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Abstract 

Increasingly, science relies on complex numerical models to aid understanding of 

physical phenomena. Often the equations in such models contain a high number of 

poorly known parameters so that the resulting output encodes much uncertainty. A 

'computer simulator', which comprises the model equations together with a solver 

routine, produces a solution for a given choice of these 'input' parameters. 

In cases where the dimension of the input parameter space is high, we can only 

hope to obtain a thin coverage of the space by running the simulator. Building a 

representation of the simulator output as a function of the input, then, is a statistical 

problem in which we observe output at a collection of input choices and, based 

on these observations, infer output values for unseen inputs about which we are 

uncertain. In a Bayesian context, this representation, termed the 'emulator', encodes 

our beliefs about the relationships between inputs and outputs. 

Our interest is in exploiting the structure of compartmental models to aid in 

this process. Compartmental models are widely applied to model systems in the 

absence of fundamental equations to describe the processes of interest. We show that 

the structure of such models enables us to efficiently generate additional function 

information, in the form of input derivatives, each time we run the simulator and we 

adapt the emulator methodology to allow for derivatives. We show that considering 

derivatives offers a range of natural ways to aid assessment of prior beliefs and 



iii 

that updating based on derivatives can lead to substantial reduction in emulator 

uncertainty. We show that, in addition, the model structure allows us to derive 

estimates of increased costs of generating derivatives which we can compare against 

the corresponding reduction in uncertainties. 

We are motivated throughout by the problem of calibrating a compartmental 

model of plankton cycles at multiple locations in the sea, and we show that a knock

on effect of reduction of uncertainty by derivatives is an improvement in our ability 

to perform this calibration. The search for a model which could accurately repro

duce plankton cycles at various physical locations, if successful, is thought to have 

significant ramifications for understanding climate change. 
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Chapter 1 

Introduction 

"So what is your PhD about?" I had spent a week working at the Daily Mirror and, 

with the exception of the enthusiastic musings of the managing editor that having 'a 

doctor' on the team might enable the resurrection of a long-forgotten weekly column 

addressing the medical (predominantly sexual) problems of the readership, it was 

the first time somebody had taken an interest. 

Unsure as I always am about how much people want to know when they ask 

the question, I tentatively began to explain: ((Well, think about climate change and 

how scientists are trying to understand it - by building gigantic computer models of 

the earth's climate and running them forward into the future to see what happens. 

I 'm interested in how we can use those kinds of computer models to learn about real 

world phenomenon such as climate change. " 

11But don't those models rely on some phenomenal assumptions?" he asked. 

For the little that many people understand about the intricacies of science, it 

is often surprising how adept they can be at pointing out its weaknesses. The 

great minds of science toil to reproduce the complexities of the earth's climate on a 

computer; attempting what, to the layman, is obvious as being an impossible task. 

The statistician, on the other hand, is lucky in being able to keep one step ahead 

of both the scientist and the layman. A good computer model of any complexity 

involves a combination of scientific expertise and understanding of some aspects 

of the physical process being modelled, together with some fairly rough and ready 

approximations about aspects which are not well understood and then, finally, a 

1 



Chapter 1. Introduction 2 

jarring together of these aspects. The statistician avoids the jarring by recognising 

- and embracing - the uncertainties in such problems. Fairly recently, a whole liter

ature has sprung up to address the statistical issues that arise from using computer 

models to learn about physical systems. The work allows various levels of informa

tion and scientific understanding on different aspects of physical phenomenon to be 

joined together in a coherent and rigorous manner. The glue that is used to do so 

is 'uncertainty'. 

The Bayesian subjectivist view of probability interprets this uncertainty quite 

naturally in terms of the beliefs of the model builder who, although in some sense 

an expert, has various degrees of uncertainty about different aspects of the physical 

process being modelled. Uncertainty about the exact form of equations that govern 

physical dynamics induces uncertainty on the model output or 'prediction'. In other 

words, those 'phenomenal assumptions' are acknowledged, uncertainty purporting 

to them stated and the transfer of this uncertainty onto predictions of the future 

then tracked. Bayesian statistics provides a framework which allows an expert's 

beliefs and inherent uncertainty to be cobbled together in a cogent manner - and 

then updated as information becomes available. This is the starting point for our 

work. 

The chronology of thought is not captured altogether in the thesis and it is per

haps worth explaining at this point. The statistical work on computer models treats 

the model as a 'black box', sending different choices of input - often corresponding 

to obscure unphysical quantities - into the model, enabling a probabilistic picture 

to be built up of how changing inputs changes output. A desire to 'open up' the 

black box is what ultimately led to the idea of inclusion of derivatives of simulators 

as extra information which we could use to update beliefs and reduce uncertainty. 

Opening up the black box meant looking at the equations and the numerical solution 

method employed to solve them. Doing this, it becomes clear that the quantities 

that are treated by the numerical solution method as numbers can more naturally 

be thought of as functions of inputs. Then, for example, Taylor expansions of these 

functions could be carried through the solution method in much the same way as 

the numbers. The coefficients of a Taylor expansion of a function are, of course, the 
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derivatives of the function. 

Hence consideration of derivatives forms the basis of the original work in this 

thesis. From how to generate derivatives, how to estimate how much additional cost 

there will be in doing so, and how much extra information we can expect to gain 

by doing so. The aim is to demonstrate that anyone faced with a compartmental 

model of any complexity stands to benefit a great deal by performing an analysis of 

the type developed in this thesis. 

A compartmental model of plankton cycles is used throughout to illustrate and 

motivate the work. The model was chosen for two reasons. Firstly, the model is an 

example of a wide class of compartmental computer models whose general features 

we are interested in exploiting through development of the statistical methodology. 

Compartmental models are popular and widely applied to model systems, such as the 

one under consideration, for which fundamental equations, describing the underlying 

physical processes, are yet to be established. Such an approach generally leads 

to a system of equations containing a large number of poorly known parameters. 

Calibrating these parameters to physical data is far from easy, particularly when 

observations at several locations are required to be matched (Hemmings et al., 2003, 

2004). Secondly, building a generic model which captures the main features of annual 

plankton cycles at any location in the world ocean is a genuine physical problem 

that has long occupied those in the field of oceanography. The problem has received 

renewed attention recently in the context of climate change in which it is believed 

there is potential for significant climatic effects as a result of behaviour of the marine 

biota. Thus we chose the model in the belief that it would benefit from being set 

into a rigorous statistical framework such as the one we develop and, although our 

aim was not to solve the full problem in its entirety, we hoped to be able to offer 

some new insight of interest to those concerned with this specific physical problem. 

The structure of the thesis is thus as follows. In Chapter 2, we describe in 

detail the computer model and calibration problem which is used to demonstrate 

the methodology and which serves as a motivation for the work. 

Chapter 3 is a presentation of recent literature on Bayesian analysis of computer 

experiments which forms the theoretical starting point of our work. We detail the 
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Bayesian interpretation of computer models which views any such model as an un

known quantity about which we have beliefs, and in particular spend some time 

introducing 'Bayes Linear methods' as a natural way to describe these beliefs. 

In Chapter 4, we demonstrate a natural extension of the approach described 

in Chapter 3 which allows us easily to incorporate information from derivatives of 

output with respect to the model input parameters. The extension is a completely 

general one which allows us to include derivative information for a process whenever 

it is available. Having established this, we go on to show two things. Firstly that 

derivatives offer us 'more of the same', in terms of providing extra information which 

can be used to reduce uncertainty. We perform some theoretical calculations to get 

an idea of how much additional information derivatives can be expected to tell us in 

terms of this reduction of uncertainty. Secondly, we show that this extra information 

is of a slightly different type to that which is usually available which enables us to 

target information at covariance parameter estimation; an aspect of the current 

statistical methodology which up until now has proved to be problematic. 

In Chapter 5 we develop an efficient way to obtain derivatives for compartmental 

models which exploits the compartmental structure of such models. We also develop 

a heuristic for estimating the additional cost, in computing time, in generating 

derivative information for compartmental models, which we then test and discuss in 

light of the theoretical calculations of uncertainty reduction in Chapter 4. 

Chapter 6 is where we apply our adapted methodology to the physical prob

lem. The aims of the chapter are dual. Firstly, we are interested in the impact 

of derivative information on the process of building and refining of beliefs and we 

carefully compare situations with and without derivatives at various stages in order 

to understand the role of derivatives through this process. Secondly, we are inter

ested in building up a picture of the simulator as best we can in order to produce 

some useful insights into the physical problem, of interest to those concerned with 

the model itself. Hence we discuss several problem-specific issues and present some 

solutions to these issues. 

In Chapter 7, we calibrate the plankton model to physical data. Once again, our 

focus is two-fold. We are interested firstly in comparing analyses with and without 
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derivatives to assess the impact that derivatives have in the calibration process and, 

secondly, in the results of the calibration in relation to the physical problem. For 

the latter, we discuss the results in the light of previous analyses and show that they 

offer some interesting new insights. 

Finally, in Chapter 8, we conclude with a discussion of our results and the 

most promising areas for future work. Code to perform updating and implausibility 

calculations throughout the thesis was developed in R (R Development Core Team, 

2004) and is given in the Appendices. 



Chapter 2 

Calibrating the plankton cycle 

The aims of this chapter are threefold. Firstly, we introduce and discuss a real 

world model calibration problem which serves as a motivation for the work in the 

remainder of this thesis and gives context for the recent statistical theory, outlined 

in Chapter 3, into which the problem falls. Secondly, we point out the features 

of the physical problem and model which we wish to exploit to build on current 

methodology for this class of problems. Thirdly, we give exact details of the model 

equations and data. Some of the model details, such as the model equations, may be 

skipped over by the reader without any loss of comprehension of subsequent parts 

of the thesis and, wherever this is the case, it is stated. 

2.1 Motivating problem 

Building a generic model which captures the main features of annual plankton cycles 

at any location in the world ocean is a challenge that has long occupied those in the 

fields of oceanography and marine biology. The problem has received renewed atten

tion recently in the context of climate change in which it is believed there is potential 

for significant climatic effects as a result of behaviour of the marine biota. Typically 

the models considered are compartmental, in which each compartment represents an 

aggregated group of species assumed to be homogeneous. Compartmental models 

are popular and widely applied to model systems, such as the one under considera

tion, for which fundamental equations, describing the underlying physical processes, 

6 
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are yet to be established. Such an approach generally leads to a system of equations 

containing a large number of poorly known parameters. Calibrating these param

eters to physical data is far from easy, particularly when observations at several 

locations are required to be matched (Hemmings et al., 2003, 2004). 
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Figure 2.1: Map showing station locations, taken from Hemmings et al. (2004). The 

subset of stations marked in black is used throughout this chapter to illustrate a range of 

physical observations and location-specific simulator data. 

Figure 2.1 shows the locations of the thirty stations considered m Hemmings 

et al. (2004). The station numbering is consistent with Hemmings et al. (2004), 
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who forms the numbers by dividing the map into a grid and concatenating the two 

digit meridional and zonal position numbers in the grid. The four stations marked 

black are used as 'demonstration' stations throughout this chapter to illustrate a 

range of forcing data and physical observations specific to each location. 

Hence we have a physical system y(c/J, t) which depends on a spatial component, 

c/J, and a temporal component, t. As a representation of y, we have a computer 

model or simulator s1(x) = s(x, F~,t), where l indexes the spatial location c/J1, which 

is a function of an input vector x and a set of forcing functions Ft,t where the 

simulator output, s1(x), is in general a vector of outputs corresponding to different 

time points. In our case, the spatial element cjJ = ( cPx, c/Jy) is two dimensional with 

cPx denoting longitude and c/Jy denoting latitude. We consider a discrete number of 

locations, which we refer to as stations, and look for the simulator to reproduce 

the average variation in a given area about each station. In general, the act of 

spatial-averaging could induce a covariance structure across stations, although the 

resolution of forcing functions and physical data was considered to be high enough 

to ignore this effect here. 

Our interest is in calibrating x to physical data across a collection of stations 

under the assumption that the forcing functions resolve the variation at different 

locations and that x, which governs plankton dynamics, is spatially and temporally 

invariant. The problem is a real-world physical problem taken from a series of 

papers (Hemmings, 2000; Hemmings et al., 2003, 2004). Hemmings provided run 

code from Hemmings (2000) and the physical and forcing function data used in 

Hemmings et al. (2003, 2004). On several occasions, his advice was sought as an 

'expert' (in the Bayesian sense) and, as such, he is referred to as 'the expert' in the 

thesis wherever appropriate. As a disclaimer to this, it should be pointed out that 

the arrangement was only ever an informal one and any attributed specifications 

should be viewed with this in mind. 
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2.2 The model 

The model is a simple compartmental ecosystem model, taken from Hemmings 

(2000), which describes the evolution over time of three interacting populations 

• phytoplankton, P 

• zooplankton, Z 

• nutrient, N 

The concentration of each (in mmol Nm-3 ) in the top 'layer' of the ocean, known 

as the mixed layer (see Section 2.5.1), is modelled as a homogeneous compartment. 

The model is essentially one of nitrogen flow, each population representing nitrogen 

molecules in a different form. The model equations, set out in Section 2.3, cannot 

be solved in closed form and a numerical solver or computer simulator routine is 

required to obtain an approximate solution. Given suitable input data, the computer 

simulator solves the system of equations to produce time series output for the three 

populations over a period of one year. The computer simulator is deterministic so 

that, if we were to run the solver routine at the same collection of input data on the 

same computer, we would obtain identical output. A single run of the simulator, for 

a given choice of input data, typically takes a few seconds. 

Simulator input can be divided into three broad types. First there are the un

known input parameters, listed in Table 2.1, which appear on the functional rela

tionships which govern inter-compartmental flows, along with imports and exports 

from the system. Second, spatia-temporal forcing data must also be specified before 

the model can run. These data - described in detail in Section 2.5 - are taken 

to be known and comprise time series, appropriate to the physical location being 

considered, derived from a variety of sources: day length, T, is given by established 

theory, photo-synthetically available radiation, I 0(tD, t), from a combination of the

ory and physical observations of cloud cover and, finally, mixed layer depth, M, is 

given by empirical results of a general circulation model. The model assumes that 

there is no feedback from the system state to the forcing functions so that forcing 

function values are identical for different choices of the input parameters. This is 
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Figure 2.2: Schematic overview of the simulator. 

Simulator 

1\ 
Model Solver 

/\ 
Equations Input Data 

I \ 
Parameters Forcing Functions Initial Conditions 

justifiable for our model since any such feedback can be considered to take place 

over a much longer time scale than that considered for the purposes of this thesis. 

Finally, the simulator requires initial conditions to be specified for each population. 

In practice, these are unknown; however, here we treat them as fixed and run the 

simulator for a "spin up" period of one year after which time we consider the out

put to be effectively independent of these values. We take the fixed starting values 

P( -365) = 0.02, Z( -365) = 0.002, N( -365) = 1, used in Hemmings et al. (2004). 

Figure 2.2 gives an schematic overview of the different aspects of the simulator. 

Output at the four demonstration locations for the default input settings are 

shown in Figure 2.3. A noticeable feature of the output, apparent in Figure 2.3, 

is the 'spikiness' of the phytoplankton and zooplankton time series. The spikes, 

which correspond to sudden blooms of the populations, are a well-established phe

nomenon of plankton dynamics. For each station shown in Figure 2.3, blooms of 

the phytoplankton prey are always followed by blooms of the zooplankton predator. 

By contrast, the output for nutrient, N, has no spikes although it registers a sharp 

dip in the middle of the year. 
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Description Units L D u 
rfyp phytoplankton mortality rate d-1 0 0.05 0.3 

kN nutrient uptake half-saturation mmol N m-3 0.05 0.5 1 

constant 

Vp phytoplankton maximum growth rate d-1 0 1.5 4 

0: initial slope of P-I curve (lyd-1 )-1 d-1 0 0.05 0.2 

kp light attenuation coefficient for m2 (mmol N)-1 0 0.03 0.3 

phytoplankton 

(3 zooplankton assimilation efficiency 0 0.75 1 

J-L zooplankton excretion rate d-1 0 0.1 0.5 

rPz zooplankton mortality parameter (mmol N m-3 dt1 0 0.2 0.3 

g zooplankton maximum ingestion rate d-1 0 1 3 

kc zooplankton ingestion half-saturation mmol N m-3 0.05 1 3 

constant 

f export fraction of zooplankton faeces 0 0.33 1 

Nref sub-surface nutrient at reference depth mmol N m-3 3 9 15 

m cross-pycnocline mixing rate m d-1 0 0.2 1 

Table 2.1: Inputs with Expert's Lower Bound, L, Default Value, D, and Upper Bound, 

u. 

Figure 2.4 shows the model structure; in crude terms, phytoplankton feed on 

nutrient, zooplankton feed on phytoplankton and zooplankton faeces flow back as 

nitrogen into the nutrient pool. Exports from the system in the form of dead plank

ton and faeces from the phytoplankton flow from both P and Z to N and are then 

immediately exported from the system. The rate at which these processes take place 

is affected by the amount of sunlight, which affects the rate of phytoplankton growth, 

and the depth of the mixed layer, which kills both phytoplankton and zooplankton 

as it decreases. 

The arcs in Figure 2.4 correspond to 'flow functions' which determine the rate 

of flow to and from compartments. Each arc represents an additive part of the flow 

so that Figure 2.4 specifies the following system of equations which describe the 



2.2. The model 12 

Station 1015 Station 1113 Station 1116 Station 1215 

0 J 0 
ell 
19 6' 

<P 
<C ~ ~ 

rJ' fa rP 
0... ... Do 00 

0 
0 00 
oo JiM,._ 0 

0 0 0 
0 

N 00 0 0 
0 0 

~ 
_)~ _j~ \ 0 

<D 

~ 
"': 

0 2 0 ~ 
'b 

0 a 
0 

C1J 'b 
0 

N d 0 0 
0 0 
0 6' 

<Sl 

~ ~ 
0 

L ... 

:~ d 

0 

, I j 

~ 

~ n n 
0 
0 
0 

0 0 
0 0 

z </) 0 
0 

...: 0 § 
0 0 
0 0 
0 0 

<D 0 
0 

<'i 0 

0 

0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300 

Figure 2.3: Simulator output for the default input setting plotted against time (days) at 

the four demonstration stations. The first row corresponds to phytoplankton, P(t), the 

second row to zooplankton, Z(t), and the third row to nutrient, N(t). 

variation in P, Z and N over time, t. 

dP 

dt 
dZ 
dt 

dN 

dt 

The flow functions depend on P, Z and N and on the input data and, whilst 

the dependencies can be complex, they are specified by the model equations in 
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Figure 2.4: Schematic diagram of the simulator. 
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closed form. The model equations describing these explicit dependencies are given 

in Section 2.3. In general, we are interested in models of this type and the reader 

can skip through Section 2.3 without impeding their understanding of subsequent 

sections of the thesis. 

2.3 Equations for the PZN simulator 

The time-dependent relationships between the three populations, P, Z and N are 

described formally by the following state equations. All quantities which do not 

appear as inputs in Table 2.1 are time dependent unless stated otherwise. 

2.3.1 Phytoplankton 

The rate of change of phytoplankton, P, is given by the equation 

dP = PQ] _ Gp _ rpp? _ (m+ h+)P 
dt A1 

(2.1) 

where 

• The first term is primary nutrient production, corresponding to AN p in Figure 

2.4, and is a product of three factors: 

(i) Phytoplankton concentration, P. 

(ii) The nutrient limitation factor, 

N 
Q = Q(N) = kN + N' (2.2) 
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parameterised by the half saturation constant for nutrient, kN; the concentra

tion at which the growth rate of the nutrient population is half its maximum 

rate. 

(iii) The light-limited growth rate, J, determined by 

1 1T1M J(t, P) = - J(z, t, tD, P)dzdtD 
M o o 

(2.3) 

where tD is the time of day, 

]( P) 
_ Vpal(z, t, tD, P) 

Z, t, t D, - ---;::::::::;:;:===========:: 
JV) + a 2 I(z, t, tD, P) 2 

(2.4) 

is the light-limited growth rate at depth, z, and time, t, and 

I(z, t, tD, P) = Io(t, tD) exp{ -(kw+ kpP)z} (2.5) 

is the underwater light field where kw = 0.04 is the light attenuation coefficient 

for water, which we treat as known, and kp is the (unknown) light attenua

tion coefficient for phytoplankton. I 0 (t, tD) is a forcing function described in 

Section 2.5.2. 

• The second term in ( 2.1), G p, is the grazing rate of zooplankton on phytoplankton, 

corresponding to Apz in Figure 2.4 which is given by 

gZP 
GP = GP ( P, Z) = kc + P (2.6) 

and parameterised by the zoo plankton maximum ingestion rate, g, and the 

half saturation constant for zooplankton ingestion, k0 . 

• The final two terms in (2.1) are exports from the system, the sum of which 

corresponds to Ap in Figure 2.4. The first term models phytoplankton mortal

ity and is parameterised by the phytoplankton mortality rate cf;p. The second 

export term models the physical flux due to vertical mixing processes, and 

depends on the the rate of diffusive mixing across the mixed layer base, m, the 

mixed layer depth forcing function, !vi, and h+ = max(h, 0), where h = d~I. 
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2.3.2 Zooplankton 

The rate of change of zooplankton, Z, is given by 

(2.7) 

where 

o Gp is the grazing rate of zooplankton on phytoplankton given in (2.6) and (3 

is the assimilation efficiency from phytoplankton to zooplankton. 

o The remaining three terms form the zooplankton exports (Az in Figure 2.4), 

the first being parameterised by f-1, the zooplankton excretion rate; the second 

by c/Jz, the zooplankton mortality parameter; and the third representing the 

physical flux which takes the same form as that for phytoplankton in (2.3.1). 

2.3.3 Nutrient 

The rate of change of nutrient, N, is given by 

dN - m+ h+ dt = -PQJ + J-LZ + (1- t:)(l- (J)Gp + M max[Nsub(M)- N, 0] (2.8) 

where 

• E is the exported fraction of zooplankton faecal material. 

• Nsub(z) = Nrefln(bz + 1) is the subsurface nutrient concentration at depth z, 

parameterised by Nref, the nutrient concentration at reference depth ( e- 1) /b, 

where we fix this reference depth at lOOm by taking b = 0.017. This term 

corresponds to AN in Figure 2.4. 

2.4 Simulator input: invariant input parameters 

Table 2.1lists the set of invariant input parameters (referred to hereafter as 'inputs') 

collected in the model equations in Section 2.3. The value of each of the inputs is 

uncertain and this is reflected by the specification of lower and upper bounds for 

each by our expert, listed in Table 2.1. Zero lower bounds are strict because of the 
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requirement that parameters be non-negative whilst other bounds arise from a com

bination of previous informal data analysis experiments and knowledge of observable 

quantities which are considered to correlated with the inputs. Positive values outside 

of these ranges are considered by the expert to be "unphysical" although, because 

of deficiencies in the model and forcing data, relating the inputs to real-world quan

tities is ambiguous and so values outside the ranges which produce realistic output 

are also of interest. 

Note that, in general, it is desirable to extract as much information as the expert 

is confident to give about input values; for example, a 95% percentile would have 

been desirable had the expert been willing to specify one. The issue is that whilst 

in some sense it is desirable for the expert to give conservative bounds for input 

values, the clownside to this is that "unphysical" values of inputs may have high 

leverage in fitting the emulator because of their position on the extremities of the 

input space; in other words, we want to build as good as fit as possible on the 

range of interest rather than compromising to include values in which, ultimately, 

we are not interested. In addition, information about whether any depedencies exist 

between inputs is desirable but again generally (as in our case) difficult to elicit. 

2.5 Simulator input: physical forcing 

The model is driven by forcing functions, imposed at each location cp = ( cf>x, c/>y), 

and determined by external data in the form of time series of 

• Mixed Layer Depth (MLD), M[cf>x, c/>y, t]. 

• Photosynthetically Available Radiation directly below the sea-surface (PAR), 

Io[cf>x, c/>y, t]. 

• Day length, r(c/>y, t). 

Each of the three quantities is in general continuously dependent on location, c/>, 

and time, t. Our notation is used to to demonstrate whether the data available to 

us is discrete (MLD and PAR, shown with square brackets) or in continuous closed 

form (clay length, curly brackets). 



2.5. Simulator input: physical forcing 17 

The forcing values are taken to be known throughout this thesis, although this 

is clearly a simplification and, in general, forcing functions can themselves contain 

large amounts of uncertainty. 

2.5.1 Mixed Layer Depth 

The model describes plankton evolution in the Mixed Layer; the volume of water 

directly below the surface of the ocean outside of which it is assumed (by the model) 

that plankton is unable to survive. Formally, the Mixed Layer Depth (MLD) is 

defined in one of the following two ways: 

• Temperature Criterion The depth at which the temperature falls to 0.5°C 

below that at the sea surface. 

• Density Criterion The depth at which the density difference from the surface 

is 0.125 sigma units. 

The mixed layer time series in our model are based on the temperature criterion 

and are taken from the output of a climatologically forced ocean general circula

tion model ( J ia, 2000) corresponding to the final year of a 16 year integration of 

the coarse resolution ( 4/3°) version. Figure 2.5 plots the MLD series for the four 

demonstration locations. The minimum values of the MLD series at the four stations 

span the range 22m-30m and the maximum values 262m-550m. This compares to 

20m-30m for minima and 225m-801m for maxima over the thirty stations in Figure 

2.1. Comparing Figure 2.5 with the simulator output at the default input settings 

in Figure 2.3, we see that the stations with larger MLD levels tend to result in larger 

nutrient levels. 

The MLD series, J\1, is also used by the simulator in forming h+ = max(O, dM/dt) 

with the dl\1! / dt series formed by differencing values of 1\1!. 

2.5.2 Photosynthetically Available Radiation 

The Photosynthetically Available Radiation (PAR) available directly below the sea

surface, I0 (t, tv), is in general a function of the time since the start of the year, t, 
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Figure 2.5: Mixed layer depth (m) against time (days) at the four stations. 

and the time of day since sunrise, tD. For the purposes of integrating, the following 

product form is taken 

where 

fv(tv) ~ { 
4 t 

y2 D E [0, ~] 

PAR forcing for I 0 (t) was taken from SeaWiFS PAR Standard Mapped Image 

data of 8-day mean values for the year 1998 taken at a resolution of 9km. For each 

available time point, a value was computed for each station by averaging values 
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Figure 2.6: Photosynthetically Available Radiation against time (days) at the four sta-

tions. 

over a lOOkm radius about the station. Series at the four demonstration stations 

are shown in Figure 2.6. We see that, at each station, PAR rises to a peak in mid 

summer before falling again. 
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2.5.3 Day length 

Day length, r, as a function of latitude, cPy, and number of days since the start of 

the year, t, is given by (Brock, 1981) 

(
A, ) = arccos(-tanfJ(t)tancPy) 

T 'f'y, t 
27r 

(2.1) 

where 

( (
284+t)) {J ( t) = 0.40928 sin 27r 

365 
(2.2) 

is the angle between the sun and equator, in radians, at solar noon. Note that 

0.40928 rad = 23.45° is the angle between the earth's axis of rotation and the 

direction perpendicular to its orbit. 

2.6 System observations 

Past observations from the physical system at different locations are available which 

might be used to calibrate the unknown input parameters. The observations are 

those used in Hemmings et al. (2003) received in their final form after the process

ing described in this section had been carried out. 

For each valid station, we have: 

• A time series of chlorophyll a observations as an estimate of phytoplankton 

concentration at the corresponding time-points. 

• Climatological nitrate and mixed layer depth data used to produce an estimate 

of the winter-time nutrient concentration; i.e. this gives us a single value to 

calibrate against. 

2.6.1 Chlorophyll Data 

The data consists of time series of chlorophyll a observations for the year 1998, 

derived from satellite observations made by Sea WiFS Standard Mapped Image ocean 

colour data at a resolution of 9km (McClain et al., 1998). The ratio of chlorophyll 
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to phytoplankton is taken to be 1 mol N per g chlorophyll so that the quantities 

correspond exactly. 
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Figure 2. 7: 0 bserved chlorophyll (m mol m - 3 ) at the four locations recorded for 1998 

where t = 0 corresponds to midnight GMT on 31st December 1997. 

Time series for each of the thirty stations in Figure 2.1 were derived by averaging 

all valid pixels within a 100km radius of the corresponding station's position. Figure 

2. 7 shows the resulting series for the demonstration stations. In broad terms, we see 

a noticeable bloom in spring, with levels then either rapidly dropping again (as in 

Stations 1015 and 1215) or being maintained at elevated levels through the summer 

before a gradual decline in the autumn (as in stations 1113 and 1116). 
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The phytoplankton observation series contain various sources of measurement 

error and uncertainty which are difficult to quantify. In particular, the original 

chlorophyll series are the result of complex processing algorithms applied to the 

ocean colour data- itself, a combination of light wave signals from numerous sources 

- in order to extract the part of the signal corresponding to chlorophyll. Figure 2.8 

illustrates the complexity of the task at hand, showing the main sources known to 

contribute to the signal detected by the satellite sensor. Light which is scattered 

into the sensor by molecules and aerosols in the intervening atmosphere can be up 

to as much as 95% of the total signal so that errors in "atmosphere correction" 

algorithms, which seek to remove this signal, can lead to significant errors in the 

processed data sets (Cordon, 1993). The target of SeaWiFS is to estimate the 

phytoplankton concentrations to within ±35% of their true values, where validation 

is carried out by comparison with more accurate readings taken from cruises and 

bouys. The attraction of ocean colour data, compared to the more accurate in situ 

measurements, is the extensive spatial and temporal coverage offered so, although 

less accurate, much more data is available to calibate against. We can expect to 

reduce these errors through our averaging of pixels, although by how much is unclear 

since values at adjacent pixels are unlikely to be independent. 
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Figure 2.8: Optical interactions for Ocean Remote Sensing. Reproduced with permission 

from Andreas Neumann and Jill Schwarz. 
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2. 6.2 W inter time Nutrient data 

At twenty five of the stations, a single nutrient observation, Nw,s, is obtained by 

treating a climatological estimate of the winter time nitrate level as an observation 

on the winter time nutrient level. In general, the nutrient compartment, which 

accounts for nitrogen in dissolved form, is a combination of nitrate and ammonium. 

In winter, however, the concentration of ammonium is assumed to be negligible and 

the nitrate value can be taken as an estimate of Nw,s, the nutrient value at the 

corresponding t ime point. 

sow 70"W 60"W 50"W 40"W 30"W 20"W 10"W ow 

Figure 2.9: Estimated annual maximum nutrient concentration in the mixed layer (mmol 

m-3 ). Circles denote stations and additional crosses mark stations where nitrate estimates 

are available. 
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s 606 708 709 710 711 809 810 811 812 911 

Nw,s - 1.95 2.66 2.50 - 6.35 5.82 6.03 4.04 -

s 912 913 1013 1015 1113 1115 1116 1117 1214 1215 

Nw,s 8.42 6.16 10.63 13.77 15.12 15.85 14.68 15.23 16.5 16.03 

s 1216 1217 1218 1313 1318 1319 1320 1416 1419 1420 

Nw,s 15.1 14.51 13.32 - 14.26 13.64 13.06 - 12.44 13.32 

Table 2.2: Mid-winter nutrient observations, Nw,s at each station, s. 

Estimated annual maximum nitrate values were obtained by averaging clima

tological estimates of mixed layer depth over the period February-April and then 

interpolating annual vertical nitrate profiles to this depth. The vertical nitrate pro

files were taken from World Ocean Atlas 1 o analysed annual mean fields ( Conkright 

et al., 1998) and the mixed layer depth estimates from monthly data also on a P 

grid (Levitus, 1982). Locations with a winter-time mixed layer depth of less than 

lOOm were discarded because nitrate concentrations above this depth are known 

to exhibit strong seasonal variation. Estimates for each station were obtained by 

averaging the nitrate field over a 3 x 3 grid centered on the corresponding station 

location. 

Figure 2.9 shows the resulting annual nitrate maximum field with station loca

tions laid over. Five of the thirty stations- 606, 711, 911, 1313, 1416- were omitted 

because more than half the points in the 3 x 3 grid centered on these locations 

contained no observation. These omissions are denoted in Figure 2.9 by the absence 

of a cross inside the circle at these locations. The resulting values for stations are 

given in Table 2.2. 

As with the chlorophyll observations, the Nw,s contain errors from various sources, 

including in the original mixed layer and vertical nitrate profile data and in the in

terpolation of this data. We expect to reduce the combination of errors through the 

averaging, although by how much will again be difficult to quantify. 
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2. 7 Recap: General features of the problem 

To conclude the chapter, we note that in general we are interested in models formed 

from a series of linked compartments, the form of whose equations are known but 

contain unknown input parameters which we wish to calibrate using physical data. 

Although given in closed form, the equations are coupled and non-linear so that their 

solution is not obtainable analytically but only approximately using a numerical 

solver. This last consideration is the norm for almost all compartmental models of 

any practical relevance. For an investigation of uncertainty in linear compartmental 

models which relies on exact, closed form solutions of outputs in terms of inputs 

being obtainable, see Cooke and Kraan (2000a,b). 



Chapter 3 

Computer Simulators and 

Emulation 

The model and calibration problem outlined in Chapter 2 is essentially a statistical 

one. In this chapter we introduce and advocate a rigorous statistical approach 

to dealing with the uncertainties in problems of the type outlined in Chapter 2 

and describe relatively recent statistical methodology for doing so. Our standpoint 

remains Bayesian throughout as we believe this offers the only natural interpretation 

of various aspects of the problem. The final two sections introduce the Bayes Linear 

methodology which, whilst Bayesian in spirit, drops full distributional assumptions 

required for beliefs in a full Bayes analysis and replaces them with low order belief 

structures which we believe to be more appropriate to problems of this type. 

3.1 Computer Simulators 

In general, a computer simulator, s(-), for a physical system, y, takes some input, 

x, and produces output, s(x), as a representation of y. Access to such a simula

tor, together with historical observations from the system itself, gives rise to two 

immediate questions: "Which inputs produce outputs which closely match histor

ical data?" (Calibration) and "How can we combine historical data and simulator 

output to predict future system behaviour?" (Forecasting). There is a considerable 

literature in this area; see Sacks et al. (1989) and Currin et al. (1991) for an early re-

27 
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view and Bayesian interpretation. Bayesian approaches are outlined and developed 

in detail in Craig et al. (1997) and Kennedy and O'Hagan (2000) whilst Santner 

et al. (2003) provides a recent and comprehensive overview of the field. 

The need for such work is a result of the many difficulties associated with using 

such simulators for calibration and forecasting. Computer simulators are used to 

model complex physical systems. They offer the opportunity to perform experiments 

relating to systems for which direct physical experiments on the system are either 

impossible or prohibitively expensive. At the same, they also often encode much 

uncertainty from various sources, which we summarise below. 

3.1.1 Uncertainty on inputs 

Inputs to the simulator are unknown. Some inputs may relate directly to a phys

ical quantity which is measurable (with error), but often - as with many of the 

parameters in our model, summarised in Table 2.1 - they will be poorly known 

and immeasurable, often relating to unphysical, aggregated quantities. This is a 

typical feature of compartmental models. Calibration aims to find combinations of 

input parameters that give rise to simulator output which closely matches historical 

observations. This can be thought of in terms of learning about the value of the 

'true' input. The hypothesis that such a 'true' input exists (we adopt the term 'best 

input' for reasons which will become clear) raises several issues, primarily because 

the model is not an exact representation of reality, but rather there exists model 

discrepancy. 

3.1.2 Model discrepancy 

A computer simulator is a simplified representation of a physical system based on 

approximate science. For example, our model is a simplified form for which there 

are various more complicated models which themselves, although more accurate, 

are far from being exact (Hemmings et al., 2004). This means that, even if we 

were to remove all uncertainty relating to the inputs to the simulator, we would 

not expect the simulator to predict exactly the physical system. We will therefore 
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be interested in the 'discrepancy' between simulator and system, which we might 

define, for example, as the distance (in some metric) between the physical system 

and simulator at the best inputs. 

The assumption of a best input is reasonable if the simulator is a good represen

tation of the system and, from our point of view, it provides a device which allows 

us to link simulator and system together and proceed. The interested reader might 

consult Goldstein and Rougier (2004) for an in depth discussion of related issues. 

3.1.3 Observation error 

Observations from the physical system itself usually come with observation error. 

As is the case with the observations presented in Section 2.6, this uncertainty can 

be a combination of uncertainties from various sources and the error structure will 

often be complicated. 

y historical observations 

measurement error e 
y system 

discrepancy 

s(xo) best output 

simulator {s(x), X EX} Xo best input 

Figure 3.1: Conditional Independence Graph for the simulator, s(-), the best input, x 0 , 

the physical system, y, and observations of the system, y. Any two nodes are independent 

given the values of all their parent nodes. 
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Figure 3.1 shows a possible way to link the simulator to the system through 

these sources of error together using a Bayesian Graphical Model (see e.g. Cowell 

et al., 1999) and captures the essence of the problem: to use a simulator, s(·), and 

observations, y, to learn about a physical system, y. The implications of the exact 

form of the Graphical Model are discussed in general and for our physical problem 

at the start of Chapter 7. A Bayesian interpretation, which we keep to throughout 

this thesis, is natural because of the subjective nature of the various aspects of the 

problem outlined and the consequent difficulty in describing them 'classically'. In 

particular, the discrepancy term, which represents our beliefs about the difference 

between simulator and system from a Bayesian perspective, is irreducibly subjective 

in the sense that there is no experiment that we can do to learn about it. In addition, 

the simulator we consider is deterministic so that running the code at the same set 

of inputs always produces the same output. However, as it appears in Figure 3.1, 

the implicit assumption is that s(-) is in some sense random. Once again, this 

apparent contradiction can be dealt with naturally using a Bayesian argument since 

we can consider the simulator as 'unknown to us'. In particular, since we can only 

observe the simulator at a finite number of input points, we are uncertain about the 

simulator output values over most of the space of inputs. The implications of this 

fact leads us to highlight a further area of uncertainty. 

3.1.4 Simulator uncertainty 

Simulators often contain a large number of poorly known input parameters and can 

also be expensive, in CPU time, to run. When either condition applies, we can 

only hope to get a thin coverage of the input space by evaluating the simulator at 

different input choices. Moreover, the simulators are often complex so that the effect 

that changing inputs has on simulator output is far from transparent. For the model 

described in Chapter 2, although the run time takes only a few seconds, there are 

thirteen unknown input parameters so that even a very sparse 313 factorial design 

at a single station would require over a year of computing time (and we have thirty 

stations!) This leads onto uncertainty about the value of simulator output, which 

can be represented by building an emulator. 
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3.2 Emulators 

In cases when the simulator is such that only a thin coverage of the input space is 

possible, a popular approach has been to construct a surrogate for the simulator, 

termed an emulator, as a stochastic representation of our beliefs about the deter

ministic simulator. Early work based on this approach is reviewed in Sacks et al. 

(1989). A common approach to emulators is to write down a representation of the 

output, s(x), of the following form 

s(x) = Bg(x) + r(x) (3.1) 

In the presentation here for simplicity we consider s(x) to be univariate although 

the extension to multivariate forms is, in principle, straightforward. The first term 

in (3.1) describes the main global effects of the inputs, in which g(x) is a known 

vector of functions and B is a set of unknown coefficients. The second term, r( x), 

is a random process constituting a correlated error structure, which is taken to be 

uncorrelated with B. (In reality this is a simplifying assumption and B and r are 

correlated since s(x) is deterministic; it is justified by the fact that any contribu

tion from associated terms is small when variation accounted for by r is small and 

because, in any case, the dropped terms have little affect once we begin to make 

observations on s(x).) 

A very popular choice is to take r(x) to be a Gaussian process, which is char

acterised by the property that all finite dimensional probability densities are multi

variate Gaussian 

1 ( 1 ( T -l ) P-yJ, ... ,-yn(x) = (
2
n)'i(deO.::)! exp - 2(x- m x)) E (x- m(x)) (3.2) 

and is thus determined completely by its mean function, m(x) = E[r(x)J, and eo-

variance function, E, then x n matrix with elements Ei,j = Cov[r(xi), r(xj)]. We 

take E[r(x)] = 0 and E = 0"
2 R where 0"

2 is a variance parameter and R is an x n 

positive definite correlation matrix, ~.j = r(xi, Xj)· Typically, r(·, ·) is taken to 

be isotropic and stationary so that it is a function of the distance between points, 

r(xi,xj) = r(llxi- xjll), where r(O) = 1 and r(llxi- xJII) decreases monotonically 

to zero as llxi- Xjll -too. 
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Popular choices for R are (for x scalar): 

Power Exponential 

r(x, x') = exp ( -Bix - x'IP), 0 < p :::; 2 (3.3) 

Matern 

r(x, x') = r(v)
1
211_1 ( 2Mix- x'l) 

11 
I<v ( 2Mix- x'l) (3.4) 

where I<11 (x) is the modified Bessel function of the second kind, order v (see Ap

pendix F for more details). 

The parameter, e, which appears in the Power Exponential and Matern forms, is 

often referred to as a 'smoothness' parameter although, as is clear from the equations, 

it is in fact a scale parameter. The parameter, p, appearing in the Power Exponential 

form, is referred to as the 'shape' parameter, because of its effect on the shape of 

the correlation function. The parameter plays an important role in determining 

smoothness of solutions, since p = 2 yields infinitely differentiable realisations (in 

the mean-square - see Section 4.1 for more details) whilst p < 2 corresponds to 

realisations which are non-differentiable. In this thesis, our interest shall be in 

differentiable processes only and we restrict attention to the case p = 2. For the 

Matern family, v might also be more accurately described as a smoothness parameter 

than e, determining the differentiability of the process: realisations are almost surely 

continuously differentiable with order ([v]- 1) where [v] is the smallest integer that 

is greater than or equal to v (sometimes referred to as the integer ceiling of v). 

A popular and widely-used special case of both families- corresponding to taking 

p = 2 in the Power Exponential class, and taking the limit as v ---+ oo in the Matern 

class (see Appendix F) - is the Gaussian correlation function (given for multivariate 

x) 
R(x, x') = exp-(x-x')Te(x-x')' 8 = diag(el' ... , ep) (3.5) 

Figure 3.2 shows realisations from the Matern and Gaussian families for varying 

parameter values. From the Figure, we see why e is often- misleadingly, from our 

point of view - referred to as a smoothness parameter. We see that, as we increase 
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Figure 3.2: Realisations from a Gaussian process with Matern Correlation function, 

Rv,e(x) , shown for different v and (} values. The final row shows Rv,e(h) with (} fixed 

at the corresponding column value and varying v = 1 (black), v = 4 (red), v = oo (green). 

() (move from left to right in the Figure) , realisations become more wiggly, with an 

increasing number of turning points. The effect is purely one of scaling, however, 

with us effectively stretching the realisations sideways as we decrease 0. Comparing 

plots in the final row we see that , as we increase () , correlations between pairs of 

points decrease. Increasing v (moving from top to bottom in the Figure) , we increase 

the differentiability of the realisations. This is most in evidence for v = 1 (top row) 

where we see that realisations are not differentiable no matter how 'smooth' the value 
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of e. Moving from the second to third row takes us from third order differentiability 

to infinite differentiability (corresponding to the Gaussian case), although it is hard 

to see much difference by eye. One of main differences in the correlation functions 

(bottom row) is visible at h = 0. For v = 1 (black), it is clear that the correlation 

function is not differentiable at h = 0. In Chapter 4, where we discuss more closely 

differentiability of random processes, we see that the conditions of differentiability 

we develop do not hold anywhere if they do not hold at the origin. Again it is 

difficult to see much difference between v = 4 and v = oo although the former is 

four times differentiable at the origin and the latter infinitely differentiable. 

The Power Exponential and Matern families have natural product form general

isations, for multivariate x = (x 1 , ... , xp), given by r(x) = f1f=1 r(xi), where we are 

free to take as few or as many of the parameters to be indexed by i. Although the 

families describe within them a collection of covariance functions with a wide range 

of different behaviours, they are by no means the only possibilities; see Schlather 

(1999) for many more. 

A possible extension to the model arises when there exists a subset x* of x, termed 

the "active inputs", which are responsible for most of the systematic variation in 

s(x). When this is the case, as in Craig et al. (1997), we take g(x) = g(x*) to depend 

only on active inputs. Furthermore, we split r(x) further so that 

r(x) = E(x*) + c5(x \ x*) (3.6) 

In this representation, the E-surface is a correlated error structure describing vari

ation explained by active inputs but not picked up by the global effects, and the 

c5-surface, taken to be uncorrelated with the E-surface, describes any variation ex

plained by the set of remaining (non-active) inputs x \ x*. The advantages in this 

representation arise when we believe that the c5-surface, which captures variation in 

non-active inputs, has variance, CTJ, which is small. We discuss these advantages in 

Chapter 4. 
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3.3 Bayesian approach 

A Bayesian approach lends itself well to the problem of building and refining an 

emulator for a simulator. From a Bayesian perspective, the emulator is interpreted 

as a representation of our beliefs about the relationships between inputs and outputs 

in the simulator. Starting with prior beliefs we can then update these beliefs as we 

observe simulator output at different input choices. Not only is this updating process 

very natural, but also our ability to build in any prior information we have about 

the simulator is potentially very useful, given that we can only expect to obtain a 

thin coverage of the input space. 

Bayesian approaches, such as those in Currin et al. (1991) and Kennedy and 

O'Hagan (2001a,b), have also relied heavily on Gaussian processes for tractability. 

Assuming a Gaussian process prior fors(·), 

s(·) rv N (m(·), v(·, ·)), (3.7) 

the posterior distribution for s(· ), conditioned on the set S = (s(XI), ... , s(Xn)) 

of observed function values (assuming for the time being that m(·) and v ( ·, ·) are 

known), is also a Gaussian process 

where 

s(·) IS rv N (ms(·), vs(·,·)) 

ms(x) 

vs(x, x') 

m(x) + c;v-I(S- M) 

v(x, x')- c;v-Icx' 

v(x, XI) m(XI)T 

Cx = M= 

v(x, Xn) m(Xnf 

v(XI,XI) v(XI,Xn) 

V= 

v(Xn, XI) v(Xn,Xn) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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In general, m(-) and v( ·, ·) are unknown, and in this case the approach has typically 

been to specify their form through a collection of hyper-parameters on which (3. 7) 

is conditional and then set up a hierarchical model. For example, O'Hagan (1992) 

treats (3. 7) as the first conditional factor in the following hierarchical model 

where j] and a 2 are hyper-parameters corresponding to 

E[s(x)l/3, a 2
] 

Cov[s(x), s(x')l/3, a 2
] 

g(xfj] 

(3.13) 

(3.14) 

(3.15) 

The vector g(x)T = (g1 (x), ... , 9q(x)) is a q-vector of known regressor functions 

and M= Gf] in (3.9) with er= (g(X1), ... , g(Xn)). Prior Normal and Inverse-x2 

distributions are attached to j] and a 2 respectively 

2 -2 
(J rv SoXao . 

where the latter is characterised by 

This yields posterior distribution for f], 

where 

and posterior for a 2
, 

b 

B 

B- 1(Bobo + GTV- 1S), 

B0 + crv- 1G 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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where 

a a0 + n- q, 

s So+ sr (v- 1 - v-1G(GTV- 1G)- 1GTV- 1) S. 
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(3. 23) 

(3.24) 

In general, further hyper-parameters will be introduced into (3.13) through spec

ification of the correlation function r(x, x'). Kennedy and O'Hagan (2001a,b) con

sider the Gaussian and Matern correlation functions and note that integrating out 

these hyper-parameters is only possible numerically using computationally inten

sive high-dimensional quadrature. Acknowledging that much of their subsequent 

methodology is computationally intensive, they conclude that a full Bayes analysis 

of these hyper-parameters will often not be possible and opt to 'derive plausible 

estimates of these parameters and then to act as if they were fixed'. Currin et al. 

(1991) use computationally demanding maximum likelihood methods to estimate 

hyper-parameters, but discover a further problem - that often there is not enough 

information in the data to distinguish between competing values of (a, 8) in the 

Gaussian covariance function. For a good discussion of the problems of maximum 

likelihood for estimating these parameters, see Ripley (1988). Estimating these 

parameters is something we will return to in Chapter 4. 

3.4 Partial Beliefs: Bayes Linear Methods 

Bayesian methodology provides a mathematically rigorous and philosophically sound 

framework to deal with the subjective aspects inherent in real-world situations in

volving uncertainty. However, in almost all practical situations, it is beset by two 

main problems. Firstly, although probability distributions are a natural medium 

for representing quantities of uncertainty, they do not necessarily transfer to the 

representation of an individual's subjective beliefs. In particular, individuals can 

rarely justify distributional assumptions for their beliefs (to see this, consider a 

single, scalar quantity and consider your beliefs about each of its moments). The 

parametric families employed will be chosen for convenience and, although in simple 

situations they may represent a good approximation to actual beliefs, in more com

plicated situations, results can potentially be sensitive to specifications which are 
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not strongly held. The second issue is computational: as we saw in Section 3.3, pos

terior distributions are often not available in closed form and the methodology must 

either be compromised or computationally-intensive numerical integration methods 

employed, in turn limiting the scale of problems that can be dealt with. 

Motivated by these two issues, the Bayes Linear methodology aims to enable 

rigorous statement and updating of partial belief specifications within a framework 

which also does not fall prey to the same computational pitfalls of a full Bayes 

analysis. In doing this, it effectively kills two birds with one stone: removing full 

distributional assumptions whose connection to actual beliefs is tenuous at best and, 

in doing so, throwing off the computational millstone attached to analysing these 

'beliefs'. 

The Bayes Linear approach treats expectation, rather than probability, as a 

primitive for expressing our beliefs about random quantities (See de Finetti (1974) 

for a careful treatment of expectation as a primitive and Goldstein (1999) for a survey 

of the Bayes Linear approach). In particular, for a collection, C = (C1, C2 , ... ), of 

random quantities, we specify directly: 

1. the expectation, E[C], for each element C in C 

2. the variance, Var[C], for each element C in C 

3. the covariance, Cov[C, C'], for each pair of elements (C, C') in C 

Formally, we define the Belief Structure, [C], for C to be the inner product space 

formed from: 

1. the space of linear finite combinations of the elements of C and the unit con

stant C0 , together with: 

2. the inner product ( ·, ·) and norm 11 · 11 for C, C' E C defined by 

(C,C') 

IICII 2 

Cov[C, C'] 

Var[C] 

(3.25) 

(3.26) 

To complete the definition, we define the inner product space over the closure 

of the equivalence classes of random quantities which differ by a constant. This 
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enables us to standardise each quantity by subtracting its prior expectation so that, 

in particular, all constant terms become equivalent to zero and 11 C 11 = 0 if and only 

if C = 0 as required. 

Suppose we observe data, V= (D1 , ... , D 8 ), and let B = C\V be the collection of 

remaining unobserved quantities in C about which we wish to revise our beliefs given 

the data. Then the adjusted expectation of B given V is the element Ev[B] E [V] that 

minimises IIB-Ev[BJII· In other words, Ev[BJ, for BE B, is the linear combination 

of the data (including constant term D0 ), Ev[B] = ""L;=o cjDj, which minimises 

s 

L = IlB- I: CjDjll (3.27) 
j=O 

over the space of possible c. 

Squaring both sides of (3.27), differentiating with respect to components of c, 

equating to zero and solving the resulting matrix equations, we obtain 

ED[B] = E[B] + Cov[B, D]Var[Dr 1(D- E[D]) (3.28) 

From (3.28) we see that the rule has several intuitively appealing properties. 

Firstly, we note that E8 [B] = B but also that the influence of the data in the ad

justment is larger the larger the prior correlation between B and D, the smaller the 

prior data variance, Var[D], and the greater the distance between the prior expec

tation, E[ DJ, and the observed value D. 

Geometrically, Ev[B] is the orthogonal projection of B onto [V]. The adjusted 

variance of B given V is the squared orthogonal distance from B to V, given by 

VarD[B] IlB- ED[BJII 2 

Var[B] - Cov[B, D]Var[Dr 1Cov[D, B] (3.29) 

Eqn. (3.29) offers intuitive properties in that the greater the prior correlation 

between B and D, the greater the amount of variance reduced by observing D. 

Similarly, the covariance of B and B' adjusted by D is given by 

CovD[B, B'J E[(B- ED[B])(B'- ED[B'])J 

Cov[B, B']- Cov[B, D]Var[Dr 1Cov[D, B'] (3.30) 
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It is worth noting that (3.28) and (3.29) correspond to (3.9) and (3.10), the con

ditional mean and variance obtained in the full Bayes analysis based on a Gaussian 

Process with known mean and covariance function. 

3.5 Bayes Linear emulators 

We follow the approach of Craig et al. (2001, 1996, 1997, 1998) in only requiring 

second order beliefs to be specified and then using Bayes Linear methods to update 

these beliefs. In general B denotes a vector of quantities about which we have beliefs 

and D an observed data vector related in some way (as defined by its covariance 

structure) to B. For our purposes, B is replaced by the simulator, s(x), and D by 

S = s(X), the set of simulator output observed at X = (X1 , ... , Xn)· 

Our reasons for adopting the Bayes Linear approach in this thesis are the two 

given at the beginning of Section 3.4: firstly, the simulators we are concerned with are 

highly complex and consequently very difficult to elicit full belief structures for and, 

secondly, the approach allows certain largely intractable calculations to be performed 

without the computationally intensive methods required in a full Bayes analysis. 

Furthermore, in the next chapter, where we consider extending the methodology 

to allow for observation of derivatives, deriving the required joint distributions in 

a full Bayes analysis further compounds the heavy reliance on a Gaussian process 

framework for tractability. 



Chapter 4 

Adjusting emulators based on 

derivatives 

In this chapter, we consider the situation in which derivatives of the simulator are 

available and show that the methodology described in Chapter 3 can be extended 

quite naturally to allow for inclusion of such derivatives. We begin with some nec

essary background on random processes and their derivatives, before developing the 

extensions to the methodology in Chapter 3, which allow us to update beliefs about 

the simulator based on derivatives when they are available. Finally, we perform 

some theoretical calculations to get an idea about how much extra information we 

can hope to gain from including derivatives. 

4.1 Random Processes and derivatives 

In this section, we summarise some basic ideas concerning random processes and, 

in particular, those concepts related to the differentiation of such processes. The 

discussion is based on Yaglom (1986), where more details can be found. 

Let Y ( x), x scalar, be a random process on probability space x. Then Y ( x) is a 

random process of second order if the expectation m(x) = E[Y(x)] and cova.riance 

C(x, x') = Cov[Y(x), Y(x')] exist. A process Y(x) is said to be mean-squared dif

ferentiable at x = a if there exists a random variable y(l) (a) with E[Y(l) (a)] < oo 

41 
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such that 

1. E IY(a +h)- Y(a) y(I)( )1
2 

0 1m h - a = 
h-+0 

The process y(l) (x) exists on an interval, I, if and only if the derivatives 

dm(x) oC(x, x') 

dx ' ox 

oC(x, x') 

ox' 
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( 4.1) 

( 4.2) 

exist on I. When this is the case, the quantities in (4.2) correspond to E[Y(ll(x)], 

Cov[Y(l), Y] and Cov[Y, y(ll] respectively. 

Higher order derivatives can then be defined by a simple inductive argument so 

that, for example, y(z) (x) is the mean squared derivative of y(l) (x) and so on. This 

leads to analogous conditions that a process Y ( x) has nth mean square derivative if 

and only if the derivatives 

di 
-d .m(x), 
x~ 

exist for all i, j :::; n. Moreover, when this is the case, 

d 
-d m(x) 
x~ 

(4.3) 

oi+j 

0 0 
. C(x, x') 

x~ x'J 
Cov[Y(i)(x), yUl(x')] (4.4) 

It is similarly straightforward to generalise the ideas of mean square differentia

bility to multivariate x. 

Before we proceed any further, let us first stop and examine the definition of 

mean-square differentiability given in ( 4.1). Note that the mean-square differen

tiability of the process Y(x) for all x does not mean that all realisations y(x) of 

this process will be differentiable. Rather the requirement is that, for a given x, 

the probability that the process is non-differentiable in the interval [x, x + h], for 

h small, is very low so that the mean square of y(l) - Y(x+htY(x) is also small. In 

fact, the realisation y'(x) of the derivative Y'(x) of a differentiable process Y(x) 

may be a discontinuous function of x. On the other hand, the process Y(x) may 

also be non-differentiable when all its realisations y ( x) have continuous realisations 

y'(x) (Yaglom, 1986, provides examples of both). 
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In practice, however, this turns out to be something of a technicality and, for 

those differentiable stationary processes suitable for practical situations, realisations 

y(x) turn out to be differentiable and the functions y'(x) coincide with the realisa

tions of the process Y' ( x). This is the case for the Mat ern correlation function for 

which, as we remarked in Chapter 3, derivatives of realisations of a process with 

smoothness parameter v are differentiable to order [v]- 1. It also true for the Gaus

sian correlation function (to see this, recall that the Gaussian is simply the limit of 

the Matern as v -----+ oo ). The coincidence of derivatives and realisations is a crucial 

one for our needs in the next section, where we will be concerned with updating 

beliefs about a process based on derivatives realised from that process. 

4.2 Beliefs about Derivatives 

Specifying an emulator for a function induces an emulator for the derivatives of 

the function. In this section, we derive the covariances between a function and 

its derivatives and discuss how we might exploit these implications to improve our 

specification and refinement of the emulator. 

For a univariate process, s(x), with covariance function, v(x, x'), the order of 

integration and differentiation can be swapped provided the indicated derivatives 

exist so that, for example, 

Cov [ams(x)jox~, ans(x')/BxT] = am+nv(x,x')jaxr;oxjn. (4.5) 

Recall the emulator model specified by (3.1) and (3.6) 

s(x) = Bg(x*) + t:(x*) + o(x \ x*). (4.6) 

If Xi and x1 belong to the set, x*, of active inputs, then provided g( x) is differentiable, 

we have 

v(x, x') 

Bv(x, x')joxi 

B2v(x, x') 1 axioxj 

g(xfVar[B]g(x') + Cov[t:(x), t:(x')J + Cov[b(x), o(x')J 

8g(x)/8xiVar[B]g(x') + 8j8xiCov[t:(x), t:(x')J (4.7) 

8g(x)j8xiVar[B]8g(x')/8xj + 8 2 j8xi8xjCov[t:(x), t:(x')] 
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If either xi or Xj does not belong to x*, but rather is inactive, then differentiating 

( 4.6) yields 

ov(x, x')loxi = oloxiCov[6(x), 6(x')] 

82v(x, x')loxioxj = 82 loxioxjCov[6(x), 6(x')] 

For the t:-surface, the Gaussian covariance kernel, given for multivariate x by 

(4.8) 

Cov[t:(x), t:(x')] = exp-(x-xYe(x-x'l, 8 = diag(81 , .. . ,ep), ei > 0, (4.9) 

is infinitely differentiable and so the interchange of order of differentiation and inte

gration is allowed. Differentiating ( 4.9) and making the interchange of order explicit, 

we obtain 

Cov[ot:(x)loxi, t:(x')] = -28i(xi- x~)Cov[t:(x), t:(x')] 

Cov[ot:(x)loxi, ot:(x')lox~] = 28i (l(i=j)- 28j(xi- x~)(xj- xj)) Cov[t:(x), t:(x')] 

(4.10) 

where 1(i=j) = 1 if i = j and zero otherwise. An immediate consequence of the 

equations in ( 4.10) is the following three equations: 

Cov[ot:(x)loxi, t:(x)] 

Cov[Ot:(x) I oxi) ot:(x) I OXj l 

Var [ ot:( X) I oxi] 

0 

0 fori =I j 

(4.11) 

( 4.12) 

(4.13) 

There are a couple of interesting points to note from this second set of equations. 

Firstly, we see from (4.11) and (4.12) that, at any given point, the separate pieces 

of information given by the function value and each of the first order derivatives 

are all orthogonal to each other in terms of what they tell us about the function at 

that point. Secondly, we see from ( 4.13) that the variability of the derivative with 

respect to xi is related linearly to ei. This suggests that derivatives may be useful 

in estimating 8, something we will return to in Section 4.5. The top left hand 

panel in Figure 4.1 plots the covariance between function values and derivatives 

derived in ( 4.10) for x scalar. We see the effect of the multiplicative distance term, 

which appears in the expression for Cov[t:(x), dt:(x')ldx'], is that the covariance 

between t:(x) and a derivative observation, dt:(x') I dx', does not decrease as quickly 
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Figure 4.1: (Top left) Covariance between function values and derivatives for the Gaus

sian COVarianCe kernel in One dimenSiOn With hyper-parameterS aE = 1, e = 1.5 plot

ted against the distance between observations, h = llx - x'll· The thick lines shows 

Cov[t:(x), t:(x')], the dashed line shows Cov[t:(x), dt:(x')jdx'] and the dotted line shows 

Cov[dt:(x)jdx, dt:(x')jdx']. The top right and bottom left plots show the constraining 

effects of function values and additionally with derivatives respectively. 

ash= llx-x'll increases. We also see there are two turning points for the derivative 

covariance, which we can show are at hi = ±y'3!1f;, at which the correlation function 

attains its highest negative value. We can easily generate expressions for covariances 

of higher order derivatives should we wish. In Appendix G we present a simple way 
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to do this for the Gaussian covariance kernel. 

Note that in ( 4. 9), 8 can be generalised to be any positive definite matrix so that 

its off-diagonal terms are not necessarily zero. Taking 8 to be diagonal tends to be 

the method of choice, however, and is convenient because it admits a product form 

for the covariance function. (O'Hagan, 1998, shows the diagonal form corresponds 

to a Markov-type assumption on E(x)). 

Modelling the 6-surface in ( 4.6) similarly with a correlated covariance structure 

would enable us to include derivatives of non-active inputs in an identical fashion. 

However, we choose to take the following structure 

{

a 2 for x = x' 
Cov[6(x), 6(x')] = li ' 

0 for x #- x'. 
(4.14) 

Eqn. ( 4.14) represents a combination of two simplifying assumptions for the 6-

surface part of our emulator model. Firstly, we assume that any runs we make 

on the simulator are sufficiently far apart in the space of non-active inputs for 

the 6 residuals of any fit to be effectively uncorrelated. Secondly, we reduce the 

dimensionality of s(x) by considering it as a function only of active inputs so we 

treat the variance of the 6-surface, ag, as the loss in precision attributable to the 

dimension reduction, being the irreducible lower bound on our uncertainty at any 

given x*. An immediate consequence of the latter is that we evaluate our emulator 

beliefs, s ( x), over a grid of dimension dim( x*) rather than dim( x) leading to a 

large reduction in the computational burden of required calculations, enabling us to 

obtain a reasonable coverage of the space provided the number of active variables 

is small. The price we pay for these large computational savings is that derivatives 

with respect to inactive inputs can not be included in our updating since s(x) is not 

differentiable with respect to these arguments. However, this will be a price worth 

paying if our assumption that ag is small holds true, since then the simulator will 

be fiat in the inactive input dimensions and, since any offset from zero will have 

been absorbed by the systematic part of the model, these derivatives will not be 

informative. 
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4.3 Discussion 

In a Bayesian context, the emulator is interpreted as a representation of our beliefs 

about the relationships between inputs and outputs. Since ( 4. 7) specifies joint beliefs 

about derivatives and function values, we can exploit this underlying covariance 

structure and make use of observations of derivatives using the Bayes Linear formulae 

derived in Chapter 3: 

ED[B] =E[B] + Cov[B, D]Var[Dr 1(D- E[D]) 

VarD[B] =Var[B]- Cov[B, D]Var[Dr 1Cov[D, B] 
(4.15) 

Since we are interested in the effects of observing derivatives, we define the 

operator \7 X = (a I axl) ... ) a I axp) which, when applied to a quantity, returns the 

partial derivatives of that quantity with respect to components of the vector x = 

(x1 , ... ,xp)· Hence, VxS is the collection of first order derivatives of s(x) at X= 

(X1 , ... , Xn)· In particular, we will compare updating based on (4.15) for the cases 

D = Sand D = (S, \7 x• S) where, for the latter, we update based only on derivatives 

with respect to variables in the set of active inputs, x*, because it is these derivatives 

which we expect to be most informative and doing so allows us to make simplifying 

assumptions in our treatment of the 6-surface, discussed in section 6.3, which reduce 

computational burdens. 

We do not know of any systematic application of functional derivatives for 

Bayesian emulation in the literature, although the potential to incorporate deriva

tive information was pointed out, in principle, by O'Hagan (1992) who considered 

first derivatives of Gaussian processes in the context of numerical analysis. Theo

retical considerations relating to design, also when first derivatives are available, are 

tackled in Mitchell et al. (1993, 1994), who derive asymptotic results in the case that 

intersite correlations become progressively weaker. Santner et al. (2003, p. 107) also 

give a simple example to demonstrate the potential in which derivative information 

is shown to lead to an improved predictive performance of the emulator. 

Specifying beliefs about a function induces beliefs about the derivatives of that 

function. In practice, for the inclusion of derivative information to be worthwhile, 

we need an efficient and relatively inexpensive method for generating derivatives. 



4.4. Theoretical calculations of resolved variance 48 

In Chapter 5, we introduce a cheap and accurate method for obtaining derivatives 

for compartmental simulators, such as that introduced in Chapter 2. However, even 

in situations where observations on derivatives are not available, it may well be 

insightful to derive the belief representations (4.7), (4.10) and to reflect on whether 

they are in agreement with those prior beliefs that are actually held. 

As we remarked in Chapter 3, in the important special case that the prior is 

a Ga.ussian Process with known mean and covariance function, (3.28) and (3.30) 

correspond to the conditional mean and variance obtained in the full Bayes analysis. 

This is also true in the case that D contains derivatives because a function which 

is normally distributed has a joint normal distribution with its derivatives (see e.g. 

O'Hagan, 1978). However, whilst the full distributional treatment of derivatives, 

required in a full Bayes analysis, has only been demonstrated to be tractable within 

the Gaussian process framework, a Bayes Linear analysis remains tractable without 

any such restriction, requiring only that the covariance function is differentiable to 

the required order. 

A final remark is that it is prudent to be wary of the dangers of misspecification of 

the variance function for s( ·). Seemingly similar covariance functions can often give 

rise to quite different inferences based on simulator evaluations and we would expect 

this to even more the case when derivative information is included in the analysis 

since its inclusion amounts to an increased reliance on the model assumptions, on 

one level at least. Whilst squeezing more from the model assumptions is desirable, 

this should of course be tempered by placing emphasis on precautionary diagnostics. 

4.4 Theoretical calculations of resolved variance 

In this section, we consider a process with Gaussian covariance function and compare 

variance resolved by observing a function value with that resolved by observing the 

function value and the collection of first-order derivatives of the function. We then 

consider a collection of design points and derive a result for the trade-off between 

function values and derivatives - in terms of resolved variance - when the design 

points are effectively independent. We relate bounds on the 8 covariance parameter 



4.4. Theoretical calculations of resolved variance 49 

to bounds on the validity of the independence approximations. Finally, we conclude 

with a discussion of our results and possible extensions. 

4.4.1 Variance resolved by a single input point 

Suppose we have a set D = (D1 , ... , Dn) of observations on aspects of a process 

~:(x) at a set of n design points X = (X1, ... , Xn). Then the Resolved Variance 

RVarD[t::(x)] of ~:(x) by D is 

RVarD[t::(x)] Var[~:(x)]- VarD[~:(x)] 

Cov[~:(x), D]Var[Dt 1Cov[D, ~:(x)] ( 4.16) 

where VarD[~:(x)] is the variance of t::(x) adjusted by D, defined in (3.29). 

Recall the relevant expressions for the Gaussian covariance kernel, given in (4.10), 

Cov[t(x), t::(x')] 

Cov[8~:(x)j8xi, t::(x')] 

Cov[8~:(x)j8xi, 8~:(x')/8x~] 

( 4.17) 

(4.18) 

2Bi (l(i=J)- 2Bj(xi- x~)(xJ- xj)) Cov[~:(x), t::(x')] 

(4.19) 

where 1i=J = 1 if i = j and zero otherwise. Suppose we observe S = t::(O), the 

function value at the origin. Then substituting for ( 4.17) into ( 4.16), we find 

( 4.20) 

Now suppose instead that we observe V' xS = (a;~~), ... , a;~~)), the set of p first 

order derivatives of ~:(x), again at the origin. Then we see from (4.17- 4.19) that 

Var[V' xS] = 280'; which is easily invertible since 8 is diagonal. Hence, plugging 

this into (4.16) together with the covariance terms, Cov[~:(x), Y'xSJ,- given in (4.18) 

- the resolved variance is found to be 

(4.21) 

Recalling our remarks in light of ( 4.11), that the function value and derivatives are 

orthogonal at any given point, we have 

RVar(s, 'V xS) [ t::( X) l RVars[t::(x)] + RVar'Vxs[t::(x)] ( 4.22) 

( 4.23) 
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Now suppose x ~ x with dim(x) = p ::::; p and reorder the components of x so that 

x = ( x 1 , ... Xp). Then the analogous expression for V x S to ( 4. 23) is 

( 4.24) 

where 8 = diag(B1, ... , Bp)· From (4.20- 4.24) we see that, as we would expect, 

we resolve more variance the more derivative information we include; the question 

is how much more? Specifically, we are interested in the trade-off between deriva

tive information and function information. This is relevant because, in the case 

of a computer simulator, the code will take longer to run if it computes derivative 

information as well as function information; hence knowing how much including 

derivatives allows us to decrease the number of input points, whilst still maintaining 

the same level of variance reduction, tells us how high the computational overhead 

of computing derivatives can be and it be worth our while to compute them. 

Clearly, "how much we learn" has yet to be defined. For the purposes of this 

work, we consider the Integrated Resolved Variance for D 

IRVarD = J RVarD[E(x)]dx 
X 

( 4.25) 

which is simply the variance resolved by D, integrated over the p-dimensional 

bounded design space x = [-1, 1]P. The quantity is analogous to the Integrated 

Mean Squared Error of Sacks et al. (1989) and the integral of the posterior variance 

in the Full Bayes approach of O'Hagan (1992); both authors developing designs 

based on minimising its value. 

Setting a; = 1, without loss of generality, we see from ( 4.20) that 

p 11 IRVars = IJ exp- 20;x; dxi 
i=l - 1 

( 4.26) 

Integrating ( 4. 23), 

IRVar(s, 'lxS) = IRVars + IRVarv'"s ( 4.27) 
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so that the extra information gleaned from j5 derivatives is given by 

IRVarv;;s = 21 iT Si exp- 2xrex dx 

fJ p J dx L 2eix; IT exp - 2eixJ 
X i=l j=l 

( 4.28) 

For each term in the sum, we have a product of p - 1 integrals identical to those 

in the product for IRVar5 in ( 4.26), corresponding to the cases i =J. j, and a final 

integration corresponding to the case i = j for which we can use integration by 

Parts. Letting u = x and v' = x e-2B;xr we have u' = 1 and v = _ _l_e- 28;x; and so 
l l ' 48; 

1
1 

x?e- 21i;x~ dxi = -~e-21i; + -1-11 

e-21i;x~ dxi 
-1 4ei 4ei -1 

( 4.29) 

The integral term in ( 4.29) contributes to the product an integral of the same 

form as the other components, multiplied by a factor of 1j4ei· If we divide the first 

term in ( 4.29) by f
1 
exp-21i;.:r; dx;, then we can factor the full product of p integrals, 

which is equal to IRVar5 , from both terms in ( 4.29) and take it outside the sum in 

(4.28) to obtain 

IRVarv;;s 
fJ ( 2 -

2
1i 1 ) 

IRVars x 2::.:: 2ei ~ e ' 2 + -e 
. 4e J e-21i;x; dx 4 i 
l=l l -1 l 

( 4.30) 

(

- p -21i ) p e ' 
IRVars x --

2 2::.:: t e-21i;x~ dx 
l=l -1 l 

( 4.31) 

Note that the terms inside the sum tend to 1/2 as e --t 0 and can be made 

arbitrarily small by taking ei suitably large (since, as ei --t oo, the integral in the 

denominator tends to Ff5JJ: which goes to zero much slowly than the numerator). 

Hence, as long as variation described by E is reasonably localised (so that the vari

ance resolved by observing function value and derivatives is essentially zero at the 

boundaries of the design space x), then a single scalar derivative contributes half 

that of a function value to the integrated resolved variance. That is 

IRVarV';;S = IRVars x ~ for ei large. ( 4.32) 
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Hence observing the function value and set of p first order derivatives of s(x) resolves 

the same amount of variance as observing two function values for p = 2 and resolves 

more variance for p :::: 3. In order to get an idea of how large the ei need to be 

realistically, if mini ei > 1.5, then this corresponds to 0'
2 < 1/6 in the standard 

I 2 

Gaussian density e- 2u2 x and it is easy to show numerically that the terms in the 

sum in ( 4.31) are all less than 0.05 so that 

IRVarY'xS > 0.45p X IRVars for min ei > 1.5. 
i 

4.4.2 Several independent design points 

( 4.33) 

We are interested in generalising ( 4.33) to the case of several design points, XI, ... , Xn, 

at which we observe some information D = (DI, ... , Dn). Suppose that there exist 

sub-regions of x, RI, ... , Rn, each centered on its respective design point such that 

fn RVarD, ~ fx RVarD,· Then condition (4.33) is satisfied for each Di since the 

variance resolved by Di is outside of Ri C x is negligible. If no two regions overlap, 

the information at any design point is effectively independent from the information 

at the remaining design points (the resolved variance at the midpoint of the straight 

line between any two design points will be approximately zero) and 

1 RVarv(x)dx "'t, L. RVarv,(x)dx. (4.34) 

Hence, since the covariance between two points depends only on the distance be

tween them, the ratio of the variance resolved by the set, Sn, of function evaluations 

at design points (XI, ... , Xn) and the set, (Sm, V xSm), of function values and first 

order derivatives observed at design points (XI, ... , Xm), is 

IRVarsm,Y'Sm _ m(2 + p) f , O· l _ 
IR

"' - 01 1 arge . 
. varsn 2n 

( 4.35) 

To get an idea about how large the ei need to be, consider the rectangular 

subregion, R = [-LI, LI] x · · · x [-LP, Lp], centered on some design point. Then, 

by a linear transformation of xi, it is straightforward to show that the resolved 

variance, integrated over the subregion, R, is identical to ( 4.31) but with ei replaced 

by OiL;_ Hence, the condition becomes 

6 
IRVarY'xS > 0.45p x IRVars ~ Oi > 

4
£ 2 for all i. 

1 

( 4.36) 
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This is a powerful result since it tells us that, provided we have some condition on 

the smallest ei (for example, mini ei > 1.5), then we can pack design points close 

together in dimensions with large ei values and our approximations will still be valid. 

Hence, assuming that information at design points is reasonably independent, 

( 4.35) tells us that we can expect to be able to reduce the number of design points 

by a factor of 2!P if we observe p derivatives at each location whilst still achieving 

the same (integrated) reduction in variance. A few comments are worth making at 

this point. 

Firstly, typically our emulator model will contain some global terms, not included 

in our calculation to make the analysis tractable, and so we should emphasise that 

the factor 2!P relates only to the E-surface (with Gaussian covariance function). We 

can think of this as the trade-off factor once most of the variation in global terms has 

been resolved. Note that the analysis would remain tractable if we were to include a 

constant global term, b since this would not affect covariances relating to derivatives 

in the data variance matrix and the variance matrix of observed function values 

would comprise CJ; + CJ; terms on the diagonal and CJ; terms on the off-diagonal, an 

inverse to which is available in closed form (see e.g. Graybill, 1983). 

Secondly, the lower bound mini e > 1.5 was chosen to allow us scale through 

the sum in ( 4.31) and, in practice, alternative conditions based on combinations of 

different ei may be more useful. For example, if ei is small for a single component of 

x and large for all other components, we might consider a bound which scales with 

p- 1. 

Thirdly, Nather and Simak (2003) perform a. related calculation to ours in the 

univa.ria.te case (p = 1) where they compare the integrated resolved variance obtained 

by observing derivatives of order k and l in the case that e --. oo. Letting Lk and 

L1 be the corresponding limits, they show that, for l 2::: k, 

Lk 
Lz 

21-k for Gaussia.n cova.ria.nce function 

rrl ( 2i + 1 ) ' . 2 + 
2

(v _ i) for Ma.tern cova.ria.nce function 
t=k+l 

( 4.37) 

( 4.38) 

What we see is that the Ga.ussia.n cova.ria.nce model, on which our result is 
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based, represents conditions under which we can get the most out of derivatives. 

The result for the Matern although only valid for p = 1, shows that if we compare 

observing derivatives of order l to function values (k = 0), that the ratio of function 

value to derivative decreases monotonically to 2 as the parameter v -----> oo and, for v 

small, the ratio is large so that derivatives are relatively much less informative. This 

means that, if our covariance function is misspecified as Gaussian, then the emulator 

model will resolve variance optimistically each time we observe derivatives. On the 

other hand, the ratio of derivatives to function values for our Gaussian result in 

(4.35) is independent of 8 (subject to its components being large enough for our 

approximations to hold) so that we can choose a value of 8 conservatively and still 

maintain this ratio. In any case, we believe that the infinite differentiability of the 

Gaussian covariance function is appropriate for the simulator we consider, as we 

discuss in Section 4.6. 

Finally, we could consider higher order interactions between design points. For 

example, a natural extension might be to consider the trade-off between function 

values and derivatives for a set of m independent input points and n pairs of points 

which interact with each other but are independent of all other points. 

4.5 Estimating 8 covariance parameters 

Estimating components of 8 for the E-surface covariance kernel is a difficult prob

lem. One approach is to use maximum likelihood estimation as in Ripley (1988). 

The maximum likelihood approach relies on distributional assumptions, which we 

are keen to avoid for reasons discussed in Chapter 3, and is often beset by computa

tional problems, but it will be useful to use it for comparison with other estimates 

and also to demonstrate the essence of the usefulness of derivatives in estimating 

8 values. (For an alternative justification of this likelihood, which does not rely 

on distributional assumptions, a quasi-likelihood approach can be used. See e.g. 

Pawitan, 2001) Suppose that our emulator model is 

s(x) = g(xf /3 + E(x) ( 4.39) 
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where E rv MVN(O, K) (note we have dropped the 6-surface as its inclusion is prob

lematic). Now we derive the maximum likelihood estimate (MLE) for ((3, c/J) where 

cjJ is the set of hyper-parameters that appear in K. The log likelihood is 

L((J, c/JIS) = const- ~ (In IK<t>l + (S- G(Jf Ki 1 (S- G(J)) ( 4.40) 

Discarding the constant, as we may, the MLE of (3 minimises the quadratic form, 

and so is the generalised least squares estimate (3 given by 

(4.41) 

where Lis lower triangular and defined by the Cholesky decomposition, LLT, of K. 

Thus the profile likelihood, Lp, for cjJ is 

( 4.42) 

Writing K = a 2 R, we can extract an MLE for a 2 

( 4.43) 

and hence we can extract an MLE, &2
, for a 2 

( 4.44) 

If cjJ = (a2 , B), then 

(4.45) 

The attraction of the MLE is that we can easily include derivatives into the 

analysis by redefining s(x) to be the vector of itself a.nd the derivatives of interest, 

and similarly for g(x) and E(x). Then G is the matrix of g and its derivatives 

at X, S is the vector of observed function values and derivatives, and covariances 

involving derivatives of E(x) are simply absorbed into Kq, with the scale parameter, 

a 2 , extractable as before. Figure 4. 2 shows us the potential derivatives have in 

offering us information about 8. The Figure shows the profile likelihood for e 
for ten samples from a univariate process, t:(x), with Cov[E, t:'] = e-7·5(x-x')

2
, with 

each sample of observations at seven input points. The top plot shows the profile 
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Figure 4.2: Profile likelihood for (} for ten samples from a Gaussian Process with r(h) = 

exp - 7·5h
2

, each sample taken at seven points, without derivatives (top) and with derivatives 

(bottom). 

likelihood based on observing function values only and the bottom plot shows the 

profile likelihood when derivative also are observed. 

One of the problems of maximum likelihood estimation has been that a sparsely 

scattered collection of function values simply does not offer enough information to 

distinguish between competing() values. The top plot in Figure 4.2 shows this with 

th profile flat for all but Vi ry small () valu . D rivatives look as though they will 



4.6. Choice of Gaussian covariance function 57 

solve one of the problems of MLE estimation; the information about 8 is there 

waiting to be extracted. MLE estimation is still problematic though. Firstly, it 

relies on full distributional assumptions that we can not justify and are thus keen to 

avoid. Secondly, it is computationally intensive, particularly in higher x dimensions 

and when we do not wish to set all components of 8 to be equal. What we want 

is a computationally cheaper way of extracting information contained in derivatives 

which does not rely on full distributional assumptions. In Chapter 6, we develop 

such an estimate and apply it to our problem. 

4.6 Choice of Gaussian covariance function 

Throughout the thesis, we work almost exclusively with the Gaussian covariance 

function. This form has come in for criticism recently: Stein (1999), for example, 

is highly critical of using the function to model physical processes in the context of 

interpolation of spatial data, showing that it can lead to predictions that are much 

too optimistic in resolving uncertainty when the covariance function is misspecified 

and advocating a Matern form. It is better to be badly conservative than wildly 

optimistic, Stein argues. Whilst agreeing with his sentiments, we do not necessarily 

feel that they transfer to the context of computer simulators. Put another way, we 

agree that there is often no basis for knowing a priori the degree of smoothness of 

some physical process; but we have much stronger beliefs concerning the smoothness 

of computer simulators of the type discussed in this thesis. It is true that an opti

mistic misspecification of 8 is potentially more dangerous with the Gaussian than 

Matern correlation function, but we have shown that derivatives offer the potential 

to provide good estimates of 8 values. Perhaps the one assumption most needing to 

be tested in both forms is that of a constant 8 across all the input space although, 

when this is not the case, a conservative 8 value towards the upper end of the 

range should suffice. Stein's comments do, however, focus the mind on the need for 

careful diagnostics relating to such specifications as mentioned at the end of Section 

4.3. In our analysis of the plankton problem in Chapter 6, we introduce and apply 

diagnostics to back up our belief statements and, in doing so, demonstrate another 
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area in which derivative information can be useful. 



Chapter 5 

Taking derivatives in 

compartmental simulators 

In the previous chapter, we showed that the framework from the computer simu

lator literature could be naturally extended to allow for inclusion of derivatives in 

emulator building and refinement. In this chapter, we develop a cheap and efficient 

method for generating such derivatives in the case of a compartmental simulator. 

vVe also perform calculations to estimate the increase in cost, in CPU run-time, 

of computing derivatives so that, by weighing the increase against the additional 

variance resolved, we can ascertain whether it is worth our while computing a given 

collection of derivatives. The model in Chapter 2 is used to clarify aspects of the ap

proach, although the method itself is perfectly general to the class of compartmental 

simulators. 

5.1 Derivatives and compartmental structure 

The calculation of derivatives has long been central to the field of sensitivity analysis, 

in which so-called perturbation methods, in which 'pseudo' derivatives are generated 

by perturbing the inputs and re-running the simulator at the new values, have 

proved popular. The advantage is that the method can be applied to any simulator; 

however Oblow et al. (1986), who give a brief overview of the field, point to several 

difficulties: "the time-consuming nature of the perturbation calculations and the 

59 
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inaccuracies that occur in trying to estimate sensitivities from small changes in 

inherently imprecise numbers." Both of these difficulties are of particular concern to 

us. The precision issue is important because we are concerned with actual derivatives 

rather than "effects of small changes" and we are loathe to model our derivatives 

as being observed with error. Moreover, we may be interested in observing higher 

order derivatives as well, for which perturbation methods become yet less reliable. 

The time issue is equally as important: using perturbation methods, even the lowest 

order approximation requires an extra run per each extra derivative to be computed. 

Since the simulators we consider are generally high dimensional in input space, we 

require a much more efficient method if the use of derivatives is to be practical. 

Here we chose to differentiate the equations by hand, which is both practical 

for a model the size of ours and avoids this initial overhead. Our ability to do this 

successfully and cheaply in the case of a compartmental model lies in recognising 

our simulator as two distinct parts. 

Firstly, the compartmental model itself defines the following initial value problem 

~~ (t, x) = f(t, y, x), y(to, x) = Yo, f: R x Rk x RP -t Rk, (5.1) 

where k dim(y), the number of compartments, and p = dim(x), the number 

of input parameters. For given x, there exists a unique solution y(t,x) to (5.1) 

provided f(t, y, x) satisfies a Lipschitz condition, satisfied automatically when f is 

continuously differentiable in y for all (t, y) (See for example Burden and Faires, 

1989). 

Secondly, the simulator combines the initial value problem (5.1) with a solver 

routine which, for given x, produces an approximate numerical solution, y(t, x), 

for y ( t, x). For the code provided for the model in Chapter 2, a fifth-order Runge

Kutta method was used (See Press et al., 1992). Runge-Kutta methods are a popular 

and often-applied general class of techniques for solving systems of ODEs. In the 

following section, we introduce a simple first-order Runge-Kutta method, Euler's 

Rule, and demonstrate our approach for obtaining derivatives. We also discuss 

computational savings made through exploiting compartmental structure. 
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5.2 Differentiating Euler's Rule 

Consider the general system of 0 DEs in ( 5.1). For sufficiently small h, 

dy( ) y(t+h,x)-y(t,x) 
dt t, X ~ h 

Substituting this into (5.1) and rearranging, we have 

y(t + h, x) ~ y(t, x) + hf(t, y(t, x), x) 

Writing Yn = y(tn, x), we obtain Euler's Rule 

(5.2) 

Fixing x, we can propagate (5.2) forward through time and obtain the solution, 

y(t), for this x. However, viewing f and fin as functions of x then, provided f is 

differentiable in components of x to the required order, we can differentiate both 

sides of (5.2) and obtain similar expressions which relate derivatives of Yn+l to 

those of Yn· For given f, we can use a computer algebra package to generate the 

algebraic relations once, add these expressions into the simulator code and let the 

simulator propagate the numerical expressions forward through time in exactly the 

same way as for function values. In particular, we can alter f in the computer code 

to additionally return its derivatives at each iteration and simply extend the vector 

Yn in (5.2) to include the corresponding derivatives. 

5.3 Higher order generalisation and adaptive step~ 

. 
SIZe 

Euler's Rule is of conceptual importance since the higher order methods which are 

often used in practice all emanate from it. The generals-stage Runge-Kutta method 

is given by 

s i-1 

Yn+l = Yn + h 2:: ciki, where ki = f (tn + aih, Yn + h L bijkj, X) (5.3) 
i=l j=l 

where the ai, biJ and ci are constants chosen to satisfy certain error properties. From 

(5.3), we see that each step of the general s-stage method is a linear combination 
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of s Euler-style steps. Hence we can simply redefine the vector of functions, f, to 

include derivatives by altering f to additionally return these derivatives in the code. 

All this then requires is the dimension of the vector Yn to be increased and the 

remainder of the code remains unaltered. 

Often, as was the case with the code provided for our model, a Runge-K utta 

solver comes with an adaptive stepsize routine, which aims to achieve a specified 

accuracy in the solution whilst minimising computational load. It does so by esti

mating a vector, ~' of truncation errors- one for each output - at each iteration and 

adjusting the step-size accordingly; if the errors are much smaller than required, the 

step size for the next iteration is increased and, if the errors are larger than allowed 

for the required accuracy, the step-size is decreased and the iteration repeated. Typ

ically, this adjustment is based on max(~), so that we guarantee a specified level of 

accuracy for all outputs (See Press et al., 1992, for more details). 

As we have already remarked, inclusion of derivatives in the Runge-Kutta up

dating is handled in the same way as the original code, by a simple extension of 

the vector Yn in (5.3) to also include derivatives. This means that truncation error 

estimates are naturally generated by the code for derivative quantities, which in 

turn presents us with something of a dilemma. For any iteration, ~ contains all 

the original truncation errors relating to function values plus additional estimates 

relating to derivatives. If we adjust the stepsize based on max( ~) then, for any 

given iteration, this quantity must be at least as large as it would have been for 

the original ~ (since all we have done is added some additional estimates relating 

to derivatives). The issue here is that if we are truly 'differentiating the simulator', 

then this differentiation should not change the simulator; in other words, we want 

the derivatives of the output at the time points which would have been given by the 

original code. 

At the same time, maximising over derivative error estimates in the adaptive 

routine, offers a somewhat tempting diagnostic on the quality of the simulator, with 

a large increase in the number of steps required suggesting a mismatch between 

derivatives of the simulator and derivatives of the differential equations. Vve expect 

some increase since including derivatives in the adaptive routine- increases the di-
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mension of the vector ~ over which the maximisation takes place so that doing so 

can only affect the stepsize by decreasing its value. 

In practice, the nature of the criterion in adjusting stepsize based on the max

imum error together with tight error bounds (our code requires accuracy of the 

solution to 1 in 105 for each component of Yn) means that any change in stepsize 

caused by derivatives will change function values by a negligible amount for our 

simulator so that little should be lost by restricting the truncation error assessment 

to the original output quantities only. 

Since our model was cheap to run, we choose to include first-order derivatives 

for the thirteen inputs in Table 2.1 in the adaptive routine, which led to an average 

increase of 14.4% in the number of steps required over twenty five runs, with the 

smallest increase 4.6% and the largest 44.6%. We considered these increases not 

to represent any cause for concern given the nature of the adaptive routine. When 

considering additional cost of derivatives, however, we do not count this additional 

cost in the comparison since it represents extra accuracy in relation to the differential 

equations which is not strictly required. 

5.4 Exploiting compartmental structure 

For the process of derivative computation described in Section 5.2, computational 

savings arise in two ways; firstly, through the additive structure of compartmental 

models in general and, secondly, by consideration of the degree of "localisation" of 

input parameters in a given model, where the notion of "localisation" is one we will 

make explicit shortly. 

By the additive structure of compartmental models, we mean simply that the 

time derivative of any compartment is given by the sum of functions flowing into the 

compartment minus the sum of functions flowing out. Hence, writing A= (A1 , A2)T 

for the set of r flow functions in a given k-compartment model, where A1 is the set 

of r 1 flow functions that are connected to a single compartment only and A2 is the 

set of r 2 flow functions which link two compartments together, we can write 

f = (hlh)A (5.4) 
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where 11 is a k x r 1 diagonal matrix with ±1 in its diagonal entries and ! 2 is a k x r 2 

anti-symmetric matrix with zeros on the centre diagonal and ±1 on the two diagonals 

either side. For the model described in Chapter 2, we have A1 = (Ap, Az, AN) and 

A2 = (AzN, ANP, Apz). Then, writing (5.4) explicitly for the model in Chapter 2, 

-1 0 0 0 1 -1 

!= 0 -1 0 -1 0 1 (5.5) 

0 0 1 1 -1 0 

For x = (x1 , ... , xp), we can apply V x = (fJjfJx 1 , ... , fJjfJxp) to (5.4) and obtain 

(5.6) 

where, on the left hand side, V xf is a k x p matrix of functions and, on the right 

hand side, V acts on each arc-function in A, producing a p-dimensional row vector 

for each. Note that we can readily replace x by any subset of x in (5.6) and hence 

we can evaluate as few or as many input derivatives as we wish. If, for example, 

some x-derivatives are difficult to derive or computationally relatively expensive to 

evaluate, they can be dropped. 

For example, consider our model with V x operating on 

A = rl- p + m+!z+ p 
p 'f'P M ' 

the flow function describing exports from the phytoplankton compartment. In doing 

so, we first split Ap down into two additive parts, 

Then taking each term to be a generic function of x and applying V x, we obtain 

cPP V xP + PV xcPP 
m+h+ P 

M VxP+ MVxm 

(5.7) 

(5.8) 

Eqns. (5. 7) and (5.8) demonstrate the essence of our approach: the expressions 

are easily generated, by hand or using a computer algebra package, and are linear 

in the derivative vectors - in this case V xP - so that derivatives with respect to 

many inputs can be generated in the code quickly using efficient vector operation 
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implementations. The vector argument 'V xP is then propagated forward, using (5.3), 

in the same way as P. The vectors 'V x<fJp and 'V xm are fixed constant vectors with 

jth component defined by ('V xxi)j = 1 if i = j and zero otherwise (where in our 

case tjJ p corresponds to x 1 and m to x 13 ). They constitute extra terms generated by 

taking derivatives with respect to inputs which appear explicitly in the expression 

for Ap. The fewer of these extra terms there are, the more we will feel the benefit of 

the vector implementation and the cheaper derivatives will be relative to function 

values. Hence, if most additive terms have explicit dependence only a small subset 

of x, then the relative cost of computing derivatives will remain relatively cheap; an 

idea which we make more concrete in Section 5.6. Firstly, however, we show how to 

implement the calculations required to obtain (5.7) and (5.8) using Maple. 

5.5 Implementation in Maple and R 

In this section we demonstrate how to implement the example in (5.7) and (5.8) 

in Maple and then how to add to the simulator code. In both sets of code, A} is 

denoted Pdeep and A~ is denoted Pflux. Any input we enter into Maple begins on 

a new line with the prompt > and is executed with the ; command. For each input 

line, the subsequent Maple output is shown on the following line. 

Starting with A} = I}JpP, we define each term to be a generic function of x: 

> Pdeep := phiP(x)*P(x); 

Pdeep := phiP(x) P(x) 

Then we use the diff command to differentiate with respect to x: 

> dPdeep := diff(Pdeep, x); 

I d \ I d \ 

dPdeep := phiP(x) I P(x) + phiP(x) I P(x)l 

\ dx I \ dx I 

The process is similar for A~ = mti1+ P, although now the mixed layer depth !vi and 

h+ forcing functions are independent of x: 
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> Pflux := ( (m(x) + hplus)IM )*P(x); 

(m(x) + hplus) P(x) 

Pflux ·= ------------------

M 

Applying the diff command, 

> dPflux := diff(Pflux, x); 

I d \ I d \ 

-- m(x) I P(x) 

\ dx I 

(m (x) + hplus) I P (x) I 

\ dx I 

dPflux -------------- + ------------------------

M M 
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The results on the Maple working can then be added into the simulator code (given 

here in R syntax) as follows: 

Pdeep <- x[1]*P 

dPdeep <- x[1]*dPdx 

dPdeep[1] <- dPdeep[1] + P 

The first line calculates Pdeep, as would be required in the original simulator with

out derivatives, where x [1] corresponds to c/Jp. The second line computes the vector 

of derivatives, dPdeep, in terms of the vector, dPdx, where both these vectors are of 

the same dimension as the vector, x, of input values. The final line adds the extra 

contribution to the first component of dPdeep caused by the explicit appearance of 

x [1] in Pdeep. 

Similarly for A~: 

Pflux.denom <- x[13] + hplus 

Pflux <- ( Pflux.denom I M ) * P 

dPflux <- Pflux.denom * dPdx 

dPflux[13] <- dPflux[13] + P 

dPflux < - dPflux/M 
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One thing to note is that computing derivatives will require additional storage 

space. In particular, as well as the final derivative values, note that in the R code, 

we have introduced a temporary variable, Pflux. denom, which we would not have 

defined in the original code. The reason for this is to save us duplicating the same 

(very cheap) calculation twice. This is simply efficient coding and does not cause 

any problem, but it is perhaps worth remarking here that, for larger models, it is 

likely that we will generate a significant number of additional temporary variables 

when we include derivatives calculations so that extra storage space is required by 

the code. In general, we would not expect these extra storage requirements to cause 

a problem and, overall, there may be no net increase in storage requirements if 

calculating derivatives allows us to perform less runs on the simulator for the same 

information. 

5.6 Additional cost of derivatives: a heuristic 

In this section we develop a heuristic for the proportional increase in cost (in com

puter run-time), 1fx, in order to calculate first order derivatives with respect to a 

given subset i of x (for example, we might take i to be the set of active inputs x*). 

5.6.1 Derivation of heuristic 

Let A(x*,y*(x)) be a scalar function of vectors x* ~ x and y* ~ y. Then, applying 

the chain rule for differentiation, 

(5.9) 

Let dim(x) = p, dim(x*) = p*, dim(y) = k, dim(y*) = k* denote the cost, 

in some standardised units, of multiplying a scalar by a vector, dimension d, by 

Md and the cost of adding two vectors, both dimension d, by Ad· Since we are 

interested in comparing the cost of function values and derivatives, we write the 

cost of evaluating A as the sum of two parts, Cost(A) = C + K, where K is the 

'set-up' cost of A, constituting calculations required tq evaluate A which can be 

re-used when calculating derivatives and C is the cost of the remaining calculations 
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8A( •) required to evaluate A. Next we assume that each a~ and each component of 

Vx·A(x*) costs C to evaluate (we discuss this assumption at the end of this section) 

so that, counting operations in (5.9), we find 

Cost(\7 xA(x*, y*(x))) p*C +p*A 1 + k*(C + Mp) + (k* -1)Ap 

(p* + k*)C + (k*)Mp + (k*- 1)Ap + p* A1 (5.10) 

Computational savings come from the fact that the dependency of Md and Ad on 

d is typically weakly linear and, moreover for the values of d we consider, A1d::::::; !111 , 

Ad ::::::; A1 . As multiplication is more expensive than addition, from (5.10) we see 

that if C » M 1 , as typically it is for the functions we consider, then the additional 

cost of evaluating the p derivatives of A is approximately (p* + k*)C. 

For a compartmental model with r flow functions, A1 , ... Ar, let K be the sum of 

the flow-function set-up costs and C1, ... , Cr the remaining costs. Then, a natural 

generalisation is to compare K + 2.:.::;= 1 Ci with K + 2.:.::;= 1 Ci (1 + kt + p;). Supposing 

that the costs, C1 , ... , Cn are roughly the same (again we discuss this at the end of 

the section), then the proportional increase in cost, 1fx, can be estimated by 

1 r 1 r C 
1fx = 1 + (Lx + Ly)p, where Lx =- "'""'p;, Ly =- "'""'k;, P = C · 

r~ r~ +K 
i=l i=l 

N ate that we can easily generalise this if we only wish to differentiate with respect 

to components of a subset i of x by replacing x by i, which in turn requires us to 

replace Pi by Pi 
1 r 1 r C 

1fx = 1 + (Lx + Ly)p, where Lx = - "'""'p;, Ly = - "'""'k;, p = C . (5.11) 
T~ T~ +K 

i=l i=l 

In (5.11), K is the 'setup cost' for a run, representing calculations required to eval

uate the r flow functions that can be reused in calculating derivatives, and C is the 

average cost, over flow functions, of operations not included as part of the set up 

cost K. The terms Pi and ki are the number of inputs in i and the number of 

outputs, respectively, on which the ith flow function has explicit dependence in the 

model equations. Hence Lx and Ly can be thought of as measuring the degree of 

localisation of i and y respectively. 

From (5.11), we see that the smaller the values of Lx, Ly, and p, the smaller 

the additional cost in generating derivatives. The term Ly, which is fixed for any 
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simulator, can be thought of as a setup cost for generating derivatives and hence 

the lower bound, n~, for 1fx is obtained by taking Lx = 0 in (5.11). 

Note that n:x only depends on i through L:x; hence if we run the simulator, 

setting it to calculate derivatives with respect to inputs in i, and record the observed 

proportional increase in cost, n:x, we can substitute this and the value of L:x into 

(5.11) and fix p. Having fixed p, we can calculate Lx' for any other subset i' ~ x 

and use ( 5.11) to calculate the corresponding 1r x'. 

5.6.2 Discussion of heuristic assumptions 

In deriving, (5.11) we made two assumptions: (i) for an individual flow function, 

A, the non-reusable cost C was of the same order as the cost of calculating each 

component of V x•A(x*) and (ii) that the C corresponding to different flow functions 

were all of the same order. 

For assumption (i), consider the example of Ap at the end of Section (5.4). 

Counting the cost, K, of reusable operations and the costs of non-reusable opera

tions, C, we obtain: 

(5.12) 

K=O 

A~ (5.13) 

K = Cost(M) + Cost(h+) + A1 

where Dd is defined to be the cost of dividing a d-vector by a scalar (which is 

trivially equal to M1 + l\1d). From our earlier remarks that l\1d ~ !111 and Ad ~ A 1 , 

the assumption seems to be valid, for Ap at least. Note also that, for A~, the set-up 

cost, K, involves the evaluation of the mixed layer forcing function, !11, and its time 

derivative dM, through h+ = rnax(O, dM). These operations involve searching and 

interpolation of tables of forcing function values so that the reusable operations are 
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relatively expensive and hence including derivatives does not add much extra cost, 

proportionally, in this case. Assumption (ii) is more difficult to justify although we 

believe it to be reasonable magnitude of order approximation; in reality, we do not 

expect the assumption to be strictly true but rather that competing forces cancel 

out to make it a reasonable approximation. This appears to be borne out in Section 

5. 7 in comparisons of predicted proportional increases with those observed. 

5. 7 Localisation of inputs in the PZN model 

As an example, consider the additional cost of generating derivatives with respect to 

all thirteen inputs in our model. Figure 5.1 lists the inputs and outputs appearing 

explicitly on the different flow functions of the PZN model, where we have split 

some of the arcs down further into their additive components, as we did with the 

example in (5.7) and (5.8). Splitting the arcs denoting flow functions into additive 

pieces is natural for two reasons. Firstly, linearity properties of derivatives allow 

us to add derivatives of two sub-arcs to obtain the derivative of the arc. Secondly, 

different additive pieces tend to correspond to different processes in the physical 

modelling which contain their own localised input parameters. For example, the 

two sub-arcs in (5.7) and (5.8) capture very different processes which combine to 

form phytoplankton exports: phytoplankton mortality modelled by A~ and physical 

dilation as a result of vertical mixing processes, modelled by A~. 

From Figure 5.1 we see that, of the ten arcs, there are five which depend on 

one input, two which depend on two and three which depend on four so that Lx = 

((5 x 1) + (2 x 2) + (3 x 4))/10 = 2.1. Counting numbers of outputs, six arcs depend 

on one output and four on two outputs so that Ly = ((6 x 1) + (4 x 2))/10 = 1.4. 

Running the simulator at twenty five input values, the proportional increase in 

CPU time caused by generating the thirteen derivatives was 2.6. The proportional 

increase in individual runs varied from 2.1 to 3.3 with a standard deviation of 0.25. 

This variation is largely random and down to the effect of other processes on the 

computer so that 2.6 was thought be a good estimate of the proportional increase of 

any set of twenty five runs. Taking 1fx = 2.6, and substituting into (5.11) together 
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with Lx + Ly = 3.5, we obtain the corresponding vector p = 0.46. 

Figure 5.1: Input and outputs appearing on each additive arc of the model. 

Arcs Sub-arcs Outputs Inputs 

----- AI p p c/Jp 

i\p ----- i\2 p m p 

_________., i\ 1 P,Z /3, g, kc, E 

i\z i\2 z z m 

------------- i\3 z z cPz 

i\N N Nrer, m 

----- A1N z p, 

i\zN ----- J\~N P,Z /3, g, kc, E 

i\NP P,N kN, \fp, 0: 1 kp 

i\pz P,Z g,kc 

The reason for a lower value of C relative to K (p - 0.46 corresponds to 

C = 0.85K), and so smaller increase in cost incurred by calculating derivatives, 

is that the partial derivative calculations in the model re-use forcing function values 

calculated in evaluating the flow functions, and these operations are relatively ex

pensive, requiring searching and interpolation of look-up tables. In general, we may 

only wish to compute derivatives of a subset x <;:: x, for example the active inputs, 

which will reduce the additional cost further. For any subset, we can estimate the 

proportional increase in cost in doing so, using the value for p obtained above. 

In our analysis of the problem in Chapter 6, the set of inputs x* = (xL x 4, 

x 6 , x 10 , x13 ) turn out be active. From Figure 5.1, the input counts are (reading the 

sub-arcs from top to bottom) 1, 0, 1, 0, 0, 1, 0, 1, 2, 1 so that Lx• = 0.7. Plugging in 

the values for p and Ly into the heuristic for the increased cost, 1ri: = 1 + (Lx + Ly)p, 

we find 1fx• = 1 + (0. 7 + 1.4) x 0.46 = 2.0. Hence, over the twenty five input poi!1ts, 

we expect to obtain most of the information given by derivatives, which is contained 
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within derivatives of active inputs, for a factor increase in cost of 2.0. Running the 

simulator at the twenty five runs gave a corresponding proportional increase of 2.1 

so tha.t the estimate is a very slight underestimate. Hence, for a reasonably large 

collection of input points, we expect to be able to generate derivatives with respect 

to active inputs at an overall cost factor of around 2.1. 

It is the localised nature of the parameters with respect to which we differentiate, 

as measured through Lx and Ly, and the relatively high set up cost for a run- both 

features common to many compartmental models - which offers us the potential for 

computational saving and so increases the appeal of observing derivatives. Concern

ing compartmental models in general, the method will scale well with the dimension 

of x and y provided this localisation remains intact, so that the greater the number 

of compartments and the greater the number of inputs, the greater we can expect 

our information to computation ratio to be. 

Essentially this calculation is a 'mean' calculation, where the cost of the various 

function derivatives relative to the original functions is treated as unknown. 'vVe 

could take more care in counting the operations carefully (see Griewank, 1989, for 

some interesting work using known relative costs of standard mathematical func

tions to bound costs of derivatives relative to the original function). Alternatively, 

we could perform numerical experiments to count the relative costs of different 

derivatives. In practice, we feel our heuristic offers a quick and reasonably method 

to estimate proportional increased cost in generating different collections of deriva

tives and would be particularly useful for larger compartmental models with many 

compartments and/ or parameters. 

As a final comment, we note that programs exist which automatically differen

tiate computer code (see inter alia Oblow et al. (1986) and Dimitrios et al. (2003) ). 

Such programs offer potential to generate derivatives for lengthy code for which a 

'by hand' approach may become infeasible. However, we expect to be able to get 

to a reasonably large scale with our approach, with the benefits being a retention 

of the efficiency which is forfeited in the automatic process through inefficiencies in 

the additional code generated which can often be significant. 



Chapter 6 

Emulator construction and 

refinement for the plankton model 

In this chapter, we are concerned with emulator construction and refinement, using 

the Bayes Linear approach outlined in Section 3.5. We firstly demonstrate some 

uses of derivatives in forming prior emulators and secondly investigate additional 

reduction in uncertainty in the emulator achieved by including derivative observa

tions as well as function evaluations. We begin by considering an exploratory site, 

then considering a single site, forming a prior based on the exploratory analysis, 

and investigating in detail the additional effects of derivatives in updating at this 

single site. Finally, we move to multiple sites and build emulators using function 

and derivative evaluations. 

6.1 Choice of stations to emulate 

In emulating the simulator at different locations, we consider the emulator model 

given in Eqns. (3.1) and (3.6), 

(6.1) 

where index s denotes station s and where we consider outputs separately at each 

station so that ( 6.1) is implicitly indexed by output at each station. The variation 

over the index s is resolved by differences in forcing functions at the different loca

tions and so, in theory, we could learn about this variation by running the simulator 

73 
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Figure 6.1: Top: Euclidean distances of mixed layer depth (MLD) forcing functions (left) 

and photosynthetically available radiation (PAR) forcing functions (right) between pairs of 

stations. Light colours correspond to large distances and dark colours to small distances. 

Bottom: Mean and range of forcing function values at each station, again with MLD 

shown left and PAR shown right; circles denote mean values and lines connect minimum 

and maximum values and, in the MLD plot, colours denote groupings suggested by the 

MLD distances. 

at different locations for the same choice of input vector x. Hence the greater the 

'difference' between forcing functions at two locations s and s', the less correlated 

we expect the quantities in the corresponding emulator models to be (for example, 

corresponding components of B 8 and Bs' in the case that x: = x:, and 9s = 9s')· In 
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theory, this leads naturally into a multivariate covariance specification of unknown 

quantities across outputs and locations. However, in practice our beliefs do not 

stretch much beyond this initial statement since the model response is non-linear 

over time and the relationship between forcing functions, themselves time series, and 

simulator output is far from clear and a multivariate approach is difficult (though 

not necessarily impossible) to justify. The approach here then is to build emulators 

at individual sites and link these sites together by informal judgements, proceeding 

sequentially by using what we have learnt at previous sites to construct prior emula

tors at a given site and then updating the corresponding emulator formally based on 

simulator runs at this site. A consequence of this approach is that considering the 

sites in a different order would probably lead to different prior specifications at the 

sites; in practice, the many shared similarities of sites means that we would expect 

any differences caused by ordering to be relatively small. An alternative approach 

might be to use an exchangeability-type argument such as that made by Craig et al. 

(2001) to link beliefs about a fast and slow version of a simulator. 

Figure 6.1, top row, shows the relative Euclidean distance between vectors of 

daily forcing functions values for all possible pair of stations, with mixed layer 

depth (MLD) shown left and photosynthetically available radiation (PAR) shown 

right. The bottom row shows the mean (denoted by a circle) and range of the 

forcing functions (denoted by the horizontal line from the minimum to maximum 

value) for each station. For MLD, the subset of three stations (1217, 1218, 1318) 

stand out as being far away from other stations, with station 1318 in particular 

registering large distances with other stations. Of the remainder, a subset of four 

stations - (1115, 1116, 1215, 1216) - form a group within which all stations appear 

to be relatively close and outside of which stations are generally far apart. The 

remaining stations are all relatively close, generally increasing in distance with an 

increase in distance of their physical locations. For PAR there are two distinct 

groupings, the first consisting of stations up to and including station 913 and the 

second consisting of the remainder. 

For simplicity, we aim to perform an emulation and subsequent calibration over 

a subset of the thirty stations and, based ou Figure 6.1, we chose the subset 
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Figure 6.2: Map of stations shown with coloured outlines corresponding to the groupings 

identified by the mixed layer depth distances in Figure 6.1. The four stations marked black 

are those which we propose to emulate in this Chapter and then calibrate in Chapter 7. 

Station 1115, marked dark grey, is used to perform an exploratory analysis before we begin 

the emulation process. 

(1015, 1113, 1116, 1215) along with station 1115 to perform an exploratory analy

sis. Figure 6.2 shows the stations, together with the groupings identified from the 

MLD distance analysis. These stations were chosen because they offered the chance 

to produce a calibration that was valid over a connected geographic region and, over 

which, stations covered a large part of the overall range of forcing functions so as 

to stretch the methodology. We see from Figure 6.2 that two of the four stations lie 
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in the main group, as determined by MLD distances in Figure 6.1, and two within 

the red region. Differences in MLD were the main consideration when looking for 

a range of physical conditions since the expert believed the MLD forcing function 

played a much larger role than PAR in determining simulator output. 

6.2 Parameterisation of model output 

The simulator output, for each station, is a time-series of the three populations at 

uneven time intervals. For nutrient, we have a single winter-time nitrate observation 

to calibrate against and we take this to correspond to simulator nutrient output, 

Nw, at the time, tw, of the maximum MLD forcing function value at the station; 

this is the time at which nutrient is thought to correspond most closely to nitrate 

as discussed in Chapter 2. For phytoplankton, we have a time-series of physical 

observations and the question arises as to how best to parameterise this output. 

Our parameterisation is driven by the physical problem through our consideration 

of the main features of the data which we wish our calibrated model to reproduce; 

for example, the sudden increases or 'blooms' of phytoplankton in the springtime 

witnessed at the four stations and the general decline in phytoplankton stocks later 

in the year. 

The strategy we adopt in attempting to pick up these features is by first inter

polating simulator output at each station onto the time points of the corresponding 

physical observations. We then split the time series at a given station, s, into inter

vals according to the physical data and parameterise the phytoplankton output by 

the set Ps = (Ps,l, ... , Ps,JJ, where Ps,i is the mean phytoplankton value in interval 

i, and 18 the total number of intervals, at station s. The resulting parameterisation 

for the four stations we consider is shown in Figure 6.3. As the mean is a linear 

operator, the derivative of an interval mean is simply the mean of the derivatives 

in the interval and so we can easily re-parametrise the derivatives generated by our 

simulator. 

For phytoplankton blooms, choosing an interval about the maximum value and 

calibrating to the mean taken over the interval reflects our belief that changing inputs 
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Figure 6.3: Observed chlorophyll (mmol m-3) at the four calibration locations recorded 

for 1998 where t = 0 corresponds to midnight GMT on 31st December 1997. Vertical lines 

determine intervals used for parameterisation as described in Section 6.2. 

can also affect the phase of the simulator bloom as well as its magnitude. Such a 

parameterisation is then appealing for two reasons: firstly, it yields a relationship 

between input and the (re-parameterised) output which is smoother than that based 

on output at selected time points and, secondly, in calibrating the model in Chapter 

7, it allows us to score as a good match output with a similarly shaped but slightly

out-of phase bloom (calibration based on selected time points would lead to big 

miss-match scores for outputs either side of the bloom in such a situation.) We 

choose the end points of the interval to reflect our desire to judge an input as giving 
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a good match if it produces a bloom of roughly the correct shape anywhere within the 

interval. Calibrating to the mean levels in intervals either side of the bloom imposes 

restrictions that the raised mean level in the sandwiched interval corresponds to a 

reasonably isolated peak. We ignore what we observe to be a bloom at the end of 

the cycle at Station 1015 as there in no data to the right of the bloom for us to 

include in an interval around the bloom. Mean values over non-bloom intervals are 

also taken to capture the general level of phytoplankton at various times of year 

and are preferable to single time points because of the high day to day variability 

evident in the data. It allows us to capture, for example, the general pattern of 

decline from summer to autumn shown in stations 1113, 1116 and 1215. 

It is worth noting that the fairly coarse representation of the output that this 

transformation offers us is quite desirable at this stage; we are looking for a param

eterisation which allows us to rule out a large part of the space of possible inputs in 

our calibration. A simple re-parametrisation of outputs at the first stage of calibra

tion is a good strategy in general because the parameterisation is not only applied to 

the physical data but to the simulator output and many simulators produce output 

over much of the input space which is very different to the physical data to which 

the simulator is to be matched. 

6.3 Preliminary analysis at station 1115 

There are many ways to construct emulators (See, for example, Oakley (2002) and 

Craig et al. ( 1998)). Our aim in this section is to demonstrate the role that deriva

tives can play in constructing the emulator. Generating derivatives brings additional 

information at a relatively cheap cost and, in addition, derivatives offer a somewhat 

different type of (localised) information. Hence our goals are, firstly, to use this ex

tra information to improve our prior specification in general terms and, secondly, to 

divide up resources so that information is targeted at parts of the prior specification 

about which it is most informative. 

In all that follows, xi is used to denote the ith input in Table 2.1, linearly rescaled 
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Figure 6.4: Station 1115: time series simulator output at different inputs for phytoplank

ton, P(t), and nutrient, N(t), plotted against time, t. 

so that lower and upper bounds for Xi are mapped from xi E [Li, Ui] to xi E [-1, 1]: 

1 -
x · = ( 2x · - ( U + L ) ) 

t ui- Li l l l . 
(6.2) 

For the most part, we work with the inputs in their transformed units, xi, with 

the occasional exception, in particular in Chapter 7, when we use the symbols and 

original units, given Table 2.1, in linking our findings back to statements about the 

physical problem. Rescaling inputs necessarily requires to us to rescale derivatives 

generated by the simulator, 8s/8ii and, wherever they are shown, derivatives are 
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Figure 6.5: Station 1115: mean ± 2 s.d. phytoplankton simulator data. Black lines 

denote values for daily time series data and grey lines and rectangles denote values for 

each output of the interval re-parameterisation. 

rescaled to correspond to inputs in their transformed units: 

Ui- Li 8s 
2 8ii' 

(6.3) 

We began by choosing a fifth location, station 1115, as an exploratory site with 

a view to a preliminary analysis to aid our forming of prior beliefs at other stations. 

Station 1115 was chosen as it lay in the middle of the four calibration stations and 

we believed it would give us information about each of them. We re-parameterised 

output at station 1115 according to the intervals at station 1113; the first station 

at which we intended to fit a prior based on the exploratory analysis. Station 1113 

was chosen because station 1115 lay slightly further away than it did the other three 

calibration stations so that any similarity between it and the remaining three sites 

would, we thought it reasonable to believe, be at least as strong. 

We ran a 25-point Latin hypercube over the thirteen inputs in Table 2.1, taking 

a uniform prior distribution on [ -1, 1] for each input. Latin hypercube sampling 

(see Owen, 1992) returns a sample of n points from a space, x, by dividing the prior 

distribution for x E x into n intervals of equal probability along each dimension, 

xi, and sampling the grid boxes in such a way that each interval in each dimension 
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is sampled only once. In our case, the prior distribution is uniform over [ -1, 1] for 

each input dimension so that these intervals are distributed over an evenly spaced 

grid. The advantages of such a design is that it gives good coverage of the input 

space and lower dimensional projections of the sample retain this coverage. 

Figure 6.4 shows the original untransformed time series data at the twenty five 

input points for phytoplankton (top) and nutrient (bottom) at station 1115. We see 

a large variability in the phytoplankton output in the middle of the year (between 

approximately 100 days to 200 days) with a much smaller variability at the start 

and beginning of the year. Figure 6.5 shows the mean± 2s.d. for the phytoplankton 

simulator output before being re-parameterised (black lines) and under the interval 

parameterisation (grey horizontal lines and rectangles). We see the variation is much 

less for the transformed data which should help us to build an accurate emulator 

based on fewer runs (since observing output will tell us about outputs further away 

in the input space than under the original parametrisation) whilst still hopefully 

retaining enough variation for us to calibrate against (in our case, variation in the 

simulator output is still large relative to that in the physical observations under 

this re-parameterisation so that we can calibrate). The bottom plot in Figure 6.4 

shows that nutrient output for any given input vector appears to be fairly smooth 

around iw and hence modelling a single nutrient time point should not cause too 

many problems. 

6.3.1 Choice of active inputs 

For each input, we computed the mean and standard deviation of the twenty five 

derivative values at every seventh day of the original untransformed time series 

simulator output. Figure 6.6 plots the largest and second largest mean derivative and 

standard deviation derivative at each of these time points. The numeric plot symbols 

denote the input to which the derivative statistic corresponds and grey circles for 

the mean plots denote a negative value. The plots are designed to aid in spotting 

any general patterns which may influence our interpretation and selection of active 

inputs for the re-parameterised output. We see from the top row that phytoplankton 

tends to be most sensitive to changes in x 1 , with this input registering the largest 
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Figure 6.6: Station 1115: value of the largest and second largest phytoplankton input 

derivative mean and standard deviation, plotted at every seventh day of the original 

untransformed time series. The plot symbols are numbers corresponding to the input 

whose derivative is plotted and lines join values of inputs whose derivative appears at 

successive time points. For the mean plot, grey filled circles corresponds to derivatives 

whose values are negative. 

absolute value in the mean and largest standard deviation at the majority of time 

points. In addition, x3 registers as the largest absolute derivative in the mean and 

in the standard deviation for a small number of time points in middle of the year. 

Second order effects tend to be caused by x4 and x 10 early on and by x3 later on, 

with x6 also registering effects in the middle of the year. 

Figure 6. 7 shows the parameterisation of outputs for station 1115 together with 
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Figure 6.7: Station 1115: Derivatives of re-parameterised outputs with respect to 

each input computed at the twenty five input values. The set of active variables, 

x* = (x1, x4, x5, xw) for P1115, and x* = (x1, x4, XG, x13) for N1115, are coloured black 

and grey vertical lines denote ±2s.d. for each sample of derivatives. 

plots of first-order input derivatives for each output at the twenty five input points 

in our hypercube design, with vertical lines denoting ±2s.d. for each sample of 

derivatives. The plots provide an informal means to form various aspects of our prior 

beliefs. In looking for active variables for a given output, much of the information 

can be summarised by considering the sample mean and variance of each of the 

corresponding input derivatives. An input which has a collection of derivatives with 
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Figure 6.8: Station 1115: simulator output, Pi and partial derivatives, 8Pd8x1, i 

1, ... , 5, plotted against x1 for the first five plots, and simulator output, Nw, and partial 

derivative, 8Nw/8x13, plotted agrunst x13 for the final plot. For each output, function 

values are marked by their run number and derivatives by the gradient of the line passing 

through the corresponding point. 

small variance and mean close to zero can be discarded as inactive and we might 

choose not to compute its derivatives in further runs. An input whose derivatives 

have mean far from zero but small variance can be considered as active, but we 

may wish also to drop derivatives calculation in further runs as derivatives appear 

constant throughout the space. Conversely, we may wish to calculate higher order 

derivatives in future runs of inputs whose derivatives exhibit high variance. 
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Figure 6.8 takes, for each output, the twenty-five function values plots them 

against what appears, from Figure 6.7, to be their most active input - x 1 for P 

and x 13 for Nw - together with the twenty-five derivative values with respect to this 

input. A noticeable feature of the 8~j8x 1 values is that they seem, in general, to 

be much more variable for smaller x 1 than for larger x 1 . For Nw, we see the strong 

linear effect of x 13 in the function values and in the constant 3Nw/ 3x13 values. 

Output Input 1 Input 2 Input 3 Totals 

pl X1 (16,8,1) X4 (6,9,7) x3 (3,2,4) (25,19,12) 

p2 X4 (8,1,7) XI (7,15,2 X3 (5,1,1) (20,17,10) 

p3 X4 (9,0,4) Xl (3,12,3) X3 (5,1,2) (17,13,9) 

p4 X4 (8,1,7) XI (5,14,1) x3 (5,1,1) (18,16,9) 

p5 X1 (8,11,2) x" (7,4,5) x3 (5,1,1) (20,16,8) 

Nw X13 (25,0,0) X15 (0,13,5) X4 (0,3,9) (25,16,14) 

Table 6.1: Top three ranking inputs based on the number of runs at which an input scores 

one of the top three derivatives magnitudes. The numbers in brackets denote the number 

of runs at which each input scores the first, second and third highest derivative magnitude. 

A noticeable feature in Figure 6. 7 is a small number of large derivatives at each 

input. Thus the plots are good for spotting inputs with large derivatives, but these 

derivatives tend to warp the scale of the plot and make it hard to make a distinction 

between inputs at runs for which derivatives are smaller. A way round this is to 

produce versions of the plots with these extreme values removed. An alternative is 

to compare derivatives on a run-by-run basis: Table 6.1 does this by counting the 

number of runs at which each input has one of the top three derivative magnitudes. 

The numbers in brackets denote the number of runs at which each input scores 

the first, second and third highest derivative magnitude. For example we see that 

8Nw/8x13 is the largest derivative for all 25 runs, backing up our previous findings. 

A word of caution about these numbers, however, is this: some runs are more 

important than others. In particular, an input which ranks as the largest derivative 

for the majority of input points, but for which all derivatives are small at these input 

points will score well here but we may not feel it to be active: x 15 - which is the 
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second largest derivative of Nw at 13 of the 25 runs, may be one such input, based 

on Figure 6.7. 

The derivative plots in Figure 6.7 are also rich in information about the kind 

of variation explained by each input. In our case, the plot of Nu 15 (bottom right) 

shows that the derivative with respect to x 13 (Nref in the original units) is consistently 

relatively large with little variation. This led us to suspect a strong linear effect from 

x 13 dominating the variation for this output. Since there was no such consistent 

linear effect for the phytoplankton outputs, we decided to group our prior beliefs 

for the outputs into phytoplankton outputs and nutrient. For the nutrient output, 

Nu 15 , we chose the set of active inputs x* = (x 1 , x 4 , x 6 , x 13 ), marked black in Figure 

6. 7. Whilst there were some differences between phytoplankton outputs, given the 

small number of runs performed and the uncertainty inherent in linking it to the 

other sites, we decided not to break down our prior description further. We chose 

the active inputs x* = (x 1 , x4 , x 6 , x 10 ) for Pu 15 since, between them, they were 

responsible for the majority of the variation in derivatives at the exploratory site 

outputs. 

6.3.2 Assessing global prior mean and covariance parame

ters 

In selecting and estimating terms in our model at the exploratory site, we adopted 

a model-fitting approach, fitting linear, quadratic and first-order interaction terms 

in the active inputs for each output using Ordinary Least Squares (OLS). Table 6.2 

shows the R2 values for linear fits with and without quadratic and interaction terms. 

From Table 6.2, we see that R2 values for outputs in P are all much lower than for 

Nw and are all roughly the same order, although they tend to increase slightly for 

outputs corresponding to intervals further away from the centre of the year. All the 

phytoplankton R2 values are much lower than for Nw. 

In general, quadratic terms appeared to pick up less variation than interaction 

terms. Although the amount described by individual terms varied across different 

outputs, we chose to keep 'all linear terms' or 'all interactions' rather than hand-pick 

terms, in order to keep a reasonably flexible prior model which could be naturally 
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Output Pn15,1 pll15,2 Pn15,3 Pnl5,4 ?1115,5 Nll15,w 

R~n 0.43 0.53 0.33 0.48 0.54 0.97 

R~n+quad 0.55 0.59 0.47 0.59 0.62 0.98 

R~n+int 0.83 0.66 0.54 0.69 0.78 0.98 

R~n+int+quad 0.93 0.72 0.66 0.80 0.87 0.99 

Table 6.2: R2 values from OLS fits at station 1115. 

extended to other sites. Hence, we decided to keep linear terms for Nw and linear 

and first-order interaction terms for P. This gave models of the form 

Pm5,k !3o + L !3ixi + L !3i,jXiXJ + a;,k> i, j = 1, 4, 6, 10, 
i,j i#j 

Nlll5,w = f3o + L {Jixi +a;, i = 1, 4, 6, 13. 

(6.4) 

(6.5) 

In order to improve the fits for the phytoplankton outputs, we experimented with 

including inputs which we had not chosen to be active based on our derivative plots, 

but this also had little effect and we were wary about spurious improvements because 

of the small number of runs used in building the OLS models. We also tried a log 

transformation of the simulator output data, and repeated the OLS model-fitting, 

but this did not result in any significant improvement in the R2 values. Thus we kept 

the original models, believing them to represent a good description of global 'trends' 

in the phytoplankton outputs, but from which there was significant variation which 

would be described by higher order effects in the £-surface (including the variation 

described by the dropped quadratic terms). Table 6.3 gives the OLS estimates for 

the coefficients in these models. 

6.3.3 Assessing variance parameters for E and o 
Craig et al. (2001) describe a 'spectral decomposition' approach to estimating a; and 

ag, in a Bayes Linear context, which does not require full distributional assumptions. 

The method estimates a; and ag by regressing the residuals of the corresponding 

OLS fit onto the eigenva.lues of the model covariance of f + 5 for a given choice of 

8 as follows: Let e be the residuals from an OLS fit of S = s(X) on X. Then e = 
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f3o {31 {34 {36 {310 !31,4 !31,6 {31,10 !34,6 !34,10 {36,10 

p1 0.07 -0.11 0.13 -0.01 -0.10 -0.21 0.07 0.21 -0.01 -0.15 0.06 

g 0.63 -0.41 0.52 -0.03 0.18 0.02 -0.08 0.10 -0.10 0.33 -0.51 

p3 0.29 -0.23 0.17 -0.07 0.10 0.28 0.25 -0.05 -0.06 0.18 -0.30 

p4 0.28 -0.24 0.20 -0.12 0.15 0.23 0.24 -0.08 -0.13 0.22 -0.28 

p5 0.19 -0.21 0.13 -0.10 0.10 0.12 0.21 -0.08 -0.11 0.16 -0.19 

f3o {31 {34 {36 {313 

Nw 11.57 0.43 -1.31 -0.02 7.95 

Table 6.3: Estimates for B coefficients from OLS fit. 

P(c+6) where P = X(Xr X)- 1 xr is the projection operator from the OLS fit. Then 

Var[e] = PVar(c+6)PT = (}'; P RPT +(}'gP I pr, where R = exp{ -(x-x'f8(x-x')} 

is taken to be known. The two components of Var[e] commute (to see this note that 

P = pT and, since P is a projection matrix, pn = P for n ~ 1) so that they can be 

diagonalised simultaneously in an orthonormal basis u1 , ... , 1l71 with corresponding 

eigenvalues .Xi and .\f. Then, for vi = uf e, we have that the ui are independent with 

E[vi] = ufE[e] = 0 and Var[vi] = ufVar[e]ui = (}'; .\~ + (}'g>,f. Hence we can estimate 

(}'; and (J'g by regressing vf on .Xi and .\f (with no intercept term). 

Note that the method assumes that the value of 8 is known. In Chapter 4 we 

discussed the fact that estimating 8 values was difficult under a full Bayes anal

ysis and, in fact, the same turns out to true in a Bayes Linear analysis. Craig 

et al. (2001) take a common B for each input dimension and fix this value a priori, 

choosing this common value based on simulating random functions with a Gaussian 

covariance structure for different e values, and choosing a e which appeared to give 

realisations of roughly the desired variation. However, in Chapter 4, we illustrated 

with an example the potential that derivatives offer in estimating components of 8. 

Here we offer a way to exploit this potential by extension of the method of Craig 

et al. (2001), which not only keeps true to the Bayes Linear spirit of dropping full

distributional assumptions, but is computationally cheap. 

By considering the models for the derivatives of each output taken with respect to 
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each of its active variables 

(6.6) 

together with our model variance for E-derivatives which, from ( 4.13), is given by 

(6.7) 

we proceed as follows: 

1. Start with a prior guess for 8 (e.g. obtained from simulation). 

2. Use the spectral decomposition method of Craig et al. (2001) to obtain esti

mates of CJ; and CJ} for each output. 

3. Fit the global terms in (6.6), using e.g. OLS, to the corresponding derivatives 

generated by the simulator. 

4. For each output, take the Residual Sum of Squares (RSS) of the fit in step 3 

as an estimate of the left hand side of ( 6. 7), and divide through by estimates 

of 2CJ; from step 2 to obtain estimates of the ei. 

5. Iterate steps 2 - 4. 

We applied this 'modified spectral decomposition method' in order to assess CJ;, 

8 and CJ} for each output of the exploratory site. For everything that follows, we 

take 8 to be a diagonal matrix and adopt the shorthand 8 = diag( 8) for the 

vector of its diagonal elements. In choosing starting values for the elements of 8, 

we took all components to be equal and chose a common value of e = 2.5. The 

value was obtained by simulating random functions on the range [-1, 1], taken 

from a multivariate normal distribution with Gaussian covariance structure, for a 

range of different e values, and choosing a e which gave realisations of roughly the 

desired variation. In our case, e = 2.5 gave smooth realisations but also containing 

substantial quadratic and higher order effects. 

Table 6.4 gives the results of steps 2 - 4 of the modified method at the ex

ploratory site. Note that the method gives a estimate for each component of 8 for 
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Output a2 
( 

a2 
r5 e1 ()2 ()3 ()4 

H 0.045 0.013 27.33 5.91 2.95 0.79 

p2 0.279 0.015 7.78 3.76 0.79 1.03 

p3 0.231 0.058 7.18 5.36 0.36 1.07 

p4 0.227 0.012 9.91 5.82 3.03 3.34 

p5 0.009 0.215 6.80 2.06 0.96 0.14 

Nw 0.885 1.493 1.95 2.10 1.60 0.28 

Table 6.4: Estimates from the modified spectral method at the exploratory site. 

each output. Computational savings arise from outputs with common active inputs 

having common () values for these inputs. For phytoplankton outputs, we decided 

to combine estimates over outputs to obtain a single 8 vector, but to allow different 

values for different components of 8. In combining the estimates, we decided to 

ignore estimates corresponding to P 1 and P5 since both these outputs had small a; 
estimates to which our method of 8 estimation, which involves dividing by a;, is po

tentially very sensitive to any errors. The remaining 8 estimates for phytoplankton 

outputs were all the same order for any given component and we chose to combine 

them conservatively by setting each component to be the maximum value of that 

component over these outputs. This gave the estimate 8 = (9.91, 5.82, 3.03, 3.34) 

for P and 8 = (1.95, 2.10, 1.60, 0.28) for Nw. Finally, we plugged these estimates 

back into the spectral decomposition method to re-estimate a( and a0 for the new 

8. Of the resulting estimates, there was very little change, with six of the twelve 

estimates registering no change at all. 

Note that in general we could continue to reiterate the method, although we chose 

not to here because of the small changes and, in particular, because the estimates 

for aE corresponding to P2 , P3 , P4 were three of the six estimates which remained 

unchanged. A note of caution concerning an iterative method such as that outlined is 

this: unless the emulator residual is orthogonal to the regression terms (for example, 

with respect to a uniform distribution on x in our case), then the two parts of the 

model may begin to compete for variation because of the non-identifiability of the 

model. In particular, the residual may try to 'steal' variation from the regression 



6.3. Preliminary analysis at station 1115 92 

terms leading to a CJ€ term which is too large and a collection of 8 parameters which 

are too small. Since we made just one pass through the method here, this is not 

an issue; in general, however, it may be - and in fact it may be advisable to limit 

oneself to one iteration. 

As mentioned previously, estimating 8 is a problem that has caused a great deal 

of difficulty in the literature. Access to derivatives, however, has offered us a way 

to estimate 8 which is simple owing to the form of the E-surface and enables us 

to make prior distinctions between dimensions because the information contained 

within the derivatives is linearly related to 8 through (6.7). Diagnostics of emulator 

forecasting performance in Section 6.6 show nothing to contradict our belief that 

these estimates are good. 

6.3.4 Design of simulator runs 

In selecting the set of inputs at which to run the simulator, we set down a total 

budget of 200 runs across the four calibration stations and took a 200 point Latin 

hypercube over all thirteen inputs and then assigned each calibration station twenty 

five of these runs at random. A single hypercube was preferable to generating a 

50 point Latin hypercube at each station as we wanted to maximise our coverage 

of the input space in our search for inputs which produce good matches at all four 

stations. Random assignment of these runs to each station was a simple and quick 

way to divide up the runs although better assignments are probably possible. Whilst 

Latin hypercubes offer space-filling designs which project well into lower dimensions, 

they do not guarantee orthogonality and can potentially result in highly correlated 

designs. Schemes to generate orthogonal designs, by contrast, are typically not space 

filling and this effect is exacerbated after projecting into lower dimensions. We were 

able to exploit the desirable properties of a Latin hypercube design whilst exercising 

control over the degree of orthogonality in a simple way as follows: we generated 

several candidate designs and computed the correlation matrix for each. For each 

input, we computed its maximum correlation with the remaining inputs, giving a 

total of thirteen correlations, denoted cl' ... 'cl3 after ordering from smallest to 
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largest. We then chose the design which minimised 

wC5 + (1- w)C13 with w E [0, 1] (6.8) 

and investigated the effects of varying w, whose value reflects the relative impor

tance of minimising the active input correlations relative to the remaining correla

tions. Finally, we permuted the columns of our final choice of hypercube so that the 

dimensions with the smallest five correlations corresponded to active inputs. 

0 
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Figure 6.9: Mean ±2 standard deviation of C1, ... , C13 values based on 25 minimisa

tions of wCs + (1 - w)C13, with each minimisation over 10,000 randomly generated 13-

dimensional 200-point hypercubes. Results for different values of w E (0, 0.25, 0.5, 0. 75, 1) 

are shown from left to right for each Ci. 

Figure 6.9 plots the means ±2s.d. for twenty five minimisations, each over 10,000 

candidate hypercubes, for different values of w. We see firstly that, for w close to 1 

(where we constrain C5 only), that C13 shows a lot of variation in its value and can 

be relatively large. On the other hand, for smaller w, the constraint on C13 has the 

effect of constraining all C5 reasonably well, but at the cost of not constraining the 

smaller Ci quite so much. Based on this, we generated a further 10,000 candidate 

hypercube and chose the design which minimised (6.8) with w = 0.9 chosen to 

direct most of the effort into minimising correlations between active inputs, but 
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precluding large values of correlations between inactive inputs. This gave a largest 

correlation involving an active input of magnitude C5 = 0.097 in our final choice 

of hypercube. There are many sensible alternative criteria to (6.8) which could be 

employed to exert some control over correlations and this may be an interesting 

area for future work. We do not pursue this here, but note that employing some 

form of control over the degree of orthogonality of hypercube designs is probably 

desirable and can be achieved very cheaply (a sample of 10,000 hypercubes took 

approximately two minutes to generate and minimise on our computer). For some 

alternative approaches to improving Latin hypercube designs, see Koehler and Owen 

(1996) and references contained therein. 

6.4 From exploratory analysis to prior emulator 

The exploratory site had two main functions in assisting our emulation at station 

1113. Firstly, it revealed active inputs and provided estimates of coefficients of the 

resulting model in these active inputs to aid with prior model building at station 

1113. Secondly, again through the selecting of active inputs, it influenced our design 

of input points at which to run the simulator at station 1113, in order to refine our 

prior. A natural way to proceed in forming a prior at 1113, then, is through a 

combination of the estimates of the exploratory model-fitting in conjunction with 

informal assessments of our beliefs about the likely magnitude of difference between 

the two sites. We took the same form for outputs as at the exploratory site, given 

in (6.4), and took OLS coefficient estimates as the corresponding prior mean for the 

terms at station 1113. In forming variances for these coefficients, we considered for 

each coefficient a relationship of the form: 

(6.9) 

where we chose a and b to reflect our beliefs about the differences between the 

stations: a specifies what our uncertainty about a coefficient at station 1113 would 

be if we knew the value of the corresponding coefficient at 1115, b ~ 1 scales up 

uncertainty because OLS fitting assumes an uncorrelated error distribution which, 

in practice, does not hold. In the absence of strong information about a and bat this 
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Figure 6.10: Station 1113: output parameterisation (top left) and derivatives of the re

parameterised outputs with respect to each input computed at the twenty five input values 

(remaining plots). See caption in Figure 6.7 for full description. 

take, we chose to take them to be equal for all components of P and to choose them 

conservatively. An obvious way to learn about these values is to perform exploratory 

analyses at two sites. However , we chose instead to maximise our run budget for 

updating and scale uncertainty conservatively here (We can scale less conservatively 

when we link to and form priors for subsequent sites). In general, a more complicated 

linking relationship than (6.9) may be appropriate. For example, if the coefficients 

are on vastly different scales, we may want to scale with the quantity itself as well; 
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this was not the case here however and so (6.9) was felt to be sufficient. 

Figure 6.10 gives the derivative plot for twenty five input points assigned to 

station 1113 at random from our 200-point hypercube, which we use as a diagnostic 

for checking aspects of our prior beliefs. In general, if for some station, the plots 

look very different to those at the exploratory site, we might for example perform 

OLS fits on the simulator output at the station and, in some cases, add extra terms 

into our prior emulator model, although we did not feel this to be necessary in this 

case. Similarly, our hypercube design is flexible in being easy to sample over extra 

active inputs dimensions for the seventy five remaining points if we do find extra 

or difFerent active inputs. For N 1113 we saw much the same behaviour as at the 

exploratory site with a large linear effect from x 13 indicated. For the Pm3 , the plots 

reinforced our choice of active inputs as the four were active across most outputs 

and did not appear to contradict our prior groupings. 

6.5 Resolving emulator uncertainty at a single site 

We are interested in the additional reduction of emulator uncertainty caused by 

evaluating derivatives. For the calibration problem in hand, we are additionally in

terested in the effect this reduction has on our ability to calibrate the model, which 

we explore in Chapter 7. In making the comparison, we introduce the subscript 

notation Xn to denote the first n input vectors in X, with Sn and 'V .•• Sn the corre

sponding simulator output and derivatives respectively. We evaluated our adjusted 

beliefs, for each output, on an evenly spaced 154 grid representation of the possi

ble values of the four corresponding active inputs. This equates to 154 = 50, 625 

evaluations for each output, which we can compute in less than one minute, demon

strating the strength of the emulator method. To compare variance reduction with 

and without derivatives, we considered the mean adjusted standard deviation, 

Sbon =mean SDo,[s(x)] (6.10) 
X 

and the maximum adjusted standard deviation, 

Sbo, = maxSDo,.[s(x)], ( 6.11) 
X 
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both taken over the 154 grid representation of the active input space. 
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Figure 6.11: Adjusted standard deviation against number of simulator runs with deriva

tives (black) and without derivatives (grey) for outputs at Station 1113. Solid and dashed 

lines correspond respectively to the mean and maximum standard deviation taken over 

the input space. The light grey rectangle is defined by the horizontal lines V 1J'l_ + tJJ and 

IJ 0, shown for reference. 

Figure 6.11 shows SbDn and sbDn against the size, n, of the input set, Xn, for 

the outputs at station 1113, comparing the cases when derivatives are and are not 

included. The vectors in X appear in the order that they were selected at random 

from the 200-point hypercube so that Xn+l is equivalent to Xn together with an 
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Figure 6.12: Station 1113: Separate components of adjusted standard deviation with 

derivatives (black) and without derivatives (grey). Solid lines correspond to SDDn[Bg(x)] 

and dashed lines to SDDn[E(x)]. The light grey rectangle is defined by the horizontal lines 

J a~+ a~ and a0 , shown for reference. 

input vector randomly chosen from the remaining input vectors and does not, for 

example, correspond to an ordering of the most informative runs. 

For each output, the a0 line corresponds to the irreducible part of the variance 

and is thus a lower bound on the overall standard deviation, whilst the J a'; + a~ 
line denotes the level of standard deviation at which mo t of the global variance has 
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been resolved and after which we learn mainly about the £-surface. In both plots 

we see that both the mean and maximum are significantly lower when derivative 

information is included (black) than when it is not (grey). 

We see that, for Nw, the standard deviation decreases much faster than for the 

phytoplankton outputs for small n, which is a consequence of the smaller number 

of global terms in B leading to quicker resolving of global variation, which is the 

dominating variance for small n. This is confirmed also by the plot of separate 

part of the variance surface, given in Figure 6.12. In the bottom plot, the means 

are furthest apart after five runs and, after twenty five runs, the mean without 

derivatives has caught up quite a lot of the difference (although the maximum still 

has some way to go). In contrast, in the phytoplankton plots, the slower decrease 

in standard deviation means that, after twenty five runs, the difference between the 

two is just about levelling off at its maximum value so that we feel the benefit from 

including derivatives over the whole range. 

We also investigated percentiles of the distribution of standard deviations such 

as the 50th and 95th percentiles. We found that the 50th percentile remained very 

close to, although slightly lower than, the mean and the 95th percentile remained 

approximately half way between the mean and maximum, giving an indication of 

the order of positive skew of the distribution. 

The benefit of including derivatives can be thought of in terms of the horizontal 

(for a given number ofruns with derivatives, how many runs do we expect to need to 

perform to obtain the same variance reduction without derivatives?) and the vertical 

(for a given number ofruns, what is the additional reduction in variance achieved by 

observing derivatives?). Figure 6.11 shows us that, when we reduce largely global 

variation, the vertical gain can be much higher whereas, as we resolve variance 

largely in the £-surface, the horizontal benefits are the greater. Considering vertical 

gain, for the outputs in Figure 6.11, the additional reduction in mean variance for 

Nw is at its greatest after five runs at 44.5%, after which it falls gradually to 31.2% 

after twenty five runs. For P, the additional reduction in standard deviation climbs 

slowly as we increase the number of simulator runs and is not far off levelling out 

at 30.3% after twenty five runs, after which we expect it to begin falling slowly 
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again. As a measure of horizontal gain, we took the number of runs based on 

derivatives at which the mean variance surpassed that obtained by n = 25 runs 

without derivatives, which we found to be n = 8 and n = 6 for outputs P and 

Nw respectively. This corresponds to horizontal gains by factors of 3.1 and 4. 2 for 

these two outputs, which represents a substantial saving in effort given our expected 

increase in cost by a factor of 1.8 in generating them. 

6.6 Simulator Diagnostics 

For each output, we considered one-step diagnostics for each of the correspond

ing simulator runs as follows: for the (n + 1)th input choice, Xn+I, we computed 

ED, [s(xn+d], the adjusted expectation based on observing output, Dn = (Sn, \7 x•S11 ), 

at the first n input vectors and compared this to s(xn+I), the value obtained from 

running the simulator at Xn+I, after dividing each by SDDJs(xn+I)], the corre

sponding forecast standard deviation. Figure 6.13 shows diagnostics for outputs at 

station 1113 based on function values and Figure 6.14 plots the same quantities when 

derivatives are included in the updating. In both plots we see a general decrease in 

uncertainty as we learn about the simulator and observations generally falling within 

±3 forecast standard deviations of the forecast mean. The only notable exception is 

ED29 [s(X30 )] which underestimates the collection of unusually large phytoplankton 

values at X 30 , and affects both function value and derivative plots. 

To compare derivatives and function values more directly, we considered the 

quantity f:::.s, - f:::.(sn,'Vx•Bn) where !:::.Dn is defined by 

/:).D = ED,[s(xn+I)] - s(xn+d 
n SDDn[s(xn+I)] 

(6.12) 

Figure 6.15 plots these values together with a running average of the scores for 

each n. The expected value of this quantity is zero and so we expect, in particular, 

the running average to be close to 0 for large n; from the Figure 6.15 this seems to 

be the case. 

In general we do not expect that the derivative-based emulator will do better 

on every individual forecast, but if for example the inclusion of derivatives leads to 

consistently worse forecasting, then this provides a diagnostic concerning the model 
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Figure 6. 13: Forecast diagnostics based on function values for the outputs at station 

1113 plotted against the number of runs, n. Filled circles correspond to s(xn+d, the value 

observed when running the simulator at Xn+l· Unfilled circles correspond to Evn [s(xn+ 1) ] 

and vertical lines show ±3SD Dn [s(xn+dl for Dn = Sn . 

specification and may lead us to revise our beliefs. Hence the greatest benefit from 

including derivatives may not be that it leads to better forecasting; rather that, in 

the cases that it leads to a worse forecast ing performance, a model misspecification 

is revealed about which we might otherwise have been blissfully unaware. 
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Figure 6.14: Forecast diagnostics based on function values and derivatives for the outputs 

at station 1113 plotted against the number of runs, n. See Figure 6.13 for details (Dn = 

(Sn, 'Vx•Sn)). 

6. 7 From single to multiple sites 

The process of building emulators at multiple sites is much the same as at a single 

site: we transform the data at the exploratory site onto the intervals correspond

ing to the station under consideration and form a prior based on the same fitting 

approach of this transformed data. However, some additional features arise for 

consideration in choosing priors for remaining sites, in particular relating to our in-
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Figure 6.15: Plots of tl.sn- tl.(sn,Y'x•Sn) for station 1113 (See Eqn. 6.12). The red dotted 

line shows Derr=O and the blue line gives the running average of the first n Derr scores. 

formal adjustments of uncertainty. If we consider, for example, emulating a second 

site, station 1116 say, then as well as the prior emulator based on our exploratory 

analysis at station 1115, also available to us is the posterior emulator at station 

1113. To form prior expectations at other sites, we can build OLS models based 

on the exploratory site in exactly the same way as at station 1113. Parameteris

ing the exploratory data by the interval ranges belonging to the station we wish to 

emulate, we believe, captures the common variation over these intervals, described 

by the simulator time dynamics. The difference between prior and posterior beliefs 
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at station 1113 potentially offers valuable information when considering our prior 

variances at the second emulator station (that is, relating to the how we rescale 

prior uncertainty from the exploratory site to the second emulator site) in giving us 

an idea about the scale of warping of the common variation by differences in forcing 

functions. 

In particular, taking the results at the exploratory site and using them in building 

our prior for the first emulator site essentially involved a scaling up of uncertainty 

according to our beliefs about the relationship between the two. Owing to a lack of 

knowledge about the magnitude of the difference between stations 1115 and 1113, 

the scaling we chose was one which, we believed, was conservative, leaning towards 

the upper end of what we thought the variance of the difference may be. In practice, 

it would seem to make sense to scale conservatively when linking early emulators 

and reduce this scaling (and presumably the number of runs performed) for prior 

emulators at later stations based on what we learn about the differences between 

stations. Informal updating of our beliefs about the difference between sites could 

be reviewed at each stage of a sequential emulation of sites. However, here we 

considered only a review from the first to second emulation site, considering that 

this link would encapsulate the bulk of the revision. vVe reviewed diagnostics for 

each site, given in Appendices A.l and A.2, similar to those used in emulating station 

1113, to make sure that there was no evidence obvious conflict between prior of run 

data at the sites. 

We could potentially improve our understanding of the relationship between sites 

by including some replicates of the input points at which we ran the simulator for 

the earlier stations although we refrained from doing this in favour of maximising 

coverage of the input space within our budget. Also we could build a multivariate 

covariance structure over outputs and stations: this is a big area for future work 

related to the physical problem. 



Chapter 7 

Calibrating the model 

In this chapter, we perform a calibration experiment on the simulator. We begin 

by introducing and justifying an 'implausibility' approach to calibration and then 

calibrate the model at several locations using the approach. We investigate the 

knock-on effect the inclusion of derivatives has on our ability to calibrate, by com

paring calibration based on function values with that which also uses derivatives. 

Finally, we obtain a calibrated region for the simulator using the full collection of 

function values and derivatives as our best answer to the calibration problem. 

We follow Craig et al. (1996, 1997) who develop an approach to calibration 

using the notion of "implausibility". An implausibility-based approach is a form of 

global search which seeks to identify classes of solutions by ruling out implausible 

inputs, where an implausible input is one which is "unlikely" to have given rise to 

the physical observations under some appropriate metric. In order to define such a 

metric, we need first to link simulator output, s(x), to the physical observations, y, 

which we do in the following section. 

7.1 Linking simulator and physical system 

In linking scalar simulator output, s(x), to the physical observation, fj, we proceed 

in two stages. Firstly, we link the system, y, to physical observations, y, by the 

relationship 

i;=y+e 

105 

(7.1) 
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where e is the observation error, taken to be independent of y with expectation 0 

and variance a;. Secondly, we link the simulator output, s(x), with the system, y, 

via the following equation 

y = s(xo) + TJ (7.2) 

Eqn. (7.2) assumes the existence of a unique but unknown value x 0 for which we 

assume s(x0 ) summarises all the information about y contained within evaluations of 

the simulator; in other words, if we were to run the simulator at x 0 , we would learn 

nothing more by running the simulator elsewhere. This judgement is expressed 

by taking the discrepancy, TJ, between this representation and the system to be 

independent of each s(x) and of x0 , with expectation 0 and variance a~. 

In terms of the plankton model, we assume that there is a single setting of the 

input parameters for which the associated output is sufficient for the plankton model 

in summarising everything we can learn from the plankton model about plankton 

cycles in the sea (at the scale we consider). The discrepancy TJ is a measure of 

how closely this best model output reproduces reality. The fact that we consider 

TJ to be independent of the simulator means that, for example, we don't allow for 

situations where one choice of input parameters produces good simulator output at 

some time points only and a different choice of parameter settings produces good 

output at other time points only. In practice, it is hard to justify this assumption -

although it is currently the norm. An alternative would be to allow the discrepancy 

to depend on the value of x 0 (see e.g. Rougier, 2004) although again we would not 

be confident in specifying the exact form of such a dependency. Another approach 

would be to make these assumption not in linking the plankton model to reality, 

but to link the model to a 'better' plankton model. This 'better' plankton model 

would be closer in some sense to reality and the linkage would then perhaps be more 

justifiable. Goldstein and Rougier (2004) outline an approach in this vein, in which 

this consider a hierarchy of increasingly detailed simulators. 
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7.2 Implausibility in a single output dimension 

We now proceed with a hypothesis-testing type argument, developing a measure of 

how likely, based on our beliefs, a given input point, x, is to produce a good match 

under the assumption that x is the best input, x 0 . If the measure suggests this to 

be unlikely, then we consider this to be evidence that x is implausible as x 0 . 

Under the hypothesis that x = x 0 , (7.1) and (7.2) together yield 

(7.3) 

We then evaluate the implausibility, I(x), of a point, x, as 

I(x) = IEv[s(x)]- Yl 

Jvarv[s(x)] +u~ + u; 
(7.4) 

Large values of I ( x) indicate that there is a large standardised difference between the 

expected simulator output, Ev[s(x)], and the corresponding physical observation y 

and thus that x is unlikely to be a good choice of calibration value x 0 . Small values 

can indicate one of two possibilities. First, Varv[Y] may be large, so that we are 

too uncertain to rule the input x out. Second, the expected difference between 

simulator and physical observation may be small so that x lies within the class of 

acceptable matches. The presence of the separate parts of the denominator in (7.3) 

can be intuitively understood as follows: the larger Varv[s(x)], the less certain we 

are about the value the simulator would produce if run at x and so the less willing 

we are to rule x out; the larger u; the less useful the physical data is for calibration; 

the larger u~ the less able we believe the simulator to be of reproducing the physical 

system- and hence the larger the difference between simulator output and historical 

observations can be before we rule out the input. In our example, as a simple rule of 

thumb, we rule an input x as implausible if I(x) > 3; for comparison, the three sigma 

rule (Pukelsheim, 1994) states that for any unimodal density, at least 95% of the 

probability lies within three standard deviations of the mean. Where appropriate, 

we check that our results are not too sensitive to the choice of cut-off to make sure, 
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for example, that altering the cut-off value slightly does not vastly alter the number 

of points ruled implausible. 

Finally, we note that the "ruling out" approach to calibration underpins the 

philosophy in our choice of parameterisation of phytoplankton output in section 

6.2; that we do not necessarily believe that the minimum fit based on the interval 

means for phytoplankton will produce the best representation, rather that if an 

input does not produce an acceptable match to the means, then we wish to discard 

it from further consideration with the best representation lying somewhere within 

the remaining input region. 

7.3 Combining lmplausibilities 

We combine implausibilities, h, ... , h, corresponding to scalar components of a 

vector of outputs, Y = (Y1 , ... , Yk), using 

]y ( x) = max Ii ( x) (7.5) 
2 

reflecting our desire that an input be ruled implausible if it is implausible for any 

of the outputs (See Craig et al., 1997, for some alternative measures). In visual

ising plausible regions in the input space, we consider plots of lower dimensional 

projections of the implausibility surface given by 

(7.6) 

where x', a subset of x, is the set of the components to be plotted and x" is the set of 

remaining components over which we minimise. Such a projection enables us easily 

to rule out regions based on the plot, since for a projected input to be implausible 

it must be implausible for all combinations of the omitted components. 

7.4 Bayesian vs Bayes Linear calibration 

In a fully Bayesian approach, probability distributions must be specified for e and 

r; in (7.2) and (7.1) and, in theory, a posterior distribution for x 0 , conditional on 

the simulator run data and physical observations, derived. In practice, however, the 
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posterior is not available in closed form and computationally intensive numerical 

quadrature routines must be used which quickly become infeasible for simulators 

which are slow or contain large numbers of inputs (See Kennedy and O'Hagan, 2001a, 

who obtain the posterior mean for x 0 after approximating prior beliefs to be normally 

distributed and applying such techniques and give a discussion of the limitations 

of such an approach). In our case, beliefs about the simulator are characterised 

by a Bayes Linear belief structure which prohibits such a full Bayes analysis. It 

is worth recalling that one of our main motivations for a Bayes Linear approach 

is that the complexity of the simulator makes us uncomfortable about specifying 

full distributional assumptions, since we are unclear about how accurately such 

assumptions reflect our beliefs. In general, experts tend to be less clear about their 

beliefs relating to quantities linking the simulator to the historical observations - in 

particular, the 7]-surface- than they are about their beliefs concerning the simulator, 

adding further weight to the case for a Bayes Linear approach in general, since the 

ultimate aim of any emulation will be to use it to make inferences about the real 

world. 

7.5 Choosing (J'e and a'TJ 

In order to compute implausibilities, we first had to elicit Ue and u 17 for each output. 

The observational error estimates for Ue relating to phytoplankton components were 

specified by the expert and derived from two sources. Firstly, an estimate of variation 

caused by mesocale eddy activity was obtained from sample variances of pixels within 

a 150km radius of the corresponding station. Secondly, the error in the Sea WiFS 

chlorophyll pixel estimates was taken to be such that 3 error standard deviations 

corresponded to (35%) of the observed value, based on the SeaWiFS target to achieve 

95% of the data within (±35%) of in situ measurements of the same quantities. 

Analysis in O'Reilly et al. (2000) appears to show these errors are uncorrelated 

overall, but we expect there to be some spatial and temporal correlation between 

measurements, which isn't tested for in the analysis, and so we chose, conservatively, 

to take the interval mean of these observations to have 3.s.cl also of (±35%). (For 
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an interesting exploration of more complicated measurement error structures, see 

Buck et al., 1996). No data were available to us of the variablity of the nutrient 

observations and we took these observations to have variance 1 at each station, 

based on the estimate of the expert. 

For the discrepancy term, CJ7-, we began by considering residual mean-squared val

ues between simulator and physical observations: Hemmings et al. (2004) calculated 

residual mean squared values for each station by summing the squared difference 

between physical observations and his 'best' output, and found values to be between 

2 and 4 observational standard deviations for chlorophyll and between 0 and 2 for 

nutrient. We expected discrepancy estimates of roughly the same order to be ap

propriate, although not necessarily identical since Hemming's calibration method 

differed in several ways from ours, using a different output parameterisation, a dif

ferent set of stations over which to calibrate and constructing a 'misfit function' -

essentially an implausibility measure (different to ours) - which he then attempts 

to minimise. With this in mind, we took individual components of CJ1J to be equal 

to the corresponding components of CTe, whilst investigating the effects on our cal

culations of scaling through a range of multiples mCJe for m = 0, ... , 5. The value 

m = 0 is chosen because of its conceptual interest - corresponding to the case of no 

discrepancy between the simulator output and the physical system - rather than as 

a realistic physical value. 

7.6 Preliminary comparison with and without deriva

tives 

We computed implausibilities for each output, using (7.4), over the 154 grid of cor

responding active input points on which we adjusted beliefs in Chapter 6. Wherever 

we consider the effects of the number of runs on implausibilities, the ordering of runs 

is the same as in Chapter 6. For each input point in the grid, we combined implau

sibilities across outputs and stations based on (7.5), to produce lp, the maximum 

implausibility over the set, P, of phytoplankton outputs across all four stations and, 

IN, the maximum implausibility over the set, N, of mid-winter nutrient values at 
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Figure 7.1: Proportion of input space ruled out by the set, P, of phytoplankton outputs 

across all four stations with derivatives (black) and without derivatives (grey) plotted 

against the size n of the input set Xn at each station (so that e.g. n = 10 corresponds to 

ten runs at each station, and so forty in total). The numeric plotting symbols, m= 0, 2, 
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Figure 7.2: Proportion of input space ruled out by the set, F8 , of phytoplankton output 

for each station, s, with derivatives (black) and without derivatives (grey). 

the four stations. We did not combine these two measures at this stage in order 

to investigate the separate effects on calibration of the phytoplankton and nutrient 

outputs. 

Figure 7.1 plots the proportion of input points ruled implausible based on P 

against the number of simulator runs, n, when derivatives are included (black) and 
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when they are not (grey) for the two cases 0"1J = 0, u1J = 2ue. For a given set of n 

input points, we see a marked improvement in our ability to rule out space when 

derivative information is included; with zero discrepancy, the proportion of input 

space ruled out after 5 runs at each station is 10.2% without derivatives compared 

to 77.6% with derivatives and, after 10 runs at each station, the corresponding 

proportions are 61.8% and 96%. For larger values of n, the difference begins to close 

as function values catch up, derivatives having effectively ruled out everything that 

is not plausible. For 0"1J = 2ue, we see similarly large differences which prevail for 

large n. 

Figure 7.3 plots the number of 'falsely' ruled points ruled out showing, for each 

n, the number of points which are currently ruled out which are ruled in based 

on n = 50 runs. The top left plot shows the effect at station 1116 which peaks 

at just over 10% of points after ten runs. The function values and derivatives for 

outputs at the tenth run are amongst the largest of those observed at station 1116 

and this effect is apparently more localised than the emulator allows. The values 

are not particularly unusual and removing this observation does not register much 

of a change on the analysis. The top right hand plot shows the overriding cause; 

a slight sensitivity of the analysis to the cut-off value c = 3 above which we rule 

inputs as implausible. The top right hand plot shows the number of points that are 

ruled out after n runs based on a higher cutoff of c = 4 which are ruled in after 50 

runs and we see that most of the effect has gone. There is still a peak after n = 10 

runs but it quickly dissappears. In any case, we expect there to be a certain level 

of missclassification at each stage and are not too unhappy with the levels observed 

(See Craig et al. (1997, Section 8.1) for an interesting observation related to this). 

The bottom row shows the proportion of falsely ruled out points based on all four 

stations and here we see the benefits of having several stations, with the effect at 

station 1116 damped by their support. Overall the levels appear acceptable and, in 

general, appear to be lower when derivatives are included than when they are not. 

The difference in our ability to rule out based on the set of nutrient outputs, Nw 

- shown in Figure 7.4 - is less marked, although it is still significant. For a given 

collection of u 17 values, derivatives consistently allow between 4% and 7% additional 



7 .6. Preliminary comparison with and without derivatives 

0 
~ -
0 

LO 
C\l -
0 

0 
C\l -
0 

LO 
"": -
0 

0 
... -
0 

LO 
C! -
0 I 

Station 1 1 16 c=3 

,, 
t I \ \ 

\ 

,\..,. I"',,,'' 
~' ' 

0 2 -'~------------------~\ C! -1~ --... 
O I I I I I I 

0 
~ -
0 

LO 
C\l -
0 

0 
C\l -
0 

LO 
"": -
0 

0 
"": -
0 

LO 
0 -

0 1 0 20 30 40 50 

All 4 stations c=3 

0 .......... --, , - ................... -
0 21 
C! -or-~-----------~ 
0 

I I I I I I 

0 1 0 20 30 40 50 

Station 1116 c=4 
0 
~ -
0 

LO 
C\l -
0 

0 
C\l -
0 

LO 

0 -

0 

LO ' 0- , ,-, 
Q I "' ,\ 

'-2 I -- ~' 

0 ·~~~~--------~--~~ 0-1~ 
' - J -- ... ' 

' .....:...~) 

O I I I I I 

0 
~ -
0 

LO 
C\l -
0 

0 
C\l -
0 

LO ;; -

0 

0 -

LO 
0 -
0 

0 10 20 30 40 

All 4 stations c=4 

8 - 2 , - • - - , ,. , ~ _, - , - ~ .,. --- -- - .., ,. 

O ~ I I I I 

0 10 20 30 40 

I 

50 

I 

50 

113 

Figure 7.3: Proportion of points 'falsely' ruled out by phytoplankton outputs at station 

1116 (top) and all four stations (bottom). The proportions are the number of points which 

are ruled out based on n input points but ruled in based on n = 50 points. Shown in each 

plot are the proportions with derivatives (black) and without derivatives (grey) for 0" 17 = 0 

(thick line) and 0" 17 = 20"e (clotted line). The cut off value in each plot is the implausibility 

score above which we rule points out. 

space to be ruled out. Our ability to rule out a large amount of space before we 

make any runs is due to the strong linear effect of x 13 , as respresented by a relatively 

large prior expectation for the (313 coefficient in the emulator for Nw 8 , the form of 
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Figure 7.4: Proportion of input space ruled out by the set, Nw, of nutrient outputs across 

all four stations with derivatives (black) and without derivatives (grey). See Figure 7.4 

for more details . 
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Figure 7.5: Proportion of input space ruled out by the nutrient output , Nw,s, at each 

station, s, with derivatives (black) and without derivatives (grey). 

which is given in (6.5). Many of the points that are not ruled out a priori are ruled 

out by five runs or fewer because the variance relating to the x 13 term is quickly 

resolved in the updating. 

We see from the plots that, as we increase the number, n, of data points, we 

approach a 'saturation level ' which is essentially an upper bound on the proportion 

of points we can rule out as implausible. As we get close to this level , any extra 

simulatm data makes little difference to the calibration. The value of this saturation 



7.6. Preliminary comparison with and without derivatives 115 

depends on the collection of aTJ values and, in particular - as we would expect - the 

level decreases as we increase the scaling of the aTJ values. Close to this saturation 

level, reducing simulator variance further makes no difference because the change 

is small compared to the size of ary. For the P, we have effectively reached this 

saturation level for the four stations combined after 10 runs with derivatives at each 

station whilst, we begin to get close at about n = 30 runs. Proportion of space 

ruled out by Nw and P for a few choices of n are given in Table 7.1. Note that, 

for calibration based on individual stations only (Figure 7.2), we are yet to reach a 

saturation level based on phytoplankton after n = 50 runs at each although we have 

for nutrient (Figure 7.5). 

Note that although Figures 7.1 and 7.4 offer a natural way to compare calibration 

with and without derivatives for P and Nw individually, comparisons between the 

two groups using the plots may be somewhat ambiguous. This is because Nw has an 

active input - x 13 - which is apparently much more active than the others so that, 

thinking of the proportion of ruled out points as a volume of the four dimensional 

active input space, we rule out based mainly on the x 13 dimension and the resulting 

region is a 'wedge' which is thin in the x 13 dimension and wide in the remaining 

active input dimensions. By contrast, the set P has no input that is dominant to the 

same extent, so that the ruling out of points is much more evenly spread through 

the active input dimensions. 

As a final remark, it is worth noting that this increased 'speed' of learning about 

the emulator offers once again a lot of potential as a diagnostic - this time on our 

discrepancy variance: not only does derivative information allow us to rule out 

points more quickly, it allows us to see more quickly if we are ruling too much space 

out (in other words, when our discrepancy values are too low). This is important 

because we are concerned not to rule out points which currently have high-relative 

implausibility but which subsequently turn out to be good matches under the correct 

discrepancy specification. Such a scenario would be particularly disastrous if we had 

refocused our search in a sub-region of the input space having wrongly ruled out 

an alternative region because we had been too demanding of the simulator in our 

choice of discrepaucy variance. 
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N p 

m 0 1 2 0 1 2 

n F T F T F T F T F T F T 

1 38.8 46.3 34.3 40.0 24.0 28.5 0.4 7.0 0.3 5.5 0.1 2.0 

5 72.5 80.7 63.1 69.5 41.7 46.1 10.2 77.6 8.7 72.2 6.0 58.2 

10 77.1 84.8 66.0 73.0 42.5 46.9 61.8 96.0 58.8 93.0 50.7 74.5 

25 85.8 92.3 74.4 80.8 47.9 53.7 89.9 98.2 84.4 95.9 61.2 77.8 

50 90.9 95.1 78.9 83.6 51.7 56.8 95.4 99.8 90.3 99.1 61.2 85.6 

Table 7.1: Percentage of input points ruled implausible at each station based on n sim-

ulator runs and o-IJ = m a-e. F denotes the percentage when derivatives are not included 

and T when they are. 

7.6.1 Function and derivative calibration trade-off 

To conclude the comparison between function values and derivatives of calibration, 

we consider again horizontal and vertical gains as we did for emulator uncertainty 

reduction in Chapter 6. Since, in our discussion of falsely ruled out points, we 

concluded that levels were reasonably low, we compare trade-offs based on points 

ruled out. In any case, derivatives showed a slightly lower false rule out level in 

general and so consideration of this level would most likely benefit them. For the Nw, 

we have commented on the relatively small difference between function values and 

derivatives for calibration of the Nw. However, if we are concerned with questions 

of the type 'How many derivatives do I need to get a calibration as good as with 

fifty function values?' (horizontal difference), then the trade-off looks a lot more 

attractive; about ten. This is slightly misleading since ten function values allows 

us to rule out most of the same points. However, for phytoplankton outputs, a 

similarly impressive (if slightly better) horizontal trade-off gives rise to calibrations 

with which the same number of runs with only function values fails to compete. 

We would expect the trade-off to be favourable to derivatives, in general, for any 

outputs for which the E-surface explains a significant proportion of the variation 

(that is, for outputs which are not too linear). For our simulator, the trade-off for 
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phytoplankton outputs of fifty function values versus ten runs with derivatives is a 

significant one and is strong in light of the increase in cost of calculating derivatives 

of only a factor of 2. 

7. 7 CaHbration under maximal information 

We now consider calibration using the full fifty runs at each station with derivatives 

in order to produce the best calibration for the physical problem. In all that follows, 

we take (TT/ = ae for all outputs. The exploration concludes with a discussion of our 

results in the light of the analysis by Hemmings et al. ( 2004). 

7.7.1 Lower dimensional projections of implausibility 

In order to visualise the plausible regions of the 4-dimensional input space, we 

produced plots of the lower dimensional projections of the implausibility surface 

by minimising over input dimensions using (7.6). Figure 7.6 shows 2-dimensional 

projections, lp(x 1 , x 4 ) (left) and Ip(x6 , x 10 ) (right), with black dots denoting input 

points at which simulator output has been observed at one of the four stations and 

numbered circles marking the three most plausible input points in the 154 grid of 

evaluated points. 

Broadly speaking, the first plot suggests a fairly distinctive most plausible region 

characterised by middle values of x 1 and mid-to high values for x 4 . The plot of x 6 

and x 10 appears to suggest that combinations for which at least one of the two inputs 

is small offer the best matches, although again containing within this a distinctive 

most plausible region defined by low values of x 10 and mid to low values of x 6 . Both 

these inputs have strict physical lower bounds, Xi = -1 corresponding to zero in 

their original units, so there is no scope to stretch the search past these boundaries. 

Figure 7. 7 shows the same projections, but for implausibility maximised over the 

phytoplankton outputs at a single station only. VIe note that, as in Figure 7.6, we 

are able to rule more points out by the (x 1 , x4 ) projection than that for (x6 , x 10 ). 

We see also for both projections that, of the four stations, station 1116 allows us to 

rule out the most points. 
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It is worth adding a note of caution in the case of the (x6 , x 10 ) plot: the plots 

suggests a better model as x 10 approaches its lower prior bound of x 10 = -1. In 

such situations, where plausibility increases as we move towards a boundary, there 

is a chance that this may be the result of a lack of run data near to the boundary 

and, in particular, a lack of support of data from beyond the boundary leading 

to a higher uncertainty and in turn a low implausibility. In this case it is clear 

that there are plausible points near to the boundary (where the run data is) but 

the decreasing implausibility as we move away from them and towards the boundary 

may be the result of local decreasing linear slope imposed by implausible data above 

these points. 

Figure 7.8 gives a 'four dimensional' representation of the implausibility surface. 

Outer grid lines correspond to the x 1 and x 4 dimensions with x 6 and x 10 dimensions 

plotted, on the range [ -1, 1], within these outer grid lines. The most plausible 1% 

of points is shown, equating to just over 500 points in the 154 grid. From the two 

plots, we see that the majority of these most plausible points appear in the region 

2 of the (x 1 , x4 ) space (the right-hand plot), defined by mid values of x1 and high 

values of x 4 . An interesting feature of this plot is that appears to suggest a higher 

dimensional interaction. In particular, the most plausible points in the lower part 

of this region tend to lie in region 2 of the (x 6 , x 10 ) space whereas those closer to 

the boundary defined by x4 = 1 tend to belong to region 1 of the (x6 , x 10 ) space. 

Such behaviour could have important implications for any future analysis, since it 

suggests that, for points in region 2 of the (x6 , x10 ) space, there is no need to extend 

the search outside of the prior region past the prior upper bound for x4 . 

Figure 7.9 shows this behaviour in action, with implausibility minimised only 

over the two most plausible regions (sub regions of regions 2 of both the (x1, x,l) 

and (x 6 , x 10 ) spaces. We see that the implausibility contours for the (x 1 , x4 ) space 

now move much more away from boundary of the x 4 interval, circling a region still 

in the upper part of the x 4 interval but reassuringly away from the boundary. 
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Figure 7.6: Ip(x1, x4) (left) and Ip(x6, x10) (right), shown after n = 50 runs at each 

station. Implausible areas are shaded darker, black dots denote input points at which 

simulator output has been observed at one of the four stations, and numbered circles 

correspond to the three most plausible input points. 
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Figure 7.7: Ip.(x1,x4) (top) and Ip.(x6,X10) (bottom): Implausibility maximised over 

phytoplankton outputs and projected into two input dimensions, for each of the four 

calibration stations, shown after n = 50 runs. 
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Figure 7.8: 'Four dimensional' plot of the top 1% 'most plausible' input combinations, all 

of which fall in either region 1 (left) or region 2 (right) of the (x 1,x4 ) space. Outer grid 

lines correspond to the x1 and X4 dimensions with X6 and xw dimensions plotted within 
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Figure 7.9: Subregion of two dimensional Ip projection in Figure 7.6, with implausibility 

minimised over the , ubrcgions only. 
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Figure 7. 10: IN(Xi, x 13) for i = 1, 4, 6: Implausibility maximised over nutrient outputs 

and stations and projected into two input dimensions by minimising over remaining input 

dimensions, shown after n = 50 runs at each station. 
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Figure 7.11: IN,(xi,x 13) fori= 1,4,6: Implausibility based on the nutrient output at 

each of t he calibration stations, projected into two input dimensions after n = 50 runs. 
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For nutrient outputs, the plots in Figure 7. 7 demonstrate clearly the strong 

linear effect of x13 being felt in the calibration, with plausibility contours virtually 

orthogonal to the x 13 axis in much of the space. Hence a side-effect of this is that, 

whilst Nw outputs would enable us to rule out a significant part of the x 13 dimension, 

they would not offer us any help with the other input dimensions. The analogous 

plots for at the individual stations show a similar pattern and we see that we are able 

to rule out a significant part of the x 13 dimension based on any one of the individual 

stations. The fact that there is so much overlap suggests that further calibration 

using nutrient values at other stations does not offer much scope for ruling out more 

space; as most of the information will be duplicate. Station 1113 looks at little 

bit different to the other three in the plausible regions. Based on the plots, we 

ruled out all input combinations outside the range x 13 E [0, ~], corresponding to 

Nref E [9, 13.3] in the original units given in Table 2.1. 

7.7.2 'Most plausible' output 

In order to how see well the calibration was working, and to informally assess the 

magnitude of the discrepancy between the simulator and system, we ran the simu

lator at the four stations at £0 , our best guess for x0 . In choosing a value for x0 , 

we set all non-active inputs to be at their prior mean value. We choose components 

corresponding to active variables for P to be the point in the grid of implausibil

ity evaluations which minimised Ip, which lay in region 2 of both the (x1 , x4 ) and 

(x6 , x10 ) spaces. Note that this was a sensible choice in our case, because the final 

point had low uncertainty; in general, we want a best input with both small im

plausibility and small uncertainty. Finally, we took x 13 = 4/7, corresponding to the 

midpoint of the plausible region based on the IN plots. In theory, we could have 

minimised the latter over x 13 and combined the resulting 3-dimensional grid with I p 

when choosing values for x 1 , x4 and x 6 , but we chose not to because of the ambiguity 

in how best to combine them and since, in any case, the result of the minimisation 

not surprisingly offered little constraining effect on these inputs. This gave, for the 

five active inputs, (x1 , x 4 , x 6 , x 10 , x 13 ) = ~(1, 4, 0, -7, 4) in transformed units, 

corresponding to ( <fyp, a, kp, g, Nref) = (0.17, 0.16, 0.15, 0, 12.4) in the original 
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units given in Table 2.1. 
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Figure 7.12: Simulator output at xo (unfilled circles, with lines denoting ±30',7) and 

historical data (filled circles, with lines denoting ±30'e) for phytoplankton at the calibration 

stations. The dotted line gives the original, unparameterised phytoplankton output at 

xo and the grey polygon shows the range spanned by ±35% of the original historical 

chlorophyll observations, as a guide to ±3 measurement error for the calibration and 

validation stations. 

Figure 7.12 shows the unparameterised phytoplankton output at the four cal

ibration stations together with two further 'validation' stations, 1013 and 1217, 

lying at opposite ends of the calibration region. The grey polygon shows the range 

spanned by ±35% of the original historical chlorophyll observations, as a guide to 
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±3 measurement error standard deviations, corresponding to the Sea WiFS target 

discussed in Section 7.5. The calibration station plots act as a visual diagnostic 

of our assertion, made through our choice of phytoplankton output parameterisa

tion, that good matches on the interval mean values correspond broadly to good 

matches on the time series. The plots at the two validation station test the ability 

of the calibrated model to reproduce observations at uncalibrated stations. Of the 

20 phytoplankton outputs across the calibration stations, all but two - the second 

and third outputs at station 1215 - match reasonably well. 
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Figure 7.13: Simulator nutrient output at x0 (unfilled circles, with lines denoting ±3D"77 ) 

and historical nutrient data (filled circles, with lines denoting ±3D" e) at the calibration and 

validation stations. Validation stations are shown with O"e = 0"'7 = 1 as a guide only. 

Of the two validation stations, 1013 appears to be a reasonable match whilst 

1217 looks to be a bad match. This is promising in our ability to reproduce output 

at station 1013 and also because 1217 offers us the potential to calibrate the inputs 

further at this level of output parameterisation. It is perhaps not surprising that 

we struggle at station 1217 since the closest station amongst the four calibration 

stations is 1215 and also station 1217 is one of those with a MLD forcing function 

that is different to many of the other stations (see Figure 6.1). 

Figure 7.13 shows nutrient output at the six stations, with measurement error 

and discrepancy taken to be 1 at the validation stations - as it was at the calibration 

stations - as a guide. We see that nutrient outputs match well at the calibration 

stations with all four falling within ±3s.d. of the historical observation. For the two 
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validation stations, we see that, as with phytoplankton, station 1013 looks to match 

well whilst 1217 once again appears more problematic. 

s Ips,l (.To) I Ps,2 (.To) Jps,3(i:o) Jps.4(i:o) Jps,s(i:o) Jps,6(i:o) INs(i:o) 

1015 2.46 3.21 0.05 1.98 1.13 0.98 1.51 

1113 2.97 1.21 0.76 0.57 1.69 1.08 

1116 2.72 2.29 3.08 0.83 3.59 

1215 2.36 5.44 2.65 0.11 2.68 2.83 

Table 7.2: Implausibility scores at .io. Bold type denotes the output with maximum 

implausibility score at each station. 

Table 7.2 gives the lp.(i0) and INs(i0) scores corresponding to the outputs in 

Figure 7.12, again taking CJ17 = CJe. The scores are computed using (7.4) with the 

simulator variance set to Var[s(x)] = CJ]. We do not set the simulator variance to 

zero since the variation in the 5-surface, explained by the remaining inactive inputs, 

is not resolved by observing simulator output at ±0 . We do not expect changes 

in inactive inputs to make much difference but, since we have not optimised over 

them, it is likely that we will be able to find slightly improved fits by varying inactive 

inputs also. 

We see that the largest value does indeed correspond to ?1215,2 , the bloom at 

station 1215 and that the matches at this station suggest that we may wish to scale 

up the discrepancy variance, at this station at least. Taking CJry = 2CJe at station 

1215 reduces all implausibility scores to below three except for P1215,2 which becomes 

3.66. 

As a quick way to offer insight into the quality of the match at ±0 , we computed 

the implausibility score of the best matching of the 50 simulator runs for each indi

vidual station, the results of which are shown in Table 7.3. It is not surprising that 

the runs do better in general than ±0 since there are based on calibration at individ

ual stations rather than across all four stations. As with ±0 , station 1215 is the most 

difficult to match locally: in the best matching of the simulator runs, we do better in 

the phytoplankton runs at 1215 at the expense of a poorly matching nutrient value, 

with an implausibility score of 5.45. In general it may not be so surprising that 
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P1215,2 is difficult to match since it is the narrowest of the parametrisation intervals 

across the four stations. 

s Ips,l (Xo) Jps,z(Xo) Ips,3(Xo) Ip.)Xo) Ip.)Xo) Ip., 6 (Xo) IN. (Xo) 

1015 2.84 1.49 1.18 0.93 1.49 1.12 0.74 

1113 1.83 1.22 2.55 2.02 0.31 1.99 

1116 2.31 2.64 2.56 2.19 1.17 

1215 0.11 2.04 1.65 3.53 1.38 5.45 

Table 7.3: Implausibility of input X0 corresponding to best matching set of output for 

each station from the fifty simulator runs. 

Running the simulator at x0 gives us an idea of how well we can hope to match 

the simulator- we don't necessarily think this is the best we can do. We do however 

believe that the best run lies within the regions given in the previous section. We 

would refocus into these regions and, in this refocused domain, we might expect 

other inputs to become active. We might also parameterise the output into nar

rower intervals at this point, now that we have ruled out combinations which fail to 

reproduce our coarse parameterisation. 

7. 7.3 Refocusing and widening the scope of the calibration 

A natural next step, given that we appear to be able to rule out a large part of 

the input space, is to refocus; that is to consider a sub-region of the input space, 

containing within it the input points which have not been ruled implausible and 

to repeat a similar analysis over this region. In particular, we should be able to 

build more accurate models of outputs over this reduced space and this may lead to 

new inputs becoming active (which can then be calibrated). We might also wish to 

re-parameterise outputs at this stage, for example, to be at a finer resolution. 

The posterior input region (that is, the region we would continue to search were 

we to refocus) can be found as the direct product of the 2-dimensional implausibility 

projections (in fact this is an 'upper bound' on the plausible region since it ignores 

higher order effects, such as those shown in Figure 7.8, which would allow us to rule 
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out more space). Based on Figure 7.7, the posterior region for (x 1, x 4 ) is the union of 

region 1, defined by [-1, -~]0 [-1, 0], and region 2, defined by[-~, ~]0 [~, 1]. The 

posterior in put region for ( x 6 , x 10 ) is the union of region 1, defined by [ -1, - ~] 0 

[- ~, 1], and region 2, defined by [ -1, 1] 0 [ -1, - ~ ]. The posterior region, then, is 

the direct product of these regions, together with [0, ~], the plausible interval for 

The size of this posterior region can easily be computed as the product of the 

sizes of the lower dimensional regions. We have (as fractions of 15) for (x 1, x4 ): 

(4 x 8) + (8 x 7) = 88; for (x6 ,x10 ): 152 -112 = 104; and for x 13 : 6. Hence the 

posterior volume is 88 x 104 x 6 =54, 912 which is approximately 7.2% of the original 

155 . The posterior volume, ignoring the x 13 dimension, is approximately 18% of the 

prior input space. This compares to 91% of points ruled out after 50 runs at each 

station with derivatives in Table 7.1, representing a decrease of approximately 9 

percentage points for our gain of easily parameterisable regions in which we can 

continue our search. 

7. 7.4 Discussion in relation to Hemmings analysis 

Relating back to the work of Hemmings et al. (2004), the nature of the plausible 

regions in Figure 7. 7 gives some insight into the difficulty Hemmings has in con

straining individual parameters through his projections of joint posterior parameter 

distributions into marginal distributions for each input. In our two dimensional 

projections we see that, for each of the four active inputs for phytoplankton, the 

majority of the range for each input contains some plausible region. Interestingly, 

x 1 (cl> p in the original notation) - the one parameter that Hemmings is able to con

strain well - would not be constrained well by a !-dimensional projection of our 

2-dimensional plot in Figure 7. 7. Hemmings, who performs several calibration ex

periments over different groups of stations, finds all his best runs to be generated by 

cf>p E [0, 0.03], correnponding Lo x1 E [-1, -0.8] in our units. This would correspond 

with region 1 of the (x 1 , x4) plot in Figure 7.7. However, Hemmings' method may 

in fact be missing what appears to be the more favourable region 2 in our analysis 

because of his minimisation routine. Hemmings generates starting points to the 
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minimisation routine by adding scaled Normal(O,l) quantities to a prior value for 

each input where the scaling is done separately for the two sub-intervals either side 

of this prior value and is chosen to be a third of the length of each sub interval. For 

cpp, his choice of prior value, at 0.05, is close to the lower end of the [0, 0.3] which 

means that the minimisation routine is much more likely to start in the neighbour

hood of the lower of our two regions and find its way there rather than find what 

our analysis suggests to be the best region (subject again to caveats about differ

ent implausibility measure, different output parametrisation etc.) In particular, we 

would argue that our region is preferable to that in Hemmings in view of our com

ments in Chapter 6 regarding Figure 6.8. We commented that the derivative of 

phytoplankton outputs with respect to XI appeared to be much more variable for 

small xi. The consequence of this is that, whilst it is much more likely to be able 

to find good matches for low xi, these matches are likely to be sensitive to small 

changes in XI and so, in particular, may not produce good matches at future un

calibrated stations. This may not be the case for all groups of calibration stations, 

however, Hemmings performs calibration experiments on several different groups of 

stations - although never exactly the group that we look at - and finds low cpp are 

required in each; it may be that our new region is not valid for the groups that 

Hemmings considers. 



Chapter 8 

Conclusions and Future Directions 

In this thesis, we have modified statistical methodology for computer models and 

applied it to a calibration problem of real-world interest. In setting the real-world 

problem in a rigorous statistical framework, we have obtained several useful insights 

of interest to people concerned with the specific model. In modifying the methodol

ogy, we have accomplished two main things. Firstly, we have made the first tentative 

steps in 'opening up the black box', exploiting the model structure to differentiate 

the simulator, re-closing the box and using the extra information generated to im

prove the process of belief building and updating of the emulator. Secondly, having 

offered a real-world example where derivatives are obtainable, we have provided what 

we believe to be the first serious investigation of the uses of derivatives in emulating 

computer simulators. In particular, we have shown that derivatives offer a range of 

natural ways to aid assessment of prior beliefs and that updating based on deriva

tives can lead to substantial reduction in emulator uncertainty. In addition, we have 

performed theoretical calculations, backed up by experimental results, of the cost 

of generating derivatives and considered the trade-off between derivatives and func

tion values by comparing this cost against the associated reduction of uncertainties. 

We have shown that, for our model, the trade-off leans in favour of derivatives and 

discussed reasons as to why this will often be the case for compartmental models. 

Since compartmental models are widely applied in modelling physical systems, we 

believe that the applications of the work to be wide-spread. Moreover, we gen

uinely feel that anyone faced with a compartmental model of any complexity stands 

129 
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to benefit a great deal by performing an analysis of the type developed in this thesis. 

There are many possible future directions. Here are the most promising: 

Multivariate covariance structure for output: Our study emulates each model output 

individually and does not consider covariance between outputs. In fact, we believe 

that taking outputs to be uncorrelated is a reasonable approximation for our coarse 

parameterisation. However, were we to re-parameterise phytoplankton output to be 

on a finer scale (e.g. following on from our work, after refocusing), then this analysis 

might benefit from a full multivariate covariance structure over outputs, although 

this would require a detailed and careful elicitation process. A more careful analysis 

and consideration of differences between forcing functions may be useful here. An 

advantage of this would be that multivariate implausibility measures would very 

naturally allow us to rule out input which not only produced one very bad output 

but, for example, obtained several 'OK but not great' matches in the output collec

tion. 

Epsilon covariance structure: Observing derivatives tells us about 8 and potentially 

allows a better estimate for its value than previously. Derivative information may 

assist us in improving 8 in two further ways. Firstly, as noted in Chapter 4, 8 can 

be generalised to be any positive definite matrix; it tends to be taken to be diagonal 

because it admits a convenient product form, but also because off-diagonal elements 

of 8 are even harder to estimate than those on the diagonal. It seems plausible, 

however, that just as derivatives have aided us in estimating the diagonal, they may 

also enable us to estimate the off-diagonal. Secondly, derivative information might 

also tell us that a constant 8 is not valid. This means that derivative information 

may be useful for other covariance functions; for example, a Gaussian-like covariance 

function with varying 8. We don't know of such a covariance function and whether 

or not it would be positive definite, but it would be interesting to investigate. Alter

natively, crudely breaking down input space into (a small number of) sub-regions, 

specifying different 8 in each, and then 'patching' the regions together might be a 
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way forward. Alternatively, transformations of input space, which 'warp' x, might 

be the answer so that the constant 8 assumption looks better. 

Uncertainty on forcing functions: An interesting area for future work would be to 

investigate the effects of uncertainty about the model forcing functions. One way 

to proceed might be split the functions into a smoothed parameterised mean curve 

and residuals and then elicit uncertainty about the separate parts. In this way, we 

would effectively extend the number of input parameters and could, for example, 

differentiate with respect to these parameters. 

Design: Derivatives allow us learn about the emulator based on less input points 

and provide information about regions of high local variability of output (that is, 

where derivatives are large). This might enable better-than-current sequential design 

where runs are targeted at these areas. Away from derivatives, we would recom

mend some control of orthogonality be exerted when using hypercube designs, as we 

discuss in Section 6.3.4. We give one problem-specific criterion - investigation into 

other criteria would be interesting. 

Structure of compartmental models: The structure of compartmental equations, in 

general, appears to suggest that an input can't be active for an output without first 

being active for outputs that are connected directly to the flow function on which the 

input appears ('outputs to which the input is local'). We did not pursue this because, 

with only three compartments, any such effects transferred through our model very 

quickly. However, for a much larger model with hundreds of compartments, it 

may be useful to make use of this structure when emulating outputs; for example, 

in choosing active inputs. In addition, linking this to our comments about the E 

covariance structure, consideration of this structure may lead to us considering a 

block diagonal structure for e with blocks corresponding to groups of parameters 

which are local to each other. 
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Appendix A 

Additional Chapter 6 analysis 

This section contains derivative and diagnostic plots for other stations not included 

in Chapter 6. 
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Appendix B 

PZN simulator run code with 

derivatives 

Solve.PZN<- function( station, runnames, deriv.order, act=1:15, 

runnamesX=runnames, adapt="all"){ 

pars<-c ("phiP", "kN", "VP", "alpha", "kW", "kP", "beta", "mu", "phiZ", 

"g", "kG", "epsilon", "Nref", "b", "m") 

p<-length(pars) 

NULLVEC<-rep(O, p) 

pact<-length(act) 

if (deriv.order==O){ 

NAM<-c ( "per", "tdays", "P", "Z", "N" ) 

} else { 

} 

NAM<-c( "per", "tdays", "P", paste("dPd", pars, sep=""), 

"Z", paste("dZd", pars, sep=""), "N", paste("dNd", pars, sep="") ) 

RANK<-rep(NA, p) 

RANK[act]<-rank(act) 

inp<-read.table( paste(runnamesX,".X",sep=""), header=TRUE ) 

# Given in original units 

cd<-ncol(inp) 

if (! cd==p) { 
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stop("Only", cd, "parms given - should be", p) 

} 

nperiod<-2 # One year's spin-up as in Hemmings 

# Read in ffs 

if (any(station==10010+1:4)){ 

ffpath<-file.path( "-dma3mrk", "Hemmings", "PrelimData" ) 

lats<-read.table( file.path(ffpath, "stations.nabe" ), header=T 

CLOUD<-read.table( file.path(ffpath, "cloud.nabe"), header=T 

MLD<-read.table( file.path(ffpath, "mld.nabe"), header=T) 

} else { 
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lats<-as.matrix( read.table(file.path("-/Hemmings","stations.5d"), head=T) ) 

CLOUD<-as.matrix( read.table(file.path("-/Hemmings","ffcloud"), head=T) ) 

MLD<-as.matrix( read.table(file.path("-/Hemmings","ffmld"), head=T) ) 

} 

lat<-lats [which(lats [,"station" ] ==station), "lat" ] 

lat<-lat*pi/180 # convert into radians 

CLOUD<-CLOUD [ which (CLOUD [,"station"] ==station), c ( "tdays", "cloud") ] 

MLD<-MLD[ which(MLD[, "station"]==station), c("tdays", "mld") ] 

CLOUD<-as.matrix(CLOUD) 

MLD<-as.matrix(MLD) 

nrowM<<-nrow(MLD) 

nrowC<<-nrow(CLOUD) 

CLOUD<-rbind( c( CLOUD[nrowC,1,drop=F]-365, CLOUD[nrowC,2,drop=F] ), CLOUD, 

c( 365+CLOUD[1,1,drop=F], CLOUD[1,2,drop=F] ) ) 

MLD<-rbind( c( MLD[nrowM,1,drop=F]-365, MLD[nrowM,2,drop=F] ), MLD, 

c( 365+MLD[1,1,drop=F], MLD[1,2,drop=F] ) ) 

getff<-function(tdays){ 

# CLOUD 

while ( CLOUD[Ccur,1]>tdays ) { Ccur<<-Ccur-1} 
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while ( all(CLOUD[ min(nrowC,Ccur+l), 1]<=tdays, Ccur<nrowC)) { 

Ccur<<-Ccur+1 

} 

if (CLOUD[Ccur,1]==tdays) { 

C<-CLOUD[Ccur,2] 

} else { 

} 

w1<-CLOUD[Ccur+1,1]-tdays; w2<-tdays-CLOUD[Ccur,1]; w<-w1+w2; 

C<-( CLOUD[Ccur,2]*w1 + CLOUD[Ccur+1,2]*w2 )/w 

# MLD 

while ( MLD[Mcur,1]>tdays ){ Mcur<<-Mcur-1 } 

# Careful with bad jumps as Mcur is set globally 

while (all( MLD[ rnin(nrowM,Mcur+1), 1]<=tdays, Mcur<nrowM) ){ 

Mcur<<-Mcur+1 

} 

if (MLD[Mcur,1]==tdays) { 

M<-MLD[Mcur,2] 

} else { 

} 

w1<-MLD[Mcur+1,1]-tdays; w2<-tdays-MLD[Mcur,1] 

if (any(w1<0, w2<0)){ 

cat( paste( "M: t=", round(tdays,3), "w1=", round(w1,3), 

"w2=", round(w2,3), "Mcur=" ,Mcur), "\n" ) 

w1<-abs(w1); w2<-abs(w2) 

} 

w<-w1+w2 

M<-( MLD[Mcur,2]*w1 + MLD[Mcur+1,2]*w2 )/w 

w1<-MLD[Mcur,1]-MLD[Mcur-1,1]; w2<-MLD[Mcur+1,1]-MLD[Mcur,1] 

if (any(w1<0, w2<0)){ 

print( cat( "dMdt: t=", round(tdays,3), "w1=", round(w1,3), 

"w2=", round(w2,3), "Mcur=" ,Mcur), "\n" ) 

w1<-abs(w1); w2<-abs(w2) 
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} 

w<-w1+w2 

m1<-MLD[Mcur+1,2]-MLD[Mcur,2]; m2<-MLD[Mcur,2]-MLD[Mcur-1,2]; 

dMLDdt<- ( w1*m1/w2 + w2*m2/w1 )/w 

c(C, M, dMLDdt) 

} 

# The two Phot functions 

# Removed lny (denom of ln) - subtract this later 

Ffn<-function(y,t){ 

} 

s2<- y~2 + t~2 

s<-sqrt(s2) 

s - t*log( (t + s)/y ) 

dFfn<-function(y,t){ 

} 

s2<- y~2 + t~2 

s<-sqrt(s2) 

(s2 + t*s)/( y*(t+s) ) 

phint<-function(y){ 

y * (0.555588 + o.004926*y) I (1 + 0.188721*y) 

} 

#Let y->1/360*y and mutiply top and bottom by (360y)~2 

phint2<-function(arg){ 

num<- (61732*arg + 1.52037037) 

den<- arg*( arg*0.4e8 + 20969 ) 

147 



Appendix B. PZN simulator run code with derivatives 148 

num/den 

} 

dphint<-function(arg){ 

num<-- ( 0.246928e13 + (0.1216296296e9/arg) + (0.3188064629e5/arg~2) ) 

den<- ( arg*0.4e8 + 20969 )~2 

num/den 

} 

# RK constants 

Ca<-c( NA, 1/5, 3/10, 3/5, 1, 7/8 ) 

Cb<-matrix( NA, nrow=6, ncol=5) 

Cb[2,1]<- 1/5; Cb[3,1:2]<- c(3/40, 9/40) 

Cb[4,1:3]<- c(3/10, -9/10, 6/5) 

Cb[5,1:4]<- c(-11/54, 5/2, -70/27, 35/27) 

Cb[6,1:5]<- c(1631/55296, 175/512, 575/13824, 44275/110592, 253/4096) 

Cc<-c( 37/378, 0, 250/621, 125/594, 0, 512/1771 ) 

dCc<-Cc-c( 2825/27648, 0, 18575/48384, 13525/55296, 277/14336, 1/4 ) 

SAFETY<- 0.9 

PGROW<- -0.2 

PSHRINK<- -0.25 

ERRCON<- 1.89e-4 #ERRCON=(5/SAFETY)~(1/PGROW) 

HMIN<- le-50 

TINY<- le-25 #le-30 seems too demanding 

EPS<- 1e-4 # form 1e-6 

HINITIAL<- 1 

HMAX<<- 25 # form 5 

actualHMAX<<-HMAX 

MAXnsteps<- 1e4 # counts two periods together 

NSTEPS<-c () 
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fun<- function(tdays, Ymat, deriv.order=1){ 

P<-Ymat[1,1]; Z<-Ymat[2,1]; N<-Ymat[3,1] 

ffs<-getff(tdays); C<-ffs[1]; M<-ffs[2]; dMdt<-ffs[3] 

if (M<O){ print( paste("M<O =",M, "t=", tdays) ) } 

delta<- -0.40928*cos( 2*pi*cos( (tdays+10)*(2*pi/365) )/365 ) 

ss<-sin(delta)*sin(lat) 

cc<-cos(delta)*cos(lat) 

tt<- -ss/cc 

if (tt <= -1) { 

sunset<-pi 

} else { 

} 

if (tt >= 1) { 

sunset<-0 

} else { 

sunset<-acos(tt) 

} 

#Sunset is an angle (which R gives in Radians) 

tau<-sunset/360 
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# 884*pi = 2777 - NB 1353 in Hemmings(2001) documentation; 430*pi = 1353 

Isn<- 884*( ss*sunset + cc*sin(sunset) ) #Hemmings code 

# These agree except for factor out front (see personal comm. for unit change) 

if ((IO*alpha*VP) <= 0) { 

flowNP<-0 

} else { 

bet<- (VP*tau)/(IO*alpha) 
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} 

atten<- (kW + P*kP)*M 

attenmod<-atten 

bet2<- bet*exp( atten ) 

outfront<- (360*tau*2*VP/atten) 

Ibar<- phint2(bet) - phint2(bet2) 

Jbar<- outfront*Ibar 

Q<- N/(kN+N) 

Pdeep<-phiP*P 

pzdenom<-kG+P 

flowPZ<- g*Z*P/pzdenom 

Zdetr<- (1-beta)*flowPZ 

epstmp<- epsilon*Zdetr 

flowZN<- mu*Z + Zdetr - epstmp 

Zdeep<-phiZ*Z~2 + epstmp 

hstar<-max(dMdt, 0) 

Common<-(hstar+m)/M 

fluxP<- Common*P 

fluxZ<- Common*Z 

Test.Nref<-Nref*log(b*M+1) - N 

if ( Test.Nref<=O ){ 

fluxN<-0 

} else { 

fluxN<- Common*Test.Nref 

} 

STATE<- matrix( e( flowNP- flowPZ- Pdeep- fluxP, 
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if (deriv.order>O){ 

flowPZ - flowZN - Zdeep - fluxZ, 

flowZN- flowNP + fluxN ), ncol=1) 

dPdTheta<-Ymat[1, 2:(1+pact)] 

dZdTheta<-Ymat[2, 2:(1+pact)] 

dNdTheta<-Ymat[3, 2:(1+pact)] 

if ((IO*alpha*VP) <= 0) { 

## flowNP<-0 

dflowNP<-NULLVEC 

} else { 

## bet<- (VP*tau)/(IO*alpha) 

dbet<- NULLVEC 

if (is.element(3,act)){ 

dbet[RANK[3]]<- tau/(alpha*IO) } 

if (is.element(4,act)){ 

dbet[RANK[4]]<- -VP*tau/(alpha~2*IO) } 

## atten<- (kW + P*kP)*M 

datten<- dPdTheta*M*kP 

if (is.element(5,act)){ 

datten[RANK[5]]<-datten[RANK[5]] + M } 

if (is.element(6,act)){ 

datten[RANK[6]]<-datten[RANK[6]] + P*M } 

## bet2<- bet*exp( atten ) 

dbet2<- exp(attenmod)*( dbet + bet*datten ) 

# outfront<- 2*VP/atten 

doutfront<- -VP*datten 

if (is.element(3,act)){ # Extra term for theta=VP 

doutfront[RANK[3]]<- doutfront[RANK[3]] + attenmod} 

doutfront<-doutfront/attenmod~2 #Division of whole vector last 

doutfront<- (360*tau*2)*doutfront # Don't forget the multiplier! 
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## Ibar<- phint2(bet) - phint2(bet2) 

dibar<- dphint(bet)*dbet - dphint(bet2)*dbet2 

## Jbar<- outfront*Ibar 

dJbar<- outfront*dibar + doutfront*Ibar 

## Q<- N/(kN+N) 

dQ<- dNdTheta*kN 

if (is.element(2,act)){ 

dQ[RANK[2]]<- dQ[RANK[2]] - N } # Extra term for theta=kN 

dQ<-dQ/(N+kN)~2 #Do division of everything last 

## flowNP<- P*Jbar*Q 

dflowNP<- dPdTheta*Jbar*Q + P*( Q*dJbar + dQ*Jbar) 

} 

## Pdeep<-phiP*P 

dPdeep<-phiP*dPdTheta 

if (is.element(1,act)){ 
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dPdeep[RANK[1]]<-dPdeep[RANK[1]] + P } # Extra term for theta=phiP 

## pzdenom<-kG+P 

## flowPZ<- g*Z*P/pzdenom 

dflowPZ<- g * ( dZdTheta*P*pzdenom + Z*dPdTheta*kG ) 

if (is.element(10,act)){ # Extra term for theta=g 

dflowPZ[RANK[10]]<- dflowPZ[RANK[10]] + (Z*P*pzdenom) } 

if (is.element(11,act)){ #Extra term for theta=kG 

dflowPZ[RANK[11]]<- dflowPZ[RANK[11]] - (P*Z*g) } 

dflowPZ<-dflowPZ/pzdenom~2 

# Division is very last operation to combat numerical errors 

## Zdetr<- (1-beta)*flowPZ 

dZdetr<- (1-beta)*dflowPZ 

if (is.element(7,act)){ #Extra term for theta=beta 

dZdetr[RANK[7]]<- dZdetr[RANK[7]] - flowPZ } 
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## epstmp<- epsilon*Zdetr 

depstmp<- epsilon*dZdetr 

if (is.element(12,act)){ # Extra term for theta=epsilon 

depstmp[RANK[12]]<- depstmp[RANK[12]] + Zdetr } 

## flowZN<- mu*Z + Zdetr - epstmp 

dflowZN<- mu*dZdTheta + dZdetr - depstmp 

if (is.element(8,act)){ # Extra term for theta=mu 

dflowZN[RANK[8]]<- dflowZN[RANK[8]] + Z } 

## Zdeep<-phiZ*Z~2 + epstmp 

dZdeep<-phiZ*2*Z*dZdTheta + depstmp 
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if (is.element(9,act)){ #Extra term for theta=phiZ (not theta=phiP!) 

dZdeep[RANK[9]]<-dZdeep[RANK[9]] + z~2 } 

## hstar<-max(dMdt, 0) 

## Common<-(hstar+m)/M 

## fluxP<- Common*P 

dfluxP<- Common*dPdTheta 

if (is.element(15,act)){ #Extra term for theta=m 

dfluxP[RANK[15]]<- dfluxP[RANK[15]] + P/M } 

## fluxZ<- Common*Z 

dfluxZ<- Common*dZdTheta 

if (is.element(15,act)){ #Extra term for theta=m 

dfluxZ[RANK[15]]<- dfluxZ[RANK[15]] + Z/M } 

## Test.Nref<-Nref*log(b*M+1) - N 

if ( Test.Nref<=O ){ 

dfluxN<-NULLVEC 

} else { 

## fluxN<- Common*Test.Nref 

dfluxN<- -Common*dNdTheta 

if (is.element(13,act)){ # Extra term for theta=Nref 

dfluxN[RANK[13]]<- dfluxN[RANK[13]] + Common*log(b*M+1) } 

if (is.element(14,act)){ # Extra term for theta=b 
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} 

dfluxN[RANK[14]]<-dfluxN[RANK[14]]+(hstar+m)*Nref/(b*M+1) } 

if (is.element(15,act)){ # Extra term for theta=m 

dfluxN[RANK[15]]<- dfluxN[RANK[15]] + Test.Nref/M} 

dY<-rbind( dflowNP - dflowPZ- dPdeep- dfluxP, 

dflowPZ - dflowZN - dZdeep - dfluxZ, 

dflowZN - dflowNP + dfluxN ) 

return( cbind( STATE, dY ) ) 

} else { return(STATE) } 

} 

RKCK<-function( ymat, dord ){ #deriv.order 

t<-ymat[[l]]; Y<-ymat[[2]]; 

K<-vector("list",6) 

K[[l]]<-h*fun(t, Y, dord ) 

K[[2]]<-h*fun( t+Ca[2]*h, Y + Cb[2,1]*K[[1]], dord) 

K[[3]]<-h*fun( t+Ca[3]*h, Y + Cb[3,1]*K[[1]] + Cb[3,2]*K[[2]], dord ) 

K[[4]]<-h*fun( t+Ca[4]*h, Y + Cb[4,1]*K[[1]] + Cb[4,2]*K[[2]] + 

Cb[4,3]*K[[3]], dord) 

K[[5]]<-h*fun( t+Ca[5]*h, Y + Cb[5,1]*K[[1]] + Cb[5,2]*K[[2]] + 

Cb[5,3]*K[[3]] + Cb[5,4]*K[[4]], dord) 

K[[6]]<-h*fun( t+Ca[6]*h, Y + Cb[6,1]*K[[1]] + Cb[6,2]*K[[2]] + 

Cb[6,3]*K[[3]] + Cb[6,4]*K[[4]] + Cb[6,5]*K[[5]], dord ) 

hdYdx<- Cc[1]*K[[1]]+ Cc[2]*K[[2]] + Cc[3]*K[[3]] + Cc[4]*K[[4]] + 

Cc [5] *K [ [5]] + Cc[6] *K [ [6]] 

Y<- Y + hdYdx 
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DeltaErr<-dCc[l]*K[[l]] + dCc[2]*K[[2]] + dCc[3]*K[[3]] + dCc[4]*K[[4]] + 

dCc [5] *K [ [5]] + dCc [6] *K [ [6]] 
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list( tnew=t+h, Y=Y, DeltaErr=DeltaErr, hdYdx=hdYdx) 

} 

RKAS<-function( y, dord=1 ){ 

Try<-RKCK(y, dord); 

#yscal<-Try[[2]]; DeltaErr<-Try[[3]]; hdYdx<-Try[[4]]; 

yscal<-Try$Y; DeltaErr<-Try$DeltaErr; hdYdx<-Try$hdYdx 

if (adapt==" all"){ 

err<- abs( DeltaErr ) I ( abs(yscal) + abs(hdYdx) + TINY ) 

} else { # Only check error for state variables not derivatives 
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err<- abs( DeltaErr[,1] ) I ( abs(yscal[,1]) + abs(hdYdx[,1]) + TINY ) 

} 

err<-erriEPS 

errmax<-max(err, na.rm=T) 

if ( any( is.na(err) ) ) { 

cat ( paste ("err has NA, errmax=" , errmax, "\n") ) ; 

errmax<-10*max(errmax,1) } 

w<-which( !abs(err)==Inf ) 

if ( !all(w) ) { errmax<-10*max(err[w] ,1) } 

if (errmax > 1){ 

# Truncation error too large, reduce stepsize. 

nbad«-nbad+1 

htmp<-max(SAFETY*h*errmax-PSHRINK, 0.1*h) #No more than a factor of 10 

if (tim==tim+htmp) { 

UNDERFLOW<<-TRUE 

print("Stepsize Underflow") 
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print(y) 

return ( list( Try[[1]], Try[[2]] ) ) 

} else { 

h«-htmp; 

return ( RKAS(y, dord) ) 

} 

} else { 

} 

} 

ngood«-ngood+1 

h<<-min(SAFETY*h*errmax-PGROW, 5*h, HMAX); 

# Maximum factor of 5 increase AND Don't let h go above HMAX 

tim«-Try [ [1]] 

return ( list( tim, yscal ) ) 

# Initial conditions 

IC<-matrix(c(0.02, 0.002, 1), ncol=1) 

if (deriv.order>O){ # Add init condits for derivs 

IC<-cbind( IC, matrix(O, nrow=3, ncol=pact) ) 

} 

noutput<-nrow(IC); 

IC<-list(O, IC ); #First component of IC is t=O 

nruns<-nrow(inp) 

for (r in 1:nruns) { 

x<-inp[r,] 

for (i in 1:15){ assign(pars[i], unlist(x[i]), envir=.GlobalEnv) } 
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h<-HINITIAL 

len<- ncol(IC[2]) # (p+1) 

Ymatrix<-c( 1, IC[[1]], as.vector( t(IC[[2]]) ) 

# First elt is period, second is time. 

per<-0 

nsteps<-0 

nbad«-ngood<-0 

UNDERFLOW<<-FALSE 

while ( all( per<nperiod, nsteps<=MAXnsteps ) ) { 

per<-per+1; 

Mcur<<-Ccur<<-1; tim<-0; #nsteps<-0; Switched back to 1 for R 

h<-HINITIAL; # Add it in here for control 

if (per==1) { 

y<-IC; 

} else { 

y[[1]]<-0; 

} # Reset time here 

nit<-0; 

while ( all(y[[1]]<365, nsteps<MAXnsteps, !UNDERFLOW) ) { 

nit<-nit+1 

} 

nsteps<-nsteps+1 

if ( (y[[1]]+h) > 365 ){ h<<- 365-y[[1]] } 

# Last step takes you exactly to 365 

y<-RKAS(y, deriv.order) 

Transy<-c( per, y[[l]], as.vector( t(y[[2]]) ) ) 

Ymatrix<-rbind(Ymatrix, Transy) 

if (nsteps>=MAXnsteps) { 

cat( paste("nsteps > MAXnsteps, t =" y[[l]] ,"\n") ) 

} 
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} 

if ( all(nsteps <= MAXnsteps, !UNDERFLOW) ){ 

Ymatrix<-Ymatrix[ which(Ymatrix[,1]==2),] 

colnames(Ymatrix)<-NAM 

rownames(Ymatrix)<-NULL 

fnam<- paste (runnames, r, sep="." ) 
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fp<-file. path (" -dmaOpsc", "research", "ocean"," simulators", "Derivati veRuns") 

write.table( Ymatrix, file=file.path(fp, fnam), quote=FALSE, row.names=FALSE) 

} 

ctime<- strsplit(dateO, split="")[[1]] [ c(12,13,15,16,18, 19) ] 

print(paste("Run", r, ", ng=", ngood, ", nb=", nbad, sep="")) 

NSTEPS<-rbind(NSTEPS, c(r, ngood, nbad, as.integer(ctime)) ) 

# END BIG FINAL LOOP 

} 

return ( NSTEPS ) 

} # End Solve.PZN 
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Emulator updating code 

is.pd<-function(M){ 

all(eigen(M)$values>=O) 

} 

g<-function(z, P){ 

} 

n<-nrow(z) 

q<-nrow(P) 

gx<-array(l, dim=c(q, n)) 

for ( i in 1 : q){ 

} 

gx 

if ( all(is.na(P[i,])) ) { gx[i,]<-0 

#Replaces initial l's in matrix by O's 

} else { 

} 

w<-which(!P[i,]==O) #Doesn't count NA values 

if (any(w) ){ 

for (j in w){ gx[i,]<-gx[i,]*z[,j]~P[i,j] } 

} 
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s.prior<-function(Priors, x){ 

##Computes Prior Specs for objects involving S 

#Priors 

EB<-Priors$EB; VarB<-Priors$VarB; gp<-Priors$gp; 

sigmaEp<-Priors$sigmaEp; vdelta<-Priors$vdelta; sigmaDel<-Priors$sigmaDel 

if (any( c(is.null(EB), is.null(VarB)))){ 

Es<-VgBg<-0 

} else { 

gx<-g(x, gp) 

Es<-EB%*%gx 

gVarBg<-tensor(VarB,gx,3,1) # k,q,L 

gVarBg<-aperm( gVarBg, c(2,1,3)) 

other1<-function(j){ 

gx[,j]%*%gVarBg[, ,j] 
} 

#Can tensor it and then apply(,,diag) over the k,k dimension, but 

#this means you first have to allocate a large vector (too large for R!) 

VgBg<-sapply( 1:nrow(x), other1) 

if (length(dim(VgBg))){ VgBg<-t(VgBg) } #get dim NULL if 1 output 

# VgBg<-function(gx, VarB) tensor( gx, tensor(VarB, gx, 3,1), 1,2) 

# VgBg<-apply(gx, 2, function(z) VgBg(z,VarB)) 

# VgBg<-t(VgBg) 

## VgBg<-tensor( g, tensor(VarB, g' 4' 1)' 1,2) 

## gives dim l,k,k,l 

## VgBg<-aperm(VgBg, c(2,1,3,4)) 

# VgBg<-tensor( gx, tensor(VarB, gx, 3, 1), 1,2) 

# VgBg<-aperm(VgBg, c(2,1,3)) 
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# VgBg<-apply(VgBg, 1, diag) #Read off the x variances 

## !<-ceiling( sqrt(nrow(x)) ) 

## VE<-VarEp(x) 

## VD<-outer( sigmaDel, diag(l) ) 

## VD<-aperm(VD, c(1,3,2)) 

} 
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#VE<-outer( rep(1, nrow(x)), sigmaEp) #works for multiV but slower for uniV 

#VD<-outer( rep(1, nrow(x)), sigmaDel) 

} 

VE<-matrix(sigmaEp, ncol=length(sigmaEp), nrow=nrow(x), byrow=T) 

VD<-matrix(sigmaDel, ncol=length(sigmaDel), nrow=nrow(x), byrow=T 

list( Esx = Es, Varsx = VgBg + VE + VD, VargBg = VgBg, VarEpx = VE ) 

AdjustBeliefs<-function (Priors, Data, x) { 

#Priors 

EB<-Priors$EB; VarB<-Priors$VarB; gp<-Priors$gp; actx<-Priors$actx; 

theta<-Priors$theta; sigmaEp<-Priors$sigmaEp; 

vdelta<-Priors$vdelta; sigmaDel<-Priors$sigmaDel 

#Data 

X<-Data$x; y<-Data$y; dydx<-Data$dydx 

k<-ncol(y); n<-nrow(y) 

p<-ncol(gp); q<-nrow(gp) 

if (VER=="vN"){ #NULL 

#y<-cbind(y[,k] ,y[,k] ) 

y<-y [, k, drop= F) 

if (length(dydx)){ 

#dydx<-array(NA, dim=c(n,2,p)) 

#dydx[,1,]<-dydx[,2,]<-Data$dydx[,k,,drop=F] } 

dydx<-Data$dydx[,k,,drop=F] } 

if (length(dydx)){ 

#dydx<-ifelse(abs(dydx)>20, sign(dydx)*(17+log(abs(dydx))), dydx) 

#17+log(20)=20, 12.3+log(15) = 15 

} 

#k<-2 
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k<-1 

} else {#v2 

} 

y<-y[,1: (k-1),drop=F] 

if (length(dydx)){ 

dydx<-Data$dydx[,1:(k-1),,drop=F] 

# Try rescaling outliers ########################### 

#dydx<-ifelse(abs(dydx)>5, sign(dydx)*(3.4+log(abs(dydx))), dydx) 

#dydx<-ifelse(abs(dydx)>7.5, sign(dydx)*(5.5+log(abs(dydx))), dydx) 

#log(10)+7.7=10, log(5) + 3.4 = 5, log(2.5)+1.58 = 2.5 

} 

k<-k-1 

if (!all(p==length(actx), p==ncol(x))){ 

stop("Problem with p dim") 

} 

if ( max(abs(X), na.rm=T) > 1) { 

stop("X should be transformed onto [-1, 1]") } 

if (length(dydx)){ 

dydx<-aperm(dydx, c(2,1,3)) 

dim(dydx)<-c(k, n*length(actx)) 

} 

S<-cbind(t(y), dydx) #dim k,n(p+1) 

Xact<-X[, actx, drop=FALSE] 

# one actx for all output (called seperately for P and Nw) 

X<-Xact 

Xactexp<-t( sqrt(theta)*t(Xact) ) 

#Calculate dimension of simulator from priors 
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if (any( c(is.null(EB), is.null(VarB)))){ #no global terms 

ES<-VarGB<-0 

} else { 

dgp<-array( gp, dim=c(dim(gp), p) ) 

for (dx in 1:p){ 

} 

P<-dgp [, , dx] 

for ( i in 1 : q){ 

} 

if (P[i,dx]>O){ #if the power wrt x[dx] of the qth fn is > 0 

#Either subtract one off i,dx entry or make whole row NA 

P[i,dx]<-P[i,dx]-1 

} else { 

P[i,]<-NA} 

dgp[,,dx]<-P 

G<-g(Xact, gp) # G includes derivatives but g doesn't ... 

if (length(dydx)){ 

for (i in 1:p){ 

G<-cbind( G, g(Xact, dgp[,,i]) ) } 

} 

# Gives dimG q , n(p+1) 

CovBS<-tensor(VarB, G, 3, 1) 

#gives dim k q n 

VarGB<-tensor(G, CovBS, 1, 2) 

#gives dim n,k,n 

163 



Appendix C. Emulator updating code 

VarGB<-aperm(VarGB, c(2,1,3)) 

#gives dim k,n,n 

check<-apply(VarGB, 1, is.pd) 

#if (!all(check)) { 

# print("VarGB not pd") 

# return (VarGB) 

#} 

} # End global part 

VarEp<-function(x){ 

} 

VarEp<-sigmaEp%o%exp( -as.matrix(dist(x))-2 ) 

#VarEp<-sigmaEp%o%exp( -theta*as.matrix(dist(x))-2) 

#produces dim k,l,l 

#VarEp<-aperm(VarEp, c(1,3,2)) 

VarEp 

VarD<-diag(l ,n) 

if (length(dydx)){ 

} 

VarD<-array( 0, dim=c(n*(p+l), n*(p+l)) ) 

VarD[1:n, l:n]<-diag(l,n) 

VarD<-outer( vdelta, VarD ) 

#gives dim k,n,n 

#VarD<-aperm(VarD, c(1,3,2)) 

mvdist<-function(y, z=y){ 

y<-as.matrix(y) 

z<-as.matrix(z) 

} 

n<-nrow(y) 

cc<-rbind(y,z) 

dd<-as.matrix(dist(cc)) 

dd[l:n, -(l:n), drop=FALSE] 
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#VarE<-exp(-theta*as.matrix(dist(Xact))-2) 

VarE<-exp(-as.matrix(dist(Xactexp))-2) 

if (length(dydx)){ 

lin<-apply( t( theta*t(Xact) ), 2, function(z) outer(z, z, "-") ) 

#dim is n-2,p 

dim(lin)<-c(n, n, p) 
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pcopiesVarE<-array(VarE, dim=c(dim(VarE),p)) #pcopiesVarE[,,1]-VarE TICK 

Cfdx<- 2*lin*pcopiesVarE # 2theta 

} 

int<-array(NA, dim=c(n,p,n,p)) 

for (i in 1 :p){ 

for (j in 1: p){ 

int [, i, , j] <- lin [,, i] *lin [,, j] 

# 2*theta as have exp(-theta) instead of exp(-theta/2) 

} 

} 

p2copiesVarE<-array(VarE, dim=c(dim(VarE),p,p)) 

p2copiesVarE<-aperm(p2copiesVarE, c(1,3,2,4)) 

ZeroOne<-outer( diag(theta,p), array(1,dim=c(n,n)) 

ZeroOne<-aperm(ZeroOne, c(4,2,3,1)) 

Cdxdx<- 2*( ZeroOne - 2*int )*p2copiesVarE 

np<-n*p 

dim(Cdxdx)<-c(np, np) 

dim(Cfdx)<-c(n, np) 

firstrow<-cbind(VarE, Cfdx) 

VarE<-rbind( firstrow, cbind(t(Cfdx), Cdxdx) ) #dim n(p+1), n(p+1) 

#Check 

if (!is.pd(VarE)) stop("VarE not pd") 

VarE<-sigmaEp%o%VarE 

#VarE<-aperm(VarE, c(1,3,2)) 

#gives dim n,k,n #NB n->n(p+1) for derivs 

VarS<-VarGB + VarE + VarD 
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# Outputs are uncorrelated 

IVarS<-array(dim=dim(VarS)) 

for (i in 1:k){ 

IVarS[i, ,] <- chol2inv( chol(VarS[i,,]) ) 

} 

diff<-S-ES 

R<-array( dim= c( k, dim(VarE)[3] ) ) 

ESB<-array(dim=dim(EB)) 

VarSB<-array(dim=dim(VarB)) 

sigmaEp. adj <-c () 

#Update beliefs about B 

for (i in 1 :k){ 

CovBStmp<-CovBS[i,,] 

IVarStmp<-IVarS[i,,] 

R[i,]<-IVarStmp%*%diff[i,] 

} 

if ( is.null(dim(CovBStmp)) ){ 

dim(CovBStmp)<-c(length(CovBStmp), 1) 

} 

if ( is.null(dim(IVarStmp)) ) { 

dim(IVarStmp)<-c(1,1) 

} 

ESB[i,]<-CovBStmp%*%R[i,] 

VarSB[i,,]<- CovBStmp%*%IVarStmp%*%t(CovBStmp) 

ESB<-EB+ESB 

VarSB<-VarB-VarSB 

# Efficient code if only want post Var for each x, not post Cov matrix. 

# NB outer still quick for 1e5 grid points and 100 data points 

# So e.g. 17-4 83,521 

L<-nrow(x) 

166 



Appendix C. Emulator updating code 

lin<-array(NA, dim=c(L,n,p)) 

quad<-array(O, dim=c(L,n)) 

for (i in l:ncol(Xact)){ 

tmp<-outer( x[,i], X[,i], "-") 

lin[,,i]<-theta[i]*tmp 

# quad[,,i]<-sqrt(theta[i])*tmp 

quad<-quad + theta[i]*tmp-2 

} 

CEpxS<-exp( -quad ) 

#CEpxS<-exp( -mvdist(xexp,Xactexp)-2 ) 

#Do this if want posterior cov between points but very expensive. 

if (length(dydx)){ 

} 

pcopies<-array( rep(CEpxS, p), dim=c(dim(CEpxS),p)) 

pcopies<- 2*lin*pcopies 

dim(pcopies)<-c(L, n*p) 

CEpxS<-cbind(CEpxS, pcopies) 

rm(pcopies) #get rid of large object 

#Do we need to do this outer product HERE in univariate case? 

CEpxS<-sigmaEp%o%CEpxS 

# dim k,L,np whereas R array is k,np 

# IVarS is k,np,np 

ESEpx<-array(dim=c(k,L)) 

RVarSEpx<-array(dim=c(k,L)) 

CSBEpx<-array(dim=c(k,q,L)) 
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# Loop over outputs quicker than k*k output cov matrix with off diags set to 0 

for (i in l:k){ 

ESEpx[i,]<- CEpxS[i,,]%*%t(R[i,,drop=F]) 

#dim gets dropped for n=l, no deriv 

if (L==l) { 

Rtmp<-IVarS[i,,]%*%as.matrix(CEpxS[i,,]) 

} else { 

Rtmp<- IVarS[i,,]%*%t(CEpxS[i,,]) 

}#Rtmp is kn, L 
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#dim gets drop for L=1 

CSBEpx[i,,]<- -CovBS[i,,]%*%Rtmp 
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RVarSEpx[i,]<-sapply(1:nrow(x), function(j) CEpxS[i,j,]%*%Rtmp[,j] ) 

# Much quicker to zip down than to use diag 
} 

VarEpx<-matrix(sigmaEp, nrow=k, ncol=L) 

VarSEpx<-VarEpx - RVarSEpx 

gx<-g(x, gp) #q,L 

gVarSBg<-tensor(VarSB,gx,3,1) # k,q,L 

gVarSBg<-aperm(gVarSBg, c(2,1,3)) 

other1<-function(j){ 

gx [, j] %*%gVarSBg [, , j] 
} 

other2<-function(j){ 

} 

B1<-tensor( CSBEpx[,,j,drop=F], gx[,j], 2, 1) 

B2<-tensor( aperm(CSBEpx[,,j,drop=F] ,c(2,1,3)), gx[,j], 1, 1) 

B1+B2 

gVarSBg<-sapply( 1:nrow(x), other1) 

CovSgBEpx<-sapply( 1:nrow(x), other2) 

mx<-ESB%*%gx + ESEpx 

vd<-matrix(vdelta, nrow=length(vdelta), ncol= nrow(x) ) 

sx<-gVarSBg + CovSgBEpx + VarSEpx + vd 

#Check 

w<-which(sx<O) 

if (length(w) ){ 

} 

wx<-apply(sx, 1, function(z) which(z<O) ) 

wx<-unique(unlist(wx)) 

cat( paste("No. x pts with less than 0 is:", 

length(wx), "min val:", min(sx), ''\n'' ) ) 
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} 

sigmaEp. adj <-c () 

diff.adj<-S -ESB%*%G 

sigmaEp. adj <-c () 

for (i in l:k){ 

sigmaEp.adj<-c(sigmaEp.adj, diff[i,]%*%IVarS[i,,]%*%diff[i,] ) 

} 

sigmaEp.adj<-sigmaEp.adj/n 

list( Priors=Priors, ESB=ESB, VarSB=VarSB, mx=mx, sx=sx, gVarSBg=gVarSBg, 

VarSEpx=VarSEpx, Xact=Xact, sigmaEp.adj=sigmaEp.adj ) 
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Jimplausibiliity code 

Imp<-function(Eval, Z, Sigmaeta, Escal=(0:5)~2){ 

DIMS<-dim(Eval$mx) 

nr<-DIMS[l]; nc<-DIMS[2] 

d<-Z[, "y"] 

SigmaeP<-Z [, "Sigmae"] 

n<-length(Escal) 

# duplicate for each observation 

onevec<-rep(l,nc) 

dx<-outer( d, onevec) 

SigmaePx<-outer( SigmaeP, onevec ) 

Sigmaetax<-outer( Sigmaeta, onevec ) 

# duplicate for different discrepany scalings 

Edif <- abs( Eval$mx - dx ) 

Edif <- outer(Edif, rep(l,n)) 

Sigmadif <- outer(Eval$sx+SigmaePx, rep(l,n)) + outer(Sigmaetax, Escal ) 

#Trace<-apply( Sigmadif, 2, sum) 

Sigmadif<- sqrt( Sigmadif ) 

ImpByDut<- Edif/Sigmadif 

#MVEdif<-sapply(l:nc, function(z) t(Edif[,z])%*%Edif[,z] ) 

#MVImp<-MVEdif/Trace 

#wmax<-apply( ImpByOut, 2, which.max ) #NB gives FIRST max 

#over index 2 here as sigmaeta fixed 

wmax<-apply( ImpByDut, c(2,3), which.max) 
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# hist(wmax) 

#tells us which of the outputs is most useful for calibration using Impmax 

# Emax<-sapply( 1:nc, function(i) Edif[wmax[i] ,i] ) 

# Smax<-sapply( 1:nc, function(i) Sigmadif[wmax[i] ,i] ) 

# Take these two out to save on storage 

# Imax<-sapply( 1:nc, function(i) ImpByOut[wmax[i] ,i] ) 

Imax<-apply( ImpByOut, c(2,3), max) 

# list( ImpByOut=ImpByOut, wmax=wmax, Edifmax=Emax, Sigmadifmax=Smax, 

# Impmax=Imax, MVEdif=MVEdif, Trace=Trace) 

list( ImpByOut=ImpByOut, wmax=wmax, Impmax=Imax ) 

} 

Imp2D<-function(Implaus, xpair, out=1:13){ 

x<-Implaus$x 

Impmax<-Implaus$Impmax 

p<-ncol(x) 

1<-nrow(x) 

if ( length(xpair) >= p ) 

stop("Need at least one var to minimise over") 

x<-as.matrix(x) 

minover<-setdiff(1:p, xpair) 

# Minimise over other inputs 

xp2D<-unique(x[,xpair,drop=F]) 

X2D<-as.matrix(x[, xpair,drop=F]) 

# res<-as.integer( sqrt(nrow(xp2D)) ) 

min2<-function(z){ 
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} 

w<-1 :nrow(x) 

for (i in 1:length(xpair)){ 

wi<-which( x[,xpair[i]]==z[i] 

w<-intersect(w, wi ) 

} 

W<-which.min(Impmax[w]) 

MEAN<-mean(Impmax[w]) 

c( w[W], MEAN ) 

Impmax2D<-apply( xp2D, 1, min2) 

Impmax<-Impmax[Impmax2D[1,]] #just want column 1 of w[W] 

Impmean<-Impmax2D[2,] 

# Can send out variance surface here easily too 

list( Impmax=Impmax, x=xp2D, xpair=xpair, Impmean=Impmean ) 

} 
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Miscellaneous code 

MSDM<-function(ThetaO, STAS, nrun){ 

for (STA in STAS){ 

runnames<-paste ( 11 HYPER 11
, nrun, 11 s 11

, STA, sep= 1111
) 

load(file=paste(runnames, 11 .Rdata 11
, sep= 1111

)) 

IN<-l:nrun 

X<-S$x 

X<-Transform(X, R=l) 

X<-X[IN,] 

X<-as.data.frame(X) 

Y<-S$y 

dY<-S$dydx 

k<-dim(S$y)[2] 

new. theta<-c () 

Rsq<-c () 

f .fits<-list() 

for (out in 1:k){ 

if (out==k){ 

act<-c(1,4,6,13) 

f<-lm( Y[IN,out,2] - X1+X4+X6+X13, data=X) 

} else { 

act<-c(1,4,6,10 ) 

f<-lm( fmla( 11 Y[IN,out,2] 11
, act, int2nd=T), data=X) 

} 
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) 

} 

f.fits[[out]]<-f 

Rsq<-c(Rsq, summary(f)$r.squared) 

mult[c(5,14)]<-0 

dYtmp<-matrix(mult, nrow=dim(dY) [1], ncol=15, byrow=T)*dY[,out,] 

efit<- fit(f, act, theta=ThetaO) 

esttheta<-function(inp, VEPS){ 

} 

y<- paste ( "dYtmp [," , inp, "] ", sep=" ") 

if (out==k){ 

dfdx<-lm( dYtmp[, inp] - 1, data=X) 

} else { 

dfdx<-lm( fmla( y, setdiff(act,inp)), data=X) 

} 

DOF <- dfdx$df.residual #degrees of freedom 

e<-residuals(dfdx) 

s2 <- drop((t(e)%*%e)/DOF) #Estimate of 2*theta_{i}sigma_{e}~2 

#New theta estimate 

s2/(2*max(VEPS,0.01)) #correct if VEPS too small 

thetaobj<-sapply( act,function(z) esttheta(z,efit$veps)) 

new.theta<-rbind(new.theta, thetaobj) 

lastP<-k-1 

MEAN<-apply(new.theta[1:lastP,], 2, mean) 

MED<-apply(new.theta[1:lastP,], 2, median) 
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MAX<-apply(new.theta[1:lastP,], 2, max) 

MAX.NOEND<-apply(new.theta[2:(lastP-1),], 2, max) #ignore first and last P 

new.theta<-rbind( new.theta, MED, MEAN, MAX, MAX.NOEND ) 

write. table (new. theta, f ile=paste ("new. theta" , STA, sep=" ")) 

colnames (new. theta)<-paste ("& \theta_{", 1:4, "}", sep=" ") 

rownames(new.theta)[1:k]<-c(paste("P_{", 1:(k-1), "} &"), "N_{w} &") 

print( round(new.theta,2) ) 
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print(Rsq) 

for (out in 1:k){ 

} 

} 

if (out==k){ NEW.THETA<-new.theta[k,] } else { NEW.THETA<-MAX.NOEND} 

compare<-rbind( unlist(fit(f.fits[[out]], act, theta=ThetaO )), 

unlist(fit(f.fits[[out]], act, theta=NEW.THETA )) ) 

print( round(compare,3) ) 

} #End MSDM 

Best.hypercube<-function( n, w, ntrys=1e3, tovary=setdiff(1:15, c(5,14))){ 

d<-length(tovary) 

cur<-rep(1, length(w)); themax<-rep(O,length(w)) 

#w=O corresponds to mimimising C13, w=1 to minimising C5 

CORRmax<-CORR<-matrix(NA, ncol=13, nrow=length(w)) 

CORRsum<-matrix(NA, ncol=2, nrow=length(w))# ncol=2: sum to 5 and sum to 13 

for (i in 1:ntrys){ 

HYPER<-hypercube(n, d, range=c(-1,1)) 

corr<-cor( HYPER) 

diag(corr)<-0 #Don't want 1s to count is maximum 

corr<-apply(abs(corr), 1, max) 

corr<-sort(corr) 

tomin<-w*corr[5] + (1-w)*corr[13] 

wmin<-which(tomin<cur) 

wmax<-which(tomin>themax) 

if (length(wmin)){ 

CORR[wmin,]<-corr; CORRsum[wmin,]<-c(sum(corr[1:5]),sum(corr)) 

if (length(w)==1){ CUR<-HYPER } else { CUR<-NULL } 

# CUR<-HYPER makes sense only for w scalar 

} # end if (length(wmin)) 

if (length(wmax)){ 
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} 

CORRmax[wmax,]<-corr } 

cur<-ifelse(tomin<cur, tomin, cur) 

themax<-ifelse(tomin>themax, tomin, themax) 

if (length(w)==1){ 

CUR<-InvTrans(CUR, tovary, R=1) 

X<-matrix(XPrior$def, nrow=n, ncol=15, byrow=T) 

X [, tovary] <-CUR 

} else { X<-NULL } 

list(corr=CORR, X=X, corrmax=CORRmax, corrsum=CORRsum) 

#crit is the biggest value -best if not x1,x4,x6,x10,x13 for tomin=13 

} 

fmla <- function(y, active, quad=F, int=F,, int2nd=F, extra=NULL){ 

xnam<-paste("X", active, sep="") 

lin<-paste(xnam, collapse= "+") 

terms<-lin 

if (quad) { 

} 

quad<-paste("I(", xnam, "~2)", sep="") 

quad<-paste(quad, collapse="+") 

terms<-paste(terms, quad, sep="+") 

if ( all( c(int2nd, length(active)>1, !int) ) ){ 

#NB before int gets changed into a string so !int makes sense 

matt<-cO 

for (i in l:(length(active)-1)){ 

newbit<-cbind(active[i], active[(i+l):length(active)]) 

matt<-rbind(matt, newbit) 
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} 

i2<-apply(matt, 1, function(z) paste(paste("X",z, sep=""),collapse=":") ) 

i2<-paste(i2, collapse="+") 

} 

} 

terms<-paste(terms, i2, sep="+") 

if ( all( c(int, length(active)>l) ) ) { 

int<-paste(xnam, collapse="*") 

terms<-paste(terms, int, sep="+") 

} 

if (length(extra)){ 

terms<-paste(terms, extra, sep="+") 

} 

as.formula(paste( paste(y, " - " sep='"'), terms )) 

Transform<-function(Z, l=XPrior$low, u=XPrior$upp, R=rad){ 

# Simple Linear transform of Z onto range [-R, R] (Usually R=l) 

X<-array(dim=dim(Z), dimnames=list(NULL, colnames(Z))) 

for (j in l:ncol(Z)){ 

X[,j]<-( R/Cl[j]-u[j]) )*( -2*Z[,j] + l[j]+u[j]) 

} 

X 

} 

InvTrans<-function(Z, inp=1:15, l=XPrior$low, u=XPrior$upp, 

d=XPrior$def, R=rad){ 

-
# Gives X values back in original scale 

L__ ________ -- -- -
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} 

#eg to find refocused region in original scale 

X<-matrix( nrow=nrow(Z), ncol=ncol(Z) ) 

X 

for (j in seq(along=inp)){ 

i<-inp[j] 

X[,j]<- 0.5*( l[i]+u[i] + Z[,j]*(u[i]-l[i])/R) 

} 

Matern1D<-function(x, theta, nu){ 

} 

#rescale<-2*sqrt(nu)*abs(x)/theta # Santner theta scaling 

rescale<-2*sqrt(theta*nu)*abs(x) # My scaling (to coincide with Gauss) 

R<-rescale-nu * besselK(rescale, nu=nu)/( gamma(nu)*2-(nu-1) ) 

ifelse(is.na(R), 1, R) #Get NA at x=O 

Sim<-function( theta, n=4, X=c(), nu=NULL, deriv=F, LEN=101, PLOT=T, 

YLIM=NULL, XA=T, YA=T){ 

require(MASS) # For multivariate normal sampling 

# Derivatives option only if data (length(X)>O) and Gaussian (nu=NULL) 

if ( any(!length(X), !is.null(nu)) ){ deriv<-F} 

x <- seq(-1, 1, len=LEN) 

xdist<-outer(x, x, "-") # For x a vector (lD) 

if (length(nu)){ # is.nul(nu) specifies Gauss 
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Sigma <- Matern1D(xdist, theta, nu) 

} else { 

Sigma <- exp(-theta * xdist~2 ) 

} 

# Unconstrained by obs 

if (!length (X)){ 

y <- mvrnorm(n, rep(O, length(x)), Sigma) 

} else { 

} 

XX<-outer(X, X, "-") 

xX<-outer(x, X, "-") 

if (length(nu) ){ 

VX<-Matern1D(XX, theta, nu) 

CxX<-Matern1D(xX, theta, nu) 

} else { 

} 

VX<-exp( -theta*XX~2 ) 

CxX<-exp( -theta*xX~2 ) 

if (deriv){ 

VXdash<-2*theta*(1-2*theta*XX~2)*VX 

CXXdash<- 2*theta*XX*VX 

} 

CxXdash<- 2*theta*xX*CxX 

VX<-rbind( cbind(VX, CXXdash), cbind(t(CXXdash),VXdash)) 

CxX<-cbind(CxX, CxXdash) 

D<-mvrnorm(1, rep(O, (deriv+1)*length(X)), VX) 

D<-as.matrix(D) 

IVX<-chol2inv(chol(VX)) 

R<-CxX%*%IVX 

VarDS<-Sigma- R%*%t(CxX) 

EDS<-R%*%D 

y<-mvrnorm(n, drop(EDS), VarDS) 

if (PLOT){ 
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} 

if (is.null(YLIM)){ YLIM=range(t(y)) } 

matplot(x, t(y), type="l", ylim=YLIM, axes=all(XA,YA), lty=1, cex.axis=0.8) 

if (!all(XA,YA)){ 

} 

axis(side=1, at=c(-1,-0.5,0,0.5,1), lab=XA) 

axis(side=2, at=-3:3, lab=YA ) 

box() 

if (length(X)){ points(X, D[1:length(X)]) } 

} # endif PLOT 

if (length(X)){ 

} 

# BL estimates 

sig.est<-sum(D[1:length(X)]-2) 

if (deriv){ 

theta.est<- sum(D[(length(X)+1): (2*length(X))]-2) I (2*sig.est) 

} else { theta.est<-NULL} 

return( list( X=X, sigmaEp=1, VX=VX, IVX=IVX, D=D, deriv=deriv, 

sig.est=sig.est/length(X), theta.est=theta.est) ) 
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Bessel functions 

Bessel functions arise as the solution of a class of ordinary differential equations. In 

general, I< v ( x) in defined by an infinite power series. In the case that 11 is equal to 

a half integer (that is, v = n + 1/2 for nE 0, 1, ... ), then 

-x {if n (n + k)! 1 
I<n+l/2(x) = e V~ 2: k!(n- k)! (2x)k 

k=O 

Substituting this into the Matern form 

we get 

R(h) = e-2Mihl (bo(lhiVB)n + bl(lhlv'et-l + · · · + bn) 

where the coefficients are given by 

v(n-j)/2 (n + j)! 
bj = V7f 4-Jr(v) j!(n _ j)!, v = n + 1/2, j = 0, 1, ... 

It can be shown that R(h) -----+ e-0h
2 

as v-----+ oo. 
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(F.0.1) 

(F.0.2) 

(F.0.3) 

(F.0.4) 
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High order derivatives of the 

Gaussian covariance kernel 

Letting x be scalar and writing c(u) = e-u
2

, where u = v'e(x- x'), it is easy to see 

that 

(G.0.1) 

An expression for dkc(u)jduk, k = m+n, is then obtained by a simple rearrangement 

of the following definition for the Hermite polynomial of degree k (Gradstein and 

Ryshik, 1981), 

(G.0.2) 

Generalising for vector x = (x 1 , ... , xp), we exploit the product form of the Gaussian 

covariance kernel which allows us to compute derivatives simply as the product of the 

corresponding scalar component derivatives. In particular, writing ui = V7J: (xi- xD, 

k = (k1 , ... , kp) and defining the operator V'~= ~:: · · · ~::, we obtain 

p -

Cov[V'~t:(x), V'~t:(x')] = cr;exp-(x-x')re(x-x')IT(-1)f' ( v'e:)k;+k; Hk;+k;(ui) 
i=l 

(G.0.3) 

The advantage of writing (G.0.3) in this form is that it can be easily implemented 

using the recurrence relations for Hermite polynomials 

(G.0.4) 
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