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Abstract 

We explore various interactions in D-brane configurations and their implica­

tions for the construction of phenomenologically viable string models. 

Initially, we investigate the scenario of parallel and perpendicular stacks of 

D-branes located on an orbifold singularity, as in the bottom-up construction. 

A supersymmetric D-brane model is presented, that has CP spontaneously 

broken by discrete torsion. The low energy physics is largely independent 

of the compactification scheme and the bihler metric has 'texture zeros' 

dictated by the choice of discrete torsion. This motivates a simple ansatz 

for the kiihler metric which results in a CKM matrix given in terms of two 

free parameters, hence we predict a single mixing angle and the CKM phase. 

The CKM phase is predicted to be close to ~. 

We then proceed to a discussion of a different class of models involving 

D-branes intersecting at arbitrary angles, and wrapping a compact internal 

space. Here we calculate tree level three and four point scattering amplitudes 

in type II string models with matter fields localised at D-brane intersections. 

We treat both the classical and quantum parts in detail, with the latter 

being computed using conformal field theory techniques developed for closed 

strings on orbifolds. Contributions from string states wrapping the internal 

space are also included. These calculations are then generalised to N-point 

amplitudes, which are determined completely. 

Finally, we consider the application of these results to four fermion in­

teractions. In particular, the implications for Higgs exchange in intersecting 

brane models is discussed. 
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Chapter 1 

Introduction and Motivation 

1.1 The Standard Model and String Theory 

The Standard Model of particle physics is one of the greatest intellectual 

triumphs of the twentieth century. Predictions for interactions between el­

ementary particles are seen to be in remarkable agreement with what we 

observe in nature. Furthermore, the Standard Model achieves this using a 

very simple structure. It is based on the principal of local gauge invariance 

and contains three interactions, mediated by gauge vector bosons, described 

by the gauge group SU(3)c x SU(2)L x U(1)y. These fundamental forces are 

supplemented with matter fields, described by Weyl fermions charged under 

the gauge groups as follows, 

Q~ (3, 2)1;6 uk (3, 1)1;3 dh (3, 1)-2/3 

L~ (1, 2)-1;2 ek (1, 1)1. 
(1.1) 

The subscript denotes U(1)y hypercharge and the superscript runs from 

one to three labelling the three generations of matter fields observed in 

nature. One important feature of this arrangement is chirality. That is, 

left-handed and right-handed fields possess different charges. This protects 

fermion masses, which through the Higgs mechanism receive a mass of the 

order of electroweak symmetry breaking. 

Despite its remarkable empirical success the Standard Model has a num­

ber of important shortcomings. For instance, there are nineteen independent 

parameters in the Standard Model that need to be tuned by experiment. 



Chapter 1: Motivation 1.1 The Standard Model and String Theory 

Furthermore, if we assume that mass is generated by a Higgs mechanism and 

that there exists a cut-off scale for the Standard Model, we require extensions 

such as supersymmetry to avoid the hierarchy problem. There are also the 

'why' questions, 

• why the above choices of gauge fields? 

• why the particular pattern of matter fields we observe, and no others? 

• why do we live in a four dimensional world? 

However, arguably its greatest shortcoming is it excludes the most pervasive 

of all fundamental forces, gravity. This is because there is no quantum field 

theory that can successfully describe gravity at the quantum scale and as 

such it does not fit naturally within the framework of the Standard Model. 

The problem of finding a quantum theory of gravity is probably the most 

challenging and fundamentally important issue facing modern theoretical 

physics. There have been a number of promising ideas put forward, each 

with its own advantages and disadvantages. Here, I will concentrate on one 

approach, string theory, which has received a huge amount of attention from 

particle physicists since the 1970s. The basic idea is to replace the point 

particles of quantum field theory with extended one dimensional objects, 

known as strings. The main advantage of this description is that, while there 

are many particles there is only one string. This acts as a strong unification 

principle. Our current limited understanding of string theory is illustrated 

in figure 1.1. Here, we depict the five different types of weakly coupled ten 

dimensional string theories and M-Theory whose low energy limit is eleven 

dimensional supergravity theory [1 J. These are thought to be different limits 

of some underlying unknown theory and are related to one another by various 

non-perturbative and perturbative dualities [2, 3]. These dualities allow us 

insights into the non-perturbative structure of the various string theories. 

For example, M-Theory compactified on S1 is the strongly coupled Type 

IIA theory. In addition to the fundamental strings, these theories admit 

a variety of extended non-perturbative objects. For instance, there exists 

hypersurfaces in spacetime where open strings encl. These are called 'Dp­

branes', where p is the number of spatial dimensions. Also, there are NS­

branes and M-branes, however we will be concerned mostly with Dp-branes. 

2 
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M-Theory 

Type IIA S0(32) Heterotic 

?? 

Type liB Eo x Eo Heterotic 

Type I 

Figure 1.1: All string theories, and M-Theory, as limits of one unknown theory. 

String theory is a promising candidate for new physics beyond the Stan­

dard Model, as it provides a framework within which it is possible to describe 

consistently both quantum gravity and the gauge interactions contained in 

the Standard Model of particle physics. It also has the nice feature of being 

UV finite at all orders in perturbation theory. This is due to the fact that 

the strings have a length, which acts as a high energy cut-off for the theory. 

Furthermore, it also provides an approach to explaining the 'why' questions 

described above. The reason for this, is that whichever string theory we 

choose, it must be compactified down to four dimensions. The details of the 

compactification often determines the gauge group and matter content of the 

low energy theory. Thus the possibility arises that there exists some ground 

state in a string theory, for which the compactification automatically gives 

rise to the gauge groups and matter content of the Standard Model. However 

a selection principle to determine a compactification space that does this is 

not yet available. It is possible that this may only be achieved through a 

thorough understanding of the string moduli space depicted in figure 1.1, 

and hence the non-perturbative structure of the various string theories. 

3 
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1.2 Why String Phenomenology? 

Formulating a non-perturbative version of some string theory, finding its 

ground state and compactifying to obtain the Standard Model is a formidable 

task. Therefore, a simpler alternative, which will help achieve this goal, is 

to 'manually' construct and examine string models. By a string model, I 

mean a specific consistent set-up, which has been constructed to resemble the 

Standard Model or supersymmetric extensions thereof (whether it achieves 

this, is another matter). For example, E8 x E8 Heterotic string compactified 

on a particular orbifold. In effect, we let experiment guide us, rather than 

attempting to fundamentally determine our ground state. The aim of String 

Phenomenology is therefore to find a string model, or class of models, which is 

in agreement with the Standard Model and to correctly predict some feature 

of our universe not previously observed. If this can be achieved, we could 

replace the Standard Model with a more satisfactory model of nature and 

shed light on the underlying non-perturbative structure of string theory. 

Progress towards this goal has been achieved. There are large classes 

of string models which do indeed resemble our observable universe. For in­

stance, compactifying ten dimensional E8 x E8 Heterotic string theory on a 

Calabi-Yau manifold (which is a manifold with SU ( 3) holonomy) can lead to 

models, which after breaking supersymmetry, resemble the Standard Model 

at low energies. However they often contain extended gauge groups and mat­

ter content. These models have the beautiful geometric feature of relating 

the Euler number of the Calabi-Yau manifold to the number of generations of 

particles [4], thus providing a partial geometric explanation to the 'why' ques­

tions listed above. Furthermore, if we consider eleven dimensional M-theory 

and its low energy supergravity limit, we may also obtain semi-realistic mod­

els by compactifying seven dimensions using a manifold of G2 holonomy [5]. 

In fact, one of the greatest strengths of string theory is the way in which it 

often translates our 'why' questions into questions about geometry. Another 

example of this arises through string models based on the idea of D-branes. 

A Dp-brane is simply a (p+l)-dimensional hypersurface where open string 

endpoints are constrained to move. They have an interesting connection to 

gauge theories, in fact a stack of N D-branes has a U(N) gauge theory on it's 

world volume (see section 2.3). Hence, we can construct string models by 

choosing the required D-branes to provide us with interesting gauge groups. 

4 
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For example, a stack of three, a stack of two and a single D-brane gives rise 

to the gauge group U(3) x U(2) x U(l), which often can be related to the 

Standard Model gauge group. Hence, a geometrical choice (i.e. the number 

of D-branes in the model) can account for the gauge groups in the Standard 

Model. 

This type of construction contains two large (overlapping) classes of string 

models, 

1. Type IIA/B theory with parallel and perpendicular D-branes on orb­

ifolds and orientifolds. 

2. Type IIA/B theory with D-branes intersecting at arbitrary angles and 

wrapping a compact internal space. 

In this thesis, we shall study interactions m both these classes of string 

models. This will lead us to explore some generic features of these models, 

and to construct specific examples with low energy physics close to that of 

the Standard Model. Furthermore, the results of this research will allow for 

future improvements in the construction of such models. As a final remark, 

another promising class of model which contains hypersurfaces with localised 

gauge fields is Horava-Witten M-theory [6], but these models lie outside the 

scope of this thesis. 

1.3 Layout of this thesis 

This thesis has six chapters in total. After the introduction and motivation in 

this chapter, we briefly survey the necessary background material in Chapter 

2. This includes the basic formalism required for constructing and analysing 

string models. In particular, section 2.1 contains a brief review of the Neveu­

Schwarz-Ramond Superstring, including its quantisation. This is used in 

determining the string spectrum of our model in chapter 3. Then we discuss 

how to calculate string amplitudes in section 2.2, which will be required in 

chapters 4 and 5. Finally, we give a brief motivational discussion of D-branes, 

which are the essential ingredients of the models discussed in this thesis. 

Chapter 3 is concerned with the first class of string models listed above. 

Here we construct a D-brane model using the bottom-up approach [7]. This 

model was presented in [8] and is a supersymmetric model, that has CP 

5 
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spontaneously broken by discrete torsion. The construction of this model is 

described in detail in section 3.4 where it is shown that discrete torsion can 

give rise to CP violation. This is pursued in section 3.5, where we examine 

the phenomenological implications. In particular, we use the fact that the 

low energy physics is largely independent of the compactification scheme 

and the bihler metric has 'texture zeros' dictated by the choice of discrete 

torsion. This motivates a simple ansatz for the bihler metric which results 

in a CKM matrix given in terms of two free parameters, hence we predict 

a single mixing angle and the CKM phase. The CKM phase is predicted to 

be close to ?f. This model can be seen as a first step in a new way to avoid 

the traditional supersymmetric CP and flavour problems typically found in 

attempts to incorporate supersymmetry breaking and flavour structure in a 

high energy model. 

In chapter 4, we proceed to the second class of string models, known 

as intersecting brane models, involving D-branes intersecting at arbitrary 

angles. In particular, we calculate three and four point scattering amplitudes 

in type 11 string models with matter fields localised at the intersections of D­

brane wrapping cycles. This work was published in [8, 9]. In section 4.4, we 

calculate three point tree level scattering amplitudes. This includes the case 

of Yukawa interactions which are seen to give rise to a natural mechanism 

for the generation of a mass hierarchy [10]. Next, we determine the four 

point function in section 4.5. The quantum contribution is determined using 

conformal field theory techniques developed in [11, 12] for closed strings on 

orbifolds. 

In chapter 5 we generalise these calculations to N-point amplitudes in­

volving string states at D-brane intersections. These results were published 

in [9]. We finish in section 5.4 with an application of our results to the 

analysis of Higgs exchange in intersecting brane models. Our results are 

then summarised, along with a conclusion and prospects for future work in 

chapter 6. 

6 



Chapter 2 

An Introduction to String 

Theory 

We now proceed to a brief review of the necessary background material in 

string theory, required to understand the constructions and calculations pre­

sented in the later chapters. The main references are [13-17]. 

2.1 The Neveu-Schwarz=Ramond Superstring 

2.1.1 The classical action 

We begin with an overview of the basic construction of the Neveu-Schwarz­

Ramond (NSR) superstring. From this construction, we can obtain all five 

weakly coupled string theories. A string may be discussed in terms of 

a two dimensional field theory, defined on a worldsheet with coordinates 

IJ E [O,?T] and T E (-oo,oo). There are D bosonic fields, XJJ., which can 

also be interpreted as the embedding of the string worldsheet in the tar­

get spacetime. These transform as vectors under Lorentz transformations in 

the target spacetime. We also have D anticommuting Majorana fermions, 

1jJil, which transform as spinors under coordinate transformations in the two­

dimensional worldsheet and as vectors under Lorentz transformations in the 

target spacetime. The action, in conformal gauge (i.e. the metric, lab, on 

the two-dimensional worldsheet is conformally flat), is given by 

(2.1) 

7 



Chapter 2: Introduction 2.1 The Neveu-Schwarz-Ramond Superstring 

where T = 2rra' is the tension of the string, a 1112 is the string length and 

a = 0, 1 sums over the worldsheet coordinates. The matrices pa are 2 x 2 

Dirac matrices which in a convenient basis for the worldsheet spinors can be 

taken to be, 

(2.2) 

These matrices obey, 

(2.3) 

where the signature for the Lorentzian metric, 1tb, is taken to be (- +). In 

this basis, the action (2.1) is real provided the fermion field 

(2.4) 

is a two-component Majorana spinor as stated above. Hence, 1/J~ are real 

and 'ljJ = 1/JT p0. 

2.1.2 Equation of motion and boundary conditions 

As a first step towards determining the spectrum of this theory, we must 

consider the equation of motion and boundary conditions for the worldsheet 

fields. Let us first consider the bosonic part of the action (2.1), 

(2.5) 

Varying this action with respect to XP. we obtain, 

The first term provides us with the equation of motion for X P., which is 

simply the free two-dimensional wave equation. As such, the general solution 

is comprised of arbitrary left and right moving functions, 

(2.7) 

8 
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where we have defined worldsheet light-cone coordinates, a± = T ±a. Intro­

ducing, O± = ~(fJT ± oa), we obtain 

(2.8) 

The second term in (2.6) provides us with the boundary conditions for the 

bosonic worldsheet fields. There are two main possibilities, 

• Open Strings with one of the following, 

1. Neumann boundary conditions, 8aXJ-L(r, a)ia=0,1f = 0. 

2. Dirichlet boundary conditions, oTXJ-L(r, a)ia=0,1f = 0. 

• Closed Strings with periodic boundary conditions, 

XJ-L(r, 0) = XJ-L(r, 1r), 

8aXJ-L(r, 0) = oaXt'(r, 1r). 
(2.9) 

Proceeding to the fermionic part of the action, using the conventions in 

subsection 2.1.1, we have 

(2.10) 

where the index ~L has been suppressed for clarity. Using the variational 

principle, we see that the fermionic fields also split up into left and right 

movers satisfying the two dimensional massless Dirac equation, 

(2.11) 

The boundary term is, 

(2.12) 

In the open string case, the relative sign between '1/J~ and '1/J~ is purely a 

convention and we may impose '1/J~(r, 0) = '1/J~(r, 0). Then, we have the 

following possible boundary conditions for the fermionic fields, 

• Open Strings have the two distinct possibilities, 

1. Ramond (periodic) boundary conditions, '1/J~ ( T, 1r) = '1/J~ ( r, 1r). 

9 
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2. Neveu-Schwarz (anti-periodic) boundary conditions, '1/J~(T, 1r) 

-'1/J':._(T, 7r). 

• Closed Strings, each component of 1/J is periodic or anti-periodic sep­

arately. 

Now that we have obtained the equation of motion and boundary conditions 

for the bosonic and fermionic worldsheet fields we turn our attention to their 

mode expansions. This will allow us, along with mass-shell constraints, to 

quantise the two dimensional field theory on the string worldsheet. 

2.1.3 Mode expansions of the worldsheet fields 

We first focus our attention on the closed string. The periodicity of the 

bosonic fields leads to the mode expansions, 

(2.13) 

where x~ and pll are the centre of mass position and momentum of the string 

respectively. For the zero mode, we have the relation ii~ = a~ = ~p'1 • 
Also, for X 11 to be real we require, 

(2.14) 

The mode expansions (2.13) describe left and right moving waves travelling 

independently and in opposite directions around the closed string. 

The fermionic fields have the mode expansions, 

(2.15) 

where r E Z when 1/J± is in the periodic (Ramond) sector and r E Z + 1/2 

when 1/J± is in the anti-periodic (Neveu-Schwarz) sector. Note that, there are 

four distinct closed string sectors corresponding to the possible permutations 

for pairing up Neveu-Schwarz (NS) and Ramond (R) boundary conditions in 

the left and right movers. Finally, the Majorana condition requires that, 

(2.16) 

10 
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Next, consider the open string with Neumann boundary conditions for 

the bosonic fields. In this case, the left and right movers combine to form 

standing waves, hence 

(2.17) 

Hence, there are no longer independent left and right movers as appeared in 

the closed string case, and the zero mode is now given by a~= J2{;ipf1. We 

return to the case of Dirichlet boundary conditions in section 2.3, where we 

discuss D-branes. 

For the fermionic fields on the open string, we again have a single set of 

oscillators, 

(2.18) 

where again we have T E Z when '1/J± is in the Ramond sector and T E Z+ 1/2 

when '1/J± is in the Neveu-Schwarz sector. This notation will be assumed 

implicitly from now on. Note, we still have the same reality conditions on 

the oscillators as in ( 2.16). 

2.1.4 The super-Virasoro algebra and mass-shell con­

straints 

The final ingredient required for the quantisation of worldsheet fields, is 

obtained by a consideration of constraints arising from conserved currents 

on the worldsheet. 

The string action given in (2.1) has a global world-sheet supersymmetry, 

Le. it is invariant under the infinitesimal transformations, 

JXJ.L =E'l/JJ.L, 

b'!jJJ-L = -ip00 8aXJ-LE, 
(2.19) 

where E is a constant anticommuting spinor. These transformations m1x 

bosonic and fermionic fields and hence are termed, supersymmetric. Any 

global symmetry gives rise to a conserved current via the 'Noether method'. 

In this case we obtain the supercurrent, which in light cone coordinates is 

11 
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given by, 

(2.20) 

This is obviously conserved since, 0 = a_J+ = 8+]_. 

Another conserved quantity, the energy-momentum tensor, arises from 

worldsheet coordinate invariance. Utilising the Noether method we obtain, 

in light cone coordinates, the following conserved currents 

(2.21) 

These conserved quantities give rise to constraints on the bosonic and fermionic 

fields. In fact, we will demand that, 

0 = J+ = ]_ = T++ = T __ , (2.22) 

on the physical states. These constraints can be derived systematically by 

a gauge fixing of a suitable supergravity lagrangian [13]. However, we will 

take them as postulates and see that they lead to consistent and interesting 

string theories. 

To achieve this, define the super- Virasoro generators, which are the modes 

of Taf3 and la. For open strings, the bosonic operators are given by, 

and the fermionic operators, 

In terms of oscillators from the mode expansions, 

Ln = ~ 2..::=-00 O:n-m. O:m + ~ Lr(2r- n)1/Jn-r ·1/Jr, 

Gr = L:=-oo O:m ·1/Jr-m, 

(2.23) 

(2.24) 

(2.25) 

where the index r takes it's normal values according to the boundary condi­

tions of the fermionic fields. In the closed string case, there are two sets of 

super-Virasoro generators, one given by the modes ofT++ and J+ and the 

12 
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other by the modes ofT __ and ]_. 

As a consequence of our postulate (2.22), these operators give an infinite 

number of constraints corresponding to an infinite number of conserved cur­

rents of the ( 1 + 1 )-dimensional field theory. They are associated with the 

super-conformal symmetry of the action (2.1). A detailed exposition of this 

can be found in [14]. 

2.1.5 Covariant quantisation 

To finally quantise the two-dimensional worldsheet field theory, we must pro­

mote the modes of the bosonic and fermionic fields to the level of operators. 

This can be achieved by canonical quantisation of the bosonic and fermionic 

coordinates of the string. Since, in the conformal gauge, we have a free 

field theory the modes of the bosonic fields must be the quantum mechanical 

raising and lowering operators for the simple harmonic oscillator, hence 

Similarly, for the fermionic modes, we obtain the anti-commutators, 

{ 1/J~, 1/J~} = { ~~, ~~} = br+s,aT/J-LV, 

{ 1/;~, ~~} = 0, 

(2.26) 

(2.27) 

where r, s have the usual values dependent on the boundary conditions of 

the fermionic fields. 

After quantisation, we must be careful with our expressions for the Vira­

soro generators (2.25). In particular, we see that La is not well defined. We 

conventionally define 

1 
00 

1 
La= 2 L : CY_m • O:m: +4 L(2r) : 1/J-r ·1/Jr :, (2.28) 

m=-oo r 

where : : denotes normal ordering, i.e. the prescription that places m, r > 0 

operators to the right. Since an arbitrary constant could have been present 

here, we must add a to-be-determined constant to all formulas containing 

La. 

We can now determine the super- Virasoro algebra generated by the super-

13 
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Virasoro generators. This is given by, 

[Lm, Ln] =(m- n)Lm+n + Ar(m)6m+n,o 

[Lm, Gr] =(~m- r)Gm+r 

{Gr, Gs} = 2Lr+s + Br(r)6r+s,o, 

(2.29) 

where Ar and Br are anomaly terms which depend on the boundary condi­

tions of the fermionic fields. These are given by, 

Ar(m) = ~D(m3 - m) Br(r) = ~D(r2 - ~) rE !Z + ~ (NS), 

Ar(m) = ~Dm3 Br(r) = ~Dr2 rE !Z (R), 
(2.30) 

where D is the number of spacetime dimensions. These anomalies are most 

easily determined by evaluating expectation values in the Fock-space ground 

state. 

The constraints (2.22) can now be incorporated into our quantised theory 

by requiring that their positive frequency components annihilate physical 

states, i.e. 

GrlcP>=O r>O, 

LnlcP >= 0 n > 0, (2.31) 

(Lo- a)lcP >= 0, 

where a is a constant to be determined. 

We can determine a and D by considering states in our Fock-space. For 

certain values of a and D we obtain unphysical negative norm states, for 

other values all states have positive norms. At the boundary between these 

two regions are extra zero norm states that occur for special values of a 

and D. These are associated with gauge invariance and are important for 

including gauge fields in our theory. As a consequence, it is these values of 

a and D which give rise to interesting physical theories. Let us consider the 

NS sector. The ground state IO; k), is on-shell if (£0 - a)IO; k) = o:'k2
- a= 0, 

since a5 = 2o:'k2
. F\1rthermore, the excited state lcP) = G_ 1; 2 IO; k) is on-shell 

if o:' k2 = a- ~. Now, if a = ~ then not only does I cP) satisfy the physical state 

condition G1; 2 lcP >= 0, but also it is a zero norm state, i.e. (cPicP) = 0. In 

fact, if we choose a = 1/2, there is an infinite family of physical states with 

zero norm given by G-1121J >,where iJ) satisfies G1;2IJ) = G3;2IJ) = LoiJ). 
For example, IJ >= (G_1;2)11 IO; k) where nE Z. Hence, it seems that a= ~ 
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is a good value to consider. 

Next, we can similarly determine the spacetime dimensionality, by looking 

for extra zero norm states. Consider the following family of states, 

where, 

Using the super-Virasoro algebra it can be shown that, 

G1;2!a >= (2- -\)L-Ilo-), 
G3;2Ja >= (D- 2- 4-\)JG-). 

(2.32) 

(2.33) 

(2.34) 

Hence Ja) is a zero norm state for ,\ = 2 and hence D = 10. A similar 

procedure, for the fermionic (Ramond) sector, leads to the critical values 

a = 0 and again D = 10. 

Thus, the critical values of a and D that give rise to physically interesting 

theories are, 

D = 10. 

(R) 

(NS) 

2.1.6 The open string spectrum 

(2.35) 

We can now proceed to a determination of the spectrum of states for the 

open superstring. We restrict our attention to massless states, as these are 

the only states which will appear in the low energy field theory limit, o/ -t 0. 

The £ 0 = a constraint can be rewritten as the open string mass formula, 

2 1 m = -(N- a), 
a' 

(2.36) 

where, 
00 

N = LO:-n · O:n + Lr'l/J_r · 1/Jn (2.37) 
n=l r>O 

counts the level number of a physical state. The open string spectrum has 

two independent sectors, which we now consider separately. 

Firstly, let us consider the NS sector, in this case a = ~· Hence, the 
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ground state IO; k) NS is tachyonic, this state is removed from the spectrum 

by the GSO projection which we will discuss shortly. The first excited state is 

1};~ 1 ; 2 10; k)Ns, which is massless. Due to its index f-1, this state transforms as 

a vector in the transverse S0(8) rotation group. This group corresponds to 

the Little group of S0(1, 9) that leaves the light-cone momentum invariant. 

We can also consider excitations of the bosonic field, however these states 

are not massless. For example, a~ 1 IO; k) NS has m2 = 2~,. All states in the 

NS sector transform as spacetime bosons i.e. they are given by irreducible 

vectorial and tensorial representations of S0(8). 

We now move on to the Ramond sector. From the anti-commutation 

relations (2.27) we see that the zero modes 1};/; satisfy the ten dimensional 

Clifford algebra, 

(2.38) 

Hence, we can identify the zero modes with Dirac matrices via 1};/; = ~rJL. 
The states at each mass level must furnish representations of this D = 10 

Clifford algebra. It follows that these states transform as spinors under 

S0(1, 9). Hence, the Ramond sector gives rise to spacetime fermions. 

In particular, the Ramond ground state is mass less (since a = 0) and 

degenerate as 1};/; maps ground states to ground states. We can choose a 

useful basis as follows, 

dt = ~(1};6i ±i1};6i+1
) i = 1, .. ,4, 

dt = ~ ( 1};6 =F 1pg). 

In this basis, the Clifford algebra takes the form, 

(2.39) 

(2.40) 

Hence, the dt, i = 0, .. , 4 act as raising and lowering operators generating 32 

Ramond ground states. We can denote these states as, 

(2.41) 

where each si = ±~ can be raised or lowered by dt. To understand the 

usefulness of this notation consider the fermionic part of the ten-dimensional 
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Lorentz generators, 

(2.42) 
r 

The eigenstates of So = iS01 and si = S2
i,

2
i+l are the corresponding Si· 

These generators always flip an even number of the si, hence the Dirac rep­

resentation decomposes into a 16 and a 16'. 

The physical state condition Goi<P) = 0 gives us the massless Dirac equa­

tion in momentum space, pJL'l/Jb = 0. If we pick a massless frame of reference 

we obtain, 

(2.43) 

hence s0 = ~, resulting in a sixteen fold degeneracy for the physical Ramond 

ground state. This is a spinor representation of S0(8) which decomposes into 

85 with an even number of - ~ 's and 8c with an odd number. One is in the 

16 and the other in 16' differing only by a spacetime parity transformation. 

2.1. 7 The GSO projection 

The superstring spectrum admits a consistent truncation, called the Gliozzi­

Scherk-Olive (GSO) projection, which is demanded by consistency of the 

string theory. This projection removes those states with an even number of 

'ljJ oscillator excitations. Hence, 

(2.44) 

where F is fermion number operator. 

In the NS sector, we have 

(2.45) 

which satisfies, 

(2.46) 

We now see that the GSO projection has the attractive feature of projecting 

out the tachyon (since F = 0) as mentioned previously. 
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For the R sector, we must define 

(2.47) 

where 

(2.48) 

is the ten dimensional chirality operator. The sign choice in (2.47) leads 

to different chirality projections on the spinors. This has important con­

sequences in the case of the closed string, as will be discussed in the next 

subsection. 

Applying the GSO projection to the open superstring spectrum leads to 

an equal number of bosons and fermions at the massless level. In fact, it can 

be shown that the open superstring with GSO projection has D = 10, N = 1 

spacetime supersymmetry. This construction can be then shown to lead (on 

anomaly cancellation) to the Type I 50(32) superstring theory. 

2.1.8 The closed string spectrum: Type IIA and Type 

liB 

As a closed string is effectively two copies of an open string, we can determine 

its spectrum by taking the tensor product of left-movers with right-movers, 

each of which is described by the open string spectrum as above. However, 

there is also a constraint relating the left and right movers. Consider the 

physical state conditions (La- a)lc/J) = (La- a)lc/J) = 0, subtracting and 

adding gives, 

(La - La) I cp) = 0, 

(La+ La- 2a)lc/J) = 0. 

The first constraint results in a level matching condition, i.e. 

and the second yields the closed string mass formula, 

2 4 
m = -(N- a). 

ex' 

(2.49) 

(2.50) 

(2.51) 

In the case of the closed string, we have a choice to make regarding the 
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Sector 80(8) Representation Massless Field Boson/Fermion 
NS-NS 8v @ 8v = 35 E9 28 E9 1 gjlVl BjlVl <I> Boson 
NS-R 8v @ 8 8 = 8s E9 56s w11 , .\ Fermi on 
R-NS 8s @ 8v = 8 8 E9 56s w' x 11' Fermi on 
R-R 8s@ Bsjc = p- forms Ramond-Ramond fields Boson 

Table 2.1: Closed string massless states. 

GSO projection on the R sector. Taking the same GSO projection (i.e the 

same sign in ( 2.4 7)) on both left movers and right movers results in the 

Type liB superstring theory, while taking opposite signs results in the Type 

liA theory. This gives rise, along with the level matching conditions, to the 

following massless closed string states, 

Type liA: (8v E9 8 8 )@ (8v E9 8c) 

Type liB: (8v E9 8s)@ (8v E9 8s)· 
(2.52) 

These massless states are summarised in table 2.1 and fill out supermulti­

plets of a D=lO, liA (non chiral) and liB ( chiral) supergravity theory. The 

graviton arises from the NS-NS sector and the gravitinos from the NS-R and 

R-NS sectors. Hence, the closed string theories have N=2 supersymmetry in 

D=lO. 

Here, we also come across a hint to the existence of extended objects, 

known as D-branes. These turn out to be (p +I)-dimensional sources for the 

p-form fields in the Ramond-Ramond sector. This will be elaborated on in 

section 2.3. 

2.2 Calculation of String Amplitudes 

We now proceed to a discussion of the methodology required in the calcu­

lation of string scattering amplitudes. This is a complicated and expansive 

subject, and as such we will only present a brief and heuristic overview here. 

More computational detail will be provided in the concrete calculations per­

formed in chapters 4 and 5. 
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0 
a) b) 

Figure 2.1: a) Open string one-loop vacuum amplitude. b) Closed string four­
point tree level interaction. 

2.2.1 String perturbation theory 

Following the path integral approach used in representing a quantum theory, 

we can define an amplitude in string theory by summing over all possible 

worldsheet configurations between the initial and final states, weighted by 

the classical action. Figure 2.1 depicts examples of such possible worldsheet 

configurations in open and closed string interactions. An important feature 

of these diagrams, is that there is no specific Lorentz invariant interaction 

point which marks the splitting and joining of strings. In effect, the inter­

action is 'smeared out'. This removes the UV divergences that plague point 

particle interactions and leads to string theory being UV finite at all orders 

in perturbation theory. 

We can classify our string interaction diagrams according to their topol­

ogy, and then sum over all worldsheets with a particular topology by inte­

grating over size and shape moduli. In fact, it is a feature of string theory 

that a single string diagram with a fixed topology can often represent a large 

number of point particle feynman diagrams, corresponding to different limits 

of the moduli. As an example, in the theory of oriented closed strings, there 

is one and only one feynman diagram at any given order of perturbation the­

ory. This corresponds to the fact that oriented two-dimensional manifolds 

are completely specified by a given number of handles and the number of 

holes. For example, the one-loop vacuum amplitude is simply given by a 

torus, the two-loop vacuum amplitude by two tori sewn together, etc. 

The classification of diagrams is more complicated in the case of open 

strings and unoriented closed strings. For instance, figure 2.2 depicts one-
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Annulus 
(Oriented open string) 

Mobius Strip 
(Unoriented open string) 

Klein Bottle 
(Unoriented closed string) 

2.2 Calculation of String Amplitudes 

0 

Figure 2.2: Contributions to tadpole divergences. 

loop vacuum amplitudes that may give rise to tadpoles. That is, an amplitude 

for the creation of a single particle from the vacuum, induced by quantum 

effects. For a consistent theory these diagrams must cancel and this puts 

constraints on possible string models, this will be discussed further in chapter 

3. Notice that, if we have unoriented closed strings we also have a Klein 

bottle contribution to the one-loop vacuum amplitude for the closed string, 

in addition to the torus. 

2.2.2 Vertex operators 

The problem of summing over all possible worldsheets is simplified by the 

invariance of the string action under a conformal rescaling of the worldsheet 

metric, i.e. 'Yaf3 ---> e<I>"faf3 (this is also known as a Weyl transformation). 

Thus, we can map any worldsheet configuration to any conformally equivalent 

configuration and still obtain the same contribution to the string amplitude. 

To see how this simplifies matters, let us consider the four point closed string 

interaction depicted in figure 2.1. In all string amplitude calculations we 

will assume the simplified case of string sources taken off to infinity. This 

corresponds to an S-matrix element. In this case, we can conformally map 
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Figure 2.3: External string states are described by local operators on the world­
sheet. 

the outgoing legs described by the cylinder, 

Im(w) E [0, -oo), w rv w + 21r, (2.53) 

to the unit disc given by, 

(2.54) 

The external state is then mapped to the origin of the unit disc. Therefore, 

each external state becomes a local 'disturbance' on the worldsheet, as de­

picted in figure 2.3. A similar approach gives the same result for external 

open strings, except in this case the local disturbance resides on the boundary 

of the resulting worldsheet. 

In conformally mapping the external string states to points on the world­

sheet, we do not simply lose the quantum numbers of the external string 

state. Hence, there must exist a state-operator correspondence whereby for 

each string state there exists a corresponding local operator in the ( 1 + 1 )­

dimensional quantum field theory that describes the string propagation. 

Thus, for an external state with momentum ki-L and internal state j, there 

exits a local vertex operator Vj ( k) for emission and absorption of that state. 

In conclusion, due to the conformal invariance of the worldsheet we may 

restrict our sum over worldsheets to compact worldsheets, with legs replaced 

with local vertex operators. 
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2.2.3 The Polyakov path integral 

We now proceed to formulate the path integral required to sum over world­

sheets. As we have seen, it is important to classify the contributions to a 

string amplitude by the topology of the worldsheet. Hence, we now must 

consider the possible addition of a non-dynamical extra term to the string 

action (2.1). Such an extra term will only be important when comparing 

worldsheets of different topology. The only possibility consistent with world­

sheet symmetries is, 

(2.55) 

where R is the Ricci scalar for the worldsheet M and K is the extrinsic 

curvature integrated over the boundary, fJM of the worldsheet. 

In the path integral, we must sum over the dynamical fields on the string 

worldsheet, these include the bosonic and fermionic fields and also the metric. 

In order to better define the path integral we must work with Euclidean 

metrics. That is, the Minkowskian metric lab is replaced with a Euclidean 

worldsheet metric 9ab with signature ( ++). In this two-dimensional theory, 

it can be shown that the Euclidean path integral gives the same amplitude 

as the Minkowski one [14]. Then, our new Euclidean string action with 

topological term is given by, 

where, 
SB = 4;cl JM d2(J'gl/2gabfJaXJ.LfJbXJ.L, 

SF = - 4;a' JM d2(J'gl/2gabiif;J.Lpboa'l/JJ.L, 

X= 4;a' JMd2(J'(g)lf2R+ 2;a' faMdsK. 

(2.56) 

(2.57) 

Note that, we are no longer working in the conformal gauge as we will be 

summing over all possible metrics. 

As mentioned above, x is a non-dynamical term and does not affect our 

previous determination of the string spectrum. In fact, it is purely a topolog­

ical term and can be identified with the Euler number of the worldsheet. In 

the path integral, the factor e->-x affects the relative weighting of worldsheets 
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with different topologies. The Euler number is given by, 

X = 2 - 2h - b - c, (2.58) 

where h, b and c are the number of handles, boundaries and crosscaps respec­

tively. Hence, we see that emission and reabsorption of an open string results 

in c5x = -1. Relative to the open string tree amplitude, such a process is 

weighted by e>- in the path integral. Similarly, the emission and reabsorption 

of a closed string results in c5x = -2. Therefore we have, 

2 ,\ 
9o rv 9c rv e ' (2.59) 

where g0 , 9c are the open and closed string coupling constants respectively. 

Finally we can express an n-particle S-matrix element as follows, 

(2.60) 

L J VX'J.V'IjJf.lVgabe-Se[X~','IjJ~',gab] IT J d20"i91/2Vji (ki, O"i)· 
compact topologies t=l 

In order for the vertex operator insertions to be diffeomorphism invariant, 

they must be integrated over the worldsheet. However, this is not quite the 

end of the story. The problem is that (2.60) contains a large overcount­

ing from equivalent configurations related through worldsheet symmetries. 

In effect, we need to divide by the volume of this symmetry group. This 

can be carried out by integrating over a slice that cuts through each gauge 

equivalence class once, and obtaining the correct measure on the slice by the 

Faddeev-Popov method. The details for this procedure are not necessary for 

our requirements but are covered in detail in [14]. We now proceed to briefly 

discuss the actual form of the vertex operators. 

2.2.4 State-operator mapping 

As we have seen, there exists a state-operator correspondence, whereby we 

may identify quantum fields and quantum states via a one to one mapping. 

The states may then be regarded as being created from the vacuum state by 

these quantum fields or vertex operators. We now investigate this correspon­

dence in more detail in the context of the bosonic sector of the superstring, 
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with vertex operators for the worldsheet fermionic states being discussed in 

the next section. 

In order for us to quantify the state-operator correspondence we must 

introduce a new coordinate system for the worldsheet. We first obtain a 

Euclidean signature by the Wick rotation T -----> iT, and then we define z = 
eT-iu. This maps the closed string to the complex plane and the open string 

to the upper half complex plane. Our bosonic mode expansions for the closed 

string (2.13) then becomes (with a redefinition of the zero mode), 

ax11( ) = _ · (c<') 1/
2 

"'oo 11 -n-1 z '/, 2 L....-n=-00 anz , 

a-X11(-) = _ · (c/) 1/ 2 "'oo -J.!--n-1 z '/, 2 L....-n=-00 an z . 
(2.61) 

Here we have introduced a notation that will be used throughout this thesis. 

Any function of z (z) only, is holomorphic (anti-holomorphic) respectively 

and we define, 8 = az and [) = Bz. These expressions can be inverted to 

obtain, 

(2.62) 

where we integrate counterclockwise around a circle centred on the origin. 

Thus, using the Cauchy-Integral formula, we can identify our raising opera­

tors with quantum fields as follows, 

a 11 -----> i (2) 112 
- 1-an XM(O) n >_ 1 

-n o.' (n-1)! ' 

r.P -----> z· ( 2 )1/2 _1_a-nx11(0) > 1 
'-'-n o.' (n-1)! , n - . 

(2.63) 

For the closed string ground state, the vertex operator is given by, 

(2.64) 

since this form provides the right behaviour under spacetime translations 

and contains no derivatives of X 11 , which would correspond to an excited 

state. Using (2.63) and (2.64) we can easily construct the necessary vertex 

operators. For example, the emission or absorption of the first excited state 

of the closed string is described by, 

(2.65) 
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where (JLv is a polarisation tensor. Note, we integrate over the worldsheet so 

that the vertex operator is invariant under a diffeomorphism. 

For the open string, we have a similar story. However, in this case we 

must integrate the fields over the boundary of the worldsheet. For example, 

(2.66) 

where we integrate along the real line, which corresponds to the open string 

boundary. Also, Ot is the derivative tangential to the boundary. 

2.2.5 Fermionic vertex operators 

We now move on to a basic discussion of the vertex operators for states cor­

responding to excitations of the worldsheet fermionic fields. Expressing our 

worldsheet fields in terms of Laurent expansions gives1 , 

n/,JL ( ) - """"' ____3I!L n/.JL ( -) - """"' ;j;~ 
'f/ z - ~r zr+l/2' 'f/ z - ~r zr+l/2. (2.67) 

As before, r sums over integers/half-integers depending on whether we are 

considering the Ramond/Neveu-Schwarz sectors respectively. The tilde dis­

tinguishes between left and right-movers. The state-operator correspondence 

in the NS sector is given by, 

"''~r ---+ 1 0r-1/2 0 j,JL (0) 
'Y (r-1/2)! 'Y ' 

nf,Jl 1 <::Jr-1/2 0 /.JL (0) 
'Y-r ---+ (r-1/2)! u 'Y ' 

(2.68) 

where again we have used the Cauchy-Integral formula. 

It is somewhat more difficult to construct vertex operators for the Ra­

mond sector as the Laurent expansion has a branch cut. However, we can 

make use of a surprising equivalence known as bosonization. This equiva­

lence is between bosons and fermions and occurs frequently in two dimen­

sional conformal field theories. Consider the conformal field theory of two 

Major ana-Weyl fermions ?j; 1
•
2 

( z) and form the complex combinations, 

(2.69) 

1The extra factor of ~· arises from these fields transforming with half the weight of a 
vector. 
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then the operator product expansions (OPEs) of these fields have exactly the 

same form to those of e±iH(z), where H(z) is the holomorphic part of a scalar 

field on the worldsheet. We can then make the identification, 

'1/J(z) ~ eiH(z), i/)(z) ~ e-iH(z). (2.70) 

All of this applies equally to the antiholomorphic case. 

This bosonization applies to the NS and R sectors. However, since we are 

now grouping fermions into complex pairs we may generalise our boundary 

conditions to, 

(2.71) 

where v E R This is useful in less symmetric cases, e.g. for a compactifi­

cation space which includes an orbifold factor. The Laurent expansions are 

now modified to, 

(2.72) 

We can uniquely define a ground state by, 

'1/Jn+!IIO >!I= i/Jn+l-!110 >!I= o, n = o, 1, ... (2. 73) 

The OPEs of the fermion fields with the operator corresponding to 10 >!I 

allows us to make the identification, 

(2.74) 

Hence, for the D = 10 superstring we can bosonise the fermionic fields as 

follows, 
~(±'1/Jo + '1/JI) ~ e±iH

0
, 

~('l/J2a ± i'ljJ2a+l) ~ e±iHa, a= 1, .. , 4. 
(2.75) 

With the Ramond sector (v = 0) ground state, Is >, having the correspond-

ing vertex operator, 

(2. 76) 

This vertex operator is often called the spin-twist operator. It is also neces­

sary to incorporate ghosts in both the fermionic and bosonic vertex operators, 

more details can be found in [14]. 
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J 

•• 1 

Figure 2.4: Chan-Paton degrees of freedom for an oriented string. 

2.2.6 Chan-Paton factors and gauge invariance 

While we are discussing string interactions and vertex operators we may take 

a convenient detour to discuss the incorporation of gauge invariance in open 

string theories. 

The distinguishing feature of open strings are their two distinct endpoints. 

It is possible to exploit this feature by adding non-dynamical (i.e. with zero 

Hamiltonian) degrees of freedom to the string endpoints. That is, we demand 

that each endpoint is in a state i or j such that i, j = 1, .. , N, as depicted in 

figure 2.4. It is then possible to decompose an open string wavefunction in a 

basis >.fj of N x N matrices, 

N 

lk; a>= 2::::: lk; ij > >.fj, (2. 77) 
i,j=l 

where lk, ij > is the open string state with end points in the states i and j. 

Note that, in this notation we have suppressed information on the oscillator 

excitations. The matrices >.fj are called Chan-Paton factors. All open string 

vertex operators must carry these factors. 

Chan-Paton factors have an important consequence for open string am­

plitudes. Each such amplitude must be weighted by a trace of a product 

of Chan-Paton factors. For example, consider the four-point interaction de­

picted in figure 2.5. To sum over all states involved in the interaction we 

must sum over all possible string end point configurations. However, since 

the Chan-Paton factors are non-dynamical, each string inherits the state of 
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k 

k 

j j 

Figure 2.5: A tree-level four point interaction with Chan-Paton factors. 

it's endpoints from it's neighbours. As a result the amplitude is weighted by, 

L >-i)'JkA~zAFi = Tr(>.l >,2 >,3 >.4). (2.78) 
i,j,k,l 

This factor is invariant under a global U(N) worldsheet symmetry, 

(2. 79) 

under which the endpoints transform in the fundamental, N, and anti­

fundamental, N, representations of the unitary group, U(N). 

Now, the vertex operator corresponding to the massless vector boson in 

the NS sector must be generalised to, 

(2.80) 

This vertex operator then transforms under the adjoint representation N ®N 
of U(N). Hence, the global U(N) worldsheet symmetry is promoted to a 

local U(N) gauge symmetry in spacetime. It follows that, the introduction 

of Chan-Paton factors allows us to incorporate non-abelian gauge fields in 

open string theory. 

2.3 An Introduction to D-branes 

We now give a brief introduction to the non-perturbative objects known as 

D-branes. A Dp-brane is a (p +I)-dimensional hypersurface in spacetime on 
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Figure 2.6: A pair of D-branes. Open string endpoints are always confined to 
the D-brane worldvolume. 

which open string endpoints are confined, a possible configuration is shown 

in figure 2.6. Let us begin by examining the need for such objects in string 

theories which contain open strings. 

2.3.1 The case for D-branes 

We have already come across a number of hints to the existence of such 

objects in our overview of the NSR superstring. The first is the possibility 

of Dirichlet boundary conditions, 

(2.81) 

for open string endpoints. Such a condition constrains the ends of the string 

to a hypersurface in spacetime. This hypersurface then has the basic char­

acteristic of a Dp-brane as described above. Hence, it is necessary in the 

presence of a Dp-brane to have spacetime coordinates which parallel toaD­

brane have Neumann boundary conditions, and perpendicular to the D-brane 

have Dirichlet boundary conditions. This is the origin of the terminology 

Dirichlet-brane or D-brane. 

Next, we consider the Ramond-Ramond p-forms mentioned in the descrip­

tion of the closed string spectrum in subsection 2.1.8. The p-form potentials 
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arising from 88 0 Bs;c are, 

Type liA: C1 , C3, Cs, C7 

Type liB: C0 , Cz, C4, C6, Cs, 
(2.82) 

where in both cases the last two p-forms are Hodge dual to the first two 

and C4 is self-dual. It can be shown that the elementary perturbative string 

states cannot carry any charge with respect to the R-R gauge fields CP+1
. 

Hence we expect that there should be (p + 1 )-dimensional extended sources 

which couple to these potentials via a coupling of the form, 

(2.83) 

where Mp+l is the worldvolume of a Dp-brane and Qp is it's Ramond-Ramond 

charge. This is indeed the case as first discussed in [18]. It follows that we 

have the following species of Dp-branes, 

Type liA: 0, 2, 4, 6, 8 

Type liB: -1, 1, 3, 5, 7, 9. 
(2.84) 

Here p = 8 describes a "domain wall" in ten dimensional spacetime. The 

p = 9 case corresponds to a spacetime filling brane, with no coupling to 

any R-R field strength. Also, the p = -1 case describes an object which is 

localized in time and corresponds to a "D-instant on" . 

Finally, if we consider a situation where we have a number of distinct 

D-branes, then there must exist a label for each string endpoint determining 

which D-brane it is constrained to move on. These are identical to the 

Chan-Paton degrees of freedom mentioned in subsection 2.2.6. Hence, it is 

sensible to reinterpret the Chan-Pat on degrees of freedom as labelling which 

D-brane a string endpoint is confined to. For example, a state lk, ii > has 

it's endpoints on the same D-brane, while a state lk, ij > has it's endpoints 

on two distinct, and not-necessarily coincident, D-branes. This also suggests 

a link between gauge theories and D-branes. This will be the subject of the 

next subsection. 

This evidence for the existence of D-branes in string theories can be put 

on a firmer foundation by the study of T-duality. This allows an explicit 
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construction of D-branes. However, this is not required for an understanding 

of the following chapters and we leave this to the references [14-17]. 

2.3.2 D-branes and gauge theory 

Consider open string states in the presence of two non-coincident D-branes, 

as depicted in figure 2.6. The string states stretched between the two D­

branes are of the form oscillatorslk, ij >. The string tension contributes 

an energy to stretched string states and therefore these states are massive. 

Focusing our attention on massless states with both endpoints lying in the 

same Dp-brane, we have the states, 

'l/J~ 1 /2 Ik, ii > NS, a= p + 1, .. , 9 

'l/J~l/2lk, ii > NS, fl = 0, .. , p 
(2.85) 

and their fermionic superpartners from the Ramond sector. These states 

are just the components of 'l/J~ 112 Ik, ii > NS parallel and perpendicular to the 

brane. 

The first set of states correspond to a set of 9 - p scalars from the point 

of view of the D-brane worldvolume. These are the collective coordinates of 

the Dp-brane and describe its embedding in spacetime. These open string 

states therefore correspond to fluctuations in the D-brane shape. Hence D­

branes are dynamical objects as would be expected in a theory which contains 

gravity. The second state transforms as a vector under S0(1,p) and gives 

rise to a U(1) gauge field on the D-brane worldvolume. 

Next, consider the case of a stack of N-coincident D-branes. There are 

now additional massless states, since strings stretched between these branes 

can achieve vanishing length. We now have N 2 (9 - p) massless scalars 

and each coordinate of the Dp-brane is promoted to a matrix. This non­

commutative geometry has proven to play a key role in the dynamics of 

D-branes. Also, there are now N 2 vectors. These give rise to a matrix 

valued vector boson field, Aij'l/J~ 112 Ik, ij >. In an identical manner to that 

discussed in subsection 2.2.6, this state transforms as a U(N) gauge field 

in the D-brane worldvolume. Hence, a stack of N coincident D-branes has 

a U(N) gauge theory in it's worldvolume. This is extremely important for 

string model construction, since it allows the simple construction of models 
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with gauge groups close to that of the Standard Model. For example, if we 

consider three stacks of D-branes with N1 = 3, N2 = 2 and N 3 = 1, we 

obtain a U(3) x U(2) x U(1) gauge group on the D-brane worldvolume. This 

will be an essential feature of the string models explored in this thesis. 

2.4 Obtaining fou:r dimensional st:ring models 

As we have seen perturbative string theories are defined in ten dimensions. 

It is therefore necessary to 'hide' six spatial dimensions in order to obtain a 

model with (3+1) spacetime dimensions. This can be achieved in a number 

of ways which will be discussed heuristically in this section. 

2.4.1 Compactification and the string scale 

To begin with, a relatively simple method of obtaining a (3+1) dimensional 

model is to utilise D3-branes. As discussed above we can consider stacks of D­

branes giving rise to a U(3) x U(2) x U(1) gauge group on their worldvolume. 

This allows us to construct standard-like models on D3-branes, which we 

would therefore associate with our observable universe. Matter fields such 

as quarks and leptons as well as gauge bosons would correspond to open 

strings attached to the D3-brane, and therefore are unable to feel the extra 

spatial dimensions. Closed strings on the other hand would be free to move 

away from the D-brane giving rise to ten dimensional gravity. This scenario 

will be analysed further in chapter 3, where a specific example will be given 

following the bottom-up approach discussed in [7]. In order to obtain a fully 

realistic model we must also compactify the extra spatial dimensions in order 

to obtain four dimensional gravity. 

For closed string models without D-branes our only option is to compact­

ify all the extra spatial dimensions from the outset. This can be achieved 

using a variety of compact manifolds. In this case, and for the embedding 

of D-branes in a compact space to obtain D = 4 gravity, there is a tendency 

to concentrate on tori, orbifolds or Calabi-Yau manifolds. The torus is often 

chosen for simplicity but often has the drawback of leaving too many unbro­

ken supersymmetries in the effective four dimensional model (e.g. heterotic 

strings). An orbifold is usually defined by a group action (with fixed points) 

on a flat space such as JRn or a torus, T 2n. For example, C3 /Z3 is an orbifold 
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defined by the action 

(2.86) 

where g is the generator of the cyclic group Z3 and v = ~(a 1 , a2 , a3 ) is a twist 

vector describing the action of the generator on each complex dimension. 

The benefit of compactifying on an orbifold is that the group action can be 

made to break supersymmetry down to N = 1 (allowing for a chiral model) 

and the manifold has a flat metric away from fixed points, thus simplifying 

some string calculations. An excellent review of this subject can be found 

in [19]. A slight generalisation of this idea is that of orientifolds. This can 

be applied in the case of models with D-branes and involves combining the 

group action with worldsheet parity reversal, for example [20]. 

Orbifolds are actually limits of a more complicated class of manifold 

known as Calabi-Yau manifolds. These are Kahler manifolds with SU(3) 

holonomy, which is a requirement to obtain N = 1 supersymmetry when 

compactifying Heterotic E8 x E8 string theory [4]. An example of such a 

manifold is the subspace of CP4 defined by, 

5 

2:zf = 0. (2.87) 
i=l 

In general however, these manifolds have complex metrics which do not allow 

for simple (or often even tractable) string calculations. 

An interesting consequence of these differing methods of 'hiding' the six 

extra dimensions is the wide range of possible values for the string scale. It is 

possible to have a string scale much lower than the Planck scale if gravity feels 

a large internal volume, with the Standard Model being restricted to some 

smaller sub-volume of spacetime. This class of setup is easily realised utilising 

D3-branes as described above. In particular, if we locate our Standard Model 

on a set of D3-branes (as in the bottom-up approach) we obtain the following 

relation 

(2.88) 

where V6 is the volume of the compact internal space. Therefore provided our 

compact space is large, we may still obtain a Planck scale of the order of 1019 

GeV with a small string scale. In fact, the string scale is only constrained by 

experiment to be greater than 1 TeV. This case contrasts with models without 
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D-branes such as the perturbative Heterotic string. Here both gravity and 

gauge degrees of freedom are the results of closed string excitations and hence 

feel the compact internal space equally. This leads to the following relation, 

(2.89) 

resulting in a string scale of the same order as the Planck scale. A useful 

overview of string models with vastly different string scales is given by [21]. 

2.4.2 Low energy effective actions 

Since we will be focusing on the low energy phenomenological implications 

of various string models, we will be primarily concerned with the limit as 

o/ ---+ 0. In this limit only the massless degrees of freedom of the superstring 

survive. Then, once we have hidden the extra spatial dimensions, we will 

be left with an effective four-dimensional field theory. This can often be 

described in terms of an N = 1 supergravity theory, which is a gauged 

version of supersymmetry which incorporates gravity. 

The most general action coupling N = 1 supergravity to gauge and chiral 

multiplets was constructed in [22, 23]. It can be described in terms of three 

functions of the chiral superfields, 

1. The Kiihler potential, K(cp, cp*), which is a real function. This deter­

mines the kinetic terms of the chiral fields, 

where 
82K 

Ka/J = 8qPocp*f3' 

(2.90) 

(2.91) 

is known as the Kahler metric. The Kahler potential is very model 

dependent and has only been computed in the simplest of cases. 

2. The superpotential, W ( cp), which is a holomorphic function of the chiral 

fields. Due to it's holomorphicity, the superpotential does not depend 

on the string coupling and therefore we only need compute W at the 

tree level in string perturbation theory [24]. Furthermore, it can be 
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shown that it must be of the form, 

(2.92) 

plus higher order non-renormalisable corrections [25, 26]. 

3. Finally, we have the gauge kinetic function, !ab(cp), which is also holo­

morphic. This function determines the gauge coupling constants, 

(2.93) 

In the next chapter, we construct a specific string model which has a low 

energy effective field theory described in terms of a four dimensional N = 1 

supergravity action. The superpotential and Kiihler potential will be studied 

to see how they may give rise to Yukawa type couplings. 
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Chapter 3 

CP violation and Discrete 

Torsion 

We now begin our study of D-brane configurations by exploring a particular 

string construction which provides a geometric approach to understanding 

the phenomenon of CP violation, and the closely related subject of quark 

masses. The string construction we investigate is based on methods first 

discussed in [7] and the results presented in sections 3.4.4-3.5.5 were first 

published in [27]. 

3.1 Introduction and motivation 

The phenomenon of CP violation, i.e. the non-invariance of nature under 

combined charge conjugation and parity reversal, and the numerical val­

ues of the quark masses, are aspects of nature which are not satisfactorily 

explained within the context of the Standard Model. For example, baryo­

genesis almost certainly indicates additional sources of CP violation beyond 

that which has been established by experiment to exist in the CKM matrix 

(see next section) [28-30]. Therefore, it becomes necessary to seek answers 

in physics beyond the Standard Model. Interestingly, the absence of electric 

dipole moments (EDMs) seems to indicate that the additional CP violation 

required must have a very constrained form. This can put strong constraints 

on models which attempt to go beyond the Standard Model. 

Our focus on string theory, as a candidate for physics beyond the Stan­

dard Model, may provide us with an important insight into the nature of CP 
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violation. In string theory, what we call 4 dimensional CP is actually a gauge 

transformation plus Lorentz rotation of the 10 dimensional theory [31, 32]. 

Thus, CP is a discrete gauge symmetry and as such, can only be broken in 

a consistent manner by spontaneous symmetry breaking [32]. A number of 

authors have attempted to exploit this fact by spontaneously breaking CP 

in the effective supergravity approximation to various string models [33-40]. 

However, there is a problem not easily overcome. That is, whatever fields 

break CP and generate flavour structure also contribute to supersymmetry 

breaking, often giving rise to large contributions to CP violation and hence 

EDMs. In effect, the supersymmetry breaking 'knows about' the flavour 

and CP structure. Thus, it is difficult to construct a model which simulta­

neously has phenomenologically viable CP violation and quark masses and 

satisfactory suppression of EDMs and flavour changing neutral currents. 

These problems may be avoided if one instead establishes the flavour 

and CP structure at the string theory level rather than the supergravity 

level. This is because, as we will see, string theory allows us to separate CP 

violation and flavour from supersymmetry breaking. In this chapter, we take 

a first step in this direction by constructing a supersymmetric MSSM-like 

model which has a full flavour structure and broken CP. 

Our framework will be the 'bottom-up' approach to string model building 

developed in [7]. This approach allows the construction of a local configura­

tion of D-branes that reproduces most of the phenomenological features of 

the MSSM without having to worry about the global properties of the com­

pactification space. This helps us to avoid some of the problems associated 

with not knowing the correct compactification to take as the ground state. 

The source of spontaneous CP violation will be discrete torsion, a choice of 

orbifold group action on the B-field background, analogous to Wilson lines 

for gauge fields [41]. One nice feature of this, is that the Yukawa couplings 

contain a non-trivial complex phase, with the breaking of 4 dimensional CP 

appearing as a phase in the CKM matrix. With a rather simple ansatz dic­

tated by our choice of discrete torsion (similar to 'texture zero' models in 

the MSSM) we find a CKM matrix defined by two free parameters. As a 

result, we predict a single mixing angle and the CKM phase, both of which 

lie within current experimental limits. Furthermore, quark mass ratios are 

determined and are seen to be reasonably close to experimental values. 
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This chapter is organized as follows, we first give a brief account of CP 

violation in the Standard Model. Then, we discuss CP violation and discrete 

torsion in the context of closed string theories. This provides a background 

for similar features which will appear in our model with D-branes. Following 

this, we introduce the model that will be a focus for this chapter. Particular 

attention is paid to the effect of discrete torsion on the superpotential and it's 

role in breaking 4 dimensional CP. We then proceed to a more phenomena­

logical discussion, including Yukawa couplings and the CKM matrix. 

3.2 CP violation in the Standard Model 

The lack of invariance in nature under the combined transformation of charge 

conjugation and spatial inversion, is an outstanding problem in particle 

physics. As mentioned above, the Standard Model can accommodate CP vi­

olation, however it contains no fundamental explanation of the phenomenon. 

We will now explore CP in the Standard Model [42], in preparation for our 

study of CP in the context of string theory. 

A CP transformation is a transformation which reverses all gauge charges, 

exchanges left and right handed fermions and reverses the orientation of 

space. In particular, we have 

where CY
2 is a Pauli matrix and '1/J, cjJ are fermionic and complex scalar fields 

respectively. A CP-invariant Lagrangian, .C, transforms as .C(xJ-L) --> .C(xi-L), 

under (3.1). 

In the Standard Model, the only source of CP violation arises from the 

Yukawa terms, 

where I stands for interaction eigenstates, and ~t are Yukawa couplings. 

The fields, 

(3.3) 

are complex scalars charged under SU(2)L x U(l)y. That these terms are able 
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to give rise to CP violation, follows from the fact that a CP transformation 

exchanges the operators, 

(3.4) 

thus (3.2) is invariant only if Y:t E IR, which is not necessarily the case. It 

follows that complex Yukawa couplings tend to signal CP violation. However, 

this is not the full story. 

The three Yukawa matrices give rise to 27 real and 27 imaginary param­

eters, but these are not all physical. If we switch off the Yukawa matrices 

then the Standard Model Lagrangian has the global family symmetry, 

G~~az(Yf = 0) = U(3)Q x U(3)J x U(3)u x U(3)L x U(3)r. (3.5) 

Thus, LYukawa is invariant under a change of Yukawa matrices given by, 

(3.6) 

where V are all unitary matrices. This freedom allows us to remove 15 real 

and 30 imaginary parameters. However, this global symmetry is broken down 

to, 

c;l~al = U(1)s X U(1)e X U(1)/L X U(1)n (3.7) 

when the Yukawas are switched on. So, in total we can remove 15 real and 

26 imaginary parameters from the Yukawa couplings. This gives rise to 12 

real parameters and 1 phase in the Yukawa terms. It is this single phase that 

can give rise to CP violation. More concretely, it can be shown that CP is 

violated if and only if [43], 

(3.8) 

which is referred to as the Jarlskog invariant. Note, it follows that complex 

Yukawas do not necessarily imply CP violation. 

Giving the scalar fields a vacuum expectation value, Re( 1;0 ) ---+ ( v + 
H0

) / J2, the Yukawa terms give rise to the mass terms, 
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Here, 
V 

!vff = _yf 
J2' 

(3.10) 

and we have split the SU(2)L doublets as, 

(3.11) 

The mass matrices can be diagonalised using unitary matrices V1L, VfR, 

V M V t Mdiag 
JL f JR = f · (3.12) 

Then the mass eigenstates are given by h;Ri = (VJL/R)ijfi;Rj' 

We can now define the Cabibbo-Kobayashi-Maskawa (CKM) matrix, 

(3.13) 

which is unitary and hence depends on three real angles and six phases. 

Again, some of these parameters can be removed using the freedom to per­

mute between various generations and the freedom in the phase structure 

of VcKM· Defining Pf to be a diagonal unitary matrix, we can redefine the 

rotation of our interaction eigenstates into mass eigenstates by, 

(3.14) 

leaving Mfiag unchanged. However, this redefinition results in 

(3.15) 

allowing us to remove five phases (there exists fives phase differences between 

Pu and Pd)· Thus, VcKM has three real angles and one phase. In the standard 

parametrisation the CKM matrix is written as, 

::~:~3i6 ) ) 
c23C13 

(3.16) 

where Cij = cos eij) Sij - sin eij and 0 is the Kobayashi-Maskawa phase, 
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which is the single source of CP violation in the Standard Model [44]. 

3.3 Closed string models 

We will now briefly discuss CP and discrete torsion in the context of closed 

string models. This will provide us with a useful background to understand­

ing these features in our case of D-brane models containing open strings. 

3.3.1 CP as a gauge symmetry 

In the heterotic string, it is well known that a four dimensional CP conjuga­

tion corresponds to a rotation in the full 10 dimensional theory and a gauge 

transformation, and thus 4 dimensional CP turns out to be a discrete gauge 

symmetry [31, 32] (i.e. part of the 10D Poincare group). The situation is 

heuristically as shown in figure 3.1. The three non-compact space dimen­

sions are labelled xi, with Yi and wi labelling 6 internal compact dimensions. 

Parity is defined as a reflection in one direction, x 1 say. By a rotation through 

1r in the x 2x 3 plane, four dimensional parity is equivalent to a reflection in all 

the space directions, the more conventional definition (valid when the num­

ber of space dimensions is odd). However if we simultaneously reflect in an 

odd number of internal compact dimensions the total is a rotation in three 

orthogonal planes. Complexifying the internal space as 

(3.17) 

we can, without loss of generality, choose the additional reflection corre­

sponding to a CP transformation to act on the Yi coordinates, with 

(3.18) 

By supersymmetry we must also reflect the fermionic superpartners. This, 

combined with a possible E 8 x E8 or 80(32) gauge transformation, results in 

a reversal of gauge charges. The combined result of the rotation and gauge 

transformation is then a 4 dimensional CP transformation. It follows that 

CP can only be broken spontaneously. 
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X· 
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~ "CP" 

3.3 Closed string models 

W· 
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W· 
1 

Figure 3.1: Rotations on 3 non-compact plus 3 compact directions corresponding 
to CP. 

3.3.2 Discrete torsion 

We now introduce discrete torsion through a consideration of the one-loop 

vacuum amplitude for a closed string theory, defined on the space M 4 xC3 jG. 

M 4 is our ordinary Minkowski space and C3 / G an orbifold, defined through 

the identification 

(3.19) 

This action must also possess a number of fixed points. The one-loop vacuum 

amplitude has the topology of a torus, defined by quotienting the complex 

plane by the equivalence relations, 

W rv W + 2nn W rv W + 21fmT, (3.20) 

where m, n E Z and T is a 'modular parameter', describing the shape of the 

torus. However, a single torus may be described by more than one T. In fact, 

the full family of equivalent tori can be reached from any T by the modular 

transformations, 

T -t T + 1, (3.21) 

43 



Chapter 3: CP and Discrete Torsion 3. 3 Closed string models 

The boundary conditions for the bosonic worldsheet fields are given by, 

(3.22) 

where g, h E G. Fields with periodic boundary conditions only up to the 

action of an orbifold group element are known as 'twisted states'. Fermionic 

boundary conditions can be different for left and right movers, 

'1/JZ(w + 27r) = e-2nivk'I/JZ(w), 

'1/J~(w + 21r) = e-2niuk'I/J~(w), 
(3.23) 

where k runs over spacetime and internal degrees of freedom. Then the 

partition function is given schematically by, 

Z(T) = L ZK(T) L C~Z~(T), (3.24) 
(g,h) (u,v) 

where Z~ is the fermionic contribution and ZK the bosonic contribution. 

Since, the fermionic boundary conditions get mixed up by modular transfor­

mations, we must choose C~ in such a way as to make (3.24) invariant under 

modular transformations. This is a central consistency condition in closed 

string theories. The partition function encodes the spectrum of the string 

theory. Hence modular invariance allows us to deduce all the possible closed 

string theories. To obtain the complete one-loop partition function, we must 

integrate over T giving, 

z = LZ(g,h). (3.25) 
(g,h) 

It has been discovered that (3.25) can be generalised allowing us to con-

struct a larger class of closed string theories. This generalisation is called 

discrete torsion [45, 46] and arises from the possibility of weighting different 

twisted sectors by complex phases, i.e. 

1 z = TGT L {3(g, h)Z(g, h), 
(g,h) 

(3.26) 

whilst still retaining modular invariance. To satisfy modular invariance and 
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factorisation for higher loop amplitudes, these phases must satisfy 

(3.27) 

This implies that the phases are of the form f39 ,h = a9,hah,~ where a is a 2-

cocycle of the group G. The possible discrete torsions are therefore classified 

by the group cohomology H 2 (G, U(1)). In the case of orbifolds, we can 

only have discrete torsion in the case G = ZN x ZM and is generated by one 

element of 'llgcd(N,M). Let w1 , w2 be the generators of ZN and ZM respectively 

and p = gcd( N, .M). Then we can write, 

(3.28) 

where E.:= e2nimfp, n~ = 1, .. , p. 

A less abstract way of looking at discrete torsion, is to consider turning on 

an antisymmetric tensor field B 11v. This manifests itself in the path integral 

by introducing the phase, 

(3.29) 

If B is flat (i.e. dB = 0), this phase is topological and only depends on the 

class of map from worldsheet to spacetime. Therefore, B has the effect of 

introducing different phases for different classes of embeddings of the string 

worldsheet into spacetime, thus giving rise to the phases in (3.26). The 

choices of discrete torsion can then be viewed as the choice of action of the 

orbifold on the B-field background [41]. 

We now proceed to our D-brane model where we will discuss discrete 

torsion in the case of open strings. 

3.4 A D-Brane model with Discrete Torsion 

We will begin with a descriptive overview of the string construction to be 

investigated. A more detailed account then follows, where we calculate the 

spectrum of the model, determine the form of the superpotential and explore 

the phenomenological consequences for CP violation. 
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3.4.1 A brief overview 

The model we are interested in is based on the bottom-up approach to string 

model construction, and is a slight generalisation of the discrete torsion mod­

els discussed in [7]. This approach is based on the localisation of gauge fields 

to D-branes, as discussed in section 2.3. The idea is to look for D-brane con­

figurations whose worldvolume field theories resemble the Supersymmetric 

Standard Model as much as possible, before considering the compactifica­

tion of the model down to D = 4. In this way, some of the low energy 

physics in the D-brane worldvolume, is only dependent on the structure of 

spacetime local to the D-brane configuration. This allows us to obtain de­

sirable phenomenological features, such as the Standard Model gauge group 

and three generations of quark and leptons, independently of the compacti­

fication scheme chosen. Specifically, we consider configurations of Type liB 

D3-branes sitting on an orbifold singularity. By an orbifold singularity, we 

simply mean a fixed point of the action of G on <C3 . The reason for this 

choice of geometry is that D3-branes sitting in a smooth transverse space 

have N = 4 supersymmetry on their worldvolume1 . The orbifold group acts 

on the string states and projects out those states not invariant under its 

action. This can give rise to N = 1 supersymmetry, allowing for chirality. 

The particular model that we will be examining contains the following 

ingredients, 

• A non-compact internal space C3 , containing a Z3 x ZM x ZM orbifold 

singularity. 

e Coincident D3-branes whose world-volume theory has the gauge group 

SU(3)c x SU(2)L x U(l)y. 

• Mutually perpendicular D7-branes2 to cancel tadpoles, each with gauge 

group U(l) x U(2). 

Here ZN is the finite cyclic group. The generator g of this group acts on <C3 

with the action Zi /"..J e 2rriv~ zi, where v9 = ( a 1 , a 2 , a3 ) / N is known as a twist 

vector. The D3-branes and D7-branes are located on the Z3 x ZM x ZM 

orbifold singularity. This setup is depicted in figure 3.2. 

1 N = 1 supersymmetry in D ~ 10 gives rise to N = 4 supersymmetry in D = 4. 
2We call a D7-brane whose worldvolume is Zi = 0 a D7i-brane. 
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D3 (SM) 

Figure 3.2: A non-compact internal space, C3 , with Type liB D3-branes con­
taining the Standard Model located on an Z3 x ZM x ZM orbifold 
singularity. The D7-branes are required for tadpole cancellation. 

Closed strings propagate only in the bulk and are gauge singlets, whereas 

the open strings are localised to the D-branes. The action of the Z3 orbifold 

group divides the D3-branes into stacks of 3s, 2s and s (swill label our choice 

of discrete torsion). Then, the action of ZM x ZM on the string spectrum, 

results in the gauge group U(3) x U(2) x U(l) on the D3-brane worldvolumes. 

Remarkably however, only one linear combination of the three U(l) factors 

is non-anomalous and this combination gives rise to the correct hypercharge 

assignments, resulting in a Standard Model gauge group. The choice of 

orbifold group also leads to a model with three quark-lepton generations, and 

in addition, three generations of Higgs'. Open strings with ends on D-branes 

within the same set give rise to the gauge bosons, and those with endpoints 

in different sets of D-branes give rise to matter fields in bifundamentals. This 

makes it very simple to identify the MSSM fields as illustrated in figure 3.3. 

Finally, the ZM x ZM factor allows for a choice of discrete torsion. The 

discrete torsion then gives rise to a complex phase in the superpotential. 

These facts will all be discussed in more detail in the following sections. 
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U(1) 

~ 
b 

Figure 3.3: The D3-branes are shown separated for clarity, although they are 
in fact coincident, and the D7-branes fill the figure. The position of 
end points of the strings determine how they transform under the SM 
gauge group, with fields such as the right-handed leptons and down 
quarks having one end on a D3 brane and another on a D7-brane. 

3.4.2 The spectrum before the orbifold projection 

Let us proceed to a determination of the massless spectrum of this model, 

beginning with the spectrum before the orbifold projection. For the 'un­

twisted' 33 states, which are the open strings with both endpoints in the 

stack of D3-branes, we have 

• world-volume gauge bosons A337f)~ 1 ;2 IO >, 

0 complex scalars3 .A337f]~ 112 j0 >, i=1,2,3. 

e Weyl fermions .A33 js1 , s2 , s3 , s4 >,si= ±1/2 and Li=l si odd. With s4 

determining the space-time chirality. 

Here .-\33 are the Chan-Paton matrices, and the condition on the Weyl­

fermions is the GSO projection. Note that we have defined complex fermionic 

fields 7f)
1 = 'ljJ 4 + i'lj!5

, etc. These states were discussed in section 2.3. 

3These are the coordinates of the D3-branes in the internal space. 
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Next, we have states in the 'twisted' 37i and 7i3 sectors, which come from 

open string states with one endpoint on a D3-brane and the other on a D7i­

brane. These states may achieve vanishing length and hence contribute to 

the massless spectrum. Such states have mixed boundary conditions. That 

is, one end of the string may have Neumann boundary conditions while the 

other has Dirichlet boundary conditions. For instance, a string state in the 

373 sector has the following boundary conditions at the string endpoints, 

Jt = 0, 1, 2, 3 NN, 

Jt = 4, 5, 6, 7 DN, 

Jt = 8, 9 DD, 

(3.30) 

where D stands for Dirichlet and N for N eumann. The bosonic mode expan­

sions for directions with mixed boundary conditions, are half-integer moded. 

Hence, due to superconformal invariance, the Ramond sector and Neveu­

Schwarz sector oscillators are then half-integer/integer moded respectively. 

Therefore, the Ramond sector has fermi on zero modes in the NN and DD di­

rections, while we obtain scalars from the Neveu-Schwarz sector, which has 

fermion zero modes in the DN directions. This gives rise to the following 

massless states, 

where again >..37; are the Chan-Paton matrices and we have similar states in 

the 7i3 sector. 

3.4.3 The action of the orbifold on the open string 

states 

As mentioned previously, the orbifold group acts on the string states and 

projects out those states not invariant under its action. The action of the 

orbifold group, Z3 x ZM x ZM, can be split up into the action of its separate 

cyclic group factors. Each of which acts independently on the Chan-Paton 

matrices and the string worldsheet fields. For instance, a ZN orbifold with 

group generator g and twist vector v9 = (a1 , a2 , a3 )/N, requires a 1 + a2 + 
a3 = 0 for N=l supersymmetry on the D3-brane worldvolume [7]. The 
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generator g then acts on the 33 sector by leaving the gauge boson invariant, 

and transforming the scalars and fermions respectively as, 

k . 
g 'ljl~l/210 > 

lis> 
(3.31) 

(3.32) 

Here s = (s1 , s2 , s3 ), and the twisted 37i states transform as the fermions 

above if we set any si not defined to be zero. These transformations are 

dictated by the action of the orbifold group on the bosonic coordinates and 

supersymmetry. For our particular case, we denote the generator for Z3 by e 
and the generators for the two ZM factors to be wi. We then take the twist 

vectors to be, 

vo (1, 1, -2)/3, 

(1, -1, 0)/ J\!1, 

(0, 1, -1)/M. (3.33) 

The action of e on the Chan-Paton matrices of the twisted and untwisted 

states respectively is, 

A t /0,3 37i l0,7i, 

(3.34) 

(3.35) 

where the form of this action is dictated by the necessity of leaving string 

amplitudes invariant. We define, 

/0,3 

/0,7i 

diag(hs, al28 , a 2 18 ), 

diag(al8 , a 2 !28 ), 

(3.36) 

(3.37) 

2n-i 
where a= eT. The /o matrices form a unitary representation of Z3 and are 

determined by our requirement of a Standard Model gauge group, which will 

be explored in the next section. Furthermore, they must satisfy the tadpole 

cancellation condition [7], 

3 

2::: Tr(io,7J + 3Tr(io,3) = 0. (3.38) 
i=l 
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Since we are considering an oriented string theory, there are no contributions 

to tadpoles from the Klein bottle and Mobius strip. Thus, condition (3.38) 

simply ensures that there are no contributions to tadpoles from the cylinder 

diagram. In addition, this constraint ensures non-abelian anomaly cancella­

tion. More details and explicit calculations can be found in [4 7, 48]. 

The action of the generators wi is the same as above. However this time 

the lw; matrices form a projective representation of 7/.,M x 7/.,M, a possibility 

that arises since the action of 7/.,M x 7/.,M allows for a choice of discrete torsion. 

In the context of closed strings, we saw in section 3.3.2 that this is associated 

with a cocycle (J(g, h) E H 2(7/.,M x 7/.,M, U(l)) ~ 7/.,M [45,46], which manifests 

itself in the one-loop partition function. In the case of open strings, this phase 

appears in the projective representation where /g/h = (J(g, hhh/g [49, 50]. 

These phases are identical and are required for invariance of closed-open 

string interactions under the action of 7/.,M x 7/.,M. 

It follows that there are M non-equivalent choices of discrete torsion, 

described by distinct cocycles (3(w1, w2 ) = e21fin/M = E where n=l, .. ,M. Such 

possibilities are conventionally distinguished by an integer s = M/ gcd( n, M). 

For a string endpoint residing on a generic set of sn(i) D3-branes, the action 

on the Chan-Paton factors is determined by the matrices, 

h - 2/:ri """" (i) - (i) - M w ere Wfvf- e , L..l m nzm- n , l, m- 0, ... , (-)- 1, and , s 

A _ d · (l -1 -(s-1)) /w1 - 'tag , E , ... , E , 

0 1 0 0 

0 0 1 0 

lW2 = 

0 0 0 1 

1 0 0 0 
sxs 

Since Tr(lwJ = 0, tadpoles are unaffected by discrete torsion. 
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there are no restrictions on the ni~. For simplicity, we choose 

(i) { n(i) if l=m=O, 
nz = 

m 0 otherwise. 
(3.43) 

Note that, in our case we have n(o) = 3, n(ll = 2, nC2l = 1, arising from the 

gamma embedding of the 2 3 action on the D3-branes. 

Before proceeding to a determination of the open string spectrum, we 

first use the orbifold action to calculate the Chan-Paton factors of different 

states. This will aid us in not only computing the spectrum, but also deriving 

a complex phase in the superpotential. 

3.4.4 Calculation of Chan-Paton factors 

As a direct consequence of the form of the gamma embedding of the action of 

the 2 3 group on the Chan-Paton factors, our D3-branes are split into stacks 

of sn(i) where n(o) = 3 n(ll = 2 nC2l = 1 and the D7·-branes are split into ' ' ' ' ~ 

stacks of su(i), where u(o) = 0, u(l) = 1, u(2) = 2. Now consider a generic 

open string state, whose Chan-Paton factor must be of size sa x s/3, where 

a, j3 E { n ( i), u (j)}. If this state is to be invariant under the action of an 

element g = (a, b) = wfwg E 2M x 2M, and hence not projected out of the 

spectrum, we require 

(3.44) 

Here r(kl(a, b) is the phase from the action on the string worldsheet fields, 

and for a string endpoint on a set of sa D-branes we have, 

(3.45) 

It follows that we can factor the Chan-Paton matrix by writing, 

(3.46) 

where X(k) is determined by the action of 2M x 2M and y(k) may be further 

constrained by the (]projection. Substituting (3.46) into (3.44) removes the 
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dependence on y(k) giving, 

(3.47) 

Since the rw; matrices form a projective representation and hence satisfy 

/g/h = f](g, h)rh/g, we can solve (3.47) with the ansatz X(k) = ~~7~~~· This 

results in, 

j3(w1, w2)Pkb-qka = r(k)(a, b). (3.48) 

For the 33 sector fields, ,\W'IjJ~ 1 ;2 IO >,we have 

(3.49) 

and for 'twisted' 37k sector fields ,\37Jsi, Sj >, i,j tJ_ {k, 4} we have, 

(3.50) 

Substituting these expressions into (3.48) we find, 

Pk = { 

ak 
For 33 fields ::2. 

n 

1 2::: i For 3 7 k fields 2n iolk a2 (3.51) 

qk = { 

ak 
For 33 fields - ___L 

n 
1 i For 3 7 k fields ' 

-2n Li# a1 

where Vw; = ir (a}' a;' ar). Hence we have, for the 33 complex scalar fields, 

x(l) - 'V ~ X(2) - 'V* 'V* x3(33) = "~w-1* 33 - tW2 1 33 - tW! tW2) /' 

and for the 37 complex scalar fields, 

I 

X _ 'Y2n 
373 - tWl' 

(3.52) 

(3.53) 

Note that, due to N = 1 supersymmetry these Chan-Paton factors are also 

required for the chiral superfields containing the complex scalars. Finally, 

for the gauge bosons in the 33 and 7i7i sectors we have rCkl(a, b) = 1 and 

hence X= lsxs· 
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3.4.5 Determining the massless open string spectrum 

We are now able to compute the open string spectrum. Let us begin with 

the 33 sector, specifically with the gauge bosons, ,\331);~ 112 10 >. From the 

above we can write, 

(3.54) 

The projection equation for the action of e on the gauge bosons is, 

(3.55) 

and the gamma embedding for e, acting on a string end point attached to a 

stack of s(3 D-branes, is given by oJ Isf3 with (3 E { n(i), u(j)}. Then, substi­

tuting (3.54) into (3.55) we obtain i = j. Hence 

(3.56) 

giving rise to a U(n(i)) gauge boson. Our gauge group on the D3-branes is 

therefore U(3) x U(2) x U(l). A similar method applied to the 77 sector, 

gives the gauge groups U(l) x U(2) on the D7i-branes. 

For the state ,\~~)1);~ 1 ;2 10 > with endpoints on the stacks of D3-branes, 

we have 

( (k)) ( (k)) (k) 
A33 sn(ilxsn(jl = X33 sxs®Yn(ilxn(jl' (3.57) 

where X~~) is the constant matrix computed above. The projection equation 

for e then gives us, 

( dk)) . . _ 2niv~ i *i( dk)) . . 
"'33 snC•l xsnCJ) - e Q Q "'33 snC•l xsnCJl · (3.58) 

Hence, we require j = i + ak, where ve = (a1 , a2 , a3)/3. Therefore, the state 

,\~~)1);~ 1;2 10 > has the Chan-Paton matrix, 

(3.59) 

Since an open string stretched between two different stacks of D3-branes 

transforms as a bifundamental, this corresponds to a state which transforms 
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as (n(i), n(i+ak)). So, the final spectrum in the 33 sector is, 

Vector multiplet U(3) x U(2) x U(l) 

Chiral Mulitplet 2:7=o 2::~= 1 (n(il, n(i+akl). 
(3.60) 

Next, we must consider the 3h sector. For the state, A37k I si, Sj > i, j cf. 
{k, 4}, with one endpoint attached to a stack of D3-branes and the other to 

a stack of D7i-branes, we have 

(3.61) 

The () projection equation is, 

\ 2nis. ve \ t 
-"37k = e "fe,3-"37k "fe,1· (3.62) 

This leads to the expression, 

( ). ) . _ ,i *J 2nis.ve (>. ) . . 
37k sn(i) xsu(J) - 0: 0: e 37k sn<•l xsu(J)' (3.63) 

hence j = i + 3s.ve = i - ~ak. Therefore, for the 37k sector we have the 

states, 

(3.64) 

There are also similar states from the 7 k3 sector given by, 

(3.65) 

Note that, the 77 sector states are non-dynamical before the embedding of 

our D-brane configuration in a compact global model. 

Finally, it is important to note that there exist mixed U(l)-nonabelian 

gauge anomalies. These field theory anomalies are cancelled by a generalised 

Green-Schwarz mechanism mediated by closed string twisted states [51]. The 

anomalous U(l)'s get a tree-level mass of the order of the string scale [52] 

and hence do not appear in our low energy spectrum. In our case, it can 

be shown that there is only one non-anomalous U(l), given by the diagonal 

combination 
1 1 

y = -(-Q3 + -Q2 + QI). 
3 2 

(3.66) 
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33 (n(i)' n,(i+ak)) SU(3)c x SU(2)L Massless field 
3(3,2) 3(3, 2)1;6 Qi 
3(2, 1) 3(1, 2)1;2 Hi 

u 

3(1,3) 3(3, 1)-2/3 ui 
R 

37k (n(i)' u(i-'iak)) 

(3, 1) (3, 1)-1/3 Non-Standard model 
(2,2) (1, 2; 2')-1/2 HJ and L1 

7 3 ( (i) -(i-lak)) k u , n 2 

(2,3) (3, 1; 2')1;3 di£ R 

(1' 1) (1, 1; 1')1 e~ 

Table 3.1: Open string massless states. The subscript refers to hypercharge, as 
defined in (3.66). Also, a prime refers to gauge groups on the D7 k­

branes. 

Here Qi is the charge under the U(1) gauge group contained in U(n(il). This 

non-anomalous U(1) then gives the necessary quantum numbers to our fields 

to act as hypercharge. A detailed treatment can be found in [7]. So, our 

final gauge group is SU(3)c x SU(2)L x U(1)y. The massless spectrum is 

then given in table 3.1, with chiral superfields containing the Standard Model 

fields and their supersymmetric partners. Note in particular, that we have 

obtained three quark-lepton generations. 

3.4.6 The superpotential 

We can now discuss the form of the superpotential. Focusing on renormalis­

able cubic terms we have, 

3 

vV = C:rstTT( ~~,i+ar~:+ar i+ar+as~~+ar+a• i)+'"' TT(~~ i+ar~3+7,. ,. "+l r ~7+r3l r .). , ' L ' t a ,t 2 a t 2 a ,t 

r=l 

(3.67) 

Here ~~,i+a'· = >..~1'P~,i+ar is the 33 chiral multiplet transforming as (n(i), n,(i+arl), 

and ~::::..lar = A.371 <p::~lar is the 37r field transforming as (n(il, u(i-~arl), sim-
, 2 l 2 

ilarly for the 7r3 field. The superpotential is easily determined by considering 

the fact that the above terms come from a tree-level open string interaction. 

This corresponds to a disc diagram with vertex operators on the boundary. 

A consistent boundary then requires either a (33)(33)(33) or a (33)(37r)(7r3) 

interaction, leading to the above expression. 

Using the expressions derived for the Chan-Paton factors in section 3.4.4, 
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we have 

W = ErstTr((X~;) 0 y(r))(X~~) 0 y(s))(X~~ 0 y(t)))'Pr'Ps'Pt + ... 
= ErstTr(x~;) X~~) x~~))Tr(zr zs zt) + ... ' 

(3.68) 

where zi = y(i)'Pi· Redefining the y(i)'s by a constant such that a factor of 

Tr(Xg) xgl xgl) is absorbed into each term and noting that 

( 
(2) (1) (3)) 

Tr x33 x33 x33 = e-27ri/M 
Tr(X(l) X(2) X(3)) ' 

33 33 33 

(3.69) 

we arrive at, 

(3.70) 

Here 3 132 = 3 321 = 8 213 = 1 and all other components are zero. Identifying 

our supersymmetric SM fields, equations (3.67) and (3.70) give us the yukawa 

type couplings, 

(3. 71) 

where habc = Eabc + (1 - e-2
7ri/M)8abc and fabc = r5abr5bc· Hence we have an 

up-quark Yukawa term containing a complex phase which gives rise to CP 

violation, and a prediction for the phase of the CKM matrix is presented 

in detail in section 3.5. Before studying the CKM matrix however, let us 

discuss the nature of the CP violation. 

3.4. 7 More on CP violation 

As we saw in section 3.3.1, in closed string theories CP is a gauge sym­

metry which must be broken spontaneously. A similar, but even simpler, 

picture holds for branes at orbifold fixed points, as we shall now see, and it 

is the geometric configuration of torsion plus singularity that breaks CP. As 

an example, consider the 33 sector states AW'l/1~ 1 ;2 10 >, which give rise to 

chiral multiplets transforming as (n(i), n(i+ak)). The corresponding antiparti­

cle is given by the conjugate excitation (,\.~~))t7,&~ 1 ;2 IO >, and the projection 
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equations are reversed accordingly, 

( ).(k))t _ e-2wiv~( ) . . (>.(k))t ( )t 
33 sn<ilxsn(i)- r0,3 sn(Jlxsn<J) 33 sn(j)xsn(i) r0,3 snCilxsn(i)l (3.72) 

where (ro, 3 )sn<ll xsn<ll is the usual action of e on a string end point constrained 

to a stack of sn1 D-branes. This projection gives rise to a chiral mulitplet 

transforming as (n(i+ak), n,(i)), as expected. 

Now consider the rotation x 11 ---+ x 11 , Zi ---+ zi. Again by supersymmetry we 

transform '1/Ji ---+ '1/Ji and need to reverse the chiralities in the Ramond sector. 

The particle projections now trivially become antiparticle projections. To 

get the right antiparticles however, we also need to ensure that we have the 

same projective representation which is the case if the discrete torsion is 

unchanged (if this were not the case we would simply be unable to identify 

these particular rotations with CP conjugation). For open string sectors the 

effect of the torsion in a sector with ZM x ZM twists given by (g = w~w~ 
h _ wf' w~') can be written as 

(3(g, h) = cab
1

-ba'. (3. 73) 

The effect of the zi ---+ zi reflection on the torsion in any sector is simply 

to reverse the twists, as can be seen from the orbifold action on zi· Then, 

(a, b; a', b' ) ---+ - (a, b; a', b' ) so (3(g, h) is indeed unchanged and the rotation 

gives us the antiparticle. Hence, 4 dimensional CP conjugation does indeed 

correspond to a rotation in the lOD theory, with or without discrete torsion. 

It is precisely because the discrete torsion is invariant under CP conjuga­

tion that the superpotential interactions are not. Under the CP transforma­

tion we conjugate the chiral superfields but the discrete torsion remains the 

same. Thus 

(3.74) 

where 

(3.75) 

This should be con1pared to (3.70). So it is the discrete torsion term in 

the superpotential that is directly responsible for breaking 4 dimensional CP 
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and, because CP conjugation is associated with a 10D Lorentz rotation, it is 

a spontaneously broken symmetry. We will now divert our attention to the 

more phenomenological issues. 

3.5 Yukawas and the CKM matrix 

In this section we first discuss some theoretical considerations for obtaining 

the canonical Yukawa couplings. In particular, we derive bottom-up prop­

erties of the Kahler metric that have not been previously noted. We then 

proceed to the CKM matrix and predictions for the CKM angles and quark 

mass ratios. Finally we discuss radiative corrections between the string and 

weak scales. 

3.5.1 Normalisation of Yukawas 

To be consistent with N = 1 supersymmetry, we assume the low-energy 

effective field theory decribing our visible sector is an N = 1 SUGRA theory. 

It is well known that in such a theory scalar fields have a non-canonical 

kinetic energy term given by a Kahler metric, which is the second derivative 

of the Kahler potential, 

(3. 76) 

In order to obtain a canonical kinetic energy term, we must normalise our 

chiral fields. This leads to an effective normalisation of couplings. In partic­

ular, if we expand the Kahler potential to first order in the charged matter 

fields4
, we have 

(3.77) 

where Ma, M a* are the closed string moduli fields which describe the internal 

space. Then we obtain, 

h~ _ k;2h (Y-112)z (K- -112)m (K--112)n 
abc - e lmn ·~ a b C> (3. 78) 

where habc are the canonically normalised Yukawa couplings. It is important 

to note that R::t,B factorises into different components, one for each sector of 

4 i.e. fields charged under our visible sector gauge group. 
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the spectrum, e.g. in our case the 33 and 37 sector fields have the seperate 

kahler matter metrics, (K33)aiJ and (K37 )aJ]· 

3.5.2 Bottom-up properties of the Kahler metric 

One of the strengths of the bottom-up approach is that, until now, our dis­

cussion has been independent of any compactification scheme. In particular, 

the gauge group, SM spectrum and 3 generations of matter fields are all fea­

tures independent of the global structure of the model. This affords us two 

approaches to the determination of the Yukawas, 

• Select a particular compactification and calculate the exact kahler po­

tential. 

• Choose an ansatz for K33 and K37 (note that the CKM matrix is inde­

pendent of K). 

The first approach is technically difficult and only achievable in the simplest 

of cases, e.g. toroidal orbifolds. In addition, it goes against the bottom-up 

approach, which is to constrain the model as much as possible from the local 

rather than global properties. The second approach, at first sight, seems 

too arbitrary. However, the choice of possible ansatze is restricted by two 

observations. Firstly, the discrete torsion can constrain the form of K33 . 

Such a situation arises as a consequence of Tr(<I>~;<I>~3 ) containing a factor, 

Tr((X~~))tx~~)) arising from the Chan-Paton factors. This matrix contains 

'texture zeros', dependent on the discrete torsion( n), which are inherited by 

(K33)aiJ· It is shown in appendix A, that there exists three possible cases for 

the restriction of the form of K33 . These are 

• minimal discrete torsion, i.e. n = 1, with K33 diagonal, 

• n = 2, with two off diagonal zeros, 

• and n ~ 3, with no off diagonal zeros. 

Finally, we have the restriction that K37 is diagonal. (K37 )ij can be calculated 

from tree-level modulus-matter scattering [53]. The amplitude is given by 

a disc diagram with two open string vertex operators on the boundary, a 

(37i) and (7j3) vertex, and two closed string vertex operators attached to 
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the interior, corresponding to the moduli fields. However vertices of (37i) 

and (7i3) strings must come in pairs in order to get a consistent D-brane 

boundary on the disc. It follows that in this case i=j and hence K37 is 

diagonal. 

This allows us to explore possibilities for interesting flavour structure and 

CP violation in our Yukawas without worrying about the exact compactifica­

tion scheme we are using. That is, we choose an ansatz for the Kahler metric 

based on our choice of discrete torsion, not our choice of compactification. 

3.5.3 Explicit expressions for the Yukawa couplings 

Defining the hermitian matrices, 

(3.79) 

and substituting into (3. 78) we obtain, in the general case, canonical up­

quark Yukawas, 

h,abc = ek/2 htmn( t;~2)ta( t;~2)mb( t;~2)nc 

= eKf2(Etmn + (1 _ e-27ri/M)Stmn)(t;~2)ta(t;~2)mb(t;~2)nc. 
(3.80) 

Furthermore giving the three generation of Higgs fields vevs, (hu)c, we obtain 

This expression also holds if we associate the actual physical Higgs fields 

with a linear combination of the H~/d fields. That is 

(3.82) 

where fi~/d are the physical Higgs fields and Uu/d is a unitary matrix. Then 

assuming that only fi~/d is light and the other two physical Riggs' are heavy, 

we simply replace (hu)c with (UJ)cl· 

Similarly, for the down-quark Yukawas, we obtain 

3 

(Yd)ab = ek/2 I)t;~2)la(t;~2)lb(t;~2)lc(hd)c· (3.83) 
1=1 
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Using these formulae we can calculate the CKM matrix and determine the 

possiblities for CP violation in our model. 

3.5.4 A simple ansatz for the CKM matrix 

Using the bottom-up properties of our Kahler metric, that is 

• the zeros in K33 are determined by the discrete torsion, 

• K37 is diagonal, 

we try the following simple ansatz, take M=5, n=2 and 

1 

tJ7 = diag[1, E, 1], 

(hu) = (c, 1, 0), 

(hd) = (1, E, c). 

(3.84) 

(3.85) 

(3.86) 

Notice that our choice of discrete torsion introduces two off diagonal zeros 
- l 

in K33 which are preserved in tj3 . 

Using this ansatz we can calculate the Yukawas and CKM matrix. The 

Yukawas have the following form, 

(1- e-2in:/5)Tfc2 (1- e-2in:/5)TfE3 

(1- e-2in:/5)TfE3 0 

and 

( 

TfE 0 E ) 

yd = aE 0 ~ 0 . 

1 0 1 

(3.88) 

With the freedom to rephase the right handed quark fields (because the model 

is supersymmetric we can make rephasings just as in the Standard Model), 

Yu can be put into hermitian form. Notice that a appears only as an overall 

factor in Yu and in a single entry in Yd, as a consequence the CKM matrix 

is only dependent on the two parameters E and ry, with a determining the 
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mass of the down quark. Up to overall factors, which include the prefactors 

of (3.87) and (3.88), the masses of the quarks are given approximately for 

small 'r/ and E by, 

1;:2 

md= a' 
mu= 1.9'r/E4

, 

(() 12 1 2 
mb = v L- + 4V2E + 20V2'r/E , 

2 !22 1 2 mt = v'3 + y 3c - v'3'r/E . 

(3.89) 

The CKM matrix can be written approximately in terms of these mass 

eigenvalues, but it is not very illuminating to show the functional dependence 

here. Instead, in the next subsection, we depict graphically it's functional 

dependence onE and 'rl· 

3.5.5 Predictions: CKM angles and Quark mass ratios 

In the standard parametrisation, the CKM matrix is given in terms of three 

mixing angles, sine12 , sine23 , sine13 , and a complex phase 6. Figures 3.4 

to 3. 7 illustrate the dependence of these CKM angles on E and 'rl· The 

blue shaded areas highlight the regions where the CKM angles agree with 

experiment [54]. Since we are discussing string scale predictions we must 

also include RGE effects in running from the string to the weak scale. This 

effect is discussed in the next subsection, where we estimate that sin fJ23 

and sin e13 are suppressed by approximately 30%. This is depicted in the 

figures by a red shaded region which higlights values of E and 'r/ that will 

reproduce experimental values after taking into account RGE effects. This 

information is summarised in figure 3.8 where the regions in parameter space 

which produce a realistic CKM matrix are highlighted. In particular, it can 

be seen that 6 is approximately 7f /3. 

The quark mass ratios are also determined, ~ can be fixed by choosing 
ffib 

a value for a, while the rest of the quark mass ratios are dependent only 

on E and 'rl· Average values for the blue and red regions are presented in 

table 3.2 and compared to experimental values. As can be seen, we have good 

agreement with experiment except for mu which is too large. Note that we 
ffic 

have not included RG E effects here, which would tend to increase the value of 

me. As we have chosen such a constrained and simple ansatz, we consider the 
rnt 

close agreement of the CKM angles and quark mass ratios with experiment to 
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be successful. Furthermore, it has not been necessary to introduce any large 

artificial hierarchies in our ansatz (which would require similar hierarchies 

in the corresponding moduli fields) , to achieve mass eigenvalues and mixing 

angles close to those of the Standard Model. 

0.8 0.6 0.4 
77 

0.2 

Figure 3.4: sin 812 as a function of c: and 'T/· 

I Mass Ratio I Blue Region I Red Region I Experimental Value I 
!2!k. 
m 2.5 X 10 3 5 X 10 3 5.57- 8.27 X 10 3 

~ 0.029 0.041 0.018 - 0.0387 m, 
!!hi. 
m 

2.4 X 10 - ~ 2.1 X 10 - ~ 1.07 - 4.5 X 10 3 

Table 3.2: Quark mass ratios 
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0.8 0.6 0.4 

"' 
0.2 

Figure 3.5: sin 813 as a function of E and 'T/· 

0.8 0.6 0.4 

"' 
0.2 

Figure 3.6: sin 823 as a function of E and 'T/· 
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0.4 
8j1f 

0.42 

0.4 

0.38 

0.36 

0.34 

0.32 

Figure 3. 7: J / 1r as a function of E: and 'fJ. 

0.3W-~~~~~----------~~~~~~~~--w 
0.09 0.1 0.11 0.12 0.13 

E 

Figure 3.8: The shaded regions highlight the values of E: and rJ which give 
an agreement with experimental data. The blue/red region with­
out/with taking into account RGE effects. 
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RGE effects 

The CKM matrix is expected to be effected by renormalization group run­

ning. For instance, when we are close to the so-called quasifixed point, the 

top Yukawa is large at the GUT or string scale and runs to lower fixed point 

values, and hence RGE effects are important. 

Anglf}' AngleGuT 
1.1 

10 

0.9 

0.8 

0.7 

20 30 40 50 60 
Log (M x/Q) 

Figure 3.9: CKM running from Mx ~ 2 x 106 GeV to Mw for a top 
Yukawa of At = 5 at the GUT scale. red = ( . 8~08f3 , blue 

Sill 23 GUT 

~ 
sin 0)2 0 • (} d t · "fi tl 

(
sin 013 , green = 8GuT. sm 12 oes no run s1gm can y. 
Sln 012 GUT 

However , the effect on the CKM angles is generally small, as can be 

seen by inspection of the RG equation. Figure 3.9 shows how the numerical 

values of the CKM parameters change with renormalization scale when the 

top quark Yukawa is close to the quasifixed point. The CKM angles are 

suppressed by the running and from the figure we see that the maximum 

reasonable suppression of the B23 and B13 angles is ~ 30%. The phase o does 

not change significantly and is expected to be close to i. 

3.6 Summary and discussion 

We have examined a bottom-up supersymmetric D-brane model with phe­

nomenologically viable CP violation, broken by discrete torsion. Further­

more, a simple assumption about the form of the Kahler metric, motivated 
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by a choice of discrete torsion, produces a CKM matrix described by only 

two free parameters. As a consequence, we predict a single CKM mixing an­

gle and the CKM phase to be close to 7f /3, both of which lie within current 

experimental limits. 

Furthermore, this class of models may be a first step towards a solution of 

the SUSY flavour and CP problems. Generally, these problems arise because 

supersymmetry breaking "knows" about CP and flavour. Our approach to 

this problem, is to use the 'bottom-up' approach to build a supersymmetric 

MSSM, complete with all flavour and CP structure, before inputting super­

symmetry breaking. 

It would be interesting to investigate the dependence of these results on 

our choice of discrete torsion (i.e. our choice of n), and the resulting ansatz 

for the Kahler metrics. Finally an analysis of the possibilities for a phe­

nomenologically viable breaking of supersymmetry has been well motivated. 
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Chapter 4 

Interactions in Intersecting 

Brane Models 

We now move our attention to a different class of D-brane configuration, 

based on D-branes intersecting at arbitrary angles. Such configurations are 

known as intersecting brane worlds [10], and have promising phenomenologi­

cal features. In this chapter, we calculate tree-level three and four point am­

plitudes in such models [8, 9], which includes the interesting cases of Yukawa 

interactions and four fermion contact interactions. Note, the Yukawa cou­

plings and a more restricted class of four-point couplings (complete with nor­

malisation factors) was discussed independently and at the same time in [55]. 

In chapter 5, these calculations will be generalised to N-point amplitudes, 

thus laying a foundation for discussing scattering amplitudes in intersecting 

brane models. 

4.1 Introduction and Motivation 

Since their discovery and subsequent relation to gauge theories, D-branes 

have become established as a central element in the development of phe­

nomenologically viable string models. They facilitate the construction of 

models with interesting gauge groups, as seen in the previous chapter. How­

ever, the requirement of chirality in any physically realistic model leads to a 

restricted number of possible D-brane set-ups. One possibility is the bottom­

up scenario of D-branes located on orbifold singularities, another important 

class are the intersecting brane models [10,56]. This scenario exploits the fact 
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SU(3) 

SU(2)L 

U(l) 

U(l)' 

4.1 Introduction 

Figure 4.1: A T2 unit cell, repeatedly intersecting branes give rise to replication 
of fermions. 

that chiral fermions can arise at the intersection of two branes at angles [57]. 

A typical setup would be D6-branes at arbitrary angles, wrapping a com­

pact internal space such as T2 x T 2 x T2 , thus intersecting repeatedly. Then 

our quarks and leptons would be associated with open strings located at D­

brane intersections and the Standard Model gauge interactions propagate on 

the different D6-brane worldvolumes. If all the intersections are in a single T2 

subfactor of the internal space, we have the situation depicted schematically 

in figure 4.1. The spectrum of fermions is generically replicated according 

to the intersection numbers of the D-branes which wrap the compact space. 

As a consequence, a simple and rather attractive topological explanation of 

family replication is obtained. Other scenarios are also possible, however if 

we use D4 or D5-branes we require a non-smooth compact space such as an 

orbifold in order to achieve chirality. 

The intersecting brane scenario has been remarkably successful in pro­

ducing semi-realistic models, for example [56, 58-70]. Models similar to the 

Standard Model can be obtained [71- 77] and furthermore viable construc­

tions with N = 1 supersymmetry have been developed [78-85], although this 

latter possibility is more difficult to achieve. A more detailed analysis of the 

phenomenology of such models is currently in progress, for example [86-89]. 
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In this chapter we focus our attention on the case of D6-branes wrap­

ping T 2 x T 2 x T 2 . However, our methods can easily be adapted to more 

generic setups. Much of our analysis will be aided by the technology dis­

cussed in [11, 12] for closed strings on orbifolds. This is due to an analogy 

between twisted closed string states on orbifolds and open strings at brane in­

tersections. This analogy is the subject of our first section. Then we proceed 

to a determination of the classical part of the three point function, for which 

the computation runs along similar lines to the closed string cases in [90, 91]. 

The complete calculation of the general tree-level four point function follows, 

with an analysis of the quantum part using conformal field theory techniques. 

4.2 Closed and open string twisted states 

An open string stretched between two D-branes intersecting at an angle niJ, 

as depicted in figure 4.2, has the boundary conditions 

8TX2 (0) = 8aX1 (0) = 0, 

8TX1 (1r) + 8TX2 (1r) cot(nfJ) = 0, 

8aX2(n)- 8aX 1 (n) cot(nfJ) = 0. 

( 4.1) 

We now define X = X 1 + iX2 , X = X 1 - iX2 and use z = -eT-ia as 

the worldsheet coordinate, which has domain the upper-half complex plane. 

Then the bosonic action (2.5) can be rewritten as, 

( 4.2) 

Varying with respect to X and X we obtain the string equation of motion, 

8(8X) = 8(8X) = o, ( 4.3) 

hence ax and ax are both holomorphic. Coupled with our boundary con­

ditions we obtain the mode expansions, 

(4.4) 
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XI 

Figure 4.2: A 'twisted' open string state 

The domain of these fields can be extended to the entire complex plane using 

the 'doubling trick', i.e. we define 

BX(z) = { ~~(z) Im(z) ;::: 0 
8X(z) Im(z) < 0 

and similarly for 8X(z). The mode expansion for X is then, 

(4.5) 

( 4.6) 

A similar mode expansion is obtained for the fermions with the obvious 

addition of ~ to the boundary conditions for NS sectors. 

Now the mode expansion of a twisted closed string state on a ZN orbifold 

is identical to (4.4) with the replacement 73 = iJ. Hence, there is a natural 

correspondence between open strings stretched between intersecting branes 

and twisted closed string states on an orbifold. Therefore, as in the closed 

string case, we must introduce a twist field a19 (w, w) [11]. This field essen­

tially changes the boundary conditions of X to be those of ( 4.1), where the 

intersection point of the two D-branes is at X(w, w). 

Define the twisted ground state by ja19 >= a 19 (0)j0 >,which is annihilated 
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by all the positive frequency mode operators, 

ak-1?10'17 >= 0, k > 0, 

akHIO'l? >= 0, k ~ 0. 

Then we can easily obtain the OPEs, 

oX(z)0'17(w, w) rv (z- w)-(l-'I?)T17(w, w), 

oX(z)0"17(w, w) rv (z- w)-17T~(w, w), 

(4.7) 

(4.8) 

where T~ and T17 are excited twist fields. The local monodromy conditions 

for transportation around 0"17 (w, w) are simply determined from the mode 

expansions to be, 

oX(e2ni(z- w)) = e2ni17oX(z- w), 

o.X(e211'i(z- w)) = e-271'i17oX(z- w). 
(4.9) 

The correspondence between open strings stretched between branes at 

angles and twisted closed strings on or bifolds (or conifolds), can also be 

motivated geometrically as in figure 4.3. This figure shows two identical three 

point diagrams which are sewn together at their edges. An open string living 

at the intersection is doubled up to form a twisted closed string. However, 

we also note that the intersection angles in this case are more general than 

the rather restrictive ones found in orbifolds of closed strings. 

4.3 The general setup 

In the proceeding computations we will use the following setup and notation. 

Firstly, we consider the case of an internal space which is factorizable into 

single tori, T 2 x T 2 x T 2
, and in which only one 'extra' dimension of each 

D6-brane resides in each T 2 . This allows us to factorise our amplitudes into 

three identical contributions, one from each torus subfactor. This allows us to 

focus on a single T 2
, simplifying the analysis. The string states are localised 

at N distinct D-brane intersections. These N D-branes form the boundary 
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l 

Figure 4.3: Identifying open strings to form closed strings 

of an N-sided polygon with vertices fi and interior angles nrh such that 

N 

2:::.: '!9i = N - 2. (4.10) 
i=l 

The D-brane intersecting fi and fi+ 1 is labelled the ith D-brane. 

The torus is defined by T 2 = IR2 /A, where A is a lattice with basis vectors 

Vx = Rx(1 , 0) and vy = Ry(O, 1). Also, we denote by (n, m) a non-trivial cycle 

winding n times around the cycle defined by Vx and m times around the cycle 

defined by Vy. The ith D-brane then wraps the cycle (ni , mi) and the number 

of intersections with the ;th D-brane is given by the intersection number, 

( 4.11) 

We expect the amplitude to be dominated by an instanton, corresponding 

to the worldsheet sweeping out the area of the polygon. Then the bosonic 

field X can be split up into a classical piece, Xct, and a quantum fluctuation, 

Xqu· Similarly for t he fermionic fields. The amplit ude then factorises into 
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Figure 4.4: The three point interaction 

classical and quantum contributions, 

where 

z = L e-ScdXcd Zqu, 
(Xc~) 

(4.12) 

( 4.13) 

Xcl must satisfy the string equation of motion and possess the correct asymp­

totic behaviour near the triangle vertices. 

Also, the D-branes wrapping cycles gives rise to an infinite number of 

polygons which wrap the torus and contribute to the N-point function. 

4.4 The three point function 

We begin with a calculation of the classical contribution to the tree-level 

three point function, which in particular includes Yukawa interactions. The 

string states are localised at the vertices of a triangle whose boundary consists 

of a single internal dimension from each D6-brane, as depicted in figure 4.4. 

One would expect the amplitude to be dominated by an instanton, and to be 

proportional to e-2,!oA where A is the area of the triangle worldsheet. This 

expectation is born out in the following calculation. 
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4.4.1 Classical solutions and global monodromy 

The three point function requires three twist vertices, ardzi, zi), correspond­

ing to the three relevant intersections of the D-branes. These vertices are 

attached to the boundary of the tree-level disc diagram which can be confor­

mally mapped to the upper-half complex plane. Then our classical solution 

axe/ is determined, up to a constant, by its holomorphicity (since it solves 

the string equation of motion) and asymptotic behaviour at each D-brane 

intersection, which is given by the OPEs in eq.( 4.8). Hence we obtain, 

where, 

aXc~(z) = aw(z), a.Xc~(z) = aw'(z), 

axcl(z) = bw'(z), axcl(z) = bw(z), 
(4.14) 

( 4.15) 

and a, a, b, b are normalisation constants. Using the doubling trick to define 

axe[ on the entire complex plane, we require a* = b and a = b* ( upto a 

phase). We can therefore write (4.13) as, 

( 4.16) 

The contribution to Sc1 from lw'(z)l diverges, hence we set b = 0. 

The normalisation constants are determined from the global monodromy 

conditions, i.e. the transformation of X as it is transported around more 

than one twist operator such that the net twist is zero. We determine this 

from the action of a single twist operator, a19 (w, w). Ignoring the toroidal 

geometry for the moment, this action is given by 

( 4.17) 

where f is the intersection point of the two D-branes. This can be seen 

from the local monodromy conditions ( 4. 9) and the fact that f must be left 

invariant. Note, if we split X up into a classical and quantum part, then 

the classical field should have exactly the same behaviour as the full field. 
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Figure 4.5: Transporting X( z, z) around two twist fields 

Hence, the boundary conditions for Xqu ignores the shift (1- e2rri{))f leaving, 

( 4.18) 

On introduction of toroidal geometry, the action of our twist operators 

must be generalised to not only rotate Xcl but also to shift by a lattice 

translation. Hence ( 4.17) is modified to 

( 4.19) 

where v E A*, a coset of A. It follows that on integrating around two twist 

fields , the portion of integration around each vertex takes Xcl(z, z) from one 

D-brane to another, while integrating between the two vertices introduces a 

shift along the ith D-brane. Define Li,i+l to lie in the direction fi+ 1 - f i, with 

magnitude the distance along the ith D-brane between successive copies of 

the ( i + 1) th D-brane. Then the shift must be of the form fi+ 1 - fi +vi where, 

( 4.20) 

as illustrated in figure 4.5. Such lattice shifts give rise to polygons wrapping 

the torus, and hence to further contributions to the three-point function. 

In the three point case we are considering, there is only one independent , 

net twist zero, closed curve. This is the Pochammer loop, shown in figure 4.6. 

We have set z1 = 0, z2 = 1 and z3 = x00 - oo using SL(2, IR) invariance 

and the dashed lines denote branch cuts. The global monodromy condition 
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is therefore, 

fleX=£ dzoX(z) + £ dzaX(z). ( 4.21) 

Evaluating the contour integral first, we obtain 

( 4.22) 

The left hand side of (4.21) is obtained by repeated action of (4.19), 

( 4.23) 

Substituting (4.22) and (4.23) into (4.21) we then determine, 

( 4.24) 

We also require the integral, 

which can be performed using the method of [92] to relate open and closed 

string amplitudes. The idea is to split the integral up into a product of holo­

morphic and anti-holomorphic contour integrals. This is described in more 

detail in appendix B.l. Finally, substituting (4.25) and (4.24) into (4.16) we 

obtain, 

S = _1_ (sin 1riJ1 sin 1riJ2 If _ f l2 ) 
cl 2 I 2 . .a 2 1 + VI . 

1ra sm 1ru3 
(4.26) 

This is, as expected, the area of the triangle (or a triangle wrapped around 

the torus) defined by the intersecting D-branes that is swept out by the string 

worldsheet. 

4.4.2 Wrapping contributions 

To determine the shifts, we must consider triangles that wrap the torus 

and whose vertices are at the same intersection points. (Other shifts would 

contribute to other three point functions.). Without loss of generality, we 

keep h fixed and extend the triangle as shown in figure 4. 7. Then to obtain 
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c 

Figure 4.6: Closed curve with net twist zero required for global monodromy con­
dition. 

a contribution to our three point function, we must have 

3 

I>i = o. (4.27) 
i=l 

Substituting ( 4. 20) and the expression, 

( 4.28) 

into (4.27), we obtain the simple relations, 

( 4.29) 

The q1 and q2 which allow for integer solutions are of the form, 

(4.30) 

where l E Z. This is similar to the case discussed in [93]. 

Finally, we can express the classical contribution to the three point am­

plitude as, 

( 4.31) 

We will not explicitly determine the quantum part of the three point am­

plitude, as it may be obtained from the quantum part of the four point 

amplitude by a limiting process [55]. The complete four point amplitude is 

the subject of the next section. 
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£"; .~'-------------------------)----------------------- ~'• f) 

f3- fl- v3 

Figure 4. 7: Determining the wrapped triangles 

In the phenomenologically interesting case of Yukawa couplings, the quan­

tum part is independent of the generation number and thus the behaviour of 

the Yukawa couplings is dominated by (4.31). Notice that this exponential 

dependence on worldsheet area leads to a natural mechanism for generation 

of hierarchies between quark masses, as observed in nature. This was first 

pointed out in [10]. 

4.5 The general four point function 

We now proceed to a discussion of the four point function, with open string 

states located at the vertices of a four sided polygon, as depicted in figure 4.8. 

Firstly, we discuss the classical contribution and then proceed to an analysis 

of the quantum part using conformal field theory techniques. 

4.5.1 The classical contribution to the four-point func­

tion 

Our analysis will proceed in a similar manner to the three point case. The 

4-point function requires 4 twist operators, CJ'!J; (zi, zi), one for each polygon 

vertex or D-brane intersection. These twist operators are attached to the 

boundary of the tree-level disc diagram. Again, this can be conformally 

mapped to the upper-half complex plane and using SL(2, ffi.) invariance we 

set z1 = 0, z2 = x2 , Z3 = 1 and Z4 = X 00 . The classical solution, aXe~, is 
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again given by 

Figure 4.8: Generic 4 point diagram 

8Xd(z) = aw(z), 8Xc~(z) = aw'(z), 

BXc~(z) = bW'(z), BXc~(z) = bw(z), 

where this time we have, 

(4.32) 

( 4.33) 

The extra factor coming from the fact we are now dealing with the four-point 

function. The classical action is still of the form (4.16), however the Jw'(z)J 2 

contribution no longer diverges. This is due to the fact that the integral, in 

polar coordinates, goes as 

loo r-3dr, 

for large r. Hence, we can no longer set b = 0. 

(4.34) 

The normalisation of the classical solutions are again determined from the 

global monodromy conditions. However, we must now determine both a and 

b from the global monodromy conditions. To match this requirement, we now 

have two independent Pochammer loops to which we can apply our global 

monodromy condition ( 4.21). This arises as there are four twist vertices 

which we have set to the positions 0, x2 , 1 and X 00 ~ oo. Hence, we have a 

Pochammer contour, eh looping around 0 and X and another, c2, looping 

around x and 1. Therefore, we have two conditions allowing us to determine 
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our two normalisation constants. These two independent global monodromy 

conditions are, 

l::!.c;Xcl = e-ni(l9;-'19;+1)4 sin(Jrt9i) sin(Jrt9i+I)(fi+l- fi +vi) 

= fc; dzfJXc~(z) + fc; dzBXc~(z). 

The contour integrals required can be written as, 

fc; dzw(z) = e-ni('19;-'19;+ 1)4 sin(Jrt9i) sin(Jrt9i+I)Fi, 

fc; dzw'(z) = e-ni('19;-'19i+d4 sin(Jrt9i) sin(Jrt9i+1)Ff, 

where, 

"'· - JXi+l TI4 ( - ·)-(l-'19j)d 
r! - x; j=l Y XJ Y F' = JXi+l TI4 (y- X ·)-'19idy. 

l X; J=l J 

Hence ( 4.35) can be simplified to, 

( 4.35) 

( 4.36) 

(4.37) 

( 4.38) 

Using these conditions we can determine both a and b. Construct the classi­

cal solutions axcl,l and axcl,2, with coefficients ai, /3i as in (4.32) and which 

have the simple global monodromy, 

Then, 

It follows, that to satisfy (4.38) fori= 1, 2, we require, 

a= (h- h + v1)a1 + (h- h + v2)a2, 

b = (h- h + v1)f31 + (h- h + v2)fJ2. 

(4.39) 

( 4.40) 

(4.41) 

Using ( 4.16) the classical contribution to the 4-point function is given by, 

( 4.42) 
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where, 

( 4.43) 

4.5.2 An explicit expression for the classical contribu­

tion 

We now evaluate ( 4.42) more explicitly, relating it to the area of the four-sided 

polygon. Since scl is independent of Xoo, we can drop these factors arising in 

I, I' and Fi, Ff. As before, we can split I into a product of holomorphic and 

anti-holomorphic contours obtaining, 

I(x2) = 2 sin( 7r192) /F2//F1/- sin( 7r( 192 + 193)) /F3/IF1/- sin( 7r( 191 + 192)) /F2//Fo/, 

( 4.44) 

where, 

F - Joo [l3 ( - ·)-(1-iJj)d 3 - 1 j=1 y XJ y, Fa= f~oo rr~=1(y- Xj)-( 1-iJj)dy. 

(4.45) 

We can write our Fi in terms of hypergeometric functions and thus obtain 

the relations, 

where, 

/Fo/ = sin(~;~l(~~a~) (/F2/ + f3/F1/)' 

/F3/ = sin(~;~)~~am (/F1/ + a/F2/), 
( 4.46) 

( 4.4 7) 

This is explained in more detail in appendix B.2. Substituting into ( 4.44) we 

obtain, 

( 4.48) 

Note that I' and Ff are obtained from I and Fi by the substitution 

19 i --+ 1 - 19 i. This allows us to also express the Ff in terms of hypergeometric 

functions. Using the identities in B.2 we can then easily deduce that, 

where, 

/F{/ = (1 - x2 ) 1 -iJ 2 -iJ3 x~-iJ 1 -iJ 2 1(/F1/ + a/F2/), 

/F~/ = (1- x2) 1 -iJ 2 -iJ 3 X~-iJ 1 -iJ 2 1(/F2/ + !3/FI/), 

r(1- 192)r(1- 194) 
1 = r( 191 )r( 193) · 
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Also, we define "(1 by setting tJi --7 1 - tJi in ( 4.50), then 

I 1 
'Y'Y = 1- a{3 

sin ( 1rt1 1) sin ( 1rt1 3) 

sin ( 1rtJ2) sin( 1rt1 4) · 
(4.51) 

J'(x2) can now be obtained in terms of IF11 and IF2I simply by letting tJi --7 

1 - tJi in ( 4.48) and substituting in ( 4.49), we obtain 

I'(x2) = "(2 sin(7rt12)(1-x2)2(l-JJ2 -JJ3 )x;(l-JJ 1 -JJ2
) (f31Ftl 2 + 2IFtiiF21 + o:1F2I 2) · 

(4.52) 

Finally, we require the expressions, 

(4.53) 

where v21 = I h - ft + Vtl and v32 = I h - h + v2l· This allows us to obtain 

the following contribution to the classical action from a single T2, 

5T2 (T V V ) = sin(1rtJ2) (((v21T- V32)
2 + "/"f1

(V2t(f3 + T) + V32(1 + etT))2)) 
cl ' 21' 32 47ret' ({3 + 2T + O:T2) ' 

(4.54) 

where T(x2) = I~~ I· 
The complete expression for the action is just a sum of these contribu-

tions, one from each torus subfactor, i.e. 

3 

Scl = L:s~~(Ti,V~l,V~2). (4.55) 
i=l 

Now, if there is only non-zero worldsheet area in one subtorus, or if the 

angles (and hence Ti) and ratios of lengths are the same in every subtorus 

(i.e. the polygons are identical up to a scaling), we may use a saddle point 

approximation to minimise the complete Sc1. The minimum of 5~2 is given 

by, 

( 4.56) 

and after some manipulation we find, 

Sr2 ( . ) _ _ 1_ ( sin 1rt11 sin 1rtJ 4 vi4 sin 1rtJ2 sin 1rt13 vi3 ) 
cl Tmm - · ( .a .a ) + · ( .a .o ) · 21ra' sm 1r-u1 + 1r-u4 2 sm 1ru2 + 1ru3 2 

( 4.57) 

We recognize this as the areaj21ra' of the four-sided polygon. Note also that 
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at this minimum b = 0. Hence, in this case we see that Scl is minimised to 

the sum of the areas of the quadrilaterals from each T 2 subfactor. 

4.5.3 Wrapping contributions 

To completely determine the classical contribution to the four-point ampli­

tude, we must also include contributions from quadrilaterals which wrap the 

tori. As before, extending from h we must have, 

( 4.58) 

Using (4.20) and (4.28), we then see that our wrapped polygons are given by 

integer solutions q1 , q2 to the following system of diophantine equations, 

( 4.59) 

For any fixed q3 and q4 this solution is unique, since the determinant of the 

above matrix is non-zero. For the general case it is not possible to solve this 

for our wrapped polygons. This is due to the fact that a solution to a gen­

eral system of diophantine equations can only be generated algorithmically. 

However, we see that the classical part of any wrapped polygon contribution 

to our four-point amplitude is essentially e- 2n

1

a
1 A, where A is the area of the 

wrapped polygon in the relevant T 2 torus. Hence, the leading contribution to 

the four-point function comes from the smallest polygon. This is the single 

unwrapped polygon from the planar case corresponding to the trivial solution 

to ( 4.59), i.e. all qi = 0. 

We can determine the wrapped polygons in more symmetrical situations 

where at least one pair of D-branes are parallel. In this situation however, 

our diophantine equation (4.59) no longer applies. If the ith D-brane has 

D-branes which run parallel to it, we must modify our shift vector in (4.20) 

to vi= qigcd({lh,i+lllk E P(i)})li,i+l, where P(i) is the set of all D-branes 

parallel to the ith D-brane and gcd stands for the greatest common divisor. 

Therefore, the necessary modifications to our diophantine equation can be 
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Figure 4.9: Two sets of parallel D-branes. 

easily determined by substituting the generalised expression, 

( 4.60) 

into (4.58). To illustrate this we consider the following two cases. 

One independent angle 

Firstly, we consider the simple case of one independent angle as depicted in 

figure 4.9. Here we have two sets of parallel branes, the pt and 3rd, and the 

2nd and 4th. As usual, closure of the polygon results in the expression, 

( 4.61) 

Our shift vectors are now given by, 

( 4.62) 

for i = 1, .. , 4. If we define ii,i-l to lie in the direction fi - fi+ 1, with 

magnitude the distance along the ith brane between successive (i-1)th branes, 

we obtain the the relation, 

( 4.63) 

Substituting ( 4.62) and ( 4.63) into ( 4.61), we obtain the intuitively obvious 

result q1 = q3 and q2 = q4. Therefore q1 and q2 can take any integer values. 

86 



Chapter 4: Interactions in IBMs 4.5 The general four point function 

Figure 4.10: One set of parallel D-branes. 

Two independent angles 

Next consider the case of two independent angles as shown in figure 4.10. 

This time we have the 1st and 3rd branes parallel. Hence v1 and v3 are 

still given by (4.62), however now v2 and v3 are given by the 'non-parallel' 

expression ( 4.20). Again, substituting into ( 4.61) and simplifying using ( 4.63) 

we obtain, 

(4.64) 

where we have defined gcd(II12/, II23I) = alii12/+b1II231 and A= a1l21 +b1l32· 

The second expression requires, 

(4.65) 

where l E Z. Defining, 

c(l) ·= ll12l42 
· gcd(I12, !41)' 

( 4.66) 

we obtain an infinite set of diophantine equations, 

(4.67) 

labelled by l. For a fixed l, a solution to ( 4.67) exits if and only if A divides 

c( l). In which case, we have an infinite number of solutions given by, 

( 4.68) 
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where k E Z. Hence, our wrapped polygons are determined by extending 

from h using, 

(4.69) 

and summing over l, k E Z such that q1 E Z. 

4.5.4 The quantum contribution to the four-point func­

tion 

Let us turn to the quantum contribution to the four point amplitude. As 

in the previous section, this amplitude is given by a disc diagram with four 

fermionic vertex operators in the -1/2 picture, veal on the boundary. The 

diagram is mapped to the upper half plane with vertices on the real axis. The 

positions ofthe vertices (x1 ... x 4 ) will eventually be fixed by S£(2, R) invari­

ance to 0, x2 , 1, oo (where x2 is real), so that the 4 point ordered amplitude 

can be written 

S4(1, 2, 3, 4) = (27r)4b4(l::a ka) A(1, 2, 3, 4) 

= ;t4 f0

1 dx(V(ll(o, k1)VC2l(x2, k2)VC3l(1, k3)VC4l(oo, k4)). 
9o s 

(4.70) 

To get the total amplitude we sum over all possible orderings; 

Atotat(1, 2, 3, 4) A(1, 2, 3, 4) + A(1, 3, 2, 4) + A(l, 2, 4, 3) 

+ A(4, 3, 2, 1) + A(4, 2, 3, 1) + A(4, 3, 1, 2). (4.71) 

The vertex operators for the fermions are of the form 

( 4.72) 

Here Ua is the space time spinor polarization, and sa is the so called spin­

twist operator discussed in subsection 2.2.5. This has the form 

5 

Sf =IT: exp(iqiHt) :, ( 4. 73) 
1=1 
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where for D6 branes intersecting at angles we have in the Ramond sector, 

(4.74) 

The relative sign of the first two entries is determined by the helicity, and 

'!9~=l, 2 ' 3 are the angles of the ith intersection in the m th complex plane. This 

can be determined from the mode expansion of the fermionic fields, which is 

similar to (4.6). In what follows we will frequently drop the index m, when 

we consider what is happening in a single sub-torus. The spin fields have 

conformal dimension, 
2 

h· = qi 
t 2 . (4.75) 

Here O"rJ; is the '!9 twist operator for the ith vertex, with conformal dimension 

( 4. 76) 

The evaluation of the expectation value of products of vertex operators is 

straightforward apart from the factor involving the bosonic twist operators. 

This calculation can be done analogously to the closed string case [11]. In 

contrast to the restricted cases discussed in [8, 55] with only one or two 

independent angles, we need to significantly modify the techniques. We now 

outline the derivation. 

Consider the contribution from a single complex dimension in which the 

branes intersect with angles '!9(rr where 2:..: '!9i = 2 if there are no intersections. 

(Other topologies are possible. For example if there is a single intersection in 

the middle of the world-sheet we require L.:i=left 13i = L.:i=right '!9i where "left" 

and "right" indicate the vertices on opposing sides of the intersection.). We 

begin with the asymptotic behaviour of the Green function in the vicinity of 

the twist operators. The Green function can be written as, 

( 4.77) 
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It has the following asymptotics, 

1 fi . 
rv -( --)2 + mte z-w z--+ w, 

rv (z- xi)-(1-19i) 

( )
-19 

rv W- Xi ' 

which can be deduced from the OPEs (4.8). As we have seen the holomorphic 

fields are proportional to, 

ax(z) 

ax(z) 

w(z) = IT (z- xi)-(1-'!9i), 

w'(z) =IT (z- xi)- 19
i. (4.78) 

Hence, the Green function may now be written generically upto an additional 

term usually denoted A, 

g(z, w; xi) ( ) '( ) {2:: .. (z- Xi)(z- Xj) f1k(w- Xk) A} 
w z w w at1 ( )( ) ( ) 2 + , W- X· W- X· Z- W 

i<j t J 

(4.79) 

where ai<j are constants and A( {xi}) is a function of the positions of the 

vertex operators. This is the most general function with the desired confor­

mal properties that can be written down as prescribed in [94]. Expanding in 

the various limits, we find by inspection that it has the required asymptotics 

if the constants satisfy 

i<j 

4 i-1 

L aij + La,ji = 1- rJi. (4.80) 
j=i+l j=1 

N ate that summing the second of these conditions over i and using the L:"::i ( 1-

rJi) = 2 condition automatically gives the first condition. Of course in the 

end any arbitrariness in the choice of aij and A must disappear from the 

amplitude which must be dependent on the '13 i 's only. 

90 



Chapter 4: Interactions in IBMs 4.5 The general four point function 

Recall the operator product, 

this allows us to deduce the general form of (Ili afJJ by considering, 

(T(z) Ili afJJ 
(Ili afJJ 

(4.81) 

where k, k' =f:. i, j and k =f:. k'. Next, we compare this with the OPE of T(z) 

with the twist operator, 

( 4.83) 

The leading (z - xi) 2 divergences yield the correct confonnal dimension of 

the twist operators; 
1 

h· = -1J·(1- 1J) t 2 t t . 

Equating coefficients of (z - xi)- 1 (in order to preserve generality we post­

pone using SL(2, IR) invariance to fix (x1 , x2 , x3 , x 4 ) = (0, x2 , 1, x00 ) for the 

moment) yields a set of differential equations for (Ili afJ;) of the form, 

a ln [(rr a.a )] = a ln [rr(x· -X ·)a;j-(1-1'J;)( 1-1'Jj)l + A 
Xk u; Xk t J Il ( ) . 

i i<j i-j.k Xk - Xi 

(4.84) 

All that remains is to determine A which can be clone using monoclromy 

conditions for azx awX. We proceed as for the classical calculation and con­

sider the global monodromy conditions arising from the two independent 

Pochammer loops, C1= 1,2 , encircling the prevertices x 1 and Xt+ 1. From the lo­

cal monoclromy conditions for Xqu given in ( 4.18), we see that on completing 

these contours the quantum part should be left invariant, 

( 4.85) 
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Now we define the auxiliary Green function, 

This function has the following asymptotics, 

h(z,w) rvfinite 

determining its form to be, 

"-' (z- Xi)-'11; 

"-' (w- Xi)-'11; as w ---+ Xi, 

h(z,w) = Bw'(z)w'(w), 

(4.86) 

(4.87) 

( 4.88) 

where B( {xi}) is a function of the vertex positions. The monodromy condi­

tion applied to the Green functions is then, 

1 dzg(z,w) + 1 dzh(z,w) = 0. 
fcl Jc1 

( 4.89) 

We now use SL(2, JR.) invariance to fix (x1 , x2 , x 3 , x4 ) = (0, x2 , 1, x00 ). Taking 

thew ---+ oo limit, dividing by w'(w) and extracting the leading X 00 contri­

butions, the monodromy condition ( 4.89) gives, 

( 4.90) 

for both independent contours C1= 1,2 . Defining G1 = f F[(x2)dx2 and c; = 
J F((x2 )dx2 we can solve for A; 

where 

An alternative solution can be found by considering the monodromy condi­

tion, 

(4.92) 
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Applying this to our Green functions we obtain, 

i dwg(z,w) + i awh(z,w) = 0. 
C1 Ct 

( 4.93) 

In a similar manner to above, noting the new form of h( z, w), we take the 

z--> oo limit of the monodromy condition and divide by w(z) to obtain; 

B i w(w)dw +A i w'(w)dw = X 00 i L aij(z- Xk=fo,i,j,k)w'(w)dw. 
Ct c1 c1 i<J=I4 

( 4.94) 

Thus, we obtain a second expression for A; 

( 4.95) 

Now it is well known that integrals over the different Pochammer contours 

with integrands involving w(z) generate solutions to the hypergeometric dif­

ferential equation, which is discussed in appendix B.2. In the present case the 

required equation is that satisfied by the G1 and a; which (using 8x2 G1 = Fl) 

can be written; 

(1- 734)732Gl = x2(1- x2)8F[ + ( -1)1(731 + 732- 1 + (734- 732)x2)F1 

(1- 732)734G; = x2(1- x2)8F/- ( -1)1(731 + 732- 1 + (734- 732)x2)F{. 
( 4.96) 

Substituting into ( 4.91) and ( 4.95) and summing yields the desired expression 

for A; 

(4.97) 

where 

Note that, this expression may be deduced from (B.ll) which also aids in 

the cancellation of terms in obtaining (4.97). We shall shortly give a closed 

expression for I Jl in terms of hypergeometric functions. 

Finally, inserting (4.97) into (4.84), and using the relations in (4.80) gives, 

(4.98) 
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Note that as promised there is no arbitrariness in the choice of aij· The 

function I Jl may be evaluated as; 

l-t91 -tJ2 

I Jl _ X 2 f(1-19l)f'(193) X 
- (1-x2)1 tJ2 tJ3 f'(193+194)r(192+193) 

2FI[1- '1?1, '1?3, '1?2 + '1?3; 1- x2]2FI[1- '1?1, '1?3, '1?3 + '1?4; x2]+ 
(1-x2)1-tJ2-tJ3 1(191)1(1-193) 

x 1 d1 1?2 f(191 +192)f(191 +194) X 
2 

( 4.99) 

2Fd'!?1, 1- '1?3, '1?1 + '1?4; 1- x2]2Fd'!?1, 1- '1?3, '1?1 + '1?2; x2]. 

This is for a single sub-T2 torus of the compactified space. The contribu­

tions from the three complex planes should be multiplied together with the 

appropriate angles ·19f1 for each. As a check, note that when there is only one 

independent angle, '!9 1 = '!93 = '!9 and '!92 = '!94 = 1 - '!9 the function reduces 

to that found in [8]. In addition we recover the result with two indepen­

dent angles derived in [55] by setting '!9 1 = 1 - '!9 2 and '!94 = 1 - '!93 . Note 

that the function has crossing symmetry; it is invariant under '!9 1 ~ '!93 and 

x2 ~ 1 - x2 . Finally note that the entire expression is invariant if we swap 

interior for exterior angles, '!9 i --+ 1 - '!9 i. 

4.6 Summary 

We have discussed the calculation of three and four point amplitudes for 

open strings localised at D-brane intersections. In both cases, the classical 

contribution to the amplitude is dominated bye- 21r
1
a' A, where A is the area of 

the polygon associated with the interaction. In the case of Yukawa couplings 

this leads to a natural mechanism for the generation of a mass hierarchy. 

For the quantum part of the four point amplitude, we were able to adapt 

the techniques of [11] to the open string case. Hence, by considering the 

conformal field theory we obtained the correlation function of four twist 

operators. This allows the computation of four fermion interactions. 

An application of these results may be used to not only explore the phe­

nomenology of intersecting brane models, but also to discuss or support more 

generic field theoretic ideas in set-ups with fermions localized in extra dimen­

sions. For example, our results have been used to demonstrate that very low 

(TeV) string scales are incompatible with the experimental absence of FC­

NCs [95]. Further, these results aid in the analysis of flavour structure in 
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intersecting brane models [96]. 

In the next chapter, we generalise our calculations to determine the N­

point function for open string at D-brane intersections. Then we proceed to 

discuss a phenomenological application of our results in the context of four 

fermion interactions on four independent sets of D-branes. 
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Chapter 5 

N-point Amplitudes in 

Intersecting Brane Models 

We now proceed to generalise the calculations of the previous chapter to the 

case of N-point amplitudes. That is we consider the interaction of N open 

string states localised at D-brane intersections. In particular, we calculate 

the classical contribution and the correlation function of N twist vertices. As 

a consistency check, we show that we can obtain the (N -1)-point amplitude 

from theN-point amplitude as a limiting case. Finally we will discuss some 

phenomenological applications of our results. 

5.1 The classical contribution to the N-point 

function 

Let us begin with a discussion of the classical contribution to the N-point 

function. We will use the notation and develop the methods from the previous 

chapter. 

5.1.1 The classical contribution in the planar case 

For simplicity we first concentrate on the planar case, i.e. ignoring the wrap­

ping contributions which will be dealt with in the next section. The N-point 

function requires N twist operators, o-19; (xi), where x1 = 0, XN-l = 1 and 

XN = X 00 --+ oo. The classical solution is again determined up to a normal­

isation constant by it's holomorphicity and asymptotic behaviour at each 
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D-brane intersection. However, in this case we may generalise our expres­

sions for the classical solutions to, 

8Xc~(z) = aw(z), 8Xc~(z) = p(z)w'(z), 

8Xc~(z) = p(z)w'(z), 8Xc~(z) = a*w(z), 
(5.1) 

where p( z) is a polynomial of degree p and, 

This modification obviously does not change the asymptotics of Xc1 at the 

D-brane intersections. However, if we consider the contribution to Se~, 

(5.3) 

we see that this converges only if p :s; N- 4. Notice that for N = 4 the 

expressions in (5.1) reduce to those of our previous case in (4.32). We can 

define a useful basis for p( z) given by, 

N-2 

pi(z) = IT (z- x1), i = 2, .. ,N- 2. 
j=2 

(j i- i) 

Our generalised classical solutions can then be expressed in the form, 

where, 

O'i = w'(z)/(z). 

(5.4) 

(5.5) 

(5.6) 

In the N-point case our classical solutions require N - 2 normalisation 

constants. However, we now have N- 2 Pochammer loops, Ci, as depicted 

in figure 5.1. To each loop we can apply the global monodromy condition, 

(5.7) 

The required contour integrals are given by the (N- 2) x (N- 2) matrix 
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Figure 5.1: TheN- 2 Pochammer loops 

W{, defined by 

where, 

W/ = :fc
1 
dzw(z) = e-irr('!9t-'l?t+I)4 sin(7r'!91) sin(7r'!9l+1)F/, 

vV/ = :fc
1 
dzfl'i(z) = e-irr(l91- 191+1l4sin(7r'!91) sin(m91+l)Fzi, 

Fzl = J~t+l w(y)dy, 

Fzi = J~l+l w'(y)pi(y)dy, i = 2, .. , N- 2. 

(5.8) 

(5.9) 

Substituting into (5. 7) and using the usual expression for the local mon-

odromy of X around a twist vertex ( 4.17), we obtain 

ci.Fzi = ft+l- ft l = 1, .. , N- 2, (5.10) 

with c = (a, b;, .. , b'Fv_ 2 ). So we now haveN -2 conditions for N -2 constants, 

giving 
N-2 

ci(x2, .. ,xN-2) = LUt+l- ft)(F- 1 )~. 
1=1 

(5.11) 

Finally, we determine the classical contribution to the N-point function 

in the planar case to be, 

ScL(x2, .. , XN-2) = 
4
:a' (lal 2 I(x2, .. , XN-2) + 2::: b7bJifJ(x2, .. , XN_ 2)) , 

t,J 

(5.12) 

where, 

I(x2, .. , XN-2) = J d2zlw(x)l 2, IfJ(x2, .. , XN-2) = J d2zfl'i(z)O'J(z). 

(5.13) 
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Note that for N = 4 this reduces to (4.42). 

5.1.2 Wrapping contributions to the N-point function 

We next consider the more phenomenologically interesting case of M = T 2 x 

T 2 x T 2
, and consider wrapping contributions from strings winding around 

the tori. As always we restrict our attention to a single T 2 subfactor. As 

discussed in subsection 4.4.1, on introduction of toroidal geometry the action 

of our twist operators must be generalised to not only rotate Xcl but also to 

shift by a lattice translation. That is 

(5.14) 

where v E A*, a coset of A. As mentioned previously, such shifts are of the 

form vi = qilli,i+llfi,i+l, with qi E Z (provided no D-branes are parallel). 

Hence the global monodromy conditions are now generalised to, 

tlc;Xcl = e-7ri('!9;-'!9;+l) 4 sin( 7r'!9i) sin( 7r'!9i+r) (fi+l - fi +vi) 

= fc; dz8XcZ(z) + fc; dzfJXcZ(z). 

Using the contour integrals (5.8) we obtain, 

cJ'/ = ft+l- fz + vz, l = 1, .. , N- 2. 

Hence we now have, 

N-2 

ci(x2, .. , XN-2, q1, .. , qN-2) = 2:::: Uz+1- fz + v(l))(F-1 )~. 
l=l 

(5.15) 

(5.16) 

(5.17) 

Our normalisation constants are now dependent on the q1 as well as the 

xi· The qz define the wrapped polygons, and take values determined by the 

intersection numbers of the D-branes. 

To determine the wrapped polygons which contribute to theN-point am­

plitude, consider extending (w.l.o.g) from vertex h as depicted in figure 5.2. 

Closure of the polygon requires, 

(5.18) 
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f' I 

"" 

-V 

IN\ 

f' 3 

f' 
' 4 

Figure 5.2: Determining the wrapped polygons 

Assuming there are no D-branes parallel to one another and substituting, 

(5.19) 

into (5.18) we obtain the linear diophantine equations, 

(5.20) 

We can now determine our wrapped polygons by extending from /2, taking 

all values of qi, i = 1, .. , N- 2 that allow for integer solutions to (5.20). 

Each such solution defines a wrapped polygon contributing to the N-point 

function. For example, consider the N = 3 case. Then (5.20) reduces to, 

(5.21) 

The q1 and q2 which allow for integer solutions are then of the form, 

(5.22) 

where lE Z. This reproduces the result (4.30) found in chapter 4. 

Unfortunately, it is not possible to solve (5.20) in the general case, only 
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for concrete examples. This is due to the fact that diophantine equations are 

usually solved algorithmically, however it is possible to make some general 

remarks. We require the following result from linear algebra [97, 98], 

THEOREM. Let A E Jvlm,n(Z). There exists L E SLm(Z) and R E SLn(Z) 

such that, 

(5.23) 

where di > 0, i = 1, .. , s and dildi+ 1 , i = 1, .. , s- 1. 

Denoting our diophantine matrix equation as b = Ax, we can therefore write 

our solution as x = Ry where y is a solution to the diagonal system of 

equations, Dy = e, with e = Lb. Since A is of size 2 x (N - 2), we have 

in general two distinct cases for the form of D, corresponding to s = 1 and 

s = 2 above. However, our assumption of a convex polygon means that we 

only need to consider the case s = 2. This can be deduced from the fact that 

the dimension of the row space of A is the same as that of D. Hence we have 

the general solution, 

edd1 

c~ ) e2/d2 

. -R h 

~N-2 
(5.24) 

{N-4 

where li are free integer parameters and e1 and e2 are functions of qN and 

qN-l· Unfortunately, it is not possible to determine L and R for a general 

matrix A. 

We can now write the classical contribution to the N-point function in 

the toroidal case as, 

Z (X X ) ""'"' e-Scl(x2, .. ,XN-2,q!, .. ,qN-2), 
cl 2, .. , N-2 = ~ (5.25) 
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where, 

Sc~(x2, .. , XN-2, Q1, .. , QN-2) = 

4;a' (1al 2 I(x2, .. , XN-2) + Li,j bTbji1j(x2, .. , XN-2)). 
(5.26) 

Note that we sum over N - 2 variables corresponding to the N - 2 indepen­

dent sides of an N-sided polygon and only include Qi such that (5.20) has a 

solution. This sum incorporates all possible wrapped polygon contributions 

to our classical amplitude. 

5.1.3 The Schwarz-Christoffel map and the area rule 

Let us denote the classical contribution from a single torus subfactor by S~2 • 

As we have seen in chapter 4, at the minimum of S~2 for N = 4, b2 = 0 

(previously denoted, b), and we obtain the area of the polygon involved in 

the interaction. An analogous situation also occurs in the three point case, 

where again b2 = 0 and the action is the area of a triangle. Furthermore, it 

seems intuitively obvious that for general N, the area of the worldsheet (i.e. 

Se~) has as its minimum value the area of the polygon associated with the 

amplitude, provided only one S~~ is non-zero. That this is indeed the case, 

and this occurs when the bi = 0, can be motivated as follows. 

We can express Xc1 as, 

Xd(z, Z) =A+ a r :fr ((- x,)-(H;)d( + b; .r :fr ((- x,)-•'p1(()d(, 
i=l i=l 

(5.27) 

with Xc~(xi) = fi and A E C. The lower integration limits are left unspecified 

as they affect only the value of A. Differentiating gives 8Xc1 and 8Xc~, as in 

section 5.1. Note that we expect Xc1 to be, at least locally, one to one and 

hence if fJ = fi we must have Xj =Xi· Using (5.27) and Xc~(xi) = fi allows 

us immediately to obtain the relation, 

(5.28) 

which are simply the globalmonodromy conditions (5.10). 

Now inserting bi = 0 in (5.27), we obtain a Schwarz-Christoffel map. This 

is the general form of a map from the upper-half complex plane to an N-
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sided polygon. Hence, integrating this over the complex plane as in (4.13) 

just gives back the area of the polygon as the classical action. In summary, 

we have motivated the simple rule, 

The minimum of the classical action equals the sum of the polygon 

areas projected in each T 2 when the non-zero polygons are the 

same up to an overall scaling. 

From now on, in keeping with the literature on Schwarz-Christoffel mappings 

we will refer to the xi as prevertices. 

5.2 The quantum contribution to theN-point 

amplitude 

The correlator of N twist vertices can be computed using the stress tensor 

method described in section 4.5.4. We also employ techniques discussed 

in [99], although here modified to the tree level case. Generalising the N = 4 

case, the Green function should now take the form, 

( ) '( ) {L .. (z- xi)(z- Xj) IJk(w- xk) A( )} 
w z w w alJ ( )( ) ( ) 2 + w , W- X· W- X· Z- W i<j l J 

(5.29) 

where the aij satisfy the same conditions as in (4.80). However, A(w) is now 

a function of the form 

A(w) = """' b· .,., IJk(w-xk) 
~ lJl 

1 (w- x·)(w- x ·)(w- x·,)(w- x .,) ' i>j>i'>j' l J l J 

where biji'j' are some coefficients. 

It is useful in what follows to define 

_ , L (z- xi)(z- x1) IJk(w- xk) 
g8 (z, w)- w(z)w (w) aij ( )( ) ( ) 2 , w-x· w-x· z-w i<j l J 

(5.30) 
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and from the asymptotics of h(z, w), it can be seen that 

N-2 

h(z, w) = L cii~l(z)O'i (w), (5.31) 
i,j=2 

where O'i(z) is given by (5.6). In order to write clown a solution to the 

monoclromy conditions we again require the (N- 2) x (N- 2) matrix H'/ 

defined in (5.8), where llabels the N- 2 independent Pochammer contours. 

·with these definitions a solution to the global monoclromy conditions with 

g and h in the prescribed form can be written clown as follows, 

g(z,w) 
N-2 

9s(z, w)- w(z) L(W-1)i i dy 9s(Y, w), 
t=1 cl 

N-2 N-2 

- L n'\z) L(W-1)i i dy 9s(Y, w). 
i=2 1=1 q 

(5.32) h(z, w) 

To simplify the calculation of the twist field correlators, we leave the xi as 

Zi E C in the above expressions and postpone the use of S£(2, IR) invariance. 

We shall compute both holomorphic and antiholomorphic contributions to 

the COrrelatOf, and then employ aXk = ~(azk + azk) tO Obtain Our final anSWer 

relevant to twist fields on the boundary of an open string diagram. 

Now following the method in section 4.5.4, we may insert the expression 

for g(z, w) into 

(T(z) Il er{);) 
(Oi cr{)J 

. 1 
hm [g ( z, w) - ( ) 2 ], 

W--->Z Z- W 
(5.33) 

and extract the singular holomorphic behaviour at any one of the poles, 

(z- zk)-1, to find the holomorphic contribution 

[ l 
N-2 

H =a ln II(z·- z-)-(1-{};)( 1-{}j) - ""(lV-1) 1 a W 1 
Zk t J L..t 1 Zk [ ' 

i<j l=1 

(5.34) 

To evaluate the trailing term, following [99], we note that 

N-2 N-2 N-2 

aZk lnjlVI = 2"")w- 1 )~aZkW/ + :L L(YV- 1 )~azkH1/. (5.35) 
l=1 j=l 1=1 

(#i) 
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By comparing the singularities as z -----+ Zk we can evaluate the second piece, 

N-2 N-2 N-2 

L L(W-1 )~aZk w; = aZk ln IT (zk- Zj)
1
-

19k. 
j=l 1=1 

(#i) 
j=l 

(jofk,i) 

(5.36) 

Inserting this back into (5.34) we obtain the holomorphic contribution to the 

correlator, 

(5.37) 

In order to compute the antiholomorphic contribution, we complex conju­

gate the coordinates and exchange rJi -----+ 1- rJi everywhere. Thus we obtain, 

(5.38) 

Note that ll¥1 is invariant (up to a sign) under complex conjugation accom­

panied by interchange of differentials of the type w(z) with D'(z), so that it 

is compatible with the antiholomorphic differential equations. Hence, upon 

adding the two contributions, multiplying by ~ and setting the coordinates 

of the twist fields to be real, we get the total contribution 

aXk ln(IT a{)J = aXk ln [IWI-~ IT (xk- Xj)~ n(xi- Xj)-~( 1 -l9;)( 1 -l9j)-~{);l9jl 
t j=2 t<J 

(#k) 

(5.39) 

Finally we can write down the correlator which solves the differential equa­

tions in all variables { xk}, 

N-2 N 

(IT a19;) = IWI-~ IT (xi- x1)! IT(xi- xj)!(l9;Hj-l)-19;19i. 

i<j 
(i,Ji-1) 

i<j 
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One may verify that when N = 4 it gives the earlier 4 point result 1 , the W/ 

matrix is now a 2 x 2 matrix of the usual hypergeometric integrals in ( 4.36) 

whose determinant is proportional to I Jl. 

5.3 Obtaining the (N -l)=point amplitude from 

the N-point amplitude 

Consistency requires that the ( N -1 )-point amplitude be obtainable from the 

N-point amplitude as a limiting case. We can reduce theN-point amplitude 

down to an (N- 1)-point amplitude as depicted in figure 5.3. Take a single 

prevertex, xi say, and let it coalesce with xi+l· Shifting a single prevertex of 

course potentially adjusts the entire polygon. However, we may keep each of 

theN- 2 independent sides fixed by adjusting theN- 2 constants ci· Thus, 

we are able to coalesce fi and fi+ 1 by adjusting only the lengths of the two 

adjacent sides fi-l,i and fi,i+l, whilst leaving the rest of the polygon and all 

the angles unchanged. 

Let us begin by considering how the classical contribution reduces in 

this case. We denote by Sc1, the classical action for the N-point amplitude 

with the identification Xi = Xi+l, and by Sc1 the action We would expect 

for the (N - 1)-point amplitude obtained by reduction from the N-point 

amplitude. This notation will also be employed in this section to distinguish 

other quantities between the two cases. We now show that Sc1 = Se~. From 

the diagram, the following relations are easily determined by the geometry 

of the parent amplitude, 

fj = fj 13j = 13 j 
fj = fJ+l 13j = i)j+l 

and also, 

X I -x j - j 

I 
xj = Xj+l 

For j = 1, .. , i- 1, 

For j = i + 1, .. , N - 1, 
(5.41) 

(5.42) 

1To explicitly obtain the N = 4 expression, we must extract the ( -x=) term out of 
IWI-1/2. 
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Using these expressions it is simple to deduce that I= 1 and furthermore, 

where, 

lfm = J~(Z)g(m)' l, m= I, .. , i- I, i +I, .. , N- 2, 

J! = ]!,_ 
~m ~+l,m' 

() 
{

k k=I, .. ,i-I 
g k = . 

k- I k = z +I, .. , N- 2. 

(5.43) 

(5.44) 

We also need to examine the global monodromy conditions in the N-point 

and (N- I)-point cases. For this we require the following easily obtained 

relations, 
pk- pg(k) 

j - g(m)' 

pi= pi+l 
J J l 

k, j = I, .. , i- I, i +I, .. , N- 2, 

pik = 0. 
(5.45) 

Then we can see that the monodromy conditions are the same in both cases, 

with the identification 

ck = cg(k)' k =I, .. , i- I, i + 2, .. , N- 2, 

ci+l + ci = ci. 
(5.46) 

Finally, substituting (5.43) and (5.46) into our expression for Sc1 given in (5.I2) 

we obtain Sc1. 
The quantum contribution in (5.40) should also reduce in the correct 

manner as the two prevertices coalesce, and indeed it does. The discussion 

is similar to the one loop closed string diagram discussion of [99]. \iVhen the 

two twist fields at xi and xi+1 come together we should recover an amplitude 

consistent with, 

( 5.4 7) 

where ki is to be determined by equating the conformal dimensions on each 

side. We find that ki = -(I - 19i)(I- 19i+I) when {)i + fJi+ 1 2:: I and ki = 

-fJi{)i+l when {)i + fJi+ 1 ~ 1. We must verify that the amplitude yields the 

correct factors asymptotically. The basis of N - 2 Pochammer loops evolves 

into N - 3 loops as two points coalesce. When the two adjacent points 

come together the local behaviour of ax is given by w(z) rv z-(l--!?;)(z­

ot(l --oi+I) where the first prevertex we arbitrarily set to 0 and the second 
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Figure 5.3: Reducing theN-point amplitude to the (N- 1)-point amplitude. 

to 5. One can check, from our expressions (8.10) for the F/, that the w 

contour integrals around the loop "trapped" between the two vertices diverge 

as (xi - xi+l) 19
iHH1 -

1 if rJi + fJH 1 < 1 and are convergent otherwise. The 

opposite is true for the D' integrals so that at coalescence, including the 

divergent factors from IWI-1
/

2 ni<j(xi- Xj)
112

, we have 

(IJ U1JJ rv (xi_ xi+l) 
1 ~ 1 (19iHi+I-1)-19;19;+l(rr u 19J, (5.48) 

j j~i 

where we take a plus sign if rJi + fJH 1 ;:::: 1 and minus if rJi + fJH 1 < 1, yielding 

the expected behaviour in (5.47). 

Combining the above results we see that the expression for an N-point 

amplitude reduces to that of an (N- 1)-point amplitude as required. 

5.4 Higgs exchange 

We now discuss an application of our results. In particular, the general 

4-point amplitude is required when there are four independent branes. In 

models which reproduce the Standard Model (or supersymmetric variants 

thereof) the relevant processes are therefore qLqR -----+ eLeR as shown in fig­

ure 5.4, and necessarily involve 2 left and 2 right chirality fields. 

The full four-point amplitude can be easily obtained from our previous 

results. We are interested in the four fermion operator, (q~)q~))(e~)et)). 

108 



Chapter 5: N-point Amplitudes 5.4 Higgs exchange 

SU(3) 

SU(2) 

Figure 5.4: Instanton contribution to the four point amplitude 

The uncompactified part of the fermions have the charges, 

(5.49) 

and the compactified part has the charge qf = '!9i- ~, as mentioned in ( 4. 7 4). 

Collecting the simpler correlators together, we have 

ghosts x (e-tP12(0)e-<PI2(x)e-<PI2(1)e-<PI2(x00 )) = 
~ 1 1 

x.5ox-4 (1 - x )-4, 
(e-ip1.x e-ip2.x e-ipa.X e-ip4.X) = X2a'P1·P2(1 _ x)2a'P2·P3, 

(5.50) 

and 

(e-iq1.He-iq2.He-iqa.He-iq4.H) = xq
00
-4·(1h+(h+<i3)xq1.ii2(1- x)<i2·Q3 

non-cmp 
_.! - - - - _.! 1 = X00

2 Xq1.q2(1- x)q2.q3 = X00
2 (1- x)-2. 

(5.51) 
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For the compactified tori factors, we have 

( 
· H · H · H · H) rr3 '84m(l-'84m)--4

1 .om.om_l(·am+.om)+! 
e -lqJ. e-lq2. e-tq3. e-lq4. cmp = X Xvl v2 2 vl v2 4 X 

m oo 

(1- x)-82'193-1Wl'H3)+~. 

(5.52) 

Note that, particles of one chirality take the opposite Weyl index to that of 

the opposing chirality. Hence, using Weyl notation, in u~)u~)u~1lu~4 ) we now 

have opposite a/3 and 16 indices which (writing as Ea.j3E18) just contracts the 

qLqR and eLeR fermions. Piecing together all the separate contributions and 

including the twist field correlators determined in (4.98), we obtain the final 

expression for the amplitude (up to an overall normalisation), 

(5.53) 

where s = -(k1 + k2 )
2

, t = -(k2 + k3 )
2

, u = -(k1 + k3 )
2 are the usual 

Mandlestam variables. Note that, the dependence on 19r cancels between 

the bosonic twist fields and the spin-twist fields. The classical action is given 

by (4.55) in terms of the different Tin each sub-torus. 

Now consider the geometry depicted in figure 5.4. The SU(2) and U(l) 

branes will intersect and a Higgs field appears at that intersection. Then 

from subsection 4.5.2 (assuming for simplicity that the projected areas are 

zero in the other sub-tori), the minimum of the action is the area of the 

polygon, which is simply the difference in the two triangular areas defined 

by the SU(2), U(l) branes and either the lepton or SU(3) brane. Since this 

is a stringy process (5.53) gives a contribution of the form, 

(5.54) 

This is a significantly larger contribution than one would expect in field 

theory. In this case, the process would occur via Higgs exchange and be 

suppressed by the product of two Yukawa couplings, i.e. we would expect 

the amplitude to go as, 

t- M 2 ' h 

(5.55) 

or the s channel equivalent. In fact, in the limit that the lepton brane is lying 
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SU(3) 

Figure 5.5: t-channel Higgs exchange as "double instanton" 

on top of the SU(3) brane in all sub-T2tori, there is no Yukawa suppression 

at all in this process. Thus, at low string scales this stringy exchange can 

potentially be important. 

However, the geometry of our D-branes may also be as depicted in fig­

ure 5.5, with the lepton brane lying to the right of the SU(2) - U(1) inter­

section. In this case (5.53) gives the equivalent of Higgs exchange in the field 

theory limit. Indeed, since the instanton suppression goes as e-Area/2rrci, we 

expect to find the product of two Yukawas. This feature and the appearance 

of a Higgs pole will now be verified. 

From here on, we shall denote x2 by x. It is easy to show that when the 

diagram has an intersection in a particular sub-torus, as in figure 5.5, the 

contribution to the action from that subtorus is a monotonically decreasing 

function of x. Hence the sum of the contributions is minimized by taking the 

limit x ~ 1. Assuming that 1 - fJ2 - rJ3 > 0, the relevant limits are 

Lirnx---.1 T = -(3, 

Lirnx---.1111 = (1- x)(-1+'!92 +03 ) -
1

-1 f!(rJ2, fJ3)f!(1- fJ1, 1- fJ4), 
('y-y')2 
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where 

Then up to an overall normalisation we have, 

A(1, 2, 3, 4) = -g;a' [(u(3)u(2))(u(l)u(4))] e-Sc~(l) x 

fol dx (1- x)-a't-L:H02H3). 

The contribution to the classical action from each sub-torus becomes, 

(5.57) 

(5.58) 

(5.59) 

Bearing in mind that the angle at the intersection is 1r - m'J2 - 1rih, we see 

that the result is just the sum of the area/27ra' of the two triangles. Finally 

the pole term now arises from the x integral, 

-a'll dx (1- x)-a't-L: H02H3) = 1 
0 t- Mr (5.60) 

where (recalling that 0 < 19r + 19!f < 1) we recognize the mass of a scalar 

Higgs state in the spectrum at the intersection, 

a' M~ = 1 - ~ L ( 19~ + 19r;). (5.61) 
m 

Hence identifying the Yukawa couplings with the areas of the two triangles, 

as in section 4.4, we obtain the expected form 

(5.62) 

up to a normalisation factor. This factor maybe computed using the normal­

isation of the Yukawa couplings discussed in [55, 100]. The above discussion 

was carried out for intersecting D6-branes, but it is straightforward to trans­

late it to other set-ups. 
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5.5 Conclusion 

In summary, we have analysed the N-point amplitude at tree level for open 

strings localised at D-brane intersections. We were able to generalise the 

techniques used for three and four point amplitudes discussed in the previous 

chapter. Thus, we obtained both the classical and quantum contributions to 

the general N-point amplitude, including those contributions that wrap the 

internal space. For consistency, we checked that the N-point amplitude is 

reduced down to the (N -1)-point amplitude when two prevertices coalesce. 

We have also shown that for general N, the minimum of the classical action 

is given by the sum of the polygon areas projected in each torus subfactor} 

when the non-zero polygons are identical up to an overall scaling. 

Our results are applicable to all orbifold, orientifold and toroidal com­

pactifications. Orbifolds and orientifolds would require a modification of the 

counting over wrapped polygons, but the leading contributions would be the 

same. 

We examined the process QLQR -+ eLeR, on four independent sets of D­

branes. This process, depending as it does on the geometry of the D-branes, 

has a purely stringy contribution, as well as a sensible field theory limit 

corresponding to Higgs exchange. In the former case, the amplitude is of the 

form Y.Mq/;'e which should be compared to the field theory case t~qY;. Thus at 
s rnh 

low string scales the stringy exchanges are potentially important. 

These calculations provide a starting point for discussing general inter­

actions in intersecting brane models and hence understanding their phe­

nomenology in more detail. In addition they may prove useful in addressing 

questions to do with the possible introduction of a realistic flavour structure 

in these models [96]. Further processes including for example Higgstrahlung, 

can also be treated. 
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A summary and discussion 

As we have seen, string theory is a powerful framework within which we are 

able to describe both the gauge interactions of the Standard Model and a 

description of gravity at the quantum level. However, it is still restricted 

to being a framework for the construction of models, as opposed to a single 

fundamental theory of nature. This is similar to the sense in which quantum 

field theory is a framework within which one can construct the Standard 

Model. This arises as a consequence of the fact that our current understand­

ing of the fundamental structure of string theory is limited, and at present 

there is no thorough understanding of the string moduli space depicted in 

figure 1.1. Therefore, it is impossible to deduce a ground state and suitable 

compactification from first principles. It follows that, in order to compare 

string theory to nature, we must make assumptions and 'simply' construct 

models that seem to contain features shared with our observable universe. 

In one sense, this is perfectly reasonable and a similar process was used in 

discovering the Standard Model. On the other hand, this may result in us 

ignoring or not recognising important lessons that could be learnt from string 

theory. It is therefore important that both approaches are taken and lessons 

are learnt and shared between them. The aim of this thesis, was to contribute 

to this effort. 

We began m chapter 3, by exploring a model constructed using the 

bottom-up approach [7] to string model building. This approach has the 

extremely useful feature of removing a substantial proportion of the depen­

dence of the low energy physics of the model on the global details of the 

compactification space. This allows us to focus on more generic features of 
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these models without the need for analysing different geometries in detail. 

Some interesting features arise, for instance locating the D-branes on a sim­

ple orbifold singularity, containing a Z3 group factor, leads to a model with 

three generations of quark-leptons. Essentially, because the Z3 'twists' each 

internal complex dimension equally. Again, we see that geometry in string 

theory can lead to insights into our 'why' questions discussed in chapter 1. 

The model constructed utilised a new method for obtaining CP violation 

in the low energy field theory. Such a phenomenon is only accommodated 

and not explained in the Standard Model, leading to a longstanding puzzle 

in particle physics. Here, CP was broken spontaneously through the action 

of discrete torsion, thus providing the possibility of a geometric explanation 

of CP violation. This motivated a simple ansatz for the Kahler metric, whose 

actual form is unknown due to our desire to separate out as much of the low 

energy physics as possible from our choice of compactification, and also the 

difficulty in its computation for anything other than the simplest geometries. 

Our ansatz resulted in a phenomenologically viable CKM matrix, with mix­

ing angles and a complex phase close to those measured experimentally. This 

shows that physics close to that of the Standard Model can be obtained as 

a feature of a class of models with a relatively simple construction. These 

models also had the added benefit of separating out the generation of flavour 

structure and supersymmetry breaking. This leads to the possibility of avoid­

ing the traditional supersymmetric CP and flavour problems, although more 

work needs to be done to establish this concretely. 

The remaining two chapters covered the formalism required to calculate 

scattering amplitudes in intersecting brane models [56]. These models are 

based on the fact that it is possible to obtain chiral fermions at the inter­

section of two D-branes at an arbitrary angle [57]. Thus, these models are 

somewhat more general than those constructed in the bottom-up approach, 

where D-branes are always either parallel or perpendicular. An intersecting 

brane model generically contains a number of different stacks of D-branes 

which upon wrapping a compact internal space generally intersect repeat­

edly. Thus, such models have the generic feature of replication of the fermion 

spectrum. An attractive feature of these models is thus the relative ease of 

constructing a model with three generations of quark-leptons. 

To fully compare these models to experiment and to establish if they are 
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capable of describing our universe, it is necessary to compute scattering am­

plitudes between string states localised at brane intersections. The starting 

point for this is elucidated in detail in chapters 4 and 5. We began in chapter 

4, with the simple case of Yukawa interactions and showed that the classical 

contribution went as e- 2rr
1
c/ ~, where Ll is the area of the triangle described by 

the intersecting branes (or more accurately, the sum of the projected areas in 

each sub-tori). As first pointed out in [10], this leads to a natural mechanism 

for the generation of a mass hierarchy. Next, we proceeded to the general 

four point amplitude, first presented in [9]. Again, the classical action can be 

minimised to obtain the area of a quadrilateral (when restricted to a single 

sub-torus). The correlator of twist fields was computed using a generalisa­

tion of methods developed for closed strings on orbifolds. In chapter 5, these 

results were generalised to N-point scattering amplitudes, thus securing a 

framework for discussing general interactions in intersecting brane models 

and hence understanding their phenomenology in more detail. 

As a first step towards this aim, we analysed general N = 4 amplitudes on 

four independent sets of D-branes. The relevant process was qLqR ---> eLeR. 

This process, depending as it does on the geometry of the D-branes, has a 

purely stringy contribution, as well as sensible field theory limit contribu­

tions corresponding to s and t-channel Higgs exchange. In the former case, 

the amplitude is of the form Y~;'e which should be compared to the field 

theory case tYqY~. Thus, at low ~tring scales the stringy exchanges are po-
-mh 

tentially important. Also, applications of our result may be used to establish 

constraints on the string scale through flavour changing neutral currents [96]. 

To conclude, we have contributed to the understanding of the phenomena­

logical viability of certain string models based on D-brane configurations. In 

the long term, this will aid in either the construction of a new string model 

to replace the physics of the Standard Model, or show that such a model is 

not possible. Both scenarios will lead to an improved understanding of the 

fundamental structure of string theory. 
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Appendix A 

Determination of zeros in K33 

As discussed in the main text, the zeros in K33 are inherited from the her­

mitian matrix, 

Z - T ((X(i))txUl) 
ij - r 33 33 · (A.l) 

The Chan-Paton factors were calculated in (3.52). However the xj~ are 

not determined uniquely. Therefore we choose the nth principal root of 'Ywk 

defined by, 
_!_ . I 

'V n = st (rvdwg) n s 
!Wk - lwk ' (A.2) 

with S the unitary matrix which diagonalises 'Ywk and, 

(A.3) 

Here Ai is the ith eigenvalue of 'Ywk' >.i1n e* log(>-;) and we restrict arg(>.i) 

to the interval ( -n, n], thus taking the principal value of log(>.i)· 

With these choices the xj~ are uniquely determined, and we have 

.!('\'g(s) e-4ni(l-1)/ns + e4ni/n '\'s e-4ni(l-1)/ns) 
s L....tl=l L....tl=g(s)+l 

X ('\'Prnax e2nip/n '\' e-2ni(j-1)/M) 
L....tp=O L....tu(p)>j~l(p) ' 

(A.4) 

.!('\'g(s) e-2ni(l-1)/ns + e2ni/n '\'s e-2ni(l-1)/ns) 
s L....tl=l L....tl=g(s)+l 

X ('\'Pmax e-2nip/n '\' e2ni(j-1)/M) 
L....tp=O L....tu(p)>j~l(p) ' 

(A.5) 
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and, 

where, 

z23 = .!('\'g(s) e2ni(l-l)jns + e-2ni/n ""'s e2ni(l-l)jns) 
s L..l=l L..t=g(s)+l (A 6) 
X ('\'Pmax e-4nipjn""' e4ni(j-l)/M) . 

L..p=O L..u(p)>j?_l(p) ' 

_ [(s-l)n 1] 
Pmax - ------;:;r- + 2 ' 

u(p) = (2p + 1)~~ + 1, 

l(p) = (2p- 1)~ + 1, 

( ) { 
k if s=2k, 

g s = 
k + 1 if s=2k+1, 

(A.7) 

with [ .. ] denoting rounding to the nearest integer. Furthermore, since the 

X~~ are unitary s x s matrices, we have 

(A.8) 

Finally, it can be easily seen from (A.4), (A.5) and (A.6) that Z12 = Z13 = 

z23 = 0 for n = 1, zl2 = z23 = 0 and zl3 =1- 0 for n = 2 and for n ;::: 3 all 

elements of Z are non-zero. 
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Appendix B 

Computations for N-point 

functions in intersecting brane 

models 

B.l Computation of integrals in the classical 

action 

We now generalise the methods in [92] to evaluate the integral, 

N-2 

I (x2 , .. ,XN-2) = J d2 z IT lz - xjl-2(1- '!9j) lz l-2(1-1h) lz - 11-2(1--oN-d . (B.1) 
j=2 

This is required in the computation of the classical contribution to the N ­

point function for open strings at D-brane intersections. 

If we introduce the new variables, ~ = z and rJ = z, we can rewrite (B. 1) 

as 

J = ~ f~oo d~ f~oo drJI~rJI-( 1 -'!91) 1( 1 - ~)(1- rJ) ~-( 1 -'!9N-l) X 

rr;=-;2 l(xj- ~)(xj- rJ)I -(1--oi)exp[in(J( -(1 -191); ~ , rJ)+ 

f( -(1 -19N_l) ; (1- ~) , (1- rJ)) + L~-;2 f( - (1 -19j ); (xj - ~) , (xj - rJ)))], 
(B.2) 

where 

!( ) { 
0 xy > 0 

a;x, y = 
a xy < 0. 

(B.3) 
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'17 > 1 

~<0 0 - l:::f-1 (1 - 131) - I::t:/(1-131) 
p > j, - I::f=j+1 (1 -131) 

Xj < ~ < Xj+1 - 2::::1=1 (1 -131) p = J, 0 - 2::::~}!1 (1 - 131) 
p < j, - l:{=p+1 (1 -131) 

~ > 1 - I::f:~ 1 (1 - 131) - l:N -l (1 -131) 
l=p+l 0 

Table B.l: Complex phases in !(xi) 

This phase convention results in the phases in table B.1 for the differing re­

gions of the integration parameters. Now we split up the integral over ~ into 

the regions given in the table and regard the 17 integration as a complex inte­

gral. Then the phase choice in (B.2) corresponds to the integration contours 

in the complex TJ plane as shown in figure B.l. With a careful analysis of the 

branch cuts these contours give phases consistent with those in table B.1. In 

the cases ~ < 0 and ~ > 1, we can close the contour to give a zero contribu­

tion to the integral. In the remaining cases of Xj < ~ < xJ+ 1 , we can deform 

the contour as depicted in figure B. 2 (or equivalently, we could deform the 

bottom half of the contour in the opposite direction). On splitting the new 

contour into a sum over integrals between Xp and Xp+l, the phase factor for 

each integrand is, 

I::f=J+1 (1 - 131) top of contour, 

- I::f=J+l (1 - 13t) bottom of contour. 

This allows us to split I into a product of line integrals, 

I= 2::::;=-;2 
sin(n 2::::~=2 (1 -13m)) f0x

2 d~h(~) J:;+1 d17h(17)+ 

sin(n I::~:;(l-13m)) J0x
2 d~h(O J100 d17h(17)+ 

I::f=-;
2 I:~:~ sin(n I::~=p+ 1 (1 -13m)) J:;+1 d~h(~) J:;+1 d17h(17)+ 

I::f=-;
2 

sin(n 2::::~= 1 (1 -13m)) fx~H 1 d~h(~) f~oo d17h(17), 

where, 
N-2 

(B.4) 

(B.5) 

h(y) = IYI-(1-!9 1)11- Yl-(l-!?N- 1 ) IT lxj- Yl-( 1-!?i). (B.6) 
j=2 
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------------ ----8---------- -------"c----·----------- .... -----------
0 x2 xj xj+I 1 

------------ -!f--~S- --------- ·--------------.----------- ·-----------
0 Xz Xp Xp+l 1 

------------- tt---e----------- ·--------------.----------- ·-----------
0 Xz Xp Xp+l 1 

1:.>1 

Figure B.l: The contour integrals for the cases a) Xj < e < Xj+l; b) e < 0, and 
c) e > L The dotted lines denote branch cuts. 
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Appendix B: N-point functions B.2 Lauricella functions 

------------ ----0---------- -Q)-------E-0----------- ~---------------
0 x2 xj xj+I 1 

------------~---------

Figure B.2: Deformed contour for Xj < ~ < Xj+1· 

Thus we obtain, 

N-1 N-2 j-1 
I(x2, .. ,XN-2) = L(-1)Pa2,p[F;fiF1

1[ + L L(-1)j-(p+1lap+l,j[F/ffF;f, 
p=2 j=2 p=O 

(B.7) 

where we have defined aij = "L,{=i {}z and the following line integrals, 

pl = 1xi+1 nN-1( _X ·)-(1-l?j) 
t Xi ]=1 y J l 

i = 1, .. , N- 2, 
F,l = JO nN-1( _X ·)-(1-l?j) 

0 -oo J=1 Y J ' 
F}v_1 = J100 n;=~1(y- Xj )-(1-l?j). 

(B.S) 

Note that in the four point case this reduces to ( 4.44), with the identification 

F/ = Fi, and to ( 4. 25) in the three point case. Also, this result is consistent 

with similar expressions used in [11, 92]. 

B.2 Lauricella and hypergeometric functions 

Lauricella functions are the generalisations of hypergeometric functions to 

multiple variables. The Type D Lauricella function has the integral repre­

sentation, 

B(a, c- a)F1n)(a, b1, .. , bn; c; X1, .. , Xn) = 
rt a-1(1 )c-a-1(1 )-bl (1 )-b d Jo 1/, - v, ~ UX1 .. - UXn n 11, 1 

(B.9) 
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when Re( a), Re(c- a) > 0 and B(p, q) is the beta function. Hence we can 

express the line integrals (B.8) in terms of Type D Lauricella functions. It is 

easily shown that, 

N-1 
F/ =eim'J;(xi- Xi+I)-1H;H;+ 1 IT (xi- Xj)-( 1-l'Ji) B(fh '!9i+I) X 

j=l 

(#i,i+l) 

Fg"- 3)('!9i, 1- '!91, .. , 1- '!Ji-1, 1- '!9i+2, .. , 1- '!9N-l; '!9i + '!9i+1; 

where i = 1, .. , N- 2 and, 

F~ =e-in({)N+1)B('!9N,'!91)x 

xFg"-3)('!JN, 1- '!J2, .. , 1- '!JN-2; '!J1 + '!JN; 1- X2, .. , 1- XN-2), 

F~_ 1 =B('!9N, '!9N-I)Fg"- 3)('!9N, 1- '!J2, .. , 1- '!9N-2; '!9N + '!9N-l; x2, .. , XN-2), 

(B.lO) 

where Xij = x~~~~: 1 • These are required in the computation of the classical 

part of N-point amplitudes in intersecting brane models. 

Consider the case N = 4, then our Lauricella functions reduce to the 

standard hypergeometric functions, 

FJ = e-in(1H 4 ) B(794, 791hF1 (794, 1- 792; 791 + 794; 1- x2), 

F 1 = e-in({)2 +1J3 )x-1+{)1+1J2 B(79 79 ) F (79 1-79 · 79 + 79 · x ) 1 2 1, 2 2 1 1, 3, 1 2, 2 , 

F.1 = e-in(-1+1'J3 )(1- x )-1+{) 2 +{)3 B(79 79 ) F (79 1- 19 '19 + 19 · 1- X ) 2 2 2, 3 2 1 3, 1, 2 3, . 2 , 

Fl = B(794, 793)2F1(794, 1- 792; 794 + 793; x2), 
(B.ll) 

where 2F 1 (a, b, c; x) = F}; (a, b; c; x). Due to the simpler form of these hyper­

geometric functions, they satisfy a number of identities, 

1. 2F1(a, b; c; x) = (1- x)c-a-b2F1(c- a, c- b; c; x). 

2. 2F1(a, b; c; x) = (1- x)-a2F1(a, c- b; c; x:_1). 

3 F ( b. · ) - l(c)l(a+b-c) F ( b· b 1· 1 ) . 2 1 a, , c, x - r(a)r(b) 2 1 c - a, c - , c - a - + , - x X 

(1 )c-a-b l(c)l(c-a-b) F ( b· b 1· 1 ) - X + r(c-a)r(c-b) 2 1 a, , a + - C + , - X . 

4 F ( b. . ) _ r(c)r(b-a) F ( b· b 1· 1 ) 
. 2 1 a, 'c, X - r(b)r(c-a) 2 1 a, C- 'a - + ' 1-x X 

(1 , )-a+ r(c)r(a-b) F (b , b 1· 1 )(1 )-b 
- X r(a)r(c-b) 2 1 , c- a, - a+ , 1-x - X . 

(B.12) 
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These identities are utilised in the simplification of the classical action in 

section 4.5.2. In particular, they can be used to deduce ( 4.46) and ( 4.49). 

Of further use in the computation of the four-point amplitude in sec­

tion 4.5.4, is the hypergeometric differential equation, 

(1- x)xy" + (c- (a+ b + 1)x)y'- aby = 0. (B.13) 

This has the solution, 

(B.14) 

So, in our case we define G1 = J F,(x2 )dx2 , which can be expressed as 

G1 rv xg1H 2 2F1(rh, 1- '193; 1 + '!J1 + '!J2; x2), 

G2 rv (1- x2)1?2 H 3 2F1('193, 1- '!J1; 1 + '!J2 + '!J3; 1- x2). 
(B.15) 

These two expressions are of the form (B.14) with c1 = 0. Hence, identifying 

a, b and c we obtain, 

and letting '19i ----> 1 - '!9i we obtain, 
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