IC<-matrix(c(0.02, 0.002, 1), ncol=1)

if (deriv.order>O){ # Add init condits for derivs

IC<-cbind(IC, matrix(O, nrow=3, ncol=pact))

}

noutput<-nrow(IC);

IC<-list(O, IC); #First component of IC is t=O

nruns<-nrow(inp)

for (r in 1:nruns) {

x<-inp[r,]

for (i in 1:15){ assign(pars[i], unlist(x[i]), envir=.GlobalEnv) }

156

Appendix B. PZN simulator run code with derivatives

h<-HINITIAL

len<- ncol(IC[2]) # (p+1)

Ymatrix<-c(1, IC[[1]], as.vector(t(IC[[2]]))

First elt is period, second is time.

per<-0

nsteps<-0

nbad«-ngood<-0

UNDERFLOW<<-FALSE

while (all(per<nperiod, nsteps<=MAXnsteps)) {

per<-per+1;

Mcur<<-Ccur<<-1; tim<-0; #nsteps<-0; Switched back to 1 for R

h<-HINITIAL; # Add it in here for control

if (per==1) {

y<-IC;

} else {

y[[1]]<-0;

} # Reset time here

nit<-0;

while (all(y[[1]]<365, nsteps<MAXnsteps, !UNDERFLOW)) {

nit<-nit+1

}

nsteps<-nsteps+1

if ((y[[1]]+h) > 365){ h<<- 365-y[[1]] }

Last step takes you exactly to 365

y<-RKAS(y, deriv.order)

Transy<-c(per, y[[l]], as.vector(t(y[[2]])))

Ymatrix<-rbind(Ymatrix, Transy)

if (nsteps>=MAXnsteps) {

cat(paste("nsteps > MAXnsteps, t =" y[[l]] ,"\n"))

}

157

Appendix B. PZN simulator run code with derivatives

}

if (all(nsteps <= MAXnsteps, !UNDERFLOW)){

Ymatrix<-Ymatrix[which(Ymatrix[,1]==2),]

colnames(Ymatrix)<-NAM

rownames(Ymatrix)<-NULL

fnam<- paste (runnames, r, sep=".")

158

fp<-file. path (" -dmaOpsc", "research", "ocean"," simulators", "Derivati veRuns")

write.table(Ymatrix, file=file.path(fp, fnam), quote=FALSE, row.names=FALSE)

}

ctime<- strsplit(dateO, split="")[[1]] [c(12,13,15,16,18, 19)]

print(paste("Run", r, ", ng=", ngood, ", nb=", nbad, sep=""))

NSTEPS<-rbind(NSTEPS, c(r, ngood, nbad, as.integer(ctime)))

END BIG FINAL LOOP

}

return (NSTEPS)

} # End Solve.PZN

Appendix C

Emulator updating code

is.pd<-function(M){

all(eigen(M)$values>=O)

}

g<-function(z, P){

}

n<-nrow(z)

q<-nrow(P)

gx<-array(l, dim=c(q, n))

for (i in 1 : q){

}

gx

if (all(is.na(P[i,]))) { gx[i,]<-0

#Replaces initial l's in matrix by O's

} else {

}

w<-which(!P[i,]==O) #Doesn't count NA values

if (any(w)){

for (j in w){ gx[i,]<-gx[i,]*z[,j]~P[i,j] }

}

159

Appendix C. Emulator updating code 160

s.prior<-function(Priors, x){

##Computes Prior Specs for objects involving S

#Priors

EB<-Priors$EB; VarB<-Priors$VarB; gp<-Priors$gp;

sigmaEp<-Priors$sigmaEp; vdelta<-Priors$vdelta; sigmaDel<-Priors$sigmaDel

if (any(c(is.null(EB), is.null(VarB)))){

Es<-VgBg<-0

} else {

gx<-g(x, gp)

Es<-EB%*%gx

gVarBg<-tensor(VarB,gx,3,1) # k,q,L

gVarBg<-aperm(gVarBg, c(2,1,3))

other1<-function(j){

gx[,j]%*%gVarBg[, ,j]
}

#Can tensor it and then apply(,,diag) over the k,k dimension, but

#this means you first have to allocate a large vector (too large for R!)

VgBg<-sapply(1:nrow(x), other1)

if (length(dim(VgBg))){ VgBg<-t(VgBg) } #get dim NULL if 1 output

VgBg<-function(gx, VarB) tensor(gx, tensor(VarB, gx, 3,1), 1,2)

VgBg<-apply(gx, 2, function(z) VgBg(z,VarB))

VgBg<-t(VgBg)

VgBg<-tensor(g, tensor(VarB, g' 4' 1)' 1,2)

gives dim l,k,k,l

VgBg<-aperm(VgBg, c(2,1,3,4))

VgBg<-tensor(gx, tensor(VarB, gx, 3, 1), 1,2)

VgBg<-aperm(VgBg, c(2,1,3))

Appendix C. Emulator updating code

VgBg<-apply(VgBg, 1, diag) #Read off the x variances

!<-ceiling(sqrt(nrow(x)))

VE<-VarEp(x)

VD<-outer(sigmaDel, diag(l))

VD<-aperm(VD, c(1,3,2))

}

161

#VE<-outer(rep(1, nrow(x)), sigmaEp) #works for multiV but slower for uniV

#VD<-outer(rep(1, nrow(x)), sigmaDel)

}

VE<-matrix(sigmaEp, ncol=length(sigmaEp), nrow=nrow(x), byrow=T)

VD<-matrix(sigmaDel, ncol=length(sigmaDel), nrow=nrow(x), byrow=T

list(Esx = Es, Varsx = VgBg + VE + VD, VargBg = VgBg, VarEpx = VE)

AdjustBeliefs<-function (Priors, Data, x) {

#Priors

EB<-Priors$EB; VarB<-Priors$VarB; gp<-Priors$gp; actx<-Priors$actx;

theta<-Priors$theta; sigmaEp<-Priors$sigmaEp;

vdelta<-Priors$vdelta; sigmaDel<-Priors$sigmaDel

#Data

X<-Data$x; y<-Data$y; dydx<-Data$dydx

k<-ncol(y); n<-nrow(y)

p<-ncol(gp); q<-nrow(gp)

if (VER=="vN"){ #NULL

#y<-cbind(y[,k] ,y[,k])

y<-y [, k, drop= F)

if (length(dydx)){

#dydx<-array(NA, dim=c(n,2,p))

#dydx[,1,]<-dydx[,2,]<-Data$dydx[,k,,drop=F] }

dydx<-Data$dydx[,k,,drop=F] }

if (length(dydx)){

#dydx<-ifelse(abs(dydx)>20, sign(dydx)*(17+log(abs(dydx))), dydx)

#17+log(20)=20, 12.3+log(15) = 15

}

#k<-2

Appendix C. Emulator updating code

k<-1

} else {#v2

}

y<-y[,1: (k-1),drop=F]

if (length(dydx)){

dydx<-Data$dydx[,1:(k-1),,drop=F]

Try rescaling outliers ###########################

#dydx<-ifelse(abs(dydx)>5, sign(dydx)*(3.4+log(abs(dydx))), dydx)

#dydx<-ifelse(abs(dydx)>7.5, sign(dydx)*(5.5+log(abs(dydx))), dydx)

#log(10)+7.7=10, log(5) + 3.4 = 5, log(2.5)+1.58 = 2.5

}

k<-k-1

if (!all(p==length(actx), p==ncol(x))){

stop("Problem with p dim")

}

if (max(abs(X), na.rm=T) > 1) {

stop("X should be transformed onto [-1, 1]") }

if (length(dydx)){

dydx<-aperm(dydx, c(2,1,3))

dim(dydx)<-c(k, n*length(actx))

}

S<-cbind(t(y), dydx) #dim k,n(p+1)

Xact<-X[, actx, drop=FALSE]

one actx for all output (called seperately for P and Nw)

X<-Xact

Xactexp<-t(sqrt(theta)*t(Xact))

#Calculate dimension of simulator from priors

162

Appendix C. Emulator updating code

if (any(c(is.null(EB), is.null(VarB)))){ #no global terms

ES<-VarGB<-0

} else {

dgp<-array(gp, dim=c(dim(gp), p))

for (dx in 1:p){

}

P<-dgp [, , dx]

for (i in 1 : q){

}

if (P[i,dx]>O){ #if the power wrt x[dx] of the qth fn is > 0

#Either subtract one off i,dx entry or make whole row NA

P[i,dx]<-P[i,dx]-1

} else {

P[i,]<-NA}

dgp[,,dx]<-P

G<-g(Xact, gp) # G includes derivatives but g doesn't ...

if (length(dydx)){

for (i in 1:p){

G<-cbind(G, g(Xact, dgp[,,i])) }

}

Gives dimG q , n(p+1)

CovBS<-tensor(VarB, G, 3, 1)

#gives dim k q n

VarGB<-tensor(G, CovBS, 1, 2)

#gives dim n,k,n

163

Appendix C. Emulator updating code

VarGB<-aperm(VarGB, c(2,1,3))

#gives dim k,n,n

check<-apply(VarGB, 1, is.pd)

#if (!all(check)) {

print("VarGB not pd")

return (VarGB)

#}

} # End global part

VarEp<-function(x){

}

VarEp<-sigmaEp%o%exp(-as.matrix(dist(x))-2)

#VarEp<-sigmaEp%o%exp(-theta*as.matrix(dist(x))-2)

#produces dim k,l,l

#VarEp<-aperm(VarEp, c(1,3,2))

VarEp

VarD<-diag(l ,n)

if (length(dydx)){

}

VarD<-array(0, dim=c(n*(p+l), n*(p+l)))

VarD[1:n, l:n]<-diag(l,n)

VarD<-outer(vdelta, VarD)

#gives dim k,n,n

#VarD<-aperm(VarD, c(1,3,2))

mvdist<-function(y, z=y){

y<-as.matrix(y)

z<-as.matrix(z)

}

n<-nrow(y)

cc<-rbind(y,z)

dd<-as.matrix(dist(cc))

dd[l:n, -(l:n), drop=FALSE]

164

Appendix C. Emulator updating code

#VarE<-exp(-theta*as.matrix(dist(Xact))-2)

VarE<-exp(-as.matrix(dist(Xactexp))-2)

if (length(dydx)){

lin<-apply(t(theta*t(Xact)), 2, function(z) outer(z, z, "-"))

#dim is n-2,p

dim(lin)<-c(n, n, p)

165

pcopiesVarE<-array(VarE, dim=c(dim(VarE),p)) #pcopiesVarE[,,1]-VarE TICK

Cfdx<- 2*lin*pcopiesVarE # 2theta

}

int<-array(NA, dim=c(n,p,n,p))

for (i in 1 :p){

for (j in 1: p){

int [, i, , j] <- lin [,, i] *lin [,, j]

2*theta as have exp(-theta) instead of exp(-theta/2)

}

}

p2copiesVarE<-array(VarE, dim=c(dim(VarE),p,p))

p2copiesVarE<-aperm(p2copiesVarE, c(1,3,2,4))

ZeroOne<-outer(diag(theta,p), array(1,dim=c(n,n))

ZeroOne<-aperm(ZeroOne, c(4,2,3,1))

Cdxdx<- 2*(ZeroOne - 2*int)*p2copiesVarE

np<-n*p

dim(Cdxdx)<-c(np, np)

dim(Cfdx)<-c(n, np)

firstrow<-cbind(VarE, Cfdx)

VarE<-rbind(firstrow, cbind(t(Cfdx), Cdxdx)) #dim n(p+1), n(p+1)

#Check

if (!is.pd(VarE)) stop("VarE not pd")

VarE<-sigmaEp%o%VarE

#VarE<-aperm(VarE, c(1,3,2))

#gives dim n,k,n #NB n->n(p+1) for derivs

VarS<-VarGB + VarE + VarD

Appendix C. Emulator updating code

Outputs are uncorrelated

IVarS<-array(dim=dim(VarS))

for (i in 1:k){

IVarS[i, ,] <- chol2inv(chol(VarS[i,,]))

}

diff<-S-ES

R<-array(dim= c(k, dim(VarE)[3]))

ESB<-array(dim=dim(EB))

VarSB<-array(dim=dim(VarB))

sigmaEp. adj <-c ()

#Update beliefs about B

for (i in 1 :k){

CovBStmp<-CovBS[i,,]

IVarStmp<-IVarS[i,,]

R[i,]<-IVarStmp%*%diff[i,]

}

if (is.null(dim(CovBStmp))){

dim(CovBStmp)<-c(length(CovBStmp), 1)

}

if (is.null(dim(IVarStmp))) {

dim(IVarStmp)<-c(1,1)

}

ESB[i,]<-CovBStmp%*%R[i,]

VarSB[i,,]<- CovBStmp%*%IVarStmp%*%t(CovBStmp)

ESB<-EB+ESB

VarSB<-VarB-VarSB

Efficient code if only want post Var for each x, not post Cov matrix.

NB outer still quick for 1e5 grid points and 100 data points

So e.g. 17-4 83,521

L<-nrow(x)

166

Appendix C. Emulator updating code

lin<-array(NA, dim=c(L,n,p))

quad<-array(O, dim=c(L,n))

for (i in l:ncol(Xact)){

tmp<-outer(x[,i], X[,i], "-")

lin[,,i]<-theta[i]*tmp

quad[,,i]<-sqrt(theta[i])*tmp

quad<-quad + theta[i]*tmp-2

}

CEpxS<-exp(-quad)

#CEpxS<-exp(-mvdist(xexp,Xactexp)-2)

#Do this if want posterior cov between points but very expensive.

if (length(dydx)){

}

pcopies<-array(rep(CEpxS, p), dim=c(dim(CEpxS),p))

pcopies<- 2*lin*pcopies

dim(pcopies)<-c(L, n*p)

CEpxS<-cbind(CEpxS, pcopies)

rm(pcopies) #get rid of large object

#Do we need to do this outer product HERE in univariate case?

CEpxS<-sigmaEp%o%CEpxS

dim k,L,np whereas R array is k,np

IVarS is k,np,np

ESEpx<-array(dim=c(k,L))

RVarSEpx<-array(dim=c(k,L))

CSBEpx<-array(dim=c(k,q,L))

167

Loop over outputs quicker than k*k output cov matrix with off diags set to 0

for (i in l:k){

ESEpx[i,]<- CEpxS[i,,]%*%t(R[i,,drop=F])

#dim gets dropped for n=l, no deriv

if (L==l) {

Rtmp<-IVarS[i,,]%*%as.matrix(CEpxS[i,,])

} else {

Rtmp<- IVarS[i,,]%*%t(CEpxS[i,,])

}#Rtmp is kn, L

Appendix C. Emulator updating code

#dim gets drop for L=1

CSBEpx[i,,]<- -CovBS[i,,]%*%Rtmp

168

RVarSEpx[i,]<-sapply(1:nrow(x), function(j) CEpxS[i,j,]%*%Rtmp[,j])

Much quicker to zip down than to use diag
}

VarEpx<-matrix(sigmaEp, nrow=k, ncol=L)

VarSEpx<-VarEpx - RVarSEpx

gx<-g(x, gp) #q,L

gVarSBg<-tensor(VarSB,gx,3,1) # k,q,L

gVarSBg<-aperm(gVarSBg, c(2,1,3))

other1<-function(j){

gx [, j] %*%gVarSBg [, , j]
}

other2<-function(j){

}

B1<-tensor(CSBEpx[,,j,drop=F], gx[,j], 2, 1)

B2<-tensor(aperm(CSBEpx[,,j,drop=F] ,c(2,1,3)), gx[,j], 1, 1)

B1+B2

gVarSBg<-sapply(1:nrow(x), other1)

CovSgBEpx<-sapply(1:nrow(x), other2)

mx<-ESB%*%gx + ESEpx

vd<-matrix(vdelta, nrow=length(vdelta), ncol= nrow(x))

sx<-gVarSBg + CovSgBEpx + VarSEpx + vd

#Check

w<-which(sx<O)

if (length(w)){

}

wx<-apply(sx, 1, function(z) which(z<O))

wx<-unique(unlist(wx))

cat(paste("No. x pts with less than 0 is:",

length(wx), "min val:", min(sx), ''\n''))

Appendix C. Emulator updating code 169

}

sigmaEp. adj <-c ()

diff.adj<-S -ESB%*%G

sigmaEp. adj <-c ()

for (i in l:k){

sigmaEp.adj<-c(sigmaEp.adj, diff[i,]%*%IVarS[i,,]%*%diff[i,])

}

sigmaEp.adj<-sigmaEp.adj/n

list(Priors=Priors, ESB=ESB, VarSB=VarSB, mx=mx, sx=sx, gVarSBg=gVarSBg,

VarSEpx=VarSEpx, Xact=Xact, sigmaEp.adj=sigmaEp.adj)

Appendix D

Jimplausibiliity code

Imp<-function(Eval, Z, Sigmaeta, Escal=(0:5)~2){

DIMS<-dim(Eval$mx)

nr<-DIMS[l]; nc<-DIMS[2]

d<-Z[, "y"]

SigmaeP<-Z [, "Sigmae"]

n<-length(Escal)

duplicate for each observation

onevec<-rep(l,nc)

dx<-outer(d, onevec)

SigmaePx<-outer(SigmaeP, onevec)

Sigmaetax<-outer(Sigmaeta, onevec)

duplicate for different discrepany scalings

Edif <- abs(Eval$mx - dx)

Edif <- outer(Edif, rep(l,n))

Sigmadif <- outer(Eval$sx+SigmaePx, rep(l,n)) + outer(Sigmaetax, Escal)

#Trace<-apply(Sigmadif, 2, sum)

Sigmadif<- sqrt(Sigmadif)

ImpByDut<- Edif/Sigmadif

#MVEdif<-sapply(l:nc, function(z) t(Edif[,z])%*%Edif[,z])

#MVImp<-MVEdif/Trace

#wmax<-apply(ImpByOut, 2, which.max) #NB gives FIRST max

#over index 2 here as sigmaeta fixed

wmax<-apply(ImpByDut, c(2,3), which.max)

170

Appendix D. Implausibility code 171

hist(wmax)

#tells us which of the outputs is most useful for calibration using Impmax

Emax<-sapply(1:nc, function(i) Edif[wmax[i] ,i])

Smax<-sapply(1:nc, function(i) Sigmadif[wmax[i] ,i])

Take these two out to save on storage

Imax<-sapply(1:nc, function(i) ImpByOut[wmax[i] ,i])

Imax<-apply(ImpByOut, c(2,3), max)

list(ImpByOut=ImpByOut, wmax=wmax, Edifmax=Emax, Sigmadifmax=Smax,

Impmax=Imax, MVEdif=MVEdif, Trace=Trace)

list(ImpByOut=ImpByOut, wmax=wmax, Impmax=Imax)

}

Imp2D<-function(Implaus, xpair, out=1:13){

x<-Implaus$x

Impmax<-Implaus$Impmax

p<-ncol(x)

1<-nrow(x)

if (length(xpair) >= p)

stop("Need at least one var to minimise over")

x<-as.matrix(x)

minover<-setdiff(1:p, xpair)

Minimise over other inputs

xp2D<-unique(x[,xpair,drop=F])

X2D<-as.matrix(x[, xpair,drop=F])

res<-as.integer(sqrt(nrow(xp2D)))

min2<-function(z){

Appendix D. Implausibility code

}

w<-1 :nrow(x)

for (i in 1:length(xpair)){

wi<-which(x[,xpair[i]]==z[i]

w<-intersect(w, wi)

}

W<-which.min(Impmax[w])

MEAN<-mean(Impmax[w])

c(w[W], MEAN)

Impmax2D<-apply(xp2D, 1, min2)

Impmax<-Impmax[Impmax2D[1,]] #just want column 1 of w[W]

Impmean<-Impmax2D[2,]

Can send out variance surface here easily too

list(Impmax=Impmax, x=xp2D, xpair=xpair, Impmean=Impmean)

}

172

Appendix E

Miscellaneous code

MSDM<-function(ThetaO, STAS, nrun){

for (STA in STAS){

runnames<-paste (11 HYPER 11
, nrun, 11 s 11

, STA, sep= 1111
)

load(file=paste(runnames, 11 .Rdata 11
, sep= 1111

))

IN<-l:nrun

X<-S$x

X<-Transform(X, R=l)

X<-X[IN,]

X<-as.data.frame(X)

Y<-S$y

dY<-S$dydx

k<-dim(S$y)[2]

new. theta<-c ()

Rsq<-c ()

f .fits<-list()

for (out in 1:k){

if (out==k){

act<-c(1,4,6,13)

f<-lm(Y[IN,out,2] - X1+X4+X6+X13, data=X)

} else {

act<-c(1,4,6,10)

f<-lm(fmla(11 Y[IN,out,2] 11
, act, int2nd=T), data=X)

}

173

Appendix E. Miscellaneous code

)

}

f.fits[[out]]<-f

Rsq<-c(Rsq, summary(f)$r.squared)

mult[c(5,14)]<-0

dYtmp<-matrix(mult, nrow=dim(dY) [1], ncol=15, byrow=T)*dY[,out,]

efit<- fit(f, act, theta=ThetaO)

esttheta<-function(inp, VEPS){

}

y<- paste ("dYtmp [," , inp, "] ", sep=" ")

if (out==k){

dfdx<-lm(dYtmp[, inp] - 1, data=X)

} else {

dfdx<-lm(fmla(y, setdiff(act,inp)), data=X)

}

DOF <- dfdx$df.residual #degrees of freedom

e<-residuals(dfdx)

s2 <- drop((t(e)%*%e)/DOF) #Estimate of 2*theta_{i}sigma_{e}~2

#New theta estimate

s2/(2*max(VEPS,0.01)) #correct if VEPS too small

thetaobj<-sapply(act,function(z) esttheta(z,efit$veps))

new.theta<-rbind(new.theta, thetaobj)

lastP<-k-1

MEAN<-apply(new.theta[1:lastP,], 2, mean)

MED<-apply(new.theta[1:lastP,], 2, median)

174

MAX<-apply(new.theta[1:lastP,], 2, max)

MAX.NOEND<-apply(new.theta[2:(lastP-1),], 2, max) #ignore first and last P

new.theta<-rbind(new.theta, MED, MEAN, MAX, MAX.NOEND)

write. table (new. theta, f ile=paste ("new. theta" , STA, sep=" "))

colnames (new. theta)<-paste ("& \theta_{", 1:4, "}", sep=" ")

rownames(new.theta)[1:k]<-c(paste("P_{", 1:(k-1), "} &"), "N_{w} &")

print(round(new.theta,2))

Appendix E. Miscellaneous code 175

print(Rsq)

for (out in 1:k){

}

}

if (out==k){ NEW.THETA<-new.theta[k,] } else { NEW.THETA<-MAX.NOEND}

compare<-rbind(unlist(fit(f.fits[[out]], act, theta=ThetaO)),

unlist(fit(f.fits[[out]], act, theta=NEW.THETA)))

print(round(compare,3))

} #End MSDM

Best.hypercube<-function(n, w, ntrys=1e3, tovary=setdiff(1:15, c(5,14))){

d<-length(tovary)

cur<-rep(1, length(w)); themax<-rep(O,length(w))

#w=O corresponds to mimimising C13, w=1 to minimising C5

CORRmax<-CORR<-matrix(NA, ncol=13, nrow=length(w))

CORRsum<-matrix(NA, ncol=2, nrow=length(w))# ncol=2: sum to 5 and sum to 13

for (i in 1:ntrys){

HYPER<-hypercube(n, d, range=c(-1,1))

corr<-cor(HYPER)

diag(corr)<-0 #Don't want 1s to count is maximum

corr<-apply(abs(corr), 1, max)

corr<-sort(corr)

tomin<-w*corr[5] + (1-w)*corr[13]

wmin<-which(tomin<cur)

wmax<-which(tomin>themax)

if (length(wmin)){

CORR[wmin,]<-corr; CORRsum[wmin,]<-c(sum(corr[1:5]),sum(corr))

if (length(w)==1){ CUR<-HYPER } else { CUR<-NULL }

CUR<-HYPER makes sense only for w scalar

} # end if (length(wmin))

if (length(wmax)){

Appendix E. Miscellaneous code

}

CORRmax[wmax,]<-corr }

cur<-ifelse(tomin<cur, tomin, cur)

themax<-ifelse(tomin>themax, tomin, themax)

if (length(w)==1){

CUR<-InvTrans(CUR, tovary, R=1)

X<-matrix(XPrior$def, nrow=n, ncol=15, byrow=T)

X [, tovary] <-CUR

} else { X<-NULL }

list(corr=CORR, X=X, corrmax=CORRmax, corrsum=CORRsum)

#crit is the biggest value -best if not x1,x4,x6,x10,x13 for tomin=13

}

fmla <- function(y, active, quad=F, int=F,, int2nd=F, extra=NULL){

xnam<-paste("X", active, sep="")

lin<-paste(xnam, collapse= "+")

terms<-lin

if (quad) {

}

quad<-paste("I(", xnam, "~2)", sep="")

quad<-paste(quad, collapse="+")

terms<-paste(terms, quad, sep="+")

if (all(c(int2nd, length(active)>1, !int))){

#NB before int gets changed into a string so !int makes sense

matt<-cO

for (i in l:(length(active)-1)){

newbit<-cbind(active[i], active[(i+l):length(active)])

matt<-rbind(matt, newbit)

176

Appendix E. Miscellaneous code 177

}

i2<-apply(matt, 1, function(z) paste(paste("X",z, sep=""),collapse=":"))

i2<-paste(i2, collapse="+")

}

}

terms<-paste(terms, i2, sep="+")

if (all(c(int, length(active)>l))) {

int<-paste(xnam, collapse="*")

terms<-paste(terms, int, sep="+")

}

if (length(extra)){

terms<-paste(terms, extra, sep="+")

}

as.formula(paste(paste(y, " - " sep='"'), terms))

Transform<-function(Z, l=XPrior$low, u=XPrior$upp, R=rad){

Simple Linear transform of Z onto range [-R, R] (Usually R=l)

X<-array(dim=dim(Z), dimnames=list(NULL, colnames(Z)))

for (j in l:ncol(Z)){

X[,j]<-(R/Cl[j]-u[j]))*(-2*Z[,j] + l[j]+u[j])

}

X

}

InvTrans<-function(Z, inp=1:15, l=XPrior$low, u=XPrior$upp,

d=XPrior$def, R=rad){

-
Gives X values back in original scale

L__ ________ -- -- -

Appendix E. Miscellaneous code 178

}

#eg to find refocused region in original scale

X<-matrix(nrow=nrow(Z), ncol=ncol(Z))

X

for (j in seq(along=inp)){

i<-inp[j]

X[,j]<- 0.5*(l[i]+u[i] + Z[,j]*(u[i]-l[i])/R)

}

Matern1D<-function(x, theta, nu){

}

#rescale<-2*sqrt(nu)*abs(x)/theta # Santner theta scaling

rescale<-2*sqrt(theta*nu)*abs(x) # My scaling (to coincide with Gauss)

R<-rescale-nu * besselK(rescale, nu=nu)/(gamma(nu)*2-(nu-1))

ifelse(is.na(R), 1, R) #Get NA at x=O

Sim<-function(theta, n=4, X=c(), nu=NULL, deriv=F, LEN=101, PLOT=T,

YLIM=NULL, XA=T, YA=T){

require(MASS) # For multivariate normal sampling

Derivatives option only if data (length(X)>O) and Gaussian (nu=NULL)

if (any(!length(X), !is.null(nu))){ deriv<-F}

x <- seq(-1, 1, len=LEN)

xdist<-outer(x, x, "-") # For x a vector (lD)

if (length(nu)){ # is.nul(nu) specifies Gauss

Appendix E. Miscellaneous code

Sigma <- Matern1D(xdist, theta, nu)

} else {

Sigma <- exp(-theta * xdist~2)

}

Unconstrained by obs

if (!length (X)){

y <- mvrnorm(n, rep(O, length(x)), Sigma)

} else {

}

XX<-outer(X, X, "-")

xX<-outer(x, X, "-")

if (length(nu)){

VX<-Matern1D(XX, theta, nu)

CxX<-Matern1D(xX, theta, nu)

} else {

}

VX<-exp(-theta*XX~2)

CxX<-exp(-theta*xX~2)

if (deriv){

VXdash<-2*theta*(1-2*theta*XX~2)*VX

CXXdash<- 2*theta*XX*VX

}

CxXdash<- 2*theta*xX*CxX

VX<-rbind(cbind(VX, CXXdash), cbind(t(CXXdash),VXdash))

CxX<-cbind(CxX, CxXdash)

D<-mvrnorm(1, rep(O, (deriv+1)*length(X)), VX)

D<-as.matrix(D)

IVX<-chol2inv(chol(VX))

R<-CxX%*%IVX

VarDS<-Sigma- R%*%t(CxX)

EDS<-R%*%D

y<-mvrnorm(n, drop(EDS), VarDS)

if (PLOT){

179

Appendix E. Miscellaneous code 180

}

if (is.null(YLIM)){ YLIM=range(t(y)) }

matplot(x, t(y), type="l", ylim=YLIM, axes=all(XA,YA), lty=1, cex.axis=0.8)

if (!all(XA,YA)){

}

axis(side=1, at=c(-1,-0.5,0,0.5,1), lab=XA)

axis(side=2, at=-3:3, lab=YA)

box()

if (length(X)){ points(X, D[1:length(X)]) }

} # endif PLOT

if (length(X)){

}

BL estimates

sig.est<-sum(D[1:length(X)]-2)

if (deriv){

theta.est<- sum(D[(length(X)+1): (2*length(X))]-2) I (2*sig.est)

} else { theta.est<-NULL}

return(list(X=X, sigmaEp=1, VX=VX, IVX=IVX, D=D, deriv=deriv,

sig.est=sig.est/length(X), theta.est=theta.est))

Appendix F

Bessel functions

Bessel functions arise as the solution of a class of ordinary differential equations. In

general, I< v (x) in defined by an infinite power series. In the case that 11 is equal to

a half integer (that is, v = n + 1/2 for nE 0, 1, ...), then

-x {if n (n + k)! 1
I<n+l/2(x) = e V~ 2: k!(n- k)! (2x)k

k=O

Substituting this into the Matern form

we get

R(h) = e-2Mihl (bo(lhiVB)n + bl(lhlv'et-l + · · · + bn)

where the coefficients are given by

v(n-j)/2 (n + j)!
bj = V7f 4-Jr(v) j!(n _ j)!, v = n + 1/2, j = 0, 1, ...

It can be shown that R(h) -----+ e-0h
2

as v-----+ oo.

181

(F.0.1)

(F.0.2)

(F.0.3)

(F.0.4)

Appendix G

High order derivatives of the

Gaussian covariance kernel

Letting x be scalar and writing c(u) = e-u
2

, where u = v'e(x- x'), it is easy to see

that

(G.0.1)

An expression for dkc(u)jduk, k = m+n, is then obtained by a simple rearrangement

of the following definition for the Hermite polynomial of degree k (Gradstein and

Ryshik, 1981),

(G.0.2)

Generalising for vector x = (x 1 , ... , xp), we exploit the product form of the Gaussian

covariance kernel which allows us to compute derivatives simply as the product of the

corresponding scalar component derivatives. In particular, writing ui = V7J: (xi- xD,

k = (k1 , ... , kp) and defining the operator V'~= ~:: · · · ~::, we obtain

p -

Cov[V'~t:(x), V'~t:(x')] = cr;exp-(x-x')re(x-x')IT(-1)f' (v'e:)k;+k; Hk;+k;(ui)
i=l

(G.0.3)

The advantage of writing (G.0.3) in this form is that it can be easily implemented

using the recurrence relations for Hermite polynomials

(G.0.4)

182

